

Early praise for this new edition of Web Development Recipes

If you are a front-end web developer, Web Development Recipes is a must for your
bookshelf. This book is a ready reckoner for developers at all levels.

➤ Shreerang Patwardhan, CSM
Technical Consultant, GSPANN Technologies, Inc.

The second edition of Web Development Recipes continues its status as a veritable
grab bag of interesting front-end web development tips, tricks, and techniques
that will be of particular use to those new to front-end development, those devel-
opers who’ve missed the HTML5 and CSS3 wave so far, or anyone ready to try
out a few new things to make their projects better. Web Development Recipes’ real
skill is in giving you enough ammunition to try new things and to then inspire
you to explore and take things further on your own.

➤ Peter Cooper
Editor, JavaScript Weekly

Web Development Recipes is a reference book, a training manual, and a technology
guide all in one and should be included in every developer’s library. The authors
are seasoned experts who have separated the wheat from the chaff and brought
you the best examples of modern web development to learn from and use imme-
diately in your work.

➤ Steve Heffernan
Author of Video.js

A really thorough explanation of good web development solutions.

➤ Todd H. Gardner
President and Co-Founder, TrackJS

Whether you’re just getting started with the web or looking to expand your skill
set, this updated version of Web Development Recipes provides crisp, clear, and
concise examples across a variety of the latest web technologies. No fluff, no frills.
Just solid, practical advice on how to leverage these tools to work for you.

➤ Kevin Gisi
Senior Staff Engineer, Mashable

I believe the recipes in this book will rekindle your joy of coding, as they have for
me. This book is designed to suit novices, intermediates, and ninjas, with recipes
that combine code snippets with superb explanation. With its diversity of topics
and real-world examples of tasks you face daily, the book will be a favorite that
you go back to as a reference time after time.

➤ Nouran Mahmoud Marouf
Front-End Engineer, Tarifah

Web Development Recipes
Second Edition

Brian P. Hogan
Chris Warren
Mike Weber

Chris Johnson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Eileen Cohen; Cathleen Small (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-056-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

Contents

Acknowledgments vii

Preface ix

1. Eye-Candy Recipes 1
Styling Buttons and Links 2Recipe 1.

Recipe 2. Styling Stand-Alone Quotes with CSS 6
Recipe 3. Creating Animations with CSS3 Transformations 13
Recipe 4. Creating Interactive Slideshows with jQuery 18
Recipe 5. Creating and Styling Accessible Tooltips 25
Recipe 6. Using Font Icons 29

2. User Interface Recipes 35
Creating an HTML Email Template 36Recipe 7.

Recipe 8. Swapping Between Content with Tabbed
Interfaces 47

Recipe 9. Accessible Expand and Collapse 53
Recipe 10. Interacting with Web Pages Using Keyboard

Shortcuts 61
Recipe 11. Rendering HTML with Handlebars Templates 69
Recipe 12. Displaying Information with Endless Pagination 76
Recipe 13. Extending Endless Pagination with pushState() 82
Recipe 14. Snappier Client-Side Interfaces with Knockout.js 87
Recipe 15. Creating a Search Interface with React 97
Recipe 16. Creating Client-Side Apps with Angular.js 107

3. Data Recipes 121
Adding an Inline Google Map 122Recipe 17.

Recipe 18. Creating Charts and Graphs with Highcharts 128
Recipe 19. Building a Simple Contact Form 136
Recipe 20. Accessing Cross-Site Data with JSONP 144

Recipe 21. Creating a Widget to Embed in Other Sites 148
Recipe 22. Building a Status Site with JavaScript and

CouchDB 154

4. Mobile Recipes 163
Targeting Mobile Devices 164Recipe 23.

Recipe 24. Touch-Responsive Drop-Down Menus 168
Recipe 25. Mobile Drag and Drop 173
Recipe 26. Creating Interfaces with jQuery Mobile 180
Recipe 27. Using Sprites with CSS 190

5. Workflow Recipes 193
Rapid, Responsive Design with Skeleton 194Recipe 28.

Recipe 29. Creating a Simple Blog with Enfield 203
Recipe 30. Building Modular Style Sheets with Sass 213
Recipe 31. Cleaner JavaScript with CoffeeScript 221
Recipe 32. Managing Files with Git 230

6. Testing Recipes 241
Testing Websites on Real Devices 242Recipe 33.

Recipe 34. Tracking User Activity with Heatmaps 250
Recipe 35. Browser Testing with Selenium 253
Recipe 36. Testing Web Interfaces with Nightwatch 258
Recipe 37. Testing JavaScript with Jasmine 267

7. Hosting and Deployment Recipes 277
Using Dropbox to Collaborate and Host a Static
Site 278

Recipe 38.

Recipe 39. Setting Up a Virtual Machine 282
Recipe 40. Changing Web Server Configuration Files with

Vim 287
Recipe 41. Configuring Secure Websites with Apache 292
Recipe 42. Securing Your Content 296
Recipe 43. Rewriting URLs to Preserve Links 300
Recipe 44. Automating Static Site Deployment with Grunt 304
Recipe 45. Configuring a Virtual Machine with Puppet 317

A1. Bibliography 325
Index 327

Contents • vi

Acknowledgments
Thanks for picking up our book. We really appreciate it, but you should know
that although we wrote the book, many other awesome people helped make
it what it is.

When we shipped the first edition of the book, we relied on our experiences
as professional web developers working in a wide range of industries. With
this edition, we thought we could come in quickly, update things, drop things
that don’t matter anymore, and call it good. But it’s never that easy. Our
editor, Rebecca Gulick, offered just the right amount of great advice and
prodding to push us all in the right direction.

We’re all extremely grateful to Dave Thomas and Andy Hunt for giving us the
opportunity to write for the Pragmatic Bookshelf. They’ve built a system that
puts readers first but gives authors all the support we need to meet their
expectations. We’re better people because of the work they’ve done. In addition,
we’re thankful to Susannah Pfalzer, who offered some great feedback and
support along the way.

Thanks to Joel Andritsch, Kevin Gisi, Nouran Mahmoud Marouf, and Shree-
rang Patwardhan for their help reviewing this book for technical issues. Joel
and Kevin were especially helpful with their deep dive and awesome insights.

Additionally, we want to thank our other business associates, including Erich
Tesky, Austen Ott, Jeff Holland, and Nick LaMuro, for their support and
feedback throughout the process.

Brian Hogan
I love learning about code and showing other people how to use it, and it’s
great to be able to share that with Mike, Chris, and CJ. It’s always a pleasure
working with these gentlemen on any project, but it’s great to have them join
me on a book like this where there are so many different technologies. We
each have areas that we focus on, which makes it much more manageable.
Thank you for your help, guys.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

I can’t write books without my wonderful wife, Carissa. Sometimes I wonder
if she should get credit on the cover too for putting up with the writing process,
which mostly revolves around me lamenting the fact that I can’t get something
working. She always assures me it’ll work out. Thank you, Carissa, for your
support and love.

Chris Warren
I can’t thank my awesome wife, Kaitlin, enough for her support during the
writing and editing of this book.

Thanks to Brian, Mike, and CJ for sharing in this experience. I’ve known
these guys for a long time, and it was great to get to do this with friends.

Mike Weber
I’d like to thank Brian Hogan for being my mentor over the years and for
getting me started as a web developer. Without him, I wouldn’t be where I am
today.

I’d also like to thank my other coauthors, Chris and CJ, for helping me and
for their effort. I’m lucky to have such hardworking associates.

And, finally, I’d like to thank my wife, Kaley, for putting up with my late nights
writing and revising so we could finish the book.

Chris Johnson
To my wife, Laura, thank you for supporting me every step of this journey.
You gave me strength to work on this project, and your love and support
fueled me all those late nights. To my daughter, Kenzie, I hope you see this
some day and realize that no goal is too big to accomplish.

To my parents, thank you for teaching me to work for things I want and to
never give up.

Thanks to Brian, Chris, and Mike for collaborating on this; you have made
me a better writer with your constant feedback and support. You guys kept
me going when sections got tough, and I really appreciated that.

To my colleagues at both Getty and Madison College, thank you for your
support and feedback.

Acknowledgments • viii

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Preface
It’s no longer enough to know how to wrangle HTML, CSS, and a bit of Java-
Script. Today’s web developer needs to know how to write testable code, build
interactive interfaces, integrate with other services, and sometimes even do
some server configuration, or at least a little bit of back-end work. This book
is a collection of more than forty practical recipes that range from clever user-
interface tricks that will make your clients happy to server-side configurations
that will make life easier for you and your users. You’ll find a mix of tried-
and-true techniques and cutting-edge solutions, all aimed at helping you
truly discover the best tools for the job.

Who’s This Book For?
If you make things on the web, this book is for you. If you’re a web designer
or front-end developer who’s looking to expand into other areas of web
development, you’ll get a chance to play with some new libraries and workflows
that will help you be more productive, and you’ll get exposed to a little bit of
that server-side stuff along the way.

If you’ve been spending a lot of time on the back end and you need to get up
to speed on some front-end techniques, you’ll find some good recipes here as
well, especially in the chapters on workflow and testing.

One last thing—a lot of these recipes assume you’ve had a little experience
writing client-side code with JavaScript and jQuery. If you don’t think you
have that experience, read through the recipes anyway and pick apart the
provided source code. Consider the more advanced recipes as a challenge.

What’s in This Book?
We’ve included a bunch of great topics to get you started on the path to more
advanced web development. Each recipe poses a general problem and then
lays out a specific solution to a scenario you’re likely to encounter, whether
it’s how to test your site across multiple web browsers, how to quickly build

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

and automatically deploy a simple static site, how to create a simple contact
form that emails results, or how to configure Apache to redirect URLs and
serve pages securely. We’ll take you through both the how and the why so
you can feel comfortable using these solutions in your projects. Since this is
a book of recipes, we can’t go into a lot of detail about more complex system
architecture, but you’ll find some suggestions on where to go next in each
recipe’s Further Exploration section.

We’ve organized the recipes into chapters by topic, but you should feel free
to jump around to the topics that interest you. Each chapter contains a mix
of beginner and intermediate recipes, with the more complex recipes at the
end of each chapter.

In Chapter 1, Eye-Candy Recipes, on page 1, we cover some ways you can
use CSS and other techniques to spice up the appearance of your pages.

In Chapter 2, User Interface Recipes, on page 35, you’ll use a variety of tech-
niques to craft better user interfaces—including use of JavaScript frameworks
like Knockout and Angular—and you’ll look at how to make better templates
for sending HTML emails.

In Chapter 3, Data Recipes, on page 121, you’ll look at ways you can work with
user data. You’ll construct a simple contact form and do some work with
charts, and you’ll take a peek at how to build a database-driven application
using CouchDB.

In Chapter 4, Mobile Recipes, on page 163, you’ll take user interfaces a step
further and look at ways you can work with the various mobile computing
platforms. You’ll spend some time with jQuery Mobile, look at how to handle
multitouch events, and dig a little deeper into determining how and when to
serve a mobile version of a page to your visitors.

In Chapter 5, Workflow Recipes, on page 193, you’ll discover ways you can
improve your development process to produce quality code while being more
productive in the process. We’ll investigate how Sass can make your life eas-
ier when you’re managing large style sheets. And we’ll explore CoffeeScript,
a language that produces JavaScript that works everywhere but lets you take
advantage of more modern language capabilities.

In Chapter 6, Testing Recipes, on page 241, you’ll create more bulletproof sites
by using automated tests, and we’ll show you how to start testing the Java-
Script code you write.

Finally, we’ll turn our attention to moving into production in Chapter 7,
Hosting and Deployment Recipes, on page 277. We’ll walk you through building

Preface • x

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

a virtual machine so you have a testing environment to try things in before
you set up your production environment, and we’ll cover how to set up secure
sites, do redirects properly, and protect your content. We’ll also show you
how to automate the deployment of websites so you won’t accidentally forget
to upload a file.

What You Need
We’ll be introducing you to many new technologies in this book. Some of them
are fairly new and somewhat subject to change, but we think they’re com-
pelling and stable enough to talk about at an introductory level. That said,
web development moves quickly. We’ve taken steps to ensure that you can
still follow along, by providing copies of the libraries we use in these recipes
with the book’s source code where appropriate.

We’ve tried to keep the prerequisites to a minimum, but you’ll want to famil-
iarize yourself with a few things before you dig in.

HTML5 and jQuery
We use HTML5 markup in our recipes—you won’t find any self-closing tags
in our markup, and you’ll see some new tags like <header> and <section> in
some of the examples. If you’re not familiar with HTML5, you might want to
read HTML5 and CSS3: Level Up With Today’s Web Technologies [Hog13].

We’ll also use jQuery when it’s appropriate. Several of the libraries we intro-
duce in these recipes rely on it, and it often results in code that’s easier to
understand. In most cases, our code examples will fetch jQuery from Google’s
content delivery network. In a couple of cases libraries will require specific
versions of jQuery, and we’ll be sure to point those out.

JavaScript Coding Conventions
To ensure that JavaScript doesn’t block the page from loading quickly, we’ll
place all of our JavaScript code in the body of the page, right above the closing
<body> tag. This also eliminates the need for us to use any checks to see if
the document is ready.

As a convention, we’ll prepend any variable names that reference jQuery
objects with a dollar sign so we know when we’re referencing jQuery objects
vs. regular variables. This makes these variables easier to identify when we’re
reading the code later:

// jQuery object // not jQuery
var $images = $("#images"); var options = {fx: fade};

report erratum • discuss

What You Need • xi

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Finally, we’ll enclose all of our JavaScript inside an Immediately-Invoked
Function Expression (IIFE) to avoid polluting the global state:

(function($){
// Our code goes here.
// All variables within are local to this function expression.

})(jQuery);

This also can have an impact on performance, as JavaScript can reference
the variables directly in the IIFE instead of having to look in the global scope.

The Shell
You’ll work with various command-line programs in these recipes whenever
possible. Working on the command line is often a huge productivity boost,
because a single command can replace multiple mouse clicks, and you can
write your own scripts to automate these command-line tools. The shell is
the program that interprets these commands. If you’re on a Windows machine,
you’ll use the Command Prompt. If you’re on OS X or Linux, that’s the
Terminal.

Shell commands will look something like this:

$ mkdir javascripts

The $ represents the prompt in the shell, so you’re not meant to type it in.
The commands and processes you’ll use are platform-independent, so whether
you’re on Windows, OS X, or Linux, you’ll have no trouble following along.

Node.js
Several recipes in this book require that you have Node.js installed. We’ll be
using some tools that require Node.js to run, such as Grunt, Enfield, Coffee-
Script, and Sass. Visit the Node.js website1 and install the version for your
operating system.

QEDServer
Several of the recipes in this book make use of an existing product-manage-
ment web application. You can work with this application by installing
QEDServer,2 a stand-alone web application and database that requires mini-
mal setup. QEDServer works on Windows, OS X, and Linux. All you need is
a Java Runtime Environment. Whenever we refer to our development server,
we’re talking about this. It gives us a stable web-application back end for our

1. http://nodejs.org/
2. A version for this book is available at http://webdevelopmentrecipes.com/.

Preface • xii

report erratum • discuss

http://nodejs.org/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

demonstrations, and it gives you a hassle-free way to work with Ajax requests
on your local machine.

The examples in this book will run against the version of QEDServer that
we’ve bundled with the book’s code examples, which you should download
from the book’s website.3

To use QEDServer, you start the server with server.bat on Windows or ./server.sh
on OS X and Linux. This creates a public folder that you can use for your
workspace. If you create a file called index.html in that public folder, you can
view it in your web browser by visiting http://localhost:8080/index.html.

A Virtual Machine
Several chapters in this book use a Linux-based web server with Apache and
PHP. You’ll learn how to set up your own copy of this server in Recipe 39,
Setting Up a Virtual Machine on page 282, but we’ve provided a virtual machine
that’s already configured, which you can get from http://www.webdevelopmen-
trecipes.com/. You’ll need the free VirtualBox4 application to run the virtual
machine.

Online Resources
The book’s website5 has links to an interactive discussion forum as well as a
place to submit errata for the book. You’ll also find the source code for all the
projects we build. Readers of the ebook can interact with the box above each
code excerpt to view that snippet directly.

With all that out of the way, we’re ready to jump in. We hope you enjoy this
book and that it gives you some ideas for your next web project!

Brian, Chris, CJ, and Mike

3. http://webdevelopmentrecipes.com
4. http://www.virtualbox.org/
5. http://pragprog.com/titles/wbdev2

report erratum • discuss

Online Resources • xiii

http://localhost:8080/index.html
http://www.webdevelopmentrecipes.com/
http://www.webdevelopmentrecipes.com/
http://webdevelopmentrecipes.com
http://www.virtualbox.org/
http://pragprog.com/titles/wbdev2
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 1

Eye-Candy Recipes
A solid application is great, but a couple of extra touches on the user interface
can make a huge difference. If they’re easy to implement, that’s even better.

In this chapter, we’ll use CSS to style some buttons and text, and we’ll do
some animations using CSS and JavaScript.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 1

Styling Buttons and Links

Problem
Buttons are an important element in user interaction with our websites, but
each browser has its own idea of what a button should look like. On top of
that, sometimes we might want links to look like buttons. For example, if we
have a form on a page, we may want a button that submits the form, and a
link that cancels the process and takes us to another part of the site—and
we want those elements to match visually. Additionally, it’d be great if we
could control the look of form buttons without having to create a new graphic
with new text each time we need one.

Ingredient
• A CSS3-compliant web browser, such as Internet Explorer 9 or higher,

Safari, Opera, Firefox, or Chrome

Solution
Using CSS to style form elements or links is common, but by using a single
class and a few CSS rules, we can create a style that makes links and buttons
match. This gives us a consistent style across our elements without resorting
to using buttons for links, or links to submit forms. Best of all, we can override
the default styles that vary among browsers and operating systems.

Since we want to achieve a common appearance for both links and buttons,
we start by creating a simple prototype HTML page containing a link and a
button:

cssbuttons/index.html
<p>

<input class="button" type="button" value="A Button!">
A Link!

</p>

Note that we assign a class of button to both elements. We’ll use this class to
style both the link and the input elements so that you can’t tell one from the
other on the page.

Chapter 1. Eye-Candy Recipes • 2

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/cssbuttons/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

As we set up our button class, many of the attributes that we set apply to both
the link and input elements, while a few serve to make them consistent with
each other.

First we apply the basic CSS attributes for both:

cssbuttons/css-buttons.css
.button {

border: 1px solid #282727;
background-color: #DBC73C;
display: inline-block;
font-weight: bold;
font-family: "Verdana";
text-transform: uppercase;

}

We use display: inline-block to ensure that both elements can have proper widths
and heights. On modern browsers, buttons already have this property set,
but links don’t. The result looks like the following figure:

With these basic attributes, we already have some consistency between the
objects, as the preceding figure shows, but we’re far from done. The font sizes
don’t match and the padding is different, so it’s easy to tell that these are not
the same type of element. So, we tweak those values in the .button rule:

font-size: 1.2em;
line-height: 1.22em;
padding: 6px 20px;

By setting the font-size, line-height, and padding on the class, we override any values
already set on the <a> element and input elements. Now our buttons look a
little better:

We still need to address a few inconsistencies that give away that these two
elements aren’t the same. When you hover over a button, the cursor doesn’t
change from an arrow to a pointer, as it does when you hover over a link. So
we have to choose the behavior we want and apply it to both. Additionally,
links pick up the default link color on the page, and linked text is underlined.
So we unify those as well:

cursor: pointer;
color: #000;
text-decoration: none;

report erratum • discuss

Styling Buttons and Links • 3

http://media.pragprog.com/titles/wbdev2/code/cssbuttons/css-buttons.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Zooming in on our buttons in the Firefox browser reveals that, although
they’re close to the same height, the link is slightly smaller. This discrepancy
is enough to be noticeable, so we want to address it. Firefox adds a little extra
padding to its buttons, but we can override that by specifically targeting
buttons in Firefox like this:

input::-moz-focus-inner {
border: 0;
padding: 0;

}

And in Chrome, when you click the first button, you see an outline around
the box. To remove that outline, we can add this style:

input.button { outline: none; }

This removes the last discrepancy between our two buttons, allowing us to
focus on their overall look. We can improve that by rounding the corners and
adding a bit of a drop shadow, by adding this code to our existing .button rule:

cursor: pointer;
color: #000;
text-decoration: none;
border-radius: 12px;➤

-webkit-box-shadow: 1px 3px 5px #999;➤

box-shadow: 1px 3px 5px #999;➤

Our buttons now look like the ones in the following figure:

All modern browsers support the border-radius property, but notice that we’re
adding two lines to our style sheet for box-shadow. The second line is enough
for most modern browsers with CSS3 support, but by also including the -webkit
prefixed property, we provide support for older versions of Safari and the
Android browser. The -webkit prefix is for WebKit-based browsers such as
Safari, Opera, and Chrome. (Chrome and Opera use the Blink rendering
engine, which is a fork of WebKit.)

As a final touch, let’s add a subtle gradient for texture. We’ll use this to our
advantage shortly when we set the look of the buttons when they’re clicked.
First, we add this to the end of our .button rule:

background: -webkit-linear-gradient(top, #FFF089, #DBC73C);➤

background: linear-gradient(to bottom, #FFF089, #DBC73C);➤

}

And with those lines added, our buttons look like this:

Chapter 1. Eye-Candy Recipes • 4

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Once again, two lines achieve the same effect across multiple browsers. In
this case, we’re not only prefixing a rule. The syntax that WebKit-based
browsers use is slightly different from the standard.

Finally, we want to add some CSS associated with click events so that a
visual indicator shows that the button was clicked. Users expect that indica-
tion, and its absence can be disconcerting. Although we have numerous ways
to convey that the button was clicked, the simplest is to reverse the gradient:

.button:active, .button:focus {
color: #000;
background: -webkit-linear-gradient(top, #DBC73C, #FFF089);
background: linear-gradient(to bottom, #DBC73C, #FFF089);

}

We can reverse the gradient in several ways, but the easiest way to do it
consistently across browsers is to swap the colors at each end of the gradient.
By setting this background on .button:active and .button:focus, we ensure that the
excepted changes happen, whether the link or the input button is clicked.

CSS-styled links and input buttons allow us to style otherwise disparate ele-
ments and use them in the appropriate manner—links for navigating between
pages and input buttons for submitting data—while presenting a consistent
interface. By not relying on JavaScript to make a link submit a form or a
button outside of a form redirect to a page, we avoid breaking functionality
in older browsers, and we make it easier to understand how the page is
working.

Further Exploration
We’ve chosen the colors for the buttons in this recipe, but you’ll probably
want to change them for your own projects. If you need help getting your own
gradients right, check out http://www.westciv.com/tools/gradients/.

If a button isn’t available to the user, you can remove it from the interface.
Or you can add a disabled class to it and style it appropriately, making it look
more faded out. Once you have a disabled-button style that you like, what
else must you do to truly disable it? Form inputs have a disabled attribute, but
for links you’ll need to use JavaScript to apply the disabled class.

Also See
• Recipe 2, Styling Stand-Alone Quotes with CSS on page 6
• Recipe 30, Building Modular Style Sheets with Sass on page 213

report erratum • discuss

Styling Buttons and Links • 5

http://www.westciv.com/tools/gradients/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 2

Styling Stand-Alone Quotes with CSS

Problem
Quotations from experts and praise from customers carry a lot of weight, so
we often want to draw attention to these quotations visually. Sometimes we
offset the margins a bit, increase the font size, or use large curly quotation
marks to make the quotation stand out. On a website, we want to do that in
a simple and repeatable fashion while keeping the presentation of the quota-
tion separate from the markup.

Ingredient
• A web browser that supports HTML5 and CSS3

Solution
We typically use CSS to separate our presentation from the content, and
styling quotations shouldn’t be any different. Modern browsers support some
more advanced properties we can use to make our quotations stand out,
without adding much additional markup to the page.

We’ve been asked to add some short customer reviews for the product pages
of our store. They’re only a couple of sentences long, but each product page
will have several quotes, and we want them to stand out from the product
descriptions. First, let’s look at the HTML and CSS techniques we’ll pull
together to make this happen.

We want to have a solid foundation to build our CSS upon, so we start by
setting up our HTML structure. Using the <blockquote> and <cite> tags makes
sense for wrapping the quote and the source, respectively:

cssquotes/quote.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>Quote</title>
<link rel="stylesheet" href="basic.css">

</head>
<body>

Chapter 1. Eye-Candy Recipes • 6

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quote.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<blockquote>
<p>

Determine that the thing can and shall be done,
and then we shall find the way.

</p>
<cite>Abraham Lincoln</cite>

</blockquote>
</body>

</html>

Now that we have good semantic markup for our quotes, we’ll start styling
them. First we take a simple approach: we put a border around the quote
and increase the size of the text, while putting a bit less emphasis on the
author’s name and sliding that to the right. The quotes look like this:

Here’s how we make that happen:

cssquotes/basic.css
blockquote {

border: 1px solid black;
padding: 5px;
width: 225px;

}

blockquote p {
font-size: 2.4em;
margin: 5px;

}

blockquote > cite {
color: #AAA;
display: block;
font-size: 1.2em;
text-align: right;

}

report erratum • discuss

Styling Stand-Alone Quotes with CSS • 7

http://media.pragprog.com/titles/wbdev2/code/cssquotes/basic.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

In this basic style, we give the <blockquote> a width and a border. We then use
a direct child selector on the <cite> tag to make sure we’re styling it only if it’s
a child of the <blockquote>. We change the color of the author’s name, adjust
the padding to line everything up as we’d like, and end up with a simple but
good-looking quote.

Now that we’ve established our basic quote style, we can start to get fancier.
Rather than using a border, let’s surround the quote with large styled quota-
tion marks. First, we style the quote itself. We add some space on the left
using a left margin so we have some room for the quote:

cssquotes/quotation-marks.css
blockquote {

margin-left: 50px;➤

padding: 5px;➤

position: relative;➤

width: 225px;➤

}

Then we adjust the paragraph inside the quote. We want to place the quotation
marks behind the text, so we need to pull the paragraph out of the normal
flow by setting its position and z-index properties:

cssquotes/quotation-marks.css
blockquote p {

font-size: 2.4em;
margin: 5px;
z-index: 10;➤

position: relative;➤

}

Next we add the quotation marks:

cssquotes/quotation-marks.css
blockquote:after, blockquote:before {

position: absolute;
z-index: 1;
font-size: 12em;
color: #2ABBD5;
text-shadow: 2px 2px 0 #DDD;
font-family: serif;
height: 0;

}

blockquote:before {
content: "\201C";
top: -30px;
left: -55px;

}

Chapter 1. Eye-Candy Recipes • 8

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

blockquote:after {
content: "\201D";
bottom: 30px;
right: 0;

}

To achieve this effect, we use the :before and :after selectors, which let us insert
content into the document when the specified tags are encountered on the
page. Using the content attribute, we can specify what that content should be,
whether it’s open-quote and close-quote codes, a specific character code, or a
string. Although open-quote and close-quote are the standards, not every browser
understands them, so we’re using character codes.

The text we add can be styled like any other element. Here we adjust the
color, font family, and font size of the quotes, and we add a text shadow to
make the quotes pop a little.

Pay attention to the z-index attribute that was added, as well as the position:relative;
attribute on blockquote p. Using the position attributes plus z-index lets us place
the quotation marks behind the quote, so we don’t need any extra space for
the marks; plus, it looks cool to have the text overlaying them. We also position
our blockquote:after along the bottom so that no matter how long the quote gets,
the closing quotation mark stays at the end.

Finally, we add a dash before the author’s name, using the same technique
we used for the quotation marks:

cssquotes/quotation-marks.css
blockquote > cite:before {

content: "-- ";
}

When we’re done, we get something like this:

report erratum • discuss

Styling Stand-Alone Quotes with CSS • 9

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

And that’s pretty nice. And we didn’t have to make any modifications to the
markup.

For our last style, we’ll go all out and style the quotes to look like speech
bubbles. Our goal is to create something that looks like the following:

Thanks to CSS3, we don’t need images to put our quote inside a speech
bubble. We can use a combination of the techniques we’ve used so far to get
the same result. We start by setting a background color on the blockquote. This
will be displayed in all browsers, even ones that don’t support the CSS3 effects
we’re applying. Next we use the linear-gradient attribute to apply a background
that has a gradient, and then we round the corners of the element by using
the border-radius attribute. Now we have this:

cssquotes/speech-bubble.css
blockquote {

background-color: #FAF205;
background-image: -webkit-linear-gradient(top, #FAF205 20%, #FFFC9C 100%);
background-image: linear-gradient(#FAF205 20%, #FFFC9C 100%);
border-radius: 20px;
padding: 15px 30px;
position: relative;
margin: 0;
width: 225px;

}

As you learned in Recipe 1, Styling Buttons and Links on page 2, because
different browsers use different syntax for linear-gradient, we must use multiple
lines of code to get the same (or similar) effects across browsers. Although
current versions of Safari and Chrome no longer need this special prefix, we’re
including it to support some older Android and iOS devices that still do.

We place the unprefixed linear-gradient, which covers all of the current web
browsers, after the prefixed ones.

We need to make a few changes in the blockquote p and blockquote > cite styles:

Chapter 1. Eye-Candy Recipes • 10

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

cssquotes/speech-bubble.css
blockquote p {

font-size: 1.8em;
margin: 5px;
position: relative;
z-index: 10;

}

blockquote > cite {
bottom: -70px;
left: 50px;
display: block;
font-size: 1.1em;
position: absolute;

}

We change the size of the paragraph text slightly, and we use absolute posi-
tioning to push the citation down, away from the quote.

Finally, we create the bottom triangle of our speech bubble by using block-
quote:after:

cssquotes/speech-bubble.css
blockquote:after {

border-color: transparent #FFFC9C;
border-style: solid;
border-width: 0 15px 50px 0px;
content: "";
display: block;
bottom: -50px;
left: 40px;
position: absolute;
width: 0;
z-index: 1;

}

We set the content to an empty string because there’s no need for actual content
here; we want to create a new content element so we can style its borders.
By setting the border widths to different thicknesses between the top and
bottom, and left and right, we create a triangle. Multiple values can be set on
any CSS attribute that can specify values for each side, in the clockwise order
of top, right, bottom, left. We use this to set the sizes of the borders as well
as the border-colors, with transparent borders on the top and bottom and color
on the right and left.

Further Exploration
We focused on styling quotations in this recipe, but the techniques can be
applied in many other situations. For example, by combining the CSS you

report erratum • discuss

Styling Stand-Alone Quotes with CSS • 11

http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

wrote with the code in Recipe 8, Swapping Between Content with Tabbed
Interfaces on page 47, you can further customize the style of our different
examples, tweaking colors to help distinguish between different sets of data.
You can also apply the ideas in Recipe 27, Using Sprites with CSS on page
190, to add background images to your quotes or examples.

What other styles can you come up with for quotes? In our final example, we
created a speech bubble. Swapping a border from right to left on the block-
quote:after flips it on the vertical axis, but what would we have to do to move
the author’s name and the triangle to the top of the bubble?

We can use these same techniques to create other kinds of irregular shapes
that can make design elements stand out, including stars, hearts, and the
infinity symbol. The CSS-Tricks site has some great examples of these different
shapes;1 you can experiment with the examples there and see what else you
can come up with.

Also See
• Recipe 1, Styling Buttons and Links on page 2
• Recipe 27, Using Sprites with CSS on page 190
• Recipe 8, Swapping Between Content with Tabbed Interfaces on page 47
• Recipe 30, Building Modular Style Sheets with Sass on page 213

1. https://css-tricks.com/examples/ShapesOfCSS/

Chapter 1. Eye-Candy Recipes • 12

report erratum • discuss

https://css-tricks.com/examples/ShapesOfCSS/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 3

Creating Animations with CSS3 Transformations

Problem
Flash used to be the go-to tool for developers wanting to add animations to
their sites. But as Flash animations become a distant memory, we have a
new, built-in tool for animating content with CSS3. However, we may still
run into sites that rely on Flash and need to be modernized.

Our client’s website originally had its logo done in Flash so that a “sheen”
could be seen crossing the logo when the user loaded the page. He just noticed
that his site looks different on his phone, and he’s not only frustrated that
his animation doesn’t display, but he’s even more concerned that his logo
doesn’t show up at all. While the missing effect doesn’t break the entire site,
the missing logo removes some of the site’s branding.

Ingredient
• CSS3

Solution
We’ll replace the Flash logo with an image so it appears in all browsers. And
we’ll add back the animation for browsers that support CSS3 transformations.

Since the advent of CSS3 transitions and transformations, we’ve been able
to add animations to sites natively without resorting to plug-ins like Flash,
or even having to rely on large JavaScript libraries. The animation we’ll add
will be visible to all users except those who might still be using Internet
Explorer 9 or older.

Let’s start with the markup for the header that contains the logo. We add an
ID of banner to our <header> element and a class to the tag so we can
access them from the style sheet later:

csssheen/index.html
<header id="banner">

<div class="sheen"></div>

</header>

report erratum • discuss

Creating Animations with CSS3 Transformations • 13

http://media.pragprog.com/titles/wbdev2/code/csssheen/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

To get the effect we’re looking for, we can create a semitransparent, angled,
and blurred HTML block that moves across the screen after the Document
Object Model (DOM) is loaded. So, let’s start by defining our header’s basic
style. We want a blue banner that crosses the top of our content. To do this,
we give our header the desired width and position the logo in the upper-left
corner of our header:

csssheen/style.css
body {

background: #CCC;
margin: 0;

}
#banner {

background: #436999;
margin: 0 auto;
width: 800px;
height: 150px;
display: block;
position: relative;

}
#banner img.logo {

float: left;
padding: 10px;
height: 130px;

}

With our basic layout in place, we can add the decorative elements for the
animation. Let’s first create the blurred HTML element. Since this is an extra
effect that has nothing to do with the content of our site, we want to do it
with as little extra HTML markup as possible. We use the <div> with the sheen
class that we defined in our markup:

csssheen/style.css
#banner .sheen {

height: 200px;
width: 15px;
background: rgba(255, 255, 255, 0.5);
float: left;

}

In the current state of our page, as shown in the preceding image, we see
that we’ve added a thin, white, transparent line that’s taller than our header.

Chapter 1. Eye-Candy Recipes • 14

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’re off to a great start. Now we want to blur the sheen element and reposi-
tion it so it starts left of the header and is slightly angled. To change the angle
of the rectangle, we need to add a browser-specific prefix to our transform style.
Browser-specific prefixes were created to add “new” CSS3 features before the
CSS3 specs were finalized. As of the writing of this book, the CSS3 specs are
still in development, but not nearly as many prefixes are required. Because
browser prefixes are a bit of a moving target, we recommend referencing David
Hund’s site2 to find out which prefixes are still necessary. While it won’t hurt
to add prefixes to styles that used to require them, maintaining these styles
can be tedious and error-prone.

csssheen/style.css
#banner .sheen {

position: absolute;
left: -100px;
top: -25px;
box-shadow: 0 0 20px #FFF;
-webkit-transform: rotate(20deg);
transform: rotate(20deg);

}

With our styles in place, we’re almost ready to animate our sheen. Next we
add the transition declarations, which we use for controlling the animation:

csssheen/style.css
#banner .sheen {

transition: left 2s ease-in-out;
}

The transition definition takes three arguments. The first tells the browser which
CSS attributes should be tracked. For our example, we only want to track
the left attribute, since we’re animating the sheen as it travels across the
header. (This can be set to all to control the transition of any attribute changes.)
The second parameter defines how long the animation takes, in seconds. This
value can be a decimal, such as 0.5s, up to multiple seconds for a longer
transition when slower changes are desired. The final argument is the name
of the timing function to use. We use one of the default functions, but you
can define your own. Ceaser3 is a tool that we could potentially use to define
our own function.

Next, we need to add a style declaration that defines where we want the sheen
to end up. In this case, it should end on the right side of the header. We could
attach this to the hover event:

2. http://shouldiprefix.com
3. http://matthewlein.com/ceaser/

report erratum • discuss

Creating Animations with CSS3 Transformations • 15

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://shouldiprefix.com
http://matthewlein.com/ceaser/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

header:hover .sheen {
left: 900px;

}

But if we do that, the sheen will revert to its starting spot when the user
hovers away from the header. We want to make this a one-time deal, so we
need to use a little bit of JavaScript to change the state of the page. We add
a special class called loaded to our style sheet; this class positions the sheen
all the way at the end of the logo:

csssheen/style.css
#banner.loaded .sheen { left: 900px; }

Then we add the following JavaScript at the end of the <body> to add that
class to the header, which triggers the transition:

csssheen/index.html
<script>

setTimeout(function() {
document.getElementById('banner').className = 'loaded';

}, 50);
</script>

In the preceding image, it might appear that all we’re doing is moving a
blurry bar across the screen. But now that we’re done styling the sheen, we
can clean up the overall look by tweaking the style once more. We add a style
of overflow: hidden; to the header, which hides the part of the sheen that hangs
over the edges:

csssheen/style.css
#banner {

overflow: hidden;
}

With all of our styles in place, we can trigger the entire animation with the
change of a CSS class. We no longer have to rely on a whole JavaScript ani-
mation suite or Flash for adding smooth animations to our websites.

This approach has the added advantage of saving our users’ bandwidth.
Although this doesn’t affect most users, we don’t always know when a user
might visit our site from an iPad or other mobile device using cellular coverage.

Chapter 1. Eye-Candy Recipes • 16

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/index.html
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

This approach requires fewer files to download, so our users enjoy faster load
times with less stress on their data plans. We should always keep site opti-
mization in mind when developing websites.

In browsers that don’t support these new style rules, our site simply displays
the logo image. By separating style from content, we get the benefit of back-
ward compatibility and better accessibility for users with screen readers,
thanks to the alternative text on the tag.

Further Exploration
We covered only a few of the transformations and transitions that are available
to us. Other transformation options include scaling and skewing. We can also
get more fine-grained control over how long each transformation takes, or
even which transformations we actually want to transition. Some browsers
also enable us to define our own transitions. The built-in control that web
developers finally have over animation is exciting and long overdue.

Also See
• Recipe 1, Styling Buttons and Links on page 2
• Recipe 2, Styling Stand-Alone Quotes with CSS on page 6
• Recipe 30, Building Modular Style Sheets with Sass on page 213

report erratum • discuss

Creating Animations with CSS3 Transformations • 17

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 4

Creating Interactive Slideshows with jQuery

Problem
A few years ago, if you wanted to have an animated slideshow on your website,
you’d probably create a Flash movie. Simple tools make this an easy process,
but maintaining the photographs in the slideshow often means rebuilding
the Flash movie. Additionally, many mobile devices don’t support Flash
Player, so those users can’t see the slideshows at all. We need an alternative
solution that works on multiple platforms and is easy to maintain.

Ingredients
• jQuery
• The Cycle2 jQuery plug-in4

Solution
We can build a simple and elegant image slideshow using jQuery and the
jQuery Cycle plug-in. This open-source tool will give our users a nice slideshow
and only requires a browser with JavaScript support.

Many JavaScript-based image-cycling plug-ins are available, but what sets
the Cycle2 plug-in apart is its ease of use. It has many built-in transition
effects and provides controls for the user to navigate through images. It’s well
maintained and has an active developer community. It’s the perfect choice
for our slideshow.

Our current home page is somewhat static and boring, so our boss wants us
to build a slideshow showcasing the best of our company’s photographs. We’ll
take some sample photographs and build a simple prototype that uses the
Cycle2 plug-in.

We start by creating a simple home-page template containing the usual boil-
erplate code, named index.html, that will hold our image slideshow:

4. http://jquery.malsup.com/cycle2/

Chapter 1. Eye-Candy Recipes • 18

report erratum • discuss

http://jquery.malsup.com/cycle2/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

image_cycling/index.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>AwesomeCo</title>

</head>
<body>

<h1>AwesomeCo</h1>
</body>

</html>

Next, we download the Cycle2 plug-in and place it in the same folder as our
HTML page. We also create an images folder and place a few sample images
our boss gave us to use for the slideshow. You can find these images in the
book’s source-code folder in the image_cycling folder.

Next, we add jQuery and the jQuery Cycle2 plug-in to our page, right above
the closing <body> tag. We pull jQuery from Google, and we reference our local
version of the Cycle2 plug-in. We also need to add a link to a file called rotate.js,
which will contain all of the JavaScript we need to configure our image rotator:

image_cycling/index.html
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="jquery.cycle2.min.js"></script>
<script src="rotate.js"></script>

Then, we add a <div> with an ID of slideshow and add the images inside:

image_cycling/index.html
<div id="slideshow">

</div>

When we look at our page in the browser, we see something like the figure
on page 20.

We haven’t added the functionality to trigger the Cycle2 plug-in yet, so we
see the images listed in order. This also shows us what our page looks like
for a user who doesn’t have JavaScript support. We see that all of the content
is available to users so they don’t miss out on anything.

report erratum • discuss

Creating Interactive Slideshows with jQuery • 19

http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

At this point we have a choice to make. Suppose we add the cycle-slideshow auto
class to our <div> like this:

<div class="cycle-slideshow auto" id="slideshow">

Then the plug-in would immediately convert the set of images into a slideshow
for us with a nice crossfade transition. And we’d be done. But instead, let’s
explore how to interact with the slideshow programmatically using its Java-
Script API.

We start by adding the JavaScript to initialize the plug-in and start the
slideshow. We create the rotate.js file and add this code, which configures the
jQuery Cycle plug-in:

image_cycling/rotate.js
(function($){

$('#slideshow').cycle({fx: 'fade'});
})(jQuery);

The jQuery Cycle2 plug-in has many options that control how the slideshow’s
transitions work. We can make the images fade, fade with zooming, wipe, or

Chapter 1. Eye-Candy Recipes • 20

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

even toss as they transition. You can find the full list of options on Cycle2’s
website.5 Let’s stick with the fade function, because it’s simple and elegant.
That’s what the fx: 'fade' in the cycle() call does.

Now that we have all the pieces in place, let’s look at our page again. This
time we see only one image, and after a few seconds, we begin to see the
images rotate.

When we show our boss the working slideshow, she says, “That’s great, but
I’d like to have a Pause button to let customers pause the slideshow on an
image they like.” Lucky for us, the plug-in we’ve used makes this easy.

We’ll add a pause button to the page with JavaScript, since it’s needed only
when the slideshow is active. This way, we don’t present useless controls to
users who don’t have JavaScript support. We’ll do this with function called
setupButtons(). It adds our button to the page and attaches a click event that tells
the slideshow to either pause or resume, based on the current state. We also
toggle the text of the button so it’s apparent whether the slideshow can be
paused or resumed.

We place this code above our code that initializes the slideshow:

image_cycling/rotate.js
function setupButton() {

var $pauseButton, $slideShow;

$slideShow = $('#slideshow');
$pauseButton = $('<button>Pause</button>');

$pauseButton.on('click', function() {
if (isPaused($slideShow)) {
playSlideShow($slideShow, $(this));

} else {
pauseSlideShow($slideShow, $(this));

}
});

function isPaused($player) {
return $player.is('.cycle-paused');

}

function playSlideShow($player, $button) {
$player.cycle('resume');
$button.html('Pause');

}

5. http://jquery.malsup.com/cycle2/api/#options

report erratum • discuss

Creating Interactive Slideshows with jQuery • 21

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://jquery.malsup.com/cycle2/api/#options
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

function pauseSlideShow($player, $button) {
$player.cycle('pause');
$button.html('Resume');

}

$pauseButton.insertAfter($slideShow);
}

First, we define the setupButton() function and declare variables for the Pause
button and our slideshow. Then we use jQuery to locate the slideshow by its
ID. As a reminder, we’re using dollar signs in front of variables that reference
jQuery objects.

Then we use jQuery to create the Pause button by using an HTML fragment.
We’re using a button element here, but you could use any element that responds
to a click event.

Next, we add a click() event to the button. If the slideshow is currently running,
then we pause the slideshow and change the button text to Resume. Other-
wise, we resume the slideshow and change the button text back to Pause.

When the slideshow is paused, the plug-in applies the .cycle-paused class to the
<div> containing our slideshow. We use that to see if the slideshow is paused.
It’s a cleaner technique than looking at the current name of the button.

We add the Pause button by inserting the new button into the DOM, right
after the slideShow using insertAfter().

Finally, we need to invoke the setupButton() to place the button on the page. We
place that right below our cycle() call that fires off the slideshow:

image_cycling/rotate.js
$('#slideshow').cycle({fx: 'fade'});
setupButton();➤

Let’s check out the page in the browser again. We can see the Pause button
show up on the page, as in the figure on page 23.

After our slideshow starts, we can click the Pause button, and we’ll see the
Resume button replace the Pause button as the transitions stop. When we
click the Resume button, the images will begin to change again.

Chapter 1. Eye-Candy Recipes • 22

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
This slideshow was easy to implement, and with all of the options that are
provided at the plug-in’s website,6 we can extend the slideshow to include
even more functionality.

To enhance the visual experience, the Cycle2 plug-in has many transition
settings, such as shuffle, a toss, and uncover transitions. We can change our
slideshow to use any of these by changing the value of the fx: option in our
cycle() call. We can also cycle other elements besides images, including more
complex HTML regions and even videos.

In addition to implementing the animation features, we can improve the way
pages load by taking advantage of the plug-in’s ability to preload the images.
Instead of loading all the images in the HTML, we can load one image:

image_cycling/index_preload.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>AwesomeCo</title>

</head>
<body>

6. http://jquery.malsup.com/cycle2/api/#options

report erratum • discuss

Creating Interactive Slideshows with jQuery • 23

http://media.pragprog.com/titles/wbdev2/code/image_cycling/index_preload.html
http://jquery.malsup.com/cycle2/api/#options
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<h1>AwesomeCo</h1>
<div id="slideshow">

</div>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script src="jquery.cycle2.min.js"></script>
<script src="preload.js"></script>

</body>
</html>

Then, we specify the rest in our JavaScript code:

image_cycling/preload.js
(function($){

var images = [
'',
'',
'',
'',
''

];

$('#slideshow').cycle(
{
fx: 'fade',
load: true,
progressive: images

}
);

})(jQuery);

We pass the array of HTML elements for the slideshow when we create the
slideshow. This can drastically improve load time, because the images can
load in the background while the first image is displayed to the visitor.

In this example we’re loading images, but this can actually be any HTML you
want. You could even use jQuery to fetch other off-the-page elements.

These are some of the possibilities baked into the Cycle2 plug-in, so go explore
and try them.

Also See
• Recipe 3, Creating Animations with CSS3 Transformations on page 13
• Recipe 37, Testing JavaScript with Jasmine on page 267

Chapter 1. Eye-Candy Recipes • 24

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/image_cycling/preload.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 5

Creating and Styling Accessible Tooltips

Problem
We have a page with lots of jargon, and we’ve been asked to build in function-
ality that lets visitors hover over terms to see their definitions. However, we
have to ensure that the functionality can be used with assistive devices such
as screen readers, since the page we’re building will be accessed by people
with disabilities.

Ingredient
• jQuery

Solution
With a small amount of CSS, some jQuery, the HTML5 ARIA specification,7

and only a tiny amount of effort, we can create tooltips that work for everyone.
When we’re done we’ll have something that looks like this:

We’ll construct a library that’ll work for widespread use throughout our site,
but let’s develop it by making a prototype page with a basic HTML skeleton:

accessible_tooltips/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Definitions</title>
<link rel="stylesheet" href="tooltips.css">

</head>
<body>

</body>
</html>

7. http://www.w3.org/TR/html5-author/wai-aria.html

report erratum • discuss

Creating and Styling Accessible Tooltips • 25

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://www.w3.org/TR/html5-author/wai-aria.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The skeleton includes link to a style sheet file, tooltips.css, which will control
the visibility of elements and the way our tooltips look. It’ll also contain code
that styles the word so it’s apparent to users that they can interact with it.

Next, let’s add some dummy text. We need a paragraph, and in that paragraph
we want to have a specific keyword. When we hover over that word we want
the definition to appear, so let’s mark up the paragraph like this:

accessible_tooltips/index.html
<p>It's a perfectly

cromulent

adjective
Appearing legitimate but actually being spurious.

word.

</p>

<p>Another paragraph of text.</p>

We place the keyword in a tag, and we place the definition of that word
inside its own . We apply a tabindex to the outer so that visitors
can interact with the keyword via the keyboard by pressing the Tab key.

We also associate the keyword to its definition in our markup, using the aria-
describedby tag, and we apply role="tooltip" to the element that makes up the
tooltip. These small touches are what make interfaces more friendly to tech-
nologies like screen readers, which are used by blind and low-vision visitors
who need the text on the screen read to them by the computer.

Now let’s link up jQuery and our own custom tooltips.js file:

accessible_tooltips/index.html
<script

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="tooltips.js"></script>

We’ll look through our document for any elements that have the definition class.
For each one we find, we’ll find its associated tooltip and hide it. But we won’t
use jQuery’s show() or hide() methods. Instead, we modify the aria-hidden attribute
of the tooltip, setting its value to true to ensure that screen-reading software
is aware of the tooltip’s visible state:

accessible_tooltips/tooltips.js
(function($){

var $definitions = $('.definition');

Chapter 1. Eye-Candy Recipes • 26

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$definitions.find('.tooltip').attr('aria-hidden','true');
})(jQuery);

Then in tooltips.css we locate the elements with the aria-hidden attributes and
style them appropriately:

accessible_tooltips/tooltips.css
.definition .tooltip[aria-hidden='true'] {

display: none;
}

.definition .tooltip[aria-hidden='false'] {
display:block ;

}

As soon as our JavaScript code sets the aria-hidden attribute to true, these CSS
rules hide the element. And when we set the value to false, the elements show
up again.

While we’re here, let’s add the styling for the definition. We add an underline
to the word so we let users know it’s something they can interact with. And
we set the display property of the word we’re defining to inline-block, which helps
the definition appear closer to the word and ensures that any trailing spaces
aren’t underlined. We also add a slight drop shadow and a background to the
tooltip:

accessible_tooltips/tooltips.css
.definition {

display: inline-block;
text-decoration: underline;

}

.definition .tooltip {
background-color: #ffe;
box-shadow: 5px 5px 5px #ddd;
padding: 1em;
position: absolute;

}

All that’s left to do is apply the actual behavior. When the user hovers or tabs
to a keyword, we want to show the definition. And when the user moves focus
away, we want to hide it. That means we need to handle mouse events as well
as focus events for keyboard navigation. That turns out to be pretty easy with
jQuery:

accessible_tooltips/tooltips.js
function showTip(){

$(this).find('.tooltip').attr('aria-hidden', 'false');
}

report erratum • discuss

Creating and Styling Accessible Tooltips • 27

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

function hideTip(){
$(this).find('.tooltip').attr('aria-hidden', 'true');

}

$definitions.on('mouseover focusin', showTip);
$definitions.on('mouseout focusout', hideTip);

And if you want to support other events, such as the touch events we work
with in Recipe 25, Mobile Drag and Drop on page 173, you can add those to
the event handlers, too.

That’s all there is to it. When we open the page, we can hover over our word
and see the definition. Best of all, because we applied a tabindex, we can activate
it when we hit the Tab key also. And because the tooltip is associated with
its parent, it should work well for screen-reading software.

Further Exploration
In our implementation, the tooltip is a child element of the element we hover
on, and we used a element, so we can’t place <div> elements or other
block-level elements in the tooltip. But it doesn’t have to work that way. We
could move the tooltip contents elsewhere in the markup and then use the
aria-describedby role to locate the element and display its contents in our Java-
Script code. Then we could place video content, images, or pretty much any-
thing we want in that tooltip. And it would be accessible to everyone.

In this recipe we used our tooltips for definitions, but we can place any content
we want, whether it’s more information about a hyperlink or an inline help
documentation for user interface items. Don’t get carried away; the information
you place should supplement the main content. After all, it does require
interaction from the user to read the content you’ve hidden. Also, be sure you
don’t attach it to an element in such a way that it’s triggered accidentally,
obscuring the text on the screen. Some people track the words they read with
the mouse, and surprise pop-ups won’t keep you in their good graces.

Also See
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221
• Recipe 30, Building Modular Style Sheets with Sass on page 213
• Recipe 37, Testing JavaScript with Jasmine on page 267
• Recipe 25, Mobile Drag and Drop on page 173

Chapter 1. Eye-Candy Recipes • 28

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 6

Using Font Icons

Problem
Adding icons to a website can help illustrate what a button does or where a
link goes, highlight a message, or otherwise clarify a page’s components and
functions. But creating those icons can be a lot of work, especially if you’re
not a graphic designer. Whether we’re creating a site concept, redesigning an
existing page, or working on a project without access to a designer, it’d be
great to have access to icons that are easy to use and modify, that add visual
interest, and that have a uniform look—without having to go dig around the
web for icons.

Ingredients
• CSS3
• Font Awesome8

Solution
Font icons are vector images that can be manipulated with CSS, enabling us
to have lightweight icons that are easily adaptable to our needs and style
without having to create new graphics. We can also use drop shadows and
easy scaling to adjust the way they look, and even use CSS animations such
as the ones in Recipe 3, Creating Animations with CSS3 Transformations on
page 13.

We’ll use the Font Awesome font icon library in our solution. Font Awesome
is one of the most popular font icon sets. It includes hundreds of icons we
can use for many common user interface elements as well as many other
situations, such as media-player controls and brand logos.

We start with a simple HTML page containing some basic elements on the
page, like a header and some navigation:

8. http://fontawesome.io

report erratum • discuss

Using Font Icons • 29

http://fontawesome.io
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

fonticons/original.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Font Icons</title>
<link rel="stylesheet" href="original-style.css">

</head>
<body>

<div id="header">
<div id="header_navigation">

<i class="fa fa-user"></i> My Account
</div>

AwesomeCo

</div>
<div id="navigation">

Home
Team
Store
Puppies

</div>
<div id="content">
</div>

</body>
</html>

Next, we create a style sheet that sets up a simple two-column layout with a
header and left-side navigation:

fonticons/original-style.css
body {

height: 100%;
width: 580px;

}

a {
text-decoration: none;
color: black;

}

#header {
background-color: #ccc;
height: 100px;
padding: 5px;
text-align: center;
width: 100%;

}

Chapter 1. Eye-Candy Recipes • 30

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/fonticons/original.html
http://media.pragprog.com/titles/wbdev2/code/fonticons/original-style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

#header #logo { font-size: 3em; }

#header #header_navigation {
text-align: right;
width: 100%;

}

#navigation {
background-color: #888;
float: left;
min-height: 600px;
width: 150px;

}

#navigation li i { margin-right: 5px; }

#content{
float: left;
margin: 5px;
width: 600px;

}

We include the Font Awesome style sheet. This gives us access to all of the
icons in the library, and it needs to be loaded only once no matter how many
icons we use on the page:

fonticons/original.html
<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/font-awesome/➤

4.3.0/css/font-awesome.min.css">➤

<link rel="stylesheet" href="original-style.css">

This single style sheet link loads the Font Awesome style sheet from the
Bootstrap CDN and makes the icons available to use on our site with some
easy CSS classes. Right now the page looks like the following figure:

report erratum • discuss

Using Font Icons • 31

http://media.pragprog.com/titles/wbdev2/code/fonticons/original.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The page doesn’t have much on it now, but it includes some elements that
would benefit from having icons on them. Let’s start by adding an icon next
to the My Account link in the upper-right corner, so that it stands out a bit
more and gives some clues as to what it’s about.

