
Getting to
Know Vue.js

Learn to Build Single Page Applications
in Vue from Scratch
—
Brett Nelson

www.allitebooks.com

http://www.allitebooks.org

Getting to Know Vue.js
Learn to Build Single Page

Applications in Vue from Scratch

Brett Nelson

www.allitebooks.com

http://www.allitebooks.org

Getting to Know Vue.js

ISBN-13 (pbk): 978-1-4842-3780-9 ISBN-13 (electronic): 978-1-4842-3781-6
https://doi.org/10.1007/978-1-4842-3781-6

Library of Congress Control Number: 2018955705

Copyright © 2018 by Brett Nelson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jade Scard
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237809. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Brett Nelson
Eagan, Minnesota, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3781-6
http://www.allitebooks.org

For Danielle

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Why Vue.js? ... 1

The Value of Vue.js .. 1

Our First Vue.js Instance ... 2

Developer Tools ... 5

Browser Dev Tools ... 6

Browsersync .. 6

Summary... 8

Chapter 2: The Basics ... 9

Vue Options ... 9

El.. 9

Template .. 12

Render ... 15

Data ... 16

Methods ... 20

Computed Properties ... 22

Template Binding .. 22

Summary... 27

Chapter 3: Conditional Rendering ... 29

v-show .. 29

v-if v-else v-else-if .. 33

v-if ... 34

v-else ... 36

v-else-if ... 38

About the Author ... xi

About the Technical Reviewer ... xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Lists .. 42

Basics .. 42

Accessing Object Properties .. 47

Index and Parent Properties .. 48

Dealing with Change ... 50

Objects .. 53

Summary... 55

Chapter 4: Computer Properties and Watchers .. 57

Computed Properties .. 57

Watchers ... 62

New and Old Values ... 64

Deep .. 65

Immediate ... 66

Summary... 68

Chapter 5: Events ... 69

Listeners ... 69

Handlers .. 71

Methods ... 72

Inline Method ... 73

Modifiers ... 75

Using a Modifier .. 76

Chain Modifiers ... 80

Input .. 81

Summary... 84

Chapter 6: Bindings .. 85

Forms .. 85

v-model ... 85

Inputs ... 85

Textarea Elements ... 102

Table of ConTenTs

vii

Select .. 103

Multiple Selects ... 104

Modifiers ... 106

Styling ... 110

Inline Styles ... 111

Style Objects.. 112

Classes .. 116

Summary... 125

Chapter 7: State Management .. 127

Simple Data Objects .. 127

DIY Data Store ... 130

Vuex .. 132

Install ... 132

Options .. 134

Summary... 147

Chapter 8: Using Components .. 149

What Is a Component? .. 149

First Component .. 149

Using Data ... 151

Passing Data with Props ... 153

Events ... 158

Slots .. 162

Registration ... 163

Summary... 165

Chapter 9: Reusable Code ... 167

Mixins.. 167

Creating Mixins .. 167

Using Mixins .. 168

Using Multiple Mixins .. 169

Table of ConTenTs

viii

Custom Directives ... 171

Creating a Directive ... 171

Using the Directive .. 173

Passing a Value ... 174

Passing an Object as a Value ... 176

Using Modifiers.. 178

Render Function .. 180

Render versus Template .. 180

createElement ... 184

Summary... 191

Chapter 10: Custom Functionality .. 193

Plugins .. 193

Creating a Plugin ... 193

Using a Plugin .. 194

Using Options .. 195

Registering a Global Mixin with a Plugin ... 197

Registering Global Components with a Plugin .. 199

Filters .. 201

Creating and Using a Filter .. 202

Creating a Global Filter .. 203

Chaining Filters.. 204

Arguments ... 205

Summary... 207

Chapter 11: Tooling ... 209

Single File Components .. 209

SFC Structure .. 209

Syntax Highlighting ... 210

Command-Line Interface .. 212

Prerequisites ... 212

Installing Vue CLI ... 212

Table of ConTenTs

ix

Vue Create ... 214

Vue Serve .. 216

Project Structure ... 220

Vue Build ... 227

The CLI User Interface ... 229

Summary... 234

Chapter 12: Using Routers .. 235

DIY Router ... 235

Setting Up the DIY Router .. 235

Vue-Router .. 240

Setting Up Vue-Router ... 240

Passing Parameters... 246

Navigating from JavaScript ... 253

Redirects ... 254

Aliases ... 254

The Page.js Router .. 255

Summary... 259

 Index ... 261

Table of ConTenTs

xi

About the Author

Brett Nelson is a software developer who has been working

with Salesforce.com since early 2016. Brett is a consultant with

Just Some Apps, www.JustSomeApps.com. Prior to working in

the Salesforce-land, Brett spent four years working with the

.NET technology stack, focusing on web development with

MVC, Angular, TypeScript, and Aurelia.

Beyond the technology, Brett is passionate about

continuous improvement through learning, sharing with others,

and collaboration amongst the geek society.

You can read Brett’s ramblings at WIPDeveloper.com and

follow him on Twitter @BrettMN.

https://www.JustSomeApps.com

xiii

About the Technical Reviewer

Toby Jee is a software programmer currently located in Sydney, Australia. He loves

Linux and open source projects. He programs mainly in Java, JavaScript, TypeScript, and

Python. In his spare time, Toby enjoys walkabouts, reading, and playing guitar.

1
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_1

CHAPTER 1

Why Vue.js?
Getting started with a new JavaScript framework can be a difficult task to approach. To

help with this, we will take a look at the value that Vue.js brings to development and

create our first app with Vue.

 The Value of Vue.js
Getting started creating a Single Page Application (SPA) can be a difficult task. There are

a lot of choices that have to be made up front with most frameworks. Some frameworks

make those choices for you when you decide to go with them. Others require you to make

those choices. Either way, those choices probably need to be decided at the beginning of a

project, since changing them later in the development process will incur a greater cost.

It’s a lot to process and decide, all before you do any “real” work that can you can

show to your boss/client/stakeholder that they will perceive as valuable. What’s a

developer to do?

One option is to choose a preset way to build your SPA that someone else had some

luck with or go with what is recommended by the framework creators.

Another option to is to go with a framework that lets you start small and make

choices for your app as the need arises.

And you can do that with Vue.js.

Vue.js is called a progressive framework by its creators. This is because it allows you

to start building your app with minimal effort as the core Vue.js library focuses only on

the view layer. Over time as the requirements grow, you can adapt additional libraries for

functionality.

The idea of adding features to the app you are creating over time doesn’t limit the

use of more complex development tools. Need to add a router? No problem; use the

Vue-Router, a third-party option, or roll your own (see Chapter 11). Looking to manage

in memory state? You can use a Plain Old JavaScript Object, a store pattern, or the Vue.js

specific Vuex (see Chapter 6). By now you get the idea.

2

This all probably makes Vue.js sound complicated, but it’s not.

In fact, one of the reasons that developers often say they choose Vue.js is because

of how easy it is to get started12. With little overhead, a developer can get to work and

produce results without the added complexity of other popular frameworks. And this

ease of beginning doesn’t limit the complexity of the app you can build, as Vue.js can

scale in complexity with your project’s requirements.

 Our First Vue.js Instance
One of the best parts of using Vue.js is that it requires little overhead to get started. Add a

script tag referencing the Content Delivery Network (CDN) for the library to your page

and you are ready to get going!

Let’s take a quick look at what it requires to get started.

We will start with a pretty empty HTML file, shown in Listing 1-1.

Listing 1-1. Empty HTML File

<html lang="en">

<head>

<title>Getting to Know Vue.js</title>

</head>

<body>

</body>

</html>

To take this empty HTML file to a working Vue.js app, we need to add three things:

• An HTML element where we “mount” our app

• A <script> reference to Vue.js on the CDN

• A <script> element in which we create our app

1 State of Vue.js 2017 https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20
Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.
js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-
9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvR
NiBSo3ltGQ&_hsmi=57726309

2 Adding Vue.js to Your Technology Stack https://www.monterail.com/services/vuejs-development

Chapter 1 Why Vue.js?

https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://www.monterail.com/services/vuejs-development

3

We will start with a place to mount the app. We will use a <div> with an id of app.

For the second one, we will use the development version of Vue.js at https://cdn.

jsdelivr.net/npm/vue/dist/vue.js. The final one will be a JavaScript <script>

element that we will use for all our JavaScript to get started.

We could add the Vue.js <script> reference before the mounting point, but it would

block the rest of the page from loading, making it seem slower to the user. The <script>

element that will contain our app needs to be after the mounting point so that the DOM

is ready for the app to load.

All this adds up to the contents of the <body> element shown in Listing 1-2.

Listing 1-2. The Structure of Our HTML Page

<!-- Div to Mount App -->

<div id="app">

</div>

<!-- Reference to Vue.js library -->

<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

<!-- Script Element for our first App -->

<script>

</script>

I’ve included comments in Listing 1-2 so it’s easier to identify the items we are

talking about.

That’s all the setup we need before we create our first app. The next step is to add

some template syntax to our app’s <div> to bind some data to it. For this first app,

we will use what is commonly called mustache syntax. It consists of two curly braces

surrounding the property name we want to inject the data from, such as in

{{ propertyName }}. This will make our app’s <div> look like Listing 1-3.

Listing 1-3. The HTML Template for Our App

<!-- Div to Mount App -->

<div id="app">

 {{ propertyName }}

</div>

Chapter 1 Why Vue.js?

https://cdn.jsdelivr.net/npm/vue/dist/vue.js
https://cdn.jsdelivr.net/npm/vue/dist/vue.js

4

Now we just need to create the app.

In the empty <script> element we created, we are going to add a new instance of

Vue.js, called new Vue(). Calling new on Vue without passing in an options object will

not get us off to a good start. Therefore, we should at least tell it where to mount the app

and give it a little data.

To tell our instance of Vue.js where to mount the options object, we pass in a

property called el. The value for this will be the CSS selector. In our case, that is #app

since we gave our <div> an id of app.

Note If you want to know more about the el property of the Vue options, see
Chapter 2’s section on Vue options.

To give it some data, we will use the data property of the options object. The data

property will be an object that has a property of the same name as the property name

we used in our template binding. This means that our property name will be the very

original and thought-out propertyName. In this case, we will give it a string that we want

to show on the page.

Our <script> that we set aside for our app should now look like Listing 1-4.

Listing 1-4. Our First Vue App!

var app = new Vue({

 el: '#app',

 data: {

 propertyName: 'Hello from Getting to Know Vue.js!'

 }

});

Now when we look at our page in a web browser, we should see something like

Figure 1-1.

Chapter 1 Why Vue.js?

5

Congratulations, you made your first Vue.js app!

We’ll be taking a closer look at what we did and how to use it as the starting point

later on.

 Developer Tools
Before we get too far, I want to explain some tools that I mention later on.

Figure 1-1. Our first Vue.js app in action

Chapter 1 Why Vue.js?

6

 Browser Dev Tools
Throughout the course of this book, we will periodically be using tools built into the web

browsers, commonly referred to as dev tools. While they can give us insight into what is

going on with our JavaScript application, we can get greater insight by using the Vue-

DevTools.

The Vue-DevTools come in two flavors—browser extensions for Chrome and Firefox

and a standalone Electron app.

Links to the most up-to-date versions can be found at https://github.com/vuejs/

vue-devtools.

 Browsersync
In Figure 1-1, the address that the browser was viewing was http://localhost:3000/.

This means it was being served from a server at localhost port 3000. Since I didn’t

deploy the index.html to a remote server or build a custom app to view it, I was able

to use Browsersync for hosting the files locally. Unless otherwise noted, I will continue

to use Browsersync (https://www.browsersync.io/) for loading files during local

development.

To install Browsersync, Node.js and NPM are required. The good news is that

both are installed when you install Node.js. Node.js can be installed by following the

directions at https://nodejs.org/.

Once Node.js is installed, Browsersync can be installed for use anywhere on your

computer by typing the command in Listing 1-5 at the command prompt.

Listing 1-5. The Install Browsersync Command

npm install -g browser-sync

To use Browsersync after it is installed, navigate to the directory that you want to

serve files from in your command prompt and enter the command shown in Listing 1-6.

Listing 1-6. Starting Browsersync to Watch File Changes

browser-sync -w

Chapter 1 Why Vue.js?

https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://www.browsersync.io/
https://nodejs.org/

7

The browser-sync portion of the command starts Browsersync. The -w is a flag that

causes it to watch for file changes and reload the browser when a change is detected.

This means we have to press refresh just a little less frequently.

When you run browser-sync -w at the command prompt, it should look somewhat

like Figure 1-2.

During this process, Browsersync should open your default browser to the address it

shows for “local”. With Figure 1-2 that means Firefox opened to http://localhost:3002/

on my computer.

Figure 1-2. Using Browsersync on the command line

Chapter 1 Why Vue.js?

8

 Summary
In this chapter, we looked at the value that Vue.js brings to developing a Single Page

Application. We also built our first Vue app and looked at some tools that are useful

when working with Vue.

Chapter 1 Why Vue.js?

9
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_2

CHAPTER 2

The Basics
Before we can get too far into understanding Vue, we need to cover a few things. We start

off by learning what options we have when creating an instance of Vue. After we have an

understanding of what we can provide Vue to make it suit our needs, we look at how we

can start binding it to HTML, with a look at the templating syntax.

 Vue Options
Before we get too far, we should learn more about the options that are available when

creating a Vue instance. In Chapter 1, we created an instance by using the bare minimum

of options to get Vue to render the data and the el property on the page in order to

specify where the Vue instance should be and what data it would have access to.

Note Technically, we could create a Vue instance with just the el property, but it
couldn’t do much.

 El
The el property we talked about allows us to specify where our Vue instance will mount

on the page. The value you provide can be a string that is a CSS selector (such as #app),

as shown in Listing 2-1, or an HTMLElement, as shown in Listing 2-2.

Listing 2-1. Mounting Vue with a CSS Selector

var app = new Vue({

 el: '#app',

 data: {

10

 propertyName: 'Hello from Getting to Know Vue.js! This was mounted

by passing in an CSS Selector'

 }

});

Listing 2-2. Mounting Vue with an HTMLElement

var element = document.getElementById('app');

var app = new Vue({

 el: element,

 data: {

 propertyName: 'Hello from Getting to Know Vue.js! This was mounted

by passing in an HTMLElement'

 }

});

When Vue is mounted to the HTML element that is provided, it replaces it with the

Vue created DOM. The Vue DOM will contain the HTML that we provide as the template

or the contents produced from the render function we provide. More on the template

and render functions shortly.

If template and render are not provided, the HTML on the element that was

provided as the mounting point will be used as the template for Vue to render the

DOM. This is how we are able to inject our propertyName from the data into the HTML

that was rendered without a template. It’s not rendering the DOM created from our

HTML, it’s rendering the DOM created by Vue when it extracts the DOM we wrote and

uses that as the template.

This is how Listing 2-3 becomes Figure 2-1.

Listing 2-3. No Template Vue App

<!-- Div to Mount App -->

 <div id="app">

 {{ propertyName }}

 </div>

 <!-- Reference to Vue.js library -->

 <script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

ChapTer 2 The BasiCs

11

 <!-- Script Element for our App -->

 <script>

 var app = new Vue({

 el: '#app',

 data: {

 propertyName: 'Hello from Getting to Know Vue.js!'

 }

 });

 </script>

Figure 2-1. Vue app rendered without a template

ChapTer 2 The BasiCs

12

 Template
All this talk about Vue using a template means we should probably cover how to pass a

template in as part of the options object. When you’re creating a new Vue instance, one

of the options you can provide as a property is template.

The template string is used by Vue to generate the DOM it will be placing in the web

page in place of the element that was selected with the el option. It must have one root

element. This will replace anything that is inside the element that the instance of Vue

gets mounted to.

In Listing 2-4, the text inside <div id="app"> will be replaced with the contents of

our template and the data it uses. This results in Figure 2-2.

Listing 2-4. Vue App with a Template

<!-- Div to Mount App -->

 <div id="app">

 This will be replaced!

 </div>

 <!-- Reference to Vue.js library -->

 <script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

 <!-- Script Element for our App -->

 <script>

 var app = new Vue({

 el: '#app',

 data: {

 propertyName: 'Hello from Getting to Know Vue.js! Using a

template!'

 },

 template: '<div>{{ propertyName }}</div>'

 });

 </script>

ChapTer 2 The BasiCs

13

It is also possible to use the template property to provide a CSS selector to target an

HTML element that has an ID. We do this by starting the template string with a hash tag

(#). This can be done with a <script> element if you give it a type of x-template and it

will not render on the page until Vue uses it as the template.

Note You could use the <template> element instead of the <script> element
to target a template by iD, but you should verify browser compatibility with your
target audience first.

Figure 2-2. Vue app rendered with a template

ChapTer 2 The BasiCs

14

One point to keep in mind is that the element you target to use as a template should

be placed before your app is declared. Listing 2-5 will render like Figure 2-3.

Listing 2-5. Vue App from a Template Using a querySelector

<!-- Script Element for our Template -->

<script id="myTemplate" type="x-template">

 <div>

 From Script Element Template: {{ propertyName }}

 </div>

</script>

<!-- Script Element for our App -->

<script>

 var app = new Vue({

 el: '#app',

 data: {

 propertyName: 'Hello from Getting to Know Vue.js! Using a

template!'

 },

 template: '#myTemplate'

 });

</script>

ChapTer 2 The BasiCs

15

 Render
Sometimes creating a component requires a more programmatic approach than

can be achieved with HTML or a string template. The render function is a way to

programmatically create templates in JavaScript. The render function takes priority over

templates and HTML templates.

Since this applies more to components and less to generic Vue understanding, the

render function is covered more in depth in Chapter 8, “Using Components”.

Figure 2-3. Vue app rendered with a template using querySelector

ChapTer 2 The BasiCs

16

 Data
We use the data property to tell our instance what shape our data will resemble. In

Listing 2-6, the data has one property named propertyName. If there is something we

want to be able to bind to in our Vue instance, we need to include it in the data before we

create our Vue instance.

Listing 2-6. Data Has One Property Named propertyName

data: {

 propertyName: 'Hello from Getting to Know Vue.js!'

 }

When a new instance of Vue is created, it adds all the properties of data to a reactive

system. The Vue reactive system monitors the properties of the data object for changes

and updates the view to “react” to those changes.

This means we cannot add new data to be monitored by Vue’s reactive system after

the application starts. If, at the time you create your Vue instance, you don’t know what

the values of your data properties will be, define them with the names and give them a

value of an empty string—", null, or undefined. Don’t use the empty object {}, as that

will render the stringified JSON of the empty object.

Say your HTML looked like Listing 2-7, with three data properties emptyObject,

emptyString and nullProperty, and with values of an empty object, empty string, and

null assigned accordingly in the app. In that case, the HTML would render like Figure 2-4.

Notice how the emptyObject has brackets.

Listing 2-7. HTML with emptyObject, emptyString, and nullProperty

<!-- Div to Mount App -->

<div id="app">

 <p>emptyObject: {{ emptyObject }}</p>

 <p>emptyString: {{ emptyString }}</p>

 <p>nullProperty: {{ nullProperty }}</p>

</div>

<!-- Reference to Vue.js library -->

<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

ChapTer 2 The BasiCs

17

<!-- Script Element for our App -->

<script>

 var app = new Vue({

 el: '#app',

 data: {

 emptyObject: {},

 emptyString: ",

 nullProperty: null

 }

 });

</script>

Figure 2-4. Rendering empty values

ChapTer 2 The BasiCs

18

Names of the properties of the data object must not start with $ or _. Any properties

that start with $ or _ will not be added to the reactive system, as they might cause

conflicts with Vue’s internal properties and methods. Since they won’t be added to the

reactive system, they also can’t be accessed in the template.

Using a value that begins with either $ or _ in the template will cause an error.

Listing 2-8 shows one property that starts with $ and one that starts with _. Trying to use

these values in the template causes a reference error at runtime (see Figure 2-5), since

Vue does not have references to these properties in the reactive system.

Listing 2-8. Trying to Use Data Properties That Start with $ or _

var app = new Vue({

 el: '#app',

 data: {

 propertyName: 'Hello from Getting to Know Vue.js!',

 _propertyName: 'This will not be added to the reactive system.',

 $propertyName: 'This will not be added to the reactive system.'

 },

 template: `<div>

 <div>{{ propertyName }}</div>

 <div>{{ _propertyName }}</div>

 <div>{{ $propertyName }}</div>

 </div>`

});

ChapTer 2 The BasiCs

19

If you do include a property that starts with a $ or _, you can access it on your

instance of Vue from the $data property.

When an instance of Vue is created, the data object originally included is added to

the instance as a property with the name $data. So, if you assign your Vue instance to a

variable called app, you can access the original data object at app.$data.propertyName.

You will also be able to access it in methods using the this context instead of through a

saved reference to the this.$data.propertyName instance.

Figure 2-5. Reference error, as Vue cannot find data properties that start with $ or _

ChapTer 2 The BasiCs

20

 Methods
As with all things JavaScript, you will eventually need to perform an action when the user

interacts with the app. And while it’s possible to do some rudimentary expressions in an

event binding, anything more complex than adding two small numbers should probably

be in JavaScript so that it’s easier to maintain and understand. We can do that with

methods.

Using methods, we can create custom code that will be bound to our instance of Vue.

We can then access these methods from a reference to our Vue instance. When creating

methods for our Vue instance, we need to avoid using the arrow function ()=>{}, as it

will prevent us from being able to access the proper context of this.

In Listing 2-9 we have one method called userClickedAButton. In theory, we will

add an event handler to a button to call this at some point. For more information about

events and binding, see Chapters 5 and 6.

Listing 2-9. Method Declaration Example

var app = new Vue({

 el: '#app',

 methods: {

 userClickedAButton: function () {

 // Do Something Cool and Meaningful here!!!

 console.log('Something Cool!');

 }

 }

});

With the method in Listing 2-9, you can bind to an action or event. With the method

in Listing 2-10, you can bind a method in the HTML template.

Listing 2-10. Binding a Method in the HTML

var app = new Vue({

 el: '#app',

 data: {

 text: 'Getting to Know Vue.js'

 },

 template: `<div>{{ capitalizeText() }}</div>`,

ChapTer 2 The BasiCs

21

 methods: {

 capitalizeText: function () {

 return this.text.toUpperCase();

 }

 }

});

Note To call a method from inside a method, we can use this to reference it,
similar to how we reference the data property of text in Listing 2-10.

Listing 2-10 lets you perform a text transformation and displays properly. Figure 2-6

shows the working results.

Figure 2-6. Binding HTML to a method

ChapTer 2 The BasiCs

22

Binding to a method isn’t the preferred way to perform transformations like these. If

you want to calculate a value to display the data you have access to in Vue, a computed

property is more appropriate.

