Learn by doing: less theory, more results

Selenium 2 Testing Tools

Learn to use Selenium testing tools from scratch

Beginner's Guide

David Burns

http://www.it-ebooks.info/

Selenium 2 Testing Tools
Beginner's Guide

Learn to use Selenium testing tools from scratch

David Burns

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium 2 Testing Tools Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Second published: October 2012
Production Reference: 1091012

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-830-7
www . packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Author Project Coordinator

David Burns Yashodhan Dere
Reviewers Proofreader

Tarun Kumar Bhadauria Steve Maguire

Dave Hunt

Indexers

Acquisition Editor Monica Ajmera Mehta

Usha lyer Rekha Nair

Tejal R. Soni

Lead Technical Editor

Pramila Balan Graphics

Aditi Gajjar
Technical Editors

Joyslita D'Souza Production Coordinators
Rohit Rajgor Melwyn D'sa

Arvindkumar Gupta
Cover Work

Melwyn D'sa

Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

David Burns is a Senior Developer in Test having worked with Selenium for quite a few
years. He is a Selenium Core Committer and so he knows and understands what users and
developers want from the framework.

I would like to thank everyone in the Selenium community for making
this product the great tool it is, and giving me an opportunity to write the
Second Edition of this book!

www.it-ebooks.info

http://www.it-ebooks.info/

Tarun Kumar Bhadauria has been associated with software testing industry from more
than seven years. His primary interest is towards manual testing and he equally enjoys using
Selenium for automated testing of web applications. He has been using Selenium from the
days of Selenium Remote Control. He has co-authored the official Selenium doc available at
SeleniumHQ. He is working as a Test Engineer at Pontiflex.

Dave Hunt lives in Kent, UK, with his wife and young son. He has always had a passion
for turning mundane tasks into one-click solutions, and when he discovered Selenium back
in 2005, his career in software testing and automation development was sealed. He works
from home for Mozilla, where he assists teams to create automated tests for their
projects—ranging from Mozilla's web properties to the Firefox web browser and the
Thunderbird e-mail client.

www.it-ebooks.info

http://www.it-ebooks.info/

sSupport files, eBooks, discount offers and more

You might want to visit www . PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. Packt Pub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

PACKTL &

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Suhscrihe?

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content
¢ Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To my loving wife and my amazing boy for giving me the support and drive to
finish this book! I love you both!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Tahle of Contents

Preface 1
Chapter 1: Getting Started with Selenium IDE 7
Important preliminary points 8
What is Selenium IDE 8
Time for action - installing Selenium IDE 8
Selenium IDE 10
Important note: Rules for automation 12
Time for action — recording your first test with Selenium IDE 13
Updating a test to assert items are on the page 16
Time for action — updating a test to verify items on the page 17
Comments 20
Time for action — adding Selenium IDE comments 20
Multiplying windows 21
Time for action — working with multiple windows 22
Time for action — complex working with multiple windows 23
Selenium tests against AJAX applications 24
Time for action — working on pages with AJAX 25
Time for action — working with AJAX applications 28
Storing information from the page in the test 29
Time for action — storing elements from the page 30
Debugging tests 31
Time for action — debugging tests 31
Test Suites 32
Time for action — creating Test Suites 32
Saving tests 34
What you cannot record 34
Summary 35

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: Locators 37
Important preliminary points 38
Locating elements by ID 39
Time for action - finding IDs of elements on the page with Firebug 39
Time for action - finding elements by ID 40
Moving elements on the page 41
Time for action - finding elements by name 42
Adding filters to the name 43
Time for action - finding elements by link text 43
Time for action - finding elements by accessing the DOM via JavaScript 44
Time for action - finding elements by XPath 45

Using direct XPath in your test 46
Time for action — finding elements by direct XPath 46
Using XPath to find the nth element of a type 47
Using element attributes in XPath queries 48
Doing a partial match on attribute content 49
Finding an element by the text it contains 49
Using XPath Axis to find elements 50
Time For Action — using XPath Axis 50
CSS selectors 52
Time for action - finding elements by CSS 53
Using child nodes to find the element 54
Using sibling nodes to find the element 55
Using CSS class attributes in CSS selectors 55
Using element IDs in CSS selectors 56
Finding elements by their attributes 56
Partial matches on attributes 57
Time for action - finding the nth element with CSS 58
Finding an element by its inner text 59
Summary 60

Chapter 3: Overview of Selenium WebDriver 63
Important preliminary points 63
History of Selenium 64
Architecture 65

WebDriver API 66
WebDriver SPI 66
JSON Wire protocol 66
Selenium server 66
The merging of two projects 67

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

How to set up your Java environment

Summary
Chapter 4: Design Patterns

Important preliminary points
Page Objects
Time for action — setting up the test

maintainable
Using Page Factories with Page Objects
Time for action — using PageFactory

LoadableComponent

Summary
Chapter 5: Finding Elements

Important preliminary points
Finding elements

67
Time for action — setting up Intellij IDEA project 67
70
71
71
72
72

Time for action — moving Selenium steps into private methods to make tests
73
Time for action — using the Page Object Pattern to design tests 75
78
78
81
Time for action — changing our Page Object to use LoadableComponent 82
85
87
87
88
Finding an element on the page by its ID 89
Time for action — using findElementByld() 89
Finding elements on the page by their ID 90
Time for action — using findElementsByld() 90
Finding an element on the page by its name 91
Time for action — using findElementByName() 92
Finding elements on the page by their name 93
Time for action — using findElementsByName() 93
Finding an element on the page by their ClassName 94
Time for action — using findElementByClassName() 94
Finding elements on the page by their ClassName 95
Time for action — using findElementsByClassName() 96
Finding an element on the page by their XPath 97
Time for action — using findElementByXPath() 97
Finding elements on the page by their XPath 98
Time for action — using findElementsByXpath() 98
Finding an element on the page by its link text 99
Time for action — using findElementByLinkText() 100
Finding elements on the page by their link text 101
Time for action — using findElementsByLinkText() 101
Finding elements using a more generic method 102
103

Time for action — using findElement()

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Time for action — using findElements() 103
Tips and tricks 104
Finding if an element exists without throwing an error 104
Waiting for elements to appear on the page 104
Implicit waits 104
Time for action — using implicit waits 105
Explicit waits 105
Time for action — using explicit waits with Selenium WebDriver 106
Summary 107
Chapter 6: Working with WebDriver 109
Important preliminary points 110
Working with FirefoxDriver 111
Time for action — loading the FirefoxDriver 111
Firefox profile preferences 112
Time for action — setting Firefox preferences 112
Installing a Firefox add-on 114
Time for action — installing the add-on 114
Working with ChromeDriver 116
Time for action — starting Google Chrome or Chromium 117
ChromeOptions 118
Time for action — using ChromeOptions 118
Working with OperaDriver 120
Time for action — starting Opera 120
OperaProfile 121
Time for action — working with OperaProfile 122
Working with InternetExplorerDriver 123
Time for action — working with Internet Explorer 124
Other important points 125
Summary 125
Chapter 7: Mobile Devices 127
Important preliminary points 127
Working with Android 128
Emulator 128
Time for action — creating an emulator 128
Installing the Selenium WebDriver Android Server 129
Time for action — installing the Android Server 130
Creating a test for Android 131
Time for action — using the Android driver 131
Running with OperaDriver on a mobile device 133
Time for action — using OperaDriver on Opera Mobile 134

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Working with iOS 137
Time for action — setting up the simulator 137
Time for action — setting up on a real device 141
Creating a test for iOS devices 142
Time for action — using the iPhone driver 142
Summary 143
Chapter 8: Getting Started with Selenium Grid 145
Understanding Selenium Grid 145
Selenium Grid Hub 147
Time for action — launching the hub 147
Adding instances to the hub 148
Time for action — adding a server with the defaults 149
Adding Selenium Remote Controls for different machines 150
Time for action — adding Selenium server for different machines 150
Adding Selenium server to do specific browser tasks on specific
operating systems 151
Time for action — setting the environment when starting Selenium
Remote Control 152
Using Selenium Grid 2 with your YAML file 152
Time for action — using Selenium Grid 1 configuration 153
Running tests against the grid 154
Time for action — writing tests against the grid 154
Running tests in parallel 155
Time for action — getting our tests running in parallel 155
Summary 156
Chapter 9: Advanced User Interactions 157
Important preliminary points 157
What is the Advanced User Interactions 158
Keyboard 158
Mouse 158
Actions 159
Drag and drop 159
Time for action — creating an Actions chain for dragging and dropping 160
Moving an element to an offset 161
Time for action — moving an element with a drag-and-drop by offset 161
Doing a context click 162
Time for action — doing a context click 162
Clicking on multiple items in a select element 163
Time for action — selecting multiple items on a select item 164
Holding the mouse button down while moving the mouse 165

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Time for action — holding the mouse button down while moving the mouse 165
Summary 167
Chapter 10: Working with HTML5 169
Important preliminary points 169
Working with application cache 170
Time for action — getting the current status of application cache 171
Interacting with browser connections 172
Seeing if the browser is online 172
Time for action — seeing if the browser is online 172
Setting the browser offline or online 173
Time for action — setting the browser connection to offline or online 174
Working with WebStorage 175
Local storage 175
Time for action — accessing localStorage 176
Session storage 177
Time for action — accessing sessionStorage 177
Summary 178
Chapter 11: Advanced Topics 181
Important preliminary points 181
Capturing screenshots 182
Capturing base64 version of images 182
Time for action — capturing images as base64 strings 183
Saving the screenshot to bytes 183
Time for action — saving images to bytes 183
Saving screenshots to files 184
Time for action — saving a screenshot to file 184
Using XVFB with Selenium 185
Time for action — setting up XVFB server 185
Running tests in XVFB 186
Time for action — running tests with XVFB 186
Working with BrowserMob Proxy 187
Creating a proxy 187
Time for action — starting the proxy 187
Capturing network traffic 188
Time for action — capturing network traffic 188
Summary 190

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Appendix A: Migrating from Remote Control to WebDriver 193
WebDriverBackedSelenium 193
Time for action — converting tests to Selenium WebDriver using
WebDriverBackedSelenium 194
Summary 196

Appendix B: Pop Quiz Answers 197
Chapter 1 197
Chapter 2 198
Chapter 3 198
Chapter 4 198
Chapter 5 199
Chapter 6 199
Chapter 7 200
Chapter 8 200
Chapter 9 200
Chapter 11 201
Appendix 201

Index 203

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium WebDriver is the most used tool for browser automation. This book shows
developers and testers how to create automated tests using a browser. You will learn how
to be able to use Selenium IDE for quick throwaway tests. Or if you want to create tests to
last, learn to use Selenium WebDriver.

You will learn to use Selenium WebDriver with both desktop browsers and mobile browsers,
and learn good design patterns to make sure your tests will be extremely maintainable.

Chapter 1, Getting Started with Selenium IDE, explains how to install Selenium IDE and record
our first tests. We will see what is needed to work against AJAX applications.

Chapter 2, Locators, shows how we can find elements on the page to be used in our tests.
We will use XPath, CSS, Link Text, and ID to find elements on the page so that we can interact
with them.

Chapter 3, Overview of Selenium WebDriver, discusses all the history and architectural
designs for Selenium WebDriver. You will also go through the necessary items for setting
up a development environment.

Chapter 4, Design Patterns, introduces the different design patterns that can be used with
Selenium WebDriver. The design patterns will show you how to make your tests more
maintainable and allow more people to work on your code.

Chapter 5, Finding Elements, explains all the different techniques to find elements
with Selenium WebDriver. This chapter builds on the locators that we learnt in
Chapter 2, Locators.

Chapter 6, Working with WebDriver, introduces all the different aspects of getting different
browsers that Selenium WebDriver supports on desktop operating systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 7, Mobile Devices, explains how Selenium WebDriver works on mobile devices
to test mobile websites or sites built with responsive web design.

Chapter 8, Getting Started with Selenium Grid, shows us how we can set up our Selenium
Grid. We will also take a look at running tests in parallel to try bringing down the time it
takes to run tests.

Chapter 9, Advanced User Interactions, explains how to build chains of actions together
to help when you need to drag-and-drop or have key combinations working. We will also
look at how we can press a mouse button and hold it down while we move the mouse.

Chapter 10, Working with HTML5, explains working with some of the HTML5 technologies
that are becoming available to browsers. The Selenium WebDriver APIs are very similar to
the JavaScript APIs in the browser to try make use of them easier.

Chapter 11, Advanced Topics, explains how to capture network traffic between the browser
and the web server. We finish off by capturing screenshots.

Appendix A, Migrating from Remote Control to WebDriver, introduces how the interaction
with the browser has changed and how we can convert our Selenium 1 tests to Selenium 2
to take advantage of the changes in Selenium WebDriver.

Mozilla Firefox
Google Chrome
Internet Explorer
Opera

Intellij IDEA
Firebug
Firefinder
Selenium IDE

Selenium Grid

® 6 ¢ 6 6 0 6 0 o o

Ubuntu Linux

If you are a Software Quality Assurance professional, Software Project Manager,
or a Software Developer interested in automated testing using Selenium, this book
is for you. Web-based application developers will also benefit from this book.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We do this by running java-jar
selenium-server.jar from a command prompt or from a terminal depending
on your operating system."

A block of code is set as follows:

@Before

public void setUp () {

selenium = new FirefoxDriver () ;

}

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Any command-line input or output is written as follows:

-jar selenium-server-standalone.jar

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Select Selenium Grid from
the drop-down box."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Test automation is growing in popularity over the years because teams do
not have the time or money to invest in large test teams to make sure that
applications work as they are expected. Developers also want to make sure
that the code they have created works as they expect it to.

Jason Huggins saw this issue too and wanted to make sure that a system he
was working on would work on multiple operating systems and browsers. He
created Selenium.

Selenium is one of the most well known testing frameworks in the world that

is in use. It is an open source project that allows testers and developers alike to
develop functional tests to drive the browser. It can be used to record workflows
so that developers can prevent future regressions of code. Selenium can work
on any browser that supports JavaScript, since Selenium has been built using
JavaScript.

In this chapter we shall cover:

What is Selenium IDE

Recording our first test

Updating tests to work with AJAX sites
Using variables in our tests

Debugging tests

Saving tests to be used later

® 6 6 6 6 o o

Creating and saving test suites

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

Before we start working through this chapter we need to make sure that Mozilla Firefox
is installed on your machine. If you do not have Mozilla Firefox installed you will need to
download it from http://www.getfirefox.com/.

Selenium IDE is a Firefox Add-on developed originally by Shinya Kasatani as a way to use the
original Selenium Core code without having to copy Selenium Core onto the server. Selenium
Core is the key JavaScript modules that allow Selenium to drive the browser. It has been
developed using JavaScript so that it can interact with DOM (Document Object Model) using
native JavaScript calls.

Selenium IDE was developed to allow testers and developers to record their actions as they
follow the workflow that they need to test.

Time for action - installing Selenium IDE

Now that we understand what Selenium IDE is, it is a good time to install it. At the end of
these steps, you will have successfully installed Selenium IDE on to your computer:
1. Goto http://seleniumhg.org/download/.

2. Click on the download link for Selenium IDE. You may see a message appear saying
Firefox prevented this site (seleniumhgq.org) from asking you to install software on
your computer. If you do, click the Allow button.

3. AFirefox prompt will appear, as shown in the following screenshot:

€ k& seleniumhg.org/download/
-

“ Firefox prevented this site (seleniurmhg.org) from
asking you to install software on your computer.

Allow -

www.it-ebooks.info

http://www.getfirefox.com/
http://seleniumhq.org/download/
http://www.it-ebooks.info/

Chapter 1

You will then be asked if you would like to install Selenium IDE and the exporter
add-ons. These have been made pluggable to the IDE by the work that Adam
Goucher did. You will see a screen like the following appear:

Software Installation [ﬁ

Install add-ons only from authors you trust.

Malicious software can damage your computer or viclate your privacy.

You have asked to install the following 5 items:

Selenium IDE: Ruby Formatters (duthor not verified)

http://release.seleniumhg.org/selenium-ide/1.5.0/selenium-ide-1.5.0.xpi

m

Selenium IDE Author not verified)

http://release.seleniumhg.org/selenium-ide/1.5.0/selenium-ide-1.5.0.xpi

Selenium IDE: Python Formatters [(duthor not verified)

http://release.seleniumhg.org/selenium-ides1.5.0/selenium-ide-1.5.0.xpi

& & B

Install {4) Cancel

Once the countdown has finished on the Install button, it will become active; click it.
This will now install Selenium IDE and formatters as Firefox Add-ons.

Once the install process is complete it will ask you to restart Firefox. Click the Restart
Now button. Firefox will close and then re-open. If you have anything open in another
browser it might be worth saving your work, as Firefox will try to go back to its original
state but this cannot be guaranteed.

==

t 5 add-ons will be installed after you restart Firefox.

Restart Mow | = |

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

7. Once the installation is complete, the Add-ons window will show the Selenium IDE
and its current version:

Selenium IDE 1.5.0

Record, edt and play Selenum tests More Options Dissble Remove

&

Selenium IDE: C# Formatters 1.5.0

©# code formatters for Selerum IDE oy Dusable Feemene

Selenium IDE: Java Formatters 1.5.0
lava code formatters for Selennem IDE More Disable Remave

Selenium IDE: Python Formatters 1.5.0

Python code formatters for Selenium IDE Mors Drsable o

Selenium IDE: Ruby Formatters 1.5.0

Ruby code lormatters for Selenium 0 Mooe Dissble Remave

& & ® B

What just happened?

You have successfully installed Selenium IDE and we can start thinking about writing
our first test.

Selenium IDE has been installed, so let's take some time to familiarize ourselves with
Selenium IDE. This will give us the foundation that we can use in later chapters.

Open up Selenium IDE by going through the tools menu in Mozilla Firefox. The steps are Tools |
Selenium IDE. A window will appear. If the menu bar is not available, which is now the default
in Firefox, you can launch Selenium IDE via Firefox | Web Developer | Selenium IDE.

(& Selenium IDE 15.0 =RACE X"
File Edit Actions Options Help
Base LURL -
i3 Slow
as ow BE b= | ® @
Table | Source
Command Target Value
v
.| Command -
Target - Find
Value
Log | Reference | Ul-Element | Rollup Infor Clear
[101

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Starting from the top, | will explain what each of the items are:

*

® & 6 & 6 0o o

Base URL: This is the URL that the test will start at. All open commands will be
relative to the Base URL unless a full path is inserted in the open command.

Speed Slider: This is the slider under the Fast and Slow labels on the screen.
»E Run all the tests in the IDE.
= Run a single test in the IDE.
Pause a test that is currently running.
2. Step through the test once it has paused.
@ This is the record button. This will be engaged when the test is recording.

The Command selectbox has a list of all the commands that are needed to
create a test. You can type into it to use the auto complete functionality or use
it as a dropdown.

The Target textbox allows you to input the location of the element that you want to
work against.

The Find button, once the target box is populated, can be clicked to highlight the
element on the page.

The Value textbox is where you place the value that needs to change. For example,
if you want your test to type in an input box on the web page, you would put what
you want it to type in the value box.

The Test table will keep track of all your commands, targets, and values. It has been

structured this way because the original version of Selenium was styled on FIT tests.
FIT was created by Ward Cunningham and means Framework for Integrated Testing.
The tests were originally designed to be run from HTML files and the IDE keeps this

idea for its tests.

If you click the Source tab you will be able to see the HTML that will store the test.
Each of the rows will look like:

<tr>
<td>open</td>
<td>/chapterl</td>
<td></td>

</tr>

nl

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

¢ The area below the Value textbox will show the Selenium log while the tests are
running. If an item fails, then it will have an [error] entry.
This area will also show help on Selenium Commands when you are working in the
Command selectbox. This can be extremely useful when typing commands into
Selenium IDE instead of using the record feature.

¢ The Log tab will show a log of what is happening during the test. The Reference tab
gives you documentation on the command that you have highlighted.

Important note: Rules for automation

Now that we have installed Selenium IDE and understood what it is, we can think about
working through our first tests. There are a few things that we need to consider when
creating your first test. These rules apply to any form of test automation but need to be
adhered to especially when creating tests against a User Interface.

¢ Tests should always have a known starting point. In the context of Selenium, this
could mean opening a certain page to start a workflow.

¢ Tests should not have to rely on any other tests to run. If a test is going to add
something, do not have a separate test to delete it. This is to ensure that if
something goes wrong in one test, it will not mean you have a lot of unnecessary
failures to check.

Tests should only test one thing at a time.
Tests should clean up after themselves.
These rules, like most rules, can be broken. However, breaking them can mean that you may

run into issues later on, and when you have hundreds, or even thousands of tests, these
small issues can mean that large parts of a test suite are failing.

With these rules in mind let us create our first Selenium IDE test.

121

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Time for action - recording your first test with Selenium IDE

We are going to record our first test using Selenium IDE. To start recording the tests we will
need to start Mozilla Firefox. Once it has been loaded, you will need to start Selenium IDE.
You will find it under the Tools dropdown menu in Mozilla Firefox or in the Web Developer

dropdown menu. Once loaded it will look like the next screenshot. Note that the record
button is engaged when you first load the IDE.

-
{4 Selenium IDE 1.5.0 * [E=EEE

File Edit Actions Options Help

Base URL http :_e'_e'www.a(ample.com_e1 -

East Slow [}E DE' | ¢ @

Table | Sgurce

Command Target Value

’ Command
Target Find

Value

Log | Reference | UI-Element | Rollup

open{url)

To start recording your tests let us do the following:

1. Wheninrecord mode, navigate to http://book.theautomatedtester.co.uk/
chapterl.

2. Onthe Web Application do the following:
1. Click on the radio button.

2. Select another value from the drop-down box, for example,
Selenium RC.

1131

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/

Getting Started with Selenium IDE

3. Click on the Home Page link.

(& Selenium IDE 150" == % |

Base URL hittp://booktheautomatedtester.co.uk/ -

5ast Slaw PE b_ | @ O

Table | Source

Command Target Value

;| [open fchapterl

| |elick radicbutton

select selecttype label=5elenium RC

1 |elick link=Home Page

b Command click -
Target link=Home Page
Value

‘ Log | Reference UI—EIementl Rollup‘

click{locator)

3. Your test has now been recorded and should look like the previous screenshot. Click
the play button that looks like this: B=

4. Once your test has completed it will look like this:

(1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

o Selenium IDE 1.5.0 *

=

Eile Edit Actions Options Help
Base URL http://booktheautomatedtester.co.uks/

. Command click

East Slow D’E ﬁﬂ | f
Test Case Table | Source
Untitled *
Command Target Value
L open fchapterl
; click radicbutton
select selecttype label="5eleniu...
click link=Home P...

I Target link=Home Page‘
Runs: 1

Failures: 0

Value

| Find

Log | Reference | Ul-Element | Rollup

[info] Executing: |click | link=Home Page | |

Infor Clear

What just happened?

We have successfully recorded our first test and played it back. As we can see Selenium IDE
has tried to apply the first rule of test automation by specifying the open command. It has
set the starting point of the test, in this case /chapteri, and then it began stepping through
the workflow that we want to record.

Once the actions have all been completed you will see that
background. This shows that they have completed successfully. On the left you will see that
it has completed one successful test, or run, within Selenium IDE. If you were to write a test
that failed, the Failure label would have a 1 next to it.

all of the actions have a green

1. What is the main language that drives Selenium IDE?

a. Ruby
b. Python

c. JavaScript

151

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

2. Selenium IDE works on Internet Explorer:
a. True
b. False

In the last few steps we were able to record a workflow that we would expect the user to
perform. It will test that the relevant bit of functionality is there, like buttons and links to
work against. Unfortunately we are not checking that the other items on the page are there
or if they are visible when they should be hidden. We are going to work against the same
page as before but we shall make sure that different items are on the page.

There are two mechanisms for validating elements available on the application under test.
The first is assert; this allows the test to check if the element is on the page. If it is not
available then the test will stop on the step that failed. The second is verify; this also allows
the test to check the element is on the page, but if it isn't then the test will carry

on executing.

To add the assert or verify commands to the tests we need to use the context menu that
Selenium IDE adds to Firefox. All that one needs to do is right-click on the element if on
Windows or Linux. If you have a Mac, then you will need to do the two finger click to show
the context menu.

When the context menu appears, it will look roughly like the following screenshot with the
normal Firefox functions above it:

open /chapterl

verifyTextPresent Assert that this text is on the page
verifyValue

storeValue

verifyText divontheleft Assert that this text is on the page
verifyElementPresent divontheleft
waitForElementPresent divontheleft

Show All Available Commands 4

1161

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Time for action - updating a test to verify items on the page

In this section we are going to be recording a test and then we are going to update it to have
some verify commands:

1. Open the IDE so that we can start recording.

Navigate to http://book.theautomatedtester.co.uk/chapterl.

2
3. Select Selenium Grid from the drop-down box.
4. Change the Select to Selenium Grid.

5

Verify that Assert that this text is on the page text is mentioned on the right-
hand side of the drop-down box, by right-clicking on the text and selecting Verify
TextPresent Assert that this text is on the page. You can see the command in the
previous screenshot.

6. Verify that the button is on the page. You will need to add a new command for
verifyElementPresent with the target verifybutton in Selenium IDE.

7. Now that you have completed the previous steps, your Selenium IDE should look like
the following screenshot:

& Selenium IDE 1.5.0* =

File Edit Actions Options Help

Base URL http://book.theautomatedtester.co.uk/

4

535!: Slow DE D:' | p @
Test Case || | Table | Source
Untitled *
Command Target Value
L |open fchapterl -
click radicbutton
select selecttype label=Sele... |=
verify Text divontheleft Assert tha...

verifyElementPresent verifybutton

i Command verifyElementPresent -
Target verif’ybuttonl Find
Runs: 1 Value
Failures: 0

Log | Reference | Ul-Element | Rollup

verifvElementPresent(locator)

If you now run the test you will see it has verified that what you are expecting to see on the
page has appeared. Notice that the verify commands have a darker green color. This is to
show that they are more important to the test than moving through the steps. The test has
now checked that the text we required is on the page and that the button was there too.

[l

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

What would happen if the verify command did not find what it was expecting? The IDE
would have thrown an Error stating what was expected was not there, but it carried on
with the rest of the test. We can see an example of this in the following screenshot:

& Selenium IDE 150 * =RACN X
Eile Edit Actions Options Help
Base URL http://booktheautomatedtester.co.uk/ -
t sl = -
M D‘E D‘“‘ | (j O
Test Case Tab'e|50urc'c‘|
Untitled *
Command Target Value
; click radicbutton -~
| [select selecttype label=5ele...
| |werifyTest divontheleft ssertthat t...
verifyElementPresent verifybutton
‘ Command v
B oo
Runs: 1 Value
Failures: 1
| Log | Referencel UI—EIementl Rollup| Infor Clear
[info] Executing: |verifyElementPresent | verifybutton | |

ol

The test would not have carried on if it was using assert as the mechanism for validating that
the elements and text were loaded with the page.

What just happened?

We have just seen that we can add Asserts or Verification to the page. Selenium IDE does not
do this when recording, so it will always be a manual step. We saw that if we use the assert
command it will cause the test to stop if it fails while the verify command allows the test to
carry on after a failure. Each of these has their merits.

[181

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Have a go hero - recreating the test hy using the assert methods

Some of the verify and assert methods are:

® 6 6 6 O O O O O 6 O 0 0

verifyElementPresent
assertElementPresent
verifyElementNotPresent
assertElementNotPresent
verifyText

assertText
verifyAttribute
assertAttribute
verifyChecked
assertChecked
verifyAlert

assertAlert

verifyTitle

assertTitle

Pop quiz - verifying and asserting

1.

2.
3.

Selenium verifies items on the page when it is recording steps:
a. True
b. False

What is the difference between verify and assert?

If you wanted to validate that a button has appeared on a page, which two
commands would be the best to use?

a. verifyTextPresent/assertTextPresent
b. verifyElementPresent/assertElementPresent
verifyAlertPresent/assertAlertPresent

d. verifyAlert/assertAlert

1191

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

Before we carry on further with Selenium, it would be a good time to mention how to create
comments in your tests. As all good software developers know, having readable code and
having comments can make maintenance in the future much easier. Unlike in software
development it is extremely hard, almost impossible, to write self-documenting code. To
combat this, it is good practice to make sure that your tests have comments that future
software testers can use.

Time for action - adding Selenium IDE comments

To add comments to your tests do the following steps:

1. Inthe test that was created earlier, right-click on a step. For example, the verify step.

2. The Selenium IDE context menu will be visible as shown in the following screenshot:

Cut Ctrl+ X
Copy Ctrl+C
Delete Delete

Inzert Mew Command

Inzert Mew Comment
Clear All

Teggle Breakpoint E
Set / Clear Start Point 5

Execute this cormmand X

3. Click on Insert New Comment. A space will appear between the
Selenium commands.

4. Click on the Command textbox and enter in a comment so that you can use it for
future maintenance. It will look like the following screenshot:

[201

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

i commenthtml - Selenium IDE 1.5.0 |£|E|—E_hj

File | Edit | Actions Options Help

Base URL http://bocktheautomatedtester.co.uks -
ast Slow
Table | Source
Command Target Value
open fchapterl it
Ho|click radiobutton
select selecttype label=5elenium RC |-
Verify the text
werifyText divontheleft Assert that this te..,
verifyElernentPresent verifybutton
’

Comrmand v
Target - Find
Value
Log | Reference | UI-Element | Rollup Infor Clear
|
What just happened?

We have just had a look at how to create comments. Comments will always appear as
purple text in the IDE. This, like in most IDEs, is to help you spot comments quicker when
looking through your test cases. Now that we know how to keep our tests maintainable with
comments, let's carry on working with Selenium IDE to record/tweak/replay our scripts.

Web applications unfortunately do not live in one window of your browser. An example of
this could be a site that shows reports. Most reports would have their own window so that
people can easily move between them.

Unfortunately in testing terms this can be quite difficult to do, but in this section we will have
a look at creating a test that can move between windows.

21

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

Time for action — working with muitiple windows

Working with multiple browser windows can be one of the most difficult things to do within
a Selenium Test. This is down to the fact that the browser needs to allow Selenium to
programmatically know how many child browser processes have been spawned.

In the following examples we shall see the tests click on an element on the page which will
cause a new window to appear. If you have a pop-up blocker running, it may be a good idea
to disable it for this site while you work through these examples.

1. Open up Selenium IDE and go to the Chapter 1 page on the site.

2. Click on one of the elements on the page that has the text Click this link to launch
another window. This will cause a small window to appear.

3. Verify the text in the popup by right-clicking and selecting VerifyText id=popup text
within the popup window.

4. Once the window has loaded, click on the Close the Window text inside it.

5. Add a verify command for an element on the page. Your test should now look like
the following screenshot:

& commenthtml - Selenium IDE 1.5.0 | =[] ﬂh]

File Edit Actions Options Help

Base URL http://booktheautomatedtester.co.uk/

fast Slow DE D‘“ p @

Table | Source

4

Command Target Value
click multiplewindow o
waitForPopUp popupwindow 30000

"l |selectWindow name=popupwind...

: verify Text popuptext Text within the .. |_
click closepopup 1
selectWindow null

verifyElementPresent verifybutton

Command -
Target - Find
Value
Log | Reference | UL-Element | Rellup Info- Clear
the pop up window | T

[info] Executing: |click | closepopup | |
[info] Executing: |selectWindow | null | |
[info] Executing: |verifyElementPresent | verifybutton | | =

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Sometimes Selenium IDE will add a c1ickAndwait instead of a click command.
This is because it notices that the page has to unload. If this happens just change the
clickAndwait to a click so that it does not cause a timeout in the test.

What just happened?

In the test script we can see that it has clicked on the item to load the new window and
then has inserted a waitForPopUp. This is so that your test knows that it has to wait for a
web server to handle the request and the browser to render the page. Any commands that
require a page to load from a web server will have a waitFor command.