The My Account section of the site is where our users manage their informa-
tion, so let’s use an icon that represents a person. The <user> icon looks like
a good one:

fonticons/index.html
<i class="fa fa-user"></i> My Account

The <i> tag is a short tag that creates an inline element. A tag could
also be used, but generally the <i> tag is used for brevity. The Font Awesome
style sheet gives us access to all of its classes, so we can load the font icon
associated with the class into the <i> tag. We use two classes: <fa> to indicate
that we want to use a Font Awesome icon, and <fa-user> to load the actual
Font Awesome <user> icon. Then we can refresh the page, and we see the icon
alongside the My Account link, as in the following figure:

That was simple, wasn’t it? Now that we’ve added one icon to the header, let’s
replace the bullets on the left-hand navigation list with icons that communi-
cate more about what each list item is for.

Font Awesome includes a shortcut to replace bullets with icons, so we don’t
have to go through the work of removing the bullets ourselves with CSS:

fonticons/index.html
<div id="navigation">

<ul class="fa-ul">
<i class="fa fa-li fa-home"></i> Home
<i class="fa fa-li fa-users"></i> Team
<i class="fa fa-li fa-shopping-cart"></i> Store
<i class="fa fa-li fa-paw"></i> Puppies

</div>

Chapter 1. Eye-Candy Recipes • 32

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/fonticons/index.html
http://media.pragprog.com/titles/wbdev2/code/fonticons/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We add a <fa-ul> class to the tag and a <fa-li> class to each of the tags,
along with the <fa> and <fa-ICON> classes we would normally add to the <i>
elements. Now when we reload the page we see the bullet icons, as in the
following figure:

We added icons for all of the navigation items, and we’re pretty happy with
how things look, but the client wants to change the color scheme of the
sidebar to black. We’re using black text in the original design, which means
our icons are also black and disappear on the black background, so we need
to change that. We’ve also been asked to increase the size of the icons and
text on the page. Fortunately, font icons are treated no differently than any
text on the page, so it’s easy to change the color and size:

fonticons/style.css
#navigation {

background-color: black;
color: white;
float: left;
font-size: 1.3em;
min-height: 600px;
width: 150px;

}

We want the icon color to match the font color in the navigation, so all we
need to do is change the <color> style and the <background-color>. Now, when we
reload the page, our icons’ colors change along with the color changes we
make, and everything continues to match the style guide. And we didn’t have
to make a single new icon to do it.

We also increased the font size slightly, and the icons adjusted accordingly,
as shown in the following image:

report erratum • discuss

Using Font Icons • 33

http://media.pragprog.com/titles/wbdev2/code/fonticons/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

If we had made the icons as regular image files, we would have had to redraw
them for the new navigation-item size. But because they’re vector images,
they automatically adjust to the new line size, and we do no extra work!

Font icons give us many great options for adding graphical elements to our
sites in a flexible and easily adaptable way. With them we can avoid a lot of
trouble having to re-create images if other elements of the design change.
Plus, they’re fast to load, so our users don’t have to wait for multiple images
to load.

Further Exploration
Font Awesome includes a lot of ways to manipulate the icons. We can flip
them, stack them on top of one another, make them rotate, and more. Beyond
the built-in effects, we can use CSS3 animation to change the way the icons
render so that we get the exact look that we want.

Also See
• Recipe 3, Creating Animations with CSS3 Transformations on page 13
• Recipe 1, Styling Buttons and Links on page 2
• Recipe 2, Styling Stand-Alone Quotes with CSS on page 6
• Recipe 30, Building Modular Style Sheets with Sass on page 213

Chapter 1. Eye-Candy Recipes • 34

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 2

User Interface Recipes
Whether you’re delivering static content or presenting an interactive applica-
tion, you have to create a usable interface. This collection of recipes explores
the presentation of information as well as some new ways to build more
maintainable and responsive client-side interfaces.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 7

Creating an HTML Email Template

Problem
Building HTML emails is a bit like traveling back in time—a time before CSS,
when everyone used tables for layout and tags reigned supreme. A lot
of the best practices we’ve come to know and love aren’t usable in HTML
emails, because the email readers don’t handle them. Testing a web page on
multiple browsers is easy compared to the amount of testing we have to do
when we create an email that will be read in Outlook, Hotmail, Gmail, or
Thunderbird, not to mention the various mail applications on mobile devices.

But our job isn’t to complain about how difficult things are going to be; our
job is to deliver results. And we have a lot of work to do. Not only do we need
to produce readable HTML emails; we also need to ensure that our messages
don’t get flagged as spam. We need to build something that is usable, readable,
and effective on multiple platforms.

Ingredients
• A free trial account on Litmus.com for testing emails

Solution
Designing HTML emails means discarding many current web development
techniques because of the constraints of email clients. While staying aware
of these limitations, we also need to avoid techniques that might get our
messages marked as junk, and we need to easily test our email on multiple
devices. The best approach will be to use good old trusty HTML with table-
based layouts.

HTML Email Basics

Conceptually, HTML emails aren’t difficult. After all, creating a simple HTML
page is something we can do without much effort. But as with web pages, we
can’t guarantee that all users will see the same thing when they look at what
we create. Each email client does something a little different when presenting
messages to its users.

Chapter 2. User Interface Recipes • 36

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

For starters, many web-based clients like Gmail, Hotmail, and Yahoo often
strip out or ignore style sheet definitions from the markup. Google Mail
actually removes styles declared in the <style> tag, in an attempt to prevent
styles in emails from colliding with the styles it uses to display its interface.
We also can’t rely on an external style sheet, because many email clients
won’t automatically fetch remote files without first prompting the user. So,
we can’t really use CSS for layout in an HTML email.

Google Mail and Yahoo either remove or rename the <body> tag in the email,
so it’s best to wrap the email in another tag that can stand in for the <body>.

Some clients choke on CSS shorthand declarations, so any definitions we do
use need to be spelled out. For example, older clients might ignore this defi-
nition:

#header{padding: 20px;}

So instead, we need to expand it:

#header{
padding-top: 20px;
padding-right: 20px;
padding-bottom: 20px;
padding-left: 20px;

}

Desktop clients such as Outlook can’t handle background images, and some
older ones can’t display PNG images. That might not seem like a big deal at
first, but millions of enterprise users use these as their primary client.

These aren’t the only issues we’ll run into, but they are the most prevalent.
The Email Standards Project1 has comprehensive lists of issues for the various
email clients.

Partying Like It’s 1999

When it comes down to it, the most effective HTML emails are designed using
the most basic HTML features:

• They’re built with simple HTML markup with minimal CSS styling.
• They’re laid out with HTML tables instead of more modern techniques.
• They don’t use intricate typography.
• The CSS styles are extremely simple.

In short, we need to develop emails as if the last ten years of web development
didn’t happen. With that in mind, let’s code up a simple invoice email template

1. http://www.email-standards.org/

report erratum • discuss

Creating an HTML Email Template • 37

http://www.email-standards.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

using tables for layout. The application developers will take this template and
handle all of the real content, but we need to figure out how to code up the
template so that it’s readable in all of the popular email clients.

Our invoice will have the typical items: a header and footer, as well as sections
for our address and the customer’s billing address. It’ll have a list of the items
the customer purchased, and each line will have the price, quantity, and
subtotal. We’ll need to provide the grand total for the invoice, and we’ll have
an area to display some notes to the customer.

Since some web-based email clients strip out or rename the <body> element,
we’ll need to use our own top-level element to act as the container for our
email. To keep it as bulletproof as possible, we’ll create an outer table for the
container and place additional tables inside of that container for the header,
footer, and content. The following figure gives a rough example of how we’ll
mark this up:

header

from to

invoice date

line items

subtotal

notes

footer

total

Let’s start by writing the wrapper for the email template, using an HTML 4.0
doctype:

Chapter 2. User Interface Recipes • 38

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

htmlemail/template.html
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>

<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>Invoice</title>

</head>
<body>

<center>
<table id="inv_container"
width="95%" border="0" cellpadding="0" cellspacing="0">
<tr>

<td align="center" valign="top">
</td>

</tr>
</table>

</center>
</body>
</html>

To ensure that our invoice shows up centered in the email client, we must
resort to the old, deprecated <center> tag. It’s the only approach that comes
close to working across all of the various clients. (Don’t worry, though; we
won’t be using <blink>.)

Next, we need to create the header. We use one table for our company name
and a second table with two columns for the invoice number and the date:

htmlemail/template.html
<table border="0" cellpadding="0" cellspacing="0" width="100%">

<tr>
<td align="center" bgcolor="#5d8eb6" valign="top">
<h1>AwesomeCo</h1>
</td>

</tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="98%">
<tr>

<td align="left" width="70%"><h2>Invoice for Order #533102 </h2></td>
<td align="right" width="30%"><h3>December 31, 2099</h3></td>

</tr>
</table>

Some of the web-based clients strip out CSS, so we have to use HTML
attributes to specify the background and text color. The first table has a width
of 100 percent, but the second table has a width of 98 percent. Since our

report erratum • discuss

Creating an HTML Email Template • 39

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

tables are centered on the page, this gives us space on the left and right edges
so that the text isn’t touching the edge of the outer table.

Next, let’s add another table that contains the From and To addresses:

htmlemail/template.html
<table id="inv_addresses" border="0"

cellpadding="2" cellspacing="0" width="98%">
<tr>

<td align="left" valign="top" width="50%">
<h3>From</h3>
AwesomeCo Inc.

123 Fake Street

Chicago, IL 55555

</td>
<td align="left" valign="top" width="50%">
<h3>To</h3>
GNB

456 Industry Way

New York, NY 55555

</td>
</tr>

</table>

Next, we add a table for the invoice itself:

htmlemail/template.html
<table border="0" cellpadding="2" cellspacing="0" width="98%">

<caption>Order Summary</caption>
<tr>

<th bgcolor="#cccccc" align="left" valign="top">SKU</th>
<th bgcolor="#cccccc" align="left" valign="top">Item</th>
<th bgcolor="#cccccc" valign="top">Price</th>
<th bgcolor="#cccccc" valign="top" width="10%">QTY</th>
<th bgcolor="#cccccc" valign="top" width="10%">Total</th>

</tr>
<tr>

<td valign="top">10042</td>
<td valign="top">15-inch MacBook Pro</td>
<td align="right" valign="top">$1799.00</td>
<td align="center" valign="top">1</td>
<td align="right" valign="top">$1799.00</td>

</tr>
<tr>

<td valign="top">20005</td>
<td valign="top">Mini-Display Port to DVI Adapter</td>
<td align="right" valign="top">$19.99</td>
<td align="center" valign="top">1</td>
<td align="right" valign="top">$19.99</td>

</tr>
</table>

Chapter 2. User Interface Recipes • 40

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

This is an actual data table, so we’ll make sure it has all of the right attributes,
such as column headers and a caption.

Then we add a table for the total. We need to use a separate table for this
because, believe it or not, some email clients still have trouble displaying
tables with rows that span multiple columns.

htmlemail/template.html
<hr>
<table border="0" cellpadding="2" cellspacing="0" width="98%">

<tr>
<td align="right" valign="top">Subtotal: </td>
<td align="right" valign="top" width="10%">$1818.99</td>

</tr>
<tr>

<td align="right" valign="top">Total Due: </td>
<td align="right" valign="top">$1818.99 </td>

</tr>
</table>

We place another simple table to display the invoice notes next:

htmlemail/template.html
<table border="0" cellpadding="0" cellspacing="0" width="98%">

<tr><td align="left">
<h2>Notes</h2>
<p>Thank you for your business!</p>

</td></tr>
</table>

And finally, we add the footer, which we define as a single-celled table with
full width, like the header:

htmlemail/template.html
<table id="inv_footer" border="0"

cellpadding="0" cellspacing="0" width="100%">
<tr>

<td align="center" valign="top">
<h4>Copyright © 2099 AwesomeCo</h4>
<h4>

You are receiving this email because you purchased
products from us.

</h4>
</td>

</tr>
</table>

The footer is a good place to explain to recipients why they got the email in
the first place. For an invoice the reason is obvious, but for a newsletter we’d

report erratum • discuss

Creating an HTML Email Template • 41

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

use this area to give readers some links to manage their subscriptions or opt
out of future mailings.

With that, we’ve created a simple but readable HTML invoice. But what about
those clients that can’t handle HTML emails?

Joe asks:

Couldn’t We Use Semantic Markup Instead of
Tables?

Many standards-focused developers choose to avoid using tables in favor of semantic
markup that relies on CSS to manage the layout. They’re not concerned with the mail
clients stripping out the CSS, because the email will still be readable and accessible.

Unfortunately, if your stakeholders insist that the design of the email must be con-
sistent across clients, standards-based web development techniques won’t cut it.
That’s why we use a table-based approach in this recipe.

Supporting the Unsupportable

Not every HTML email client supports HTML email, and, as we’ve learned,
even those that do are inconsistent. We should provide a way for people to
read the content under those situations, and the most common solution is
to provide a link at the top of the message that links to a copy of the email
that we host on our servers. When users click the link, they can read the
message in their web browser of choice.

In our case, we can place a link to a copy of the invoice that’s within the user’s
account. We want to place the link at the top of the email, above the content
table, so that it’s easily visible. As a bonus, some mail programs provide a
preview that lets the reader jump into the invoice without opening the email.

htmlemail/template.html
<p>

Unable to view this invoice?
View it in your browser instead.

</p>

Third-party systems like MailChimp and Campaign Monitor provide this
functionality by hosting the HTML email on their servers as static pages.

We could also construct a multipart email, sending both a plain-text version
of the invoice and the HTML version. When we do this, we’re inserting two
bodies into the email and using a special set of headers in the email that tell

Chapter 2. User Interface Recipes • 42

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

the email client that the email contains both text and HTML versions. To do
that effectively, we’d need to develop and maintain a text version of the invoice
in addition to our HTML version. Alternatively, we could place a link to the
web-page version of the invoice that we’re hosting.

Sending multipart emails is beyond the scope of this recipe, but most web-
based frameworks and email clients have options for sending out multipart
messages. Wikipedia’s entry on MIME2 has a good overview of how multipart
messages work.

Styling with CSS

We’re using tables for layout because we can’t rely on floating or absolute
positioning with CSS, since many web-based email clients strip out CSS
styles. Those clients aren’t stripping things out because their developers are
mean-spirited standards haters. They’re doing it because if they allowed CSS,
the email’s contents could potentially conflict with styles in the web-based
application.

For two reasons, however, we may still want to try to use CSS. First, we want
things to look nicer for people who have email clients that support CSS.
Second, we can reuse this invoice template for the static page we talked about
in Supporting the Unsupportable, on page 42.

Since many email clients strip off the <head> section of our document, we’ll
place our style information in a <style> tag right above our container table.

Let’s remove the margins around our heading tags to reduce the wasted space.
Let’s also apply a background color and a border to our table and add some
space between each of the inner tables—except for the footer—so things aren’t
so crowded:

htmlemail/template.html
<style>

table#inv_addresses h3,
table#inv_footer h4{

margin: 0;
}

table{ margin-bottom: 20px; }

table#inv_footer{ margin-bottom: 0; }

body{ background-color: #eeeeee; }

2. http://en.wikipedia.org/wiki/MIME

report erratum • discuss

Creating an HTML Email Template • 43

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://en.wikipedia.org/wiki/MIME
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

table#inv_container{
background-color: #ffffff;
border: 1px solid #000000;

}
</style>

With the styles in place, the invoice looks like the following figure:

We’re not done, though; we need to test things out.

Testing Our Emails

Before we can show it off to our client, we need to see how this email works
in some email readers. We can send it around to our colleagues, or we could
create accounts at Gmail, Yahoo Mail, Hotmail, and others to see how things
look. But manual testing is time-consuming.

Litmus3 provides a suite of tools that help people test web pages and emails.
It supports a wide range of email clients and browsers, including mobile
devices. Although the service isn’t free, it does provide a trial account that
we can use to ensure that our invoices work as expected.

Within a Litmus account, we can create a test that lets us choose the target
clients. We can then email our invoice to some addresses that Litmus provides,
or we can upload our HTML file through the web interface. Using the HTML
upload doesn’t provide a text fallback, so some of the test results will show

3. http://litmus.com/

Chapter 2. User Interface Recipes • 44

report erratum • discuss

http://litmus.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

only the HTML source, not a text fallback—but that’s good enough for our
test.

Litmus renders our email on the target email clients and provides us with a
detailed report, like the one in the following figure:

Each thumbnail is clickable so you can get a more detailed view of how things
work on an individual device. You’ll want to check all of the devices and
browsers that matter to you and make any adjustments necessary.

With the code we’ve written, it looks like we have an email invoice that looks
fairly consistent across the major platforms and is readable on most of the
others. In your own projects, you may have to do a little more tweaking to get
the results you want.

Images and Emails

We haven’t talked about images yet in this recipe for two reasons. First, we’d
need to host our images on a server and include absolute links into the email.
The second reason is that many email clients turn images off, since many
companies that send emails use images to track whether the email was
opened. The email message contains a link to an image on their server, and
when you open the email, the images load, and the sender now knows it’s
been opened.

If you do decide to use images in your emails, follow a few simple rules:

report erratum • discuss

Creating an HTML Email Template • 45

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

• Be sure to host the images on a server that will be available, and don’t
change the URLs to the images. You never know when someone will open
the email you sent.

• Since images are often disabled by default, make sure you specify useful
and descriptive alt attributes on your images.

• Place the images into your email with regular tags. Many email
clients don’t support images as table-cell backgrounds, and even fewer
support images as CSS backgrounds.

• Because images are often blocked by default, it’s a bad idea to use images
as the entire content of your email. It may look nice, but it causes acces-
sibility problems.

Images in emails can be effective when used properly. Don’t be afraid to use
them, but be mindful of the issues you will encounter.

Further Exploration
Our simple email template presents a readable invoice to our recipients, but
an invoice doesn’t need to be as engaging as a marketing announcement or
a newsletter. For that, we’d need to do more styling, use more images, and
do more exception handling for various email clients.

MailChimp4 knows a thing or two about sending emails. After all, that’s its
business. If you’re looking to learn more about email templates, you can dig
into the email templates MailChimp has open sourced.5 They’re tested on all
of the major clients, too, and have some well-commented source code that
gives more insight into some of the hacks we have to employ to make things
work well across all of the major email clients.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194
• Recipe 11, Rendering HTML with Handlebars Templates on page 69
• Recipe 30, Building Modular Style Sheets with Sass on page 213
• Recipe 44, Automating Static Site Deployment with Grunt on page 304

4. http://www.mailchimp.com
5. https://github.com/mailchimp/Email-Blueprints

Chapter 2. User Interface Recipes • 46

report erratum • discuss

http://www.mailchimp.com
https://github.com/mailchimp/Email-Blueprints
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 8

Swapping Between Content with Tabbed Interfaces

Problem
We sometimes have multiple, similar pieces of information that we want to
display together, such as a phrase in multiple languages or code examples
in several programming languages. We could display them one after another,
but that can take up a lot of space, especially with longer content. We need
to give our users an easier way to compare content, without taking up an
unnecessary amount of screen space.

Ingredients
• jQuery

Solution
We can use CSS and JavaScript to display the content on our page in a slick
tabbed interface. Each section of content will have a tab generated for it based
on a data attribute, and only one tab’s content will be displayed at a time.
We’ll also make sure that we can have as many tabs as we want so that our
design is flexible. In the end, we’ll have something that looks like this:

We’ve been asked to display product descriptions in multiple languages in
an attempt to reach a wider audience. We’ll build a simple proof-of-concept
page so we can determine the best approach.

Building the HTML

Let’s start by building out the HTML for the elements we want to show our
users. As a proof of concept, let’s use two pieces of text, one in English and
one in its Latin translation. To start, we create this index.html file to set up the
basic structure of our elements:

report erratum • discuss

Swapping Between Content with Tabbed Interfaces • 47

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

swapping/index.html
<!DOCTYPE html>
<html>

<head>
<title>Swapping Examples</title>

<link rel="stylesheet" href="swapping.css" type="text/css" media="all" />
</head>
<body>

<div class="languages">
<div class="language" data-tab-title="English">

Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but occasionally
circumstances occur in which toil and pain can procure him some
great pleasure.

</div>

<div class="language" data-tab-title="Latin">
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.

</div>
</div>

</body>
</html>

This index.html contains a languages <div> that holds each of the sections we
want to display. Inside that are our individual language <div>s, which contain
the content we want users to switch between.

Joe asks:

Couldn’t We Use jQuery UI Tabs to Do This?
Yes, we definitely could, but there’s a lot in UI tabs that we won’t be using, such as
event hooks. Creating our own tabs lets us focus on keeping things light and gives
us more insight into how things work.

Now, let’s pull together some JavaScript to create a tabbed interface so our
users can toggle between the two examples.

Creating the Tabbed Interface

We’ll use the jQuery library to get some helper methods and shortcuts, and
we’ll put our code in a custom file called swapping.js. We need to link both of
those files right above the closing <body> tag in our HTML page:

Chapter 2. User Interface Recipes • 48

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/swapping/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

swapping/index.html
<script➤

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">➤

</script>➤

<script src="swapping.js"></script>➤

</body>
</html>

Then we need to write the code to make the tabs swap. First, we create a
function that adds the markup for the tabs to the DOM. We call it createTabs(),
and we place it in swapping.js:

swapping/swapping.js
function createTabs($container, childSelector) {

var $list = $('').addClass('tabs');
$container.find(childSelector).each(function() {

var $newTab = createTab($container, $(this), childSelector);
$list.append($newTab);

});
$container.prepend($list);

}

This function takes in two arguments. The first argument is a jQuery object
that represents the element on the page that should contain the tabs. The
second argument is the CSS selector that the function should use to find
each element that will be a tab. For our example, we might invoke this function
like this:

createTabs($('.languages'), '.language');

But don’t do that yet.

The createTabs() function starts by creating a new unordered list that will hold
each of the tabs to be created. We then find each of the child elements that
matches the childSelector and pass each child element to a function called cre-
ateTab() that returns a newly created list item, which we add to the unordered
list. That means we need to define a createTab() function next, and that code
looks like this:

swapping/swapping.js
function createTab($container, $content, childSelector) {

var tabTitle, $newTab;
tabTitle = $content.data('tab-title');
$newTab = $('').addClass('tab').html(tabTitle);
$newTab.on('click', function() {

switchTab($container, $(this), $content, childSelector);
});
return $newTab;

}

report erratum • discuss

Swapping Between Content with Tabbed Interfaces • 49

http://media.pragprog.com/titles/wbdev2/code/swapping/index.html
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

In the createTab() function, we read the data-tab-title attribute of the element that’s
passed in to determine what the tab’s title should be. Then we add a class
for styling purposes, and finally we add a click observer for this new tab ele-
ment that will be responsible for changing which tab content is visible to the
user.

At this point, if we were to call createTabs($('.languages'), '.language');, we would at
least have an idea of what our tabs will look like. But clicking on the tabs will
only cause an exception, because we haven’t defined the switchTab() function
yet. So let’s do that now.

Switching Between Tabs

When we switch tabs, we have to hide all of the examples that we don’t want
to show, and we also have to remove the selected class from those tabs. Rather
than finding the current active tab and content, it’s easier to get everything
to an unselected state and then activate the tab we want. This also increases
the code’s readability. So we first write the code to hide everything:

swapping/swapping.js
$container.find(childSelector).hide();
$container.find('ul.tabs > li').removeClass('selected');

With all of the tabs hidden, we can now find and activate the selected tab. To
do that we add a selected class to the tab, and we make the tab’s content visible
by calling the jQuery slideDown() function, or any other jQuery function that
makes a <div> element visible:

swapping/swapping.js
$content.slideDown('fast');
$tab.addClass('selected');

In the end, we have a function that looks like this:

swapping/swapping.js
function switchTab($container, $tab, $content, childSelector) {

$container.find(childSelector).hide();
$container.find('ul.tabs > li').removeClass('selected');

$content.slideDown('fast');
$tab.addClass('selected');

}

Tying It All Together

We’re almost done, but our solution lacks a few finishing touches. For one
thing, when we bring up the page, we see all of the content still, instead of
only the first tab. Also, if we had multiple groups of tabs on a single page—

Chapter 2. User Interface Recipes • 50

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

for example, multiple <div>s with the languages class—the same tabs would
appear in all of the containers. To fix this we create one more function, initTabs(),
that iterates over each of the containers and adds the tabs separately. And
for each of the containers, we show only the first tab. We’ll invoke this function
when we load the page, and it will invoke our createTabs() for each group of
tabs on the page.

swapping/swapping.js
function initTabs($containers, childSelector){

$containers.each(function() {
var $div, $firstTab;
$div = $(this);
createTabs($div, childSelector);
$firstTab = $div.find('ul.tabs > li').first();
switchTab($div, $firstTab, $div.find(childSelector).first(), childSelector);

});
}

To fire this off, we add a call to initTabs() at the bottom of the script:

swapping/swapping.js
initTabs($('div.languages'), 'div.language');

All that’s left to do now is to make the tabs look a little nicer.

Styling the Tabs

Now that we have all of the behavior wired up, let’s apply a little CSS to make
it look more like the interface we want:

swapping/swapping.css
li.tab {

background-color: #DDD;
color: #333;
cursor: pointer;
float: left;
font-size: 120%;
list-style: none outside none;
line-height: 1.5;
margin: 0;
padding: 0;
text-align: center;
text-transform: uppercase;
width: 80px;

}

li.tab.selected { background-color: #AAA; }

ul.tabs {
font-size: 12px;

report erratum • discuss

Swapping Between Content with Tabbed Interfaces • 51

http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

line-height: 1;
list-style: none outside none;
margin: 0;
padding: 0;
position: absolute;
right: 20;
top: 0;

}

div.language {
font-family: "Helvetica", "san-serif";
font-size: 16px;

}

div.languages {
background-color: #000;
border: 5px solid #DDD;
color: #DDD;
font-size: 14px;
margin-bottom: 20px;
padding: 10px;
padding-top: 30px;
position: relative;

}

That’s it. We now have some generic code that we can use to build out our
real site so we can easily switch the product descriptions between different
languages.

This solution saves quite a bit of space; we often see it used on sites where
space is limited. Some sites use this technique to show product information,
reviews, and related items as tabs, while still making that information viewable
in a linear format when JavaScript is unavailable.

Further Exploration
What if we wanted to always load a specific tab on the page? For example, if
we display code examples in Ruby, Python, and Java, and pythonistas are
interested only in the Python examples, it’d be nice if they didn’t have to click
the Python tab on every new page they visit. We’ll leave it up to you to explore
that solution on your own.

Also See
• Recipe 9, Accessible Expand and Collapse on page 53

Chapter 2. User Interface Recipes • 52

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 9

Accessible Expand and Collapse

Problem
When we need to present long, categorized lists on a website, the best way to
do it is with nested, unordered lists. However, with this kind of layout, it can
be hard for users to quickly navigate, or even comprehend, such a large list.
Anything we can do to assist our users will be appreciated. Plus, we want to
make sure that our list is accessible in case JavaScript is disabled or a user
is visiting our site through a screen reader.

Ingredient
• jQuery

Solution
A relatively easy way to organize a nested list, without separating the categories
into different pages, is to make the list collapsible. This means that entire
sections of the list can be hidden or displayed to better convey selective
information. At the same time, the user can easily manipulate which content
to make visible.

For our example, we’ll start with an unordered list that displays products
grouped by subcategories:

collapsiblelist/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Our example collapsible list</title>
<link rel="stylesheet" href="style.css">

</head>
<body>

<h1>Categorized Products</h1>

<ul class='collapsible'>

Music Players

report erratum • discuss

Accessible Expand and Collapse • 53

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

16 Gb MP3 player
32 Gb MP3 player
64 Gb MP3 player

<li class='expanded'>

Cameras & Camcorders

SLR

D2000
D2100

<li class='expanded'>
Point and Shoot

G6
G12
CS240
L120

Camcorders

HD Cam
HDR-150
Standard Def Cam

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>
<script src='collapsible.js'></script>

We want to be able to indicate that some of the nodes should be collapsed or
expanded from the start. It would be tempting to simply mark the collapsed
nodes by setting the style to display: none. But that would break accessibility,
since screen readers ignore content hidden in this way. Instead, we’ll rely on
CSS to toggle each node’s visibility at runtime. We’ll do this by adding a CSS
class of expanded to set the initial state of the list.

Chapter 2. User Interface Recipes • 54

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

For example, suppose we know that a user wants to look at point-and-shoot
cameras when first reaching this page. This markup doesn’t show the limited
list yet:

collapsiblelist/style.css
ul.collapsible li.collapsed > ul {

visibility: hidden;
height: 0;

}

Right now it displays the full categorized product list:

But once the list is made collapsible, and the expanded class is added to that
category, users see only the names of the types of products they were looking
for, as shown in the figure on page 56.

<li class='expanded'>
Point and Shoot

Next we need to write the JavaScript for adding our collapsible functionality,
as well as some expand-all and collapse-all helper links at the top of the list.
We’ll add the links via the JavaScript code as well. As with the collapsible
functionality itself, we don’t want to change the markup unless we know this
code is going to be used. This also gives us the advantage of being able to
easily apply this behavior to any list on our site without having to change any
markup beyond adding a .collapsible class to a element.

report erratum • discuss

Accessible Expand and Collapse • 55

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

collapsiblelist/collapsible.js
(function($) {

$.fn.prependToggleAllLinks = function() {
var $container = $('<div>').attr('class', 'expand_or_collapse_all');
$container.append(

$('<a>')
.attr('href', '#')
.html('Expand all')
.click(handleExpandAll.bind(this))

).append(' | ')
.append(

$('<a>')
.attr('href', '#')
.html('Collapse all')
.click(handleCollapseAll.bind(this))

);
this.prepend($container);
return this;

};

function handleExpandAll(event) {
this.find('li.collapsed').toggleExpandCollapse(event);

}

function handleCollapseAll(event) {
this.find('li.expanded').toggleExpandCollapse(event);

}
})(jQuery);

For this recipe, we wrap all of the code in a self-executing function where we
pass in jQuery as an argument and assign it to the $ variable. This is to avoid
a conflict with any other frameworks or code that also use the dollar sign.

Chapter 2. User Interface Recipes • 56

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We can quickly create a virtual DOM object by wrapping a string representing
the element type we want, in this case an <a> tag, in a jQuery element. Then
we set the attributes and HTML through jQuery’s API. For simplicity, we’ll
create two links (Expand all and Collapse all) separated by a pipe symbol.
The two links will trigger their corresponding helper functions when they’re
clicked.

For the click events, notice the use of the bind() function. This keeps the this
keyword the same when in the handleExpandAll() and handleCollapseAll() functions.
That way we’ll continue to interact with the jQuery element that was used to
initialize this plug-in in the first place. Which leads us to the next function.

The prependToggleAllLinks() function adds the expand-all/collapse-all links, but
these links won’t work yet, since we’re calling a function that doesn’t exist
yet: toggleExpandCollapse(). Next we write that function, which toggles whether a
node is expanded or collapsed. Since this is a function that will act on a DOM
object, we write it as a jQuery plug-in. That means we’ll assign the function
definition to the jQuery.fn prototype. We can then trigger the function within
the scope of the element that it’s called against. Finally, to ensure that our
jQuery function is chainable and a responsible jQuery citizen, we return this.
This is a good practice to follow when writing jQuery plug-ins; our plug-in
functions will work the same way that we expect other jQuery plug-ins to
work.

collapsiblelist/collapsible.js
(function($) {

$.fn.toggleExpandCollapse = function(event) {
event.stopPropagation();
if (this.find('ul').length > 0) {
event.preventDefault();

this.toggleClass('collapsed').toggleClass('expanded');
}

return this;
};

})(jQuery);

We’ll bind the toggleExpandCollapse() to the click event for all elements,
including the elements with nothing underneath them, which are also known
as leaf nodes. That’s because we want the leaf nodes to do something cru-
cial—absolutely nothing. Unhandled click events bubble up the DOM, so if
we only attach a click observer to the elements with .expanded or .collapsed
classes, the click event for a leaf node would bubble up to the parent
element, which is one of our collapsible nodes. That means the code would

report erratum • discuss

Accessible Expand and Collapse • 57

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

trigger that node’s click event, which would make the leaf node’s parent col-
lapse suddenly and unexpectedly, and we’d be liable for causing undue harm
to our users’ fragile psyches. To prevent this Rube Goldberg–styled catastrophe
from happening, we call event.stopPropagation(). Adding an event handler to all
 elements ensures that the click event will never bubble up and nothing
will happen, as we expect. For more details on event propagation, read Why
Not Return False?, on page 58.

Joe asks:

Why Not Return False?
In a jQuery function, return false works double duty by telling the event not to bubble
up the DOM tree and not to do whatever the element’s default action is. This works
for most events, but sometimes we want to make the distinction between stopping
event propagation and preventing a default action from triggering. Or we may be in
a situation where we always want to prevent the default action, even if the code in
our function somehow breaks. That’s why at times it may make more sense to call
event.stopPropagation() or event.preventDefault() explicitly rather than waiting until the end
of the function to return false.a

a. http://api.jquery.com/category/events/event-object/

Now we write the makeCollapsible() function that gets called when we select the
list element we want to turn into a collapsible list. This function also hides
any nodes that weren’t marked as .expanded and adds the .collapsed class to the
rest of the elements:

collapsiblelist/collapsible.js
$.fn.makeCollapsible = function() {

this.prependToggleAllLinks();
this.find('li').click(function(event) {

$(this).toggleExpandCollapse(event);
});
this.find('li ul')

.parent(':not(.expanded)')

.addClass('collapsed');

return this;
};

We bind the click event to all of the elements that are in a .collapsible list.
We also add the expand/collapse classes to all of the elements, except
the products themselves. These classes will help us when it comes time to
style our list.

Chapter 2. User Interface Recipes • 58

report erratum • discuss

http://api.jquery.com/category/events/event-object/
http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

When the DOM is ready, we tie it all together by initializing the list and adding
the Expand all|Collapse all links to the page:

collapsiblelist/index.html
<script>

$('ul.collapsible').makeCollapsible();
</script>

Since this is a jQuery plug-in, we can easily add this functionality to any list
on our site by adding a .collapsible class to an unordered list. This makes the
code easily reusable so that any long and cluttered list can be made easy to
navigate and understand.

Finally, we add some style to this list and attach it to the same .collapsible class
that our code depends on:

collapsiblelist/style.css
ul.collapsible li.collapsed > ul {

visibility: hidden;
height: 0;

}
ul.collapsible li {

cursor: default;
list-style: none;

}

ul.collapsible li.expanded, ul.collapsible li.collapsed {
cursor: pointer;

}

ul.collapsible li:before {
display: block;
float: left;
text-align: center;
width: 10px;

}

ul.collapsible li.expanded:before { content: '-'; }

ul.collapsible li.collapsed:before { content: '+'; }

Further Exploration
If we start out by building solid, working markup without JavaScript, we can
build on that foundation to add in extra behavior. And if we write the Java-
Script and connect the behavior into the page by using CSS classes rather
than adding the JavaScript directly to the HTML, everything is completely
decoupled. This also keeps our sites from becoming too JavaScript-dependent,
which means more people can use our sites when JavaScript isn’t available.

report erratum • discuss

Accessible Expand and Collapse • 59

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/index.html
http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We call this progressive enhancement, and it’s an approach we strongly rec-
ommend.

This same approach could be used for building photo galleries. We’d make
each thumbnail link to a larger version of the image that opens on its own
page. Then we’d use JavaScript to intercept the click event on the image and
display the full-sized image in a lightbox, along with any additional controls
that are useful only when JavaScript is enabled, as we did in this recipe.

When submitting data to a server, rather than retrieving it as in the previous
example, it would make sense to create a form with a regular HTTP POST
request first, and then intercept the form’s submit event with JavaScript and
do the post via Ajax. This sounds like more work, but you end up saving a
lot of time; you get to leverage the form’s semantic markup and use things
like jQuery’s serialize() method to prepare the form data, rather than reading
each input field and constructing your own POST request.

Techniques like this are well supported by jQuery and other modern libraries
because they make it easy to build simple, accessible solutions for your
audience.

Also See
• Recipe 10, Interacting with Web Pages Using Keyboard Shortcuts on page

61
• Recipe 12, Displaying Information with Endless Pagination on page 76

Chapter 2. User Interface Recipes • 60

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 10

Interacting with Web Pages Using Keyboard Shortcuts

Problem
Website visitors expect to use the mouse to interact with the site, but using
the mouse isn’t always the most efficient way. Keyboard shortcuts are com-
mon; Gmail, Tumblr, and Facebook use them as a way to improve accessibil-
ity and allow users to quickly and comfortably perform common tasks.
Facebook even supports some of the Vim commands discussed in Recipe 40,
Changing Web Server Configuration Files with Vim on page 287. We want to
bring this functionality to our site, but we need to make sure we don’t interfere
with our application’s normal, expected behavior, such as our search box.

Ingredients
• jQuery

Solution
Keyboard shortcuts use JavaScript to monitor the page for certain keys being
pressed. We accomplish this by binding a function to the document’s keydown
event. Each key press is identified by a unique code. When a key is pressed,
we check whether a code matches one we are using for a shortcut and invoke
the specified function for that key.

We have a site with a large number of blog entries about a variety of topics.
After some usability testing, we saw that users decide whether they want to
read the entry by scanning the title and part of the first sentence. If they’re
not interested, they scroll on to the next article. Because some entries are
long, users end up doing a lot of scrolling before they get to the next article.
We’ll create some basic shortcuts to let users quickly jump among the entries
on the page, navigate between pages, and easily access the search box. We’ll
work with an interface that looks like the one in the following figure:

report erratum • discuss

Interacting with Web Pages Using Keyboard Shortcuts • 61

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Getting Set Up

First we’ll add the ability to scroll between entries on the current page. We’ll
start by creating a page containing several items that all share a class of entry
and use the j key to go to the next entry and k to go to the previous one.
These letters are used for navigating to previous and next records in many
applications, including Vim, which we cover in Recipe 40, Changing Web
Server Configuration Files with Vim on page 287, so it’s a good idea to stick
with the convention. Once we have these shortcuts set up, we’ll handle navi-
gating between pages using the right and left arrows, followed by creating a
shortcut to the search box.

Let’s start by creating a prototype that has a search box and a few search
results so we have something we can test our keyboard navigation on:

keyboardnavigation/index.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>Keyboard Navigation</title>

</head>
<body>

<p>Make this page longer so you can tell that we're scrolling!</p>
<form>
<input id="search" type="text"size="28" value="search">

</form>
<div id="entry_1" class="entry">
<h2>This is the title</h2>
<p>Lorem ipsum dolor sit amet...</p>

</div>

Chapter 2. User Interface Recipes • 62

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<div id="entry_2" class="entry">
<h2>This is the title of the second one</h2>
<p>In hac habitasse platea dictumst...</p>

</div>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script
src='keyboard_navigation.js'></script>

</body>
</html>

Because of size constraints, this example page is short. To see the full effect
as we scroll between elements, add a few more of the <div id="entry_x" class="entry">
sections. Make sure the content is longer than your browser can display at
once so that you can see the effect of scrolling between entries, and make
sure that each entry’s ID is unique.

Catching Key Presses

We’ll use jQuery to set up a few event handlers when the page loads. When
someone presses one of our navigation keys, we’ll call the functions that
navigate through the page. The $(document).keydown() function allows us to
specify exactly what to call for different keys by using a case statement. Each
case we define represents a different key by its key code:6

keyboardnavigation/keyboard_navigation.js
$(document).keydown(function(e) {

if($(document.activeElement)[0] === $(document.body)[0]){
switch(e.keyCode){
// In Page Navigation
case 74: // j
scrollToNext();
break;

case 75: // k
scrollToPrevious();
break;

// Between Page Navigation
case 39: // right arrow
loadNextPage();
break;

case 37: // left arrow
loadPreviousPage();
break;

// Search
case 191: // / (and ? with shift)

6. To find other key codes, check out the list at http://www.cambiaresearch.com/c4/702b8cd1-e5b0-
42e6-83ac-25f0306e3e25/javascript-char-codes-key-codes.aspx.

report erratum • discuss

Interacting with Web Pages Using Keyboard Shortcuts • 63

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://www.cambiaresearch.com/c4/702b8cd1-e5b0-42e6-83ac-25f0306e3e25/javascript-char-codes-key-codes.aspx
http://www.cambiaresearch.com/c4/702b8cd1-e5b0-42e6-83ac-25f0306e3e25/javascript-char-codes-key-codes.aspx
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

if(e.shiftKey){
$('#search').focus().val('');
return false;

}
break;

}
}

});

Before we check whether one of our keys is pressed, it’s important to make
sure we’re not interrupting normal user activity. The first line of our keydown
function is if($(document.activeElement)[0] == $(document.body)[0]), which makes sure
that the active element on the page is the body of the page itself. By doing
this, we avoid catching key presses when a user is typing in a search box or
a text area.

Scrolling

Scrolling between entries on our page involves getting a list of the current
entries and knowing which one we last used the keyboard to scroll to. First
we want to set everything so that when we first scroll on the page we go to
the first entry on the page:

keyboardnavigation/keyboard_navigation.js
var currentEntry = -1;

When the page loads, we set a variable called currentEntry to -1, meaning that
we haven’t scrolled anywhere yet. We use -1 because we are going to figure
out which entry to display by loading all objects on the page with a class of
.entry and picking the correct one based on its index in the resulting array.
JavaScript arrays are zero-based, so the first entry will be at the 0 position.

In Catching Key Presses, on page 63, we defined the functions to call when
certain keys were pressed. When the j key is pressed, we want to scroll to the
next entry on the page, so we call the scrollToNext() function:

keyboardnavigation/keyboard_navigation.js
function scrollToNext(){

if($('.entry').size() > currentEntry + 1){
currentEntry++;
scrollToEntry(currentEntry);

}
}

In scrollToNext(), we first check that we’re not trying to scroll to an entry that
doesn’t exist by ensuring that incrementing the currentEntry counter won’t
exceed the number of entries on the page. If there’s an entry to scroll to, we
increase the currentEntry by 1 and call scrollToEntry():

Chapter 2. User Interface Recipes • 64

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

keyboardnavigation/keyboard_navigation.js
function scrollToEntry(entryIndex){

var top = $("#" + $('.entry')[entryIndex].id).offset().top;
$('html,body').animate({ scrollTop: top }, 'slow');

}

scrollToEntry() uses the jQuery animation libraries to scroll our view to the ID
of the specified entry. Since the currentEntry represents the index of the entry
we want to display, we grab the ID of that entry and tell jQuery to scroll there.

When the user presses the k key, we call a similar function called scrollToPrevi-
ous():

keyboardnavigation/keyboard_navigation.js
function scrollToPrevious(){

if(currentEntry > 0){
currentEntry--;
scrollToEntry(currentEntry);

}
}

scrollToPrevious() makes sure we aren’t trying to load a smaller entry than 0,
since that will always be the first entry on the page. If we’re not on the first
entry, we reduce the currentEntry by 1 and once again call scrollToEntry().

Now that our users can scroll between entries on the page, it’s easy for them
to quickly review the page content. But when they get to the end of the page,
they need to be able to move to the next page of records. Let’s work on that
next.

Pagination

Navigation between pages can happen in a variety of ways. For this example,
we’ll assume that the desired page is indicated by the page=5 querystring in
the URL; however, this could easily be changed to work with p=5, entries/5, or
any other page indicator you might encounter.

To keep our code nice and clean, let’s write a function called getQueryString()
that pulls the page number out of the URL:

keyboardnavigation/keyboard_navigation.js
function getQueryString(name){

var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
var val = null;
if (r !== null) val = unescape(r[2]);
return val;

}

report erratum • discuss

Interacting with Web Pages Using Keyboard Shortcuts • 65

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we’ll build a getCurrentPageNumber() function that uses the getQueryString()
function to check whether page even exists. If it does, we get it and turn it
from a string to an integer and then return it. If it doesn’t exist, that means
that no page is currently set. If this is the case, we’ll assume we’re on the
first page and return 1. It’s important that we return an integer and not a
string, because we’re going to need to do math with the page number.

keyboardnavigation/keyboard_navigation.js
function getCurrentPageNumber(){

return parseInt(getQueryString('page') || 1);
}

Our keycode watcher listens for the left and right arrows to be pressed. When
the user presses the right arrow, we call the loadNextPage() function, which fig-
ures out what page number we’re on and directs the browser to the next one:

keyboardnavigation/keyboard_navigation.js
function loadNextPage(){

var pageNumber = getCurrentPageNumber() + 1;
var url = window.location.href;
if (url.indexOf('page=') !== -1){

window.location.href = replacePageNumber(pageNumber);
else {

var joinChar = (url.indexOf('?') > -1) ? '&' : '?';
window.location.href += joinChar + pageNumber;

}
}

We first determine our current page number, and then increase pageNumber
by 1 because we’re going to the next page. Then we grab the current URL so
we can update it and load the next page. This is the most involved part of the
process, because the URL can be structured in several ways.

First we check whether the URL contains page= in the querystring. If it does,
as in http://example.com?page=4, then we need to replace the current number
using a regular expression and the replace() function:

keyboardnavigation/keyboard_navigation.js
if (url.indexOf('page=') !== -1){

window.location.href = replacePageNumber(pageNumber);

We also need to replace the page number when going to the previous page,
so we have a replacePageNumber() function. If our URL structure changes, we
only have to update our code in one place:

keyboardnavigation/keyboard_navigation.js
function replacePageNumber(pageNumber){

return window.location.href.replace(/page=(\d+)/,'page='+pageNumber);
}

Chapter 2. User Interface Recipes • 66

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://example.com?page=4
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

If the URL doesn’t contain page=, then we need to add the entire parameter
to the querystring. Before we do that we should check whether the URL con-
tains other parameters. If it does, they’ll be listed after the ? in the URL, so
we check for ?. If it exists, as in http://example.com?foo=bar, then we add an
ampersand (&) before the parameter name. Otherwise, we need to add the ?
before appending the page parameter to the URL:

keyboardnavigation/keyboard_navigation.js
else {

var joinChar = (url.indexOf('?') > -1) ? '&' : '?';
window.location.href += joinChar + pageNumber;

}

We can use a similar, but simpler, technique to load the previous page. After
figuring out the current page number and reducing it by 1, we need to make
sure we’re not trying to load a page number that’s less than 1. So first we
make sure the new pageNumber is greater than 0. If it is, we update page= with
the new number, and we’re on our way:

keyboardnavigation/keyboard_navigation.js
function loadPreviousPage(){

pageNumber = getCurrentPageNumber() - 1;
if (pageNumber > 0){

window.location.href = replacePageNumber(pageNumber);
}

}

Now that we can move between pages and among entries, let’s create a way
for users to quickly get access to the search box.

Navigating to the Search Box

The keyboard shortcut that makes the most sense for navigating to the search
box is the ? key, but that’s done by pressing two keys together, so we need
to do things a little bit differently from our other shortcuts. First, we watch
for the keycode of 191, which represents the / key. When this key is pressed,
we query the shiftKey property on the event, which returns true if the Shift key
is down:

keyboardnavigation/keyboard_navigation.js
case 191: // / (and ? with shift)

if(e.shiftKey){
$('#search').focus().val('');
return false;

}
break;

}

report erratum • discuss

Interacting with Web Pages Using Keyboard Shortcuts • 67

http://example.com?foo=bar
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

If the Shift key was pressed, we retrieve the search box by using its DOM ID
and call the focus() method to place the cursor inside the search box. We then
erase any content currently in it by calling val('') with an empty string. Finally,
we call return false;, which prevents the ? that was typed from being returned
by the function and placed in the search box.

Further Exploration
We’ve added some quick keyboard shortcuts that let our users navigate
throughout our site without having to take their hands off of their keyboards.
Once the framework is in place, adding new keyboard shortcuts is a breeze.
You could use keyboard shortcuts to display a lightbox with the full article
that opens when the user presses the spacebar. You could use keyboard
shortcuts to pop up a console with information about ongoing tasks or use
them to reveal further content in a blog post.

Many of the other JavaScript-based chapters in this book could have keyboard
shortcuts added to them, such as browsing through the images in Recipe 4,
Creating Interactive Slideshows with jQuery on page 18, or using the keyboard
or scanning and expanding items in Recipe 9, Accessible Expand and Collapse
on page 53.

Also See
• Recipe 4, Creating Interactive Slideshows with jQuery on page 18
• Recipe 9, Accessible Expand and Collapse on page 53
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221
• Recipe 40, Changing Web Server Configuration Files with Vim on page 287

Chapter 2. User Interface Recipes • 68

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 11

Rendering HTML with Handlebars Templates

Problem

Amazing interfaces require lots of dynamic and asynchronous HTML. Thanks
to Ajax and JavaScript libraries like jQuery, we can change the user interface
without reloading the page by generating HTML with JavaScript. We typically
use methods such as string concatenation to add new elements to our inter-
faces, but these are hard to manage and are prone to error. We have to dance
around mixing single and double quotes and often are left to use jQuery’s
append() method endlessly.

Ingredients
• jQuery
• Handlebars.js7

• QEDServer (for our test server)8

Solution
Thankfully, client-side templating tools such as Handlebars allow us to write
real HTML, render data with it, and insert it into the document. With Handle-
bars, we can create client-side views with clean HTML that are abstracted
away from the JavaScript code. It allows for conditional logic as well as itera-
tion.

With Handlebars, we can simplify HTML creation when generating new con-
tent. Let’s explore the Handlebars templating syntax by working with a
JavaScript-driven product-management application.

The existing application lets us manage products by adding new ones to a
list. The example uses our standard development server, since the requests
are all handled by JavaScript and Ajax. When the user fills in the form to add
a new product and submits the form, the associated code tells the server to
save the product and then renders a new product in the list. To build the list

7. http://handlebarsjs.com/
8. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Rendering HTML with Handlebars Templates • 69

http://handlebarsjs.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

of products, we have to use string concatenation, which becomes awkward
and hard to read:

handlebars/old_index.html
var newProduct = $('<div class="product"></div>');
newProduct.append('' +

products[index].name + '');
newProduct.append('<em class="product-price">' +

products[index].price + '');
newProduct.append('<div class="product-description">' +

products[index].description + '</div>');

$("body").append(newProduct);

What a mess! We want something more readable and easier to maintain.

Rendering a Template

Using Handlebars is as easy as loading the script on the page. For this exer-
cise, we’ll use QEDServer as our back end so we can use its products API.
So, first, we create a basic HTML page called index.html in the QEDServer public
folder. We create a basic HTML5 template and load jQuery and Handlebars
right above the closing <body> tag:

handlebars/index.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>List Products</title>

</head>
<body>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/3.0.3/

handlebars.min.js"></script>
</body>

</html>

Note that we load Handlebars from a CDN as we do with jQuery. However,
you can always download your own local copy and keep it with your code.

To refactor our existing application, we first need to know how to render a
template using Handlebars. This involves two steps. First, we compile a
Handlebars template. Second, we convert the template to HTML. The process
looks like this:

template = Handlebars.compile(templateString);
html = template(data);

Chapter 2. User Interface Recipes • 70

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/handlebars/old_index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The first line compiles the template, which we pass in as a string. The second
line converts the compiled template to HTML. We pass the data to be injected
into the HTML. The data variable is an object whose keys become the local
variables in the template. Examine the following code:

var artist = {name: "John Coltrane"};
var template =

Handlebars.compile('{{ name }}');
var html = template(artist);
$('body').append(rendered);

The html variable contains our final HTML that was spit back out of the con-
version. To place the name property in our HTML, Handlebars uses a style of
tags with double curly braces. Inside the curly braces, we place the name of
a property. The data from our object gets injected into those curly braces
when we render the template, converting it to HTML. We can then append
the rendered HTML to the <body>, as if we’d built up our own string.

This is the simplest method for rendering a template with Handlebars. Our
application will also contain code that’s related to sending a request to a
server to retrieve the data, but the process for creating the template will be
the same.

Displaying Products from the Server

Now that you understand how to render a template, we can remove the old
method of string concatenation from the existing application. Let’s examine
the existing app’s code again to see what we can change:

handlebars/old_index.html
<script>

$.getJSON('/products.json', function(products) {
for(var index = 0, length = products.length; index < length; index++){
var newProduct = $('<div class="product"></div>');
newProduct.append('' +

products[index].name + '');
newProduct.append('<em class="product-price">' +

products[index].price + '');
newProduct.append('<div class="product-description">' +

products[index].description + '</div>');

$("body").append(newProduct);
}

});
</script>

In this version we use jQuery to get the products from the API, and then we
iterate over the products, constructing new elements and appending them to

report erratum • discuss

Rendering HTML with Handlebars Templates • 71

http://media.pragprog.com/titles/wbdev2/code/handlebars/old_index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

the list of products. This messy code is a headache to read and even worse
to maintain. Instead of using jQuery’s append() method to build up the HTML
incrementally, let’s use Handlebars to render the HTML by passing the data
we get from the server to a Handlebars template. Our first step toward
reducing the JavaScript madness is to build that template.

If we create a <script> element with a content type of text/x-handlebars-template,
then we can place Handlebars HTML inside of that element and pull it out
for our template. The browser will ignore the contents of the <script> tag when
the page renders, thanks to the content type we chose. We’ll give the <script>
tag an ID so that we can reference it with jQuery and grab its content so we
can send it to the Handlebars renderer. Above the calls to the jQuery libraries,
add this code:

handlebars/index.html
<script type="text/x-handlebars-template" id="products_template">
</script>

When we get our data from the server, it’ll come back in object form:

{
name: "iPad",
description: "Ooooh shiny!"
price: "$499"

}

So we can use the object’s properties as the variable names in our template,
like this:

handlebars/index.html
<div class="product">

<h2>
{{name}}
<em class="product-price">{{price}}

</h2>
</div>

We access the object’s name and price properties right in between the HTML
tags, using the curly-brace syntax Handlebars understands. The actual values
will get placed in those placeholders when we render the template.

Now let’s tackle the description of the product. We don’t need to show the
description if no description is coming back from the server. We don’t want
to render the corresponding <div> if the description isn’t present. Thankfully,
Handlebars allows for conditional statements. We can check whether the
description is there and conditionally render the <div>:

Chapter 2. User Interface Recipes • 72

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

handlebars/index.html
{{#if description}}

<div class="product-description">{{description}}</div>
{{/if}}

The template we’ve made renders a single product. In our original code, we
used a JavaScript for loop to iterate over the products and render a chunk of
HTML. But with Handlebars, we can render all of our products by altering
the template to tell the templating engine that it should render multiple
products:

handlebars/index.html
{{#products}}➤

<div class="product">
<h2>
{{name}}
<em class="product-price">{{price}}

</h2>
{{#if description}}
<div class="product-description">{{description}}</div>

{{/if}}
</div>

{{/products}}➤

With our template in place, we can change how we insert the HTML. We grab
a reference to the template with jQuery and use the html() function to grab the
inner content. Then all we need to do is pass the HTML and the data to
Handlebars:

handlebars/index.html
<script>

(function(){
$.getJSON('/products.json', function(products) {
var data = {products: products};
var template = Handlebars.compile($("#products_template").html());
var html = template(data);
$("body").append(html);

});
})();

</script>

And now our list of products is built using client-side templates instead of
HTML. It’s so much simpler now, and if we decide we want to change the
HTML, it’s easy to do—much easier than modifying strings of HTML embedded
in JavaScript strings. Handlebars templates give us a simple way to remove
string concatenation and build our interfaces in a semantic and readable
way.

report erratum • discuss

Rendering HTML with Handlebars Templates • 73

http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Joe asks:

Can We Use External Templates?
Inline templates are handy, but we want to remove the template logic from the server
views. On our server, we create a folder to hold all of our view files. Then, when we
want to render one of the templates, we make a GET request with jQuery and fetch
the template:

$.get("http://mysite.com/js_views/external_template.html",
function(template) {
var template, html;
template = Handlebars.compile(template);
html = template(data)
$("body").append(html);

}
);

This allows us to serve views separate from our client views.