 Computed Properties
Computed properties look very similar to methods, with one major difference—the

results are cached. The values are updated only when the values that the computed

property is based on change. In Listing 2-10, every time the page is rendered, the method

is called to get the value. The computed property in Listing 2-11 achieves the same

results as when we used a method, but it doesn’t calculate the string on every render.

Listing 2-11. Computed Property

var app = new Vue({

 el: '#app',

 data: {

 text: 'Getting to Know Vue.js'

 },

 template: `<div>{{ capitalizedText }}</div>`,

 computed: {

 capitalizedText: function () {

 return this.text.toUpperCase();

 }

 }

});

 Template Binding
The basic template syntax for Vue is pretty straightforward. We use mustache syntax

to bind a property inside of HTML. Mustache syntax is the use of two curly braces

surrounding your property, such as {{propertyName}}.

ChapTer 2 The BasiCs

23

In the binding, you can also execute a JavaScript expression. This means that you can

do some math, compare a property value, and display results based on the evaluation

with the ternary expression, do some math, compare the results, and display some text

depending on the results, or apply a method to the object you are binding. Listing 2-12

shows a few examples of adding numbers, performing comparisons, and displaying

results, then changing a string to uppercase. The results of this app can be seen in

Figure 2-7.

Listing 2-12. JavaScript Expressions in Bindings

var app = new Vue({

 el: '#app',

 data: {

 yes: 'Yes it is!',

 no: 'No it is not!',

 falseValue: false

 },

 template: `

 <div>

 <div>{{ 1 + 1 }}</div>

 <div>{{ falseValue === false ? yes : no }}</div>

 <div>{{ 1 == 2 ? yes : no }}</div>

 <div>{{ 1 + 1 + 1 > 2 ? yes : no }}</div>

 <div>{{ 'Getting to Know Vue.js'.toUpperCase() }}</div>

 </div>

 `

});

ChapTer 2 The BasiCs

24

The mustache syntax works great for binding properties that are meant to be text, but

it cannot be used to bind values to HTML element attributes. To bind to attributes, we

will learn about our first Vue directive: v-bind.

To use the v-bind directive, you prepend it to the element’s attribute that you want to

bind to a value. In the place of the text you would normally be assigning, you provide the

name of the property from your Vue instance.

In Listing 2-13, we use v-bind to assign a property to the name of the element. When

we inspect the resulting page in Figure 2-8, we can see the name in the HTML

Figure 2-7. JavaScript expressions results

ChapTer 2 The BasiCs

25

Listing 2-13. Dynamically Assigning a Name to a <div>

var app = new Vue({

 el: '#app',

 data: {

 myName: 'Cool Name'

 },

 template: `

 <div>

 <div v-bind:name="myName"></div>

 </div>

 `

});

Figure 2-8. Using v-bind to dynamically bind a value to the name of a <div>

ChapTer 2 The BasiCs

26

Another directive that we can use to bind data to the template is v-html. With

v-html, the contents of the element that it is applied are replaced with the assigned

value and are treated as HTML. This can be used when your requirements call for adding

HTML that comes from a source outside your Vue app.

Caution Only render hTML that you and your organization trust on your website.
Never render hTML that users provide. Using untrusted hTML can lead to cross-
site script vulnerabilities.

In Listing 2-14, we have a data property named someHTML that is a string of an <h1>

element, which contains styles for the color and background-color of the element.

Since we want this to render in our app, we bind it with the v-html directive so that it

is treated as HTML and not as a string. For comparison, we will also try binding our

someHTML with the mustache syntax, so we can see how that renders in Figure 2-9.

Listing 2-14. Binding Raw HTML to an Element

var app = new Vue({

 el: '#app',

 data: {

 someHTML: '<h1 style="color:#41b883; background- color:#35495e;">

Getting to Know Vue.js</h1>'

 },

 template: `

 <div>

 <div>{{ someHTML }}</div>

 <div v-html="someHTML"></div>

 </div>

 `

});

ChapTer 2 The BasiCs

27

As we can see, the braces-bound someHTML was treated as a string.

 Summary
In this chapter, we covered some aspects of the Vue instance, including how the reactive

data system works, what the template is, and how Vue finds where it will be mounted in

the web page. We also covered the template syntax that is used with Vue.

Figure 2-9. Binding raw HTML from a property to an element

ChapTer 2 The BasiCs

29
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_3

CHAPTER 3

Conditional Rendering
Sometimes your app will need to be able to determine whether or not to show something

depending on user interactions. For instance, if we are creating a form that asks if users

own a car and the user says no, there is no reason to show them the question that asks

what color the car is.

Vue provides two directives to conditionally show content: v-if and v-show.

• With v-show, we can hide and show content using the CSS display

property.

• With v-if, the content is removed from the DOM. It can be used with

the v-else and v-else-if directives.

From a performance perspective, v-show has a higher initial render cost since it

is rendered to the DOM even if the conditions to show it are false. v-if will not be

rendered if the value is false. v-show does have less of a render cost when the value

changes since it’s already in the DOM and the CSS display property is the only change.

On the other hand, v-if has to be added to the DOM when the condition to render it

changes from false to true.

When you are trying to decide on using v-if or v-show, consider your use case.

If the directive is going to change often, use v-show. If it is intended to change only

occasionally or never after the first render, it’s better to use v-if.

Now let’s see how they work.

 v-show
Using v-show is similar to using an HTML element attribute. The main difference is that

the value you assign is from your Vue instance or an expression that evaluates to true or

false. The expression can compare values from your Vue instance against values you set

in the assignment or to other values in your Vue instance.

30

When setting values for comparison, remember that the value you are assigning

to v-show or v-if are not strings; they will be evaluated as JavaScript. v-show="show"

is looking for the value of show in your Vue instance, not for the string "show". To use a

string value in the expression, use single quotes ('my String') around it.

Listing 3-1 shows a few different examples of using v-show that can be seen in

Figure 3-1:

 1. Using true values from our Vue instance without comparison to

show the content.

 2. Using false values from our Vue instance without comparison to

hide the content.

 3. Comparing the value from our Vue instance with a string to show

the content.

 4. Comparing the value from our Vue instance with a string to hide

the content.

 5. Comparing a value from our Vue instance with a second value

from our Vue instance to show the content.

 6. Comparing the results of a little math to show the content.

 7. Comparing the results of a little math to hide the content.

Listing 3-1. Using v-show to Show and Hide Elements Based on Expression

Evaluations

var app = new Vue({

 el: '#app',

 data: {

 yes: true,

 no: false,

 maybe: 0,

 show: 'yes',

 dontShow: 'no',

 yesWord: 'yes'

 },

Chapter 3 Conditional rendering

31

 template: `

 <div>

 <h1>

 1: Yes

 </h1>

 <h1>

 2: No

 </h1>

 <h1>

 3: Yes!

 </h1>

 <h1>

 4: No :(

 </h1>

 <h1>

 5: Yes!

 </h1>

 <h1>

 6: Yes!

 </h1>

 <h1>

 7: No :(

 </h1>

 </div>

 `

});

Chapter 3 Conditional rendering

32

With the way that v-show works, we can inspect the element and still see the content

with its CSS display property set to none, as shown in Figure 3-2.

Figure 3-1. Using v-show to show and hide elements based on expression
evaluations

Chapter 3 Conditional rendering

33

 v-if v-else v-else-if
The other way to selectively render content is with v-if. Using v-if can range from

the same use case as v-show, to the more complex with the use of v-else, to the most

complex with v-else-if.

Figure 3-2. Inspecting the hidden v-show element

Chapter 3 Conditional rendering

34

 v-if
Let’s look at using v-if and see how it renders to the DOM.

In Listing 3-2, we are going to show Yes after 1: if the value of yes is

true and not show No after 2: when the value of no is false. You can see

in Figure 3-3 how everything looks on the page when it’s all evaluated.

Listing 3-2. Using v-if to Conditionally Render Elements

var app = new Vue({

 el: '#app',

 data: {

 yes: true,

 no: false

 },

 template: `

 <div>

 <h1>

 1: Yes

 </h1>

 <h1>

 2: No

 </h1>

 </div>

 `

});

Chapter 3 Conditional rendering

35

Since the contents of v-if are added to the DOM only if it evaluates to true, any

false evaluations should not be visible in the inspector. Let’s inspect the element that

contains 2: and see if it is hiding a No (see Figure 3-4).

Figure 3-3. The results of using v-if to conditionally render elements

Chapter 3 Conditional rendering

36

As we can see, No is not there.

 v-else
Like all good if statements, v-if allows us to use an else, in this case v-else. With

v-else, we can provide an option to display when v-if evaluates to false. v-else must

follow a v-if or a v-else-if for it to work.

Figure 3-4. Inspecting the contents to see where the “hidden” element is shows no
content

Chapter 3 Conditional rendering

37

In Listing 3-3, we evaluate the value of no, which we set to false, and display

the contents of the v-else in a <h1>Show!</h1> header. You can see the results in

Figure 3-5. The inspected element shows that the <h1>Don't Show</h1> header is

not present.

Listing 3-3. Using v-else to Conditionally Render Elements When v-if Evaluates

to false

var app = new Vue({

 el: '#app',

 data: {

 no: false

 },

 template: `

 <div>

 <h1 v-if="no">Don't Show</h1>

 <h1 v-else>Show!</h1>

 </div>

 `

});

Chapter 3 Conditional rendering

38

 v-else-if
Sometimes you need to be able to selectively render one of many options. Perhaps in

your app, for example, users must pick an account type and you have three or more

account types. Or maybe you want to show results in a form based on a drop-down

selection and there are more than three options in the drop-down menu. For that, we

can use v-else-if. With v-else-if, we can chain if statements together, similar to

using if else statements in JavaScript.

Figure 3-5. Inspecting the use of v-else to conditionally render elements when v-if
evaluates to false

Chapter 3 Conditional rendering

39

In our example, we have two sets of v-if—v-else-if and v-else—to look at. The

first one shows the contents of the v-else-if element <h2>Else If</h2>. The second

shows the contents of the v-else element <h2>Else</h2>. See Listing 3-4. You can see

the results in Figure 3-6.

Listing 3-4. Using v-else-if

var app = new Vue({

 el: '#app',

 data: {

 yes: true,

 no: false

 },

 template: `

 <div>

 <div>

 <h1>Show v-else-if</h1>

 <h2 v-if="no">If</h2>

 <h2 v-else-if="yes">Else If</h2>

 <h2 v-else>Else</h2>

 </div>

 <div>

 <h1>Show v-else</h1>

 <h2 v-if="no">If</h2>

 <h2 v-else-if="no">Else If</h2>

 <h2 v-else>Else</h2>

 </div>

 </div>

 `

});

Chapter 3 Conditional rendering

40

With the v-if group of directives, it is possible to group elements together so that

you can show and hide them with one action instead of using v-if each time. To do this,

wrap the elements to be shown and hidden in a <template> element. The <template>

element will not be rendered if the v-if evaluates to true, but all the child elements will.

In Listing 3-5, we have two <template> elements—one to hide its contents and one

to show it. The results can be seen in Figure 3-7.

Listing 3-5. Grouping v-if Elements

var app = new Vue({

 el: '#app',

 data: {

 yes: true,

 no: false

Figure 3-6. Using v-else-if in action

Chapter 3 Conditional rendering

41

 },
 template: `
 <div>
 <template v-if="no">
 <h1>Don't show this</h1>
 <h2>It's a secret</h2>
 </template>
 <template v-if="yes">
 <h1>Show this</h1>
 <h2>We like to share</h2>
 </template>
 </div>
 `
});

Figure 3-7. Grouping v-if elements results

Chapter 3 Conditional rendering

42

 Lists
Often developers must deal with groups of the same item, usually to display them on

a web page. Although it can be fun to copy and paste the same snippet of code, Vue

provides a directive to handle displaying array items, called v-for.

Tip don’t actually copy and paste the same snippet of code; it’s not fun.

 Basics
With v-for, we can iterate (go over each item) through the items of an array and use

each object to display content. In its simplest form, v-for can be used to display each

item in an array. We can see how this is done in Listing 3-6.

Listing 3-6. Displaying Each Item in an Array with v-for

var app = new Vue({

 el: '#app',

 data: {

 items: ['first', 'two', '3']

 },

 template: `

 <li v-for="item in items">

 {{item}}

 `

});

Chapter 3 Conditional rendering

43

If you are familiar with the JavaScript for…in loop, this should look similar, as the

v-for directive follows a similar setup. The item is the object that is used for each

iteration and items is the collection that we are going through, or iterating through.

The element that v-for is placed on will be repeated for each item in the collection.

In Listing 3-6, we make a new and display the whole item. For this simple example,

this is fine since each item is a string. For more complicated items, we need to use dot

notation to display or use the properties of each item.

In case you are wondering, Listing 3-6 will display like Figure 3-8.

Figure 3-8. v-for displaying an array of strings

Chapter 3 Conditional rendering

44

As the objects in your collection get more complicated, it is recommended that

you use the :key attribute. The :key attribute is used by Vue to track the identity of the

elements that have been rendered and update the DOM correctly.

Listing 3-7 shows a collection of books and uses the ID of each book as the key.

Listing 3-7. Using the :key Attribute with v-for

var app = new Vue({

 el: '#app',

 data: {

 books: [

 {

 title: 'Entertaining Kids Book',

 price: 4.99,

 id: 0,

 genres: ['kids', 'fiction']

 },

 {

 title: 'Teen Drama',

 price: 5.99,

 id: 1,

 genres: ['teen', 'fiction']

 },

 {

 title: 'Boring Facts',

 price: 6.99,

 id: 2,

 genres: ['adult', 'non-fiction']

 },

 {

 title: 'Overly Complex Story',

 price: 7.99,

 id: 3,

 genres: ['adult', 'science fiction', 'fiction']

 },

Chapter 3 Conditional rendering

45

 {

 title: 'Facts for Teens',

 price: 3.99,

 id: 4,

 genres: ['teen', 'non-fiction']

 }

]

 },

 template: `

 <li v-for="book in books" :key="book.id">

 {{ book }}

 `

});

Since our template still binds the items directly, similar to Listing 3-6, we will see

the JSON object output for each item in the books array (see Figure 3-9). However, we

shouldn’t see any differences caused by the addition of the :key attribute.

Chapter 3 Conditional rendering

46

Caution it is possible to use v-for without using :key, but this should be
done only if you are not going to alter the array index. if you are not using :key,
you should avoid adding or removing items from the array except at the end or
when sorting the array. Vue may not track and update all child elements that are
repeated properly.

Figure 3-9. Using :key with v-for

Chapter 3 Conditional rendering

47

 Accessing Object Properties
Let’s clean up our display of books by rendering each value with some useful markup

rather than dumping our JSON into an .Listing 3-8 uses the same data that we

used in Listing 3-7, so I will only show the template since that is where we are making

changes.

Listing 3-8. Binding to Properties of an Item in v-for

template: `

 <li v-for="book in books" :key="book.id">

 <p>Id: {{ book.id }}<p>

 <p>Title: {{ book.title }}</p>

 <p>Genres:

{{genre}} </p>

`

Here you can see that we are using dot notation to access the properties of each

object. The more interesting part is that we also have a sub v-for for the genre of each

book.

Note Since genres is a simple object, i left off the :key attribute since we will
not be using it to track the state of sub-components.

Looking at the results in Figure 3-10 makes me think we could help our genres list a

little by adding some commas so it’s easier to tell the genres apart.

Chapter 3 Conditional rendering

48

 Index and Parent Properties
To conditionally render a comma after each genre, we will do a couple of things. We need

to get the index of the current item. Thankfully, Vue provides us with the option to add a

second parameter to v-for that gives us the index. To access this second parameter, we

use parentheses to wrap our object and the index. So, v-for="book in books" becomes

v-for="(book, index) in books" and we now know where we are in the array.

The other thing we need to know is the length of the array. We could count the

items (five in this case) and use v-if to render a comma as long as the index is less than

the length minus 1 (four in this case). This would work, but it’s a simple example and

sometimes (okay, most times) we will not know how long an array is going to be when

we are writing the code. It’s better to get the length of the array directly from the length

parameter.

Figure 3-10. Accessing object properties in v-for and using a v-for inside a v-for

Chapter 3 Conditional rendering

49

We can do this since we have access to all the properties of all the parent objects
of our current row. In this case, from the v-for of the genres, we can access the books.
genres array. Since we can access the array directly, we can use the length property of a
JavaScript array to get the length.

This might be easier to see than read about. Listing 3-9 shows our updated use of
v-for with the index property and the use of v-if to conditionally include a comma if

the index is less than the length of the genres array minus 1.

Listing 3-9. Using v-for Index and Accessing Parent Properties

 {{genre}}<span v-if="index < book.genres.length -1">,

You can see that this cleans up the listing of genres so it’s easier to read, as shown in

Figure 3-11.

Figure 3-11. Using index and parent properties in v-for

Chapter 3 Conditional rendering

50

 Dealing with Change
Vue wraps observers around the following array mutation methods:

push

pop

shift

unshift

splice

sort

reverse

This means that as long as you are changing your array through these methods, Vue

will be able to detect the changes. If you are using a method that does not mutate, or

change, the original array, Vue will not detect that. The methods that do not change the

original array are filter, concat, and slice. To get Vue to observe these changes to the

array, replace the original array with the results.

For example, if we had a method that filtered an array called teenFilter, we would

need it to reassign the results of the filter to the books array to see those changes in the

app. See Listing 3-10.

Listing 3-10. Replacing the Original Array with Results of the Array Method That

Returns a New Array

methods: {

 teenFilter: function() {

 this.books = this.books.filter(book => {

 return (

 book.genres.findIndex(genre => {

 return genre === 'teen';

 }) >= 0

);

 });

 }

},

Chapter 3 Conditional rendering

51

If you open the developer console in your web browser, you can call this method on your

Vue instance with app.teenFilter() to see the results. They are shown in Figure 3- 12.

When dealing with change and arrays, there are two cases that require special

attention.

Vue cannot detect when an item is replaced in an array using the index of the item,

and when the array is resized by assigning a new value to the length property. To get

around these limitations, you can replace items in an array using Vue.set, like in

Listing 3-11, or using the JavaScript splice method, like in Listing 3-12.

Figure 3-12. Filtered array displayed with v-for

Chapter 3 Conditional rendering

52

Listing 3-11. Using Vue.set to Replace an Item in an Array

set: function() {

 var indexToReplace = 0;

 var newBook = {

 title: 'Newer Entertaining Kids Book',

 price: 4.99,

 id: 0,

 genres: ['kids', 'fiction']

 };

 Vue.set(this.books, indexToReplace, newBook);

},

Listing 3-12. Using splice to Replace an Item in an Array

splice: function() {

 var indexToReplace = 0;

 var newBook = {

 title: 'New Entertaining Kids Book',

 price: 4.99,

 id: 0,

 genres: ['kids', 'fiction']

 };

 this.books.splice(indexToReplace, 1, newBook);

}

To resize an array, you can use the JavaScript splice method as well, as shown in

Listing 3-13.

Listing 3-13. Using splice to Resize an Array

resize: function() {

 // Vue can not detect

 this.books.length = 1;

 // Use splice to resize an array, Vue can detect

 this.books.splice(0);

},

Chapter 3 Conditional rendering

53

 Objects
It is also possible to use v-for to go through the properties of an object. Since JavaScript

engines behave differently, there is no guarantee about the order of the properties in

different browsers.

The main difference in using v-for with an object instead of an array is that, with

an object, when you use parentheses to access the value and the index, it accepts three

parameters: value, key, and index. The value and index represent the same things as

the array. The key represents the property name.

Listing 3-14 shows a single book object we will use to look at the properties. One

of the properties is a function. In Figure 3-13, you can see that the function will be

displayed in the HTML as it is written and not as the result of the method.

Listing 3-14. Using v-for with an Object

var app = new Vue({

 el: '#app',

 data: {

 book: {

 title: 'Overly Complex Story',

 price: 7.99,

 id: 3,

 genres: ['adult', 'science fiction', 'fiction'],

 action: function() {

 return 'I did an action';

 }

 }

 },

 template: `

 <li v-for="(prop, key, index) in book">

 {{index}}) {{key}}: {{prop}}

 `

});

Chapter 3 Conditional rendering

54

If we want to display the results of the action function, we have to check for the type

of each prop and invoke only the functions of our object. Listing 3-15 shows how we can

use v-if with typeof on a <p> to achieve this; Figure 3-14 shows how it looks.

Listing 3-15. Checking Property Type in a v-for Loop

<p v-if="typeof prop == 'function'">{{prop()}}</p>

Figure 3-13. Using v-for with an object

Chapter 3 Conditional rendering

55

We used v-if to invoke the function since v-show only hides the element with the

CSS display property. If we used v-show, each prop would be invoked like it was a

function and we would have a few unhandled errors.

 Summary
In this chapter, we covered conditional rendering and the differences between v-show

and v-if. We also covered rendering lists with the v-for directive and discussed how

v-for can be used with arrays and objects.

Figure 3-14. Calling a function of the object in v-for

Chapter 3 Conditional rendering

57
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_4

CHAPTER 4

Computer Properties
and Watchers
Using methods on your Vue instance to get formatted data is great, but it comes with the

heavy toll of running every time the view is updated or re-rendered. We can avoid paying

this performance toll by using computed properties. Sometimes we also need to be able

to perform background, or asynchronous, tasks when the user interacts with the page,

but we don’t want to block the user from interacting. Vue provides us the option of using

watches in these cases.

In this chapter, we will learn about computer properties and watchers and how to

use them in Vue.

 Computed Properties
Computed properties work similar to methods in Vue. The main difference is that

the results are stored for later use, or cached, until one of the computed property’s

reactive dependencies change. The reactive dependencies were created by Vue when

the instance was created with the new keyword. See Chapter 2, “The Basics,” for more

information about how Vue handles data changes.

To show the difference in behavior between methods and computed properties,

Listing 4-1 uses four properties—three book titles formatted differently and a forth

property of the publisher. These four properties will be combined to display the same

text on the screen—“Getting to Know Vue.js by Apress”.

In our template, we will display the text first by using the template syntax to format

the message. Second, we will use a method to format the text, and last, we will use a

computed property. The method and computed property both create a console.log

when they are executed so we can see how often each runs.

