
www.it-ebooks.info

http://www.it-ebooks.info/


Selenium 2 Testing Tools 
Beginner's Guide

Learn to use Selenium testing tools from scratch

David Burns

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


Selenium 2 Testing Tools Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals.  
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Second published: October 2012

Production Reference: 1091012

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-84951-830-7

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/


Credits

Author
David Burns

Reviewers
Tarun Kumar Bhadauria

Dave Hunt

Acquisition Editor
Usha Iyer

Lead Technical Editor
Pramila Balan

Technical Editors
Joyslita D'Souza

Rohit Rajgor

Project Coordinator
Yashodhan Dere

Proofreader
Steve Maguire

Indexers
Monica Ajmera Mehta 

Rekha Nair

Tejal R. Soni

Graphics
Aditi Gajjar

Production Coordinators
Melwyn D'sa

Arvindkumar Gupta

Cover Work
Melwyn D'sa

Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

David Burns is a Senior Developer in Test having worked with Selenium for quite a few 
years. He is a Selenium Core Committer and so he knows and understands what users and 
developers want from the framework.

I would like to thank everyone in the Selenium community for making 
this product the great tool it is, and giving me an opportunity to write the 
Second Edition of this book!

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Tarun Kumar Bhadauria has been associated with software testing industry from more 
than seven years. His primary interest is towards manual testing and he equally enjoys using 
Selenium for automated testing of web applications. He has been using Selenium from the 
days of Selenium Remote Control. He has co-authored the official Selenium doc available at 
SeleniumHQ. He is working as a Test Engineer at Pontiflex.

Dave Hunt lives in Kent, UK, with his wife and young son. He has always had a passion  
for turning mundane tasks into one-click solutions, and when he discovered Selenium back  
in 2005, his career in software testing and automation development was sealed. He works 
from home for Mozilla, where he assists teams to create automated tests for their  
projects—ranging from Mozilla's web properties to the Firefox web browser and the 
Thunderbird e-mail client.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
 � Fully searchable across every book published by Packt
 � Copy and paste, print and bookmark content
 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


To my loving wife and my amazing boy for giving me the support and drive to 
finish this book! I love you both!

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents
Preface 1
Chapter 1: Getting Started with Selenium IDE 7

Important preliminary points 8
What is Selenium IDE 8
Time for action – installing Selenium IDE 8
Selenium IDE 10
Important note: Rules for automation 12
Time for action – recording your first test with Selenium IDE 13
Updating a test to assert items are on the page 16
Time for action – updating a test to verify items on the page 17
Comments 20
Time for action – adding Selenium IDE comments 20
Multiplying windows 21
Time for action – working with multiple windows 22
Time for action – complex working with multiple windows 23
Selenium tests against AJAX applications 24
Time for action – working on pages with AJAX 25
Time for action – working with AJAX applications 28
Storing information from the page in the test 29
Time for action – storing elements from the page 30
Debugging tests 31
Time for action – debugging tests 31
Test Suites 32
Time for action – creating Test Suites 32
Saving tests 34
What you cannot record 34
Summary 35

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Chapter 2: Locators 37
Important preliminary points 38
Locating elements by ID 39
Time for action - finding IDs of elements on the page with Firebug 39
Time for action - finding elements by ID 40
Moving elements on the page 41
Time for action - finding elements by name 42
Adding filters to the name 43
Time for action - finding elements by link text 43
Time for action - finding elements by accessing the DOM via JavaScript 44
Time for action - finding elements by XPath 45

Using direct XPath in your test 46
Time for action – finding elements by direct XPath 46

Using XPath to find the nth element of a type 47
Using element attributes in XPath queries 48
Doing a partial match on attribute content 49
Finding an element by the text it contains 49

Using XPath Axis to find elements 50
Time For Action – using XPath Axis 50
CSS selectors 52
Time for action - finding elements by CSS 53

Using child nodes to find the element 54
Using sibling nodes to find the element 55
Using CSS class attributes in CSS selectors 55
Using element IDs in CSS selectors 56
Finding elements by their attributes 56
Partial matches on attributes 57

Time for action - finding the nth element with CSS 58
Finding an element by its inner text 59

Summary 60
Chapter 3: Overview of Selenium WebDriver 63

Important preliminary points 63
History of Selenium 64
Architecture 65

WebDriver API 66
WebDriver SPI 66
JSON Wire protocol 66
Selenium server 66
The merging of two projects 67

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iii ]

How to set up your Java environment 67
Time for action – setting up Intellij IDEA project 67
Summary 70

Chapter 4: Design Patterns 71
Important preliminary points 71
Page Objects 72
Time for action – setting up the test 72
Time for action – moving Selenium steps into private methods to make tests 
maintainable 73
Time for action – using the Page Object Pattern to design tests 75
Using Page Factories with Page Objects 78
Time for action – using PageFactory 78
LoadableComponent 81
Time for action – changing our Page Object to use LoadableComponent 82
Summary 85

Chapter 5: Finding Elements 87
Important preliminary points 87
Finding elements 88

Finding an element on the page by its ID 89
Time for action – using findElementById() 89

Finding elements on the page by their ID 90
Time for action – using findElementsById()  90

Finding an element on the page by its name 91
Time for action – using findElementByName() 92

Finding elements on the page by their name 93
Time for action – using findElementsByName() 93

Finding an element on the page by their ClassName 94
Time for action – using findElementByClassName() 94

Finding elements on the page by their ClassName 95
Time for action – using findElementsByClassName() 96

Finding an element on the page by their XPath 97
Time for action – using findElementByXPath() 97

Finding elements on the page by their XPath 98
Time for action – using findElementsByXpath()  98

Finding an element on the page by its link text 99
Time for action – using findElementByLinkText() 100

Finding elements on the page by their link text 101
Time for action – using findElementsByLinkText() 101
Finding elements using a more generic method 102
Time for action – using findElement() 103

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Time for action – using findElements() 103
Tips and tricks 104

Finding if an element exists without throwing an error 104
Waiting for elements to appear on the page 104

Implicit waits 104
Time for action – using implicit waits 105

Explicit waits 105
Time for action – using explicit waits with Selenium WebDriver 106
Summary 107

Chapter 6: Working with WebDriver 109
Important preliminary points 110
Working with FirefoxDriver 111
Time for action – loading the FirefoxDriver 111

Firefox profile preferences 112
Time for action – setting Firefox preferences 112

Installing a Firefox add-on 114
Time for action – installing the add-on 114
Working with ChromeDriver 116
Time for action – starting Google Chrome or Chromium 117

ChromeOptions 118
Time for action – using ChromeOptions 118
Working with OperaDriver 120
Time for action – starting Opera 120

OperaProfile 121
Time for action – working with OperaProfile 122
Working with InternetExplorerDriver 123
Time for action – working with Internet Explorer 124
Other important points 125
Summary 125

Chapter 7: Mobile Devices 127
Important preliminary points 127
Working with Android 128

Emulator 128
Time for action – creating an emulator 128

Installing the Selenium WebDriver Android Server 129
Time for action – installing the Android Server 130

Creating a test for Android 131
Time for action – using the Android driver 131
Running with OperaDriver on a mobile device 133
Time for action – using OperaDriver on Opera Mobile 134

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ v ]

Working with iOS 137
Time for action – setting up the simulator 137
Time for action – setting up on a real device 141

Creating a test for iOS devices 142
Time for action – using the iPhone driver 142
Summary 143

Chapter 8: Getting Started with Selenium Grid 145
Understanding Selenium Grid 145
Selenium Grid Hub 147
Time for action – launching the hub 147
Adding instances to the hub 148
Time for action – adding a server with the defaults 149
Adding Selenium Remote Controls for different machines 150
Time for action – adding Selenium server for different machines 150
Adding Selenium server to do specific browser tasks on specific  
operating systems 151
Time for action – setting the environment when starting Selenium  
Remote Control 152
Using Selenium Grid 2 with your YAML file 152
Time for action – using Selenium Grid 1 configuration 153
Running tests against the grid 154
Time for action – writing tests against the grid 154
Running tests in parallel 155
Time for action – getting our tests running in parallel 155
Summary 156

Chapter 9: Advanced User Interactions 157
Important preliminary points 157
What is the Advanced User Interactions 158

Keyboard 158
Mouse 158

Actions 159
Drag and drop 159

Time for action – creating an Actions chain for dragging and dropping 160
Moving an element to an offset 161

Time for action – moving an element with a drag-and-drop by offset 161
Doing a context click 162

Time for action – doing a context click 162
Clicking on multiple items in a select element 163

Time for action – selecting multiple items on a select item 164
Holding the mouse button down while moving the mouse 165

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ vi ]

Time for action – holding the mouse button down while moving the mouse 165
Summary 167

Chapter 10: Working with HTML5 169
Important preliminary points 169
Working with application cache 170
Time for action – getting the current status of application cache 171
Interacting with browser connections 172

Seeing if the browser is online 172
Time for action – seeing if the browser is online 172

Setting the browser offline or online 173
Time for action – setting the browser connection to offline or online 174
Working with WebStorage 175

Local storage 175
Time for action – accessing localStorage 176

Session storage 177
Time for action – accessing sessionStorage 177
Summary 178

Chapter 11: Advanced Topics 181
Important preliminary points 181
Capturing screenshots 182

Capturing base64 version of images 182
Time for action – capturing images as base64 strings 183

Saving the screenshot to bytes 183
Time for action – saving images to bytes 183

Saving screenshots to files 184
Time for action – saving a screenshot to file 184
Using XVFB with Selenium 185
Time for action – setting up XVFB server 185

Running tests in XVFB 186
Time for action – running tests with XVFB 186
Working with BrowserMob Proxy 187

Creating a proxy 187
Time for action – starting the proxy 187

Capturing network traffic 188
Time for action – capturing network traffic 188
Summary 190

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ vii ]

Appendix A: Migrating from Remote Control to WebDriver 193
WebDriverBackedSelenium 193
Time for action – converting tests to Selenium WebDriver using 
WebDriverBackedSelenium 194
Summary 196

Appendix B: Pop Quiz Answers 197
Chapter 1 197
Chapter 2 198
Chapter 3 198
Chapter 4 198
Chapter 5 199
Chapter 6 199
Chapter 7 200
Chapter 8 200
Chapter 9 200
Chapter 11 201
Appendix 201

Index 203

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Preface
Selenium WebDriver is the most used tool for browser automation. This book shows 
developers and testers how to create automated tests using a browser. You will learn how  
to be able to use Selenium IDE for quick throwaway tests. Or if you want to create tests to 
last, learn to use Selenium WebDriver.

You will learn to use Selenium WebDriver with both desktop browsers and mobile browsers, 
and learn good design patterns to make sure your tests will be extremely maintainable.

What this book covers
Chapter 1, Getting Started with Selenium IDE, explains how to install Selenium IDE and record 
our first tests. We will see what is needed to work against AJAX applications.

Chapter 2, Locators, shows how we can find elements on the page to be used in our tests. 
We will use XPath, CSS, Link Text, and ID to find elements on the page so that we can interact 
with them.

Chapter 3, Overview of Selenium WebDriver, discusses all the history and architectural 
designs for Selenium WebDriver. You will also go through the necessary items for setting  
up a development environment.

Chapter 4, Design Patterns, introduces the different design patterns that can be used with 
Selenium WebDriver. The design patterns will show you how to make your tests more 
maintainable and allow more people to work on your code.

Chapter 5, Finding Elements, explains all the different techniques to find elements  
with Selenium WebDriver. This chapter builds on the locators that we learnt in  
Chapter 2, Locators.

Chapter 6, Working with WebDriver, introduces all the different aspects of getting different 
browsers that Selenium WebDriver supports on desktop operating systems.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 2 ]

Chapter 7, Mobile Devices, explains how Selenium WebDriver works on mobile devices  
to test mobile websites or sites built with responsive web design.

Chapter 8, Getting Started with Selenium Grid, shows us how we can set up our Selenium 
Grid. We will also take a look at running tests in parallel to try bringing down the time it  
takes to run tests.

Chapter 9, Advanced User Interactions, explains how to build chains of actions together  
to help when you need to drag-and-drop or have key combinations working. We will also 
look at how we can press a mouse button and hold it down while we move the mouse.

Chapter 10, Working with HTML5, explains working with some of the HTML5 technologies 
that are becoming available to browsers. The Selenium WebDriver APIs are very similar to 
the JavaScript APIs in the browser to try make use of them easier.

Chapter 11, Advanced Topics, explains how to capture network traffic between the browser 
and the web server. We finish off by capturing screenshots.

Appendix A, Migrating from Remote Control to WebDriver, introduces how the interaction 
with the browser has changed and how we can convert our Selenium 1 tests to Selenium 2 
to take advantage of the changes in Selenium WebDriver.

What you need for this book
 � Mozilla Firefox

 � Google Chrome

 � Internet Explorer

 � Opera

 � Intellij IDEA

 � Firebug

 � Firefinder

 � Selenium IDE

 � Selenium Grid

 � Ubuntu Linux

Who this book is for
If you are a Software Quality Assurance professional, Software Project Manager,  
or a Software Developer interested in automated testing using Selenium, this book  
is for you. Web-based application developers will also benefit from this book.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 3 ]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We do this by running java–jar  
selenium-server.jar from a command prompt or from a terminal depending  
on your operating system."

A block of code is set as follows: 

@Before

public void setUp(){
  selenium = new FirefoxDriver();
}

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 4 ]

Any command-line input or output is written as follows:

–jar selenium-server-standalone.jar

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Select Selenium Grid from 
the drop-down box."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details  
of your errata. Once your errata are verified, your submission will be accepted and the  
errata will be uploaded to our website, or added to any list of existing errata, under the 
Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


1
Getting Started with Selenium IDE

Test automation is growing in popularity over the years because teams do 
not have the time or money to invest in large test teams to make sure that 
applications work as they are expected. Developers also want to make sure  
that the code they have created works as they expect it to.

Jason Huggins saw this issue too and wanted to make sure that a system he 
was working on would work on multiple operating systems and browsers. He 
created Selenium.

Selenium is one of the most well known testing frameworks in the world that 
is in use. It is an open source project that allows testers and developers alike to 
develop functional tests to drive the browser. It can be used to record workflows 
so that developers can prevent future regressions of code. Selenium can work 
on any browser that supports JavaScript, since Selenium has been built using 
JavaScript.

In this chapter we shall cover:

 � What is Selenium IDE

 � Recording our first test

 � Updating tests to work with AJAX sites

 � Using variables in our tests

 � Debugging tests

 � Saving tests to be used later

 � Creating and saving test suites

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 8 ]

Important preliminary points
Before we start working through this chapter we need to make sure that Mozilla Firefox 
is installed on your machine. If you do not have Mozilla Firefox installed you will need to 
download it from http://www.getfirefox.com/.

What is Selenium IDE
Selenium IDE is a Firefox Add-on developed originally by Shinya Kasatani as a way to use the 
original Selenium Core code without having to copy Selenium Core onto the server. Selenium 
Core is the key JavaScript modules that allow Selenium to drive the browser. It has been 
developed using JavaScript so that it can interact with DOM (Document Object Model) using 
native JavaScript calls.

Selenium IDE was developed to allow testers and developers to record their actions as they 
follow the workflow that they need to test.

Time for action – installing Selenium IDE
Now that we understand what Selenium IDE is, it is a good time to install it. At the end of 
these steps, you will have successfully installed Selenium IDE on to your computer:

1. Go to http://seleniumhq.org/download/.

2. Click on the download link for Selenium IDE. You may see a message appear saying 
Firefox prevented this site (seleniumhq.org) from asking you to install software on 
your computer. If you do, click the Allow button.

3. A Firefox prompt will appear, as shown in the following screenshot:

www.it-ebooks.info

http://www.getfirefox.com/
http://seleniumhq.org/download/
http://www.it-ebooks.info/


Chapter 1

[ 9 ]

4. You will then be asked if you would like to install Selenium IDE and the exporter  
add-ons. These have been made pluggable to the IDE by the work that Adam 
Goucher did. You will see a screen like the following appear: 

5. Once the countdown has finished on the Install button, it will become active; click it. 
This will now install Selenium IDE and formatters as Firefox Add-ons.

6. Once the install process is complete it will ask you to restart Firefox. Click the Restart 
Now button. Firefox will close and then re-open. If you have anything open in another 
browser it might be worth saving your work, as Firefox will try to go back to its original 
state but this cannot be guaranteed.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 10 ]

7. Once the installation is complete, the Add-ons window will show the Selenium IDE 
and its current version:

What just happened?
You have successfully installed Selenium IDE and we can start thinking about writing  
our first test.

Selenium IDE
Selenium IDE has been installed, so let's take some time to familiarize ourselves with 
Selenium IDE. This will give us the foundation that we can use in later chapters.

Open up Selenium IDE by going through the tools menu in Mozilla Firefox. The steps are Tools | 
Selenium IDE. A window will appear. If the menu bar is not available, which is now the default 
in Firefox, you can launch Selenium IDE via Firefox | Web Developer | Selenium IDE.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

Starting from the top, I will explain what each of the items are:

 � Base URL: This is the URL that the test will start at. All open commands will be 
relative to the Base URL unless a full path is inserted in the open command.

 � Speed Slider: This is the slider under the Fast and Slow labels on the screen.

 �  Run all the tests in the IDE.

 �  Run a single test in the IDE.

 �  Pause a test that is currently running.

 �  Step through the test once it has paused.

 �  This is the record button. This will be engaged when the test is recording.

 � The Command selectbox has a list of all the commands that are needed to  
create a test. You can type into it to use the auto complete functionality or use  
it as a dropdown.

 � The Target textbox allows you to input the location of the element that you want to 
work against.

 � The Find button, once the target box is populated, can be clicked to highlight the 
element on the page.

 � The Value textbox is where you place the value that needs to change. For example,  
if you want your test to type in an input box on the web page, you would put what 
you want it to type in the value box.

 � The Test table will keep track of all your commands, targets, and values. It has been 
structured this way because the original version of Selenium was styled on FIT tests. 
FIT was created by Ward Cunningham and means Framework for Integrated Testing. 
The tests were originally designed to be run from HTML files and the IDE keeps this 
idea for its tests. 

 � If you click the Source tab you will be able to see the HTML that will store the test. 
Each of the rows will look like:
<tr>
  <td>open</td>
  <td>/chapter1</td>
  <td></td>
</tr>

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 12 ]

 � The area below the Value  textbox will show the Selenium log while the tests are 
running. If an item fails, then it will have an [error] entry.  
This area will also show help on Selenium Commands when you are working in the 
Command selectbox. This can be extremely useful when typing commands into 
Selenium IDE instead of using the record feature.

 � The Log tab will show a log of what is happening during the test. The Reference tab 
gives you documentation on the command that you have highlighted. 

Important note: Rules for automation
Now that we have installed Selenium IDE and understood what it is, we can think about 
working through our first tests. There are a few things that we need to consider when 
creating your first test. These rules apply to any form of test automation but need to be 
adhered to especially when creating tests against a User Interface.

 � Tests should always have a known starting point. In the context of Selenium, this 
could mean opening a certain page to start a workflow.

 � Tests should not have to rely on any other tests to run. If a test is going to add 
something, do not have a separate test to delete it. This is to ensure that if 
something goes wrong in one test, it will not mean you have a lot of unnecessary 
failures to check.

 � Tests should only test one thing at a time.

 � Tests should clean up after themselves.

These rules, like most rules, can be broken. However, breaking them can mean that you may 
run into issues later on, and when you have hundreds, or even thousands of tests, these 
small issues can mean that large parts of a test suite are failing.

With these rules in mind let us create our first Selenium IDE test.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

Time for action – recording your first test with Selenium IDE
We are going to record our first test using Selenium IDE. To start recording the tests we will 
need to start Mozilla Firefox. Once it has been loaded, you will need to start Selenium IDE. 
You will find it under the Tools dropdown menu in Mozilla Firefox or in the Web Developer 
dropdown menu. Once loaded it will look like the next screenshot. Note that the record 
button is engaged when you first load the IDE.

 

To start recording your tests let us do the following:

1. When in record mode, navigate to http://book.theautomatedtester.co.uk/ 
chapter1.

2. On the Web Application do the following:

1. Click on the radio button.

2. Select another value from the drop-down box, for example,  
Selenium RC.

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 14 ]

3. Click on the Home Page link.

3. Your test has now been recorded and should look like the previous screenshot. Click 
the play button that looks like this:  

4. Once your test has completed it will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

What just happened?
We have successfully recorded our first test and played it back. As we can see Selenium IDE 
has tried to apply the first rule of test automation by specifying the open command. It has 
set the starting point of the test, in this case /chapter1, and then it began stepping through 
the workflow that we want to record.

Once the actions have all been completed you will see that all of the actions have a green 
background. This shows that they have completed successfully. On the left you will see that 
it has completed one successful test, or run, within Selenium IDE. If you were to write a test 
that failed, the Failure label would have a 1 next to it.

Pop quiz – Selenium IDE
1. What is the main language that drives Selenium IDE?

a. Ruby

b. Python

c. JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 16 ]

2. Selenium IDE works on Internet Explorer:

a. True

b. False

Updating a test to assert items are on the page
In the last few steps we were able to record a workflow that we would expect the user to 
perform. It will test that the relevant bit of functionality is there, like buttons and links to 
work against. Unfortunately we are not checking that the other items on the page are there 
or if they are visible when they should be hidden. We are going to work against the same 
page as before but we shall make sure that different items are on the page.

There are two mechanisms for validating elements available on the application under test. 
The first is assert; this allows the test to check if the element is on the page. If it is not 
available then the test will stop on the step that failed. The second is verify; this also allows 
the test to check the element is on the page, but if it isn't then the test will carry 
on executing.

To add the assert or verify commands to the tests we need to use the context menu that 
Selenium IDE adds to Firefox. All that one needs to do is right-click on the element if on 
Windows or Linux. If you have a Mac, then you will need to do the two finger click to show 
the context menu.

When the context menu appears, it will look roughly like the following screenshot with the 
normal Firefox functions above it:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

Time for action – updating a test to verify items on the page
In this section we are going to be recording a test and then we are going to update it to have 
some verify commands:

1. Open the IDE so that we can start recording.

2. Navigate to http://book.theautomatedtester.co.uk/chapter1.

3. Select Selenium Grid from the drop-down box.

4. Change the Select to Selenium Grid.

5. Verify that Assert that this text is on the page text is mentioned on the right-
hand side of the drop-down box, by right-clicking on the text and selecting Verify 
TextPresent Assert that this text is on the page. You can see the command in the 
previous screenshot.

6. Verify that the button is on the page. You will need to add a new command for 
verifyElementPresent with the target verifybutton in Selenium IDE.

7. Now that you have completed the previous steps, your Selenium IDE should look like 
the following screenshot:

If you now run the test you will see it has verified that what you are expecting to see on the 
page has appeared. Notice that the verify commands have a darker green color. This is to 
show that they are more important to the test than moving through the steps. The test has 
now checked that the text we required is on the page and that the button was there too.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 18 ]

What would happen if the verify command did not find what it was expecting? The IDE 
would have thrown an Error stating what was expected was not there, but it carried on  
with the rest of the test. We can see an example of this in the following screenshot:

The test would not have carried on if it was using assert as the mechanism for validating that 
the elements and text were loaded with the page.

What just happened?
We have just seen that we can add Asserts or Verification to the page. Selenium IDE does not 
do this when recording, so it will always be a manual step. We saw that if we use the assert 
command it will cause the test to stop if it fails while the verify command allows the test to 
carry on after a failure. Each of these has their merits.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

Have a go hero – recreating the test by using the assert methods
Some of the verify and assert methods are:

 � verifyElementPresent

 � assertElementPresent

 � verifyElementNotPresent

 � assertElementNotPresent

 � verifyText

 � assertText

 � verifyAttribute

 � assertAttribute

 � verifyChecked

 � assertChecked

 � verifyAlert

 � assertAlert

 � verifyTitle

 � assertTitle

Pop quiz – verifying and asserting
1. Selenium verifies items on the page when it is recording steps:

a. True

b. False

2. What is the difference between verify and assert?

3. If you wanted to validate that a button has appeared on a page, which two 
commands would be the best to use?

a. verifyTextPresent/assertTextPresent

b. verifyElementPresent/assertElementPresent

c. verifyAlertPresent/assertAlertPresent

d. verifyAlert/assertAlert

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 20 ]

Comments
Before we carry on further with Selenium, it would be a good time to mention how to create 
comments in your tests. As all good software developers know, having readable code and 
having comments can make maintenance in the future much easier. Unlike in software 
development it is extremely hard, almost impossible, to write self-documenting code. To 
combat this, it is good practice to make sure that your tests have comments that future 
software testers can use.

Time for action – adding Selenium IDE comments
To add comments to your tests do the following steps:

1. In the test that was created earlier, right-click on a step. For example, the verify step.

2. The Selenium IDE context menu will be visible as shown in the following screenshot:

3. Click on Insert New Comment. A space will appear between the  
Selenium commands.

4. Click on the Command textbox and enter in a comment so that you can use it for 
future maintenance. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 21 ]

What just happened?
We have just had a look at how to create comments. Comments will always appear as 
purple text in the IDE. This, like in most IDEs, is to help you spot comments quicker when 
looking through your test cases. Now that we know how to keep our tests maintainable with 
comments, let's carry on working with Selenium IDE to record/tweak/replay our scripts.

Multiplying windows
Web applications unfortunately do not live in one window of your browser. An example of 
this could be a site that shows reports. Most reports would have their own window so that 
people can easily move between them.

Unfortunately in testing terms this can be quite difficult to do, but in this section we will have 
a look at creating a test that can move between windows.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 22 ]

Time for action – working with multiple windows
Working with multiple browser windows can be one of the most difficult things to do within 
a Selenium Test. This is down to the fact that the browser needs to allow Selenium to 
programmatically know how many child browser processes have been spawned.

In the following examples we shall see the tests click on an element on the page which will 
cause a new window to appear. If you have a pop-up blocker running, it may be a good idea 
to disable it for this site while you work through these examples.

1. Open up Selenium IDE and go to the Chapter 1 page on the site.

2. Click on one of the elements on the page that has the text Click this link to launch 
another window. This will cause a small window to appear.

3. Verify the text in the popup by right-clicking and selecting VerifyText id=popup text 
within the popup window.

4. Once the window has loaded, click on the Close the Window text inside it.

5. Add a verify command for an element on the page. Your test should now look like 
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 23 ]

Sometimes Selenium IDE will add a clickAndWait instead of a click command. 
This is because it notices that the page has to unload. If this happens just change the 
clickAndWait to a click so that it does not cause a timeout in the test.

What just happened?
In the test script we can see that it has clicked on the item to load the new window and 
then has inserted a waitForPopUp. This is so that your test knows that it has to wait for a 
web server to handle the request and the browser to render the page. Any commands that 
require a page to load from a web server will have a waitFor command.

The next command is the selectWindow command. This command tells Selenium IDE that 
it will need to switch context to the window, called popupwindow, and will execute all the 
commands that follow in that window unless told otherwise by a later command.

Once the test has finished with the popup window, it will need to return to the parent 
window from where it started. To do this we need to specify null as the window. This  
will force the selectWindow to move the context of the test back to its parent window.