Further Exploration
One downside to the way we used Handlebars is that the templates must be
compiled to HTML in the browser, and that can significantly slow down some
sites, especially on mobile devices. Handlebars offers a solution to this, though.
By installing a command-line tool, you can precompile your templates before
you deploy your site. Check out the Handlebars documentation for more
details on how that works.9

Client-side templating tools let you keep your client-side code clean, but you
can also use Handlebars to create server-side templates in Node.js applica-
tions.

This means you can use Handlebars templates as the templating engine on
both the back end and front end of a project. For example, if you have a
Handlebars template that represents a row of an HTML table and you use
that template inside a loop to construct the initial table when you initially
render the page, you can reuse that same template to append a row to the
table after a successful Ajax request.

And if you don’t use Node as your server-side language, you’ve got another
option. Handlebars is mostly compatible with another templating library called
Mustache, and implementations of Mustache are available in Node, Ruby,

9. http://handlebarsjs.com/precompilation.html

Chapter 2. User Interface Recipes • 74

report erratum • discuss

http://handlebarsjs.com/precompilation.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Java, Python, ColdFusion, and many more. You can find more on these
implementations at the official site.10

Also See
• Recipe 12, Displaying Information with Endless Pagination on page 76
• Recipe 14, Snappier Client-Side Interfaces with Knockout.js on page 87
• Recipe 22, Building a Status Site with JavaScript and CouchDB on page

154

10. http://mustache.github.com/

report erratum • discuss

Rendering HTML with Handlebars Templates • 75

http://mustache.github.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 12

Displaying Information with Endless Pagination

Problem

To prevent information overload for our users and to keep our servers from
grinding to a halt, it’s important to limit how much data is shown at once on
our list pages. This is traditionally handled by adding pagination to these
pages. That is, we show only a small subset of data to start with while allowing
the users to jump among the pages of information at their own discretion.
What they see is a small part of all of the information that is potentially
available to them.

As websites have evolved, web developers have learned that most of the time
users go through these pages sequentially. They would actually be happy to
scroll through an entire list of data until they find what they’re looking for or
reach the end of the dataset. We need to provide that type of experience for
our users without taxing our servers.

Ingredients
• jQuery
• Handlebars11

• QEDServer (for our test server)12

Solution
By implementing endless pagination, we can provide an efficient way of
managing our resources while improving the end-user experience. Instead of
forcing users to choose the next page of results and then reloading the entire
interface, we load the next page of results in the background and add those
results to the current page as the user scrolls toward the end of the page.

We want to add a list of our products to our site, but our inventory is much
too big to reasonably load all at once. We’ll have to add pagination for this
list and limit the user to loading ten products at a time. To make our users’

11. http://handlebarsjs.com
12. A version for this book is available at http://webdevelopmentrecipes.com/.

Chapter 2. User Interface Recipes • 76

report erratum • discuss

http://handlebarsjs.com
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

lives even easier, we’re going to ditch the Next Page button and automatically
load the following page when we think they’re ready for it. It will seem to the
users as if the entire product list was available to them since they first loaded
the page.

We’ll use QEDServer and its product catalog to build a working prototype.
We’ll place all of our code in the public folder in QEDServer’s workspace, start
up QEDServer, and then create a new file called products.html in the public folder
that QEDServer creates. You can look at QEDServer, on page xii, for details
on how QEDServer works.

To keep our code clean, we’ll use the Handlebars template library to separate
our pagination functionality from the presentation of the actual products.
For more details about Handlebars, check out Recipe 11, Rendering HTML
with Handlebars Templates on page 69.

We start out by creating a simple HTML5 skeleton in products.html that includes
jQuery, the Handlebars template library, and endless_pagination.js, which we’ll
create to hold our pagination code:

endlesspagination/products.html
<!DOCTYPE html>
<html>

<head>
<meta charset='utf-8'>
<title>AwesomeCo Products</title>
<link rel='stylesheet' href='endless_pagination.css'>

</head>
<body>

<div id="wrap">
<header>

<h1>Products</h1>
</header>

</div>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/3.0.3/

handlebars.min.js">
</script>
<script src="endless_pagination.js"></script>

</body>
</html>

For the body of this initial page, we add a content placeholder and a spinner
image. The spinner is there so that if the user ever does reach the end of the
current page, it will indicate that the next page is already loading, as shown
in the following figure:

report erratum • discuss

Displaying Information with Endless Pagination • 77

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/products.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Here’s how we code that up:

endlesspagination/products.html
<div id='content'>
</div>

And here’s the basic CSS we need for our page, which goes in endless_pagina-
tion.css:

endlesspagination/endless_pagination.css
.product {

margin: 40px auto;
}

.product a {
/* Make the text big enough that the products run off the page */
font-size: 300%;

}

#current_page {
display: none;

}

QEDServer’s API is set up to return paginated results and responds to JSON
requests. We can see this by navigating to http://localhost:8080/products.json?page=2.
Notice that the page number is part of the URL.

Now that we know what information we’re getting from the server, we can
start building the code that’ll update the interface. We’ll write a function that
takes in a JSON array, marks it up using a Handlebars template, and appends
it to the end of the page. We’ll put this code into a file named endless_pagination.js.
We start by writing the functions that’ll do the heavy lifting. First we need a
function that renders the JSON response into HTML:

Chapter 2. User Interface Recipes • 78

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/products.html
http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.css
http://localhost:8080/products.json?page=2
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

endlesspagination/endless_pagination.js
(function($) {

function loadData(data) {
$('#content').append(Handlebars.compile("{{#products}} \
<div class='product'> \

{{name}} \

 \
{{description}} \
</div>{{/products}}")({ products: data }));

}
})(jQuery);

All of our code will be in this same self-executing function, where we’re
defining loadData().

As we loop through each product, our template will create a <div> where the
content is the name of the product as a link. Then the new items are
appended to the end of the product list so they appear on the page.

Next, since we’re going to request the next page when we reach the end of the
current page, we need a way to determine what the next page is. We can do
this by storing the current page as a global variable. Then when we’re ready,
we can build the URL for the next page:

endlesspagination/endless_pagination.js
var currentPage = 0;
function nextPageWithJSON() {

currentPage += 1;
var newURL = '/products.json?page=' + currentPage;

var splitHref = document.URL.split('?');
var parameters = splitHref[1];
if (parameters) {

parameters = parameters.replace(/[?&]page=[^&]*/, '');
newURL += '&' + parameters;

}
return newURL;

}

The nextPageWithJSON() function increments the currentPage variable and appends
it to the current URL as a page= parameter. We also want to remember any
other parameters that were in the current URL. At the same time, we want
to make sure that the old page parameter, if it exists, gets overridden. This
way we’ll get the desired response from the server.

Now that we have functions in place to show new content and determine what
the URL is for the next page, let’s add the function that requests that content
from our server. At its core, this function is an Ajax call to the server. However,

report erratum • discuss

Displaying Information with Endless Pagination • 79

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

we do need to implement a rudimentary way to prevent extra, unwanted calls
to the server. We add a global variable called loadingPage that we initialize to
0. We increment it before we make the Ajax call and set it back when we’re
done. This creates a mutex, or locking mechanism. Without this lock in place,
we could potentially make dozens of calls to the server for the next page,
which the server would obligingly deliver, even if it’s not really what we want.

endlesspagination/endless_pagination.js
var loadingPage = 0;
function getNextPage() {

if (loadingPage === 0) {
loadingPage++;
$.getJSON(nextPageWithJSON(), {}, updateContent)

.complete(function() { loadingPage--; });
}

}

function updateContent(response) {
loadData(response);

}

After the Ajax call finishes, we pass the response to the loadData() function we
defined earlier. After loadData() adds the new content, we update the URL stored
in the nextPage variable. This way, we’re all set up to make the next Ajax call.

Now we need a way to determine whether the user is ready to load the next
page. Normally this is where the user would click the Next Page link, but
instead we want a function that returns true when the bottom of the browser’s
screen is within a given distance of the bottom of the page:

function readyForNextPage() {
if (!$('#next_page_spinner').is(':visible')) return;

var threshold = 200;
var bottomPosition = $(window).scrollTop() + $(window).height();
var distanceFromBottom = $(document).height() - bottomPosition;
return distanceFromBottom <= threshold;

}

Finally, we apply a scroll event handler that calls the observeScroll() function.
That way, every time the user scrolls through the page, we call the newly
created readyForNextPage() helper function. When the helper function returns
true, we call getNextPage() to make our Ajax request:

function observeScroll(event) {
if (readyForNextPage()) getNextPage();

}
$(document).scroll(observeScroll);

Chapter 2. User Interface Recipes • 80

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The first time we load the page, we call getNextPage() directly. This is because
readyForNextPage() returns false until the user scrolls, but there’s no need to scroll
when the only thing visible on the page is a spinner. This first call is how the
user sees the first page of products.

We’ve taken care of the endless part of endless pagination, but in reality there
will be an end to our content. We want to hide the spinner after the user sees
the last product, since it would make the user think that either the Internet
connection has slowed or our site is broken. To remove the spinner, we add
a final check to hide it when the server returns an empty list:

function loadData(data) {
$('#content').append(Handlebars.compile("{{#products}} \

<div class='product'> \
{{name}} \

 \
{{description}} \
</div>{{/products}}")({ products: data }));

if (data.length === 0) $('#next_page_spinner').hide();
}

And that’s it. When we reach the bottom of our list, the spinner disappears.

Further Exploration
This technique is excellent for displaying long lists of information and is a
behavior users have come to expect. Since we’ve separated our functionality
into separate functions, it’ll be easy to adapt this solution to other scenarios.
We can change the code to load the content earlier or later by changing the
threshold variable or to render an HTML or XML response instead of one from
JSON by modifying the loadData() function. And best of all, we can rest easy
knowing that our site will still be accessible even if jQuery somehow goes
missing, which we can test by disabling JavaScript.

In Recipe 13, Extending Endless Pagination with pushState() on page 82, we’ll
explore how we can make this code more user-friendly by adding support for
URL changes and the back button.

Also See
• Recipe 13, Extending Endless Pagination with pushState() on page 82
• Recipe 11, Rendering HTML with Handlebars Templates on page 69

report erratum • discuss

Displaying Information with Endless Pagination • 81

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 13

Extending Endless Pagination with pushState()

Problem

One of the things that makes the Internet great is that, from news articles to
cat GIFs, everyone can easily share links with one another. But with more
applications using Ajax, this is no longer the case by default; clicking an Ajax
link no longer guarantees that the browser’s URL is updated to reflect what
the user is seeing. For many Ajax requests this is fine, but when large parts
of the site change after a request, not keeping the URL up to date can cause
issues. Not only does this prevent the sharing of links, but it breaks the back
and refresh buttons.

Unfortunately, the endless-pagination code we wrote in Recipe 12, Displaying
Information with Endless Pagination on page 76, has the same issue. As we
scroll through the page and request new pages via Ajax, the browser’s URL
never updates to reflect the new content on the screen.

So, for example, if a user is on page 5 of a catalog and wants to share it with
some friends via email, he’d likely copy and paste the browser’s URL and say,
“Check out this great deal!” Unfortunately, when the friends open the link
they’ll see page 1 and have no idea what he was talking about.

A user’s own experience is also affected. When she clicks the back button on
an all-Ajax site, she often ends up at whatever page led her to the site instead
of the last Ajax page loaded. Then, frustrated, she clicks the forward button
and ends up somewhere completely different. Thankfully, we have a solution
for these common problems.

Ingredients
• jQuery
• Handlebars.js13

• QEDServer (for our test server)14

13. http://handlebarsjs.com/
14. A version for this book is available at http://webdevelopmentrecipes.com/.

Chapter 2. User Interface Recipes • 82

report erratum • discuss

http://handlebarsjs.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Solution
We’ll start with the code that we wrote in Recipe 12, Displaying Information
with Endless Pagination on page 76, and finish implementing it. The old code
works, but users can’t easily share links with anyone. To keep our web karma
in alignment and prevent user frustration, the right thing to do is to make
this list page stateless. When we change the page that the user is looking at,
we’ll change the current URL to reflect these changes.

The HTML5 specification introduced a JavaScript function called pushState(),
which lets us alter the URL without leaving the page. This is great news for
web developers! We can make an entire Ajax web application that never goes
through the traditional request/reload life cycle while behaving like a multi-
page site. This means there’s no need to re-request resources like images,
style sheets, or JavaScript files every time we move to a new screen. And
users can quickly share the current URL with others or use the refresh and
back buttons as usual.

Using the pushState() Function

Although pushState() is widely implemented, some older browser versions don’t
support it. The available fallback solution relies on modifying the hash portion
of a URL, but it’s ugly—and it’s not only an issue of having URLs that are
displeasing to the eye. The Internet has a good long-term memory. Web pages
may exist that include links that were added years ago, but the content has
moved to a new server. If we use the URL hash as a stopgap for important
information, we could be stuck supporting those deprecated links until the
end of time. Since URL hashes are never sent to the server, our application
would have to continue to read the URLs with JavaScript and redirect to the
requested page.

With that said, let’s see what it takes to make our endless products page
stateless.

Parameters to Track

Because we don’t know which page a user will load on the first request, we’ll
keep track of the starting page as well as the current page. If users go
directly to page three, we want them to be able to get back to page three on
subsequent visits. If they start scrolling down from page three and load mul-
tiple pages, for instance to page seven, we want to know that, too. We need
a way to keep track of the start and end pages so that a hard refresh won’t
require the user to scroll through the site again.

report erratum • discuss

Extending Endless Pagination with pushState() • 83

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Next we need a way to send the start and end pages from the client. The most
direct way is to set these parameters in the URL during a GET request. When
a page is first loaded, we’ll set the page parameter of the URL to be the current
page and assume the user wants to see only that page. If the client also
passes in a start_page parameter, we’ll know that the user wants to see a range
of pages, from start_page through page. So following our earlier example, if the
user is on page seven but started browsing from page three, our URL would
look like this: http://localhost:8080/products?start_page=3&page=7.

This set of parameters should be enough information for us to re-create a list
of products from the server and subsequently show users the same page they
saw when they last visited this page:

statefulpagination/stateful_pagination.js
function getParameterByName(name) {

var match = RegExp('[?&]' + name + '=([^&]*)')
.exec(window.location.search);

return match && decodeURIComponent(match[1].replace(/\+/g, ' '));
}

var currentPage = 0;
var startPage = 0;

function readParameters() {
startPage = parseInt(getParameterByName('start_page'));
if (isNaN(startPage)) {

startPage = parseInt(getParameterByName('page'));
}
if (isNaN(startPage)) {

startPage = 1;
}
currentPage = startPage - 1;

if (getParameterByName('page')) {
endPage = parseInt(getParameterByName('page'));
for (i = currentPage; i < endPage; i++) {
getNextPage(true);

}
}

observeScroll();
}

All we’re doing here is figuring out the start_page and current_page and then
requesting those pages from the server. We use mostly the same function
from the previous chapter, getNextPage(), but it’s been slightly modified to allow
multiple requests at a time:

Chapter 2. User Interface Recipes • 84

report erratum • discuss

http://localhost:8080/products?start_page=3&page=7
http://media.pragprog.com/titles/wbdev2/code/statefulpagination/stateful_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

var loadingPage = 0;
function getNextPage(ignoreMutexBlocking) {

if (!ignoreMutexBlocking && loadingPage != 0) return;

loadingPage++;
$.getJSON(nextPageWithJSON(), {}, updateContent).

complete(function() { loadingPage-- });
}

Normally when the user is scrolling we want to prevent multiple, overlapping
requests. But right now it’s all right, since we know exactly which pages
should be requested, so we’ll pass in true to ignore the mutex block. Then we
want to call the readParameters() function when the page loads to set the initial
state of the page:

readParameters();

Just as we tracked the currentPage in the code on page 79, we want to track
the startPage. We’ll grab this parameter from the URL so we can make the
requests for the pages that haven’t been loaded yet. This number will never
change, but we do want to make sure that it gets added to the URL and stays
there every time a new page is requested.

Updating the Browser’s URL

To update the URL, let’s write a function called updateBrowserUrl() that’ll call
pushState() and set the parameters for the start_page and page. It’s important to
remember that not every browser supports pushState(), so we need to check
that it’s defined before we can call it:

function updateBrowserUrl() {
if (window.history.pushState == undefined) return;

var newURL = '?start_page=' + startPage + '&page=' + currentPage;
window.history.pushState({}, '', newURL);

}

The pushState() function takes three parameters. The first allows us to track
any state we want with a JSON object. This argument could potentially be a
storage point for information we want the browser to remember that doesn’t
make sense to have in the parameters, such as the JSON we’ve already
received from the server when we scrolled. But since our data is relatively
lightweight and easy to get from the server, we skip this. For now we’ll pass
in an empty hash. The second argument is the title of the page. This feature
isn’t widely implemented yet, and for our purposes, even if it were, we don’t
have a reason to update this page’s title. We pass in a filler argument again;
this time an empty string.

report erratum • discuss

Extending Endless Pagination with pushState() • 85

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we get to the meat, or the tofu if you’re vegetarian, of the pushState()
function. The third parameter is how we want the URL to change. This method
is flexible and can be either an absolute path or only the parameters to be
updated at the end of the URL. For security reasons, we can’t change the
domain of the URL, but we can change everything after the top-level domain
with relative ease. Since we’re worried only about updating the parameters
of the URL, we prepend the pushState()’s third parameter with a question mark
(?). Finally, we set the start_page and page parameters, and if they already exist,
pushState() is smart enough to update these parameters for us.

Lastly, we add a call to updateBrowserUrl() from the updateContent() function to
make our endless pagination code state-aware:

statefulpagination/stateful_pagination.js
function updateContent(response) {

loadData(response);
updateBrowserUrl();

}

Now our users can use the back button to leave our page and return with the
forward button without losing their spot. They can also hit the refresh button
with impunity and get the same results. Most important, our links are now
sharable across the web. We’ve been able to make the URL for our index page
behave like a traditional non-Ajax site with minimal effort, thanks to the hard
work of modern browser developers.

Further Exploration
As we add more JavaScript and Ajax to our pages, we have to be aware of
how the interfaces behave. HTML5’s pushState() method and the History API
give us the tools we need to provide support for the regular controls in the
browser that people already know how to use. Abstraction layers like Histo-
ry.js15 make it even easier to use and provide graceful fallbacks for browsers
that don’t support the History API.

The approaches we discussed in this recipe are regularly being used by
frameworks like Backbone.js, which means even easier back button support
for the most complex single-page applications.

Also See
• Recipe 11, Rendering HTML with Handlebars Templates on page 69
• Recipe 13, Extending Endless Pagination with pushState() on page 82

15. https://github.com/browserstate/history.js

Chapter 2. User Interface Recipes • 86

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/statefulpagination/stateful_pagination.js
https://github.com/browserstate/history.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 14

Snappier Client-Side Interfaces with Knockout.js

Problem
When developing modern web applications, we often try to update only part
of the interface in response to user interaction instead of refreshing the entire
page. Calls to the server are often expensive, and refreshing the entire page
can cause users to lose their place.

Unfortunately, the JavaScript code for this can quickly become difficult to
manage. We start out watching only a couple of events, but eventually we
have several callbacks updating several regions of the page, which becomes
a maintenance nightmare. We need an easy-to-use tool that keeps track of
all of this for us.

Ingredients
• Knockout.js16

Solution
Knockout.js is a simple yet powerful framework that lets us bind objects to
our interface and can automatically update one part of the interface when
another part changes, without lots of nested event handlers. Knockout.js
uses view models, which encapsulate much of the view logic associated with
interface changes. We can then bind properties of these models to elements
in our interface.

We want our customers to be able to modify the quantity of items in their
shopping carts and see the updated total in real time. We can use Knockout’s
view models and data bindings to build the update screen for our shopping
cart. We’ll have a line for each item, a field for the customer to update the
quantity, and a button to remove the item from the cart. We’ll update the
subtotal for each line when the quantity changes, and we’ll update the grand
total whenever anything on the line changes. When we’re done, we’ll have an
interface that looks like the following figure:

16. http://knockoutjs.com

report erratum • discuss

Snappier Client-Side Interfaces with Knockout.js • 87

http://knockoutjs.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Knockout Basics

Knockout’s view models are regular JavaScript objects with properties,
methods, and a few special keywords. Here’s a simple Person object with
methods for first name, last name, and full name:

knockout/binding.html
(function(){

var Person = function(){
this.firstname = ko.observable("John");
this.lastname = ko.observable("Smith");
this.fullname = ko.computed(function(){
return(

this.firstname() + " " + this.lastname()
);

}, this);
};

ko.applyBindings(new Person);
})();

We use HTML5’s data- attributes to bind this object’s methods and logic to
elements on our interface:

knockout/binding.html
<p>First name: <input type="text" data-bind="value: firstname"></p>
<p>Last name: <input type="text" data-bind="value: lastname"></p>
<p>Full name:

</p>

When we update either the first-name or the last-name text box, the full name
shows up on the page. Since the update happens dynamically, this can cause
troubles for blind users with screen readers. To solve that issue, we use the
aria-live attribute to give the screen readers a hint that this part changes
dynamically.

That’s a relatively trivial example, so let’s dig into Knockout a little more by
building a single line of our cart, getting the total to change when we update

Chapter 2. User Interface Recipes • 88

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/knockout/binding.html
http://media.pragprog.com/titles/wbdev2/code/knockout/binding.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

the quantity. Then we’ll refactor it so we can build the entire shopping cart.
We’ll start with the data model.

We’ll represent the line item by using a simple JavaScript object called LineItem
with properties for name and price. Create a new HTML page and include the
Knockout.js library right above the page’s closing <body> tag:

knockout/item.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Update Quantities</title>

</head>

<body>
<script src="http://ajax.aspnetcdn.com/ajax/knockout/knockout-3.3.0.js">
</script>

</body>

</html>

Add a new <script> block at the bottom of the page, above the closing <body>
tag and below the <script> tag we just added. Add the following code between
the <script> tags:

knockout/item.html
(function(){

var LineItem = function(product_name, product_price){
this.name = product_name;
this.price = product_price;

};
})();

In JavaScript, functions are object constructors, so we can use a function to
mimic a class. In this case, the class’s constructor accepts the name and the
price when we create a new LineItem instance.

Now we need to tell Knockout that we want to use this lineItem class as our
view model, so that its properties are visible to our HTML markup. We do that
by adding the following call to our script block:

knockout/item.html
var item = new LineItem("Macbook Pro 15", 1699.00);
ko.applyBindings(item);

We’re creating a new instance of our LineItem to Knockout’s applyBindings() method,
and we’re setting the product name and price. We’ll make this more dynamic
later; for now we’ll hard-code these values.

report erratum • discuss

Snappier Client-Side Interfaces with Knockout.js • 89

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

With the object in place, we can build our interface and pull data from the
object. We use an HTML table to mark up our cart, and we use <thead> and
<tbody> tags to give it a little more structure:

knockout/item.html
<div role="application">

<table>
<thead>
<tr>

<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>

</tr>
</thead>
<tbody>
<tr aria-live="polite">

<td data-bind="text: name"></td>
<td data-bind="text: price"></td>

</tr>
</tbody>

</table>
</div>

Since our table row updates based on user input, we use the aria-live attribute
on the table row so screen readers know to watch that row for changes. We
also wrap the whole cart within a <div> with the HTML5 ARIA role of application,
which tells screen readers that this is an interactive application. You can
learn about these in the HTML5 specification.17

Pay special attention to these two lines:

knockout/item.html
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>

Our LineItem instance is now a global, visible object on our page, and its name
and price properties are visible as well. So with these two lines we’re saying
that we want the text of each element to get its value from the property we
specify.

When we load the page in our browser, we see the row of our table start to
take shape, and the name and price are filled in!

Let’s add a text field to the table so that the user can update the quantity:

17. http://www.w3.org/TR/html5-author/wai-aria.html

Chapter 2. User Interface Recipes • 90

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://www.w3.org/TR/html5-author/wai-aria.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

knockout/item.html
<td><input type="text" name="quantity"

data-bind='value: quantity, valueUpdate: "keyup"'>
</td>

In Knockout, we reference data fields within regular HTML elements with text,
but HTML form elements like <input> have value attributes. This time we bind
the value attribute to a quantity property in our view model, which we need to
define next.

The quantity property isn’t only for displaying data; it’ll set data as well. And
when we set data, we need events to fire. We do that by using Knockout’s
ko.observable() function as the value of our quantity property in our class:

knockout/item.html
this.quantity = ko.observable(1);

We’re passing a default value to ko.observable() so the text field has a value when
we bring the page up for the first time.

Now we can enter the quantity, but we need to show the row’s subtotal. Let’s
add a table column to print out the subtotal:

knockout/item.html
<td data-bind="text: subtotal "></td>

As with our name and price columns, we set the text of the table cell to the
value of our view model’s subtotal property.

This brings us to one of the more powerful features of Knockout.js: the com-
puted() method. We defined our quantity property as observable, which means
that other elements notice when that field changes. We declare a computed()
method, which executes code whenever our observed field changes, and we
assign computed() to a property on our object so it can be bound to our user
interface:

knockout/item.html
this.subtotal = ko.computed(function() {

return(
this.price * parseInt("0"+this.quantity(), 10)

); //<label id="code.subtotal" />
}, this);

But how does the computed() method know which fields to watch? It looks at
the observable properties we access in the function we define! Since we’re
adding the price and quantity together, Knockout tracks them both and runs
the preceding code when either one changes.

report erratum • discuss

Snappier Client-Side Interfaces with Knockout.js • 91

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The computed() method takes a second parameter that specifies the context for
the properties. This is necessary because of how JavaScript’s functions and
objects work; you can read more about this in the Knockout.js documentation.

And that’s it for a single row. When we change the quantity, our price updates
in real time. Now let’s take what we learned here and turn this into a multiple-
line shopping cart with line totals and a grand total.

Joe asks:

What About Knockout and Accessibility?
Interfaces that rely heavily on JavaScript often raise a red flag when it comes to
accessibility, but the use of JavaScript alone doesn’t make a site inaccessible to the
disabled.

In this recipe, we made use of the HTML5 ARIA roles and attributes to help screen
readers understand the application we’re developing. But accessibility is about much
more than screen readers; it’s about making our applications usable by the widest
audience possible.

Knockout is a JavaScript solution and will work only when JavaScript is enabled or
available, so you need to take that under consideration. We recommend that you
build applications to work without JavaScript and then use Knockout to enhance
your application. Our example uses Knockout to render the cart’s contents, but if we
were using a server-side framework we could render the HTML for the cart and use
Knockout’s binding features on top of the rendered HTML. The accessibility of a site
depends much more on the implementation than on the library or technology used.

Using Control Flow Bindings

Binding objects to HTML is handy, but users will likely have more than one
item in their carts, and duplicating all that code will get tedious—not to
mention more difficult—since we’ll have more than one LineItem object to bind.
We need to rethink the interface a bit.

Instead of working with a LineItem as the view model, let’s create another object
that represents the shopping cart. This Cart object will hold all of the LineItem
objects. Using what we know about Knockout’s computed() method, we can give
this new Cart object a property that computes the total when any item in the
cart changes.

But what about the HTML for the line item? Well, we can reduce duplication
by using a control-flow binding and tell Knockout to render our line-item HTML
once for each item in our cart. Let’s get started.

Chapter 2. User Interface Recipes • 92

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

First, let’s define an array of items we’ll use to populate the cart:

knockout/update_cart.html
var products = [

{name: "Macbook Pro 15 inch", price: 1699.00},
{name: "Mini Display Port to VGA Adapter", price: 29.00},
{name: "Magic Trackpad", price: 69.00},
{name: "Apple Wireless Keyboard", price: 69.00}

];

In a real-world situation, we would get this data from a web service or Ajax
call or by generating this array on the server side when we serve up the page.

Now, let’s create a Cart object that holds the items. We define it the same way
we defined our LineItem:

knockout/update_cart.html
var Cart = function(items){

this.items = ko.observableArray();

for(var i in items){
var item = new LineItem(items[i].name, items[i].price);
this.items.push(item);

}
}

We also need to change the binding in our templates from using the LineItem
class to using the Cart class:

knockout/update_cart.html
var cartViewModel = new Cart(products);
ko.applyBindings(cartViewModel);

The items are stored in the cart using an observableArray(), which works like
observable() but has the properties of an array. When we created a new instance
of our cart, we passed in the array of data. Our object iterates over the items
of data and creates new LineItem instances that get stored in the items array.
Since this array is observable, our user interface will change whenever the
array’s contents change. Of course, now that we’re dealing with more than
one item, we need to modify the user interface.

Next we modify our HTML page and tell Knockout to repeat the table rows by
using a Knockout data-bind call on the <tbody> tag:

knockout/update_cart.html
<tbody data-bind="foreach: items">➤

<tr aria=live="polite">
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>
<td><input type="text" name="quantity" data-bind='value: quantity'></td>

report erratum • discuss

Snappier Client-Side Interfaces with Knockout.js • 93

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<td data-bind="text: subtotal "></td>
</tr>

</tbody>

We tell Knockout to render the contents of the <tbody> for each entry in the
items array. We don’t have to change anything else in that row.

At this point, we have multiple lines displaying on the page, each subtotaling
correctly. Now let’s handle computing the grand total and removal of items.

The Grand Total

We saw how Knockout’s computed() method works when we used it to calculate
the subtotal for each item. We can use the same approach to calculate the
total for the entire cart by adding a computed() to the Cart itself:

knockout/update_cart.html
this.total = ko.computed(function(){

var total = 0;
for (item in this.items()){

total += this.items()[item].subtotal();
}
return total;

}, this);

Any time any of the items in our array changes, this code will fire. To display
the grand total on the form, we simply need to add the appropriate table row.
Since it’s the total for the cart and not for a line item, it doesn’t go in the
<tbody>. Instead, we’ll put it in a <tfoot> tag, which we place right above the
closing <thead> tag. Placing the footer above the table body can help some
browsers and assistive devices more quickly identify the table structure.

knockout/update_cart.html
<tfoot>

<tr>
<td colspan="4">Total</td>
<td aria-live="polite" data-bind="text: total()"></td>

</tr>
</tfoot>

When we refresh our page, we can change any quantity and update both the
line total and the cart total simultaneously. Now, about that Remove button...

Be Sure to Reconcile with the Server!

Building a shopping cart update screen entirely on the client side is becoming more
popular. In some cases, it may not be possible to send Ajax requests back and forth
every time a user makes a change to the interface, due to bandwidth issues or back-
end limitations.

Chapter 2. User Interface Recipes • 94

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

When you use an approach like this, you’ll want to synchronize the data in the cart
on the client side with data on the server. After all, you wouldn’t want someone
changing prices on you!

When the user checks out, submit the updated quantities to the server and recompute
the totals on the server side before checking out.

Removing Items

To wrap up this project, we need to add a Remove button to the end of each
row that removes the item from the row. Thanks to all the work we’ve done,
this is a simple task. First, we add the ability to remove an item from the cart
by adding a remove() method to our Cart:

knockout/update_cart.html
this.remove = function(item){

this.items.remove(item);
}.bind(this);

Notice the use of bind(this)() after the declaration of the function. We need that
so the function can reference the scope of the Cart. If we omit it, the remove()
function can’t figure out where this.items is.

With the remove() method in place, we modify the table to add the Remove
button:

knockout/update_cart.html
<td>

<button
data-bind="click: $parent.remove">Remove

</button>
</td>

This time, instead of binding data to the interface, we bind an event and a
function we want to call—in this case, the remove() method of our cartViewModel
instance. But at this point in our code, we’re within the context of a specific
item. Knockout lets us use the $parent property to reference the parent view
model. And best of all, it automatically passes a reference to the current item
to the function.

That’s it! Since the items array is an observableArray, our entire interface gets
updated. Even our grand total changes!

report erratum • discuss

Snappier Client-Side Interfaces with Knockout.js • 95

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
Knockout is great for situations where we need to build a dynamic single-
page interface. And because it’s not tied to a specific web framework, we can
use it anywhere.

More important, the view models Knockout uses are ordinary JavaScript, so
we can use Knockout to implement many commonly requested user interface
features. For example, we could very easily implement an Ajax-based live
search, build in-place editing controls that save the data back to the server,
or even update the contents of one drop-down field based on the selected
value of another field.

Also See
• Recipe 11, Rendering HTML with Handlebars Templates on page 69
• Recipe 15, Creating a Search Interface with React on page 97
• Recipe 16, Creating Client-Side Apps with Angular.js on page 107

Chapter 2. User Interface Recipes • 96

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 15

Creating a Search Interface with React

Problem
Thanks to Gmail and Facebook, people are accustomed to seeing real-time
search results, instead of the “traditional” approach in which they type in a
value, hit a submit button, and wait for the entire results page to redraw. So
we’ve been asked to build a simple product-search interface, with the explicit
requirement that the search must be quick and must be done without
refreshing the page.

Ingredients
• jQuery
• React18

• QEDServer (for our test server)19

Solution
React is a JavaScript library designed for creating user interfaces that need
to efficiently respond to a flow of data. Manipulating the DOM is one of the
most expensive things we can do in a web browser. React solves this by using
a virtual DOM for its components. We don’t ever manipulate elements on our
page. Instead, we create them as React components that get rendered to the
page. When we update our data, these components get refreshed—but only
the components that changed, rather than the whole page. It’s incredibly fast,
but it’ll require us to think differently about how we construct our page.

To test this out, we’ll create a simple search interface using QEDServer and
its product database as the back end for our Ajax requests. We’ll place all of
our files in the public folder that QEDServer creates in our workspace so our
development server will serve them properly and allow us to make Ajax
requests. So, start up QEDServer and ensure that it’s running at http://local-
host:8080/.

18. http://facebook.github.io/react/index.html
19. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Creating a Search Interface with React • 97

http://localhost:8080/
http://localhost:8080/
http://facebook.github.io/react/index.html
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ll place a new index.html file inside the public folder that QEDServer created
for us when we started it up. In this file, we place our usual HTML skeleton
and a <div> element that will hold our application. We’ll tell React to render
its contents into this area of the page. We also import a few libraries in the
header section of the page:

react/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Product Search</title>

</head>
<body>

<div aria-live="polite" id="content">Waiting...</div>
<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>➤

<script src="https://fb.me/react-0.13.3.js"></script>➤

<script src="https://fb.me/JSXTransformer-0.13.3.js"></script>➤

<script type="text/jsx" src="search.js"></script>➤

</body>
</html>

We’re including React, but we’re going to use jQuery for making our Ajax
requests. React is purely a UI library; it doesn’t have its own way of fetching
data from servers. The third library we’re loading is React’s JSX Transformer.
React has its own dialect of JavaScript, called JSX, that makes creating
templates easier. In production applications, you’d set up a development
workflow that converts JSX files into regular JavaScript files—much as we
do when we use CoffeeScript in Recipe 31, Cleaner JavaScript with CoffeeScript
on page 221. But since we’re only exploring, we can skip that step for now and
do the transformations in the browser in exchange for a hit on performance.
The last file we’re including is the file that will contain the JavaScript code
that builds our search interface. We have to specify that we’re using JSX for
this file so that the JSX Transformer can convert it.

Our Component Architecture

We’ll create a component called ProductSearch, which will be made up of two
smaller components—a ProductSearchForm and a ProductList—as illustrated in the
diagram on page 99.

The top-level component will communicate with our back end and will render
the two child components. When a visitor submits the search form, we’ll pass
the data up from the inner component to the outer component. The outer
component will fetch the search results from the back end and then rerender
the list of products using the new data.

Chapter 2. User Interface Recipes • 98

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/react/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

ProductSearch

ProductSearchForm

Keyword Search

ProductList

Name Description Price

Let’s start by creating the outer component. In search.js, we create the initial
version of our ProductSearch component:

react/search.js
var ProductSearch = React.createClass({

render: function() {
return (
<div>

<h1>Product Search</h1>
</div>

);
}

});

The preceding code doesn’t do too much other than render a <div> with an
<h1> inside. But it won’t actually render the component until we tell React to
render it, like this:

React.render(<ProductSearch />, document.getElementById('content'));

We pass in the component we want to render, and the element on the HTML
page that’ll contain the component. In our case, we’re rendering our Product-
Search component into the element on our page that has the ID of content. When
we reload the page in our browser, we see the component rendered to the
screen, as in the figure on page 100.

Now let’s get a little more interesting content on the page.

report erratum • discuss

Creating a Search Interface with React • 99

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Rendering Server-Side Data

Let’s fetch the most recent results from the server and use that data to render
the list of products so there’s something there when the page loads.

To do this, we’ll declare the ProductList component, which can display data. The
ProductSearch component will do the fetching of data and then render the Pro-
ductList component, passing it the data to display. This way we can reuse the
ProductList component elsewhere in our app if we want to.

But first we need some data we can render. We’ll fetch the data from our back
end and store it in the ProductSearch component’s state. You can think of the
component’s state as its own internal data collection. It can’t be accessed
outside of the component.

To use the state, we need to set up its initial value by declaring a method
called getInitialState(). This method needs to return a data structure making up
the initial value of the component’s state. We have it return an empty data
object:

react/search.js
var ProductSearch = React.createClass({

getInitialState: function() {➤

return {data: []};➤

},➤

If we declare a method called componentDidMount(), it’ll run automatically when
the component is attached to the page. This is a great place for us to hit our

Chapter 2. User Interface Recipes • 100

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

back end and grab the initial data we want to display. We do that with a little
bit of jQuery:

react/search.js
var ProductSearch = React.createClass({

componentDidMount: function() {➤

$.ajax({➤

url: '/products.json',➤

dataType: 'json',➤

success: function(data) {➤

this.setState({data: data});➤

}.bind(this),➤

error: function(xhr, status, err) {➤

console.error(this.props.url, status, err.toString());➤

}.bind(this)➤

});➤

},➤

When we successfully get data back from our server, we call this.setState, which
updates the data in the state by merging what we pass in with what’s in the
current state. Any time we update the component’s state, the component’s
render() method will be called.

Now we can render the list of products. We alter the ProductSearch component’s
render() method by adding in our ProductList component, passing the data as an
attribute:

react/search.js
render: function() {

return (
<div>
<h1>Product Search</h1>
{ /* START_HIGHLIGHT */ }
<ProductList data={this.state.data} />

</div>
);

}

Finally, we define the ProductList component, which renders the data. The data
was passed in as an attribute called data, so to access it inside the ProductList
component we use this.props.data. Any attributes passed to a component become
its properties. We use properties to pass data around our components, and
we use this.state to manage the component’s internal data that should trigger
rendering.

Our list of products will be an HTML table, with the results displayed as the
table rows. So our ProductList component ends up looking like this:

report erratum • discuss

Creating a Search Interface with React • 101

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

react/search.js
var ProductList = React.createClass({

render: function() {
var products = this.props.data.map(function (product) {
return (

<tr>
<td>{product.name}</td>
<td>{product.description}</td>
<td>{product.price}</td>

</tr>
);

});
return (
<table>

<thead>
<tr>
<th>Name</th><th>Description</th><th>Price</th>

</tr>
</thead>
<tbody>

{products}
</tbody>

</table>
);

}
});

We first take the data stored in the component’s props and transform it into
an array of table rows by using JavaScript’s map() function. Then we return
an HTML table that contains those rows. This pattern is common in rendering
collections of data in React. You construct the inner part first and then wrap
it with the outer parts of the component.

When we refresh the page in the browser, we see our list of products, as in
the figure on page 103.

The outer component is rendering the inner component, passing it data. The
inner component doesn’t need to know where it got its data from; it’s com-
pletely decoupled. That means we can send it data we get from a search query,
rather than the most recent data. So let’s build the search feature.

Adding the Form

Our ProductSearchForm will contain the HTML form that visitors will use to per-
form the search. The outer component, ProductSearch, is responsible for talking
to our back end, but we have to put the code that handles the form submission
inside the ProductSearchForm component. So we’ll make the submit handler in

Chapter 2. User Interface Recipes • 102

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

ProductSearchForm delegate to a function that we declare in the ProductSearch
component. The following diagram explains how this will work:

ProductSearch

ProductSearchForm

Keyword Search

ProductList

Name Description Price

sendSearchQuery

getSearchResults

When we render the form, we’ll pass a reference to the getSearchResults() function
into the ProductForm component. So, let’s build the ProductForm component first
and get it rendering. We’ll wire it up later.

report erratum • discuss

Creating a Search Interface with React • 103

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The form itself ends up being another component with a render() function that
returns an HTML form. However, we can add a few important pieces to the
markup. We use the ref attribute to name a form field so we can easily locate
it later. And we attach the function that will handle the form directly to the
form by using the onSubmit attribute:

react/search.js
var ProductSearchForm = React.createClass({

render: function(){
return (
<form onSubmit={this.sendSearchQuery}>

<label forInput="query">Keywords</label>
<input id="query" type="search" ref="query" />
<input type="submit" value="search" />

</form>
);

}
});

Then, when the form is submitted, we have to capture the submission event
and prevent its default behavior. Then we get the value from the form by using
this.refs and referencing the ref we gave our form field, which was query:

react/search.js
var ProductSearchForm = React.createClass({

sendSearchQuery: function(e){➤

e.preventDefault();➤

var query = this.refs.query.getDOMNode().value.trim();➤

➤

➤

},➤

In ProductSearch, we render the search form, passing in the callback function:

react/search.js
render: function() {

return (
<div>
<h1>Product Search</h1>
{ /* START_HIGHLIGHT */ }
<ProductSearchForm onSearchRequest={this.getResults} />
<ProductList data={this.state.data} />➤

</div>
);

}

And then in ProductSearchForm’s sendSearchQuery() method we add a line of code
that invokes the callback, passing it the query. Since we pass it in to the

Chapter 2. User Interface Recipes • 104

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

component, we access it via this.props, as we did when we accessed the data
we wanted to display:

react/search.js
sendSearchQuery: function(e){

e.preventDefault();
var query = this.refs.query.getDOMNode().value.trim();

this.props.onSearchRequest(query);➤

},

All that remains is to declare the getResults() method in the ProductSearch compo-
nent. This method looks almost identical to the method that we used to display
our initial data from the server, but it sends the request to /products.json?q=
followed by the search query:

react/search.js
getResults: function(query){

$.ajax({
url: '/products.json?q=' + query,
dataType: 'json',
success: function(data) {
this.setState({data: data});

}.bind(this),
error: function(xhr, status, err) {
console.error(this.props.url, status, err.toString());

}.bind(this)
});

},

And with that, we have a complete search page, driven by React, as shown
in the following figure:

Of course we can do lots more. The price should be formatted in dollars and
cents, and we should probably add in support for pagination so we can see
more results. But this is a great start and solves our immediate problem. We
can show off this interface and get the feedback we need.

report erratum • discuss

Creating a Search Interface with React • 105

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
We built the entire application using the client-side JSX Transformer, but if
you’re going to do more with React you’ll want to look into precompiling your
JSX code. You can use npm to install the compiler:

$ npm install -g react-tools

Then create a src folder and a build folder:

$ mkdir src/
$ mkdir build/

Place your JSX code in the src folder. Then run the jsx command-line tool, tell
it to watch the src folder for any changes, and place the resulting JavaScript
code in the build folder:

$ jsx --watch src/ build/

Finally, ensure that your HTML file references the JavaScript code from the
build folder. When it comes time to deploy files to production, you only need
to transfer your HTML pages and the build folder.

The application we built was small. If you plan to build a more robust appli-
cation with React, you might want to look at the Flux architecture,20 a design
pattern for developing more complex apps with React.

Also See
• Recipe 16, Creating Client-Side Apps with Angular.js on page 107
• Recipe 14, Snappier Client-Side Interfaces with Knockout.js on page 87
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221

20. http://facebook.github.io/flux/docs/overview.html

Chapter 2. User Interface Recipes • 106

report erratum • discuss

http://facebook.github.io/flux/docs/overview.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 16

Creating Client-Side Apps with Angular.js

Problem
As users demand more robust and responsive client-side applications,
developers respond with amazing JavaScript libraries. But as applications
get more complex, the client-side code starts to look like a kitchen junk
drawer, with libraries crammed together in a disorganized pile of event bind-
ings, jQuery Ajax calls, and JSON parsing functions.

We need to develop our client-side applications with the same approach we’ve
used for years for our server-side code. We need a framework. With a robust
JavaScript framework, we can keep our code organized, reduce duplication,
and use a coding standard that other developers can understand.

Our boss has asked us to build a proof-of-concept (PoC) application to make
our product-management interface much more responsive. The current
interface is slow and requires a full page refresh every time a user adds or
modifies product information. The boss wants us to build a single-page
interface, and we must do it all without changing our back-end application.
We need a framework that will let us develop the application quickly while
keeping things organized so we can maintain them over the long term.

Ingredients
• Angular21

• QEDServer (for our test server)22

Solution
We have our pick of JavaScript frameworks that will help us solve this issue.
For this case we choose Angular because its Model-View-Controller (MVC)
style architecture draws parallels to some common web frameworks such as
Ruby on Rails, ASP.NET MVC, and Spring MVC for Java. The MVC pattern
allows us to organize our code in a common way that keeps things like display
logic from getting mixed up with domain objects. In addition to the MVC

21. http://angularjs.org/
22. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Creating Client-Side Apps with Angular.js • 107

http://angularjs.org/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

architecture pattern, Angular’s support for two-way data binding, HTML
templates, deep linking, and dependency injection makes it a great fit for our
PoC.

Before we get into building our interface, let’s take a 30,000-foot overview of
what Angular is and how we can use it to solve our problem.

Angular Basics

Angular uses a different philosophy from other JavaScript frameworks. Others
work around the issue that HTML isn’t designed for dynamic views, whereas
Angular solves that problem head-on by extending HTML.

Frameworks like jQuery focus on manipulating the DOM and targeting ele-
ments with CSS selectors. Angular uses properties added to HTML elements
for controlling and manipulating the view. Let’s look at a few concepts and
terms to get our feet wet:

• Representational state transfer (REST) is a software architecture style that
is commonly used on the web as a means of communication among
multiple systems.

• Resource is Angular’s built-in way of communicating with RESTful web
services.

• Router is an Angular module that allows us to specify routes and how our
application will respond to them.

• Views complement the route service. They allow us to create snippets of
HTML—often referred to as templates—that we can substitute in our page.

• Directives are markers on HTML elements that tell Angular to attach
behavior to those elements and their children, if any. Angular comes with
a set of built-in directives such as ng-view and ng-app. We can create our
own directives if the built-in ones do not meet our needs.

• Scopes are objects on the application model that mimic the application’s
DOM structure. Scopes are arranged hierarchically, and every application
has a single root scope. The root scope can be used as a mechanism to
provide a publish-and-subscribe message-bus pattern.

Building Our Interface

We’ll build a simple, single-page interface to manage products in our store.
One version of the interface will end up like the one in the following figure:

Chapter 2. User Interface Recipes • 108

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ll have a form at the top of the page for adding or editing products, and
below that we’ll always display a list of the products. We’ll use Angular to
talk to our back end to retrieve or modify our product inventory, using its
REST-like interface:

• A GET request to http://example.com/products.json retrieves the list of products.

• A GET request to /products/1.json retrieves a JSON representation of the
product with the ID of 1.

• A POST request to /products.json with a JSON representation of a product in
the request body creates a new product.

• A PUT request to http://example.com/products/1.json with a JSON representation
of a product in the request body updates the product with the ID of 1.

• A DELETE request to /products/1.json deletes the product with the ID of 1.

To build our interface we’ll organize our code into templates and controllers.
To keep things separate and easier to organize we start by creating a couple
of folders inside of the QEDServer public directory: a folder for controllers
(named controllers) and another for templates (named templates).

report erratum • discuss

Creating Client-Side Apps with Angular.js • 109

http://example.com/products.json
http:///products/1.json
http:///products.json
http://example.com/products/1.json
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

All Products

Let’s create index.html alongside the folders we just created and add some
boilerplate code to it:

angular/index.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>Products</title>
<link rel="stylesheet" href="/style.css">

</head>
</html>

Next, let’s add the elements that make this an Angular application. We add
a <body> tag and its content, as well as the Angular libraries:

angular/index.html
<body ng-app="products">

<div id="wrap">
<ng-view> </ng-view>

</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/

1.3.16/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/

1.3.16/angular-resource.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/

1.3.16/angular-route.min.js"></script>
</body>

Angular directives let us attach Angular functionality to the DOM. In our
<body> tag we have an ng-app directive that tells Angular that this is the root
element for our application. It also gives our application a name.

The next directive we add is the <ng-view> tag. This directive is used to mark
where we’ll add different sections of the page.

Directives can be attributes, like the ng-app attribute, or tags, like <ng-view>.
Angular has many built-in directives, and their use is based entirely on how
the directive was defined by the developer of the directive.

In our mock-up we have a list of products at the bottom of the page. As we
work forward we’ll swap out the top of the page with elements needed for
actions such as creating, editing, and viewing our products. Those elements
will be rendered into the <ng-view> area. The one thing that will stay consistent
is the list of products, so we add some markup for that right below our closing
<ng-view> tag:

Chapter 2. User Interface Recipes • 110

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

angular/index.html
<div ng-controller="ProductsCtrl as productsCtrl"

ng-init="productsCtrl.get()">
<h2>Other Products</h2>
<div>

<li ng-repeat="product in productsCtrl.products">

{{ product.name }} $ {{ product.price }}

</div>
Add a new product

</div>

We’re adding a few more ng directives here. First we specify a directive on the
outside <div> called ng-controller. In Angular apps, controllers are where we set
up the data to be sent to our view. In this case we’re setting that value to
ProductsCtrl as productsList, which specifies the name of the controller, followed by
the variable we use to reference that controller in this block of HTML.

Joe asks:

What Is $scope and Why Should I Avoid It?
If you’ve looked into Angular at all, you’ve undoubtedly seen $scope in many code
examples. $scope is a common way to get data from the controller to the view, and
from the view to the controller.

Angular version 1.2.0 introduced the controller as syntax, which lets us name our objects
in our controllers and views. This keeps our Angular code more consistent with
standard JavaScript, and some developers consider it easier to read.

The $scope approach to building applications is valid, and it’s fine for simple examples.
But in our experience, the controller as syntax is clearer to read and understand, and
it offers more flexibility down the road.

The last directive in the outside <div> takes advantage of this controller defi-
nition. The ng-init directive specifies a method call of productsList.get(), which
translates to calling a method called .get() on the ProductsCtrl. To make that
work, we need to define a .get() function in our controller that will fetch the
products from the back end and store them in a variable inside of the con-
troller.

The ng-repeat directive, which is added to the tag, starts to show some of
the power of Angular. This directive iterates everything inside of the block

report erratum • discuss

Creating Client-Side Apps with Angular.js • 111

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

for all of the objects in a collection. In our case we loop over all of the products
and add a new for each. The last bit of syntax should look familiar from
our work in Recipe 11, Rendering HTML with Handlebars Templates on page
69. The {{ is followed by some code we want evaluated, then closed with }}.

Now that we have our first block of HTML ready, let’s get it connected to our
controller.

Let’s start by adding a couple of files and then including them just before our
HTML file’s closing <body> tag. We’ll need a routes.js file in the same directory
as our HTML file. We also need to create the ProductsCtrl.js file inside the controllers
folder we created earlier. And we must include them in our index.html page
right above the closing <body> tag, below our other scripts:

angular/index.html
<script src="./routes.js"></script>
<script src="./controllers/ProductsCtrl.js"></script>

Now we can start defining our routes, where we specify which controllers and
views are needed for each URL pattern:

angular/routes.js
var ProductsApp = angular.module("products", ["ngResource", "ngRoute"]);

We start out by declaring ProductsApp, which we define as an Angular module.
All of our other Angular components will be built from this module. We assign
angular.module() to the ProductsApp variable, which is Angular’s way of specifying
a main() method for our application.

We pass in two arguments to angular.module(). The first argument is our appli-
cation, which matches what we defined in our ng-app directive. The second
argument is an array of modules that our application depends on. In this
case we’re requiring the use of ngResource, which lets us talk to web services,
and ngRoute, which lets us define routes for our application. Since not every
Angular application needs these features, we must specifically load them in
and make sure we’ve included those libraries in our HTML page.

Next, we configure our application by loading our ngRoute module’s dependen-
cies via Angular’s dependency-injection mechanism and specify our main
controller and route:

angular/routes.js
ProductsApp.config(['$routeProvider', function($routeProvider) {

$routeProvider.
when("/", { controller: "ProductsCtrl" }).
otherwise({ redirectTo: "/" });

}]);

Chapter 2. User Interface Recipes • 112

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Let’s look closer at the lines inside of the callback function where we’re
defining our routes:

angular/routes.js
$routeProvider.

when("/", { controller: "ProductsCtrl" }).
otherwise({ redirectTo: "/" });

We start off with the $routeProvider we passed into the function and are calling
the when() with two parameters: the path and a route hash. The path is the
URL that this route will respond to. The route hash tells Angular which con-
troller is used to respond to the route. In this case it should use ProductsCtrl.
This means we need to create a controller called ProductsCtrl. The second method
in the chain is otherwise(), which is used when our app doesn’t have a route
that matches. We’ll send the user to the root of our app.

Now let’s create the ProductsCtrl that we referenced in the route. We create a
file called controllers/ProductsCtrl.js and add the following code:

angular/controllers/ProductsCtrl.js
ProductsApp.controller("ProductsCtrl", function($resource, $rootScope) {

var Products = $resource('/products.json');
this.get = function() {

this.products = Products.query();
};
$rootScope.$on("products.updated", this.get.bind(this));

});

In ProductsCtrl.js, we start by calling the controller() function against our ProductsApp
to register a controller with our app. The controller() function takes two
parameters: the name of our controller and a callback function that handles
our controller’s logic. The code we’ve added in this controller requires Angular’s
$resource and $rootScope modules, so we include these modules via Angular’s
dependency-injection mechanism. The first line in the controller defines our
product’s resource, which will allow us to communicate with the QEDServer’s
products endpoint.

Next we define a get() function, which we use for assigning the products sent
back to us from the server to the view. Lastly, we create a listener on $rootScope
called products.updated, which triggers a call to the QEDServer to get all the
products. Note that we bind it to this so the scope of the function doesn’t
change on us during the callback. This call to the QEDServer will happen
any time we choose to broadcast an products.updated event. With this all set up,
we’re ready to give our app a test.

report erratum • discuss

Creating Client-Side Apps with Angular.js • 113

http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Displaying a Single Product

We make sure our QEDServer is running by using the specific executable for
our system. Then, if we access http://localhost:8080/index.html, we should see
something similar to the following figure:

When we click the links, notice that the URL is changing but nothing is
happening on the screen. That’s because we haven’t yet defined our /prod-
ucts/product_id route. Let’s add a route to handle this in routes.js:

angular/routes.js
when("/products/:id", {

controller: "ProductCtrl as productCtrl",
templateUrl: "/templates/show.html"

}).

The show route looks similar to the index route with a couple of slight modifica-
tions. We are now passing in a templateUrl option to this route’s option hash
to specify a template to display in place of the ng-view directive. We’re also
specifying the controller by using the controller as syntax, as we did in our main
index.html file. This lets us create an alias for our controller so we can easily
and clearly reference it in our template.