58

Listing 4-1. Comparing Template Syntax, Methods, and Computed Properties

When Formatting Text

var app = new Vue({

 el: '#app',

 data: {

 bookNameForTemplate: 'Getting to Know Vue.js',

 bookNameForMethod: 'Getting to Know Vue.js',

 bookNameForComputed: 'Getting to Know Vue.js',

 publisher: 'Apress'

 },

 methods: {

 getTitleBlurb: function() {

 console.log('Called: getTitleBlurb');

 return `${this.bookNameForMethod} by ${this.publisher}`;

 }

 },

 computed: {

 titleBlurb: function() {

 console.log('Called: titleBlurb');

 return `${this.bookNameForComputed} by ${this.publisher}`;

 }

 },

 template: `

 <div>

 <h3>Template based:</h3>

 <h4>{{bookNameForTemplate}} by {{publisher}}</h4>

 <h3>Method based:</h3>

 <h4>{{getTitleBlurb()}}</h4>

 <h3>Computed Property based:</h3>

 <h4>{{titleBlurb}}</h4>

 `

});

Chapter 4 Computer properties and WatChers

59

In Figure 4-1, we can see that all three ways render the same result. Looking at the

developer console reveals that the method getTitleBlurb and the computed property

titleBlurb each ran once.

Figure 4-1. Three ways to render the same result

Chapter 4 Computer properties and WatChers

60

But what if the view had to re-render?

Let’s add three <input>s and bind each one to a different bookName with v-model.

The update to the template will add the lines in Listing 4-2 to our template near the

bottom.

Listing 4-2. Changing the Properties and Re-Rendering

<label>Template:

 <input type="text" v-model="bookNameForTemplate" /></label>

<label>Method:

<input type="text" v-model="bookNameForMethod" /></label>

<label>Computed:

<input type="text" v-model="bookNameForComputed" /></label>

Note v-model can be used to bind data to an input. For more information on
v-model, see Chapter 6, “Bindings”.

Now when we reload the page, we should see three text boxes at the bottom. If we

change the values, we will see that Called: getTitleBlurb is logged to the developer

console any time any of the values change. We only see Called: titleBlurb in the

console when we update the input bound to bookNameForComputed.

Take a look at Figure 4-2 to see the results of adding “ too” to the book titles.

Chapter 4 Computer properties and WatChers

61

We can see that Called: getTitleBlurb was called 12 times, once for each

character entered. Called: titleBlurb was logged four times since the computed

property only changed when its dependent property was updated.

In our simple example, this don’t seem like it would be that big of an issue, but what

if you had to call the server for each of those changes? The difference would add up

quickly.

How many times did formatting with the template get called? Every time.

Figure 4-2. Updating the data

Chapter 4 Computer properties and WatChers

62

 Watchers
Creating composite or formatted properties that get updated when the based data

changes with computed properties is nice. Occasionally you need to take action when

data changes. Rather than tie a call to the server into a computed property, a watch can

help you decouple your user input from more expensive tasks.

Listing 4-3 uses the Axios library, https://github.com/axios/axios, to call the Star

Wars API, https://swapi.co/, to get a list of star ships when the user enters text into

a search box. We won’t be monitoring changes applied to the input, but we will use a

watch to call the API and get a result when the data behind the input changes. For the

results, we will display the name of each ship returned.

Listing 4-3. Using a Watch to Monitor Changes

var app = new Vue({

 el: '#app',

 data: {

 searchText: ",

 results: []

 },

 methods: {

 search: function() {

 axios

 .get(`https://swapi.co/api/starships/?search=${this.searchText}`)

 .then(response => {

 this.results = response.data;

 });

 }

 },

 watch: {

 searchText: function(newSearchText, oldSearchText) {

 this.search();

 }

 },

 template: `

 <div>

 <label>Search:

Chapter 4 Computer properties and WatChers

https://github.com/axios/axios
https://swapi.co/

63

 <input type="text" v-model="searchText" /></label>

 <h5>Results: <small>{{results.count}}</small></h5>

 <li v-for="result in results.results">

 {{result.name}}

 </div>

 `

});

If we run this and type in the search box, we will experience a slight delay and then

results will start to display in a list. If we enter x, we should see something like Figure 4-3.

Figure 4-3. Watch in action

Chapter 4 Computer properties and WatChers

64

 New and Old Values
When a watch is invoked, it is passed the new value and the old value. We didn’t do

anything with them at this time, but you could perform checks to verify that you want to

take action on the new value.

For instance, we could not call the API if the new value was the same as a previous

value. In Listing 4-4, we store the results in a history property so we can access the

previous searches again without making a second call.

Listing 4-4. Using the New Value Provided When a Watch Is Called

data: {

 searchText: ",

 results: [],

 history: {}

},

methods: {

 search: function() {

 axios

 .get(`https://swapi.co/api/starships/?search=${this.searchText}`)

 .then(response => {

 this.results = response.data;

 this.history[this.searchText] = this.results;

 });

 }

},

watch: {

 searchText: function(newSearchText, oldSearchText) {

 if (this.history[newSearchText]) {

 this.results = this.history[newSearchText];

 } else {

 this.search();

 }

 }

},

As you can see, if the newSearchText is a property on our history object, we get the

value we have stored; otherwise, we make the call to the API.

Chapter 4 Computer properties and WatChers

65

 Deep
Some objects are more complex than a search string but still require a watch. We can use

the deep property to watch the nested properties of an object. To set deep to true, we will

set our watch to an object with two properties: handler is the function that gets called

when the watch is triggered and deep is set to true so we can monitor changes in the

object.

In Listing 4-5, we can see how a deep watch is set up. Any time a change happens

to the book, the watch will call the handler and we will see Book Changed logged to the

developer console, as shown in Figure 4-4.

Listing 4-5. Watching for Changes on Nested Properties

 var app = new Vue({

 el: '#app',

 data: {

 book: {

 title: 'Getting to Know Vue.js',

 publisher: 'Apress',

 year: 2018

 }

 },

 watch: {

 book: {

 handler: function(newBook, oldBook) {

 console.log('Book Changed');

 },

 deep: true

 }

 },

 template: `

 <div>

 <label>Search:

 <input type="text" v-model="book.title" /></label>

 <li v-for="(value, prop) in book">

Chapter 4 Computer properties and WatChers

66

 {{prop}}: {{value}}

 </div>

 `

});

Figure 4-4. Using a deep watch to monitor object property changes

 Immediate
The other option you can use with a watch is immediate. With immediate set to true, Vue

will call the watch when your Vue instance loads with the current value. This way, you

can be sure it fires at least once.

Chapter 4 Computer properties and WatChers

67

Listing 4-6 shows how to use the immediate property with a watch. Figure 4-5 shows

its results.

Listing 4-6. Setting immediate to true on a Watch

watch: {

 book: {

 handler: function(newBook, oldBook) {

 console.log('Book Changed');

 },

 immediate: true

 }

 },

Figure 4-5. The watch fires even if no change is made to the object

Chapter 4 Computer properties and WatChers

68

 Summary
In this chapter we covered computed properties and watchers. With computed

properties, we can format responses and access them like data values, but they are

cached so we don’t have to recalculate them every time we use them. Watches provide

us with a way to respond to values that change in an asynchronous manner.

Chapter 4 Computer properties and WatChers

69
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_5

CHAPTER 5

Events
Being able to display lists of items and reuse portions of our markup is great for

displaying things, but sometimes we want the user to do something and that is where

events come in. In this chapter, we will learn about using listeners to wait for events, event

handlers to take action when an event is called, and modifiers, which we can apply to

events.

 Listeners
Setting up event listeners in Vue is pretty straightforward. On the element from which

you want to listen to events, add an attribute of v-on:eventName="handleEvent", where

eventName is the name of the event you are interested in and handleEvent is how you

want to handle the event.

So if we wanted to listen to the click event on an <h1> element that would change a

value between true and false, we would add v-on:click="value = !value". It would

look something like Listing 5-1. In the browser, it would look like Figure 5-1 before we

click anything and Figure 5-2 after we click the word “Toggle”.

Listing 5-1. Using v-on To Listen To Click Events

var app = new Vue({

 el: '#app',

 data: {

 show: true

 },

 template: `

 <div>

 <h1 v-on:click="show = !show">

 Toggle

70

 </h1>

 <p v-show="show">

 Hide and show this message by clicking the word "Toggle"

 </p>

 </div>

 `

});

Figure 5-1. Our v-on:click event before clicking Toggle

Chapter 5 events

71

This is done to bind to any event, so with native HTML elements you can change

the click to dblclick or pointerenter and still get the event to fire and show or hide the

message.

Your question might be, “What else can I do when an event fires besides show a

simple expression?”. I’m glad you asked because that brings us to event handlers.

 Handlers
Event handlers are used to handle events when they are raised. We use a handler method

since trying to accomplish much more than a variable assignment in the expression

would get cumbersome.

Figure 5-2. Our v-on:click event after clicking Toggle

Chapter 5 events

72

 Methods
To move our logic for handling the click event from Listing 5-1 to a method, we need to

create a method in our Vue instance. Let’s call it toggle. In our toggle method, we will

do the same thing we were doing with the expression handler—change the value of show

between true and false. To use our new method, we use the name of toggle as the

value that we assign to v-on:click. Listing 5-2 shows the complete toggling app.

Listing 5-2. Using a Method to Handle the Click Event

var app = new Vue({

 el: '#app',

 data: {

 show: true

 },

 methods: {

 toggle: function() {

 this.show = !this.show;

 }

 },

 template: `

 <div>

 <h1 v-on:click="toggle">

 Toggle

 </h1>

 <p v-show="show">

 Hide and show this message by clicking the word "Toggle"

 </p>

 </div>

 `

});

Chapter 5 events

73

 Inline Method
Perhaps you want to create a more versatile method by allowing it to take a parameter as

opposed to inverting a Boolean value. That is possible as well. In Listing 5-3, we have two

<h1> elements: one that displays Show and uses an inline handler to call setShow with the

value of true, and one that displays Hide and uses an inline handler to call setShow with

the value of false. With a new method that accepts a value and assigns it to show, we can

show or hide the message. We cannot toggle in the same manner, by clicking the same

word repeatedly, since hide always sets show to false and show always sets show to true.

Listing 5-3. Using Inline Handlers to Pass a Value to a Method

var app = new Vue({

 el: '#app',

 data: {

 show: true

 },

 methods: {

 setShow: function(newValue) {

 this.show = newValue;

 }

 },

 template: `

 <div>

 <h1 v-on:click="setShow(true)">

 Show

 </h1>

 <h1 v-on:click="setShow(false)">

 Hide

 </h1>

 <p v-show="show">

 Hide and show this message by clicking "Hide" or "Show"

 </p>

 </div>

 `

});

Chapter 5 events

74

One added thing you can do with an inline handler is pass the DOM event into

the method using the $event variable. In the method handler, you can then access

properties and methods of the event. In Listing 5-4, we pass the event to our handler and

log the type to the developer console. You can see in Figure 5-3 that clicking on the Show

and Hide <h1>s causes click events in the developer console.

Listing 5-4. Passing DOM Event with Inline Event Handler

var app = new Vue({

 el: '#app',

 data: {

 show: true

 },

 methods: {

 setShow: function(newValue, event) {

 if (event) {

 console.log(event.type);

 }

 this.show = newValue;

 }

 },

 template: `

 <div>

 <h1 v-on:click="setShow(true, $event)">

 Show

 </h1>

 <h1 v-on:click="setShow(false, $event)">

 Hide

 </h1>

 <p v-show="show">

 Hide and show this message by clicking "Hide" or "Show"

 </p>

 </div>

 `

});

Chapter 5 events

75

 Modifiers
Event modifiers allow us to declaratively change an event’s behavior. Declaratively

means when we want to modify the behavior of an event, we declare it in the markup. We

are not assigning the modification from somewhere in the JavaScript. This allows us to

see the modifications where we register the event handlers in the markup and leave the

handler methods to be just the parts of code needed to handle the event.

To apply a modifier, we use dot notation on the event name. If we were binding to a

click event and wanted to add the capture modifier, our v-on would look something like

v-on:click.capture="methodName".

Figure 5-3. Logging the event type to the developer console

Chapter 5 events

76

Some of the event modifiers that Vue provides are:

• stop: Calls event.stopPropagation() and stops further propagation

of the current event.

• prevent: Calls event.preventDefault() and tells the user agent to

not handle the event with its default handler.

• capture: Adds the event listener in capture mode. Using capture

mode for the event will allow our handler to be called before the

target of the event will get to handle it.

• self: Calls the handler only if the event starts on the element we

register the handler on. This saves us the extra work of checking the

event.target to limit our handler to only events that start on the

element we register the event with.

• once: Calls the handler only once without us having to remove the

handler from the element when we handle the event.

• passive: Sets the event handler option of passive to true, meaning

that the handler will not call event.preventDefault() and if it does,

the browser should ignore it. Passive event handlers were introduced

to help browsers provide a more consistent look with events while

scrolling.

 Using a Modifier
Let’s look at how this works, but before we do, let’s see how a click event propagates

through some <div>s. We will have four <div>s: two inner <div>s with “Inner One” and

“Inner B” text will be inside a <div> that has “Middle” text, and a fourth <div> with the

text “Outer”. Each <div> will have a click handler that pushes the <div>’s text onto an

array of messages.

We will display the messages with v-for after our collection of <div>s and add a

button to clear the messages at the bottom of the page. Looking at Listing 5-5 will give

you a better understanding.

Chapter 5 events

77

Listing 5-5. Event Propagations Setup

var app = new Vue({

 el: '#app',

 data: {

 messages: []

 },

 template: `

 <div>

 <div v-on:click="messages.push('Outer')">

 <h4>Outer</h4>

 <div v-on:click="messages.push('Middle')">

 <h4>Middle</h4>

 <div v-on:click="messages.push('Inner One')">

 <h4>Inner One</h4>

 </div>

 <div v-on:click="messages.push('Inner B')">

 <h4>Inner B</h4>

 </div>

 </div>

 </div>

 <p>

 Last clicked:

 <li v-for="message in messages">

 {{message}}

 </p>

 <input type="button" v-on:click="messages = []" value="Clear" />

 </div>

 `

});

This will look like Figure 5-4 in the browser.

Chapter 5 events

78

This isn’t too exciting yet, but let’s take a look at the order in which the events are

called. Figure 5-5 shows what happens when we click on the words “Inner B”.

Figure 5-4. Event propagations setup in the browser

Chapter 5 events

79

Clicking on “Inner B” causes the event to be handled by “Inner B”, “Middle”, and then

“Outer”. If we click on “Middle”, we will see only “Middle” and “Outer”.

If we wanted to stop propagation when “Inner One” is clicked and not have the other

events fire, we would use the stop modifier. You can see how to apply the stop modifier

in Listing 5-6.

Listing 5-6. Using the Stop Modifier

<div v-on:click.stop="messages.push('Inner One')">

 <h4>Inner One</h4>

</div>

Figure 5-5. Click event handled as it travels up the DOM tree

Chapter 5 events

80

Now when we click on “Inner One”, only “Inner One” will be added to our messages

array for display. Figure 5-6 shows the results.

 Chain Modifiers
It is also possible to chain modifiers. If we add capture and once to our middle <div>

and click on “Inner B” twice, we will see “Middle” happen first on the first click but not

happen on the second click. Listing 5-7 shows the code, and Figure 5-7 shows the results.

Listing 5-7. Chaining Modifiers

<div v-on:click.once.capture="messages.push('Middle')">

Figure 5-6. Using the stop modifier to prevent event propagation

Chapter 5 events

81

 Input
There are modifiers for inputs as well by adding one of the following to a key event:

• Enter: The Enter or Return key

• Tab: The Tab key

• Delete: The delete or backspace key

• Esc: The Escape key

• Space: The spacebar

• Up: The up arrow key

Figure 5-7. Clicking twice on Inner B without chain modifiers on Middle

Chapter 5 events

82

• Down: The down arrow key

• Left: The left arrow key

• Right: The right arrow key

In Listing 5-8, we use the Enter key modifier on a keyup event to call the Star Wars

API, https://swapi.co/, to get a list of star ships with the Axios library, as shown at

https://github.com/axios/axios.

Listing 5-8. Using Key Event Modifiers

var app = new Vue({

 el: '#app',

 data: {

 searchText: ",

 results: []

 },

 methods: {

 search: function() {

 axios

 .get(`https://swapi.co/api/starships/?search=${this.searchText}`)

 .then(response => {

 this.results = response.data;

 });

 }

 },

 template: `

 <div>

 <label>Search:

 <input

 type="text"

 v-model="searchText"

 v-on:keyup.enter.esc="search" />

 </label>

 <h5>Results: <small>{{results.count}}</small></h5>

Chapter 5 events

https://swapi.co/
https://github.com/axios/axios

83

 <li v-for="result in results.results">

 {{result.name}}

 </div>

 `

});

Now when we want to perform a search, we need to press Enter when we are in the

searchText input. In Figure 5-8, you can see that we make only one call to the API for the

search.

Figure 5-8. Using Key modifiers with the keyup event

Chapter 5 events

84

Key event modifiers can be chained as well. In Listing 5-9 you can see how to add the

Escape key modifier, so search can be triggered with either the Enter key or the Escape

key.

Listing 5-9. Chaining Input Event Modifiers

<input

 type="text"

 v-model="searchText"

 v-on:keyup.enter.esc="search" />

 Summary
This chapter was all about events! We learned how to listen for an event with v-on and

how to handle events with inline expressions, handler methods, and inline methods calls

as well as how to modify the behavior of e vents with modifiers

Chapter 5 events

85
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_6

CHAPTER 6

Bindings
One of the main reasons to use a framework like Vue is that it makes responding to user

input easier. One of the places user input is common is in forms. We also like to update

the look of this when users make an input/select an option, changing styles and classes

to let the user know something happened.

In this chapter, we will learn about binding data to form input along with binding to

inline styles and classes.

 Forms
Getting user input out of a form and into a variable we can manage is one of the main

advantages of using a framework like Vue. Vue provides us with the v-model directive to

bind data to our inputs.

 v-model
With v-model, we will have two-way data binding from the backing data variable to

the UI. With two-way data binding if the user makes a change to the data model via a

method, we will see the UI display the update. If we make a change in the UI, the data

model will be updated.

An important thing to understand is that Vue will not use the value or checked or

selected attributes of the elements. The data model created when the Vue instance is

initialized is the ultimate source of truth for Vue.

Note The backing data is the data stored in the Vue instance data property.

86

 Inputs
For the following <input/> examples, the data model will look like Listing 6-1 with

inputs that contain a property for each example ahead.

Listing 6-1. The Input Example Data Model

data: {

 inputs: {

 text: ",

 numberAsString: 0,

 numberAsNumber: 0,

 date: ",

 password: ",

 checkbox: false,

 checkboxes: [],

 radios: ",

 radiosPreset: 'rollout',

 radiosDynamic: ",

 radiosDynamicOptions: [

 {

 label: 'Blue',

 value: 'Light'

 },

 {

 label: 'Red',

 value: 'Dark'

 }

],

 file: ",

 select: ",

 multiselect: []

 },

Each example will also have an output, so we can see what the model contains as we

interact with the <input/>.

ChapTer 6 Bindings

87

 Text

Almost all forms are going to need a text input of some sort. To bind our data to the text

input, we add v-model="inputs.text" as an attribute. Our input should look like

Listing 6-2 with its accompanying model display. You can see how this looks in the

browser in Figure 6-1.

Listing 6-2. Text Input Data Binding

<h4>Text</h4>

<input type="text" v-model="inputs.text" />

<p>

 Text: {{inputs.text}}

</p>

Figure 6-1. Text input data binding in the browser

ChapTer 6 Bindings

88

 Number

Number <input/> binds the same way as text with v-model="inputs.numberAsString".

It also doesn’t convert the value of our input to a number, so the data model will contain

a string. We can convert the number in a method or we can use the .number modifier. To

bind with the modifier, we add the following as an attribute v-model.number="inputs.

numberAsNumber". To see the type of number contained in the data model, we add an

output that shows the typeof the value we are looking at.

Listing 6-3 shows two inputs with two outputs each. The outputs are the value and

the typeof for the value of each input. You can see in Figure 6-2 when we enter 4 into

both inputs that the type of numberAsString is string and the type of numberAsNumber is

number.

Listing 6-3. Binding to Number Inputs with Types Displayed

<h4>Number as String</h4>

<input type="number" v-model="inputs.numberAsString" />

<p>

 Number: {{inputs.numberAsString}}

</p>

<p>

 Typeof numberAsString: {{typeof inputs.

numberAsString}}

</p>

<h4>Number as Number</h4>

<input type="number" v-model.number="inputs.numberAsNumber" />

<p>

 Number: {{inputs.numberAsNumber}}

</p>

<p>

 Typeof numberAsNumber: {{typeof inputs.

numberAsNumber}}

</p>

ChapTer 6 Bindings

89

 Date

The Date <input/>s look a little different in each browser, but the results should be

similar, which is a string that is YYYY-MM-DD. When we look at the value of inputs.

date bound with v-model="inputs.date" on a date <input/>, we should see the

selected date in that format.

Figure 6-2. Binding to number inputs with types displayed in the browser

ChapTer 6 Bindings

90

Listing 6-4 shows how to bind to the date input and Figure 6-3 shows how it looks in

the browser.

Listing 6-4. Using v-model with an Input Type Date

<h4>Date</h4>

<input type="date" v-model="inputs.date" />

<p>

 Date: {{inputs.date}}

</p>

Figure 6-3. Using v-model with an input type date with its output in the
browser

ChapTer 6 Bindings

91

 Password

Passwords bind the same as a text <input/> does. The only difference is that you can’t

see what is being typed. Listing 6-5 shows v-model with a password type <input/>

and Figure 6-4 shows it in the browser if we type "Getting to Know Vue.js" in the

<input/>.

Listing 6-5. Using v-model with a Password Input

<h4>Password</h4>

<input type="password" v-model="inputs.password" />

<p>

 Password: {{inputs.password}}

</p>

Figure 6-4. Using v-model with a password input displayed in the browser

ChapTer 6 Bindings

92

Caution if you are going to collect user passwords, do not send them in an
unsecure manner over the internet.

 Check Boxes

A check box is the epitome of yes or no, true or false… okay, it’s really just true or false.

What form would be complete without a check box? Using v-model with a check box is

the same as using the other <input v-model="inputs.checkbox" />.

Listing 6-6 shows how it’s set up and Figure 6-5 shows the results of checking the

check box.

Listing 6-6. Using v-model with a Check Box

<h4>Checkbox</h4>

<input type="checkbox" v-model="inputs.checkbox" value="myCheckBox"

id="myCheckBox" />

<label for="myCheckBox">My Check Box</label>

<p>

 Checkbox: {{inputs.checkbox}}

</p>

ChapTer 6 Bindings

93

 Groups of Check Boxes

What could be better than one check box? A group of check boxes! With Vue we can bind

more than one check box to the same data property. If we have the data property as an

array, Vue will push the value of the check box onto the array as it is selected.