The next command is the selectWindow command. This command tells Selenium IDE that
it will need to switch context to the window, called popupwindow, and will execute all the
commands that follow in that window unless told otherwise by a later command.

Once the test has finished with the popup window, it will need to return to the parent
window from where it started. To do this we need to specify null as the window. This
will force the selectWindow to move the context of the test back to its parent window.

Time for action — complex working with multiple windows

In the next example we are going to open up two pop-up windows and move between them
and the parent window as it completes its steps.
1. Start Selenium IDE and go to Chapter 1 on the website.

2. Click on the Click this link to launch another window link. This will launch
a pop-up window.

3. Assert the text on the page. We do this by right-clicking and selecting assertText.

4. Go back to the parent window and click on the link to launch the second
pop-up window.

5. Verify the text on the page.

6. Move to the first pop-up window and close it using the close link. As before,
be aware of clickAndWait instead of click.

7. Move to the second pop-up window and close it using the close link.

8. Move back to the parent window and verify an element on that page.

[231

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

9. Run your test and watch how it moves between the windows. When complete it
should look like the following screenshot:

& commenthtml - Selenium IDE 1.5.0 * |£|E|—K_hj

File Edit Actions Options Help

Base URL http://bocktheautomatedtester.co.uk/

5351: Slow D‘E [;‘:- | r Q

Table | source

Command Target Value

open fchapterl

click loadajax

werifyText css=#ajaxdiv > p The following text ...

Command verifyText hd

Target css=Fajaxdiv = p Find

Value we can work through the AJAX section of this chapter

Log | Reference | UI-Element | Rellup Info- Clear

this site. It has been loaded in an asynchronous -
fashion so that we can work through the AJAX section
of this chapter |

[error] Element css=#ajaxdiv > p not found -

What just happened?

We just had a look at creating a test that can move between multiple windows. We saw how
we can move between the child windows and its parent window as though we were a user.

Selenium tests against AJAK applications

Web applications today are being designed in such a way that they appear the same as
desktop applications. Web developers are accomplishing this by using AJAX within their web
applications. AJAX stands for Asynchronous JavaScript And XML due to the fact that it relies
on JavaScript creating asynchronous calls and then returning XML with the data that the user
or application requires to carry on. AJAX does not rely on XML anymore, as more and more
people move over JSON, JavaScript Object Notation, which is more lightweight in the way
that it transfers the data. It does not rely on the extra overhead of opening and closing tags
that is needed to create valid XML.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Time for action — working on pages with AJAX

In our first example, we are going to click on a link and then assert some text is visible
on the screen:

1. Start up Selenium IDE and make sure that the Record button is pressed.

2. Navigate to http://book.theautomatedtester.co.uk/chapterl.
3. Click on the text that says Click this link to load a page with AJAX.
4

. Verify the text that appears on your screen. Your test should look like the
following screenshot:

&) commenthitml - Selenium IDE 1.5.0 | =[] ﬁ]
File Edit Actions Options Help
Base URL http://book.theautomatedtester.co.uk/ -
5 Slow
ast ow D’E I}“:' | 4 @
Table | Source
Command Target Value
open fchapterl
click loadajax
" |werify Text css=#ajaxdiv > p The following text ...
;
Command -
Target - Find
Value
Log | Reference | UI-Element | Rollup Infor Clear
[251

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

5. Run the test that you have created. When it has finished running it should look like
the following screenshot:

(& commenthtml - Selenium IDE 1.5.0 * =RREN X

Eile Edit Actions Options Help
Base URL http://booktheautomatedtester.co.uk/ -

555t Slow D‘E D‘E- (—: G
Table | Saurce

Command Target Value

open /chapterl
click leadajax
verify Text css=Fajaxdiv > p The following text ...

Command verifyText b

Target css=#Fajandiv > p Find

Value we can work through the AJAX section of this chapter

| Log | Referencel UI—EIementl Rollup‘ Infor Clear

this site. It has been loaded in an asynchronous -
fashion so that we can work through the AJAX section
of this chapter |

[error] Element css=#ajaxdiv > p not found -

Have a look at the page that you are working against. Can you see the text that the test is
expecting? You should see it, so why has this test failed? The test has failed because when
the test reached that point, the element containing the text was not loaded into the DOM.
This is because it was being requested and rendered from the web server into the browser.

To remedy this issue, we will need to add a new command to our test so that our tests pass
in the future:

1. Right-click on the step that failed so the Selenium IDE context menu appears.

2. Click on Insert New Command.

3. Inthe Command select box, type waitForElementPresent or select it from the drop-
down menu.

1261

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Inthe Target box add the target that is used in the verifyText command.

5. Run the test again and it should pass this time:

& commenthtml - Selenium IDE 1.5.0 * =

File Edit Actions Options Help

Base URL http://booktheautomatedtester.co.uk/ -

555: Slow DE [}:- | © Q

Table | Source

Command Target Value

open fchapterl
click loadajax

waitForElementPres.., css=#ajaxdiv » p
werify Text css=#ajaxdiv > p The following text ...

Command waitForElementPresent -

Target css=Fajaxdiv > p Find

Value

Log | Reference | UI-Element | Rollup Infor Clear

[info] Executing: |verifyText | css=#ajaxdiv = p | The -
following text has been loaded from another page on

this site. It has been loaded in an asynchronous

fashion so that we can work through the AJAX section -

What just happened?

Selenium does not implicitly wait for the item that it needs to interact with, so it is seen as
good practice to wait for the item you need to work with then interact with it. The waitFor
commands will timeout after 30 seconds by default but if you need it to wait longer you can
specify the tests by using the set Timeout command. This will set the timeout value that
the tests will use in future commands.

If need be you can change the default wait if you go to Options | Options and then on
the General tab and under Default timeout value of recorded command in milliseconds
(30s = 30000ms) change it to what you want. Remember that there are 1000 milliseconds
in a second.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

Time for action — working with AJAK applications

As more and more applications try to act like desktop applications we need to be able to
handle synchronization steps between our test and our application. In this section we will
see how to handle AJAX and what to synchronize.

1. Click on the load text to the page button.

2. Navigate to http://book.theautomatedtester.co.uk/chapterl.

3. Wait for the text | have been added with a timeout. Your test will look like the
following screenshot:

k& comment.html - Selenium IDE 1.5.0 * | | [ﬁ]
Eile Edit Actions Options Help
Base URL http://booktheautomatedtester.co.uk/ -
East Slow D’E D":' | ¢ @
Table | Source
Command Target Value
open /chapterl
click secondajaxbutten
| |waitForText html5div To be used after th..,
.
Command -
Target Find
Value
Log | Reference | UI-Element | Rollup Info- Clear
[info] Executing: |click | secondajaxbutton | | »
[info] Executing: |waitForText | htmladiv | To be used
after the AJAX section of the bookl have been added
with a timeout | -

In the previous examples, we waited for an element to appear on the page; there are a number
of different commands that we can use to wait. Also remember that we can take advantage

of waiting for something not to be on the page. For example, waitForElementNotPreset.
This can be just as effective as waiting for it to be there. The following commands make up the
waitFor set of commands but this is not an exhaustive list:

1281

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

waitForAlertNotPresent
waitForAlertPresent
waitForElementPresent
waitForElementNotPresent
waitForTextPresent
waitForTextNotPresent

waitForPageToLoad

® 6 6 6 6 O 0o o

waitForFrameToLoad

A number of these commands are run implicitly when other commands are being run. An
example of this is the c1ickAndWait command. This will fire off a c1ick command and
then fire off a waitForPageToLoad. Another example is the open command which only
completes when the page has fully loaded.

If you are feeling confident then it would be a good time to try different waitFor
techniques.

Pop yuiz - waiting for elements

1. If an element got added after the page has loaded what command would you use to
make sure the test passed in the future?

a. waitForElementPresent
b. pause

C. assertElementPresent

Storing information from the page in the test

Sometimes there is a need to store elements that are on the page to be used later in a test.
This could be that your test needs to pick a date that is on the page and use it later so that
you do not need to hardcode values into your test.

Once the element has been stored you will be able to use it again by requesting
it from a JavaScript dictionary that Selenium keeps track of. To use the variable it
will take one of the following two formats: it can look like $ {variableName} or
storedvVars ['variableName']. | prefer the storedvars format as it follows
the same format as it is within Selenium internals.

1291

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

Time for action - storing elements from the page

To see how this works lets work through the follow example:

1. Open up Selenium IDE and switch off the Record button.
2. Navigate to http://book.theautomatedtester.co.uk/chapterl.

3. Right-click on the text Assert that this text is on the page and go to the storeText
command in the context menu and click on it.

4. A dialog will appear as shown in the following screenshot. Enter the name
of a variable that you want to use. | have used textOnThePage as the name
of my variable.

[JavaScript Applicatio IJ

0 Enter the name of the variable

oK l| Cancel |

5. Click on the row below the storeText command in Selenium IDE.
6. Type type into the Command textbox.
7. Type storeinput into the Target box.
8. Type ${textonThepPage} into the Value box.
9. Run the test. It should look like the following screenshot:
Base URL http://bock.theautomatedtester.co.uk/ -
ﬁast Slow D’E [}:- | G
Test Case Table | Source
Untitled *
Command Target Value
open /chapterl
storeText id=divontheleft textOnThePage
type storeinput §{textOnThePage]

Command type -

| | Target storeinput Find
Runs: 11 value S[textOnThePage}
Failures: 0
Log | Reference | Ul-Element | Rollup Infor Clear

[info] Executing: |open | /chapterl | |
[info] Executing: |storeText | id=divontheleft | textOnThePage |
[info] Executing: |type | storeinput | ${textOnThePage} |

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter1
http://book.theautomatedtester.co.uk/chapter1
http://www.it-ebooks.info/

Chapter 1

What just happened?

Once your test has completed running you will see that it has placed Assert that this text is
on the page into the textbox.

We have successfully created a number of tests and have seen how we can work against
AJAX applications but unfortunately creating tests that run perfectly first time can be
difficult. Sometimes, as a test automator, you will need to debug your tests to see

what is wrong.

To work through this part of the chapter you will need to have a test open in Selenium IDE.

Time for action - debugying tests

These two steps are quite useful when your tests are not running and your want to execute a
specific command.

1. Highlight a command.

2. Press the X key, this will make the command execute in Selenium IDE.

What just happened?

When a test is running you can press the Pause button to pause the test after the step that is
currently being run. Once the test has been paused the Step button is no longer disabled and
you can press it to step through the test as if you were stepping through an application.

If you are having issues with elements on the page you can type in their location and then
click on the Find button. This will surround the element that you are looking for with a green
border that flashes for a few seconds. It should look like the following screenshot:

This item div has the id of find
put find into the target of Selenium IDE
and click the find button

Command

Target find

Value

Log Reference Ul-Element Rollup Infor Clear

[311

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

The echo command is also a good way to write something from your test to the log. This is
equivalent to Console.log in JavaScript. For example, echo | ${variableName}.

Also remember that if you are trying to debug a test script that you have created with
Selenium IDE, you can set breakpoints in your test. You simply right-click on the line and
select breakpoint from the list. It will be similar to the following screenshot:

Cut Ctrl+ X
Copy Ctrl+C
Paste Ctrl+Y
Delete Delete

Insert Mew Command

Inzert Mew Comment
Clear All

Teggle Breakpoint B
Set f Clear Start Point &

Execute this command X

You can also use the keyboard shortcut of B to allow you to do it quicker.

Test Suites

We have managed to create a number of tests using Selenium IDE and have managed to run
them successfully. The next thing to have a look at is how to create a test suite, so that we
can open the test suite and then have it run a number of tests that we have created.

Time for action - creating Test Suites

If you have Selenium IDE open from the last steps, click on the File menu:

1. Click New Test Case.

2. You will see that Selenium IDE has opened a new area on the left of the IDE as
shown in the following screenshot:

[321

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

& Selenium IDE 15.0 (=] 5 [t
File Edit Actions Options Help

Base URL http://book.theautomatedtester.co.uk/ -
=== BE b= © @

Test Case || | 130le | Source

commen...
m" tith Command Target Value

Command v
[Target Find
Runs: 1 Value
Failures: 0
Log | Reference | Ul-Element | Rollup Infor Clear

[info] Executing: |waitForText | html5div | To be used -
after the AJAX section of the bookI have been added
with a timeout |

[infa] Changed test case -

You can do this as many times as you want and when the Play entire test suite button is
clicked it will run all the tests in the test suite. It will log all the passes and failures at the
bottom of the Test Case box.

To Save this, click on the File menu and then click Save Test Suite and save the Test Suite file
to somewhere that you can get to again. One thing to note is that saving a test suite does not
save the test case. Make sure that you save the test case every time you make a change and
not just the test suite.

To change the name of the test case to something a lot more meaningful you can do this by
right-clicking on the test and clicking on the Properties item in the context menu:

Test Case Property e — - - - EG |

M Chapterd htm

Title Chapterl

You can now add meaningful names to your tests and they will appear in Selenium IDE
instead of falling back to their filenames.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium IDE

What just happened?

We have managed to create our first test suite. This can be used to group tests together to
be used later. If your tests have been saved, you can update the test suite properties to give
the tests a name that is easier to read.

Pop quiz-Test Suites

1. How do we run all the tests in a test suite?

Saving tests is done in the same manner as saving a test suite. Click on the File Menu and
then click Save Test Case. This will give you a save dialog, save this to somewhere that you
can get to it later. When you save your tests and your test suite, Selenium IDE will try to keep
the relationships between the folders in step when saving the tests and the test suites.

What you cannot record

We have seen our tests work really well by recording them and then playing them back.
Unfortunately there are a number of things that Selenium cannot do. Since Selenium was
developed in JavaScript, it tries to synthesize what the user does with JavaScript events.
Unfortunately this does mean that it is bound by the same rules that JavaScript has in any
browsers by operating within the sandbox.

+ Silverlight and Flex/Flash applications, at the time of writing, cannot be recorded
with Selenium IDE. Both these technologies operate in their own sandbox and do
not operate with the DOM to do their work.

¢ HTMLS5, at the time of writing, is not fully supported with Selenium IDE. A good
example of this is elements that have the contentEditable=true attribute. If
you want to see this, you can use the type command to type something into the
html5div element. The test will tell you that it has completed the command but
the Ul will not have changed, as shown in the following screenshot:

To be used after the AJAX
Command Target WValue section of the book
type html5div hello

341

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

¢ Selenium IDE does not work with Canvas elements on the page either so you will not

be able to make your tests move items around on a page.

Selenium cannot do file uploads. This is due to the JavaScript sandbox not allowing
JavaScript to interact with <input type=file> elements on a page. While you
might be able to send the text to the box it will not always do what you expect,

so | would recommend not doing it.

We will be able to automate a number of these elements with Selenium WebDriver in later
chapters of this book.

We learnt a lot in this chapter about Selenium IDE, learning how to create your first test
using the record and replay and understanding some of the basic concepts like moving
between multiple windows that can appear in a test, and to save our tests for future use.

Specifically, we covered:

L 4

How to install Selenium IDE: We started by downloading Selenium IDE from
http://seleniumhg.org.

What Selenium IDE is made up of: The breakup of Selenium IDE allowed us to
see what makes up Selenium IDE. It allowed us to understand the different parts
that make up a command that will be executed in a test as well as its basic format.
We had a look at how to load Selenium IDE and how to get started with recording
of tests. We saw that a Selenium IDE command is made up of three sections: the
command, the target, and the value that might be used.

Recording and Replaying Tests: We used Selenium IDE to record a workflow that
a user will need in their tests. We also had a look at verifying and asserting that
elements are on the page and that the text we are expecting is also on the page.

How to add comments to tests: In this section of the chapter we saw how to add
comments to the tests so that they are more maintainable.

Working with Multiple Windows: Applications today can have pop-up windows
that tests need to be able to move between.

Working with AJAX applications: AJAX applications do not have the items needed
for the tests when the tests get to commands. To get around this we had a look at
adding waitFor commands to the tests. This is due to the fact that Selenium does
not implicitly wait for elements to appear in the page.

www.it-ebooks.info

http://seleniumhq.org/
http://www.it-ebooks.info/

Getting Started with Selenium IDE

¢ Storing information in variables: There is always something that is on the page
that needs to be used later but unfortunately you will not know what the value is
before the test runs. This section showed us how we can record items into a variable
and use it later in a test. This could be something that has happened on a page and
needs to check that it is still there on later pages.

¢ Debugging tests: Creating tests does not always go according to plan, so in this
section we saw some of the different ways to debug your tests.

¢ Saving Test Suites: Finally we saw how we can save tests for future use and we can
save them into different groups by saving them into test suites.

We also discussed what cannot be tested using Selenium IDE. We saw that Silverlight and
Flex/Flash applications could not be tested, and that when working with a number of HTML
5 elements the tests say that they have completed the tasks even though the Ul has not
changed. In later chapters we will discuss different mechanisms that we can use within our
tests that might be useful against HTML5 elements on the page.

Now that we've learnt about Selenium IDE, we're ready to look at all the different techniques
to find elements on the page—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Locators allow us to find elements on a page that can be used in our tests.

In the last chapter we managed to work against a page which had decent
locators. In HTML, it is seen as good practice to make sure that every

element you need to interact with has an ID attribute and a Name attribute.
Unfortunately, following best practices can be extremely difficult to do,
especially when building the HTML dynamically on the server before sending it
back to the browser.

In this chapter we shall:

Locate elements by ID
Locate elements by Name
Locate elements by Link
Locate elements by XPath

Locate elements by CSS

* 6 ¢ & o o

Locate elements by DOM

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

Before starting this chapter we should begin by making sure that we have all the relevant
applications installed. While these are not foolproof, they will give us some clue how to
construct the locator for our tests to use.

¢ Firebug: https://addons.mozilla.org/firefox/addon/firebug

Firebug has become the defacto tool for web developers as it allows developers to
find elements on the page by using the find functionality.

It has a JavaScript REPL. REPL stands for Read-Eval-Print-Loop or interactive shell
that allows you to run JavaScript without having to create an entire page.

¢ Firefinder: https://addons.mozilla.org/firefox/addon/firefinder-
for-firebug

A very good tool for testing out XPath and CSS on the page. It will highlight all
elements on the page that match the selector to your element location.

¢ |E Developer Tools:

This is built into IE7, IE8 and IE9 that we can launch by pressing F12. It also has a
number of features that Firebug has.

¢ Google Chrome Developer Tools:

This, like IE, is built into the browser and will also allow you to find the elements on
the page and be able to work out its XPath.

Once you have worked out your locator, you will need to put it into Selenium IDE to test it.
At the beginning of Chapter 1, Getting Started with Selenium IDE there was a section that
explained the layout of Selenium IDE. One of the buttons on the page is named Find. Click on
this button when you have something in the Value textbox; it will highlight the item in green
as shown in the next screenshot. On Mac OS X, the background color will flash yellow.

This item div has the id of find
put find into the target of Selenium IDE
and click the find button

Command v
Target find

Value

Log Reference Ul-Element Rollup Infor Clear

Now that we have these tools and understand how to use them we can start adding decent
locators to our test scripts.

www.it-ebooks.info

https://addons.mozilla.org/firefox/addon/
http://www.it-ebooks.info/

Chapter 2

Locating elements hy ID

On web applications today, elements should have an ID attribute for all their controls on the
page. A control would be an element that we can interact with and is not static text. This
allows Selenium to find the unique item, since IDs should be unique, and then complete the
action that it needs to do against that element.

Time for action - finding IDs of elements on the page with

In this section we are going to find a number of elements that are on the page. You will need
to have Firebug installed for this. We are going to look at how to find the ID of an element
using Firefox.

1. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on
the Firebug icon.

2. Click on the Select Element icon in Firebug .
3. Move your mouse over the element that you wish to have a look at.

4. Move your mouse over different elements. As you can see in the following
screenshot, firebug will highlight each of the items that you want to see:

Button with ID

I

g
[

& Console | HTML~ Css Script DOM Net Firefinder YSlow
5| Edit | inputfbutl < divEdivo..leftdiv < div.mainbody Style~ | Computed Layout DOM

Beginners Guide</div> . || Inherited from divgdivontheleft leftdiv

leftdiv { seleni..ers.css (line 22)
as font-size: 15px;
=]
Inherited from div m=inbody

seleni..ers.css (line 16)

i 3

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

What just happened?

Once one has been selected, you can see that the element and all of the different attributes
are now visible. We saw that the item became highlighted, or a single color box surrounded
it, so that we can see which item is selected. We see this in the previous screenshot.

Now that we are confident on how to find elements and their attributes, let's start using
them in Selenium.

1. What color is an element bordered with when the Find button is clicked in
Selenium IDE?

a. Red

b. Green
c. Amber
d. Yellow

Time for action - finding elements by ID

Elements often have IDs that are used to locate them. In the Target textbox this would look
like id=Element. Follow the given example to see how it would work:
1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on
the Firebug icon.

3. Find any element that you want to interact with on the page and in the Target
textbox of Selenium IDE, place its ID attribute value. Make sure that it has an
ID attribute. For example, use butl as in the previous screenshot against
http://book.theautomatedtester.co.uk/chapter2.

4. Type the command click into the Command selectbox.

5. Play your script.

[401

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter2
http://book.theautomatedtester.co.uk/chapter2
http://www.it-ebooks.info/

Chapter 2

Base URL http://book.theautomatedtester.co.uk/ -

ﬁast Slow DE D':' | 0 G

Table | source
Command Target Value
open /chapter2
click butl
»
b
Command -
Target Find
Value
Log | Reference | Ul-Element | Rellup Infor Clear

[info] Executing: |open | /chapter2 | |
[info] Executing: [click | butl | |

What just happened?

Your test will have executed the step successfully. Since the test is using the ID of the
element, if that element were to be moved around, it would find the item without any issue.
This is one of the main plus points of Selenium over a lot of the competing test frameworks

out there.

As | just mentioned, Selenium, when using the value of the ID attribute, can find the
elements on the page even if they were moved. Click on the button with the text Random
on the Chapter 2 page of the site (you can do this manually), and then run the script that we
created earlier. You will see that your test executes successfully.

[al

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

Time for action - finding elements by name

Elements do not necessarily have ID attributes on all of them. Elements can have names that
we can use to locate them. In the Target textbox this would look like name=Element. Follow
the given example to see how it would work:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on
the Firebug icon.

3. Find any element that you want to interact with and in the Target textbox of
Selenium IDE, place the value of its name attribute. For example, use but2 as in
the following screenshot against http://book.theautomatedtester.co.uk/
chapter2.

and click the find button

Button with name

This eleme ID that changes every time the page is loaded

4| Firebug - Seleniu

Eile View Help
"R Console | HTML~ | €55 Script DOM MNet Firefinder YSlow
<> | Edit | input = divEdiventheleft2 < div.mainbedy < body < html

= <html xmlns="http://www.W3_ org/1395% /xhtml">

theeding™> Selenium: Beginners Guide</divs

+ <div id="find">

t <div id="divontheleft"™ class="leftdiv"=>
=] <div id="divontheleftZ">

</div>
+| <div id="divinthecen

<disw id="time_ 20 has =2 ID t
<fdiwx
</body>

</ html>

[42]

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter2
http://www.it-ebooks.info/

Chapter 2

4. Type the command click into the Command selectbox.

5. Play your script.

What just happened?

Your test will have executed the step successfully. Since the test is using the name of the
element, if that element were to be moved around, it would find the item without any issue.

There are times when there may be elements on the page that have the same name but a
different attribute. When this happens we can apply filters to the locator so that Selenium
IDE can find the element that we are after.

An example of this on the page would be name=verifybutton value=chocolate;.
This will find the second button with the name verifybutton. See an example of this in
the following screenshot:

Command Target Value

name=verifybutton value=chocolate

Werify this button here

Time for action - finding elements by link text

Probably the most common element on a page is a link. Links allow pages to be joined
together so end users can navigate your site with confidence. You can see a screenshot of
the element being found in Selenium IDE.

1. To specify that you want to follow a link you would use the target 1ink=11ink.

[431

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

2. On http://book.theautomatedtester.co.uk/chapter2, thereis alink to
the index page of the site. In the Target textbox in Selenium IDE, we are going to
need to add 1ink=Index. If you click Find button on Selenium IDE you will see
the following:

- Command Target Value
This item div has the id offind | [B link=Index
put find into the target of Selenic||B
and click the find button
Button with 1D
. : Command -
This element has a |D that chan| |8
H Target link=Index
Value

What just happened?

We have seen how we can find links that are on that page so that they can be used in your
test. All that is needed is the inner text of the nodes in the DOM.

Time for action - finding elements by accessing the DOM via
JavaScript

There are times where the DOM will be updated via AJAX and this means that our locator
needed for the test will need some form of JavaScript to see if it is there. In JavaScript,
calling the DOM to find the first link on the page would look like document .1inks [0] ;.
document represents the HTML document and 1inks is an array on that object. On the
Chapter 2 page of the website, it will show the link that we used in the previous section of
this chapter.

But normally it will just be calls to the DOM to see if an element has been added like in the
following screenshot:

Table | Source
Command Target Value
dom=document.getElementByld("butl");
Sibling Button [Nl
Command -
Target dom=document.getElernentByld("butl");
alue

[a4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What just happened?

We have just seen that we can use JavaScript to find elements on the page. This can be
extremely useful if you have a web application that does a lot of interaction with the DOM.

Pop quiz - finding Elements with DOM JavaScript

1. If you wanted to use JavaScript to find the element on the page, which strategy
would you use to find it?

a. ID

b. Name

c. DOM

d. CSS Selector
e. XPath

Time for action - finding elements by XPath

Unfortunately, best practices cannot always be followed when building the markup or if
they are, then they may have a dynamic edge to them. An example of this would be working
against a page that uses a key from the database as the element ID, so when something is
edited and stored back in the database it can be found a lot quicker and updated. In this
section of the chapter, we are going to work with XPath. XPath allows us to query the DOM
as though it were an XML document. With XPath we can do some rather complex queries to
find elements on the page that may not have been accessible otherwise.

Let's start by creating a basic XPath. We are going to look for an input button:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2.
3. Type click into the Command selectbox.

4. Type xpath=//input into the Target textbox.

451

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

5. Click on the Find button. It will find a button on the page like in the following
screenshot. Note that sometimes Selenium IDE will flash the button yellow:

,5ast Slow D‘E ?:_ ||E‘

Table | Source

Button with ID Command Target Value

Sibling Button click xpath=//input

What just happened?

Your test will have looked against the DOM to find an element that was of the type input.
The xpath= at the beginning tells Selenium that the element needed will be located by
XPath. It removes the guess work that Selenium would have to do and is seen as good
practice. The // tells the query that it needs to stop at the first element that it finds. Itis a
greedy query so if you have a rather large web page, it can take some time to return since
it will try to parse the page. Writing the XPath like this allows us to make changes to the Ul,
within reason, and not have it impact the test.

As | mentioned in the first part of this section, having // as the start of your XPath is seen as
a greedy query since it will parse the entire DOM until it finds the element that you want to
find. If you want to work against an element that will always be in a certain place, you can
use a more direct XPath.

Time for action - finding elements by direct KPath

Instead of using the //, you can use a single / but you will need to make sure that the first
node in your query is HTML. Let's see an example of this:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter?2.

3. Type xpath=/html/body/div[2]/div[3]/input into the Target input of
Selenium IDE.

4. Click on the Find button.

1461

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What just happened?

The previous locator will have found the same element as before. This type of XPath query
will find the element fractionally quicker but if your Ul is going to change, it may fail if the
element is moved into a different area of the page. One thing to really note is that XPath
locators can be extremely fragile. They can find what you want but the slightest change to
your HTML and they break, meaning that you need to do maintenance on that test. | would
recommend only using these if you have to.

You will have noticed that parent and child nodes are in the same query. Since HTML has a
tree structure, it just notifies the query that it needs to start at the html node, then move
to its child node, body, then to body's child, and so on until it reaches the end of the query.
Once it has done that it will stop executing the query.

Using KPath to find the nth element of a tyne

There are a lot of occasions where as a Selenium user you will have to click on an edit button
in a table so that you can update something specific. Have a look at the button that you wish
to click; it does not have a unique name or ID. An example of this is the button with the value
"Sibling Button".

When doing a query against the DOM, an array of elements is returned to Selenium that
match the query. For example if you were to do //div on the Chapter 2 page of the website,
there are three elements returned to Selenium. If your test is only relying on the first item

in your test, then it will try and access only the first item. If you wanted to interact with the
second element then your query would look like //div [2]. Note that the second to nth
element need to be sibling nodes of the first element that is returned. If they are not and
you were to access the element it would fail saying that it could not find them.

We can see this with the input buttons that are present on the page. They all reside in

their own containing div element, so do not have any sibling elements that are also input
elements. If you were to put //input [2] into Selenium IDE, it would not be able to find the
element and fail.

[a11

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

You can see an example of this in the following screenshot:

File Edit Options Help

Base URL http://book.theautomatedtester.co.uk/ -
iast Slow [3'3 [}_ D O
Table | Sgurce

Command Target Value
click Ainput[2]

Command click

Target ffinput[2]
Value
Log Reference UI-Element Rollup Infor Clear

[error] locator not found: //input[2], error = Error:
Element //input[2] not found

There are times that you will need to find elements that are the same except for the
difference in one or two attributes. To handle this we can add the attributes to the query
so that we can try to make the element more unique for use in the test. The format can
be used for any attribute on any element. It will always follow xpath=//element [@
attribute='attribute value'].For example, if you have two div elements on
the page, but they only differ by the class attribute, your XPath query would look like the
following: xpath=//div[@class="'classname'].

Try doing this with Selenium yourself by trying to identify something unique about the div
elements on the page. When you have completed the task your query should look like one of
the following in the next screenshot:

Cormma.,.. Target Value
ffdiv[@class="mainbody’]
Fidiv[@class="leftdiv']
Sfdiv[@class="centerdiv']

Fidiv @id="find']

[481

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Doing a partial match on attribute content

As mentioned earlier there are times where there is no way for a developer to create

a static ID for elements on the page. This could be down to the fact that the element is being
loaded asynchronously via AJAX or because it is using the key of the data as it is stored in
the database.

There are times where only part of the ID is dynamic. This is to allow the developer to cram
more information onto the page so that the user has everything they need. We will need to
have a mechanism to work with these elements.

To do the partial match, your query will need to have the word contains with the attribute
and the partial match that it needs. For example, if you wanted to access the element that
has the text in it "This element has an ID that changes every time the page is loaded", you
will use //div [contains (@id, 'time_')]. Thisis due to the first part of the ID always
being static. The locator could also use starts-with instead of contains to make the
XPath query stricter in what is returned. The queries in the following screenshot will find the
same element on the page:

Table | Saurce

Comma... Target Yalue
Jidiv[starte-with(@id, time_"]
Jfdiv[contains{@id, time_"]

Finding an element hy the text it contains

Finding elements by the text they contain can be quite useful when working with web
pages that have been created dynamically. The elements could be from using a web based
WYSIWYG editor or you might just like to find a paragraph on the page with specific text to
then do further queries on.

1491

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

To do this your query will need to have the text () method call in the query. It will match
the entire contents of the node if it has the format //element [text () ='inner text'].
As seen in the previous section, your query can use the contains keyword to allow it to
have a bit more leniency to what it finds. Next you can find a screenshot of queries that will
find the same element as the previous section:

Table | Saurce

Comma... Target =

Jldiv[contains(text(), element has a ID')]
S/div[text()="This element has a ID that changes every time...

Using KPath Axis to find elements

As we have seen, XPath is normally only used if the element we need to interact with is not
accessible by normal means. In this section of the chapter, we are going to have a look at
leveraging XPath Axis in our queries to find the element that we wish to interact with.

