
CSS Framework
Alternatives

Explore Five Lightweight Alternatives
to Bootstrap and Foundation with
Project Examples
—
Aravind Shenoy
Anirudh Prabhu

www.allitebooks.com

http://www.allitebooks.org

CSS Framework
Alternatives

Explore Five Lightweight
Alternatives to Bootstrap and

Foundation with Project
Examples

Aravind Shenoy
Anirudh Prabhu

www.allitebooks.com

http://www.allitebooks.org

CSS Framework Alternatives

ISBN-13 (pbk): 978-1-4842-3398-6 ISBN-13 (electronic): 978-1-4842-3399-3
https://doi.org/10.1007/978-1-4842-3399-3

Library of Congress Control Number: 2018936183

Copyright © 2018 by Aravind Shenoy and Anirudh Prabhu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484233986.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Aravind Shenoy
Mumbai, Maharashtra, India

Anirudh Prabhu
Mumbai, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3399-3
http://www.allitebooks.org

I dedicate this book to my uncle, R.N. Kamath,
and my sister, Aruna; without them, I am incomplete.

—Aravind Shenoy

I dedicate this to my mother and father for their
endless support and words of encouragement.

I also dedicate this to my many friends who have
supported me throughout the process. I will always

appreciate all they have done.

—Anirudh Prabhu

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors ��ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Table of Contents

Chapter 1: Choosing Lightweight Frameworks for Intuitive
Web Design ���1

What Are Frameworks? ���2

Components of a CSS Framework ��3

Advantages of Using a CSS Framework ��4

Various Popular Frameworks ��5

Bootstrap���5

Foundation ��6

Materialize ��7

Skeleton ��8

Milligram ���9

UIkit ���10

Material Design Lite ��11

Susy ��11

Choosing a Framework ���12

Concept of Grids ��13

Summary���14

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Building a Landing Page with Skeleton ����������������������������15

Installing Skeleton ��15

Skeleton’s Grid System ���19

An Overview of Skeleton’s Attributes ��24

Building a Landing Web Page with Skeleton ���25

Step 1: Defining the Content Area ���25

Step 2: Completing the <body> Tag Content ���28

Step 3: Defining the Freelance Portal ��29

Step 4: Completing the Sections ���32

Step 5: Designing a Sign-up Form ���37

Step 6: Creating a Footer ���38

Summary���39

Chapter 3: Building a Product Page with Milligram ���������������������������41

Installing Milligram ���41

Overview of the Milligram Framework ��44

Grid System in Milligram ���46

Building a Product Page with Milligram ��48

Step 1: Defining the Header ���48

Step 2: Defining the Navigation ���51

Step 3: Defining the Banner Area ��53

Step 4: Designing the Content Area ���60

Step 5: Creating the Pricing Area ���63

Step 6: Creating the Footer ��65

Summary���68

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Chapter 4: Introducing UIkit ���69

Installing UIkit ���69

Grids, Cards, Flex, and Width ��71

Animations ��89

Scrollspy with Animations ��96

Accordions ��100

Icons ���104

Summary���106

Chapter 5: Material Design Lite Explained ��107

Installing MDL ���108

MDL Layout ���109

Building an Intuitive Web Page Using MDL ���121

Step 1: Creating the <head> Section ��121

Step 2: Creating a Fixed Header with a Drawer���122

Step 3: Creating the About Section ��126

Step 4: Inserting an Image with Content ���133

Step 5: Developing the Content for the Moments Tab ���������������������������������136

Step 6: Designing the Footer Section ��143

Summary���151

Chapter 6: Susy Explained ��153

Creating a 4×3 Responsive Grid Layout ��154

Summary���167

Index ���169

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

About the Authors

Aravind Shenoy A marketing expert by

profession, Aravind’s core interests are

technical writing, content writing, content

development, web design, and business

analysis. He was born and raised in Mumbai

and still resides there. A music buff, he

loves listening to rock ’n’ roll and rap. Oasis,

R.E.M., The Doors, Dire Straits, Coldplay,

Jimi Hendrix, and Michael Jackson rule his

playlists.

He firmly believes in this motto: “We are here for a good time, not a

long time. Be happy perennially.”

Anirudh Prabhu A UI developer with more

than seven years of experience, Anirudh

specializes in HTML, CSS, JavaScript, jQuery,

Sass, LESS, Twitter, and Bootstrap. He also has

experience with CoffeeScript and AngularJS.

Anirudh has worked as a technical

reviewer for Apress and Packt and has been

involved in building training material about

HTML, CSS, and jQuery for Twenty19, which is

a portal for students and interns.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical Reviewer

Ferit Topcu is a software developer who has

spent the last few years working and exploring

the Web and JavaScript. He’s been in web

development for more than five years and has

worked in different areas including research

topics, social media analytics, and the Internet

of Things. He recently joined one of Europe’s

biggest e-commerce companies, Zalando.

At Zalando, he is developing web applications

to improve its whole retail process.

Ferit has a master’s degree in computer engineering from TU Berlin

and is a father of two. His free time is spent with family and friends and

contributing to open source projects.

www.allitebooks.com

http://www.allitebooks.org

xiii

As I stride through this journey of life, I want to take this opportunity to

thank every person who has stood by me, especially those who believed

in me when others said “Don’t encourage him.” Well, life is like that, and

indeed life is beautiful. It couldn’t have been better. Thanks to everyone

who provided the right support when I needed it the most.

—Aravind Shenoy

Acknowledgments

www.allitebooks.com

http://www.allitebooks.org

1© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_1

CHAPTER 1

Choosing Lightweight
Frameworks for
Intuitive Web Design
When it comes to web design, Bootstrap, Foundation, and Materialize are

probably the first frameworks that come to a designer’s mind, given their

massive range of components and attributes. However, when talking about

light web projects, you do not usually need a comprehensive framework

like Bootstrap or Foundation (again, depending on the complexity of your

project). Usually, to build a small web site, lightweight frameworks can do

the job effectively and cut down the bulk, or noise, associated with massive

frameworks. For example, if your web site merely needs something like a

grid or some popular components commonly found in most frameworks,

then you should consider a lightweight framework.

Moreover, developing web sites and web applications from scratch is

quite a tedious process as it involves writing a sizeable amount of code.

Maintaining that code while the web site evolves adds to the complexity.

Coding from scratch (as we like to call it) is quite an endeavor, and a

framework can help you write a few lines of code and incorporate reusable

sets of commonly used code that you can maintain quite easily. Clean

coding and upkeep are tasks easily achieved using a framework.

2

Therefore, to simplify your web designing tasks, using a Cascading

Style Sheets (CSS) framework is a good option. As mentioned earlier, there

are plenty of frameworks on the Web other than Bootstrap, Foundation,

and Materialize. These light frameworks are quite streamlined and

remarkable, given their resourcefulness. The adage “Good things come in

small packages” is applicable here.

In this chapter, we explain what frameworks are and introduce the

popular Bootstrap, Foundation, and Materialize. Then we will review five

lightweight frameworks: Skeleton, Milligram, UIkit, Material Design Lite,

and Susy. These frameworks will be used throughout the book to build

interactive and immersive web pages. In doing so, you’ll form a strong

basis to select the one that best suits your development needs.

 What Are Frameworks?
A framework is a premeditated set of concepts, modules, and standardized

criteria that make the task of developing web sites and web applications

easier. It provides generic functionality with already written modules and

tailored components created in a standard manner. In short, it is a reusable

software environment that allows web designers and developers to easily

build their projects and solutions with minimal coding and without

worrying about the low-level details. This reduces development time and

provides easy upkeep and alterations whenever necessary.

Usually, there are two kinds of frameworks.

• Front-end frameworks (CSS and JavaScript frameworks)

• Back-end or server-side programming frameworks

While back-end frameworks are used by web developers and

programmers to build applications on the server-side, front-end

frameworks are used by web designers and developers for implementing

the Cascading Style Sheets language.

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

3

In this book, you will get a glimpse into front-end frameworks, which

basically are pre-prepared packages containing the structure of files and

folders of Hypertext Markup Language (HTML) and CSS documents (some

with JavaScript functions), which help designers and developers build

interactive and immersive web sites.

Frameworks allow you to use a common standardized structure that

cuts out much of the groundwork of writing code from scratch and helps

you reuse components, modules, and libraries, freeing you up to focus on

core tasks at a high level.

 Components of a CSS Framework
The following are the basic components of a CSS framework:

• Grids (structures that help organize the content and

design the layout)

• Typography elements

• Cross-browser compatibility

• Helper classes for positioning elements

• Utility classes

• Navigational elements

• Source code written in preprocessors such as Sass

and LESS

• Media elements (badges, tooltips, comments,

and so on)

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

4

 Advantages of Using a CSS Framework
Though some people have advocated not using CSS frameworks, mainly

because of issues such as bloated structure, ingrained HTML markup,

and a common aesthetic across framework-based web sites, using a CSS

framework has several benefits. You should try using a CSS framework for

the following reasons:

• Clean and consistent coding

• Cross-browser compatibility

• Grid-based design

• The ability to incorporate healthy coding practices

• Easy-to-build prototypes

• Easy maintenance and upkeep

• Allows reuse and clean homogenous code structure

• Easy expandability and modifications

• Solid documentation

• Common ground for building immersive web sites

• Accessibility

A budding developer can find it difficult to build web sites just based

on pure HTML, CSS, and JavaScript. In addition, grid-based layouts help

budding designers to position, structure, and design the layout quite easily.

You do not have to reinvent the wheel, meaning you can get some hands-

on experience without the intricacies and dilemmas that you will come

across when you code from scratch. Good and clean coding practices are

imperative when you grow as a web designer, and frameworks are all about

awesome cohesiveness and consistent coding that will hold you in good

stead in times to come.

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

5

 Various Popular Frameworks
In this section, you will look at the most popular frameworks used

by web designers across the globe. The most popular frameworks for

designing web sites are Bootstrap, Foundation, and Materialize. Which

one a developer chooses depends on the needs and requirements of a

web site and its design. However, just because a framework is popular

doesn’t mean it fits the bill when it comes to designing your projects.

You need to consider several issues when it comes to selecting a

framework; we’ll talk more about that later. Let’s now take a look at the

various superlative frameworks that are in vogue today.

 Bootstrap
Bootstrap is the most popular mobile-first framework in web design; it’s

used extensively by developers across the globe (Figure 1-1). You can find

more information on the official web site at http://getbootstrap.com/.

Figure 1-1. Bootstrap

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

http://getbootstrap.com/

6

Bootstrap adopts a mobile-first paradigm by which you can build

responsive web sites. It comes with components, modules, JavaScript

functions, and media queries that help developers build immersive

web sites with ease.

 Foundation
Foundation was the earliest responsive framework and is as massive and

advanced as Bootstrap for building web products and services (Figure 1-2).

Foundation comes with cool features such as Flex Grid and Motion UI. The

latest version, Foundation 6, is quicker, is lighter in size compared to its

earlier versions, and is a solid front-end framework for designing beautiful

web sites, e-mails, and apps that look good on any device. You can find more

information on the official web site at http://foundation.zurb.com/.

Figure 1-2. Foundation

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

http://foundation.zurb.com/

7

 Materialize
Materialize is a modern front-end framework based on Google’s Material

Design philosophy that helps developers build and design immersive web

sites (Figure 1-3). You can find more information on the official web site at

http://materializecss.com/.

Figure 1-3. Materialize

Materialize has a superlative, creative user interface (UI) component

library that incorporates cross-browser compatibility and device-agnostic

capabilities for developing attractive and consistent web sites.

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

http://materializecss.com/

8

 Skeleton
As mentioned earlier, sometimes you don’t need a large framework,

especially if you are embarking on a small project. Skeleton is a simple,

responsive boilerplate and is extremely lightweight with 400 lines of code

and with a mobile-based philosophy (Figure 1-4). You can find more

information on the official web site at http://getskeleton.com/.

Figure 1-4. Skeleton

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

http://getskeleton.com/

9

 Milligram
Milligram is a minimalistic framework with just enough styles for small

and interactive web sites (Figure 1-5). Its zipped file size is only 2KB. It

comes with a mobile-first philosophy and supports the modern browser

versions of Chrome, Firefox, Safari, IE, and Opera. Its cutting- edge features

include the FlexBox grid system, and it is a simple, top-notch framework

from a usability point of view. You can find more information on the

official web site at http://milligram.io/.

Figure 1-5. Milligram

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

http://milligram.io/

10

 UIkit
UIkit is a light and modular front-end framework for developing faster and

powerful web interfaces (Figure 1-6). It has a massive collection of HTML,

CSS, and JavaScript components and modules that can be extended with

themes. It is flexible because it can be customized to give a unique feel to

your web sites. You can find more information on the official web site at

https://getuikit.com/v2/.

Figure 1-6. UIkit

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

www.allitebooks.com

https://getuikit.com/v2/
http://www.allitebooks.org

11

 Material Design Lite
Google released its own front-end framework called Material Design Lite

(MDL) that is based on its Material Design philosophy (Figure 1-7). MDL is a

lightweight framework with few dependencies and is focused on simple web

sites such as blogs and landing pages. It allows you to customize styles and

web sites designed using MDL degrade gracefully in legacy browsers. You

can find more information on the official web site at https://getmdl.io/.

 Susy
In today’s era of agile development and constant changes, the layout

designs are crucial and cannot be restricted to a single framework,

especially if your web site is intricate design-wise. With Susy (Figure 1-8),

the settings are not set in stone, meaning you can use its integrated

Sass- based libraries to create immersive layouts with potent structural

designs. Susy is not a typical framework but more of a UI utility as it

simplifies and streamlines the task of designing intricate grid layouts.

You can find more information on the official web site at http://susy.

oddbird.net/.

Figure 1-7. Material Design Lite

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

https://getmdl.io/
http://susy.oddbird.net/
http://susy.oddbird.net/

12

 Choosing a Framework
As you can see, we have covered many popular frameworks. Choosing

the right framework is quite important and depends on the needs and

requirement of your projects. Some frameworks are bloated, meaning

they have too many built-in styles, which might not be required for a small

project.

The following are some of the factors that you should consider when

choosing a framework:

• An existing web project may already be using a

particular framework that cannot be used with your

desired framework.

• Some projects may not need the clutter associated with

heavyweight frameworks for performance-related issues.

• You might need different preprocessor support such

as for LESS or Sass, which is not integrated with your

desired framework.

• Web sites built with a particular framework may look

similar if not customized to give them an authentic look

and feel.

Figure 1-8. Susy

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

13

There are several other factors such as the ease of use, speed of

configuration, usability, features, widgets, components, long-term support,

and reliability that you need to consider when choosing a framework. In

summary, you need to choose your framework based on the requirements

and needs of the project; especially when choosing lightweight front-end

kits for small projects, given the bloat and bulk associated with massive

frameworks.

 Concept of Grids
A grid system allows you to structure and stack content horizontally and

vertically in an easy manner. It is easily adaptable for any web site or web

application and has a lot of advantages. It is usually responsive, meaning

it adjusts itself based on the browser or device width. So, it displays the

content appropriately in a mobile device, a laptop, a tablet, or a desktop

depending on the size of the device. Plus, you have media queries, which

help you define the grid layout based on the device width.

Grids are usually 12-column containers in many frameworks but can

be customized using methods specific to the framework. You can have

flexible layouts wherein you can divide the page into several regions and

place content using the markup.

Another concept catching on in CSS designs is the FlexBox. The

difference between a grid and FlexBox layout is that grid layouts are two-

dimensional, while a FlexBox is usually one-dimensional wherein you can

lay out content in a row or a column.

The choice of using a grid layout or a FlexBox depends on how you

want to structure your content. With a FlexBox you space out the content

and build a structure using that content. Suppose you have certain items; it

is up to you to decide how much space each item should take. Grid layouts,

on the other hand, are content-agnostic. In grid layouts, you create a layout

and place the content into rows and columns.

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

14

In most modern frameworks, both the grid and the FlexBox are

supported. While the usability of the grid layout is awesome, a FlexBox can

help you place things more aesthetically.

For a detailed explanation of the grid concept, you can refer the

Mozilla developer network web site, specifically the following web page,

for in-depth information: https://developer.mozilla.org/en-US/docs/

Web/CSS/CSS_Grid_Layout.

 Summary
In this chapter, we gave you an overview of some popular CSS frameworks.

We also covered the benefits of using a CSS framework. CSS frameworks

are comprised of components, modules, libraries, navigational elements,

typography, media queries, tailor-made widgets, and grid layouts that

make web design a breeze. We also gave you an overview of grid and

FlexBox layouts.

We will now dedicate a chapter for each of the frameworks mentioned

in the introduction of the chapter, starting with Skeleton. With each

chapter, we use a progressive approach, meaning the next framework is

more extensive and a framework’s resourcefulness increases as you move

through the book.

Chapter 1 Choosing Lightweight Frameworks For intuitive web Design

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

15© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_2

CHAPTER 2

Building a Landing
Page with Skeleton
Skeleton is an intuitive framework for lightweight projects. It is extremely

lightweight with a handful of HTML elements and was developed with

a mobile-first philosophy. In this chapter, you will learn how to install

Skeleton. You will also learn about its grid system and attributes; Finally,

we will build a landing web page with Skeleton.

 Installing Skeleton
To get started, go to the Skeleton web site at http://getskeleton.com/.

You will see the Download button, which is highlighted in a red box in

Figure 2-1.

http://getskeleton.com/

16

Click Download to download the Skeleton .zip file. After unzipping

the file, you will see the file structure shown in Figure 2-2.

The css folder is where you save your CSS files. By default, the css

folder contains the Normalize and Skeleton style sheets.

Figure 2-1. Skeleton download page

Figure 2-2. Content of the Skeleton framework

Chapter 2 Building a landing page with Skeleton

17

Normalize.css is a small CSS file that provides better cross-browser

consistency in the default styling of HTML elements. It makes browsers

render all elements more consistently and in line with modern standards.

It precisely targets only the styles that need normalizing. You can find more

information about Normalize on the official web site at https://necolas.

github.io/normalize.css/.

You can also see the images folder where you can store your images.

By default, the images folder contains the favicon image for Skeleton.

The index.html file is your default web page. When you edit the page

in Notepad++ or any editor, you will see the code displayed in Listing 2-1.

Listing 2-1. Basic Skeleton Example

<!DOCTYPE html>

<html lang="en">

<head>

 <!-- Basic Page Needs ––––––––––––––––––––––––––––––––––– -->

 <meta charset="utf-8">

 <title>Your page title here :)</title>

 <meta name="description" content="">

 <meta name="author" content="">

 <!-- Mobile Specific Metas –––––––––––––––––––––––––––––– -->

 <meta name="viewport" content="width=device-width,

initial- scale=1">

 <!—FONT –––-–– -->

 <link href="//fonts.googleapis.com/css?family=

Raleway:400,300,600" rel="stylesheet" type="text/css">

 <!—CSS –––––––-––– -->

 <link rel="stylesheet" href="css/normalize.css">

 <link rel="stylesheet" href="css/skeleton.css">

Chapter 2 Building a landing page with Skeleton

https://necolas.github.io/normalize.css/
https://necolas.github.io/normalize.css/

18

 <!—Favicon ––– -->

 <link rel="icon" type="image/png" href="images/favicon.png">

</head>

<body>

 <!-- Primary Page Layout –––––––––––––––––––––––––––––––– -->

 <div class="container">

 <div class="row">

 <div class="one-half column" style="margin-top: 25%">

 <h4>Basic Page</h4>

 <p>This index.html page is a placeholder with the

CSS, font and favicon. It's just waiting for you

to add some content! If you need some help hit up

the Skeleton

documentation.</p>

 </div>

 </div>

 </div>

<!-- End Document ––– -->

</body>

</html>

Now click the index.html file to display the web page, as shown in

Figure 2-3.