In Listing 6-7 we use the checkboxes property that we initialized as an array in

Listing 6-1. In Figure 6-6, we will select the check boxes for Miny and Enny and we

should see them output in the order they are selected.

Figure 6-5. Using v-model with a check box in the browser

ChapTer 6 Bindings

94

Listing 6-7. Using v-model with Multiple Check Boxes

<h4>Checkboxes</h4>

<input v-model="inputs.checkboxes" type="checkbox" value="eeny" id="eeny" />
<label for="eeny">Enny</label>
<input v-model="inputs.checkboxes" type="checkbox" value="meeny" id="meeny" />
<label for="meeny">Meenny</label>
<input v-model="inputs.checkboxes" type="checkbox" value="miny" id="miny" />
<label for="miny">Miny</label>
<input v-model="inputs.checkboxes" type="checkbox" value="mo" id="mo" />
<label for="mo">Mo</label>
<p>

 Checkboxes: {{inputs.checkboxes}}

</p>

Figure 6-6. Using v-model with multiple check boxes with Miny and Enny checked

ChapTer 6 Bindings

95

 Radio Buttons

Radio buttons allow you to present the users with a selection of options similar to a

group of check boxes, but the user can choose only one. Each radio button will be bound

via the v-model to the same backing data property using v-model="inputs.radios" as

the binding attribute.

Listing 6-8 shows four radio buttons and displays the value of the selected one

beneath. You can see the results of selecting Go Joe! in Figure 6-7.

Listing 6-8. Using v-model with Radio Buttons

<h4>Radios</h4>

<input v-model="inputs.radios" type="radio" value="rollout" id="rollout" />

<label for="rollout">Autobots, transform and roll out!</label>

<input v-model="inputs.radios" type="radio" value="decepticons-retreat"

id="retreat" />

<label for="retreat">Decepticons, retreat!</label>

<input v-model="inputs.radios" type="radio" value="go-joe" id="go-joe" />

<label for="go-joe">Go Joe!</label>

<input v-model="inputs.radios" type="radio" value="cobra-retreat"

id="cobraretreat" />

<label for="cobraretreat">Cobra retreat. RETREAT!</label>

<p>

 Radios: {{inputs.radios}}

</p>

ChapTer 6 Bindings

96

 Preset Radio Buttons

We can also set a preset value for the user by setting the value of the backing property to

the same value as one of the radio buttons. Listing 6-9 is essentially the same as

Listing 6-8, but we use the radiosPreset property as the backing property that contains

rollout as the value. When we load the page in Figure 6-8, Autobots, transform and roll

out! will be selected for us.

Listing 6-9. Setting a Preset Value for Radio Buttons

<h4>Radios Preset</h4>

<input v-model="inputs.radiosPreset" type="radio" value="rollout"

id="rollout" />

<label for="rollout">Autobots, transform and roll out!</label>

Figure 6-7. Using v-model with radio buttons, with Go Joe! selected in the browser

ChapTer 6 Bindings

97

<input v-model="inputs.radiosPreset" type="radio" value="decepticons-
retreat" id="retreat" />
<label for="retreat">Decepticons, retreat!</label>

<input v-model="inputs.radiosPreset" type="radio" value="go-joe" id="go- joe" />
<label for="go-joe">Go Joe!</label>

<input v-model="inputs.radiosPreset" type="radio" value="cobra-retreat"
id="cobraretreat" />
<label for="cobraretreat">Cobra retreat. RETREAT!</label>
<p>

 Radios: {{inputs.radiosPreset}}

</p>

Figure 6-8. Preset radio buttons upon first page load

ChapTer 6 Bindings

98

 Radio Buttons: Dynamic Options

Creating radio buttons from a list of options may be required as the options could come

from the server. In Listing 6-10, we will use v-for to create a radio button for each option

in the radiosDynamicOptions array.

Listing 6-10. Creating Radio Buttons Dynamically

<h4>Radios Dynamic Options</h4>

<template v-for="(option, index) in inputs.radiosDynamicOptions">

 <input v-model="inputs.radiosDynamic" type="radio"

v-bind:value="option.value" v-bind:id="option.value" />

 <label v-bind:for="option.value">{{option.label}}</label>

 <br v-if="index < inputs.radiosDynamicOptions.length">

</template>

<p>

 Radios: {{inputs.radiosDynamic}}

</p>

ChapTer 6 Bindings

99

 File

With file inputs, you cannot use v-model. To access the selected value, the change event

will have to be used with v-on. Listing 6-11 shows how we use the event file <input/>’s

change event to get the filename.

Figure 6-9. Radio buttons created dynamically

ChapTer 6 Bindings

100

Listing 6-11. Using the Change Event for File Input

var app = new Vue({

 el: '#app',

 data: {

 fileName: "

 },

 methods: {

 fileChanged: function(event) {

 console.log(event);

 this.fileName = event.target.files[0].name;

 }

 },

 template: `

 <h4>File</h4>

 <!-- <input type="file" v-model="inputs.file" /> -->

 <input type="file" v-on:change="fileChanged($event)" />

 <p>

 File: {{fileName}}

 </p>

 `

});

Figure 6-10 shows the results of using our File input app after selecting a file called

cover.png.

ChapTer 6 Bindings

101

 Hidden

Since we are using Vue and make the browser perform a full-page post to the server for

form submission, this would mean that the users would have to wait for our app to load

again. We won’t use hidden fields in this case. Any values we want to send can be added

to our post to the server in JavaScript.

Figure 6-10. Using the change event on a file input

ChapTer 6 Bindings

102

 Textarea Elements
The <textarea> elements allow us to collect more verbose responses from the users.

Using v-model with a <textarea> is straightforward, as you can see in Listing 6-12.

We apply the white-space: pre-line; style to our output element to preserve the

whitespace. In Figure 6-11, we can see that each word displays on a new line in our

output. We type “Getting to Know Vue.js” and press Enter between each line.

Listing 6-12. Using v-model with a textarea

<h4>Text</h4>

<textarea v-model="text" cols="50" style="height: 200px;"></textarea>
<p style="white-space: pre-line;">

 {{text}}

</p>

Figure 6-11. Using v-model with a textarea in the browser

ChapTer 6 Bindings

103

 Select
With a <select>, we bind to it and get the value that’s selected. Listing 6-13 shows how

to use v-model with a <select>, including having a recommended disabled options first.

Providing a disabled first option helps the iOS not register a change event when the page

loads and the first option becomes selected.

Listing 6-13. Using v-model with a select

<h4>Select</h4>

<select v-model="select">

 <option disabled value="">Select your Show

 </option>

 <option value="startrek">Star Trek</option>

 <option value="starwars">Star Wars</option>

 <option value="firefly">Firefly</option>

 <option value="drwho">Dr. Who</option>

</select>

<p>

 Selected: {{select}}

</p>

ChapTer 6 Bindings

104

 Multiple Selects
Multiple selects behave similarly to using multiple check boxes with the same backing

property. The selected values get added as an array. Listing 6-14 uses multiselect with

v-model and Figure 6-13 shows the results of selecting the second and fourth options.

Listing 6-14. Using v-model with a Multiselect

<h4>Multi-Select</h4>

<select v-model="multiSelect" multiple>

 <option value="startrek">Star Trek</option>

 <option value="starwars">Star Wars</option>

 <option value="firefly">Firefly</option>

Figure 6-12. Using v-model with a select and an option selected

ChapTer 6 Bindings

105

 <option value="drwho">Dr. Who</option>

</select>

<p>

 Multi-Selected: {{multiSelect}}

</p>

Figure 6-13. Using v-model with a select and two options selected

ChapTer 6 Bindings

106

 Modifiers
Vue provides us with three modifiers to use with inputs:

• .lazy: Uses the change event instead of the input event to update the

data model.

• .number: Tries to cast the value to a number when assigning it to the

data model.

• .trim: Removes the whitespace when assigning to the data model.

 Lazy

With the .lazy modifier, the model updates when the change event occurs. To see this in

action, you can use Listing 6-15 and view it in the browser. The output will display like in

Figure 6-14 after you leave the input box.

Listing 6-15. Using the .lazy Modifier

<h4>Lazy</h4>

<input v-model.lazy="lazy" type="text" />

<p>

 Lazy: {{lazy}}

</p>

ChapTer 6 Bindings

107

 Number

The number modifier casts the value of the input to a number and we can use it on

<input/>s with the type of number. In Listing 6-16, we use .number to cast our text input

to a number. In Figure 6-15 you can see the output and the results of using typeof on our

data backing fields.

Figure 6-14. Using the .lazy modifier to change the model after the input loses
focus and fires a change event

ChapTer 6 Bindings

108

Listing 6-16. Using .number Modifier on a Text Field

<h4>Number</h4>

<input v-model.number="number" type="text" />

<p>

 Number: {{number}}

</p>

<p>

 Type of Number: {{typeof number}}

</p>

Figure 6-15. Using the .number modifier on a text field with the output of the
value and the typeof when the number 8 is entered

ChapTer 6 Bindings

109

 Trim

The .trim modifier is used to remove the whitespace from the beginning and end of the

value before updating the data model. Listing 6-17 show this effect by surrounding the

output with quotes so we can see how much whitespace is at the beginning and end of

the value. We also have an input with output that does not apply the trim modifier, so we

can see how that behaves.

In Figure 6-16, we enter " Vue.js. " (that’s five spaces before and five after Vue.js) into

both inputs. In the No Trim input, you can see the space between Vue.js and the quotation

marks. There is no space in the Trim output.

Listing 6-17. Using the .trim Modifier

<h4>No Trim</h4>

<input v-model="noTrim" type="text" />

<p>

 No Trim: "{{noTrim}}"

</p>

<h4>Trim</h4>

<input v-model.trim="trim" type="text" />

<p>

 Trim: "{{trim}}"

</p>

ChapTer 6 Bindings

110

 Styling
Providing users feedback about their actions usually takes on the form of changing the

way things look on the page. The user enters invalid data in a form field, so something

turns red. The user selects a drop-down menu and the menu drops down. Some of

this could be accomplished with v-show and v-if, but it would feel abrupt. Using CSS

properties and classes can provide a way to use animation and generally provide more

options besides hiding and showing an element.

Figure 6-16. Using the .trim modifier by entering “ Vue.js. “ into both inputs

ChapTer 6 Bindings

111

We look at applying CSS style properties and classes. If you would like to learn

more about CSS, I recommend CSS Mastery, 3rd ed. Edition, by Andy Budd and Emil

Björklund.

 Inline Styles
Binding to inline styles allow us to directly assign values to CSS properties. We use

syntax similar to binding to other attributes, as discussed in Chapter 2, but we use

a JavaScript object we define in the expression. The property names can either be

camel case or kebab case. If you use kebab case, you will need to use quotes. The

value we assign each property will be the value assigned to the CSS property we used

as the property name.

In Listing 6-18, we use the camel case name of fontSize to specify that we are setting

the font size. For its value, we use a property from our Vue instance and append px to it,

since we want to use pixels.

In Figure 6-17, you can see that entering 35 into the input sets the font size on our

<p>.

Listing 6-18. Binding CSS Styles with an Inline Object

<h4>Dynamic Font Size</h4>

<input type="number" v-model.number="fontSize" />

<p v-bind:style="{fontSize: fontSize + 'px'}">

 Getting to Know Vue.js

</p>

ChapTer 6 Bindings

112

 Style Objects
Rather than defining the object we want to use for a style in the expression, we can

define it as a data property. This way we can assign the whole object. We don’t have to

worry about defining our object as a string, as we can get proper syntax highlighting in

the JavaScript editor.

In Listing 6-19, we bind the input to the same backing data property, fontsize, but

we will add a watch to it so when it changes we can set the value of fontSize on our

fontSizeObject. We will bind fontSizeObject to our style property.

Figure 6-17. Binding CSS styles with an inline object and setting the font size
to 35

ChapTer 6 Bindings

113

Figure 6-18 shows the results with the input set to 25.

Listing 6-19. Using an Object to Set Styles

var app = new Vue({

 el: '#app',

 data: {

 fontSize: 0,

 fontSizeObject: { fontSize: '0px' }

 },

 watch: {

 fontSize: function() {

 this.fontSizeObject.fontSize = this.fontSize + 'px';

 }

 },

 template: `

 <div>

 <h4>Dynamic Font Size with an object</h4>

 <input type="number" v-model.number="fontSize" />

 <p v-bind:style="fontSizeObject">

 Getting to Know Vue.js

 </p>

 </div>

 `

});

ChapTer 6 Bindings

114

The other thing you can do with the style object is use an array to bind more than

one.

We will add the following property to our data model: fontColorObject: { color:

'red' }. We will add it to our style property with fontSizeObject, as in an array.

Listing 6-20 shows the whole app and Figure 6-19 shows it with the font size set to 40.

Figure 6-18. Using an object to set styles with the input value set to 25

ChapTer 6 Bindings

115

Listing 6-20. Binding an Array of Objects to the Style Property

var app = new Vue({

 el: '#app',

 data: {

 fontSize: 0,

 fontSizeObject: { fontSize: '0px' },

 fontColorObject: { color: 'red' }

 },

 watch: {

 fontSize: function() {

 this.fontSizeObject.fontSize = this.fontSize + 'px';

 }

 },

 template: `

 <div>

 <h4>Dynamic Font Size with an object</h4>

 <input type="number" v-model.number="fontSize" />

 <p v-bind:style="[fontSizeObject, fontColorObject]">

 Getting to Know Vue.js

 </p>

 </div>

 `

});

ChapTer 6 Bindings

116

 Classes
Binding styles can make for a lot of hand-crafted work and makes it more difficult to

reuse the look you have achieved. Thankfully we can also bind CSS classes.

To bind a CSS class, we use the v-bind:class directive on the element we want the

class to be applied to. We provide it an object in the expression that has the name of the

CSS class we want applied as property names and the condition that evaluates to true

or false as the value. If we wanted to always apply a class, we could check if true equals

true, as shown in Listing 6-21.

Figure 6-19. Binding an array of objects to the style property with the font size set
to 40

ChapTer 6 Bindings

117

 One Class

Listing 6-21. Binding a CSS Class

v-bind:class="{ cssClass : true == true }"

Note The Css class name can be in camel case or in kebab case. To use kebab
case, you need to use quotation marks around the property name.

Listing 6-22 shows the CSS class, error, as defined in the head of our HTML. It turns

the color red and adds a red solid border when applied to an element.

Listing 6-22. CSS error Class

<style>

 .error {

 color: red;

 border: red 3px solid;

 }

</style>

In Listing 6-23, we have our Vue app defined with two data properties, input and

inputError, and a watch on input to set the value of inputError, depending on if the

value of input is a number. Figure 6-20 shows the results of entering “word” into the

input.

Listing 6-23. Binding a CSS Class to Evaluate a Data Property

var app = new Vue({

 el: '#app',

 data: {

 input: ",

 inputError: null

 },

ChapTer 6 Bindings

118

 watch: {

 input: function() {

 var results = parseInt(this.input);

 if (isNaN(results)) {

 this.inputError = true;

 } else {

 this.inputError = false;

 }

 }

 },

 template: `

 <div>

 <h4>One CSS Class Bound</h4>

 <input

 type="text"

 v-model="input"

 v-bind:class="{ error : inputError }" />

 </div>

 `

});

ChapTer 6 Bindings

119

 Multiple Classes

We can also use the object syntax to bind multiple CSS classes to an element by adding

two or more properties with evaluation conditions of when to apply them.

Listing 6-24 shows our new CSS class, no-error. We will apply this when the input

error is true.

Listing 6-24. No-error CSS Class

.no-error {

 color: green;

 border: green 3px solid;

}

Figure 6-20. Entering “word” into our input

ChapTer 6 Bindings

120

Listing 6-25 shows how to apply one of two CSS classes depending on whether

inputError is true. In Figure 6-21, we see that entering 5 into the input makes the

border and color of the input green.

Listing 6-25. Binding Two CSS Classes to the Same Element

<h4>Two Classes Bound</h4>

<input type="text" v-model="input"

 v-bind:class="{ error : inputError, 'no-error' : inputError ==

false }" />

Figure 6-21. Entering a valid input applies the no-error CSS class

ChapTer 6 Bindings

121

 Multiple Classes with Arrays

We can also apply multiple CSS classes with an array. Listing 6-26 shows our .active

class. Listing 6-27 shows the Vue app with two properties, with the values being the

names of our CSS .error and .active classes. Figure 6-22 shows our oversized input with

an error.

Listing 6-26. Our .active CSS Class

.active {

 font-size: 1.5em;

}

Listing 6-27. Binding Multiple CSS Classes with an Array

var app = new Vue({

 el: '#app',

 data: {

 activeClass: 'active',

 errorClass: 'error'

 },

 template: `

 <div>

 <h4>CSS Classes in an Array</h4>

 <input

 type="text"

 v-model="input"

 v-bind:class="[activeClass, errorClass]" />

 </div>

 `

});

ChapTer 6 Bindings

122

You can also use the object expression syntax to dynamically apply a class in an

array. Listing 6-28 shows how to accomplish this. One thing to note is that we are

applying the “error” class name as a string, not a reference, to the data property that

holds the same value.

Listing 6-28. Dynamically Applying a CSS Class as Part of an Array

<input

 type="text"

 v-model="input"

 v-bind:class="[{ 'error' : inputError }, activeClass]" />

Figure 6-22. Two CSS classes applied with an array

ChapTer 6 Bindings

123

 Computed Classes

Declaring the logic on which CSS class to apply in the markup can get a little verbose.

It makes things a little more difficult to read. We can get around that issue by using a

computed property to create the object we bind to the class attribute.

To bind to a computed property, we provide the attribute the name

v-bind:class="appliedCss". The real magic happens in our Vue instance.

In Listing 6-29, we have a computed property that always applies the active class

and conditionally applies the error and no-error class depending on the value of

inputError. If we enter “word” into our input, you can see the error class is applied in

Figure 6-23. If we enter “4”, the no-error class is applied, as shown in Figure 6-24.

Listing 6-29. Using a Computed Property to Apply CSS Classes

var app = new Vue({

 el: '#app',

 data: {

 input: ",

 inputError: null

 },

 watch: {

 input: function() {

 var results = parseInt(this.input);

 if (isNaN(results)) {

 this.inputError = true;

 } else {

 this.inputError = false;

 }

 }

 },

 computed: {

 appliedCss: function() {

 return {

 active: true,

 error: this.inputError,

 'no-error': this.inputError === false

ChapTer 6 Bindings

124

 };

 }

 },

 template: `

 <div>

 <h4>Using Computed Properties for CSS classes</h4>

 <input type="text" v-model="input" v-bind:class="appliedCss" />

 </div>

 `

});

Figure 6-23. Applying a computed property as a CSS class with “word” as the
input

ChapTer 6 Bindings

125

 Summary
In this chapter, we learned about binding to inputs, styles, and CSS classes. With Vue

handling the many different forms of inputs, getting the value the user enters requires

v-model. Vue provides many options for binding CSS styles and classes, which allow us

to bind with inline syntax, to an object, to an array, and even use computed properties.

Figure 6-24. Applying a computed property as a CSS class with “4” as the
input

ChapTer 6 Bindings

127
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_7

CHAPTER 7

State Management
Every application has some data to manage in the form of values to keep track of related

to the user’s choices or the information that is being displayed. To further complicate

things, we could be using the same data across multiple instances of Vue. Handling this

is called state management. We will take a look at three ways to manage state with Vue:

a simple data object, a do-it-yourself data store, and a state management library called

Vuex.

 Simple Data Objects
The most basic way to manage and share data is with a simple JavaScript object that has

some properties with values. This object is then passed into multiple Vue instances to

share access to the same values.

Listing 7-1 shows an example of this rudimentary sharing of data.

Listing 7-1. Basic Data Sharing

var sharedData = {

 value: 1

};

var app1 = new Vue({

 el: '#app1',

 data: {

 shared: sharedData,

 private: {}

 },

128

 template: `

 <h1>App 1 Shared Value: {{shared.value}}</h1>

 `

});

var app2 = new Vue({

 el: '#app2',

 data: {

 shared: sharedData,

 private: {}

 },

 methods: {

 increase: function() {

 this.$data.shared.value++;

 },

 decrease: function() {

 sharedData.value--;

 }

 },

 template: `

 <div>

 <h1>App 2 Shared Value: {{shared.value}}</h1>

 <button v-on:click="increase">+</button>

 <button v-on:click="decrease">-</button>

 </div>

 `

});

You can see we have a separate JavaScript object that has one property, value. This

object is then used as the data property for two different Vue instances, app1 and app2.

In app2, we have two buttons to change the values of the sharedData object through

an increase and decrease method. In the increase method, we use the Vue instances

reference to the original data object that was stored when the instance was created with

through this.$data. In the decrease method, we directly manipulate the JavaScript

object that was used as the value for the data property.

Chapter 7 State ManageMent

129

In Figure 7-1, you can see that clicking the + button three times results in the values

of both Vue instances being updated.

This looks like a working solution. However, the thing is, as your application

gets more complex, it will get more and more difficult to verify that the shared data

is being changed properly, since every Vue instance it is shared with can change it

directly.

Figure 7-1. Basic data sharing updating two Vue instances

Chapter 7 State ManageMent

130

 DIY Data Store
An alternative to the simple data object would be creating your own; let’s call it a DIY

(Do It Yourself) data store. We use a JavaScript object to hold the data we want to be able

to share like the simple data object, but we add methods to change/update that data

rather than change it directly. This allows us to better understand when and how the

data is being changed.

In Listing 7-2, we added a few things to our shared data object. We now have a

property called devMode to indicate if we want additional things logged to the console.

The values we are sharing now reside in a state property. In our Vue instances, it’s the

state property that we use for our shared attribute of the data. And we have methods to

alter the value(s) of our state: increaseValue, decreaseValue, and setValue.

Listing 7-2. DIY Data Store

var sharedData = {

 devMode: true,

 state: {

 value: 1

 },

 increaseValue() {

 if (this.devMode) {

 console.log('increaseValue() called');

 }

 this.state.value++;

 },

 decreaseValue() {

 if (this.devMode) {

 console.log('decreaseValue() called');

 }

 this.state.value--;

 },

 setValue(newValue) {

 if (this.devMode) {

 console.log('setValue() called with newValue: ', newValue);

 }

Chapter 7 State ManageMent

131

 this.state.value = newValue;

 }

};

In the methods to alter the state, we check if devMode is true. If it is, we log a message

to the console. We would want to set this to false or remove the devMode property

before deploying it to production. Once it’s in production, we would be able to turn dev

mode on using the browser dev tools console and setting sharedData.devMode = true

manually.

To update the data in sharedData, we call the method off of the sharedData

object that corresponds to the action we want to take. Want to increase the value?