Time for action – complex working with multiple windows
In the next example we are going to open up two pop-up windows and move between them 
and the parent window as it completes its steps.

1. Start Selenium IDE and go to Chapter 1 on the website.

2. Click on the Click this link to launch another window link. This will launch  
a pop-up window.

3. Assert the text on the page. We do this by right-clicking and selecting assertText.

4. Go back to the parent window and click on the link to launch the second  
pop-up window.

5. Verify the text on the page.

6. Move to the first pop-up window and close it using the close link. As before,  
be aware of clickAndWait instead of click.

7. Move to the second pop-up window and close it using the close link.

8. Move back to the parent window and verify an element on that page.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 24 ]

9. Run your test and watch how it moves between the windows. When complete it 
should look like the following screenshot:

What just happened?
We just had a look at creating a test that can move between multiple windows. We saw how 
we can move between the child windows and its parent window as though we were a user.

Selenium tests against AJAX applications
Web applications today are being designed in such a way that they appear the same as 
desktop applications. Web developers are accomplishing this by using AJAX within their web 
applications. AJAX stands for Asynchronous JavaScript And XML due to the fact that it relies 
on JavaScript creating asynchronous calls and then returning XML with the data that the user 
or application requires to carry on. AJAX does not rely on XML anymore, as more and more 
people move over JSON, JavaScript Object Notation, which is more lightweight in the way 
that it transfers the data. It does not rely on the extra overhead of opening and closing tags 
that is needed to create valid XML.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 25 ]

Time for action – working on pages with AJAX
In our first example, we are going to click on a link and then assert some text is visible  
on the screen:

1. Start up Selenium IDE and make sure that the Record button is pressed.

2. Navigate to http://book.theautomatedtester.co.uk/chapter1.

3. Click on the text that says Click this link to load a page with AJAX.

4. Verify the text that appears on your screen. Your test should look like the  
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 26 ]

5. Run the test that you have created. When it has finished running it should look like 
the following screenshot:

Have a look at the page that you are working against. Can you see the text that the test is 
expecting? You should see it, so why has this test failed? The test has failed because when 
the test reached that point, the element containing the text was not loaded into the DOM. 
This is because it was being requested and rendered from the web server into the browser.

To remedy this issue, we will need to add a new command to our test so that our tests pass 
in the future:

1. Right-click on the step that failed so the Selenium IDE context menu appears.

2. Click on Insert New Command.

3. In the Command select box, type waitForElementPresent or select it from the drop-
down menu.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 27 ]

4. In the Target box add the target that is used in the verifyText command.

5. Run the test again and it should pass this time:

What just happened?
Selenium does not implicitly wait for the item that it needs to interact with, so it is seen as 
good practice to wait for the item you need to work with then interact with it. The waitFor 
commands will timeout after 30 seconds by default but if you need it to wait longer you can 
specify the tests by using the setTimeout command. This will set the timeout value that 
the tests will use in future commands.

If need be you can change the default wait if you go to Options | Options and then on  
the  General tab and under Default timeout value of recorded command in milliseconds  
(30s = 30000ms) change it to what you want. Remember that there are 1000 milliseconds  
in a second.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 28 ]

Time for action – working with AJAX applications
As more and more applications try to act like desktop applications we need to be able to 
handle synchronization steps between our test and our application. In this section we will 
see how to handle AJAX and what to synchronize.

1. Click on the load text to the page button.

2. Navigate to http://book.theautomatedtester.co.uk/chapter1.

3. Wait for the text I have been added with a timeout. Your test will look like the 
following screenshot:

What just happened?
In the previous examples, we waited for an element to appear on the page; there are a number 
of different commands that we can use to wait. Also remember that we can take advantage 
of waiting for something not to be on the page. For example, waitForElementNotPreset. 
This can be just as effective as waiting for it to be there. The following commands make up the 
waitFor set of commands but this is not an exhaustive list:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 29 ]

 � waitForAlertNotPresent

 � waitForAlertPresent

 � waitForElementPresent

 � waitForElementNotPresent

 � waitForTextPresent

 � waitForTextNotPresent

 � waitForPageToLoad

 � waitForFrameToLoad

A number of these commands are run implicitly when other commands are being run. An 
example of this is the clickAndWait command. This will fire off a click command and 
then fire off a waitForPageToLoad. Another example is the open command which only 
completes when the page has fully loaded.

If you are feeling confident then it would be a good time to try different waitFor 
techniques.

Pop quiz – waiting for elements
1. If an element got added after the page has loaded what command would you use to 

make sure the test passed in the future?
a. waitForElementPresent

b. pause

c. assertElementPresent

Storing information from the page in the test
Sometimes there is a need to store elements that are on the page to be used later in a test. 
This could be that your test needs to pick a date that is on the page and use it later so that 
you do not need to hardcode values into your test.

Once the element has been stored you will be able to use it again by requesting 
it from a JavaScript dictionary that Selenium keeps track of. To use the variable it 
will take one of the following two formats: it can look like ${variableName} or 
storedVars['variableName']. I prefer the storedVars format as it follows  
the same format as it is within Selenium internals.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 30 ]

Time for action – storing elements from the page
To see how this works lets work through the follow example:

1. Open up Selenium IDE and switch off the Record button.

2. Navigate to http://book.theautomatedtester.co.uk/chapter1.

3. Right-click on the text Assert that this text is on the page and go to the storeText 
command in the context menu and click on it.

4. A dialog will appear as shown in the following screenshot. Enter the name  
of a variable that you want to use. I have used textOnThePage as the name  
of my variable.

5. Click on the row below the storeText command in Selenium IDE.

6. Type type into the Command textbox.

7. Type storeinput into the Target box.

8. Type ${textOnThePage} into the Value box.

9. Run the test. It should look like the following screenshot:

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter1
http://book.theautomatedtester.co.uk/chapter1
http://www.it-ebooks.info/


Chapter 1

[ 31 ]

What just happened?
Once your test has completed running you will see that it has placed Assert that this text is 
on the page into the textbox.

Debugging tests
We have successfully created a number of tests and have seen how we can work against 
AJAX applications but unfortunately creating tests that run perfectly first time can be 
difficult. Sometimes, as a test automator, you will need to debug your tests to see  
what is wrong.

To work through this part of the chapter you will need to have a test open in Selenium IDE.

Time for action – debugging tests
These two steps are quite useful when your tests are not running and your want to execute a 
specific command.

1. Highlight a command.

2. Press the X key, this will make the command execute in Selenium IDE.

What just happened?
When a test is running you can press the Pause button to pause the test after the step that is 
currently being run. Once the test has been paused the Step button is no longer disabled and 
you can press it to step through the test as if you were stepping through an application.

If you are having issues with elements on the page you can type in their location and then 
click on the Find button. This will surround the element that you are looking for with a green 
border that flashes for a few seconds. It should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 32 ]

The echo command is also a good way to write something from your test to the log. This is 
equivalent to Console.log in JavaScript. For example, echo | ${variableName}.

Also remember that if you are trying to debug a test script that you have created with 
Selenium IDE, you can set breakpoints in your test. You simply right-click on the line and 
select breakpoint from the list. It will be similar to the following screenshot:

You can also use the keyboard shortcut of B to allow you to do it quicker.

Test Suites
We have managed to create a number of tests using Selenium IDE and have managed to run 
them successfully. The next thing to have a look at is how to create a test suite, so that we 
can open the test suite and then have it run a number of tests that we have created.

Time for action – creating Test Suites
If you have Selenium IDE open from the last steps, click on the File menu:

1. Click New Test Case.

2. You will see that Selenium IDE has opened a new area on the left of the IDE as 
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 33 ]

You can do this as many times as you want and when the Play entire test suite button is 
clicked it will run all the tests in the test suite. It will log all the passes and failures at the 
bottom of the Test Case box.

To Save this, click on the File menu and then click Save Test Suite and save the Test Suite file 
to somewhere that you can get to again. One thing to note is that saving a test suite does not 
save the test case. Make sure that you save the test case every time you make a change and 
not just the test suite.

To change the name of the test case to something a lot more meaningful you can do this by 
right-clicking on the test and clicking on the Properties item in the context menu:

You can now add meaningful names to your tests and they will appear in Selenium IDE 
instead of falling back to their filenames.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 34 ]

What just happened?
We have managed to create our first test suite. This can be used to group tests together to 
be used later. If your tests have been saved, you can update the test suite properties to give 
the tests a name that is easier to read.

Pop quiz – Test Suites
1. How do we run all the tests in a test suite?

Saving tests
Saving tests is done in the same manner as saving a test suite. Click on the File Menu and 
then click Save Test Case. This will give you a save dialog, save this to somewhere that you 
can get to it later. When you save your tests and your test suite, Selenium IDE will try to keep 
the relationships between the folders in step when saving the tests and the test suites.

What you cannot record
We have seen our tests work really well by recording them and then playing them back. 
Unfortunately there are a number of things that Selenium cannot do. Since Selenium was 
developed in JavaScript, it tries to synthesize what the user does with JavaScript events. 
Unfortunately this does mean that it is bound by the same rules that JavaScript has in any 
browsers by operating within the sandbox.

 � Silverlight and Flex/Flash applications, at the time of writing, cannot be recorded 
with Selenium IDE. Both these technologies operate in their own sandbox and do 
not operate with the DOM to do their work.

 � HTML 5, at the time of writing, is not fully supported with Selenium IDE. A good 
example of this is elements that have the contentEditable=true attribute. If 
you want to see this, you can use the type command to type something into the 
html5div element. The test will tell you that it has completed the command but 
the UI will not have changed, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 35 ]

 � Selenium IDE does not work with Canvas elements on the page either so you will not 
be able to make your tests move items around on a page.

 � Selenium cannot do file uploads. This is due to the JavaScript sandbox not allowing 
JavaScript to interact with <input type=file> elements on a page. While you 
might be able to send the text to the box it will not always do what you expect,  
so I would recommend not doing it.

We will be able to automate a number of these elements with Selenium WebDriver in later 
chapters of this book.

Summary
We learnt a lot in this chapter about Selenium IDE, learning how to create your first test 
using the record and replay and understanding some of the basic concepts like moving 
between multiple windows that can appear in a test, and to save our tests for future use.

Specifically, we covered:

 � How to install Selenium IDE: We started by downloading Selenium IDE from 
http://seleniumhq.org.

 � What Selenium IDE is made up of: The breakup of Selenium IDE allowed us to 
see what makes up Selenium IDE. It allowed us to understand the different parts 
that make up a command that will be executed in a test as well as its basic format. 
We had a look at how to load Selenium IDE and how to get started with recording 
of tests. We saw that a Selenium IDE command is made up of three sections: the 
command, the target, and the value that might be used.

 � Recording and Replaying Tests: We used Selenium IDE to record a workflow that 
a user will need in their tests. We also had a look at verifying and asserting that 
elements are on the page and that the text we are expecting is also on the page.

 � How to add comments to tests: In this section of the chapter we saw how to add 
comments to the tests so that they are more maintainable.

 � Working with Multiple Windows: Applications today can have pop-up windows  
that tests need to be able to move between.

 � Working with AJAX applications: AJAX applications do not have the items needed 
for the tests when the tests get to commands. To get around this we had a look at 
adding waitFor commands to the tests. This is due to the fact that Selenium does 
not implicitly wait for elements to appear in the page.

www.it-ebooks.info

http://seleniumhq.org/
http://www.it-ebooks.info/


Getting Started with Selenium IDE

[ 36 ]

 � Storing information in variables: There is always something that is on the page 
that needs to be used later but unfortunately you will not know what the value is 
before the test runs. This section showed us how we can record items into a variable 
and use it later in a test. This could be something that has happened on a page and 
needs to check that it is still there on later pages.

 � Debugging tests: Creating tests does not always go according to plan, so in this 
section we saw some of the different ways to debug your tests.

 � Saving Test Suites: Finally we saw how we can save tests for future use and we can 
save them into different groups by saving them into test suites.

We also discussed what cannot be tested using Selenium IDE. We saw that Silverlight and 
Flex/Flash applications could not be tested, and that when working with a number of HTML 
5 elements the tests say that they have completed the tasks even though the UI has not 
changed. In later chapters we will discuss different mechanisms that we can use within our 
tests that might be useful against HTML5 elements on the page.

Now that we've learnt about Selenium IDE, we're ready to look at all the different techniques 
to find elements on the page—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


2
Locators

Locators allow us to find elements on a page that can be used in our tests. 
In the last chapter we managed to work against a page which had decent 
locators. In HTML, it is seen as good practice to make sure that every 
element you need to interact with has an ID attribute and a Name attribute. 
Unfortunately, following best practices can be extremely difficult to do, 
especially when building the HTML dynamically on the server before sending it 
back to the browser.

In this chapter we shall:

 � Locate elements by ID

 � Locate elements by Name

 � Locate elements by Link

 � Locate elements by XPath

 � Locate elements by CSS

 � Locate elements by DOM

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 38 ]

Important preliminary points
Before starting this chapter we should begin by making sure that we have all the relevant 
applications installed. While these are not foolproof, they will give us some clue how to 
construct the locator for our tests to use.

 � Firebug: https://addons.mozilla.org/firefox/addon/firebug

Firebug has become the defacto tool for web developers as it allows developers to 
find elements on the page by using the find functionality.

It has a JavaScript REPL. REPL stands for Read-Eval-Print-Loop or interactive shell 
that allows you to run JavaScript without having to create an entire page.

 � Firefinder: https://addons.mozilla.org/firefox/addon/firefinder-
for-firebug

A very good tool for testing out XPath and CSS on the page. It will highlight all 
elements on the page that match the selector to your element location.

 � IE Developer Tools:

This is built into IE7, IE8 and IE9 that we can launch by pressing F12. It also has a 
number of features that Firebug has.

 � Google Chrome Developer Tools:

This, like IE, is built into the browser and will also allow you to find the elements on 
the page and be able to work out its XPath.

Once you have worked out your locator, you will need to put it into Selenium IDE to test it. 
At the beginning of Chapter 1, Getting Started with Selenium IDE there was a section that 
explained the layout of Selenium IDE. One of the buttons on the page is named Find. Click on 
this button when you have something in the Value textbox; it will highlight the item in green 
as shown in the next screenshot. On Mac OS X, the background color will flash yellow.

Now that we have these tools and understand how to use them we can start adding decent 
locators to our test scripts.

www.it-ebooks.info

https://addons.mozilla.org/firefox/addon/
http://www.it-ebooks.info/


Chapter 2

[ 39 ]

Locating elements by ID
On web applications today, elements should have an ID attribute for all their controls on the 
page. A control would be an element that we can interact with and is not static text. This 
allows Selenium to find the unique item, since IDs should be unique, and then complete the 
action that it needs to do against that element.

Time for action - finding IDs of elements on the page with 
Firebug

In this section we are going to find a number of elements that are on the page. You will need 
to have Firebug installed for this. We are going to look at how to find the ID of an element 
using Firefox.

1. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on 
the Firebug icon.

2. Click on the Select Element icon in Firebug .

3. Move your mouse over the element that you wish to have a look at.

4. Move your mouse over different elements. As you can see in the following 
screenshot, firebug will highlight each of the items that you want to see:

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 40 ]

What just happened?
Once one has been selected, you can see that the element and all of the different attributes 
are now visible. We saw that the item became highlighted, or a single color box surrounded 
it, so that we can see which item is selected. We see this in the previous screenshot.

Now that we are confident on how to find elements and their attributes, let's start using 
them in Selenium.

Pop quiz – using the Find button
1. What color is an element bordered with when the Find button is clicked in  

Selenium IDE?
a. Red

b. Green

c. Amber

d. Yellow

Time for action - finding elements by ID
Elements often have IDs that are used to locate them. In the Target textbox this would look 
like id=Element. Follow the given example to see how it would work:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on 
the Firebug icon.

3. Find any element that you want to interact with on the page and in the Target 
textbox of Selenium IDE, place its ID attribute value. Make sure that it has an  
ID attribute. For example, use but1 as in the previous screenshot against  
http://book.theautomatedtester.co.uk/chapter2.

4. Type the command click into the Command selectbox.

5. Play your script.

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter2
http://book.theautomatedtester.co.uk/chapter2
http://www.it-ebooks.info/


Chapter 2

[ 41 ]

What just happened?
Your test will have executed the step successfully. Since the test is using the ID of the 
element, if that element were to be moved around, it would find the item without any issue. 
This is one of the main plus points of Selenium over a lot of the competing test frameworks 
out there.

Moving elements on the page
As I just mentioned, Selenium, when using the value of the ID attribute, can find the 
elements on the page even if they were moved. Click on the button with the text Random 
on the Chapter 2 page of the site (you can do this manually), and then run the script that we 
created earlier. You will see that your test executes successfully.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 42 ]

Time for action - finding elements by name
Elements do not necessarily have ID attributes on all of them. Elements can have names that 
we can use to locate them. In the Target textbox this would look like name=Element. Follow 
the given example to see how it would work:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on 
the Firebug icon.

3. Find any element that you want to interact with and in the Target textbox of 
Selenium IDE, place the value of its name attribute. For example, use but2 as in 
the following screenshot against http://book.theautomatedtester.co.uk/
chapter2.

www.it-ebooks.info

http://book.theautomatedtester.co.uk/chapter2
http://www.it-ebooks.info/


Chapter 2

[ 43 ]

4. Type the command click into the Command selectbox.

5. Play your script.

What just happened?
Your test will have executed the step successfully. Since the test is using the name of the 
element, if that element were to be moved around, it would find the item without any issue.

Adding filters to the name
There are times when there may be elements on the page that have the same name but a 
different attribute. When this happens we can apply filters to the locator so that Selenium 
IDE can find the element that we are after.

An example of this on the page would be name=verifybutton value=chocolate;.  
This will find the second button with the name verifybutton. See an example of this in 
the following screenshot:

Time for action - finding elements by link text
Probably the most common element on a page is a link. Links allow pages to be joined 
together so end users can navigate your site with confidence. You can see a screenshot of 
the element being found in Selenium IDE.

1. To specify that you want to follow a link you would use the target link=link.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 44 ]

2. On http://book.theautomatedtester.co.uk/chapter2, there is a link to 
the index page of the site. In the Target textbox in Selenium IDE, we are going to 
need to add link=Index. If you click Find button on Selenium IDE you will see  
the following:

What just happened?
We have seen how we can find links that are on that page so that they can be used in your 
test. All that is needed is the inner text of the nodes in the DOM.

Time for action - finding elements by accessing the DOM via 
JavaScript

There are times where the DOM will be updated via AJAX and this means that our locator 
needed for the test will need some form of JavaScript to see if it is there. In JavaScript, 
calling the DOM to find the first link on the page would look like document.links[0];. 
document represents the HTML document and links is an array on that object. On the 
Chapter 2 page of the website, it will show the link that we used in the previous section of 
this chapter.

But normally it will just be calls to the DOM to see if an element has been added like in the 
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 45 ]

What just happened?
We have just seen that we can use JavaScript to find elements on the page. This can be 
extremely useful if you have a web application that does a lot of interaction with the DOM.

Pop quiz – finding Elements with DOM JavaScript
1. If you wanted to use JavaScript to find the element on the page, which strategy 

would you use to find it?

a. ID

b. Name

c. DOM

d. CSS Selector

e. XPath

Time for action - finding elements by XPath
Unfortunately, best practices cannot always be followed when building the markup or if 
they are, then they may have a dynamic edge to them. An example of this would be working 
against a page that uses a key from the database as the element ID, so when something is 
edited and stored back in the database it can be found a lot quicker and updated. In this 
section of the chapter, we are going to work with XPath. XPath allows us to query the DOM 
as though it were an XML document. With XPath we can do some rather complex queries to 
find elements on the page that may not have been accessible otherwise.

Let's start by creating a basic XPath. We are going to look for an input button:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2.

3. Type click into the Command selectbox.

4. Type xpath=//input into the Target textbox.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 46 ]

5. Click on the Find button. It will find a button on the page like in the following 
screenshot. Note that sometimes Selenium IDE will flash the button yellow: 

What just happened?
Your test will have looked against the DOM to find an element that was of the type input. 
The xpath= at the beginning tells Selenium that the element needed will be located by 
XPath. It removes the guess work that Selenium would have to do and is seen as good 
practice. The // tells the query that it needs to stop at the first element that it finds. It is a 
greedy query so if you have a rather large web page, it can take some time to return since 
it will try to parse the page. Writing the XPath like this allows us to make changes to the UI, 
within reason, and not have it impact the test.

Using direct XPath in your test
As I mentioned in the first part of this section, having // as the start of your XPath is seen as 
a greedy query since it will parse the entire DOM until it finds the element that you want to 
find. If you want to work against an element that will always be in a certain place, you can 
use a more direct XPath. 

Time for action – finding elements by direct XPath
Instead of using the //, you can use a single / but you will need to make sure that the first 
node in your query is HTML. Let's see an example of this:

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2.

3. Type xpath=/html/body/div[2]/div[3]/input into the Target input of 
Selenium IDE.

4. Click on the Find button.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 47 ]

What just happened?
The previous locator will have found the same element as before. This type of XPath query 
will find the element fractionally quicker but if your UI is going to change, it may fail if the 
element is moved into a different area of the page. One thing to really note is that XPath 
locators can be extremely fragile. They can find what you want but the slightest change to 
your HTML and they break, meaning that you need to do maintenance on that test. I would 
recommend only using these if you have to.

You will have noticed that parent and child nodes are in the same query. Since HTML has a 
tree structure, it just notifies the query that it needs to start at the html node, then move 
to its child node, body, then to body's child, and so on until it reaches the end of the query. 
Once it has done that it will stop executing the query.

Using XPath to find the nth element of a type
There are a lot of occasions where as a Selenium user you will have to click on an edit button 
in a table so that you can update something specific. Have a look at the button that you wish 
to click; it does not have a unique name or ID. An example of this is the button with the value 
"Sibling Button".

When doing a query against the DOM, an array of elements is returned to Selenium that 
match the query. For example if you were to do //div on the Chapter 2 page of the website, 
there are three elements returned to Selenium. If your test is only relying on the first item 
in your test, then it will try and access only the first item. If you wanted to interact with the 
second element then your query would look like //div[2]. Note that the second to nth 
element need to be sibling nodes of the first element that is returned. If they are not and 
you were to access the element it would fail saying that it could not find them.

We can see this with the input buttons that are present on the page. They all reside in 
their own containing div element, so do not have any sibling elements that are also input 
elements. If you were to put //input[2] into Selenium IDE, it would not be able to find the 
element and fail. 

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 48 ]

You can see an example of this in the following screenshot:

Using element attributes in XPath queries
There are times that you will need to find elements that are the same except for the 
difference in one or two attributes. To handle this we can add the attributes to the query 
so that we can try to make the element more unique for use in the test. The format can 
be used for any attribute on any element. It will always follow xpath=//element[@
attribute='attribute value']. For example, if you have two div elements on 
the page, but they only differ by the class attribute, your XPath query would look like the 
following: xpath=//div[@class='classname'].

Try doing this with Selenium yourself by trying to identify something unique about the div 
elements on the page. When you have completed the task your query should look like one of 
the following in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 49 ]

Doing a partial match on attribute content
As mentioned earlier there are times where there is no way for a developer to create  
a static ID for elements on the page. This could be down to the fact that the element is being 
loaded asynchronously via AJAX or because it is using the key of the data as it is stored in  
the database.

There are times where only part of the ID is dynamic. This is to allow the developer to cram 
more information onto the page so that the user has everything they need. We will need to 
have a mechanism to work with these elements.

To do the partial match, your query will need to have the word contains with the attribute 
and the partial match that it needs. For example, if you wanted to access the element that 
has the text in it "This element has an ID that changes every time the page is loaded", you 
will use //div[contains(@id,'time_')]. This is due to the first part of the ID always 
being static. The locator could also use starts-with instead of contains to make the 
XPath query stricter in what is returned. The queries in the following screenshot will find the 
same element on the page:

Finding an element by the text it contains
Finding elements by the text they contain can be quite useful when working with web 
pages that have been created dynamically. The elements could be from using a web based 
WYSIWYG editor or you might just like to find a paragraph on the page with specific text to 
then do further queries on.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 50 ]

To do this your query will need to have the text() method call in the query. It will match 
the entire contents of the node if it has the format //element[text()='inner text']. 
As seen in the previous section, your query can use the contains keyword to allow it to 
have a bit more leniency to what it finds. Next you can find a screenshot of queries that will 
find the same element as the previous section:

Using XPath Axis to find elements
As we have seen, XPath is normally only used if the element we need to interact with is not 
accessible by normal means. In this section of the chapter, we are going to have a look at 
leveraging XPath Axis in our queries to find the element that we wish to interact with.

An example that I have used in the real world was to find a table cell that had specific text, 
then traverse the tree backwards to find the edit button so that I could click on it. This may 
seem like an extreme example just to click on an edit button but is extremely common 
according to the Selenium Users forum on Google Groups.

Time For Action – using XPath Axis
In the first example, we are going to find a button and then find its sibling. In this example, 
the query that we will generate is equivalent to xpath=//div[@class='leftdiv']/
input[2]. 

1. We will start by finding the first element for our query which is //input[@
value='Button with ID']. Place that into Selenium IDE Target textbox  
and see which element it highlights. 

2. There is another button below the one that is highlighted and that is the element 
that we need to work with in this section. The button is the next input item in the 
HTML, so it is elements following-sibling that we need. Our locator will look 
like //input[@value='Button with ID']/following-sibling::input[@
value='Sibling Button'] and if it was placed into Selenium IDE it would be 
able to find the element that we are after; see the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 51 ]

What just happened?
We have just seen how we can use XPath axis to find the elements that we need in our tests. 
We managed to find the element using the following-sibling axis.

As mentioned earlier you can use XPath to find an element and then walk backwards up the 
tree. If we were to take the example that we have just done and reverse it, you will need to 
start at the button with the value Sibling Button and then go back to the button with the 
value Button with ID the XPath query would then look like.

We can see it finding the element in the following screenshot:

Following is a list of Axis that you can use in your XPath queries to find the elements  
on the page:

Axis name Result

ancestor Selects all the ancestors (parent, grandparent, and so on) of the element

descendant Selects all the descendants (children, grandchildren, and so on) of the 
element

following Selects all elements that follow the closing tab of the current element

following-sibling Selects all the siblings after the current element

parent Selects the parent of the current element

preceding Selects all elements that are before the current element

preceding-Sibling Selects all of the siblings before the current element

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 52 ]

As we have seen, there is a large number of different ways to find the 
same element on the web page. Having XPath queries in your test can be 
really useful for finding elements on the page but can slow down your test. 
Browsers like Internet Explorer 6 do not have built-in XPath libraries and 
rely on doing the XPath query via JavaScript which can mean that a test 
that uses XPath can run two or more times slower than a test with IDs. The 
more complex the XPath, the slower the test since it needs to do more DOM 
traversals which is an expensive operation.
There is also another way to do XPath-like queries against the DOM and use 
built-in libraries in most browsers. We can use CSS selectors which is the next 
section of this book.

Pop quiz – using XPath Axis
1. Pick two from the following if you wanted do a partial match on an attribute on an 

element from the beginning of the value:

a. contains()

b. starts-with()

c. ends-with()

Have a go hero – working with XPath Axis
Go to http://financial-dictionary.thefreedictionary.com/ and use 
contains(), starts-with(), and ends-with() on the page. Use the call 
getXPathCount() to see how many items you can get with your XPath query.