Now let’s build our show template. Add the following code in a file in the templates
directory called show.html:

angular/templates/show.html
<div>

<div>
<h2>{{ productCtrl.product.name }}</h2>
<p> {{ productCtrl.product.description }} </p>
<p> {{ productCtrl.product.price }} </p>

</div>
Edit

</div>

Chapter 2. User Interface Recipes • 114

report erratum • discuss

http://localhost:8080/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/templates/show.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Here we set up some HTML and then insert some placeholders that our con-
troller will populate with data. Our template items here give us an idea of
how we should structure our controller.

Let’s add a definition for our ProductCtrl to the ProductsCtrl.js file. You could create
a new file for this controller, but you’d need to go back and link that new file
to the index.html file. To keep things simple, we’ll add this code right below our
existing ProductsCtrl:

angular/controllers/ProductsCtrl.js
ProductsApp.controller("ProductCtrl", function($resource, $routeParams) {

var Product = $resource('/products/:id.json', { id: "@id" });
this.product = Product.get({ id: $routeParams.id });

});

This new controller isn’t much different from ProductsCtrl. Again, we have a
controller name followed by the controller function. This time, however, the
function takes in $routeParams in addition to $resource. $routeParams is an Angular
service that allows us to access the current route parameters. In this case
we’re interested in pulling the id from the query string.

Let’s dig deeper and explore the code inside of our ProductCtrl, starting with the
first line. Again, we’re creating a variable to hold our $resource, which we use
to get a specific product from the back end. The Product function does a get()
call on our resource and passes the ID from our $routeParams service, assigning
the response to this.product. In our show template we are setting our binding to
Product.product.some_attribute. So in our code this is our controller, and product is
the one product from our back-end system.

Now we’re ready to test our show route so we can move on to editing products.
To verify the show action, make sure your QEDServer is running and point
the browser to http://localhost:8080/index.html. When you click one of the products,
you’ll see it show up above the list of products, as in the figure on page 116.

Finishing Up

Let’s wrap up our PoC by finishing the last two of our create, read, update
and delete actions—for editing a product and for creating a new one. We’ll
add the needed routes and then view and tie them together with the necessary
controllers.

report erratum • discuss

Creating Client-Side Apps with Angular.js • 115

http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://localhost:8080/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We need to add the following code to our routes.js file, between our index route
and our show route:

angular/routes.js
when("/products/new", {

controller: "ProductNewCtrl as productFormCtrl",
templateUrl: "/templates/form.html"

}).
when("/products/:id/edit", {

controller: "ProductEditCtrl as productFormCtrl",
templateUrl: "/templates/form.html"

}).

The makeup of these two routes is consistent with our show route. They use
the controller as syntax pattern and specify a template. The controller as syntax
names the two controllers we’ll end up creating, along with how we should
access information in our template. Let’s create the template next. We’ll want
to create a form.html file in our templates folder:

angular/templates/form.html
<div>

<h2>{{ productFormCtrl.product.name }}</h2>
<p>

<label for="product_name">Name:</label>
<input type="text" id="product_name"

ng-model="productFormCtrl.product.name">
</p>
<p>

Chapter 2. User Interface Recipes • 116

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/templates/form.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<label for="product_description">Description:</label>
<textarea id="product_name"

ng-model="productFormCtrl.product.description"></textarea>
</p>
<p>

<label for="product_price">Price:</label>
<input type="text" id="product_price"

ng-model="productFormCtrl.product.price">
</p>
<p>

<button ng-click="productFormCtrl.saveProduct()">Save</button> or
Cancel

</p>
</div>

Using one template allows us to eliminate code duplication and keep our
forms consistent. This works in our case because we can create a save()
function in both controllers. Let’s create our two controllers and get this PoC
completed for our boss.

We’ll put the other two controllers in our same ProductsCtrl.js file. We’re not
doing anything major, so keeping the logic in one file is fine for now:

angular/controllers/ProductsCtrl.js
ProductsApp.controller("ProductEditCtrl", function($resource, $routeParams,

$location, $rootScope) {

var Product = $resource('/products/:id.json',
{ id: "@id" },
{ update: { method: 'PUT' } }

);

var id = $routeParams.id;
this.product = Product.get({ id: id });

this.saveProduct = function() {
var self = this;
Product.update(self.product, function() {
alert("Product Updated");
$location.path("/products/" + self.product.id);
$rootScope.$broadcast("products.updated");

});
};

});

ProductsApp.controller("ProductNewCtrl", function($resource, $location,
$rootScope) {

var Product = $resource('/products.json');
this.product = new Product();

report erratum • discuss

Creating Client-Side Apps with Angular.js • 117

http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

this.saveProduct = function() {
var self = this;
Product.save(self.product, function(product) {
alert("Product Created");
self.product = product;
$location.path("/products/" + self.product.id);
$rootScope.$broadcast("products.updated");

});
};

});

Again, our new controllers are similar to the ones we’ve already created. The
edit controller is closer to our show controller in that our $resource has some
extra parameters. In this case we’re specifying an id and an HTTP method for
our update service call. The edit controller also has a call to get the details
of a product, like the call in our show controller.

Our edit controller uses the Product.get() function to prepopulate the form for
our users. The last function of our edit controller is saveProduct(), which sends
an HTTP PUT request to our server, triggering a save of the updated information.

The controller for creating new products works in a similar fashion. We start
by creating an empty product object. Then—as in our edit controller—we have
a saveProduct() function. The function here performs a bit differently in that it
sends a POST request to our server, triggering the creation of a new product.

Both the edit controller’s and the new controller’s saveProduct() functions publish
a message on the $rootScope, which we set up a listener for in our ProductsCtrl.
By publishing the products.updated event, our list of products will be updated
every time we create or save one.

With all of our code in place, we can try out the entire app in our browser
and then report back to our boss with our findings:

• Client-side frameworks allow for code organization and consistency with
traditional web frameworks.

• Angular allows for easy integration with existing RESTful web services.

• Angular provides snappy user interfaces that provide users with a modern
web experience.

Chapter 2. User Interface Recipes • 118

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
We can take this recipe a bit further and add the delete action to our applica-
tion, or do some more refactoring to take some of the common elements from
the different controllers and combine them into our own modules.

Also See
• Recipe 11, Rendering HTML with Handlebars Templates on page 69
• Recipe 14, Snappier Client-Side Interfaces with Knockout.js on page 87
• Recipe 15, Creating a Search Interface with React on page 97

report erratum • discuss

Creating Client-Side Apps with Angular.js • 119

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 3

Data Recipes
Web developers work with data in many forms. Sometimes we’re pulling in a
widget from another service, and other times we’re taking data from our users.
In these recipes, we spend some time consuming, manipulating, and present-
ing data.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 17

Adding an Inline Google Map

Problem
People want simple, accessible, and quick ways to locate a geographical des-
tination. Addresses and written directions work, but the simplest method is
to glance at a map, memorize the street number and general location, grab
your keys, and go. We want to add a map to our site so that visitors can get
an immediate a sense of where something is located and how they can get
there.

Ingredients
• The Google Maps API

Solution
Using the Google Maps API, we can bring the power and functionality of Google
Maps into our own application. We can render maps of two types: static and
interactive. The static map is an image that we can insert into our page,
whereas the interactive map allows for zooming and panning. The Google
Maps API supports any programming language that can make a request to
Google’s servers. The documentation includes many of JavaScript examples,
which is perfect for our needs.1

Along with rendering maps, the JavaScript API lets us insert other elements
in the maps. We can place markers and bind mouse events to the markers.
We can also create pop-out dialog boxes that show information directly
within the map. We can show street views, geolocate the user, create routes
and directions, and draw custom models on the map. The sky’s the limit, at
least until Google launches its space program and takes over NASA.2

We’re working with a local university to develop a map for its web page for
new visitors. The admissions office wants to show these visitors where they
can find places and where to park. We’ll create an interactive map that con-
tains markers and information, using the JavaScript Google Maps API.

1. https://developers.google.com/maps/documentation/javascript/reference
2. http://www.google.com/space

Chapter 3. Data Recipes • 122

report erratum • discuss

https://developers.google.com/maps/documentation/javascript/reference
http://www.google.com/space
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We start with our basic HTML5 template:

googlemaps/map_example.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Freshman Landing Page</title>
<style>
</style>

</head>
<body>

<script>
window.onload = loadMap;
function loadMap() {

var latLong = new google.maps.LatLng(44.798609, -91.504912);

var mapOptions = {
zoom: 15,
mapTypeId: google.maps.MapTypeId.ROADMAP,
center: latLong

};

var map = new google.maps.Map(document.getElementById("map_canvas"),
mapOptions);

mogiesLatLong = new google.maps.LatLng(44.802293, -91.509376);
var marker = new google.maps.Marker({

position: mogiesLatLong,
map: map,
title: "Mogie's Pub & Restaurant"

});
var mogiesDescription = "<h4>Mogie's Pub & Restaurant</h4>" +

"<p>Excellent local restaurant with top of the line burgers " +
"and sandwiches.</p>";

var infoPopup = new google.maps.InfoWindow({
content: mogiesDescription

});
google.maps.event.addListener(marker, "click", function() {

infoPopup.open(map,marker);
});

}

</script>
</body>

</html>

Next, we include the Google Maps JavaScript API in our document, right
above the closing <body> tag:

report erratum • discuss

Adding an Inline Google Map • 123

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

googlemaps/map_example.html
<script src="https://maps.googleapis.com/maps/api/js?v=3.18"></script>

The API requires a <div> to act as a container for the map, so we add that to
our page.

<body>
<div id="map_canvas"></div>➤

The map will scale to the size of this container, so let’s set dimensions on this
<div> with CSS in the <style> section of our page’s <head> region:

#map_canvas {
height: 400px;
width: 600px;

}

This container is now ready to hold a map that is 600x400 pixels. Let’s go
fetch some data.

Loading the Map with JavaScript

At the bottom of our page, right below the <script> tag we added to load the
Google Maps API code, we add a <script> block to hold the code that initializes
our map. We’ll create a function called loadMap() to load the map with the lati-
tude and longitude we want to center on, and we’ll run it when the browser
window loads. We could put our code in a separate JavaScript file, but
keeping it with this file makes development of the map much easier:

<script>
window.onload = loadMap;

</script>

Next, we’ll create the loadMap() function. Since we’re not using a sensor, we’ll
hard-code our latitude and longitude. These coordinates define the center
point of the map. To find these values, we have a few options. We can browse
to Google Maps, find what we want to center our map on, right-click a pin,
and select What’s here? to see the values for latitude and longitude in the
search box. Alternatively, we can use the Google Maps / Open Streetmap
Latitude, Longitude Popup,3 a website where you can click a location on a
map to find its latitude and longitude.

function loadMap() {
var latLong = new google.maps.LatLng(44.798609, -91.504912);

var mapOptions = {
zoom: 15,

3. http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php

Chapter 3. Data Recipes • 124

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

mapTypeId: google.maps.MapTypeId.ROADMAP,
center: latLong

};

var map = new google.maps.Map(document.getElementById("map_canvas"),
mapOptions);

}

Within this function, we create an object to hold options for our map. We can
define the type of map we want, a zoom value, and more. The zoom requires
some experimentation; the higher the number, the farther in it zooms. A value
of 15 works well for street-level maps.

We can change how the map appears by setting a different mapTypeId. Note
that zoom values, along with maximum ranges for zoom, change when you
change the map type. You can find a reference for map types in the Google
Maps API documentation.4

Finally, we create the map. The Map constructor requires that we pass the
DOM element that will hold the map, along with our object containing the
options. When we load this page in our browser, we see a map centered on
our desired location that looks like the following figure:

Now let’s plot some points of interest on the map that our visitors can click.

4. http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeId

report erratum • discuss

Adding an Inline Google Map • 125

http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeId
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Marker Points

To show incoming students where they can go to get a bite to eat or otherwise
be social, we’ll create markers on the map. A marker in Google Maps is one
of many overlays that we can add. Overlays respond to a click event, and we
will use this to show an info window when the marker is clicked.

Since we already have a map, creating the marker is as simple as invoking
the constructor and passing some options:

googlemaps/map_example.html
mogiesLatLong = new google.maps.LatLng(44.802293, -91.509376);
var marker = new google.maps.Marker({

position: mogiesLatLong,
map: map,
title: "Mogie's Pub & Restaurant"

});

To define a marker, we pass the latitude and longitude coordinates, the map
that will hold the marker, and a title that will appear when the user’s mouse
pointer hovers over the marker. You can get the points of interest for your
location by searching through Google Maps, but we’re using our favorite
burger joint for this example.

Next, we create the info window that appears when this marker is clicked:

googlemaps/map_example.html
var mogiesDescription = "<h4>Mogie's Pub & Restaurant</h4>" +

"<p>Excellent local restaurant with top of the line burgers " +
"and sandwiches.</p>";

var infoPopup = new google.maps.InfoWindow({
content: mogiesDescription

});

Finally, we add an event handler to the marker. Using the Google Maps event
object, we add a listener to open the info window we just created:

googlemaps/map_example.html
google.maps.event.addListener(marker, "click", function() {

infoPopup.open(map,marker);
});

When the user clicks the marker, a new window shows information about
the location, as in the figure on page 127.

We can add as much HTML content as we want to the window to show more
information. From here, we can gather the coordinates of other points of
interest and build the rest of the map.

Chapter 3. Data Recipes • 126

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
We’ve only scratched the surface of what can be accomplished with the Google
Maps API. Along with markers, other layers of interaction can make the map
more usable for your customers. You can create directions, map routes, use
geolocation, and even add street views. Each of these features is well explained
in the Google Maps API documentation,5 with several working examples.

Google Maps is just one component of the Google APIs. To see a full list of
Google APIs, take a look at the Google Developers Products Page.6

Also See
• Recipe 19, Building a Simple Contact Form on page 136
• Recipe 20, Accessing Cross-Site Data with JSONP on page 144
• Recipe 21, Creating a Widget to Embed in Other Sites on page 148

5. https://developers.google.com/maps/documentation/javascript/reference
6. https://developers.google.com/products/

report erratum • discuss

Adding an Inline Google Map • 127

https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/products/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 18

Creating Charts and Graphs with Highcharts

Problem
Our sales team has developed an affiliate program for our company’s shopping
site. We’ve been tasked with developing an interface for our affiliates, and we
want to show their data in a visual and attractive way. However, we need to
ensure that these charts are viewable on mobile devices as well as desktops.

Ingredients
• jQuery
• Highcharts7

• QEDServer (for our test server)8

Solution
The Highcharts JavaScript library lets us easily create interactive and readable
charts and graphs. It works across platforms, and since it runs on the client’s
machine, it doesn’t require any special configuration on our servers. The
interface built into Highcharts is highly interactive and customizable, letting
us present data in a number of ways. In this recipe, we’ll build and customize
a simple chart and then build a more complex one using some remote data.

Building a Simple Chart

Let’s create a simple pie chart so you can get acquainted with Highcharts and
its various options. First, we build a simple HTML document and include the
necessary JavaScript files. We also add a <div> tag, which Highcharts will use
to render the chart on our page:

highcharts/example_chart.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Example Pie Chart</title>

7. http://www.highcharts.com/
8. A version for this book is available at http://webdevelopmentrecipes.com/.

Chapter 3. Data Recipes • 128

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://www.highcharts.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

</head>
<body>

<div id="pie_chart"></div>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script

src="http://cdnjs.cloudflare.com/ajax/libs/highcharts/4.1.5/highcharts.js">
</script>

All the magic is done by creating a new instance of the Highcharts.Chart class
and passing it some options. Highcharts has many options for configuring a
chart, and this configuration can quickly get long and unwieldy. To keep it
simple, we create a variable called chartOptions and set some values on it that
Highcharts expects. For this simple chart we add a new <script> block to the
HTML page rather than putting the code in a separate file:

highcharts/example_chart.html
<script>

(function($, Highcharts){
var chartOptions = {};

chartOptions.chart = { renderTo: "pie_chart" };
chartOptions.title = { text: "A sample pie chart" };

chartOptions.series = [{
type: "pie",
name: "Sample chart",
data: [

["Section 1", 30],
["Section 2", 50],
["Section 3", 20]

]
}];
var chart = new Highcharts.Chart(chartOptions);

})(jQuery, Highcharts);
</script>

The first value we set is a chart property that contains information about the
chart itself. This is where we pass the ID of the <div> we created earlier. Then
we set a title for the chart with some sample text. Finally, the series property
is an array that contains an object for each type of chart you want to render.
Highcharts allows us to pass any number of objects that will be rendered on
top of one another. Each object defines a chart type, a name, and a dataset.
The format of this data changes depending on the type of chart we’re using.

report erratum • discuss

Creating Charts and Graphs with Highcharts • 129

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

For the pie chart, the data is a two-dimensional array in which the inner
arrays are pairs of X and Y data.

With just a few lines of code, we have a chart that looks like the following
figure:

Let’s go a little further now and explore some additional options to customize
our chart.

Customizing Our Chart’s Appearance

Highcharts supports pie graphs, line graphs, area graphs, and scatter plots,
and the extensibility of the graph types lets us create any number of more
interesting graphs.

Consider our chartOptions variable from before. We can define a property on it
called plotOptions, which is an object containing a number of settings for modi-
fying how the graph is drawn. Let’s define some options on our pie chart from
earlier.

We can set options for all charts by defining them in the series property on
our chartOptions object, but we can also define options for each chart type. Let’s
customize our pie chart by changing the appearance of the labels that point
to each section of the chart. We add this new code right before we render the
chart:

Chapter 3. Data Recipes • 130

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

highcharts/example_chart.html
var pieChartOptions = {➤

dataLabels: {➤

style: { fontSize: 20 },➤

connectorWidth: 3,➤

formatter: function() {➤

var label = this.point.name + " : " + this.percentage + "%";➤

return label;➤

}➤

}➤

};➤

➤

chartOptions.plotOptions = { pie: pieChartOptions };➤

var chart = new Highcharts.Chart(chartOptions);

We first increase the font size to make it more visible. Then we increase the
connector width to match the font size. Lastly, we create a function that
returns a newly formatted label with our desired information. The default
label shows only the point name, so we change it to show the percentage as
well. Our finished chart looks like the following figure:

The plotOptions property has a ton of options; refer to the Highcharts documen-
tation on the plotOptions property to see them all.9

9. http://www.highcharts.com/ref/#plotOptions

report erratum • discuss

Creating Charts and Graphs with Highcharts • 131

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://www.highcharts.com/ref/#plotOptions
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now that we know how to create and configure a simple chart, let’s use
Highcharts to model our affiliate data.

Modeling the Affiliate Datasets

Our affiliate program tracks quite a bit of data, including the customer’s
name, age, and location. This kind of information is useful for profiling cus-
tomers and making assumptions about how to market products. It’s our job
to transform this raw data into a graph that our marketing folks can quickly
analyze before they dig into the hard data.

We want our users to be able to glance at the data and understand how old
the customers are. Let’s use a bar graph so that it’s easy to see the mean and
the most frequent value. We’ll create something that looks like the following
figure:

To get started, let’s create a new HTML document with jQuery and Highcharts
included in it. We’ll be working with JSON data and Ajax requests, so fire up
QEDServer and place this new HTML file in the public directory of your QED-
Server installation:

highcharts/affiliates.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Affiliate Customer Data</title>

</head>

<body>
<div id="customer_data"></div>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

Chapter 3. Data Recipes • 132

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<script
src="http://cdnjs.cloudflare.com/ajax/libs/highcharts/4.1.5/highcharts.js">

</script>
</body>

</html>

Within this file, we create a <script> block and set up our new instance of the
Highcharts.Chart class. Let’s set a few simple options, including the chart’s title
and the target element on our page where the chart will go:

highcharts/affiliates.html
<script>

(function($, Highcharts) {
var options = {

chart: { renderTo: "customer_data" },
title: { text: "Customer Data" },
credits: { enabled: false }

};

})(jQuery, Highcharts);
</script>

Now that our document is ready to go, let’s do some work with our data.

Showing the Customer Data

Normally, we’d get our customer data from a back-end system, but for the
purpose of this recipe, we’ve created some sample data you can use. You’ll
find it in the book’s source code, which you can download from the book’s
website.10 You’ll want the highcharts/sample_data/customer_data.json file.

Or you can create the file yourself, using something like this:

{
"customers": [

{ "name": "Adrienne Sargent", "age": 20 },
{ "name": "Stella Albin", "age": 55 },
{ "name": "Dolores Krauss", "age": 28 },
{ "name": "Jerry Ayala", "age": 34 },
{ "name": "Keith Shuman", "age": 35 },
{ "name": "Timothy Navarra", "age": 33 },
{ "name": "Norman Tanaka", "age": 36 }

]
}

10. http://webdevelopmentrecipes.com

report erratum • discuss

Creating Charts and Graphs with Highcharts • 133

http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://webdevelopmentrecipes.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Our index.html page and our data file must be hosted on the same web server.
Remember that we can’t just pull in regular JSON data from a remote server,
because of the web browser’s security restrictions. So place this sample data
file in a folder called sample_data within the public folder that QEDServer uses.
This way, QEDServer can serve it from http://localhost:8080/sample_data/cus-
tomer_data.json, and our page can consume it properly.

To show the ages in a bar graph, we need to pair an age with the number of
times it occurs. Right now, we have only a list of ages. Let’s write some
JavaScript to collect the ages and sum up the frequencies. We make a request
to get our customer data and do all our work inside of the success callback,
which is invoked when we get data back from our Ajax request:

highcharts/affiliates.html
$.getJSON('sample_data/customer_data.json', function(data) {

var ages = [];

$.each(data.customers, function(index, customer) {
if (typeof ages[customer.age] === "undefined") {
ages[customer.age] = 1;

} else {
ages[customer.age] += 1;

}
});

var age_data = [];

$.each(ages, function(index, e) {
if (typeof e !== "undefined") {
age_data.push([index, e]);

}
});

});

Here we use an array to store some intermediate data. The ages array uses
ages as indexes and stores the number of occurrences for that age. Then we
look through and collect ages that exist in the array to map them to the two-
dimensional array that Highcharts needs. Now that we have our data in the
correct format, let’s render our chart:

highcharts/affiliates.html
options.series = [{

type: "column",
name: "Customer Ages",
data: age_data

}];

var chart = new Highcharts.Chart(options);

Chapter 3. Data Recipes • 134

report erratum • discuss

http://localhost:8080/sample_data/customer_data.json
http://localhost:8080/sample_data/customer_data.json
http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now with our final chart rendered, we can easily see the most frequently
occurring ages for our customers.

Further Exploration
Highcharts is a powerful JavaScript library. In this recipe, we built simple to
complex charts that only begin to take advantage of the number of available
options. The Highcharts reference11 is a great way to learn what Highcharts
is capable of. We recommend taking a look at the documentation and consid-
ering what options you would like to use in future projects. Also, the docu-
mentation includes a link to an example of most of the available options on
JSFiddle.net.12

Also See
• Recipe 20, Accessing Cross-Site Data with JSONP on page 144
• Recipe 17, Adding an Inline Google Map on page 122
• Recipe 10, Interacting with Web Pages Using Keyboard Shortcuts on page

61
• Recipe 25, Mobile Drag and Drop on page 173

11. http://highcharts.com/ref
12. A JavaScript-sharing site: http://jsfiddle.net

report erratum • discuss

Creating Charts and Graphs with Highcharts • 135

http://highcharts.com/ref
http://jsfiddle.net
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 19

Building a Simple Contact Form

Problem
Websites—even mostly static websites—should provide a way for visitors to
contact the site’s owner. An email address isn’t always good enough; it’s not
inviting or engaging for the user, and it makes it harder for the site owner to
sort and organize messages that come from visitors. Sites should have an
easy, intuitive way for visitors to get in touch.

Our current website has no way to contact us, and we’re concerned that we’ve
missed out on potential business opportunities as a result. Our manager
wants us to create a simple form that sends us an email.

Ingredients
• A server running PHP

Solution
A contact form lets visitors email us without having an email client configured,
making it more likely that we’ll hear from them by email. We can create an
HTML form to handle the data entry, write some scripts to handle sending
the email, and give users feedback for errors and successful emails.

We can choose among many server-side languages, but the PHP scripting
language is perfect for this situation. We needn’t do much heavy lifting: the
script that processes the data from our contact form will be easy to build,
thanks to PHP’s simple syntax. PHP is readily available on most shared
hosting solutions, and it’s easy to install on servers where it’s not already
present. It’s a handy tool for simple back-end functions like this, where
heavier frameworks would be overkill.

To create our contact form, we’ll create both HTML components and PHP
components. We’ll use HTML to build the form to ask for the data, and then
we’ll use PHP to handle the data and send the email. We’ll also add a few
important interface features, such as error feedback. We’ll use our virtual
machine to test this form. If you haven’t already, refer to either Recipe 39,

Chapter 3. Data Recipes • 136

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Setting Up a Virtual Machine on page 282, or Recipe 45, Configuring a Virtual
Machine with Puppet on page 317, to create your own PHP development server.

Creating the HTML

Let’s start by creating the HTML for the form. The form will ask the user for
four things: a name, an email address, a subject, and a message. We’ll require
that the email address be provided; otherwise, we’ll be unable to easily get
back to the user. We’ll also set a default value for the subject to get them
started. Now that we know what we’re collecting, let’s create the contact.php file
and create the form:

contact/contact.php
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Awesome Web Development - Contact Us</title>

</head>
<body>

<h2>Contact Us</h2>
<p>
Please fill out this quick form to send us an email. We are excited
to hear from you!

</p>

<form id="contact-form" action="contact.php" method="post">

<label for="name">Name</label>
<input class="full-width" type="text" name="name">

<label for="email">Your Email</label>
<input class="full-width" type="text" name="email">

<label for="subject">Subject</label>
<input class="full-width" type="text" name="subject"

value="Web Consulting Inquiry">

<label for="body">Body</label>
<textarea class="full-width" name="body"></textarea>

<input type="submit" name="send" value="Send">

</form>

</body>
</html>

report erratum • discuss

Building a Simple Contact Form • 137

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The form’s action points to itself, using the POST method. This lets us do all
of the scripting for sending the email on the same page as the contact form.
We create a field for each part of the email and include a submit button. At
this point, the form is on the page but looks like a jumble of words and boxes.
Let’s add some styling to arrange the labels and inputs:

contact/contact.php
<style type="text/css">

body {
font-size: 12px;
font-family: Verdana;

}

#contact-form {
width: 320px;

}

#contact-form label {
display: block;
margin: 10px 0px;

}

#contact-form input, #contact-form textarea {
padding: 4px;

}

#contact-form .full-width {
width: 100%;

}

#contact-form textarea {
height: 100px;

}
</style>

We change some font properties, add a good amount of padding and margin,
and move form items to read well. The form is much more readable and usable,
as shown in the figure on page 139.

Now we’re ready to bring the form to life and write some back-end code.

Sending the Email

When the page is processed by PHP, we want to catch any POST requests and
send an email. We’ve already set our page to post to itself, so we just need to
add some PHP to the top of the page. When the submit button is clicked, we
need to grab data from the $_POST variable, validate the data, and send it
through PHP’s mail() function. All of our code for the preprocessing is in a PHP
block above the <html> tag:

Chapter 3. Data Recipes • 138

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

contact/contact.php
<?php
if (isset($_POST["send"])) {
}
?>

The preprocessing should run only if the Send button is clicked. Since we
gave the button a name attribute in our HTML, we check it in the $_POST array.
Now, let’s get the data that the user has entered. We can use the same $_POST
array to get the data, so let’s store the data in variables so that it’s easier to
work with:

$name = $_POST["name"];
$email = $_POST["email"];
$subject = $_POST["subject"];
$body = $_POST["body"];

Now that we have the data in a few variables, we should make sure that the
email address the user is giving us is a real address. Let’s compare the address
against a regular expression to check its validity. Also, we want to let the user
know if the email field’s content is invalid:

$errors = array();

$email_matcher = "/^[_a-z0-9-]+(\.[_a-z0-9-]+)*" .
"@" .
"[a-z0-9-]+" .
"(\.[a-z0-9-]+)*(\.[a-z]{2,3})$/";

if (preg_match($email_matcher, $email) == 0) {
array_push($errors, "You did not enter a valid email address");

}

report erratum • discuss

Building a Simple Contact Form • 139

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We store any form errors in an array that we check later to output a message
for each error we find. We define the $errors array here so that it’s available
for the rest of the HTML page.

Time to send the email! We’ll make a call to PHP’s mail() function. It accepts
a number of arguments: an email address to send to, a subject, a message,
and any headers we want to send. Let’s set some variables to store these
components based on the data we already have and make the call to mail():

contact/contact.php
if (count($errors) == 0) {

$to = "joe@awesomeco.com"; // your email
$subject = "[Generated from awesomeco.com] " . $subject;

$from = $name . " <" . $email . ">";
$headers = "From: " . $from;

if (!mail($to, $subject, $body, $headers)) {
array_push($errors, "Mail failed to send.");

}
}

When we call the mail() function, we ensure that no errors in sending the email
occurred. The function returns true if the send was successful, so we can use
that value as a flag. We save a new string in the $errors array so we can let the
user know something went wrong. With the functionality for our email form
in place, let’s test it and make sure it works.

Testing Our Contact Form

To test our contact form, we need a PHP–enabled folder on our development
server. For this recipe, we’ll use a virtual machine running on our own network
at http://192.168.1.100. If you don’t have a virtual machine for development, refer
to Recipe 39, Setting Up a Virtual Machine on page 282, to set up a server for
testing purposes.

With our development server running, let’s send it a copy of the file we’ve
been working on. We can use the scp command to send the file (or an SFTP
program such as FileZilla for Windows users):

$ scp contact.php webdev@192.168.1.100:/var/www/

When we navigate to http://192.168.1.100/contact.php, we can enter our data in the
fields and click Send. Now check your email. You should receive an email
similar to the one shown in the following figure:

Chapter 3. Data Recipes • 140

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://192.168.1.100
http://192.168.1.100/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Showing the Form Errors

In our PHP code, we validated that the email address the user entered is real.
However, if an invalid address is entered, we’re currently not giving the user
any feedback. To fix this, we need to head back to our HTML and render the
errors:

contact/contact.php
<?php if (count($errors) > 0) : ?>

<h3>There were errors that prevented the email from sending</h3>

<ul class="errors">
<?php foreach($errors as $error) : ?>
<?php echo $error; ?>

<?php endforeach; ?>

<?php endif; ?>

At the top of our form, we make sure that the $errors array isn’t empty. If it
contains anything, we know we need to iterate through the array and display
the messages. The syntax for the if and foreach blocks is an alternative syntax.
It allows us to write normal HTML instead of using the echo() or print() statement
and dancing around single and double quotes. Using this code, we’ll have a
list of errors that we can style. Let’s make the header and list items red so
they stand out:

contact/contact.php
.errors h3, .errors li {

color: #FF0000;
}

.errors li {
margin: 5px 0px;

}

With the error feedback in place, the user experience is improving. However,
the error system in our contact form has one more annoyance. When users
make an error in the form, they lose all the data that they previously entered.

report erratum • discuss

Building a Simple Contact Form • 141

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Since we have the post data in variables from earlier, we have an easy fix: we
add value properties to each <input> field and text into the <textarea>. Our new
form fields change to this:

<label for="name">Name</label>
<input class="full-width" type="text" name="name"

value="<?php echo $name; ?>" />

<label for="email">Your Email</label>
<input class="full-width" type="text" name="email"

value="<?php echo $email; ?>" />

<label for="subject">Subject</label>
<input class="full-width" type="text" name="subject"

value="<?php echo isset($subject) ?
$subject : 'Web Consulting Inquiry'; ?>" />

<label for="body">Body</label>
<textarea class="full-width" name="body"><?php echo $body; ?></textarea>

Now, the user experience for the errors section of our contact form is complete.
When users enter incorrect data, they see their existing data as expected and
feedback regarding the errors. The following figure shows us an example of
a user entering an invalid email address:

With our contact form complete, more users will email us, which will improve
our business.

Further Exploration
A contact form is only one example of what can be done with a PHP-powered
form. Using this concept and focusing on the idea of a web consulting firm,
we could also build a form that helps the user find a quote for a service. It’s
also a good idea to improve the form’s usability across platforms. The HTML5
specification defines a number of additional input types, such as the email
type. This gives a different touch keyboard on iOS, Android, and other mobile

Chapter 3. Data Recipes • 142

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

platforms. To learn more about these features available in the HTML5 spec,
take a look at HTML5 and CSS3: Level Up with Today’s Web Technologies
[Hog13].

Also See
• Recipe 21, Creating a Widget to Embed in Other Sites on page 148
• Recipe 29, Creating a Simple Blog with Enfield on page 203
• Recipe 39, Setting Up a Virtual Machine on page 282
• Recipe 45, Configuring a Virtual Machine with Puppet on page 317
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 44, Automating Static Site Deployment with Grunt on page 304

report erratum • discuss

Building a Simple Contact Form • 143

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 20

Accessing Cross-Site Data with JSONP

Problem
We need to access data from a site in another domain but are unable to do
it using a server-side language—either because of restrictions on our web
server or because we want to push the load to the user’s browser. Regular
API calls to external sites are not an option because of the same-origin policy,13

which prevents client-side programming languages like JavaScript from
accessing pages on different domains.

Ingredients
• jQuery
• The Flickr public photos feed14 or another remote server API that returns

JSONP

Solution
We can use JSONP (JSON with Padding) to load remote data from a server
that’s in another domain. JSONP returns data in the JSON format but wraps
it in a call to a function. When the browser loads the script from the remote
server, it tries to run the returned function if it exists on the page, with the
JSON data passed in as a variable. All we have to do is write the function
that will be called and tell it how to process the JSON, and we’ll be able to
work with data from a remote site.

We’ll use the Flickr API to load some recently uploaded public photos. Some
APIs let you set the function name that wraps the content when you load the
page on its server, but the Flickr API always returns data wrapped in a call
to jsonFlickrApi(). This is the function we’ll need to write on our page once we
have the data loaded from Flickr.

We start with a blank page with no content in the <body>. Everything that
ends up being displayed on the page will be loaded dynamically. We include
jQuery so that we have access to its ajax() functions:

13. https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
14. https://www.flickr.com/services/feeds/docs/photos_public/

Chapter 3. Data Recipes • 144

report erratum • discuss

https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
https://www.flickr.com/services/feeds/docs/photos_public/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

jsonp/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Photos</title>

</head>
<body>

<h1>Photos</h1>

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>
</body>

</html>
<!-- end:skeleton -->

In another <script> block on our page, we create a function to load photos from
Flickr’s public feed. In loadPhotos() we make a call to Flickr using jQuery’s $.ajax()
method:

jsonp/index.html
<script>

function loadPhotos(){
var callback = "displayPhotos";
$.ajax({
url: 'https://api.flickr.com/services/feeds/photos_public.gne' +

'?format=json' +
'&jsoncallback=' + callback,

dataType: "jsonp"
})

}
</script>

We set the dataType to jsonp so that jQuery knows this request will be across
domains and should expect the results to be formatted as JSONP instead of
JSON. When the data comes back, it will immediately invoke the function we
specify as the jsoncallback, and it will pass all of the data into that function as
its argument. We have to define this function and use it to parse out the data
to display it on the page.

Notice that we didn’t wrap our JavaScript with an Immediately-Invoked
Function Expression (IIFE) as we have elsewhere in this book. JSONP works
by appending the response to the page as a new <script> block, so the callback
we use needs to be in the global scope. To keep things simple, we’ll put
everything in the global scope for this recipe.

report erratum • discuss

Accessing Cross-Site Data with JSONP • 145

http://media.pragprog.com/titles/wbdev2/code/jsonp/index.html
http://media.pragprog.com/titles/wbdev2/code/jsonp/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The response we get from Flickr will be similar to the following JSONP, which
we’ll use to populate our page:

jsonp/flickr_response.html
displayPhotos({

"title":"Uploads from everyone",
"link":"https://www.flickr.com/photos/",
"description":"",
"modified":"2015-04-14T15:04:09Z",
"generator":"https://www.flickr.com/",
"items":[

{
"title":"some picture",
"link":"https://www.flickr.com/photos/xxxxx/abc1234"
"media":{

"m":"https://farm8.staticflickr.com/nnn/abc_9a18ab9a_m.jpg"
},
"date_taken":"2015-04-11T20:03:49-08:00",
"description":"A picture",
"published":"2015-04-14T15:04:09Z",
"author":"nobody@flickr.com (Max Power)",
"author_id":"xxxxxxxx@N07",

"tags":""
},

]
})

The data we get from Flickr includes the photos and their related information
in an array called items, so we want to loop over each entry and build out the
image tags to add to the page. So, we declare our displayPhotos() function:

jsonp/index.html
function displayPhotos(data){

$.each(data.items, function(i,item){
var $imageTag = $('');
$imageTag.attr('src', item.media.m);
$('body').append($imageTag);

});
}

Since we’re already using jQuery, we use jQuery’s $.each()() helper to iterate
over the array of photos. Inside our loop we’ll work with each photo to build
an tag and set its src attribute to the URL of the photo, which we fetch
from the item’s media.m property. Then we append the newly built to the
body of the page.

With all the pieces in place, we only need to call loadPhotos():

loadPhotos();

Chapter 3. Data Recipes • 146

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jsonp/flickr_response.html
http://media.pragprog.com/titles/wbdev2/code/jsonp/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

And we now have our own gallery of Flickr’s recently uploaded photos:

JSONP gives us a way to load dynamic content from external sites without
needing to resort to server-side languages. It’s an easy way to pull content
into our pages.

Further Exploration
To make the interface more interesting, you could refresh the photos at a
regular interval, such as every 15 minutes, and update the page with new
photos. Of course, users might not want us running scripts in a continuous
loop in their machines; they may want to stop and look at the images, or they
may not like the idea of the browser constantly making requests to update
the page for them. You could add a check box to the page that, when checked,
activates the timer and the updater, thereby giving the user control.

JSONP is a great way to communicate with services that are on other servers,
but you should also learn about Cross-Origin Resource Sharing (CORS).15

This standard enables remote servers to allow remote connections directly
and is supported in modern browsers. Although CORS isn’t in widespread
use, you may find it’s the perfect solution for your own projects if your front
end and back end must be in different domains.

Also See
• Recipe 4, Creating Interactive Slideshows with jQuery on page 18
• Recipe 21, Creating a Widget to Embed in Other Sites on page 148
• Recipe 15, Creating a Search Interface with React on page 97
• Recipe 11, Rendering HTML with Handlebars Templates on page 69

15. http://enable-cors.org

report erratum • discuss

Accessing Cross-Site Data with JSONP • 147

http://enable-cors.org
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 21

Creating a Widget to Embed in Other Sites

Problem
Widgets are small chunks of code—a combination of HTML, JavaScript, and
CSS—that web developers can embed in their pages to load content from
another site. From general information about our site to tailored content
about a user’s activities, widgets that we create and share help us expand
the reach of our site and allow people to share that they use our site. It’s a
simple concept, but developing a widget requires some possibly unfamiliar
tasks—such as loading data from a remote site and ensuring that your
JavaScript doesn’t conflict with existing JavaScript on the site where the
widget is embedded. We need to encapsulate our code to ensure that the
functions we introduce don’t inadvertently overwrite existing code or other
widgets, which could break a page that worked before our widget was added.

Ingredients
• jQuery
• JSONP

Solution
Using HTML, JavaScript, and a little CSS, we can create widgets to load
content from our server so other developers can insert our content into their
sites; all those users need to do is load a JavaScript file from our server. (From
now on in this recipe, users refers to other web developers.) The file they load
will construct the HTML element, style the element, and ensure that our code
is completely separate from their code so no collisions occur. Best of all,
because the widget code is under our control, we can make adjustments and
add new features at any time. Visitors will see those changes as we make
them available.

We’ll create a widget that lets users include the commit logs from the official
Ruby on Rails repository16 on their websites. We’ll use JavaScript to create
an anonymous function to avoid conflicting with any JavaScript that’s already

16. https://github.com/rails/rails

Chapter 3. Data Recipes • 148

report erratum • discuss

https://github.com/rails/rails
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

on the page. Next we’ll check to see whether jQuery is already loaded so that
we have access to its shortcuts and helper methods. If it’s not, or if it’s not
the right version, we’ll load our own copy. Then we’ll execute and create our
widget by loading data remotely with JSONP, which lets us access information
from a remote server via JavaScript, without issues that could arise from
getting that data from a different domain. After loading the content with
JavaScript, we’ll generate HTML and insert it in the page, as shown in the
following figure:

A widget should be simple to add, so we’ll design our widget so our users
need to add only two lines of code on their sites: a link to the JavaScript and
a <div> where the JavaScript will insert the content after it’s loaded:

widget/index.html
<!DOCTYPE html>
<html>

<head>
<title>Widget Examples</title>

</head>
<body>

<div style="width:350px; float:left;">
<h2>AwesomeCo</h2>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
. . . .

</p>
</div>
<script src="widget.js"></script>
<div id="widget"></div>

</body>
</html>

report erratum • discuss

Creating a Widget to Embed in Other Sites • 149

http://media.pragprog.com/titles/wbdev2/code/widget/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Since we’re using jQuery, the first thing we want to do is make sure it’s
loaded. Our widget is being loaded on pages we don’t control, so we don’t
know what’s available. We also don’t want to add any unnecessary extra files
to load. To make sure we have what’s necessary, we start by checking whether
jQuery is available and, if so, which version is running:

widget/widget.js
(function() {

var jQuery;
if (window.jQuery === undefined || window.jQuery.fn.jquery !== '2.1.3') {

var jqueryScript = document.createElement('script');
jqueryScript.setAttribute("src",

"//ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js");
jqueryScript.setAttribute("type","text/javascript");
jqueryScript.onload = loadjQuery; // All browser loading, except IE
jqueryScript.onreadystatechange = function () { // IE loading
if (this.readyState == 'complete' || this.readyState == 'loaded')

{ loadjQuery(); }
};
// Insert jQuery to the head of the page or to the documentElement
(document.getElementsByTagName("head")[0] ||

document.documentElement).appendChild(jqueryScript);
} else {

// The jQuery version on the window is the one we want to use
jQuery = window.jQuery;
widget(jQuery);

}

First we set a jQuery variable to hold the instance of jQuery that we’re using.
If we find more than one version of jQuery loaded on the page, this will help
us ensure that we use the version that we expect.

Next we check whether jQuery is already loaded on the page. If it isn’t, win-
dow.jQuery returns undefined. If it is loaded, we check to see whether the loaded
version is the one our widget requires. If it’s not present, or if the loaded ver-
sion isn’t correct, we build a <script> tag for the necessary jQuery version and
then insert it into the page. If it is present, we set the jQuery variable to the
jQuery that’s present on the page.

We load jQuery in noConflict() mode to keep our code from affecting any existing
code on the user’s page. This gives up jQuery’s control of the $ variable, which
is commonly used by many JavaScript libraries. Doing this will ensure that
when others add our widget to their pages it won’t break any JavaScript that
they have already written:

Chapter 3. Data Recipes • 150

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/widget/widget.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

widget/widget.js
function loadjQuery() {

// load jQuery in noConflict mode to avoid issues with other libraries
jQuery = window.jQuery.noConflict(true);
widget(jQuery);

}

When we load jQuery, we use var to assign it to a variable that’s scoped to
our function. By using var for all of our variables, we ensure that they’re scoped
to only our function, again ensuring that we don’t affect any existing code. If
the jQuery version we want is already loaded, we use the existing library;
otherwise, we build a <script> tag and insert it into the document. We also
specify that we want to use jQuery’s noConflict() method, which helps us avoid
naming conflicts with other JavaScript libraries or other versions of jQuery
that also use $() as a top-level function name.

Additionally, to ensure that any variables and methods we define in our widget
can’t conflict with existing code, we wrap all of the widget code in an anony-
mous function:

widget/widget.js
(function() {
})();

By wrapping all of the widget code like this, we prevent anything other than
the code contained in the anonymous function from executing the methods
and variables defined within it. Since they can’t be accessed, they can’t cause
conflicts or otherwise impact the code.

Now that we have jQuery in place, we can load our widget’s data using JSONP
and insert it into the page. We use GitHub’s API to load the latest commits
to Rails:

widget/widget.js
function widget($) {

// Load Data
var account = 'rails';
var project = 'rails';

jQuery.ajax({
url: 'http://api.github.com/repos/'+account+'/'+project+'/commits',
dataType: "jsonp",
success: function(data){
jQuery.each(data.data, function(i,commit){

if(commit.committer !== null){
var commitDiv = document.createElement('div');
commitDiv.setAttribute("class", "commit");
commitDiv.setAttribute("id","commit_"+commit.sha);

report erratum • discuss

Creating a Widget to Embed in Other Sites • 151

http://media.pragprog.com/titles/wbdev2/code/widget/widget.js
http://media.pragprog.com/titles/wbdev2/code/widget/widget.js
http://media.pragprog.com/titles/wbdev2/code/widget/widget.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

jQuery('#widget').append(commitDiv);
jQuery('#commit_'+commit.sha).append("<h3>"+
new Date(commit.commit.committer.date)+
"</h3><p>"+commit.commit.message+"</p>"+
"<p>By "+commit.committer.login+"</p>");

}
});

}
});

var css = jQuery("<link>", {
rel: "stylesheet",
type: "text/css",
href: "widget.css"

});
css.appendTo('head');

}

In widget(), we first load our data using JSONP and get ready to display it. We
use jQuery’s ajax() function to request the data, and then use the success call
to create a new <div> for each commit that contains the date of the commit,
its author, and its message. As we create each <div>, we append it to the
#widget <div> that we had users add to their pages alongside the <script> tag.
We also load a style sheet from our server and apply it to the widget.

The style sheet we load sets up some colors, as well as the height and width
of the element:

widget/widget.css
#widget {

display:block;
font-size: 12px;
height: 370px;
overflow-y: scroll;
width:230px;

}

.commit {
background-color: #C2D5ED;
margin: 0 0 10px 0;
width:200px;

}

.commit h3 {
background-color: #95B4D9;
display:block;

}

Chapter 3. Data Recipes • 152

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/widget/widget.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

It also sets the widget’s overflow-y attribute to scroll. This lets us include large
amounts of data without worrying about overwhelming the page that our
widget is embedded on.

Now we have a simple chunk of code that we can give to those who want to
include information from our site on their own. Whether it’s information tai-
lored to their specific account or general news about what’s happening on
our site, widgets make it easy to extend the reach of our content and poten-
tially increase user interaction with our site.

Further Exploration
The widget we created loads content only once, when the page it’s embedded
on loads, but it doesn’t offer any information specific to one visitor or that
visitor’s account. If we want our widget to include information to identify a
visitor so that the remote server can return more relevant data, how might
we do that? We could use a variable in the URL of the <script> tag to dynami-
cally generate the JavaScript on the server. Or we could use a different
JavaScript file for each user’s content.

Widgets can also offer much more interaction, going beyond displaying content
from JSON or XML. You could use jQuery to create a widget that visitors can
click through to see multiple records, rather than having to scroll as they do
in our example. You could load this data when the page loads or make a
request to the remote server every time a new record is requested. Or you
could have the widget automatically refresh itself every 60 seconds with the
latest content.

You could also create an interactive widget that requests data from visitors
to our user’s site and allows them to submit information to us, whether via
email or by submitting to our site.

Widgets have many possibilities. Any time your site has information that
users want to share—or when you want to make it easy for users to collect
data for your site—giving them a widget is a great option.

Also See
• Recipe 20, Accessing Cross-Site Data with JSONP on page 144
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221

report erratum • discuss

Creating a Widget to Embed in Other Sites • 153

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 22

Building a Status Site with JavaScript and CouchDB

Problem
Database-driven applications can be complex. A typical database-driven
application usually consists of a mix of HTML, JavaScript, SQL queries, and
a server-side programming language, as well as a database server. Developers
need to know enough about each of these components to make them work
together. We need an alternative that’s simple and lets us leverage some of
the web development skills we already have, while still giving us the flexibility
to get more complex as our needs change.

Ingredients
• CouchDB17

• A Cloudant.com account18

• Reupholster19

• jQuery
• Handlebars20

Solution
CouchDB is a document database and web server combined into one small
but powerful package. We can build database-driven applications using only
HTML and JavaScript and upload them right to the CouchDB server so it can
serve them to our end users directly. We’ll even use JavaScript to query our
data, so we don’t need to incorporate yet another language.

As it happens, we have a good excuse for playing with CouchDB. Despite our
best efforts, we’ve been experiencing some network problems with our web
servers recently. It’s important to communicate this downtime to our end
users to keep some of the angry support calls at bay. We’ll use CouchDB to
develop and host a simple site that will alert our end users to issues with our

17. http://couchdb.apache.org/
18. http://cloudant.com
19. https://code.google.com/p/reupholster/downloads/list
20. http://handlebarsjs.com/

Chapter 3. Data Recipes • 154

report erratum • discuss

http://couchdb.apache.org/
http://cloudant.com
https://code.google.com/p/reupholster/downloads/list
http://handlebarsjs.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

network. Since we could be experiencing network trouble, we need to host
the status site on a separate network, so we’ll use a CouchDB hosting provider
called Cloudant instead of setting up our own CouchDB server. Cloudant
gives us a small, free CouchDB instance we can use for testing.

To speed up the process, we’ll use Reupholster, a tool for building and
deploying HTML and JavaScript applications for CouchDB. We’ll use
Reupholster to create our project and automatically push files up to our
CouchDB database. It’s nice because it watches our files for changes and
then pushes them to the CouchDB server.

Before we start hacking on our status site, let’s dig into CouchDB.

Understanding CouchDB

CouchDB is a document database. Instead of storing rows in tables, we store
documents in collections. This is different from relational databases like MySQL
and Oracle. Relational databases use a relational model, in which we divide
the data into multiple entities and relate things together to reduce data
duplication. We then use queries to pull this data together into something
we can use. In a relational model, a person’s name and address would be in
separate tables. This is a fine, trusted solution, but it’s not always a good fit.

In a document database, we’re more concerned with storing the data as a
document so we can reuse it later, and we’re not all that interested in how
one document relates to another. While some folks like to pit traditional
relational databases and document databases against each other, you’ll often
find that they serve different needs or can complement each other.

For our status-update system, each status update will be a CouchDB docu-
ment, and we’ll create a simple interface that displays these documents. Let’s
start by defining our database and our status document.

Creating the Database

We’ll use the web interface Cloudant provides to create a new database. When
we log into our Cloudant account for the first time, we need to use the Add
New Database link in the top-right corner of the Cloudant dashboard. We’ll
call our database statuses.

We can also use Cloudant to create a few status documents. After we select
our database, we’ll see a list of documents in the database. The New Document
button gives us a simple interface for adding status messages.

report erratum • discuss

Building a Status Site with JavaScript and CouchDB • 155

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Manipulating CouchDB with cURL

Since CouchDB uses a RESTful JSON API, we can create databases, update docu-
ments, and run queries from the command line instead of a GUI tool. We can use
cURL, a command-line tool for making HTTP requests, to do just that. The cURL program
is available for most operating systems and might even be installed for you if you’re
on OS X or Linux.

For example, instead of creating our statuses database with the GUI, we can use cURL
to send a PUT request:

curl -X PUT http://awesomeco:****@awesomeco.cloudant.com/statuses

And we can push some data:

curl -X POST http://awesomeco:****@awesomeco.cloudant.com/statuses \
-H "Content-Type: application/json" \
-d '{"title":"Unplanned Downtime","description":"Someone tripped over the cord."}'

The -H flag sets the content type, and the -d flag lets us pass a string of data to send.

With cURL, we can set up and seed our database in much less time than we could by
using a web console. We could even script it so we can do it over and over again.

Documents are just a collection of keys and values represented as JSON data.
Each of our status notifications needs a title and a description, so a JSON
representation looks like this:

{
"title": "Unplanned Downtime",
"description": "Someone tripped over the power cord!"

}

We can either add each field to the document using the wizard or click the
View Source button and insert the JSON directly. We could also use cURL, as
discussed in Manipulating CouchDB with cURL, on page 156.

Let’s use the GUI to add a couple of documents so we’ll have something to
display. We first create a new document and set a title and description for a
status message. We can leave the _id field alone:

Chapter 3. Data Recipes • 156

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Our database now contains some data. Let’s build an interface to display it.

Creating a Simple CouchApp

CouchApps are applications that we can host from CouchDB. The Reupholster
application gives us some tools to create and manage these applications. With
Reupholster, our work will be automatically synced to our remote database.

With Reupholster downloaded,21 we can create our first application by double-
clicking the downloaded JAR file. It opens a window that we need to fill out.
First we need to choose a directory for our code on our local machine, then
input the custom template https://github.com/johnsonch/reupholster-sample/zipball/master
and follow it up with our specific host and username. After we have everything
filled out it should look similar to the following figure:

Click Start, which creates a new folder called statuses containing a new
CouchApp. The app includes several subfolders, each with a different purpose:

• The docs folder allows us to create documents, and since they are in our
project they’ll be pushed to the server automatically, rather than via cURL
or the Cloudant GUI.

• The tests folder is for placing tests of our applications. Testing CouchApps
is a topic too large to adequately cover in this recipe.

• The html folder is where we’ll be doing most of our work. This is where we
put our HTML, CSS, and JavaScript for our CouchApp.

21. https://code.google.com/p/reupholster/downloads/list

report erratum • discuss

Building a Status Site with JavaScript and CouchDB • 157

https://github.com/johnsonch/reupholster-sample/zipball/master
https://code.google.com/p/reupholster/downloads/list
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Reupholster automatically pushes the statuses folder, which contains our entire
app, into the statuses database, where it’s stored as a design document. We see
our app in the browser at http://awesomeco.cloudant.com/statuses/_design/app/_rewrite/,
although it will simply show us a boilerplate welcome page.

Now that we know the lay of the land, let’s get to work building our status
application.

Creating a View to Query Data

We use views in CouchDB to optimize the results we want to return, rather
than just querying our documents directly. When we access a view, CouchDB
executes a JavaScript function we define to pare down the results and
manipulate them into a data structure that works for us.

When we generated our project with Reupholster, it created an app.js file in
the root of our project. Inside of that, toward the bottom of the file, we see a
sample view:

couchapps/statuses/app.js
ddoc.views.byType = {

map: function(doc) {
emit(doc.type, null);

},
reduce: '_count'

}

We don’t need that sample; we can replace it with our own logic to generate
a messages view:

couchapps/statuses/app.js
ddoc.views.messages = {

map: function(doc) {
emit(doc.type, { title: doc.title, description: doc.description })

}
}

We can verify that our view works by pulling up http://awesomeco.cloudant.com/sta-
tuses/_design/statuses/_view/messages in our browser. We should see something that
looks like the following code:

{"total_rows":2,"offset":0,"rows":[
{"id":"02abeecc98362b3a26f85ea047bfaf5d","key":"messages","value":

{"title":"Unscheduled Downtime",
"description":"Someone tripped over the power cord!"}

}
]}

Chapter 3. Data Recipes • 158

report erratum • discuss

http://awesomeco.cloudant.com/statuses/_design/app/_rewrite/
http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/app.js
http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/app.js
http://awesomeco.cloudant.com/statuses/_design/statuses/_view/messages
http://awesomeco.cloudant.com/statuses/_design/statuses/_view/messages
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

With the view in place, let’s whip up some HTML and jQuery code to display
the status messages on our site.