Chapter 2 Building a landing page with Skeleton

19

 Skeleton’s Grid System
Like most other frameworks, Skeleton has its own grid system. It is

essentially a 12-column grid with a maximum width of 960px. It is a

responsive grid that adjusts itself depending on the browser/device size.

Take a look at the code snippet in Listing 2-2 to understand how the

grid system works.

Listing 2-2. Skeleton Grid System Demonstrated

<body>

<div class="container">

<!-- columns should be the immediate child of a .row -->

 <div class="row">

 <div style="text-align:center; border: 1px

solid black;" class="one column">One</div>

 <div style="text-align:center; border:

1px solid black;" class="eleven

columns">Eleven</div>

 </div>

Figure 2-3. Skeleton basic example in a browser

Chapter 2 Building a landing page with Skeleton

20

 <!-- just use a number and class 'column' or 'columns' -->

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="two columns">Two</div>

 <div style="text-align:center; border: 1px solid

black;" class="ten columns">Ten</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="three columns">Three</div>

 <div style="text-align:center; border: 1px solid

black;" class="nine columns">Nine</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="four columns">Four</div>

 <div style="text-align:center; border: 1px solid

black;" class="eight columns">Ten</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="five columns">Five</div>

 <div style="text-align:center; border: 1px solid

black;" class="seven columns">Seven</div>

 </div>

Chapter 2 Building a landing page with Skeleton

21

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="six columns">Six</div>

 <div style="text-align:center; border: 1px solid

black;" class="six columns">Six</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="seven columns">Seven</div>

 <div style="text-align:center; border: 1px solid

black;" class="five columns">Five</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="eight columns">Eight</div>

 <div style="text-align:center; border: 1px solid

black;" class="four columns">Four</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="nine columns">Nine</div>

 <div style="text-align:center; border: 1px solid

black;" class="three columns">Three</div>

 </div>

Chapter 2 Building a landing page with Skeleton

22

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="ten columns">Ten</div>

 <div style="text-align:center; border: 1px solid

black;" class="two columns">Two</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid

black;" class="eleven columns">Eleven</div>

 <div style="text-align:center; border: 1px solid

black;" class="one columns">One</div>

 </div>

 </div

 </div>

<!-- End Document ––– -->

</body>

In Listing 2-2, you define a <body> element within which you define a

<div> with the container class. Inside that, you define the <div> with the

row class. Within that <div>, you define two <div>s, one with a column

width of one column and other with a column width of eleven columns.

Remember that the <div> with the column classes should be the

immediate child of the <div> with the row class. To define one column,

you use the one column class. Similarly, to define eleven columns, you use

the eleven columns class. For two columns, the class is two columns.

Chapter 2 Building a landing page with Skeleton

23

Note that you use an inline CSS style of <style="text-align:center;

border: 1px solid black;"> with each column to align the text in the

center and dedicate a black border of 1px for each column. You use the

 element for spacing between each row.

Basically, the code in Listing 2-2 defines different rows with a <div>

class and defines columns of different widths. Figure 2-4 shows the output

of the code on execution.

As you can see in Figure 2-4, the first row has two columns defined

with widths of one and eleven columns, respectively. The second row has

two columns with widths of two and ten columns, respectively. Similarly,

you define eleven rows each with two columns of varying widths.

Now you have an idea how the grid system works in Skeleton.

Figure 2-4. Skeleton grid system demonstrated

Chapter 2 Building a landing page with Skeleton

24

 An Overview of Skeleton’s Attributes
Let’s take a look at some attributes of the Skeleton framework.

• Skeleton’s typography base is Raleway, a Google-based

typography. The font size defaults to HTML’s font sizes,

and the typography retains properties such as anchors,

strong, emphasis, and underline similar to HTML’s

basic typography.

• Buttons in Skeleton can be created using the button-

primary class, which is easily distinguishable. You can

also opt for standard buttons if you don’t want enhanced

buttons. For that, instead of button-primary, you just

have to use the button class. You can also define a

button using the <button> element or use an anchor tag,

<a>, with the button or button-primary class.

• Unordered lists in Skeleton can be created using the

 class. If you want to use a numbered list, you can

use the class.

• Code styling can be set by using the <code> class. For

several blocks of code, you can use the <code> element

within a <pre> element.

• Tables in Skeleton are similar to HTML tables where

you use the <thead> and <tbody> elements. Similar to

HTML, you use <tr> to define the table rows, <td> for

the table data, and <th> for the table heading; you wrap

everything within the main <table> element.

• Skeleton uses mobile-first queries, which target the

minimum width. Styles outside of a query apply to all

devices. This is done to prevent small devices such as

phones and tablets from parsing loads of unused CSS.

Chapter 2 Building a landing page with Skeleton

25

• Skeleton uses the following media query sizes based on

the device size:

 – Mobile: 400px

 – Phablet: 550px

 – Tablet: 750px

 – Desktop: 1000px

 – Desktop HD: 1200px

Skeleton also comes with many helper classes that can be used to limit

the elements within a container, float the element to the left or right, and

clear the floats on both sides.

 Building a Landing Web Page with Skeleton
In this section, you will create a landing page for a freelance portal called

RemoteDesk. The landing page shows the various things you can do on

the freelance portal. You will design a web page that shows several aspects

of the freelance portal along with company information and other basic

features.

We will divide the process of building the web page into six Steps. After

these six Steps, you will have a complete landing page.

 Step 1: Defining the Content Area
You will define the <html> tags and then move on to include the necessary

links for Skeleton and Normalize (included by default in Skeleton) and

the custom style sheet in the <head> tags (more about that in the code

explanation). Then you will define the <body> section after the <head>

tags and within the <html> tags. Inside the <body> tags, you will define

the <div> class with the necessary rows and columns with the required

Chapter 2 Building a landing page with Skeleton

26

content. Essentially, each content area will be encapsulated in an element

with the row class. Depending on the content, you will divide the area into

sections using elements with the columns class in that section’s parent row.

Let’s look at Listing 2-3.

Listing 2-3. Defining the Content Area

<html>

 <head>

 <!-- Step1: Include the necessary style and heading-->

 <meta name="viewport" content="width=device-width,

initial-scale=1.0,maximum-scale=1.0"/>

 <link href="https://fonts.googleapis.com/

css?family=Source+Sans+Pro" rel="stylesheet">

 <link href="css/normalize.css" rel="stylesheet"

type="text/css"/>

 <link href="css/skeleton.css" rel="stylesheet"

type="text/css"/>

 <link href="css/style.css" rel="stylesheet"

type="text/css"/>

 <title>Best Freelance management app</title>

 <!-- end of Step 1-->

 </head>

 <body class="container">

 <!-- Navigation area -->

 <div class="row">

 <div class="two columns logo">RemoteDesk.com</div>

 <div class="eight columns"> </div>

 <div class="two columns">

 Sign

up

 </div>

Chapter 2 Building a landing page with Skeleton

27

 </div>

 <!-- Navigation area ends -->

 </body>

</html>

As you can see in Listing 2-3, you define the viewport size inside the

head section. A viewport controls the way a web page is displayed on a

mobile device. If you do not use a viewport, a mobile device will render

the page in a typical desktop screen width. Setting a viewport helps you

exercise control over a page’s width and scaling on varied devices.

You can find more about viewports at https://developers.google.

com/speed/docs/insights/ConfigureViewport.

Then, by default in Skeleton, you set the links for Normalize and

Skeleton. Remember that if the path to your files is different, you need to

specify so. For now, they should be in the root folder, so the default path

is good to go. Then you define the path for the custom style sheet called

as style.css, which you will place in the css folder. You define a <body>

tag and assign the container class to it. The container is the main centered

wrapper. You define a <div> element and assign a row class to it.

Inside that <div> element, you define three <div>s. The first <div>

contains the content RemoteDesk.com and spans two columns.

The next <div> spans eight columns, and you assign the value

between the <div> tags. Essentially, creates a nonbreaking space.

It is used in programming and web design to create a space in a line that

cannot be broken with word wrap. Using it will help create multiple spaces

that are visible on a web page and not only in the source code.

(We are using this because there are no offset classes in Skeleton

compared to other frameworks like Bootstrap and Foundation.)

The third <div> spans two columns and contains the Sign Up button,

which we create using the button-primary class.

Figure 2-5 shows the output of the code.

Chapter 2 Building a landing page with Skeleton

https://developers.google.com/speed/docs/insights/ConfigureViewport
https://developers.google.com/speed/docs/insights/ConfigureViewport

28

 Step 2: Completing the <body> Tag Content
Now, you will create the rest of the content within the <body> tags.

You will start with inserting an image, as shown in Listing 2-4. (Refer

to the entire code in the code bundle to see the positioning of the various

elements; we have included code in steps in the code bundle so that you

can have a better understanding of each step. Finally, index.html contains

the entire code for the landing page.)

Listing 2-4. Inserting the Header Image

<div class="row masthead"></div>

You have just used the row class and assigned a class called masthead

to it. The image is defined in the code in the style sheet called Style.css.

The image referred to, masthead.png, is located in the images folder where

you will keep all the images.

In style.css, you define the code, as shown in Listing 2-5.

Listing 2-5. Inserting Header Image

.masthead{

 background: url("../images/masthead.png") no-repeat center;

 height: 462px;

 background-size: cover;

}

Remember that the code shown in Listing 2-5 is the code in the custom

CSS style sheet called style.css.

Figure 2-5. The output of the content area

Chapter 2 Building a landing page with Skeleton

29

You assign a height of 462px and center the image. You also assign the

value cover to the background-size property; this scales the background

image to be as large as possible so that the background area is fully covered

by the image.

Now on executing the index.html page, you will get the output shown

in Figure 2-6.

 Step 3: Defining the Freelance Portal
Next, you will create a later section of the page where you define the

features of the freelance portal. To create this section, let’s look at the code

snippet shown in Listing 2-6.

Listing 2-6. Defining the Content Area for the “Rewarding” Section

<div class="row rewardingContent">

 <div class="six columns">

 <h3>Plenty of rewarding projects</h3>

Figure 2-6. Output of the header image

Chapter 2 Building a landing page with Skeleton

30

 <p>RemoteDesk is a great place to find more

clients, and to run and grow your own freelance

business.</p>

 Freedom to work on ideal

projects. On RemoteDesk, you run

your own business and choose your own

clients and projects. Just complete your

profile and we’ll highlight ideal jobs.

Also search projects, and respond to client

invitations.

 Wide variety and high pay.

 Clients are now posting jobs in

hundreds of skill categories, paying top

price for great work.

 More and more success.

 The greater the success you have

on projects, the more likely you are to get

hired by clients that use Upwork.

 </div>

 <div class="six columns">

 <img src="images/medal.png"

class="rewardingImg"/>

 </div>

 </div>

In Listing 2-6, you create another <div> with the row class. You also

assign a rewardingContent custom class to it. Then, you divide the section

of the page into two rows each spanning six columns in width.

The first <div> within the <div> with the row class is assigned a width of

six columns using the six columns class. You assign a heading inside it.

Chapter 2 Building a landing page with Skeleton

31

You create a list using the tags and define the list items using the

tags. Then, you create the second <div> spanning six columns where you

insert an image using the tag. You also add a custom rewardingImg

class to it.

Next, you can see what to do with the custom classes,

rewardingContent and rewardingImg, in the style.css style sheet, as

shown in Listing 2-7.

Listing 2-7. Defining Styles Related to the “Rewarding” Section

.rewardingContent {

 margin-top:10px;

}

.rewardingImg {

 width: 75%;

 margin: 0 auto;

 display: block;

}

In this code, you add a margin to the rewardingContent class to set

the whitespace around the border. You use the display: block for the

rewardingImg so that it occupies the space of the parent element. (You

need to use the display: block property because Skeleton does not have

any utility classes for responsive images.) You also define a width for the

image and center it using margin: 0 auto.

Figure 2-7 shows the later section of the page as created in Step 3.

Chapter 2 Building a landing page with Skeleton

32

 Step 4: Completing the Sections
Next, you will create the remaining three sections using the code in

Listing 2-8.

Listing 2-8. Adding Content to the Remaining Sections

<div class="row hiredContent">

 <div class="six columns">

 <img src="images/hire-resources-icon.png"

class="hiringImg"/>

 </div>

 <div class="six columns">

 <h3>Get hired quickly</h3>

 <p>RemoteDesk makes it easy to connect with

clients and begin doing great work.</p>

 Streamlined hiring.

RemoteDesk's sophisticated algorithms highlight

projects you're a great fit for.

Figure 2-7. Output of the “rewarding” section

Chapter 2 Building a landing page with Skeleton

33

 Top Rated and Rising Talent

programs. Enjoy higher visibility

with the added status of prestigious

programs.

 Do substantial work with top

clients. RemoteDesk pricing

encourages freelancers to use Upwork for

repeat relationships with their clients.

 </div>

 </div>

 <!-- Hired content end -->

 <!-- work efficiency start-->

 <div class="row workEfficiency">

 <div class="six columns">

 <h3>Work efficiently, effectively.</h3>

 <p>With Upwork, you have the freedom and

flexibility to control when, where, and how you

work. Each project includes an online workspace

shared by you and your client, allowing you

to:</p>

 Send and receive files.

 Deliver digital assets in a secure

environment.

 Share feedback in real time.

 Use Upwork Messages to communicate

via text, chat, or video.

Chapter 2 Building a landing page with Skeleton

34

 Use our mobile app. Many

features can be accessed on your mobile phone

when on the go.

 </div>

 <div class="six columns">

 <img src="images/Messaging.png"

class="messagingImg"/>

 </div>

 </div>

 <!-- Work efficiency end-->

 <!-- Get paid section start -->

 <div class="row getPaid">

 <div class="six columns"><img src="images/paid.png"

class="paidImg"/></div>

 <div class="six columns">

 <h3>Get paid on time</h3>

 <p>All projects include Upwork Payment

Protection — helping ensure that you get paid

for all work successfully completed through the

freelancing website.</p>

 All invoices and payments happen

through RemoteDesk. Count on a

simple and streamlined process.

 Hourly and fixed-price

projects. For hourly work, submit

timesheets through RemoteDesk. For

fixed-price jobs, set milestones and funds

are released via Upwork escrow features.

Chapter 2 Building a landing page with Skeleton

35

 Multiple payment options.

 Choose a payment method that works

best for you, from direct deposit or PayPal

to wire transfer and more.

 </div>

 </div>

As shown in Listing 2-8, you create three rows using three <div>s with

the row class. In the first <div> containing the row class, you create two

<div>s each spanning six columns. In the first child <div>, you insert an

image using the tag, and in the second child <div>, you create a

heading followed by creating a list using the and tags. In short,

you create the next three content blocks using a similar technique as you

did in Step 3.

Similarly, you create a similar structure for the remaining two <div>s

with the row class by inserting two child <div>s, each spanning six

columns. You also insert an image and create an unordered list similar to

the previous <div>s.

Then, you define the CSS styles for the custom CSS code in the style.css

style sheet just like you did in Step 3. Listing 2-9 shows the CSS style

sheet code.

Listing 2-9. Adding Styles for the Remaining Sections

.rewardingContent,.hiredContent,.workEfficiency,.getPaid{

 margin-top:10px;

}

.rewardingImg,.hiringImg,.messagingImg,.paidImg {

 width: 75%;

 margin: 0 auto;

 display: block;

}

Chapter 2 Building a landing page with Skeleton

36

Figure 2-8 shows the output of the code in Step 4.

Figure 2-8. Output of the content of the remaining sections

Chapter 2 Building a landing page with Skeleton

37

 Step 5: Designing a Sign-up Form
In this Step, you will create a small sign-up form. Listing 2-10 shows the

code for the form.

Listing 2-10. Sign-up Form

<h3 class="row">Ready to get hired?</h3>

 <div class="row quickSignup">

 <div class="five columns"><input type="text"

name="fullName" class="fullName u-full-width"

id="fullName" placeholder="Enter your full

name"/></div>

 <div class="five columns"><input type="text"

name="emailId" class="emailId u-full-width"

id="emailId" placeholder="Enter your email"/></div>

 <div class="two columns"><a class="button button-

primary" href="#">Sign up</div>

 </div>

In Listing 2-10, you create a <div> and assign the row class to it. You

then add three <div>s with the columns class within the <div> with the

row class. You then add inputs in the first two <div>s for the full name

and e-mail. Here you use a utility class provided by Skeleton; for example,

u-full-width is used so that the fields occupy the full width of the container.

You then place a Sign Up button in the last <div>.

Figure 2-9 shows the output of the form.

Figure 2-9. Output of the sign-up form

Chapter 2 Building a landing page with Skeleton

38

 Step 6: Creating a Footer
Finally, you will create the footer. Listing 2-11 shows the code for the footer

section.

Listing 2-11. Footer

<div class="row footer">

 <div class="four columns">

 <h4>Company Info</h4>

 About us

 Customer Stories

 Press

 Career

 RemoteDesk Blog

 Terms of service

 Privacy Policy

 </div>

 <div class="four columns">

 <h4>Additional Services</h4>

 Enterprise Solutions

 Enterprise Summit

 Business resources

 </div>

 <div class="four columns">

 <h4>Browse</h4>

 Freelancers by skills

 Freelancers by region

 Find Jobs

 Hiring Resources

 </div>

 </div>

Chapter 2 Building a landing page with Skeleton

39

In Listing 2-11, you create a <div> tag and assign a row class to it.

Within that <div>, you create three child <div>s, each spanning four

columns using the four columns class.

The first child <div> contains anchor links, <a>, for the company

information. The second child <div> contains anchor links for the

additional services, whereas the third child <div> contains anchor links for

the Browse section.

Figure 2-10 shows the footer section of the web page.

You have just designed a landing page for the RemoteDesk freelance

portal using Skeleton!

 Summary
Skeleton is a simple framework that beginners can adopt quickly. It has a

clean and concise code base.

However, Skeleton does have its drawbacks.

• It lacks several CSS features that other frameworks

provide. Because of this, the development time while

using Skeleton is higher compared to its counterparts.

• The maximum width supported by the 12-column fluid

grid is 960px.

Figure 2-10. Output of the footer section

Chapter 2 Building a landing page with Skeleton

40

• Another drawback is the lack of community support.

The last update to this framework was done three years

ago. Moreover, a lot of pull requests and issues are still

open, meaning all the discrepancies have yet to be fixed

along with substantial updates.

Therefore, when it comes to massive, immersive web sites, Skeleton

falls short. Nevertheless, it is a handy utility suitable for web projects,

meant mainly for smaller screens. In the next chapter, you will design a

product page with Milligram, another intuitive lightweight framework.

Chapter 2 Building a landing page with Skeleton

www.allitebooks.com

http://www.allitebooks.org

41© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_3

CHAPTER 3

Building a Product
Page with Milligram
Milligram is a lightweight framework for designing interactive web sites.