Call sharedData.increaseValue(). Want to set the value to 1? Call sharedData.

setValue(1). You can see this in Listing 7-3.

Listing 7-3. Consuming a DIY Data Store

var app1 = new Vue({

 el: '#app1',

 data: {

 shared: sharedData.state,

 private: {}

 },

 template: `

 <h1>App 1 Shared Value: {{shared.value}}</h1>

 `

});

var app2 = new Vue({

 el: '#app2',

 data: {

 shared: sharedData.state,

 private: {}

 },

 methods: {

 increase: function() {

 sharedData.increaseValue();

 },

Chapter 7 State ManageMent

132

 decrease: function() {

 sharedData.decreaseValue();

 },

 reset: function() {

 sharedData.setValue(1);

 }

 },

 template: `

 <div>

 <h1>App 2 Shared Value: {{shared.value}}</h1>

 <button v-on:click='increase'>+</button>

 <button v-on:click='decrease'>-</button>

 <button v-on:click='reset'>reset</button>

 </div>

 `

});

You can see that instead of changing the data in our Vue instance, we are using the

increase, decrease, and reset methods to call the methods on the sharedData.

This makes things a little more manageable as we have one place where all the data

changes occur.

 Vuex
Having learned about the DIY data store, you are probably wonder what other options

could be needed for managing state. Vuex is a library maintained by the Vue team that

provides state management along with some additional treats or features. The official

Vue dev tool plugin enables Vuex to perform time travel debugging along with importing

and exporting the state. Vuex is designed to act as the application state for all Vue

components of your application.

 Install
Before we can start to use Vuex, we need to install it.

Chapter 7 State ManageMent

133

 CDN or Self Hosted

If you are not using a module system to manage dependencies, you can reference Vuex

from the CDN (content delivery network) or download a copy to host on the same server

as your app. Use the address https://unpkg.com/vuex for the latest version.

When using it as a CDN, I recommend using a versioned reference. This is so nothing

unexpectedly changes while it’s in production by adding the version number at the end

or the URL. If you want to use version 3.0.1, the URL would be https://unpkg.com/

vuex@3.0.1.

When you add the <script> element to reference Vuex, add it after the Vue <script>

and Vuex will self-register for use.

Note If you need to add Vuex before Vue to your page you can still register it for
use with Vue.use(Vuex);.

 NPM and Yarn

If you are using NPM or Yarn to manage your apps dependencies it can be installed by

the package of the same name: vuex. So, for NPM it would be npm install vuex –save

and for Yarn it would be yarn add vuex. Then in the code it will have to be imported

from the module system, like in Listing 7-4, before you tell Vue to use it.

Listing 7-4. Importing Vuex for Use

import Vue from 'vue';

import Vuex from 'vuex';

Vue.use(Vuex);

 Promise

Vuex does require that the browser supports promises. If you plan on supporting

browsers that don’t have an implementation of promises, you’ll need a polyfill.

Chapter 7 State ManageMent

https://unpkg.com/vuex
https://unpkg.com/vuex@3.0.1
https://unpkg.com/vuex@3.0.1

134

One promise library that works with Vuex is es6-promise. It can be referenced or

downloaded from a CDN at https://cdn.jsdelivr.net/npm/es6-promise@4/dist/

es6-promise.auto.js. It can also be installed with NPM using npm install es6-

promise –save or with Yarn, using yarn add es6-promise. Be sure to include an import

statement for the polyfill where you are using Vuex import 'es6-promise/auto';.

Note Vuex solves some of the more complicated problems, so to demonstrate
it better, we need a more complicated example. We will be using the Star Wars
apI, https://swapi.co/, to get a list of star ships and then load the pilots of a
selected ship with the axios library at https://github.com/axios/axios.

 Options
With everything set up for use, we can get on with configuring our instance of Vuex. To

do that, we should probably have an understanding of what properties we pass in when

creating a new instance of Vuex.

 State

The state property is similar to the state property we used in our DIY data store. It

contains all the data we are sharing with Vuex. Since our Vue apps will only have a single

Vuex instance, the state is a single JavaScript object that contains the state for the entire

app. Listing 7-5 shows a basic store.

Listing 7-5. State Setup

state: {

 ship: {},

 ships: { count: 0, results: [] },

 pilots: []

},

Chapter 7 State ManageMent

https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.js
https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.js
https://swapi.co/
https://github.com/axios/axios

135

 Getters

Getters offer a way to consolidate results that is based on the data in the store. One way

to think of a getter is as a computed property that is exposed through the store, thereby

allowing it to be reused in multiple Vue components. In the vein of computed properties,

the results of most getters are cached.

A getter function receives two parameters: state and getters. The state function

is used to access the values of the store. The getters function can be used to combine

results of other getters, thereby allowing us to build more complicated results in smaller

portions.

Listing 7-6 shows a getter that returns a filtered array of ships that have a starship_

class of Starfighter. We then have a second getter that returns the number of

Starfighters in our current list.

Listing 7-6. Two Getters, One That Returns a List of Only Starfighter and One

That Returns the Number of Starfighters

onlyStarFighters: function(state) {

 return state.ships.results.filter(function(ship) {

 return ship.starship_class === 'Starfighter';

 });

},

onlyStarFightersCount: function(state, getters) {

 return getters.onlyStarFighters.length;

},

A getter can return the results of some logic, like a formatted string, a new number, or

a function. When a function is returned, it can be used to pass in a value, such as an ID to

search for from the store or some other value to get the results of the getter.

Listing 7-7 shows a getter that returns a function. That function accepts the url

parameter and then returns the ship with that url.

Chapter 7 State ManageMent

136

Listing 7-7. A Getter Returning a Function That Accepts a Parameter to Evaluate

the Result

setShip: function(state) {

 return function(url) {

 return state.ships.results.find(function(ship) {

 return ship.url === url;

 });

 };

}

Note getters that return a function are evaluated every time they are accessed.

 Mutations

The only way to change the value of the store is through a mutation. A mutation consists

of a string type and a handler function. One way to think of the type is that it’s like the

name for the handler. The handler is a function that accepts at least one parameter,

state, and can have a second parameter called payload. If multiple values need to be

passed to the mutation, we can use an object.

Since every mutation is logged to track changes, all mutations must be synchronous.

If a mutation needs to perform an action that is asynchronous due to using a callback or

promise, the logic should probably be moved to an action. More on actions next.

Listing 7-8 has four mutations—setShips sets the ships property of state, setShip

sets the ship of state, clearPilots replaces the contents of the pilots property of state

with an empty array, and addPilot adds a pilot to the pilots property of state.

Listing 7-8. Mutation Examples

mutations: {

 setShips: function(state, payload) {

 state.ships = payload.newShips;

 },

 setShip: function(state, payload) {

 state.ship = payload.newShip;

Chapter 7 State ManageMent

137

 },

 clearPilots: function(state) {

 state.pilots = [];

 },

 addPilot: function(state, payload) {

 state.pilots.push(payload.newPilot);

 }

},

To invoke, or call, a mutation, we call commit on the store object. When we call

commit, we can pass it the type, or name, of the mutation to call and a payload, or we

can pass it an object that has a property named type. The rest of the object will be the

payload. We can see both ways of calling commit in Listing 7-9.

We can call this on the store object that is stored as a JavaScript object or we can call

it from our Vue instances reference to the store that was passed in when we created our

instance.

Listing 7-9 shows how to call commit on the store using the global JavaScript store

variable, the reference from the Vue instance, along with passing a payload. It also shows

how to pass an object that specifies the type.

Listing 7-9. Calling commit

search: function(event) {

 store.dispatch('search', { searchText: event.target.value });

},

viewShip: function(url) {

 this.$store.dispatch({ type: 'setShip', url: url });

}

Chapter 7 State ManageMent

138

 Actions

Sometimes we need to perform a task that is not synchronous, so a mutation won’t

work. That’s where actions come in. An action can be asynchronous. Any task that might

require a callback or a wait period such as calling a server should be an action.

When the asynchronous task is done, we will be able to call commit with the results.

This will preserve the transaction history of our Vuex and still allow us all those fun calls

to servers.

Actions follow the same format as mutations with a string type, or name, and a

handler function. The handler function accepts two parameters: context and payload.

The context parameter contains the same properties and methods as the store does in a

mutation, allowing us to access the state and commit mutations.

To call, or invoke, an action, we follow the same format as when committing a

mutation, except we call dispatch on the store.

Listing 7-10 shows three actions: search to search for ships, setShip to set the

current ship, and getPilots to get the pilots once the ship is set. In the setPilots

action, we also use the dispatch method to call getPilots.

Listing 7-10. Action Examples

actions: {

 search: function(context, payload) {

 axios

 .get(`https://swapi.co/api/starships/?search=${payload.searchText}`)

 .then(response => {

 context.commit('setShips', { newShips: response.data });

 });

 },

 setShip: function(context, payload) {

 context.commit('clearPilots');

 context.commit('setShip', {

 newShip: context.getters.setShip(payload.url)

 });

Chapter 7 State ManageMent

139

Figure 7-2. Two Vue instances sharing data

 context.dispatch('getPilots', { urls: context.state.ship.pilots });

 },

 getPilots: function(context, payload) {

 payload.urls.forEach(function(url) {

 axios.get(url).then(response => {

 context.commit('addPilot', { newPilot: response.data });

 });

 });

 }

}

Chapter 7 State ManageMent

140

If we run the code we have so far, we can see the data being shared across two Vue

instances in Figure 7-2. In Figure 7-3, after selecting the Millennium Falcon, we can

see the lists of pilots below the ship details as the results of the actions and mutations

performing their tasks. Watching it “live,” you can see each pilot added as the HTTP call

to the server returns the results for each one. Unfortunately it’s difficult to show that part

here.

 Modules

After a few releases, any small app can start to get larger in scale. Managing larger data

stores can become a bit of a challenge. To help us deal with this, Vuex allows us to

declare a store in modules. Each module is like a mini-Vuex declaration with its own

state, getters, mutations, and actions.

Figure 7-3. Results of actions and mutations

Chapter 7 State ManageMent

141

These modules allow us to break up our data store into manageable chucks the same

way we would split up any larger programming issue into smaller, more manageable

portions.

Basics

Using our example app that allows us to access ships and pilots from the Star Wars API,

we can break our existing Vuex definition into two modules: ships and pilots.

Listing 7-11 shows our shipsModule with the state, getters, mutations, and actions

that apply only to the ships. Listing 7-12 shows our pilotsModule with the state, getters,

mutations, and actions that apply only to the pilots.

Listing 7-11. Ships Module Definition

var shipsModule = {

 state: {

 ship: {},

 ships: { count: 0, results: [] }

 },

 getters: {

 onlyStarFighters: function(state) {

 return state.ships.results.filter(function(ship) {

 return ship.starship_class === 'Starfighter';

 });

 },

 onlyStarFightersCount: function(state, getters) {

 return getters.onlyStarFighters.length;

 },

 setShip: function(state) {

 return function(url) {

 return state.ships.results.find(function(ship) {

 return ship.url === url;

 });

 };

 }

 },

 mutations: {

Chapter 7 State ManageMent

142

 setShips: function(state, payload) {

 state.ships = payload.newShips;

 },

 setShip: function(state, payload) {

 state.ship = payload.newShip;

 }

 },

 actions: {

 search: function(context, payload) {

 axios

 .get(`https://swapi.co/api/starships/?search=${payload.

searchText}`)

 .then(response => {

 context.commit('setShips', { newShips: response.data });

 });

 },

 setShip: function(context, payload) {

 context.commit('clearPilots');

 context.commit('setShip', {

 newShip: context.getters.setShip(payload.url)

 });

 context.dispatch('getPilots', { urls: context.state.ship.pilots });

 }

 }

};

Listing 7-12. Pilots Module Definition

var pilotsModule = {

 state: {

 pilots: []

 },

 getters: {},

 mutations: {

 clearPilots: function(state) {

 state.pilots = [];

Chapter 7 State ManageMent

143

 },

 addPilot: function(state, payload) {

 state.pilots.push(payload.newPilot);

 }

 },

 actions: {

 getPilots: function(context, payload) {

 payload.urls.forEach(function(url) {

 axios.get(url).then(response => {

 context.commit('addPilot', { newPilot: response.data });

 });

 });

 }

 }

};

Looking at these module definitions, you might notice that they don’t use Vuex at

this point. They are plain JavaScript objects. To use these module definitions, we create

a new Vuex store using the module’s options. In the modules property we define each

module with a property name and assign the definition as the value.

Listing 7-13 shows our new Vuex store using shipsModule and pilotsModule.

Listing 7-13. Using Module Definitions

var store = new Vuex.Store({

 modules: {

 ships: shipsModule,

 pilots: pilotsModule

 }

});

For the most part, this will make our app work the same as before we started using

modules. The only change we have to make is where we reference the state in our

computed properties.

Outside the module to access our state from shipsModule, we will now need to use

this.$store.state.ships to get access to the ships state and use this.$store.state.

pilots to access the pilots state.

Chapter 7 State ManageMent

144

Note Inside the module we still use the state to access the current state
properties, as seen in Listings 7-11 and 7-12.

Listing 7-14 shows an update to our app2 computed properties, which access the

ships and pilots states.

Listing 7-14. Accessing Module State

computed: {

 currentShip: function() {

 return this.$store.state.ships.ship;

 },

 ships: function() {

 return this.$store.state.ships.ships.results;

 },

 shipCount: function() {

 return this.$store.state.ships.ships.count;

 },

 starfightersCount: function() {

 return this.$store.getters.onlyStarFightersCount;

 },

 pilots: function() {

 return this.$store.state..pilots;

 }

},

After updating our computed properties, everything will work the same as before we

broke things out into modules.

Accessing RootState

In your actions and getters, you may need to access the main state of your data store to

get information from a different module. This is possible through a third parameter that

is passed in to both actions and getters called rootState.

Chapter 7 State ManageMent

145

In Listing 7-15, we use the rootState in a getter that returns a list of strings that say

the current pilots name followed by “the pilot of” and the ship name by accessing the

ship names through the rootState.

Listing 7-15. Using rootState to Access a Second Module State

pilotsWithShipName: function(state, getters, rootState) {

 return state.pilots.map(function(pilot) {

 return `${pilot.name} the pilot of ${rootState.ships.ship.name}`;

 });

}

Namespace

Since the modules we created, ships and pilots, didn’t have much in the way

of overlapping names of getters, actions, and mutations, I didn’t feel the need to

namespace the modules. At some point, you may need to specify which specific modules

should handle an action, getter, or mutations.

To namespace a module, add namespaced: true as one of its properties and

you’re done… almost. Now to access the mutations from outside the module,

you call commit('moduleName/mutationName'). To access an action, we call

dispatch('moduleName/actionName'). And to access a getter, we have to use

getters['moduleName/getterName']. Notice we are using the bracket notation to access

the getter since JavaScript dot notation will not let us use the / special character.

Inside the module, we can use either the namespace method to access the

mutations, actions, and getters or we can call them without the namespacing.

Listing 7-16 shows adding the namespaced: true property to our pilotsModule.

Listing 7-16. Namespaced Module

var pilotsModule = {

 namespaced: true,

 //everything else stays the same

}

Listing 7-17 shows how we access the clearPilots mutations and the getPilots

action from the shipsModule now that the pilotsModule is using a namespace.

Chapter 7 State ManageMent

146

Listing 7-17. Accessing a Namespaced Module

setShip: function(context, payload) {

 context.commit('pilots/clearPilots');

 context.commit('setShip', {

 newShip: context.getters.setShip(payload.url)

 });

 context.dispatch('pilots/getPilots', { urls: context.state.ship.pilots

});

}

We can also decide to make an action globally available by registering it as such. To

register an action as global, we change the definition of the action from a function to an

object with two properties: root and handler. The handler property will be the function

that we used to have assigned to the action. The root property will be set to true.

Listing 7-18 shows the getPilots action set as a global action.

Listing 7-18. Registering a Global Action

getPilots: {

 root: true,

 handler: function(context, payload) {

 payload.urls.forEach(function(url) {

 axios.get(url).then(response => {

 context.commit('addPilot', { newPilot: response.data });

 });

 });

 }

}

With a namespace module, our getters get a forth parameter, called rootGetters. We

can use rootGetters to access getters from other modules, similar to the way we used

our rootState parameter.

Listing 7-19 shows the pilotsModule getter for pilotsWithShipName using the

rootGetter to get all the ships for a pilot.

Chapter 7 State ManageMent

147

Listing 7-19. Using rootGetters to Access Getters in Different Modules

pilotsWithShipName: function(state, getters, rootState, rootGetters) {

 return state.pilots.map(function(pilot) {

 return `${

 pilot.name

 } flies ${rootGetters.getShipsWithPilotId(pilot.url).length} number of

the current ships`;

 });

}

 Summary
In this chapter, we learned three ways we can manage the state of our application.

A simple data object has some drawbacks in that there is no central way to maintain

consistency of changes or to track where the changes are occurring. A DIY data store

starts to add specific ways to manage changes to the data, thereby allowing for some

support for tracking changes. Vuex offers a more robust method for tracking changes,

including change history, but becomes a little more verbose when you’re connecting it

within your app.

Chapter 7 State ManageMent

149
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_8

CHAPTER 8

Using Components
It’s not usually a good idea to get all your apps into one JavaScript file. With Vue we can

use components to create reusable portions of our app and make it easier to maintain.

In this chapter, we will learn how to create and use a custom Vue component, share data

with components, use events, and use slots.

 What Is a Component?
You might be wondering what a component is and why you should care. Both those

questions are good things to figure out.

A component in the sense that we are going to be exploring is a custom element

that we can define and reuse. We will define our components as little instances of Vue,

but instead of calling new Vue for a full instance of Vue, we have to register them where

needed. So, each component will have its version of most things that a Vue instance has

except for an el property.

Most Vue applications end up being a collection of Vue components working

together to display data and react to the user’s interactions.

 First Component
To make our fist component, we will use Vue.component to register the component.

Think of registering the component as telling Vue about it so it will be available for use.

We will pass in two parameters to register our component—a name for the component

and a JavaScript object that contains all the options for it.

150

The name for the component can be either kebab case, using hyphens to separate

words and all lowercase like kebab-case, or PascalCase, using capital letters and no

spaces to identify new words, like PascalCase. If we use kebab case, we will be able to

use our component as a custom element by using its name as the element, like <our-

custom- component>. If we use PascalCase, we will be able to use our component with the

PascalCase version of the name, <OurCustomComponent>, or the kebab case version of the

name, <our-custom-component>. Since using PascalCase is not valid HTML syntax, we

cannot use it in a DOM template.

In Listing 8-1 we create our first component. It has the name OurHeader and creates

an <h1> element that says App Header.

Listing 8-1. Creating Our First Custom Component

Vue.component('OurHeader', {

 template: `

 <h1>App Header</h1>

 `

});

In Listing 8-2, we add it to our app using both the kebab case and PascalCase

methods.

Listing 8-2. Using Our First Custom Component

<our-header></our-header>

<OurHeader></OurHeader>

When we load our app, we should see two copies of our headers, as shown in

Figure 8-1.

Chapter 8 Using Components

151

 Using Data
We might not want to have everything defined in markup; in our first component,

we might feel it’s important to move the text to the data of our component. Since a

component is an instance of Vue, we can specify data that it contains.

The big point to note is that with components, data is defined as a function that

returns an object instead of as an object. This is so that each instance of the component

will have its own copy of the data, isolating it from the changes in instances of the

component.

Listing 8-3 shows our second component, where we define the data as a function

that returns an object. We also have a click event handler that reverses text.

Figure 8-1. Our first component in use

Chapter 8 Using Components

152

Listing 8-3. Defining Component Data

Vue.component('OurSecondHeader', {
 data: function() {
 return {
 text: 'App Header 2'
 };
 },
 template: `
 <h1 v-on:click="text = text.split(").reverse().join(")">{{text}}</h1>
 `
});

If we add two OurSecondHeaders and click on the first one, we should see only the

text of the first instance of OurSecondHeader reverse its text, as shown in Figure 8-2.

Figure 8-2. Showing components isolated

Chapter 8 Using Components

153

 Passing Data with Props
Having a component that contains its own data is great, but most likely it would be nicer

to pass data to the component from the parent component, so we could reuse it. With

props, we can specify values that can be passed to the component.

Listing 8-4 shows how to declare a prop on a component using the props option

and assign it an array of strings for the names of props to use. In this case, our array will

have only one prop, text. We will use the value of text to set the text of our <h1> in the

template.

Listing 8-4. Defining Props

Vue.component('OurThirdHeader', {

 props: ['text'],

 template: `

 <h1>{{text}}</h1>

 `

});

Now when we use our component, we can pass in the text to display in our

component. Listing 8-5 shows a static assignment to the text prop. Static in this case

means that the value is a literal string that is declared in the markup.

Listing 8-5. Assigning a Value to Our Text Prop

<OurThirdHeader text="App Header 3" />

This will display the results shown in Figure 8-3.

Chapter 8 Using Components

154

Rather than pass a static value to the text prop, we can bind to a value in the parent

component. Listing 8-6 shows how to bind the value of appLabel from the parent

component to the text prop with v-bind.

Listing 8-6. Binding Data to the text Prop

var app = new Vue({

 el: '#app',

 data: {

 appLabel: 'App'

 },

Figure 8-3. Using props to pass values

Chapter 8 Using Components

155

 template: `

 <div>

 <OurThirdHeader v-bind:text="appLabel" />

 </div>

 `

});

Props also allows us to specify types and default values, determine whether they are

required, and use validators. At a minimum, it is a good idea to specify a type. This can

be done by assigning an object instead of an array to the props property. Each property

of this object will be the name of a prop and the value will be the type that it supports.

Listing 8-7 shows how to specify a type for our text prop.

Listing 8-7. Specifying a Type for a Prop

Vue.component('OurFourthHeader', {

 props: {

 text: String

 },

 template: `

 <h1>{{text}}</h1>

 `

});

This will behave the same as when we didn’t specify a type, but if we bind it to a

value that is not a string, it will log an error to the developer console in the browser. This

is helpful when developing components to remind the developer using the component

what value types are expected.

Acceptable types to use when specifying the props type are the standard JavaScript

object types:

• String

• Number

• Boolean

• Array

• Object

Chapter 8 Using Components

156

Figure 8-4 shows the results of binding the number 0 to OurFourthHeader’s text

prop.

To use the other options with a prop, we have to change it so that instead of a type,

we specify an object as its value. We then can use the property names of this object to

specify the type, default value, required or not, and the validator.

Listing 8-8 shows our text prop with a type of String, a default of App Header 5,

required set to false, and a validator that checks in the text for the word app.