CSS selectors
We saw in the previous section that XPath selectors can offer your tests a lot of flexibility to 
find elements on the page.

It must be noted that Selenium IDE and Selenium RC uses Sizzle, the 
framework used for selectors in jQuery, to find elements on the page. Not 
all of these can be translated to work in Selenium WebDriver. When we 
come across items like this, it will be mentioned in that section.

www.it-ebooks.info

http://financial-dictionary.thefreedictionary.com/
http://www.it-ebooks.info/


Chapter 2

[ 53 ]

Time for action - finding elements by CSS
So, finding elements by XPath can be an extremely costly exercise. A way around this is to 
use CSS selectors to find the objects that you need. Selenium is compatible with CSS 1.0, CSS 
2.0, and CSS 3.0 selectors. There are a number of items that are supported like namespace in 
CSS 3.0 and some pseudo classes and pseudo elements.

The syntax of your locator will look like css=cssSelector. Let's create our first selector to 
find an element on our page.

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2 and click on 
the Firebug icon. Click on the Firefinder tab in Firebug.

3. We are going to look at one of the buttons in the div with the ID divontheleft. 
The CSS Selector for the buttons would be div.leftdiv input. Place that into 
FireFinder and click on the Filter button.

4. Your browser should show something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 54 ]

5. If you were now to put this into Selenium IDE , insert css=div.leftdiv input 
into the Target textbox and click on the Find button, it should look like the next 
screenshot. You can also write this as div[class='leftdiv'] in Firefinder to 
make it look similar to XPath:

What just happened?
We have seen how Selenium has used the same CSS selector to find a button. Unlike in 
normal CSS, Selenium is only interested in the first element that matches the query and that 
is why in the second picture only the first button was highlighted and not its sibling.

Using child nodes to find the element
In the previous example we saw that we were able to find the input button that was a child 
of the div node in the DOM. div.leftdiv input will look for the div and then look for 
an input node in the DOM that is below that. It looks for any descendant that will match. 
This is the equivalent to using descendant in your XPath query.

If we needed to look for the child of the element we would have to place > between the div 
selector and the input selector. Your locator would look like css=div.leftdiv > input 
or css=div.leftdiv input. In the case of the Chapter 2 page of the website, both will 
work as they are direct children of div.leftdiv.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 55 ]

Using sibling nodes to find the element
Finding elements by using a sibling node in the DOM is probably the most common way 
to access an element. In the XPath section of the book, we saw that we could use the 
following-sibling operator in the XPath Query. The equivalent CSS Selector syntax is a + 
between DOM nodes in the query. It will check its direct next node to see if it matches until 
it finds the element. So working against the HTML, we will create a CSS selector to find the 
second input button:

<div id="divontheleft" class="leftdiv">
  <input id='but1' value='Button with ID' type='button'/>
  <br/>
  <input value='Sibling Button' type='button'/>
</div>

css=input#but1 will find the first button and then its sibling is the br and its sibling is 
input. The final selector will look like this: css=input#but1 + br + input. You can see 
this in the following screenshot of Selenium IDE:

Using CSS class attributes in CSS selectors
Finding elements by their CSS class is going to be the most common method. A lot of the 
queries that people create start with a containing node distinguishing it by the CSS class and 
then moving through the DOM to a child or grandchild node to find the element that you 
wish to work again. The syntax for finding the item is to put the node, like a div, then put a 
dot, and then the class. For example, to find the div with the class centerdiv it would look 
like this: css=div.centerdiv.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 56 ]

Using element IDs in CSS selectors
As we saw in XPath queries there are times when we need to find the element that is 
next to an element that we know the ID of. This means that we can access a lot more of the 
DOM, and since it is a CSS selector there is a good chance that it will be a lot faster than its 
XPath equivalent.

To find an element by ID in a CSS selector we need to place a # in front of the ID of the 
element in the CSS selector. For example, if we wanted to find a div with the ID of 
divinthecenter, the CSS selector would look like this: css=div#divinthecenter.  
You can also simplify this down to css=#divinthecenter. This is due to IDs on elements 
having to be unique.

If you were to place this in the Target textbox of Selenium IDE and click Find, it should 
highlight the item as in the following screenshot:

Finding elements by their attributes
In the Using element attributes in XPath queries section, we saw how useful it could be to 
find an element by looking at their attributes. It could be that an element may have the same 
name but a different value, so finding them according to their attributes can be extremely 
powerful. In this example, we are going to look for the button that has the value chocolate. 
On web page buttons, a value is what is displayed on the screen.

The syntax for looking at the attribute is node[attribute='value']. So in the case of the 
button with the value chocolate, it will be input[value='chocolate']. If you were to 
put that into Selenium IDE, it will have the format css=input[value='chocolate'] and 
when you click the Find button you will see the same as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 57 ]

Another example of this is if you were trying to find an element according to its href. 
The syntax for that would be a[href='path']. You can try this on the Index page and 
try and find the link to this chapter. When you have done it, it should look something like 
css=a[href='/chapter2']. If you click the Find button, it will highlight the Chapter 2 link.

Chaining of attributes is also supported in Selenium to make sure that your test is using 
one specific element on the page. The syntax will be css=node[attr1='value1']
[attr2='value2']. An example on the page that we are working against would be 
css=input[id='but1'][value='Button with ID']; this will find the button with  
the value Button with ID. You can chain as many attributes as you want in this manner.

Partial matches on attributes
In XPath queries we saw that we could use contains to find partial matches of values to 
attributes. This can be extremely useful for locating elements based on part of their ID if it is 
dynamically generated. Following is a table explaining the different syntax needed and after 
that we have a look at some working examples:

Syntax Description
^= Finds the item starting with the value passed in. This is the equivalent to the 

XPath starts-with.

$= Finds the item ending with the value passed in. This is the equivalent to the 
XPath ends-with.

*= Finds the item which matches the attribute that has the value that partially 
matches. This is equivalent to the XPath contains.

In the XPath section of this chapter, we had a look at the XPath //div[contains(@
id,'time_')] which has a dynamic ID. The equivalent CSS selector would be 
div[id^='time_'] or div[id*='time_']. The following screenshot shows both of the 
selectors highlighting the element we want:

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 58 ]

Time for action – finding the nth element with CSS
There are times where we need to find the nth element after a parent element on the page. In 
the XPath examples, we looked at the second input after the div with the class leftdiv. The 
XPath looked like this: xpath=//div[@class='leftdiv']/input[2]. To find the second 
to nth element we will need to use pseudo classes. Pseudo classes are used to add special 
effects to selectors. In this case we are going to use :nth-child for the first example.

1. Open Selenium IDE.

2. Navigate to http://book.theautomatedtester.co.uk/chapter2.  

3. Type css=div#divinthecenter *:nth-child(3). This will find the same as 
xpath=//div[@class='leftdiv']/input[2].

4. Click on the Find button.

What just happened?
Unfortunately Selenium does not support the :nth-of-type pseudo class, so you will not 
be able to access the specific type. This pseudo class is extremely greedy in the way that it 
does look up over the page. It is also not available to the element selector library that is in 
use by Selenium. This is why the selector is using the wildcard * and then finding the nth-
child from our starting div. The downside to using a selector in this manner is if any other 
node was placed in the way it would make the tests fail.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 59 ]

Finding an element by its inner text
Finding elements by their inner text can also be quite useful. In the XPath section of the 
book, we used the text() function to see the text it had. Earlier we had xpath=//
div[contains(text(),'element has a ID')] to find a div with text in it. To update 
this XPath to a CSS Selector we would need to use the :contains pseudo class. This pseudo 
class is part of Sizzle which is used in Selenium IDE and Selenium RC. This will only work on 
browsers that do not have the CSS querySelector available. WebDriver delegates that 
task down to the browser if it can. I would recommend not using :contains if you plan on 
moving to Selenium WebDriver.

It is important to know that CSS selectors only have a read forward 
process. This means that you cannot find an element and then traverse 
backwards up the DOM. This is what makes CSS selectors a lot faster than 
XPath queries to find the same elements.

 Pop quiz – using locators
1. What is the most common way to find an element on a page?

a. ID

b. XPath

c. CSS Selector

d. Name

2. If you wanted to find the sibling input that is after an input in the DOM, what would 
the XPath look like?

3. What would the CSS look like for the previous question?

Have a go hero – working against Google Maps
Now that you have managed to create tests with different locators, try working against 
Google Maps. It is an extremely good site to work with XPath and CSS as it never has  
IDs or Names.

www.it-ebooks.info

http://www.it-ebooks.info/


Locators

[ 60 ]

Summary
We learnt a lot in this chapter about locators. We have been able to use a large number 
of different methods to find the elements that are on a page. We have seen how to find 
elements using the easy methods like id=, name= to find elements and running queries 
against the DOM to find them using CSS selectors or XPath queries.

Specifically, we covered:

 � Using Firebug to find the element attributes: In this section we were able to start 
using Firebug. This will become an invaluable tool for anyone that works with web 
applications. It has a very good mechanism for finding elements so you can work 
against them.

 � Finding an element by ID: Elements can easily be found by the value of the ID 
attribute. This is the most common way to find elements and is the fastest way to 
find the elements on the page.

 � Finding an element by name: When elements do not have the IDs but do have a 
name attribute your tests can use those.

 � Finding an element by DOM query: In this section we were able to use the power of 
JavaScript DOM API calls to find the element that we wish to work with. This can be 
from the most basic call to the document to a JavaScript function that you can pass 
variables to.

 � Finding an element using XPath queries: In this section we were able to find the 
element on the page by using XPath queries. Your test can use relative paths or even 
XPath functions to find the element on the page. The queries can be as complex as 
you want but remember that they can impact the speed of the test.

 � Finding an element using CSS selectors: When XPath queries are making your 
tests run slow, especially in browsers that do not have good support for XPath. CSS 
selectors are starting to become the default way to find elements on web pages with 
popular JavaScript libraries, and there is not a large learning curve to get working 
with it.

We also discussed how XPath queries can make tests run slower on browsers that do not 
have native XPath support. Internet Explorer 6 is the main browser where you would see this 
issue. When tests start running extremely slowly with XPath, we can move our tests over to 
CSS to see large speed gains in our tests.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 61 ]

If locator does not have the locator type identifier in front of it, Selenium will default to the 
following strategies:

 � DOM: For locators starting with document

 � XPath: For locators starting with //

 � Identifier: For any other locator using ID and name of the element

Now that we've learnt how to locate the elements on the page, we're ready to learn how 
WebDriver is made up—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


3
Overview of Selenium WebDriver

In this chapter, we will have a look at the history of Selenium WebDriver from 
its inception to where it is currently. We will also have a look at the architecture 
of Selenium WebDriver so we can get a better understanding of how all the 
commands work.

We will finish the chapter by making sure that we have understood the 
history of Selenium WebDriver and also have a working understanding of how 
Selenium WebDriver is built.

In this chapter, we shall:

 � Learn the history of Selenium WebDriver

 � Architecture

 � How to set up your Java environment

So let's get on with it...

Important preliminary points
In this chapter, we will be writing our tests in Java. This is down to the popularity of the 
language by people using Selenium as well as its support on multiple platforms. To do this 
we will need to have an IDE to write the tests in. I recommend using IDEA Intellij at http://
www.jetbrains.com/idea/download/ as it will give you all the tools that you need to 
build your tests successfully. You will also need to download JUnit from https://github.
com/KentBeck/junit/downloads. This will allow us to drive the tests and do asserts 
during the tests.

www.it-ebooks.info

http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/
https://github.com/KentBeck/junit/downloads
https://github.com/KentBeck/junit/downloads
http://www.it-ebooks.info/


Overview of Selenium WebDriver

[ 64 ]

We are also going to need to download the necessary files to allow us to use Selenium 
WebDriver with Java. We will need to download selenium-server-<version>.zip 
from http://code.google.com/p/selenium/downloads/list. The <version> will 
appear like 2.x.x on the site.

History of Selenium
With web applications becoming the defacto approach to developing end user applications, 
a solution for testing is needed. This has meant more and more emphasis is needed on a 
browser automation framework to help with checking the site.

For years people have been using Selenium IDE and Selenium RC to drive a number of 
different types of browsers. Selenium, when originally created by Jason Huggins, solved the 
issue of getting the browser to do user interactions.

This is a good automation framework, however it is limited by the JavaScript sandbox in 
browsers. The JavaScript sandbox enforces security policies while JavaScript is executing to 
prevent malicious code executing on the client machine. The main security policy people 
come across is the Same Origin Policy. If you needed to move from HTTP to HTTPS, like you 
normally would during a log on process, the browser would block the action because we are 
no longer in the same origin. This was quite infuriating for your average developer!

The Selenium API was originally designed to work from within the server. The developer or 
tester writing the tests had to do so in HTML using a three column design based on the FIT. 
You can see how this looks if you open up Selenium IDE: the three input boxes that need to 
be completed for each line that will be executed. It has a number of issues in that you cannot 
do anything that you may do with a Turing complete language.

Patrick Lightbody and Paul Hammant thought that there must be a better way to drive their 
tests and in a way that they could use their favorite development language. They created 
Selenium Remote Control using Java as a web server that would proxy traffic. It would inject 
Selenium onto the page and then it would be used in a similar manner as to what it was in 
the three column manner. This also creates more of a procedural style of development.

The Selenium RC API for the programming languages that are supported have been designed 
to fit the original three column syntax. Commonly known as Selenese, it has grown over the 
life of the project to support the changes that have been happening to web applications. 
This has had the unfortunate consequence that the API has grown organically so that users 
can manipulate the browser the way they intend but still keep to the original three column 
syntax. There is somewhere in the region of 140 methods available which makes picking the 
right method for the job rather difficult.

With the move to mobile devices and HTML5, Selenium RC was starting to show that it wasn't 
able to fulfill its original requirement: browser automation to mimic what the user is doing.

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/


Chapter 3

[ 65 ]

Simon Stewart, having hit a number of these issues, wanted to try a different approach to 
driving the browser. While working for ThoughtWorks, he started working on the WebDriver 
project. It started originally as a way to drive HTMLUnit and Internet Explorer but having 
learnt lessons from Selenium RC, Simon was able to design the API to fit in with the way 
most developers think. Developers have been doing Object Orientated development for a 
while, so moving away from the procedural style of Selenium RC was a welcome change 
to developers. For those interested I suggest reading Simon Stewart's article on Selenium 
design at http://www.aosabook.org/en/selenium.html.

The next section will go through the basic architecture of WebDriver.

Architecture
The WebDriver architecture does not follow the same approach as Selenium RC, which 
was written purely in JavaScript for all the browser automation. The JavaScript, in Selenium 
RC, would then emulate user actions. This JavaScript would automate the browser from 
within the browser. WebDriver on the other hand tries to control the browser from outside 
the browser. It uses accessibility API to drive the browser. The accessibility API is used by 
a number of applications for accessing and controlling applications when they are used by 
disabled users and is common to web browsers.

WebDriver uses the most appropriate way to access the accessibility API. If we look at 
Firefox, it uses JavaScript to access the API. If we look at Internet Explorer, it uses C++. This 
approach means we can control browsers in the best possible way but has the downside 
that new browsers entering the market will not be supported straight away like we can with 
Selenium RC.

Where that approach doesn't work we will then inject JavaScript into the page. Examples of 
this are found in the new HTML5.

The system is made up of four different sections. 

www.it-ebooks.info

http://www.aosabook.org/en/selenium.html
http://www.it-ebooks.info/


Overview of Selenium WebDriver

[ 66 ]

WebDriver API
The WebDriver API is the part of the system that you interact with all the time. Things 
have changed from the 140 line long API that the Selenium RC API had. This is now more 
manageable and can actually fit on a normal screen. You will see this when you start using 
WebDriver in the next chapter. This is made up of the WebDriver and the WebElement objects.

driver.findElement(By.name("q"))

and

element.sendKeys("I love cheese");

These commands are then translated to the SPI, which is stateless. This can be seen in the 
next section.

WebDriver SPI
When code enters the Stateless Programming Interface or SPI, it is then called to a 
mechanism that breaks down what the element is, by using a unique ID, and then calling a 
command that is relevant. All of the API calls above then call down.

Using the example in the previous section would be like the following code, once it was  
in the SPI:

findElement(using="name", value="q") 
sendKeys(element="webdriverID", value="I love cheese")

From there we call the JSON Wire protocol. We still use HTTP as the main transport 
mechanism. We communicate to the browsers and have a simple client server transport 
architecture the WebDriver developers created the JSON Wire Protocol.

JSON Wire protocol
The WebDriver developers created a transport mechanism called the JSON Wire Protocol. 
This protocol is able to transport all the necessary elements to the code that controls it. It 
uses a REST like API as the way to communicate. 

Selenium server
The Selenium server, or browser, depending on what is processing, uses the JSON Wire 
commands to break down the JSON object and then does what it needs to. This part of the 
code is dependent on which browser it is running on.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 67 ]

As mentioned earlier, it could be done in the browser via C++; if it's in IE or if not available 
we inject Selenium.

The merging of two projects
Both Simon Stewart and Jason Huggins thought that it would be a really good idea to merge 
the two projects together. This was then called Selenium 2.

The Selenium core developers have been working really hard to simplify the code base and 
remove as much duplication as possible. We have created what is known as Selenium Atoms 
which is then shared between the two projects. 

Now that we know the basics of how it all hangs together, let us set up a project that we can 
use for the rest of the chapter.

How to set up your Java environment
All of the examples that follow in the book will be in Java. We need to make sure that we 
know how to set up the Java environment.

Time for action – setting up Intellij IDEA project
We will be setting up using JUnit as the testing framework to drive our tests.

1. Open IDEA and create a new project.

2. Create a directory at the root of the project called test using New | Directory.

3. Click on File | Project structure.

4. Click on Modules on the left-hand side of the dialog that has loaded.

www.it-ebooks.info

http://www.it-ebooks.info/


Overview of Selenium WebDriver

[ 68 ]

5. Click on the test folder that you created in the folder tree on the right-hand side of 
the dialog.

6. Click on the Test Sources button and the test folder should turn green. It will look 
like the following screenshot:

7. Click on File | Project structure.

8. Click on Global libraries.

9. Click on the + to add a New Global library. And then select Java.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 69 ]

10. Click on Attach Classes and add selenium.jar and common.jar. This should be 
in the same place as your Selenium-Server.jar. When added, it should look like 
the following screenshot:

11. Do the same for JUnit now. You can create a new Global library for it or add it to the 
Selenium Global Library.

12. Click on the Modules link on the left-hand side again.

13. Click on the Dependencies tab.

14. Click on Add and click on Global Libraries. Add the Selenium and JUnit libraries.

15. Click on Apply. When this is done the text selenium should turn purple.

16. We are now ready to run Selenium Server. We do this by running java–jar 
selenium-server.jar from a command prompt or from a terminal depending on 
your operating system.

Your project is ready to have tests added to it. Each of the files that we create from now on 
will be placed in the test directory and will be run when we need to.

What just happened?
We have successfully set up a project to Selenium WebDriver. When we are working through 
all of the chapters going forward we will know that they will have all the aspects needed.

Pop quiz – setting up the test project
1. Where will we be adding our tests that we create with Selenium WebDriver  

in Intellij?

www.it-ebooks.info

http://www.it-ebooks.info/


Overview of Selenium WebDriver

[ 70 ]

Summary
We learnt a lot in this chapter about how Selenium and WebDriver were created and how 
they work together.

Specifically, we covered:

 � History: In this section we learnt how Selenium came to being. Selenium WebDriver 
is the merger of two automation frameworks: Selenium and WebDriver.

 � Architecture: We learnt how all of the different mechanisms work together to 
produce the framework that we will be using throughout this book.

 � Setting up a Java environment: In this section we saw how we can run projects later 
on in the book.

Now that we've learnt the history and architecture of Selenium WebDriver, as well setting  
up our environment to create Java Projects, let us have a look at the design patterns we 
should use with Selenium WebDriver to make test creation easier, which is the topic of the 
next chapter. 

www.it-ebooks.info

http://www.it-ebooks.info/


4
Design Patterns

In this chapter we are going to have a look at good design patterns for creating 
maintainable and reusable bits of code that we can use with our Selenium tests. 
This means that if there are any changes needed to our web application or 
changes in the way we need to find elements, we can change it once and have 
it fix everything very quickly.

In this chapter, we shall learn:

 � Page Object design

 � Using Page Factory in Page Objects

 � Using LoadableComponents

So let's get on with it...

Important preliminary points
In this chapter it will be assumed that all files will have the following import statements:

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 72 ]

Page Objects
In this section of the chapter, we are going to have a look at how we can apply some best 
practices to tests. You will learn how to make maintainable test suites that will allow you to 
update tests in seconds. We will have a look at creating your own DSL so that people can see 
intent. We will create tests using the Page Object Pattern.

Let us start trying to put these best practices to work.

Time for action – setting up the test
Imagine that you have a number of tests that work on a site that requires you to log in and 
move to a certain page. Or imagine that you need to have a test that requires you to be on 
a certain page. In these two situations the quickest way to find out which page you are on 
and then move to the correct one if need be, is to start testing. This is to make sure that we 
follow one of the major tenants of test automation, in that you always start from a known 
place. Let us see this in an example:

Create a new Java class in IDEA:

1. Import the relevant Selenium Packages.

2. Create the setup() and teardown() method. I prefer the JUnit 4 style of tests and 
will show code samples with the annotations.

3. We need to check that the page is on the correct page. For this we will use the 
selenium.getTitle to see the page title and then if incorrect move to the 
chapter 2 link. We do this because navigating to page is slower than checking the 
page's title or any other calls to the page already loaded.

4. We need to then validate that it is correct and then work accordingly. The following 
is a code snippet of how we can do this:
if (!"Page 2".equals(selenium.getTitle())){
  selenium.get( 
    "http://book.theautomatedtester.co.uk/chapter2");
}

5. Create the rest of the test to check that items are on the page.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 73 ]

What just happened?
We have just seen how we can check if something is what the test is expecting. If it is, the 
test will carry on as we expect. If it isn't what we expect, we can move our test to the correct 
page and then carry on with that page. We will see that if you log into the @Before, you 
may not start your tests.

Now let's have a look at how we can make more tests maintainable by splitting areas out into 
other methods.

Time for action – moving Selenium steps into private methods 
to make tests maintainable

Imagine that you just need to test one page on your site and you have quite a few tests 
for this page. A lot of the tests will be using the same code over and over again. This can 
be quite annoying to maintain if something changes on the page meaning we have to go 
through all the tests to fix this one issue. The way that we will fix this is to refactor the tests 
so they are simpler and therefore easier to read.

1. Let us create a number of tests as follows:
    @Test
    public void shouldCheckButtonOnChapter2Page(){
      selenium.get("http://book.theautomatedtester.co.uk");
      selenium.findElement(By.link, "Chapter2").click();
      Assert.assertEqual(selenium.findElements( 
        By.id"but1").getSize(), 1);
    }

    @Test
    public void shouldCheckAnotherButtonOnChapter2Page(){
      selenium.get("http://book.theautomatedtester.co.uk");
      selenium.findElement(By.link, "Chapter2").click();
      Assert.assertEqual(selenium.findElements( 
        By.id,"verifybutton").getSize(), 1);

    }

2. Using the previous examples, let's break these down.

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 74 ]

3. In both the examples, we can see that it is always opening the root of the site.  
Let's move that into its own private method. To do this in IDEA, you highlight the 
lines you want to refactor and then right-click. Use the context menu and then the 
extract method.

4. Then you will see a dialog asking you to give the method a name. Give it something 
meaningful for the test. I have called it loadHomePage as you can see in the 
following screenshot:

5. Now do the same for the other parts of the tests so that it makes the test look a lot 
more succinct.

6. Your test class should look something like this:
    @Test
    public void shouldCheckButtonOnChapter2Page(){
      loadHomePage();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 75 ]

      clickAndLoadChapter2();
      Assert.assertEquals(selenium.findElements(  
        By.id("but1")).size(), 1);

    @Test
    public void shouldCheckAnotherButtonOnChapter2Page(){
      loadHomePage();
      clickAndLoadChapter2();
      Assert.assertEquals(selenium.findElements( 
        By.id("verifybutton")).size(), 1);

    private void loadHomePage() {
      selenium.get("http://book.theautomatedtester.co.uk");
    }

    private void clickAndLoadChapter2() {
      selenium.findElement(By.linkText("Chapter2")).click();
    }

What just happened?
We have just started making our tests a lot more maintainable. We saw how we can break 
this down into more succinct and readable tests that show intent rather than showing a test 
as a clump of Selenium calls. This also makes the tests a lot more manageable because if I 
were to change the link on the root from "Chapter2" to "Chapter 2", I would need to only fix 
it in one place rather than n places where n is the number of times that sequence is in the  
test class.

Now let's have a look at how we can use the Page Object Pattern for creating a DSL over  
the site.

Time for action – using the Page Object Pattern to design tests
Imagine that you have a site that has a number of different pages that you need to test. This 
is quite common for a number of sites. We can create an object that represents the page and 
then pass the Selenium object in the programming language. So let us now create our first 
Page Object against the home page.

1. Create a new Java class in IDEA called HomePage.

2. Import the relevant packages for the tests to run.

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 76 ]

3. We will now need a constructor to handle Selenium. You may want to make it go to 
the home page when it is instantiated too. An example of this can be seen as follows:

HomePage.java
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;

public class HomePage{
  WebDriver selenium;
  public HomePage(WebDriver selenium){
    this.selenium = selenium;
  }
  public Chapter2 clickChapter2(){
    clickChapter("2");
    return new Chapter2(selenium);
  }
    
  private void clickChapter(String number){
    selenium.findElement(By.linkText("Chapter"+number)).click();
  }
}

Chapter2.java
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;

public class Chapter2 {
  WebDriver selenium;
  public Chapter2(WebDriver selenium){
    this.selenium = selenium;
    if (!"Chapter 2".equalsIgnoreCase( 
      this.selenium.getTitle())){
        selenium.get( 
          "http://book.theautomatedtester.co.uk/chapter2");
      }
  }
  public boolean isButtonPresent(String button){
    return selenium.findElements(By.xpath("//input[@id='" +  
      button + "']")).size()>0;
  }
}

BestPractises3.java
import org.junit.After;
import org.junit.Before;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 77 ]

import org.junit.Test;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;

public class BestPractises3 {
  WebDriver selenium;

  @Before
  public void setUp(){
    selenium = new FirefoxDriver();
  }

  @After
  public void tearDown(){
    selenium.quit();
  }

  @Test
  public void  
    ShouldLoadTheHomePageAndThenCheckButtonOnChapter2(){
    selenium.get("http://book.theautomatedtester.co.uk");
    HomePage hp = new HomePage(selenium);
    Chapter2 ch2 = hp.clickChapter2();
    assertTrue(ch2.isButtonPresent("but1"));
  }
}

4. If you create these three files you will see it pass. The test is a lot more succinct and 
easier to maintain.

What just happened?
In this section we had a look at creating tests using the Page Object design pattern. 
This allows us to create objects in a programming language and then pass the Selenium 
object to it to drive the browser. This creates a really nice DSL that allows all parties in the 
development cycle to understand. We create a Java object for each of the pages that we 
want to work against on the site. We then just instantiate the class to work against that page.