This intuitive framework has a minimal set of styles, is apt for building

web pages with high performance, and adopts the paradigm of clean and

consistent coding. Its zipped file size is only 2KB, making it extremely

lightweight for creating small web sites. In this chapter, you will learn

how to install Milligram and about its grid feature. Then you will build a

product page with the framework.

 Installing Milligram
There are different ways you can install Milligram. In this section, you will

learn how to install Milligram by downloading the Milligram files.

Go to the Milligram web site at http://milligram.io/ and click the

Download Milligram button, as highlighted in Figure 3-1. The zip file will

be downloaded.

http://milligram.io/

42

Figure 3-2 shows the file structure.

Figure 3-1. Milligram download page

Figure 3-2. Content of the Milligram framework

Chapter 3 Building a produCt page with MilligraM

43

The CSS files (both the usual ones as well as the minified versions) are

present in the dist folder. Figure 3-3 shows the file structure.

You can also download the Milligram files or install it using Bower,

NPM, or Yarn.

For installation through Bower, NPM, and Yarn, you need to use the

following commands from the command-line prompt:

$ bower install milligram

$ npm install milligram

$ yarn add milligram

Once you download Milligram, add the tags for the files in the head

section of your HTML code.

There is a preferred way of using Milligram that we will be showing in

this chapter, which is to use a content delivery network (CDN). A CDN is

basically a system of distributed networks delivering web pages and other

Figure 3-3. File structure of Milligram framework (source: Milligram)

Chapter 3 Building a produCt page with MilligraM

44

web content according to the geographic location of the users, the source

of the web pages, and the location of the CDN server. There are many

benefits of using CDN.

• Decreases the server load

• Enables fast content delivery

• Ensures high availability

• Facilitates high network backbone capacity for

concurrency

• Offers better control of asset delivery

You can add the CDN code for Milligram using the following lines of code:

<link href="https://fonts.googleapis.com/css?family=Roboto"

rel="stylesheet">

<link href="https://cdnjs.cloudflare.com/ajax/libs/milligram/

1.3.0/milligram.min.css" rel="stylesheet" type="text/css"/>

The first line of code is the CDN link for the Google Roboto font. The

second line of code is for the Milligram CSS minified file.

 Overview of the Milligram Framework
In this section, you will get an overview of the various attributes of Milligram

before you learn how to build a product page with the framework.

• Milligram adheres to CSS3’s rem units ideology for

its typography wherein a single font size is defined

for the root element and then all the other rem units

are a percentage of that root, thereby providing

easy maintainability and cleaner code. By the way,

Milligram uses the Roboto font family as the default

font for its typography.

Chapter 3 Building a produCt page with MilligraM

45

• Block quotes in Milligram are quoted between the

<blockquote> tags. A code element is defined between

the <code> tags. If you are in need of a block, wrap the

<code> element in the <pre> tags.

• The clearfix utility is used with the clearfix class,

whereas a float is defined by the float-left and float-

right classes depending on whether you want to float

to the left and right, respectively.

• Similar to HTML, lists in Milligram are defined within

the , , and <dl> tags for ordered, unordered,

and description lists, respectively. Each list item is

wrapped between the tags similar to HTML.

• Buttons are defined by the button class with an anchor,

<a>, tag. Alternatively, you can use the <button>

element for defining the button. The default button

is solid, whereas a bordered-only button without any

solid color to it would need the button-outline class.

For a clear button without borders or solid color, you

can use the button-clear class.

• Tables in Milligram are similar to HTML tables where

you use the <thead> and <tbody> elements. Similar to

HTML, you use <tr> to define the table rows, <td> for

the table data, and <th> for the table heading, and then

you wrap everything within the main <table> element.

• Milligram, just like Skeleton, uses mobile-first queries

that target the minimum width. Styles outside of a

query apply to all devices. This is done to prevent small

devices such as mobiles and tablets from parsing loads

Chapter 3 Building a produCt page with MilligraM

46

of unused CSS. Milligram uses the following media

query sizes based on the device size:

• Larger than mobile device/screen: 40rem (640px)

• Larger than tablet device/screen: 80rem (1280px)

• Larger than desktop device/screen: 120rem (1920px)

 Grid System in Milligram
Grids in Milligram use the CSS Flexible Box Layout module standard

wherein the grid is fluid, shrinking based on the browser at smaller sizes. The

entire grid system is responsive with a maximum width of 112rem (1120px).

See Listing 3-1 to understand the grid system in Milligram.

Listing 3-1. Grid System in Milligram

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title> Grid system</title>

 <meta name="description" content="">

 <meta name="author" content="">

 <meta name="viewport" content="width=device-width,

initial- scale=1">

<link href="https://cdnjs.cloudflare.com/ajax/libs/milligram/

1.3.0/milligram.min.css" rel="stylesheet" type="text/css">

<link href="https://fonts.googleapis.com/css?family=Roboto"

rel="stylesheet">

</head>

Chapter 3 Building a produCt page with MilligraM

47

<div class="container">

 <div class="row">

 <div style="text-align:center; border: 1px solid black;"

class="column">One</div>

 <div style="text-align:center; border: 1px solid black;"

class="column">Two</div>

 <div style="text-align:center; border: 1px solid black;"

class="column">Three</div>

 <div style="text-align:center; border: 1px solid black;"

class="column">Four</div>

 </div>

 <div class="row">

 <div style="text-align:center; border: 1px solid black;"

class="column">One</div>

 <div style="text-align:center; border: 1px solid black;"

class="column column-50 column-offset-25">Two</div>

 </div>

</div>

</html>

In the code, you use the CDN links for the Google fonts and the

Milligram minified CSS file. You also define the viewport.

Just like Skeleton, the entire code is wrapped in a <div> element

with a container class. All columns are defined within a row just like in

many grid-based frameworks. However, Milligram is different from other

frameworks in that you can add any number of columns within a row. You

are not restricted to 12 columns like with many popular frameworks.

In Listing 3-1, initially you define a row within the <div> with the

container class. Then, you define four columns within that row using the

column class. You use inline styles for assigning a border and aligning the

text to the center for each column.

Chapter 3 Building a produCt page with MilligraM

48

Then you define another row and a column using a column class. Then

you define another column within that row and use the column-50 class

along with the column-offset-25 class. What the column-50 class does

is assign a column width of 50 percent to the column, which will allocate

50 percent of the column content within the parent row. The column-

offset- 25 class moves the column to the right by 25 percent column space

for that parent row.

Figure 3-4 shows the output of the code.

In Figure 3-4, you can see four columns, named One, Two, Three, and

Four, in the first row. The second row has a column named One and a

column named Two, which is offset by 25 percent and occupies 50 percent

of the row width.

 Building a Product Page with Milligram
Now that you have a brief idea about Milligram, you will learn how

to create a product page with Milligram. The Product page contains

information about a Virtual Private Network (VPN) along with its features

and pricing.

 Step 1: Defining the Header
Let’s look at the code in Listing 3-2 to start the first step of building the

secure VPN product page.

Figure 3-4. Implementation of grid system of Milligram

Chapter 3 Building a produCt page with MilligraM

49

Listing 3-2. Defining the Header

<!DOCTYPE html>

<html>

 <head>

 <title>Secure VPN</title>

 <!--include milligram via cdn-->

 <meta name="viewport" content="width=device-width,

initial-scale=1">

 <link href="https://cdnjs.cloudflare.com/ajax/libs/

milligram/1.3.0/milligram.min.css" rel="stylesheet"

type="text/css">

 <link href="https://fonts.googleapis.com/

css?family=Roboto" rel="stylesheet">

 <link href="css/style.css" rel="stylesheet"

type="text/css">

 </head>

 <body class="container">

 <div class="row contactArea">

 <!--Div with width of 50% and offset from left

50%-->

 <div class="column column-50 column-offset-50">

 <div class="contactColumn">Your IP:

115.166.129.152</div>

 <div class="contactColumn">Your Location:

Unknown</div>

 <div class="contactColumn">Your Status:

UNPROTECTED</div>

 </div>

 </div>

 </body>

</html>

Chapter 3 Building a produCt page with MilligraM

50

In Listing 3-2, you define the viewport and add the CDN links for

the fonts and the Milligram CSS minified file. Then you introduce a link

for the style.css custom CSS file. After defining the links in the <head>

tag, you create a <body> element with the container class in it. Then you

define a <div> with the row class. You assign another custom class called

contactArea to it, which you will use to define the custom CSS code.

Next, you define a <div> with a column of 50 percent width within

the parent row and offset it by 50 percent within that row by using the

column-50 and column-offset-50 classes. Within that <div>, you create

three <div>s wherein you define the content that comprises the IP address,

location, and status.

Then, you define the custom CSS code using the contactArea and

contactColumn classes in the custom style.css file.

Listing 3-3 depicts the code in the style.css custom CSS file using the

contactArea and contactColumn classes for the corresponding <div>s.

Listing 3-3. Defining CSS for the Header

.contactArea{

 background: #666;

 color: #fff;

 text-align: right

}

.contactColumn{

 font-size: 12px;

 display: inline-block;

 margin-right: 10px;

}

In Listing 3-3, you define the background as gray and the color of the

words as white for the contactArea class. You align the text to the right.

For the <div> that is defined by the contactArea class, you define the

font size as 12px and use a margin. You use the display: inline-block

Chapter 3 Building a produCt page with MilligraM

51

property, which essentially creates a grid of boxes that fills the browser

width and wraps it. Here, it helps the content blocks of the header to retain

their block-level characteristics and helps them appear next to each other

without using a float attribute.

Figure 3-5 shows the output of the code.

In Figure 3-5, you can see the elements floated to the right with the IP

address and the rest of the content.

 Step 2: Defining the Navigation
Let’s now look at the code in Listing 3-4 to proceed with step 2.

Listing 3-4. Defining the Navigation

<div class="navigation row">

 <div class="column column-25 logo">

 </div>

 <div class="column column-50 column-offset-25">

 <a>Home

 <a>Pricing

 <a>Support

 <a>Login

 </div>

</div>

Figure 3-5. Output of the header area

Chapter 3 Building a produCt page with MilligraM

52

In Listing 3-4, you create a <div> and assign a row class to it. You also

assign a custom navigation class to it, wherein you will define the custom

CSS code in the style.css style sheet.

You then create a <div> within the <div> with the row class and assign a

column width of 25 percent to it by using the column-25 class. You also add

a logo custom class to it. You then insert an image for that <div> using the

 element. The path to the images is set to the images folder, with the

logo.png as the image name. Within the same row, you create another <div>

and assign a column width of 50 percent to it using the column-50 class for

that parent row, and you offset that column by 25 percent to the right.

You define the content in anchor link, <a>, tags.

Listing 3-5 shows the custom CSS code linked to the code in Listing 3-4.

Listing 3-5. Defining the CSS for the Navigation

.logo {

 text-align: left;

}

.logo img {

 width: 25%;

 margin: 10px 0;

}

.navigation{

 background: #ffc400;

 text-align: right;

 padding: 10px 0;

 font-weight: bold;

}

.navigation a{

 color: #000;

 padding: 5px;

 border: 2px solid #000;

}

Chapter 3 Building a produCt page with MilligraM

53

As you can see in Listing 3-5, you define an image width of 25 percent

and set a margin for it. In the navigation class, you define dark orange as

the background color and align the text to the right. You set the padding

and define the bold font weight for it. To the anchor links containing the

Home, Pricing, Support, and Login links, you assign the black color and

a black border with a padding of 5px. Figure 3-6 shows the output of the

code.

In Figure 3-6, you can see the orange background and the links in the

anchor tags (i.e., Home, Pricing, Support, and Login) to the right of the

screen. You can also see the logo on the left of the screen.

 Step 3: Defining the Banner Area
Let’s look at the code in Listing 3-6 to see the next step in the coding

process for the secure VPN product page.

Listing 3-6. HTML for the Banner Area

<section class="mastHead row">

 <div class="column column-60">

 <h2>Secure your data. Protect your privacy</h2>

 <h4>Protect your IP address and surf the web

anonymously</h4>

 </div>

 </section>

Figure 3-6. Output of the navigation

Chapter 3 Building a produCt page with MilligraM

54

In Listing 3-6, you define the <section> tags and assign the row class as

well as the custom mastHead class to it. Inside that row, you define a <div>

with a column of 60 percent width for the row for the <section> tag.

Listing 3-7 shows the corresponding code for the mastHead class in the

custom style.css style sheet.

Listing 3-7. CSS for the Banner Area

.mastHead {

 height: 450px;

 overflow: hidden;

 background: #ffc400;

 color: #000;

}

.mastHead h1,.mastHead h2,.mastHead h3,.mastHead h4,.mastHead

h5,.mastHead h6{

 color: #000

}

What you have done is set the height of the <section> with the

mastHead class to 450px and set the background to dark orange, the same

color as in step 2. Then, you define black color to the content in that

section. You also set the color of all the headings in that section to black

with the mastHead class.

Now you will split the sprite image shown in Figure 3-7 into three parts

for the App Store, Google Play, and Windows Phone Store. The rest of the

image for the Mac App Store and Windows PC will not be displayed on the

page.

Chapter 3 Building a produCt page with MilligraM

55

You define the code for the unordered list in Listing 3-8 within

which you assign a column width of 60 percent, after the headings.

Listing 3-8. Adding Store Information to the Banner Area

<section class="mastHead row">

 <div class="column column-60">

 <h2>Secure your data. Protect your privacy</h2>

 <h4>Protect your IP address and surf the web

anonymously</h4>

 <ul class="srote-badges">

 <a class="store-ios" title="Available

on the App Store">

Figure 3-7. Sprite image for store icons

Chapter 3 Building a produCt page with MilligraM

56

 <a class="store-android" title="Get it

on Google Play">

 <a class="store-winphone"

title="Download from Windows Phone

Store">

 </div>

</section>

As you can see from the code in Listing 3-8, you define the unordered

list and assign the custom srote-badges class to it. You define the list in

the anchor tags and assign the store-ios, store-android, and store-

winphone custom classes to it.

The corresponding custom CSS code in the style.css style sheet for

the unordered list will look like Listing 3-9.

Listing 3-9. Adding the CSS for Store Icons

ul.srote-badges{

 list-style: none;

}

ul.srote-badges li a, .srote-badges a {

 display: inline-block;

 background: url(../images/store-badges-70x245.png)

no- repeat 0 0 #fff;

 width: 245px;

 height: 70px;

 border-radius: 4px;

}

.srote-badges a.store-ios {

 background-position: 0 0;

}

Chapter 3 Building a produCt page with MilligraM

57

.srote-badges a.store-android {

 background-position: 0 -70px;

}

.srote-badges a.store-winphone {

 background-position: 0 -140px;

}

In Listing 3-9, you set list-style as none to remove the bullets.

Further, you set the background as the sprite image by assigning the link

to that image. Then, you define the width and height for it. You also assign

a border-radius setting of 4px to the image. Next, you split the image

into the first three parts and set the background position to 0 for the first

part, -70px for the next part, and -140px for the third. The rest of the image

cannot be seen.

Next you define an Android phone image, as shown in Figure 3-8, to

the right using another <div> within the same section class.

Chapter 3 Building a produCt page with MilligraM

58

You assign a column width of 40 percent for the parent <section> tag

and add the mastHeadImage class to it. Listing 3-10 shows the code within

the entire <section> tags after incorporating everything from the sprite

images into this Android image.

Figure 3-8. Application image for the banner area

Chapter 3 Building a produCt page with MilligraM

59

Listing 3-10. Adding the Application Image to the Banner Area

<section class="mastHead row">

 <div class="column column-60">

 <h2>Secure your data. Protect your privacy</h2>

 <h4>Protect your IP address and surf the web

anonymously</h4>

 <ul class="srote-badges">

 <a class="store-ios" title="Available

on the App Store">

 <a class="store-android" title="Get it

on Google Play">

 <a class="store-winphone"

title="Download from Windows Phone

Store">

 </div>

 <div class="column column-40 mastHeadImage"></div>

 </section>

Listing 3-11 shows the corresponding custom CSS code for the <div>

element with the last mastHeadImage class.

Listing 3-11. Adding the CSS for the Application Image in the

Banner Area

.mastHeadImage{

 background: url("../images/android-device1.png") no-repeat;

 background-size: cover;

 background-position: 0 15px;

}

Chapter 3 Building a produCt page with MilligraM

60

In Listing 3-11, you refer to the background and assign the image link.

Then you set background-size to cover and set background-position as

15px.

Figure 3-9 shows the output of the entire code so far.

 Step 4: Designing the Content Area
Moving Forward, you will design the content area.

Listing 3-12 shows how to proceed with building the “benefits” section.

Listing 3-12. HTML for the Content Area

<section class="info">

 <div class="row">

 <h3 class="column">BENEFITS OF USING VPN IN

TOUCH</h3>

 </div>

Figure 3-9. Code output so far

Chapter 3 Building a produCt page with MilligraM

61

 <div class="row">

 <div class="column column-50">

 <h4>Unblock Websites</h4>

 <p>Bypass internet restriction and access

to any websites: Unblock Facebook, Unblock

Youtube.</p>

 </div>

 <div class="column column-50">

 <h4>Secure Your Data</h4>

 <p>Encrypt your private data before sending

it from your computer, smartphone or tablet

over the internet.</p>

 </div>

 </div>

 <div class="row">

 <div class="column column-50">

 <h4>Bypass content restrictions</h4>

 <p>Watch Netflix and BBC iPlayer, no matter

where you are. Use Skype, Viber and all

Voip services without restrictions.</p>

 </div>

 <div class="column column-50">

 <h4>Protect Your Privacy</h4>

 <p>Hide your IP address, protect your

online identity while browsing and surf the

web anonymously.</p>

 </div>

 </div>

Chapter 3 Building a produCt page with MilligraM

62

 <div class="row">

 <div class="column column-50">

 <h4>Wifi Hotspot Security</h4>

 <p>Prevent sniffers and hackers from

stealing your private data while using

public hotspots.</p>

 </div>

 <div class="column column-50">

 <h4>Data Saving and Ad Blocker on Mobile</h4>

 <p>Save more bandwidth on your mobile 3G/4G

data plan. Clear your mobile screen of

obtrusive ads with Ad Blocking mode.</p>

 </div>

 </div>

 </section>

In Listing 3-12, you use a <section> tag and enclose a <div> with a

row class. Within that parent row, you use the <h3> heading to define the

content for the level 3 heading.

After that <div>, you create a <div> with the row class. You create two

<div>s each with a column width of 50 percent of the parent <div> using

the column-50 class. You define a level 4 <h4> and a paragraph element,

<p>, with their respective content within each child <div>.

Repeat the process three more times, wherein you create two <div>s

within a parent <div> with a row class. Similarly, define <h4> and <p>

under each child <div> with their respective content.

Figure 3-10 shows the output of the code.

Chapter 3 Building a produCt page with MilligraM

63

 Step 5: Creating the Pricing Area
Next, you will create a pricing table wherein you will list the subscription

price for the monthly, half-yearly, and yearly timeline.

Let’s look at the code in Listing 3-13.