An example that | have used in the real world was to find a table cell that had specific text,
then traverse the tree backwards to find the edit button so that | could click on it. This may
seem like an extreme example just to click on an edit button but is extremely common
according to the Selenium Users forum on Google Groups.

Time For Action - using XPath Axis

In the first example, we are going to find a button and then find its sibling. In this example,
the query that we will generate is equivalent to xpath=//div[@class="'leftdiv']/
input [2].

1. We will start by finding the first element for our query which is //input [@
value='Button with ID']. Place thatinto Selenium IDE Target textbox
and see which element it highlights.

2. Thereis another button below the one that is highlighted and that is the element
that we need to work with in this section. The button is the next input item in the
HTML, so it is elements following-sibling that we need. Our locator will look
like //input [@value='Buttonwith ID'] /following-sibling: :input [@
value='Sibling Button'] and if it was placed into Selenium IDE it would be
able to find the element that we are after; see the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

SOUTCE

Com... Target Value
{/input[@value="Button with ID')/fellowing-sibling:input[@value="Sibling...
Button with ID
Sibling Button
Command -
Target {finput[@value="Button with ID'/following-sibling::input] @value="Sibling Button'] Find
AT

What just happened?

We have just seen how we can use XPath axis to find the elements that we need in our tests.
We managed to find the element using the following-sibling axis.

As mentioned earlier you can use XPath to find an element and then walk backwards up the
tree. If we were to take the example that we have just done and reverse it, you will need to
start at the button with the value Sibling Button and then go back to the button with the
value Button with ID the XPath query would then look like.

We can see it finding the element in the following screenshot:

Base URL http://book.theautomatedtester.co.uk/

Sast Slow DE DE' ‘ @ F

Table | Source

Com.. Target Value
Bution with ID. {finput[@value="Sibling Button']/preceding-sibling:input] @value="Button...
Sibling Button

Command

Target /finput] @value="Sibling Button']/preceding-sibling:input[@value="Button with ID'] |

Value

Following is a list of Axis that you can use in your XPath queries to find the elements
on the page:

Axis name Result

ancestor Selects all the ancestors (parent, grandparent, and so on) of the element

descendant Selects all the descendants (children, grandchildren, and so on) of the
element

following Selects all elements that follow the closing tab of the current element

following-sibling Selects all the siblings after the current element

parent Selects the parent of the current element

preceding Selects all elements that are before the current element

preceding-Sibling Selects all of the siblings before the current element

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

As we have seen, there is a large number of different ways to find the
same element on the web page. Having XPath queries in your test can be
really useful for finding elements on the page but can slow down your test.
Browsers like Internet Explorer 6 do not have built-in XPath libraries and
. rely on doing the XPath query via JavaScript which can mean that a test
% that uses XPath can run two or more times slower than a test with IDs. The
I~ more complex the XPath, the slower the test since it needs to do more DOM

traversals which is an expensive operation.

There is also another way to do XPath-like queries against the DOM and use
built-in libraries in most browsers. We can use CSS selectors which is the next
section of this book.

Pop yuiz - using XPath Axis

1. Pick two from the following if you wanted do a partial match on an attribute on an
element from the beginning of the value:

a. contains()

b. starts-with()

C. ends-with()

Gotohttp://financial-dictionary.thefreedictionary.com/ and use
contains (), starts-with(), and ends-with () on the page. Use the call
getXPathCount () to see how many items you can get with your XPath query.

We saw in the previous section that XPath selectors can offer your tests a lot of flexibility to
find elements on the page.

X It must be noted that Selenium IDE and Selenium RC uses Sizzle, the
% framework used for selectors in jQuery, to find elements on the page. Not
e all of these can be translated to work in Selenium WebDriver. When we

come across items like this, it will be mentioned in that section.

521

www.it-ebooks.info

http://financial-dictionary.thefreedictionary.com/
http://www.it-ebooks.info/

Chapter 2

Time for action - finding elements by CS$

So, finding elements by XPath can be an extremely costly exercise. A way around this is to
use CSS selectors to find the objects that you need. Selenium is compatible with CSS 1.0, CSS
2.0, and CSS 3.0 selectors. There are a number of items that are supported like namespace in
CSS 3.0 and some pseudo classes and pseudo elements.

The syntax of your locator will look like css=cssSelector. Let's create our first selector to
find an element on our page.
1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on
the Firebug icon. Click on the Firefinder tab in Firebug.

3. We are going to look at one of the buttons in the div with the ID divontheleft.
The CSS Selector for the buttons would be div.leftdiv input. Place that into
FireFinder and click on the Filter button.

4. Your browser should show something like the following screenshot:

Button with ID

Sibling Button

#° K Console HTML €55 Scipt DOM Met | Firefinderv | YSlow

| Auto-select Clear Hide |

Firefinder - Fnd sements matching one or seversl €55 expressions, or an ¥Path fiter
| Filter |
Matching elements: 2
<input type="button" value="Button with ID"id="but1™> FriendlyFire | Inspect
<input type="button™ value="sibling Button™> FriendlyFire | Inspect

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

5. If you were now to put this into Selenium IDE, insert css=div.leftdiv input
into the Target textbox and click on the Find button, it should look like the next
screenshot. You can also write this as div[class="'1leftdiv'] in Firefinder to
make it look similar to XPath:

Base URL http://book.theautomatedtester.co.uk/ v
East Slow D’E D':' | lE
Table | sgurce
Command Target Value
Button with ID . css=div.leftdiv input
Sibling Button i
Command -
¥ i . -
%" "K' Console HMTML (€SS Script DOM Né Target css=divleftdiv input
Il | Auto-select Clear Hide | Value

Firefinder - Find slaments matching one or severd

Log Reference UI-Element Rollup Infor Clear
div leftdiv input

Matching elements: 2

<input type ="button™ value="Button with ID" id="but1™%

What just happened?

We have seen how Selenium has used the same CSS selector to find a button. Unlike in
normal CSS, Selenium is only interested in the first element that matches the query and that
is why in the second picture only the first button was highlighted and not its sibling.

Using child nodes to find the element

In the previous example we saw that we were able to find the input button that was a child
of the div node in the DOM. div.leftdiv input will look for the div and then look for
an input node in the DOM that is below that. It looks for any descendant that will match.
This is the equivalent to using descendant in your XPath query.

If we needed to look for the child of the element we would have to place > between the div
selector and the input selector. Your locator would look like css=div.leftdiv > input
or css=div.leftdiv input. Inthe case of the Chapter 2 page of the website, both will
work as they are direct children of div.leftdiv.

[541

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using sibling nodes to find the element

Finding elements by using a sibling node in the DOM is probably the most common way

to access an element. In the XPath section of the book, we saw that we could use the
following-sibling operator in the XPath Query. The equivalent CSS Selector syntax is a +
between DOM nodes in the query. It will check its direct next node to see if it matches until
it finds the element. So working against the HTML, we will create a CSS selector to find the
second input button:

<div id="divontheleft" class="leftdiv">
<input id='butl' value='Button with ID' type='button'/>

<input value='Sibling Button' type='button'/>

</div>

css=input#butl will find the first button and then its sibling is the br and its sibling is
input. The final selector will look like this: css=input#butl + br + input.You can see
this in the following screenshot of Selenium IDE:

Command Target Value

css=inputFbutl + br + input

Button with ID

Sibling Button Command -

Target css=inputfhutl + br+ input Find

Using CSS class attributes in CSS selectors

Finding elements by their CSS class is going to be the most common method. A lot of the
gueries that people create start with a containing node distinguishing it by the CSS class and
then moving through the DOM to a child or grandchild node to find the element that you
wish to work again. The syntax for finding the item is to put the node, like a div, then put a
dot, and then the class. For example, to find the div with the class centerdiv it would look
like this: css=div.centerdiv.

Verify this button here
chocolate -

Command Target Value

css=div.divinthecenter

[551

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

Using element IDs in CSS selectors

As we saw in XPath queries there are times when we need to find the element that is

next to an element that we know the ID of. This means that we can access a lot more of the
DOM, and since it is a CSS selector there is a good chance that it will be a lot faster than its
XPath equivalent.

To find an element by ID in a CSS selector we need to place a # in front of the ID of the
element in the CSS selector. For example, if we wanted to find a div with the ID of
divinthecenter, the CSS selector would look like this: css=div#divinthecenter.
You can also simplify this down to css=#divinthecenter. This is due to IDs on elements
having to be unique.

If you were to place this in the Target textbox of Selenium IDE and click Find, it should
highlight the item as in the following screenshot:

Command Target Value

css=divdivinthecenter

Verify this button here
chocolate -

Finding elements by their attributes

In the Using element attributes in XPath queries section, we saw how useful it could be to
find an element by looking at their attributes. It could be that an element may have the same
name but a different value, so finding them according to their attributes can be extremely
powerful. In this example, we are going to look for the button that has the value chocolate.
On web page buttons, a value is what is displayed on the screen.

The syntax for looking at the attribute is node [attribute="'value']. So in the case of the
button with the value chocolate, it will be input [value='chocolate']. If you were to
put that into Selenium IDE, it will have the format css=input [value="'chocolate'] and
when you click the Find button you will see the same as shown in the following screenshot:

Table | Source

Verify this button here Command _ Target Value
css=input[value="chocolate']

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Another example of this is if you were trying to find an element according to its href.

The syntax for that would be a [href="'path']. You can try this on the Index page and

try and find the link to this chapter. When you have done it, it should look something like
css=a[href="'/chapter2']. If you click the Find button, it will highlight the Chapter 2 link.

Chaining of attributes is also supported in Selenium to make sure that your test is using
one specific element on the page. The syntax will be css=node [attrl='valuel']
[attr2="value2'].An example on the page that we are working against would be
css=input [id='butl'] [value='Button with ID']; this will find the button with
the value Button with ID. You can chain as many attributes as you want in this manner.

In XPath queries we saw that we could use contains to find partial matches of values to
attributes. This can be extremely useful for locating elements based on part of their ID if it is
dynamically generated. Following is a table explaining the different syntax needed and after
that we have a look at some working examples:

Syntax Description

A= Finds the item starting with the value passed in. This is the equivalent to the
XPath starts-with.

S= Finds the item ending with the value passed in. This is the equivalent to the
XPath ends-with.

*= Finds the item which matches the attribute that has the value that partially
matches. This is equivalent to the XPath contains.

In the XPath section of this chapter, we had a look at the XPath //div [contains (@

id, 'time_')] which has a dynamic ID. The equivalent CSS selector would be
div[id®='time '] ordiv[id*='time_ ']. The following screenshot shows both of the
selectors highlighting the element we want:

put find into the target of Selenium IDE
and click the find button

Button with ID _ Command Target Value

changes everytime the page is loaded

Table | Source

ces=divid™="time_']

Command -

Target css=div[id*="time_"] | Find |

[571

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

Time for action - finding the nth element with CSS

There are times where we need to find the nth element after a parent element on the page. In
the XPath examples, we looked at the second input after the div with the class 1eftdiv. The
XPath looked like this: xpath=//div[@class="'1leftdiv']/input [2]. To find the second
to nth element we will need to use pseudo classes. Pseudo classes are used to add special
effects to selectors. In this case we are going to use :nth-child for the first example.

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2.

3. Type css=div#divinthecenter *:nth-child(3). This will find the same as
xpath=//div[e@eclass="'leftdiv'] /input[2].

4. Click on the Find button.

7 F= [

Table | Saurce

Command Target Value

click css=divEdivinthecenter *:nth-chil...

Command click -

Target css=divédivinthecenter *:nth-child(3) Find

Yalye

What just happened?

Unfortunately Selenium does not support the :nth-of-type pseudo class, so you will not
be able to access the specific type. This pseudo class is extremely greedy in the way that it
does look up over the page. It is also not available to the element selector library that is in
use by Selenium. This is why the selector is using the wildcard * and then finding the nth-
child from our starting div. The downside to using a selector in this manner is if any other
node was placed in the way it would make the tests fail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Finding elements by their inner text can also be quite useful. In the XPath section of the
book, we used the text () function to see the text it had. Earlier we had xpath=//
div[contains (text (), 'element has a ID')] tofind a div with text in it. To update
this XPath to a CSS Selector we would need to use the : contains pseudo class. This pseudo
class is part of Sizzle which is used in Selenium IDE and Selenium RC. This will only work on
browsers that do not have the CSS querySelector available. WebDriver delegates that
task down to the browser if it can. | would recommend not using : contains if you plan on
moving to Selenium WebDriver.

. Itisimportant to know that CSS selectors only have a read forward
% process. This means that you cannot find an element and then traverse
L backwards up the DOM. This is what makes CSS selectors a lot faster than

XPath queries to find the same elements.

1. What is the most common way to find an element on a page?

a. ID

b. XPath

CSS Selector

d. Name

2. If you wanted to find the sibling input that is after an input in the DOM, what would
the XPath look like?

3. What would the CSS look like for the previous question?

Have a go hero — working against Google Maps

Now that you have managed to create tests with different locators, try working against
Google Maps. It is an extremely good site to work with XPath and CSS as it never has
IDs or Names.

www.it-ebooks.info

http://www.it-ebooks.info/

Locators

We learnt a lot in this chapter about locators. We have been able to use a large number
of different methods to find the elements that are on a page. We have seen how to find
elements using the easy methods like id=, name= to find elements and running queries
against the DOM to find them using CSS selectors or XPath queries.

Specifically, we covered:

¢ Using Firebug to find the element attributes: In this section we were able to start
using Firebug. This will become an invaluable tool for anyone that works with web
applications. It has a very good mechanism for finding elements so you can work
against them.

¢ Finding an element by ID: Elements can easily be found by the value of the ID
attribute. This is the most common way to find elements and is the fastest way to
find the elements on the page.

¢ Finding an element by name: When elements do not have the IDs but do have a
name attribute your tests can use those.

¢ Finding an element by DOM query: In this section we were able to use the power of
JavaScript DOM API calls to find the element that we wish to work with. This can be
from the most basic call to the document to a JavaScript function that you can pass
variables to.

¢ Finding an element using XPath queries: In this section we were able to find the
element on the page by using XPath queries. Your test can use relative paths or even
XPath functions to find the element on the page. The queries can be as complex as
you want but remember that they can impact the speed of the test.

¢ Finding an element using CSS selectors: When XPath queries are making your
tests run slow, especially in browsers that do not have good support for XPath. CSS
selectors are starting to become the default way to find elements on web pages with
popular JavaScript libraries, and there is not a large learning curve to get working
with it.

We also discussed how XPath queries can make tests run slower on browsers that do not
have native XPath support. Internet Explorer 6 is the main browser where you would see this
issue. When tests start running extremely slowly with XPath, we can move our tests over to
CSS to see large speed gains in our tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If locator does not have the locator type identifier in front of it, Selenium will default to the
following strategies:

¢ DOM: For locators starting with document

& XPath: For locators starting with //

¢ Identifier: For any other locator using ID and name of the element

Now that we've learnt how to locate the elements on the page, we're ready to learn how
WebDriver is made up—which is the topic of the next chapter.

611

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we will have a look at the history of Selenium WebDriver from
its inception to where it is currently. We will also have a look at the architecture
of Selenium WebDriver so we can get a better understanding of how all the
commands work.

We will finish the chapter by making sure that we have understood the
history of Selenium WebDriver and also have a working understanding of how
Selenium WebDriver is built.

In this chapter, we shall:

¢ Learn the history of Selenium WebDriver
¢ Architecture

¢ How to set up your Java environment

So let's get on with it...

In this chapter, we will be writing our tests in Java. This is down to the popularity of the
language by people using Selenium as well as its support on multiple platforms. To do this
we will need to have an IDE to write the tests in. | recommend using IDEA Intellijat http://
www.jetbrains.com/idea/download/ as it will give you all the tools that you need to
build your tests successfully. You will also need to download JUnit from https://github.
com/KentBeck/junit/downloads. This will allow us to drive the tests and do asserts
during the tests.

www.it-ebooks.info

http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/
https://github.com/KentBeck/junit/downloads
https://github.com/KentBeck/junit/downloads
http://www.it-ebooks.info/

Overview of Selenium WebDriver

We are also going to need to download the necessary files to allow us to use Selenium
WebDriver with Java. We will need to download selenium-server-<versions.zip
fromhttp://code.google.com/p/selenium/downloads/list. The <version> will
appear like 2. x.x on the site.

With web applications becoming the defacto approach to developing end user applications,
a solution for testing is needed. This has meant more and more emphasis is needed on a
browser automation framework to help with checking the site.

For years people have been using Selenium IDE and Selenium RC to drive a number of
different types of browsers. Selenium, when originally created by Jason Huggins, solved the
issue of getting the browser to do user interactions.

This is a good automation framework, however it is limited by the JavaScript sandbox in
browsers. The JavaScript sandbox enforces security policies while JavaScript is executing to
prevent malicious code executing on the client machine. The main security policy people
come across is the Same Origin Policy. If you needed to move from HTTP to HTTPS, like you
normally would during a log on process, the browser would block the action because we are
no longer in the same origin. This was quite infuriating for your average developer!

The Selenium API was originally designed to work from within the server. The developer or
tester writing the tests had to do so in HTML using a three column design based on the FIT.
You can see how this looks if you open up Selenium IDE: the three input boxes that need to
be completed for each line that will be executed. It has a number of issues in that you cannot
do anything that you may do with a Turing complete language.

Patrick Lightbody and Paul Hammant thought that there must be a better way to drive their
tests and in a way that they could use their favorite development language. They created
Selenium Remote Control using Java as a web server that would proxy traffic. It would inject
Selenium onto the page and then it would be used in a similar manner as to what it was in
the three column manner. This also creates more of a procedural style of development.

The Selenium RC API for the programming languages that are supported have been designed
to fit the original three column syntax. Commonly known as Selenese, it has grown over the
life of the project to support the changes that have been happening to web applications.
This has had the unfortunate consequence that the API has grown organically so that users
can manipulate the browser the way they intend but still keep to the original three column
syntax. There is somewhere in the region of 140 methods available which makes picking the
right method for the job rather difficult.

With the move to mobile devices and HTML5, Selenium RC was starting to show that it wasn't
able to fulfill its original requirement: browser automation to mimic what the user is doing.

1641

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/

Chapter 3

Simon Stewart, having hit a number of these issues, wanted to try a different approach to
driving the browser. While working for ThoughtWorks, he started working on the WebDriver
project. It started originally as a way to drive HTMLUnit and Internet Explorer but having
learnt lessons from Selenium RC, Simon was able to design the API to fit in with the way
most developers think. Developers have been doing Object Orientated development for a
while, so moving away from the procedural style of Selenium RC was a welcome change

to developers. For those interested | suggest reading Simon Stewart's article on Selenium
design at http://www.aosabook.org/en/selenium.html.

The next section will go through the basic architecture of WebDriver.

Architecture

The WebDriver architecture does not follow the same approach as Selenium RC, which
was written purely in JavaScript for all the browser automation. The JavaScript, in Selenium
RC, would then emulate user actions. This JavaScript would automate the browser from
within the browser. WebDriver on the other hand tries to control the browser from outside
the browser. It uses accessibility API to drive the browser. The accessibility APl is used by

a number of applications for accessing and controlling applications when they are used by
disabled users and is common to web browsers.

WebDriver uses the most appropriate way to access the accessibility API. If we look at
Firefox, it uses JavaScript to access the API. If we look at Internet Explorer, it uses C++. This
approach means we can control browsers in the best possible way but has the downside
that new browsers entering the market will not be supported straight away like we can with
Selenium RC.

Where that approach doesn't work we will then inject JavaScript into the page. Examples of
this are found in the new HTML5.

WebDriver API

~~
WebDriver SPI
~
JSON Wire Protocol

~
Selenium Server

The system is made up of four different sections.

www.it-ebooks.info

http://www.aosabook.org/en/selenium.html
http://www.it-ebooks.info/

Overview of Selenium WebDriver

The WebDriver APl is the part of the system that you interact with all the time. Things

have changed from the 140 line long API that the Selenium RC API had. This is now more
manageable and can actually fit on a normal screen. You will see this when you start using
WebDriver in the next chapter. This is made up of the WebDriver and the WebElement objects.

driver.findElement (By.name ("g"))
and

element .sendKeys ("I love cheese");

These commands are then translated to the SPI, which is stateless. This can be seen in the
next section.

When code enters the Stateless Programming Interface or SPI, it is then called to a
mechanism that breaks down what the element is, by using a unique ID, and then calling a
command that is relevant. All of the API calls above then call down.

Using the example in the previous section would be like the following code, once it was
in the SPI:

findElement (using="name", value="qg")
sendKeys (element="webdriverID", value="I love cheese")

From there we call the JSON Wire protocol. We still use HTTP as the main transport
mechanism. We communicate to the browsers and have a simple client server transport
architecture the WebDriver developers created the JSON Wire Protocol.

The WebDriver developers created a transport mechanism called the JSON Wire Protocol.
This protocol is able to transport all the necessary elements to the code that controls it. It
uses a REST like API as the way to communicate.

The Selenium server, or browser, depending on what is processing, uses the JSON Wire
commands to break down the JSON object and then does what it needs to. This part of the
code is dependent on which browser it is running on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

As mentioned earlier, it could be done in the browser via C++; if it's in |E or if not available
we inject Selenium.

The merging of two projects

Both Simon Stewart and Jason Huggins thought that it would be a really good idea to merge
the two projects together. This was then called Selenium 2.

The Selenium core developers have been working really hard to simplify the code base and
remove as much duplication as possible. We have created what is known as Selenium Atoms
which is then shared between the two projects.

Now that we know the basics of how it all hangs together, let us set up a project that we can
use for the rest of the chapter.

All of the examples that follow in the book will be in Java. We need to make sure that we
know how to set up the Java environment.

Time for action - setting up Intellij IDEA project

We will be setting up using JUnit as the testing framework to drive our tests.

1. Open IDEA and create a new project.

(3 ddea

=lE

2. Create a directory at the root of the project called test using New | Directory.

[3 .idea
srC

test

3. Click on File | Project structure.

4. Click on Modules on the left-hand side of the dialog that has loaded.

611

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Selenium WebDriver

5. Click on the test folder that you created in the folder tree on the right-hand side of

the dialog.
#] BERa F= Module 'myseleniumtest’
Project Settings Camyseleniumtest —
Project Name: myseleniumtest
\Z Sources [Paths | (@ Dependencies |
Libraries
Facets Language level: | <Use project | level> +| (effective on project reload)
Artifacts
Platform Settings & Add Content Root [1Sources [Test Sources [Excluded
$DKs /development/myseleniumtest @] ¥ £ jdevelopment/myseleniumtest
Global Libraries v idea
Source Folders b
src oa copyright
inspectionProfiles
scopes

src
test

6. Click on the Test Sources button and the test folder should turn green. It will look
like the following screenshot:

|é Sources | 2 Paths ||T£; Dependencies |
Language level (effective on project reload): | <Use project language level> hd |
ﬁAdd Content Root DEchuded = Sources
C:\Book\Chapter M\TestCode E| |5 E C\Book\Chapter T\TestCode
Source Folders - [idea

src v J] +- C3 out

Test Source Folders
test ma

7. Click on File | Project structure.
8. Click on Global libraries.
9. Click on the + to add a New Global library. And then select Java.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

10. cClick on Attach Classes and add selenium.jar and common.jar. This should be
in the same place as your Selenium-Server.jar. When added, it should look like
the following screenshot:

Global Library 'Selenium’

Mame: |Selenium

= %ﬂéClassesé

i Ch\Developmentiselenium\buildicommonicommon.jar

[@ C\Developmentiselenium2\build\seleniumiselenium,jar

11. Do the same for JUnit now. You can create a new Global library for it or add it to the
Selenium Global Library.

12. Click on the Modules link on the left-hand side again.

13. click on the Dependencies tab.

14. Click on Add and click on Global Libraries. Add the Selenium and JUnit libraries.
15. Click on Apply. When this is done the text selenium should turn purple.

16. We are now ready to run Selenium Server. We do this by running java-jar
selenium-server.jar from a command prompt or from a terminal depending on
your operating system.

Your project is ready to have tests added to it. Each of the files that we create from now on
will be placed in the test directory and will be run when we need to.

What just happened?

We have successfully set up a project to Selenium WebDriver. When we are working through
all of the chapters going forward we will know that they will have all the aspects needed.

Pop quiz - setting up the test project

1. Where will we be adding our tests that we create with Selenium WebDriver
in Intellij?

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Selenium WebDriver

We learnt a lot in this chapter about how Selenium and WebDriver were created and how
they work together.

Specifically, we covered:

¢ History: In this section we learnt how Selenium came to being. Selenium WebDriver
is the merger of two automation frameworks: Selenium and WebDriver.

¢ Architecture: We learnt how all of the different mechanisms work together to
produce the framework that we will be using throughout this book.

¢ Setting up a Java environment: In this section we saw how we can run projects later
on in the book.

Now that we've learnt the history and architecture of Selenium WebDriver, as well setting
up our environment to create Java Projects, let us have a look at the design patterns we
should use with Selenium WebDriver to make test creation easier, which is the topic of the
next chapter.

701

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter we are going to have a look at good design patterns for creating
maintainable and reusable bits of code that we can use with our Selenium tests.
This means that if there are any changes needed to our web application or
changes in the way we need to find elements, we can change it once and have
it fix everything very quickly.

In this chapter, we shall learn:

¢ Page Object design
¢ Using Page Factory in Page Objects

¢ Using LoadableComponents

So let's get on with it...

In this chapter it will be assumed that all files will have the following import statements:

import org.openga.selenium.By;

import org.openga.selenium.WebDriver;
import org.openga.selenium.WebElement;
import org.openga.selenium.support.FindBy;

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

Page Objects

In this section of the chapter, we are going to have a look at how we can apply some best
practices to tests. You will learn how to make maintainable test suites that will allow you to
update tests in seconds. We will have a look at creating your own DSL so that people can see
intent. We will create tests using the Page Object Pattern.

Let us start trying to put these best practices to work.

Time for action - setting up the test

Imagine that you have a number of tests that work on a site that requires you to log in and
move to a certain page. Or imagine that you need to have a test that requires you to be on
a certain page. In these two situations the quickest way to find out which page you are on
and then move to the correct one if need be, is to start testing. This is to make sure that we
follow one of the major tenants of test automation, in that you always start from a known
place. Let us see this in an example:

Create a new Java class in IDEA:

1. Import the relevant Selenium Packages.

2. Create the setup () and teardown () method. | prefer the JUnit 4 style of tests and
will show code samples with the annotations.

3. We need to check that the page is on the correct page. For this we will use the
selenium.getTitle to see the page title and then if incorrect move to the
chapter 2 link. We do this because navigating to page is slower than checking the
page's title or any other calls to the page already loaded.

4. We need to then validate that it is correct and then work accordingly. The following
is a code snippet of how we can do this:

if (!"Page 2".equals (selenium.getTitle())) {
selenium.get (
"http://book.theautomatedtester.co.uk/chapter2") ;

}

5. Create the rest of the test to check that items are on the page.

121

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

What just happened?

We have just seen how we can check if something is what the test is expecting. If it is, the
test will carry on as we expect. If it isn't what we expect, we can move our test to the correct
page and then carry on with that page. We will see that if you log into the @Before, you
may not start your tests.

Now let's have a look at how we can make more tests maintainable by splitting areas out into
other methods.

Time for action — moving Selenium steps into private methods

to make tests maintainahile

Imagine that you just need to test one page on your site and you have quite a few tests

for this page. A lot of the tests will be using the same code over and over again. This can

be quite annoying to maintain if something changes on the page meaning we have to go
through all the tests to fix this one issue. The way that we will fix this is to refactor the tests
so they are simpler and therefore easier to read.

1. Let us create a number of tests as follows:

@Test
public void shouldCheckButtonOnChapter2Page () {
selenium.get ("http://book.theautomatedtester.co.uk") ;
selenium.findElement (By.link, "Chapter2").click();
Assert.assertEqual (selenium. findElements (
By.id"butl") .getSize (), 1);

@Test
public void shouldCheckAnotherButtonOnChapter2Page () {
selenium.get ("http://book.theautomatedtester.co.uk") ;
selenium. findElement (By.link, "Chapter2").click();
Assert.assertEqual (selenium. findElements (
By.id, "verifybutton") .getSize(), 1);

}

2. Using the previous examples, let's break these down.

7131

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

3. Inboth the examples, we can see that it is always opening the root of the site.
Let's move that into its own private method. To do this in IDEA, you highlight the
lines you want to refactor and then right-click. Use the context menu and then the
extract method.
T =" Dl Variable.. %XV
Foldi ' Inline... HXN Constant... ®BNC
olcng Find and Replace Code Duplicates... Field... ®XF
Go To [nvert Boolean... Parameter... ®BYXP
I Lenerate.. = Pull Members Up... Parameter Object...
| 55 Add to Watches Push Members Down... -
o
Use Interface Where Possible... Methad... - BAM I
Compile ®{OF9 Replace Inheritance with Delegation... Method Object...
Local History > 55m0\{F M'dgls'ﬁa?'"\, Class...
Sublarsion > Wrap Method Return Value... Interface...
("nﬂ-ﬁ" Anonvmouec to lnner Superclass...
4. Then you will see a dialog asking you to give the method a name. Give it something

meaningful for the test. | have called it loadHomePage as you can see in the

following screenshot:

gu Extract Method S ——— I@
Method
MName:
IoadHomePageI |
Parameters Visibility
(@ Private
] Package local
' Protected
) Public
Signature Preview
private woid loadHomePage ()
|
| QK | | Cancel | | Help | 1

5.

more succinct.

6.

@Test

Your test class should look something like this:

public void shouldCheckButtonOnChapter2Page () {

loadHomePage () ;

nl

Now do the same for the other parts of the tests so that it makes the test look a lot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

clickAndLoadChapter2 () ;
Assert.assertEquals (selenium.findElements (
By.id("butl")) .size(), 1);
@Test
public void shouldCheckAnotherButtonOnChapter2Page () {
loadHomePage () ;
clickAndLoadChapter2 () ;
Assert.assertEquals (selenium. findElements (
By.id("verifybutton")) .size(), 1);
private void loadHomePage () {
selenium.get ("http://book.theautomatedtester.co.uk") ;
}
private void clickAndLoadChapter2()
selenium. findElement (By.linkText ("Chapter2")) .click() ;
}
What just happened?

We have just started making our tests a lot more maintainable. We saw how we can break
this down into more succinct and readable tests that show intent rather than showing a test
as a clump of Selenium calls. This also makes the tests a lot more manageable because if |
were to change the link on the root from "Chapter2" to "Chapter 2", | would need to only fix
it in one place rather than n places where n is the number of times that sequence is in the
test class.

Now let's have a look at how we can use the Page Object Pattern for creating a DSL over
the site.

Time for action - using the Page Object Pattern to design tests

Imagine that you have a site that has a number of different pages that you need to test. This
is quite common for a number of sites. We can create an object that represents the page and
then pass the Selenium object in the programming language. So let us now create our first
Page Object against the home page.