Figure 8-4. Console error for binding the wrong value type to a prop

Chapter 8 Using Components

157

Listing 8-8. Specifying a props type, default, required, and validator

Vue.component('OurFifthHeader', {

 props: {

 text: {

 type: String,

 default: 'App Header 5',

 required: false,

 validator: function(value) {

 return value.toLowerCase().indexOf('app') > -1;

 }

 }

 },

 template: `

 <h1>{{text}}</h1>

 `

});

Now we can use our component with or without specifying the text prop, as shown

in Listing 8-9. We also will get an error in the console if the text does not contain the

word app.

Listing 8-9. Using the Default Value for the text Prop and Binding to the text Prop

<OurFifthHeader />

<OurFifthHeader v-bind:text="appLabel"/>

Viewing this in the browser results in two different headers, as shown in Figure 8-5.

Chapter 8 Using Components

158

 Events
With props we can send data from a parent component to a child component. But how

do we send data to the parent component from the child?

With events!

Using events, we can “listen” on the element’s declaration in the parent to determine

when a change occurs and react to it. To send the event, we use the $emit method from

the child component. It takes two values: the name of the event and a value to pass. To

receive the event, we use v-on:event-name.

Figure 8-5. Using the default text prop value or assigning a value from the parent
component

Chapter 8 Using Components

159

In Listing 8-10, we have a custom component named SearchBox that emits the input

event when the Enter or Escape key is pressed. It passes the target value of the keypress

event so that the parent component can react to the value entered in the input box.

Listing 8-10. Emitting an Event with a Value

Vue.component('SearchBox', {

 template: `

 <div>

 <label>Search:</label>

 <input type="text"

 v-on:keyup.enter.esc="$emit('input', $event.target.value)" />

 </div>

 `

});

In the parent component, we will use v-on:input to assign a handler for when the

event is fired.

Listing 8-11 shows our parent component using the SearchBox custom component

and adding the event handler for an input event.

Listing 8-11. Listening for an Event in the Parent Component

<SearchBox v-on:input="search" />

Figure 8-6 shows the SearchBox in use.

Chapter 8 Using Components

160

Using an input event might not seem that impressive since it is a native event in

HTML, but what if we want to have more specific events so we can fine-tune things?

Custom events is the answer!

Just like the input event, we can create a new custom event by specifying the name of

our custom event when we use $emit. In Listing 8-12, we have a custom component that

is used to list a ship called ShipListItem. When its button is clicked, it emits a

ship-selected event.

Figure 8-6. Using events from components in action

Chapter 8 Using Components

161

Listing 8-12. Emitting a Custom Event

Vue.component('ShipListItem', {

 props: {

 ship: {

 type: Object

 }

 },

 template: `

 {{ship.name}} <button v-on:click="$emit('ship-selected',

ship.url)">view</button>

 `

});

On the parent component, we listen for this event with v-on:ship-selected. In

Listing 8-13 we can see how, when the ship-selected event is emitted, the parent

component uses a method called viewShip to handle the event.

Listing 8-13. Handling Custom Events

<ShipListItem

 v-for="ship in ships"

 v-bind:key="ship.url"

 v-bind:ship="ship"

 v-on:ship-selected="viewShip" />

Figure 8-7 shows the results of our custom event being fired after the view button

when the Imperial shuttle is selected.

Chapter 8 Using Components

162

 Slots
So far, we haven’t made a component that can wrap other content, but it’s possible.

To allow our components to wrap other content, we need to declare a <slot> in our

component. Listing 8-14 shows the CurrentShip component with a <slot></slot> to

display content.

Listing 8-14. Component with a Slot

Vue.component('CurrentShip', {

 computed: {

 ship: function() {

 return this.$store.state.ship;

 }

Figure 8-7. Custom event in action

Chapter 8 Using Components

163

 },

 template: `

 <div v-show="ship.name">

 <h2>Current Ship</h2>

 <ShipStat label="Name" v-bind:value="ship.name" />

 <ShipStat label="Manufacturer" v-bind:value="ship.manufacturer" />

 <ShipStat label="Class" v-bind:value="ship.starship_class" />

 <ShipStat label="Crew Size" v-bind:value="ship.crew" />

 <slot></slot>

 </div>

 `

});

To display content in the <slot>, we wrap the content with the beginning and ending

tags of our custom element. In Listing 8-15, we wrap the PilotList custom element

inside the CurrentShip custom element.

Listing 8-15. Wrapping Content with a Custom Element

<CurrentShip>

 <PilotList />

</CurrentShip>

 Registration
The components we have made up until now have been registered with Vue using Vue.

component. This makes them all global components, available for all Vue instances

created after they are registered. This is great for a simple demonstration, but if you are

using a tool like Webpack, it might lead to code being bundled and sent to users that isn’t

needed.

Note Webpack is a Javascript module bundler. For more information about
Webpack, visit https://webpack.js.org/.

Chapter 8 Using Components

https://webpack.js.org/

164

To prevent unnecessary code bundling, we can use local registration. To use local

registration, we define our component as an object, as shown in Listing 8-16.

Listing 8-16. Define a Custom Component for Local Registration

var AppHeader = {

 props: {

 text: {

 type: String,

 default: 'App Header'

 }

 },

 template: `

 <h1>{{text}}</h1>

 `

};

Note order matters. if you have a component that requires a component as a
dependency, be sure to define the dependency first.

To use this AppHeader component, we need to register it with the instance of Vue we

plan on using it with in the component’s property. Listing 8-17 shows how to register our

AppHeader in a Vue app.

Listing 8-17. Registering a Component Locally

var app = new Vue({

 el: '#app',

 components: {

 AppHeader: AppHeader

 },

 data: {

 appLabel: 'Ship Search'

 },

Chapter 8 Using Components

165

 template: `

 <div>

 <AppHeader />

 </div>

 `

});

 Summary
In this chapter, we learned all about components, including creating them, defining the

data as a function, defining and passing props, emitting and handling events, using slots,

and understanding the difference between global and local registration.

Chapter 8 Using Components

167
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_9

CHAPTER 9

Reusable Code
Components are great for reusing an entire custom element, but we can’t use just a

portion of the component. To share functionality among multiple components, we have

to use mixins. Custom directives will allow us to build out functionality that we can apply

to standard HTML components and custom Vue.js components. The render function

will give us more control over how our template is built, giving us the ability to use logic

in JavaScript to build our templates.

 Mixins
Mixins allow us to create “base” components with common functionality that we want

to share with multiple components. This can be useful for implementing a standard

method that is shared, ensuring an event or action is taken during a lifecycle event, or

setting default values for the data to help other components.

 Creating Mixins
To create a mixin, we need to declare an options object that has implementations for the

options we want to share. So, if we are going to share data, our mixin will implement a

data property. This goes for the rest of the options that we want to share.

In Listing 9-1, we create a simple mixin that contains a data property of text set to

default, a lifecycle hook to call its log method when created, a log method, and a template.

Listing 9-1. A Simple Mixin

var baseMixin = {

 data: function() {

 return { text: 'default' };

 },

168

 created: function() {

 this.log(`My text when Created: ${this.text}`);

 },

 methods: {

 log: function(...params) {

 console.log(...params);

 }

 },

 template: `

 <div>

 <h1>{{text}}</h1>

 </div>

 `

};

It almost looks like we are defining a Vue app or component with our mixin and in a

way we are, but not the entire intended app just the portions to share.

 Using Mixins
With our mixin defined, we will need to register it for use with our component. We

register our mixin with the component by providing an option property named mixin

that has an array as the value with our mixins in the array. Listing 9-2 shows using the

mixin from Listing 9-1.

Listing 9-2. Using a Mixin

var componentOne = {

 mixins: [baseMixin]

};

If we use componentOne in an app, it will show our <h1> with the word default, as

shown in Figure 9-1.

Chapter 9 reusable Code

169

 Using Multiple Mixins
You’re probably thinking, “that’s great and all, but what if I want to share feature set A

with one set of components and feature set B with a second set of components with little

overlap?” Well, the answer is to use multiple mixins.

We can use multiple mixins with the same component. By default, they will be

applied in the order they are listed in the array. So element 0 is applied first, element 1 is

applied second and might change some of the options from the first mixin, and so forth.

Listing 9-3 has a second mixin that sets the value of our data’s text property. We

then use this is Listing 9-4 to create componentTwo with two mixins. When we look at

it in the browser, as shown in Figure 9-2, we see that the value of text is provided by

secondBaseMixin, but nothing else has changed.

Figure 9-1. Using our baseMixin with a component

Chapter 9 reusable Code

170

Listing 9-3. Second Mixin

var secondBaseMixin = {

 data: function() {

 return { text: 'default from secondBaseMixin' };

 }

};

Listing 9-4. Using Multiple Mixins

var componentTwo = {

 mixins: [baseMixin, secondBaseMixin]

};

Figure 9-2. The results of using multiple mixins

Chapter 9 reusable Code

171

 Custom Directives
We have been using out-of-the-box directives as soon as we used our first v-if, v-show,

or v-model. Custom directives allow us to apply DOM changes to plain HTML elements.

similar to the directives that came with Vue.

 Creating a Directive
To create a custom directive, we register it with Vue. To register it, we call Vue.directive

before our Vue instance is created so that it will be available for use when our app is

running.

The first parameter we will pass Vue.directive is the name of our directive. This

name, prefixed with v-, is what we will use in the HTML to apply the directive to an

element. The second parameter will be an object with properties to define the action to

take during one or more of the following hooks:

• bind: This is called once when the directive is bound to the element.

• inserted: This is called when the element is inserted into the parent

node.

• update: This is called after the element has been updated but the

child elements may not have been updated yet.

• componentUpdated: This is called after the element and the child

elements have been updated.

• unbind: This is called when the directive is removed.

Note It is also possible to pass in a function instead of an object as the second
parameter. this function will be called for the bind and update hooks.

The hooks will be defined as a function with access to the following parameters:

• el: This is the element the directive is bound to, thereby allowing us

to change its properties.

• binding: This is an object that exposes the following values through

its properties.

Chapter 9 reusable Code

172

• name: The name of the directive minus the v-.

• value: If a value or object is passed to the directive, this is where

it can be accessed.

• oldValue: This is only available with update and

componentUpdated and contains the previous value.

• expression: This is the expression used in the binding as a

string.

• arg: This would be the arguments passed to the directive. An

example of an argument is click in the name of the event used

with v-on in v-on:click="".

• modifiers: These are objects containing any modifiers. An

example of a modifier is .once in the event modifiers used with

v-on in v-on:click.once="".

• vnode: This is the virtual node created by Vue.

• oldVnode: This is only available with update and componentUpdated

and contains the previous vnode.

With that in mind, we will create a sample directive that floats the element it is

applied to using the inserted hook. Listing 9-5 has a directive called floatRight that sets

the element’s style.float to right.

Listing 9-5. Creating a Sample Directive

Vue.directive('floatRight', {

 inserted: function(el) {

 el.style.float = 'right';

 }

});

Chapter 9 reusable Code

173

 Using the Directive
To use our directive, we will add v-float-right or v-floatRight as an attribute to an

element. In Listing 9-6, we apply it to two s.

Listing 9-6. Using Our Custom Directive

var app = new Vue({

 el: '#app',

 template: `

 <div>

 <h1>Floating Directive</h1>

 Floated Right

 Floated Right too

 </div>

 `

});

Since this is the entire app we currently have, you can see that we don’t need to add

the directive to the app since it was registered with Vue before the app was created. In

Figure 9-3, you can see that our spans have been floated to the right.

Chapter 9 reusable Code

174

 Passing a Value
Since we can now float an element, we may decide it would be a good idea to give it

some space away from the right side of the screen. Since we don’t know how much space

each situation will call for, we can pass a number to our directive as a value. In Listing 9-7,

we pass 200 as a value to our custom component.

Listing 9-7. Passing a Value to a Custom Component

var app = new Vue({

 el: '#app',

 template: `

 <div>

Figure 9-3. Our custom directive in action

Chapter 9 reusable Code

175

 <h1>Floating Directive</h1>

 Floated Right

 </div>

 `

});

To use this value, we need to make some changes to our directive. First, we need to

access the binding parameter, then we check if the value is set, and if it is set, we set the

value of el.style.marginRight to that many pixels. Listing 9-8 shows the update.

Listing 9-8. Using a Passed Value in a Custom Directive

Vue.directive('floatRight', {

 inserted: function(el, binding) {

 el.style.float = 'right';

 if (binding.value) {

 el.style.marginRight = `${binding.value}px`;

 }

 }

});

These changes will result in our floated span being a little bit away from the right

edge of the screen, as shown in Figure 9-4.

Chapter 9 reusable Code

176

 Passing an Object as a Value
We can also pass an object instead of a single value. In Listing 9-9, we pass an inline

object literal in the first float, and then we pass an object bound to the Vue instance.

Listing 9-9. Passing Objects as Values to a Custom Directive

var app = new Vue({

 el: '#app',

 data: {

 floatLeft: { direction: 'left', offset: 40 }

 },

 template: `

Figure 9-4. Using passed values in a custom directive

Chapter 9 reusable Code

177

 <div>

 <h1>Floating Directive</h1>

 First Floated Right

 Second Floated Left

 </div>

 `

});

To use the objects we are passing, we have to update our custom directive again. In

Listing 9-10, we assign the value of direction to the el.style.float and then we check if

there is an offset. If there is one, we use it to set the margin again.

Listing 9-10. Using Objects as Passed Values in a Custom Directive

Vue.directive('float', {

 inserted: function(el, binding) {

 el.style.float = binding.value.direction;

 if (binding.value.offset) {

 if (binding.value.direction === 'right') {

 el.style.marginRight = `${binding.value.offset}px`;

 } else {

 el.style.marginLeft = `${binding.value.offset}px`;

 }

 }

 }

});

This will allow us to use the same directive for floating both ways. We can see the

results in Figure 9-5.

Chapter 9 reusable Code

178

 Using Modifiers
We can also use modifiers to change the behavior of our custom directive. In

Listing 9-11, we use modifiers to specify the direction of the float.

Listing 9-11. Using a Modifier with Custom Directives

var app = new Vue({

 el: '#app',

 data: {

 floatLeft: 40

 },

Figure 9-5. Using objects to pass values to custom directives

Chapter 9 reusable Code

179

 template: `

 <div>

 <h1>Floating Directive</h1>

 First Floated Right

 Second Floated Left

 </div>

 `

});

In Listing 9-12, we have the implementation of custom directive, which checks if the

modifier contains the value right and assigns float and margins accordingly.

Listing 9-12. Using Modifiers in a Custom Directive

Vue.directive('float', {

 inserted: function(el, binding) {

 if (binding.modifiers.right) {

 el.style.float = 'right';

 } else {

 el.style.float = 'left';

 }

 if (binding.value) {

 if (binding.modifiers.right) {

 el.style.marginRight = `${binding.value}px`;

 } else {

 el.style.marginLeft = `${binding.value}px`;

 }

 }

 }

});

The results of these changes can be seen in Figure 9-6.

Chapter 9 reusable Code

180

 Render Function
The render function of a Vue component gives us the full power of JavaScript to build

our templates. This makes it easier to perform more concise logic than would be possible

in an HTML template.

 Render versus Template
We are going to look at creating a component that has three props: content, element,

and background. The content will be a string that we use as the body of the component.

The element will be the tag of the HTML element we want to create: h1, h2, or p. And the

background will be the color we want the background of the component to be.

Figure 9-6. Using modifiers with a custom directive

Chapter 9 reusable Code

181

In Listing 9-13, we see one version of the component, templateSample. We will have

to wrap everything in a and use v-if to select our proper element. In Listing 9-14,

we see the second component, renderSample. We will use the render function to build

our component based on the properties.

Listing 9-13. Component Using Template Syntax to Select an Element Type

let templateSample = {

 props: {

 content: String,

 element: String,

 background: String

 },

 template: `

 <h1 v-if="element == 'h1'"

 v-bind:style="{backgroundColor: background}">

 {{this.content}}

 </h1>

 <h2 v-else-if="element == 'h2'"

 v-bind:style="{backgroundColor: background}">

 {{this.content}}

 </h2>

 <p v-else-if="element == 'p'"

 v-bind:style="{backgroundColor: background}">

 {{this.content}}

 </p>

 `

};

Listing 9-14. Component Using the render Function to Select an Element Type

let renderSample = {

 render: function(createElement) {

 return createElement(

 this.element,

Chapter 9 reusable Code

182

 { style: { backgroundColor: this.background } },

 this.content

);

 },

 props: {

 content: String,

 element: String,

 background: String

 }

};

In Listing 9-15, we can see our app that can use both components in the same

manner.

Listing 9-15. Using the Sample Components

var app = new Vue({

 el: '#app',

 components: { renderSample, templateSample },

 template: `

 <div>

 <h1>Template Render</h1>

 <div>

 <templateSample

 content="Render Me!"

 element="h2"

 background="red"

 />

 <templateSample

 content="Render Me Too!"

 element="h1"

 background="lightblue"

 />

 <templateSample

 content="Hide Me!"

Chapter 9 reusable Code

183

 element="p"

 background="black"

 />

 </div>

 <h1>Sample Render</h1>

 <div>

 <renderSample

 content="Render Me!"

 element="h2"

 background="red"

 />

 <renderSample

 content="Render Me Too!"

 element="h1"

 background="lightblue"

 />

 <renderSample

 content="Hide Me!"

 element="p"

 background="black"

 />

 </div>

 </div>

 `

});

Since both components use the same props, the results of using the same values

should be very similar. The main difference will be the templateSample, which has a

span wrapping the content so that the template has a single root element.

In Figure 9-7, we can see that the HTML created by our templateSample does have

the extra elements.

Chapter 9 reusable Code

184

In these sample components, you can see that using the render function could save

a lot of duplicate markup and accomplish the same tasks as with the HTML template.

 createElement
The render function of a component gets passed one property, the createElement

method. The createElement method can be used to create virtual nodes, or vnodes for

short. Vue uses the vnodes to construct a “virtual DOM” out of all the components of

an app.

Figure 9-7. Comparing the results of the templateSample and renderSample
components

Chapter 9 reusable Code

185

 Parameter One

To create elements with createElement we can pass it up to three parameters. The first

parameter can be the HTML tag of the element to be created, the component options

that create a Vue component, or a function that returns one of the previous results.

In Listing 9-16, we use createElement and provide it with a p to generate a <p> tag.

The second parameter in this example is the default slot, so any child elements or text

will be wrapped by our element.

Listing 9-16. Using the render Function to Create a p Element

let tagElement = {

 render: function(createElement) {

 return createElement('p', this.$slots.default);

 }

};

In Listing 9-17, we use createElement with a Vue options object to create an

element that has a prop to pass in the content. The content is then passed to the data

object for the options object that is used to render the component.

Listing 9-17. Using the render Function to Create an Element with a Vue Options

Object

let optionsElement = {

 props: {

 content: String

 },

 render: function(createElement) {

 let data = { contentToRender: this.content };

 return createElement({

 data: function() {

 return data;

 },

 template: '<p>{{contentToRender}}</p>'

 });

 }

};

Chapter 9 reusable Code

186

In Listing 9-18, we can see that both components are used in a similar manner and in

Figure 9-8 we see that the results are the same.

Listing 9-18. Using a Component Created from a Tag and a Component Created

from an Options Object

var app = new Vue({

 el: '#app',

 components: { tagElement, optionsElement },

 template: `

 <div>

 <h1>Template Render</h1>

 <div>

 <tagElement>Paragraph 1</tagElement>

 <optionsElement content="Paragraph 2"></optionsElement>

 </div>

 </div>

 `

});

Chapter 9 reusable Code

187

 Parameter Two

The second parameter represents the data attributes of the element to be created and is

optional. Properties that can be set with this object are as follows:

• class: Uses the same syntax as when using v-bind:class in a

template.

• style: Uses the same syntax as when using v-bind:style in a

template.

• attrs: An object that contains property names of attributes to bind

with the values provided for each property.

• props: Props to bind on the component.

Figure 9-8. Rendering tagElement and the optionsElement in the browser

Chapter 9 reusable Code

188

• domProps: DOM properties to bind on the element.

• on: An object that lists event handlers with the event as the property

name and the value as the handler.

• nativeOn: Used on components only to listen for native events

instead of events generated through the use of the Vue instance

$emit.

• directives: An array of custom directives to apply.

• scopedSlots: An object of the slots for a component with the

property names as the name of the slots and the value as a function

to define the content.

• slot: If this component is the child of a component this specifies the

name of the slot to render in.

In Listing 9-19 we use the class, style, attrs, domProps, and on to add the class

ourClass, set the color and background color, add a data attribute, set the inner text

of the element, and add a handler for click events for the element we create with our

component. We can see the results in Figure 9-9 after clicking the element once.

Listing 9-19. Using the Data Attributes Object with the render Function

let dataElement = {

 methods: {

 handleClick: function() {

 console.log('data element clicked');

 }

 },

 render: function(createElement) {

 return createElement('p', {

 class: {

 ourClass: true

 },

 style: {

 color: '#34495E',

 backgroundColor: '#41B883'

 },

Chapter 9 reusable Code

189

 attrs: {

 'data-secret': "shh don't tell"

 },

 domProps: {

 innerText: 'Getting To Know Vue.js'

 },

 on: {

 click: this.handleClick

 }

 });

 }

};

Figure 9-9. Rendering a component that uses the data attributes object with the
render function

Chapter 9 reusable Code

190

 Parameter Three

The third parameter represents any children vnodes and is optional. It can be a string

only if the child element is text or an array of vnodes.

In Listing 9-20, we create a component that accepts a prop called listItems, which

is an array. In the render function, we use the map function of the array to go through

the items and create new elements for each item in the array. This effectively returns a

new array of vnodes as the third parameter.

Note the null in the second parameter in listing 9-20 is not required. I used
it in this example so that the position would be maintained when referencing the
third parameter.

We can see in Figure 9-10 the results of this listElement when it is passed an array

that contains 1, Two, and C.

Listing 9-20. Creating Children vnodes in the render Function

let listElement = {

 props: {

 listItems: Array

 },

 render: function(createElement) {

 return createElement(

 'ul',

 null,

 this.listItems.map(item => createElement('li', item))

);

 }

};

Chapter 9 reusable Code

191

 Summary
In this chapter, we learned how to use mixins to create functionality that can be shared

with components that are based on the mixin. We also learned about creating custom

directives, which allow us to add functionality to standard HTML elements and to our

own components. We finished by learning how we can write less code using the render

function than if we build the template with markup.

Figure 9-10. Rendering our listElement in the browser

Chapter 9 reusable Code

193
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_10

CHAPTER 10

Custom Functionality
Plugins offer a way to extend the global functionality of Vue by creating default behavior,

adding global components, or generally creating values throughout your Vue app. Filters

allow us to create reusable text transformation that we can apply to our templates. Let’s

take a look at how to create and use these features in Vue.