Listing 3-13. HTML for the Pricing Area

<section class="pricingInfo">

 <div class="row">

 <h3 class="column">Pricing Overview</h3>

 </div>

 <div class="row">

 <div class="column">

 <table>

 <tbody>

 <tr>

 <td>pricing</td>

 <td>1 Month</td>

 <td>6 Months</td>

 <td>1 Year</td>

 </tr>

Figure 3-10. Output of the content area

Chapter 3 Building a produCt page with MilligraM

64

 <tr>

 <td>Price</td>

 <td>$9.98/month</td>

 <td>$2.99/month</td>

 <td>$2.49/month</td>

 </tr>

 <tr>

 <td>Save</td>

 <td>0%</td>

 <td>50%</td>

 <td>75%</td>

 </tr>

 </tbody>

 </table>

 </div>

 </div>

 </section>

In Listing 3-13, you define the <section> tags within which you define

the tables. Initially, you define a <div> with a row class where you use a

heading of <h3> with the column class to define the content, i.e., Pricing

Overview.

Then, you create a <div> with the row class after the preceding

<div> and assign another <div> with the column class within it. Moving

forward, you define the table headings and the table rows with the list of

items in the table, which is quite similar to the way you create tables in

HTML. Place the content within the <section> tags.

Figure 3-11 shows the output of the code.

Chapter 3 Building a produCt page with MilligraM

65

 Step 6: Creating the Footer
Finally, you will create a footer for your product page.

Let’s look at the code in Listing 3-14 to understand how you design the

footer of the web page.

Listing 3-14. HTML for the Footer

<footer>

 <div class="row">

 <div class="column column-25 logo">

 <p>© Copyright 2017</p>

 <p>All rights reserved</p>

 </div>

 <div class="column column-25">

 <h6>LEARN MORE</h6>

 <a>Pricing

 <a>How To Setup

 <a>Servers

 <a>Blog

 <a>FAQ

 </div>

 <div class="column column-25">

 <h6>LEGAL</h6>

 Terms & Conditions

Figure 3-11. Output of the pricing area

Chapter 3 Building a produCt page with MilligraM

66

 Privacy Policy

 Refund Policy

 </div>

 </div>

 </footer>

In Listing 3-14, you define the footer content within the <footer> tags.

Inside the <footer> tags, you initially define a <div> with the row class.

Then, you create three child <div>s each with a column with a width of 25

percent of the parent row so that each child <div> takes a quarter of the

parent row space.

In the first child <div>, you assign a logo class to it. You then insert the

logo image with the tag. Then you enter the copyright information

with the <p> tags.

For this first child <div>, you define the custom CSS code in the

style.css file, as shown in Listing 3-15.

Listing 3-15. CSS for the Footer

footer{

 color:#fff;

 background: #666;

 padding: 10px 0;

}

footer .logo img,footer .logo p{

 margin-left: 10px;

 display: block;

}

footer .logo p{

 margin-bottom: 0;

}

Chapter 3 Building a produCt page with MilligraM

67

footer a{

 color: #fff;

}

footer h6{

 font-weight: bold;

 border-bottom: 1px solid #fff;

}

As you can see in Listing 3-15, you define the color, padding, and

background for the <footer>. You define the left margin space and

display: block; property for the footer and the image with the logo.

Then, you assign the color to the anchors in the footer followed by defining

the bold font and solid border for the footer and <h6> heading.

Back in Listing 3-14, you define the second child <div> and define the

<h6> heading with the content, along with the links, which you define in

the anchor tags.

The third child <div> contains the conditions and policy links defined

between the <h6> and anchor <a> tags.

That sums up the code.

Figure 3-12 shows the snapshot of the footer part of the code.

Figure 3-12. Output of the footer area

Chapter 3 Building a produCt page with MilligraM

68

 Summary
In this chapter, you designed a page for a secure VPN product. Milligram

is an awesome utility for lightweight projects. However, there are some

constraints such as the maximum device size of 1120px and a lack of utility

classes, which are required for massive immersive projects. Nevertheless,

Milligram is an intuitive framework that doesn’t come with the bulk of

huge frameworks and is especially helpful when you want to build simple

mobile web pages.

In the next chapter, you will look at another engaging framework, UIkit,

which is quite useful for lightweight web projects.

Chapter 3 Building a produCt page with MilligraM

69© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_4

CHAPTER 4

Introducing UIkit
UIkit, compared to Skeleton and Milligram, is quite expansive and comes

with plenty of features that are handy for building interactive sites.

It comes with bountiful HTML, CSS, and JavaScript components and

can be easily customized to give a different feel to your web sites. Being

lightweight and modular, its default styles help you build powerful

interfaces adhering to the semantic protocols for web design.

It also comes with custom themes that can be downloaded from the

Customizer section of the web site. A plethora of options help you get

immersive web pages up and running in no time that work on all the

modern browsers. In this chapter, we will shed light on the installation

and grid concept before moving on to various features such as animations,

icons, and accordions to help you get to grips with the flexibility that

UIkit offers.

 Installing UIkit
Go to the official web site at https://getuikit.com/. The Download

button is on the upper-right side of the screen, as shown in Figure 4-1.

https://getuikit.com/

70

After clicking Download, the zipped file gets downloaded. After

unzipping the folder, the folder tree structure looks like Figure 4-2.

Figure 4-1. UIkit download page

Figure 4-2. Content of UIkit framework

You can also install UIkit with prebuilt JavaScript, CSS, and Less

source files with NPM, or you can clone the repo to get all the source files

including build scripts.

To clone the repo, you need to use the following command:

git clone git://github.com/uikit/uikit.git

Chapter 4 IntroduCIng uIkIt

www.allitebooks.com

http://www.allitebooks.org

71

Another easy way to include the compiled files of all UIkit versions is to

use the CDN files on the Cloudflare content delivery network. You include

all the necessary files in your markup as shown in Listing 4-1.

Listing 4-1. Including UIkit in Your Web Page

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/

libs/uikit/3.0.0-beta.28/css/uikit.min.css" />

<script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/3.2.1/jquery.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/

uikit/3.0.0-beta.28/js/uikit.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/

uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>

 Grids, Cards, Flex, and Width
UIkit has a flexible grid system. UIkit’s grid items are all stacked by default.

To add a grid, you need to add the uk-grid attribute to the <div> element.

Usually, we use the card component to demonstrate the grid functionality;

the card element contains the card, the card body, and an optional card title.

Listing 4-2 depicts the code for the normal card component.

Listing 4-2. Card Component of UIkit

<html>

<head>

<!-- UIkit CSS -->

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/

libs/uikit/3.0.0-beta.28/css/uikit.min.css" />

Chapter 4 IntroduCIng uIkIt

72

<!-- jQuery is required -->

<script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/3.2.1/jquery.min.js"></script>

<!-- UIkit JS -->

<script src="https://cdnjs.cloudflare.com/ajax/libs/

uikit/3.0.0-beta.28/js/uikit.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/

uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>

</head>

<body style="padding:10px 10px 10px 10px;">

<div class="uk-card uk-card-default uk-card-body uk-width-1-2">

 <h3 class="uk-card-title">Cloud Computing</h3>

 <p>Cloud Computing is a computing infrastructure and

software model for enabling access to shared pools of

configurabel resources such as computer networks, servers, and

storage including services which can be rapidly provisioned with

minimal management effort over the internet or intranet</p>

</div>

</body>

</html>

In this code, you include the links for the UIkit framework in the <head>

section. You include the jQuery code, the UIkit JavaScript code, and the

UIkit icon files in the links. Then, you create a <body> tag and assign a

padding of 10px all over. Next, you create a <div> and assign the uk-card,

uk-card-default, and uk-card-body classes in addition to assigning a

width of half for the parent container using the uk-width-1-2 class. The uk-

card class defines the card, while the uk-card-default class is the default

styling for the card. The uk-card-body class defines the body for the card.

Then, you use the <h3> element to define a third-level heading for the

card title and add a uk-card-title class to it. Next, you define random

content within the <p> tags.

Chapter 4 IntroduCIng uIkIt

73

Figure 4-3 shows the output of the code.

Figure 4-3. Output of card component of UIkit

You can have cards of different colors. Let’s look at an example of how

you assign different colors to the cards in UIkit; see Listing 4-3.

Listing 4-3. Adding Colors to the Card Component of UIkit

<div class="uk-child-width-1-3 uk-grid-small" uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-body">

 <h3 class="uk-card-title">Default</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.</p>

 </div>

 </div>

 <div>

 <div class="uk-card uk-card-primary uk-card-body">

 <h3 class="uk-card-title">Primary color</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.</p>

 </div>

 </div>

 <div>

Chapter 4 IntroduCIng uIkIt

74

 <div class="uk-card uk-card-secondary uk-card-body">

 <h3 class="uk-card-title">Secondary</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.</p>

 </div>

 </div>

</div>

In the code sample in Listing 4-3, you create a parent <div> and assign

a uk-grid attribute to it. By default, all items in the grid will be stacked. So,

you assign a width class to the items to align it next to each other. In this

example, to assign an equal width to all items within the parent <div>, you

have to add a common uk-child-width-1-3 class to it. What this class

does is assign a width of one-third of the parent container to all the items

in the grid. You also add a uk-grid-small class to it. This applies a small

gutter. Usually, the grid component comes with a default gutter, but this

uk- grid- small class applies a small gutter instead. Then, you create three

child <div>s and assign the uk-card and uk-card-default and uk-card-

body classes to create a normal card.

For the second item, you use a uk-card-primary class instead of

the default class. For the third item, you use a uk-card-secondary class

instead of the default class. You also assign the same title to all three items

using the uk-card-title class within the <h3> tag for all three items.

Figure 4-4 shows the output of the code.

Figure 4-4. Output of colored card components of UIkit

Chapter 4 IntroduCIng uIkIt

75

Instead of the default styling, you can use a hover class so that you can

create a hover effect on the card.

The only thing you need to do is add a uk-card-hover class to each

child <div> for each of the items. The line will look as shown in Listing 4-4

where you use the uk-card-hover class for the <div> element with the

default card color.

Listing 4-4. Adding Hover Effect to the Card Components

<div class="uk-card uk-card-default uk-card-hover uk-card-

body">

Similarly, you add the uk-card-hover class to the primary and

secondary colored <div> items. On hovering, you can see the hover effect,

which is quite handy in anchors and other aspects in web design.

You can use different size modifiers that will increase the padding in

the card. Listing 4-5 contains the code that depicts how to use smaller and

larger padding.

Listing 4-5. Using Size Modifiers with Card Components

<div class="uk-child-width-1-3@m uk-grid-small" uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-small uk-

card- hover uk-card-body">

 <h3 class="uk-card-title">Default</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.</p>

 </div>

 </div>

 <div>

Chapter 4 IntroduCIng uIkIt

76

 <div class="uk-card uk-card-primary uk-card-large

uk- card- hover uk-card-body">

 <h3 class="uk-card-title">Primary color</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.</p>

 </div>

 </div>

 <div>

 </div>

</div>

Here you define two cards with the same content, but you use uk-

card- small for the child <div> for the default card and use the uk-card-

large class for the child <div> with the primary color.

The rest of the code is the same for both child <div>s.

Figure 4-5 shows the output of the code.

Figure 4-5. Output of using size modifier with card component

The width class is used in conjunction with the card component to

split content into responsive columns. Now let’s understand the width

class better using some examples; see Listing 4-6.

Chapter 4 IntroduCIng uIkIt

77

Listing 4-6. Using Width Classes Along with Card Component

<div class="uk-text-center" uk-grid>

 <div class="uk-width-1-3">

 <div class="uk-card uk-card-primary uk-card-default

uk- card- body">One Third</div>

 </div>

 <div class="uk-width-1-3">

 <div class="uk-card uk-card-primary uk-card-default

uk- card- body">One Third</div>

 </div>

 <div class="uk-width-1-3">

 <div class="uk-card uk-card-primary uk-card-default

uk- card- body">One Third</div>

 </div>

</div>

<div class="uk-text-center" uk-grid>

 <div class="uk-width-1-2">

 <div class="uk-card uk-card-default uk-card-

body">Half</div>

 </div>

 <div class="uk-width-1-2">

 <div class="uk-card uk-card-default uk-card-

body">Half</div>

 </div>

</div>

<div class="uk-text-center" uk-grid>

 <div class="uk-width-1-4">

 <div class="uk-card uk-card-default uk-card-secondary

uk-card-body">One-fourth</div>

 </div>

Chapter 4 IntroduCIng uIkIt

78

 <div class="uk-width-3-4">

 <div class="uk-card uk-card-default uk-card-secondary

uk-card-body">Three-fourth</div>

 </div>

</div>

In the preceding code sample, you create a parent <div> under which

you center the text for all the items by using a uk-text-center class in the

parent <div>. Then, you add a uk-grid attribute for the parent <div>.

For each child <div>, you use a width of one-third for each item in the

parent container (i.e., the parent <div>). You define the code for the card

in a <div> within the <div> for each item containing the width class.

Similarly, you create another parent <div>. Here you use the same

coding strategy, but you use two child items. You assign a width of half for

each item for that parent <div>. Also in the previous parent <div>, you

use a primary color for all the items. Here you use the default color for the

cards.

You move on to create another parent <div> with the uk-grid attribute

like in the previous parent <div>s. Here you create two <div>s, but you

assign a secondary color to the cards, and you assign a width of

one- quarter to the first item and three-quarters to the second item using

the uk-width-1-4 and uk-width-3-4 classes.

Figure 4-6 shows the output of the code.

Figure 4-6. Output of the code so far

Chapter 4 IntroduCIng uIkIt

79

Instead of assigning a width to each item, if the items are of the same

size, then you can use the uk-child-width-* class to it where * stands

for the dimensions of each items. For example, uk-child-width-1-4 will

apply a width of one-quarter of the parent container to all the items.

Let’s look at this with a code sample; see Listing 4-7.

Listing 4-7. Using the uk-child-width-* Class to Adjust the Width of

the Inner Components

<div class="uk-child-width-1-4 uk-grid-small uk-text-center"

uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

</div>

Chapter 4 IntroduCIng uIkIt

80

In the code, you use a common uk-child-width-1-4 in all items in

the parent <div>. Then you define the child <div>s with the card element

code.

Figure 4-7 shows the output of the code.

Figure 4-7. Using the uk-child-width-* class to adjust the width of the
inner components

As you can see in Figure 4-7, the width classes with fractions will break in

to a new row if they exceed their container’s width. However, to evenly split

them in the same row, you can use the expand class as shown in Listing 4-8.

Listing 4-8. Implementing uk-child-width-expand for Evenly Sizing

the Inner Elements

<div class="uk-child-width-expand uk-grid-small uk-text-center"

uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

Chapter 4 IntroduCIng uIkIt

81

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Cloud</div>

 </div>

</div>

As you can see, you can use uk-child-width-expand to evenly split all

the items in the same row without going to the next row. Figure 4-8 shows

the output of the code.

Figure 4-8. Evenly sizing the inner elements

You can also define a custom width for some items in the code and

use them in conjunction with the uk-child-width classes. Let’s look at the

code in Listing 4-9 to see an example.

Listing 4-9. Defining Custom Width for Inner Element

<div class="uk-child-width-expand uk-grid-small uk-text-center"

uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body"> Spread</div>

 </div>

 <div class="uk-width-2-3">

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Custom </div>

 </div>

Chapter 4 IntroduCIng uIkIt

82

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">Spread</div>

 </div>

 <div>

 <div class="uk-card uk-card-default uk-card-primary

uk- card- body">Spread</div>

 </div>

</div>

In Listing 4-9, you use uk-child-width-expand as the common class

to the parent <div>. However, in the second child <div>, you use a custom

width of uk-width-2-3 and let the other child <div>s remain the same.

What happens is that the second item will encompass a width of two- thirds

the parent container, while the other items will be evenly split in the

same row.

Figure 4-9 shows the output of the code.

Figure 4-9. Defining custom width for inner elements

You can use the FlexBox component in UIkit. It helps you build

interactive grid layouts. Let’s look at an example to understand it better;

Listing 4-10 shows an example of how FlexBox can be used.

Listing 4-10. Using FlexBox with UIkit

<div class="uk-flex">

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">First</div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body uk-margin-left">Second</div>

Chapter 4 IntroduCIng uIkIt

83

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body uk-margin-left">Third</div>

</div>

In the code, you use the uk-flex class with the parent <div>. Then,

you define three items in the child <div>s and use a uk-margin-left for

the second and third items to create space between the items. By default,

all items will be aligned to the left along with the content and height, as

shown in Figure 4-10.

Figure 4-10. Using FlexBox with UIkit

You can align the flex items to the right and center and even add equal

space between the items using the uk-flex-right, uk-flex-center, and

uk-flex-around classes.

Listing 4-11 shows the code where all the items are centered.

Listing 4-11. Aligning Flex Item

<div class="uk-flex uk-flex-center">

 <div class="uk-card uk-card-default uk-card-primary

uk- card- body">First</div>

 <div class="uk-card uk-card-default uk-card-primary

uk- card- body uk-margin-left">Second</div>

 <div class="uk-card uk-card-default uk-card-primary

uk- card- body uk-margin-left">Third</div>

</div>

Chapter 4 IntroduCIng uIkIt

84

Figure 4-11 shows the output of the code.

Figure 4-11. Aligning flex items

You can use responsive classes with the flex items where @s added to

the flex classes will affect device widths of 640px or higher, @m affects device

widths of 960px or higher, @l affects device widths of 1200px or higher, and

@xl affects device widths of 1600px or higher. See Listing 4-12.

Listing 4-12. Using Responsive Classes with Flex Items

<div class="uk-flex uk-flex-left@m uk-flex-center@l">

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">FIRST</div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body uk-margin-left">SECOND</div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body uk-margin-left">THIRD</div>

</div>

In the code in Listing 4-12, you define uk-flex-left@m and uk-flex-

center@l to the parent <div>s.

Then you define the child <div>s just like in the previous examples. On

the large screen, the flex items will be centered, whereas the items will be

aligned to the left on a small screen.

The vertical alignment of items is possible in Flexbox. Let’s look at an

example in Listing 4-13. You can also define the item order as shown in the

same example.

Chapter 4 IntroduCIng uIkIt

85

Listing 4-13. Vertically Aligning the Flex Items

<div class="uk-flex uk-flex-column uk-text-center uk-

width- 1-3">

 <div class="uk-card uk-card-default uk-card-primary uk-card- body

uk-flex-last@m uk-flex-first@l uk-margin-top">Cloud 1</div>

 <div class="uk-card uk-card-default uk-card-primary uk-card-

body uk-margin-top">Cloud 2</div>

 <div class="uk-card uk-card-default uk-card-primary uk-card- body

uk-flex-first@m uk-flex-last@l uk-margin-top">Cloud 3</div>

</div>

As you can see, you can use uk-flex-column in the parent <div>. So,

the output will be as shown in Figure 4-12.

Figure 4-12. Vertically aligning the flex items

Chapter 4 IntroduCIng uIkIt

86

However, in the same code in Listing 4-13, you define responsive

classes in the first and third items. You use uk-flex-last@m and uk-flex-

first@l for the first item. You use uk-flex-first@m uk-flex-last@l for

the third item. Therefore, while the preceding output was for the large

screen, on small and medium screens, the first item, Cloud 1, will be the

last item, whereas the third item, Cloud 3, will be the first item, as shown in

Figure 4-13.