Displaying the Messages

To build our simple interface, we can replace all of what’s in the default page
in html/index.html with this:

couchapps/statuses/html/index.html
<!doctype html>
<head>

<meta charset="utf-8">
<title>Sample Application</title>
<meta name="description" content="">
<meta name="author" content="">
<script src='js/loader.js'></script>

</head>
<body>

<div class="container">
<h1>Awesome Co.</h1>
<div id="statuses">

<p>Waiting....</p>
</div>

</div>
</body>
</html>

We’ll then update the contents of the statuses region with the data we pull from
our database.

As you learned in Recipe 11, Rendering HTML with Handlebars Templates on
page 69, we can use templates when we’re going to be building up HTML we
want to add to the page. Our page includes a JavaScript file called loader.js
that loads up several JavaScript libraries we need to make a basic CouchApp
run, including jQuery and the jQuery Couch library. We can simply add the
CDN URL to the loader script:

couchapps/statuses/html/js/loader.js
couchapp_load([

"http://cdnjs.cloudflare.com/ajax/libs/handlebars.js \➤

/3.0.3/handlebars.min.js",➤

"http://ajax.googleapis.com/ajax/libs/jquery/2.1.4 \
/jquery.min.js",

"https://cdnjs.cloudflare.com/ajax/libs/jquery-browser \
/0.0.7/jquery.browser.min.js",

"js/lib/jquery.couch.js"
]);

report erratum • discuss

Building a Status Site with JavaScript and CouchDB • 159

http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/html/index.html
http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/html/js/loader.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

With that in place, we can now add a simple Handlebars template to our
index.html page that represents the status message. The jQuery CouchDB plug-
in will return a data structure that looks like this:

data = {
rows: [

{
id: "9e227166d51569f2713728da59ff9d6b",
key: "messages",
value: {

title: "Unplanned Downtime",
description: "Someone tripped over the power cord."

}
}

]
};

So, when we want to pull the title and description for each status message into
our template, we use Handlebars’ iterator to loop over the rows array and then
prefix the fields with value, since they’re nested under that key in the object.
Let’s add this template to index.html:

couchapps/statuses/html/index.html
<script type="text/template" id="statuses_template">
{{#status}}

<div class="status">
<h2>{{value.title}}</h2>
<p>{{value.description}}</p>

</div>
{{/status}}
</script>

With the template in place, we need to make a connection to CouchDB and
fetch our status messages so we can feed this data into our Handlebars
template. We define this as a function inside of a new <script> block on our
index.html page:

<script>
$db = $.couch.db("statuses");
var loadStatusMessages = function(){

$db.view("app/messages",{
success: function(statuses) {

var data = {status: statuses.rows};
var template = Handlebars.compile($("#statuses_template").html());
var html = template(data);
$("#statuses").append(html);

}
});

}
</script>

Chapter 3. Data Recipes • 160

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/html/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

When the data is successfully retrieved, our success callback is invoked and
we display the data. You can define an error callback yourself, but the CouchDB
plug-in throws up an error message for us by default, so we’ll skip that part.

Finally, we need to call this function when our page loads:

couchapps/statuses/html/index.html
loadStatusMessages();

After we save our file, Reupholster again automatically pushes our changed
files to the server. Then when we visit our page in the browser again, we see
our status messages nicely rendered, as in the following figure:

From here, we can continue to build out this application, making changes to
the code, and start up Reupholster to push changes to the server.

Further Exploration
We’ve built a trivial but functional web application using only HTML and
JavaScript, all hosted with a CouchDB database. We could do more and use
a JavaScript framework like Angular to organize our code as things get more
complex.

The URL for our application is long and ugly, but CouchDB has its own URL-
rewriting features, so we can shorten http://awesomeco.cloudant.com/statuses/_design/
statuses/index.html to something less clunky, like http://status.awesomeco.com.

CouchDB isn’t just a client-side data store, though. We could also integrate
CouchDB into server-side applications. It’s a good, solid document store that’s
easy to use and extend. It may not fit every need, but it certainly has its place,
especially when we work with data that isn’t necessarily relational.

Also See
• Recipe 11, Rendering HTML with Handlebars Templates on page 69
• Recipe 14, Snappier Client-Side Interfaces with Knockout.js on page 87

report erratum • discuss

Building a Status Site with JavaScript and CouchDB • 161

http://media.pragprog.com/titles/wbdev2/code/couchapps/statuses/html/index.html
http://awesomeco.cloudant.com/statuses/_design/statuses/index.html
http://awesomeco.cloudant.com/statuses/_design/statuses/index.html
http://status.awesomeco.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 4

Mobile Recipes
More and more people access websites and applications from mobile devices,
and we need to develop with these users in mind. Limited bandwidth, smaller
screens, and new user interface interactions create interesting problems for
us to solve. With these recipes, you’ll learn how to save bandwidth with CSS
sprites, work with multitouch interfaces, and build a mobile interface with
transitions.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 23

Targeting Mobile Devices

Problem
As web developers, we’re used to accounting for a lot of factors when designing
a site. Different browsers and different screen resolutions have always
affected how our content looks, and making a site look as good on a 13-inch
laptop as on a 30-inch monitor takes work. In the past, we may have consid-
ered how our sites looked on PDAs, but with the explosion of smartphones
and tablets, we need to be aware of how our sites look on screens that not
only are smaller but also can change orientation.

Ingredients
• jQuery
• CSS media queries

Solution
CSS media queries let us load specific style
sheets based on conditions related to the state
of a browser. Media queries have been around
since HTML4 and CSS2, but in CSS3 they’ve
been extended, adding attributes like device-
width and device-height. Knowing these dimen-
sions, we can target different style sheets for
specific widths and heights. This gives us a
huge advantage for designing different looks
for different screens.

In Recipe 9, Accessible Expand and Collapse
on page 53, we created a product list that can
expand and collapse. Lately, our analytics team has seen a spike in traffic
from mobile users, and on an iPhone our site looks like the image. Its small
fonts make it hard to navigate on a mobile device, where the primary input
device—the user’s finger—is much less precise than a mouse pointer.

Chapter 4. Mobile Recipes • 164

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ll use the code from Recipe 9, Accessible Expand and Collapse on page
53, as a starting point. In the <head> section of our page, we add a few new
tags to load CSS styles designed for mobile devices. We’ll keep these styles
in a file named mobile.css, which we’ll put in the same directory as style.css.

targeting_mobile/index.html
<link rel="stylesheet" href="mobile.css"

media="only screen and (max-device-width: 480px)">
<meta name="viewport"

content="width=device-width;
height=device-height;
maximum-scale=1.4;
initial-scale=1.0;
user-scalable=yes" />

When referencing mobile.css, we use a normal stylesheet link, but we also add
the media attribute. By setting the media attribute to only screen and (max-device-
width: 480px), we know that it’ll get used only by mobile devices with a max
screen width of 480 pixels. This way desktop browsers will ignore it, and only
mobile devices should use it.

We also add a viewport meta tag to control how the content is viewed in mobile
browsers. By default, mobile browsers try to cram the entire page into the
viewscreen as if it were a screen many times larger, which makes everything
on the page incredibly small and forces the user to zoom in. With the viewport
meta tag added, mobile devices automatically begin zoomed in to a comfortable
resolution that’s easier to read and interact with.

Now let’s take a look at some of the design changes we can make to optimize
this list for mobile devices. We start by setting the font-weight to be bold on the
<body> tag, which makes the text easier to read:

targeting_mobile/mobile.css
body { font-weight: bold; }

We want to make sure our uses a significant portion of the width without
overflowing. We also want it to hug the left side of the screen more to use all
of our screen’s real estate:

targeting_mobile/mobile.css
ul.collapsible {

width: 430px;
margin-left: -10px;

}

We declare that the tag shouldn’t be wider than 430 pixels. This way the
list will fit comfortably within the 480px breakpoint we declared for this

report erratum • discuss

Targeting Mobile Devices • 165

http://media.pragprog.com/titles/wbdev2/code/targeting_mobile/index.html
http://media.pragprog.com/titles/wbdev2/code/targeting_mobile/mobile.css
http://media.pragprog.com/titles/wbdev2/code/targeting_mobile/mobile.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

stylesheet. We also add a negative margin-left to move the list closer to the left
side of the screen.

Beyond simple appearance, we also have to think about how users will
interact with the site on a mobile device. Since phones are manipulated by
fingers, rather than a pixel-precise mouse, we want to pad out the ele-
ments so users are less likely to tap the wrong link:

targeting_mobile/mobile.css
ul li { padding-top: 10px; }

Lastly, let’s add some extra space to the plus and minus symbols used to
show which parts of the list are collapsed; otherwise, they’ll crowd the text,
making the list harder to read:

targeting_mobile/mobile.css
ul.collapsible li:before { width: 20px; }

Now when we look at our site on a mobile
device, such as on an iPhone, we see that the
page appears better suited to its new mobile
home. This will work similarly on other mobile
devices.

Media queries give us control over how our
site looks for multiple devices and orienta-
tions. And since mobile users tend to interact
with sites differently than desktop users, we
can also use media queries to tailor the user
experience per device type.

Further Exploration
You can take this recipe further and show
specific navigation for mobile users. You can
even accentuate things like addresses and
phone numbers, which is helpful to mobile
users. You can reference styles like Tait
Brown’s iOS Inspired jQuery Mobile Theme1

with media queries to give a site an iOS-native feel with relative ease.

1. https://github.com/taitems/iOS-Inspired-jQuery-Mobile-Theme

Chapter 4. Mobile Recipes • 166

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/targeting_mobile/mobile.css
http://media.pragprog.com/titles/wbdev2/code/targeting_mobile/mobile.css
https://github.com/taitems/iOS-Inspired-jQuery-Mobile-Theme
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

You can also use frameworks like Skeleton2 that provide media query support
out of the box. We discuss this further in Recipe 28, Rapid, Responsive Design
with Skeleton on page 194.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 27, Using Sprites with CSS on page 190
• Recipe 26, Creating Interfaces with jQuery Mobile on page 180
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194
• HTML5 and CSS3: Level Up With Today’s Web Technologies [Hog13]

2. http://www.getskeleton.com/

report erratum • discuss

Targeting Mobile Devices • 167

http://www.getskeleton.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 24

Touch-Responsive Drop-Down Menus

Problem
Drop-down navigation is a common element in modern websites, and the
pattern for implementing it is well established. On desktop browsers these
menus work fine and require only some CSS magic. But as in Recipe 25,
Mobile Drag and Drop on page 173, a user on a mobile device doesn’t have a
mouse and so can’t trigger :hover events, at least not in a consistent way. We
need to be aware of this limitation for our mobile users so we can give them
the same experience as our desktop users.

Ingredients
• jQuery

Solution
Our first step is to write the markup for our top menu. We’ll write the markup
so that users can navigate our site without the drop-down links. We can do
this by making the top-level links point to pages that include links to all of
the appropriate subcategories. This way, any user can reach the subcategories
even if the drop-down links are unavailable. Let’s mock that up. We start with
the markup for our standard HTML template:

mobiledropdown/index.html
<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8">
<title>Dropdown navigation</title>
<link rel="stylesheet" href="mobiledropdown.css">
<meta name="viewport"

content="width=device-width, initial-scale=1">
</head>
<body>

<header>
<h1>Products</h1>

</header>
<div class="clear">
<p>This is where the content for our site goes.</p>

Chapter 4. Mobile Recipes • 168

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

</div>
</body>

</html>

Then, inside the <header> section, we add our navigation by using the <nav>
tag and unordered lists:

mobiledropdown/index.html
<nav class="dropdown">

Electronics

Music Players
Tablets
Computers
Cameras & Camcorders

Appliances

Washers
Dryers
Dish Washers

Entertainment

DVDs
Music

</nav>

If you’re an experienced web developer, you’ve seen this popular pattern
before: the top-level list items form the navigation bar itself, and the inner
lists make up the submenus that drop down.

To pull it together, we use CSS to style the menu:

mobiledropdown/mobiledropdown.css
nav.dropdown { position: relative; }

nav.dropdown ul {
list-style: none;
padding-left: 0;

}

report erratum • discuss

Touch-Responsive Drop-Down Menus • 169

http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/index.html
http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/mobiledropdown.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

nav.dropdown ul li {
float: left;
position: relative;

}

nav.dropdown ul li a {
background: #666;
color: #FFF;
display: block;
padding: 4px 10px;

}

nav.dropdown ul li ul { display: none; }

nav.dropdown ul li:hover ul,
nav.dropdown ul li.hover ul {

display: block;
position: absolute;

}

nav.dropdown ul li ul li a {
background: #444;
color: #FFF;
display: block;
width: 150px;

}

nav.dropdown ul li:hover ul li a:hover {
background: #888;
color: #FFF;
width: 150px;

}

.clear { clear: both; }

Our CSS is based on the widely used Son of Suckerfish menu.3 We hide all
the submenus and use :hover to show them. The following figure shows the
base menu on the left, and the effect of hovering over the last menu item on
the right.

3. http://www.htmldog.com/articles/suckerfish/dropdowns/

Chapter 4. Mobile Recipes • 170

report erratum • discuss

http://www.htmldog.com/articles/suckerfish/dropdowns/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now, we could say we’ve handled mobile navigation, since users can navigate
our site, but the usability isn’t where it needs to be yet. Let’s fix that.

On the desktop our drop-down lists are controlled by the CSS :hover event.
But without a mouse there’s no way to hover over a link. On iOS devices,
tapping a :hover link activates the hover effect and a second tap follows the
link, so this is a good alternative. Unfortunately, in other mobile browsers,
tapping a :hover link also activates the hover command—but unless the user
slides the finger away from the link before lifting up, the link will be followed.
This defeats the purpose of having a drop-down menu, since it only flashes
on the screen for a second before the user is taken to another page.

To get around this inconsistent behavior, we’ll make the iOS behavior the
default for all browsers. We can do this by watching all of the clicks on the
page. When a click on the navigation header is detected, we’ll prevent the
default operation unless the same link is clicked twice in a row. This means
we’ll need to track a few separate click events: any click on the page, clicks
on the top-level categories, and clicks on the subcategories.

We’ll place our JavaScript code in the mobiledropdown.js file. We load that file,
along with the jQuery library, on our index.html page right above the closing
<body> tag:

mobiledropdown/index.html
<script

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>
<script src="mobiledropdown.js"></script>

Then, in mobiledropdown.js, we add a global variable that tracks the last element
clicked anywhere on the page. Without this variable, we wouldn’t know
whether the user has tapped on a category or tapped elsewhere on the screen
to hide a drop-down list, or even follow a non–drop-down link:

mobiledropdown/mobiledropdown.js
var lastTouchedElement;
$('html').on('click', function(event) {

lastTouchedElement = event.target;
});

Next, we want to know when a category-header link was tapped and if it’s the
same category that was tapped last. On the first tap we’ll prevent the default
action from occurring; namely, we don’t want the user to follow the link just
yet. If the user clicks the same link again, then the user is allowed to follow
the link. The only exception is iOS devices. Since they already work correctly,
there’s no need to prevent the default action.

report erratum • discuss

Touch-Responsive Drop-Down Menus • 171

http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/index.html
http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/mobiledropdown.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

function doNotTrackClicks() {
return navigator.userAgent.match(/iPhone|iPad/i);

}

$('nav.dropdown > ul').on('click', '> li', function(event) {
if (!(doNotTrackClicks() || lastTouchedElement == event.target)) {

event.preventDefault();
}
lastTouchedElement = event.target;

});

As long as the link being clicked is different from the last element clicked,
and the client isn’t an iOS device, we prevent the browser from following the
link. We also update lastTouchedElement to the clicked link. Normally this would
be handled by the event handler attached to the <html> element, but we need
to handle one more click event.

If we were to test the site right now, we’d see that the subcategories have the
same behavior as the categories. We have to click on a subcategory twice to
follow the link. This is because the subcategory click events bubble up to the
category click events and inherit the category link’s behavior. To prevent this
from happening, we need to call stopPropagation() when a subcategory is clicked.
(We talked about event propagation in Why Not Return False?, on page 58.)

mobiledropdown/mobiledropdown.js
$('nav.dropdown').on('click', 'li', function(event) {

event.stopPropagation();
});

With this code in place, our mobile users now have a consistent experience
across platforms. And as long as the individual category pages list links to
the subcategories, the site will continue to be accessible for users on devices
other than smartphones.

Further Exploration
This recipe’s approach also affects desktop browsers, which means that cate-
gory links have to be double-clicked to be activated. Along with bypassing
this code when an iPhone is detected, we could also skip it when the site is
not being accessed by a mobile browser. The code for doing this can be found
at http://detectmobilebrowsers.com and could easily be applied to our site via jQuery.

Also See
• Recipe 9, Accessible Expand and Collapse on page 53

Chapter 4. Mobile Recipes • 172

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/mobiledropdown/mobiledropdown.js
http://detectmobilebrowsers.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 25

Mobile Drag and Drop

Problem
We have a pop-up window on our website that we use to display product
details. This pop-up is draggable so users can move the detail window to the
side of the screen, allowing them to browse the site while the pop-up is visible.
Unfortunately, we’ve received some feedback from users with iPads that they
can’t move the pop-up windows.

Drag-and-drop functionality has been an easy feature to add to websites for
a while now. Various plug-ins are available that can add it with little effort,
and it’s not even that difficult to write from scratch. The problem with these
plug-ins is that most of them don’t work on mobile devices, because they
respond only to events triggered by the user’s mouse. We need to make our
interface work for our mobile users by using some new, mobile-specific events.

Ingredients
• jQuery
• QEDServer (for our test server)4

Solution
Browsers on mobile devices like the iPad and other touch interfaces have a
new set of events they listen for instead of the normal mousedown and mouseup
events. Two of these new events, touchstart and touchend, are perfect substitutes.

Layout and Style

We’ll use JavaScript to handle these events, but first we need to create our
markup. The page is an unordered list of products and a hidden <div> for the
draggable window. We put this file in QED’s public directory as drag.html:

dragndrop/index.html
<header>

<h1>Products list</h1>
</header>
<div id='content'>

4. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Mobile Drag and Drop • 173

http://media.pragprog.com/titles/wbdev2/code/dragndrop/index.html
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

AirPort Express Base Station

DVI to VGA Adapter

</div>
<div class="popup_window draggable" style="display: none;">

<div class="header handle">
<div class="header_text">Product description</div>
<div class="close">X</div>
<div class="clear"></div>

</div>
<div class="body"></div>

</div>

We also need to make sure that the pop-up window is absolutely positioned.
Here are some basic styles that we’ll need:

dragndrop/style.css
.clear {

clear: both;
display: block;
overflow: hidden;
visibility: hidden;
height: 0;
width: 0;

}
.popup_window {

border: 1px solid #000;
width: 500px;
height: 300px;
box-shadow: 1px 1px 2px #555;
position: absolute;
top: 50px;
left: 50px;
background: #EEE;
transition: box-shadow 0.5s ease;

}

ul {
list-style: none;
padding-left: 0;

}

.popup_window.dragging {
box-shadow: 4px 4px 4px #555;

}
.popup_window .header {

Chapter 4. Mobile Recipes • 174

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/dragndrop/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

background: green;
width: 100%;
display: block;

}

.draggable .handle { cursor: move; }

.popup_window .header .header_text {
margin: 5px;
display: inline;
color: #FFF;

}

.popup_window .header .close {
float: right;
padding: 2px 5px;
border: 1px solid #999;
background: red;
color: #FFF;
cursor: pointer;
margin: 0;

}
.popup_window .header:after { clear: both; }

Additionally, we need to create an individual product page that the links will
point to. Normally this page would be built on the server, but for demonstra-
tion purposes we create a single page for all of the product links. This page,
which we name product1.html, also goes in QED’s public directory:

dragndrop/product1.html
<h3>Product Name</h3>
<div class='product_details'>

<missing>Need a real product page</missing>
<p>This is a product description. Below is a list of features:</p>

Durable
Fireproof
Impenetrable
Fuzzy

</div>

Basic Drag and Drop

So far our links work fine, but we want them to load the pages that they ref-
erence into the pop-up window, rather than redirecting the browser. We add
the popup classes to our product links so we know which links should be
loaded into the pop-up when clicked:

report erratum • discuss

Mobile Drag and Drop • 175

http://media.pragprog.com/titles/wbdev2/code/dragndrop/product1.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

dragndrop/dragndrop.js
$('.popup').on('click', updatePopup);

function updatePopup(event) {
$.get($(event.target).attr('href'), [], updatePopupContent);
return false;

}

function updatePopupContent(data) {
var popupWindow = $('div.popup_window');
popupWindow.find('.body').html($(data));
popupWindow.fadeIn();

}

$('.popup_window .close').on('click', hidePopup);
function hidePopup() {

$(this).parents('.popup_window').fadeOut();
return false;

}

These functions give us a way to hide and show the pop-up window. Everything
looks great; we can load it dynamically with new data and still see most of
the page. The problem is that it’s in the way, as shown in the following figure:

We currently have no way of moving this pop-up, so let’s fix that by making
it draggable. We’ll start by making it work in desktop browsers and then apply
the same logic to the touch events.

dragndrop/dragndrop.js
$('.draggable .handle').on('mousedown', dragPopup);
function dragPopup(event) {

event.preventDefault();

Chapter 4. Mobile Recipes • 176

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/dragndrop/dragndrop.js
http://media.pragprog.com/titles/wbdev2/code/dragndrop/dragndrop.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

var handle = $(event.target);
var draggableWindow = $(handle.parents('.draggable')[0]);
draggableWindow.addClass('dragging');
var cursor = event;
var cursorOffset = {

pageX: cursor.pageX - parseInt(draggableWindow.css('left')),
pageY: cursor.pageY - parseInt(draggableWindow.css('top'))

};
$(document).mousemove(function(moveEvent) {
observeMove(moveEvent, cursorOffset,

moveEvent, draggableWindow);
});
$(document).mouseup(function(up_event) {
unbindMovePopup(up_event, draggableWindow);

});
}
function observeMove(event, cursorOffset, cursorPosition, draggableWindow) {

event.preventDefault();
var left = cursorPosition.pageX - cursorOffset.pageX;
var top = cursorPosition.pageY - cursorOffset.pageY;
draggableWindow.css('left', left).css('top', top);

}
function unbindMovePopup(event, draggableWindow) {

$(document).unbind('mousemove');
draggableWindow.removeClass('dragging');

}

We start by watching for any <div> elements with a handle class in a draggable
element. When the mouse is clicked and held, we call dragPopup(). This adds
another observer for the mousemove event. Every time the mouse is moved, we
update the position of the draggable_window. The event gives us the position of
the mouse, but we need to set the position of the draggable <div>’s upper-left
corner. To calculate this, we capture the offset between the initial position of
the window and the position of the first click. That way, we can subtract those
extra pixels from the mouse’s position when moving the window in the
observeMove() function.

Then, so we can finish the move event, we add an event handler for the
mouseup event. When this event is triggered, we clean up the changes that we
made since the mousedown event. This means we stop observing the mousemove
event and remove an extra style class we added to the draggable_window.

Adding Mobile Functionality

Thankfully, with the hard part out of the way, it is easy to adapt this approach
for mobile devices. Other than the use of mouse-related events, the dragPopup()
function does most of what we want. So, it should be a matter of mimicking
that mouse-related code and making it act on the touch events.

report erratum • discuss

Mobile Drag and Drop • 177

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

First we need a way to check that the touch events are supported. If we were
to call a touch-related function on a desktop, our code would break. To prevent
that, we wrap our touch code in isTouchSupported() if statements:

dragndrop/dragndrop.js
function isTouchSupported() {

return 'ontouchmove' in document.documentElement;
}

Then we add an event handler for the touchstart event alongside our handler
for the mousedown event. These both trigger the dragPopup() function. Then we
trigger the dragPopup function from the touchstart event:

dragndrop/dragndrop.js
$('.draggable .handle').on('mousedown', dragPopup);
if (isTouchSupported()) {

$('.draggable .handle').on('touchstart', dragPopup);
}

Since a user can touch multiple spots, the touch event returns an array of
touches. But we’re focused on only one-finger movements for now, so we use
the first touch in the array to determine the position of the user’s finger. We
then pass in this location as the cursorPosition:

dragndrop/dragndrop.js
function dragPopup(event) {

event.preventDefault();
var handle = $(event.target);
var draggableWindow = $(handle.parents('.draggable')[0]);
draggableWindow.addClass('dragging');
var cursor = event;
if (isTouchSupported()) {

cursor = event.originalEvent.touches[0];
}
var cursorOffset = {

pageX: cursor.pageX - parseInt(draggableWindow.css('left')),
pageY: cursor.pageY - parseInt(draggableWindow.css('top'))

};

if (isTouchSupported()) {
$(document).bind('touchmove', function(moveEvent) {
var currentPosition = moveEvent.originalEvent.touches[0];
observeMove(moveEvent, cursorOffset,

currentPosition, draggableWindow);
});
$(document).bind('touchend', function(upEvent) {
unbindMovePopup(upEvent, draggableWindow);

});
} else {

$(document).mousemove(function(moveEvent) {

Chapter 4. Mobile Recipes • 178

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/dragndrop/dragndrop.js
http://media.pragprog.com/titles/wbdev2/code/dragndrop/dragndrop.js
http://media.pragprog.com/titles/wbdev2/code/dragndrop/dragndrop.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

observeMove(moveEvent, cursorOffset,
moveEvent, draggableWindow);

});
$(document).mouseup(function(up_event) {
unbindMovePopup(up_event, draggableWindow);

});
}

}
function unbindMovePopup(event, draggableWindow) {

if (isTouchSupported()) {
$(document).unbind('touchmove');

} else {
$(document).unbind('mousemove');

}
draggableWindow.removeClass('dragging');

}

Unfortunately, jQuery doesn’t fully support observing touch events using the
on() function, so we can’t access the touches array from the jQuery event.
Instead, we have to get the position of the user’s finger from the original event.
Now we can also mimic the mousemove behavior with the touchmove event by
calling observeMove(), which remains the same. The final difference is that on
the touchend event, we unbind the touchmove event, just as we did with the
mouseup and mousemove events, respectively.

Further Exploration
Now that we’ve seen how a single-touch event can be handled, it should be
easy to figure out how to start handling multifinger gesture commands. Since
the touch events return an array of touch positions, we can determine when
a user has multiple fingers on the screen and where each finger is. This means
we can know when users are pinching the screen, swiping side to side, or
using a gesture that we invent. For more about what we can do with this API,
check out HTML5 Rocks.5

Also See
• Recipe 24, Touch-Responsive Drop-Down Menus on page 168

5. http://www.html5rocks.com/en/mobile/touch.html

report erratum • discuss

Mobile Drag and Drop • 179

http://www.html5rocks.com/en/mobile/touch.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 26

Creating Interfaces with jQuery Mobile

Problem
Developing native applications for mobile devices isn’t a simple task, and the
programming knowledge required, and in some cases license fees, can create
a barrier to entry. Android and iOS application development is typically done
with Java and Swift, respectively. These are languages that many web devel-
opers don’t have experience using.

Our catalog needs a mobile-friendly version. Native applications for the iOS
and Android platforms would be ideal, but we don’t have the time, resources,
or knowledge to build them.

Ingredients
• jQuery
• jQuery Mobile6

• QEDServer (for our test server)7

Solution
To solve this problem, we can bring together the benefits of both web applica-
tions and native applications. With jQuery Mobile, we can use HTML5, Java-
Script, and CSS3 to develop web applications that behave similarly to native
applications for mobile platforms. jQuery Mobile makes it easy to develop
native-feeling applications using the tools we’re already familiar with.

We’ll explore jQuery Mobile by creating a site to browse through our company’s
catalog. Our application will allow the user to view and search our merchan-
dise. When we’re done, we’ll have built a mobile interface that looks like the
figure on page 181.

Creating an application with jQuery Mobile relies on some semantic HTML
and the data attributes available in HTML5. Using these attributes, we can
build most of the application without writing any extra JavaScript.

6. http://jquerymobile.com/
7. A version for this book is available at http://webdevelopmentrecipes.com/.

Chapter 4. Mobile Recipes • 180

report erratum • discuss

http://jquerymobile.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Building the Document

Let’s set up an HTML file to use jQuery Mobile. Our application will run on
QEDServer. In the public folder of the server, create a file called index.html and
add this boilerplate HTML to get started:

jquerymobile/index.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Incredible Products from AwesomeCo</title>
<link rel="stylesheet"
href="http://code.jquery.com/mobile/1.4.5/jquery.mobile-1.4.5.min.css">

</head>

<body>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>
<script
src="http://code.jquery.com/mobile/1.4.5/jquery.mobile-1.4.5.min.js">

</script>
<script src="products.js">
</script>

</body>
</html>

report erratum • discuss

Creating Interfaces with jQuery Mobile • 181

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The boilerplate includes four files: the jQuery Mobile CSS, the jQuery library,
the jQuery Mobile script itself, and a file for us to add our own JavaScript.
Now we’re ready to start adding pages and content to the application.

Creating Pages

A jQuery Mobile application consists of a set of pages. These pages can link
to one another, but we can show only one page on the screen at a time, even
though they all exist on the same HTML page. To build a page in jQuery
Mobile, we use a <div> that has a data-role attribute set to page. When the
framework runs, it loads whichever page comes first in the body of our HTML.
Following that pattern. we’ll start by creating our home screen. Let’s add the
following code below our opening <body> tag and above the <script> tags:

jquerymobile/index.html
<div data-role="page" id="home">

<div data-role="header">
<h1>AwesomeCo</h1>

</div>
<div data-role="main" class="ui-content">
</div>
<div data-role="footer">

<h4>© AwesomeCo</h4>
</div>

</div>

Each page can have three sections: a header, content, and a footer. The
header holds information about the current page in an <h1> tag. The header
also can hold buttons for navigation within the application, as we’ll see later.
The content region can hold any number of paragraphs, links, lists, forms,
and any other markup you would use on a normal web page. The footer is
an optional section that can hold a copyright or any other information we
want on the bottom of every page.

Now that our landing page is ready, let’s create a few items to populate the
content. We need some buttons to get to the other pages in our application,
so let’s place the following code inside our main <div>:

jquerymobile/index.html
<div data-role="main" class="ui-content">

<p>Welcome to AwesomeCo, your number one source
for all things awesome.</p>

<div data-role="controlgroup">
View All Products
Search

</div>
</div>

Chapter 4. Mobile Recipes • 182

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index.html
http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

First we create a paragraph giving some information about the application.
Then we make a <div> with a role of controlgroup. This role removes the margin
between the links so they appear as one set, as you can see in the next figure.
We also give the anchors a class of ui-btn so that they’re styled accordingly.
The two anchors link to other pages by setting the ID of the target page in
the href attribute.

These buttons look great, but they could be enhanced to give some more
feedback to the user. To add an icon to a button, we add a ui-icon-* class. The
available icons can be found in the jQuery Mobile documentation,8 but for
our page we use the right-arrow icon and the search icon:

jquerymobile/index_icons.html
<div data-role="controlgroup">

View All Products

Search

</div>

8. http://api.jquerymobile.com/icons/

report erratum • discuss

Creating Interfaces with jQuery Mobile • 183

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index_icons.html
http://api.jquerymobile.com/icons/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

With these buttons, our home page navigation is complete. We’ve created a
button group that will bring us to the various parts of our application and
added customization to give some more feedback to the user.

The buttons we’ve added look good, but they don’t go anywhere yet. We need
to add another page to the markup so that we can be sure the links actually
go somewhere:

jquerymobile/index.html
<div data-role="page" id="products">

<div data-role="header">
<h1>Products</h1>

</div>
<div data-role="main" class="ui-content">
</div>

<div data-role="footer">
<h4>© AwesomeCo</h4>

</div>
</div>

Now when we load the page in our browser and click the product link, we
should see the application transition to the products page.

Viewing Products

With the products-list markup in place, it’s time to add the actual content so
users can see what we offer. Since QEDServer has this data for us, we’ll use
jQuery to load the product list via Ajax. First let’s make sure we have some
products in the database by navigating to the nonmobile version at
http://localhost:8080/products. If your database doesn’t contain any records, feel
free to create a few placeholder items.

Since we’ve already created the structure for the products page, let’s create
an empty in our content section to hold our list of products:

jquerymobile/index.html
<div data-role="main" class="ui-content">

<ul id="products-list" data-role="listview">➤

</div>

The has a role of listview so that jQuery Mobile knows how to style it. We
also set an ID so we can easily reference it with jQuery when we want to
update the list. If we reload the application and navigate to the products page,
it’s pretty empty. To load some products, we use the custom events in jQuery
Mobile to load the content dynamically when the user requests the page:

Chapter 4. Mobile Recipes • 184

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index.html
http://localhost:8080/products
http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Testing jQuery Mobile

When it comes to testing jQuery Mobile, the browser on a computer mostly works,
but the experience is different enough that another testing platform is warranted.
But to see the application more realistically, we need a browser emulator. The emu-
lator acts like a normal browser but has the same dimensions as a mobile device.
Google Chrome has a great emulator for many devices, including iOS and Android.

To activate Chrome’s mobile emulation mode, right-click anywhere on the page and
choose Inspect Element. This opens the debug console. Then we can click the Toggle
device mode button, which looks like a phone, to see options for the different devices
we want to emulate and even what data speed we want to simulate, as shown in the
following image:

We could also use techniques explored in Recipe 33, Testing Websites on Real Devices
on page 242, to verify our work on any physical devices we have handy.

report erratum • discuss

Creating Interfaces with jQuery Mobile • 185

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

jquerymobile/products.js
(function($) {

var $products_page = $('#products'),
$products_list = $('#products-list'),
$product_page = $('#product');

$products_page.bind('pagebeforeshow', function() {
$.getJSON('/products.json', function(products) {
var $product_list_item;
$products_list.html('');

$.each(products, function(i, product) {
$product_list_item = $('').append(

$('<a>')
.attr('href', '#product')
.text(product.name)
.data('transition', 'slide')

);
$products_list.append($product_list_item);

});

$products_list.listview('refresh');
});

});
})(jQuery);

We bind to the page’s pagebeforeshow event to load the product list before the
page is shown. The getJSON() request queries the server and returns an array
of products. Those products are iterated over and added to the list. Since we
create new HTML, we refresh the listview, which tells jQuery Mobile to apply
styles to newly inserted elements.

Now when we navigate to our products page we’re given a list of products to
browse that looks like the figure on page 187.

Our last goal for viewing the products is to create a show page for a specific
product. When we tap a product on the product-list page, we want to show
the details. Since we don’t want to create a page for each product, we’ll
dynamically load the product and use a single-page template for all of our
products. First we need to head back to where we generated the contents for
the products listview. We need to add data attributes to the anchors to keep
track of the product ID we want to navigate to, so we add a custom data
attribute called data-product-id to the list of attributes we’re appending to the
list items:

Chapter 4. Mobile Recipes • 186

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/products.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

jquerymobile/products.js
$.each(products, function(i, product) {

$product_list_item = $('').append(
$('<a>')
.attr('href', '#product')
.text(product.name)
.data('transition', 'slide')
.data('product-id', product.id)➤

);
$products_list.append($product_list_item);

});

Now that we’re tracking the product ID for each of the links, we can create a
page to show the product. Let’s create the header, footer, and content <div>s
for this page, as we did before with the list page:

jquerymobile/index_icons.html
<div data-role="page" id="product">

<div data-role="header" id="product-header">
<a href="#products" class="ui-btn ui-icon-back ui-btn-icon-left"

data-role="back" data-direction="reverse"
data-transition="slide">Back

<h1>Product</h1>
</div>

report erratum • discuss

Creating Interfaces with jQuery Mobile • 187

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/products.js
http://media.pragprog.com/titles/wbdev2/code/jquerymobile/index_icons.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<div data-role="main" class="ui-content" id="product-content">
<p class="description"></p>

</div>

<div data-role="footer">
<h4>© AwesomeCo</h4>

</div>
</div>

We create a back button in the header <div> that brings us back to the product
list. We use the slide transition, as we did on the product-list page, but we
add a reverse value for the data-direction attribute so the transition goes from
right to left.

The last step to showing a product on the page is to intercept the navigation
event and load the data from the server. Before, we asked the server to get
information about several products. This time we get information about a
single product and build the product view using the response. Let’s write the
JavaScript to complete our product navigation. We add the following code
right above the last line in our products.js file:

jquerymobile/products.js
$products_list.on('tap', 'a', function(e) {

requestProduct($(this).data('product-id'));
});

function requestProduct(product_id) {
$.getJSON('/products/' + product_id + '.json', showProduct);

}

function showProduct(product) {
$('#product-header h1').text(product.name);
$('#product-content p.description').text(product.description);
$('#product-content span.price strong').text('$' + product.price);

}

We start off by binding to the tap event, which is a custom event in jQuery
Mobile. Since the raw tap events on mobile browsers differ so greatly, the
jQuery Mobile tap event removes the inconsistencies and offers a single
interface for managing touch events. Next we store a reference to the product
ID so that we can make a call with getJSON(). On the success event we change
the text of the product page to use the data we received.

Chapter 4. Mobile Recipes • 188

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jquerymobile/products.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we have a smooth interface that allows
us to view products and their details. A single
product page now looks like the image.

Further Exploration
We’ve only touched on a few of the features
available through jQuery Mobile. Check out
the API9 for more details on other options this
framework makes available to developers.

When we started this chapter, we added a
search link on the home page that doesn’t
actually do anything. Following the patterns
we’ve established, and by referencing the API,
it would be relatively easy to implement this
functionality.

Also See
• Recipe 20, Accessing Cross-Site Data with

JSONP on page 144
• Recipe 23, Targeting Mobile Devices on page 164
• Recipe 24, Touch-Responsive Drop-Down Menus on page 168

9. http://api.jquerymobile.com/

report erratum • discuss

Creating Interfaces with jQuery Mobile • 189

http://api.jquerymobile.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 27

Using Sprites with CSS

Problem
With data throttling a concern for many mobile users, the cost of loading lots
of images on a phone or other mobile device can quickly add up in terms of
time, money, and data. We want to minimize the impact we have on wireless
carrier limitations so our users have a good mobile experience without eating
up their data plans.

In Recipe 23, Targeting Mobile Devices on page 164, we built a mobile interface
for the product list from Recipe 9, Accessible Expand and Collapse on page
53. We’ve been asked to add some color and graphics to the site. However,
we want to make sure that we don’t take up too much bandwidth with our
new images, both so we don’t use up our end users’ limited data and to make
sure the pages load quickly.

Ingredients
• CSS

Solution
CSS sprites let us reduce the number of files the user downloads by combining
multiple icons into one and then using CSS properties to display only the
portion of the image that we want. Just one file is downloaded, saving time
and memory in HTTP requests, and we can use this image for multiple situa-
tions.

Our graphics department has created a sprite image like for
us to use on the mobile site:

The sprite contains + and - images to replace the current
text-based way of indicating if a list node is either expanded
or collapsed. You can get this graphic by downloading the source code for the
example projects from the book’s website.10

10. http://webdevelopmentrecipes.com

Chapter 4. Mobile Recipes • 190

report erratum • discuss

http://webdevelopmentrecipes.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Joe asks:

What Is a Sprite?
A sprite is a single image from a file that contains multiple images within it. We can
show what appears to be a single image by selectively showing a part of the whole
file. To visualize what we’re doing in this recipe, imagine cutting a small hole in a
piece of paper and laying it on top of a picture so only part of it shows at a time. To
show part of the image that’s farther down the picture, rather than move the piece
of paper down, we keep it in place and move the picture up.

We need to create an images folder inside of the project and place expand_col-
lapse_sprite.png inside of it. We’ll do all of our work in mobile.css, which we origi-
nally created in Recipe 23, Targeting Mobile Devices on page 164.

In our style.css file from Recipe 9, Accessible Expand and Collapse on page 53,
we have two CSS rules. These rules dictate what content is shown:

css_sprites/style.css
ul.collapsible li.expanded:before { content: '-'; }

ul.collapsible li.collapsed:before { content: '+'; }

We’ll override the .expanded and .collapsed styles in mobile.css so the browser uses
the graphics instead of the text we defined earlier. To use the sprites, we set
the background CSS attribute along with some position adjustments to get the
graphics aligned correctly so that only part of the total image is displayed:

css_sprites/mobile.css
ul.collapsible li.expanded:before {

background: url(images/expand_collapse_sprite.png) 0 -5px;
content: '';
height: 20px;
width: 30px;

}
ul.collapsible li.collapsed:before {

background: url(images/expand_collapse_sprite.png) 0 -30px;
content: '';
height: 25px;
width: 30px;

}

The first line in both of our CSS rules sets the content to a blank string.
Without this, the CSS wouldn’t allow us to specify the width or height of the
pseudo :before block. When we specify the height and width, we need to make
sure that we’re matching these dimensions to the size of our individual sprites.

report erratum • discuss

Using Sprites with CSS • 191

http://media.pragprog.com/titles/wbdev2/code/css_sprites/style.css
http://media.pragprog.com/titles/wbdev2/code/css_sprites/mobile.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The background attribute also sets the x and y offsets so we can focus on a
specific sprite.

Our current graphic has some extra
whitespace at the top, so we can start our
y position at -5 pixels. The graphic design
team got the left edge pretty tight, so we
will start that at 0. Our second image is
below the first, so we slide down to -30
pixels so that the minus sign shows
through, rather than the plus sign. We
can see the fruits of our labor in the fig-
ure.

Further Exploration
Although CSS sprites let us streamline
the process of downloading assets by
consolidating multiple images into a single
file, the downside is that we have to
maintain that file. Any time we want to
add or change an image, we must change
the whole file and possibly all of the offsets
within the CSS. Without a dedicated
design team at your disposal, this can be
cumbersome. Thankfully, tools such as
node-sprite-generator11 not only generate sprite images but also even provide
the CSS file.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 26, Creating Interfaces with jQuery Mobile on page 180
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194
• HTML5 and CSS3: Level Up With Today’s Web Technologies [Hog13]

11. https://github.com/selaux/node-sprite-generator

Chapter 4. Mobile Recipes • 192

report erratum • discuss

https://github.com/selaux/node-sprite-generator
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 5

Workflow Recipes
The tools and processes we use ultimately make or break our productivity.
As developers, we’re used to looking at better ways to make our clients happy,
but we should also look at ways to improve our own workflow. This collection
of recipes explores different workflows for working with layouts, content, CSS,
and JavaScript, as well as our code.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 28

Rapid, Responsive Design with Skeleton

Problem
We’re often called on by clients or managers to provide a wireframe or a mock-
up of a design (or multiple designs) before we do the actual implementation
of a site. This process helps communicate design and layout ideas to our end
users, especially when we’re asked to design interfaces for mobile phones and
tablets as well as desktop computers.

We have lots of options, from paper and pencil to full-blown mock-up tools
like OmniGraffle, Visio, or Balsamiq Mockups, but we prefer to do these mock-
ups in regular HTML and CSS. This way, we can code some interactivity, and
we can use the code we write in our actual implementation.

Ingredients
• Skeleton1

Solution
By using one of the many available HTML and CSS frameworks, we can design
layouts much more quickly than we could before, while avoiding some of the
more troubling issues with CSS layout. And we can plan for different screen
sizes, like mobile phones and tablets, from the beginning.

CSS grid frameworks provide a quick and simple way to lay out elements on
a page without having to worry about floats, clears, and the like. We can
choose among many great frameworks. For this recipe we’ll use Skeleton
because it’s simple and easily supports multiple screen sizes.

We’ve been asked to provide a mock-up for a property-listing page. We need
to show a few pictures of the property, its price, and some details from the
property’s Multiple Listing Service (MLS) listing. We need to make sure things
are readable on a regular laptop and on the iPhone, so realtors can quickly
reference the property information. This mock-up will eventually be turned
into a template for an actual web application, so we’ll use some hard-coded

1. http://getskeleton.com

Chapter 5. Workflow Recipes • 194

report erratum • discuss

http://getskeleton.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

text for our examples, and we’ll use image placeholders for the property
images. Before we start building the mock-up, let’s explore what Skeleton is
and how it works.

Skeleton’s Structure

Skeleton, like other grid-based frameworks, divides a single centered container
into twelve equal columns, creating a grid. We then use these columns to
define the widths of our page regions. A header that stretches across all of
these columns would be defined as twelve columns wide, while a sidebar
that’s only a third of the page would be defined as four columns wide. The
main column would then be eight columns wide. The following illustration
shows how a simple two-column page would work:

header
(twelve columns)

sidebar
(four columns)

main content
(eight columns)

Using simple tried-and-true CSS techniques, Skeleton handles the task of
floating and aligning elements for us and sets default line heights and font
sizes so things flow across columns nicely. On top of all that, Skeleton makes
it easy to make a layout work well on all screen sizes by taking advantage of
CSS media queries, which we discuss in Recipe 23, Targeting Mobile Devices
on page 164.

Skeleton provides more than some CSS to make layout easier. It provides us
with a framework for our files. When we download and unpack the Skeleton
files, we get a sample index.html file, a folder for our style sheets, and a sample
Favorites icon.

Now that we know what Skeleton can do for us, let’s get started with our
mock-up.

report erratum • discuss

Rapid, Responsive Design with Skeleton • 195

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Defining Our Layout

Our page will have a header with the property’s address, a column with
information about the property, and a column with some photographs. When
we’re done, we’ll have a page that looks like the following figure:

We’ll use Skeleton version 2 for this recipe, which you can find in the book’s
source code. The Skeleton download gives us a default index.html file that we
use as our base for our template. Let’s open that file and delete everything
between the opening and closing <div> with the container class. But we keep
the container <div> itself, since Skeleton automatically sets that to a width of
960 pixels and centers it on the page.

Let’s start by defining the header of the page, which will contain our site’s
title and the address of the property. To do this we need to define a new row
and then divide that row into columns. So, we use a <div> tag to define the
row, and we use the HTML5 <header> tag for the actual header:

skeleton/index.html
<div class="row">

<header class="twelve columns">
<h1>SpotFindr</h1>
<h3>123 Fake Street, Anytown USA 12345 - MLS #842089</h3>

</header>
</div>

Since we want a single column that stretches the width of the container, we
use the twelve columns class for the <header>.

Chapter 5. Workflow Recipes • 196

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Next, we define the next section of the page, which will contain the left and
right columns. Again, we define this region as a new row:

skeleton/index.html
<div class="row">
</div>

Inside this new region, we define the left column of the page, which holds the
price and a brief property description. We use a <section> tag to contain this
region. We want this one to stretch halfway across the page, so we define it
as six columns wide:

skeleton/index.html
<div class="row">

<section id="datasheet" class="six columns">➤

<h2 class="price">$109,900</h2>➤

<p>➤

Simple single-family home on the north side, within walking➤

distance to schools and public transportation. New roof in 2005,➤

central air in 2006. New windows and doors in 2010. Ready for you to➤

move in!➤

</p>➤

</section>

Now we define the right column by creating another region immediately after
the previous <section> tag:

skeleton/index.html
<section class="photos six columns">
</section>

Skeleton automatically left-aligns regions until the total column count is
twelve, when it then drops to the next line.

Since we don’t have images yet, we’ll use placeholder images that we’ll generate
using Placehold.it.2 Using that simple API, we can have images generated for
our mock-up on the fly, by pointing to the Placehold.it site. For example, we
can make this request to insert an image that’s 460 pixels wide by 200 pixels
tall with the text Bedroom:

For our mock-up, we use seven images, which we code up like this:

skeleton/index.html
<section class="photos six columns">

<img class="u-max-full-width"➤

src="http://placehold.it/460x320&text=Exterior"➤

2. http://placehold.it

report erratum • discuss

Rapid, Responsive Design with Skeleton • 197

http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://placehold.it
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

alt="Exterior of house">➤

<img src="http://placehold.it/150x100&text=Livingroom"➤

alt="Livingroom">➤

<img src="http://placehold.it/150x100&text=Kitchen"➤

alt="Kitchen">➤

<img src="http://placehold.it/150x100&text=Master+Bedroom"➤

alt="Master Bedroom">➤

<img src="http://placehold.it/150x100&text=Bedroom"➤

alt="Guest Bedroom">➤

<img src="http://placehold.it/150x100&text=Exterior+Side"➤

alt="Exterior side">➤

<img src="http://placehold.it/150x100&text=Exterior+Back"➤

alt="Exterior back">➤

</section>

When we shrink the browser window or view the page on a smaller device,
we want our large image to scale down too. If we apply the u-max-full-width class
to an image, Skeleton will crop the image for us by reducing its width and
height to fit the available space.

The only thing we have left to implement is our two-column table of data for
the house, which we want to place below the paragraph in the left column.
We’ll do that by defining columns within the left column we created earlier.

Mobile-Friendly Tables

Our next order of business is to define the data table for our details about
the property. We define this with a standard HTML table, as Skeleton already
has styles ready for us:

skeleton/index.html
<table class="u-full-width">

<tr><th>Year Built</th><td>1964</td></tr>
<tr><th>Bedrooms</th><td>4</td></tr>
<tr><th>Baths</th><td>1 Full/1 Half</td></tr>
<tr><th>Square footage</th><td>1,144 (approx)</td></tr>
<tr><th>Foundation</th><td>Poured</td></tr>
<tr><th>Heat</th><td>Gas Forced Air</td></tr>
<tr><th>Electrical</th><td>Circuit Breaker</td></tr>
<tr><th>Water</th><td>City Water</td></tr>
<tr><th>Sewer</th><td>City Sewer</td></tr>

</table>

Skeleton’s documentation says we should use the <thead> and <tbody> tags
when we use tables, but since our headings are on the left side of the table
rather than across the top, that markup doesn’t work well. Fortunately,
Skeleton works fine if we omit that extra markup. But if you have a table with
headers across the top, it’s a good idea to ensure that your table includes
those tags.

Chapter 5. Workflow Recipes • 198

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

In a short time, we have something that looks pretty nice. As we resize the
screen, we see our elements restack vertically and look good on a small screen:

Let’s finish this mock-up by adding a shadowed border around the container,
but only when the full-width version is displayed. We’ll also add a few more
tweaks to ensure that things look great across a wide range of devices.

Styling with Media Queries

Skeleton makes things look pretty nice out of the box, but we can add our
own customizations. Skeleton is designed to be lightweight and extendable.
Let’s add a background color to the main content area, set the background
color of the page to white, and add a slight drop shadow around the content
area. But we’ll do this only on large screens.

report erratum • discuss

Rapid, Responsive Design with Skeleton • 199

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

To keep things organized, we add a new file to our project called css/custom.css.
This keeps our code separate from the Skeleton library, in case we want to
upgrade to a new version later. In this new file, we’ll add a media query that
targets desktop screen sizes only. Skeleton is built around the following media
queries:

/* Mobile first queries */

/* Larger than mobile */
@media (min-width: 400px) {}

/* Larger than phablet */
@media (min-width: 550px) {}

/* Larger than tablet */
@media (min-width: 750px) {}

/* Larger than desktop */
@media (min-width: 1000px) {}

/* Larger than Desktop HD */
@media (min-width: 1200px) {}

Based on that, we target anything with a min-width of 750px for our styling:

skeleton/css/custom.css
@media only screen and (min-width: 750px) {

body {
background-color: #ddd;
margin-top: 20px;

}

.container {
background-color: #fff;
box-shadow: 5px 5px 5px #bbb;
box-sizing: content-box;
padding: 1%;

}
}

To get this new style sheet to work, we need to add it to our HTML page,
adding the reference below the existing CSS links:

skeleton/index.html
<!-- CSS
--- -->
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/custom.css">➤

Chapter 5. Workflow Recipes • 200

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/skeleton/css/custom.css
http://media.pragprog.com/titles/wbdev2/code/skeleton/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

One small detail remains, and that’s that the images are all left-aligned, which
doesn’t look right on small screens. Let’s center all of the images on all screen
sizes to make things line up nicely. We can place this code right at the top of
our custom style sheet, above any media queries. This way it applies to all
styles and will be easy to override later if we need to adjust it for specific
screen resolutions:

skeleton/css/custom.css
.photos{

text-align: center;
}

From here we could make any number of additional customizations for various
screen sizes, building off of what Skeleton gives us. And, of course, we’re not
restricted by those media queries. We can use any width we need to make
things look the way we want.

Joe asks:

Aren’t We Mixing Design and Implementation
with Frameworks Like This?

To be honest, yes we are. When we have a <div> or <section> with a class of four columns
and we decide that we need to reorganize things, we’ll have to touch the markup. As
a result, many purists will look at this as a bad idea in theory. While it’s not nearly
as bad as class="redImportantText", it does couple the content with its presentation.

However, most site redesigns we’ve seen involve scrapping the existing structure and
creating a new layout from scratch anyway, so the reusability of a template and its
associated styles is often more theoretical than practical. With systems like this,
you’re trading strict semantic markup for a productivity gain. As you’ve seen in this
recipe, frameworks like Skeleton are great for creating rapid prototypes of pages, even
if you don’t roll this markup into the actual site.

If you’re still uncomfortable with this approach but like the idea of using these systems
instead of rolling your own, you can investigate Sass (which we discuss in Recipe 30,
Building Modular Style Sheets with Sass on page 213) and its advanced features to
create an abstraction layer between the grid system and the HTML. Many other CSS
frameworks offer this capability for advanced users.

Further Exploration
Skeleton’s default template is worth a closer look because it starts us off with
a great set of best practices. For example, it loads a web font from Google’s

report erratum • discuss

Rapid, Responsive Design with Skeleton • 201

http://media.pragprog.com/titles/wbdev2/code/skeleton/css/custom.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CDN, using a protocol-relative scheme so it supports both HTTP and HTTPS.3

It includes all those other little things you might tend to forget, like a Favorites
icon, <meta> tags for the description, and content encoding. And it includes
a sensible <meta> tag to control the viewport on mobile devices.

Skeleton might not meet all of your needs, so you may want to look at Foun-
dation4 or Bootstrap,5 which follow the same grid-based approach but offer
many more advanced components, theming, and widgets—along with a
steeper learning curve. However, both of these frameworks are similar enough
to Skeleton that what you’ve learned here will help you greatly.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 44, Automating Static Site Deployment with Grunt on page 304
• Recipe 30, Building Modular Style Sheets with Sass on page 213

3. http://paulirish.com/2010/the-protocol-relative-url/
4. http://foundation.zurb.com/
5. http://getbootstrap.com/

Chapter 5. Workflow Recipes • 202

report erratum • discuss

http://paulirish.com/2010/the-protocol-relative-url/
http://foundation.zurb.com/
http://getbootstrap.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 29

Creating a Simple Blog with Enfield

Problem
We want to create a blog, but our server resources are limited. We don’t have
access to a database, and we aren’t able to run PHP code. This makes solutions
such as WordPress and Drupal impossible. We need a way to build a blog
that’s easy to manage and works around these barriers.

Ingredients
• Node.js6 and npm
• Enfield7

Solution
To build a blog that doesn’t require a database, we’ll use a static-site generator
—a tool that helps us build static sites quickly by reusing layout code. One
of the more popular static-site generators, Jekyll,8 is designed around creating
blogs. Jekyll is powerful and easy to use, but it requires the Ruby program-
ming language, which can be difficult to install. Fortunately, we can use
Enfield, a Jekyll-compatible static-site generator written in Node.js.

Like Jekyll, Enfield relies on a rigid, opinionated file structure to form pages
and articles. It has a simple and effective layout system, and although it isn’t
aimed at the average blogger, it’s the perfect fit for a proof of concept or for a
technical person who wants a fast yet simple blog without the overhead that
comes from database-backed solutions. As an added bonus, our blog’s
infrastructure will be simpler. Database-driven sites make changing content
easy but often require more complex caching solutions because they are
slower than serving static pages to visitors. Static-site generators solve that
problem, too, because they build regular HTML pages that can be uploaded
anywhere.