1. Create a new Java class in IDEA called HomePage.

2. Import the relevant packages for the tests to run.

1751

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

3. We will now need a constructor to handle Selenium. You may want to make it go to
the home page when it is instantiated too. An example of this can be seen as follows:

HomePage.java

import org.openga.selenium.By;
import org.openga.selenium.WebDriver;

public class HomePage(

WebDriver selenium;

public HomePage (WebDriver selenium){
this.selenium = selenium;

}

public Chapter2 clickChapter2 () {
clickChapter("2") ;
return new Chapter2 (selenium) ;

private void clickChapter (String number) {
selenium. findElement (By.linkText ("Chapter"+number)) .click() ;

}

Chapter2.java

import org.openga.selenium.By;
import org.openga.selenium.WebDriver;

public class Chapter2 {
WebDriver selenium;
public Chapter2 (WebDriver selenium) {
this.selenium = selenium;
if (!"Chapter 2".equalsIgnoreCase (
this.selenium.getTitle())) {
selenium.get (
"http://book.theautomatedtester.co.uk/chapter2") ;

}

public boolean isButtonPresent (String button) {
return selenium.findElements (By.xpath("//input [@id="" +
button + "']")) .size()>0;

}

BestPractises3.java

import org.junit.After;
import org.junit.Before;

1761

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

import org.junit.Test;
import org.openga.selenium.WebDriver;
import org.openga.selenium.firefox.FirefoxDriver;

public class BestPractises3 {
WebDriver selenium;

@Before
public void setUp () {
selenium = new FirefoxDriver () ;

@After
public void tearDown () {
selenium.quit () ;

@Test

public void
ShouldLoadTheHomePageAndThenCheckButtonOnChapter2 () {

selenium.get ("http://book.theautomatedtester.co.uk") ;
HomePage hp = new HomePage (selenium) ;

Chapter2 ch2 = hp.clickChapter2() ;

assertTrue (ch2.isButtonPresent ("butl")) ;

}

4. If you create these three files you will see it pass. The test is a lot more succinct and
easier to maintain.

What just happened?

In this section we had a look at creating tests using the Page Object design pattern.

This allows us to create objects in a programming language and then pass the Selenium
object to it to drive the browser. This creates a really nice DSL that allows all parties in the
development cycle to understand. We create a Java object for each of the pages that we
want to work against on the site. We then just instantiate the class to work against that page.

When we are moving between pages you click on a link and the method controlling the page
transition will return an object representing a new page.

The objects will not hold the asserts; this should always be done within the tests.

¥1]]

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

Pop quiz-Page Ohject design pattern

1. What s the Page Object design pattern?

Using Page Factories with Page Objects

The code that we have learnt to write earlier can be quite verbose. To clean up our code, we
can start to use Page Factories. This allows us to annotate variables in our page objects with
how to search the page. This means that we don't have to have full webElement element =
driver.findElement (..) ; code all over the file. We can change it to:

@FindBy (how=How.ID, using="foo")
WebElement foo;

As you can see this can make our code slightly easier to read and therefore more maintainable.
If you regularly use other languages like Ruby or Python, you will notice that they don't

have the PageFactory support project. This is because those languages don't have Factory
constructs in the language. They are not idiomatic and therefore not in the language.

To use the PageFactory project in WebDriver, we will have to make sure that the we have
added it as a dependency.

Let us now update our previous code from with an example of the PageFactory.

Time for action - using PageFactory

In this example we are going to be cleaning up the previous examples by using the PageFactory.
This will allow us to create more succinct code than the previous verbose examples.

1. Open the previous example and go to Chapter2 . java. It should look like the
following example:

Chapter2.java

import org.openga.selenium;
import junit.framework.Assert;

public class Chapter2 {
WebDriver selenium;
WebElement verifybutton;

public Chapter2 (WebDriver selenium){
this.selenium = selenium;
verifybutton = selenium.findElement (By.id("verifybutton")) ;
if (!"Chapter 2".equalsIgnoreCase (

7181

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

this.selenium.getTitle())) {

selenium.get (
"http://book.theautomatedtester.co.uk/chapter2") ;

public boolean isButtonPresent (String button) {

return selenium.findElements (By.xpath
("//input [@id=""+button+"']1")) .size()>0;

}
2. We can then change the line that looks for verifybutton so that it is not in the
constructor. This then changes to:

public class Chapter2 {
WebDriver selenium;

@FindBy (how= How.NAME, using="verifybutton")
WebElement verifybutton;

public Chapter2 (WebDriver selenium) {
this.selenium = selenium;
if (!"Chapter 2".equalsIgnoreCase (
this.selenium.getTitle ())) {

selenium.get (
"http://book.theautomatedtester.co.uk/chapter2") ;

public bool isButton(String button)
return selenium.findElementByXpath (
'//button [@id="+button+']") ;

}

3. If you run your test now, you will see it do the same thing but we have not called the
findElement () method available to WebDriver.

17191

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

4. Inthe test we need to initialize the factory by calling initElements ():

TestChapter2.java
import org.openga.selenium.*;

import org.junit.*;

public class TestChapter2 {
WebDriver selenium;

@Before
public void setUp () {
selenium = new FirefoxDriver () ;
}
@After

public void tearDown () {
selenium.quit () ;
}

public Chapter2 clickChapter2 ()
clickChapter ("2") ;
return PageFactory.initElements (selenium, Chapter2.class) ;

}

@Test
public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2 () {
selenium.get ("http://book.theautomatedtester.co.uk") ;
HomePage hp = new HomePage (selenium) ;
Chapter2 ch2 = hp.clickChapter2() ;
assertTrue (ch2.isButtonPresent ("butl")) ;

What just happened?

We have just seen how we can get rid of a line of code from a constructor or a method

by adding a decorator to the variable. When our code is compiled, the variable will get
populated at the right time so that we can make sure that it gets the right bit of the DOM.
It will look like our element hasn't been instantiated. When we initialize the PageFactory, by
calling initElements () it will populate the variables with the right data.

This does make a lot of the code a lot more succinct and can be a lot easier to maintain
over time.

One thing to note is that every time we use the element it will be searched. We can get
Selenium WebDriver to cache the return of the results by adding another decorator:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

@FindBy (how=How.ID, using="verifybutton")
@CacheLookup
WebElement verifybutton;

K We only want to cache the result on a fairly static page.
5 If you have a site that has a lot of JavaScript, you will not
C:l want to put @CacheLookup as you may start getting

StaleElementException when you try to use it.

Pop quiz - Page Factories

1. Whatis the decorator that you put above a webelement variable when looking for
an element by ID with the id="my1d'?

2. How do you cache the lookup of web elements?

3. How do you initialize a Page Factory?

LoadableComponent

LoadableComponent is another way to approach PageObjects. LoadableComponent is a
base class that all of the pages need to extend. The base class has the following methods on
the interface:

& get()
¢ isLoaded()
& load()

Instead of the usual public class PageObject, we change it:
public class PageObject extends LoadableComponent<PageObjects>

We will have to add overrides for the 1oad () and isLoaded () method. The load method
will load the page for us and the isLoaded () method can allow us to check if the page has
been loaded correctly.

811

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

For example:

@override
Protected void load() {
selenium.get ("http://book.theautomatedtester.co.uk") ;

@protected void isLoaded() {
String url = selenium.getCurrentUrl () ;
If (url != "http://book.theautomatedtester.co.uk") {
throw new Exception("The wrong page has loaded") ;

}

As we can see this is just a simple bit of code, but we can make sure that we start on the
right page when we need to.

Time for action - changing our Page Object to use

LoadableComponent

Now that we have learnt about LoadableComponents, we should have a look at seeing it in
action. We need to make changes to our Java Class.

1. The following is how the code should look so far:

public class Chapter2
WebDriver selenium;

@FindBy (how= How.NAME, using="verifybutton")
WebElement verifybutton;

public Chapter2 (WebDriver selenium) {
this.selenium = selenium;
if (!"Chapter 2".equalsIgnoreCase (this.selenium.getTitle())) {

selenium.get ("http://book.theautomatedtester.co.uk/
chapter2") ;

public boolean isButtonPresent (String button) {
return selenium.findElements (By.xpath
("//input [@id=""+button+"'1")) .size () >0;

1821

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If we have a look at our Chapter 2 Java class, we can see that we need to extend
LoadableComponent. Since this takes generics we will have to pass in our
PageObiject class. It should look like:

public class Chapter2 extends LoadableComponent<Chapter2> {

In our constructor, we will have to initialize our page factory. We can remove the
rest of the code in there since that will be moved to 1oad (). It should look like the
following:
public Chapter2 (WebDriver selenium) {

this.selenium = selenium;

PageFactory.initElements (selenium, this);

}

We now need to add our override methods. These will allow us to check that we are
on the right page when we load this component:
@override

Protected void load() {
selenium.get ("http://book.theautomatedtester.co.uk/chapter2") ;

}

@protected void isLoaded() {
String url = selenium.getCurrentUrl () ;
If (url != "http://book.theautomatedtester.co.uk/chapter2") {
throw new Exception("The wrong page has loaded") ;
}

}

Now we need to have a look at updating our test to load everything for us. To do this
we need to change:
@Test
public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2 ()
selenium.get ("http://book.theautomatedtester.co.uk") ;
HomePage hp = new HomePage (selenium) ;
Chapter2 ch2 = hp.clickChapter2() ;
assertTrue (ch2.isButtonPresent ("butl")) ;

}
To look like this:

@Test
public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2 () {
Chapter2 cht = new Chapter2(selenium).get();

ch2.isButton ("butl") ;

www.it-ebooks.info

http://www.it-ebooks.info/

Design Patterns

7. Run your test. Everything should look like the following:

public class Chapter2 extends LoadableComponent<Chapter2s{
WebDriver selenium;

@FindBy (how= How.NAME, using="verifybutton")
WebElement verifybutton;

public Chapter2 (WebDriver selenium){
this.selenium = selenium;
PageFactory.initElements (selenium, this);

@override
Protected void load() {
selenium.get ("http://book.theautomatedtester.co.uk/chapter2") ;

@protected
public void isLoaded() {
String url = selenium.getCurrentUrl () ;
If (url != "http://book.theautomatedtester.co.uk/chapter2") {

throw new Exception("The wrong page has loaded") ;

public boolean isButtonDisplayed(String button) {
return selenium.findElement (By.id ("button")) .isDisplayed() ;

What just happened?

We have just converted our page object to use the LoadableComponent class that comes
with the Selenium Project. We saw how we simplified on constructors and then just moved
this into somewhere easy to maintain. We have seen that we can move a lot of the boiler
plate code out of our class and rely on it being pulled in via LoadableComponent. This means
that we no longer need to maintain it or we add those items.

[8a1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Have a go hero - LoadahleComponent

Imagine how you have to work with a flow that takes you through a number of pages.
LoadableComponent allows us to set up a workflow. To get this right we need to pass
one in like the following when doing your test setup:

@Before
public void prepareComponents () {
WebDriver selenium = new FirefoxDriver () ;

HomePage homePage = new HomePage (selenium) ;
Chapter2 chapter2 = new SecuredPage (selenium, homePage) ;

We learnt a lot in this chapter about design patterns that we can use with Selenium
WebDriver. We have learnt techniques that allow us to build test projects that are easy
to maintain and readable by all users.

Specifically, we covered:

¢ Page Objects: This is a technique where we split the test logic out into separate
classes. This allows us to create a Java class for each of the pages that we use
on the page.

¢ Page Factory: This allows us to decorate our WebElement variables in our Page
objects so that we remove a lot of the look up code. We learnt that the elements get
initialized when we call PageFactory.initElements () ; in our tests or anything
else that may use that code.

¢ LoadableComponent: In this section we had a look at the base page for Page
Objects that comes with the Selenium Project. The LoadableComponent in a
base class allows us to remove quite a bit of code and moves the boilerplate to
LoadableComponent.

Now that we've learnt about design patterns, we're ready to look at the last
advanced techniques that we can use with Selenium WebDriver—which is the
topic of the next chapter.

1851

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter we are going to be looking at how we go about finding

elements on the page using the WebDriver API. One of the things that we
learnt in the previous chapter was that WebDriver, due to its architecture,

has two major components. The first one is the "driver". This has the commands
to find the elements.

We will start by having a look at the different commands. We begin with the
helper commands first and then go to the more generic commands which take
different types of objects. We will finish off the chapter by learning some helpful
techniques when interacting with element finding.

First major learning point:

¢ Finding element(s) on the page by their ID, name, ClassName, XPath, and link list

¢ Tips for using find element calls

So let's get on with it...

Important preliminary points

When working through the following examples we are going to assume that you have
instantiated a WebDriver object by doing:

WebDriver driver = new FirefoxDriver () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

You can use the following example class with JUnit 4. The test is a stub that we can use
through the chapter.

import org.junit.*;
import org.openga.selenium.*;

import org.openda.selenium.firefox.*;

import java.io.File;

import java.util.Dictionary;
public class TestExamplel {
Webdriver driver;

@Before
public void setUp () {
driver = new FirefoxDriver() ;
driver.get ("http://book.theautomatedtester.co.uk/chapterl") ;

@After
public void tearDown () {
driver.quit () ;

@Test
public void testExamples () {
// We will put examples in here

}

We should also note that finding elements can also be achieved from an element. For
example, if we wanted to find the first link after a button called button we would do
something like the following:

WebElement element = ((FindsById)driver) .findElementById("button") ;
WebElement childElement = element.findElement (By.tagName ("a")) ;

We will go into what this means in depth as we go through the chapter.

When working with WebDriver on a web application, we will need to find elements on the
page. This is the core to being able to work. All the methods for doing actions to the web
application like typing and clicking require that we find the element first.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Finding an element on the page hy its ID

The first item that we are going to look at is finding an element by ID. Finding elements
by ID will be one of the easiest ways to find an element. We are going to start with
findElementByID (). This method is a helper method that sets an argument for a more
generic findElement call. We will see now how we can use it in action. The method's
signature looks like:

findElementById(String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementByld(

We are going to find an element on the page by using the findElementById () method
that is on each of the Browser Driver classes. findElement calls will return a webElement
object that we can perform actions on.

Follow these steps to see how it works:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

WebElement element = ((FindsById)driver).
findElementById ("verifybutton") ;

3. Run the test from the IDE. It will look like the following screenshot:

- Testbaampe tbaamaiCoars ~ | b B | 4 & WEE
[S = TestExample java
§' 7 Praject s (m] it
ispart
o s chaguers (/i1+ ’ import 1
’l dea EBpOFT 0rg.OPENG. S8 Len1um. MeSOr fver
s inpo er;
ispart
sre
i public class TestExasole {
% Teutxample - s
weblriver driver;
P chapters.imé
» il Excerral Lbrarses
public void s
driver = o Arefedriveri);
driver.get| ~hrtp://book, theautonatedtester. co, uk/chapterl™);
¥
public void tearDowni){
driver.quitil:
public void testExmsplestiobere!)
({Findeyld]ariver) . findt Lenentiytdl “yerifybutton”];
}
¥
Ll @, Done: 1of1(12.195 5}
Tessinimple foyten/Library/Javas JavaVirtusiechines/1. 6.8, jdks/Contents,/Home/bin/ java -Dides. Launcher. port=7333 ~Oidea. Louncher. bin. patha/App!icat ions/Intel i
All Tests Passed
Process finished with exit cose @
4
HiE
&
i
Dapenduncy Viewsr ? & TOOO
2831 Mafoman 2 o & 3 ® [iawie7s

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

What just happened?

We have just seen how we can find an element by using the findElementById
helper method. After running the test, we saw that it passed. This meant that it
found the element. If an element is not found in Selenium, WebDriver will throw a
NoSuchElementFoundException exception.

Finding elements on the page hy their ID

In addition to findElementById, there is findElementsByID. This call has been added to
the API so that there is symmetry in the APl even though it is against the HTML spec to have
more than one item in the DOM with an ID. We will now see how we can use it in action. The
method's signature looks like:

findElementsById (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementsByld(

We are going to find an element on the page by using the findElementsById () method
that is on each of the Browser Driver classes. findElement calls will return a webElement
object that we can do actions on.

Follow these steps to see how it works:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

List<WebElement> elements = ((FindsById)driver)
.findElementsById("verifybutton") ;
Assert.equals(l, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

__J] 5) YK " TestbumphktestbumpiaCetiene = | B B 0 & B
5| # TestExamplejava
E’ ® Project TR Amport jova.util.List:
;| * chapter§ {ides t marmple: e pebilic class TestExaeple {
}
Wbl bver drlver;
al public veid setupl){
driver = new FirefoxDriveri):
driver.get{“dup: //book. theautonatedtesTer. oo, uk/chapterl™);
¥
public vaid tearDowni}{
driver.ouiti):
¥
public veis testExasglescomere!}
ListaichElesente elestnts = | (Find Fiver), PindElesentsByTd] “weri fybutton™) ;
Assert.assertéqua 1. elements.sizel
b
" @, Done: 1 of 1 (16797 5} -
TesExamale f5ysten/Library/Jeva/ JavaVirtualMachines/1. 6.8, |dk/Contents/Home/bin/ jove -0 t=7534 ~Didea, Lourcherbin, pathe/AppLicat lons/Tntelli
All Tests Passed
Process Tinished with exit code B
&

Dependercy Viewer | [= &' Run] | 2 6 ToDO

What just happened?

We have just seen how we can find an element by using the findElementsById helper
method. After running the test, we saw that it passed. Unlike its singular version, it will not
throw a NoSuchElementException exception if the element is not found. It will return a
list that has a size of zero.

Finding an element on the page hy its name

The next item that we are going to look at is finding an element by their name. Finding
elements by name is just as fast as their ID equivalent. This method is a helper method that
sets an argument for a more generic findElement call. We will now see how we can use it
in action. The method's signature looks like:

findElementByName (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

911

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

Time for action - using findElementByNameQ

We are going to find an element on the page by using the findElementByName () method
that is on each of the Browser Driver classes. findElement calls will return a webElement
object that we can perform actions on.

Follow these steps to see how it works:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

WebElement element = ((FindsByName)driver).
findElementByName ("selected (1234)") ;

3. Run the test from the IDE. It will look like the following screenshot:

IE Tesllxample alliampletCoters = | B | 2 B
Dpen File . ® TestExample java
2 Project #] W = @ isport org.openga.selenium. Tirefox. firefaxdr iver; o
import org.openge, selenium. internal. FindsByNone;
5; s chnpters
dea pebilic elass TestExanple {
113
WebDriver driver)
et
% TestExamale publ etUp() a
N chagrer$.iml i rew FirefoxDriveril:
driver.get{“http://book. theautosatedtester. co. uk/chapterl=);
B External Libraries '
public void tearDown(]{
driver.quit();
]
0 public void testExamplestobere!
| K iFindsByNase) driver].findlonartBybane| selected|1234)°);
-
- @ Done: 1of 1(7.414 5
TestEnample FEystensLibrary/ Javay JavaVirtua (Machings /1. B, B_ | dk/Content s Home /bin/ java =Didea. Launcher. port=T536 =Didea, Laancher.Bin. pathe /Applicat lons/ Intelli
All Tasts Pussed
Process Tinished with exit code @
E &
Hi
L]
» 4) Teses Passed: | pasted
Dependency Viewer || & & Run| 2 6 TODO

What just happened?

We have just seen how we can find an element by using the findElementByName
helper method. After running the test, we saw that it passed. This meant that it
found the element. If an element is not found in Selenium, WebDriver will throw a
NotSuchElementFound exception.

1921

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Finding elements on the page hy their name

Unlike ID, we can have multiple elements on the page that have the same name. This is also
a symmetrical call to find multiple elements. We will now see how we can use it in action.

The method's signature looks like:

findElementsByName (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementsByName()

We are going to find an element on the page by using the findElementsByName ()

method that is on each of the Browser Driver classes. findElement calls will return a list of

WebElement objects that we can perform actions on.
Follow these steps to see how it works:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

List<WebElement> elements = ((FindsByName)driver) .
findElementByName ("selected (1234)") ;

Assert.equals(l, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

E Testinamps =1 5 =
| # TestCuample o
£l 7 Project 8 ¥ = @ Cisport jova.uril.List:
- Jehapters (/o x public class TestExasple {
ol idea
b Mesdriver driver;
are
est public vaid setupl)d
& TestExample driver = new FirefoxDriveri};
DN chagters m | driver.ger(“Ntg: //book. Theautoastedtester. co. uk/chapteril;
b Exvarral Libraris i
public vois tearbouni }{
driver.quit(l;
¥
public void testExanglesGobere|}{
i Elesents cloments = {(Findsbyblane) driver), findElementsByene| selected{1234)});
Assert.assertiquals(l, elements.size(}});
¥
il B Done: 1of 1(8.2583)
Tes fSysten/Library/Java/Javavirtua Machines /1, 6.0, | dk/Contents/lome /bin/ java —Didea. Launcher.parts7535 —Didea. Launcher . bin. path=/Application
ode §
3
-
Tests Pasted 1 patsed
2 Dependency Viewer | [> 4 Ren| | 2 6 TODO

s/ Intelli

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

What just happened?

We have just seen how we can find an element by using the findElementsByName helper
method. After running the test, we saw that it passed. Unlike its singular version, it will not
throw a NoSuchElementException if the element is not found. It will return a list that has
a size of zero.

Finding an element on the page hy their ClassName

We are going to now look at findElementByClassName (). If there is more than one
element on the page that has this class name, then it will return the first element that it gets.

We will now see how we can use it in action. The method's signature looks like
the following:

findElementByClassName (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementByClassName()

We are going to find an element on the page by using findElementByClassName ()
method that is on each of the Browser Driver classes. findElement calls will return a
WebElement object that we can do actions on.

Follow these steps to see how it works:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

WebElement element = ((FindsByClassName)driver).
findElementByClassName ("storetext") ;

[9a1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Run the test from the IDE. It will look like the following screenshot:

[E: R T L e e TR e
(%] ® TestExample java
l Project TR amp rg.openga, selenium, firefos, Firefoxbe iver;
| import org.openqa. selenium, imternal. FindsByClasshone:
DT o chapters
7 dea public class TestEwample {
ibs
Webbriver driver;
ane
st
¥ % TemExampie public vold setupll{
U chapterS.imi driver = mew FirefosDriver)}
= driver.get(“Http://book. theswtosatedtester. co, uwk/chapterl®);
» b External Libvares 3
public veld tearbown(H
driver.quiti};
¥
puBLiE vein TestEasplescamere()(
[(FindsByClasshome) driver), findElenentByClosshome| “storetext”};
]
H ®. Done:10f1(7.276¢)
TesExamale 5y3tem/Library/ Java/ JavaVirtualMechines /1. 6.0. di/Contents Home/bin/ java ~Dides. louncher.po 7 -Didea. Lsuncher, bin. path=/AppLicat ions/ Intelli
Al Tests Passed
Process Tinished with exit code @

What just happened?

We have just seen how we can find an element by using the findElementByClassName
helper method. After running the test, we saw that it passed. This meant that it

found the element. If an element is not found in Selenium, WebDriver will throw a
NotSuchElementFound exception.

Finding elements on the page by their ClassName

We will now see how we can use it in action. The method's signature looks like:

findElementsByClass (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

Time for action - using findElementsByClassName()

We are going to find an element on the page by using findElementByClassName ()
method that is on each of the Browser Driver classes. findElement calls will return a
WebElement object that we can do actions on.

Follow these steps to see it work:

1. Open yourJava IDE. Intellij or Eclipse are the most used that you could use.

2. We are going to use the command:

List<WebElement> elements = ((FindsByClassName)driver)
.findElementsByClassName ("storetext") ;
Assert.equals(l, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

Tewtiasmpit enlaameisGonee = | b 0 | & @ T
Open Tl 5 T F Testbxample java
B[T3 proiect R
| fmport fava.util.List;
™ ¥ ichapters 3
= =Y public clase Testfxasple {
s
? WebDriver driver;
tea
S'a TeutExample public voig setup(){
i ew FirefoaDriver();
5 :
sk driver.get(“http: //bock. thesutonatedtester. co.uk/chagterl”);

v i External Ubraries 3

public void tearDownii{
driver.quitl);

}

public vodd testExemplestoticrel){
List<wedllement> elements = ((FindshyClassNone) driver).finsllesentsbyClassNone(“storetext”);
Assert, assertfquals(l, elements,sizell}s
1
¥

» p = ;
: @ Done: 1of 1(7.276 5}
TestExample JSystensLibrar

All Tests Passed

TusLeschines (1. 8.9, |dk/Contents Mome /Bins java -Dioes. Launcher, port=1537 ~Obded, Launcher, bin, pathe/AppLications Intel Ll

Process finished

What just happened?

We have just seen how we can find an element by using the findElementsByClassName
helper method. After running the test, we saw that it passed. Unlike its singular version, it will
not throw a NoSuchElementException if the element is not found. It will return a list that
has a size of zero. If you want to use CSS selectors, you can use findElementByCssSelector
or findElementsByCssSelector. In the next section, we will have a look at XPaths.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Finding an element on the page hy their KPath

XPath is one of the most useful approaches to finding elements on the page. It has a bit of
a tainted past due to the speed that it takes to look up elements on the page. We learnt a
number of different techniques using XPath earlier in the book.

This method is a helper method that sets an argument for a more generic findElement call.
We will now see how we can use it in action. The method's signature looks like the following:

findElementByXpath (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementByXPath()

We are going to find an element on the page by using the findElementByXPath ()
method that is on each of the Browser Driver classes. findElement calls will return a
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open yourJava IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

WebElement element = ((FindsByXPath)driver).
findElementByXpath ("verifybutton") ;

3. Run the test from the IDE. It will look like the following screenshot:

&) - 3 BE Tevivamole fenlxamplaGaere v | b B | 0 &* S

Open Fie - £ TestExample java

g ? Project = = @ import org.openga. selenium, firelan. Firefexdriver:
import org.openga. selenium. internal. FindsByXPath;
e 1 chapters (/o
o Idea public class TestErample {
s
Webbriver driver;
et
" Tessxamole public vold setupil{
rivar = new FirctoaBriver(}s
hapters iml - :
3 chapte driver. get(“hitp://book. theaytomatedtester. co. uk/chapterl”h:

» &h External Lisraries L2

public vold tearBown{}{
driver.quit(};
}

public void testExamplesGeHere!}{
[{FindeByPath] driver). findE L enentiyXPathl =/ input [Ris="verifybutton' |");

TestExampie emts/Hone/Bin/ java ~Didea. launcher.parts7533 -Diden, launcher, Bin, paths/Asolicat ions/Intelll

All Tests Passed

1971

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

What just happened?

We have just seen how we can find an element by using the findElementByXPath
helper method. After running the test, we saw that it passed meaning that the XPath
that we passed in works. If an element is not found in Selenium, WebDriver will throw
a NotSuchElementFound exception.

Finding elements on the page hy their KPath

We will now see how we can use it in action. The method's signature looks like:

findElementsByXpath (String using) ;

The using variable takes the ID of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementsByXpath()

We are going to find an element on the page by using the findElementsByXPath ()
method that is on each of the Browser Driver classes. findElement calls will return a
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

List<WebElement> elements = ((FindsByXPath)driver).
findElementsByXpath ("//input") ;
Assert.equals (5, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

J.J %] 3K B Testbamakntamahateners ~ | b @ | & & NS
Open Fie | Sl Testbample java
B (P erjea v RO -
| impert jova.util.Listy
; 1 chapters (o 2 e
Ml Den public class Testfuamsle {
it
s webDriver eriver:
st
&5 TestExampie public vold setlpll{

D chapters imil driver = new FirefoxDriver(); !
driver.get["http://book. thesutosatedtester, co. uk/chapterl®};

b Exterral Libranes)

public waid tearDowni}{
driver.guitil;
¥

public veld testExanplesCotaral)(
List<uebE Lements elements = ((F ¥ driver). findE y =7/ inpat [gdde" werifybutton: JI')}
Assert.assertEquals(l. elements.sizel)):
}
}

2 @, Done: 1of 1(5.884 5)
TemtExample FSystem/Library/ Java/Javavirtua Machines/ 1. 8.8, jok/Content s/ Home/BinS java -Dldea. Lasncher, port=733% -Oidea. launcher . bin. path=/Applicat 1ons/Intelll

All Tosts Passed
Process finished with exit code @

Secte

What just happened?

We have just seen how we can find an element by using the findElementsByXPath helper
method. We saw that from running the test we saw it pass. Unlike its singular version, it will
not throw a NoSuchElement exception if the element is not found. It will return a list that
has a size of zero.

Finding an element on the page hy its link text

If you need to find a link by the text that is in it, this method is useful. It is a helper method
that sets an argument for a more generic findElement call. We will now see how we can
use it in action. The method's signature looks like:

findElementByLinkText (String using) ;

The using variable takes the link text of the element that you wish to look for. It will return a
WebElement object that we can then work with.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

Time for action - using findElementByLinkText()

We are going to find an element on the page by using the findElementByLinkText ()
method that is on each of the Browser Driver classes. findElement calls will return a
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open yourJava IDE. Intellij or Eclipse are the most used.
2. We are going to use the following command. We will use a different page on the site
for this example.

Driver.get ("http://book.theautomatedtester.co.uk")

WebElement element = ((FindsByLinkText)driver).
findElementByLinkText ("Chapterl") ;

3. Run the test from the IDE. It will look like the following screenshot:

T £ Teut PR [
A 5 Te
H Project #] %W & @ isport arg.openga.selenium. firetox.Firefandeiver; []
import org.openga.selenivm. internal. FindsByl inkText;
[v L5 chapters
P Idea public class TestExasple {
Weklriver driver;
e
test
&% TesExample peilic vedd setupl){
I craprers. im driver = e Firefoshe
% driver.get(“http: / /boo ¥
* [External Libraries
peblic vaid teartowni]{
driver.quit{];
¥
peblic vodd testEaamolesGoterel}{
{{FingsByLinkText] driver).?indElenentByl InkTeut (“Chapterl=);
]
}
Ll @, Done:lef 1(5.7145)
TesEvamale fSystemyL ibrary/ Java/JavaVirtualMachines 1. 8.3, Jdk/Contents/home/biny java ~Dides. Launche: 1=7341
Al Tests Pagsed
Process finished with exit code @
What just happened:

We have just seen how we can find an element by using the findElementByLinkText
helper method. One thing to note is that the search for the text is case sensitive when used
in WebDriver. This means that what we pass into Selenium, WebDriver needs to match
exactly or it will not find your element. If an element is not found in Selenium, WebDriver
will throw a NoSuchElementFound exception.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Finding elements on the page hy their link text

We will now see how we can find elements on the page by their link text in action. The
method's signature looks like:

findElementsByLinkText (String using) ;

The using variable takes the link text of the element that you wish to look for. It will return a
WebElement object that we can then work with.

Time for action - using findElementsByLinkText()

We are going to find an element on the page by using the findElementsByLinkText ()
method that is on each of the Browser Driver classes. findElements calls will return a list
of WebElement objects that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command.

driver.get ("http://book.theautomatedtester.co.uk")
List<WebElement> elements = ((FindsByLinkText)driver).
findElementsByLinkText ("Chapterl") ;

Assert.equals(l, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

5 Testixample java
7 Project o W= & ' . W (]
import Java.util,List;
chapters
Idea public elass TestExasple §
o3
WetOr luer driver;
sre
test
% TesExample pebilic veld setup(i{
driver = mew Pirefoxbriver();
| crapters.imd ¥
2 driver.get(“http: //book. thesstosatedtester. co.uki" 1}
» il Excernal Ligraries b

peblic void tearDown(}{
driver.quit(};

}

ExamplesGoberel) {
E Nt= o lomsnte ((FindsByL inkToxt)} driver).findElotent Byl inkText (“Chagtarl™);
Assert.assertEouals(l, clements.size(]):
}
) I

petlic veld 1
LigtesobE

| @ Done: 1 of 1 (6.0225)
TestExarmple fSystem/Library/ Java/ JavavirtuaiMachines /1. 6.8, jdk/Contents/Mome/bin/ java =Didea. Launc

All Tests Passed

Process finished with exit code @

1011

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

What just happened?

We have just seen how we can find an element by using the findElementsByLinkText
helper method. One thing to note is that the search for the text is case sensitive. If an
element is not found in Selenium, WebDriver will return an empty list.

1. What is the best call for finding multiple elements using XPath?

a. findElementByXpath
b. findElementsByXPath
c. findElementByCssSelector
2. What is the best call to an element using CSS selectors to find an element just on the
class name?
a. findElementById
b. findElementsByCssSelector
c. findElementByClassName

3. Willa findElements type call throw a NoSuchElementException when it can't
find the element?

Have a go hero - using findElement Helper methods

Try creating an example where you need to find an element by CSS selector. This is used by
findElementByCssSelector and findElementsByCssSelector. Have a try!