Figure 4-13. Vertically aligning the flex item

Finally, coming back to grids, you can also use nested grids in UIkit.

Let’s look at the code in Listing 4-14 to understand it better.

Listing 4-14. Using Nested Grids in UIkit

<div class="uk-child-width-1-2 uk-text-center" uk-grid>

 <div>

 <div class="uk-card uk-card-default uk-card-primary uk-

card- body">FIrst 1-1</div>

 </div>

Chapter 4 IntroduCIng uIkIt

87

 <div>

 <div class="uk-child-width-1-2 uk-text-center" uk-grid>

 <div>

 <div class="uk-card uk-card-primary uk-card-

body">Nested 2-1 </div>

 </div>

 <div>

 <div class="uk-card uk-card-primary uk-card-

body">Nested 2-2</div>

 </div>

 </div>

 </div>

</div>

Here, you create a parent <div> and assign a child width of half to it.

Then, you create two child <div>s. You define a normal card in the first

child <div>. However, in the second child <div>, you assign a width of half

for each subchild <div>.

Figure 4-14 shows the output of the code.

Figure 4-14. Using nested grid in UIkit

You can match the height of all the <div>s irrespective of the content of

all the items. Listing 4-15 shows the code for this.

Chapter 4 IntroduCIng uIkIt

88

Listing 4-15. Matching the Heights of the Elements

<div class="uk-grid-match uk-child-width-expand@s uk-text-

center" uk-grid>

 <div>

 <div class="uk-card uk-card-primary uk-card-body">Lorem

ipsum dolor sit amet, consectetur adipisicing elit</div>

 </div>

 <div>

 <div class="uk-card uk-card-primary uk-card-body">Lorem

ipsum dolor sit amet, consectetur adipisicing elitLorem

ipsum dolor sit amet, consectetur adipisicing elit</div>

 </div>

 <div>

 <div class="uk-card uk-card-primary uk-card-body">Lorem

ipsum dolor sit amet, consectetur adipisicing elitLorem

ipsum dolor sit amet, consectetur adipisicing elitLorem

ipsum dolor sit amet, consectetur adipisicing elitLorem

ipsum dolor sit amet, consectetur adipisicing elit</

div>

 </div>

</div>

As you can see, you use the uk-grid-match class in the parent <div>.

Then, you create three items just as in the previous examples.

Figure 4-15 shows the output of the code.

Figure 4-15. Output of the code so far

Chapter 4 IntroduCIng uIkIt

89

 Animations
UIkit has a plethora of animations that impart a certain degree of

immersive behavior to your web sites. Let’s look at the example in

Listing 4-16 to understand the behavior of animations in a web page.

Listing 4-16. Adding Animation

<div class="uk-child-width-1-4 uk-grid-match" uk-grid>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body

uk- animation- fade">

 <p class="uk-text-center">Fade</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body

uk- animation- scale-up">

 <p class="uk-text-center">Scale Up</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body

uk- animation- scale-down">

 <p class="uk-text-center">Scale Down</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body

uk- animation- shake">

 <p class="uk-text-center">Shake</p>

 </div>

Chapter 4 IntroduCIng uIkIt

90

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-left">

 <p class="uk-text-center">Left</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-top">

 <p class="uk-text-center">Top</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-bottom">

 <p class="uk-text-center">Bottom</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-right">

 <p class="uk-text-center">Right</p>

 </div>

 </div>

 </div>

In Listing 4-16, you create the parent <div> to which you assign the

uk-child-width-1-4 class. This aligns the items in a row with each item

taking one-quarter of the space of the parent container. You assign the

uk-grid attribute as in the previous examples. Then, you proceed to create

eight child <div>s. To each child <div>, you assign the uk-animation-toggle

Chapter 4 IntroduCIng uIkIt

91

class due to which there will be a hover effect that will trigger the animation.

Then, you create a card in a sub <div> inside those child <div>s.

Since there are eight items, you assign these eight animation classes to

each child <div>:

• uk-animation-fade class for the first child <div>

This creates a fade effect for the item.

• uk-animation-scale-up class for the second child

<div>

This creates a fade effect wherein the item scales up.

• uk-animation-scale-down for the third child <div>

This creates a fade effect where the item scales down.

• uk-animation-shake for the fourth child <div>

This creates a shake effect wherein the item seems

to vibrate.

• uk-animation-slide-left for the fifth <div>

The item slides from the left.

• uk-animation-slide-top for the sixth <div>

The item slides from the top.

• uk-animation-slide-bottom for the seventh <div>

The item slides from the bottom.

• uk-animation-slide-right for the eight <div>

This item slides from the right.

Figure 4-16 shows the output of the code.

Chapter 4 IntroduCIng uIkIt

92

When you hover over the items, you can see the animation effect as

defined in the code. For example, when you hover over the first item, it will

fade. On hovering over the fifth item, the item will slide from the left.

You can also define the space or distance of the animation. All you need to

do is add the appropriate top, right, bottom, or left animation class.

For example, uk-animation-slide-left-small will create a left sliding

effect from a shorter distance, whereas uk-animation-slide-left-medium

will create a left sliding effect from a longer distance. The distance is

already predefined by a fixed pixel value.

Let’s look at the code example in Listing 4-17 to understand it better.

Listing 4-17. Adding Animations with Space and Distance

<div class=" uk-child-width-1-4 uk-grid-match" uk-grid>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-left-small">

 <p class="uk-text-center">Left Small</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-top-small">

 <p class="uk-text-center">Top Small</p>

 </div>

 </div>

Figure 4-16. Adding animation

Chapter 4 IntroduCIng uIkIt

93

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-bottom-small">

 <p class="uk-text-center">Bottom Small</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-right-small">

 <p class="uk-text-center">Right Small</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-left-medium">

 <p class="uk-text-center">Left Medium</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-top-medium">

 <p class="uk-text-center">Top Medium</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-bottom-medium">

 <p class="uk-text-center">Bottom Medium</p>

 </div>

 </div>

Chapter 4 IntroduCIng uIkIt

94

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-right-medium">

 <p class="uk-text-center">Right Medium</p>

 </div>

 </div>

 </div>

In Listing 4-17, you follow the same code as in Listing 4-16, the only

difference being the addition of the distance to the animation class. You

define the classes as uk-animation-slide-left-small, uk-animation-

slide-top-small, uk-animation-slide-bottom-small, and uk-

animation- slide-right-small to create the sliding animation effect from

the left, top, bottom, and right for a shorter distance. Similarly, you use the

uk-animation-slide-left-medium, uk-animation-slide-top-medium,

uk-animation-slide-bottom-medium, and uk-animation-slide-right-

medium classes to define a medium distance for the sliding effect animation

from the left, top, bottom, and right.

Figure 4-17 shows the output of the code.

Figure 4-17. Adding animations with space and distance

When you hover over the items, they will display the behavior as

defined and explained in the code. For example, when you hover over

the sixth item, the item will slide in from the top from a larger distance

compared to the second item, which slides from the top in a shorter

distance.

Chapter 4 IntroduCIng uIkIt

95

If you observe the animations so far, all of them are incoming; however, to

make them outgoing, you can use the reverse function. All you need to do is

add a uk-animation-reverse class to the element, as shown in Listing 4-18.

Listing 4-18. Adding Reverse Animation

<div class="uk-child-width-1-2 uk-grid-match" uk-grid>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- fade uk-animation-reverse">

 <p class="uk-text-center">Fade</p>

 </div>

 </div>

 <div class="uk-animation-toggle">

 <div class="uk-card uk-card-primary uk-card-body uk-

animation- slide-right uk-animation-reverse">

 <p class="uk-text-center">Right</p>

 </div>

 </div>

</div>

In Listing 4-18, you create two card items inside the parent <div> that

span half of the parent grid. For the first child <div>, you define the fade

animation class followed by the uk-animation-reverse class. For the

second child <div>, you define the animation sliding effect from the right.

However, you also define the uk-animation-reverse class to it similar to

the first child <div>.

Figure 4-18 shows the output of the code.

Figure 4-18. Adding reverse animation

Chapter 4 IntroduCIng uIkIt

96

When you click the first item, it will fade in the reverse way (i.e., outgoing).

Similarly, when you click the second item, it will slide from left to the right

(i.e., in the reverse direction) and fade away.

 Scrollspy with Animations
Scrollspy helps you trigger events when you scroll your page. It can be used

with the animation class extensively to create an awesome effect for your

web pages.

Let’s understand it by means of a coding example, as shown in

Listing 4-19. (Inside the <p> tags, there is a load of content. For the entire

content, refer to the code bundle.)

Listing 4-19. Adding Scrollspy

<body style="padding:10px 10px 10px 10px;">

<p>

Lorem ipsum(loads of text)

</p>

<p>

Lorem ipsum(loads of text)

</p>

<div class="uk-child-width-1-2@m uk-grid-match" uk-grid>

 <div>

 <div class="uk-card uk-card-primary uk-card-body" uk-

scrollspy="cls: uk-animation-slide-left; repeat: true">

 <h3 class="uk-card-title">Cloud</h3>

 <p>Cloud Computing is the new revolution</p>

 </div>

 </div>

 <div>

Chapter 4 IntroduCIng uIkIt

97

 <div class="uk-card uk-card-primary uk-card-body"

uk- scrollspy="cls: uk-animation-slide-right; repeat:

true">

 <h3 class="uk-card-title">Cloud</h3>

 <p>Cloud Computing is the new revolution</p>

 </div>

 </div>

</div>

</body>

In Listing 4-19, you define two paragraph elements and fill them

with loads of text. Then you define a <div> class, and to this parent <div>

you assign a uk-child-width-1-2@m class to define the width of the two

child <div> elements within the grid defined by the uk-grid-match and

uk-grid classes. Then you create two child <div>s; you create basically

two card items, and you assign the uk-scrollspy="cls: uk-animation-

slide-left; repeat: true" attribute to the first child <div> and uk-

scrollspy="cls: uk-animation-slide-right; repeat: true" to the

second child <div>. This will make the cards slide from the left and right,

respectively, when you scroll down to that section of the page. You use the

repeat: true property to repeat the effects when you scroll to that section

of the page.

The output of the code will display two paragraphs of content. When

you scroll down the page, the cards will slide from the left and right

automatically. Figure 4-19 displays the two cards, which slide in from the

left and right, respectively, when you scroll to that section.

Chapter 4 IntroduCIng uIkIt

98

If you want to create items with the same animation effect, you do

not have to define the Scrollspy animation separately for each item. You

can club them together by using the target property to the class in the

scrollspy attribute. Listing 4-20 shows an example of this.

Listing 4-20. Adding Scrollspy

<p>..

Lorem Ipsum...(loads of text)...

</p>

<p>

Lorem ipsum (loads of text)...

</p>

<div class="uk-child-width-1-3@m" uk-grid uk-scrollspy="cls:

uk-animation-slide-top; target: > div > .uk-card; delay: 500;

repeat: true">

 <div>

 <div class="uk-card uk-card-primary uk-card-body">

 <h3 class="uk-card-title">Top Animation</h3>

 <p>Animation effect: Slides from the Top</p>

 </div>

 </div>

Figure 4-19. Adding Scrollspy

Chapter 4 IntroduCIng uIkIt

99

 <div>

 <div class="uk-card uk-card-primary uk-card-body">

 <h3 class="uk-card-title">Top Animation</h3>

 <p>Animation effect: Slides from the Top</p>

 </div>

 </div>

 <div>

 <div class="uk-card uk-card-primary uk-card-body">

 <h3 class="uk-card-title">Top Animation</h3>

 <p>Animation effect: Slides from the Top</p>

 </div>

 </div>

</div>

In Listing 4-20, you define the grid and assign the uk-child-width-1-

3@m class to it to assign a width of one-third of the parent container width.

Then, you apply the following scroll spy property to the parent <div>:

uk-scrollspy="cls: uk-animation-slide-top; target: > div > .uk-

card; delay: 500; repeat: true"

This defines the animation for all the child items when you scroll down

to that section. Here, you use cls: uk-animation-slide-top to create an

animation effect wherein the element slides from the top. Then, you follow

it up with target: > div > .uk-card; in the same line, which will target

the card defined by the <div> with the uk-card class. Thereon, you create

a delay of 500ms and use the repeat attribute here too. Next, you go on to

create three card items.

The output of the code will show text, and on scrolling down below the

text, the three card items will slide in from the top, as shown in Figure 4-20.

Chapter 4 IntroduCIng uIkIt

100

 Accordions
An accordion helps to stack items, which, when clicked, will display

information. It helps reduce the overload of information on a web page.

Listing 4-21 shows an example of an accordion in UIkit.

Listing 4-21. Adding an Accordion

<ul uk-accordion>

 <li class="uk-open">

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

Figure 4-20. Adding Scrollspy

Chapter 4 IntroduCIng uIkIt

101

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

In Listing 4-21, you create a list using the tag. You need to assign

the uk-accordion class to it. This will create the accordion. Then, you

create three list items using the tags.

You assign the uk-open class to the first list item so that it is open by

default. Inside the first item, you define the heading of the accordion using

the uk-accordion-title class with the <h3> tag. Then, you create a <div>

and assign the uk-accordion-content class to it. You define the content

within that <div> using the paragraph <p> tags; similarly, to the other two

list items, you define the content and heading of the accordion. However,

Chapter 4 IntroduCIng uIkIt

102

remember not to use the uk-open class for these two list items as the uk-

open class is to be used only for that accordion that displays content by

default.

Figure 4-21 shows the output of the code.

Figure 4-21. Adding an accordion

If you want all the accordions to show the content without the other

collapsing, then use the multiple: true property with the uk-accordion

attribute. Listing 4-22 shows an example of multiple accordions that are

open and shows content without collapsing.

Listing 4-22. Adding Multiple Accordions

<ul uk-accordion="multiple: true">

 <li class="uk-open">

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

Chapter 4 IntroduCIng uIkIt

103

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

 <h3 class="uk-accordion-title"> Cloud</h3>

 <div class="uk-accordion-content">

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nam fermentum justo urna. Nam

blandit diam ac erat congue, ullamcorper vulputate

odio tempus. Quisque maximus dolor sit amet nisi

lacinia euismod. Pellentesque laoreet, tortor

malesuada volutpat luctus, augue diam venenatis

risus</p>

 </div>

The example is the same as that of the previous accordion example;

except here, you use the uk-accordion="multiple: true" property with

the main tag.

The output of the code will show the first accordion open and the

remaining closed. However, when you click the other two accordions, it

will show the content without any of the accordions collapsing, as shown

in Figure 4-22.

Chapter 4 IntroduCIng uIkIt

104

 Icons
Finally, let’s talk about icons in UIkit. If you remember the <head> section

of the code examples, you use the following line of code:

<script src="https://cdnjs.cloudflare.com/ajax/libs/

uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>

This line is for the Scalable Vector Graphic icons, which are baked-in to

UIkit. The best part of SVG icons is that they can be colored and styled with

CSS to give an aesthetic look.

Listing 4-23 shows an example of a few icons used in UIkit.

Listing 4-23. Implementing Icons

<a href="" class="uk-margin-small-right" uk-icon="icon:

home">

<a href="" class="uk-margin-small-right" uk-icon="icon:

trash">

<a href="" class="uk-margin-small-right" uk-icon="icon:

users">

<a href="" class="uk-icon-button uk-margin-small-right"

uk- icon="icon: twitter">

Figure 4-22. Adding multiple accordions

Chapter 4 IntroduCIng uIkIt

105

<a href="" class="uk-icon-button uk-margin-small-right"

uk- icon="icon: facebook">

<a href="" class="uk-icon-button" uk-icon="icon: google-

plus">

In Listing 4-23, you initially create the Home, Trash, Users, and Phone

icons. For this, you use the <a> anchor tags with the href attribute. Then,

you create the first icon (i.e., home) by using the property uk-icon="icon:

home". As you can see, you assign the icon: home value to the uk-icon

property. Similarly, you assign the trash value for the uk-icon for the trash

using the uk-icon="icon: trash" property. You go on to create icons for

users and the phone. You also use the uk-margin-small-right class for

the spacing between the icons.

For social media button icons, you use the additional class uk-

icon- button with the <a> tags. For the first social media icon button

(i.e., Twitter), you use the uk-icon-button class followed by the uk-

icon="icon: twitter" property. As you can see, the icon: twitter value

is assigned to the uk-icon attribute. Similarly, you create the Facebook and

Google Plus icons.

Figure 4-23 shows the output of the code.

Figure 4-23. Implementing icons

Chapter 4 IntroduCIng uIkIt

106

 Summary
As you learned in this chapter, UIkit is an expansive but light framework

compared to heavyweights such as Bootstrap and Foundation. In the

next chapter, you will learn about Material Design Lite, which is another

amazing and intuitive framework.

Chapter 4 IntroduCIng uIkIt

107© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_5

CHAPTER 5

Material Design Lite
Explained
Material Design Lite is an intuitive and lightweight framework compared

to Bootstrap, Materialize, and Foundation. It adheres to the Material

Design language launched by Google. MDL has ingrained UI Components

that are easy to use and implement. It provides the styling and animations

that help in constructing aesthetic and responsive web sites. It takes

into consideration several aspects such as browser portability and

responsiveness, all within a compact footprint.

Material Design, created by Google, is a design philosophy that is

inspired by real materials and helps create sleek and interactive web

sites. It follows Google’s device-agnostic paradigm and stresses the

need for web sites to look the same irrespective of the platform. In

other words, it creates a uniformity across all devices, whether it’s a

tablet or a phone or a laptop. This is a distinct concept that helps create

a consistent and unified experience that gives a real-world look and is

aesthetically pleasing.

MDL is a unique framework with ample UI components, based on

the Material Design philosophy. Though it may not possess a wide array

of components compared to frameworks such as Bootstrap, it is quite

resourceful and competent in its own way and provides a plethora of

combinations and features to build responsive web sites. The name “Lite”

108

in this framework means it caters to the web designer’s need to build

immersive web sites in a lightweight manner, without the bulk or clutter

associated with massive frameworks.

 Installing MDL
MDL can be downloaded in several ways. One of the easiest ways is to go

to https://getmdl.io/started/index.html#download. You will see a

Download MDL button, as shown in Figure 5-1.

Click the button to download a zipped file containing the various CSS

and JavaScript files. Figure 5-2 shows the tree structure of the unzipped

components.

Figure 5-1. Download link for MDL

Figure 5-2. Structure of files in MDL

Chapter 5 Material Design lite explaineD

https://getmdl.io/started/index.html#download

109

The preferred way of including MDL in your document is to use the

CDN links for the icons, CSS, and JavaScript files, as shown here:

<link rel="stylesheet" href="https://fonts.googleapis.com/

icon?family=Material+Icons">

<link rel="stylesheet" href="https://code.getmdl.io/1.3.0/

material.indigo-pink.min.css">

<script defer src="https://code.getmdl.io/1.3.0/material.min.js">

</script>

Just include the three lines of the preceding code in your HTML page

and you are good to go. We already defined the advantages of using CDN

links in the previous chapters, and the creators of MDL also recommend

using the CDN links.

Alternatively, you can download and build MDL from the GitHub

portal or by using Node or Bower.