When we are moving between pages you click on a link and the method controlling the page 
transition will return an object representing a new page.

The objects will not hold the asserts; this should always be done within the tests.

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 78 ]

Pop quiz – Page Object design pattern
1. What is the Page Object design pattern?

Using Page Factories with Page Objects
The code that we have learnt to write earlier can be quite verbose. To clean up our code, we 
can start to use Page Factories. This allows us to annotate variables in our page objects with 
how to search the page. This means that we don't have to have full WebElement element = 
driver.findElement(…); code all over the file. We can change it to:

@FindBy(how=How.ID, using="foo")
WebElement foo;

As you can see this can make our code slightly easier to read and therefore more maintainable. 
If you regularly use other languages like Ruby or Python, you will notice that they don't 
have the PageFactory support project. This is because those languages don't have Factory 
constructs in the language. They are not idiomatic and therefore not in the language.

To use the PageFactory project in WebDriver, we will have to make sure that the we have 
added it as a dependency.

Let us now update our previous code from with an example of the PageFactory.

Time for action – using PageFactory
In this example we are going to be cleaning up the previous examples by using the PageFactory. 
This will allow us to create more succinct code than the previous verbose examples.

1. Open the previous example and go to Chapter2.java. It should look like the  
following example:

Chapter2.java
import org.openqa.selenium;
import junit.framework.Assert;

public class Chapter2 {
  WebDriver selenium;
  WebElement verifybutton;

  public Chapter2(WebDriver selenium){
    this.selenium = selenium;
    verifybutton = selenium.findElement(By.id("verifybutton"));
    if (!"Chapter 2".equalsIgnoreCase( 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 79 ]

      this.selenium.getTitle())){
        selenium.get( 
            "http://book.theautomatedtester.co.uk/chapter2");
      }
  }
    
  public boolean isButtonPresent(String button){
    return selenium.findElements(By.xpath 
      ("//input[@id='"+button+"']")).size()>0;
  }

}

2. We can then change the line that looks for verifybutton so that it is not in the 
constructor. This then changes to:
public class Chapter2 {
  WebDriver selenium;

  @FindBy(how= How.NAME, using="verifybutton")
  WebElement verifybutton;

  public Chapter2(WebDriver selenium){
    this.selenium = selenium;
    if (!"Chapter 2".equalsIgnoreCase( 
      this.selenium.getTitle())){
        selenium.get( 
          "http://book.theautomatedtester.co.uk/chapter2");
      }
  }

  public bool isButton(String button){
    return selenium.findElementByXpath( 
      '//button[@id='+button+']');
  }

}

3. If you run your test now, you will see it do the same thing but we have not called the 
findElement() method available to WebDriver.

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 80 ]

4. In the test we need to initialize the factory by calling initElements():

TestChapter2.java
import org.openqa.selenium.*;
import org.junit.*;

public class TestChapter2 {
  WebDriver selenium;

  @Before
  public void setUp(){
    selenium = new FirefoxDriver();
  }

  @After
  public void tearDown(){
    selenium.quit();
  }

  public Chapter2 clickChapter2(){
    clickChapter("2");
    return  PageFactory.initElements(selenium, Chapter2.class);
  }
  @Test
  public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2() {
    selenium.get("http://book.theautomatedtester.co.uk");
    HomePage hp = new HomePage(selenium);
    Chapter2 ch2 = hp.clickChapter2();
    assertTrue(ch2.isButtonPresent("but1"));
  }

}

What just happened?
We have just seen how we can get rid of a line of code from a constructor or a method 
by adding a decorator to the variable. When our code is compiled, the variable will get 
populated at the right time so that we can make sure that it gets the right bit of the DOM. 
It will look like our element hasn't been instantiated. When we initialize the PageFactory, by 
calling initElements() it will populate the variables with the right data.

This does make a lot of the code a lot more succinct and can be a lot easier to maintain  
over time.

One thing to note is that every time we use the element it will be searched. We can get 
Selenium WebDriver to cache the return of the results by adding another decorator:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 81 ]

  @FindBy(how=How.ID, using="verifybutton")
  @CacheLookup
  WebElement verifybutton;

We only want to cache the result on a fairly static page. 
If you have a site that has a lot of JavaScript, you will not 
want to put @CacheLookup as you may start getting 
StaleElementException when you try to use it.

Pop quiz – Page Factories
1. What is the decorator that you put above a webelement variable when looking for 

an element by ID with the id='myId'?

2. How do you cache the lookup of web elements?

3. How do you initialize a Page Factory?

LoadableComponent
LoadableComponent is another way to approach PageObjects. LoadableComponent is a 
base class that all of the pages need to extend. The base class has the following methods on 
the interface:

 � get()

 � isLoaded()

 � load()

Instead of the usual public class PageObject, we change it:

public class PageObject extends LoadableComponent<PageObject>

We will have to add overrides for the load() and isLoaded() method. The load method 
will load the page for us and the isLoaded() method can allow us to check if the page has 
been loaded correctly.

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 82 ]

For example:

@override
Protected void load() {
  selenium.get("http://book.theautomatedtester.co.uk");
}

@protected void isLoaded() {
  String url = selenium.getCurrentUrl();
  If (url != "http://book.theautomatedtester.co.uk"){
    throw new Exception("The wrong page has loaded");
  }
}

As we can see this is just a simple bit of code, but we can make sure that we start on the 
right page when we need to.

Time for action – changing our Page Object to use 
LoadableComponent

Now that we have learnt about LoadableComponents, we should have a look at seeing it in 
action. We need to make changes to our Java Class. 

1. The following is how the code should look so far:
public class Chapter2 {
  WebDriver selenium;

  @FindBy(how= How.NAME, using="verifybutton")
  WebElement verifybutton;

  public Chapter2(WebDriver selenium){
    this.selenium = selenium;
    if (!"Chapter 2".equalsIgnoreCase(this.selenium.getTitle())){
      selenium.get("http://book.theautomatedtester.co.uk/ 
        chapter2");
    }
  }

  public boolean isButtonPresent(String button){
    return selenium.findElements(By.xpath 
    ("//input[@id='"+button+"']")).size()>0;
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 83 ]

2. If we have a look at our Chapter 2 Java class, we can see that we need to extend 
LoadableComponent. Since this takes generics we will have to pass in our 
PageObject class. It should look like:
public class Chapter2 extends LoadableComponent<Chapter2> {

3. In our constructor, we will have to initialize our page factory. We can remove the 
rest of the code in there since that will be moved to load(). It should look like the 
following:
public Chapter2(WebDriver selenium){
  this.selenium = selenium;
  PageFactory.initElements(selenium, this);
}

4. We now need to add our override methods. These will allow us to check that we are 
on the right page when we load this component:
@override
Protected void load() {
  selenium.get("http://book.theautomatedtester.co.uk/chapter2");
}

@protected void isLoaded() {
  String url = selenium.getCurrentUrl();
  If (url != "http://book.theautomatedtester.co.uk/chapter2"){
    throw new Exception("The wrong page has loaded");
  }
}

5. Now we need to have a look at updating our test to load everything for us. To do this 
we need to change:
@Test
public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2() {
  selenium.get("http://book.theautomatedtester.co.uk");
  HomePage hp = new HomePage(selenium);
  Chapter2 ch2 = hp.clickChapter2();
  assertTrue(ch2.isButtonPresent("but1"));
  }

6. To look like this:
@Test
public void ShouldLoadTheHomePageAndThenCheckButtonOnChapter2(){
  Chapter2 cht = new Chapter2(selenium).get();

  ch2.isButton("but1");
}

www.it-ebooks.info

http://www.it-ebooks.info/


Design Patterns

[ 84 ]

7. Run your test. Everything should look like the following:
public class Chapter2 extends LoadableComponent<Chapter2>{
  WebDriver selenium;

  @FindBy(how= How.NAME, using="verifybutton")
  WebElement verifybutton; 

  public Chapter2(WebDriver selenium){
    this.selenium = selenium;
    PageFactory.initElements(selenium, this);
  }

  @override
  Protected void load() {
    selenium.get("http://book.theautomatedtester.co.uk/chapter2");
  }

  @protected
  public void isLoaded() {
    String url = selenium.getCurrentUrl();
    If (url != "http://book.theautomatedtester.co.uk/chapter2"){
      throw new Exception("The wrong page has loaded");
    }
  }

  public boolean isButtonDisplayed(String button){
    return selenium.findElement(By.id("button")).isDisplayed();
  }
}

What just happened?
We have just converted our page object to use the LoadableComponent class that comes 
with the Selenium Project. We saw how we simplified on constructors and then just moved 
this into somewhere easy to maintain. We have seen that we can move a lot of the boiler 
plate code out of our class and rely on it being pulled in via LoadableComponent. This means 
that we no longer need to maintain it or we add those items.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 85 ]

Have a go hero – LoadableComponent
Imagine how you have to work with a flow that takes you through a number of pages. 
LoadableComponent allows us to set up a workflow. To get this right we need to pass  
one in like the following when doing your test setup:

  @Before
  public void prepareComponents() {
    WebDriver selenium = new FirefoxDriver();

    HomePage homePage = new HomePage(selenium);
    Chapter2 chapter2 = new SecuredPage(selenium, homePage);
    
  }

Summary
We learnt a lot in this chapter about design patterns that we can use with Selenium 
WebDriver. We have learnt techniques that allow us to build test projects that are easy  
to maintain and readable by all users.

Specifically, we covered:

 � Page Objects: This is a technique where we split the test logic out into separate 
classes. This allows us to create a Java class for each of the pages that we use  
on the page.

 � Page Factory: This allows us to decorate our WebElement variables in our Page 
objects so that we remove a lot of the look up code. We learnt that the elements get 
initialized when we call PageFactory.initElements(); in our tests or anything 
else that may use that code.

 � LoadableComponent: In this section we had a look at the base page for Page 
Objects that comes with the Selenium Project. The LoadableComponent in a 
base class allows us to remove quite a bit of code and moves the boilerplate to 
LoadableComponent.

Now that we've learnt about design patterns, we're ready to look at the last  
advanced techniques that we can use with Selenium WebDriver—which is the  
topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


5
Finding Elements

In this chapter we are going to be looking at how we go about finding  
elements on the page using the WebDriver API. One of the things that we  
learnt in the previous chapter was that WebDriver, due to its architecture,  
has two major components. The first one is the "driver". This has the commands 
to find the elements.

We will start by having a look at the different commands. We begin with the 
helper commands first and then go to the more generic commands which take 
different types of objects. We will finish off the chapter by learning some helpful 
techniques when interacting with element finding.

First major learning point:

 � Finding element(s) on the page by their ID, name, ClassName, XPath, and link list

 � Tips for using find element calls

So let's get on with it...

Important preliminary points
When working through the following examples we are going to assume that you have 
instantiated a WebDriver object by doing:

     WebDriver driver = new FirefoxDriver(); 

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 88 ]

You can use the following example class with JUnit 4. The test is a stub that we can use 
through the chapter.

import org.junit.*;
import org.openqa.selenium.*;
import org.openqa.selenium.firefox.*;

import java.io.File;
import java.util.Dictionary;

public class TestExample1 {

  Webdriver driver;

  @Before
  public void setUp(){
    driver = new FirefoxDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter1");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    // We will put examples in here
  }

We should also note that finding elements can also be achieved from an element. For 
example, if we wanted to find the first link after a button called button we would do 
something like the following:

WebElement element = ((FindsById)driver).findElementById("button");
WebElement childElement = element.findElement(By.tagName("a"));

We will go into what this means in depth as we go through the chapter.

Finding elements
When working with WebDriver on a web application, we will need to find elements on the 
page. This is the core to being able to work. All the methods for doing actions to the web 
application like typing and clicking require that we find the element first.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 89 ]

Finding an element on the page by its ID
The first item that we are going to look at is finding an element by ID. Finding elements 
by ID will be one of the easiest ways to find an element. We are going to start with 
findElementByID(). This method is a helper method that sets an argument for a more 
generic findElement call. We will see now how we can use it in action. The method's 
signature looks like:

     findElementById(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementById()
We are going to find an element on the page by using the findElementById() method 
that is on each of the Browser Driver classes. findElement calls will return a WebElement 
object that we can perform actions on.

Follow these steps to see how it works:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
WebElement element = ((FindsById)driver). 
  findElementById("verifybutton");

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 90 ]

What just happened?
We have just seen how we can find an element by using the findElementById 
helper method. After running the test, we saw that it passed. This meant that it 
found the element. If an element is not found in Selenium, WebDriver will throw a 
NoSuchElementFoundException exception.

Finding elements on the page by their ID
In addition to findElementById, there is findElementsByID. This call has been added to 
the API so that there is symmetry in the API even though it is against the HTML spec to have 
more than one item in the DOM with an ID. We will now see how we can use it in action. The 
method's signature looks like:

     findElementsById(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementsById() 
We are going to find an element on the page by using the findElementsById() method 
that is on each of the Browser Driver classes. findElement calls will return a WebElement 
object that we can do actions on.

Follow these steps to see how it works:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
List<WebElement> elements = ((FindsById)driver) 
  .findElementsById("verifybutton");
Assert.equals(1, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 91 ]

What just happened?
We have just seen how we can find an element by using the findElementsById helper 
method. After running the test, we saw that it passed. Unlike its singular version, it will not 
throw a NoSuchElementException exception if the element is not found. It will return a 
list that has a size of zero.

Finding an element on the page by its name
The next item that we are going to look at is finding an element by their name. Finding 
elements by name is just as fast as their ID equivalent. This method is a helper method that 
sets an argument for a more generic findElement call. We will now see how we can use it 
in action. The method's signature looks like:

     findElementByName(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 92 ]

Time for action – using findElementByName()
We are going to find an element on the page by using the findElementByName() method 
that is on each of the Browser Driver classes. findElement calls will return a WebElement 
object that we can perform actions on.

Follow these steps to see how it works:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
WebElement element = ((FindsByName)driver). 
  findElementByName("selected(1234)");

3. Run the test from the IDE. It will look like the following screenshot:

What just happened?
We have just seen how we can find an element by using the findElementByName  
helper method. After running the test, we saw that it passed. This meant that it 
found the element. If an element is not found in Selenium, WebDriver will throw a 
NotSuchElementFound exception.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 93 ]

Finding elements on the page by their name
Unlike ID, we can have multiple elements on the page that have the same name. This is also 
a symmetrical call to find multiple elements. We will now see how we can use it in action. 
The method's signature looks like:

     findElementsByName(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementsByName()
We are going to find an element on the page by using the findElementsByName() 
method that is on each of the Browser Driver classes. findElement calls will return a list of 
WebElement objects that we can perform actions on.

Follow these steps to see how it works:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
List<WebElement> elements = ((FindsByName)driver). 
  findElementByName("selected(1234)");
Assert.equals(1, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 94 ]

What just happened?
We have just seen how we can find an element by using the findElementsByName helper 
method. After running the test, we saw that it passed. Unlike its singular version, it will not 
throw a NoSuchElementException if the element is not found. It will return a list that has 
a size of zero.

Finding an element on the page by their ClassName
We are going to now look at findElementByClassName(). If there is more than one 
element on the page that has this class name, then it will return the first element that it gets.

We will now see how we can use it in action. The method's signature looks like  
the following:

     findElementByClassName(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementByClassName()
We are going to find an element on the page by using findElementByClassName() 
method that is on each of the Browser Driver classes. findElement calls will return a 
WebElement object that we can do actions on.

Follow these steps to see how it works:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
WebElement element = ((FindsByClassName)driver). 
  findElementByClassName("storetext");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 95 ]

3. Run the test from the IDE. It will look like the following screenshot:

What just happened?
We have just seen how we can find an element by using the findElementByClassName 
helper method. After running the test, we saw that it passed. This meant that it 
found the element. If an element is not found in Selenium, WebDriver will throw a 
NotSuchElementFound exception.

Finding elements on the page by their ClassName
We will now see how we can use it in action. The method's signature looks like:

     findElementsByClass(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 96 ]

Time for action – using findElementsByClassName()
We are going to find an element on the page by using findElementByClassName() 
method that is on each of the Browser Driver classes. findElement calls will return a 
WebElement object that we can do actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used that you could use.

2. We are going to use the command:
List<WebElement> elements = ((FindsByClassName)driver) 
  .findElementsByClassName("storetext");
Assert.equals(1, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

What just happened?
We have just seen how we can find an element by using the findElementsByClassName 
helper method. After running the test, we saw that it passed. Unlike its singular version, it will 
not throw a NoSuchElementException if the element is not found. It will return a list that 
has a size of zero. If you want to use CSS selectors, you can use findElementByCssSelector 
or findElementsByCssSelector. In the next section, we will have a look at XPaths.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 97 ]

Finding an element on the page by their XPath
XPath is one of the most useful approaches to finding elements on the page. It has a bit of 
a tainted past due to the speed that it takes to look up elements on the page. We learnt a 
number of different techniques using XPath earlier in the book.

This method is a helper method that sets an argument for a more generic findElement call. 
We will now see how we can use it in action. The method's signature looks like the following:

     findElementByXpath(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementByXPath()
We are going to find an element on the page by using the findElementByXPath() 
method that is on each of the Browser Driver classes. findElement calls will return a 
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
WebElement element = ((FindsByXPath)driver). 
  findElementByXpath("verifybutton");

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 98 ]

What just happened?
We have just seen how we can find an element by using the findElementByXPath  
helper method. After running the test, we saw that it passed meaning that the XPath  
that we passed in works. If an element is not found in Selenium, WebDriver will throw  
a NotSuchElementFound exception.

Finding elements on the page by their XPath
We will now see how we can use it in action. The method's signature looks like:

     findElementsByXpath(String using);

The using variable takes the ID of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementsByXpath() 
We are going to find an element on the page by using the findElementsByXPath() 
method that is on each of the Browser Driver classes. findElement calls will return a 
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
List<WebElement> elements = ((FindsByXPath)driver). 
  findElementsByXpath("//input");
Assert.equals(5, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 99 ]

What just happened?
We have just seen how we can find an element by using the findElementsByXPath helper 
method. We saw that from running the test we saw it pass. Unlike its singular version, it will 
not throw a NoSuchElement exception if the element is not found. It will return a list that 
has a size of zero.

Finding an element on the page by its link text
If you need to find a link by the text that is in it, this method is useful. It is a helper method 
that sets an argument for a more generic findElement call. We will now see how we can 
use it in action. The method's signature looks like:

     findElementByLinkText(String using);

The using variable takes the link text of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 100 ]

Time for action – using findElementByLinkText()
We are going to find an element on the page by using the findElementByLinkText() 
method that is on each of the Browser Driver classes. findElement calls will return a 
WebElement object that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the following command. We will use a different page on the site  
for this example.
Driver.get("http://book.theautomatedtester.co.uk")
WebElement element = ((FindsByLinkText)driver). 
  findElementByLinkText("Chapter1");

3. Run the test from the IDE. It will look like the following screenshot:

What just happened?
We have just seen how we can find an element by using the findElementByLinkText 
helper method. One thing to note is that the search for the text is case sensitive when used 
in WebDriver. This means that what we pass into Selenium, WebDriver needs to match 
exactly or it will not find your element. If an element is not found in Selenium, WebDriver 
will throw a NoSuchElementFound exception.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 101 ]

Finding elements on the page by their link text
We will now see how we can find elements on the page by their link text in action. The 
method's signature looks like:

     findElementsByLinkText(String using);

The using variable takes the link text of the element that you wish to look for. It will return a 
WebElement object that we can then work with.

Time for action – using findElementsByLinkText()
We are going to find an element on the page by using the findElementsByLinkText() 
method that is on each of the Browser Driver classes. findElements calls will return a list 
of WebElement objects that we can perform actions on.

Follow these steps to see it work:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command.
driver.get("http://book.theautomatedtester.co.uk")
List<WebElement> elements = ((FindsByLinkText)driver). 
  findElementsByLinkText("Chapter1");
Assert.equals(1, elements.size());

3. Run the test from the IDE. It will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 102 ]

What just happened?
We have just seen how we can find an element by using the findElementsByLinkText 
helper method. One thing to note is that the search for the text is case sensitive. If an 
element is not found in Selenium, WebDriver will return an empty list.

Pop quiz – finding elements using helper methods
1. What is the best call for finding multiple elements using XPath?

a. findElementByXpath

b. findElementsByXPath

c. findElementByCssSelector

2. What is the best call to an element using CSS selectors to find an element just on the 
class name?

a. findElementById

b. findElementsByCssSelector

c. findElementByClassName

3. Will a findElements type call throw a NoSuchElementException when it can't 
find the element?

Have a go hero – using findElement Helper methods
Try creating an example where you need to find an element by CSS selector. This is used by 
findElementByCssSelector and findElementsByCssSelector. Have a try!

Finding elements using a more generic method
We have had a look at using helper methods to find elements on the page. The downside to 
using them is that if something changes, you need to change the entire method that you are 
using to find the element. This can increase the maintenance costs for doing this.

The other approach is to use the findElement() method, pass in the By abstract class, and 
call static methods on that class.

Let's see this in action.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 103 ]

Time for action – using findElement()
In this section we are going to look at using the findElement call that is on the WebDriver 
object. This is how we can normally find elements using Selenium WebDriver.

1. Open your Java IDE. Intellij or Eclipse are the most used that you could use.

2. We are going to use the command:
driver.get("http://book.theautomatedtester.co.uk")
driver.findElement(By.linkText("Chapter1"));

3. Run your test.

What just happened?
We have just seen that we can find an element by passing in the By object. This is a static 
class that gives people a mechanism for finding elements, as we did earlier in the chapter. 
This will throw a NoSuchElementException if it cannot find the element.

Let's now have a look at finding multiple elements.

Time for action – using findElements()
In this section we are going to look at using the findElements call that is on the WebDriver 
object. This is how we can normally find elements using Selenium WebDriver.

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
driver.get("http://book.theautomatedtester.co.uk")
List<WebElement> elements =  driver.findElements( 
  By.linkText("Chapter1"));
Assert.assertEqual(1, elements.size());

3. Run your test.

What just happened?
We have used this similar to calls earlier in the chapter. This will find multiple elements on 
the page and return a list. This will not throw a NoSuchElement exception if it cannot find 
the element.

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 104 ]

Tips and tricks
In this section, we are going to look at some tips and tricks that might be of use when  
trying to find elements on the page. We can also apply them to see if the elements are  
not on the page.

Finding if an element exists without throwing an error
Selenium WebDriver is really good at letting you know when an element does not exist. If 
it throws a NoSuchElementException, then we know it's not there. Unfortunately I, and 
many others, have not been big fans of using exception handling as a way of flow control.

To get around this we can use the findElements() call, and then we just need to check 
that the size of the list returned is 0. For example:

List<WebElement> elements = driver.findElements( 
  By.Id("myElement"));
elements.size(); //This should be zero and can be checked accordingly

Waiting for elements to appear on the page
Web applications now want to appear as though they are desktop applications as more and 
more people move to hardware like tablets or netbooks which have very small hard drives. 
This is all done through AJAX to the page.

This means that when we are working with Selenium WebDriver we need to have it 
synchronized with what is happening on the page. We do not want to use something like 
Thread.sleep() because that doesn't make our tests run as quickly as possible. We need 
to use one of the next two approaches: implicit or explicit waits.

Implicit waits
Selenium WebDriver has borrowed the idea of implicit waits from Watir. This means 
that we can tell Selenium that we would like it to wait for a certain amount of time before 
throwing an exception that it cannot find the element on the page. We should note that 
implicit waits will be in place for the entire time the browser is open. This means that any 
search for elements on the page could take the time the implicit wait is set for.

Let's see how we can use this.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 105 ]

Time for action – using implicit waits
In this section we will see how we can use implicit waits in our code. We need to  
change a number of calls together to set the implicit. This was done to keep the API  
as succinct as possible:

1. Open your Java IDE. Intellij or Eclipse are the most used.

2. We are going to use the command:
driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);
driver.findElement(By.xpath("//div[@id='ajaxdiv']")

3. Run your tests:

What just happened?
We have just seen that our tests run and pass. We didn't have to do anything special for 
waiting for the new text to appear on the page. Let's go see how we can do this with the 
explicit waiting approach.

Explicit waits
Unfortunately implicit waits do not fit all situations and for some developers is not the right 
thing to do. Explicit waits is when we know what we want to happen and the error needs to 
fit that situation.

Let's see this in action!

www.it-ebooks.info

http://www.it-ebooks.info/


Finding Elements

[ 106 ]

Time for action – using explicit waits with Selenium WebDriver
In this section we will have a look at using explicit waits. This is useful for making sure that 
the right type of exception is thrown:

1. Open your Java IDE.

2. We are going to use the following code. WebDriverWait is found in the Support 
package within the Selenium WebDriver Jar.
WebElement element = (new WebDriverWait(driver, 10))
  .until(new ExpectedCondition<WebElement>(){
    @Override
    public WebElement apply(WebDriver d) {
      return d.findElement(By.xpath("//div[@id='ajaxdiv']")
}});

3. Run your tests:

What just happened?
We have just seen how we can use an explicit wait with our code. We told the wait class that 
we wanted it to wait ten seconds while trying to find the element. I personally prefer explicit 
waits since you can see by reading the code how long it is going to wait for.

Let's now see what we have learnt in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 107 ]

Summary
We learnt a lot in this chapter about finding elements using the Selenium WebDriver Element.

Specifically, we covered:

 � Finding elements with helper methods: We saw what is needed to get things 
running and finding elements on the page using Selenium WebDriver. We started 
with the helper methods so that we can just start finding elements. In the next 
section we saw how we can make them more robust.

 � Finding elements in a maintainable way: In this section we learnt how to find 
elements in a more maintainable approach. We just need to change the argument  
in the method signature.

 � Tips and tricks: Here we learnt how we can find an element without throwing 
an exception. We also had a look at waiting for elements to appear on the page. 
Elements can happen asynchronously so we never know when they will appear. 

Now that we've learnt about finding elements, we're ready to start using browsers and 
tweaking them to our needs—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


6
Working with WebDriver

In the last chapter we saw how we can look for elements. Now let's start 
working with Selenium WebDriver in different browsers. Remember that 
Selenium WebDriver is a browser automation framework for all of the major 
browsers and can access the browser like an end user would.

In this chapter, we shall:

 � Run a test with Firefox

 � Working with Firefox profiles

 � Run a test with Google Chrome or Chromium

 � Updating the capabilities of the browser

 � Run a test with Opera

 � Working with Opera Profiles

 � Run a test with Internet Explorer

 � Working with InternetExplorerDriver

So let's get on with it...

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 110 ]

Important preliminary points
You will need to download the following items. Make sure that you download the relevant 
executable for your environment:

 � IE Driver Executable: http://code.google.com/p/selenium/downloads/
list

 � Chrome Driver Executable: http://code.google.com/p/chromium/
downloads/list

 � Opera Driver Executable: https://github.com/operasoftware/
operadriver/downloads

 � Firefox Driver does not require a download as it is bundled with the Java  
client bindings

Please make sure that you have all the necessary browsers installed to complete all the 
sections of this chapter.