Finding elements using a more generic method

We have had a look at using helper methods to find elements on the page. The downside to
using them is that if something changes, you need to change the entire method that you are
using to find the element. This can increase the maintenance costs for doing this.

The other approach is to use the findElement () method, pass in the By abstract class, and
call static methods on that class.

Let's see this in action.

11021

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Time for action - using findElement()

In this section we are going to look at using the findElement call that is on the WebDriver
object. This is how we can normally find elements using Selenium WebDriver.

1. Open yourJava IDE. Intellij or Eclipse are the most used that you could use.

2. We are going to use the command:

driver.get ("http://book.theautomatedtester.co.uk")
driver.findElement (By.linkText ("Chapterl")) ;

3. Runyour test.

What just happened?

We have just seen that we can find an element by passing in the By object. This is a static
class that gives people a mechanism for finding elements, as we did earlier in the chapter.
This will throw a NoSuchElementException if it cannot find the element.

Let's now have a look at finding multiple elements.

Time for action - using findElements(

In this section we are going to look at using the findElements call that is on the WebDriver
object. This is how we can normally find elements using Selenium WebDriver.

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

driver.get ("http://book.theautomatedtester.co.uk")

List<WebElement> elements = driver.findElements (
By.linkText ("Chapterl")) ;

Assert.assertEqual (1, elements.size());

3. Runyour test.

What just happened?

We have used this similar to calls earlier in the chapter. This will find multiple elements on
the page and return a list. This will not throw a NoSuchElement exception if it cannot find
the element.

[1031

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

Tips and tricks

In this section, we are going to look at some tips and tricks that might be of use when
trying to find elements on the page. We can also apply them to see if the elements are
not on the page.

Finding if an element exists without throwing an error

Selenium WebDriver is really good at letting you know when an element does not exist. If
it throws a NoSuchElementException, then we know it's not there. Unfortunately |, and
many others, have not been big fans of using exception handling as a way of flow control.

To get around this we can use the findElements () call, and then we just need to check
that the size of the list returned is 0. For example:

List<WebElement> elements = driver.findElements (
By.Id("myElement")) ;

elements.size(); //This should be zero and can be checked accordingly

Web applications now want to appear as though they are desktop applications as more and
more people move to hardware like tablets or netbooks which have very small hard drives.
This is all done through AJAX to the page.

This means that when we are working with Selenium WebDriver we need to have it
synchronized with what is happening on the page. We do not want to use something like
Thread.sleep () because that doesn't make our tests run as quickly as possible. We need
to use one of the next two approaches: implicit or explicit waits.

Implicit waits

Selenium WebDriver has borrowed the idea of implicit waits from watir. This means
that we can tell Selenium that we would like it to wait for a certain amount of time before
throwing an exception that it cannot find the element on the page. We should note that
implicit waits will be in place for the entire time the browser is open. This means that any
search for elements on the page could take the time the implicit wait is set for.

Let's see how we can use this.

(1041

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Time for action - using implicit waits

In this section we will see how we can use implicit waits in our code. We need to
change a number of calls together to set the implicit. This was done to keep the API
as succinct as possible:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:

driver.manage () .timeouts () .implicitlyWait (10, TimeUnit.SECONDS) ;
driver.findElement (By.xpath("//div[eid='ajaxdiv']")

3. Runyour tests:

25 Tes

26 public void testExamples(){

27 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);
28 driver.findElement(By.xpath("//div[@id="ajaxdiv'1"});

29 }

pne: 1 of 1 (32.066 s) [
/5ystem/Library/Java/JavaVirtualMachines/1.6.0. jdk/Contents/Home/bin/java -Didea. launcher.port=7535 "-I§

Process finished with exit code @

=
=

What just happened?

We have just seen that our tests run and pass. We didn't have to do anything special for
waiting for the new text to appear on the page. Let's go see how we can do this with the
explicit waiting approach.

Explicit waits

Unfortunately implicit waits do not fit all situations and for some developers is not the right
thing to do. Explicit waits is when we know what we want to happen and the error needs to
fit that situation.

Let's see this in action!

[1051

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Elements

Time for action — using explicit waits with Selenium WebDriver

In this section we will have a look at using explicit waits. This is useful for making sure that
the right type of exception is thrown:

1. Open yourJava IDE.

2. We are going to use the following code. WebDriverWait is found in the Support
package within the Selenium WebDriver Jar.

WebElement element = (new WebDriverWait (driver, 10))
.until (new ExpectedCondition<WebElements> () {
@Override
public WebElement apply(WebDriver d) {
return d.findElement (By.xpath("//div[eid='ajaxdiv']")

P

3. Runyour tests:

26 Tes

27 public veoid testExamples(}{

28 WebElement = (new WebDriverWait{driver, 1@))
29 until{new ExpectedCondition<WebElement=(){
38 Override

3@t public WebElement apply(WebDriver d) {
32 return d.findElement{By.xpath("//div[eid="ajaxdiv"']1"));
33 i3k

34

35 b

36 }

Done: 1 of 1 (29.637 s) |
/System/Library/Java/JavaVirtualMachines/1.6.8. jdk/Contents/Home/bin/java -Didea. launcly

Process finished with exit code @

=
E2]

What just happened?

We have just seen how we can use an explicit wait with our code. We told the wait class that
we wanted it to wait ten seconds while trying to find the element. | personally prefer explicit
waits since you can see by reading the code how long it is going to wait for.

Let's now see what we have learnt in this chapter.

[1061]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We learnt a lot in this chapter about finding elements using the Selenium WebDriver Element.
Specifically, we covered:

¢ Finding elements with helper methods: We saw what is needed to get things
running and finding elements on the page using Selenium WebDriver. We started
with the helper methods so that we can just start finding elements. In the next
section we saw how we can make them more robust.

¢ Finding elements in a maintainable way: In this section we learnt how to find
elements in a more maintainable approach. We just need to change the argument
in the method signature.

¢ Tips and tricks: Here we learnt how we can find an element without throwing
an exception. We also had a look at waiting for elements to appear on the page.
Elements can happen asynchronously so we never know when they will appear.

Now that we've learnt about finding elements, we're ready to start using browsers and
tweaking them to our needs—which is the topic of the next chapter.

11071

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In the last chapter we saw how we can look for elements. Now let's start
working with Selenium WebDriver in different browsers. Remember that
Selenium WebDriver is a browser automation framework for all of the major
browsers and can access the browser like an end user would.

In this chapter, we shall:

¢ Run a test with Firefox

o Working with Firefox profiles

¢ Run a test with Google Chrome or Chromium

o Updating the capabilities of the browser

¢ Run a test with Opera

o Working with Opera Profiles

¢ Run atest with Internet Explorer

o Working with InternetExplorerDriver

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

You will need to download the following items. Make sure that you download the relevant
executable for your environment:

¢ |E Driver Executable: http://code.google.com/p/selenium/downloads/
list

¢ Chrome Driver Executable: http://code.google.com/p/chromium/
downloads/list

¢ Opera Driver Executable: https://github.com/operasoftware/
operadriver/downloads

¢ Firefox Driver does not require a download as it is bundled with the Java
client bindings

Please make sure that you have all the necessary browsers installed to complete all the
sections of this chapter.

When working through the following examples, we are going to assume that you have
instantiated a WebDriver object by doing:

WebDriver driver = new FirefoxDriver () ;

You can use the following example class for use with JUnit 4:

import org.junit.*;
import org.openga.selenium.*;
import org.openga.selenium.firefox.*;

import java.io.File;
import java.util.Dictionary;

public class TestChapter6
WebDriver driver;

@Before

public void setUp () {
driver = //we will update this part with each section
driver.get ("http://book.theautomatedtester.co.uk/chapter4") ;

}

@After
public void tearDown () {
driver.quit () ;

(1101

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/chromium/downloads/list
http://code.google.com/p/chromium/downloads/list
https://github.com/operasoftware/operadriver/downloads
https://github.com/operasoftware/operadriver/downloads
http://www.it-ebooks.info/

Chapter 6

@Test
public void testExamples () {
// We will put examples in here

}
}

FirefoxDriver is the easiest driver to use, since everything that we need to use is all bundled
with the Java client bindings that we used in the previous chapter.

In the next section we are going to see about loading the browser and typing to the screen.
This is what we will be doing in most of our applications.

Time for action - loading the FirefoxDriver

We are going to do the basic task of loading the browser and type into the page.

1. Update the setUp () method to load the FirefoxDriver () ;
driver = new FirefoxDriver() ;

2. Now we need to find an element. In this section we will find the one with
the ID nextBid
WebElement element = driver.findElement (By.id("nextBid")) ;

3. Now we need to type into that element:

element.sendKeys ("100") ;

4. Run your test and it should look like the following:

public class TestChapter6
WebDriver driver;

@Before

public void setUp () {
driver = new FirefoxDriver() ;

driver.get ("http://book.theautomatedtester.co.uk/chapter4") ;

}

@After
public void tearDown () {
driver.quit () ;

[l

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

}

@Test

public void testExamples () {
WebElement element = driver.findElement (By.id("nextBid")) ;
element.sendKeys ("100") ;

}
}

What just happened?

We have just seen how easy it is to run a test with Selenium WebDriver and Firefox. It loaded
the browser and then typed into the browser. We can now do everything and anything that
we want to the content that is loaded into the browser. Now let's have a look at all the other
things that we can do with FirefoxDriver.

Firefox profile preferences

There are times where we need to update the preferences within Firefox. This could be to
switch on parts of Firefox that are disabled while they are in development or if you want to
get more information from the browser while your tests are running. To do this, we will need
to instantiate a Firefox Profile object and then update the settings.

We will then need to pass this object into FirefoxDriver where we instantiate it. This will load
the profile with your details you have set. This is like loading about : config in the browser
and changing what you need to.

Let's see how we can do this with a code sample.

Time for action - setting Firefox preferences

Imagine that you wanted to have your site as the startup page for Firefox. To do this we will
need to update the browser.startup.homepage preference. Follow these steps:

1. Let's start by creating the FirefoxProfile object:

FirefoxProfile profile = new FirefoxProfile() ;

2. Now we will set the preference:

profile.setPreference ("browser.startup.homepage",
"http://book, theautomatedtester.co.uk") ;

[n2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

3. To get the profile to be used, we need to pass it in to the driver. To do this, we need
to do the following:

driver = new FirefoxDriver (profile) ;

4. Run your test. The final code should look like the following:
public class TestChapter6

WebDriver driver;

@Before
public void setUp () {
FirefoxProfile profile = new FirefoxProfile() ;

profile.setPreference ("browser.startup.homepage",
"http://book, theautomatedtester.co.uk/chapterd") ;

driver = new FirefoxDriver (profile);

}

@After
public void tearDown () {
driver.quit () ;

@Test

public void testExamples(){
WebElement element = driver.findElement (By.id("nextBid")) ;
element.sendKeys ("100") ;

What just happened?

We have just seen that we can manipulate Firefox settings before the browser is loaded. This
can be useful if you need to get extra information out of the browser or if we have a few
things that need tweaking.

If you had installed Firefox in a different place, you would have had to instantiate the
FirefoxBinary class with details of it:

FirefoxBinary binary = new FirefoxBinary ("/path/to/binary") ;

driver = new FirefoxDriver (binary) ;

131

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

If you need to update both the Firefox Profile and the Firefox Binary, you can simply pass
both of them through the constructor as follows:

FirefoxBinary binary = new FirefoxBinary ("/path/to/binary") ;

FirefoxProfile profile = new FirefoxProfile() ;

profile.setPreference ("browser.startup.homepage",
"http://book, theautomatedtester.co.uk/chapterd") ;

driver = new FirefoxDriver (binary, profile);

As you can see, it's fairly simple to load Firefox if it isn't installed in the usual place.

One of the most useful features of Firefox is the ability to install add-ons to enhance the user
experience. This enhanced experience can mean that web applications act differently when
the add-on is installed.

Let's have a look at how we can install an add-on into our profile before we start
the browser.

Time for action - installing the add-on

Imagine that you wanted to install Firebug so that if a test were to fail we could try and
debug the JavaScript. To do this, we will need to create a FirefoxProfile and then tell it
to add the add-on.

1. Create a profile object:

FirefoxProfile profile = new FirefoxProfile();

2. Now we need to install the add-on. WebDriver can only install add-ons that are on
the local hard drive:

profile.addExtension ("path/to/addon") ;

3. Pass the profile into FirefoxDriver and then run your test. Your code would look like
the following:

public class TestChapter6

WebDriver driver;

[1al

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

@Before
public void setUp () {
FirefoxProfile profile = new FirefoxProfile() ;
profile.addExtension ("firebug.xpi") ;
driver = new FirefoxDriver (profile);
driver.get ("http://book.theautomatedtester.co.uk/chapter4") ;

}

@After
public void tearDown () {
driver.quit () ;

}

@Test

public void testExamples () {
WebElement element = driver.findElement (By.id("nextBid")) ;
element.sendKeys ("100") ;

}

What just happened?

We have just installed a Firefox add-on into the browser before we run our test. This is
much simpler than it used to be in Selenium Remote Control where we would need to load
the profile manually and make the changes that we needed and then run our tests telling
Selenium Server to use this profile. The old process is not very portable compared to what
we just did.

So far we have learnt to load Firefox and make changes to the browser before it loads
which can be quite useful if we need to get more information out of the browser or make
debugging issues a lot simpler. Let's see how much you remember with this quick pop quiz.

1. How would you set a preference?

2. How would you tell FirefoxDriver to use Firefox that is not installed in the
usual place?

(1151

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

A lot of people like to use Firebug with WebDriver but get really annoyed with the First
Run page.

1. Togetaround this, we are going to have to update the version of Firebug in your
Firefox Preferences.

2. We will set the version to 99. 9:
public class TestChapter6 {

WebDriver driver;

@Before
public void setUp () {
FirefoxProfile profile = new FirefoxProfile() ;
profile.addExtension("firebug.xpi") ;
profile.setPreference ("extensions.firebug.currentVersion",
"99.9") ;
driver = new FirefoxDriver (profile) ;
driver.get ("http://book.theautomatedtester.co.uk/chapterd") ;

@After
public void tearDown () {
driver.quit () ;

@Test

public void testExamples () {
WebElement element = driver.findElement (By.id ("nextBid")) ;
element.sendKeys ("100") ;

In this section, we will have a look at how we can start working with Google Chrome or with
Chromium. Google Chrome or Chromium is in the top three browsers used in the world so
most people want to make sure that their web applications work with it.

(1161

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you haven't downloaded the ChromeDriver you will need to do it now for
the following sections. You will also need to set an environment path of where
it is, so ChromeDriver in Java will know where to get it. This is purely for the
" ChromebDriver. If you have Google Chrome or Chromium installed somewhere
% that isn't the default, we will see how to handle that with ChromeOptions.

On Linux and Mac OS X do: export PATH=SPATH: /path/to/
chromedriver.

On Windows do: set PATH=SPATH; \path\to\chromedriver.

Time for action - starting Google Chrome or Ghromium

Imagine that you wanted to work with Google Chrome to get an attribute of an element on
the page. To do this we will need to instantiate a ChromeDriver. Let's see an example.

1. Update the setUp () method to load the ChromeDriver ():

driver = new ChromeDriver () ;

2. Now we need to find an element. In this section we will find the one with
the ID selectLoad:

WebElement element = driver.findElement (By.id("selectLoad")) ;

3. Now we need to get the value attribute of that element:

element .getAttribute ("value") ;

4. Run your test and it should look like the following:

public class TestChapter6
WebDriver driver;

@Before
public void setUp () {
driver = new ChromeDriver () ;
driver.get ("http://book.theautomatedtester.co.uk/chapter4") ;

}

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples () {

1111

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

WebElement element = driver.findElement (
By.id("selectLoad")) ;

String value = element.getAttribute("value") ;
Assert.assertEquals ("Click to load the select below",
value) ;
}
}
What just happened?

We have just run a test with Google Chrome or with Chromium. It was fairly simple to get
going and then the browser was able to get the value of the button. If you had trouble
getting it to run, make sure that you have downloaded the ChromeDriver and added it to the
environment variable called PATH.

Now that we have got ChromeDriver working, let's have a look at how we can update the
browser as we did with Firefox.

Google Chrome or Chromium doesn't really have a profile that users can update in the same
sense as Firefox. It does however have a mechanism that allows us to set certain options that
Chrome will try and use. We can also tell it to install Chromium extensions, which are like
Firefox add-ons, into the browser so we can enhance the experience.

Time for action - using ChromeOptions

Imagine that you needed to tell ChromeDriver the location of you Google Chrome or
Chromium. To set this we will need to instantiate a ChromeOptions object and tell that
where to find the Chrome/Chromium Binary.

Let's see how to doit:

1. Update the setUp () method to instantiate a ChromeOptions object and call
setBinary () method:
ChromeOptions options = new ChromeOptions() ;

options.setBinary ("/path/to/location") ;

2. Update the setUp () method to load the ChromeOptions object into the
ChromeDriver:

driver = new ChromeDriver (options) ;

(1181

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

3. Now we need to find an element. In this section we will find the one with
the ID selectLoad

WebElement element = driver.findElement (By.id("selectLoad")) ;

4. Now we need to get the value attribute of that element:

element .getAttribute ("value") ;

5. Runyour test and it should look like the following:

public class TestChapter6
WebDriver driver;

@Before
public void setUp () {
ChromeOptions options = new ChromeOptions() ;
options.setBinary ("/path/to/location") ;
driver = new ChromeDriver (optiomns) ;
driver.get ("http://book.theautomatedtester.co.uk/chapterd") ;

@After
public void tearDown () {
driver.quit () ;

@Test

public void testExamples () {
WebElement element = driver.findElement (
By.id("selectLoad")) ;

String value = element.getAttribute("value") ;
Assert.assertEquals ("Click to load the select below",
value) ;

What just happened?

We have just seen how we can inject options that we want Chrome or Chromium to start
with. If we needed to pass in the arguments that we could start the browser with or if we
needed to tell ChromeDriver, we can use setArguments () . This allows us to do many
things to the browser. We can see a definitive list at http://src.chromium.org/
viewve/chrome/trunk/src/chrome/common/chrome switches.cc?view=markup.

(19l

www.it-ebooks.info

http://src.chromium.org/viewvc/chrome/trunk/src/chrome/common/chrome_switches.cc?view=markup
http://src.chromium.org/viewvc/chrome/trunk/src/chrome/common/chrome_switches.cc?view=markup
http://www.it-ebooks.info/

Working with WebDriver

If you have a Chrome Extension, a file with a . crx extension, you will need to use the
addExtension () method as you would in FirefoxDriver. The following snippet will
show an example:

ChromeOptions options = new ChromeOptions() ;
options.addExtension ("example.crx")

Pop quiz - using ChromeDriver

1. Whatis the name of the object that allows us to tweak Chrome or Chromium before
it launches?

2. What environment variable do we need to set and why?

Opera Software, the company that creates Opera, has created their own project to support
Selenium WebDriver. Since not every web browser will act the same with the sites that we
create, it is a good idea to make sure we can test our applications with OperaDriver.

Note that OperaDriver works best with the latest stable release of Opera. Make sure that you
update regularly.

Let's see how easy OperaDriver is to use.

Time for action - starting Opera

In this section, we will see how we can start OperaDriver and get it to click a button on the
page. This simple test will give us the confidence to use Selenium WebDriver with Opera.

1. Update the setUp () method to load the Operabriver ():

driver = new OperaDriver() ;

2. Now we need to find an element. In this section we will find the link Chapter 4:

WebElement element = driver.findElement (By.linkText ("Chapter 4"));

3. Now we need to click on the link:

element.click () ;

1201

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

4. Run your test and it should look like the following:

public class TestChapter6
WebDriver driver;

@Before
public void setUp() {
driver = new OperaDriver() ;
driver.get ("http://book.theautomatedtester.co.uk/") ;

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples(){

WebElement element = driver.findElement (
By.linkText ("Chapter 4"));

element.click() ;

// Assert that we only have 1 link

Assert.assertEquals (1, driver.findElements (
By.linkText ("index")) .size());

What just happened?

We have just seen how easy it is to get the OperaDriver loading Opera and interacting with
what is on the page. We used click () on alink so that we can navigate between pages.
Just by changing the object that is instantiated in the setUp () method we got it to load.

Opera, like the previous browsers we have used, allows us to set details of the browser
before the browser has started up. Let's have a look at how that works.

The OperaProfile is a new addition to the OperaDriver. It allows us to set details in the
browser when the browser starts. Opera Software tests the browser where it can, so we
can set a lot of details of the browser. In the following example, we are going to disable
Geolocation from our tests.

[1211

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

Time for action — working with OperaProfile

Imagine that you want to test your web application that uses geolocation in the browser,
when it cannot use geolocation. All location-based applications need to support this if you
were to get a user who is worried about privacy on certain machines.

1. Update the setUp () method to load the Operabriver ():

OperaProfile profile = new OperaProfile() ;

profile.preferences () .set ("Geolocation",
"Enable geolocation", false);

driver = new OperaDriver (profile);

2. Now we need to find an element. In this section we will find the link Chapter 4:

WebElement element = driver.findElement (By.linkTexxt (
"Chapter 4"));

3. Now we need to click on the link:

element.click () ;

4. Run your test and it should look like the following:
public class TestChapter6

WebDriver driver;

@Before
public void setUp () {
OperaProfile profile = new OperaProfile();

profile.preferences () .set ("Geolocation",
Enable geolocation", false);

driver = new OperaDriver (profile);
driver.get ("http://book.theautomatedtester.co.uk/") ;

@After
public void tearDown () {
driver.quit () ;

@Test
public void testExamples () {
WebElement element = driver.findElement (
By.linkText ("Chapter 4"));

element.click() ;

11221

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Assert.assertEquals (1, driver.findElements (
By.linkText ("index")) .size());

What just happened?

We have just seen how we can set a preference with Opera and then inject that into the
browser so that when the browser starts, it is there for us to use. As mentioned earlier,
there are a lot of different preferences that can be set. To see a list of these, open Opera and
use the URL opera:configorvisit http://www.opera.com/support/usingopera/
operaini/.

Pop quiz - working with OperaDriver

1. What version is recommended for use with OperaDriver?

2. How do we update the browser preference with OperaDriver?

Internet Explorer is the most used browser in the world followed by Firefox and Google
Chrome so getting IEDriver working is going to be a high priority. The current version IEDriver
supports IE6 through to IE9 so you will be able to test your websites work on old browsers
right up to the latest modern version of the browser.

If you haven't downloaded the IEDriverServer you will need to do it now for
- the following section. You will also need to set an environment path of where
% it is so InternetExplorerDriver in Java will know where to get it. This is similar
~ to what we did for the ChromeDriver earlier.

On Windows do: set PATH=$PATH; \path\to\chromedriver.

11231

www.it-ebooks.info

http://www.opera.com/support/usingopera/operaini/
http://www.opera.com/support/usingopera/operaini/
http://www.it-ebooks.info/

Working with WebDriver

Time for action — working with Internet Explorer

In this section we are going to get the text of the element on the page. This is something that
most people have to do to check that the right things are happening on the page.

We will need to instantiate InternetExplorerDriver and the call getText () on the element.
Let's get to it.

1. Update the setUp () method to load InternetExplorerDriver ():

driver = new InternetExplorerDriver () ;

2. Now we need to find an element. In this section we will find the link Chapter 4:

WebElement element = driver.findElement (By.id("bid")) ;

3. Now we need to get the text of the element:

element .getText () ;

4. Run your test and it should look like the following:
public class TestChapter6

WebDriver driver;

@Before
public void setUp () {
driver = new InternetExplorerDriver () ;
driver.get ("http://book.theautomatedtester.co.uk/chapterd") ;

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples () {
WebElement element = driver.findElement (By.id("bid")) ;
Assert.assertEquals ("50", element.getText()) ;
}
}

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

What just happened?

We have just seen how we can use WebDriver to drive Internet Explorer. Since this is the
most used browser in the world, we always make sure that our applications work with it. As
with all of the different browsers, using Internet Explorer with WebDriver is really simple.

Pop quiz - working with InternetExplorerDriver

1. What versions of Internet Explorer does WebDriver support?

You will notice that in the tearDown () we call quit (). We call quit () because this
call cleans up all of the resources that WebDriver starts up and uses. If you were to call
close () it will only close the window that Selenium WebDriver is currently on. On some
implementations of the server-side, or browser code, when we close () and it is the last
window open then the server-side code will act as though quit () was called.

We learnt a lot in this chapter about Selenium WebDriver and all of the different browsers
that it supports and how we can use them.

Specifically, we covered:

¢ FirefoxDriver: We saw how easy it is to get started with WebDriver and Firefox and
how we can go about setting preferences and installing add-ons. We also saw how
we can tell FirefoxDriver where to launch Firefox from.

¢ ChromeDriver: We saw how easy it was to use ChromeDriver. Once we added the
ChromeDriver executable that we downloaded to our PATH environment variable
we were able to use the driver. We also saw how we can tweak settings before the
browser loads if we wanted to install extensions or if we wanted to set the location
of the Chromium Binary.

¢ OperaDriver: In this section we learnt how to use OperaDriver to work against our
web application. We were also able to change preferences of the browser before it
loaded so that we can try and test it as users would use it.

¢ InternetExplorerDriver: In this section we saw how we can use InternetExplorerDriver
to drive Internet Explorer. We need to make sure that our applications work in Internet
Explorer since it has the largest market share so getting this right is useful.

11251

www.it-ebooks.info

http://www.it-ebooks.info/

Working with WebDriver

We also discussed calling quit () when we are finished with WebDriver so that it can clean
up resources.

Now that we've learnt about desktop browsers, we're ready to learn about mobile
browsers—which is the topic of the next chapter.

11261

www.it-ebooks.info

http://www.it-ebooks.info/

We are currently seeing an explosion of mobile devices to the market. A lot

of them are more powerful than your average computer was just over a
decade ago. This means that in addition to having nice clean, responsive, and
functional desktop applications, we are starting to have to make sure the same
basic functionality is available to mobile devices. In this chapter, we are going
to be looking at how we can set up mobile devices to be used with Selenium
WebDriver.

In this chapter, we shall learn:

¢ How to use the stock browser on Android
¢ How to test with Opera Mobile

¢ How totest oniOS

So let's get on with it...

While you can use the Android emulator for the Android parts of the chapter, it is highly
recommended that you have a real device that you can use. The reason is that the emulator
tries to emulate the hardware that phones run on. This means that it needs to translate it
to a low-level command that ARM-based devices would understand. A real iOS device is

not needed as that simulates a device and therefore is significantly faster. The device will
also need to have Android 4.0+ or better known as Ice Cream Sandwich. You will need to
download the Android App from http://code.google.com/p/selenium/downloads/
list. It will be named android-server-<versions.apk where <versions is the
latest version.

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/

Mobile Devices

You will however need to have a machine with OS X on to start the simulator since it is part
of XCode. If you do not have XCode installed you can download it via the AppStore. You will
also need to install all of the command-line tools that come with XCode. You will also need
to check out the Selenium code from its source repository. You need to build the WebDriver
code for iOS since it can't be added to the Apple App Store to be downloaded on to devices.

Android devices are becoming commonplace with owners of smartphones and tablets.

This is because there are a number of handset providers in the market. This has meant that
in some parts of the world, it is the only way that some people can access the Internet. With
this in mind, we need to make sure that we can test the functionality.

While it is not recommended to use the emulator due to the speed of it, it can be really
useful. Since it will act like a real device in that it will run all the bits of code that we want on
the virtual device, we can see how a web application will react.

Time for action - creating an emulator

If you do not have an Android device that you can use for testing, then you can set up an
Android emulator. The emulator will then get the Selenium WebDriver APK installed and
then that will control the browser on the device. Before we start, you will need to download
the Android SDK from http://developer.android.com/sdk/index.html.

1. Open up acommand prompt or a terminal.

2. Enter cd <path>/android-sdk/tools where <paths is the path to the
android-sdk directory.

3. Nowenter ./android create avd -nmy_android -t 14 where:
o -nmy android gives the emulator the name my android.

o -t 14 tells it which version of android to use. 14 and higher is Android 4
and higher support.

A

When prompted Do you wish to create a custom hardware profile [no], enter no.

5. Runthe emulator with:

./emulator -avd my android &

11281

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

It will take some time to come up but once it has been started, you will not have to restart
unless it crashes or you purposefully close it. Once loaded you should see something like
the following:

5554:<build>

1:28

Sunday, November 20
Charging, 50%

o Js Jo [Jo Jo ls o
1z e lv o bu fu . o
2 o e o

What just happened?

We have just seen what is involved in setting up the Android emulator that we can use for
testing of mobile versions of our applications. As was mentioned, we need to make sure that
we set up the emulator to work with Android 4.0 or later. For the emulator we need to have
a target platform of 14 or later. Now that we have this done, we can have a look at installing
the WebDriver Server on the device.

We have seen that we can access different machines and control the browsers on those
machines with Selenium WebDriver RemoteDriver. We need to do the same with Android.
The APK file that you downloaded earlier is the Selenium Server that is specifically designed
for Android devices. It has a smaller memory footprint since mobile devices do not have the
same amount of memory as your desktop machine.

We need to install this on the emulator or the physical device that you have.

11291

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Devices

Time for action - installing the Android Server

In this section, we will learn the steps required to install the Android server on the device or
emulator that you are going to be using. To do this, you will need to have downloaded the
APK file from http://code.google.com/p/selenium/downloads/list. If you are
installing this onto a real device make sure that you allow installs from Unknown Sources.

1.
2.
3.

Open a command prompt or a terminal.
Start the emulator or device if you haven't already.

We need to run the available devices:

<path to>/android sdk/platform-tools/adb devices

It will look like this:

* daemon not running. starting it now on port 5037 *
* daemon started successfully *

List of devices attached
393042598 26000EC device

Take the serial number of the device.

Now we need to install. We do that with the following command:

adb -s <seriallds> -e install -r android-server.apk

Once that is done you will see this in the command prompt or terminal:

3594 KB/s (1881490 bytes in @.511s)
pkg: /data/local/tmp/android-server-2.21.0.apk

Success

And on the device you will see:

[130]

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/

Chapter 7

-

Music People Phone

Settings Speech Recor WebDriver

What just happened?

We have just seen how we can install the Android Server on the server. This process is useful
for installing any Android app from the command line. Now that this is done we are ready to
start looking at running some Selenium WebDriver code against the device.

Now that we have looked at getting the device or emulator ready, we are ready to start
creating a test that will work against a site. The good thing about the Selenium WebDriver,
like Selenium RC, is that we can easily move from browser to browser with only a small
change. In this section, we are going to be introduced to the AndroidDriver.

Time for action - using the Android driver

In this section we are going to be looking at running some tests against an Android device or
emulator. This should be a fairly simple change to our test, but there are a couple of things
that we need to do right before the test runs.

1. Openacommand prompt or terminal.

2. We need to start the server. We can do this by touching the app or we can do this
from the command line with the following command:

adb -s <serialId> shell am start -a android.intent.action.MAIN -n
org.opendga.selenium.android.app/.MainActivity

11311

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Devices

3. We now need to forward all the HTTP traffic to the device or emulator. This means
that all the JSON Wire Protocol calls, that we learnt earlier, go to the device. We do
it with:
adb -s <serialId> forward tcp:8080 tcp:8080

4. Now we are ready to update our test. | will show an example from the previous test:

import junit.framework.TestCase;

import org.openga.selenium.By;
import org.openda.selenium.WebElement;

import org.openga.selenium.android.AndroidDriver;

public class TestChapter7 {
WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver() ;
driver.get ("http://book.theautomatedtester.co.uk/chapter4d") ;

@After
public void tearDown () {
driver.quit () ;

@Test

public void testExamples () {
WebElement element = driver.findElement (By.id("nextBid")) ;
element.sendKeys ("100") ;

}

5. Run the test. You will see that it runs the same test against the Android device. In
the previous chapter we had this work against desktop browsers.