In this chapter, we will stick to showing the preferred way (in other

words, using CDN-hosted files in your markup file) to demonstrate various

examples.

 MDL Layout
In this section, you will look at some of the layout components of MDL so

you can understand the MDL grid and other important attributes such as

the footer and the tabs.

Initially, you will look at the header and drawer concepts in MDL by

way of some simple examples.

Listing 5-1 shows a fixed header and a normal drawer in MDL.

Chapter 5 Material Design lite explaineD

110

Listing 5-1. Fixed Header with Normal Drawer in MDL

<html>

<head>

<link rel="stylesheet" href="https://fonts.googleapis.com/

icon?family=Material+Icons">

<link rel="stylesheet" href="https://code.getmdl.io/1.3.0/

material.indigo-pink.min.css">

<script defer src="https://code.getmdl.io/1.3.0/material.min.js">

</script>

</head>

<body>

 < div class = "mdl-layout mdl-js-layout mdl-layout--fixed-

header">

 <header class = "mdl-layout__header">

 <div class = "mdl-layout__header-row">

 <!-- Title -->

 SUPERMAI

L007

 < !-- Add spacer, to align navigation to the

right -->

 <div class = "mdl-layout-spacer"></div>

 <!-- Navigation -->

 <nav class = "mdl-navigation">

 <a class = "mdl-navigation__link" href = ""

 style = "color:white">INBOX

 <a class = "mdl-navigation__link" href = ""

 style = "color:white">SPAM

 <a class = "mdl- navigation__link" href = ""

 style = "color:white">TRASH

 </nav>

 </div>

 </header>

Chapter 5 Material Design lite explaineD

111

 <div class = "mdl-layout__drawer">

 SUPERMAIL007

 <nav class = "mdl-navigation">

 < a class = "mdl-navigation__link"

href = "">INBOX

 < a class = "mdl-navigation__link"

href = "">SPAM

 < a class = "mdl-navigation__link"

href = "">TRASH

 </nav>

 </div>

 <main class = "mdl-layout__content">

 <div class = "page-content">Come Undone</div>

 </main>

 </div>

 </body>

</html>

In Listing 5-1, you can see the code for the fixed header and a normal

drawer. Let’s look at each line of code to understand how it works.

In the head section, you include all the CDN files for the MDL

framework. Then, you create a body tag in which you will define the

functional markup for the fixed header example.

Then, you code a <div> and assign the mdl-layout, mdl-js-layout,

and mdl-layout--fixed-header classes to it. The mdl-layout class

identifies the container as an MDL component and is part of the outer

container element. The mdl-js-layout class adds MDL behavior to the

layout and is part of the outer container element. The mdl-layout--fixed-

header class makes the header always visible, even on small screens.

Chapter 5 Material Design lite explaineD

112

Then, you define the HTML <header> tag wherein you assign the

mdl- layout__header class to it. The assigned class identifies the container as

an MDL component. Within the <header> tag, you code a <div> and assign

the mdl-layout__header-row class to it. The mdl-layout__header-row

class identifies the container as an MDL header row and is mandatory on

a header content container. Inside the <div>, you create a tag and

assign the mdl-layout-title class to it that identifies the layout title text and

that is needed on the layout title container. You use SUPERMAIL007 as the title

content for the header. You then code another <div> to which you assign the

mdl-layout-spacer class, which results in filling the remaining space and is

usually used to align the elements to the right.

Then, you create the navigation element with the <nav> tag and assign

the mdl-navigation class to it, which identifies the container as an MDL

navigation group. You create three anchor links using the <a> tag and

assign the mdl-navigation__link class that identifies the anchor as an

MDL navigation link. You then use the words INBOX, SPAM, and TRASH as

the content for the anchor tags. You complete this header section with a

closing <header> tag.

Continuing, you create a <div> element and assign the mdl- layout__

drawer class to it, which identifies the container as an MDL drawer. Then,

you create a element within that <div> and assign the mdl-layout-

title class to it, which identifies the title text to the container. You use the

content SUPERMAIL007, which is the same as the content for the header

title in the <header> section. Then, you create the navigation element with

the <nav> tag and assign the mdl-navigation class to it, which identifies

the container as an MDL navigation group. You create three anchor links

using the <a> tag and assign the mdl-navigation__link class to it, which

identifies the anchor as an MDL navigation link. You then use the words

INBOX, SPAM, and TRASH as the content for the anchor tags.

Chapter 5 Material Design lite explaineD

113

Next, you create a <main> tag to define the layout’s primary content

and assign the mdl-layout__content class to it. The mdl-layout__content

class is mandatory for defining the container as the MDL layout content.

You then use the closing tags.

Figure 5-3 shows the code output.

As you can see, you have created a fixed header that is visible on

smaller screens too.

In addition, when you click the navicon (i.e., the menu icon), the

drawer slides out, as shown in Figure 5-4.

Figure 5-3. Output of the fixed header and a normal drawer

Figure 5-4. Drawer slides showing the content

Chapter 5 Material Design lite explaineD

114

For a fixed drawer, all you need to do is to introduce the mdl-layout-

-fixed-drawer class to the first <div> within which the whole functional

markup is defined. The <div> line of code looks like this:

<div class = "mdl-layout mdl-js-layout mdl-layout--fixed-drawer

mdl-layout--fixed-header">

Figure 5-5 shows the output of the code.

Suppose you want a scrollable header that scrolls with the content.

In such a scenario, you can remove the mdl-layout--fixed-header class

from the first parent <div>. In the <header> tag, you need to introduce the

mdl-layout__header—scroll class. The rest of the code is the same, except

that you need to put comprehensive content within the layout content

<main> tag. The output will be similar, but when you scroll, the header will

not be fixed but will scroll with the content. Kindly refer to the code bundle

for the entire code and output.

In Listing 5-2, you will look at the code for a fixed header with

scrollable tabs.

Listing 5-2. Fixed Header with Scrollable Tabs

<div class = "mdl-layout mdl-js-layout mdl-layout--fixed-

header">

 <header class = "mdl-layout__header">

 <!-- Top row, always visible -->

Figure 5-5. Fixed drawer

Chapter 5 Material Design lite explaineD

115

 <div class = "mdl-layout__header-row">

 <!-- Title -->

 < span class = "mdl-layout-title">SUPERMAIL007

 </div>

 <!-- Tabs -->

 < div class = "mdl-layout__tab-bar mdl-js-ripple-

effect">

 < a href = "#scroll-tab-1" class = "mdl- layout__

tab is-active">INBOX

 < a href = "#scroll-tab-2" class = "mdl- layout__

tab">SPAM

 < a href = "#scroll-tab-3" class = "mdl- layout__

tab">TRASH

 </div>

 </header>

 <div class = "mdl-layout__drawer">

 < span class = "mdl-layout-title">SUPERMAIL007

 <nav class = "mdl-navigation">

 < a class = "mdl-navigation__link"

href = "">INBOX

 < a class = "mdl-navigation__link"

href = "">SPAM

 < a class = "mdl-navigation__link"

href = "">TRASH

 </nav>

 </div>

Chapter 5 Material Design lite explaineD

116

 <main class = "mdl-layout__content">

 < section class = "mdl-layout__tab-panel is-active"

id = "scroll-tab-1">

 < div class = "page-content"> Lorem ipsum dolor

sit amet... (content) </div>

 </section>

 < section class = "mdl-layout__tab-panel" id =

"scroll-tab-2">

 < div class = "page-content"> Lorem ipsum dolor

sit amet, ...(content)</div>

 </section>

 < section class = "mdl-layout__tab-panel" id =

"scroll-tab-3">

 < div class = "page-content"> Lorem ipsum dolor

sit amet....(content) </div>

 </section>

 </main>

 </div>

In Listing 5-2, you define the parent <div> and assign the mdl-layout,

mdl-js-layout, and mdl-layout--fixed-header classes to it. You then

create a <header> tag to which you assign the mdl-layout__header class.

Then, you create another <div> within the <header> tags to which you

assign the mdl-layout__header-row class. You proceed to code a

tag to which you assign the mdl-layout-title class. You define the title

content as SUPERMAIL007.

Next, you create the tabs. You create a <div> element to which you

assign the mdl-layout__tab-bar and mdl-js-ripple-effect classes. The

mdl-layout__tab-bar class identifies the container as an MDL tab bar,

whereas the mdl-js-ripple-effect class is used for the immersive ripple

effect. You then create three anchor links to which you assign the #scroll-

tab- 1, #scroll-tab-2, and #scroll-tab-3 href attributes, respectively.

Chapter 5 Material Design lite explaineD

117

You also assign the mdl-layout__tab classes to each anchor link. In the

first anchor link, you assign the is-active class because it should be active

by default. Use the <header> closing tag to wrap up this section of the code.

You then proceed to create a drawer similar to the example in Listing 5-1.

Next, you define the layout content within the <main> tags and assign

the mdl-layout__content class to the <main> tag. You then create the first

<section> tag and assign the mdl-layout__tab-panel class to it. Only for

this <section> tag, you introduce the is-active class. Then you assign an

ID whose value is the href attribute to the first anchor tag created in the

<header> tag (i.e., scroll-tab-1). Next, you create a <div> and assign the

page content class to it and define the content.

Similarly, you create two more sections similarly, the only difference

being the ID assigned to them. You assign scroll-tab-2 and scroll-

tab- 3 as the value of the ID for the second and third sections, respectively.

Moving forward, you complete the code with the necessary closing tags.

Figure 5-6 shows the output of the code.

(We have used random content of Lorem Ipsum… in the code to

illustrate this example, for the entire code with the massive content, refer

to the code bundle for this chapter.)

Next, you will learn about the grid system in MDL. The grid system in

MDL is quite easy and helps lay out the content for multiple devices based

on different screen sizes. By default, a grid in MDL has 12 columns for the

desktop screen, 8 for tablets, and 4 for phone sizes, and cells are laid out

sequentially in a row.

Figure 5-6. Output of scrollable tabs

Chapter 5 Material Design lite explaineD

118

As written on the MDL web site, there are two exceptions in MDL grid

system.

• If a cell doesn’t fit in the row in one of the screen sizes,

it flows into the following line.

• If a cell has a specified column size equal to or larger

than the number of columns for the current screen size,

it takes up the entirety of its row.

Listing 5-3 shows the code sample for a grid layout.

Listing 5-3. Grid Layout

<div class="mdl-grid">

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

Chapter 5 Material Design lite explaineD

119

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--1-col">Cloud</div>

</div>

<div class="mdl-grid">

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--4-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--4-col">Cloud</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--4-col">Cloud</div>

</div>

<div class="mdl-grid">

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--6-col mdl-cell--8-col-tablet">6 (8

tablet)</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--4-col mdl-cell--6-col-tablet">4 (6

tablet)</div>

 < div style="text-align:center; border: 1px solid black;"

class="mdl-cell mdl-cell--2-col mdl-cell--4-col-phone">2 (4

phone)</div>

</div>

Listing 5-3 uses the following classes:

• mdl-grid: Identifies the <div> as an MDL grid

component

• mdl-cell: Identifies the <div> as an MDL cell

Chapter 5 Material Design lite explaineD

120

• mdl-cell--1-col: Sets the column size for the cell to 1

cell of the 12 cells on a desktop screen

• mdl-cell--4-col: Sets the column size for the cell to 4

cells of the 12 cells on a desktop screen

• mdl-cell--8-col-tablet: Sets the column size for the

cell to 8 cells on a tablet screen

• mdl-cell--6-col-tablet: Sets the column size for the

cell to 6 cells on a tablet screen

• mdl-cell--4-col-phone: Sets the column size for the

cell to 4 cells on a phone screen

If you see the code, you have used the mdl-grid class for the first

parent <div>. You move on to create 12 child <div>s for 12 cells, and you

use inline CSS styles for the borders of each cell. You assign mdl-cell and

mdl-cell--1-col to each cell in the code, defining a total of 12 cells.

Next, you create another parent <div>, and similar to the first <div>,

you assign the mdl-grid class to it. Then, you create three child <div> cells

and assign mdl-cell and mdl-cell--4-col classes for it.

In the next parent <div>, you create a grid with three cells and define

screen sizes for each child <div> cell by customizing the size of each cell

on the default desktop, tablet, and phone.

Figure 5-7 shows the output of the code.

Now that you have gained insight into some of the components of

MDL, let’s look at an example: how to build a web page with MDL.

Figure 5-7. Grid system sample in MDL

Chapter 5 Material Design lite explaineD

121

 Building an Intuitive Web Page Using MDL
In this section, you will take a look at the process of building a web page

for Anirudh Prabhu, co-author of this book. It is a simple example. We will

divide it into several steps and then apply the finishing touches to create

an aesthetic page.

 Step 1: Creating the <head> Section
Listing 5-4 shows step 1, wherein you create the <head> section of the web

page and include all the JavaScript and CSS files.

Listing 5-4. <head> Section with All the JavaScript and CSS Files

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8">

 <title>Website Using Material Design Lite</title>

 < meta name="viewport" content="width=device-width,

initial-scale=1">

 < link rel='stylesheet prefetch' href='https://fonts.

googleapis.com/css?family=Roboto:400,100,500,300italic,

500italic,700italic,900,300'>

 < link rel="stylesheet" href="https://code.getmdl.

io/1.3.0/material.brown-orange.min.css" />

 < link rel='stylesheet prefetch' href='https://fonts.

googleapis.com/icon?family=Material+Icons'>

 <link rel="stylesheet" href="style.css">

</head>

<body>

Chapter 5 Material Design lite explaineD

122

<script src='https://storage.googleapis.com/code.getmdl.

io/1.0.6/material.min.js'></script>

<script src='http://cdnjs.cloudflare.com/ajax/libs/

jquery/2.1.3/jquery.min.js'></script>

</body>

</html>

In Listing 5-4, you include the viewport attribute and the MDL files.

You also add a custom style sheet, i.e., style.css.

 Step 2: Creating a Fixed Header with a Drawer
In this section, you will add a code snippet between the <body> tags

wherein you will define a fixed header and the header tile along with the

drawer. See Listing 5-5.

Listing 5-5. Defining a Fixed Header and the Header Tile Along

with the Drawer

<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header

mdl-layout--fixed-tabs">

 <header class="mdl-layout__header">

 <div class="mdl-layout__header-row">

 <!-- Title -->

 Anirudh Prabhu

 </div>

 <!-- Tabs -->

 <div class="mdl-layout__tab-bar mdl-js-ripple-effect">

 < a href="#fixed-tab-1" class="mdl-layout__tab is-

active">About

 Moments

 </div>

 </header>

Chapter 5 Material Design lite explaineD

123

 <div class="mdl-layout__drawer">

 Anirudh Prabhu

 <div class="avatar">

 < img src="https://s3-us-west-2.amazonaws.com/s.cdpn.

io/234228/cat.jpg" alt="Kaptain Kitty" class="avatar-img">

 </div>

 <!-- /.avatar -->

 <div class="drawer-text">

 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Aspernatur officiis animi, soluta ab deserunt dolore

fugit voluptatem laboriosam, magni. Eligendi quia quasi

qui cupiditate optio fugit vel, suscipit harum illum.

 </div>

 <!-- /.drawer-text -->

 </div>

 <!-- /.mdl-layout__drawer -->

In Listing 5-5, initially, you define the <div> element to which you assign

the mdl-layout, mdl-js-layout, mdl-layout--fixed-header, and mdl-

layout--fixed-tabs classes. Then, you define the <header> tag to which

you assign the mdl-layout__header class. Within the <header> tags, you

create another <div> to which you assign the mdl-layout__header- row

class, followed by creating a element where you define the layout title

using the mdl-layout-title class. Close the <div> tag and code another

<div> for the fixed tabs to which you assign the mdl- layout__tab- bar and

mdl-js-ripple-effect classes. Once you define the name of the tabs and

close the concluding </header> tag, you define the code for the drawer.

You code a <div> and assign the mdl-layout__drawer class to it. You

create the layout title for the drawer and then code another <div> to which

you assign a custom avatar class. Then you introduce an image with the

help of the tags. Next you code another <div>, and you define the

content for the drawer text.

Chapter 5 Material Design lite explaineD

124

Next, you define the custom CSS styles in the style.css file, as shown

Listing 5-6.

Listing 5-6. Defining the Custom CSS styles

.mdl-layout__drawer-button,

.mdl-layout__drawer-button i {

 color: white;

}

@media (max-width: 900px) {

 .mdl-layout__drawer-button {

 width: 100%;

 margin: 0;

 background-color: transparent;

 }

}

img {

 max-width: 100%;

 height: auto;

 display: block;

}

.avatar {

 height: 200px;

 width: 200px;

 margin: 0 auto 2em;

}

.avatar-img {

 height: 200px;

 width: 200px;

 margin: 0 auto;

 border-radius: 50%;

}

Chapter 5 Material Design lite explaineD

125

.drawer-text {

 padding: 1em;

 text-align: center;

}

In Listing 5-6, you define the color of the drawer button as white and

define the background color for it. Then, you define the style for the image,

i.e., the maximum width along with the height and display attributes. You

define the styles for the avatar class and for the avatar-img classes, in

other words, for the height, width, and margin (and the border radius for

the image). Finally, you use custom styles to center the drawer text.

Figure 5-8 shows the output of the code.

If you click the navicon to display the sliding drawer, you can see the

drawer image and content, as shown in Figure 5-9.

Figure 5-8. Output of a header and drawer

Figure 5-9. Sliding drawer content

Chapter 5 Material Design lite explaineD

126

 Step 3: Creating the About Section
You will now define the content for the About section, as shown in Listing 5-7.

Listing 5-7. About Section Code

<main class="mdl-layout__content">

 < div class="mdl-layout__tab-panel is-active" id="fixed-

tab- 1">

 <div class="page-content">

 <!-- Your content goes here -->

 <!-- Hero section -->

 <div class="hero-section">

 <div class="hero-text mdl-typography--text-center">

 < h1 class="mdl-typography--display-2">I'm Anirudh

Prabhu</h1>

 <p class="mdl-typography--display-1">

 I'm a passionate mobile photographer

 </p>

 < a class="mdl-button mdl-js-button mdl-button--fab

mdl-js-ripple-effect mdl-button--accent kitty-

hero__text- button" href="#intro">

 <i class="material-icons">keyboard_arrow_down</i>

 </div>

 <!-- /.hero-text -->

 </div>

 <!-- /.hero-section -->

Chapter 5 Material Design lite explaineD

127

 <!-- INTRO -->

 <div id="intro" class="mdl-grid intro-section">

 <div class="about-kitty mdl-cell mdl-cell--12-col">

 <p class="mdl-typography--headline">

 Welcome to my web page! I wish to display my

mobile photography thru this web page.

 </p>

 </div>

 <!-- /.about-kitty -->

 <div class="about-kitty mdl-cell mdl-cell--12-col">

 <p>

 Various mobiles and gadgets with which i have

performed photography.