 Plugins
Plugins allow us to expand Vue to meet our needs in a manner that we can share with

other Vue apps without sharing our entire app.

 Creating a Plugin
To create a plugin, make a JavaScript object that exposes an install function. The

install function accepts two parameters: Vue and options. The Vue parameter is the

global Vue that will be used to create our app.

We can add to the prototype of Vue and all instances created after install is called

and they will gain access to the plugin. In Listing 10-1, we create a plugin that adds an

object to Vue’s prototype named $_customPlugin.

Note It is recommended that you prefix any private properties with $_ and add
the name of the plugin to scope the properties. This is to prevent conflicts with
anything that developers using your plugins use.

194

Listing 10-1. Creating a Small Plugin

let customPlugin = {

 install: function(Vue, options) {

 Vue.prototype.$_customPlugin = {

 name: 'Getting to Know Vue.js'

 };

 }

};

 Using a Plugin
Before we can use our plugin, we have to install it with Vue. To install our plugin, we call

Vue.use(customPlugin) before we create our app. In Listing 10-2, we install our plugin

before creating our Vue app. We can also see how we have access to the $_customPlugin

of this in our app. This results in the browser displaying the results in Figure 10-1.

Listing 10-2. Installing a Plugin and Accessing its Properties

Vue.use(customPlugin);

var app = new Vue({

 el: '#app',

 template: `

 <div>

 <h1>

 {{this.$_customPlugin.name}}

 </h1>

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

195

 Using Options
We can also pass in options when installing our plugin. To pass in options, we include a

second parameter when calling Vue.use, an option object. We can see this in Listing 10-3,

where we use an options object that has two properties when calling Vue.use.

Listing 10-3. Passing an Options Object to a Plugin

Vue.use(customPlugin, {

 title: 'Getting to Know Vue.js',

 subTitle: 'Now with Options'

});

Figure 10-1. Our first plugin in action

ChapTer 10 CusTom FunCTIonalITy

196

In our plugin, we can use the second parameter to access the options object. In

Listing 10-4, we use the options to populate our plugin’s title and subtitle.

Listing 10-4. Using the Options Passed to a Plugin

let customPlugin = {

 install: function(Vue, options) {

 Vue.prototype.$_customPlugin = {

 title: options.title,

 subtitle: options.subtitle

 };

 }

};

Now in our app we can access our plugins title and subtitle properties to get the

values we passed in. Listing 10-5 uses the same syntax as when we accessed the property

in Listing 10-2. We can see how this looks in the browser in Figure 10-2.

Listing 10-5. Using Properties from the Plugin After They Were Passed In

var app = new Vue({

 el: '#app',

 template: `

 <div>

 <h1>

 {{this.$_customPlugin.title}}

 <small>

 {{this.$_customPlugin.subtitle }}

 </small>

 </h1>

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

197

 Registering a Global Mixin with a Plugin
We can also add functionality to all instances of Vue created after we register our plugin

by registering a global mixin. In Listing 10-6, we create a plugin that registers a global

mixin to add a console log statement with the time when a Vue instance is created,

mounted, and updated. We can see this output in our developer console in Figure 10-3.

Figure 10-2. Using our plugin with options

ChapTer 10 CusTom FunCTIonalITy

198

Listing 10-6. Using a Plugin to Register a Global Mixin

var logLifecyle = {

 created() {

 console.log(`Created at ${new Date().toLocaleTimeString()}`);

 },

 mounted() {

 console.log(`Mounted at ${new Date().toLocaleTimeString()}`);

 },

 updated() {

 console.log(`Updated at ${new Date().toLocaleTimeString()}`);

 }

};

let customPlugin = {

 install: function(Vue, options) {

 Vue.mixin(logLifecyle);

 }

};

Vue.use(customPlugin);

var app = new Vue({

 el: '#app',

 template: `

 <div>

 <h1>

 Getting to Know Vue.js

 </h1>

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

199

 Registering Global Components with a Plugin
We can also share components with a plugin by registering components globally.

In Listing 10-7, we create a component, register it with our plugin globally, and use it

in our app. The results can be seen in Figure 10-4.

Figure 10-3. Our global mixin that logs when a Vue instance is created and
mounted

ChapTer 10 CusTom FunCTIonalITy

200

Listing 10-7. Registering a Global Component and Using it with a Plugin

var sampleComponent = {

 template: `

 <h1>

 Getting to Know Vue.js

 </h1>

 `

};

let customPlugin = {

 install: function(Vue, options) {

 Vue.component('sampleComponent', sampleComponent);

 }

};

Vue.use(customPlugin);

var app = new Vue({

 el: '#app',

 template: `

 <div>

 <sampleComponent />

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

201

 Filters
Filters allow us to create reusable text transformations that can be used in our templates

where we bind using the mustache syntax {{ value }} or when we bind a value using

v-bind:.

Figure 10-4. Using our global component from a plugin

ChapTer 10 CusTom FunCTIonalITy

202

 Creating and Using a Filter
We create a filter as a function that takes a value, does something with that value, and

then returns the results. In Listing 10-7, we create a filter that’s registered with our app

via the filters property, named lowerCase. The function for lowercase takes a value.

If the value is false (false, null, undefined, 0, NaN, ", or "") it returns an empty string;

otherwise, we call toString on the value, so we know that we are dealing with text before

calling toLowerCase and returning the results.

Listing 10-7. Creating a Filter That Converts Text to Lowercase

var app = new Vue({

 el: '#app',

 data: {

 title: 'Getting to Know Vue.js'

 },

 filters: {

 lowercase: function(value) {

 if (!value) {

 return “;

 }

 let text = value.toString();

 return text.toLowerCase();

 }

 },

 template: `

 <div>

 <h1>{{ title | lowercase }}</h1>

 <input

 type="text"

 v-bind:placeholder="title | lowercase" />

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

203

In Listing 10-7, we also see that to apply a filter in the mustache template binding,

we use a single pipe (|) after the value in the <h1>. For the <input> we use a single pipe

following the value with the v-bind: syntax. This all ends up looking like Figure 10-5

when viewed in the browser.

 Creating a Global Filter
To create a filter that is available for use in all Vue instances without defining it on each,

we can register it using the global method before creating our app.

To register a filter globally, we call Vue.filter, passing in the name and the

implementation as parameters. Listing 10-8 shows a global filter named reverse. Its

implementation reverses the text of a string.

Figure 10-5. Using our filter to transform our text to all lowercase

ChapTer 10 CusTom FunCTIonalITy

204

Listing 10-8. Registering a Global Filter

Vue.filter('reverse', function(value) {

 if (!value) {

 return ";

 }

 let text = value.toString();

 return text

 .split(")

 .reverse()

 .join(");

});

 Chaining Filters
Since filters accept the current expression results starting with the original value, we

can change filters. With our global reverse filter, we can add it to our previous lowercase

filter, like we see in Listing 10-9. The results of the lowercase reversed text are shown in

Figure 10-6.

Listing 10-9. Chaining Filters

 <div>

 <h1>{{ title |

 lowercase |

 reverse }}</h1>

 <input

 type="text"

 v-bind:placeholder="title |

 lowercase |

 reverse" />

 </div>

ChapTer 10 CusTom FunCTIonalITy

205

 Arguments
Since filters are JavaScript functions, we can pass additional parameters to use in the

filters implementation.

To pass additional arguments to the filter, we add the parameters in parentheses,

separated by commas following the filter name. These parameters will be available in the

filters implementation in order, following the original value that is passed to the filter.

Listing 10-10 shows a filter named skipLetters, which accepts a second parameter

called place. We use place to skip letters. Figure 10-7 shows the results of skipping every

two places for <h1> and every three places for <input>.

Figure 10-6. Viewing our chained filters in a browser

ChapTer 10 CusTom FunCTIonalITy

206

Listing 10-10. Passing Parameters to a Filter

var app = new Vue({

 el: '#app',

 data: {

 title: 'Getting to Know Vue.js'

 },

 filters: {

 skipLetters: function(value, place) {

 if (!value) {

 return ";

 }

 let text = value.toString();

 return text

 .split(")

 .filter((letter, index) => {

 return (index + 1) % place !== 0;

 })

 .join(");

 }

 },

 template: `

 <div>

 <h1><small>Original:</small> {{ title }}</h1>

 <h1><small>Skip every Two:</small> {{ title |

 skipLetters(2) }}</h1>

 <label>Skip every 4:

 <input

 type="text"

 v-bind:placeholder="title |

 skipLetters(3)" />

 </label>

 </div>

 `

});

ChapTer 10 CusTom FunCTIonalITy

207

 Summary
In this chapter, we learned about creating a plugin to develop global functionality that

can be used in more than one Vue project. We also learned about creating filters to

alter the content of text when bound with mustache syntax or when using v-bind: in a

template.

Figure 10-7. Using parameters to get different results from the same filter

ChapTer 10 CusTom FunCTIonalITy

209
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_11

CHAPTER 11

Tooling
Tooling support and build tools can greatly improve the development experience in any

workflow and that is as true with Vue as well. In this chapter, we will learn about single

file components and the Vue command-line interface.

 Single File Components
Single File Components, or SFCs, allow us to build Vue components in a single file with

separate sections for the template, the JavaScript, and the styles. This allows us to take

advantage of syntax highlighting and code suggestions for the language that is specified

for a particular section.

SFC use the .vue file extension.

To use SFCs, we need a build tool in order to incorporate a build tool like Browserify

or Webpack. The next main section, “Command-Line Interface,” covers how to use the

command-line interface to serve a Vue app that uses SFCs.

 SFC Structure
The three sections of an SFC are as follows:

• Template: This section allows us to create the template for our

component and get full syntax support for the markup.

• Script: This section contains our JavaScript and lets us use module

syntax.

• Style: This section contains our CSS styles.

Listing 11-1 is an example of a SFC that contains the template for an <h1> that’s used

to display the displayText property.

210

Listing 11-1. Example Single File Component

<template>

 <h1>

 Title: {{ displayText }}

 </h1>

</template>

<script>

export default {

 data() {

 return {

 displayText: 'Getting to Know Vue.js'

 };

 }

};

</script>

<style scoped>

h1 {

 color: blue;

}

</style>

You may have noticed the scoped property on the <style> element. By using SFC

and CSS preprocessors, we will be able to scope our styles to the component. This won’t

prevent us from using styles that are global, but it will allow us to target specific elements

in our component regardless of where it is located in the DOM tree.

 Syntax Highlighting
One of the advantages of SFC is the ability of tools, like our editor, to understand the

content in each section. So, the <template> entry is highlighted and gets suggestions like

it’s HTML. The <script> is highlighted and gets suggestions like it’s JavaScript. And the

<style> looks like a stylesheet. Figure 11-1 shows how Listing 11-1 looks in Visual Studio

code.

Chapter 11 tooling

211

Since I am using Visual Studio code, https://code.visualstudio.com/, I am

also using an extension to add Vue-related functionality called the Vue VS Code

Extension Pack, which you can get at https://marketplace.visualstudio.com/

items?itemName=sdras.vue-vscode-extensionpack.

Figure 11-1. Our Vue single file component in an editor

Chapter 11 tooling

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack

212

 Command-Line Interface
Now that we have an understanding of SFCs, we will take some time to figure out how

to get them into a format so they can be used by a web browser. The Vue command-line

interfaces, Vue CLI, allows us to use SFCs along with some other features that help with

development.

With the Vue CLI, we will be able to generate projects with vue create, prototypes

with vue serve, and builds for production with vue build.

Note Vue Cli version 3 release Candidate 3 was the latest release at the time of
writing.

 Prerequisites
To use the Vue CLI, you need some familiarity with the Node Package Manager (NPM).

NPM is installed when Node.js is installed; directions can be found at https://www.

npmjs.com/get-npm.

Once Node.js and NPM are installed, we will be able to install the Vue CLI.

Note if you prefer Yarn, https://yarnpkg.com, it can also be used to install
the Vue Cli.

 Installing Vue CLI
To install the Vue CLI, you need to open a terminal, or command prompt if you prefer,

and enter npm install -g @vue/cli. Once that completes, you should see something

similar to Figure 11-2 on a Mac or Linux machine or something like Figure 11-3 in

Windows.

Chapter 11 tooling

https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://yarnpkg.com

213

Figure 11-2. Installing Vue CLI on Mac/Linux

Chapter 11 tooling

214

Now you should be ready to create a project.

 Vue Create
With the Vue CLI installed, we can create a project from the command line by entering

vue create project-name, where project-name is the name we want to give our

project. This will start the process of creating our app.

For our example app, let’s use the name getting-to-know-vue, as shown in

Listing 11-2.

Listing 11-2. Creating a Vue App with the Vue CLI

vue create getting-to-know-vue

The first thing you might notice in Figure 11-4 is that we are given a choice on using

the default project or manually choosing our options. For now, let’s use the default

options.

Figure 11-3. Installing Vue CLI on Windows

Chapter 11 tooling

215

Once we make the selection, we should see some action in the terminal while the

project is being created. It will eventually stop with something similar to Figure 11-5.

Figure 11-4. Selecting our configuration options

Chapter 11 tooling

216

 Vue Serve
Now that the app is ready, we can follow the directions by going into the project with cd

getting-to-know-vue and using the command npm run serve to see what we have to

start with. The npm run serve command was created by the CLI when our project was

created to use Vue-CLI-Service as a local developer server.

Figure 11-5. Successfully created a Vue app with the Vue CLI

Chapter 11 tooling

217

Running the npm run serve command from the directory created with vue create

should result in the terminal looking like Figure 11-6.

Figure 11-6. Running the npm run serve command

Now we can open the browser to http://localhost:8080/ or

http://192.168.29.200:8080/ from a different computer on the same network to see

what we have to start with.

Chapter 11 tooling

218

Figure 11-7. The first look at our new Vue app on a desktop

Figure 11-7 shows the starting app in a desktop browser and Figure 11-8 shows it on

a separate mobile device.

Chapter 11 tooling

219

Before we make it our own, let’s see what we have to start with.

Figure 11-8. The first look at our new Vue app on a mobile device

Chapter 11 tooling

220

 Project Structure
Figure 11-9 shows the structure created by the Vue CLI.

 Project Root

The project root folder contains the node_modules, public, and src directories.

• node_modules contains all the dependencies downloaded from NPM

when the project was created.

• public contains any items we want to expose for our app as if from

the root URL, like favicon.ico and index.html.

• src contains our Vue app. We will look at this more in a moment.

Figure 11-9. The project structure created by the Vue CLI

Chapter 11 tooling

221

Other items in the project’s root folder are .gitignore, babel.config.js, package-

lock.json, and package.json.

• .gitignore is used to specify what Git should not track if you are

using that as a source control.

• babel.config.js is the config for Babel, https://babeljs.io/, which

is a JavaScript transpiler. This makes it possible to use JavaScript

features that have not yet been implemented in all browsers.

• package-lock.json is used by NPM to track the specific versions

of each dependency used so that future installs will use the same

versions.

• package.json is used to track our project’s configurations,

dependencies, and NPM scripts.

 The src Folder

The src folder is where we will spend most of our time working since it’s where we will

keep the source of our Vue app before it is transpiled, or preprocessed, to be served to

the browser. Figure 11-10 shows the expanded src directory.

Chapter 11 tooling

https://babeljs.io/

222

We can see that we have a directory for assets, components, our App.Vue, and a

main.js file.

• The assets directory contains asset references and components. The

build process will provide these assets.

• The components folder is where we keep our components.

• App.Vue is the main file for our app.

• main.js is the starting point that mounts the app.

Figure 11-10. The src directory structure

Chapter 11 tooling

223

 App.vue

The App.vue is the main container for our app. If we have anything that we want to apply

to the entire app, we should do that here. Let’s take a look at what we start with.

Listing 11-3 shows the App.vue we are starting with. It includes the three sections of

the SFC: <template>, <script>, and <style>.

Listing 11-3. App.vue Before We Start Making Changes

<template>

 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

<script>

import HelloWorld from './components/HelloWorld.vue';

export default {

 name: 'app',

 components: {

 HelloWorld

 }

};

</script>

<style>

#app {

 font-family: 'Avenir', Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

 color: #2c3e50;

 margin-top: 60px;

}

</style>

Chapter 11 tooling

224

In <template>, we can see that it’s creating a <div> with an id of app along with using

the logo from the asset’s directory and using the custom component <HelloWorld> to

display a message. The logo has an URL of ./assets/logo.png but after the app is built

and served by the browser, it will be served from an URL specified by the Vue CLI build.

The <script> element uses the CommonJS import command to access the

HelloWorld custom component before adding to the app via the Vue options object.

The <style> element targets the #app that was specified in <template> to apply

styles with CSS.

 Title.vue

The HelloWorld custom component is a little busy, so let’s delete it and remove its

import from the App.vue. That way, we can use the Title.vue SFC we looked at in

Listing 11-1. Figure 11-11 shows the Title.vue component in the editor.

Figure 11-11. The Title.vue component

Chapter 11 tooling

225

To use of this component, we need to import it to our App.vue with an import

statement and add it to the components of the app in the <script> section. We will then

have to use it in our <template> if we want it to show up, so let’s add it after the logo.

Listing 11-4 shows the complete App.Vue with updates.

Listing 11-4. Using Our Title.vue Custom Component in the App.vue File

<template>

 <div id="app">

 <Title/>

 </div>

</template>

<script>

import Title from './components/Title.vue';

export default {

 name: 'app',

 components: {

 Title

 }

};

</script>

<style>

#app {

 font-family: 'Avenir', Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

 color: #2c3e50;

 margin-top: 60px;

}

</style>

Chapter 11 tooling

226

 Rebuild and Serve

Before you save the App.vue file, you might want to bring the terminal back up where

you ran vue serve. When you save App.vue, the terminal should flash Compiling...

briefly along with some updates about what step is currently being performed. Since our

app is so small at this point, you may not see more than a flash of the screen updating

when you press the same in your editor. Figure 11-12 shows the Compiling screen.

Figure 11-12. Recompiling our app when a change occurs

Chapter 11 tooling

227

Since our app has been rebuilt, we should see it update in the browser, similar to

Figure 11-13.

 Vue Build
With all we have done so far with the Vue CLI, we have been working in dev mode. If we

want to build for production, we will run the vue build command. To run vue build,

we use the npm run build command. Once the build completes, we should get a

summary of the results, similar to Figure 11-14.

Figure 11-13. Updating the app using the Title.vue component

Chapter 11 tooling

228

In our project directory we should now have a new directory called dist. In dist

we should have three directories—css, img, and js—for the app’s styles, images, and

JavaScript, respectively. You will also see index.html and the favicon.ico from the

public directory of our src.

Now that we have our dist directory, we can put it on our public server and share

our wonderful minimized app with the world.

Figure 11-14. Summary results after building our Vue app

Chapter 11 tooling

229

 The CLI User Interface
With Vue CLI version 3, a UI has been added, so we can do the same tasks we do from

the command line using a web interface. To start the UI, enter vue ui on the command

line. A web browser should open, as shown in Figure 11-15.

Figure 11-15. The Vue CLI UI on first load

Chapter 11 tooling

230

Since we already have a project, we can add it using the Import menu on the top of

the screen. This menu lets us browse to our project, as shown in Figure 11-16.

Once we get to the project’s root folder, the Import This Folder button will change to

a darker green, which means we can start looking at the project in the UI.

Figure 11-16. Browsing to an existing Vue project

Chapter 11 tooling

231

The first screen, shown Figure 11-17, will show the plugins installed in the project.

Figure 11-17. Displaying the current project’s plugins

Chapter 11 tooling

232

At the top of the plugins screen, you can choose to add plugins like the Vue Router

and Vuex plugins. Or you can search for a plugin using the + Add plugin button, which

leads to the plugin search screen shown in Figure 11-18.

Figure 11-18. Plugin search screen

Chapter 11 tooling

233

On the left side of the screen, we can choose to look at the project configuration with

the Gear icon. In Figure 11-19, we can view the options for the Vue CLI.

The third option on the left menu is the project tasks. We can see that these are the

build-type tasks that we ran from the command line in Figure 11-20. We can now run

them from the UI.

Figure 11-19. Looking through the configuration options for the Vue CLI

Chapter 11 tooling

234

 Summary
In this chapter we learned about single file components (SFCs) and the Vue CLI. These

two tools work together to create a more seamless development environment with

access to more advanced techniques like transpiling and preprocessors.

Figure 11-20. Project tasks display

Chapter 11 tooling

235
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_12

CHAPTER 12

Using Routers
Being able to quickly change the look and layout of a page without doing a full-page

refresh is awesome, but users like to have links that take them directly to content as

well. After all, what good is a nice web app if you can’t share a link to the content? This

chapter looks at a few different ways to implement routing with Vue.

 DIY Router
First up in our list of router options is the famous do-it-yourself (DIY) router. With the

DIY router, you don’t get any features to start with since you are creating it yourself. What

you do get is possibly the lightest router option. If you don’t need anything more than to

change between pages, this may be your best option.

 Setting Up the DIY Router
To get started with a DIY router, we will need some components. Listing 12-1 shows

three components:

• fourOhFour: When a route isn’t found

• main: For our default path

• contactUs: For our Contact Us page

The main and contactUs components are added to a routes object that has the path

for each component as the name and the components as the values. The fourOhFour

component will be used when the path isn’t found in our routes object.

236

Listing 12-1. Setting Up Our DIY Router Components

const fourOhFour = {

 data: function() {

 return {

 url: window.location.hash

 };

 },

 template: `

 <div>

 <p>Sorry, URL not found : {{url}} </p>

 <p>¯_(ツ)_/¯</p>

 </div>

 `

};

const main = {

 template: `

 <p>Welcome to Getting to Know Vue.js</p>

 `

};

const contactUs = {

 template: `

 <p>Contact Us @ Getting to Know Vue.js</p>

 `

};

const routes = {

 '#/': main,

 '#/contact-us': contactUs

};

In our app, we will add the routes to the data object with a value for the currentPath

that we set to the window.location.hash. We also have a method that sets the value

of currentPath to the hash of the target from the event and a computed property

that returns the currentView from the routes based on the current path or on our

fourOhFour component.

Chapter 12 Using roUters

237

We can see this set up—along with the template that uses the Vue is directive to

dynamically set the component based on the currentView—in Listing 12-2.