What just happened?

We have just run our first test against an Android device. We saw that we had to forward the
HTTP traffic to port 8080 to the device. This means that the normal calls, which use the JSON
Wire Protocol, will then be run on the device.

11321

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Currently Opera Software is working on getting OperaDriver to work on Mobile devices.
There are a few technical details that are being worked on and hopefully in the future we will
be able to use it.

Mozilla is also working on their solution for Mobile with Selenium. Currently a project called
Marionette is being worked on that allows Selenium to work on Firefox OS, Firefox Mobile for
Android as well as Firefox for Desktop. You can read up on it at https://wiki.mozilla.
org/Auto-tools/Projects/Marionette

1. How do we set up an Android emulated device for our tests?
2. How do you see which devices are connected to the host?

a. adb devices

b. Adb phones

c. Adb handsets

3. How do you install the APK on the device or emulator?
a. adb-s<seriallds> -e install -r android-server.apk

b. Installit from http://code.google.com/p/selenium/downloads/

list
c. both
4. How do you start the App on the emulator or device without touching it?
5. How do | forward the HTTP traffic to the device?

a. Abd-s <seriallds>redirect tcp:8080 tcp:8080
b. Abd-s <seriallIds> redirect tcp:8080 tcp:8080

C. adb-s<seriallds> forward tcp:8080 tcp:8080

Have a look at updating all of the tests that you would have written so far in the book to run
on Android. It should not take you long to update them.

In this section we are going to have a look at using the OperaDriver, the Selenium WebDriver
object to control Opera, in order to drive Opera Mobile. Opera has a large market share on
mobile devices especially on lower end Android devices.

[1331

www.it-ebooks.info

https://wiki.mozilla.org/Auto-tools/Projects/Marionette
https://wiki.mozilla.org/Auto-tools/Projects/Marionette
http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/

Mobile Devices

Before we start we are going to need to download a special emulator for Opera Mobile.

As of writing this, it has just come out of Opera's Labs so
s the download links may have been updated.

Windows: http://www.opera.com/download/get.pl?id=34969&sub=true¬han
ks=yes&location=360.

Mac: http://www.opera.com/download/get .pl?id=34970&sub=true¬hanks=y
es&location=360.

Linux 64 Bit: Deb: http://www.opera.com/download/get .pl?id=34967&sub=true&
nothanks=yes&location=360.

Tarball: http://www.opera.com/download/get .pl?id=34968&sub=true¬hanks
=yes&location=360.

Linux 32 Bit: Deb: http://www.opera.com/download/get .pl?id=34965&sub=true&
nothanks=yes&location=360.

TarBall: http://www.opera.com/download/get .pl?id=34966&sub=true¬hanks
=yes&location=360.

Let's now see this in action.

Time for action - using OperaDriver on Opera Mohile

To make sure that we have the right amount of coverage over the browsers that users may
be using, there is a good chance that you will need to add Opera Mobile. Before starting,
make sure that you have downloaded the version of the emulator for your Operating System
with one of the links mentioned previously.

1. Create a new test file. Add the following code to it:

import junit.framework.TestCase;

import org.openga.selenium.By;
import org.openga.selenium.WebElement;

public class TestChapter70OperaMobile(
WebDriver driver;

(1341

www.it-ebooks.info

http://www.opera.com/download/get.pl?id=34969&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34970&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34970&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34967&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34967&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34968&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34968&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34965&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34965&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34966&sub=true¬hanks=yes&location=360
http://www.opera.com/download/get.pl?id=34966&sub=true¬hanks=yes&location=360
http://www.it-ebooks.info/

Chapter 7

2. What we now need to do is add a setup method. We will have to add a couple of
items to our DesiredCapabilities object. This will tell OperaDriver that we want to
work against a mobile version.

@Before

public void setUp() {
DesiredCapabilities ¢ = DesiredCapabilities.opera() ;
c.setCapability("opera.product", OperaProduct.MOBILE) ;

c.setCapability("opera.binary",
"/path/to/my/custom/opera-mobile-build") ;

driver = new OperaDriver(c) ;

}

3. Now we can add a test to make sure that we have a working test again:

@Test

public void testShouldLoadGoogle()
driver.get ("http://www.google.com") ;
//Let's find an element to see if it works
driver.findElement (By.name ("q")) ;

}

4. Let's now add a teardown:

@After
public void teardown () {
driver.quit () ;

}

5. Your class altogether should look like the following:

import junit.framework.TestCase;

import org.openga.selenium.By;
import org.openda.selenium.WebElement;

public class TestChapter70peraMobile

WebDriver driver;

@Before

public void setUp () {
DesiredCapabilities ¢ = DesiredCapabilities.operaf() ;
c.setCapability ("opera.product", OperaProduct.MOBILE) ;
c.setCapability("opera.binary",

"/path/to/my/custom/opera-mobile-build") ;

driver = new OperaDriver(c) ;

[1351]

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Devices

}

@After
public void teardown () {
driver.quit () ;
}
@Test
public void testShouldLoadGoogle() {
driver.get ("http://book.theautomatedtester.co.uk") ;

}
}

6. And the following should appear in your emulator:

-0 i I

Selenium: Beginners Guide

list of links t 2 hi on the links below and follow th

Check Answer

What just happened?

We have just seen what is required to run a test against Opera Mobile using OperaDriver.
This uses the same communication layer that is used in communicating with the Opera
desktop browser called Scope.

We will see the mobile versions of web applications, if they are available, and be able to
interact with them.

If you would like the OperaDriver to load up tablet size Ul, then you can add the following to
use the tablet Ul with a display of 1280x800 pixels. This is a common size for tablets that are
currently on the market.

c.setCapability("opera.arguments",
"-tabletul -displaysize 1280x800") ;

[1361

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If you want to see the current orientation of the device and to access the touch screen
elements, you can swap OperaDriver object for OperaDriverMobile. For the most part,
you should be able to do nearly all of your work against the normal driver.

iPhones and iPod Touches are such commonplace these days. A lot of companies are working
hard to offer a really good experience for these users. This means that users are starting to
become accustomed to using web applications with their phones.

We can run our tests against the simulator or against the real device. Compared to Android,
the simulator is really quick. This is because it is not trying to emulate the hardware of actual
Apple devices.

Time for action - setting up the simulator

In this section, we are going to be making sure that we have the simulator or device ready. To
do this we will need to do the following:

1. If you haven't checked the Selenium Code out, follow the steps at http://code.
google.com/p/selenium/source/checkout.

2. Open selenium/iphone/iWebDriver.xcodeproj in XCode.

3. If you want to build it for the simulator, set your build configuration to Simulator
/ iPad 0S 5.0 / iWebDriver. This is done in a drop-down box in the top-left of the
project window.

4. Click Build & Go! iWebDriver will be built and the simulator will start. You can see
what it will look like in the following screenshot:

0.8 i0S Simulator - iPad / i0S 5.1 (9B176)

Started at http://192.168.114.1 :3001lwdfhub|

11311

www.it-ebooks.info

http://code.google.com/p/selenium/source/checkout
http://www.it-ebooks.info/

Mobile Devices

What just happened?

We have just got all the requirements ready to start writing our first test. After making sure
that we have XCode, which has the iOS SDK, we were able to start the simulator and have
iWebDriver installed.

We will now have a look at how to set up running your tests against a real device. Before we
do that, we are going to have to make sure that we have set up a provisioning profile.

To do this we need to do the following. One thing to note is that you will have to pay US$99
to join the iOS program. To do this:

1. Getadeveloper account from Apple. This is done at https://developer.apple.
com.
2. Create a certificate signing request.

3. Open Keychain Access:

TFRTTFIFL O ILE LTy

| i
B Opendficeorg | & Crapher !
B Fhoto Bootn IR - i
W Priview |ml
3 QuickTieme Flayer | & btigrabeon Assistan |
i Safar || @ Merwinek Uailicy {
I & ObeC Adminlstratos |
Spaces
i | @ Podcas: Capture |
Skl i - H
B System Preferences §] RAIL Urility
+ TextEdil e Aemate Install Mac 05 X
i ; -
@ Time Machang . = System Profiler =
G Utilities B Terminal

4. Request a Certificate from a certificate authority by doing Keychain Access |
Certificate Assistant | Request a Certificate From a Certificate Authority:

AN DO EIEE) File Edit View Window ™ Help o — b,
P O About Keychain Access Keychain Access

@J Preferences... ®, t (0.—

| Keychain First Aid N#A nari2
& Open..
Ticket Viewer LK Create a Certificate...
Create a Certificate Authority...
Create a Certificate For Someone Else as a Certificate Authority...
Request a Certificate From a Certificate Authoritv...

& e

& Services >

[1381]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. Complete the form as show in the following screenshot:

800

Certificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Address: |d.wid.burns@theautomatedmster.co.uk - |

Commaon Name: David Burns

CA Email Address:

Request is: () Emailed to the CA
(=) Saved to disk
[Let me specify key pair information

| Continue

6. Click Continue and then save the file to somewhere that you will be able to access it:

Certificate Assistant

Key Pair Information

Specify the key size and algorithm used to create your key
pair.

The key pair is made up of your private and public keys. The
private key is the secret part of the key pair and should be
kept secret. The public key is made publicly available as part
of the digital certificate.

Key Size: | 2048 bits =
Algorithm: | RSA =
| Learn More...
| Continue
[1391

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Devices

7. Click Continue and then it should say that it was successful as shown in the
following screenshot:

8.0.0 Certificate Assistant

Conclusion

Your certificate request has been created on disk.

| Show In Finder... |

8. Go tothe iPhone Developer Program Portal on https://developer.apple.com.

9. Launch the Assistant as in the following screenshot:

Y] - A— Apple Deioper Connuction - Phone Dev Cente - Ovevew
lelel=a]

@ Developer Connection Dev Genters (1 ADC on fTines Supsort (8 Taarch ADC)

iPhone Developer Program Welcome, Wei-Meng Lee [Polle Lig ot

Program Portal Lai Program Postal
[Home | Portil Reioroes

T Welcome to the iPhone Developer Program Portal

| Program Fostad Uier Gulde
The IPhone Deweloper Program Portal is designed to take you through the

Enrtificabs ARCELIATY S1803 10 tesl your applitalions on iPhone and iPod towth and prepare
Devi them for distribution. How' -To's
LA
Searsng up & Team
App s B g v
Preadiinning Gt your application on an iPhans with the Development) DBRHINING your Cerhicate
i ke Provisioning Assistant W Vew viden
x Ad a PFrogram Admin, you tan wie the Development Prosialankng i T
AS3HRIAN 00 CEATE el i3al @ Priwisioning Profle and Fhos w ':. "f_au
Cwricprmpnd Cartficate nended 80 build s imLall spplicstony, you're o

developing for Phone and Pod touch.

Laymeh Avuistant

. Creating your App 104

[

Crating Proviskoming Prafiley
4 B Virw widen
ARNGURCEMENS
f ') Support Rescurces

anl

W 1A * et AR Sore TRAAY 6. MUY pg Tenes. Connact Soppon

(1101

www.it-ebooks.info

https://developer.apple.com
http://www.it-ebooks.info/

Chapter 7

10. Go through the Provisioning Assistant and complete all the steps that you are asked
to do:

B i A e LS B

3 hitp | P deveioper applé.com iphane i masige/ ovirvien odex stian

Welcome to the Development
Provisioning Assistant

Imroduction

T nan am application you're deveioping for IPhone or Pod touch, you must have 4
Prowisigning Profle and o Development Cenificate initalled on your device and your Mac,
Tha Provisiomieg Assistaet will guide you shrough the Sbeps 1o create and insall your
Dwvilopment Prowvisesning Profile and iPhons Developensnt Ceruficae.

Empurian katxr

Time for action - setting up on a real device

Setting up tests to run on a simulator is quite useful but having the tests running on a mobile
device can be really useful. Let us have a look at setting this up on a real mobile device:

1. You will also need a provisioning profile from Apple to be installed and configured
for your device.

2. Open Info.plist and edit the Bundle Identifier to com.NAME. $
{PRODUCT NAME:identifier} where NAME is the name you registered
your provisioning profile to be an authority on.

3. Make sure your device is connected to your computer. Your device must also be
routable from your computer. The easiest way to do this is to configure a wifi
network and connect your device to it.

4. Click Build & Go. iWebDriver will be installed on the device.

[l

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Devices

What just happened?

We have just installed iWebDriver on a real device. We can now run our tests against iPhones
or iPads. The hard part in running tests against these devices is now done. Let's have a look
at updating our tests.

Now that we have looked at getting the device or simulator ready, we are ready to start
creating a test that will work against a site. The good thing about the Selenium WebDriver,
like Selenium RC, is that we can easily move from browser to browser with only a small
change. In this section, we are going to be introduced to the iPhoneDriver.

Time for action - using the iPhone driver

In this section, we are going to be looking at running some tests against an iOS device or
simulator. This should be a fairly simple change to our test but there are a couple of things
that we need to do right before the test runs.

1. Now we are ready to update our test. | will show an example from the previous test:

import junit.framework.TestCase;

import org.openga.selenium.By;
import org.openga.selenium.WebElement;
import org.openga.selenium.iphone.IphoneDriver;

public class TestChapter7 {
WebDriver driver;

@Before
public void setUp () {
driver = new IPhoneDriver() ;
driver.get ("http://book.theautomatedtester.co.uk/chapter4") ;

}

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples () {

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

WebElement element = driver.findElement (By.id("nextBid")) ;
element.sendKeys ("100") ;

}
}

2. Run the test. You will see that it runs the same test against an iOS device. In the
previous chapter we had this work against desktop browsers.

What just happened?

We have just seen how we can run our tests against iOS devices. Depending on which
simulator we start XCode from, we can either have it run against iPhone or iPad.

Have a look at updating all of the tests that you would have written so far in the book to run
on iOS. It should not take you long to update them.

We learnt a lot in this chapter about using Selenium WebDriver with mobile devices.
We saw that after a little setup of the device and the machine running the test, it was
fairly easy to get up and running.

Specifically, we covered:

¢ Working with Android: In this section we had a look at what is needed to set up
Android for testing with Selenium WebDriver. We set up an emulator in case we
didn't have a real device. We also saw how we can install the Android Server on
the device or emulator.

We then moved on to creating our test that ran against the emulator or the device.

¢ Working with iOS: In this section we looked at setting up the simulator or getting
iWebDriver installed on a real device.

Now that we've learnt about mobile web testing, let's have a look at really setting up
Selenium grid—which is the topic of the next chapter.

(1431

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter we are going to have a look at what is Selenium Grid and how
we can set it up on different environments. This will abstract the topography
of where the tests are located so that your tests only have to worry about
one address.

In this chapter, we shall learn:

Setting up the Selenium Grid Hub
Setting up the Selenium Grid Remote Controls

Creating tests for the grid

* 6 o o

Running tests in parallel

So let's get on with it...
Please make sure that you download the latest Selenium
e Server fromhttp://seleniumhg.org/download.

Selenium Grid is a version of Selenium that allows teams to set up a number of Selenium
instances and then have one central point to send your Selenium commands to. This differs
from what we saw in Selenium RemoteWebDriver where we always had to explicitly say
where the Selenium Server is as well as know what browsers that server can handle.

www.it-ebooks.info

http://seleniumhq.org/download
http://www.it-ebooks.info/

Getting Started with Selenium Grid

With Selenium Grid we just ask for a specific browser, and then the hub that is part of
Selenium Grid will route all the Selenium commands through to the Remote Control
you want.

Selenium Grid Hub Selenium Grid Node Selenium Server

WebDriver

Browser

Client Selenium Grid Node Selenium Server

Browser

Selenium Grid also allows us to call a specific browser on a specific platform with just a
simple update to the desired capabilities object that we learnt about in previous chapters.
This allows us to route our tests accordingly so that we know that we are testing on the right
browser on the right platform. We can see an example of this in the following screenshot:

*Keep track of which environment is provided by each
remote control
eEnsure selenese requests are load-balanced to a
Selenium Test h remote control providing an environment matching
3 the one requested by the Selenium test

Selenium Test

IE on Windows Firefox on Linux

&

Firefox on Windows

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We will see how to create tests for this later in the chapter but for now let's have a look at
making sure we have all the necessary items ready for the grid.

We are now ready to start setting up the grid.

Selenium Grid works by having a central point that tests can connect to, and then commands
are pushed to Selenium Server nodes that are connected to the hub. The hub has a web
interface that tells you about the Selenium Server and the browser instances connected to
the hub and if they are currently in use.

Time for action - launching the huh

Now that we are ready to start working with Selenium Grid, we need to set up the grid. This
is a simple command that we run in the console or command prompt.
1. Openacommand prompt or console.

2. Run the command:

java -jar selenium-server-standalone-x.xx.xx.jar -role hub

3. When that command executes, you should see something like the
following screenshot:

[Y - - .

B Visual Studio 2008 Command Prompt - java -jar selenium-server-standalone-2.20.0.jar -role hub qﬂ]

AZ2—-Apr—2012 21:49:18 org.openga.grid.selenium.GridLauncher main

INFO: Launching a selenium grid server |
1PBAA3 [mainl INFO org.seleniumhg.jetty?.server.Server — jetty—7.x.y—SNAPSHOT

BA137 [mainl INFQ org.seleniumhg. jetty?.server.handler.ContextHandler - started |

0.5.j-z.%erviletContextHandler{/ . null>
10154 [mainl] INFO org.seleniumhg.jetty?.server.fAbstractConnector — Started Socke
tConnectord.A.A.0:4444

4. We can see that this is running in the command prompt or console. We can also see
the hub running from within a browser.

(1411

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium Grid

5. We canenter http://nameofmachine:4444/grid/console where
nameofmachine is the name of the machine with the hub. If it is on your machine,
then you can enter http://localhost:4444/grid/console. We can see a
screenshot of that:

Grid Hub

wview config

What just happened?

We have successfully started Selenium Grid Hub. This is the central point of our tests and
Selenium Grid instances. We saw that when we start Selenium Grid it showed us what items
were available according to the configuration file that is with the normal install. One thing
to note is that if you need to change the port, you can pass in —port ####. Just replace the
with the port number that you wish to use.

We then had a look at how we can see what the grid is doing by having a look at the hub in a
browser. We did this by putting the URL http://nameofmachine:4444/grid/console
where nameofmachine is the name of the machine that we would like to access with the
hub. It shows what configured environments the hub can handle, what grid instances are
available, and which instances are currently active.

Now that we have the hub ready we can have a look at starting up instances.

Now that we have successfully started the Selenium Grid hub, we will need to have a
look at how we can start adding Selenium servers to the hub so it starts forming the grid
of computers that we are expecting. You will notice that compared to Selenium Grid for
Selenium 1, we won't have to be adding a new server for each browser that we want to
use. The server has always been able to handle more than one browser and because of
architectural changes, we can now start one server and have it control all the browsers
installed on that machine.

(181

www.it-ebooks.info

http://nameofmachine:4444/grid/console
http://localhost:4444/grid/console
http://nameofmachine:4444/grid/console
http://www.it-ebooks.info/

Chapter 8

Time for action - adding a server with the defauits

In this section we are going to launch Selenium server and get it to register with the hub.
We are going to assume that the browser on which you would like to register all known
browsers and the hub are on the same machine as the grid node. We will pass in two
required arguments which are: the server we are starting is a node and where the hub is.
The selenium server will try and use port 5555. If that is not available you will get an error
saying that the port is already in use. We can, and will in a future section, see how you can
set the port manually.

1. Open command prompt or console.

2. Enter the command java -jar selenium-server-standalone. .jar -role
node -hubhttp://localhost:4444/grid/register and press return. You
should see the following in your command prompt or console:

BN Visual Studio 2008 Command Prompt |ﬂ‘-§:—§—]

c :s\UserssDavid~Dounloads>java —jar selenium—server—standalone- .jar —-role njA
ode —hub http:/slocalhost: 4444 /grid-/register

B3—-Apr-2012 A9:31:21 org.openga.grid.selenium.GridLauncher main

INFO: Launching a selenium grid node

49297 [mainl] INF0Q org.openga.selenium.server.SeleniumServer — Java: Sun Microsys
tems Inc. 14.2-h81 E
49298 [mainl] INFO org.openga.selenium.server.SeleniumnServer — 08: Windows 7 6.1

[mainl TNFn 0rg.0penga. selenium.server.SeleniumServer — v2.20.0, with Core
i) Illll 1t 16 8
1] INF i i ue RemoteWebDriver in

ion Je tt

0. UpLIqu.JLtLJ util.Conta Started axt [/8eleniu
n-serversdriver, 7seleniun-server/driver]
47682 [mainl INFO org.openga.jetty.util.Container Started HttpContext[/seleniu
n—server,.sselenium—serverl
47682 [mainl] INFO org.openga.jetty.util.Container Started HttpContextl/.~1]
47687 [mainl INFO org.openga.jetty.util.Container Started org.openga.jetty. jet
ty.servlet.ServletHandler@Poba?5688a
47688 [mainl]l INFOQ org.openga.jetty.util.Container — Started HttpContext [Auwd, wd]l

49785 [mainl] INFO org.openga.jetty.http.SocketListener — Started SocketListener
on B_8_8._8:5555
49706 [mainl INFO org.openga.jetty.util.Container — Started org.openga.jetty.jet
ty.ServerB6Bebf fAd
A?:-33:80_.654 INFO - using the json reqguest : {“class":"org.openga.grid.common.Re
gistrationRequest",."capabilities":[{"seleniumProtocol":="Seleniun', "hruuﬁerName"'
ufirefox”, "maxInstances":5),.{"seleniunProtoco "Selenium”, "browserNam
lechrume" "maxlnstance*" L{'"seleniumProtocol' s Selenlum","hruu“erﬂame

st leniumProtocol* "

"] : a 1]
d/gridsvegister” . "hubPort 4444 "u /7192 . 1b8 1.7:5565Y,"°
tps/7192.168.1.7:5555"22
Y= 33 B0.663 INFO - starting auto register thread. Will try to register every 5B
He m
b 33 BE h65 INFO — Registering the node to hub thttp:-~localhost: 4444/9r1d/regr
ster
B7:33:06.680 INFO - Executing: org.openga.zelenium.remote.server. handlew. StatuﬂE
ad4d6ebh at URL: Astatus?

H?:33:86.687 INFO — Done: ~status

(1491

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium Grid

3. And this in the Selenium Grid Hub site:

Grid Hub 2.20.0

DefaultRemoteProxy

listening on http://192 168.1.7:5353
test session time out after 300 sec.

Supports up to 5 concurrent tests from:
FSITICCPOC EIITIICOCPPE

view config

What just happened?

We have added our first machine to our own Selenium Grid. It has used all the defaults that
are available. It has created a Selenium Server that will take any Firefox, Google Chrome, and
in this case Internet Explorer requests and is on the same machine as the host of Selenium
server grid. This is a useful way to set up the grid really quickly with all the default browsers.

Selenium Grid is most powerful when you can add it to multiple operating systems. This
allows us to check that, for instance, whether Firefox on Windows and Firefox on Linux
is doing the same thing during a test. To register new remote controls to the grid from a
machine other than the one hosting the hub, we need to tell it where the hub is.

Let's see this in action.

Time for action - adding Selenium server for different machines

For this section, you will need to have another machine available for you to use. This could
be the Ubuntu machine that you needed for the previous chapter. If you have a small grid,
then you can name them according to the operating system that it is run on.

1. Openacommand prompt or console.

2. Runthe command java -jar selenium-server-standalone.jar -role node
-hub http://<name of server>:4444/grid/register.

[1501

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

3. When you have run this your grid site should look like the following:

Grid Hub 2.20.0

DefaultR emoteProxy

listening on http://192.168.1.6:5555
test session time out after 300 sec.
Supports up to 3 concurrent tests from:

DefaultRemoteProxy
listening on http://192.168.157.190:5555
test session time out after 300 sec.

Supports up to 5 concurrent tests from:
SISO CLOC EBTSIICEC O E

What just happened?

We have added a new remote control to the grid from a machine other than where the
Selenium Grid Hub is running. This is the first time that we have been able to set up our
remote control instances in a grid. We learnt about the ~-hub argument that is needed when
launching the selenium server. We then saw that it has updated the grid site that is running
on the hub.

Now that we have this working as we expected, let us have a look at setting up the server to
do specific tasks.

Adding Selenium server to do specific browser tasks on
specific operating systems

Selenium Grid is extremely powerful when we start using different browsers on the grid,
since we can't run all the different browsers on a single machine due to operating systems
and browser combinations. There is currently up to nine different combinations that are
used by most people, so getting Selenium Grid to help with this can give you the test
coverage that you need.

To do this we pass in the ~-browser argument in a command line call. Let us see how we can
set the items.

[1511

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium Grid

Time for action - setting the environment when starting

Selenium Remote Control

Now that we need to get Internet Explorer Selenium Remote Controls added to our grid,
we have to add the -browser argument to our call with the target on the configured
environments. Since we want to use Internet Explorer, we can use the IE on Windows target.

1. Openaconsole or command prompt.

2. Runthe command:

java -jar selenium-server-standalone.jar -role node -hub http://
localhost:4444/grid/register -browser browserName="internet explor
er",maxInstances=1,platform=WINDOWS

3. When it is running your hub page should look like this:

DefaultR emoteProxy
listening on http//192. 168.1 6:5555
test session time out after 300 sec.

Suppotts up to 3 concurrent tests from:
€

What just happened?

We have just seen how we can create grid nodes to only have the browsers that we want.
We chose Internet Explorer but we could also choose Firefox, Google Chrome, or Opera.
This is quite useful when we need to test a large amount of browser and operating system
combinations. If you enter -browser on the command line, it will add those browsers too.

Using Selenium Grid 2 with your YAML file

If you have been using Selenium Grid from Selenium 1, you will have set up your YAML file.
This can now be used with Selenium by passing in a file like the following one. To do this we
just need to pass in a new argument called -gridiyml:

hub:
port: 4444
remoteControlPollingIntervalInSeconds: 180
sessionMaxIdleTimeInSeconds: 300

environments:
- name: "Firefox on Windows"
browser: "*firefox"

Let's see this in action.

[1521

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Time for action - using Selenium Grid 1 configuration

A number of us have set up a Selenium Grid using the Selenium 1 Grid and have been using
it for a long time. Since we have this why not upgrade the nodes to the Selenium Server that
supports both Remote Control and WebDriver and use our original configuration? One thing
to note is that we will only be able to run Selenium Remote Control tests this way.

Let's have a try at starting this all up.

1. Openaconsole or command prompt.
2. Run the command:
java -jar selenium-server-standalone.jar -role hub -gridl¥ml

selenium-grid-1.0.8/grid configuration.yml

3. If we have a look at the grid config page by clicking the view config link, then we will
see it in there:

= (@ localhost o

port : 4444

prioritizer : null

servlets : []
throwOnCapabilityNotPresent : true
timeout : 300000

updated with grid1 config :selenium-grid-1.0.8/grid_configuration.yml

host : null

port : 4444

cleanUpCycle : 180000

timeout : 300000

newSessionWaitTimeout : -1

grid1Mapping : {*firefox3=*firefox3, Safari on OS X="*safari, *chrome=*chrome,
*firefox2=*firefox2, Google Chrome on Windows=*googlechrome,
*firefoxproxy="*firefoxproxy, *pifirefox="*pifirefox, Firefox on Windows=*firefox,
*jehta=*iehta, *piiexplore=*piiexplore, *iexploreproxy=*iexploreproxy, *opera=*opera,
Google Chrome on Linux=*googlechrome, Firefox on OS X=*firefox,

What just happened?

We have just got the Selenium Grid to load our original Selenium Grid item by passing in the
original YAML file. This then gets used by the hub once it has started up!

[1531

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium Grid

Pop quiz - using Selenium Grid 2

1. Whatis the command required to start the Hub?

2. What is the URL where one can see what is happening on the grid?
3. How do you specify the port the remote control is running on?
4

How do you specify which browser you would like the remote control to be
registered with?

Now that we have set up the grid with different instances, we should have a look at how
we can write tests against these remote controls on the grid. We can pass in the value of
the target that we can see in the grid and then run the tests. So instead of passing in the
standard desired capabilities, you can be more specific and the grid hub will route data so
you can then run the tests as normal. Let's see this in action.

Time for action — writing tests against the grid

Now that we have a Selenium Grid set up we need to write a test that works against the grid.
Working against Selenium grid is exactly the same as working with Selenium WebDrive's
RemoteWebDriver. The Selenium Grid will find the relevant node and route all the
commands to be executed there.

1. Create a new test file.

2. Populate it with a test script that accesses an item on the grid and then works
against http://book.theautomatedtester.co.uk/. Your script should look
something like the following:

import org.junit.*;

import org.openga.selenium.*;
import org.openga.selenium.firefox.*;

import java.io.File;
import java.util.Dictionary;

public class TestExamplel
WebDriver driver;
@Before
public void setUp () {
DesiredCapabilities capability =

DesiredCapabilities.firefox () ;

(1541

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/

Chapter 8

capability.setBrowserName ("firefox") ;
// Set the platform we want our tests to run on
capability.setPlatform ("LINUX") ;

driver = new RemoteWebDriver (new URL (
"http://<grid hub>:4444/wd/hub"), capability) ;

driver.get ("http://book.theautomatedtester.co.uk/chapterl") ;

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples () {
// We will put examples in here

}

What just happened?

We have just seen how we can write tests that can run against the grid and then run them.
When the tests are running, the grid will show which browsers are currently in use and
which grid items are currently free.

So far we have managed to get our tests cycling through different machines. We have also got
it working against the Selenium Grid hub so we can see all of our tests being split out to the
machines that we make sure that we test against browser and operating system combinations.

In this section, we will look at how we can add a thread-count attribute to the <suite>
node in our test configuration file. We also will need to add the parallel attribute to the test
suite. The value that it takes will either be methods or classes. This will mean that either
the methods, the test cases, are run in parallel or the classes that contain the test cases are
running in parallel.

Time for action - getting our tests running in paraliel

Now we are ready to start having our tests running in parallel.

1. Open your TestNG XML configuration file.
2. Addparallel=methods to the suite node.

[1551]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Selenium Grid

3. Add thread-count=3 to the suite node. This will run your tests with three threads.
This number can be any value that you want. It is best practice to only let this
number go to the number of cores that the machine running the tests has minus
the number of Selenium Remote Controls running.

4. Right-click on the configuration file in IDEA and run the tests.

What just happened?

We have just managed to get our tests running in parallel. As you can see this has been fairly
easy. We saw that adding the parallel and the thread-count attributes allows us to run these
tests in parallel and when coupled with Selenium Grid we can start to get our tests running
near 1/n which is where we want our tests to be.

We learnt a lot in this chapter about how we can set up Selenium Grid and all the different
arguments needed as well as running our tests against the grid.

Specifically, we covered:

¢ Starting the Selenium Grid Hub: In this section of the book we had a look at how
we can start up the Selenium Grid Hub that is the central point for Selenium Grid.

¢ Setting up Selenium Grid Nodes: We had a look at all the arguments that are
needed to add a Selenium server to the grid so that we can use it. This gives us a
more manageable view of our grid so that we can work with it.

¢ Running tests in parallel: In this section we learnt how we can run our tests in
parallel. We also had a look at how we can cycle through different browsers using
the @Parameter annotation.

We also discussed how we can create tests that use the grid.

Now that we've learnt about setting up Selenium Grid and have looked into getting our
test time down by running things in parallel using Selenium Grid, let's have a look at using
Selenium to do more advanced user interactions—which is the topic of the next chapter.