 </p>

 </div>

 <!-- /.about-kitty -->

 < div class="about-kitty mdl-cell mdl-cell--5-col mdl-

cell--1-col-tablet mdl-cell--hide-phone">

 <div class="circle-container">

 <div class="circle"></div>

 <div class="circle"></div>

 <div class="circle"></div>

 </div>

 <!-- /.circle-container -->

 </div>

 <!-- /.about-kitty -->

 < div class="about-kitty mdl-cell mdl-cell--7-col mdl-

cell--6-col-tablet mdl-cell--4-col-phone">

 <div class="topics-container">

 <div class="topic">Xiaomi MI3</div>

Chapter 5 Material Design lite explaineD

128

 <div class="topic">OnePlus 2</div>

 <div class="topic">Sony DSC QX100</div>

 </div>

 <!-- /.topics-container -->

 </div>

 </div>

 <!--/.mdl-grid -->

 <!--/.mdl-grid -->

 </div>

 <!-- /.page-content -->

 </main>

 <!-- /.mdl-layout__content -->

In Listing 5-7, you code a <main> tag to which you assign the

mdl- layout__content class. You create a <div> and assign the

mdl- layout__tab- panel and is-active classes to it. You also assign an

ID of fixed- tab- 1 to it, which is the href attribute for the anchor tag for

the About section content. Within this, you code another <div> to define

the page content. You create another section within and assign the custom

class hero-section to it. Within this, you create another <div> to which

you assign the custom hero-text class along with the mdl-typography-

-text-center class. This centers the text. You then define the content

using different typography classes such as mdl-typography--display-2

and mdl-typography--display-1, which decides the font weight of the

content.

Next, you create a button, a circular one also called the fab button,

by defining the mdl-button, mdl-js-button, mdl-button—fab, mdl-js-

ripple-effect, and mdl-button—accent classes to define the look of the

button. You used a drop-down MDL arrow and embed it in the button.

Chapter 5 Material Design lite explaineD

129

After the hero section, you define a new parent <div> and assign the

grid functionality to it. You then define the content for this introduction

section. You define the mdl-cell mdl-cell--12-col class to it so that the

content occupies 12 columns on a desktop. After you jot down the content,

you then create three circles by using mdl-cell, mdl-cell--5-col, mdl-cell-

-1-col-tablet, and mdl-cell--hide-phone. This defines the cells based

on the screen size such as tablets and phone, especially mdl-cell--hide-

phone, which hides the content on a small phone. Next, you create the

topic container section wherein you define the content that will eventually

be placed next to the circles.

Now you create custom styles for the section, as shown in Listing 5-8.

Listing 5-8. Custom Styles

.hero-section {

 height: 100vh;

 /* IE11 doesn't like min-height */

 width: 100%;

 margin: 0;

 padding: 0;

 background-color: rgba(121,85,72, 0.6);

 background-image: -webkit-linear-gradient(rgba(121,85,72,

0.3), rgba(121,85,72, 0.3)), url(https://pacdn.500px.

org/2185509/e9a80e8a5bb01d46da6830d55a34c6c61146d27d/

cover_2048.jpg?2);

 background-image: linear-gradient(rgba(121,85,72, 0.3),

rgba(121,85,72, 0.3)), url(https://pacdn.500px.org/2185509/

e9a80e8a5bb01d46da6830d55a34c6c61146d27d/cover_2048.jpg?2);

 background-position: center center;

 background-repeat: no-repeat;

 background-size: cover;

 position: relative;

Chapter 5 Material Design lite explaineD

130

 display: -webkit-box;

 display: -ms-flexbox;

 display: flex;

 -webkit-box-orient: vertical;

 -webkit-box-direction: normal;

 -ms-flex-direction: column;

 flex-direction: column;

 margin: auto;

}

.hero-text {

 color: white;

 margin: auto;

}

@media screen and (max-width: 580px) {

 .hero-text p {

 white-space: pre-line;

 }

}

.kitty-hero__text-button, .mdl-button--fab.kitty-hero__text-

button {

 position: absolute;

 bottom: -28px;

 left: 50%;

 -webkit-transform: translateX(-50%);

 transform: translateX(-50%);

}

/* ABOUT KITTY INTRO + CARDS */

.intro-section,

.cards-section {

Chapter 5 Material Design lite explaineD

131

 max-width: 960px;

}

/* ABOUT KITTY INTRO */

.intro-section, .mdl-grid.intro-section {

 padding: 5em 2em 5em;

}

.about-kitty p {

 max-width: 640px;

 margin: auto;

}

.circle-container {

 width: 100%;

 min-height: 100px;

 padding: 2em 0;

 display: -webkit-box;

 display: -ms-flexbox;

 display: flex;

 -webkit-box-orient: vertical;

 -webkit-box-direction: normal;

 -ms-flex-direction: column;

 flex-direction: column;

 -webkit-box-align: end;

 -ms-flex-align: end;

 align-items: flex-end;

}

.circle-container .circle {

 height: 16px;

 width: 16px;

 background-color: #c51162;

Chapter 5 Material Design lite explaineD

132

 border-radius: 50%;

 margin: 0 3px 9px;

}

.topics-container {

 padding: 2em 0;

}

.topics-container .topic {

 font-size: 20px;

 margin: 0 2px 5px;

}

@media screen and (max-width: 480px) {

 .topics-container .topic {

 margin-bottom: 0.5em;

 }

}

.embedded-img {

 max-width: 150px;

 max-height: 150px;

 margin: 0.5em;

 border-radius: 50%;

}

In the custom style sheet, you are essentially defining the background

image, height, width, color, and flex characteristics for the hero section.

You thereon define the text for the content with the custom hero-text

class. You then define the maximum width of the intro-section followed

by assigning the margin and padding for the paragraphs as well as for the

element defined with the about-kitty class (which incidentally defines

the circles and their respective topics). Next, you define the styles for the

circle container and the subsequent circles. Moving forward, you define

Chapter 5 Material Design lite explaineD

133

the styles for the topic container and topics along with the media query.

Finally, you define the maximum width and height along with the border

radius for the embedded image.

Figure 5-10 shows the output of the code.

 Step 4: Inserting an Image with Content
Now you will develop both the About and Moments tabs, as shown in

Listing 5-9.

Listing 5-9. Code for About and Moments Tabs

<!-- Testimonial -->

 < div class="mdl-grid mdl-grid--no-spacing fullwidth-

panel">

 < div class="mdl-cell mdl-cell--12-col mdl-typography--

text-center quote-panel">

 <blockquote>

Figure 5-10. Output of the About section

Chapter 5 Material Design lite explaineD

134

 <p>

 Taking an image, freezing a moment, reveals how

rich reality truly is.

 </p>

 <footer>

 — <cite>Anonymous</cite>

 </footer>

 </blockquote>

 </div>

 <!-- /.mdl-cell -->

 </div>

 <!--/.mdl-grid -->

 </div>

 <!-- /.page-content -->

 </div>

 <!-- /.tab1 -->

In Listing 5-9, you code a <div> and assign the mdl-grid, mdl-grid-

-no-spacing, and fullwidth-panel classes. While the mdl-grid--no-

spacing class modifies the grid cells to have no margin between them, the

fullwidth-panel class creates a panel that has a size of the entire grid.

Within that <div>, you create another <div> and allocate a space of 12

columns using the mdl-cell--12-col class. You assign the typography

class to the content and center the text. You also use the quote-panel

styling for the content using the quote-panel class.

You then create a quote using the HTML <blockquote> tags.

Moving forward, you assign custom styles for the panel and insert a

background image in the custom CSS style sheet, i.e., style.css, as shown

in Listing 5-10.

Chapter 5 Material Design lite explaineD

135

Listing 5-10. Assigning Custom Styles

/* FULLWIDTH BACKGROUND SECTION */

.fullwidth-panel {

 color: white;

 background-color: rgba(156, 39, 176, 0.6);

}

.fullwidth-panel p {

 max-width: 640px;

 margin: auto;

}

.quote-panel {

 background-image: -webkit-linear-gradient(rgba(63, 81, 181,

0.5), rgba(63, 81, 181, 0.5)), url('https://udemy-images.

udemy.com/course/750x422/394968_538b_7.jpg');

 background-image: linear-gradient(rgba(63, 81, 181, 0.5),

rgba(63, 81, 181, 0.5)), url('https://udemy-images.udemy.com/

course/750x422/394968_538b_7.jpg');

 background-position: center 5%;

 background-repeat: no-repeat;

 background-size: cover;

 padding: 4em 2em 2em;

 display: -webkit-box;

 display: -ms-flexbox;

 display: flex;

 -ms-flex-line-pack: start;

 align-content: flex-start;

}

@media screen and (min-width: 800px) {

 .quote-panel {

 background-position: center 0;

Chapter 5 Material Design lite explaineD

136

 padding: 6em 2em;

 }

}

@media screen and (min-width: 1200px) {

 .quote-panel {

 background-position: center 8%;

 padding: 10em 2em 8em;

 }

}

In Listing 5-10, you assign the white color and define the background

color to the section containing the fullwidth-panel class. You also define the

maximum width and set an auto margin to it. Then, for the section pertaining

to the quote-panel class, you insert a background image and define its

position and size along with the padding. Using media queries, you assign the

background position and padding for both the 800px and 1200px screen sizes.

Figure 5-11 shows the output of the code.

 Step 5: Developing the Content for the Moments
Tab
Next, you will create the content for the second fixed tab, called Moments,

which is next to the About fixed tab, as shown in Listing 5-11.

Figure 5-11. Image with text

Chapter 5 Material Design lite explaineD

137

Listing 5-11. Code for Second Set of Fixed Tabs

<div class="mdl-layout__tab-panel" id="fixed-tab-2">

 <div class="page-content">

 <!-- Your content goes here -->

 <!-- CARDS -->

 <div class="mdl-grid cards-section">

 < div class="mdl-cell mdl-cell--6-col mdl-cell--12-

col- tablet mdl-card mdl-shadow--2dp home-bringing-

card">

 <div class="mdl-card__title">

 < h2 class="mdl-card__title-text">Roses

everywhere</h2>

 </div>

 <div class="mdl-card__supporting-text">

 Roses everywhere in flower market

 </div>

 </div>

 <!-- /.mdl-card -->

 < div class="mdl-cell mdl-cell--4-col mdl-cell--4-col-

tablet mdl-cell--4-col-phone mdl-card mdl-shadow--

2dp play- card">

 <div class="mdl-card__title">

 <h2 class="mdl-card__title-text">Random flower</h2>

 </div>

 <div class="mdl-card__supporting-text">

 Random flower

 </div>

 </div>

 < div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-

tablet mdl-cell--4-col-phone mdl-card mdl-shadow--

2dp litter- card">

Chapter 5 Material Design lite explaineD

138

 <div class="mdl-card__title">

 <h2 class="mdl-card__title-text">Lilac</h2>

 </div>

 <div class="mdl-card__supporting-text">

 Lilacs are a beloved, fragrant shrub that produce

clusters of light-purple flowers.

 </div>

 </div>

 <!--/.mdl-card -->

 < div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-

tablet mdl-cell--4-col-phone mdl-card mdl-shadow--

2dp diet- card">

 <div class="mdl-card__title">

 < h2 class="mdl-card__title-text">Beautiful sunset

at aguada beach</h2>

 </div>

 <div class="mdl-card__supporting-text">

 Beautiful sunset at aguada beach in Goa

 </div>

 </div>

 <!--/.mdl-card -->

 <!--/.mdl-card -->

 </div>

 <!--/.mdl-grid -->

 </div>

 <!-- /.page-content -->

 </div>

In Listing 5-11, you define the content for the second fixed tab, called

Moments.

Chapter 5 Material Design lite explaineD

139

Initially, you code a <div> and assign the grid class to it. You then jot

down the code for four cards. For the first card, you use the mdl-card class

and assign the space of 6 columns for the desktop and 12 columns for the

tablet size using the mdl-cell, mdl-cell--6-col, and mdl-cell--12-col-

tablet classes. Then, you define a shadow for aesthetics using the mdl-

shadow--2dp class.

Next, you code a <div> and assign a title for the card using the mdl-

card__title class. Thereon, you define the title text using the mdl- card__

title- text class. Next, you assign the supporting content to the title using

the mdl-card__supporting-text class.

Similarly, you create three more cards using different names for the

content.

After you create the cards, you define custom styles in the custom

style.css sheet, as shown in Listing 5-12.

Listing 5-12. Defining Custom Styles in the Custom style.css Sheet

/* CARDS SECTION */

.cards-section {

 padding: 5em 0;

}

.mdl-card__title {

 min-height: 300px;

}

.mdl-card__title > .mdl-card__title-text {

 color: white;

}

Chapter 5 Material Design lite explaineD

140

.home-bringing-card .mdl-card__title {

 background: -webkit-linear-gradient(rgba(0, 0, 0, 0.1), rgba

(0, 0, 0, 0.8)), url('https://drscdn.500px.org/photo/210599845/

q%3D80_h%3D300/v2?webp=true&sig=94f8683780d7d009224f477342bf4c34

740920b5b75576cb8793ff52e7229b1a') center / cover;

 background: linear-gradient(rgba(0, 0, 0, 0.1), rgba(0, 0,

0, 0.8)), url('https://drscdn.500px.org/photo/210599845/

q%3D80_h%3D300/v2?webp=true&sig=94f8683780d7d009224f477342bf4

c34740920b5b75576cb8793ff52e7229b1a') center / cover;

}

.play-card .mdl-card__title {

 background: url('https://drscdn.500px.org/photo/225478901/

q%3D80_h%3D450/v2?webp=true&sig=ddd21866e9502c5f56aef387adf4c

c0553513de4582ed30a5bc57ba817f43b06') center / cover;

}

.image-card {

 background: url('https://s3-us-west-2.amazonaws.com/s.cdpn.

io/234228/image-card.jpg') center / cover;

}

.image-card > .mdl-card__actions {

 height: 52px;

 padding: 16px;

 background: rgba(0, 0, 0, 0.6);

}

.image-card__title {

 color: #fff;

 font-size: 14px;

 font-weight: 500;

}

Chapter 5 Material Design lite explaineD

141

.litter-card .mdl-card__title {

 background: -webkit-linear-gradient(rgba(0, 0, 0, 0.1),

rgba(0, 0, 0, 0.8)), url('https://drscdn.500px.org/

photo/187345183/q%3D80_h%3D450/v2?webp=true&sig=883a5a5734775

d4b4084bd4f5fe7cd7ac9728bf0b6fc5d4ee91a522444023e6e') center

/ cover;

 background: linear-gradient(rgba(0, 0, 0, 0.1), rgba(0, 0,

0, 0.8)), url('https://drscdn.500px.org/photo/187345183/

q%3D80_h%3D450/v2?webp=true&sig=883a5a5734775d4b4084bd4f5fe7c

d7ac9728bf0b6fc5d4ee91a522444023e6e') center / cover;

}

.diet-card .mdl-card__title {

 background: -webkit-linear-gradient(rgba(0, 0, 0, 0.1), rgba(0,

0, 0, 0.8)), url('https://drscdn.500px.org/photo/109883725/

q%3D80_h%3D450/v2?webp=true&sig=29611a8077b1b73ce190f28e138ed714

7973317e15ba8c9ed418a4f797683df8') center / cover;

 background: linear-gradient(rgba(0, 0, 0, 0.1), rgba(0, 0,

0, 0.8)), url('https://drscdn.500px.org/photo/109883725/

q%3D80_h%3D450/v2?webp=true&sig=29611a8077b1b73ce190f28e138ed

7147973317e15ba8c9ed418a4f797683df8') center / cover;

}

.card-small {

 min-height: auto;

}

.card-small > .mdl-card__title {

 color: rgba(0, 0, 0, 0.87);

 height: auto;

 min-height: auto;

}

Chapter 5 Material Design lite explaineD

142

.card-small .mdl-card__title-text {

 font-size: 16px;

}

.card-small .mdl-card__title-text:before {

 content: "";

 display: inline-block;

 margin-right: 0.5em;

 width: 18px;

 height: 18px;

 background-color: #c51162;

 border-radius: 50%;

}

In Listing 5-12, you assign the padding for the section containing the

cards-section class. You then define the minimum height and the white

color for the card title section. Thereon, you define the custom styles and

insert a background image for each of the four cards.

Moving on, you define the minimum height of the card for smaller

screens in addition to defining the color, height, and minimum height for

the smaller screen-sized cards and the section containing the card title.

You also define the font size, margins, height, background color, and

border radius for the styling of the cards on smaller screens, as well as the

title text.

Figure 5-12 shows the output of the code.

Chapter 5 Material Design lite explaineD

143

 Step 6: Designing the Footer Section
Finally, you will design a form and the footer section, as shown in Listing 5-13.

Listing 5-13. Form and the Footer Section

<!-- Contact -->

 <div class="mdl-grid mdl-grid--no-spacing">

 <!--/.contact-intro -->

 < div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-

tablet mdl-cell--4-col-phone contact-panel form-panel

mdl- color--brown-50">

Figure 5-12. Moments tab content

Chapter 5 Material Design lite explaineD

144

 <form action="#">

 < div class="mdl-textfield mdl-js-textfield mdl-

textfield--floating-label">

 < input class="mdl-textfield__input" type="text"

id="name">

 < label class="mdl-textfield__label" for="name">Your

name</label>

 </div>

 < div class="mdl-textfield mdl-js-textfield mdl-

textfield--floating-label">

 < input class="mdl-textfield__input" type="email"

id="email">

 < label class="mdl-textfield__label" for="email">

Your email</label>

 </div>

 <div class="button-container clearfix">

 < button class="mdl-button mdl-js-button mdl-button-

-raised mdl-js-ripple-effect mdl-button--accent

subscribe- button">

 Join my fans

 </button>

 </div>

 <!--/.button-container -->

 </form>

 </div>

 <!--/.contact-panel -->

 < div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-

tablet mdl-cell--4-col-phone contact-panel address-panel

mdl- typography--text-center mdl-color--brown-100">

Chapter 5 Material Design lite explaineD

145

 < p class="mdl-typography--title-color-contrast mdl-

typography--text-nowrap mdl-typography--font-thin">

 < i class="material-icons">email</i> info@amp.com

 </p>

 < p class="mdl-typography--title-color-contrast mdl-

typography--text-nowrap mdl-typography--font-thin">

 < a class="mdl-button mdl-js-button mdl-button--raised

mdl-js-ripple-effect" href="twitter.com">twitter

 < a class="mdl-button mdl-js-button mdl-button--

raised mdl-js-ripple-effect" href="plus.google.

com">Google+

 < a class="mdl-button mdl-js-button mdl-button--raised

mdl-js-ripple-effect" href="facebook.com">Facebook

 </p>

 </div>

 <!-- /.contact-panel -->

 </div>

 <!-- /.mdl-grid -->

 <!-- FOOTER -->

 <footer class="mdl-mini-footer mdl-color--brown-200">

 <div class="mdl-mini-footer__left-section">

 <ul class="mdl-mini-footer__link-list">

 Help

 Privacy & Terms

 </div>

 <!-- /.mdl-mini-footer__left-section -->

 </footer>

Chapter 5 Material Design lite explaineD

146

In Listing 5-13, you code a <div> and assign the grid class along with

the no spacing class. You then define the space occupied by the grid

columns on a tablet, phone, and desktop screen sizes. You assign custom

classes to it so that you can use custom styles in the style.css sheet.

You also assign the brown shade to this section using the mdl-color--

brown-50 class.

Moving forward, you define the form within the <form> tags. Inside

the <form> tags, you create a <div> and assign mdl-textfield, mdl-js-

textfield, and mdl-textfield--floating-label to design the text

fields and use the MDL behavior for those fields. You create the Name

and Email fields by adding the mdl-textfield__input to the input tag

and mdl- textfield__label to the <label> tags apart from defining the

type of the text fields.