When working through the following examples, we are going to assume that you have 
instantiated a WebDriver object by doing:

WebDriver driver = new FirefoxDriver();

You can use the following example class for use with JUnit 4:

import org.junit.*;
import org.openqa.selenium.*;
import org.openqa.selenium.firefox.*;

import java.io.File;
import java.util.Dictionary;

public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){ 
    driver = //we will update this part with each section 
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
    }

  @After
  public void tearDown(){
    driver.quit();
  }

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/chromium/downloads/list
http://code.google.com/p/chromium/downloads/list
https://github.com/operasoftware/operadriver/downloads
https://github.com/operasoftware/operadriver/downloads
http://www.it-ebooks.info/


Chapter 6

[ 111 ]

  @Test
  public void testExamples(){
    // We will put examples in here
  }
}

Working with FirefoxDriver
FirefoxDriver is the easiest driver to use, since everything that we need to use is all bundled 
with the Java client bindings that we used in the previous chapter.

In the next section we are going to see about loading the browser and typing to the screen. 
This is what we will be doing in most of our applications.

Time for action – loading the FirefoxDriver
We are going to do the basic task of loading the browser and type into the page.

1. Update the setUp() method to load the FirefoxDriver();
driver = new FirefoxDriver();

2. Now we need to find an element. In this section we will find the one with  
the ID nextBid:
WebElement element = driver.findElement(By.id("nextBid"));

3. Now we need to type into that element:
element.sendKeys("100");

4. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){ 
    driver = new FirefoxDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 112 ]

  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

What just happened?
We have just seen how easy it is to run a test with Selenium WebDriver and Firefox. It loaded 
the browser and then typed into the browser. We can now do everything and anything that 
we want to the content that is loaded into the browser. Now let's have a look at all the other 
things that we can do with FirefoxDriver.

Firefox profile preferences
There are times where we need to update the preferences within Firefox. This could be to 
switch on parts of Firefox that are disabled while they are in development or if you want to 
get more information from the browser while your tests are running. To do this, we will need 
to instantiate a Firefox Profile object and then update the settings.

We will then need to pass this object into FirefoxDriver where we instantiate it. This will load 
the profile with your details you have set. This is like loading about:config in the browser 
and changing what you need to.

Let's see how we can do this with a code sample.

Time for action – setting Firefox preferences
Imagine that you wanted to have your site as the startup page for Firefox. To do this we will 
need to update the browser.startup.homepage preference. Follow these steps:

1. Let's start by creating the FirefoxProfile object:
FirefoxProfile profile = new FirefoxProfile();

2. Now we will set the preference:
profile.setPreference("browser.startup.homepage",  
  "http://book,theautomatedtester.co.uk");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 113 ]

3. To get the profile to be used, we need to pass it in to the driver. To do this, we need 
to do the following:
driver = new FirefoxDriver(profile);

4. Run your test. The final code should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
  FirefoxProfile profile = new FirefoxProfile();
  profile.setPreference("browser.startup.homepage",  
    "http://book,theautomatedtester.co.uk/chapter4");
    driver = new FirefoxDriver(profile);
    }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

What just happened?
We have just seen that we can manipulate Firefox settings before the browser is loaded. This 
can be useful if you need to get extra information out of the browser or if we have a few 
things that need tweaking.

If you had installed Firefox in a different place, you would have had to instantiate the 
FirefoxBinary class with details of it:

FirefoxBinary binary = new FirefoxBinary("/path/to/binary");
driver = new FirefoxDriver(binary);

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 114 ]

If you need to update both the Firefox Profile and the Firefox Binary, you can simply pass 
both of them through the constructor as follows:

FirefoxBinary binary = new FirefoxBinary("/path/to/binary");
FirefoxProfile profile = new FirefoxProfile();
profile.setPreference("browser.startup.homepage",  
  "http://book,theautomatedtester.co.uk/chapter4");

driver = new FirefoxDriver(binary, profile);

As you can see, it's fairly simple to load Firefox if it isn't installed in the usual place.

Installing a Firefox add-on
One of the most useful features of Firefox is the ability to install add-ons to enhance the user 
experience. This enhanced experience can mean that web applications act differently when 
the add-on is installed.

Let's have a look at how we can install an add-on into our profile before we start  
the browser.

Time for action – installing the add-on
Imagine that you wanted to install Firebug so that if a test were to fail we could try and 
debug the JavaScript. To do this, we will need to create a FirefoxProfile and then tell it 
to add the add-on.

1. Create a profile object:
FirefoxProfile profile = new FirefoxProfile();

2. Now we need to install the add-on. WebDriver can only install add-ons that are on 
the local hard drive:
profile.addExtension("path/to/addon");

3. Pass the profile into FirefoxDriver and then run your test. Your code would look like 
the following:
public class TestChapter6 {

  WebDriver driver;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 115 ]

  @Before
  public void setUp(){
    FirefoxProfile profile = new FirefoxProfile();
    profile.addExtension("firebug.xpi");
    driver = new FirefoxDriver(profile);
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

What just happened?
We have just installed a Firefox add-on into the browser before we run our test. This is 
much simpler than it used to be in Selenium Remote Control where we would need to load 
the profile manually and make the changes that we needed and then run our tests telling 
Selenium Server to use this profile. The old process is not very portable compared to what 
we just did.

So far we have learnt to load Firefox and make changes to the browser before it loads 
which can be quite useful if we need to get more information out of the browser or make 
debugging issues a lot simpler. Let's see how much you remember with this quick pop quiz.

Pop quiz – working with FirefoxDriver
1. How would you set a preference?

2. How would you tell FirefoxDriver to use Firefox that is not installed in the  
usual place?

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 116 ]

Have a go hero – installing Firebug and not loading the First Run page
A lot of people like to use Firebug with WebDriver but get really annoyed with the First  
Run page. 

1. To get around this, we are going to have to update the version of Firebug in your 
Firefox Preferences. 

2. We will set the version to 99.9:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    FirefoxProfile profile = new FirefoxProfile();
    profile.addExtension("firebug.xpi");
    profile.setPreference("extensions.firebug.currentVersion",  
      "99.9");
    driver = new FirefoxDriver(profile);
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

Working with ChromeDriver
In this section, we will have a look at how we can start working with Google Chrome or with 
Chromium. Google Chrome or Chromium is in the top three browsers used in the world so 
most people want to make sure that their web applications work with it.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 117 ]

If you haven't downloaded the ChromeDriver you will need to do it now for 
the following sections. You will also need to set an environment path of where 
it is, so ChromeDriver in Java will know where to get it. This is purely for the 
ChromeDriver. If you have Google Chrome or Chromium installed somewhere 
that isn't the default, we will see how to handle that with ChromeOptions.
On Linux and Mac OS X do: export PATH=$PATH:/path/to/
chromedriver.
On Windows do: set PATH=$PATH;\path\to\chromedriver.

Time for action – starting Google Chrome or Chromium
Imagine that you wanted to work with Google Chrome to get an attribute of an element on 
the page. To do this we will need to instantiate a ChromeDriver. Let's see an example.

1. Update the setUp() method to load the ChromeDriver():
driver = new ChromeDriver();

2. Now we need to find an element. In this section we will find the one with  
the ID selectLoad:
WebElement element = driver.findElement(By.id("selectLoad"));

3. Now we need to get the value attribute of that element:
element.getAttribute("value");

4. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new ChromeDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 118 ]

    WebElement element = driver.findElement( 
      By.id("selectLoad"));
    String value = element.getAttribute("value");
    Assert.assertEquals("Click to load the select below",  
      value);
  }
}

What just happened?
We have just run a test with Google Chrome or with Chromium. It was fairly simple to get 
going and then the browser was able to get the value of the button. If you had trouble 
getting it to run, make sure that you have downloaded the ChromeDriver and added it to the 
environment variable called PATH.

Now that we have got ChromeDriver working, let's have a look at how we can update the 
browser as we did with Firefox.

ChromeOptions
Google Chrome or Chromium doesn't really have a profile that users can update in the same 
sense as Firefox. It does however have a mechanism that allows us to set certain options that 
Chrome will try and use. We can also tell it to install Chromium extensions, which are like 
Firefox add-ons, into the browser so we can enhance the experience.

Time for action – using ChromeOptions
Imagine that you needed to tell ChromeDriver the location of you Google Chrome or 
Chromium. To set this we will need to instantiate a ChromeOptions object and tell that 
where to find the Chrome/Chromium Binary.

Let's see how to do it:

1. Update the setUp() method to instantiate a ChromeOptions object and call 
setBinary() method:
ChromeOptions options = new ChromeOptions();
options.setBinary("/path/to/location");

2. Update the setUp() method to load the ChromeOptions object into the 
ChromeDriver:
driver = new ChromeDriver(options);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 119 ]

3. Now we need to find an element. In this section we will find the one with  
the ID selectLoad:
WebElement element = driver.findElement(By.id("selectLoad"));

4. Now we need to get the value attribute of that element:
element.getAttribute("value");

5. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    ChromeOptions options = new ChromeOptions();
    options.setBinary("/path/to/location");
    driver = new ChromeDriver(options);
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement( 
    By.id("selectLoad"));
    String value = element.getAttribute("value");
    Assert.assertEquals("Click to load the select below",  
      value);
  }
}

What just happened?
We have just seen how we can inject options that we want Chrome or Chromium to start 
with. If we needed to pass in the arguments that we could start the browser with or if we 
needed to tell ChromeDriver, we can use setArguments(). This allows us to do many 
things to the browser. We can see a definitive list at  http://src.chromium.org/
viewvc/chrome/trunk/src/chrome/common/chrome_switches.cc?view=markup.

www.it-ebooks.info

http://src.chromium.org/viewvc/chrome/trunk/src/chrome/common/chrome_switches.cc?view=markup
http://src.chromium.org/viewvc/chrome/trunk/src/chrome/common/chrome_switches.cc?view=markup
http://www.it-ebooks.info/


Working with WebDriver

[ 120 ]

If you have a Chrome Extension, a file with a .crx extension, you will need to use the 
addExtension() method as you would in FirefoxDriver. The following snippet will  
show an example:

ChromeOptions options = new ChromeOptions();
options.addExtension("example.crx")

Pop quiz – using ChromeDriver
1. What is the name of the object that allows us to tweak Chrome or Chromium before 

it launches?

2. What environment variable do we need to set and why?

Working with OperaDriver
Opera Software, the company that creates Opera, has created their own project to support 
Selenium WebDriver. Since not every web browser will act the same with the sites that we 
create, it is a good idea to make sure we can test our applications with OperaDriver.

Note that OperaDriver works best with the latest stable release of Opera. Make sure that you 
update regularly.

Let's see how easy OperaDriver is to use.

Time for action – starting Opera
In this section, we will see how we can start OperaDriver and get it to click a button on the 
page. This simple test will give us the confidence to use Selenium WebDriver with Opera.

1. Update the setUp() method to load the OperaDriver():
driver = new OperaDriver();

2. Now we need to find an element. In this section we will find the link Chapter 4:
WebElement element = driver.findElement(By.linkText("Chapter 4"));

3. Now we need to click on the link:
element.click();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 121 ]

4. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new OperaDriver();
    driver.get("http://book.theautomatedtester.co.uk/");

  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement( 
      By.linkText("Chapter 4"));       
    element.click();

    // Assert that we only have 1 link
    Assert.assertEquals(1, driver.findElements( 
      By.linkText("index")).size());
  }
}

What just happened?
We have just seen how easy it is to get the OperaDriver loading Opera and interacting with 
what is on the page. We used click() on a link so that we can navigate between pages. 
Just by changing the object that is instantiated in the setUp() method we got it to load.

Opera, like the previous browsers we have used, allows us to set details of the browser 
before the browser has started up. Let's have a look at how that works.

OperaProfile
The OperaProfile is a new addition to the OperaDriver. It allows us to set details in the 
browser when the browser starts. Opera Software tests the browser where it can, so we 
can set a lot of details of the browser. In the following example, we are going to disable 
Geolocation from our tests.

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 122 ]

Time for action – working with OperaProfile
Imagine that you want to test your web application that uses geolocation in the browser, 
when it cannot use geolocation. All location-based applications need to support this if you 
were to get a user who is worried about privacy on certain machines.

1. Update the setUp() method to load the OperaDriver():
OperaProfile profile = new OperaProfile();
profile.preferences().set("Geolocation",  
  "Enable geolocation", false);
driver = new OperaDriver(profile);

2. Now we need to find an element. In this section we will find the link Chapter 4:
WebElement element = driver.findElement(By.linkTexxt( 
  "Chapter 4"));

3. Now we need to click on the link:
element.click();

4. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    OperaProfile profile = new OperaProfile();
    profile.preferences().set("Geolocation",  
      Enable geolocation", false);
    driver = new OperaDriver(profile);
    driver.get("http://book.theautomatedtester.co.uk/");

  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement( 
      By.linkText("Chapter 4"));       
    element.click();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 123 ]

    Assert.assertEquals(1, driver.findElements( 
      By.linkText("index")).size());
  }
}

What just happened?
We have just seen how we can set a preference with Opera and then inject that into the 
browser so that when the browser starts, it is there for us to use. As mentioned earlier, 
there are a lot of different preferences that can be set. To see a list of these, open Opera and 
use the URL opera:config or visit http://www.opera.com/support/usingopera/
operaini/.

Pop quiz – working with OperaDriver
1. What version is recommended for use with OperaDriver?

2. How do we update the browser preference with OperaDriver?

Working with InternetExplorerDriver
Internet Explorer is the most used browser in the world followed by Firefox and Google 
Chrome so getting IEDriver working is going to be a high priority. The current version IEDriver 
supports IE6 through to IE9 so you will be able to test your websites work on old browsers 
right up to the latest modern version of the browser.

If you haven't downloaded the IEDriverServer you will need to do it now for 
the following section. You will also need to set an environment path of where 
it is so InternetExplorerDriver in Java will know where to get it. This is similar 
to what we did for the ChromeDriver earlier.
On Windows do: set PATH=$PATH;\path\to\chromedriver.

www.it-ebooks.info

http://www.opera.com/support/usingopera/operaini/
http://www.opera.com/support/usingopera/operaini/
http://www.it-ebooks.info/


Working with WebDriver

[ 124 ]

Time for action – working with Internet Explorer
In this section we are going to get the text of the element on the page. This is something that 
most people have to do to check that the right things are happening on the page.

We will need to instantiate InternetExplorerDriver and the call getText() on the element. 
Let's get to it.

1. Update the setUp() method to load  InternetExplorerDriver():
driver = new InternetExplorerDriver();

2. Now we need to find an element. In this section we will find the link Chapter 4:
WebElement element = driver.findElement(By.id("bid"));

3. Now we need to get the text of the element:
element.getText();

4. Run your test and it should look like the following:
public class TestChapter6 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new InternetExplorerDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");

  }

  @After
  public void tearDown(){
   driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("bid"));       
    Assert.assertEquals("50", element.getText());
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 125 ]

What just happened?
We have just seen how we can use WebDriver to drive Internet Explorer. Since this is the 
most used browser in the world, we always make sure that our applications work with it. As 
with all of the different browsers, using Internet Explorer with WebDriver is really simple.

Pop quiz – working with InternetExplorerDriver
1. What versions of Internet Explorer does WebDriver support?

Other important points
You will notice that in the tearDown() we call quit(). We call quit() because this 
call cleans up all of the resources that WebDriver starts up and uses. If you were to call 
close() it will only close the window that Selenium WebDriver is currently on. On some 
implementations of the server-side, or browser code, when we close() and it is the last 
window open then the server-side code will act as though quit() was called.

Summary
We learnt a lot in this chapter about Selenium WebDriver and all of the different browsers 
that it supports and how we can use them.

Specifically, we covered:

 � FirefoxDriver: We saw how easy it is to get started with WebDriver and Firefox and 
how we can go about setting preferences and installing add-ons. We also saw how 
we can tell FirefoxDriver where to launch Firefox from.

 � ChromeDriver: We saw how easy it was to use ChromeDriver. Once we added the 
ChromeDriver executable that we downloaded to our PATH environment variable 
we were able to use the driver. We also saw how we can tweak settings before the 
browser loads if we wanted to install extensions or if we wanted to set the location 
of the Chromium Binary.

 � OperaDriver: In this section we learnt how to use OperaDriver to work against our 
web application. We were also able to change preferences of the browser before it 
loaded so that we can try and test it as users would use it.

 � InternetExplorerDriver: In this section we saw how we can use InternetExplorerDriver 
to drive Internet Explorer. We need to make sure that our applications work in Internet 
Explorer since it has the largest market share so getting this right is useful.

www.it-ebooks.info

http://www.it-ebooks.info/


Working with WebDriver

[ 126 ]

We also discussed calling quit() when we are finished with WebDriver so that it can clean 
up resources.

Now that we've learnt about desktop browsers, we're ready to learn about mobile 
browsers—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


7
Mobile Devices

We are currently seeing an explosion of mobile devices to the market. A lot 
of them are more powerful than your average computer was just over a 
decade ago. This means that in addition to having nice clean, responsive, and 
functional desktop applications, we are starting to have to make sure the same 
basic functionality is available to mobile devices. In this chapter, we are going 
to be looking at how we can set up mobile devices to be used with Selenium 
WebDriver.

In this chapter, we shall learn:

 � How to use the stock browser on Android

 � How to test with Opera Mobile

 � How to test on iOS

So let's get on with it...

Important preliminary points
While you can use the Android emulator for the Android parts of the chapter, it is highly 
recommended that you have a real device that you can use. The reason is that the emulator 
tries to emulate the hardware that phones run on. This means that it needs to translate it 
to a low-level command that ARM-based devices would understand. A real iOS device is 
not needed as that simulates a device and therefore is significantly faster. The device will 
also need to have Android 4.0+ or better known as Ice Cream Sandwich. You will need to 
download the Android App from http://code.google.com/p/selenium/downloads/
list. It will be named android-server-<version>.apk where <version> is the  
latest version.

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/


Mobile Devices

[ 128 ]

You will however need to have a machine with OS X on to start the simulator since it is part 
of XCode. If you do not have XCode installed you can download it via the AppStore. You will 
also need to install all of the command-line tools that come with XCode. You will also need 
to check out the Selenium code from its source repository. You need to build the WebDriver 
code for iOS since it can't be added to the Apple App Store to be downloaded on to devices.

Working with Android
Android devices are becoming commonplace with owners of smartphones and tablets.  
This is because there are a number of handset providers in the market. This has meant that 
in some parts of the world, it is the only way that some people can access the Internet. With 
this in mind, we need to make sure that we can test the functionality.

Emulator
While it is not recommended to use the emulator due to the speed of it, it can be really 
useful. Since it will act like a real device in that it will run all the bits of code that we want on 
the virtual device, we can see how a web application will react.

Time for action – creating an emulator
If you do not have an Android device that you can use for testing, then you can set up an 
Android emulator. The emulator will then get the Selenium WebDriver APK installed and 
then that will control the browser on the device. Before we start, you will need to download 
the Android SDK from http://developer.android.com/sdk/index.html.

1. Open up a command prompt or a terminal.

2. Enter cd <path>/android-sdk/tools where <path> is the path to the 
android-sdk directory.

3. Now enter ./android create avd -n my_android -t 14 where:

 � –n my_android gives the emulator the name my_android.

 � –t 14 tells it which version of android to use. 14 and higher is Android 4 
and higher support.

4. When prompted Do you wish to create a custom hardware profile [no], enter no.

5. Run the emulator with:
./emulator -avd my_android &

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 129 ]

It will take some time to come up but once it has been started, you will not have to restart 
unless it crashes or you purposefully close it. Once loaded you should see something like  
the following:

What just happened?
We have just seen what is involved in setting up the Android emulator that we can use for 
testing of mobile versions of our applications. As was mentioned, we need to make sure that 
we set up the emulator to work with Android 4.0 or later. For the emulator we need to have 
a target platform of 14 or later. Now that we have this done, we can have a look at installing 
the WebDriver Server on the device.

Installing the Selenium WebDriver Android Server
We have seen that we can access different machines and control the browsers on those 
machines with Selenium WebDriver RemoteDriver. We need to do the same with Android. 
The APK file that you downloaded earlier is the Selenium Server that is specifically designed 
for Android devices. It has a smaller memory footprint since mobile devices do not have the 
same amount of memory as your desktop machine.

We need to install this on the emulator or the physical device that you have.

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile Devices

[ 130 ]

Time for action – installing the Android Server
In this section, we will learn the steps required to install the Android server on the device or 
emulator that you are going to be using. To do this, you will need to have downloaded the 
APK file from http://code.google.com/p/selenium/downloads/list. If you are 
installing this onto a real device make sure that you allow installs from Unknown Sources.

1. Open a command prompt or a terminal.

2. Start the emulator or device if you haven't already.

3. We need to run the available devices:
<path to>/android_sdk/platform-tools/adb devices 

4. It will look like this:

5. Take the serial number of the device.

6. Now we need to install. We do that with the following command:
adb -s <serialId> -e install -r  android-server.apk

7. Once that is done you will see this in the command prompt or terminal:

8. And on the device you will see:

www.it-ebooks.info

http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/


Chapter 7

[ 131 ]

What just happened?
We have just seen how we can install the Android Server on the server. This process is useful 
for installing any Android app from the command line. Now that this is done we are ready to 
start looking at running some Selenium WebDriver code against the device.

Creating a test for Android
Now that we have looked at getting the device or emulator ready, we are ready to start 
creating a test that will work against a site. The good thing about the Selenium WebDriver, 
like Selenium RC, is that we can easily move from browser to browser with only a small 
change. In this section, we are going to be introduced to the AndroidDriver.

Time for action – using the Android driver
In this section we are going to be looking at running some tests against an Android device or 
emulator. This should be a fairly simple change to our test, but there are a couple of things 
that we need to do right before the test runs.

1. Open a command prompt or terminal.

2. We need to start the server. We can do this by touching the app or we can do this 
from the command line with the following command:
adb -s <serialId> shell am start -a android.intent.action.MAIN -n  
org.openqa.selenium.android.app/.MainActivity

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile Devices

[ 132 ]

3. We now need to forward all the HTTP traffic to the device or emulator. This means 
that all the JSON Wire Protocol calls, that we learnt earlier, go to the device. We do 
it with:
adb -s <serialId> forward tcp:8080 tcp:8080

4. Now we are ready to update our test. I will show an example from the previous test:
import junit.framework.TestCase;

import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.android.AndroidDriver;

public class TestChapter7 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

5. Run the test. You will see that it runs the same test against the Android device. In 
the previous chapter we had this work against desktop browsers.

What just happened?
We have just run our first test against an Android device. We saw that we had to forward the 
HTTP traffic to port 8080 to the device. This means that the normal calls, which use the JSON 
Wire Protocol, will then be run on the device.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 133 ]

Currently Opera Software is working on getting OperaDriver to work on Mobile devices. 
There are a few technical details that are being worked on and hopefully in the future we will 
be able to use it.

Mozilla is also working on their solution for Mobile with Selenium. Currently a project called 
Marionette is being worked on that allows Selenium to work on Firefox OS, Firefox Mobile for 
Android as well as Firefox for Desktop. You can read up on it at https://wiki.mozilla.
org/Auto-tools/Projects/Marionette.

Pop quiz – working with Android
1. How do we set up an Android emulated device for our tests?

2. How do you see which devices are connected to the host?

a. adb devices

b. Adb phones

c. Adb handsets

3. How do you install the APK on the device or emulator?

a. adb -s <serialId> -e install -r  android-server.apk

b. Install it from http://code.google.com/p/selenium/downloads/
list

c. both

4. How do you start the App on the emulator or device without touching it?

5. How do I forward the HTTP traffic to the device?

a. Abd –s <serialId> redirect tcp:8080 tcp:8080

b. Abd –s <serialId> redirect tcp:8080 tcp:8080

c. adb -s <serialId> forward tcp:8080 tcp:8080

Have a go hero – updating tests for Android
Have a look at updating all of the tests that you would have written so far in the book to run 
on Android. It should not take you long to update them.

Running with OperaDriver on a mobile device
In this section we are going to have a look at using the OperaDriver, the Selenium WebDriver 
object to control Opera, in order to drive Opera Mobile. Opera has a large market share on 
mobile devices especially on lower end Android devices.

www.it-ebooks.info

https://wiki.mozilla.org/Auto-tools/Projects/Marionette
https://wiki.mozilla.org/Auto-tools/Projects/Marionette
http://code.google.com/p/selenium/downloads/list
http://code.google.com/p/selenium/downloads/list
http://www.it-ebooks.info/


Mobile Devices

[ 134 ]

Before we start we are going to need to download a special emulator for Opera Mobile. 

As of writing this, it has just come out of Opera's Labs so 
the download links may have been updated.

Windows: http://www.opera.com/download/get.pl?id=34969&sub=true&nothan
ks=yes&location=360.

Mac: http://www.opera.com/download/get.pl?id=34970&sub=true&nothanks=y
es&location=360.

Linux 64 Bit: Deb: http://www.opera.com/download/get.pl?id=34967&sub=true&
nothanks=yes&location=360.

Tarball: http://www.opera.com/download/get.pl?id=34968&sub=true&nothanks
=yes&location=360.

Linux 32 Bit: Deb: http://www.opera.com/download/get.pl?id=34965&sub=true&
nothanks=yes&location=360.

TarBall: http://www.opera.com/download/get.pl?id=34966&sub=true&nothanks
=yes&location=360.

Let's now see this in action. 

Time for action – using OperaDriver on Opera Mobile
To make sure that we have the right amount of coverage over the browsers that users may 
be using, there is a good chance that you will need to add Opera Mobile. Before starting, 
make sure that you have downloaded the version of the emulator for your Operating System 
with one of the links mentioned previously. 

1. Create a new test file. Add the following code to it:
import junit.framework.TestCase;

import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;

public class TestChapter7OperaMobile{
  WebDriver driver;
}

www.it-ebooks.info

http://www.opera.com/download/get.pl?id=34969&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34970&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34970&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34967&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34967&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34968&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34968&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34965&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34965&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34966&sub=true&nothanks=yes&location=360
http://www.opera.com/download/get.pl?id=34966&sub=true&nothanks=yes&location=360
http://www.it-ebooks.info/


Chapter 7

[ 135 ]

2. What we now need to do is add a setup method. We will have to add a couple of 
items to our DesiredCapabilities object. This will tell OperaDriver that we want to 
work against a mobile version.
@Before
public void setUp(){
  DesiredCapabilities c = DesiredCapabilities.opera();
  c.setCapability("opera.product", OperaProduct.MOBILE);
  c.setCapability("opera.binary",  
    "/path/to/my/custom/opera-mobile-build");

  driver = new OperaDriver(c);
    }

3. Now we can add a test to make sure that we have a working test again:
@Test
public void testShouldLoadGoogle() {
  driver.get("http://www.google.com");
  //Let's find an element to see if it works
  driver.findElement(By.name("q"));
}

4. Let's now add a teardown:
@After
public void teardown(){
  driver.quit();
}

5. Your class altogether should look like the following:
import junit.framework.TestCase;

import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;

public class TestChapter7OperaMobile{
  WebDriver driver;

  @Before
  public void setUp(){
    DesiredCapabilities c = DesiredCapabilities.opera();
    c.setCapability("opera.product", OperaProduct.MOBILE);
    c.setCapability("opera.binary",  
      "/path/to/my/custom/opera-mobile-build");

    driver = new OperaDriver(c);

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile Devices

[ 136 ]

  }

  @After
  public void teardown(){
    driver.quit();
  }
  @Test
  public void testShouldLoadGoogle() {
    driver.get("http://book.theautomatedtester.co.uk");

  }
}

6. And the following should appear in your emulator:

What just happened?
We have just seen what is required to run a test against Opera Mobile using OperaDriver. 
This uses the same communication layer that is used in communicating with the Opera 
desktop browser called Scope. 