[1561

www.it-ebooks.info

http://www.it-ebooks.info/

As we have seen, clicking and typing is quite straightforward with Selenium
WebDriver. Find the element and then interact with it. Unfortunately a lot of
the modern web applications that are being created are a lot more than just
typing and clicking. In this chapter, we will have a look at how we can drag and
drop and move the mouse to specific places on the page.

In this chapter, we shall learn:
¢ What is the Advanced User Interactions API
¢ Building up a sequence of actions and performing them

So let's get on with it...

Important preliminary points

You will need to have the currently released version of Firefox or the version before that for
this section of the book. You will also need to do this chapter on Microsoft Windows or a
Linux distribution. This is required so that we can do native interactions. Native interactions
inject events into the browser just like if you were typing on a keyboard. You will be able to
do this chapter on a Mac OS X. Selenium WebDriver will use synthetic events by injecting
events onto the page via JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interactions

The Advanced User Interactions APl is a new, more comprehensive API for describing actions
a user can perform on a web page. Normally we need to find elements and then send actions
through them. If we need to perform complex tasks like hold down Control and click, then
this may not work.

The Advanced User Interactions allows us to build these complex interactions with elements
in a really nice API. The API relies on two key interfaces for this to work.

The keyboard interface allows keys to be pressed, held down, and released. It also allows for
normal typing.

Methods available are:
¢ void sendKeys (CharSequence. . . keysToSend) : Similar to the existing

sendKeys (. ..) method.

¢ voidpressKey (Keys keyToPress): Sends a key press only, without releasing it.
Should only be implemented for modifier keys (Control, Alt, and Shift).

¢ voidreleaseKey(Keys keyToRelease): Releases a modifier key.

The mouse interface allows for mouse clicks, double clicks, context clicks, as well as moving
the mouse to a specific point or to a specific element on the page.

Methods available are:

void click (WebElement onElement): Similar to the existing c1ick () method
void doubleClick (WebElement onElement): Double-clicks an element

void mouseDown (WebElement onElement): Holds down the left mouse button
on an element

¢ voidmouseUp (WebElement onElement): Releases the mouse button
on an element

¢ void mouseMove (WebElement toElement): Move (from the current location)
to another element

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

¢ voidmouseMove (WebElement toElement, long xOffset, long yOffset):
Move (from the current location) to new coordinates (X coordinates of toElement
+x0ffset, Y coordinates of toElement + yOffset)

¢ void contextClick (WebElement onElement): Performs a context-click (right-
click) on an element

These methods are useful to know but when working and creating a sequence of it, it is
better to use the Actions chain generator and then call perform on that class.

This is the next section of the chapter.

The Actions class allows us to build a chain of actions that we would like to perform.
This means that we can build up a nice sequence, for example "Press Shift and type and
then release", or if we wanted to work with a select that allows multiple selects, we could
press Shift and then do the necessary clicks.

We do this by creating an Actions object. We then need to chain some calls together:

// Create Actions object passing in a WebDriver object
Actions builder = new Actions (driver) ;

// Chain some calls together and call build

Action dragAndDrop = builder.clickAndHold (someElement)
.moveToElement (otherElement)
.release (otherElement)
Jbuild() ;

// Perform the actions
dragAndDrop.perform() ;

We have seen that drag and drop is one of the main things that people want to do with
web applications. This allows them to build task boards that allow people to drag and
drop between different states. You may have seen applications like this if you work in an
Agile environment.

Let's try and create a basic drag and drop example using the little bit we already know of the
Actions class.

[1591]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interactions

Time for action - creating an Actions chain for dragging and

A lot of web applications these days allow users to drag and drop what they want where they
want on the page. This is really nice from a usability point of view, but from a testability point
it is a nightmare!

We can get around this with actions API.

1.
2.

Open up inteliij and create a new Selenium WebDriver project.

Create a new class and a new test with the following code:

WebDriver driver = new FirefoxDriver() ;
driver.get ("http://www.theautomatedtester.co.uk/demo2.html") ;
WebElement someElement =
driver.findElement (By.className ("draggable")) ;
WebElement otherElement =
driver.findElement (By.className ("droppable")) ;

Actions builder = new Actions (driver) ;

Action dragAndDrop = builder.clickAndHold (someElement)
.moveToElement (otherElement)
.release (otherElement)
.build() ;

dragAndDrop.perform() ;

Run the test. You should see this first:

drop on this element

[160]

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo2.html
http://www.it-ebooks.info/

Chapter 9

4. And when it is complete you will see the block go blue:

What just happened?

We have just seen how easy it is to do a drag and drop on the page. We just need to create
an Actions object and then create a chain of events. When we have built up the chain we call
build (). This puts everything in the right order and when we call perform (), the items
are popped out of the queue and run in order.

Let us have a look at doing some slightly more complex chains with the Actions class.

We can get around this with the actions API.

Time for action — moving an element with a drag-and-tdrop

hy offset

There are times where we need to only move an image by a certain amount. A good example
of this would be if you are working in a WYSIWYG editor and you wanted to just move an
image to somewhere else but did not want to drop it on another element, you will be using
dragAndDropBy (WebElement, x, V) ;.

Let us see this in action.

1. Open upinteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:

WebDriver driver = new FirefoxDriver() ;
driver.get ("http://www.theautomatedtester.co.uk/demo2.html") ;
WebElement drag = driver.findElement (By.className ("draggable")) ;

Actions builder = new Actions (driver) ;

11611

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo2.html
http://www.theautomatedtester.co.uk/demo2.html
http://www.it-ebooks.info/

Advanced User Interactions

Action dragAndDrop = builder.dragAndDropBy (drag, 10, 20)
.build() ;

dragAndDrop.perform() ;

3. Run the test. You should see the following:

m theautomatedtester.co.uk/demo? him "' ~ Google Pl B

drop on this element

What just happened?

We have just seen how easy it is to do a drag-and-drop on the page by moving an item by
an offset. You will have to pass in the element that you want to move and then the x and y
offset that you want to move it by.

Doing a context click

If you are testing a highly rich application, like a WYSIWYG editor or an e-mail client, you
will more than likely need to do a context click or right-click to get other menu items.
This may seem like a simple task as a user but doing this within a browser and doing it
programmatically has been a difficult task for some time. The interactions API allows us
to do this and do it in a meaningful way.

We will now see it in action.

Time for action - doing a context click

If you are working in a document editor online or in an e-mail client and you are required
to load a context menu, this will be useful. This can also be useful to load other bits of
functionality or access specific pages.

11621

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

To do this we will have to do the following:

1.

Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver () ;
driver.get ("http://www.theautomatedtester.co.uk/demol.html") ;
Actions builder = new Actions (driver) ;
WebElement element = driver.findElement (By.tagName ("body")) ;
Action contextClick = builder.contextClick (element)
.build() ;
contextClick.perform() ;
3. Run the test. You should see the following:
li theautomatedtester.co.uk/demol htm "l - Google A
View Image
Save Image As...
Baokmark This Page
Select All
Inspect Element (3]
What just happened?

We have managed to get our code to cause a right-click to happen on the page. This means
that we can now get to areas of our application that have overridden the default behavior.
We see this happening in a lot of WYSIWYG editors and in really rich HTML web applications.

When filling in forms one of the nicest ways, and quickest way, to get information is to have
a select that allows you to choose a number of items in the select. Unfortunately from a
testing point of view this can be really hard to do since each click would just select a new
item instead of keeping the last one.

11631

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo1.html
http://www.theautomatedtester.co.uk/demo1.html
http://www.it-ebooks.info/

Advanced User Interactions

Time for action - selecting multiple items on a select item

A number of forms nowadays ask users to select a number of items from a list.

For me a good example is the Advanced Search on Bugzilla. You can see an example at
https://bugzilla.mozilla.org/query.cgi?format=advanced. In Selenium

RC, selecting multiple items was impossible. Using the standard clicking and typing with
Selenium WebDriver we will not be able to do this either, however we can get around this
with the actions API.

1. Open upinteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:

WebDriver driver = new FirefoxDriver () ;

driver.get ("http://book.theautomatedtester.co.uk/

multi-select.html");

Actions builder = new Actions (driver) ;

WebElement select = driver.findElement (

By.tagName ("select")) ;

List<WebElement> options = select.findElements (
By.tagName ("options")) ;

Action multipleSelect = builder.keyDown (Keys.SHIFT)
.click (options.get (0))
.click (options.get (2))
.build() ;

multipleSelect.perform() ;

3. Run the test. You should see the following:

Roguefart

Cheddar -

Show selected

11641

www.it-ebooks.info

https://bugzilla.mozilla.org/query.cgi?format=advanced
https://bugzilla.mozilla.org/query.cgi?format=advanced
http://book.theautomatedtester.co.uk/multi-select.html
http://book.theautomatedtester.co.uk/multi-select.html
http://www.it-ebooks.info/

Chapter 9

What just happened?

We have just successfully done a multi-select. This can be useful for testing forms that allow
users to select multiple items. The same principle can be used if you needed to interact with
anything that required both the keyboard and the mouse to be used at the same time.

Canvas applications are becoming one of the most used HTML5 components to be added to
applications. One of the nice things that we can do with it is draw pictures on the page just
by clicking and holding down the mouse.

From the automation point of view, this would appear to be extremely difficult. We have
commands like click () and we know that we can move an element by a specific offset but
aclick() doesn't do what we do.

Time for action - holding the mouse hutton down while moving

the mouse

In this section we will have a look at how we can press down the left mouse button and then
move it around the page. If you are working on a canvas that tracks the mouse movements,
you would be able to draw a picture with the actions API. Let's see this in action:

1. Open upinteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:

WebDriver driver = new FirefoxDriver () ;
driver.get ('http://www.theautomatedtester.co.uk/demol.html')

Actions builder = new Actions(driver) ;
WebElement canvas = driver.findElement (By.id("tutorial")) ;
Action dragAndDrop = builder.clickAndHold (canvas)
.moveByOffset (-40, -60)
.moveByOffset (20, 20)
.moveByOffset (100, 150)
.release (canvas)
.build() ;

dragAndDrop.perform() ;

11651

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interactions

3. Run the test. You should see the following:

m theautomatedtester.co.uk

What just happened?

We have just seen how easy it is to hold the mouse button down and move it all over the
page and then release the buttons. This type of action is one of the most complex types of
work that we will have to do since it marries together a few.

1. What is the class that contains the action chain generator?

2. What is the method that builds up the chain?

3. What is the method that executes the chain in the order that it is created?
4

What is the best way to move the mouse by X coordinates to the side and Y
coordinates up?

(1661

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We have learnt a lot in this chapter about using the Advanced User Interactions API. We have
seen how we can use it to work against web applications that have a large amount of key
strokes or complex mouse movements.

Specifically, we covered:

¢ What is the Advanced User API: In this section we learnt what the APl is and
what makes it up. This is important since it sets us up for understanding the rest
of the chapter.

¢ Actions: In this section we saw how we can start using the action chains to start
building up complex chains of interactions with the page from typing to mouse
movements. One thing to note is that the mouse won't appear to move but the
right events will fire.

Now that we've learnt about Advanced User Interactions, we're finished learning all
of the core aspects of Selenium. Now we can learn about good design patterns for writing
tests—which is the topic of the next chapter.

11671

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Working with HTMLY

HTML5 has become one of the latest buzzwords to hit web development in
the last couple of years. With it has brought a number of useful items to web
developers that make web applications act more like desktop applications.

In this chapter, we will have a look at working with a number of the different
technologies that cannot be accessed by normal clicking or typing.

In this chapter, we shall learn:

¢ Application cache
¢ Browser connections

¢ Web storage

So let's get on with it...

This only works with AndroidDriver, IPhoneDriver, and some of it works in Firefox.
When working through the examples, we will need to make sure that we use those objects.
We will be using the example class as follows:

import org.junit.*;
import org.openga.selenium.*;

public class TestChapterl0O {

WebDriver driver;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTML5

@Before
public void setUp () {
driver = new AndroidDriver() ;

driver.get ("http://book.theautomatedtester.co.uk/chapter4d") ;

}

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testExamples () {
// We will put examples in here

}
}

Application cache is one of the new technologies that is coming from the HTML 5
specification. It allows web applications to specify files that are downloaded when the
browser accesses the page. The browser will look at the files in the application cache before
opening any network connections to the server. This means if the computer or mobile device
goes offline, then those files are still available and loaded straight away.

To know if your application has an application cache file, you will need to have a look
at the source of the HTML document. It should have a manifest attribute in the html
tag as follows:

<html manifest="example.appcache">
</html>
When items are downloaded, we can then make calls to the application cache object that is

attached to the window object in the browser.

Selenium WebDriver has an AppCacheStatus enum that represents the current status of
the application cache. The current statuses are:

0: UNCACHED

1: IDLE

2: CHECKING

* & o o

3: DOWNLOADING

(1701

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

¢ 4:UPDATEREADY

¢ 5:0BSOLETE

Let's try using this.

Time for action - getting the current status of application cache

One of the things that you will want to constantly do during your testing is to make sure that
the application cache is storing your files. We can see if they have been downloaded.
1. Create a new test class using the example code at the beginning of the chapter.

2. Inthis part we are just going to check if the application cache is working. We do this
by doing:
AppCacheStatus status = (ApplicationCache) driver) .getStatus();

w

The status should be equal to uncached when we load it.

4. The final class should look like the following:
import org.junit.*;

import org.openga.selenium.*;
public class TestChapterl0 {

WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver() ;

driver.get ("http://book.theautomatedtester.co.uk/") ;

@After
public void tearDown () {
driver.quit () ;

@Test
public void testAppCacheStatus () {

AppCacheStatus status = (ApplicationCache)
driver) .getStatus() ;

assertEqual (status AppCacheStatus.UNCACHED) ;

1l

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTML5

What just happened?

We have just seen how we can get the application cache from the browser using the API built
into the Selenium WebDriver. We will get an enum returned that relates to the current status
that the browser returns. Now we know that we have the means to start to have a look at
how our web application will act if it were to become offline.

Interacting with browser connections

Now that we can download and cache files using the application cache, it would be a good
idea to see how well they work when there is no network connection. The mobile drivers
have the ability to go into airplane mode. Hopefully, future versions of desktop browsers
will have this ability too.

We will start by having a look at whether the browser is online.

Seeing if a browser is online during a test can be quite useful when we are testing how

our application works offline. This is useful for working against sites that may have the
application cache configured and you want to check if the site works when offline. To know
that, we first need to make sure we know how to check if the browser is currently online.

Let's see how this looks.

Time for action - seeing if the browser is online

In this section, we will have a look at seeing if the browser is online or offline. Currently, this
only works on mobile drivers from Selenium WebDriver. In this section, we will need to cast
the Selenium WebDriver object to BrowserConnection and then access the methods that
are found on that object.

Let's get into action:

1. Create a new test class using the example code at the beginning of the chapter.
We can call the class TestBrowserConnection.

2. Create a test method and add the following to it:

assertTrue (((BrowserConnection) driver) .isOnline()) ;

[1721

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

3. Your class should look like the following and when you run the test method it
will pass:
import org.junit.*;

import org.openga.selenium.*;
public class TestChapterl0 ({
WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver () ;
driver.get ("http://book.theautomatedtester.co.uk/") ;

@After
public void tearDown () {
driver.quit () ;

@Test
public void testBrowserConnection () {
assertTrue (((BrowserConnection) driver) .isOnline()) ;

What just happened?

We have seen that by casting the webdriver object to BrowserConnection, we have
access to a number of new methods. These methods allow us to see if the browser is
currently online or offline. They also allow us to set the browser to online or offline,
which will be the next section of this book.

Now that we know how to see if the browser is online or offline, let us have a look at setting
the browser connection to online or offline. This is not part of HTML5 technologies, but

will allow us to use the previous online call, which is part of HTML 5, and to check if our
application cache has downloaded the relevant files.

Let's see this in action.

(1131

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTML5

Time for action - setting the browser connection to offline

In this section, we are going to turn the device's browser connectivity off. This means that
we can check how the application works if it were offline. This is going to be a really useful
feature as more and more applications try to take advantage of the move to mobile.

Let's see this in action.

1. We are going to create a new test method in the class that we created in the
previous section.

2. Inthe test we are going to need to set the browser offline. We do this by casting
to BrowserConnection and then using the method setOnline (). If we passin
true, it will set it online and if we set it to false, it will set the browser offline.
Following is an example:

((BrowserConnection) driver) .setOnline (false) ;

3. When you have finished, your class should look like the following:

import org.junit.*;
import org.openga.selenium.*;

public class TestChapterlO {
WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver () ;
driver.get ("http://book.theautomatedtester.co.uk/") ;

}

@After

public void tearDown () {
driver.quit () ;

}

@Test
public void testBrowserConnectionOnline () {
assertTrue (((BrowserConnection) driver) .isOnline()) ;

@Test
Public void testTurnOffConnectivity () {
BrowserConnection networkAwareDriver = (BrowserConnection)
driver;
networkAwareDriver.setOnline (false) ;

1l

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

assertFalse (networkAwareDriver.isOnline()) ;
networkAwareDriver.setOnline (true) ;
assertFalse (networkAwareDriver.isOnline()) ;

What just happened?

We have seen that we can simply turn the browser connection on and off on these devices
and check that the browser is in the correct state, either online or offline, before moving on
with the test.

Now, we will move on to how to access some of the HTML5 storage technologies.

Working with WehStorage

Some of the other technologies that are being developed for HTML5 are related to
WebStorage. There are three main WebStorage technologies:

¢ Local storage
¢ Session storage
¢ WebSQL
In this section of the chapter, we will only be working with the first two since WebSQL is not

being implemented by all of the browser vendors. These technologies allow us to save to the
users' hard disk and then retrieve what we stored.

Let's start using this.

Local storage

In this section, we are going to have a look at working through local storage to make sure
that items we expect to be there are there. This is analogous to an integration test that
accesses a database to check whether something has been sorted. LocalStorage allows
data to be stored and the data is persisted between sessions and the browser being closed
and reopened.

The Selenium WebDriver object called LocalStorage is used to access the local storage in
the browser. The APl is nearly a 1:1 match for the JavaScript API that comes with browsers.

Let's see this in action.

(1151

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTML5

Time for action - accessing localStorage

Imagine that your application has stored something in the 1localStorage while the user
has been interacting with the application. An example of this might be if you were working
in a word processing application and it auto saves what you have typed to the box every so
often. If your application were offline, it can still save the information.

Let's see how we would access this.

1. Create a new test class. You can use the example code at the beginning of the
chapter to help you create it quicker.

2. Accessing the LocalStorage object will require us to case the WebDriver object
to it. This is similar to what we saw with BrowserConnection previously.

LocalStorage storageDriver = (LocalStorage) driver;
storageDriver.size(); // returns 0 if there is nothing in there

3. Now run your test class. It should look something like the following:

import org.junit.x*;
import org.openga.selenium.*;

public class TestChapterl0 {
WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver() ;

driver.get ("http://book.theautomatedtester.co.uk/
localStorage.html") ;

@After
public void tearDown () {
driver.quit () ;

@Test
public void testShouldReturnCurrentLocalStorageSize () {
assertEqual (0, ((LocalStorage) driver) .size();
}
}
(1761

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

What just happened?

We have just seen how we can access LocalStorage, the Selenium WebDriver API, for
accessing the browsers' 1ocalStorage object. This means that we can have a look and
check what the application has stored on the user's local storage. If were to log

Session storage is a very similar technology to local storage. The main difference is that it
does not persist. If you were to close the tab and then reopen it, while using Firefox for
example, session storage items will not be available where local storage will still be available.

Let's see how we can work with it.

Time for action — accessing sessionStorage

Imagine again that you are working against a word processing application but instead of it
auto saving the text that you type to somewhere that is persisted, you only save it briefly
waiting for the user to click save.

Let us see how we can use it.
1. Let'sjustadd a new testMethod to the class we created in the previous section.
We can call it testShouldAccessSessionStorage ().

2. We will need to cast the WwebDriver object to a SessionStorage object, so we
can start accessing the methods it has available like the following:

SessionStorage storage = (SessionStorage) driver;
assertEquals (0, storage.size());

3. Let's create our test and run it. It should look like the following:

import org.junit.*;
import org.opendga.selenium.*;

public class TestChapterl0 {
WebDriver driver;

@Before
public void setUp () {
driver = new AndroidDriver () ;
driver.get ("http://book.theautomatedtester.co.uk/
localStorage.html") ;

[l

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTML5

}

@After
public void tearDown () {
driver.quit () ;

}

@Test
public void testShouldReturnCurrentLocalStorageSize () {
assertEqual (0, ((SessionStorage) driver) .size();
}
}
What just happened?

We have just seen that the SessionStorage object acts a lot like the 1ocalStorage
object that we worked with in the previous section of the chapter. We were able to get the
SessionStorage methods by casting the Selenium WebDriver object. This gives us access
to methods that map over to the JavaScript APl available in the browser.

We learnt a lot in this chapter about using the HTML5 API that comes with Selenium
WebDriver. These are helper methods that make our lives significantly easier when working
against application cache or against web storage mechanisms.

Specifically, we covered:

L 4

Application cache API: We had a look at how we can access the browsers'
application cache to see if it is downloading items into the cache or if the
current app is uncached.

Browser connections: Web applications, with the help of HTML5 technologies, are
getting the ability to work when they are offline. We have seen how, with the help of
application cache, we can load pages from the cache. We can also see if the browser
is currently online or offline, and on the mobile devices be able to turn them to
airplane mode.

WebStorage: In this section we had a look at how we can access the WebStorage
object that has been added to the HTML5 specification. Specifically, we had a look
at localStorage and sessionStorage. Selenium WebDriver has tried to
emulate the APIs available in the browser in the Selenium WebDriver APIs.

(1181

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

If you want to read more on session storage | recommend reading

https://developer.mozilla.org/en-US/docs/DOM/

StorageffisessionStorage.

Now that we've learnt about working with HTMLS5, we're ready to work through the final
advanced topics—which is the topic of the next chapter.

(191

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/DOM/Storage%23sessionStorage
https://developer.mozilla.org/en-US/docs/DOM/Storage%23sessionStorage
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Advanced Topics

In this chapter we are going to have a look at a number of advanced topics
that we can do with Selenium WebDriver. These topics are not required in order
to use Selenium WebDriver, but will be useful when there are problems with
testing your application and you need to get some more information.

In this chapter, we shall learn:

¢ Capturing screenshots
¢ Using XVFB with Selenium

¢ Working with Browsermob Proxy

So let's get on with it...

Important preliminary points

Before we start it will be good to download all the necessary items. Please download the
latest from Browsermob Proxy: https://github.com/webmetrics/browsermob-
proxy/downloads.

www.it-ebooks.info

https://github.com/webmetrics/browsermob-proxy/downloads
https://github.com/webmetrics/browsermob-proxy/downloads
http://www.it-ebooks.info/

Advanced Topics

XVFB—sudo apt-get install xvfb. XVFB only really works reliably on Linux. You could
potentially get this to work on OS X but it does not, as of writing this chapter, have great
support. This will not work on Windows unfortunately.

davidburns@ubuntu:~$ sudo apt-get install xvfb
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
xvfb
© upgraded, 1 newly installed, ©@ to remove and © not upgraded.
Need to get 866 kB of archives.
After this operation, 2,068 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntuf oneiric-updates/main xvfb amd64 2:1.10.4-1ubuntu4.2 [866 kB]
Fetched 866 kB in 3s (230 kB/s)
Selecting previously deselected package xvfb.
(Reading database ... 228914 files and directories currently installed.)
Unpacking xvfb (from .../xvfb_2%3a1.10.4-1ubuntu4.2_amd64.deb) ...
Processing triggers for man-db ...
Setting up xvfb (2:1.10.4-1ubuntu4.2) ...
davidburns@ubuntu:~-$

A lot of the time our Selenium remote control browsers will be running on different
machines than the machine that starts the tests. This is because you, as a developer or
tester, need a mechanism to have a screenshot of what the error looks like when the test
failed. Images that are captured are saved in PNG format.

Unfortunately capturing screenshots in Selenium is limited to real browsers such as Mozilla
Firefox, Google Chrome, and Internet Explorer. This is because these browsers have libraries
that Selenium can use to take screenshots. As more libraries are added to Selenium for
different browsers, you will be able to take more screenshots. They will use the same API call
so there will be no need to change your tests.

Screenshots capability lives within an interface called TakesScreenshot. We will cast the
driver to this and then use the interface to access getScreenshotAs () method. You will
also need to import the following library:

import static openga.selenium.OutputType.*;

Capturing hase64 version of images

In this section we are going to have a look at capturing a base64 representation of an image.
Base64 is a group of encoding schemes that allow us to represent binary data as ASCII. A
common use for them in web applications is to place data URLs as the source for images to
save on downloads that the browser has to do when it is parsing the HTML.

11821

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Time for action — capturing images as hase64 strings

Imagine that you want to take a screenshot on Selenium Grid. When you take the
screenshot, you will not want it to be saved to the hard drive of the Selenium Grid node.
You will want it to be moved back to where your tests are, especially if you are using it with
a Continuous Integration Box.

1. Open up Intellij and create a new Java test class.

2. We will now add a new line for taking a screenshot:

driver.get (http://book.theautomatedtester.co.uk) ;

String screenshotBaseé4 = ((Screenshot)
driver) .getScreenshotAs (baseé64) ;

3. If you set a breakpoint on the previous line, you will be able to see what the string
looks like.

What just happened?

We have just managed to take a screenshot and have it returned as a base64 string. This will
allow us to take a screenshot on a remote machine and then transport the resultant image
back to where the test is being run from.

Now that we have had a look at capturing screenshots to base64 strings, let's have a look
at capturing them as bytes. Having them as bytes means that we can transform them into
a number of different things as we see fit.

Time for action - saving images to bhytes

Imagine that you want to do some in-depth analysis of the Ul by taking screenshots. This is
something that has been done a number of times in different projects. For example, you take
a screenshot, then make changes, and then take more screenshots along the way.

1. Open up Intellij and create a new Java test class.

2. We will now add a new line for taking a screenshot:
driver.get (http://book.theautomatedtester.co.uk) ;

Bytes screenbytes = ((Screenshot)driver) .getScreenshotAs (bytes) ;

3. Ifyou set a breakpoint on the previous line, you will be able to see what
the string looks like.

[1831]

www.it-ebooks.info

http://book.theautomatedtester.co.uk
http://book.theautomatedtester.co.uk
http://www.it-ebooks.info/

Advanced Topics

What just happened?

Now that we have seen what it takes to take a screenshot of the page from the browser, we
have managed to take a screenshot and then push the result into a bytes variable. We can
then perform histogram type checks against the bytes and anything else that we want.

We can also push the bytes into a stream to save it to file or we can have a look at taking
screenshots straight to files.

Saving screenshots to files

Saving screenshots to file is probably the most common way to save a file. This approach will
save the file to disk straight away. When we save the screenshot as a file, we are returned a
file object.

We can then use it straight away to do anything like getPath () or do what we need.

Time for action - saving a screenshot to file

In this section we will have a look at how we can go about saving a file to disk. This is the
most common thing that people do when saving screenshots. One thing to note is that
if you are using RemoteWebDriver, this will save the file on the same machine as the
Selenium Server.

1. Open up Intellij and create a new Java test class.
2. We will now add a new line for taking a screenshot:
driver.get (http://book.theautomatedtester.co.uk) ;

File savedImage = ((Screenshot)driver) .getScreenshotAs(file);

3. If you set a breakpoint on the previous line, you will be able to see what the string
looks like.

What just happened?

We have just seen what is probably going to be the most common way to save screenshots
when we take them. When we take the screenshot, the image is saved to disk and we are
returned the £ile object that has access to that image.

(1841

www.it-ebooks.info

http://book.theautomatedtester.co.uk
http://www.it-ebooks.info/

Chapter 11

If you would like to move the file when it is created, you can use the following code snippet:

File imageFile = ((TakesScreenshot) driver)
.getScreenshotAs (OutputType.FILE) ;
String failureImageFileName = "testfailureimage.png";

File failureImageFile = new File(failureImageFileName) ;
FileUtils.moveFile (imageFile, failurelImageFile) ;

Pop yuiz - saving screenshots

1. What s the easiest approach to saving images?
a. Base64 String
b. Bytes
c. File

2. If you want to move a screenshot over Selenium grid, which is the best output type
to choose?

The following section of this book requires that we do this work in Linux as the requirements
are only available on that platform. When Selenium is running on your machine, you will

see that it always runs on your screen. If you want to push the running of your tests to a
background, then you will need to use something like XVFB. XVFB stands for X11 Virtual
Frame Buffer.

This allows us to run tests with a real browser without it trying to steal focus from you.
FirefoxDriver, for example, forces the browser to the foreground to help the native events.

Time for action - setting up KVFB server

We will have to make sure that we have XVFB running on our machine. This should be fairly
trivial to getting it right.

1. Openaterminal.

2. Inthe terminal, we will run the following command:
XvEb :1 -screen 0 1600x1200x32

3. The server will listen for connections as server number 1, and screen 0 will be depth
321600x1200.

(1851

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Topics

4. You should see something like this in your terminal:

davidburns@ubuntu:~% Xvfb :2 -screen 1 16080x1200x16

[dix] Could not init font path element fusr/fshare/fonts/X11/cyrillic, removing f
rom list!

[dix] Could not init font path element fusrfshare/fonts/X11/160dpi/:unscaled, re
moving from list!

[dix] Could not init font path element fusrfshare/fonts/X11/75dpi/:unscaled, rer

oving from list!

[dix] Could not init font path element fusr/share/fonts/X11/100dpi, removing frc
m list!

[dix] Could not init font path element fusr/share/fonts/X11/75dpi, removing fror
list!

]

What just happened?

We have just seen what it takes to setup XVFB running on our machines. We have just told
it to start an XVFB server and set up a screen on that server. If you want to set up XVFB in
different ways, | recommend reading the manual at http://www.xfree86.org/4.0.1/
XvEb.1l.html.

Running tests in KUFB

Now that we have the server up and running, we can have a look at making sure that when
we run our tests they use the new display.

Time for action - running tests with XUFB

We will have to make sure that we have XVFB running on the machine.

1. Openaterminal.

2. We need to export the display so that everything that is launched from it uses the
one that we have set up earlier. We do this with:

Export DISPLAY=0.1

3. Now we just need to run our tests. You will see that the browser may launch in the
dock but it should not actually be visible.

What just happened?

We have successfully managed to get our tests running using XVFB. We saw that the tests
that we were running, and launching a browser on our displays, still finished with the same
results as before.

1861

www.it-ebooks.info

http://www.xfree86.org/4.0.1/Xvfb.1.html
http://www.it-ebooks.info/

Chapter 11

This can be useful for situations where you may have your tests running on change and you
know that the browser will not try stealing focus.

1. What does XVFB stand for?

2. What argument do we need to pass in when starting the XVFB to have it startup on
a specific display?

Now that we know how to run tests with XVFB, try getting this running while running tests in
parallel and see how it works together!

Working with BrowserMoh Proxy

Patrick Lightbody, one of the core originators of Selenium and creator of Selenium RC with
Paul Hammant, created the BrowserMob proxy while working on his startup BrowserMob.
BrowserMob Proxy allows you to control the way that traffic is filtered to the browser.

We can also change the headers that are supplied to the server. This allows us to do a large
number of things.

When working with BrowserMob Proxy we will need to make sure that we start the proxy so
that we can use the API and change what we need.

Time for action - starting the proxy

We are going to need to start the proxy and make sure that we can then interact with it.

1. Create a new Project in Intellij.

2. Add the BrowserMob JARs to the project so that we can use it:
ProxyServer proxy = New ProxyServer (9876) ;
proxy.start () ;

3. When we want to stop the server we just call:

proxy.stop ()

11871

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Topics

What just happened?

We have successfully started the server by passing in the port. The server needs to be
started before we can do any of the different tasks that we will be doing in future sections
of the book.