Listing 12-2. Our DIY Router App

var app = new Vue({

 el: '#app',

 data: {

 currentPath: window.location.hash,

 routes: routes

 },

 methods: {

 navigate: function($event) {

 this.currentPath = $event.target.hash;

 }

 },

 computed: {

 currentView: function() {

 return this.routes[this.currentPath] || fourOhFour;

 }

 },

 template: `

 <div>

 <a href="#/"

 v-on:click="navigate">

 Main

 <a href="#/contact-us"

 v-on:click="navigate">

 Contact Us

Chapter 12 Using roUters

238

 <div v-bind:is="currentView">

 </div>

 </div>

 `

});

If we look at our app in the browser, we will see Figure 12-1 when we first navigate to

the app. Figure 12-2 shows the Contact Us page. Finally, Figure 12-3 shows the result if

we enter the wrong URL.

Figure 12-1. Our DIY router displaying the main page

Chapter 12 Using roUters

239

Figure 12-2. Our DIY router displaying the Contact Us page

Chapter 12 Using roUters

240

 Vue-Router
The Vue-Router is the official router of Vue. It integrates with Vue, thus allowing it

to work more seamlessly with Vue. It has some nice features, such as nested routes,

modular configuration, route parameters, query string parameters, and wildcard

support, to name a few.

 Setting Up Vue-Router
Vue-Router can be added to your project through NPM, if you are using a package

manager, with the npm install vue-router command. Otherwise, you can add a

reference to the CDN, as shown in Listing 12-3.

Figure 12-3. Our DIY router displaying the 404 page

Chapter 12 Using roUters

241

Listing 12-3. Referencing a CDN to Use Vue-Router

<script src="https://unpkg.com/vue-router/dist/vue-router.js"></script>

If you are using a module system, you will need to import Vue-Router into your app

and call Vue.use on it, as shown in Listing 12-4.

Listing 12-4. Getting Vue-Router Ready Using a JavaScript Module System

import Vue from 'vue';

import Router from 'vue-router';

Vue.use(Router);

Note the Vue.use(Router); command that we use here gets Vue ready to
use the Vue-router plugin. Later, we will configure a Vue-router instance with
routes that we will pass into our Vue instance, when we create it in Listing 12- 6.

We use similar components that we defined for our DIY router in Listing 12-1, with

the only big difference being that the fourOhFour component now uses the $router

object to get the current path, as shown in Listing 12-5.

Listing 12-5. Our Updated FourOhFour Component Using the $router Object to

Get the Current Path

const FourOhFour = {

 computed: {

 url: function() {

 return this.$router.currentRoute.path;

 }

 },

 template: `

 <div>

 <p>Sorry, URL not found : {{url}} </p>

 <p>¯_(ツ)_/¯</p>

 </div>

 `

};

Chapter 12 Using roUters

242

The $router object is passed to the components from the parent Vue instance,

which in our case is the app.

With Vue-Router added to our project and our component adjusted to use the

$router, we need to create an array of routes before we can use them. Each route can

have name, path, and should have a component. The component can be one that was

defined previously or a Vue options object.

Our routes will look like Listing 12-6.

Listing 12-6. Creating Our Routes Array

const routes = [

 {

 path: '/',

 name: 'main',

 component: Main

 },

 {

 path: '/contact-us',

 name: 'contact-us',

 component: ContactUs

 },

 {

 path: '/*',

 name: 'notFound',

 component: FourOhFour

 }

];

If you are wondering about the last router that has the path of /*, that is our wildcard

path and will show our FourOhFour component.

To create our router, we will call new VueRouter and pass in the routes. The routes

can be passed in using JavaScript object destructuring or passed as objects that have a

property named routes that is our array. Listing 12-7 shows both methods.

Chapter 12 Using roUters

243

Listing 12-7. Creating Our Router

// Using JavaScript object destructuring

let router = new VueRouter({ routes });

// Using a JavaScript object with a parameter named 'routes'

let router = new VueRouter({ routes: routes });

Now all that’s left is to use the router in our app and to add the <router-view>

component to our app template. The <router-view> component was included in our

project when we added the Vue-Router and is the same place where the router will insert

the component for the current path.

Listing 12-8 shows our app adding the router and using the <router-view>. It also

includes two <router-links>. The <router-links> were also included with the Vue-

Router and can be used to navigate to new routes.

Listing 12-8. Our App Using the Vue-Router

var app = new Vue({

 router,

 el: '#app',

 template: `

 <div id="app">

 <div id="nav">

 <router-link

 to="/">

 Home

 </router-link> |

 <router-link

 to="/contact-us">

 Contact Us

 </router-link>

 </div>

 <router-view/>

 </div>

 `

});

Chapter 12 Using roUters

244

When we first load our app, we should now see Figure 12-4. Figure 12-5 shows what

it looks like now when we click on the Contact Us link. Figure 12-6 shows what happens

if we go to any other URL.

Figure 12-4. Our Vue-Router main page

Chapter 12 Using roUters

245

Figure 12-5. Our Vue-Router Contact Us page

Chapter 12 Using roUters

246

 Passing Parameters
One thing the Vue-Router can help us handle is pass parameters.

 Route Parameters

We can define router parameters in the path for a route by starting a URL segment with a

colon (:). Listing 12-9 shows a route for a profile. For the most part, it looks like the other

routes we’ve had, with the main difference being that the path has two segments and

the second segment starts with a colon. In case you are wondering, we will look at the

component shortly.

Figure 12-6. Our Vue-Router 404 page

Chapter 12 Using roUters

247

Listing 12-9. Setting Up a Route to Accept a Parameter Named userName

{

 path: '/profile/:userName',

 name: 'profile',

 component: Profile

},

Now we need to create a link to this new path. To do that, we will add a new <router-

link> in our app thats to attribute is set to /profile/Getting to Know Vue.js. This

URL matches the path we defined in our router, with /profile/ as the base for the path

and Getting to Know Vue.js as the parameter named userName. Listing 12-10 shows

the complete <router-link>.

Listing 12-10. Router Link Passing a Parameter

<router-link

 to="/profile/Getting to Know Vue.js">

 Profile

</router-link>

Now that we have a route defined with a parameter and a link that will take us there,

we should take a look at the component that will handle this path.

Listing 12-11 shows our Profile component. The main thing to look at here is that

we use the $route property to access the parameters. Since we are in the template, we

don’t have to use this. However, if we wanted to access the parameters in the JavaScript

for the Profile component, we can do so by using this.$route. The $route object is a

reference to the current active route.

Note We can also access a reference to the router that we passed into our Vue
app from our components with this.$router.

Listing 12-11. Profile Component Using $route to Access the username

Parameter

const Profile = {

 template: `

 <p>

Chapter 12 Using roUters

248

 User Name:

 {{ $route.params.userName }}

 </p>

 `

};

When we navigate to our profile page with <router-link>, we should see something

like Figure 12-7.

Figure 12-7. Viewing our profile

Chapter 12 Using roUters

249

 Passing Parameter Objects

It is possible to pass an object using the <router-link> to attribute with v-bind. In

Listing 12-12, we use v-bind to navigate to the route named profile and pass the

parameter named user. The user parameter has the name and email properties.

Listing 12-12. Using v-bind to Pass an Object to a Path

<router-link

 v-bind:to="{

 name : 'profile',

 params: { user: {

 name: 'Getting to Know Vue.js',

 email : 'gettingToKnowVuejs@Apress.com'

 }

 }

 }">

 Profile

</router-link>

If we adjust our router to have user as the parameter and our Profile component to

access the name and email from the user parameter, as shown in Listing 12-13, we can

navigate to the profile page and see the results in Figure 12-8.

Listing 12-13. Accessing an Object Passed as a Route Parameter in a Component

const Profile = {

 template: `

 <div>

 <h3>User</h3>

 <p>

 Name:

 {{ $route.params.user.name }}

 </p>

Chapter 12 Using roUters

250

 <p>

 Email:

 {{ $route.params.user.email }}

 </p>

 </div>

 `

};

Figure 12-8. Using an object as a route parameter

Chapter 12 Using roUters

251

You might have noticed in the URL that it now says /profile/[object object] and

that doesn’t look so good. We can change the route path so we don’t pass the user object

as a URL parameter by passing it to a property of the component.

Listing 12-14 is an update to our route for the profile. We remove the URL parameter

and add a property name called props with a value of true. Using the props options with

a value of true will pass any parameters we pass to the components properties. So now

we just need to add a prop named user to our Profile component.

Listing 12-14. Using Props in the Route to Populate a Component’s Properties

{

 path: '/profile/',

 name: 'profile',

 component: Profile,

 props: true

},

Next, we need to handle the props that are passed by the router. In Listing 12-15, we

add a prop named user of type Object. In the template, we use this to access the name

and email. These changes should result in our view looking like Figure 12-9 when we

navigate to the profile page.

Listing 12-15. Using Props in Our Profile Component

const Profile = {

 props: {

 user: Object

 },

 template: `

 <div>

 <h3>User</h3>

 <p>

 Name:

 {{ user.name }}

 </p>

Chapter 12 Using roUters

252

 <p>

 Email:

 {{ user.email }}

 </p>

 </div>

 `

};

Figure 12-9. Using the user property that was passed to the Profile component to
get the name and email

Chapter 12 Using roUters

253

 Navigating from JavaScript
We can use the router instance to push a new navigation event onto the stack. In

Listing 12-16, we push the contact-us path onto the router.

Listing 12-16. Pushing a New Route Onto the Router

goToContactUs: function() {

 this.$router.push('contact-us');

}

This is the same as pushing an object with a property named path defined as

contact-us, as shown in Listing 12-17.

Listing 12-17. Pushing an Object that Defines the Path Onto the Router

goToContactUs: function() {

 this.$router.push({ path: 'contact-us' });

},

We can also navigate by passing an object that defines the name of the path we want

to go to. Listing 12-18 shows the process of pushing a named path to the router.

Listing 12-18. Pushing a Router Object that Defines the Name of the Route

goToContactUs: function() {

 this.$router.push({ name: 'contact-us' });

},

We can also push a new route with parameters. Listing 12-19 navigates to the profile

page by passing the same values we used with the <router-link> previously.

Listing 12-19. Passing Parameters While Navigating in JavaScript

goToContactUs3: function() {

 this.$router.push({

 name: 'profile',

 params: {

 user: {

Chapter 12 Using roUters

254

 name: 'Getting to Know Vue.js',

 email: 'gettingToKnowVuejs@Apress.com'

 }

 }

 });

}

 Redirects
We can also define redirects in our router. Redirects allow us to move users to new

content or updated URLs if we change the paths.

To define a redirect, we add a new route. It contains the path property, which is

defined as the route we want to redirect, and a redirect property, which is the new

target URL. Listing 12-20 shows a redirect of /home to /.

Listing 12-20. Adding a Redirect Route

{

 path: '/home',

 redirect: '/'

},

 Aliases
Similar to redirects, aliases take the URL path to a different target, but instead of moving

the user to a new URL, they keep users on the same path they navigated to and show the

components from the defined route.

In Listing 12-21 we add an alias to our main route definition. Figure 12-10 shows our

Main component when we now navigate to the /main URL path.

Listing 12-21. Adding an Alias to Our Main Route

{

 path: '/',

 name: 'main',

 alias: '/main',

 component: Main

},

Chapter 12 Using roUters

255

 The Page.js Router
The official Vue-Router isn’t the only router out there. We can set up our Vue app to work

with Page.js as well.

Page.js is a lightweight client-side router based on the router pattern used with

Express. This pattern might be more comfortable for some.

To use the Page.js router, we will use the same components from Listing 12-1. Our

app will be a little different, as we won’t be doing any work in the app to handle the route

and we will have the currentView be a data property instead of a computed property.

This way, we can set it from outside the app.

Figure 12-10. Viewing the main component with the main alias

Chapter 12 Using roUters

256

Listing 12-22 shows our new app, all set up.

Listing 12-22. Setting Our App Up to Work with Page.js

var app = new Vue({

 el: '#app',

 data: {

 currentView: { template: '<p>Please Wait...</p>' }

 },

 template: `

 <div>

 Main

 Contact Us

 <div v-bind:is="currentView">

 </div>

 </div>

 `

});

You can see that we are setting the value of currentView to a Vue options object that

has a template that says <p>Please wait..</p> This will be replaced once the router

loads the current path.

We need to include a reference to the Page.js library. So we should add the

reference to the CDN from Listing 12-23 to our HTML page.

Chapter 12 Using roUters

257

Listing 12-23. Adding the Page.js Reference

<script src="https://cdn.rawgit.com/visionmedia/page.js/master/page.js">

</script>

All that’s left now is to set up Page.js to work with Vue.

After the Vue app is created in our app.js, let’s set up our routes.

Each route will take the path the route is for and the function to perform when

the route happens. We are setting these routes up after the Vue app so we can use the

reference to the app and set currentView.

For each route we will set the currentView to the component that we want to use.

Listing 12-24 shows our complete route, all set up and calling page() to get things

working.

Listing 12-24. Setting Up the Page.js Routes

page('/', function() {

 app.currentView = main;

});

page('/contact-us', function() {

 app.currentView = contactUs;

});

page('*', function() {

 app.currentView = fourOhFour;

});

page();

This will give us enough routing that, when we load the page in the browser, we

should see Figure 12-11 on the first page load. Likewise, Figure 12-12 shows what we see

when we select the Contact Us link.

Chapter 12 Using roUters

258

Figure 12-11. First page load with Page.js

Chapter 12 Using roUters

259

 Summary
In this chapter we learned about routers. Creating your own router can be an option if

you are looking for something that is lightweight and you don’t mind doing all the work

yourself. Vue-Router provides us with a full-feature approach to routing with options

to pass data via URL parameters or directly to component props. We also saw that it’s

possible to use routers provided by other open source projects with Vue.

Figure 12-12. Navigating to the Contact Us page with Page.js

Chapter 12 Using roUters

261
© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6

Index

A, B
Binding data, 85

forms
check boxes, 92
date, 89
dynamic options

(radio buttons), 98
file inputs, 99
groups of check boxes, 93
hidden, 101
inputs, 85
number, 88
password, 91
preset radio buttons, 96
radio buttons, 95
text, 87
v-model, 85

modifiers
inputs, 106
lazy, 106
number, 107
trim, 109

multiple selects, 104
select, 103
styling (see Styling data)
textarea elements, 102

Browsersync, 6–7

C
Command-line interface (CLI), 212

creation, 214
prerequisites, 212
project structure

App.vue, 223
creation, 220
rebuild and serve, 226
root folder, 220
src folder, 221
Title.vue, 224
Vue build, 227

serve
desktop option, 218
mobile device, 219
npm command, 216–217

user interface
configuration options, 233
current project’s plugins, 231
project manager, 230
search screen, 232
tasks display, 234
web browser, 229

Vue installation, 212
Component

data, 151
events, 158

https://doi.org/10.1007/978-1-4842-3781-6

262

first component, 149
meaning, 149
passing data with props

binding data, 154
browser results, 157
definition, 153
error message, 156
JavaScript object types, 155
props type, default, required and

validator, 157
results, 153, 156
text Prop and binding text, 157
type specification, 155

registration, 163
slots, 162

Computed properties, 57
data updates, 61
formatting text, 58
getTitleBlurb method, 59
methods, 57
properties and re-rendering, 60
result, 59

Conditional rendering, 29
directives, 29
lists (see Lists)
v-else, 36
v-else-if, 38
v-if, 34
v-if v-else v-else-if, 33
v-show (see v-show)

D
Dev tools, 6
Do-it-yourself (DIY) router, 235

components, 235
contact us page, 239
contactUs components, 235

currentView, 237
data store, 130
fourOhFour component, 235
final result page, 240
main page, 238

E
el properties

CSS selector, 9
HTMLElement, 10
No Template, 10
Vue app, 11

Events
handlers, 71

inline method, 73
methods, 72

listeners
Toggle word, 71
v-on, 69

modifiers (see also Modifiers)
results, 80

F
Filters

arguments, 205
chaining option, 204
creation and use of, 202
global filter creation, 203
mustache syntax, 201–202

G, H
getTitleBlurb method, 60

I, J, K
Inline method, 73

Component (cont.)

Index

263

L
Listeners, 69–71
Lists

accessing object properties, 47
basics

key attribute, 44–45
v-for, 42–43

dealing with change
app.teenFilter(), 51
array, 50
array mutation methods, 50
JavaScript splice method, 52
splice-replace, 52
v-for, 51
Vue.set, 52

index and parent properties, 48
objects, 53

action function, 54
calling a function, 55
v-for, 53–54

M
Mixins

baseMixin, 169
creation, 167, 171
directives

modifiers, 178
passing an object, 176
passing a value, 174
use of, 173

multiple mixins, 169
render function (see Render function)
use of, 168

Modifiers
chain modifiers, 80
DOM tree, 79
event propagations setup, 77, 80

input, 81
propagations setup, 78
stop modifier, 79
use of, 75–76
Vue properties, 76

N, O
Node Package Manager (NPM), 212

P, Q
Page.js routers

contact us page, 259
open page, 258
page(), 257
reference, 257
set up, 255–256

Plugins
creation, 193
pass an options object, 195
registering a global mixin, 197
share components, 199
use of, 194

R
Render function

createElement, 184
parameter one, 185
parameter two, 187
tagElement and the

optionsElement, 187
third parameter, 190

render vs. template
render function-element

type, 180–181
sample components, 182

Index

264

templateSample and renderSample
components, 184

template syntax-element type, 181
Routers

aliases, 254
DIY (see Do-it-yourself (DIY) router)
JavaScript, 253
navigation event, 253
Page.js, 255

contact us page, 259
open page, 258
page() function, 257
reference, 257
set up, 256

passing parameters, 246
objects, 249
profile page, 251
route, 246

redirects, 254
set up

array creation, 242
contact us page, 245
FourOhFour component, 241
JavaScript module system, 241
<router-view> component, 243
main page, 244
methods, 242
reference, 240
result page, 246
$router object, 242

Vue-Router, 240

S
Single file components (SFC)

advantages of, 210
structure, 209

syntax highlighting, 210
.vue file extension, 209

Single page application (SPA), 1
State management, 127

data objects, 127
DIY data store, 130
sharing, 127
Vuex, 132

actions, 138
CDN/Self Hosted, 133
getters, 135
modules, 140
mutations, 136
NPM and Yarn, 133
options, 134
promise, 133
state, 134

Styling data, 110
classes, 116

arrays, 121
computed classes, 123
CSS error class, 117
multiple classes, 119
one class, 117

inline styles, 111
objects, 112

T, U
Textarea elements, 102

V
v-else, 36
v-else-if, 38
v-for, 49
v-if, 34
v-if v-else v-else-if, 33

Render function (cont.)

Index

265

v-show
expression evaluations, 30–32
hidden v-show element, 33
overview, 29

Vue.js
computed properties, 22
data

emptyObject, emptyString,
and nullProperty, 16

$ or _, 18
propertyName, 16
reference error, 19
rendering empty

values, 17
El, 9
features, 1
instance

empty HTML file, 2
HTML template, 3
structure of, 3
web browser, 4

methods
binding, 20
declaration, 20
HTML binding, 21

progressive framework, 1
render, 15
SPA, 1
template

querySelector, 14–15
source code, 12
template string, 12
window, 13

template binding
assign a property, 24
binding raw HTML, 26–27
JavaScript expressions, 23
mustache syntax, 22
results of JavaScript expressions, 24
v-bind, 25

Vuex
actions, 138
CDN/Self Hosted, 133
getters, 135
modules

accessing module state, 144
basics, 141
definition, 141, 143
namespace, 145
pilots module definition, 142
RootState, 144

mutations, 136
NPM and Yarn, 132–133
options, 134
promise, 133
state, 134

W, X, Y, Z
Watchers

composite/formatted properties, 62
deep, 65
immediate, 66
new and old Values, 64
results, 63
watch-monitor changes, 62

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Why Vue.js?
	The Value of Vue.js
	Our First Vue.js Instance
	Developer Tools
	Browser Dev Tools
	Browsersync

	Summary

	Chapter 2: The Basics
	Vue Options
	El
	Template
	Render
	Data
	Methods
	Computed Properties

	Template Binding
	Summary

	Chapter 3: Conditional Rendering
	v-show
	v-if v-else v-else-if
	v-if
	v-else
	v-else-if

	Lists
	Basics
	Accessing Object Properties
	Index and Parent Properties
	Dealing with Change
	Objects

	Summary

	Chapter 4: Computer Properties and Watchers
	Computed Properties
	Watchers
	New and Old Values
	Deep
	Immediate

	Summary

	Chapter 5: Events
	Listeners
	Handlers
	Methods
	Inline Method

	Modifiers
	Using a Modifier
	Chain Modifiers
	Input

	Summary

	Chapter 6: Bindings
	Forms
	v-model
	Inputs
	Text
	Number
	Date
	Password
	Check Boxes
	Groups of Check Boxes
	Radio Buttons
	Preset Radio Buttons
	Radio Buttons: Dynamic Options
	File
	Hidden

	Textarea Elements
	Select
	Multiple Selects
	Modifiers
	Lazy
	Number
	Trim

	Styling
	Inline Styles
	Style Objects
	Classes
	One Class
	Multiple Classes
	Multiple Classes with Arrays
	Computed Classes

	Summary

	Chapter 7: State Management
	Simple Data Objects
	DIY Data Store
	Vuex
	Install
	CDN or Self Hosted
	NPM and Yarn
	Promise

	Options
	State
	Getters
	Mutations
	Actions
	Modules
	Basics
	Accessing RootState
	Namespace

	Summary

	Chapter 8: Using Components
	What Is a Component?
	First Component
	Using Data
	Passing Data with Props
	Events
	Slots
	Registration
	Summary

	Chapter 9: Reusable Code
	Mixins
	Creating Mixins
	Using Mixins
	Using Multiple Mixins

	Custom Directives
	Creating a Directive
	Using the Directive
	Passing a Value
	Passing an Object as a Value
	Using Modifiers

	Render Function
	Render versus Template
	createElement
	Parameter One
	Parameter Two
	Parameter Three

	Summary

	Chapter 10: Custom Functionality
	Plugins
	Creating a Plugin
	Using a Plugin
	Using Options
	Registering a Global Mixin with a Plugin
	Registering Global Components with a Plugin

	Filters
	Creating and Using a Filter
	Creating a Global Filter
	Chaining Filters
	Arguments

	Summary

	Chapter 11: Tooling
	Single File Components
	SFC Structure
	Syntax Highlighting

	Command-Line Interface
	Prerequisites
	Installing Vue CLI
	Vue Create
	Vue Serve
	Project Structure
	Project Root
	The src Folder
	App.vue
	Title.vue
	Rebuild and Serve

	Vue Build
	The CLI User Interface

	Summary

	Chapter 12: Using Routers
	DIY Router
	Setting Up the DIY Router

	Vue-Router
	Setting Up Vue-Router
	Passing Parameters
	Route Parameters
	Passing Parameter Objects

	Navigating from JavaScript
	Redirects
	Aliases

	The Page.js Router
	Summary

	Index