We will see the mobile versions of web applications, if they are available, and be able to 
interact with them. 

If you would like the OperaDriver to load up tablet size UI, then you can add the following to 
use the tablet UI with a display of 1280x800 pixels. This is a common size for tablets that are 
currently on the market.

c.setCapability("opera.arguments",  
  "-tabletui -displaysize 1280x800");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 137 ]

If you want to see the current orientation of the device and to access the touch screen 
elements, you can swap OperaDriver object for OperaDriverMobile. For the most part,  
you should be able to do nearly all of your work against the normal driver.

Working with iOS
iPhones and iPod Touches are such commonplace these days. A lot of companies are working 
hard to offer a really good experience for these users. This means that users are starting to 
become accustomed to using web applications with their phones.

We can run our tests against the simulator or against the real device. Compared to Android, 
the simulator is really quick. This is because it is not trying to emulate the hardware of actual 
Apple devices.

Time for action – setting up the simulator
In this section, we are going to be making sure that we have the simulator or device ready. To 
do this we will need to do the following:

1. If you haven't checked the Selenium Code out, follow the steps at http://code.
google.com/p/selenium/source/checkout.

2. Open selenium/iphone/iWebDriver.xcodeproj in XCode.

3. If you want to build it for the simulator, set your build configuration to Simulator 
/ iPad OS 5.0 / iWebDriver. This is done in a drop-down box in the top-left of the 
project window.

4. Click Build & Go! iWebDriver will be built and the simulator will start. You can see 
what it will look like in the following screenshot:

www.it-ebooks.info

http://code.google.com/p/selenium/source/checkout
http://www.it-ebooks.info/


Mobile Devices

[ 138 ]

What just happened?
We have just got all the requirements ready to start writing our first test. After making sure 
that we have XCode, which has the iOS SDK, we were able to start the simulator and have 
iWebDriver installed.

We will now have a look at how to set up running your tests against a real device. Before we 
do that, we are going to have to make sure that we have set up a provisioning profile.

To do this we need to do the following. One thing to note is that you will have to pay US$99 
to join the iOS program. To do this:

1. Get a developer account from Apple. This is done at https://developer.apple.
com.

2. Create a certificate signing request.

3. Open Keychain Access:

4. Request a Certificate from a certificate authority by doing Keychain Access | 
Certificate Assistant | Request a Certificate From a Certificate Authority:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 139 ]

5. Complete the form as show in the following screenshot:

6. Click Continue and then save the file to somewhere that you will be able to access it:

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile Devices

[ 140 ]

7. Click Continue and then it should say that it was successful as shown in the  
following screenshot:

8. Go to the iPhone Developer Program Portal on https://developer.apple.com.

9. Launch the Assistant as in the following screenshot:

www.it-ebooks.info

https://developer.apple.com
http://www.it-ebooks.info/


Chapter 7

[ 141 ]

10. Go through the Provisioning Assistant and complete all the steps that you are asked 
to do:

Time for action – setting up on a real device
Setting up tests to run on a simulator is quite useful but having the tests running on a mobile 
device can be really useful. Let us have a look at setting this up on a real mobile device:

1. You will also need a provisioning profile from Apple to be installed and configured 
for your device.

2. Open Info.plist and edit the Bundle Identifier to com.NAME.$ 
{PRODUCT_NAME:identifier} where NAME is the name you registered  
your provisioning profile to be an authority on.

3. Make sure your device is connected to your computer. Your device must also be 
routable from your computer. The easiest way to do this is to configure a wifi 
network and connect your device to it.

4. Click Build & Go. iWebDriver will be installed on the device.

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile Devices

[ 142 ]

What just happened?
We have just installed iWebDriver on a real device. We can now run our tests against iPhones 
or iPads. The hard part in running tests against these devices is now done. Let's have a look 
at updating our tests.

Creating a test for iOS devices
Now that we have looked at getting the device or simulator ready, we are ready to start 
creating a test that will work against a site. The good thing about the Selenium WebDriver, 
like Selenium RC, is that we can easily move from browser to browser with only a small 
change. In this section, we are going to be introduced to the iPhoneDriver.

Time for action – using the iPhone driver
In this section, we are going to be looking at running some tests against an iOS device or 
simulator. This should be a fairly simple change to our test but there are a couple of things 
that we need to do right before the test runs.

1. Now we are ready to update our test. I will show an example from the previous test:
import junit.framework.TestCase;

import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.iphone.IphoneDriver;

public class TestChapter7 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new IPhoneDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 143 ]

    WebElement element = driver.findElement(By.id("nextBid"));
    element.sendKeys("100");
  }
}

2. Run the test. You will see that it runs the same test against an iOS device. In the 
previous chapter we had this work against desktop browsers.

What just happened?
We have just seen how we can run our tests against iOS devices. Depending on which 
simulator we start XCode from, we can either have it run against iPhone or iPad.

Have a go hero – updating tests for iOS Devices
Have a look at updating all of the tests that you would have written so far in the book to run 
on iOS. It should not take you long to update them.

Summary
We learnt a lot in this chapter about using Selenium WebDriver with mobile devices.  
We saw that after a little setup of the device and the machine running the test, it was  
fairly easy to get up and running.

Specifically, we covered:

 � Working with Android: In this section we had a look at what is needed to set up 
Android for testing with Selenium WebDriver. We set up an emulator in case we 
didn't have a real device. We also saw how we can install the Android Server on  
the device or emulator.

We then moved on to creating our test that ran against the emulator or the device.

 � Working with iOS: In this section we looked at setting up the simulator or getting 
iWebDriver installed on a real device.

Now that we've learnt about mobile web testing, let's have a look at really setting up 
Selenium grid—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


8
Getting Started with Selenium Grid

In this chapter we are going to have a look at what is Selenium Grid and how 
we can set it up on different environments. This will abstract the topography  
of where the tests are located so that your tests only have to worry about  
one address.

In this chapter, we shall learn:

 � Setting up the Selenium Grid Hub

 � Setting up the Selenium Grid Remote Controls

 � Creating tests for the grid

 � Running tests in parallel

So let's get on with it...

Please make sure that you download the latest Selenium 
Server from http://seleniumhq.org/download.

Understanding Selenium Grid
Selenium Grid is a version of Selenium that allows teams to set up a number of Selenium 
instances and then have one central point to send your Selenium commands to. This differs 
from what we saw in Selenium RemoteWebDriver where we always had to explicitly say 
where the Selenium Server is as well as know what browsers that server can handle.

www.it-ebooks.info

http://seleniumhq.org/download
http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 146 ]

With Selenium Grid we just ask for a specific browser, and then the hub that is part of 
Selenium Grid will route all the Selenium commands through to the Remote Control  
you want.

Selenium Grid also allows us to call a specific browser on a specific platform with just a 
simple update to the desired capabilities object that we learnt about in previous chapters. 
This allows us to route our tests accordingly so that we know that we are testing on the right 
browser on the right platform. We can see an example of this in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

[ 147 ]

We will see how to create tests for this later in the chapter but for now let's have a look at 
making sure we have all the necessary items ready for the grid.

We are now ready to start setting up the grid.

Selenium Grid Hub
Selenium Grid works by having a central point that tests can connect to, and then commands 
are pushed to Selenium Server nodes that are connected to the hub. The hub has a web 
interface that tells you about the Selenium Server and the browser instances connected to 
the hub and if they are currently in use.

Time for action – launching the hub
Now that we are ready to start working with Selenium Grid, we need to set up the grid. This 
is a simple command that we run in the console or command prompt.

1. Open a command prompt or console.

2. Run the command:
java -jar selenium-server-standalone-x.xx.xx.jar -role hub

3. When that command executes, you should see something like the  
following screenshot:

4. We can see that this is running in the command prompt or console. We can also see 
the hub running from within a browser.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 148 ]

5. We can enter http://nameofmachine:4444/grid/console where 
nameofmachine is the name of the machine with the hub. If it is on your machine, 
then you can enter http://localhost:4444/grid/console. We can see a 
screenshot of that:

What just happened?
We have successfully started Selenium Grid Hub. This is the central point of our tests and 
Selenium Grid instances. We saw that when we start Selenium Grid it showed us what items 
were available according to the configuration file that is with the normal install. One thing 
to note is that if you need to change the port, you can pass in –port ####. Just replace the 
#### with the port number that you wish to use.

We then had a look at how we can see what the grid is doing by having a look at the hub in a 
browser. We did this by putting the URL http://nameofmachine:4444/grid/console 
where nameofmachine is the name of the machine that we would like to access with the 
hub. It shows what configured environments the hub can handle, what grid instances are 
available, and which instances are currently active.

Now that we have the hub ready we can have a look at starting up instances.

Adding instances to the hub
Now that we have successfully started the Selenium Grid hub, we will need to have a 
look at how we can start adding Selenium servers to the hub so it starts forming the grid 
of computers that we are expecting. You will notice that compared to Selenium Grid for 
Selenium 1, we won't have to be adding a new server for each browser that we want to 
use. The server has always been able to handle more than one browser and because of 
architectural changes, we can now start one server and have it control all the browsers 
installed on that machine.

www.it-ebooks.info

http://nameofmachine:4444/grid/console
http://localhost:4444/grid/console
http://nameofmachine:4444/grid/console
http://www.it-ebooks.info/


Chapter 8

[ 149 ]

Time for action – adding a server with the defaults
In this section we are going to launch Selenium server and get it to register with the hub. 
We are going to assume that the browser on which you would like to register all known 
browsers and the hub are on the same machine as the grid node. We will pass in two 
required arguments which are: the server we are starting is a node and where the hub is. 
The selenium server will try and use port 5555. If that is not available you will get an error 
saying that the port is already in use. We can, and will in a future section, see how you can 
set the port manually.

1. Open command prompt or console.

2. Enter the command java -jar selenium-server-standalone..jar -role 
node  -hub http://localhost:4444/grid/register and press return. You 
should see the following in your command prompt or console:

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 150 ]

3. And this in the Selenium Grid Hub site:

What just happened?
We have added our first machine to our own Selenium Grid. It has used all the defaults that 
are available. It has created a Selenium Server that will take any Firefox, Google Chrome, and 
in this case Internet Explorer requests and is on the same machine as the host of Selenium 
server grid. This is a useful way to set up the grid really quickly with all the default browsers.

Adding Selenium Remote Controls for different machines
Selenium Grid is most powerful when you can add it to multiple operating systems. This 
allows us to check that, for instance, whether Firefox on Windows and Firefox on Linux 
is doing the same thing during a test. To register new remote controls to the grid from a 
machine other than the one hosting the hub, we need to tell it where the hub is.

Let's see this in action.

Time for action – adding Selenium server for different machines
For this section, you will need to have another machine available for you to use. This could 
be the Ubuntu machine that you needed for the previous chapter. If you have a small grid, 
then you can name them according to the operating system that it is run on.

1. Open a command prompt or console.

2. Run the command java -jar selenium-server-standalone.jar -role node  
-hub http://<name of server>:4444/grid/register.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

[ 151 ]

3. When you have run this your grid site should look like the following:

What just happened?
We have added a new remote control to the grid from a machine other than where the 
Selenium Grid Hub is running. This is the first time that we have been able to set up our 
remote control instances in a grid. We learnt about the –hub argument that is needed when 
launching the selenium server. We then saw that it has updated the grid site that is running 
on the hub.

Now that we have this working as we expected, let us have a look at setting up the server to 
do specific tasks.

Adding Selenium server to do specific browser tasks on 
specific operating systems
Selenium Grid is extremely powerful when we start using different browsers on the grid, 
since we can't run all the different browsers on a single machine due to operating systems 
and browser combinations. There is currently up to nine different combinations that are 
used by most people, so getting Selenium Grid to help with this can give you the test 
coverage that you need.

To do this we pass in the –browser argument in a command line call. Let us see how we can 
set the items.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 152 ]

Time for action – setting the environment when starting 
Selenium Remote Control

Now that we need to get Internet Explorer Selenium Remote Controls added to our grid, 
we have to add the –browser argument to our call with the target on the configured 
environments. Since we want to use Internet Explorer, we can use the IE on Windows target.

1. Open a console or command prompt.

2. Run the command:
java -jar selenium-server-standalone.jar -role node  -hub http://
localhost:4444/grid/register -browser browserName="internet explor
er",maxInstances=1,platform=WINDOWS

3. When it is running your hub page should look like this:

What just happened?
We have just seen how we can create grid nodes to only have the browsers that we want. 
We chose Internet Explorer but we could also choose Firefox, Google Chrome, or Opera. 
This is quite useful when we need to test a large amount of browser and operating system 
combinations. If you enter –browser on the command line, it will add those browsers too.

Using Selenium Grid 2 with your YAML file
If you have been using Selenium Grid from Selenium 1, you will have set up your YAML file. 
This can now be used with Selenium by passing in a file like the following one. To do this we 
just need to pass in a new argument called -grid1Yml:

hub:
  port: 4444
  remoteControlPollingIntervalInSeconds: 180
  sessionMaxIdleTimeInSeconds: 300
  environments:
    - name:    "Firefox on Windows"
      browser: "*firefox" 

Let's see this in action.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

[ 153 ]

Time for action – using Selenium Grid 1 configuration
A number of us have set up a Selenium Grid using the Selenium 1 Grid and have been using 
it for a long time. Since we have this why not upgrade the nodes to the Selenium Server that 
supports both Remote Control and WebDriver and use our original configuration? One thing 
to note is that we will only be able to run Selenium Remote Control tests this way.

Let's have a try at starting this all up.

1. Open a console or command prompt.

2. Run the command:
java -jar selenium-server-standalone.jar -role hub -grid1Yml 
selenium-grid-1.0.8/grid_configuration.yml

3. If we have a look at the grid config page by clicking the view config link, then we will 
see it in there:

What just happened?
We have just got the Selenium Grid to load our original Selenium Grid item by passing in the 
original YAML file. This then gets used by the hub once it has started up!

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 154 ]

Pop quiz – using Selenium Grid 2
1. What is the command required to start the Hub?

2. What is the URL where one can see what is happening on the grid?

3. How do you specify the port the remote control is running on?

4. How do you specify which browser you would like the remote control to be 
registered with?

Running tests against the grid
Now that we have set up the grid with different instances, we should have a look at how 
we can write tests against these remote controls on the grid. We can pass in the value of 
the target that we can see in the grid and then run the tests. So instead of passing in the 
standard desired capabilities, you can be more specific and the grid hub will route data so 
you can then run the tests as normal. Let's see this in action.

Time for action – writing tests against the grid
Now that we have a Selenium Grid set up we need to write a test that works against the grid. 
Working against Selenium grid is exactly the same as working with Selenium WebDrive's 
RemoteWebDriver. The Selenium Grid will find the relevant node and route all the 
commands to be executed there.

1. Create a new test file.

2. Populate it with a test script that accesses an item on the grid and then works 
against http://book.theautomatedtester.co.uk/. Your script should look 
something like the following:

import org.junit.*;
import org.openqa.selenium.*;
import org.openqa.selenium.firefox.*;

import java.io.File;
import java.util.Dictionary;

public class TestExample1 {

  WebDriver driver;

  @Before
  public void setUp(){
    DesiredCapabilities capability =  
      DesiredCapabilities.firefox();

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/


Chapter 8

[ 155 ]

    capability.setBrowserName("firefox" );
    // Set the platform we want our tests to run on
    capability.setPlatform("LINUX");  
    driver = new RemoteWebDriver(new URL( 
      "http://<grid hub>:4444/wd/hub"), capability);

    driver.get("http://book.theautomatedtester.co.uk/chapter1");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    // We will put examples in here
  }

What just happened?
We have just seen how we can write tests that can run against the grid and then run them. 
When the tests are running, the grid will show which browsers are currently in use and 
which grid items are currently free.

Running tests in parallel
So far we have managed to get our tests cycling through different machines. We have also got 
it working against the Selenium Grid hub so we can see all of our tests being split out to the 
machines that we make sure that we test against browser and operating system combinations.

In this section, we will look at how we can add a thread-count attribute to the <suite> 
node in our test configuration file. We also will need to add the parallel attribute to the test 
suite. The value that it takes will either be methods or classes. This will mean that either 
the methods, the test cases, are run in parallel or the classes that contain the test cases are 
running in parallel.

Time for action – getting our tests running in parallel
Now we are ready to start having our tests running in parallel.

1. Open your TestNG XML configuration file.

2. Add parallel=methods to the suite node.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Selenium Grid

[ 156 ]

3. Add thread-count=3 to the suite node. This will run your tests with three threads. 
This number can be any value that you want. It is best practice to only let this 
number go to the number of cores that the machine running the tests has minus  
the number of Selenium Remote Controls running.

4. Right-click on the configuration file in IDEA and run the tests.

What just happened?
We have just managed to get our tests running in parallel. As you can see this has been fairly 
easy. We saw that adding the parallel and the thread-count attributes allows us to run these 
tests in parallel and when coupled with Selenium Grid we can start to get our tests running 
near 1/n which is where we want our tests to be.

Summary
We learnt a lot in this chapter about how we can set up Selenium Grid and all the different 
arguments needed as well as running our tests against the grid.

Specifically, we covered:

 � Starting the Selenium Grid Hub: In this section of the book we had a look at how  
we can start up the Selenium Grid Hub that is the central point for Selenium Grid.

 � Setting up Selenium Grid Nodes: We had a look at all the arguments that are 
needed to add a Selenium server to the grid so that we can use it. This gives us a 
more manageable view of our grid so that we can work with it.

 � Running tests in parallel: In this section we learnt how we can run our tests in 
parallel. We also had a look at how we can cycle through different browsers using 
the @Parameter annotation.

We also discussed how we can create tests that use the grid.

Now that we've learnt about setting up Selenium Grid and have looked into getting our 
test time down by running things in parallel using Selenium Grid, let's have a look at using 
Selenium to do more advanced user interactions—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


9
Advanced User Interactions

As we have seen, clicking and typing is quite straightforward with Selenium 
WebDriver. Find the element and then interact with it. Unfortunately a lot of 
the modern web applications that are being created are a lot more than just 
typing and clicking. In this chapter, we will have a look at how we can drag and 
drop and move the mouse to specific places on the page.

In this chapter, we shall learn:

 � What is the Advanced User Interactions API

 � Building up a sequence of actions and performing them

So let's get on with it...

Important preliminary points
You will need to have the currently released version of Firefox or the version before that for 
this section of the book. You will also need to do this chapter on Microsoft Windows or a 
Linux distribution. This is required so that we can do native interactions. Native interactions 
inject events into the browser just like if you were typing on a keyboard. You will be able to 
do this chapter on a Mac OS X. Selenium WebDriver will use synthetic events by injecting 
events onto the page via JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced User Interactions

[ 158 ]

What is the Advanced User Interactions
The Advanced User Interactions API is a new, more comprehensive API for describing actions 
a user can perform on a web page. Normally we need to find elements and then send actions 
through them. If we need to perform complex tasks like hold down Control and click, then 
this may not work.

The Advanced User Interactions allows us to build these complex interactions with elements 
in a really nice API. The API relies on two key interfaces for this to work.

Keyboard
The keyboard interface allows keys to be pressed, held down, and released. It also allows for 
normal typing.

Methods available are:

 � void sendKeys(CharSequence... keysToSend): Similar to the existing 
sendKeys(...) method.

 � void pressKey(Keys keyToPress): Sends a key press only, without releasing it. 
Should only be implemented for modifier keys (Control, Alt, and Shift).

 � void releaseKey(Keys keyToRelease): Releases a modifier key.

Mouse
The mouse interface allows for mouse clicks, double clicks, context clicks, as well as moving 
the mouse to a specific point or to a specific element on the page.

Methods available are:

 � void click(WebElement onElement): Similar to the existing click() method

 � void doubleClick(WebElement onElement): Double-clicks an element

 � void mouseDown(WebElement onElement): Holds down the left mouse button 
on an element

 � void mouseUp(WebElement onElement): Releases the mouse button  
on an element

 � void mouseMove(WebElement toElement): Move (from the current location)  
to another element

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

[ 159 ]

 � void mouseMove(WebElement toElement, long xOffset, long yOffset): 
Move (from the current location) to new coordinates (X coordinates of toElement 
+ xOffset, Y coordinates of toElement + yOffset)

 � void contextClick(WebElement onElement): Performs a context-click (right-
click) on an element

These methods are useful to know but when working and creating a sequence of it, it is 
better to use the Actions chain generator and then call perform on that class.

This is the next section of the chapter.

Actions
The Actions class allows us to build a chain of actions that we would like to perform.  
This means that we can build up a nice sequence, for example "Press Shift and type and  
then release", or if we wanted to work with a select that allows multiple selects, we could 
press Shift and then do the necessary clicks.

We do this by creating an Actions object. We then need to chain some calls together:

// Create Actions object passing in a WebDriver object
Actions builder = new Actions(driver);

// Chain some calls together and call build
Action dragAndDrop = builder.clickAndHold(someElement)
  .moveToElement(otherElement)
  .release(otherElement)
  .build();

// Perform the actions
dragAndDrop.perform();

Drag and drop
We have seen that drag and drop is one of the main things that people want to do with  
web applications. This allows them to build task boards that allow people to drag and  
drop between different states. You may have seen applications like this if you work in an 
Agile environment.

Let's try and create a basic drag and drop example using the little bit we already know of the 
Actions class.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced User Interactions

[ 160 ]

Time for action – creating an Actions chain for dragging and 
dropping

A lot of web applications these days allow users to drag and drop what they want where they 
want on the page. This is really nice from a usability point of view, but from a testability point 
it is a nightmare!

We can get around this with actions API.

1. Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver(); 
driver.get("http://www.theautomatedtester.co.uk/demo2.html");
WebElement someElement =  
  driver.findElement(By.className("draggable"));
WebElement otherElement =  
  driver.findElement(By.className("droppable"));

Actions builder = new Actions(driver);
Action dragAndDrop = builder.clickAndHold(someElement)
  .moveToElement(otherElement)
  .release(otherElement)
  .build();

dragAndDrop.perform();

3. Run the test. You should see this first:

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo2.html
http://www.it-ebooks.info/


Chapter 9

[ 161 ]

4. And when it is complete you will see the block go blue:

What just happened?
We have just seen how easy it is to do a drag and drop on the page. We just need to create 
an Actions object and then create a chain of events. When we have built up the chain we call 
build(). This puts everything in the right order and when we call perform(), the items 
are popped out of the queue and run in order.

Let us have a look at doing some slightly more complex chains with the Actions class.

Moving an element to an offset
We can get around this with the actions API.

Time for action – moving an element with a drag-and-drop  
by offset

There are times where we need to only move an image by a certain amount. A good example 
of this would be if you are working in a WYSIWYG editor and you wanted to just move an 
image to somewhere else but did not want to drop it on another element, you will be using 
dragAndDropBy(WebElement, x, y);.

Let us see this in action.

1. Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver(); 
driver.get("http://www.theautomatedtester.co.uk/demo2.html");
WebElement drag = driver.findElement(By.className("draggable"));

Actions builder = new Actions(driver);

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo2.html
http://www.theautomatedtester.co.uk/demo2.html
http://www.it-ebooks.info/


Advanced User Interactions

[ 162 ]

   Action dragAndDrop = builder.dragAndDropBy(drag, 10, 20)
     .build();

   dragAndDrop.perform();

3. Run the test. You should see the following:

What just happened?
We have just seen how easy it is to do a drag-and-drop on the page by moving an item by 
an offset. You will have to pass in the element that you want to move and then the x and y 
offset that you want to move it by.

Doing a context click
If you are testing a highly rich application, like a WYSIWYG editor or an e-mail client, you 
will more than likely need to do a context click or right-click to get other menu items. 
This may seem like a simple task as a user but doing this within a browser and doing it 
programmatically has been a difficult task for some time. The interactions API allows us  
to do this and do it in a meaningful way.

We will now see it in action.

Time for action – doing a context click
If you are working in a document editor online or in an e-mail client and you are required 
to load a context menu, this will be useful. This can also be useful to load other bits of 
functionality or access specific pages. 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

[ 163 ]

To do this we will have to do the following:

1. Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver();
driver.get("http://www.theautomatedtester.co.uk/demo1.html");
Actions builder = new Actions(driver);
WebElement element = driver.findElement(By.tagName("body"));
Action contextClick = builder.contextClick(element)
  .build();

contextClick.perform();

3. Run the test. You should see the following:

What just happened?
We have managed to get our code to cause a right-click to happen on the page. This means 
that we can now get to areas of our application that have overridden the default behavior. 
We see this happening in a lot of WYSIWYG editors and in really rich HTML web applications.

Clicking on multiple items in a select element
When filling in forms one of the nicest ways, and quickest way, to get information is to have 
a select that allows you to choose a number of items in the select. Unfortunately from a 
testing point of view this can be really hard to do since each click would just select a new 
item instead of keeping the last one.

www.it-ebooks.info

http://www.theautomatedtester.co.uk/demo1.html
http://www.theautomatedtester.co.uk/demo1.html
http://www.it-ebooks.info/


Advanced User Interactions

[ 164 ]

Time for action – selecting multiple items on a select item
A number of forms nowadays ask users to select a number of items from a list.  
For me a good example is the Advanced Search on Bugzilla. You can see an example at 
https://bugzilla.mozilla.org/query.cgi?format=advanced. In Selenium 
RC, selecting multiple items was impossible. Using the standard clicking and typing with 
Selenium WebDriver we will not be able to do this either, however we can get around this 
with the actions API.

1. Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver(); 
driver.get("http://book.theautomatedtester.co.uk/ 
multi-select.html");
Actions builder = new Actions(driver);
WebElement select = driver.findElement( 
  By.tagName("select"));
List<WebElement> options = select.findElements( 
  By.tagName("options"));
Action multipleSelect = builder.keyDown(Keys.SHIFT)
  .click(options.get(0))
  .click(options.get(2))
  .build();

multipleSelect.perform();

3. Run the test. You should see the following:

www.it-ebooks.info

https://bugzilla.mozilla.org/query.cgi?format=advanced
https://bugzilla.mozilla.org/query.cgi?format=advanced
http://book.theautomatedtester.co.uk/multi-select.html
http://book.theautomatedtester.co.uk/multi-select.html
http://www.it-ebooks.info/


Chapter 9

[ 165 ]

What just happened?
We have just successfully done a multi-select. This can be useful for testing forms that allow 
users to select multiple items. The same principle can be used if you needed to interact with 
anything that required both the keyboard and the mouse to be used at the same time.

Holding the mouse button down while moving the mouse
Canvas applications are becoming one of the most used HTML5 components to be added to 
applications. One of the nice things that we can do with it is draw pictures on the page just 
by clicking and holding down the mouse.

From the automation point of view, this would appear to be extremely difficult. We have 
commands like click() and we know that we can move an element by a specific offset but 
a click() doesn't do what we do.