One of the most useful things in Selenium Remote Control is the ability to capture the
network traffic of the application that you are testing. It was removed since it is not required
to do browser automation, but it was nice to have.

To capture network traffic, we need to proxy all traffic through BrowserMob Proxy. The way
that BrowserMob Proxy does this is by capturing the network traffic and pushing it into a
format called HTTP Archive, or most commonly known as HAR. A HAR file is JSON format
that is the standard way to represent network traffic.

HAR captures lot of information that can be used for different purposes, so we will learn how
to capture it next.

Time for action - capturing network traffic

Imagine that you wanted to see if there was anything on the page that was not found. This
could be images, CSS files, or JavaScript files. These things are not visible when working with
a page, and it can be interesting with unexpected bugs. We will now see how we can create a
HAR file and then capture it.

Since the HAR will return the JSON we need, we just need to parse the JSON returned to get
what we want.

1. Using the project we created previously, we are going to add a few more lines to get
what we want.

2. We need tell Selenium WebDriver that we have a proxy that it has to use. We do
that with:

FirefoxProfile profile = new FirefoxProfile() ;
profile.setProxy (proxy.seleniumProxy) ;
3. We need to tell the proxy to create a new HAR file for us. We do this by adding the
following line:
Proxy.newHar ("PageName") ; // PageName is the name of the page we

//want to capture

4. We then need to load a page, we can do this by clicking on a link calling get ().

[1881]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

o

Now we need to call proxy.getHar (). This will return the HAR that we wanted.
Your code should look like this:
FirefoxProfile profile = new FirefoxProfile() ;
profile.setProxy (proxy.seleniumProxy) ;
WebDriver driver = new FirefoxDriver (profile) ;
proxy.newHar ("PageName") ;
driver.get ("http://book.theautomatedtester.co.uk
proxy.getHar () ;
And your HAR, once put through a JSON Viewer should look like this
={}sson
:I{}Iog
;l{] browser

& version : "10.0.17
® name : "Firefox”
o version @ "1.1"
=] {] creator
o version : "2.0"
® npame : "BrowserMob Proxy”

= [] pages
={}o
o title ™
o startedDateTime © "2012-01-18T15:42:53.732+00007
H id:"Page 1"
{] pageTimings
= [] entries
={}e

{] cache

startedDateTime : "2012-01-18T15:42:57_.121+0000"
® pageref: "Page 17
= {] request
= [] cookies
={}o
A {31
{2
={}3
® url : "hitpfwww.theautomatedtesier.co.uk™
) [] queryString
H [] headers
@ headersSize : 0
H httpVersion : "HTTP"
® method : "GET"
o bodySize : 0
) {] timings
@ time: 188
H {] Mesponse
= {3}

= {] cache

(1891

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Topics

What just happened?

We have just managed to capture the network traffic while we are running our tests. This can
be really useful if you want to see if there are any 404 responses when we are loading our
application under test. This can be useful if you are moving things about or if you are doing a
smoke test after you have deployed your application to production.

Pop quiz - capturing Network Traffic

1. Whatis the name of the JSON format for showing network traffic?

2. What is the call that tells BrowserMob Proxy to start recording the traffic?

Have a go hero - doing more with BrowserMoh Proxy

Now that we have managed to get the proxy started and managed to record the network

traffic that is going through to the browser, let us have a look at getting the proxy to slow

down the time that a response takes to get through. BrowserMob Proxy supports this and
Intellij will be able to help with what parts of the API to use.

sSummary

We learnt a lot in this chapter about some of the advanced topics that we may need in
tougher times!

Specifically, we covered:

¢ Saving screenshots: We have learnt how to save screenshots of our web
applications programmatically. This allows us to know when something happens
and we need to see what could be the reason!

¢ Using XVFB: In this section, we learnt how to use XVFB to have a virtual display to
run our tests in. This can be really useful if you want to be able to run Selenium
WebDriver and not worry that when the tests run the browser might suddenly steal
focus. This is useful if you are running a number of tests on a single machine and
they need to use native events that Selenium WebDriver tries to do on Windows
and Linux.

¢ BrowserMob Proxy: In this section, we had a look at how we can replicate Selenium
Remote Control's captureNetworkTraffic () method that will allow us to see
what the browser downloaded during a page load. This is useful if you are doing
web performance analysis during tests.

[1901]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

We should also note that BrowserMob Proxy can do a lot more than record network traffic.
It can block content from certain URLs, like ad networks, which can improve the speed at
which tests run. This might be something to consider if your tests take hours and it is tracked
down to a web performance issue.

Now that we've learnt about these topics, you should feel extremely confident in
using Selenium WebDriver and can test it against a number of the different web
applications out there!

11911

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium Remote Control has been around for a number of years. This means
that there is a large amount of tests out there written for the API. If you ever
have to migrate your test suite, then the following chapter will give you the
insight that you need.

In this chapter, we shall cover WebDriver Backed Selenium.

Before we work through this chapter, it might be a good idea to go through Chapter 4,
Design Patterns again as this will minimize the amount of work that is required as we
move to WebDriver. So let's get on with it...

Unfortunately, we have spent a considerable time in the past few years developing Selenium
Remote Control tests, and converting them over to the new style of Selenium WebDriver
may not be feasible. The WebDriver API is fundamentally different in its design compared to
Selenium RC.

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Remote Control to WebDriver

With this in mind, the Selenium Core development team has created the
WebDriverBackedSelenium object that we can use. This allows us to create our tests with
Selenium Remote Control syntax that we know but have some of the benefits of WebDriver
with a very minor change to what you currently have.

String baseUrl = "http://book.theautomatedtester.co.uk";
String remoteControl = "localhost";

Int port = 4444;

String browser = "*firefox";

Selenium selenium = new DefaultSelenium(remoteControl, port ,
browser ,baseUrl) ;

selenium.start () ;

selenium.open("/");

selenium.click ("link=chapterl") ;

// rest of the test code

We then need to change our tests to the following:

WebDriver driver = new FirefoxDriver () ;

String baseUrl = "http://book.theautomatedtester.co.uk";
Selenium selenium = new WebDriverBackedSelenium(driver,baseUrl) ;
selenium.open("/") ;

selenium.click ("link=chapterl") ;

// rest of the test code

Let's try to convert one of our Selenium Remote Control tests.

Time for action - converting tests to Selenium WehDriver using

Let's take one of our Selenium Remote Control tests and change it to use
WebDriverBackedSelenium. This should be a simple change:

import com.thoughtworks.selenium. *;

import org.junit.*;

public class TestSeleniumWebDriver {
// We can name this file what we want

Selenium selenium;

@Before
public void setup () {
selenium = new DefaultSelenium("localhost",4444,"*chrome",
"http://book.theautomatedtester.co.uk") ;

11941

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

selenium.start () ;

@Test

public void shouldOpenChapter2LinkAndVerifyAButton () {
/* This will contain some actions for us. We are going
* to be concentrating on the @Before and @After methods

@After
public void teardown () {
selenium.stop() ;

}

1. Open IDEA and load your example.

2. Create a new external library for the Selenium binaries. We learnt how to do this in
Chapter 3, Overview of Selenium WebDriver.

3. Add the variable WebDriver driver at the top of your class.
4. Change your setup () to look like the following:

@Before
public void setup () {
driver = new FirefoxDriver () ;
selenium = new WebDriverBackedSelenium(driver,
http://book.theautomatedtester.co.uk)

}

5. Change the teardown () to:
@After
public void teardown () {
driver.quit () ;

}

6. Run your tests.

What just happened?

We have seen how with very little change to our tests we have got our old Selenium
Remote Control tests working using the new Selenium WebDriver drivers. The
WebDriverBackedSelenium object has a mapping of the Selenium Remote Control
API to the Selenium WebDriver API.

(1951

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/

Migrating from Remote Control to WebDriver

When the browser starts you will see the WebDriver extension in the bottom right of the
browser. When it is processing commands, it will turn red and when it isn't it will be black.
It should look like the following screenshot:

WebDriver

There are a few items that are not fully supported by WwebDriverBackedSelenium, but
hopefully as more and more work is done to the framework these will be less noticeable.
This is available to all languages that can communicate with the remote server.

1. How do you use the WebDriverBackedSelenium?

sSummary

We have seen that we can easily move from tests that we created in the past using the
Selenium Remote Control API.

Specifically, we covered:

¢ Switching to WebDriverBackedSelenium: In this section, we saw that with only a few
lines changed within our tests we can suddenly be running with Selenium WebDriver,
the new API in the Selenium project. This will not allow us to fully migrate our tests
but gives us a starting point. Remember that WebDriverBackedSelenium can work
in all languages. You can either use the object or inject a WebDriver Object into the
Selenium Object and have the Selenium Server do all of the work for you.

[1961]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter1

1. Answer:c

Pop quiz - verifying and asserting

1. Answer:b

2. Answer: Verify allows a test to continue and keep track of all verify errors. Assert
will stop a test immediately when the assert fails.

3. Answer: b

Pop quiz - waiting for elements

1. Answer: a

Pop quiz - Test Suites

1. Answer: Click on the button with the arrow and three solid green lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Pop Quiz Answers

Chanter 2

Pop quiz - using the Find button

1. Answer:d

1. Answer:c

Pop quiz - using KPath Axis

1. Answer:aandb

Pop yuiz - using locators

1. Answer:a
2. Answer: //input/following-sibling: :input

3. Answer: css=input + input

Pop quiz - setting up the test project

1. Answer: In the test folder.

Chapter 4

Pop quiz-Page Ohject design pattern

1. Answer: The Page Object design pattern gives us a way to abstract our tests away
so that we can make these tests more maintainable. We can make tests that only
require updating if new steps have been added, otherwise it just requires the page
object to be updated.

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

1. Answer: @FindBy (how=How.ID, using='myId")

2. Answer: @CacheLookup

3. Answer: PageFactory.initElements () ;

1. Answer:b
2. Answer:c

3. Answer: No, it will not throw an exception. It will return an empty list.

1. Answer: Create a profile object and call setPreference () method with the
details needed.

2. Answer: We can use the FirefoxBinary class to tell it where to look.

Pop quiz - using ChromeDriver

Answer: ChromeOptions

2. Answer: The PATH environment variable needs to be set with where the
ChromeDriver executable lives. This is so that when we call ChromeDriver with
our Java code, it will load the relevant executable and load the browser as quickly
as possible.

1. Answer: Use the latest stable version of Opera.

2. Answer: Use the OperaProfile object and update the preferences where needed.

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Pop Quiz Answers

Pon quiz — working with InternetExplorerDriver
1.

Answer: All versions of IE6, IE7, IE8, and IE9 for both 32-bit and 64-bit installations.

Chapter 7

1.

2
3.
4

Answer: . /android create avd -nmy_android -t 14 -c 100M
Answer: a
Answer: c

Answer:

adb -s <serialId> shell am start -a android.intent.action.MAIN
-n org.openda.selenium.android.app/.MainActivity

Answer: c

Chapter 8
Pop quiz - using Selenium Grid 2

1.
2.

Answer: java -jar selenium-server.jar -role hub

Answer: http://nameofmachine:4444/grid/console where nameofmachine
is the name of the machine that is running the hub. If it is on the same machine as
you are currently on put localhost or 127.0.0.1.

Answer: port 4444

Answer:-browser browserName="internet explorer",
maxInstances=1,platform=WINDOWS

Chapnter9
Pop quiz- using Action Chains

1.

2
3.
4

Answer: Action
Answer: build ()
Answer: Perform() 3

Answer. moveByOffset ()

[200]

www.it-ebooks.info

http://nameofmachine:4444/grid/console
http://www.it-ebooks.info/

Appendix B

Chapter 11

1. Answer:c

2. Answer: Base64

Pop quiz - using XVFB

1. Answer: X11 Virtual Frame Buffer

2. Answer: -screen

Pop quiz - capturing Network Traffic

1. Answer: HTTP Archive or HAR

2. Answer: newHar ()

Appendix A
Pop quiz— how do you use WebDriverBackedSelenium

Answer: Create a new instance of the browser you want to use using Selenium
WebDriver. Then pass this into the WebDriverBackedSelenium with the URL that
you would like to test. It will look like this:

@Before
public void setup()
driver = new FirefoxDriver () ;
selenium = new WebDriverBackedSelenium(driver,
http://book.theautomatedtester.co.uk)

2011

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

about 128
A= 57 Emulator 128
*= 57 Selenium WebDriver Android Server, installing
// 46 129
$= 57 test, creating 131
@Before 73 tests, updating 133
-browser argument 152 working with 133
@CacheLookup 81 Android emulator 127
-gridlYml 152 Android Server
WebDriverBackedSelenium object 195 installing 130, 131
Android test
A Android driver, using 131, 132
. creating 131
Actions application cache
about 159

current status, getting 171, 172
working with 170
architecture, Selenium

chain, creating 160, 161
chain, creating for drag and drop 160, 161

context click, doing 162 about 65
drag and drop_ 159 JSON Wire protocol 66
element, moving to offset 161, 162 Selenium server 66
mouse button, holding down 165, 166 WebDriver APl 66
multiple item, selecting 164 WebDriver SP| 66
Advanced User Interactions assertAlert method 19
about 15%.3 assertAttribute method 19
keyboard interface 158 assertChecked method 19

mouse interface 158
AJAX 24

assertElementNotPresent method 19

o assertElementPresent method 19
AJAX applications assert methods
Selenium tests 24 assertAlert 19

used, for working on pages 25-27 assertAttribute 19
working with 28, 29 assertChecked 19

www.it-ebooks.info

http://www.it-ebooks.info/

assertElementNotPresent 19
assertElementPresent 19
assertText 19
assertTitle 19
verifyAlert 19
verifyAttribute 19
verifyChecked 19
verifyElementNotPresent 19
verifyElementPresent 19
verifyText 19
verifyTitle 19
assertText method 19
assertTitle method 19
Asynchronous JavaScript And XML. See AJAX
automation rules
about 12
first test recording, with Selenium IDE 13-15

B

browser connections
interacting with 172
offline status, setting 173-175
online status, checking 172,173
online status, setting 173-175
BrowserMob Proxy
about 181, 187
network traffic, capturing 188, 190
proxy, creating 187
proxy, starting 187
build() 161

C

ChromeDriver
about 116
ChromeOptions, using 118-120
Google Chrome, starting with 117, 118
ChromeOptions
about 118
using 118-120
click() 165
clickAndWait command 29
close() 125
Command textbox 20
comments
about 20
adding 20

contentEditable=true attribute 34
context click
about 162
doing 163
CSS selectors
about 52
child nodes, using 54
CSS class attributes, using 55
element IDs, using 56
elements finding, by attributes 56, 57
sibling nodes, using 55
used, for element search 53, 54
used, for nth element search 58

D

direct XPath
used, for element search 46, 47
using 46
Document Object Model. See DOM
DOM 8
download requirements
Chrome Driver Executable 110
Firefox Driver 110
IE Driver Executable 110
Opera Driver Executable 110

E

element, finding
by class name, findElementByClassName()
method used 94
by ID, findElementByld() used 89, 90
by link text, findElementByLinkText() method
used 99, 100
by name, findElementByName() method used
91,92
by XPath, findElementByXPath() method used
97,98
elements
filters, adding 43
Find button, suing 40
finding 88
finding, by inner text 59
from page, storing 30, 31
IDs finding, Firebug used 39
locationg, by ID 39-41
moving, on page 41-43

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

moving, with drag-and-drop by offset 161
searching, by direct XPath 46, 47
searching, by DOM via JavaScript access 44, 45
searching, by name 42,43
searching, by text content 49
searching, by XPath 45, 46
waiting, for appearance on page 104
XPath Axis used, for element search 50, 51
elements, finding
by class name, findElementsByClassName()
method used 95, 96
by ID, findElementsByld() method used 90
by link text, findElementsByLinkText() method
used 101, 102
by name, findElementsByName() method used
93,94
by XPath, findElementsByXpath() method used
98
Emulator
about 128
creating 128, 129
emulator, downloading for Opera Mobile
Linux 32 Bit 134
Linux 64 Bit 134
Mac 134
Tarball 134
explicit waits
about 105
using, with Selenium WebDriver 106

F

Factory constructs 78
filters

adding 43

direct XPath, using 46

element searching, by DOM via JavaScript

access 44,45

element searching, by link text 43, 44

element searching, by XPath 45, 46
findElementByClassName() method

about 94

used, for finding element by class name 94
findElementByID() method

about 89

used, for finding element by ID 89, 90
findElementByLinkText() method

about 99
used, for finding element on page by link text
100

findElementByName() method

about 91

used, for finding element by name 92
findElementByXPath() method

about 97

used, for finding element by XPath 97, 98
findElement() method 79

about 102

used, for finding element 103
findElementsByClassName() method

about 96

used, for finding elements by class name 96
findElementsByld() method

about 90

used, for finding elements by ID 90
findElementsByLinkText() method

about 101

used, for finding elements by link text 101, 102
findElementsByName() method

about 93

used, for finding elements by name 93, 94
findElementsByXpath() method

about 98

used, for finding elements by XPath 98
findElements() method

used, for finding elements 103
Firebug

about 38

URL 38
Firefinder 38
Firefox add-on

Firebug, installing 116

installing 114, 115
FirefoxBinary class 113
FirefoxDriver

about 111

Firefox add-on, installing 114

loading 111

profile preferences 112

profile preferences, setting 112, 113

G

get() method 81

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

getPath() 184 JSON Wire protocol 66
getScreenshotAs() method 182

Google Chrome Developer Tools 38 K
grid .
tests, running against 154, 155 keyboard interface

methods 158

H

L

HAR 188

HTML5 169 LoadableComponent
about 81

HTTP Archive. See HAR
hub, Selenium Grid get() method 81
about 147 isLoaded() method 81

instances, adding 148 load() method 81

launching 147, 148 using, by changing page object 82-84
load() method 81
| local storage
about 175
Ice Cream Sandwich 127 accessing 176, 177
IDEA Intellij 63 locator
IE Developer Tools 38 about 37
implicit waits constructing, requirements 38
about 104
using 105 M

import statements 71

initElements() 80 manifest attribute 170

mobile devices 127

installing
Selenium IDE 8-10 mouse button

InternetExplorerDriver holding down 165, 166
about 123 mouse interface
working with 124 methods 158

i0S multiple items

selecting, on select item 163-165
multiple windows

about 21

complex working with 23, 24

working with 22, 23

setting up, on real device 141
simulator, setting up 137-141
test, creating 142
working with 137

iOS devices

tests, updating 143
isLoaded() method 81 N
J network traffic

capturing 188, 189

Java environment NoSuchElement exception 99, 103

about 67 NoSuchElementException exception 91, 94,

103, 104

Intellij IDEA project, setting up 67-69
setting up 67-69 NotSuchElementFound exception 98, 100

nth element type

JavaScript Object Notation. See JSON o
finding, XPath used 47, 48

JSON 24

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

(0

open command 15

OperaDriver
about 120
OperaProfile 121
running with, on mobile device 133-136
using, on Opera Mobile 134-136
working with 120-123

P

page factories
using 78, 80
using, with page objects 78, 81
page objects
about 72
changing, to use LoadableComponent 82-84
page factories, using with 78
Selenium steps, moving into private methods
73,74
test, setting up 72
used, to design tests 75, 77
parallel
tests, running in 155
partial match
performing, on attribute content 49
performing, on attributes 57
partial match, on attributes
nth element finding, CSS used 58
Pause button 31
Provisioning Assistant 141
proxy.getHar() 189

Q

quit() 125

R

Read-Eval-Print-Loop. See REPL
REPL 38
Restart Now button 9

S

Select Element icon 39

Selenium
architecture 65
history 64, 65
Selenium API 64
selenium.getTitle 72
Selenium Grid
about 145-147
hub, launching 147, 148
instances, adding to hub 148
Selenium Remote Controls, adding for different
machines 150
server, adding with defaults 149, 150
Selenium Grid 1 configuration
tests, running in parallel 155
tests, writing against grid 154, 155
using 153
Selenium Grid 2
using, with YAML file 152
Selenium IDE
about 8
Base URL 11
Command selectbox 11
comments, adding 20, 21
Find button 11
installing 8-10
Logtab 12
requirements 8
Source tab 11
Speed Slider 11
Target textbox 11
Test table 11
Value textbox 11
working with 10-12
Selenium Remote Control
about 193
adding, for different machines 150
environment, setting on start up 152
Selenium server
about 67
adding, for different machines 150, 151
adding, for specific browser task on specific
operating systems 151
adding, with defaults 149, 150
Selenium steps
moving, into private methods 73, 74
Selenium WebDriver
about 63

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

explicit waits, using with 106
Selenium WebDriver Android Server
Android Server, installing 130, 131
installing 129
session storage
accessing 177,178
SessionStorage methods 178
setBinary() method 118
setUp() method 122, 124
SPI 66
sreenshots
about 182
capturing 182
capturing, as base64 strings 182, 183
saving, to byte 183
saving, to files 184, 185
Stateless Programming Interface. See SPI

T

teardown() method 72, 125
test
assert, adding 16
converting, to Selenium WebDriver 194-196
debugging 31
designing, page objects used 75, 77
non recording things 34
page information, storing 29
running, against grid 154, 155
running, in parallel 155
recreating, assert methods used 19
saving 34
updating 16
updating, for item verification 17, 18
Test automation 7
test creating, for iOS devices
Phone driver, using 142, 143
test debugging
about 31
steps 31, 32
Test Sources button 68
test suite
about 32
creating 32,33
text() method 50
Thread.sleep() 104
type command 34

U

using variable 89

\

verifyAlert method 19
verifyAttribute method 19
verifybutton 79

verifyChecked method 19
verifyElementNotPresent method 19
verifyElementPresent method 19
verifyText method 19

verifyTitle method 19

wW

waitFor command 23
waitFor set of commands
waitForAlertNotPresent 29
waitForAlertPresent 29
waitForElementNotPresent 29
waitForElementPresent 29
waitForFrameTolLoad 29
waitForPageTolLoad 29
waitForTextNotPresent 29
waitForTextPresent 29
WebDriver
about 109
elements, finding 88
object, instantiating 87
WebDriver AP| 66, 87
WebDriverBackedSelenium
about 193, 194
used, for test conversion to Selenium
WebDriver 194-196
using 196
WebElement object 89
webelement variable 81
WebStorage
local storage 175
technologies 175
Windows 134

X

X11 Virtual Frame Buffer. See XVFB
XCode 128

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

XPath XVFB using, with Selenium

about 97 about 185
used, for nth element type finding 47, 48 tests, running in XVFB 186
XPath Axis XVFB server, setting up 185, 186
using, for element search 50
XPath queries Y
Axis list 51
element attributes, using 48 YAML file
XVFB Selenium Grid 2, using 152
about 182

using, with Selenium 185

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Selenium 2 Testing Tools Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Selenium 1.0 Testing Tools: Beginner's Guide
ISBN: 978-1-84951-026-4 Paperback: 232 pages

Take your web applications with multiple browsers
using the Selenium Framework to ensure the quality
of web applications

7\ N

Selenium 1.0':'

Testing Tools 2. Getrid of any bugs deteriorating the quality of your
: web applications

1. Save your valuable time by using Selenium to
record, tweak and replay your test scripts

3. Take your web applications one step closer to
perfection using Selenium tests

4. Packed with detailed working examples that
illustrate the techniques and tools for debugging

Python Testing Cookhook
ISBN: 978-1-84951-466-8 Paperback: 346 pages
Over 70 simple but incredibly effective recipes for

taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using a variety of
Python testing tools

Python Testing

2. The first book to include detailed screenshots and
COOkbOO k recipes for using Jenkins continuous integration
: server (formerly known as Hudson)

3. Explore innovative ways to introduce automated
testing to legacy systems

4. Written by Greg L. Turnquist — senior software
engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

\ Agile Weh Application Development with Yii1.1and
PHPS

ISBN: 978-1-84719-958-4 Paperback: 368 pages

Fast-track your web application development by
harnessing the power of the Yii PHP Framework

1. A step-by-step guide to creating a modern,
sophisticated web application using an incremental
Agile Web Application Development with and iterative approach to software development
Yii1.1 and PHPS 2. Build a real-world, user-based, database-driven
HP Framework project task management application using the Yii
development framework

3. Take a test-driven design (TDD) approach to
software development utilizing the Yii testing
framework

Yii 1.1 Application Development Cookbook
ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP
framework

1. Learn to use Yii more efficiently through plentiful Yii
recipes on diverse topics

-

2. Make the most efficient use of your controller and
views and reuse them

Yii 1.1 Application
Development Cookbook

3. Automate error tracking and understand the Yii log
and stack trace

4. Full of practically useful solutions and concepts
that you can use in your application, with clearly
explained code and all the necessary screenshots

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with Selenium IDE
	Important preliminary points
	What is Selenium IDE
	Time for action – installing Selenium IDE
	Selenium IDE
	Important note: Rules for automation
	Time for action – recording your first test with Selenium IDE
	Updating a test to assert items are on the page
	Time for action – updating a test to verify items on the page
	Comments

	Time for action – adding Selenium IDE comments
	Multiplying windows
	Time for action – working with multiple windows
	Time for action – complex working with multiple windows
	Selenium tests against AJAX applications

	Time for action – working on pages with AJAX
	Time for action – working with AJAX applications
	Storing information from the page in the test

	Time for action – storing elements from the page
	Debugging tests

	Time for action – debugging tests
	Test Suites

	Time for action – creating Test Suites
	Saving tests
	What you cannot record
	Summary

	Chapter 2:
Locators
	Important preliminary points
	Locating elements by ID
	Time for action - finding IDs of elements on the page with Firebug
	Time for action - finding elements by ID
	Moving elements on the page
	Time for action - finding elements by name
	Adding filters to the name
	Time for action - finding elements by link text
	Time for action - finding elements by accessing the DOM via JavaScript
	Time for action - finding elements by XPath
	Using direct XPath in your test

	Time for action – finding elements by direct XPath
	Using XPath to find the nth element of a type
	Using element attributes in XPath queries
	Doing a partial match on attribute content
	Finding an element by the text it contains

	Using XPath Axis to find elements
	Time For Action – using XPath Axis
	CSS selectors
	Time for action - finding elements by CSS
	Using child nodes to find the element
	Using sibling nodes to find the element
	Using CSS class attributes in CSS selectors
	Using element IDs in CSS selectors
	Finding elements by their attributes
	Partial matches on attributes

	Time for action - finding the nth element with CSS
	Finding an element by its inner text

	Summary

	Chapter 3:
Overview of Selenium WebDriver
	Important preliminary points
	History of Selenium
	Architecture
	WebDriver API
	WebDriver SPI
	JSON Wire protocol
	Selenium server
	The merging of two projects

	How to setup your Java environment
	Time for action – setting up Intellij IDEA project
	Summary

	Chapter 4:
Design Patterns
	Important preliminary points
	Page Objects
	Time for action – setting up the test
	Time for action – moving Selenium steps into private methods to make tests maintainable
	Time for action – using the Page Object Pattern to design tests
	Using Page Factories with Page Objects
	Time for action – using PageFactory
	LoadableComponent
	Time for action – changing our Page Object to use LoadableComponent
	Summary

	Chapter 5:
Finding Elements
	Important preliminary points
	Finding elements
	Finding an element on the page by its ID

	Time for action – using findElementById()
	Finding elements on the page by their ID

	Time for action – using findElementsById()
	Finding an element on the page by its name

	Time for action – using findElementByName()
	Finding elements on the page by their name

	Time for action – using findElementsByName()
	Finding an element on the page by their ClassName

	Time for action – using findElementByClassName()
	Finding elements on the page by their ClassName

	Time for action – using findElementsByClassName()
	Finding an element on the page by their XPath

	Time for action – using findElementByXPath()
	Finding elements on the page by their XPath

	Time for action – using findElementsByXpath()
	Finding an element on the page by its link text

	Time for action – using findElementByLinkText()
	Finding elements on the page by their link text

	Time for action – using findElementsByLinkText()
	Finding elements using a more generic method
	Time for action – using findElement()
	Time for action – using findElements()
	Tips and tricks
	Finding if an element exists without throwing an error
	Waiting for elements to appear on the page
	Implicit waits

	Time for action – using implicit waits
	Explicit waits

	Time for action – using explicit waits with Selenium WebDriver
	Summary

	Chapter 6:
Working with WebDriver
	Important preliminary points
	Working with FirefoxDriver
	Time for action – loading the FirefoxDriver
	Firefox profile preferences

	Time for action – setting Firefox preferences
	Installing a Firefox add-on

	Time for action – installing the add-on
	Working with ChromeDriver
	Time for action – starting Google Chrome or Chromium
	ChromeOptions

	Time for action – using ChromeOptions
	Working with OperaDriver
	Time for action – starting Opera
	OperaProfile

	Time for action – working with OperaProfile
	Working with InternetExplorerDriver
	Time for action – working with Internet Explorer
	Other important points
	Summary

	Chapter 7:
Mobile Devices
	Important preliminary points
	Working with Android
	Emulator

	Time for action – creating an emulator
	Installing the Selenium WebDriver Android Server

	Time for action – installing the Android Server
	Creating a test for Android

	Time for action – using the Android driver
	Running with OperaDriver on a mobile device
	Time for action – using OperaDriver on Opera Mobile
	Working with iOS
	Time for action – setting up the simulator
	Time for action – setting up on a real device
	Creating a test for iOS devices

	Time for action – using the iPhone driver
	Summary

	Chapter 8:
Getting Started with Selenium Grid
	Understanding Selenium Grid
	Selenium Grid Hub
	Time for action – launching the hub
	Adding instances to the hub
	Time for action – adding a server with the defaults
	Adding Selenium Remote Controls for different machines
	Time for action – adding Selenium server for different machines
	Adding Selenium server to do specific browser tasks on specific operating systems
	Time for action – setting the environment when starting Selenium Remote Control
	Using Selenium Grid 2 with your YAML file
	Time for action – using Selenium Grid 1 configuration
	Running tests against the grid
	Time for action – writing tests against the grid
	Running tests in parallel
	Time for action – getting our tests running in parallel
	Summary

	Chapter 9:
Advanced User Interactions
	Important preliminary points
	What is the Advanced User Interactions?
	Keyboard
	Mouse

	Actions
	Drag and drop

	Time for action – creating an Actions chain for dragging and dropping
	Moving an element to an offset

	Time for action – moving an element with a drag-and-drop
by offset
	Doing a context click

	Time for action – doing a context click
	Clicking on multiple items in a select element

	Time for action – selecting multiple items on a select item
	Holding the mouse button down while moving the mouse

	Time for action – holding the mouse button down while moving the mouse
	Summary

	Chapter 10:
Working with HTML5
	Important preliminary points
	Working with application cache
	Time for action – getting the current status of application cache
	Interacting with browser connections
	Seeing if the browser is online

	Time for action – seeing if the browser is online
	Setting the browser offline or online

	Time for action – setting the browser connection to offline
or online
	Working with WebStorage
	Local storage

	Time for action – accessing localStorage
	Session storage

	Time for action – accessing sessionStorage
	Summary

	Chapter 11:
Advanced Topics
	Important preliminary points
	Capturing screenshots
	Capturing base64 version of images

	Time for action – capturing images as base64 strings
	Saving the screenshot to bytes

	Time for action – saving images to bytes
	Saving screenshots to files

	Time for action – saving a screenshot to file
	Using XVFB with Selenium
	Time for action – setting up XVFB server
	Running tests in XVFB

	Time for action – running tests with XVFB
	Working with BrowserMob Proxy
	Creating a proxy

	Time for action – starting the proxy
	Capturing network traffic

	Time for action – capturing network traffic
	Summary

	Appendix A:
Migrating from Remote Control to WebDriver
	WebDriverBackedSelenium
	Time for action – converting tests to Selenium WebDriver using WebDriverBackedSelenium
	Summary

	Appendix B:
Pop Quiz Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 11
	Appendix

	Index