We’ll create a simple blog that details AwesomeCo’s quest for world domination.

6. http://nodejs.org/
7. https://github.com/fortes/enfield
8. http://jekyllrb.com/

report erratum • discuss

Creating a Simple Blog with Enfield • 203

http://nodejs.org/
https://github.com/fortes/enfield
http://jekyllrb.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Installing Enfield

We install Enfield, like most Node.js libraries, by using npm:

npm install -g enfield

The installation process gives us an executable that we can use to build, test,
and prepare our site for deployment.

Building the File Structure

To set up our blog, we run the enfield command and supply the new argument,
followed by the name of the folder we want to create:

$ enfield new blog
Info enfield New site installed in /blog

This command creates the file and folder structure that Enfield relies on.
Enfield expects a folder for layouts, a folder that will contain the posts, an
index page, and a configuration file.

We can use the _config.yml configuration file to customize how our site is built.
YAML9 is a human-readable format for storing data that works across pro-
gramming languages, similar to JSON. Enfield’s generator already filled in
some of the details, but let’s modify it so it looks like this:

creatingablog/_config.yml
name: The Master Plan Blog
pygments: false

We specify the name of our blog, and we tell Enfield that we don’t want to
use the Pygments library to provide syntax highlighting. After all, we won’t
be showing off any of the top-secret code we’re using to take over the world.
(You can enable this feature for your own blog, but you’ll need to have Python
and the Pygments library installed on your machine before it’ll work.)

Using Layouts

Let’s start building our blog by creating our index page that lists recent posts.
Pages in Enfield can be nested in a layout, so we’ll create a layout that contains
all the repetitive HTML on each page. This also enables us to easily change
the HTML for the entire blog with one file. Enfield gives us a default layout,
but let’s create our own instead. In the _layouts folder, create a file named
base.html and fill it with a standard HTML document and a few placeholders:

9. http://yaml.org/

Chapter 5. Workflow Recipes • 204

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/creatingablog/_config.yml
http://yaml.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

creatingablog/_layouts/base.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>{{ page.title }}</title>

</head>
<body>

<div class="wrapper">
<header>

<h1>The Master Plan Blog</h1>
</header>
<section id="posts">

{{ content }}
</section>
<footer>

<small>Copyright AwesomeCo</small>
</footer>

</div>
</body>

</html>

Enfield uses the Liquid template language10 to create dynamic pages. Template
tags are surrounded by double curly braces. In this case, any other layout
file or post file that is rendered with our base.html layout will be inserted in
place of the {{content}} area. The title of each page will get placed in the
{{page.title}} area. We’ll use other template tags later.

Our base layout is created, so we can now move on to creating the rest of the
home page. We’ll define the content in the index.html file in the root of our
directory. The Liquid template language provides an iterator that we can use
to create markup for each post. We use an unordered list to show the posts.

creatingablog/index.html

layout: base

<h2>Recent Posts</h2>

{% for post in site.posts %}

<!-- link to the post -->

{% endfor %}

10. http://www.liquidmarkup.org/

report erratum • discuss

Creating a Simple Blog with Enfield • 205

http://media.pragprog.com/titles/wbdev2/code/creatingablog/_layouts/base.html
http://media.pragprog.com/titles/wbdev2/code/creatingablog/index.html
http://www.liquidmarkup.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The first three lines define a section that contains the YAML front matter,
which is a special section where we can set some per-page metadata that
Enfield will look for. The front matter is enclosed within three hyphens. We
use this to tell Enfield that our layout for this page is the base.html file. Most
of our files will render inside the base.html file that we made before.

creatingablog/index.html

{{ post.date | date_to_string }}
» {{ post.title }}

Within the context of this iterator, we have a template tag named post that
contains the permalink for the post.

Creating Posts

Our home page is able to display posts now, but we haven’t written any yet,
so let’s do that now. We can write posts in a variety of markup languages,
including Markdown and regular HTML. For now, we’ll use Markdown because
it is simple and easy to read. The choice of markup language is flexible, but
we must abide by a strict rule when naming our post files. Post files have to
begin with a date followed by a title, and we must use hyphens to separate
words in our title, like this:

2015-06-12-my-first-post.md

The post files reside in the _posts folder. Create a new file for the first post in
that folder, and use today’s date in the filename.

Posts, like the index.html file, require a YAML front matter. We use this front-
matter section to define a layout to use and give our post a human-readable
title. We haven’t created a layout specifically for displaying a single post, but
we will soon. Until then, we’ll use the base layout. The content of the post
comes after the front matter:

layout: base
title: Welcome!

Thank you for visiting our blog. We'll post daily updates
about our plans for global conquest. Be sure to check back often!

Chapter 5. Workflow Recipes • 206

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/creatingablog/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Building the Site

When we installed Enfield, we got a command-line utility that manages and
builds out our site for us. In the root directory of our site, we run the following
command, which generates the static files and puts them in a _site folder:

$ enfield build

When we’re developing the blog, it’s handy to serve these files through a web
server so that we can ensure that our links work correctly. Enfield has this
built in; all we need to do is use the server option:

$ enfield server
info enfield Configuration File: _config.yml
info enfield Source:
info enfield Destination: _site
info generate Begin generation
info generate Generated -> _site
info enfield Generation done
info enfield Generation done
info enfield Running server at http://0.0.0.0:4000

This builds the site and starts a web server on port 4000. To view the site,
we open a browser and navigate to http://localhost:4000.

Our blog shows the list of posts that we have created and allows us to view
each post, as shown in the following image:

We can shut down the server that we started by pressing Ctrl+C . Each time
we edit the site, we must rebuild the site and restart the server before the
changes appear in the browser. Keep in mind that the server is only for
development purposes. When we deploy, we’ll use the files that are generated
in the _site folder.

report erratum • discuss

Creating a Simple Blog with Enfield • 207

http://localhost:4000
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Single-Post Layouts

If you follow the link to the post, you’ll notice that viewing a post doesn’t give
us much information about the post, only its content. But we can create a
specific layout for posts that lets us see more information. Create a file in the
layouts folder called post.html. We’re going to use it to display the post title
along with the content and the author. Our new layout looks like this:

creatingablog/_layouts/post.html

layout: base

<article class="post">

<h2>{{ page.title }}</h2>
<section>

{{ content }}
</section>
<footer>

<p>Written by {{ page.author }}</p>
</footer>

<p>Back</p>

</article>

Any variable we place in the YAML front matter is available via the page object
in the template. Therefore, accessing the author of the post is as easy as ref-
erencing page.author. We could put any data we like in the front matter for a
post and access it this way.

Before we’re done, we need to tell our original post to use the new post layout.
We edit the post we created earlier and change the layout in the front matter.
Our new post looks like this:

creatingablog/_posts/2015-06-12-my-first-post.md

layout: post
title: Welcome!
author: Max Power

Thank you for visiting our blog. We'll post daily updates
about our plans for global conquest. Be sure to check back often!

When we rebuild the site and start the server, we can navigate to a post and
see its title:

Chapter 5. Workflow Recipes • 208

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/creatingablog/_layouts/post.html
http://media.pragprog.com/titles/wbdev2/code/creatingablog/_posts/2015-06-12-my-first-post.md
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Of course, things are still a little rudimentary. Let’s spice things up a bit.

Crafting Layouts

Enfield is a designer-friendly system. Using CSS and images in your layouts
and posts is simple. Any folders and files we create in the root directory are
automatically included in the site on generation. To spice up our home page,
we’ll write some CSS in an external file. Create a folder named css in the root
directory, and create a file inside it named styles.css.

Let’s write some simple styles in here to spice up the blog. We’ll constrain the
main content region, give the background some color, and set the footer apart
from the rest of the site:

creatingablog/css/styles.css
body {

background: #DDD;
color: #111;
font-family: "Verdana", "Arial", sans-serif;

}

.wrapper {
background-color: #FFF;
max-width: 80%;
margin: 0 auto;

}

.wrapper > header, .wrapper > section { padding: 1%; }

.wrapper > footer {
background-color: #111;
color: #DDD;
text-align: center;

}

.wrapper > footer a { color: #DDD; }

Lastly, we need to change our base.html layout file to load the style sheet:

report erratum • discuss

Creating a Simple Blog with Enfield • 209

http://media.pragprog.com/titles/wbdev2/code/creatingablog/css/styles.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Joe asks:

Can I Exclude Files or Folders in My Root
Directory?

Yes! If you want to keep original assets like Photoshop files in the same folder as your
images but you don’t want to upload these to the server, you can tell Enfield to exclude
them by modifying the _config.yml file we created at the beginning of the recipe.

To exclude files, we use the exclude option in the configuration file. This option expects
a list of files and folders to ignore. Enter the configuration option into the _config.yml
file:

exclude:
- images/psd/
- README

You can learn more about the configuration options at the Jekyll wiki.a Enfield sup-
ports most of these options.

a. https://github.com/mojombo/jekyll/wiki/Configuration

creatingablog/_layouts/base.html
<link rel="stylesheet" href="/css/styles.css">

When we rebuild the site, we can see that the CSS is now applied to the page.
When we pull up the page in our browser, our page looks like the following
figure:

The same concept applies for including images and JavaScript files. We can
create folders named, for example, images and js and reference the files within
them. And, of course, we don’t have to craft things by hand; we can use CSS
frameworks like Skeleton, which we cover in Recipe 28, Rapid, Responsive
Design with Skeleton on page 194, to create a layout for our site that works
nicely on mobile devices.

Chapter 5. Workflow Recipes • 210

report erratum • discuss

https://github.com/mojombo/jekyll/wiki/Configuration
http://media.pragprog.com/titles/wbdev2/code/creatingablog/_layouts/base.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Static Pages

We can do more with Enfield than blogging. We can use the same layout and
template system to create static pages too. Pages work nearly the same way
that posts do; they have titles and layouts and can use template tags.

To create a static page, we create a new layout just for pages called page.html
in the _layouts folder:

creatingablog/_layouts/page.html

layout: base

<h3>{{ page.title }}</h3>
{{ content }}

Now we can use this new layout to render a static page. In the root directory,
create a file named contact.md. This file requires a YAML front matter that
defines the layout for the page, as well as the page title:

creatingablog/contact.md

layout: page
title: Contact

If you would like to get in contact with us,
send an email to
info@awesomeco.com.

Enfield generates static pages based on the filename of the Markdown page.
Since we named ours contact.md, it generates a file named contact.html. Let’s
create a link to it on the index page in the footer:

creatingablog/_layouts/base.html
<footer>

<small>Copyright AwesomeCo</small>
<p>Contact Me</p>➤

We need to fix the color of that link in the footer, too, so that it shows up as
white instead of the default blue, which is too dark to be used with our dark
gray footer color:

creatingablog/css/styles.css
.wrapper > footer a { color: #DDD; }

Now that our blog is ready, we can deploy it to a server by using the contents
in the _site folder. And we can regenerate that content whenever we run the
enfield build command.

report erratum • discuss

Creating a Simple Blog with Enfield • 211

http://media.pragprog.com/titles/wbdev2/code/creatingablog/_layouts/page.html
http://media.pragprog.com/titles/wbdev2/code/creatingablog/contact.md
http://media.pragprog.com/titles/wbdev2/code/creatingablog/_layouts/base.html
http://media.pragprog.com/titles/wbdev2/code/creatingablog/css/styles.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
Static sites make it easy to serve your content quickly without the bottlenecks
associated with databases. However, you do miss out on things that traditional
blogs offer, such as comment systems. But you can quickly incorporate a
system like Disqus.11 You set up an account, add some code to your posts
template, publish, and you’ve got a comments system ready to go.

Enfield’s goal is to maintain full compatibility with Jekyll. If you’re currently
using WordPress, Drupal, or another blog framework, consult the Jekyll wiki12

to find out how to easily transform your posts into a form that Jekyll or Enfield
can digest. And like Jekyll, Enfield has a plug-in system you can use to
develop your own ways to extend the platform.

If you do have the opportunity to use Ruby, you may want to look into Jekyll
more, as it has some features that Enfield hasn’t yet implemented, and has
a larger community. And you may want to look into Middleman,13 which offers
even more power and flexibility for managing and generating content that
doesn’t need to change dynamically.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194
• Recipe 44, Automating Static Site Deployment with Grunt on page 304
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194

11. https://disqus.com/websites/
12. https://github.com/mojombo/jekyll/wiki
13. https://middlemanapp.com/

Chapter 5. Workflow Recipes • 212

report erratum • discuss

https://disqus.com/websites/
https://github.com/mojombo/jekyll/wiki
https://middlemanapp.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 30

Building Modular Style Sheets with Sass

Problem
As web developers, we rely heavily on style sheets to create eye-catching
interfaces, usable layouts, and readable typography. Style sheets are powerful
but rudimentary. Even novice programmers tend to get frustrated that CSS
doesn’t provide things like variables and functions to reduce duplication.
They turn to JavaScript and jQuery to fill in the gaps, which ends up creating
a horrid mix of behavior and presentation in the code.

Ingredients
• Node.js14 and npm
• Sass15

Solution
The Syntactically Awesome Style Sheets (Sass) CSS extension tool extends
CSS, giving it the features we’ve longed for, including variables and reusable
code. We can use the Sass language to build style sheets that are easier to
maintain and build upon. We write our code using Sass’s extended CSS
syntax and then run this code through a precompiler that spits out regular
CSS that web browsers understand. Sass’s default syntax supports basic
CSS3, so transitioning to Sass involves simply changing the extension for our
style files’ names from .css to .scss.

We developed some styled buttons in Recipe 1, Styling Buttons and Links on
page 2, and some speech bubbles in Recipe 2, Styling Stand-Alone Quotes
with CSS on page 6. In doing so, we created quite a bit of duplicated code.
We’ll use Sass and its features to build pieces we can share between the
buttons and the speech bubbles, and then we’ll stitch the pieces together into
one master style sheet that we can include in our pages. We won’t cover how
the CSS code works in this recipe; refer to the other recipes for that.

14. http://nodejs.org/
15. http://sass-lang.com

report erratum • discuss

Building Modular Style Sheets with Sass • 213

http://nodejs.org/
http://sass-lang.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating a Sass Project

Web browsers can’t use Sass files, so we use a precompiler to convert Sass
into regular CSS files. Some graphical tools will do this conversion, but we’ll
use a command-line version. We install this precompiler using npm:

$ npm install -g node-sass

We create folders for our Sass files and converted CSS files:

$ mkdir sass
$ mkdir stylesheets

Then we create a file in the sass folder called style.scss. This is the file we’ll write
our code in.

The node-sass command-line tool can monitor a file we specify for changes and
convert it into a CSS file that our browser understands. We tell it to watch
the sass/style.scss file and place the output in the stylesheets/style.css file:

$ node-sass sass/style.scss -o stylesheets/ --watch

Now node-sass watches sass/style.scss for changes and, when the file changes, will
create or update stylesheets/style.css. It keeps watching until we press Ctrl+C or
until we restart the computer. But don’t shut the watcher down yet.

That’s all there is to setting up our simple project. We can write our styles in
Sass, and the CSS will be automatically generated for us. Let’s start exploring
Sass by taking a look at a simple yet powerful Sass feature: variables.

Using Variables and Imports

Our button has a background color and a border color. When we’re working
with CSS, we often use the same HTML color codes repeatedly in our style
sheets, which makes changing these colors difficult. In programming languages
like JavaScript, we solve problems like this by using variables, but regular
CSS doesn’t have them. Sass does, and they’re easy to use.

In the sass/style.scss file, we add two variable declarations, one for the back-
ground color and one for the border color:

sass/sass/style.scss
$button_background_color: #A69520;
$button_border_color: #282727;

In Sass, variables start with a dollar sign and get their values assigned the
same way we’d assign a value to a CSS property.

To keep our code organized, we’ll keep the definition for our CSS button in
its own file, called _buttons.scss, and we’ll place it in the sass folder. Naming it

Chapter 5. Workflow Recipes • 214

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/sass/sass/style.scss
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

with the underscore prefix does two things. First, it lets Sass know that it’s
not a style sheet of its own, so it won’t generate a CSS file from this file
directly. Second, it lets other developers know that it’s a partial file. We put
the basic styles for our button in this file, using our two variables for the
button’s border and background color:

sass/sass/_buttons.scss
.button {

background-color: $button_background_color;➤

border: 1px solid $button_border_color;➤

color: #000;
cursor: pointer;
display: inline-block;
font-family: "Verdana";
font-weight: bold;
font-size: 1.2em;
line-height: 1.22em;
padding: 6px 20px;
text-transform: uppercase;
text-decoration: none;

}

input::-moz-focus-inner {
border: 0;
padding: 0;

}

input.button {
outline: none;

}

We can then import this partial Sass file into our style.scss file using the @import
statement, which we place after our variable declarations:

sass/sass/style.scss
@import "buttons";

When we process our files, the Sass compiler will see the @import statement,
pull in the contents of our other file, and create one CSS file. This is a great
way to keep sections of style sheets organized during the development process.
Better yet, we can take organization a step further by reducing duplication.

Using Mixins to Share Code

Our buttons and our speech bubbles both have gradient backgrounds and
rounded corners. In addition, our button has a different gradient-background
definition when the user hovers over the button. Defining these gradients and
rounded corners requires a lot of CSS because we have to support different
definitions for the various browsers. On top of that, our buttons also have a

report erratum • discuss

Building Modular Style Sheets with Sass • 215

http://media.pragprog.com/titles/wbdev2/code/sass/sass/_buttons.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/style.scss
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

drop shadow that we need to define, and we may want to share that code
with other elements on the page so we have consistent shadows.

We can define these rules as mixins that we can share across style definitions.
Let’s create a new file called _mixins.scss to hold the mixins that we define, and
then add the @import statement to style.scss above our other @import statement:

sass/sass/style.scss
$button_background_color: #A69520;
$button_border_color: #282727;
@import "mixins";➤

@import "buttons";

In _mixins.scss, let’s first define a mixin for the rounded corners. A mixin looks
a lot like a function declaration in JavaScript, with parentheses for the
parameters and curly braces for the content:

sass/sass/_mixins.scss
@mixin rounded($radius){

background-clip: padding-box;
border-radius: $radius;

}

With the mixin declared, we can add it to our .button definition in _buttons.scss
by using the @include statement, which we place after the other declarations
we’ve added inside the .button rule:

sass/sass/_buttons.scss
padding: 6px 20px;
text-transform: uppercase;
text-decoration: none;
@include rounded(12px);➤

It fits in like any other CSS property.

Next, let’s create a mixin for our gradients, which are a little more complex:

sass/sass/_mixins.scss
@mixin gradient($color1, $color2, $alpha1: 100%, $alpha2: 100%){

background-image: -webkit-linear-gradient(top, $color1 $alpha1, $color2 $alpha2);
background-image: linear-gradient(to bottom, $color1 $alpha1, $color2 $alpha2);

}

Since WebKit-based browsers like Google Chrome, Safari, and those on many
mobile devices support alpha transparency for the gradients, we’ll make our
mixin take those as parameters too. Our button styles don’t make use of the
alpha transparency, but our speech bubbles do, so we assign these default
values of 100 percent. Now we can include this mixin into our _buttons.scss file
right below the mixin we placed for the rounded corners:

Chapter 5. Workflow Recipes • 216

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/sass/sass/style.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_mixins.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_buttons.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_mixins.scss
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

sass/sass/_buttons.scss
@include gradient(#FFF089, #DBC73C);

We also need to use the gradient code when we hover over the button. Let’s
look at how Sass handles pseudoclasses.

Reducing Duplication with Nesting

With regular CSS, we end up duplicating selectors. To define styles for a
hyperlink, we often end up writing code like this to handle the regular state
and the hover state:

a{
color: #300;

}
a:hover{

color: #900;
}

With Sass, we can nest the pseudoclass definition within the parent rule:

a{
color: #300;
&:hover{

color: #900;
}

}

This nesting doesn’t save us a lot of keystrokes in this case, but it does help
us keep things more organized.

In _buttons.scss, we’ll use this nesting technique to include our gradients mixin
for the hover pseudoclass. Place this code inside of the .button rule after the
previous @include statement:

sass/sass/_buttons.scss
&:active, &:focus {

@include gradient(#DBC73C, #FFF089);
color: #000;

}

When developing a more complex style sheet, we often use this nesting feature
to dramatically reduce repeating selectors, turning this:

#sidebar a{
color: #300;

}
#sidebar a:hover{

color: #900;
}

report erratum • discuss

Building Modular Style Sheets with Sass • 217

http://media.pragprog.com/titles/wbdev2/code/sass/sass/_buttons.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_buttons.scss
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

…into this:

#sidebar a{
color: #300;
&:hover{

color: #900;
}

}

This way, we use nesting for the scope of the selectors, instead of repeating
the selection hierarchy over and over.

With these mixins created, we can create the file _speech_bubble.scss and define
the bubbles like this:

sass/sass/_speech_bubble.scss
blockquote {Line 1

background: #FAF205;-

margin: 0;-

padding: 15px 30px;-

position: relative;5

width: 225px;-

@include gradient(#FAF205, #FFFC9C, 20%, 100%);-

@include rounded(20px);-

-

p {10

font-size: 1.8em;-

margin: 5px;-

position: relative;-

z-index: 10;-

}15

-

+ cite {-

display: block;-

font-size: 1.1em;-

margin: 3em 0 0 3em;20

}-

-

&:after {-

content: "";-

border-color: transparent #FFFC9C;25

border-style: solid;-

border-width: 0 15px 50px 0px;-

display: block;-

bottom: -50px;-

left: 40px;30

position: absolute;-

width: 0;-

z-index: 1;-

}-

}35

Chapter 5. Workflow Recipes • 218

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/sass/sass/_speech_bubble.scss
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We call our mixins starting on line 7, and on line 17, we use Sass’s nesting
support to keep things organized. Now we can tell style.scss to import this new
file as well:

sass/sass/style.scss
@import "mixins";
@import "buttons";
@import "speech_bubble";➤

If we glance back at the pure CSS implementation of the buttons, we see that
we need to write one last bit of code to finish up our buttons—the drop-
shadow code. We can make this a mixin too, just like the one we did for the
rounded corners. In _mixins.scss, we add this code after our other @mixin decla-
ration:

sass/sass/_mixins.scss
@mixin shadow($x, $y, $offset, $color){

box-shadow: $x $y $offset $color;
}

Then, to apply the shadow, we invoke the mixin by adding a call to the bottom
of the _buttons.scss file:

sass/sass/_buttons.scss
@include shadow(1px, 3px, 5px, #999);

As we’ve been working, the Sass command has been stitching all of our indi-
vidual style sheets together, producing a single style.css file that we can include
in our page. Our Sass files can stay in our source code repository, nicely
organized. And best of all, we have reusable components that will let us add
consistent rounding, shadows, and gradients to elements with ease.

Further Exploration
With the powerful features that Sass brings to the table, it’s hard to imagine
doing style sheets any other way. We managed only a small amount of CSS
in this recipe, but imagine how much more maintainable the style sheets for
a large content-management system would be. You could define your own
library of mixins that you share across the various functional pieces of the
site, and you could use variables to hold the values for measurements, colors,
and font choices so you can quickly alter them when needed.

Sass is just the beginning. With Compass, a CSS framework built on Sass,
you can take advantage of many prebuilt mixins and plug-ins for things like
grid frameworks and CSS3.16

16. http://compass-style.org/

report erratum • discuss

Building Modular Style Sheets with Sass • 219

http://media.pragprog.com/titles/wbdev2/code/sass/sass/style.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_mixins.scss
http://media.pragprog.com/titles/wbdev2/code/sass/sass/_buttons.scss
http://compass-style.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

A Tale of Two Syntaxes

Sass actually has two syntaxes—the SCSS syntax that we used in this recipe and
another syntax commonly referred to as Indented Sass or Sass Classic. Instead of
curly braces, it uses indentation and is aimed at developers who favor conciseness
over similarity to regular CSS. It also eliminates semicolons from the definitions. A
Sass style sheet that defines different link colors for sidebar and main regions of a page
would look like this, using this alternative syntax:

#sidebar
a
color: #f00

&:hover
color: #000

#main
a
color: #000

You only need to use the .sass extension instead of the .scss extension. The end result
and workflows don’t change. Both of these syntaxes are interoperable and will be
supported well into the future, so the choice is yours.

Also See
• Recipe 1, Styling Buttons and Links on page 2
• Recipe 2, Styling Stand-Alone Quotes with CSS on page 6
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221
• Recipe 44, Automating Static Site Deployment with Grunt on page 304
• Pragmatic Guide to Sass [CC11]

Chapter 5. Workflow Recipes • 220

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 31

Cleaner JavaScript with CoffeeScript

Problem
JavaScript is the programming language of the web, but it’s often misunder-
stood, which leads to poorly written and terribly performing code. Its rules
and syntax can lead to developer confusion and frustration, which slow down
productivity. Since JavaScript is everywhere, we can’t simply remove it or
replace it with a language with a more comfortable syntax.

Ingredients
• CoffeeScript17

• Node.js18 and npm
• QEDServer (for our test server)19

Solution
We can use other languages to generate good, standard, and well-performing
JavaScript. Several solutions make writing JavaScript more enjoyable,
including the forthcoming ECMAScript 6 standard (ES6), which brings new
syntax and language features. Another is Microsoft’s TypeScript, which brings
static typing to JavaScript. But CoffeeScript lets us write JavaScript in a more
concise format, similar to languages like Ruby or Python. To use CoffeeScript,
you write your code in CoffeeScript’s syntax and then run your code through
a transpiler that emits standard JavaScript that you use on your pages.

Although interpretation adds a step to your development process, the produc-
tivity gains are worth the trade-off. For example, you won’t accidentally forget
a semicolon or miss a closing curly brace, and you won’t forget to declare
variables in the proper scope. CoffeeScript takes care of those issues and
more, so you can focus on the problem you’re solving.

We’ll take CoffeeScript for a spin by using it with jQuery to fetch the products
from QEDServer’s API.

17. http://coffeescript.org/
18. http://nodejs.org/
19. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Cleaner JavaScript with CoffeeScript • 221

http://coffeescript.org/
http://nodejs.org/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CoffeeScript is a language of its own, so you need to learn a new syntax for
declaring things like variables and functions. The CoffeeScript website and
Trevor Burnham’s book, CoffeeScript: Accelerated JavaScript Development,
Second Edition [Bur15], explain these fundamentals in excellent detail. Let’s
take a look now at a couple of basic CoffeeScript concepts you need to
understand to move forward.

Joe asks:

Does CoffeeScript Still Matter Now That ES6
Transpilers Exist?

In our opinion, yes, but not because of the language features. ES6 incorporates many
of the things that CoffeeScript provides, such as classes, comprehensions, and
somewhat shorter syntax for defining functions. But CoffeeScript’s syntax is where
it really shines. The fact that variables get declared for you in the proper scope, the
extremely simple list comprehensions, and the fact that indentation is a part of the
language instead of just a readability aid are some of the things we like about the
language.

To use ES6, you still need a transpiler that converts the code back to JavaScript that
works across browsers, and because browsers still have to work with JavaScript that
was written in 1995, you’ll probably need that transpiler for a long time. The promise
is that eventually, if you use ES6, you’ll be able to remove the transpilation step. But
based on the way the web works and the way standards are adopted, that reality may
be years away.

And as ES6 matures, CoffeeScript is sure to adapt its output to support the new
features that ES6 provides. It’s our responsibility as developers to stay up to date
with those changes.

CoffeeScript Basics

CoffeeScript’s syntax is designed to be similar to JavaScript but with much
less noise. For example, take this JavaScript function declaration:

var hello = function(){
alert("Hello World");

}

We can express it with CoffeeScript like this:

hello = -> alert "Hello World"

We don’t need to use the var keyword to declare our variables. CoffeeScript
figures out which variables we’ve declared and adds the var statement in the
appropriate place for us.

Chapter 5. Workflow Recipes • 222

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Second, we use the -> symbol, often called the skinny arrow, instead of the
function keyword to define functions in CoffeeScript. Function arguments come
before the -> symbol, and the function body comes after, with no curly braces.
If the function body goes for more than one line, we indent it:

hello = (name) ->
alert "Hello " + name

Also, instead of concatenating strings like this in JavaScript:

var fullName = firstName + " " + lastName;

…we can use #{} within double-quoted strings:

fullname = "#{firstName} #{lastName}"

The expressions within the #{} markup are evaluated and converted to strings.
This makes string concatenation a breeze.

While there are many more powerful expressive features of CoffeeScript, those
two make it possible to turn something like this:

$(function() {
var url;
url = "/products.json";
$.ajax(url, {

dataType: "json",
type: "GET",
success: function(data, status, XHR) {
alert("It worked!");

}
});

});

…into this:

$ ->
url = "/products.json"
$.ajax url,

dataType: "json"
type: "GET"
success: (data, status, XHR) ->
alert "It worked!"

The CoffeeScript version of the code is a little easier on the eyes, and it takes
less time to write. If we make syntax errors, we find out as soon as we try to
convert our CoffeeScript to JavaScript, so we won’t be spending time hunting
the errors down in the web browser.

CoffeeScript is whitespace-sensitive, meaning we have to indent lines consis-
tently or our code won’t compile. But that shouldn’t be a problem, because

report erratum • discuss

Cleaner JavaScript with CoffeeScript • 223

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

consistent indentation in code is important for readability, and we should
indent our code consistently regardless of the programming language we use.

Installing CoffeeScript

We can get CoffeeScript running in numerous ways, but the simplest way to
test it is through the browser. This way, we don’t have to install anything on
our machines to try a quick demo. We download the CoffeeScript interpreter20

and include it on our web page:

coffeescript/browser/index.html
<script src="coffee-script.js"></script>

Let’s run through a trivial example to show how CoffeeScript works. We’ll
write a small bit of code that creates a new paragraph element that, when
clicked, shows a JavaScript alert box. To do this in JavaScript, we’d write
this code:

var element;

element = document.createElement("p");
element.innerHTML = "Click me to see an Alert box";

element.addEventListener("click", function() {
return alert("This came from clicking the paragraph!");

});

document.body.appendChild(element);

This code first finds the body element on the page. It then creates a new p
element with some text, registers a click event handler on the new element,
and appends the new element to the body of the page.

But instead of using JavaScript, we use CoffeeScript, and we place our Cof-
feeScript code in a <script> block:

coffeescript/browser/index.html
<script type="text/coffeescript">

element = document.createElement "p"
element.innerHTML = "Click me to see an Alert box"

element.addEventListener "click", ->
alert "This came from clicking the paragraph!"

document.body.appendChild element
</script>

20. http://coffeescript.org/extras/coffee-script.js

Chapter 5. Workflow Recipes • 224

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/coffeescript/browser/index.html
http://media.pragprog.com/titles/wbdev2/code/coffeescript/browser/index.html
http://coffeescript.org/extras/coffee-script.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Since the web browser doesn’t know how to handle <script> elements with a
type of text/coffeexcript, it ignores them. But when we include the CoffeeScript
interpreter on the page, it finds these <script> elements and evaluates their
contents. It then writes the resulting JavaScript to the page, where the
browser executes it. CoffeeScript’s interpreter is written in CoffeeScript, which
is then compiled down to JavaScript.

When we run our page, we can click on the text of the paragraph and see our
alert show up.

Compare the CoffeeScript version to the JavaScript version. Notice that we
don’t have to declare our variables using the var keyword; CoffeeScript will
add it in for us when the code gets compiled to JavaScript. Also notice that
we don’t always need to use parentheses around the arguments to our func-
tions. It’s optional, except in places where it’s unclear, like when we fetch the
first <body> element from the page. Finally, notice how much more simple the
event-listener callback looks without the function keyword and the curly braces.
Instead, we use the skinny arrow and indentation.

This in-browser approach is great for experimenting, but you won’t ever want
to roll it out in production: the CoffeeScript interpreter is a large file that end
users would have to download, and interpreting CoffeeScript on the client
machine would be too slow. We want to convert our CoffeeScript files ahead
of time and serve only the resulting JavaScript files from our website. For
that, we need to install a CoffeeScript interpreter, and we need a good workflow
to go along with that.

We install the CoffeeScript interpreter using npm. Type this on the command
line:

$ npm install -g coffee-script

This installs a command-line tool that turns CoffeeScript into JavaScript
code. Now we can set up our project and get a demo going.

Working with CoffeeScript

Let’s use CoffeeScript and Handlebars templates to make an Ajax request for
some products and display those products on a web page. We’ll use QEDServer
and its product-management API as our development server. We’ll place all
of our files in the public folder that QEDServer makes for us so our development
server will serve them properly and our Ajax requests will work without any
same-origin policy issues.

report erratum • discuss

Cleaner JavaScript with CoffeeScript • 225

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Since we’re going to turn CoffeeScript files into JavaScript files, let’s create
folders for each of those file types:

$ mkdir coffeescript
$ mkdir javascriptf

Now, let’s create a simple web page that loads jQuery; the Handlebars library
you learned about in Recipe 11, Rendering HTML with Handlebars Templates
on page 69; and app.js, which will contain the code that fetches our data and
displays it on the page:

coffeescript/compiled/index.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Products</title>

</head>
<body>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script
src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/3.0.3/

handlebars.min.js"></script>
<script src="javascript/app.js"></script>

</body>
</html>

We’re linking to javascript/app.js, which will be generated from our CoffeeScript.

Now we add two Handlebars templates to the page. The first will display the
products, and the second will display any error message that we get if our
connection to the products API fails. We place these above the scripts we just
added, because we need these templates to be on the page before we execute
our code that tries to use them:

coffeescript/compiled/index.html
<script id="product_template" type="text/x-handlebars-template">

<div class="product">
{{#products}}
<h3>{{name}}</h3>
<p>{{description}}</p>

{{/products}}
</div>

</script>

<script id="error_template" type="text/x-handlebars-template">
<p>{{error}}</p>

</script>

Chapter 5. Workflow Recipes • 226

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/coffeescript/compiled/index.html
http://media.pragprog.com/titles/wbdev2/code/coffeescript/compiled/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Next, we create the coffeescript/app.coffee file, which contains our logic, and where
we place the code that makes the request for data and renders the templates:

coffeescript/compiled/coffeescript/app.coffee
$.ajax "/products.json",

type: "GET"
dataType: "json"
success: (data, status, XHR) ->

template = Handlebars.compile $("#product_template").html()
html = template {products: data}
$('body').append html

error: (XHR, status, errorThrown) ->
template = Handlebars.compile $("#error_template").html()
html = template {error: "Can't load data: #{errorThrown}"}
$('body').append html

We call jQuery’s ajax() function, rendering the products template if we get a
response and rendering the error template when we don’t. The logic and flow
are identical to a pure JavaScript implementation, but the code is several
lines shorter. Of course, this code won’t work yet because our page is
requesting a JavaScript file that we still need to generate.

Convert CoffeeScript Automatically

When we installed CoffeeScript, we got the coffee command-line tool. This tool
makes it easy to convert files from CoffeeScript to JavaScript. It can convert
a single file or a folder of files, and it can even watch files for changes and
run the conversion when it sees a change.

We want to watch for changes to the coffeescript folder and then write the output
to the javascript folder. To do that, we run this command:

$ coffee -o javascript/ -w -c coffeescript/

This command immediately converts what it finds for us:

09:44:08 - compiled /Users/bstinson/code/coffeescript/app.coffee

And when we save the coffeescript/app.coffee file, the coffee command notices and
does the conversion. This process keeps watching until we stop it with Ctrl-C .

If we open the page in our browser, though, we get an error because we can’t
make a request to our back-end API unless we run the code from the same
domain. That’s why we’re using QEDServer, which can act as a web server
for our pages. When we view the page at http://localhost:8080/index.html, everything
works! If we inspect the generated app.js file, we see that all of the required
curly braces, parentheses, and semicolons are where they should be. We now

report erratum • discuss

Cleaner JavaScript with CoffeeScript • 227

http://media.pragprog.com/titles/wbdev2/code/coffeescript/compiled/coffeescript/app.coffee
http://localhost:8080/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

have a workflow we can use to write better JavaScript, so we can continue
making changes to our application. When we’re done, we can deploy the
javascript folder and leave the coffeescript folder in our source-code repository.

You should know one more thing about CoffeeScript. Throughout this book
we wrapped our JavaScript code inside Immediately-Invoked Function
Expressions (IIFEs). By default, CoffeeScript wraps our output in those
expressions. If you look at the code in the app.js file, you can see it’s been
wrapped with an IIFE:

(function() {➤

$.ajax("/products.json", {
type: "GET",
...

});
}).call(this);➤

You can turn this option off, but if you leave it alone, it’s one less thing you
have to think about when working on your own projects.

Further Exploration
Quite a few popular projects21 use CoffeeScript as a development platform
because of its ease of use and because it provides some of the niceties of
Ruby, Python, and more functional programming languages, including list
comprehensions.

For example, when you’re working with arrays or lists of items, you may often
find yourself writing code like this:

var colors = ["red", "green", "blue"];
for (i = 0, length = colors.length; i < length; i++) {

var color = colors[i];
alert(color);

}

Using CoffeeScript’s support for list comprehensions and its simplified syntax,
you can write the logic like this:

alert color for color in ["red", "green", "blue"]

This produces the same result but in a more direct and clear syntax. You can
use JavaScript libraries like Lodash22 to achieve the same kind of effect, but
in that case you make your end users download additional code so you can

21. https://github.com/jashkenas/coffeescript/wiki/In-The-Wild
22. https://lodash.com/

Chapter 5. Workflow Recipes • 228

report erratum • discuss

https://github.com/jashkenas/coffeescript/wiki/In-The-Wild
https://lodash.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

write less of it. CoffeeScript’s output is regular, standard JavaScript that
works anywhere JavaScript works, without any additional libraries. In fact,
CoffeeScript produces JavaScript code that looks almost identical to the
original result with the for loop and incrementing variable.

CoffeeScript makes a great companion to Sass, which we talk about in Recipe
30, Building Modular Style Sheets with Sass on page 213. Using Sass and
CoffeeScript together gives you a powerful workflow for managing your sites.
And if you want to integrate CoffeeScript into your web development workflow,
you can use a tool like Harp, which makes building static sites with Sass and
CoffeeScript a breeze.23 Combining that with an automated deployment
strategy like the one we talk about in Recipe 44, Automating Static Site
Deployment with Grunt on page 304, can create an efficient and enjoyable
development experience.

To get more comfortable with CoffeeScript, try to implement some of the
recipes in this book in CoffeeScript. For example, in Recipe 37, Testing
JavaScript with Jasmine on page 267, you’ll learn how to write tests for your
JavaScript code. CoffeeScript’s syntax can make those tests easier to write
and easier to read.

Be sure to keep an eye on ES6. It’s got some of the features that CoffeeScript
uses, including string interpolation and support for list comprehensions, but
using the more traditional JavaScript syntax with curly braces and parenthe-
ses. Like CoffeeScript, ES6 isn’t compatible with current browsers, but you
can use Babel24 to convert the code you write into code browsers understand.

Also See
• CoffeeScript: Accelerated JavaScript Development, Second Edition [Bur15]
• Recipe 30, Building Modular Style Sheets with Sass on page 213
• Recipe 37, Testing JavaScript with Jasmine on page 267
• Recipe 44, Automating Static Site Deployment with Grunt on page 304

23. http://harpjs.com/
24. https://babeljs.io/

report erratum • discuss

Cleaner JavaScript with CoffeeScript • 229

http://harpjs.com/
https://babeljs.io/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 32

Managing Files with Git

Problem
As web developers, we’re often in situations in which we need to juggle multiple
versions of our code. Sometimes we need to experiment with the latest and
greatest plug-in. Then there are the times when we’re in the zone, cranking
away on a new feature, but get sidetracked because we need to fix a critical
bug. Even if you’ve never used a formalized version-control system, you’ve
probably created multiple copies of a file with small variations in the filename
to differentiate between different problems you were working on. But that
multiple-file system breaks down quickly because it’s all on our machine and
isn’t easy to manage. We need something that’s fast, robust, and modern—
something that we can use to manage our code as well as collaborate with
others.

Ingredients
• Git25

Solution
Today we have many options for version control. Git is popular among devel-
opers because it’s local and fast—faster than making local copies. Git also
allows us to work on multiple versions in parallel. We can save changes often,
which gives us many restore points. All of these features make it the version-
control system of choice for many of today’s open-source projects.

During our morning meeting, our boss turned to us and said, “I need you to
take those two mocks you presented last week and develop actual versions
of the site using those templates. Oh, and while you’re working on that, we
also need a few bugs fixed in the existing site.”

Now we have three versions of our site to maintain. Let’s use Git to keep our
files organized and in sync.

25. http://git-scm.com/

Chapter 5. Workflow Recipes • 230

report erratum • discuss

http://git-scm.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Setting Up Git

Let’s get started by installing Git. Head over to Git’s website26 and download
the appropriate packages for your operating system. Or, if you’re running
Windows, use MsysGit27 and choose the option to use Git Bash. Windows
users need to use Git Bash, instead of the normal Windows command prompt,
to follow along with this recipe.

Git tracks the person who makes a code change based on that person’s con-
figured Git username. This makes it easy to see who made what changes and
when. Let’s configure Git by specifying our name and email address. Open a
new shell and type the following:

$ git config --global user.name "Firstname Lastname"
$ git config --global user.email "your_email@youremail.com"

Now that we have Git installed and configured, let’s get comfortable with the
basics.

Git Basics

We’ll start by turning our project into a Git repository. Let’s create a folder
called git_site for this web project and initialize it as a Git repository. From the
command line (or from Git Bash, if you’re on Windows), type:

$ mkdir git_site
$ cd git_site
$ git init

We get a confirmation message:

Initialized empty Git repository in /Users/webdev/Sites/git_site/.git/

Initialization creates a hidden folder named .git in the root of our directory.
All of the history and other details about our repository will go in this folder.
Git will track changes to our folder and store snapshots of our code, but first
we have to tell Git which files we want to track.

Let’s copy our website files into our new git_site folder. You can find these files
in the git folder of the book’s source code.

With the files in place, let’s add them all to the Git repository so we can get
them back to an earlier state if something goes wrong. To add all the files,
run the following command:

$ git add .

26. http://git-scm.com/
27. http://msysgit.github.io

report erratum • discuss

Managing Files with Git • 231

http://git-scm.com/
http://msysgit.github.io
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The add command doesn’t display any output; for that we need to use the git
status command. We can run git status at any time to see the current status of
our Git repository. The output looks like this:

On branch master
#
Initial commit
#
Changes to be committed:
(use "Git rm --cached <file>..." to unstage)
#
new file: index.html
new file: javascripts/application.js
new file: styles/site.css
#

Running git add stages files in Git. It declares what files and changes are ready
to be committed to the repository. git status tells us what is going to be commit-
ted, so we can verify that we’re committing everything we want and nothing
we don’t. Everything looks good, so let’s commit these changes.

$ git commit -m "initial commit of files"

The two flags we pass in are -a and -m. The -a tells Git that we want to add all
the changes before committing, and the -m specifies a commit message. Unlike
other version-control systems, Git requires every commit to have a commit
message. This helps when identifying commits, so make commit messages
informative. Git easily shows us what has changed, so we should try to explain
why we are making the changes we are in each commit. After our commit
finishes, we get confirmation of what it did, as shown in the following example:

[master (root-commit) 94c75a2] Initial Commit
1 files changed, 17 insertions(+), 0 deletions(-)
create mode 100644 index.html
create mode 100644 javascripts/application.js
create mode 100644 styles/site.css

We can run git status to verify that the files were committed, and we see that
everything is up to date:

On branch master
nothing to commit (working directory clean)

We now have a snapshot of our code, which means we can start making and
tracking changes.

Chapter 5. Workflow Recipes • 232

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Working with Branches

Branching allows us to simultaneously work on multiple features of our
website. Effectively, we can develop a new feature while maintaining our
current deployed code. With Git—unlike with other version-control systems
—branching is an easy and commonly used feature.

Our boss wants us to start work on implementing two site layouts, which
we’ll call layout_a and layout_b. Let’s create a branch for layout_a:

$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
$ git checkout -b layout_a
Switched to a new branch 'layout_a'

Now when we run git status we see that our current branch is layout_a. Let’s
open the index.html file, change the text in the <h1> tag to say Layout A, and save
the file. Now when we run git status, we see the following:

$ git status
On branch layout_a
Changed but not updated:
(use "Git add <file>..." to update what will be committed)
(use "Git checkout -- <file>..." to discard changes in working directory)
#
modified: index.html
#
no changes added to commit (use "Git add" and/or "Git commit -a")

Let’s commit the changes to the layout_a branch:

$ git commit -m "beginning update to Layout A"

While we were working on our branch, our boss sent an email that says, “On
the home page, it says that we offer one-day shipping. We no longer offer that
promotion. We need to update it to two-day shipping, and we have to do it
right now before anyone else holds us to that option!” Let’s switch back to
our master branch and make that change:

$ git checkout -b remove_shipping_promotion

Now when we open index.html we don’t see the text we changed in the layout_a
branch. The changes we made are in another branch, and instead of moving
files around, we let Git alter the file’s contents when we change branches.
Now we can make the changes to the home page that our boss wanted, and
then we can commit back to the master branch:

report erratum • discuss

Managing Files with Git • 233

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$ git commit -m "shipping promotion has ended, removing it"
[remove_shipping_promotion d00d2de] shipping promotion has ended, removing it
1 files changed, 1 insertions(+), 1 deletions(-)

$ git checkout master
$ git merge remove_shipping_promotion

This takes anything that wasn’t changed in a branch and applies it to the
active branch.

We made our change on the remove_shipping_promotion branch and then merged
it into master. However, if we change to another branch we won’t see the change.
Although this is a small change, it will be good to have it in our other
branches. Let’s get these changes into our layout_a branch so we can get back
to working on it with the latest copy:

$ git checkout layout_a
$ git merge master

Joe asks:

Why Are We Committing Changes So Often?
Think of commits as snapshots, or restore points, for your project. The more commits
you make, the more powerful and flexible Git becomes. If we keep our commits small
and focused on a particular feature, we can use Git’s cherry-pick, which lets us take
a single commit from one branch and apply it to other branches. If the idea of lots of
small commits seems messy, you can squash commits together using the rebase
command when you’ve completed a feature.

Next let’s create a branch for our layout_b option. We want this to start off
based on our current production site, not our layout_a version, so we need to
switch back to the master branch and then create a branch for layout_b:

$ git checkout master
$ git checkout -b layout_b

This time we change the text inside of the <h1> tag to say Layout B. Let’s save
and commit this change:

$ git commit -a -m "beginning update to Layout B"

This version of our layout requires us to add a products.html file and an
about_us.html file. Let’s create those files and then stage those files for check-
in:

$ touch products.html
$ touch about_us.html
$ git add .

Chapter 5. Workflow Recipes • 234

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now if we run git status, we see that we have two new staged files:

On branch layout_b
Changes to be committed:
(use "Git reset HEAD <file>..." to unstage)
#
new file: about_us.html
new file: products.html
#

Let’s commit those files:

$ git commit -m "setting up products and about_us, no content"

Now, let’s add an <h1> to products.html with the text of Current Products to comply
with our design.

While we were doing that, we got another email from our boss that says, “We
need to change the shipping time on the home page back to one day. We
struck a deal with a major shipping company. Get these changes made
ASAP!!!” We need to make these changes and get them pushed out right away.
However, we’re not ready to commit the changes we just made.

Git’s stash command is meant for situations like this. We can use stash to store
our changes so we can switch branches. Stashes are a great way to store
things you’re working on without having to commit them:

$ git stash

Now if we do a git status, we see that no changes need to be committed. Let’s
switch over to the master branch and create a new add_shipping_promotion branch
from it:

$ git checkout master
$ git checkout -b add_shipping_promotion

Now we can make our changes to the shipping information in index.html and
commit the changes, then merge them into master:

$ git commit -a -m "updated shipping times for new promotion"
$ git checkout master
$ git merge add_shipping_promotion

Let’s switch back to our layout_b branch with git checkout layout_b and explore
what we can do with stashes. We see what stashes are available by using the
git stash list command:

$ git stash list
stash@{0}: WIP on layout_b: f8747f4 added products and about_us, no content

report erratum • discuss

Managing Files with Git • 235

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

When we open up the products.html file, we see that it’s empty. Let’s get the
changes we made to that file back. We do that with this command:

$ git stash pop

Now when we look at our products.html file, we’ll see the <h1> tag that we added
before we got sidetracked.

After several more tweaks to both layouts (and several other “important” dis-
tractions), our boss decided that the layout_b option was the best and wants
to roll that out into production. Let’s commit those changes and then merge
this work into our master branch:

$ git commit -a -m "updated products page"
$ git checkout master
$ git merge layout_b

In traditional version-control systems, it’s common to leave branches in a
repository indefinitely. Git differs in that both branches and tags refer to a
commit. With Git, when we delete a branch, Git doesn’t remove any of the
commits; it removes only the reference. Because we’ve merged our changes
back into master, we can delete the branches that we used for development.

Let’s use the git branch command to look at the branches we currently have. It
shows us that we are on master and lists the other available branches: layout_a,
layout_b, remove_shipping_promotion, and add_shipping_promotion. Let’s delete those
branches:

$ git branch -d layout_a
$ git branch -d layout_b
$ git branch -d remove_shipping_promotion
$ git branch -d add_shipping_promotion

Git warns us if a branch has not been merged into the current branch. We
can override this by using -D to force-delete the branch.

Working with Remote Repositories

So far we’ve worked only with a local repository. It’s great to keep our local
code under version control, but having a remote repository allows us to col-
laborate with others and have redundant copies of our code in multiple loca-
tions.

We can set up a remote Git server using the development virtual machine
(VM) created in Recipe 39, Setting Up a Virtual Machine on page 282. By creating
SSH keys, we can save ourselves the extra step of having to type our password
whenever we log in or transfer files. Creating an SSH key and placing it on

Chapter 5. Workflow Recipes • 236

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

the server will allow us to authenticate quickly and without a password every
time we want to push to our remote repository.

SSH keys consist of two components: a private key that we keep to ourselves
and a public key we give to another server. When we log in to that server, it
checks to see whether our key is authorized, and then our local system proves
that we’re who we say we are by matching the public key with the private
key. With Git, this handshaking process is all done transparently during the
login process.

Before we continue, you should check to see whether you have any SSH keys
on your system. Try to change directories into ~/.ssh. If you get a message
saying the directory doesn’t exist, then you need to generate keys. If you see
files like id_rsa and id_rsa.pub, then you already have keys, and you can skip the
next step.

Let’s run the ssh-keygen command to generate a new SSH key. We pass in our
email address, which is placed into the key as a comment:

$ ssh-keygen -t rsa -C "webdev@awesomeco.com"

The comment helps us or other server administrators quickly identify who
owns the key when it’s uploaded to a server.

The ssh-keygen program asks you for a place to store the SSH key; you can
press the Enter key to save it in the default location. It also asks you to enter
a passphrase. This adds an additional layer of security to the key, but we’ll
leave it blank for now. Press Enter again.

Now that we have our keys, let’s add them to our VM. We can pipe our local
public key into the authorized_keys file on the server. This lets the VM know that
our machine has access to the server:

$ cat ~/.ssh/id_rsa.pub | ssh webdev@192.168.1.100 \
"mkdir ~/.ssh; cat >> ~/.ssh/authorized_keys"

After executing this command, the server asks for our password to make sure
this is a legitimate request. After the command finishes, we can test our key
by trying to ssh into the VM:

$ ssh webdev@192.168.1.100

And this time it doesn’t ask us for our password.

Now that we’re logged in to our VM, we use Ubuntu’s package manager to
install Git on the server:

$ sudo apt-get install git-core

report erratum • discuss

Managing Files with Git • 237

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we can create a bare repository on the VM. A bare repository is nothing
more than a directory usually named with a .git extension to make it easier
for us to identify as such. Then, inside the directory, we use the git command
to initialize the folder, using the --bare switch:

$ mkdir website.git
$ cd website.git
$ git init --bare

With the repository created on the remote machine, we can log out of the VM
by typing exit.

Back on our local machine, let’s add the location of our remote repository
and push up our master branch:

$ git remote add origin ssh://webdev@192.168.1.100/~/website.git
$ git push origin master

Let’s say we wanted to work on a new feature with another developer. We can
create a branch for this new feature called new_feature and then work on our
design implementation. When our design work is done, we can push the
branch to the remote repository:

$ git checkout -b new_feature
$ git push origin new_feature

Now that we’ve pushed our branch, let’s see what branches are out on the
remote repository:

$ git branch -r

We end up with a list of branches. We don’t see the branches that we deleted
locally earlier, because we never pushed them out before they were deleted:

origin/HEAD -> origin/master
origin/new_feature
origin/master

To give our developer colleague access to our Git repository, we can have him
clone the full project. After he clones the whole project, we can have him
check out the new_feature branch. Lastly, he can make sure he’s up to date on
the project by pulling the remote branch from the server into his local branch:

$ git clone ssh://webdev@192.168.1.100/~/website.git
$ git checkout -b new_feature
$ git pull origin new_feature

Chapter 5. Workflow Recipes • 238

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

With the branch on the developer machine also, the cycle begins again. Git
gives us the power to work side by side on the same code and merge the
changes with ease, as we did locally earlier in the recipe.

Further Exploration
Now that you’ve explored the basics of Git, you might start seeing other uses
for it. In this recipe, we worked only with text files, but Git supports any type
of file. You could use Git to version-control your Photoshop files, so you can
easily maintain multiple versions as you build out designs. You can explore
how to pull out previous versions of files, so you can recover that change your
boss didn’t like last week but wants to look at one more time.

You can also use Git to collaborate on open source projects with others. For
example, you can go to GitHub28 and find an open-source project such as
jQuery (or one of the other libraries you’ve learned about in this book) and
clone it, which pulls it down to your computer as a Git repository. You can
then use techniques such as branching to develop new features for that
project, which you can then submit back to the original maintainers to help
the community grow.

Also See
• Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278
• Recipe 39, Setting Up a Virtual Machine on page 282
• Pragmatic Version Control Using Git [Swi08]

28. http://www.github.com

report erratum • discuss

Managing Files with Git • 239

http://www.github.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 6

Testing Recipes
We need to ship, but we have to ship code that works. We often ensure that
our apps do what we want them to do by testing them in the browser manu-
ally. Sometimes we get other people to test things for us. In these recipes,
we’ll explore how to test our code as we build it and also how to create
repeatable acceptance tests—test that we can run whenever we make changes
to our code—so we can see whether things still work the way they did before.
And we’ll look at how we can test our assumptions.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 33

Testing Websites on Real Devices

Problem
We’re building a new web app that needs to work on iOS and Android, not to
mention all of the major desktop web browsers. We need a simple way to
manage all of the web browsers throughout the design process, so we can
test things out as we go without tons of extra effort.

Ingredients
• BrowserSync1

Solution
BrowserSync is a free, open-source tool that, as its name suggests, syncs
browsers. When you point all of your browsers at BrowserSync’s server, the
links, refreshes, and scroll position are updated on every connected browser.
Best of all, it supports watching files for changes, so when we update CSS,
the new CSS is injected into the page for us. And when we change HTML or
JavaScript, the page is refreshed. This makes it easy to develop user interfaces
that work across devices.