Time for action – holding the mouse button down while moving 
the mouse

In this section we will have a look at how we can press down the left mouse button and then 
move it around the page. If you are working on a canvas that tracks the mouse movements, 
you would be able to draw a picture with the actions API. Let's see this in action:

1. Open up inteliij and create a new Selenium WebDriver project.

2. Create a new class and a new test with the following code:
WebDriver driver = new FirefoxDriver();
driver.get('http://www.theautomatedtester.co.uk/demo1.html')

Actions builder = new Actions(driver);
WebElement canvas = driver.findElement(By.id("tutorial"));
Action dragAndDrop = builder.clickAndHold(canvas)
  .moveByOffset(-40, -60)
  .moveByOffset(20, 20)
  .moveByOffset(100, 150)
  .release(canvas)
  .build();

dragAndDrop.perform();

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced User Interactions

[ 166 ]

3. Run the test. You should see the following:

What just happened?
We have just seen how easy it is to hold the mouse button down and move it all over the 
page and then release the buttons. This type of action is one of the most complex types of 
work that we will have to do since it marries together a few.

Pop quiz – using Action Chains
1. What is the class that contains the action chain generator?

2. What is the method that builds up the chain?

3. What is the method that executes the chain in the order that it is created?

4. What is the best way to move the mouse by X coordinates to the side and Y 
coordinates up?

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

[ 167 ]

Summary
We have learnt a lot in this chapter about using the Advanced User Interactions API. We have 
seen how we can use it to work against web applications that have a large amount of key 
strokes or complex mouse movements.

Specifically, we covered:

 � What is the Advanced User API: In this section we learnt what the API is and  
what makes it up. This is important since it sets us up for understanding the rest  
of the chapter.

 � Actions: In this section we saw how we can start using the action chains to start 
building up complex chains of interactions with the page from typing to mouse 
movements. One thing to note is that the mouse won't appear to move but the  
right events will fire. 

Now that we've learnt about Advanced User Interactions, we're finished learning all  
of the core aspects of Selenium. Now we can learn about good design patterns for writing 
tests—which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


10
Working with HTML5

HTML5 has become one of the latest buzzwords to hit web development in 
the last couple of years. With it has brought a number of useful items to web 
developers that make web applications act more like desktop applications. 
In this chapter, we will have a look at working with a number of the different 
technologies that cannot be accessed by normal clicking or typing.

In this chapter, we shall learn:

 � Application cache

 � Browser connections

 � Web storage

So let's get on with it...

Important preliminary points
This only works with AndroidDriver, IPhoneDriver, and some of it works in Firefox. 
When working through the examples, we will need to make sure that we use those objects. 
We will be using the example class as follows:

import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

www.it-ebooks.info

http://www.it-ebooks.info/


Working with HTML5

[ 170 ]

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/chapter4");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testExamples(){
    // We will put examples in here
  }
}

Working with application cache
Application cache is one of the new technologies that is coming from the HTML 5 
specification. It allows web applications to specify files that are downloaded when the 
browser accesses the page. The browser will look at the files in the application cache before 
opening any network connections to the server. This means if the computer or mobile device 
goes offline, then those files are still available and loaded straight away.

To know if your application has an application cache file, you will need to have a look  
at the source of the HTML document. It should have a manifest attribute in the html  
tag as follows:

<html manifest="example.appcache"> 
  ...
</html>

When items are downloaded, we can then make calls to the application cache object that is 
attached to the window object in the browser. 

Selenium WebDriver has an AppCacheStatus enum that represents the current status of 
the application cache. The current statuses are:

 � 0: UNCACHED

 � 1: IDLE

 � 2: CHECKING

 � 3: DOWNLOADING

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

[ 171 ]

 � 4: UPDATEREADY

 � 5: OBSOLETE

Let's try using this.

Time for action – getting the current status of application cache
One of the things that you will want to constantly do during your testing is to make sure that 
the application cache is storing your files. We can see if they have been downloaded. 

1. Create a new test class using the example code at the beginning of the chapter.

2. In this part we are just going to check if the application cache is working. We do this 
by doing: 
AppCacheStatus status = (ApplicationCache) driver).getStatus();

3. The status should be equal to uncached when we load it.

4. The final class should look like the following:
import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testAppCacheStatus(){
    AppCacheStatus status = (ApplicationCache)  
      driver).getStatus();
    assertEqual(status AppCacheStatus.UNCACHED);
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Working with HTML5

[ 172 ]

What just happened?
We have just seen how we can get the application cache from the browser using the API built 
into the Selenium WebDriver. We will get an enum returned that relates to the current status 
that the browser returns. Now we know that we have the means to start to have a look at 
how our web application will act if it were to become offline.

Interacting with browser connections
Now that we can download and cache files using the application cache, it would be a good 
idea to see how well they work when there is no network connection. The mobile drivers 
have the ability to go into airplane mode. Hopefully, future versions of desktop browsers  
will have this ability too.

We will start by having a look at whether the browser is online. 

Seeing if the browser is online
Seeing if a browser is online during a test can be quite useful when we are testing how 
our application works offline. This is useful for working against sites that may have the 
application cache configured and you want to check if the site works when offline. To know 
that, we first need to make sure we know how to check if the browser is currently online.

Let's see how this looks.

Time for action – seeing if the browser is online
In this section, we will have a look at seeing if the browser is online or offline. Currently, this 
only works on mobile drivers from Selenium WebDriver. In this section, we will need to cast 
the Selenium WebDriver object to BrowserConnection and then access the methods that 
are found on that object.

Let's get into action:

1. Create a new test class using the example code at the beginning of the chapter.  
We can call the class TestBrowserConnection.

2. Create a test method and add the following  to it:
assertTrue(((BrowserConnection) driver).isOnline());

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

[ 173 ]

3. Your class should look like the following and when you run the test method it  
will pass:
import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testBrowserConnection(){
    assertTrue(((BrowserConnection) driver).isOnline());
  }
}

What just happened?
We have seen that by casting the webdriver object to BrowserConnection, we have 
access to a number of new methods. These methods allow us to see if the browser is 
currently online or offline. They also allow us to set the browser to online or offline,  
which will be the next section of this book.

Setting the browser offline or online
Now that we know how to see if the browser is online or offline, let us have a look at setting 
the browser connection to online or offline. This is not part of HTML5 technologies, but 
will allow us to use the previous online call, which is part of HTML 5, and to check if our 
application cache has downloaded the relevant files.

Let's see this in action.

www.it-ebooks.info

http://www.it-ebooks.info/


Working with HTML5

[ 174 ]

Time for action – setting the browser connection to offline  
or online

In this section, we are going to turn the device's browser connectivity off. This means that 
we can check how the application works if it were offline. This is going to be a really useful 
feature as more and more applications try to take advantage of the move to mobile.

Let's see this in action.

1. We are going to create a new test method in the class that we created in the 
previous section. 

2. In the test we are going to need to set the browser offline. We do this by casting 
to BrowserConnection and then using the method setOnline(). If we pass in 
true, it will set it online and if we set it to false, it will set the browser offline. 
Following is an example:
((BrowserConnection) driver).setOnline(false);

3. When you have finished, your class should look like the following:

import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testBrowserConnectionOnline(){
    assertTrue(((BrowserConnection) driver).isOnline());
  }

  @Test
  Public void testTurnOffConnectivity(){
    BrowserConnection networkAwareDriver = (BrowserConnection)  
      driver;
    networkAwareDriver.setOnline(false);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

[ 175 ]

    assertFalse(networkAwareDriver.isOnline());
    networkAwareDriver.setOnline(true);
    assertFalse(networkAwareDriver.isOnline());

  }
}

What just happened?
We have seen that we can simply turn the browser connection on and off on these devices 
and check that the browser is in the correct state, either online or offline, before moving on 
with the test. 

Now, we will move on to how to access some of the HTML5 storage technologies.

Working with WebStorage
Some of the other technologies that are being developed for HTML5 are related to 
WebStorage. There are three main WebStorage technologies:

 � Local storage

 � Session storage

 � WebSQL 

In this section of the chapter, we will only be working with the first two since WebSQL is not 
being implemented by all of the browser vendors. These technologies allow us to save to the 
users' hard disk and then retrieve what we stored. 

Let's start using this.

Local storage
In this section, we are going to have a look at working through local storage to make sure 
that items we expect to be there are there. This is analogous to an integration test that 
accesses a database to check whether something has been sorted. LocalStorage allows 
data to be stored and the data is persisted between sessions and the browser being closed 
and reopened.

The Selenium WebDriver object called LocalStorage is used to access the local storage in 
the browser. The API is nearly a 1:1 match for the JavaScript API that comes with browsers.

Let's see this in action.

www.it-ebooks.info

http://www.it-ebooks.info/


Working with HTML5

[ 176 ]

Time for action – accessing localStorage
Imagine that your application has stored something in the localStorage while the user 
has been interacting with the application. An example of this might be if you were working 
in a word processing application and it auto saves what you have typed to the box every so 
often. If your application were offline, it can still save the information.

Let's see how we would access this. 

1. Create a new test class. You can use the example code at the beginning of the 
chapter to help you create it quicker.

2. Accessing the LocalStorage object will require us to case the WebDriver object 
to it. This is similar to what we saw with BrowserConnection previously.
LocalStorage storageDriver = (LocalStorage) driver;
storageDriver.size(); // returns 0 if there is nothing in there

3. Now run your test class. It should look something like the following:

import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/ 
      localStorage.html");
  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testShouldReturnCurrentLocalStorageSize(){
    assertEqual(0, ((LocalStorage) driver).size();
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

[ 177 ]

What just happened?
We have just seen how we can access LocalStorage, the Selenium WebDriver API, for 
accessing the browsers' localStorage object. This means that we can have a look and 
check what the application has stored on the user's local storage. If were to log 

Session storage
Session storage is a very similar technology to local storage. The main difference is that it 
does not persist. If you were to close the tab and then reopen it, while using Firefox for 
example, session storage items will not be available where local storage will still be available.

Let's see how we can work with it.

Time for action – accessing sessionStorage
Imagine again that you are working against a word processing application but instead of it 
auto saving the text that you type to somewhere that is persisted, you only save it briefly 
waiting for the user to click save.

Let us see how we can use it.

1. Let's just add a new testMethod to the class we created in the previous section. 
We can call it testShouldAccessSessionStorage().

2. We will need to cast the WebDriver object to a SessionStorage object, so we 
can start accessing the methods it has available like the following:
SessionStorage storage = (SessionStorage) driver;
assertEquals(0, storage.size());

3. Let's create our test and run it. It should look like the following:

import org.junit.*;
import org.openqa.selenium.*;

public class TestChapter10 {

  WebDriver driver;

  @Before
  public void setUp(){
    driver = new AndroidDriver();
    driver.get("http://book.theautomatedtester.co.uk/ 
      localStorage.html");

www.it-ebooks.info

http://www.it-ebooks.info/


Working with HTML5

[ 178 ]

  }

  @After
  public void tearDown(){
    driver.quit();
  }

  @Test
  public void testShouldReturnCurrentLocalStorageSize(){
    assertEqual(0, ((SessionStorage) driver).size();
  }
}

What just happened?
We have just seen that the SessionStorage object acts a lot like the localStorage 
object that we worked with in the previous section of the chapter. We were able to get the 
SessionStorage methods by casting the Selenium WebDriver object. This gives us access 
to methods that map over to the JavaScript API available in the browser.

Summary
We learnt a lot in this chapter about using the HTML5 API that comes with Selenium 
WebDriver. These are helper methods that make our lives significantly easier when working 
against application cache or against web storage mechanisms.

Specifically, we covered:

 � Application cache API: We had a look at how we can access the browsers' 
application cache to see if it is downloading items into the cache or if the  
current app is uncached.

 � Browser connections: Web applications, with the help of HTML5 technologies, are 
getting the ability to work when they are offline. We have seen how, with the help of 
application cache, we can load pages from the cache. We can also see if the browser 
is currently online or offline, and on the mobile devices be able to turn them to 
airplane mode.

 � WebStorage: In this section we had a look at how we can access the WebStorage 
object that has been added to the HTML5 specification. Specifically, we had a look  
at localStorage and sessionStorage. Selenium WebDriver has tried to 
emulate the APIs available in the browser in the Selenium WebDriver APIs.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

[ 179 ]

If you want to read more on session storage I recommend reading 
https://developer.mozilla.org/en-US/docs/DOM/
Storage#sessionStorage.

Now that we've learnt about working with HTML5, we're ready to work through the final 
advanced topics—which is the topic of the next chapter.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/DOM/Storage%23sessionStorage
https://developer.mozilla.org/en-US/docs/DOM/Storage%23sessionStorage
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


11
Advanced Topics

In this chapter we are going to have a look at a number of advanced topics 
that we can do with Selenium WebDriver. These topics are not required in order 
to use Selenium WebDriver, but will be useful when there are problems with 
testing your application and you need to get some more information.

In this chapter, we shall learn:

 � Capturing screenshots

 � Using XVFB with Selenium

 � Working with Browsermob Proxy

So let's get on with it...

Important preliminary points
Before we start it will be good to download all the necessary items. Please download the 
latest from Browsermob Proxy: https://github.com/webmetrics/browsermob-
proxy/downloads.

www.it-ebooks.info

https://github.com/webmetrics/browsermob-proxy/downloads
https://github.com/webmetrics/browsermob-proxy/downloads
http://www.it-ebooks.info/


Advanced Topics

[ 182 ]

XVFB—sudo apt-get install xvfb. XVFB only really works reliably on Linux. You could 
potentially get this to work on OS X but it does not, as of writing this chapter, have great 
support. This will not work on Windows unfortunately.

Capturing screenshots
A lot of the time our Selenium remote control browsers will be running on different 
machines than the machine that starts the tests. This is because you, as a developer or 
tester, need a mechanism to have a screenshot of what the error looks like when the test 
failed. Images that are captured are saved in PNG format.

Unfortunately capturing screenshots in Selenium is limited to real browsers such as Mozilla 
Firefox, Google Chrome, and Internet Explorer. This is because these browsers have libraries 
that Selenium can use to take screenshots. As more libraries are added to Selenium for 
different browsers, you will be able to take more screenshots. They will use the same API call 
so there will be no need to change your tests.

Screenshots capability lives within an interface called TakesScreenshot. We will cast the 
driver to this and then use the interface to access getScreenshotAs() method. You will 
also need to import the following library:

import static openqa.selenium.OutputType.*;

Capturing base64 version of images
In this section we are going to have a look at capturing a base64 representation of an image. 
Base64 is a group of encoding schemes that allow us to represent binary data as ASCII. A 
common use for them in web applications is to place data URLs as the source for images to 
save on downloads that the browser has to do when it is parsing the HTML.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

[ 183 ]

Time for action – capturing images as base64 strings
Imagine that you want to take a screenshot on Selenium Grid. When you take the 
screenshot, you will not want it to be saved to the hard drive of the Selenium Grid node.  
You will want it to be moved back to where your tests are, especially if you are using it with  
a Continuous Integration Box.

1. Open up Intellij and create a new Java test class.

2. We will now add a new line for taking a screenshot:
driver.get(http://book.theautomatedtester.co.uk);
String screenshotBase64 = ((Screenshot) 
  driver).getScreenshotAs(base64);

3. If you set a breakpoint on the previous line, you will be able to see what the string 
looks like.

What just happened?
We have just managed to take a screenshot and have it returned as a base64 string. This will 
allow us to take a screenshot on a remote machine and then transport the resultant image 
back to where the test is being run from.

Saving the screenshot to bytes
Now that we have had a look at capturing screenshots to base64 strings, let's have a look  
at capturing them as bytes. Having them as bytes means that we can transform them into  
a number of different things as we see fit.

Time for action – saving images to bytes
Imagine that you want to do some in-depth analysis of the UI by taking screenshots. This is 
something that has been done a number of times in different projects. For example, you take 
a screenshot, then make changes, and then take more screenshots along the way.

1. Open up Intellij and create a new Java test class.

2. We will now add a new line for taking a screenshot:
driver.get(http://book.theautomatedtester.co.uk); 
Bytes screenbytes = ((Screenshot)driver).getScreenshotAs(bytes);

3. If you set a breakpoint on the previous line, you will be able to see what  
the string looks like.

www.it-ebooks.info

http://book.theautomatedtester.co.uk
http://book.theautomatedtester.co.uk
http://www.it-ebooks.info/


Advanced Topics

[ 184 ]

What just happened?
Now that we have seen what it takes to take a screenshot of the page from the browser, we 
have managed to take a screenshot and then push the result into a bytes variable. We can 
then perform histogram type checks against the bytes and anything else that we want.

We can also push the bytes into a stream to save it to file or we can have a look at taking 
screenshots straight to files.

Saving screenshots to files
Saving screenshots to file is probably the most common way to save a file. This approach will 
save the file to disk straight away. When we save the screenshot as a file, we are returned a 
file object.

We can then use it straight away to do anything like getPath() or do what we need.

Time for action – saving a screenshot to file
In this section we will have a look at how we can go about saving a file to disk. This is the 
most common thing that people do when saving screenshots. One thing to note is that  
if you are using RemoteWebDriver, this will save the file on the same machine as the 
Selenium Server.

1. Open up Intellij and create a new Java test class.
2. We will now add a new line for taking a screenshot:

driver.get(http://book.theautomatedtester.co.uk);
File savedImage = ((Screenshot)driver).getScreenshotAs(file);

3. If you set a breakpoint on the previous line, you will be able to see what the string 
looks like.

What just happened?
We have just seen what is probably going to be the most common way to save screenshots 
when we take them. When we take the screenshot, the image is saved to disk and we are 
returned the file object that has access to that image.

www.it-ebooks.info

http://book.theautomatedtester.co.uk
http://www.it-ebooks.info/


Chapter 11

[ 185 ]

If you would like to move the file when it is created, you can use the following code snippet:

File imageFile = ((TakesScreenshot) driver) 
  .getScreenshotAs(OutputType.FILE);
String failureImageFileName = "testfailureimage.png";

File failureImageFile = new File(failureImageFileName);
FileUtils.moveFile(imageFile, failureImageFile);

Pop quiz – saving screenshots
1. What is the easiest approach to saving images?

a. Base64 String

b. Bytes

c. File

2. If you want to move a screenshot over Selenium grid, which is the best output type 
to choose?

Using XVFB with Selenium
The following section of this book requires that we do this work in Linux as the requirements 
are only available on that platform. When Selenium is running on your machine, you will 
see that it always runs on your screen. If you want to push the running of your tests to a 
background, then you will need to use something like XVFB. XVFB stands for X11 Virtual 
Frame Buffer.

This allows us to run tests with a real browser without it trying to steal focus from you. 
FirefoxDriver, for example, forces the browser to the foreground to help the native events.

Time for action – setting up XVFB server
We will have to make sure that we have XVFB running on our machine. This should be fairly 
trivial to getting it right.

1. Open a terminal.

2. In the terminal, we will run the following command:
Xvfb :1 -screen 0 1600x1200x32

3. The server will listen for connections as server number 1, and screen 0 will be depth 
32 1600x1200.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Topics

[ 186 ]

4. You should see something like this in your terminal:

 

What just happened?
We have just seen what it takes to setup XVFB running on our machines. We have just told 
it to start an XVFB server and set up a screen on that server. If you want to set up XVFB in 
different ways, I recommend reading the manual at http://www.xfree86.org/4.0.1/
Xvfb.1.html.

Running tests in XVFB
Now that we have the server up and running, we can have a look at making sure that when 
we run our tests they use the new display.

Time for action – running tests with XVFB
We will have to make sure that we have XVFB running on the machine.

1. Open a terminal.

2. We need to export the display so that everything that is launched from it uses the 
one that we have set up earlier. We do this with:
Export DISPLAY=0.1

3. Now we just need to run our tests. You will see that the browser may launch in the 
dock but it should not actually be visible.

What just happened?
We have successfully managed to get our tests running using XVFB. We saw that the tests 
that we were running, and launching a browser on our displays, still finished with the same 
results as before.

www.it-ebooks.info

http://www.xfree86.org/4.0.1/Xvfb.1.html
http://www.it-ebooks.info/


Chapter 11

[ 187 ]

This can be useful for situations where you may have your tests running on change and you 
know that the browser will not try stealing focus.

Pop quiz – using XVFB
1. What does XVFB stand for?

2. What argument do we need to pass in when starting the XVFB to have it startup on 
a specific display?

Have a go hero – running tests in parallel with XVFB
Now that we know how to run tests with XVFB, try getting this running while running tests in 
parallel and see how it works together!

Working with BrowserMob Proxy
Patrick Lightbody, one of the core originators of Selenium and creator of Selenium RC with 
Paul Hammant, created the BrowserMob proxy while working on his startup BrowserMob. 
BrowserMob Proxy allows you to control the way that traffic is filtered to the browser.

We can also change the headers that are supplied to the server. This allows us to do a large 
number of things.

Creating a proxy
When working with BrowserMob Proxy we will need to make sure that we start the proxy so 
that we can use the API and change what we need.

Time for action – starting the proxy
We are going to need to start the proxy and make sure that we can then interact with it.

1. Create a new Project in Intellij.

2. Add the BrowserMob JARs to the project so that we can use it:
ProxyServer proxy = New ProxyServer(9876);
proxy.start();

3. When we want to stop the server we just call: 
proxy.stop()

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Topics

[ 188 ]

What just happened?
We have successfully started the server by passing in the port. The server needs to be 
started before we can do any of the different tasks that we will be doing in future sections  
of the book.

Capturing network traffic
One of the most useful things in Selenium Remote Control is the ability to capture the 
network traffic of the application that you are testing. It was removed since it is not required 
to do browser automation, but it was nice to have.

To capture network traffic, we need to proxy all traffic through BrowserMob Proxy. The way 
that BrowserMob Proxy does this is by capturing the network traffic and pushing it into a 
format called HTTP Archive, or most commonly known as HAR. A HAR file is JSON format 
that is the standard way to represent network traffic.

HAR captures lot of information that can be used for different purposes, so we will learn how 
to capture it next.

Time for action – capturing network traffic
Imagine that you wanted to see if there was anything on the page that was not found. This 
could be images, CSS files, or JavaScript files. These things are not visible when working with 
a page, and it can be interesting with unexpected bugs. We will now see how we can create a 
HAR file and then capture it.

Since the HAR will return the JSON we need, we just need to parse the JSON returned to get 
what we want.

1. Using the project we created previously, we are going to add a few more lines to get 
what we want.

2. We need tell Selenium WebDriver that we have a proxy that it has to use. We do 
that with:
FirefoxProfile profile = new FirefoxProfile();
profile.setProxy(proxy.seleniumProxy);

3. We need to tell the proxy to create a new HAR file for us. We do this by adding the 
following line:
Proxy.newHar("PageName"); // PageName is the name of the page we  
                          //want to capture

4. We then need to load a page, we can do this by clicking on a link calling get().

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

[ 189 ]

5. Now we need to call proxy.getHar(). This will return the HAR that we wanted.

6. Your code should look like this:
FirefoxProfile profile = new FirefoxProfile();
profile.setProxy(proxy.seleniumProxy);
WebDriver driver = new FirefoxDriver(profile);
proxy.newHar("PageName");
driver.get("http://book.theautomatedtester.co.uk 
  proxy.getHar();

7. And your HAR, once put through a JSON Viewer should look like this:

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Topics

[ 190 ]

What just happened?
We have just managed to capture the network traffic while we are running our tests. This can 
be really useful if you want to see if there are any 404 responses when we are loading our 
application under test. This can be useful if you are moving things about or if you are doing a 
smoke test after you have deployed your application to production.

Pop quiz – capturing Network Traffic
1. What is the name of the JSON format for showing network traffic?

2. What is the call that tells BrowserMob Proxy to start recording the traffic?

Have a go hero – doing more with BrowserMob Proxy
Now that we have managed to get the proxy started and managed to record the network 
traffic that is going through to the browser, let us have a look at getting the proxy to slow 
down the time that a response takes to get through. BrowserMob Proxy supports this and 
Intellij will be able to help with what parts of the API to use.

Summary
We learnt a lot in this chapter about some of the advanced topics that we may need in 
tougher times!

Specifically, we covered:

 � Saving screenshots: We have learnt how to save screenshots of our web 
applications programmatically. This allows us to know when something happens  
and we need to see what could be the reason!

 � Using XVFB: In this section, we learnt how to use XVFB to have a virtual display to 
run our tests in. This can be really useful if you want to be able to run Selenium 
WebDriver and not worry that when the tests run the browser might suddenly steal 
focus. This is useful if you are running a number of tests on a single machine and 
they need to use native events that Selenium WebDriver tries to do on Windows 
and Linux.

 � BrowserMob Proxy: In this section, we had a look at how we can replicate Selenium 
Remote Control's captureNetworkTraffic() method that will allow us to see 
what the browser downloaded during a page load. This is useful if you are doing 
web performance analysis during tests.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

[ 191 ]

We should also note that BrowserMob Proxy can do a lot more than record network traffic. 
It can block content from certain URLs, like ad networks, which can improve the speed at 
which tests run. This might be something to consider if your tests take hours and it is tracked 
down to a web performance issue.

Now that we've learnt about these topics, you should feel extremely confident in  
using Selenium WebDriver and can test it against a number of the different web  
applications out there!

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Migrating from Remote Control  
to WebDriver

Selenium Remote Control has been around for a number of years. This means 
that there is a large amount of tests out there written for the API. If you ever 
have to migrate your test suite, then the following chapter will give you the 
insight that you need. 

In this chapter, we shall cover WebDriver Backed Selenium.

Before we work through this chapter, it might be a good idea to go through Chapter 4,  
Design Patterns again as this will minimize the amount of work that is required as we  
move to WebDriver. So let's get on with it...

WebDriverBackedSelenium
Unfortunately, we have spent a considerable time in the past few years developing Selenium 
Remote Control tests, and converting them over to the new style of Selenium WebDriver 
may not be feasible. The WebDriver API is fundamentally different in its design compared to 
Selenium RC.

A

www.it-ebooks.info

http://www.it-ebooks.info/


Migrating from Remote Control to WebDriver

[ 194 ]

With this in mind, the Selenium Core development team has created the 
WebDriverBackedSelenium object that we can use. This allows us to create our tests with 
Selenium Remote Control syntax that we know but have some of the benefits of WebDriver 
with a very minor change to what you currently have.

String baseUrl = "http://book.theautomatedtester.co.uk";
String remoteControl = "localhost";
Int port = 4444;
String browser = "*firefox";
Selenium selenium = new DefaultSelenium(remoteControl, port , 
  browser ,baseUrl);
selenium.start();
selenium.open("/");
selenium.click("link=chapter1");
// rest of the test code

We then need to change our tests to the following:

WebDriver driver = new FirefoxDriver();
String baseUrl = "http://book.theautomatedtester.co.uk";
Selenium selenium = new WebDriverBackedSelenium(driver,baseUrl);
selenium.open("/");
selenium.click("link=chapter1");
// rest of the test code

Let's try to convert one of our Selenium Remote Control tests.