You then create a button. First, you create a container for the button

by using the button-container class. Then, you define another <div>

element within that <div> and assign the mdl-button, mdl-js-button,

mdl-button—raised, mdl-js-ripple-effect, and mdl-button—accent

classes. This creates the button, assigns the mdl behavior, and creates the

required effects and color to the button.

Then, you create a form. Once you are done with the form, you create

the contact panel section to the right side of the form. You define another

<div> and assign the column space for the cells depending on the screen

size. You then define the typography, color contrast, and font using the

mdl-typography--title-color-contrast, mdl-typography--text-

nowrap, and mdl-typography--font-thin classes. Thereon, you define

the e-mail icon using the material-icons class to the enclosed <i> tags.

Then, you create another paragraph tags and create three anchor tags and

define the button classes for the Twitter, Google+, and Facebook buttons

using the mdl-button, mdl-js-button, mdl-button—raised, and mdl-js-

ripple-effect classes.

Chapter 5 Material Design lite explaineD

147

Finally, you define the footer by using the <footer> tags to which you

assign the mdl-mini-footer and mdl-color--brown-200 classes for the

footer type due to which it will inherit the footer type and brown color.

Within this section, you define the position of the footer using the mdl-

mini- footer__left-section, which will align it to the left. You then define

the link list using the and tags.

Moving on, you define the custom styles for the preceding code, as

shown in Listing 5-14.

Listing 5-14. Custom Styles for Listing 5-13

.contact-intro {

 color: rgba(255, 255, 255, 0.87);

}

.contact-panel {

 padding: 6em 4em;

 display: -webkit-box;

 display: -ms-flexbox;

 display: flex;

 -webkit-box-orient: vertical;

 -webkit-box-direction: normal;

 -ms-flex-direction: column;

 flex-direction: column;

 margin: auto;

}

.mdl-textfield {

 display: block;

 width: 100%;

 padding: 20px 0;

}

Chapter 5 Material Design lite explaineD

148

@media screen and (min-width: 800px) {

 .subscribe-button {

 float: right;

 }

}

.address-panel {

 background-color: #dbdef1;

 color: rgba(255, 255, 255, 0.87);

}

.address-panel .material-icons {

 position: relative;

 top: 0.2em;

 display: inline-block;

 height: 30px;

 width: 30px;

 line-height: 30px;

 background-color: #ff4081;

 padding: 0.5em;

 border-radius: 50%;

}

.mdl-mini-footer,

.mdl-mini-footer .mdl-logo,

.mdl-mini-footer--link-list a,

.mdl-mini-footer__link-list a {

 color: rgba(0, 0, 0, 0.54);

}

ul {

 list-style-type: none;

}

Chapter 5 Material Design lite explaineD

149

/* UTILITIES */

.clearfix:after {

 content: "";

 display: table;

 clear: both;

}

.float-right {

 float: right;

}

.float-left {

 float: left;

}

In Listing 5-14, you define the color for the contact and assign the

padding and display properties for the contact-panel section. You

also define the display type, width, and padding for the text fields in

the form. You shift the submit button of the form to the right of the

form section. For the same button, you use the clearfix and float

properties to automatically clear the child elements without using any

additional markup. You move on to define the background color of the

panel along with the panel color. You also define the position, height,

inline block display, padding, and border radius for the material icons.

You set the color to the logo and link list of the footer. You remove

the listing bullets from the list using the list-style-type: none;

property.

Figure 5-13 shows how the final page will look.

Chapter 5 Material Design lite explaineD

150

Figure 5-13. Complete web page with the footer section

Chapter 5 Material Design lite explaineD

151

 Summary
In this chapter, you learned about the subtle nuances of the intuitive MDL

framework. It is a lightweight framework and can help you design an

interactive web site with ease. It is quite resourceful and is a vital cog in

the wheel for small projects compared to heavyweight frameworks because

it helps you build remarkable, immersive web pages. In the next chapter,

you will look at the last light framework/utility covered in this book,

called Susy.

Chapter 5 Material Design lite explaineD

153© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_6

CHAPTER 6

Susy Explained
So far, you have seen quite a few frameworks that can be used to make

interactive web sites. We, as web designers, know that a grid layout is

essential to position the elements effectively. Most frameworks, including

the ones covered in this book, have a concept of a grid system.

Even though with Flex Grid and the CSS Grid module radically

changing the dynamics of grid layouts, creating a layout can be quite a

juggling act. Enter Susy- a lightweight utility for creating fast, responsive,

and customizable grids that also helps keep the content and styling

separate.

With Sass gaining ground in the world of web design, we have decided

to give you an overview of this Sass-based framework that is used solely for

building awesome grid layouts.

To understand Susy, you need to have at least a basic knowledge of

Sass, but it’s quite easy to learn Susy once you are through with that. The

benefit of Susy (or any Sass-inspired framework) is that you can choose

only the attributes you need, eliminating the need to include other

properties.

154

It abstracts away the time-consuming nature of building complex grid

layouts and allows you to focus on more important things in your core web

design projects. It also allows you to fine-tune your grid layouts quickly

instead of spending a lot of time on coding grids.

You will now learn how to create a 4×3 grid layout using Susy.

 Creating a 4×3 Responsive Grid Layout
There are many ways to install Susy, but for this example, we will be using

Node Package Manager (NPM) and a task runner called Grunt to get

going.

We will walk you through each phase in this example. Follow these

steps:

 1. Create a project directory.

 2. Execute the npm init command inside the created

directory. This initializes a node project inside

the directory and creates the necessary files and

directories for executing the project. Refer to

Figure 6-1.

Chapter 6 SuSy explained

155

Figure 6-1. Creating a project using npm init

Chapter 6 SuSy explained

156

 3. Install Susy through NPM using the following

command:

npm install susy

However, if you are using a Linux or a Mac, you

need to use sudo to perform the installation. Since

in this example we are using a Mac, we will use the

following command:

sudo npm install susy

Figure 6-2 shows the terminal where we have entered this command.

Figure 6-2. Installation of Susy

 4. You will install a task runner (a build automation

utility) called Grunt. Grunt is quite useful when

you need to perform repetitive tasks such as

minification, compilation, unit testing, and linting,

to name a few. It simplifies the tasks to a great extent

and is quite a nice toolkit in your arsenal for real-

time web design projects.

For the steps to install Grunt, refer to the following

web site: https://gruntjs.com/installing-grunt.

npm install –save-dev grunt

Chapter 6 SuSy explained

https://gruntjs.com/installing-grunt

157

 5. Install the Sass plug-in for Grunt. This can be done

with the following command:

npm install grunt-contrib-sass --save-dev

However, if you are using a Mac or Linux-based

system, you need to add sudo before the preceding

command, as shown in Figure 6-3.

Figure 6-3. Installation of Sass plug-in for Grunt

 6. Create Gruntfile.js in the root directory of the

project. This file needs to contain all the Grunt task

runner information, as shown in Listing 6-1.

Listing 6-1. Configuration for Grunt Task Runner

module.exports = function(grunt) {

 // Project configuration.

 grunt.initConfig({

 sass: {

 dist: {

 options: {

 style: 'expanded',

 require: 'susy'

 },

 files: {

 'css/style.css': 'scss/style.scss'

 }

Chapter 6 SuSy explained

158

 }

 }

 });

 // Load the plugin that provides the "sass" task.

 grunt.loadNpmTasks('grunt-contrib-sass');

 // Default task(s).

 grunt.registerTask('default', ['sass']);

};

Figure 6-4 shows the configuration in a text editor.

Figure 6-4. Configuration for the Grunt Task Runner

The grunt.initConfig section contains the Grunt

configuration necessary for the project. Next, you

load the Sass plug-in for Grunt needed for the

project from https://github.com/gruntjs/grunt-

contrib- sass.

Chapter 6 SuSy explained

https://github.com/gruntjs/grunt-contrib-sass
https://github.com/gruntjs/grunt-contrib-sass

159

You can follow the installation procedures for

installing the Sass plug-in at the previously

mentioned web site. After loading the plug-ins, you

can define tasks that need to be automated. Refer to

the same web site to see the detailed procedure.

 7. Create your Sass file in the sass directory. For

this project, you will create a 4×3 grid layout used

typically for displaying a photo gallery. Listing 6-2

shows the HTML code for the grid.

Listing 6-2. Creating a 4×3 Grid

<!DOCTYPE html>

<html>

<head>

 <title>Susy example</title>

 <meta name="viewport" content="width=device-width, initial-

scale=1">

 <link rel="stylesheet" type="text/css" href="css/style.css">

</head>

<body>

<div class="container clearfix">

 <section>

 <ul class="blocks">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

Chapter 6 SuSy explained

160

 <li class="block__item">

 <li class="block__item">

 <li class="block__item">

 </section>

</div>

</body>

</html>

As you can see, we have created a list of 12 blocks

and defined the style sheet for the code.

 8. Define the Sass code in the file style.scss in the scss

folder. The code for this file is shown in Listing 6-3.

You begin by importing Susy into your Sass file

by using the @import component of Sass. This is

followed by defining the Susy configuration, which

is specified in susy(). This configuration will

contain values for a number of columns, gutters,

maximum widths of the container, and so on.

You then define colors and breakpoints for media

queries using Sass variables. Moving forward, you

define styles for the classes container and block_item.

You use the mixins container(), gutter(), and

gallery() that are available in the Susy framework.

The container() mixin sets the container position

to center along with the maximum width specified

within the configuration. Similarly, gutter() sets

the gutter space.

The gallery() mixin is used to create the desired

block layout. This mixin accepts the desired number

of columns as a parameter.

Chapter 6 SuSy explained

161

Listing 6-3. Defining the Styles

@import "susy";

$susy: (

 columns: 12,

 gutters: 1/4,

 container: 71.25rem,

 global-box-sizing: border-box,

);

// Colours

$color-primary: #38a1d6;

$color-secondary: #16f4d0;

$color-tertiary: #fcee21;

$color-grey: #a1acb5;

$color-grey-light: #dce8ef;

$color-grey-dark: #333;

// Breakpoints

$mobile-landscape: 30rem; // 480px

$tablet: 40rem; // 640px

$tablet-wide: 48rem; // 768px

$desktop: 64rem; // 1024px

$widescreen: 71.25rem; // 1140px

* {

 box-sizing: border-box;

}

%clearfix {

 &:after {

 content: "";

Chapter 6 SuSy explained

162

 display: table;

 clear: both;

 }

}

body {

 padding: 0 .625rem;

}

.container {

 @include container();

}

section {

 @extend %clearfix;

 margin-bottom: gutter();

}

.block {

 margin: 0;

 @extend %clearfix;

}

.block__item {

 background-color: $color-tertiary;

 height: 8rem;

 margin-bottom: gutter();

 list-style: none;

 &:nth-last-child(-n+2) {

 margin-bottom: 0;

 }

 @media (min-width: $tablet) {

 @include gallery(4);

Chapter 6 SuSy explained

163

 &:nth-last-child(-n+3) {

 margin-bottom: 0;

 }

 }

 @media (min-width: $desktop) {

 @include gallery(3);

 &:nth-last-child(-n+4) {

 margin-bottom: 0;

 }

 }

}

 9. Run the Grunt file from the terminal in the root

directory using the following command:

Grunt

 10. The style.scss file compiles to style.css. Now

when you click the HMTL file, you will see the

output shown in Figure 6-5.

Figure 6-5. Output of 4×3 grid

Chapter 6 SuSy explained

164

If you resize the browser, then you will see that the grid behaves in a

responsive way as defined in the code.

Also, if you check the style.css file created by compiling the style.

scss Sass file, you can see the code shown in Listing 6-4.

Listing 6-4. Style.css

* {

 box-sizing: border-box;

}

section:after, .block:after {

 content: "";

 display: table;

 clear: both;

}

body {

 padding: 0 .625rem;

}

.container {

 max-width: 71.25rem;

 margin-left: auto;

 margin-right: auto;

}

.container:after {

 content: " ";

 display: block;

 clear: both;

}

section {

 margin-bottom: 1.6949152542%;

}

Chapter 6 SuSy explained

165

.block {

 margin: 0;

}

.block__item {

 background-color: #fcee21;

 height: 8rem;

 margin-bottom: 1.6949152542%;

 list-style: none;

}

.block__item:nth-last-child(-n+2) {

 margin-bottom: 0;

}

@media (min-width: 40rem) {

 .block__item {

 width: 32.2033898305%;

 float: left;

 }

 .block__item:nth-child(3n + 1) {

 margin-left: 0;

 margin-right: -100%;

 clear: both;

 margin-left: 0;

 }

 .block__item:nth-child(3n + 2) {

 margin-left: 33.8983050847%;

 margin-right: -100%;

 clear: none;

 }

 .block__item:nth-child(3n + 3) {

 margin-left: 67.7966101695%;

 margin-right: -100%;

Chapter 6 SuSy explained

166

 clear: none;

 }

 .block__item:nth-last-child(-n+3) {

 margin-bottom: 0;

 }

}

@media (min-width: 64rem) {

 .block__item {

 width: 23.7288135593%;

 float: left;

 }

 .block__item:nth-child(4n + 1) {

 margin-left: 0;

 margin-right: -100%;

 clear: both;

 margin-left: 0;

 }

 .block__item:nth-child(4n + 2) {

 margin-left: 25.4237288136%;

 margin-right: -100%;

 clear: none;

 }

 .block__item:nth-child(4n + 3) {

 margin-left: 50.8474576271%;

 margin-right: -100%;

 clear: none;

 }

 .block__item:nth-child(4n + 4) {

 margin-left: 76.2711864407%;

 margin-right: -100%;

 clear: none;

Chapter 6 SuSy explained

167

 }

 .block__item:nth-last-child(-n+4) {

 margin-bottom: 0;

 }

}

/*# sourceMappingURL=style.css.map */

This is how the mixins and variables created in Sass were compiled to

CSS code, helping you keep the content and styling separate.

 Summary
In this chapter, you got an overview of Susy. With Susy, you can develop

interactive and advanced grid layouts for your web designing projects.

The learning curve of grids is steep, and the more you delve deep, you

will realize that there is much more to learn. In a way, more is less (pun

intended).

In this book we covered five frameworks that you can use instead of

Bootstrap, Foundation, and Materialize. We stressed how these lightweight

frameworks provide enough capability to design immersive web sites.

However, this book was just an introduction to these frameworks. You

are just on the shore of the island; the sea of knowledge is far beyond.

In addition to these frameworks, there are several other user interface

kits and web design toolkits that can make your web designing projects

a breeze. Ideally, this book has helped you gain insight into the inner

workings of these streamlined frameworks and whetted your appetite to go

for more.

Keep learning!

Chapter 6 SuSy explained

169© Aravind Shenoy and Anirudh Prabhu 2018
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3

Index

A, B
Bootstrap, 5–6

C, D, E
Content delivery network

(CDN), 43–44
CSS Flexible Box Layout

module, 46

F
FlexBox, 13
Flex Grid, 6
Foundation, 6
Frameworks

advantages, 4
back-end, 2
bootstrap, 5–6
components, 3
factors, 12–13
Foundation, 6
front-end, 2–3
grid system, 13–14
Materialize, 7
MDL, 8
milligram, 10–11

skeleton, 9
Susy, 11–12
types, 2
UIkit, 8

G
Google’s Material Design, 7
Grid system

concept, 13–14
Milligram, 46–48
Skeleton, 19–23

H, I, J, K, L
Hypertext Markup Language

(HTML), 3

M, N, O, P, Q
Mac App Store, 54
Masthead, 28
Material Design Lite (MDL), 8

About and Moments tabs
content, creating, 136–143
image, 133–136

About section, 126–133
footer section, 143–150

https://doi.org/10.1007/978-1-4842-3399-3

170

header and drawer, 122–125
installation, 108–109
layout components
<head> section, 121–122

fixed header, 109–114
grid, 118–120
scrollable tabs, 114–117

Materialize, 7
Milligram, 10–11

attributes, 44–46
grid system, 46–48
installation, 41–44
product page

banner area, 53–58, 60
content area, 60–62
defining header, 48–51
defining navigation, 51–53
footer creation, 65–67
pricing area, 63–64

Motion UI, 6

R
RemoteDesk, 25

S, T
Skeleton, 9

attributes, 24–25
grid system, 19–23
installation

content of, 16

CSS files, 16–17
download page, 16
example, 17–19
index.html file, 17

landing web page
<body> tags, 28–29
completing

sections, 32–36
content area, 25–27
footer creation, 38–39
freelance

portal, 29–31
RemoteDesk, 25
sign-up form, 37

Susy, 11–12
Grunt task

runner, 157–160
installation, 156–157
NPM, 154–155
styles, 161–167

U
UIkit, 8

accordions, 100–104
animations

adding, 89–94
reverse, 95
scrollspy, 96–100

cards
colors, 73–74
component, 71–73
hover effect, 75

Material Design Lite (MDL) (cont.)

Index

171

size modifiers, 75–76
width classes, 77–78

FlexBox, 82–83
flex items, 83–86
grids, 71, 86–88
icons, 104–105
installation, 69–71
width, 79–82

V
Virtual private network (VPN), 48

W, X, Y, Z
Windows PC, 54

Windows Phone Store, 54

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Choosing Lightweight Frameworks for Intuitive Web Design
	What Are Frameworks?
	Components of a CSS Framework
	Advantages of Using a CSS Framework
	Various Popular Frameworks
	Bootstrap
	Foundation
	Materialize
	Skeleton
	Milligram
	UIkit
	Material Design Lite
	Susy
	Choosing a Framework
	Concept of Grids
	Summary

	Chapter 2: Building a Landing Page with Skeleton
	Installing Skeleton
	Skeleton’s Grid System
	An Overview of Skeleton’s Attributes
	Building a Landing Web Page with Skeleton
	Step 1: Defining the Content Area
	Step 2: Completing the <body> Tag Content
	Step 3: Defining the Freelance Portal
	Step 4: Completing the Sections
	Step 5: Designing a Sign-up Form
	Step 6: Creating a Footer

	Summary

	Chapter 3: Building a Product Page with Milligram
	Installing Milligram
	Overview of the Milligram Framework
	Grid System in Milligram
	Building a Product Page with Milligram
	Step 1: Defining the Header
	Step 2: Defining the Navigation
	Step 3: Defining the Banner Area
	Step 4: Designing the Content Area
	Step 5: Creating the Pricing Area
	Step 6: Creating the Footer

	Summary

	Chapter 4: Introducing UIkit
	Installing UIkit
	Grids, Cards, Flex, and Width
	Animations
	Scrollspy with Animations
	Accordions
	Icons
	Summary

	Chapter 5: Material Design Lite Explained
	Installing MDL
	MDL Layout
	Building an Intuitive Web Page Using MDL
	Step 1: Creating the <head> Section
	Step 2: Creating a Fixed Header with a Drawer
	Step 3: Creating the About Section
	Step 4: Inserting an Image with Content
	Step 5: Developing the Content for the Moments Tab
	Step 6: Designing the Footer Section

	Summary

	Chapter 6: Susy Explained
	Creating a 4×3 Responsive Grid Layout
	Summary

	Index