BrowserSync works by injecting a bit of JavaScript on pages it serves, which
lets it communicate with the connected clients. You don’t need to change
your code, add browser plug-ins, or do lots of configuration. Let’s use it to
develop a simple site design.

First, let’s install BrowserSync using npm:

$ npm install -g browser-sync

Then let’s create a new index.html file with an HTML skeleton:

browsersync/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">

1. http://www.browsersync.io/

Chapter 6. Testing Recipes • 242

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/browsersync/index.html
http://www.browsersync.io/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<meta name="viewport" content="width=device-width">
<title>Simple Site</title>
<link rel="stylesheet" href="css/style.css">

</head>

<body>
</body>

</html>

Then let’s add just a small amount of markup to the page so we have some-
thing to look at. We add a header, a navigation section, a small bit of main
content, and a footer:

browsersync/index.html
<div class="container">

<header>
<h1>Responsive Template</h1>

</header>
<nav>

About
Products
Services

</nav>

<main>
<h2>Main Content</h2>
<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi...

</p>
</main>

<footer>
<small>Copyright © AwesomeCo</small>

</footer>
</div>

This file links to css/style.css, so let’s create that too:

browsersync/css/style.css
*, *:before, *:after {

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;

box-sizing: border-box;
}

We’re using the box-sizing property to change how the box model affects all
elements. The default behavior for the box model is that the element’s width

report erratum • discuss

Testing Websites on Real Devices • 243

http://media.pragprog.com/titles/wbdev2/code/browsersync/index.html
http://media.pragprog.com/titles/wbdev2/code/browsersync/css/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

is a combination of its margin, border, and padding. But adding this rule
forces the content area of elements to be constrained by the width we specify.
This makes the math much simpler.

Now let’s fire up BrowserSync and tell it to watch our index file and our
stylesheet for changes:

$ browser-sync start --server --files="index.html, css/style.css"
[BS] Access URLs:

Local: http://localhost:3000
External: http://192.168.1.2:3000

UI: http://localhost:3001
UI External: http://192.168.1.2:3001

[BS] Serving files from: ./
[BS] Watching files...

Running this command displays the URLs we can access and also opens a
web browser for us. We can use the Local address on our machine, but we’ll
use the External address for our physical devices such as an iPhone. The figure
on page 245 shows what things look like in Firefox, Chrome, and Chrome on
an iPhone.

Right away we can see that our rudimentary site looks pretty good across
these devices. We spend a lot of time using CSS to make web pages work
across multiple browsers, but it’s good to reflect on the fact that by default,
the content in a browser is always as wide as the browser window. So in
reality, we only need to apply styles that constrain and align elements for our
desktop displays.

So let’s test out BrowserSync’s live-reloading feature. In the stylesheet, add
a rule to constrain the content on devices larger than 768 pixels wide:

browsersync/css/style.css
@media screen and (min-width: 768px) {

body {
background-color: #ddd;

}

.container {
background-color: #fff;
margin: 0 auto;
padding: 1em;
width: 80%;

}
}

Chapter 6. Testing Recipes • 244

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/browsersync/css/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Saving the file triggers BrowserSync to push the new CSS into the browsers
of all connected devices, including the local machine. When we look at our
devices again, we see that only the desktop size is affected, as shown in the
figure on page 246, even though all the devices have the updates:

We don’t see any changes on our iPhone because the style we used didn’t
target the smaller screen size. So let’s go a step further and style the naviga-
tion. We design the navigation mobile-first, so we set the buttons to be stacked
vertically and have a width of 100%:

browsersync/css/style.css
nav ul {

list-style: none;
padding: 0;

}

nav li {
border: 1px solid #ddd;
text-align: center;
width: 100%;

report erratum • discuss

Testing Websites on Real Devices • 245

http://media.pragprog.com/titles/wbdev2/code/browsersync/css/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

margin-bottom: 0.5rem;
}

nav li a {
display: block;
text-decoration: none;

}

And then, for screen sizes wider than 480 pixels, we make the buttons line
up horizontally like a navigation bar:

browsersync/css/style.css
@media screen and (min-width: 480px) {

nav li {
float: left;
width: 33%;

};
}

We can glance at our interface again and see if the changes we made, shown
in the following figure, work for us:

Chapter 6. Testing Recipes • 246

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/browsersync/css/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We can continue to iterate on our design, tweaking navigation and other ele-
ments until we get what we’re looking for. And when it comes time to test on
Internet Explorer or any other browser, we point that browser at the server
too.

Using the BrowserSync User Interface

BrowserSync includes a user interface that runs on port 3001, and we can
use it to control which connected devices reload, view the history of links
we’ve looked at, and enable or disable scroll synchronization across devices.

One of the most useful features for mobile testing is BrowserSync’s ability to
introduce latency into the responses from the server. Our apps may appear
to load quickly in our test environment, but in the real world, people often
have slow or sometimes unreliable mobile Internet access. BrowserSync lets
us simulate that latency.

When you visit http://localhost:3001 and choose the Network Throttle menu, you
see several options that let you simulate different connection speeds:

report erratum • discuss

Testing Websites on Real Devices • 247

http://localhost:3001
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Once you choose an option, all requests will start seeming much slower. If
you have some Ajax in your app that’s fetching records, those connections
will be slowed down as well. This is a great way to see what the experience is
on less-than-stellar networks so you can try to optimize it.

Collaborating with Others

We need to allow a remote coworker to work with us on the site design. We
can fire up BrowserSync with the --tunnel option, which gives us an external
URL that we can provide to anyone who needs to collaborate with us:

$ browser-sync start --server --files="index.html, css/style.css" --tunnel
BS] Access URLs:
--

Local: http://localhost:3000
External: http://192.168.1.2:3000
Tunnel: https://yyqanajlou.localtunnel.me➤

--
UI: http://localhost:3001

UI External: http://192.168.1.2:3001

We give the Tunnel URL to our collaborator. When we make changes on our
end, anyone looking at it sees those changes happen in real time.

Each time you start the server, you’ll get a fresh new random URL, so keep
that in mind. BrowserSync does have additional configuration options for
using a specific URL for tunneling, though; configuring that is beyond the
scope of this book, so consult the documentation.

Chapter 6. Testing Recipes • 248

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Further Exploration
In this chapter we used BrowserSync and its own static web server. But you
may be doing development using PHP, Java, Ruby, ASP.NET, or some other
tool where an application sever is already in use and your files are dynamic.
You still want to be able to test your designs and interactions on a range of
devices. BrowserSync includes a -proxy option that lets you use your existing
app sever.

In Recipe 16, Creating Client-Side Apps with Angular.js on page 107, and Recipe
15, Creating a Search Interface with React on page 97, we used QEDServer
as the back end for our data. If we wanted to use BrowserSync to reload the
pages when we change the code, all we’d need to do is launch BrowserSync
like this:

$ browser-sync start --proxy http://localhost:8080 --files "*.html, css/*.css"

When you visit http://[your_address]:3000/index.html on your devices, the request will
be forwarded to your application server, and you’ll have the same features
we used with the local server—including the ability to test network latency,
which will help you identify and fix those trouble spots your visitors might
face.

Also See
• Recipe 16, Creating Client-Side Apps with Angular.js on page 107
• Recipe 14, Snappier Client-Side Interfaces with Knockout.js on page 87
• Recipe 15, Creating a Search Interface with React on page 97
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221
• Recipe 28, Rapid, Responsive Design with Skeleton on page 194
• Recipe 30, Building Modular Style Sheets with Sass on page 213

report erratum • discuss

Testing Websites on Real Devices • 249

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 34

Tracking User Activity with Heatmaps

Problem
When running a promotion or redesigning a site, it’s helpful to know what
works and what doesn’t so we know where to spend our time. We need a way
to quickly identify the most used regions of our page or to find out which
parts of our interface people aren’t using.

For example, we need to resolve an internal dispute. One of our clients is
launching a new product, and the two partners are at odds about whether
the Sign Up button or the Learn More button is more useful. These buttons
are placed right next to each other on the interface. We want to add some
tracking to this page to see which button is getting clicked more.

Ingredients
• A server running PHP
• ClickHeat2

Solution
We can track where our users click the page and display the results in a
graphical overlay called a heatmap, giving us an at-a-glance idea of the most-
used parts of our page. Several commercial products can create heatmaps,
but we’ll use the open-source ClickHeat script because setting it up on modern
web hosts is almost as easy as using a commercial solution.

Setting Up ClickHeat

ClickHeat has two components: a client-side piece that sends data and a
server-side piece that processes it. ClickHeat’s server-side piece needs PHP
to work, but we can use ClickHeat to monitor any website as long as we can
add a little bit of JavaScript to that site. We need to download ClickHeat from
the project’s web page and place ClickHeat’s scripts in a PHP-enabled folder
on our server. For this recipe, we’ll use a virtual machine running on our own

2. http://www.labsmedia.com/clickheat/index.html

Chapter 6. Testing Recipes • 250

report erratum • discuss

http://www.labsmedia.com/clickheat/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

network at http://192.168.1.100. Check out Recipe 39, Setting Up a Virtual Machine
on page 282, to learn how to build your own virtual machine for testing.

When we unzip the ClickHeat archive, we find a clickheat folder. We upload
this folder into /var/www, the folder on our virtual machine that contains our
existing web pages. Since our virtual machine has SSH enabled, we can copy
the files up with a single command by using scp:

scp -R clickheat webdev@192.168.1.100:/var/www/clickheat

Or we can transfer them over to the server’s /var/www folder with an SFTP client
like FileZilla.3

Now that we’ve copied the code out to the server, we need to modify the per-
missions on a few folders within the clickheat folder structure so that we can
write the logs and modify permissions. We log in to our server and use the
chmod command to make the config, tmp, and logs folders writeable:

$ ssh webdev@192.168.1.100
$ cd /var/www/clickheat
$ chmod -R 766 config logs cache
$ exit

With the files in place, we can complete the configuration by browsing to
http://192.168.1.100/clickheat/index.php. ClickHeat will verify that it can write to the
configuration folder, and then we’ll be able to follow the link to configure the
rest of the settings.

We’ll enter values for the administrator username and password. After we
click the Check Configuration button and we see no errors, we can save the
configuration. Now that the server component is configured, we can configure
our web page to capture some data.

Tracking Clicks and Viewing Results

To begin tracking clicks, we add a few lines of JavaScript to our home page,
right above the closing <body> tag:

heatmaps/index.html
<script src="clickheat/js/clickheat.js"></script>
<script>

clickHeatSite = 'AwesomeCo';
clickHeatGroup = 'buttons';
clickHeatServer = 'http://192.168.1.100/clickheat/click.php';
initClickHeat();

</script>

3. https://filezilla-project.org/

report erratum • discuss

Tracking User Activity with Heatmaps • 251

http://192.168.1.100
http://192.168.1.100/clickheat/index.php
http://media.pragprog.com/titles/wbdev2/code/heatmaps/index.html
https://filezilla-project.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We define a site and a group for this heatmap so we can track multiple sites.

When we redeploy the page to our server, clicks from our users will be
recorded to ClickHeat’s logs. After a few hours, we can visit http://192.168.1.100/
clickheat/index.php to see the results of our test, shown in the following figure:

It looks like more people are clicking the Sign Up button, whereas the other
button isn’t getting a lot of attention. We can let this script run for a few more
days and see if things change. Now we have a graphical way of looking at user
engagement, which will help the business make better decisions going forward.

Further Exploration
ClickHeat is relatively low maintenance once it’s running. But it has a lot of
options we can adjust, such as the number of times we’ll record a click from
the same user. We can also configure ClickHeat to record its results to the
Apache logs and then parse them out with a script, which is a great approach
for servers where PHP might be too slow to invoke on each request. Finally,
ClickHeat can be set up on its own server, so it can collect data from more
than one site or domain. Check out the documentation at the ClickHeat
website for more options, or just explore its interface.

If you’d like something with a little more power, you might want to investigate
hosted commercial solutions such as CrazyEgg,4 which has similar function-
ality. Unlike ClickHeat, which stores your results on your own servers, these
third parties collect your data on your behalf; for security and privacy reasons,
this might not be something all organizations can use.

Finally, when you’re looking at heatmaps of your own sites, you might get a
little unexpected guidance from your users. If you notice a bunch of click
activity on part of your page that doesn’t have a link, consider making that
region active. Heatmaps can often show you things you never saw before,
such as the fact that you have elements in your design that people think they
should click. These visitors might get frustrated or think things are wrong or
broken. Use heatmaps to monitor and address those issues.

Also See
• Recipe 39, Setting Up a Virtual Machine on page 282

4. http://www.crazyegg.com/

Chapter 6. Testing Recipes • 252

report erratum • discuss

http://192.168.1.100/clickheat/index.php
http://192.168.1.100/clickheat/index.php
http://www.crazyegg.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 35

Browser Testing with Selenium

Problem
Testing is a hard and tedious process. As websites become more complex, it
becomes more important to have tests that are repeatable and consistent.
Without automated testing, our only chance at having a consistent working
website is to have a top-notch quality-assurance person who works long hours
and has checklists. That process could be painfully slow. We need to speed
up the testing process and create tests we can run on demand so we can
verify that things work the way we want today, as well as several months from
now when we start adding new features.

Ingredients
• Firefox5

• Selenium IDE6

• QEDServer (for our test server)7

Solution
We can use automated tools to test our web projects, in addition to manual
testing. The Selenium IDE plug-in for Firefox lets us build tests in a graphical
environment by recording our actions as we use a website. As we move through
a site, we can create assertions—little tests that ensure that certain things
exist on the pages. We can then play them back any time we want, creating
a set of automated, repeatable tests.

Our development team has built a product-management website, and our
boss wants some safeguards in place to ensure that this will always work.
The development team has added some unit testing to its business logic
underneath, but we’re tasked with building some automated tests for the
user interface. Automated testing will give both the development team and
us peace of mind if we make changes to the user interface down the road.

5. http://getfirefox.com
6. http://seleniumhq.org/download/
7. A version for this book is available at http://webdevelopmentrecipes.com/.

report erratum • discuss

Browser Testing with Selenium • 253

http://getfirefox.com
http://seleniumhq.org/download/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Setting Up Our Test Environment

First, we need to install the Firefox web browser. Go to the Firefox website
and follow the instructions for your operating system.

Once we have Firefox working, we need to get the Selenium IDE installed.
Open Firefox, visit the Selenium website,8 and download the latest version.

With the tools installed, let’s write our first test.

Creating Our First Test

We’ll create our test by recording our movements with the Selenium IDE
against our test server, which we’ll run on our own machine using QEDServer.
Start QEDServer and then launch Firefox. Go to http://localhost:8080 to bring up
the test server, where you see an interface like the one in the following figure:

Since this is a product-management application, we’ll start off with a test to
make sure we always have the Manage products link on the home page and
that the link goes where we expect it to go.

Open the Selenium IDE by selecting it from the Tools menu in Firefox. To
start recording, we need to make sure the Record button is active. Then, in
the browser, we click the Manage products link. When we click the link, we
see some items begin to show up in the Selenium IDE:

8. http://seleniumhq.org/download/

Chapter 6. Testing Recipes • 254

report erratum • discuss

http://localhost:8080
http://seleniumhq.org/download/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Let’s explore the Selenium IDE and see what it’s doing for us.

At the top, the Base URL is now set to http://localhost:8080, and then we see one
of the most useful commands in the Selenium IDE: the clickAndWait() method.
When we use web applications, we spend a lot of time clicking links or buttons
and waiting for pages to load. That’s exactly what this command does. Every
time we click a link, the Selenium IDE adds this method to our test, along
with some text that identifies the link. When we play the test back, it uses
this method and the associated link text to drive the browser.

The Selenium IDE shows us the three parts of a Selenium test action. The
first is Command, which is the action that Selenium is performing. The second
is Target, which is the item that Selenium is performing the action on. The
third is Value, which we’ll use to set a value for fields that take inputs, such
as when we’re filling out a text box or selecting a radio button.

A powerful part of Selenium is its locator functions. We can use these to find
an element on the page not only by its id but also via the DOM, an XPath
query, a CSS selector, or even plain text. When we clicked Manage products,
the target we used is link= Manage products. The link= is the selector that allows
us to choose a block of text to perform an action on. One thing we should
keep in mind is that locators default to looking for an id first, followed by that
string of text. Identifying elements for testing with IDs is a great way to speed
up your tests and improve accuracy, but it can make tests harder to read.

Now that you have an understanding of locators, let’s look at what the com-
mands do. Commands are the actions that Selenium performs when we run
a test. Selenium can do anything a human would do, with one small exception
—it can’t upload a file without some significant modifications. The ability to
manipulate a browser the way a human would allows us to simulate human
interaction, giving our tests the ability to flex our code realistically.

Let’s test that clicking Manage products takes us to a page where the word
Products is present. First we need to click the Manage products link. Next we
want to make sure that the word Products is on the screen. To add a test for
that, locate the word Products on the web page and right-click it. Choose the
verifyText command from the context menu. We could also do this by using the
Selenium IDE and clicking in the whitespace just below the clickAndWait()
command and using the form fields to choose our command, target, and
value. But the Selenium IDE adds some test helpers to the context menu,
which makes the process much faster.

We can save this test by choosing Save Test Case from the Selenium IDE’s
File menu. We can then run the test by clicking the play button below the

report erratum • discuss

Browser Testing with Selenium • 255

http://localhost:8080
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Base URL window. As the test runs, the browser moves through our pages,
and the background color for each step changes to green as it passes. If a
step fails, it turns red and also shows some bold red text in the log window
below with descriptions of what went wrong so we can address it.

Creating an Advanced Test

We want to make sure that our product-management application functions
and that we can create a new product and delete a product. We also want to
make sure we can view the details of a product. This is a multistep process;
let’s use Selenium to automate it.

Let’s go back to the home page at http://localhost:8080, start up the Selenium
IDE, and begin recording. Click the Manage products link and wait for the
page to load. Then select the New Product text, right-click it, and select verifyText
New Product. Next, leave the product form blank and click the Add Product
button. The application we’re testing requires that we fill in at least some of
the product details; because we submitted a blank form, we now see an error
message on the screen.

Let’s make this part of our test. Right-click the “The product was not saved”
error message and use the verifyText command to add an assertion that verifies
that the error message shows up on the Products page.

Now that we’ve shown that our error message works, we can fill out all of the
information in the form and submit it. The Selenium IDE adds a row to our
test for each field we fill out. It also shows the value we typed in.

When we submit the form this time, it takes us back to the products page,
where we see the message “Created.” We can use the verifyText command again
to make sure this text is displayed.

Now we have a feature-rich test that we can save and run later. If anyone
changes the site, we’ll know what’s broken, simply by replaying the test.

Further Exploration
Now that we have test coverage, we can take this to the next level by
automating our entire test suite. We currently have to run each test individ-
ually by loading it into the Selenium IDE, and this breaks down when we
have a lot of tests. You’ll want to investigate Selenium Remote Control and
Selenium Grid,9 which let you build automated test suites that run against
multiple browsers.

9. http://selenium-grid.seleniumhq.org/

Chapter 6. Testing Recipes • 256

report erratum • discuss

http://localhost:8080
http://selenium-grid.seleniumhq.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

And although Selenium IDE is primarily a testing tool, you could use it as an
automation tool as well. For example, if you have a process that has a less-
than-friendly user interface, such as a time-tracking system or a repetitive
and clunky management console, you might try using Selenium IDE to save
you some keystrokes and mouse clicks.

With many of today’s JavaScript-intensive applications you may also want to
look at Nightwatch (explored in Recipe 36, Testing Web Interfaces with Night-
watch on page 258) to programmatically create your browser tests. Tools like
Nightwatch are designed with these types of applications in mind but also
require a bit more setup.

Also See
• Recipe 36, Testing Web Interfaces with Nightwatch on page 258
• Recipe 37, Testing JavaScript with Jasmine on page 267

report erratum • discuss

Browser Testing with Selenium • 257

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 36

Testing Web Interfaces with Nightwatch

Problem
Browser testing can be a tedious and time-consuming activity. In Recipe 35,
Browser Testing with Selenium on page 253, we learned how to build tests
using the Selenium IDE. Unfortunately, that limits our tests to Firefox. We
want to make sure that we can test in all of the browsers that might be used
to visit our site. Manually testing sites in multiple browsers would require
having access to installations of every browser we want to test. We need a
way to automate testing across multiple browsers without having to keep our
own versions installed.

Ingredients
• Node.js and npm10

• Nightwatch11

• QEDServer (for our test server)12

• BrowserStack Trial account13

Solution
Nightwatch is an end-to-end testing library that uses Selenium under the
hood but lets us write tests in JavaScript that we can then run in a number
of browsers or in the cloud.

To use Nightwatch, we first have to install it with npm:

$ npm install -g nightwatch

Then we need to grab the latest version of the Selenium Standalone Server,
which we can get from the Selenium download site.14 Specifically, we’re
looking for a file called selenium-server-standalone-[VERSION].jar, which we place this
in a folder called jar within our project.

10. Node.js, on page xii
11. http://nightwatchjs.org/
12. A version for this book is available at http://webdevelopmentrecipes.com/.
13. http://browserstack.com
14. http://selenium-release.storage.googleapis.com/index.html

Chapter 6. Testing Recipes • 258

report erratum • discuss

http://nightwatchjs.org/
http://webdevelopmentrecipes.com/
http://browserstack.com
http://selenium-release.storage.googleapis.com/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Next we need to configure our testing environment by creating a file called
nightwatch.json:

nightwatch/first_test/nightwatch.json
{

"src_folders" : ["test"],
"output_folder" : "reports",

"selenium" : {
"start_process" : true,
"server_path" : "jar/selenium-server-standalone-2.45.0.jar",
"log_path" : "",
"host" : "127.0.0.1",
"port" : 4444

},

"test_settings" : {
"default" : {
"launch_url" : "http://localhost",
"selenium_port" : 4444,
"selenium_host" : "localhost",
"silent": true,
"desiredCapabilities": {

"browserName": "firefox",
"javascriptEnabled": true,
"acceptSslCerts": true

}
}

}
}

Creating Our First Test

To learn how to write end-to-end tests with Nightwatch, you’ll work with
QEDServer’s product-management interface and write some tests to ensure
it works the way it should. Start QEDServer and then launch Firefox. Go to
http://localhost:8080 to bring up the interface:

report erratum • discuss

Testing Web Interfaces with Nightwatch • 259

http://media.pragprog.com/titles/wbdev2/code/nightwatch/first_test/nightwatch.json
http://localhost:8080
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

One of the easiest tests we can write is a test to ensure that when the page
loads, we see the word QEDServer at the top of the page. If we right-click that
text in our browser and choose Inspect Element, the debugging console shows
us that this text is inside of an <h1> element, as in the following figure:

Let’s write a test in the test/qedserver.js file that looks for the <h1> and text:

nightwatch/first_test/test/qedserver.js
module.exports = {

"Test QEDServer title" : function (browser) {
browser
.url("http://localhost:8080")
.waitForElementVisible('body', 1000)
.assert.containsText('h1', 'QEDServer')
.end();

}
};

This test specifies the URL we’re going to visit on the server and then waits
for the page body to appear on the screen. Then it looks for the text on the
page but ensures it’s within the <h1> tag. Nightwatch uses CSS selectors to
locate elements on the page.

When we run the test with the nightwatch command, we see this output:

$ nightwatch
[Qedserver] Test Suite
======================

Running: Test QEDServer title
✔ Element <body> was visible after 136 milliseconds.
✔ Testing if element <h1> contains text: "QEDServer".

OK. 2 total assertions passed. (3.073s)

Chapter 6. Testing Recipes • 260

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/nightwatch/first_test/test/qedserver.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

When we ran this test, Firefox opened for a tiny bit and then closed. Night-
watch ran our actual site through its test and captured the results for us.

Interacting with Elements

Now that we know how to run a simple test, let’s build a test that clicks the
Manage products link, adds a new product, and tests to see if the product
was created successfully. To do that, we need to gather some information
about our interface.

First, we need to know where the Manage products link is on the page. Using
the Web Inspector again, we find that it’s located in an unordered list within
the #main section of the page.

When we click that link, we’re taken to a page that contains a form with three
fields: one for the name of the product, another for the price, and a third for
the description. If we inspect these three fields, we find out that each has an
ID. The name field is product_name, the price field is product_price, and the description
field is…you guessed it, product_description. Hurray for consistency.

Using this knowledge, we can construct a test that fills in this form and
submits it. Let’s remove the current test we have and replace it with this:

nightwatch/product_test/test/qedserver.js
module.exports = {

"Test adding a product" : function (browser) {
browser
.url("http://localhost:8080")
.waitForElementVisible('body', 1000)
.click("#main ul li a:first-child")
.pause(1000)
.setValue('#product_name', 'Widget')
.setValue('#product_price', '25')
.setValue('#product_description', 'A simple widget')
.click('input[type=submit]')
.pause(1000)
.assert.containsText('#notice', 'Created Widget')
.end();

}
};

Nightwatch can’t find elements on the page by the text, so we have to locate
that Manage products link by using a CSS selector. A huge downside to this
approach is that if we reorder the links on this interface, it’ll break the test.
If we had access to the code for this app, we could add a unique ID or class
to this link to make it easier to locate.

report erratum • discuss

Testing Web Interfaces with Nightwatch • 261

http://media.pragprog.com/titles/wbdev2/code/nightwatch/product_test/test/qedserver.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We find the form fields by using their IDs and use setValue() to fill in the values.
We locate the submit button for the form and click it, and then we wait a little
bit for a response. Then we check to see if we see a success message on the
page.

When we run the test with nightwatch again, we see the browser open and our
tests run, producing a result like this:

$ nightwatch
[Qedserver] Test Suite
======================

Running: Test adding a product
✔ Element <body> was visible after 135 milliseconds.
✔ Testing if element <#notice> contains text: "Created Widget".

OK. 2 assertions passed. (6.306s)

However, if we run the test again, we’ll get an error. Our interface prevents
us from creating duplicate records in the database. One of the biggest draw-
backs to doing testing through the browser is that you have to have a way to
reset the database when you do these kinds of tests. Or you have to include
something in your tests that undoes what your test does.

QEDServer has a script called fresh_start that removes the existing database
and sets things back to the way they were. So if you’re following along, stop
QEDServer and start it again with the fresh_server command. Or use the user
interface to delete the record that the test just added.

Let’s modify the existing test to delete the record we just found. New records
get added to the top of the table, so we can grab the record at the top of the
table and delete it:

nightwatch/product_test/test/qedserver.js
.assert.containsText('#notice', 'Created Widget')
.assert.containsText('table tr:first-child td:first-child', 'Widget')➤

.click('table tr:first-child input[value=Delete]')➤

.pause(1000)➤

.assert.containsText('#notice', 'Widget was deleted')➤

.end();

First, we check to see if the first row actually is the Widget record. If the
assertion fails, the rest of the test won’t run, and we won’t accidentally remove
something we shouldn’t have. Then we locate and click the button that deletes
the widget by looking in the first row of the table for an input element with a
value of Delete…with a capital D. Make sure it matches, or the test will fail to
delete the record.

Chapter 6. Testing Recipes • 262

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/nightwatch/product_test/test/qedserver.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

As a final step, we check the message to ensure the record was deleted. When
we run this test, the new record is created and then deleted:

[Qedserver] Test Suite
======================

Running: Test adding a product
✔ Element <body> was visible after 143 milliseconds.
✔ Testing if element <#notice> contains text: "Created Widget".
✔ Testing if element <table tr:first-child td:first-child>
contains text: "Widget".
✔ Testing if element <#notice> contains text: "Widget was deleted".

OK. 4 total assertions passed. (7.224s)

We now have a repeatable test. But we’re only testing in one browser. Let’s
run our test against multiple browsers.

Testing in Multiple Browsers

Our tests run in Firefox by default, but we can add in support for Chrome if
we install the Chrome webdriver and alter our configuration. We install the
Chrome webdriver with npm:

$ npm install -g chromedriver

Our configuration changes slightly too. After our default section, we add a new
section for Chrome:

nightwatch/multiple/nightwatch.json
{

"src_folders" : ["test"],
"output_folder" : "reports",

"selenium" : {
"start_process" : true,
"server_path" : "jar/selenium-server-standalone-2.45.0.jar",
"host" : "127.0.0.1",
"port" : 4444

},

"test_settings" : {
"default" : {
"launch_url" : "http://localhost",
"selenium_port" : 4444,
"selenium_host" : "localhost",
"silent": true,
"desiredCapabilities": {

"browserName": "firefox",
"javascriptEnabled": true,
"acceptSslCerts": true

report erratum • discuss

Testing Web Interfaces with Nightwatch • 263

http://media.pragprog.com/titles/wbdev2/code/nightwatch/multiple/nightwatch.json
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

}
},

"chrome" : {
"desiredCapabilities": {

"browserName": "chrome",
"javascriptEnabled": true,
"acceptSslCerts": true

}
}

}
}

With this new configuration, we can run our test using Chrome by passing
the -e flag when we run the nightwatch command:

$ nightwatch -e chrome

This time the test runs in Chrome rather than Firefox.

Nightwatch supports running tests in parallel too. We can run tests in Chrome
and Firefox like this:

$ nightwatch -e default,chrome

But in our case, that test fails because we run into a race condition. It tries
to create two items called Widget and fails miserably. Worse, it’ll probably
have trouble deleting the records we created, because now with parallel tests
there’s no guarantee that the last record in our table will be the record we
want to delete. Is this a showstopper? Not at all. It just means that the tests
we built to demonstrate this tool aren’t as robust as they could be.

In your applications, you’ll need to develop methods that make it easy to reset
the database from the test. For example, your application could have a special
URL that you hit at the end of each test run that puts the database back to
its original state by dropping the database and re-creating it. Or you could
write your own code as part of your test suite that does that. You can come
up with lots of strategies for this that are outside the scope of this book.

Testing on BrowserStack

We can test our site in Internet Explorer or other browsers by using
BrowserStack’s automatic testing API. After we sign up for an account, we
can get a username and a key from our account page and use them use with
Nightwatch to run our tests against /briwser/stcj;s Selenium server instead
of our local one.

Chapter 6. Testing Recipes • 264

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

To make this work, we need two components: the local driver and Browser-
Stack’s tunneling software. We use npm to install the driver:

$ npm install -g browserstack-webdriver

BrowserStack’s tunneling software lets BrowserStack’s cloud services talk to
our local server. We can download it for our OS from the BrowserStack web-
site.15 We’ll download the BrowserStackLocal app to the bin folder of our project.

After we set up the prerequisites, we can create a configuration file specifically
for BrowserStack that specifies the connection info we want, as well as the
OS and browser we’re testing. We could add it to our existing configuration
file, but we’ve found it’s best to add it to a specific configuration file all by
itself:

nightwatch/multiple/browserstack.json
{

"src_folders": ["test/"],
"selenium" : {

"start_process" : false,
"host" : "hub.browserstack.com",
"port" : 80

},
"test_settings" : {

"default" : {
"launch_url" : "http://hub.browserstack.com",
"selenium_port" : 80,
"selenium_host" : "hub.browserstack.com",
"silent": true,
"desiredCapabilities": {

"project": "QEDServer",
"browserName": "internet explorer",
"version": 10.0,
"javascriptEnabled": true,
"acceptSslCerts": true,
"browserstack.user": "bstinson",
"browserstack.key": "abcdefg",
"browserstack.local": true

}
}

}
}

To run the tests, we have to start up BrowserStack’s local tunnel by using
our key. To do this, open a new terminal window, because this program has
to stay running while we run our tests:

15. https://www.browserstack.com/local-testing#command-line

report erratum • discuss

Testing Web Interfaces with Nightwatch • 265

http://media.pragprog.com/titles/wbdev2/code/nightwatch/multiple/browserstack.json
https://www.browserstack.com/local-testing#command-line
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$ bin/BrowserStackLocal YOUR_KEY
BrowserStackLocal v3.5

You can now access your local server(s) in our remote browser.

Press Ctrl-C to exit

Finally, we can run our test:

$ nightwatch -c browserstack.json

Our test runs in the cloud against Internet Explorer 10. When we’re done
writing tests, we can shut down the BrowserStackLocal program.

Further Exploration
BrowserStack supports multiple browsers and operating systems, including
mobile platforms. If you look at the capabilities list,16 you’ll see how to config-
ure tests against iOS devices or Android devices.

Also, as we mentioned previously, Nightwatch has some limitations on how
it can test your sites. Since it can only identify things based on IDs, you may
need to modify the HTML of your interfaces to ensure you can more easily
locate things. For example, adding unique classes or IDs on elements can
make integration testing like this easier. Of course, you don’t want to design
your application solely for tests. You have to strike a balance between main-
tainable code and testable code.

Also, explore ways you can reset your database between test runs. You might
consider testing your application against a blank database, rather than one
that contains default data. This way it’s easy to put things back.

Finally, make sure you test things at a lower level too. Acceptance testing like
this looks at the application only from the end-user point of view. Don’t forget
about testing things with something like Jasmine or other unit-testing
frameworks. And of course, don’t discount the value of occasional old-fash-
ioned user testing. Quality apps are the result of a multipronged approach
to testing.

Also See
• Recipe 35, Browser Testing with Selenium on page 253
• Recipe 37, Testing JavaScript with Jasmine on page 267

16. http://www.browserstack.com/automate/capabilities

Chapter 6. Testing Recipes • 266

report erratum • discuss

http://www.browserstack.com/automate/capabilities
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 37

Testing JavaScript with Jasmine

Problem
JavaScript can be difficult to test accurately, because its flexibility and
dynamic nature make it moving target. We can do browser testing with the
Selenium IDE (Recipe 35, Browser Testing with Selenium on page 253), but
that still requires manual JavaScript debugging with the console and doesn’t
give us direct information about functions that are broken. What we need is
a full testing framework for JavaScript.

Ingredients
• jQuery
• Jasmine17

• Jasmine-jQuery18

• Firefox19

Solution
Jasmine is a JavaScript testing framework created by Pivotal Labs to allow
behavior-driven development (BDD) in JavaScript. Jasmine’s syntax is similar
to that of Ruby’s RSpec testing framework.20 (You can find out more about
RSpec and BDD in The RSpec Book [Nor10].) BDD is an outside-in approach
to testing that focuses on behaviors rather than structure.

For our first fully tested JavaScript application, let’s build a to-do application
using jQuery. Even though Jasmine is a BDD testing framework, we’ll still
use the test-driven development (TDD) approach by writing a test and then
implementing the code to make that test pass—but we’ll describe behaviors
instead of specific elements of code.

To get started, let’s create a folder for our application and then download and
extract Jasmine testing libraries from GitHub inside of our application folder.

17. https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip
18. https://raw.githubusercontent.com/velesin/jasmine-jquery/master/lib/jasmine-jquery.js
19. http://www.mozilla.com/en-US/firefox/new/
20. http://rspec.info/

report erratum • discuss

Testing JavaScript with Jasmine • 267

https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip
https://raw.githubusercontent.com/velesin/jasmine-jquery/master/lib/jasmine-jquery.js
http://www.mozilla.com/en-US/firefox/new/
http://rspec.info/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We also want to get the Jasmine-jQuery plug-in and put that in the
jasmine/lib/jasmine-2.3.4 folder. The Jasmine-jQuery plug-in gives us some addi-
tional functionality that we’ll use later when we work with fixtures.

Inside the Jasmine folder we find three folders and a SpecRunner.html file. We
can remove the two .js files inside the spec and src folders. These are sample
files that come with the Jasmine libraries, so we don’t need them.

Now we can build out our tests and application. We’ll start with the basics
and add items as we need them. Let’s add add_todo_spec.js inside the spec folder.
Our directory structure should look like the following figure:

To get oriented, let’s take a look at the mock-up of the application in the fol-
lowing figure:

Chapter 6. Testing Recipes • 268

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Writing Our First Test

Let’s start off by calling the describe() function, which is a way to group related
tests. As shown in the preceding figure, the primary function of our application
is to add an item to a to-do list. Here you may notice the similarities to Ruby’s
RSpec framework. We have a describe() function that takes a message and
another function. Inside of the describe() function we add our examples that
describe specific behaviors:

jasmine/jasmine/spec/add_todo_spec.js
describe('Add ToDo', function () {Line 1

it('calls the addToDo function when create is clicked', function () {2

});3

it('triggers a click event when create is clicked.', function() {4

});5

});6

Our first example, on line 2, describes what to do when we click the create
button. With this test we’re saying that when the button is clicked, the to-do
application should call a function to add the to-do item. Our second example
describes what event should be fired when the create button is clicked. In this
situation, we want to make sure that the click() event is called.

Before we can use Jasmine, we need to tell it where our test, application, and
third-party libraries are. To configure Jasmine, we modify SpecRunner.html,
removing references to the spec files we deleted earlier and adding the location
of add_todo_spec.js:

jasmine/jasmine/SpecRunner.html
<script src="lib/jasmine-2.3.4/jasmine.js"></script>
<script src="lib/jasmine-2.3.4/jasmine-html.js"></script>
<script src="lib/jasmine-2.3.4/boot.js"></script>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script src="lib/jasmine-2.3.4/jasmine-jquery.js"></script>

<!-- include source files here... -->
<script src="../add_todo.js"></script>

<!-- include spec files here... -->
<script src="spec/add_todo_spec.js"></script>

To run our specs, open SpecRunner.html in a modern browser. Everything is
green, and it looks like all the tests have passed! Well, not quite. The tests
that we wrote don’t do anything. We actually want to test things, so now we’ll

report erratum • discuss

Testing JavaScript with Jasmine • 269

http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/SpecRunner.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

write some tests that’ll fail and then implement the actual code and watch
them go green.

Let’s work on our first test. We want to make sure that the addToDo() function
gets called when we click the create button:

jasmine/jasmine/spec/add_todo_spec.js
$('#create').click();
expect(ToDo.addToDo).toHaveBeenCalledWith(mocks.todo);

Then we want to test that the click() event triggers the addToDo() function. To
call the click() event, we need some HTML to execute the JavaScript against.
One benefit of the Jasmine-jQuery plug-in is its fixture support, which lets
us create pieces of HTML code that we can rely on to be consistent and make
our tests repeatable. Since our application is going to be a form with one text
box and a create button, followed by a list, we can mock up the application
in a fixture file. Jasmine looks for fixtures in the jasmine/spec/javascripts/fixtures/
directory of our application. Let’s create an index.html file in that location to
represent our to-do application:

jasmine/jasmine/spec/javascripts/fixtures/index.html
<!DOCTYPE html>
<html lang="en-US">
<title>Fixture</title>
<fieldset title="">

<legend>New ToDo</legend>
<form action="">
<input type="text" id="todo"/>
<button id="create">Add ToDo Item</button>

</form>
</fieldset>
<h2>ToDos</h2>
<ol id="todo_list">
</html>

Now that we’ve created a fixture, we need to tell our tests to use it. We’ll use
Jasmine’s beforeEach() function to do some setup before each one of our tests.
We want the beforeEach() function inside of the describe() function, and we use
the loadFixtures() function to load our fixture:

jasmine/jasmine/spec/add_todo_spec.js
beforeEach(function () {

loadFixtures("index.html");
});

Because the beforeEach() function is inside the describe() function, Jasmine will
execute the code for all of the tests that are inside the same describe() function.

Chapter 6. Testing Recipes • 270

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/javascripts/fixtures/index.html
http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The beforeEach() function is the perfect place to put any code you need executed
for each of the tests below it.

We’ll want to test our application’s functionality of adding a to-do item. Let’s
get some mock data to work with the fixture we just created. Mocks are objects
that simulate real data and are consistent for every test run. Let’s start by
creating a blank mocks object that we can attach different values to. Right
above the beforeEach() we need to initialize a variable that’s accessible to each
of our tests:

jasmine/jasmine/spec/add_todo_spec.js
var mocks = {};

Creating a global variable in the top of our test gives us an object that we can
add functions and values to. Since our Jasmine test interacts with our
application code, using a mock object will keep the test objects separated.

Inside of the beforeEach(), we add a todo variable to the mocks object. We can use
jQuery to set the value of the to-do text box with the mocked todo. We know
from our wireframe that the text box needs to have an ID of todo:

jasmine/jasmine/spec/add_todo_spec.js
mocks.todo = "something fun";
$('#todo').val(mocks.todo);

Here we’re giving our todo a value of something fun and then filling the textbox
with that value.

Since we’re using a TDD approach, we write our test first and then the code
to make it pass. We haven’t written any actual code yet, so the test will fail
when we run it, and we’ll get output similar to the figure on page 272.

Going Green

In TDD and BDD, we create tests first and then try to get them to pass by
implementing code. Tests that don’t pass are often represented in red, as
you’ve seen. Tests that pass usually show up green in reporting tools. So now
that we have a broken test, let’s implement the code to make it pass.

We need a place to keep our application code. Let’s create a file named
add_todo.js in the root of the application. We use a JavaScript object called ToDo
to organize our functions and make them more testable. Inside of our ToDo
object, we add three functions:

jasmine/add_todo.js
var ToDo = {

setup: function(){
},

report erratum • discuss

Testing JavaScript with Jasmine • 271

http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/add_todo.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

setupCreateClickEvent: function(){
},
addToDo: function(todo){
}

};

With our add_todo.js file in place, we need to add all of the functionality to make
the application work. We start with a setup() function, which we invoke in both
our application and our tests. Its job is to call the setupCreateClickEvent() function,
which binds a click() event to the create button. When a user clicks the create
button, the browser fires a click() event, which triggers the addToDo() function:

jasmine/add_todo.js
var ToDo = {

setup: function(){
ToDo.setupCreateClickEvent();

},
setupCreateClickEvent: function(){

$('#create').click(function(event){
event.preventDefault();
ToDo.addToDo($('#todo').val());
$('#todo').val("").focus();

});
},
addToDo: function(todo){

$('#todo_list').append("" + todo + "");
}

};

Chapter 6. Testing Recipes • 272

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jasmine/add_todo.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

In the setupCreateClickEvent() function, we call preventDefault() on the event that’s
passed into the click() function, which prevents the button from submitting
the form. We then call the addToDo() function, passing in the value from our
todo text field. Then we set the value of todo to a blank string and set the cur-
sor’s focus to the text field so it’s ready for the next to-do. In our addToDo() we
are adding the to-do to our list using jQuery’s append() function.

Let’s jump to our spec and add the ToDo.setup() call to the beforeEach() function:

jasmine/jasmine/spec/add_todo_spec.js
ToDo.setup();

Now before every test, our ToDo.setup() function will be called, which will bind
a click() event to the create button in our fixture.

The main focus of our first test is that the ToDo.addToDo() gets called. To assert
that the function was called, we need to use a Jasmine spy.21 A spy is a
multiuse test double, which can be used as a stub, fake, or mock. A stub is
a predefined response to something, usually a method that returns a specific
value. The stub doesn’t care what parameters are passed into it and always
returns the predefined response. A fake is an object that still has working
parts but takes shortcuts—it pretends to be a method that exists but only
does a shorthand version of the original. A mock is similar to a fake but does
more: it inspects what’s going on, such as who’s calling it and how many
times it was called and with what parameters, in addition to responding the
same every time it is called.

Attaching a spy to a function enables assertions for that function, such as
checking to see whether the function was called, the number of times it was
called, and even the arguments from each call. For our expect(ToDo.addToDo).toHave-
BeenCalledWith(mocks.todo); to perform an assertion, and not call the function, we
need to add a spyOn() to the top of the test. In this case, the spy will hijack our
addToDo() function when it gets called. Then it’ll check that the toHaveBeenCalled-
With(mocks.todo) assertion is true—or, in other words, check that the function
was called with whatever value is in mocks.todo:

jasmine/jasmine/spec/add_todo_spec.js
spyOn(ToDo, 'addToDo');

We’re spying on the ToDo object’s addToDo() function. Our assertion is that we
are expecting the function to be called with the value in mocks.todo. This test
is giving us a clear picture of the code we need to implement to make this
pass.

21. http://jasmine.github.io/2.0/introduction.html#section-Spies

report erratum • discuss

Testing JavaScript with Jasmine • 273

http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://jasmine.github.io/2.0/introduction.html#section-Spies
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now that you know what spies do, let’s work on our second test and make
sure a click() event is triggered when the create button is clicked. Our test needs
to spy on the click() event, then click the create button, and assert that the click()
has been called. Let’s add this code inside of our second test:

jasmine/jasmine/spec/add_todo_spec.js
spyOnEvent($('#create'), 'click');
$('#create').click();
expect('click').toHaveBeenTriggeredOn($('#create'));

We don’t want to execute the click() function, but we want to make sure that
it was called. By using spyOnEvent(), we are using Jasmine again to hijack the
click() event so our assertion can be evaluated.

Now that we’ve completed our tests and related code, let’s watch the tests
pass. Open SpecRunner.html in Firefox. We see the specs passing, as in the fol-
lowing figure:

See? Our reporting tool is now all nice and green, signifying that we’re on the
right track. With working tests, let’s finish up the last part and build the
index.html page and have a functioning to-do list.

Finishing Touches

To finish up, we’ll create a JavaScript file to hold our DomReady() function.
Creating a separate file for this little bit of JavaScript ensures that we can
set the state of our tests and not have them influenced by outside sources.
At the root of the project, let’s create app.js:

jasmine/app.js
ToDo.setup();

Here we are just calling our ToDo.setup() function. This gives us the most flexi-
bility, because we’re keeping most of the code in add_todo.js.

Chapter 6. Testing Recipes • 274

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/jasmine/jasmine/spec/add_todo_spec.js
http://media.pragprog.com/titles/wbdev2/code/jasmine/app.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Lastly, let’s create the index.html based on our fixture. We need to include both
the app.js and the add_todo.js files. Let’s start off our index.html by including the
script tags at the bottom of the body:

jasmine/index.html
<script

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="add_todo.js"></script>
<script src="app.js"></script>

</body>

For the body of the page, we want to grab the code from our fixture. This way,
our tests are executing against the same code as our application:

jasmine/index.html
<!DOCTYPE html>

<head>
<title>My Great ToDo List</title>

</head>
<body>

<fieldset>
<legend>New ToDo</legend>
<form action="#" method="post" accept-charset="utf-8">

<input type="text" id="todo"/> <button id="create">Add ToDo Item</button>
</form>

</fieldset>

<h2>ToDos</h2>
<ol id="todo_list">

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>
<script src="add_todo.js"></script>
<script src="app.js"></script>

</body>
</html>

Now when we open index.html in a browser, we see something like the following
figure:

report erratum • discuss

Testing JavaScript with Jasmine • 275

http://media.pragprog.com/titles/wbdev2/code/jasmine/index.html
http://media.pragprog.com/titles/wbdev2/code/jasmine/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ve now gone through a cycle of the TDD process and brought our tests to
green, and we have a working application to show for it.

Further Exploration
To expand on our Jasmine exploration, try adding some tests to other recipes
in this book, such as Recipe 10, Interacting with Web Pages Using Keyboard
Shortcuts on page 61, or Recipe 12, Displaying Information with Endless Pag-
ination on page 76. You could continue this recipe by adding tests and func-
tionality to restrict adding blank to-dos. You can also use Jasmine with Cof-
feeScript (see Recipe 31, Cleaner JavaScript with CoffeeScript on page 221),
which gives you testable JavaScript with the syntax safety of a compiler.

If refreshing a browser isn’t your cup of tea, take a look at PhantomJS22 and
see how you can test an application by running a headless browser. Or take
a look at Recipe 36, Testing Web Interfaces with Nightwatch on page 258, to
see how you can test your application by driving a virtual browser.

Also See
• Recipe 35, Browser Testing with Selenium on page 253
• Recipe 36, Testing Web Interfaces with Nightwatch on page 258
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221

22. http://phantomjs.org/

Chapter 6. Testing Recipes • 276

report erratum • discuss

http://phantomjs.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 7

Hosting and Deployment Recipes
We want to get our work out there for others to see, but that’s only the
beginning. Once our sites are live, we have to make sure they’re secure. In
this collection of recipes, you’ll learn how to deploy your work and how to
work with the Apache web server to redirect requests, secure content, and
host secure sites.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 38

Using Dropbox to Collaborate and Host a Static Site

Problem
Our company and our partner company, AwesomeCableCo, are sponsoring
Youth Technology Days. AwesomeCableCo has its own designer, Rob, who
works remotely. We need a way to work with Rob on this site and show our
bosses the progress we’re making. Rob doesn’t have virtual private network
(VPN) access to our server farm, and our firewall allows deployment only from
within our network.

Ingredients
• An active Dropbox account and the Dropbox desktop client1

Solution
We can use Dropbox to collaborate on static HTML files and host them so
they can be viewed by external users. With Dropbox we don’t need to worry
about firewalls, FTP servers, or emailing files. Because Dropbox is cross-
platform, we don’t have to waste time with different applications for each OS,
making Dropbox a productivity win.

Let’s walk through the Dropbox client installation so we can document it and
send it off to Rob. First, we head to the Dropbox website and get the installer.

Once installed, we can go to the Dropbox folder on our local computer.
Dropbox automatically creates a Public folder, as shown in the following figure:

1. http://www.dropbox.com

Chapter 7. Hosting and Deployment Recipes • 278

report erratum • discuss

http://www.dropbox.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We can use this Public folder to distribute files to anyone in the world. Let’s
make a youth_tech_days folder inside of that Public folder.

Now that we have a folder created, we need to invite Rob to collaborate with
us. When we right-click the folder we created, we see a context menu that
gives us the option to share this folder, as shown in the following figure:

When we choose Share this folder, we’re taken to the Dropbox website to
finish the sharing process, as shown in the following figure:

We fill out the information to share this folder with Rob.

Now we can move the files for the website into the youth_tech_day folder, which
you can find in the book’s source code in the dropbox folder. Now the directory
looks like the following figure:

report erratum • discuss

Using Dropbox to Collaborate and Host a Static Site • 279

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Whenever we drop files into this folder, they’ll show up on Rob’s computer as
well. When Rob updates the files, our copy will be updated to stay in sync.
As we work on the files, we’ll want to communicate with Rob about what we’re
doing so that we don’t overwrite his work. Dropbox has checks in place to
handle conflicts if we edit a file at the same time as Rob, saving multiple
copies of the file and appending a message to the filename indicating the
conflict. This works fine for our simple situation, but if we are doing heavy
active collaboration, we would should be using Git, as mentioned in Recipe
32, Managing Files with Git on page 230.

Now we need to show our bosses what we’ve done. Since we put the files in
the public folder, they’re available on the web to anyone who knows the URL.
To find the address of our index file, we right-click it and choose Copy public
link, which saves the URL to our clipboard. We can test the URL—one similar
to http://dl.dropbox.com/u/33441336/youth_tech_days/index.html—by opening it in a
browser.

This is a great, simple way to collaborate with people outside our company
and easily show progress without the need for an FTP server, web server, or
VPN connection. We can add other contributors to our project and share the
URL with anyone who’s interested in our progress.

Further Exploration
We can further explore by sharing nonpublic folders with coworkers and
friends. We can also use nonpublic folders to back up files and share them
among several of our own computers. In addition, we can use the public folder
to send Mom an Internet Explorer patch she just can’t seem to find on her

Chapter 7. Hosting and Deployment Recipes • 280

report erratum • discuss

http://dl.dropbox.com/u/33441336/youth_tech_days/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

own or provide our clients with a place to send us photos or other assets
they’d like us to post on their sites. Other uses include the following:

• Hosting files you want to share on a blog post
• Sharing a folder with each of your clients for easy collaboration
• Forwarding a vanity domain to a public site
• Creating a blog with Enfield and hosting it from Dropbox

If your registrar or DNS provider supports redirection, you could set up a
URL that’s easier for people to remember when they want to check out your
pages on Dropbox.

Also See
• Recipe 32, Managing Files with Git on page 230
• Recipe 29, Creating a Simple Blog with Enfield on page 203

report erratum • discuss

Using Dropbox to Collaborate and Host a Static Site • 281

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 39

Setting Up a Virtual Machine

Problem
We want to test PHP scripts and configurations on a local server that looks
like our production server. We need to set up an environment in which it’s
safe to experiment.

Ingredients
• VirtualBox2

• Ubuntu Server LTS image3

Solution
We can use virtualization and open-source tools to create a server playground
that runs on our laptop or workstation. We’ll use the free VirtualBox software
and the Ubuntu Server Linux distribution to build this environment, and
we’ll then set up the Apache web server with PHP so we can use this environ-
ment to test some PHP web projects.

Creating Our Virtual Machine

We need to grab two pieces of software: the Ubuntu server operating system
and VirtualBox, an open-source virtualization program. VirtualBox lets us
create virtual workstations or servers that run on top of our operating system,
giving us a sandbox that we can play in without modifying our actual OS.

First, we need to visit the Ubuntu download page4 and grab the server version
of Ubuntu 14.04 LTS instead of the most recent release. LTS stands for Long-
term Support, which means we can get updates for a much longer period
without having to do a complete OS upgrade. The LTS releases don’t always
have the most up-to-date features, but they’re perfect for servers.

2. http://www.virtualbox.org/
3. http://www.ubuntu.com/download/server
4. http://www.ubuntu.com/download/server/download

Chapter 7. Hosting and Deployment Recipes • 282

report erratum • discuss

http://www.virtualbox.org/
http://www.ubuntu.com/download/server
http://www.ubuntu.com/download/server/download
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

While that’s downloading, we can go to the VirtualBox web page5 and download
the latest edition of VirtualBox for our platform. Once it’s downloaded, install
it using the defaults, and then launch the VirtualBox program.

With VirtualBox launched we’ll want to create a new virtual machine by
clicking the New button. Virtual Box provides a wizard. With the first menu,
we name our virtual machine, choose Linux as a type, and then leave version
as Ubuntu (64bit). The RAM setting is next; it defaults to 512 MB, which is
enough RAM for our machine. We can then complete the wizard using the
provided defaults.

With our virtual machine created, we can click the Settings button to configure
additional options. We need to change our network type from NAT to Bridged,
so that we can access our servers from our host machine. The settings are
shown in the following figure:

Now we can click the Start button to fire up the new virtual machine.
VirtualBox detects that we’re running it for the first time and walks us through
the steps to get the Ubuntu OS installed. It asks us to choose either virtual
or physical installation media. Since we downloaded the ISO image from
Ubuntu’s website, we can use that directly by clicking the Select icon and
locating the ISO file on our computer. VirtualBox also allows for the use of

5. http://www.virtualbox.org/

report erratum • discuss

Setting Up a Virtual Machine • 283

http://www.virtualbox.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

physical media, so if we wanted to save some space on our hard drive, we
could burn the ISO image to a DVD and use that for future installations.
Once we select our installation media, the virtual server starts and the
installation of Ubuntu is underway.

For our purposes, we can accept all of the default settings in the Ubuntu
installation process. When asked for a hostname you can enter whatever you
like, but the default will work fine. When asked about disk partitioning, accept
the defaults and answer yes whenever you’re prompted to write changes to
disk. Since this is a virtual machine, you’re not going to erase data on your
computer’s actual hard drive.

Toward the end of the process, we’re asked to create a user account. This is
the user we’ll use to log in to our server and do our web server configuration,
so let’s call it webdev. We can use that value for both the full name and the
username. We also need a password, which you can create on your own.
Don’t forget it!

When asked whether you’d like to install any predefined software, choose
Continue. We’ll install things ourselves at the end of the process.

When the installation finally ends, the virtual machine restarts, and we’re
prompted to log in with the username and password we created. Let’s do that
and get our web server running.