Time for action – converting tests to Selenium WebDriver using 
WebDriverBackedSelenium

Let's take one of our Selenium Remote Control tests and change it to use 
WebDriverBackedSelenium. This should be a simple change:

import com.thoughtworks.selenium.*;
import org.junit.*;

public class TestSeleniumWebDriver {  
  // We can name this file what we want

  Selenium selenium;

  @Before
  public void setup(){
    selenium = new DefaultSelenium("localhost",4444,"*chrome", 
      "http://book.theautomatedtester.co.uk");

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A

[ 195 ]

    selenium.start();
  }

  @Test
  public void shouldOpenChapter2LinkAndVerifyAButton(){
    /* This will contain some actions for us. We are going 
    * to be concentrating on the @Before and @After methods
  }

  @After
  public void teardown(){
    selenium.stop();
  }
}

1. Open IDEA and load your example.

2. Create a new external library for the Selenium binaries. We learnt how to do this in 
Chapter 3, Overview of Selenium WebDriver.

3. Add the variable WebDriver driver at the top of your class.

4. Change your setup() to look like the following: 
@Before
public void setup(){
  driver = new FirefoxDriver();
  selenium = new WebDriverBackedSelenium(driver,  
    http://book.theautomatedtester.co.uk)
}

5. Change the teardown() to:
@After
public void teardown(){
  driver.quit();
}

6. Run your tests.

What just happened?
We have seen how with very little change to our tests we have got our old Selenium 
Remote Control tests working using the new Selenium WebDriver drivers. The 
WebDriverBackedSelenium object has a mapping of the Selenium Remote Control  
API to the Selenium WebDriver API.

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/


Migrating from Remote Control to WebDriver

[ 196 ]

When the browser starts you will see the WebDriver extension in the bottom right of the 
browser. When it is processing commands, it will turn red and when it isn't it will be black.  
It should look like the following screenshot:

There are a few items that are not fully supported by WebDriverBackedSelenium, but 
hopefully as more and more work is done to the framework these will be less noticeable. 
This is available to all languages that can communicate with the remote server. 

Pop quiz – how do you use WebDriverBackedSelenium
1. How do you use the WebDriverBackedSelenium?

Summary
We have seen that we can easily move from tests that we created in the past using the 
Selenium Remote Control API. 

Specifically, we covered: 

 � Switching to WebDriverBackedSelenium: In this section, we saw that with only a few 
lines changed within our tests we can suddenly be running with Selenium WebDriver, 
the new API in the Selenium project. This will not allow us to fully migrate our tests 
but gives us a starting point. Remember that WebDriverBackedSelenium can work 
in all languages. You can either use the object or inject a WebDriver Object into the 
Selenium Object and have the Selenium Server do all of the work for you.

www.it-ebooks.info

http://www.it-ebooks.info/


Pop Quiz Answers

Chapter 1
Pop quiz – Selenium IDE

1. Answer: c

Pop quiz – verifying and asserting
1. Answer: b

2. Answer: Verify allows a test to continue and keep track of all verify errors. Assert 
will stop a test immediately when the assert fails.

3. Answer: b

Pop quiz – waiting for elements
1. Answer: a

Pop quiz – Test Suites
1. Answer: Click on the button with the arrow and three solid green lines.

B

www.it-ebooks.info

http://www.it-ebooks.info/


Pop Quiz Answers

[ 198 ]

Chapter 2
Pop quiz – using the Find button

1. Answer: d

Pop quiz – finding Elements with DOM JavaScript
1. Answer: c

Pop quiz – using XPath Axis
1. Answer: a and b

Pop quiz – using locators
1. Answer: a

2. Answer: //input/following-sibling::input

3. Answer: css=input + input

Chapter 3
Pop quiz – setting up the test project

1. Answer: In the test folder.

Chapter 4
Pop quiz – Page Object design pattern

1. Answer: The Page Object design pattern gives us a way to abstract our tests away 
so that we can make these tests more maintainable. We can make tests that only 
require updating if new steps have been added, otherwise it just requires the page 
object to be updated.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B

[ 199 ]

Pop quiz – Page Factories
1. Answer: @FindBy(how=How.ID, using='myId')

2. Answer: @CacheLookup

3. Answer: PageFactory.initElements();

Chapter 5
Pop quiz – finding elements using helper methods

1. Answer: b

2. Answer: c

3. Answer: No, it will not throw an exception. It will return an empty list.

Chapter 6
Pop quiz – working with FirefoxDriver

1. Answer: Create a profile object and call setPreference() method with the  
details needed.

2. Answer: We can use the FirefoxBinary class to tell it where to look.

Pop quiz – using ChromeDriver
1. Answer: ChromeOptions

2. Answer: The PATH environment variable needs to be set with where the 
ChromeDriver executable lives. This is so that when we call ChromeDriver with  
our Java code, it will load the relevant executable and load the browser as quickly  
as possible.

Pop quiz – working with OperaDriver
1. Answer: Use the latest stable version of Opera.

2. Answer: Use the OperaProfile object and update the preferences where needed.

www.it-ebooks.info

http://www.it-ebooks.info/


Pop Quiz Answers

[ 200 ]

Pop quiz – working with InternetExplorerDriver
1. Answer: All versions of IE6, IE7, IE8, and IE9 for both 32-bit and 64-bit installations.

Chapter 7
Pop quiz – working with Android

1. Answer: ./android create avd -n my_android -t 14 -c 100M

2. Answer: a

3. Answer: c

4. Answer: 
adb -s <serialId> shell am start -a android.intent.action.MAIN 
-n org.openqa.selenium.android.app/.MainActivity

5. Answer: c

Chapter 8
Pop quiz – using Selenium Grid 2

1. Answer: java –jar selenium-server.jar –role hub

2. Answer: http://nameofmachine:4444/grid/console where nameofmachine 
is the name of the machine that is running the hub. If it is on the same machine as 
you are currently on put localhost or 127.0.0.1.

3. Answer: port 4444

4. Answer:-browser browserName="internet explorer", 
maxInstances=1,platform=WINDOWS

Chapter 9
Pop quiz – using Action Chains

1. Answer: Action

2. Answer: build()

3. Answer: Perform()3

4. Answer. moveByOffset()

www.it-ebooks.info

http://nameofmachine:4444/grid/console
http://www.it-ebooks.info/


Appendix B

[ 201 ]

Chapter 11
Pop quiz – saving screenshots

1. Answer: c

2. Answer: Base64

Pop quiz – using XVFB
1. Answer:  X11 Virtual Frame Buffer

2. Answer: -screen

Pop quiz – capturing Network Traffic
1. Answer: HTTP Archive or HAR

2. Answer: newHar()

Appendix A
Pop quiz – how do you use WebDriverBackedSelenium

1. Answer: Create a new instance of the browser you want to use using Selenium 
WebDriver. Then pass this into the WebDriverBackedSelenium with the URL that 
you would like to test. It will look like this:
@Before
    public void setup(){
      driver = new FirefoxDriver();
      selenium = new WebDriverBackedSelenium(driver,  
        http://book.theautomatedtester.co.uk)
    }

www.it-ebooks.info

http://book.theautomatedtester.co.uk/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Index
Symbols
^=  57
*=  57
//  46
$=  57
@Before  73
-browser argument  152
@CacheLookup  81
-grid1Yml  152
 WebDriverBackedSelenium object  195

A
Actions

about  159
chain, creating  160, 161
chain, creating for drag and drop  160, 161
context click, doing  162
drag and drop  159
element, moving to offset  161, 162
mouse button, holding down  165, 166
multiple item, selecting  164

Advanced User Interactions
about  158
keyboard interface  158
mouse interface  158

AJAX  24
AJAX applications

Selenium tests  24
used, for working on pages  25-27
working with  28, 29 

Android
about  128
Emulator  128
Selenium WebDriver Android Server, installing  

129
test, creating  131
tests, updating  133
working with  133

Android emulator  127
Android Server

installing  130, 131
Android test

Android driver, using  131, 132
creating  131

application cache
current status, getting  171, 172
working with  170

architecture, Selenium
about  65
JSON Wire protocol  66
Selenium server  66
WebDriver API  66
WebDriver SPI  66

assertAlert method  19
assertAttribute method  19
assertChecked method  19
assertElementNotPresent method  19
assertElementPresent method  19
assert methods

assertAlert  19
assertAttribute  19
assertChecked  19

www.it-ebooks.info

http://www.it-ebooks.info/


[ 204 ]

assertElementNotPresent  19
assertElementPresent  19
assertText  19
assertTitle  19
verifyAlert  19
verifyAttribute  19
verifyChecked  19
verifyElementNotPresent  19
verifyElementPresent  19
verifyText  19
verifyTitle  19

assertText method  19
assertTitle method  19
Asynchronous JavaScript And XML. See  AJAX
automation rules

about  12
first test recording, with Selenium IDE  13-15

B
browser connections

interacting with  172
offline status, setting  173-175
online status, checking  172, 173
online status, setting  173-175

BrowserMob Proxy
about  181, 187
network traffic, capturing  188, 190
proxy, creating  187
proxy, starting  187

build()  161

C
ChromeDriver

about  116
ChromeOptions, using  118-120
Google Chrome, starting with  117, 118

ChromeOptions
about  118
using  118-120

click()   165
clickAndWait command  29
close()  125
Command textbox  20
comments

about  20
adding  20

contentEditable=true attribute  34
context click

about  162
doing  163

CSS selectors
about  52
child nodes, using  54
CSS class attributes, using  55
element IDs, using  56
elements finding, by attributes  56, 57
sibling nodes, using  55
used, for element search  53, 54
used, for nth element search  58

D
direct XPath

used, for element search  46, 47
using  46

Document Object Model. See  DOM
DOM  8
download requirements

Chrome Driver Executable  110
Firefox Driver   110
IE Driver Executable  110
Opera Driver Executable  110

E
element, finding

by class name, findElementByClassName() 
method used  94

by ID, findElementById() used  89, 90
by link text, findElementByLinkText() method 

used  99, 100
by name, findElementByName() method used  

91, 92
by XPath, findElementByXPath() method used  

97, 98
elements

filters, adding  43
Find button, suing  40
finding  88
finding, by inner text  59
from page, storing  30, 31
IDs finding, Firebug used  39
locationg, by ID  39-41
moving, on page  41-43

www.it-ebooks.info

http://www.it-ebooks.info/


[ 205 ]

moving, with drag-and-drop by offset  161
searching, by direct XPath  46, 47
searching, by DOM via JavaScript access  44, 45
searching, by name  42, 43
searching, by text content  49
searching, by XPath  45, 46
waiting, for appearance on page  104
XPath Axis used, for element search  50, 51

elements, finding
by class name, findElementsByClassName() 

method used  95, 96
by ID, findElementsById() method used  90
by link text, findElementsByLinkText() method 

used  101, 102
by name, findElementsByName() method used  

93, 94
by XPath, findElementsByXpath() method used  

98
Emulator

about  128
creating  128, 129

emulator, downloading for Opera Mobile
Linux 32 Bit  134
Linux 64 Bit  134
Mac  134
Tarball  134

explicit waits
about  105
using, with Selenium WebDriver  106

F
Factory constructs  78
filters

adding  43
direct XPath, using  46
element searching, by DOM via JavaScript 

access  44, 45
element searching, by link text  43, 44
element searching, by XPath  45, 46

findElementByClassName() method
about  94
used, for finding element by class name  94

findElementByID() method
about  89
used, for finding element by ID  89, 90

findElementByLinkText() method

about  99
used, for finding element on page by link text  

100
findElementByName() method

about  91
used, for finding element by name  92

findElementByXPath() method
about  97
used, for finding element by XPath  97, 98

findElement() method  79
about  102
used, for finding element  103

findElementsByClassName() method
about  96
used, for finding elements by class name  96

findElementsById() method
about  90
used, for finding elements by ID  90

findElementsByLinkText() method
about  101
used, for finding elements by link text  101, 102

findElementsByName() method
about  93
used, for finding elements by name  93, 94

findElementsByXpath() method
about  98
used, for finding elements by XPath  98

findElements() method
used, for finding elements  103

Firebug
about  38
URL  38

Firefinder  38
Firefox add-on

Firebug, installing  116
installing  114, 115

FirefoxBinary class  113
FirefoxDriver

about  111
Firefox add-on, installing  114
loading  111
profile preferences  112
profile preferences, setting  112, 113

G
get() method  81

www.it-ebooks.info

http://www.it-ebooks.info/


[ 206 ]

getPath()  184
getScreenshotAs() method  182
Google Chrome Developer Tools  38
grid

tests, running against  154, 155

H
HAR  188
HTML5  169
HTTP Archive. See  HAR
hub, Selenium Grid

about  147
instances, adding  148
launching  147, 148

I
Ice Cream Sandwich  127
IDEA Intellij  63
IE Developer Tools  38
implicit waits

about  104
using  105

import statements  71
initElements()  80
installing

Selenium IDE  8-10
InternetExplorerDriver

about  123
working with  124

iOS
setting up, on real device  141
simulator, setting up  137-141
test, creating  142
working with  137

iOS devices
tests, updating  143

isLoaded() method  81

J
Java environment

about  67
Intellij IDEA project, setting up  67-69
setting up  67-69

JavaScript Object Notation. See  JSON
JSON  24

JSON Wire protocol  66

K
keyboard interface

methods  158

L
LoadableComponent

about  81
get() method  81
isLoaded() method  81
load() method  81
using, by changing page object  82-84

load() method  81
local storage

about  175
accessing  176, 177

locator
about  37
constructing, requirements  38

M
manifest attribute  170
mobile devices  127
mouse button

holding down  165, 166
mouse interface

methods  158
multiple items

selecting, on select item  163-165
multiple windows

about  21
complex working with  23, 24
working with  22, 23

N
network traffic

capturing  188, 189
NoSuchElement exception  99, 103
NoSuchElementException exception  91, 94,  

103, 104
NotSuchElementFound exception  98, 100
nth element type

finding, XPath used  47, 48

www.it-ebooks.info

http://www.it-ebooks.info/


[ 207 ]

O
open command  15
OperaDriver

about  120
OperaProfile  121
running with, on mobile device  133-136
using, on Opera Mobile  134-136
working with  120-123

P
page factories

using  78, 80
using, with page objects  78, 81

page objects
about  72
changing, to use LoadableComponent  82-84
page factories, using with  78
Selenium steps, moving into private methods  

73, 74
test, setting up  72
used, to design tests  75, 77

parallel
tests, running in  155

partial match
performing, on attribute content  49
performing, on attributes  57

partial match, on attributes
nth element finding, CSS used  58

Pause button  31
Provisioning Assistant  141
proxy.getHar()  189

Q
quit()  125

R
Read-Eval-Print-Loop. See  REPL
REPL  38
Restart Now button  9

S
Select Element icon  39

Selenium
architecture  65
history  64, 65

Selenium API  64
selenium.getTitle  72
Selenium Grid

about  145-147
hub, launching  147, 148
instances, adding to hub  148
Selenium Remote Controls, adding for different 

machines  150
server, adding with defaults  149, 150

Selenium Grid 1 configuration
tests, running in parallel  155
tests, writing against grid  154, 155
using  153

Selenium Grid 2
using, with YAML file  152

Selenium IDE
about  8
Base URL  11
Command selectbox  11
comments, adding  20, 21
Find button  11
installing  8-10
Log tab  12
requirements  8
Source tab  11
Speed Slider  11
Target textbox  11
Test table  11
Value  textbox  11
working with  10-12

Selenium Remote Control
about  193
adding, for different machines  150
environment, setting on start up  152

Selenium server 
about  67
adding, for different machines  150, 151
adding, for specific browser task on specific 

operating systems  151
adding, with defaults  149, 150

Selenium steps
moving, into private methods  73, 74

Selenium WebDriver
about  63

www.it-ebooks.info

http://www.it-ebooks.info/


[ 208 ]

explicit waits, using with  106
Selenium WebDriver Android Server

Android Server, installing  130, 131
installing  129

session storage
accessing  177, 178

SessionStorage methods  178
setBinary() method  118
setUp() method  122, 124
SPI  66
sreenshots

about  182
capturing  182
capturing, as base64 strings  182, 183
saving, to byte  183
saving, to files  184, 185

Stateless Programming Interface. See  SPI

T
teardown() method  72, 125
test

assert, adding  16
converting, to  Selenium WebDriver  194-196
debugging  31
designing, page objects used  75, 77
non recording things  34
page information, storing  29
running, against grid  154, 155
running, in parallel  155
recreating, assert methods used  19
saving  34
updating  16
updating, for item verification  17, 18

Test automation  7
test creating, for iOS devices

Phone driver, using  142, 143
test debugging

about  31
steps  31, 32

Test Sources button  68
test suite

about  32
creating  32, 33

text() method  50
Thread.sleep()  104
type command  34

U
using variable  89

V
verifyAlert method  19
verifyAttribute method  19
verifybutton  79
verifyChecked method  19
verifyElementNotPresent method  19
verifyElementPresent method  19
verifyText method  19
verifyTitle method  19

W
waitFor command  23
waitFor set of commands

waitForAlertNotPresent  29
waitForAlertPresent  29
waitForElementNotPresent  29
waitForElementPresent  29
waitForFrameToLoad  29
waitForPageToLoad  29
waitForTextNotPresent  29
waitForTextPresent  29

WebDriver
about   109
elements, finding  88
object, instantiating  87

WebDriver API  66, 87
WebDriverBackedSelenium

about  193, 194
used, for test conversion to Selenium 

WebDriver   194-196
using  196

WebElement object  89
webelement variable  81
WebStorage

local storage  175
technologies  175

Windows  134

X
X11 Virtual Frame Buffer. See  XVFB
XCode  128

www.it-ebooks.info

http://www.it-ebooks.info/


[ 209 ]

XVFB using, with Selenium
about  185
tests, running in XVFB  186
XVFB server, setting up  185, 186

Y
YAML file

Selenium Grid 2, using  152

XPath
about  97
used, for nth element type finding  47, 48

XPath Axis
using, for element search  50

XPath queries
Axis list  51
element attributes, using  48

XVFB
about  182
using, with Selenium  185

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


 
Thank you for buying  

Selenium 2 Testing Tools Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're 
using to get the job done. Packt books are more specific and less general than the IT books 
you have seen in the past. Our unique business model allows us to bring you more focused 
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order 
to continue its focus on specialization. This book is part of the Packt Open Source brand, 
home to books published on software built around Open Source licences, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get 
some additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


Selenium 1.0 Testing Tools: Beginner's Guide 
ISBN: 978-1-84951-026-4         Paperback: 232 pages

Take your web applications with multiple browsers 
using the Selenium Framework to ensure the quality 
of web applications

1. Save your valuable time by using Selenium to 
record, tweak and replay your test scripts

2. Get rid of any bugs deteriorating the quality of your 
web applications

3. Take your web applications one step closer to 
perfection using Selenium tests

4. Packed with detailed working examples that 
illustrate the techniques and tools for debugging

Python Testing Cookbook
ISBN: 978-1-84951-466-8          Paperback: 346 pages

Over 70 simple but incredibly effective recipes for 
taking control of automated testing using powerful 
Python testing tools

1. Learn to write tests at every level using a variety of 
Python testing tools

2. The first book to include detailed screenshots and 
recipes for using Jenkins continuous integration 
server (formerly known as Hudson)

3. Explore innovative ways to introduce automated 
testing to legacy systems

4. Written by Greg L. Turnquist – senior software 
engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Agile Web Application Development with Yii1.1 and 
PHP5
ISBN: 978-1-84719-958-4           Paperback: 368 pages

Fast-track your web application development by 
harnessing the power of the Yii PHP Framework

1. A step-by-step guide to creating a modern, 
sophisticated web application using an incremental 
and iterative approach to software development

2. Build a real-world, user-based, database-driven 
project task management application using the Yii 
development framework

3. Take a test-driven design (TDD) approach to 
software development utilizing the Yii testing 
framework

Yii 1.1 Application Development Cookbook
ISBN: 978-1-84951-548-1           Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP 
framework

1. Learn to use Yii more efficiently through plentiful Yii 
recipes on diverse topics

2. Make the most efficient use of your controller and 
views and reuse them

3. Automate error tracking and understand the Yii log 
and stack trace

4. Full of practically useful solutions and concepts 
that you can use in your application, with clearly 
explained code and all the necessary screenshots

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started with Selenium IDE
	Important preliminary points
	What is Selenium IDE
	Time for action – installing Selenium IDE
	Selenium IDE
	Important note: Rules for automation
	Time for action – recording your first test with Selenium IDE
	Updating a test to assert items are on the page
	Time for action – updating a test to verify items on the page
	Comments

	Time for action – adding Selenium IDE comments
	Multiplying windows
	Time for action – working with multiple windows
	Time for action – complex working with multiple windows
	Selenium tests against AJAX applications

	Time for action – working on pages with AJAX
	Time for action – working with AJAX applications
	Storing information from the page in the test

	Time for action – storing elements from the page
	Debugging tests

	Time for action – debugging tests
	Test Suites

	Time for action – creating Test Suites
	Saving tests
	What you cannot record
	Summary

	Chapter 2:Locators
	Important preliminary points
	Locating elements by ID
	Time for action - finding IDs of elements on the page with Firebug
	Time for action - finding elements by ID
	Moving elements on the page
	Time for action - finding elements by name
	Adding filters to the name
	Time for action - finding elements by link text
	Time for action - finding elements by accessing the DOM via JavaScript
	Time for action - finding elements by XPath
	Using direct XPath in your test

	Time for action – finding elements by direct XPath
	Using XPath to find the nth element of a type
	Using element attributes in XPath queries
	Doing a partial match on attribute content
	Finding an element by the text it contains

	Using XPath Axis to find elements
	Time For Action – using XPath Axis
	CSS selectors
	Time for action - finding elements by CSS
	Using child nodes to find the element
	Using sibling nodes to find the element
	Using CSS class attributes in CSS selectors
	Using element IDs in CSS selectors
	Finding elements by their attributes
	Partial matches on attributes

	Time for action - finding the nth element with CSS
	Finding an element by its inner text

	Summary

	Chapter 3:Overview of Selenium WebDriver
	Important preliminary points
	History of Selenium
	Architecture
	WebDriver API
	WebDriver SPI
	JSON Wire protocol
	Selenium server
	The merging of two projects

	How to setup your Java environment
	Time for action – setting up Intellij IDEA project
	Summary

	Chapter 4:Design Patterns
	Important preliminary points
	Page Objects
	Time for action – setting up the test
	Time for action – moving Selenium steps into private methods to make tests maintainable
	Time for action – using the Page Object Pattern to design tests
	Using Page Factories with Page Objects
	Time for action – using PageFactory
	LoadableComponent
	Time for action – changing our Page Object to use LoadableComponent
	Summary

	Chapter 5:Finding Elements
	Important preliminary points
	Finding elements
	Finding an element on the page by its ID

	Time for action – using findElementById()
	Finding elements on the page by their ID

	Time for action – using findElementsById() 
	Finding an element on the page by its name

	Time for action – using findElementByName()
	Finding elements on the page by their name

	Time for action – using findElementsByName()
	Finding an element on the page by their ClassName

	Time for action – using findElementByClassName()
	Finding elements on the page by their ClassName

	Time for action – using findElementsByClassName()
	Finding an element on the page by their XPath

	Time for action – using findElementByXPath()
	Finding elements on the page by their XPath

	Time for action – using findElementsByXpath() 
	Finding an element on the page by its link text

	Time for action – using findElementByLinkText()
	Finding elements on the page by their link text

	Time for action – using findElementsByLinkText()
	Finding elements using a more generic method
	Time for action – using findElement()
	Time for action – using findElements()
	Tips and tricks
	Finding if an element exists without throwing an error
	Waiting for elements to appear on the page
	Implicit waits


	Time for action – using implicit waits
	Explicit waits

	Time for action – using explicit waits with Selenium WebDriver
	Summary

	Chapter 6:Working with WebDriver
	Important preliminary points
	Working with FirefoxDriver
	Time for action – loading the FirefoxDriver
	Firefox profile preferences

	Time for action – setting Firefox preferences
	Installing a Firefox add-on

	Time for action – installing the add-on
	Working with ChromeDriver
	Time for action – starting Google Chrome or Chromium
	ChromeOptions

	Time for action – using ChromeOptions
	Working with OperaDriver
	Time for action – starting Opera
	OperaProfile

	Time for action – working with OperaProfile
	Working with InternetExplorerDriver
	Time for action – working with Internet Explorer
	Other important points
	Summary

	Chapter 7:Mobile Devices
	Important preliminary points
	Working with Android
	Emulator

	Time for action – creating an emulator
	Installing the Selenium WebDriver Android Server

	Time for action – installing the Android Server
	Creating a test for Android

	Time for action – using the Android driver
	Running with OperaDriver on a mobile device
	Time for action – using OperaDriver on Opera Mobile
	Working with iOS
	Time for action – setting up the simulator
	Time for action – setting up on a real device
	Creating a test for iOS devices

	Time for action – using the iPhone driver
	Summary

	Chapter 8:Getting Started with Selenium Grid
	Understanding Selenium Grid
	Selenium Grid Hub
	Time for action – launching the hub
	Adding instances to the hub
	Time for action – adding a server with the defaults
	Adding Selenium Remote Controls for different machines
	Time for action – adding Selenium server for different machines
	Adding Selenium server to do specific browser tasks on specific operating systems
	Time for action – setting the environment when starting Selenium Remote Control
	Using Selenium Grid 2 with your YAML file
	Time for action – using Selenium Grid 1 configuration
	Running tests against the grid
	Time for action – writing tests against the grid
	Running tests in parallel
	Time for action – getting our tests running in parallel
	Summary

	Chapter 9:Advanced User Interactions
	Important preliminary points
	What is the Advanced User Interactions?
	Keyboard
	Mouse

	Actions
	Drag and drop

	Time for action – creating an Actions chain for dragging and dropping
	Moving an element to an offset

	Time for action – moving an element with a drag-and-drop 
by offset
	Doing a context click

	Time for action – doing a context click
	Clicking on multiple items in a select element

	Time for action – selecting multiple items on a select item
	Holding the mouse button down while moving the mouse

	Time for action – holding the mouse button down while moving the mouse
	Summary

	Chapter 10:Working with HTML5
	Important preliminary points
	Working with application cache
	Time for action – getting the current status of application cache
	Interacting with browser connections
	Seeing if the browser is online

	Time for action – seeing if the browser is online
	Setting the browser offline or online

	Time for action – setting the browser connection to offline 
or online
	Working with WebStorage
	Local storage

	Time for action – accessing localStorage
	Session storage

	Time for action – accessing sessionStorage
	Summary

	Chapter 11:Advanced Topics
	Important preliminary points
	Capturing screenshots
	Capturing base64 version of images

	Time for action – capturing images as base64 strings
	Saving the screenshot to bytes

	Time for action – saving images to bytes
	Saving screenshots to files

	Time for action – saving a screenshot to file
	Using XVFB with Selenium
	Time for action – setting up XVFB server
	Running tests in XVFB

	Time for action – running tests with XVFB
	Working with BrowserMob Proxy
	Creating a proxy

	Time for action – starting the proxy
	Capturing network traffic

	Time for action – capturing network traffic
	Summary

	Appendix A:Migrating from Remote Control  to WebDriver
	WebDriverBackedSelenium
	Time for action – converting tests to Selenium WebDriver using WebDriverBackedSelenium
	Summary

	Appendix B:Pop Quiz Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 11
	Appendix

	Index