Configuring Apache and PHP

Thanks to Ubuntu’s package manager, we can quickly get the Apache web
server running with PHP by logging into our server and typing the following
commands:

$ sudo apt-get install apache2 libapache2-mod-php5
$ sudo service apache2 restart

The first command installs the Apache web server and the PHP5 programming
language and sets up Apache to serve PHP pages. The second reloads Apache’s
configuration files to ensure that the new PHP settings are enabled. Now let’s
set up our virtual private server (VPS) so we can copy files into our web
server’s directory.

Getting Files to Our Virtual Server

To work with our virtual server, we need to set up services so we can copy
our files there.

Chapter 7. Hosting and Deployment Recipes • 284

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Joe asks:

Do I Need to Perform Operating System Updates
on My Virtual Machine?

Yes. Because packages can have different requirements, it’s a good idea to keep your
system up to date. Also, because this virtual machine is running on your computer,
make sure all security patches have been applied.

To make sure your system is up to date, use the following two commands:

$ sudo apt-get update
$ sudo apt-get upgrade

The first command refreshes the list your server will use to find and install packages.
The second command upgrades any existing installed packages and their dependen-
cies.

Apache is serving all of the web files out of the /var/www/html folder, and the
only user who can put files into that folder is the root user. Let’s change that
by taking ownership of that folder and all its contents with this command:

$ sudo chown -R webdev:webdev /var/www/html

Now, let’s set up OpenSSH so we can use an SFTP client to copy files, just as
we would if we were using a hosting company:

$ sudo apt-get install openssh-server

And now we can log in using any SFTP client. We’ll use the IP address of our
virtual machine, which we can find by typing the following:

$ ifconfig eth0

Our IP address is the one that looks like this:

inet addr: 192.168.1.100

We can now use an SFTP client to connect to that address with the username
and password we set when we built the virtual machine. From a Windows
machine, we could use FileZilla.6 From a Mac we can use Cyberduck7 or even
use scp from the command line to transfer a file. For example, if we had an
HTML file in our home directory, we could transfer it to our server like this:

scp index.html webdev@192.168.1.100:/var/www/html/index.html

6. https://filezilla-project.org/
7. https://cyberduck.io/

report erratum • discuss

Setting Up a Virtual Machine • 285

https://filezilla-project.org/
https://cyberduck.io/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We specify the source filename, followed by the destination path, which is
the username we want to connect with, followed by the @ sign, the IP address
of the server, a colon, and then the full path where we’ll place the file.

With our virtual machine in place, we can start using it as a testing play-
ground. When it comes time to deploy our code to our production environment,
we’ll have had enough practice.

Further Exploration
Virtual machines give us a playground where we can test, experiment, and
break things, but we can do more than that. The snapshot feature in Virtual-
Box lets us create restore points that we can revert to if we goof something
up. This is perfect for those times when we’re interested in playing with a new
piece of technology. In addition, we can create appliances—specific virtual
machines with preloaded packages. We could create a PHP appliance, which
has PHP, MySQL, and Apache already configured, and then share that virtual
machine with others so they can get started quickly.

We can go a step further and automate this process using tools like Puppet,
as shown in Recipe 45, Configuring a Virtual Machine with Puppet on page
317, and then keep all the configuration files stored in source control, as we
see in Recipe 32, Managing Files with Git on page 230. This way we can share
only configuration files with our team, rather than full virtual-machine images.

Virtual machines are useful for deploying applications. For example, in pro-
duction we can take snapshots before upgrading an application or patching
a security exploit, and revert if the upgrade or patch fails. And we can clone
virtual machines to scale things out. Closed-source products such as VMware
provide enterprise-level solutions for hosting multiple virtual machines on a
single physical server.8 VMware even provides some tools for converting a
physical machine to a virtual one.9

Also See
• Recipe 41, Configuring Secure Websites with Apache on page 292
• Recipe 45, Configuring a Virtual Machine with Puppet on page 317

8. http://www.vmware.com/virtualization/
9. http://www.vmware.com/products/converter/

Chapter 7. Hosting and Deployment Recipes • 286

report erratum • discuss

http://www.vmware.com/virtualization/
http://www.vmware.com/products/converter/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 40

Changing Web Server Configuration Files with Vim

Problem
Many production servers use Linux and don’t give us access to a graphical
interface. When we have to make changes to our server’s configuration files,
it’s inefficient to download a file, make the change on our development
workstation, and then upload the file back to the server. To save time, we
need a way to edit files directly on the server.

Ingredients
• Our virtual machine (VM), created in Recipe 39, Setting Up a Virtual

Machine on page 28210

• The Vim text editor

Solution
We can use Vim, a powerful Terminal-based text editor, to make the changes
we need quickly. Vim is designed with efficiency in mind. It’s a great choice
for working with files on a server because it’s lightweight, highly configurable,
and almost always available.

We recently deployed a site to our client’s production server, but we forgot to
configure the web server to display a proper 404 Page Not Found error page.
The default Page Not Found message is a little more technical than our client
would like, so we’ll modify the message by configuring Apache to serve up a
custom 404 page.

For this recipe, we’ll use the VM we built in Recipe 39, Setting Up a Virtual
Machine on page 282. Before we customize our error page, let’s get acquainted
with editing files in Vim.

Editing Files with Vim

Let’s start by starting our VM and logging in through its console. Once logged
in, we can start Vim by typing the following at the server’s prompt:

10. You can grab a premade VM from http://www.webdevelopmentrecipes.com/.

report erratum • discuss

Changing Web Server Configuration Files with Vim • 287

http://www.webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$ vim

When we open Vim without specifying a file, we see a screen that gives us a
little introduction to the editor, as in the following figure:

We’ll use the keyboard for absolutely everything in Vim, from moving our
cursor around the screen to saving and opening files. We do this through
Vim’s various modes.

Vim has four main modes: normal, insert, command, and visual.

• Normal mode is for navigating around a file and switching to other modes.

• Insert mode is for entering text or making changes to the file.

• Command mode is where we execute specific commands, such as saving
and opening files.

• Visual mode is for selecting text so we can manipulate it.

When we first open Vim, we start in normal mode. We can go into insert mode
by pressing i . When we do that, we’ll see -- INSERT -- at the bottom of the screen.

In insert mode, type Welcome to Vim, press the Enter key, and then type Let’s
have some fun! We should now have a file that looks like this:

Welcome to Vim
Let's have some fun!

We’re done adding text, so we want to go back to normal mode, which we do
by pressing the ESC key. In normal mode we can navigate around our file
character by character using either the arrow keys or the h , j , k , and l keys.

Chapter 7. Hosting and Deployment Recipes • 288

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

These navigation keys keep your fingers on the keyboard’s home row and,
with practice, will let you move around files quickly. The h key moves the
cursor left; the l key moves right. The k key moves up one line, and j moves
down. If you need help remembering which key moves up and which key
moves down, imagine that the j key looks like an arrow pointing downward,
so pressing that key moves the cursor down one line.

From normal mode, we can save and close this file. We press : to switch to
Vim’s command mode. To save a file, we use :w (write). We can pass a filename
to this command, so to save this file as test.txt, we use the following command:

:w test.txt

Any time we’re editing an existing file, we can use :w to save the file we are
working on, so we don’t always have to pass the filename.

Finally, we can quit Vim with the :q command.

Vim includes a lot more than these simple commands, but we now know
enough to modify our configuration to show a friendlier error page to our
client’s users.

Creating and Serving a Custom Error Page

We have a few ways to customize the error pages Apache displays to our end
users. We could modify the main Apache configuration file, we could change
the configuration file for our website, or we could use a special file called
.htaccess. Using an .htaccess file lets us configure the Apache web server on a
per-directory basis, giving us more flexibility. In some hosting environments,
this is often the only way for us to configure things like error pages, since we
may not have permission to edit the other configuration files. Let’s configure
Apache to use .htaccess files.

First, we need to enable the mod_rewrite extension to Apache, which we discuss
in more detail in Recipe 43, Rewriting URLs to Preserve Links on page 300. We
do this by typing this command at the server’s prompt:

$ sudo a2enmod rewrite

Next, we need to tell Apache to allow overriding of configuration properties
for this site. If we don’t do this, Apache will ignore anything we put in our
.htaccess file. Let’s use Vim to modify the configuration file for the default
website:

$ sudo vim /etc/apache2/apache2.conf

report erratum • discuss

Changing Web Server Configuration Files with Vim • 289

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Instead of the arrow keys, let’s use Vim’s navigation keys (h , j , k , and l) to
move down and change the AllowOverride value for our web directory /var/www/html.
Navigate to the end of AllowOverride None and press i to go into insert mode. Then
delete None and replace it with All. Our file should now look like this:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride All
Require all granted

</Directory>

Before we can save the file, we have to press the ESC key to leave insert mode.
Then we can save the file with : w. We can then quit Vim with : q . After quitting
Vim we want to restart Apache:

$ sudo service apache2 restart

Next we need to create a file to use as our 404 page. Let’s navigate to the root
of our sample website and use Vim to create a new 404 page called 404.html:

$ cd /var/www/html
$ vim 404.html

We’re presented with a blank file, so we can press i to enter insert mode and
then type in some basic markup for this page:

<h1>We're sorry</h1>
<p>

The page you are looking for can't be found.
It may have been moved to a new location.

</p>
<p>

You might be able to find what you're looking for
here.

</p>

Once again, we press the ESC key to leave insert mode. We can then type : w q
to save and close Vim with a single command.

Now that our 404 page is created, we need to tell the web server to display
it. We’ll create the .htaccess file in the same directory, /var/www/html, that contains
our other web files:

$ vim .htaccess

Then we add a directive, or configuration rule, to define the location of our
404 page. Press i to enter insert mode, and enter this rule:

ErrorDocument 404 /404.html

Chapter 7. Hosting and Deployment Recipes • 290

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The location of the file is relative to the site’s URL, not the location of the file
on the server’s disk.

We press ESC to leave insert mode and then type : w q again to save the file.
We can test it by trying to load a page that doesn’t exist on our site with a
browser. We see our custom 404 page. With our friendlier 404 page online,
we’ve bought ourselves some time to fix the application and make a real 404
page that matches our site’s theme. Using Vim like this allows you to create
a stopgap while you implement a more permanent solution.

Further Exploration
Saying that Vim is just a text editor is like saying that bacon is just meat.
Bacon is more than meat—it’s super tasty. By using the right mixture of plug-
ins, we can turn Vim into a full-fledged super-tasty IDE. A Vim installation
is available for every major OS,11 so you can download and install it on your
development machine. Then you can find some plug-ins that relate to your
daily activities by visiting VimAwesome, a directory of plug-ins and scripts.12

Once you’ve found some plug-ins that interest you, you might consider using
Vundle13 or Pathogen14 to manage those plug-ins. Normally, you install Vim
plug-ins into specific folders, but these tools make managing plug-ins easier
by letting you keep the plug-ins in a central location so you can update them
easily. Vundle contains an automatic installer and updater for plug-ins,
whereas Pathogen gives you more manual control. Both are well-maintained
and excellent solutions for easily extending Vim.

To learn more about using Vim for different tasks, look at Drew Neil’s book
Practical Vim [Nei12], or check out Vimcasts.15 Vimcasts posts screencasts
that go into detail about using Vim and various plug-ins. You can also cus-
tomize Vim further by writing your own plug-ins, which you can learn about
in Ben Klein’s The VimL Primer [Kle15].

Also See
• Recipe 39, Setting Up a Virtual Machine on page 282
• Recipe 41, Configuring Secure Websites with Apache on page 292
• Recipe 43, Rewriting URLs to Preserve Links on page 300

11. http://www.vim.org/download.php
12. http://vimawesome.com/
13. https://github.com/gmarik/Vundle.vim
14. https://github.com/tpope/vim-pathogen
15. http://vimcasts.org/

report erratum • discuss

Changing Web Server Configuration Files with Vim • 291

http://www.vim.org/download.php
http://vimawesome.com/
https://github.com/gmarik/Vundle.vim
https://github.com/tpope/vim-pathogen
http://vimcasts.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 41

Configuring Secure Websites with Apache

Problem
When our applications and websites deal with people’s information, we owe
it to those people to safeguard it. We want to make sure our servers and
databases safely store that information, but we also need to protect that data
during its trips from their computers to our servers and back. We need to
configure our web server so that it uses SSL to connect to web browsers.

Ingredients
• A virtual machine running Ubuntu for testing
• The Apache web server with SSL support

Solution
To set up a secure web server, we need to set up SSL certificates. Production
websites use signed SSL certificates that are verified by a third-party
authority. This verification gives customers a sense of security.

Signed SSL certificates cost money, and we don’t want to pay for certificates
for our development environments. For testing purposes, we can create self-
signed certificates, which are ones we verify ourselves.

We’ll use the virtual machine we created in Recipe 39, Setting Up a Virtual
Machine on page 282, so we can get some practice.16 That way, when we have
to set up our production machine, we’ll know exactly what to do. Run all of
the commands in this recipe from your virtual machine’s console, not on your
local machine.

Creating a Self-Signed Certificate for Development

The process for getting an SSL certificate is the same whether we’re getting
a verified one or a self-signed one. We start by creating a certificate request.
This request usually gets sent to a certificate authority along with a payment,
and it then sends back a verified SSL certificate that we can install on our

16. To save time, you can grab a pre-made VM from http://www.webdevelopmentrecipes.com/.

Chapter 7. Hosting and Deployment Recipes • 292

report erratum • discuss

http://www.webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

server. In our case, we’ll be acting as both the certificate requester and the
certificate authority.

To create the request, we fire up our virtual machine, log into the console,
and type the following:

$ openssl req -new -out awesomeco.csr

This creates both a certificate request and a private signing key that requires
a passphrase.

We’ll need to provide a passphrase for this new key, and we’ll be asked for
our company name and other details. You’ll want to fill these out with real
data, especially if you plan to use this to request a key from a certificate
authority!

The key we created requires that we enter a passphrase every time we use it.
If we request a certificate with this key, we’ll have to enter that passphrase
every time we restart our web server. This is secure but inconvenient. It’s also
not manageable in a production environment. Let’s create a key we can use
that doesn’t require a password:

$ sudo openssl rsa -in privkey.pem -out awesomeco.key

Now that we have our request, we can sign it by passing both our request
and our key:

$ openssl x509 -req -days 364 -in awesomeco.csr \
-signkey awesomeco.key -out awesomeco.crt

The certificate we created will be good for one year.

Finally, we need to copy our certificate and our keyfile to the appropriate
locations:

$ sudo cp awesomeco.key /etc/ssl/private
$ sudo cp awesomeco.crt /etc/ssl/certs

Now let’s modify the default Apache website to use SSL.

Configuring Apache for SSL Support

We need to enable the Apache module for SSL support on our server. To do
that, we can either manually edit the list of installed modules or type the
following:

$ sudo a2enmod ssl

This will do the modification for us.

report erratum • discuss

Configuring Secure Websites with Apache • 293

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we need to tell Apache to serve web pages using SSL.

Let’s create a separate configuration file for our SSL site. Create the
/etc/apache2/sites-available/ssl_example.conf file and add the following configuration
to the file:

<VirtualHost *:443>
ServerAdmin webmaster@localhost
DocumentRoot /var/www/html
<Directory /var/www/html/>

Options FollowSymLinks
AllowOverride None

</Directory>
SSLEngine on
SSLOptions +StrictRequire
SSLCertificateFile /etc/ssl/certs/awesomeco.crt
SSLCertificateKeyFile /etc/ssl/private/awesomeco.key

</VirtualHost>

We’re creating a new virtual host on port 443, listening on all addresses. The
document root specifies where our web pages are, and the directory section
sets up some basic permissions.

The last few lines set up the actual SSL connections, turning on SSL support,
ensuring it’s strictly enforced, and ensuring that it knows where our self-
signed certificate and key are located.

With this new configuration file saved, we need to enable it and tell Apache
to reload its configuration:

$ sudo a2ensite ssl_example
$ sudo service apache2 restart

Now we can visit our website’s URL over SSL. We’ll get some warnings from
the browser, though, because a certificate we created by ourselves isn’t con-
sidered safe for the average user. And that makes sense. If anyone could
create a certificate that was automatically trusted by every browser, it wouldn’t
really be secure. We need to get a third party involved to get a trusted certifi-
cate. That’s where a certificate provider comes in.

Working with a Certificate Provider

We don’t want our users thinking we’re trying to steal their credit card infor-
mation or do other evil things with their data, so we need to get a trusted
certificate. To do that, we generate a certificate request and a key in the same
fashion we did for our self-signed certificate. We then send the certificate
request to the certificate authority along with our payment, and it sends back
a certificate we can install along with other instructions.

Chapter 7. Hosting and Deployment Recipes • 294

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Some certificate authorities do more than take your money in exchange for
a certificate that removes the error message. Some also verify that your entity
is a legitimate business. When your users review the details of the certificate
in their browsers, they can see this information, which adds an additional
layer of trust. It also adds extra costs for you, but depending on your industry,
it may be worth it.

Many certificate authorities exist. Thawte17 and VeriSign18 are well-known
and trusted certificate authorities, but you’ll need to research some on your
own to find ones that meet your needs. If you’re working with a hosting
provider, you can often work with it to get a signed certificate for your site.

Further Exploration
We can use several types of SSL certificates. We can get certificates that cover
a single server, or we can get a wildcard certificate that we apply to all servers
within our domain. Wildcard certificates are much more expensive than single-
server certificates.

Finally, Server Name Indication (SNI) certificates are a much cheaper option,
but they work only with the most modern browsers and operating systems.
SNI certificates are great for internal organizations where you have control
over the browsers your clients use, but you’ll want to rely on more traditional
host- or IP-based certificates for the general public.

Also See
• Recipe 39, Setting Up a Virtual Machine on page 282

17. http://www.thawte.com
18. https://www.verisign.com/

report erratum • discuss

Configuring Secure Websites with Apache • 295

http://www.thawte.com
https://www.verisign.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 42

Securing Your Content

Problem
When we put files on our web server, they’re available for anyone to see. But
we don’t want the entire world to have access to any important documents
we’re storing. When we want a select group of people to be able to access the
files, we need a way to lock certain files or folders and create basic authenti-
cation.

Ingredients
• Development server with Apache
• Apache2-Utils

Solution
Apache allows us to create configuration files that specify which directories
and files shouldn’t be served without authentication. We’ll take a look at how
we build these configuration files to secure our server.

Using Basic HTTP Authentication

When Apache is serving up files, it’s always looking for the .htaccess file. This
special file tells Apache the configuration for a specific folder on your server.
With the .htaccess file, we can enable password protection of files, block users
based on certain criteria, set redirects and error documents, and much more.

Let’s start by creating a file to ask for authentication. If you haven’t already,
be sure to read through Recipe 39, Setting Up a Virtual Machine on page 282,
so that you have a development server to test with. After we log into our
development server, let’s also make sure that Apache is running and that we
have the most up-to-date apache2-utils package:

$ sudo service apache2 restart
$ sudo apt-get update
$ sudo apt-get install apache2-utils

We’ll also want to make sure that our website is configured correctly. Open
the default site configuration /etc/apache2/sites-available/000-default.conf and make

Chapter 7. Hosting and Deployment Recipes • 296

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

sure the following code exists. The key piece we need here is the AllowOverride
All so that our .htaccess can be used by the web server for this site.

<Directory /var/www/html/>
Options FollowSymLinks
AllowOverride All

</Directory>

Now that Apache is running, we can start to build the authentication. For
basic HTTP authentication, we need to create a file to hold the usernames
and passwords that are allowed to log in. We can use the htpasswd command
to generate a username with an encrypted password. Let’s create the username
and password now, and let’s keep the file in our home directory:

$ htpasswd -c ~/.htpasswd webdev
New password:
Re-type new password:
Adding password for user webdev

When we call htpasswd, we pass a location for the file and our username. We
use the -c flag to create a new file if one doesn’t exist. When we press Return ,
we’re prompted to enter the password we want to encrypt. If we want, we can
use the cat command to check what’s in that file so far, and we’ll see something
similar to the following:

$ cat .htpasswd
webdev:$apr1$9rQfRhOd$ZJJpVrhFVlWvYrn3vVrtI0

Now that our user is created, we can start locking down directories. Let’s
navigate to the document root and create an .htpasswd file:

$ cd /var/www/html
$ touch .htaccess

Let’s open up our new file with our text editor and add some directives to lock
down the root directory:

AuthUserFile /home/webdev/.htpasswd
AuthType Basic
AuthName 'Our secure section'
Require valid-user

Because we created this file in the top level of the document root, we’ve locked
down every document on our server. Let’s use our browser and navigate to
http://192.168.1.100/. You should see an authentication modal dialog like the one
in the following figure:

report erratum • discuss

Securing Your Content • 297

http://192.168.1.100/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Thanks to Apache’s HTTP authentication, we have an easy method for
securing the content on our servers.

Where Should I Keep My .htpasswd Files on a Live Server?

With most shared hosts, you’re limited to working only in your home directory.
This means that the document root for Apache is set up to point most often
to something like /home/webdev/mywebsite.com/public_html. Since you’ll often be
hosting multiple websites, it’s nice to have each website in its own folder. For
security reasons, you should place each site’s .htpasswd file in that site’s folder.
For example, to generate the file for mywebsite.com, we’d run something like
this:

$ htpasswd -c ~/mywebsite.com/.htpasswd webdev

This allows us to keep the users for different websites separate from one
another.

Denying Off-Site Image Requests

We’re paying a pretty penny for our hosting plan, so bandwidth and server
load are always a concern. Also, we don’t want anyone to be able to use our
images without the correct rights and permissions. Thankfully, we can write
a rule in .htaccess that will block off-site linking of images.

First, we need to enable Apache’s mod_rewrite, since we’ll want to use it to
deliver a broken image to the request:

$ sudo a2enmod rewrite

Chapter 7. Hosting and Deployment Recipes • 298

report erratum • discuss

http://mywebsite.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

To learn more about mod_rewrite, refer to Recipe 43, Rewriting URLs to Preserve
Links on page 300.

We’ll add a rule that rewrites the URLs for incoming requests to instead
deliver an image that doesn’t exist. Let’s open up our .htaccess file and add
these lines:

RewriteEngine on
RewriteCond %{HTTP_REFERER} !^http://(www\.)?mywebsite.com/.*$ [NC]
RewriteRule \.(jpg|png|gif)$ - [F]

The first line tells Apache to use mod_rewrite. Next, we add a condition that
applies our rewrite rule only if the referring website is different from our own
URL. Last, we create a rewrite rule to look for any requests that end in an
image extension. We use the [F] flag to tell Apache that these URLs are
forbidden.

With that, any image request to our server returns a broken image in place
of the image that was being used.

Further Exploration
When it comes to locking down a server, we can use many methods to keep
information and content hidden. Aside from password protection and rewrite
rules, we can also block users by IP address or even by the website they are
coming from. With Apache’s configuration files, we can secure our content
in many ways. To see more advanced applications of the rewrite engine, read
through Recipe 43, Rewriting URLs to Preserve Links on page 300. Also, you
can refer to Apache’s own .htaccess tutorial.19

Also See
• Recipe 39, Setting Up a Virtual Machine on page 282
• Recipe 40, Changing Web Server Configuration Files with Vim on page 287
• Recipe 43, Rewriting URLs to Preserve Links on page 300
• Recipe 44, Automating Static Site Deployment with Grunt on page 304

19. http://httpd.apache.org/docs/current/howto/htaccess.html

report erratum • discuss

Securing Your Content • 299

http://httpd.apache.org/docs/current/howto/htaccess.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 43

Rewriting URLs to Preserve Links

Problem
We plan to redesign our site around a new content-management system
(CMS), and our URLs are going to change as a result. We have a lot of
incoming links to pages and don’t want to lose out on that traffic. Trying to
figure out who links to us and asking them to change the links would take a
lot of work and isn’t a reasonable plan; nor is leaving the old pages around
with a link to the new ones. We need a way to redirect users from the old
URLs to the new ones with as little overhead as possible.

Ingredients
• The Apache web server
• mod_rewrite

Solution
The Apache web server and mod_rewrite—an Apache module that lets you make
custom and simplified URLs—enable us to tell the server to load a specified
file when another is requested. This will let us dictate what to load when a
user visits our site. We can even use regular expressions so that we don’t
have to write an entry for every page in the site. Additionally, we can set
headers so that search engines know to direct users to the new locations.

In this recipe, we’ll work with a virtual machine with Apache on it, as covered
in Recipe 39, Setting Up a Virtual Machine on page 282. If you’re using a server
hosted by another company, you may have to contact a server admin to set
up mod_rewrite.

The first thing we need to check is whether mod_rewrite has been installed. The
easiest way to do this is by making a page called phpinfo.php that contains one
line of code:

<?php phpinfo(); ?>

Chapter 7. Hosting and Deployment Recipes • 300

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Joe asks:

Why Can’t I See the .htaccess File?
Just because you don’t see the file in your file browser doesn’t mean it’s not there.
Files that begin with a period (.) may not show up because they’re typically system
or configuration files and are hidden. Enabling the display of hidden files in the file
browser will allow you to see them. You can see a list of all files by running ls -la in
Terminal on OS X or Linux or by running dir /a on Windows.

We place this file on our server with the rest of our web pages and then load
it in the browser. We’ll see all sorts of information about our environment,
but we’re looking for mod_rewrite in the apache2handler section labeled Loaded
Modules, as in the following figure:

If you’re checking on a production server, you should remove this file after
you finish checking, because it exposes details of your server configuration
that are best kept private. If mod_rewrite is there, we’re good to go. If not, we’ll
ssh to the server and install it by issuing the following command:

$ sudo a2enmod rewrite

Next, we’ll also want to make sure that our website is configured correctly.
Open the default site configuration /etc/apache2/sites-available/000-default.conf and
make sure the following code exists. The key piece we need here is the
AllowOverride All so that our .htaccess can be used by the web server for this site.

report erratum • discuss

Rewriting URLs to Preserve Links • 301

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<Directory /var/www/html/>
Options FollowSymLinks
AllowOverride All

</Directory>

Restart Apache with this command:

sudo /etc/init.d/apache2 restart

Now mod_rewrite is ready to use.

mod_rewrite uses an .htaccess file to know how to handle requests for files and
redirect them to the appropriate location:

RewriteEngine on
RewriteRule ^pages/page-2.html$ pages/2

Our initial .htaccess file handles only the display of a single page, but it’s enough
to ensure that everything is set up correctly. The first line activates the
RewriteEngine, allowing us to use mod_rewrite. The second line creates a RewriteRule,
which consists of three parts. First we declare that we’re creating a RewriteRule,
and then we use a regular expression to identify URLs that match the
incoming request by the user; finally, we tell Apache what it should load
instead. The rule takes any request for pages/page-2.html and renders the content
from pages/2 instead. As far as users can tell, they’re still on pages/page-2.html.

We can use regular expressions to avoid having to create a URL for every
page. Let’s assume that we’re deploying a new version of a site. The old URLs
were at pages/page-2.html, while the new CMS uses pages/2:

RewriteRule pages/page-(\d+) pages/$1 [L]

This rule tells the server to find the first set of numbers in the URL after
matching the pages/page- string and use the match for the path to the page it
should load. pages/page-3.html will load pages/3, and pages/678.html will try to load
the old pages/678.html file, since it doesn’t match the regular expression. The
final option we’re passing—[L]—tells Apache that it should not apply any more
RewriteRules if this one had a successful match.

Now that our new content is loading through the old URLs, we realize that
having the same content available at two URLs—pages/page-2.html and pages/2—
isn’t ideal, because it’s not clear which page should be linked to, and it’s
making updating pages more difficult. Instead, we’d like to redirect the
browser to the new URL entirely and make sure that any search-engine robots
also know to update their records.

To do this, we open .htaccess again and add the R=301 option to our RewriteRule:

Chapter 7. Hosting and Deployment Recipes • 302

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

RewriteRule pages/page-(\d+) pages/$1 [R=301,L]

This option makes Apache respond with a 301 Redirect header when the
original URL is requested, which means that the resource at the given URL
has been moved permanently. In addition, the new URL, which .htaccess has
determined, is passed along so that browsers and search-engine robots can
continue along to the new location and still access the information.

With some regular expressions and a few RewriteRules, we can move to a new
website without being restricted by its previous content structure or fear of
breaking existing inbound links.

Further Exploration
How could we use mod_rewrite and .htaccess to redirect requests to a new domain
name? We can specify a full URL in RewriteRule, so what would it look like to
redirect users from a.com to b.com? What if a section of our site was moved
from a directory to a subdomain?

Also, what if we changed server-side languages from PHP to Ruby on Rails?
What would it take to preserve all of our URLs from /display.php?term=foo&id=123
while loading content from /term/foo or /term/123? Executing this well could mask
the fact that we ever changed our back end.

Also See
• Recipe 40, Changing Web Server Configuration Files with Vim on page 287
• Recipe 39, Setting Up a Virtual Machine on page 282
• Recipe 41, Configuring Secure Websites with Apache on page 292

report erratum • discuss

Rewriting URLs to Preserve Links • 303

http://a.com
http://b.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 44

Automating Static Site Deployment with Grunt

Problem
Web developers working with static sites typically use tools like FTP to
transfer web pages and associated assets into production. This practice works
on a small scale, but as things get more complicated, manual processes break
down. A file might be left out accidentally or copied to the wrong location. In
addition, practices such as asset packaging—combining multiple JavaScript
files into a single, compressed file—are required to improve download speed.
We want to add this process easily to an automated deployment process. We
need to develop a simple workflow that’s easy to maintain yet flexible enough
to extend.

Ingredients
• Node.js20 and npm
• Grunt21

• Our virtual machine, created in Recipe 39, Setting Up a Virtual Machine
on page 28222

Solution
As developers, we spend a lot of time automating the processes for our cus-
tomers and clients, so it makes sense for us to invest some time in automating
our own processes. Nearly every command shell has its own scripting language
that we could use to automate website deployment, but we can leverage some
powerful JavaScript-based tools that work whether we’re deploying from
Windows, OS X, or Linux.

At AwesomeCo, we’re getting ready to expand our newly acquired daily deals
to some new markets, and we’ve been asked to develop a simple microsite to
collect email addresses from people so we can let them know when the service
is available in their area. When we’re done, it’ll look like the following figure:

20. http://nodejs.org/
21. https://gruntjs.com
22. You can grab a premade VM from http://www.webdevelopmentrecipes.com/.

Chapter 7. Hosting and Deployment Recipes • 304

report erratum • discuss

http://nodejs.org/
https://gruntjs.com
http://www.webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ll build a quick prototype of the site, and we’ll use Grunt to combine and
compress our JavaScript and style sheet files. Then we’ll set things up so
that we can quickly push updated versions of the site to the server. Let’s start
by taking a quick look at how we can develop our project with asset manage-
ment in mind.

Improving Performance with Asset Packaging

Loading a web page containing two JavaScript includes, a style sheet link,
and a single image takes a total of five requests to the server. The browser
first pulls down the page and then makes additional requests to the server
to grab the other assets. Some browsers are limited in the number of simul-
taneous requests they can make to the same server at a time. Instead of
including multiple JavaScript files on a page, we can combine them into a
single file. We can reduce the loading time even further by minifying that file,
which means we remove comments and whitespace. This makes the file size
smaller so there’s less data to transfer to the client. Instead of including two
JavaScript files on our page, we include a single, minified one. The same goes
for our CSS.

To avoid losing our clean indentation, our comments, and our well-organized
files, we write regular JavaScript and then minify it automatically when we
save. This is similar to how we work with CoffeeScript in Recipe 31, Cleaner
JavaScript with CoffeeScript on page 221. When we’re ready to publish to the
server we’ll upload only the minified file. We’ll use Grunt to manage this
process for us. Grunt is a task runner that has many powerful plug-ins that
we’ll use to construct the perfect workflow for minifying and deploying our
website.

report erratum • discuss

Automating Static Site Deployment with Grunt • 305

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Setting Up the Project

In our project folder, we create a folder for JavaScript files, a folder for style
sheets, and a public folder that’ll contain all the files we’ll be pushing to pro-
duction:

$ mkdir public
$ mkdir javascripts
$ mkdir stylesheets

To use Grunt, we have to first set up our project with a file called package.json.
This file includes information like our project’s name, version number, and
any dependencies our project needs. We can generate that file with the npm
init command, which runs a little wizard that asks us for the details:

$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items and tries to guess sane defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg> --save` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: (deploy) awesomeco_deals
version: (1.0.0) 1.0.0
description: Our Deals site
entry point: (Gruntfile.js) index.html
test command:
git repository:
keywords:
license: (ISC)
About to write to package.json:

{
"name": "awesomeco_deals",
"version": "1.0.0",
"description": "Our Deals site",
"main": "index.html",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Max Power <maxpower@awesomeco.com>",
"license": "ISC"

}

Is this ok? (yes) y

Chapter 7. Hosting and Deployment Recipes • 306

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Now we can add Grunt as a dependency to our project and install the grunt
command-line program systemwide:

$ npm install grunt --save-dev
$ npm install -g grunt-cli

The --save-dev flag installs Grunt and then places an entry for Grunt as a
development dependency in the package.json file. The -g flag installs a Node.js
package globally. The Grunt developers separated the Grunt command-line
interface from the rest of the Grunt codebase, so we install the command-line
interface globally on our system and install the parts of Grunt that do the
work as a dependency of our project.

We’re going to use a few more Grunt plug-ins in this recipe:

• grunt-contrib-uglify will merge and minify our JavaScript files.

• grunt-contrib-cssmin will merge and minify our CSS files.

• grunt-scp will transfer our files to our web server.

We install these plug-ins the same way as Grunt itself and make sure that
we link them to the project:

$ npm install grunt-contrib-uglify grunt-contrib-cssmin grunt-scp --save-dev

Finally, our project relies on jQuery. Up until this point we’ve always brought
jQuery in from a CDN. But we want to reduce the number of requests for
JavaScript files, so we’ll bundle jQuery with our own JavaScript code. To do
that, we need a local copy of jQuery that we install by using Bower, a package
manager for front-end code:

$ npm install -g bower
$ bower install jquery

The first command installs the bower command-line utility on our system. The
second uses Bower to fetch jQuery, which it places in our project in a folder
called bower_components/jquery. In this way, Bower eliminates the need for us to
manually download, unzip, and manage popular libraries.

With everything downloaded, we can start configuring our workflow.

Creating a Gruntfile

Grunt looks for a file called Gruntfile.js, so we create one in our project. In this
file, we write out some JavaScript code that configures the plug-ins we’ve
installed. First, we put in the Gruntfile skeleton:

report erratum • discuss

Automating Static Site Deployment with Grunt • 307

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

static/deploy/Gruntfile.js
'use strict';
module.exports = function(grunt){
};

Next, we configure Grunt to combine and minify the JavaScript files in our
project, placing them in the public/assets folder. We load the grunt-contrib-uglify
plug-in and then set the source and destination configuration:

static/deploy/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.config('uglify', {

'public/assets/app.js': [
'bower_components/jquery/dist/jquery.js',
'javascripts/form.js'

]
});

If we had more JavaScript files, we would add them to the source file array.

The configuration for combining and minifying CSS is similar. We load the
grunt-contrib-cssmin plug-in and configure it:

static/deploy/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-cssmin');
grunt.config('cssmin', {

'public/assets/app.css': ['stylesheets/*.css']
});

With these two plug-ins in place, we can execute the tasks with Grunt:

$ grunt cssmin uglify

But we’ll most likely run these tasks together, so let’s add a new task to our
configuration called build that runs both of those commands for us:

static/deploy/Gruntfile.js
grunt.registerTask('build', ['cssmin', 'uglify']);

Now all we have to do is run grunt build to do both the CSS and JavaScript
minification.

Running the build task by hand isn’t the best approach, though. We can con-
figure Grunt to watch files in the stylesheets and javascripts folders for changes
and automatically execute the cssmin and uglify tasks for us. That way we don’t
have to run our build task manually anymore.

First, we install the grunt-contrib-watch plug-in using the process we’ve already
used:

$npm install grunt-contrib-watch --save-dev

Chapter 7. Hosting and Deployment Recipes • 308

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

And then we configure the plug-in in Grunt to watch for changes and fire off
the appropriate tasks when files change:

static/deploy/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-watch');
grunt.config('watch', {

js: {
files: ['gruntfile.js', 'javascripts/*.js'],
tasks: ['uglify']

},
css: {

files: ['stylesheets/*.css'],
tasks: ['cssmin']

}
});

We could have configured this so that it runs the build task, but we’re being
explicit here; we only want to run the specific tasks associated with the kind
of file we’re changing. We can use the build task to build the site before we
deploy things, and this watch task while we develop.

With the config in place, we kick things off with the grunt watch command:

$ grunt watch
Running "watch" task
Waiting...

When we save a file, Grunt executes the tasks we associated with the files
it’s watching. It will continue to watch for changes until we stop it with CTRL-C .
Let’s keep it running though.

That was a lot of initial setup. But now that our tools are installed, let’s get
to work on our page.

Building Our Landing Page

First, we create the basic structure for our landing page, which we place in
public/index.html:

static/deploy/public/index.html
<!DOCTYPE html>
<html>

<head>
<title>AwesomeCo Deals</title>
<link rel="stylesheet" href="assets/app.css" >➤

</head>
<body>

<script src="assets/app.js"> </script>➤

</body
</html>

report erratum • discuss

Automating Static Site Deployment with Grunt • 309

http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/public/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Notice the <head> section of our page: we’re including the CSS from a folder
called assets rather than our stylesheets folder. And at the bottom of the page,
we’re also loading the JavaScript file from the assets folder instead of from the
javascripts folders. This is because our workflow with Grunt builds this folder
and these files for us by stitching the files in the javascripts and stylesheets folders.

Next we add the markup for our form to index.html:

static/deploy/public/index.html
<div class="container">

<h1>AwesomeCo Deals is coming to your area!</h1>

<form method="post" action="">
<p>
Sign up to be notified when we're ready to launch and be one of the
first in your area to get in on the action!
</p>
<div>
<label>

Enter your email
<input type="email" placeholder="email@example.com">

</label>
<input type="submit" value="Sign Me Up">

</div>
</form>

</div>

When a visitor fills in an email address and submits the form, we’ll capture
the form submission and send the result to the server with Ajax. We’ll then
hide the form and display a confirmation message. For this demo, we’ll leave
the actual Ajax piece out.

We’ll place our JavaScript code in the javascripts folder of our project, not in
the public folder of our project. Remember, Grunt will pluck the file out of the
javascripts folder and combine it with jQuery, placing the resulting file in the
public/assets folder. In javascripts/form.js, we add this code:

static/deploy/javascripts/form.js
(function() {

$(function() {
return $("form").submit(function(event) {
var element;
event.preventDefault();
element = $("<p>You've been added to the list!</p>");
element.insertAfter($(this));
return $(this).hide();

});
});

})(this);

Chapter 7. Hosting and Deployment Recipes • 310

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/static/deploy/public/index.html
http://media.pragprog.com/titles/wbdev2/code/static/deploy/javascripts/form.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Grunt is watching our files for changes, so when we save the JavaScript file,
Grunt updates the public/assets/app.js file. This file now contains our form-han-
dling code, as well as the jQuery library it depends on, all in a single minified
file. We don’t change our workflow at all; Grunt makes this all transparent.

All that’s left to do is add some simple CSS to stylesheets/style.css. First we center
the page and set some font sizes:

static/deploy/stylesheets/style.css
.container {

border: 1px solid #ddd;
box-shadow: 5px 5px 5px #ddd;
margin: 0px auto;
text-align: center;
width: 960px;

}

.container h1 {
font-size: 72px;

}

.container h1 span.name {
color: #900;
display: block;

}

.container p {
font-size: 24px;

}

Then we change the borders and text sizes on the form fields:

static/deploy/stylesheets/style.css
.container form {

margin-bottom: 20px;
}

.container input,

.container label {
font-size: 36px;
height: 50px;

}
.container input {

border: 1px solid #ddd;
}

.container input[type=submit] {
background-color: #900;
color: #fff;

}

report erratum • discuss

Automating Static Site Deployment with Grunt • 311

http://media.pragprog.com/titles/wbdev2/code/static/deploy/stylesheets/style.css
http://media.pragprog.com/titles/wbdev2/code/static/deploy/stylesheets/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Saving the CSS file triggers Grunt again, this time creating the public/assets/app.css
file for us.

When we open index.html in our browser, we can see everything working
together. But now let’s extend this a step further by turning this development
workflow into a deployment workflow.

Automating Deployment with SCP

Using Grunt and the grunt-scp plug-in, we can add a task to package up our
assets and push all of our files to our server. We’ll use the virtual machine
we created in Recipe 39, Setting Up a Virtual Machine on page 282, as our
server for this recipe. If you don’t have that one handy, feel free to use your
own server or download the virtual machine from the book’s website.23

Joe asks:

What About Deploying to Windows Servers?
The configuration we whipped up in this recipe will let us send files from our Windows,
Mac, or Linux machine to any box running SSH. Windows servers don’t have SSH
installed, but you can install OpenSSHa on your Windows servers and use the same
scripts we’re building in this recipe to push your files to Windows-based servers. If
that’s not an option, you could mount the server’s disks as network drives on your
client machine and copy the files over instead of using SCP. We’ve used both of these
approaches successfully. We highly recommend automating your deployment
regardless of your target platform.

a. http://sshwindows.sourceforge.net/

We configure the plug-in for SCP just like the rest of our file. However, the
plug-in needs connection information from our server, and we don’t want to
store sensitive data in our script. So let’s make a new file called servers.json
that contains details about the server we’re going to connect to:

static/deploy/servers.json
{

"production": {
"host" : "192.168.1.100",
"username" : "webdev",
"password" : "webdev"

}
}

23. http://webdevelopmentrecipes.com

Chapter 7. Hosting and Deployment Recipes • 312

report erratum • discuss

http://sshwindows.sourceforge.net/
http://media.pragprog.com/titles/wbdev2/code/static/deploy/servers.json
http://webdevelopmentrecipes.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We’ll assume our server is located at 192.168.1.100 and that the username and
password are both webdev. Remember that you can use the ifconfig command
on your server’s console to locate its IP address; yours may be different.

Next, we need to read that configuration into Grunt, which we can do by
serializing it into a configuration variable:

static/deploy/Gruntfile.js
grunt.config('servers', grunt.file.readJSON('servers.json'));

Then we can configure the SCP plug-in itself. We define the task to copy the
public folder and its contents to the /var/www folder on the virtual machine,
which is where the default website for Apache goes:

static/deploy/Gruntfile.js
grunt.loadNpmTasks('grunt-scp');
grunt.config('scp', {

production: {
options: {
host: '<%= servers.production.host %>',
username: '<%= servers.production.username %>',
password: '<%= servers.production.password %>'

},
files: [{
cwd: 'public',
src: '**/*',
filter: 'isFile',
dest: '/var/www/html'

}]
}

});

Notice that we can inject the values from our server configuration file into
our SCP configuration.

Now we create a deploy task that runs our build task and then uploads the files:

static/deploy/Gruntfile.js
grunt.registerTask('deploy', ['build', 'scp']);

How to Avoid Storing Passwords in Scripts with SSH Keys

In Recipe 32, Managing Files with Git on page 230, we discussed how to create SSH
keys. By uploading your public key to your servers, you can remove the password part
of the deployment script. This is a much more secure way of scripting deployments.

Now, when we execute the grunt deploy task, our code is built and then pushed
to our server:

report erratum • discuss

Automating Static Site Deployment with Grunt • 313

http://192.168.1.100
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/deploy/Gruntfile.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$ grunt deploy
Running "cssmin:public/assets/app.css" (cssmin) task

Running "uglify:public/assets/app.js" (uglify) task
>> 1 file created.

Running "scp:production" (scp) task
ssh connect 192.168.1.100
write /var/www/assets/app.css
transfer 1/1 data
write /var/www/assets/app.js
transfer 3/3 data
write /var/www/index.html
transfer 1/1 data
ssh close 192.168.1.100

We can pull it up in the browser at http://192.168.1.100/index.html. When it comes
time to push our code to the production server, we need to change only the
login details in the script. Or we can create another target in the same script
for production.

Incorporating CoffeeScript and Sass

Once you have a good deployment workflow in place, you can start working
more tasks into it. For example, you could incorporate CoffeeScript, which
we look at in Recipe 31, Cleaner JavaScript with CoffeeScript on page 221, and
Sass, which we explore in Recipe 30, Building Modular Style Sheets with Sass
on page 213, into this process quite easily, so that you can use those tools in
your development process. You can set up Grunt to watch files for changes
and automatically convert your Sass and CoffeeScript files to their respective
formats in real time, and automatically whenever you deploy. To do that, you
would install the CoffeeScript and Sass plug-ins for Grunt:

$ npm install grunt-contrib-coffee --save-dev
$ npm install grunt-contrib-sass --save-dev

You would then write the style sheet with Sass, placing it in sass/style.scss.
Similarly, you would develop the form handler code in CoffeeScript in coffee-
scripts/form.coffee. You would then modify the Gruntfile.js to place the generated
CSS and JavaScript files into a temporary directory:

Chapter 7. Hosting and Deployment Recipes • 314

report erratum • discuss

http://192.168.1.100/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

static/sassandcoffee/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-coffee');
grunt.config('coffee', {

'tmp/app.js': ['coffeescripts/*.coffee']
});

grunt.loadNpmTasks('grunt-contrib-sass');
grunt.config('sass', {

'tmp/app.css': ['sass/*.scss']
});

Then you’d modify the watch task so it watches Sass and CoffeeScript files for
changes instead of the JavaScript and CSS files:

static/sassandcoffee/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-watch');
grunt.config('watch', {

js: {
files: ['coffeescripts/*.coffee'],
tasks: ['coffee', 'uglify']

},
css: {

files: ['sass/*.scss'],
tasks: ['sass', 'cssmin']

}
});

And then you’d modify the cssmin and uglify tasks to pull the temporary files
together into the assets folder:

static/sassandcoffee/Gruntfile.js
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.config('uglify', {

'public/assets/app.js': [
'bower_components/jquery/dist/jquery.js',
'tmp/app.js'

]
});

grunt.loadNpmTasks('grunt-contrib-cssmin');
grunt.config('cssmin', {

'public/assets/app.css': ['tmp/app.css']
});

Of course, the build task has to change as well:

static/sassandcoffee/Gruntfile.js
grunt.registerTask('build', ['coffee', 'sass', 'cssmin', 'uglify']);

And when you run your build task, everything falls into place:

report erratum • discuss

Automating Static Site Deployment with Grunt • 315

http://media.pragprog.com/titles/wbdev2/code/static/sassandcoffee/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/sassandcoffee/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/sassandcoffee/Gruntfile.js
http://media.pragprog.com/titles/wbdev2/code/static/sassandcoffee/Gruntfile.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

$ grunt build
Running "coffee:tmp/app.js" (coffee) task
>> 1 files created.

Running "sass:tmp/app.css" (sass) task

Running "cssmin:public/assets/app.css" (cssmin) task

Running "uglify:public/assets/app.js" (uglify) task
>> 1 file created.

Done, without errors.

This approach lets you mix regular JavaScript and CSS with CoffeeScript and
Sass, which means you can use jQuery, Angular, Knockout, Skeleton, or any
of the other techniques in this book in your automated build chain. Since the
resulting files all end up in the public folder, our deployment task in Gruntfile.js
doesn’t change at all. And Grunt has many other plug-ins you can use, or
you can write your own.

Further Exploration
You can investigate other tools that handle asset management and minifica-
tion, such as Broccoli,24 and other task runners such as Gulp,25 which offers
a different way to think about configuration.

To take deployment to the next level, you could investigate Capistrano,26 a
Ruby-based tool that lets you write recipes to deploy sites from version-control
systems such as Git. Although Capistrano was originally designed to deploy
Ruby on Rails applications, it works great for deploying static sites, PHP
applications, or even software packages.

Also See
• Recipe 30, Building Modular Style Sheets with Sass on page 213
• Recipe 31, Cleaner JavaScript with CoffeeScript on page 221
• Recipe 29, Creating a Simple Blog with Enfield on page 203
• Recipe 32, Managing Files with Git on page 230
• Recipe 36, Testing Web Interfaces with Nightwatch on page 258
• Recipe 33, Testing Websites on Real Devices on page 242

24. https://github.com/broccolijs/broccoli
25. http://gulpjs.com/
26. https://github.com/capistrano/capistrano/wiki/

Chapter 7. Hosting and Deployment Recipes • 316

report erratum • discuss

https://github.com/broccolijs/broccoli
http://gulpjs.com/
https://github.com/capistrano/capistrano/wiki/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Recipe 45

Configuring a Virtual Machine with Puppet

Problem
Our team is adding a few new developers, and as senior members of the team
we’ve been asked by our boss to help on-board them. We’ve been using a
virtual machine for our day-to-day work and want to share that with the new
developers. It would be nice to allow them to reset their development virtual
machine without snapshots.

Ingredients
• Vagrant27

• VirtualBox28

• Puppet29

Solution
We can use Puppet and Vagrant in combination to script our virtual-machine
configuration in a replicable solution.

Vagrant is a tool for building development environments that we can use to
easily interface with VirtualBox without having to use its GUI. We can grab
an installer from Vagrant’s website.30

Puppet is a configuration-management tool that will allow us to define the
state of the machine programatically. Since we’ll be running the Puppet scripts
on our virtual machine, we don’t need to install anything!

Vagrant works with a variety of virtual-machine hypervisors; however, since
we’re already using VirtualBox in Recipe 39, Setting Up a Virtual Machine on
page 282, we’ll continue to use that.

With Vagrant and VirtualBox installed, we’re ready to get started. For the rest
of this recipe, we’ll refer to downloaded code from this book’s source code.

27. https://www.vagrantup.com/
28. http://www.virtualbox.org/
29. http://puppetlabs.com/
30. https://www.vagrantup.com/downloads.html

report erratum • discuss

Configuring a Virtual Machine with Puppet • 317

https://www.vagrantup.com/
http://www.virtualbox.org/
http://puppetlabs.com/
https://www.vagrantup.com/downloads.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Let’s start our adventure from the puppet/start directory. Inside we find two
directories—puppet and site:

~start/
|+puppet/
|+site/

From our start directory, we run the following command to initialize the
directory to work with Vagrant:

$ vagrant init

This creates a Vagrantfile file inside our folder. The file that’s generated shows
many of the configuration options for Vagrant. Feel free to explore the gener-
ated file and then change it to the following:

puppet/finish/Vagrantfile
-*- mode: ruby -*-Line 1

vi: set ft=ruby :-

-

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!-

VAGRANTFILE_API_VERSION = "2"5

-

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|-

config.vm.box = 'ubuntu/trusty64'-

-

config.vm.hostname = "webdev"10

-

config.vm.provider :virtualbox do |vb|-

vb.customize ["modifyvm", :id, "--memory", "512", "--name", "webdev"]-

end-

15

config.vm.synced_folder "site","/var/www/site"-

-

config.vm.network :private_network, ip: "33.33.13.37"-

-

config.vm.provision :puppet do |puppet|20

puppet.options = ["--verbose --debug"]-

puppet.manifests_path = "puppet/manifests"-

puppet.module_path = "puppet/modules"-

puppet.manifest_file = "site.pp"-

end25

end-

Let’s break this file down a bit. On line 5 we’re specifying version 2 of the
Vagrant API. On line 8 we tell Vagrant what base box to use. Then on line 10
we set the hostname of our VM to be webdev.

Chapter 7. Hosting and Deployment Recipes • 318

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/puppet/finish/Vagrantfile
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

In lines 20 to 25 we see some mention of VirtualBox along with options for
memory and a name. These are values that normally we would configure in
the VirtualBox GUI, but here Vagrant takes care of it for us.

After the section configuring VirtualBox on line 16, we see a setting to sync
a folder. This line tells Vagrant to copy the site from the local machine to
/var/www/site on the server.

The last section of the Vagrant file defines our Puppet configuration. Let’s
take a look at the Puppet files, and that’ll clear up this section of code.

The starting folder structure from the book’s code repository helps us out
here. Puppet requires folders that we need to create: manifests and modules:

~puppet/
|+manifests/
|+modules/

Inside the manifests folder we create a site.pp file, which will be our main entry
into our Puppet configuration declaration. This is where we’ll list the modules
we’re going to add in a bit. Let’s put the following code inside of the site.pp file:

puppet/finish/puppet/manifests/site.pp
Exec {

path => "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
}
include aptget
include apache2
include php

Here we’re doing a couple of things. First off, we’re setting the path at which
the Puppet executable can be found on the VM, and then we’re defining the
modules we’re going to create next. We’re going to have Puppet install and
configure PHP and Apache. We’ll also have Puppet update the server with
Ubuntu’s apt-get package manager.

Let’s start with the apt-get module manifest, and then we’ll work over to the
PHP and Apache modules. Puppet requires a manifests folder inside of each
module and an init.pp file inside of that. Inside the modules/aptget/manifests folder,
create the init.pp file with the following contents:

puppet/finish/puppet/modules/aptget/manifests/init.pp
class aptget {

exec { 'apt-get update':
command => '/usr/bin/apt-get update --fix-missing',
timeout => 0
}

Exec["apt-get update"] -> Package <| |>
}

report erratum • discuss

Configuring a Virtual Machine with Puppet • 319

http://media.pragprog.com/titles/wbdev2/code/puppet/finish/puppet/manifests/site.pp
http://media.pragprog.com/titles/wbdev2/code/puppet/finish/puppet/modules/aptget/manifests/init.pp
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

We start by creating an aptget class. Next we are starting an exec block called
apt-get update. By naming the method, we can invoke it more easily from other
places in our scripts. In this case we’re setting two properties in our exec block:
command and timeout. command is the system command we want to run, and
timeout is how long it should wait before it times out and fails. The 0 value that
we set for the timeout disables that setting, because updating lots of packages
might take a long time, and we don’t want our scripts to fail when updating
already installed software. The last line in our manifest is what triggers the
exec block to execute. The first half of the statement tells Puppet to find an
exec block called apt-get update and execute that. The second half specifies that
this should be done before any package block is executed. By making sure all
packages are updated and sources are refreshed, we ensure that our machine
gets the latest version of all packages.

Next let’s tackle our PHP installation. We need an init.pp file inside of mod-
ules/php/manifests. Add the following contents to the init.pp file:

puppet/finish/puppet/modules/php/manifests/init.pp
class php {

package {
"php5" :
ensure => installed,

}
package {

"php5-cli" :
ensure => installed,

}
package {

"php5-xdebug" :
ensure => installed,

}
package {

"libapache2-mod-php5" :
ensure => installed,
require => Package["php5"]

}
}

We notice four package blocks in our class for installing PHP. The package block
is a common tool to use in Puppet. Because Puppet can run on a variety of
operating systems, package blocks allow us to specify the name of the package
and let Puppet decide how to install it. In our case, we’re running on Ubuntu
and using the apt-get package manager by default. So Puppet will run these
commands in a similar fashion to how you’d install it manually with sudo apt-
get install php5. We’re setting the ensure property to installed to signify that if it is
installed it’s good to go!

Chapter 7. Hosting and Deployment Recipes • 320

report erratum • discuss

http://media.pragprog.com/titles/wbdev2/code/puppet/finish/puppet/modules/php/manifests/init.pp
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

The last Puppet module we need to add is Apache2. This module has the most
code in it, but you’ll see that it’s not all that complex:

~puppet/
|+manifests/
|~modules/
| |~apache2/
| | |~files/
| | `~manifests/
| | `-init.pp

The Apache2 module introduces a files folder. This folder contains files related
to configuring Apache. You’ll learn about these as we build up our init.pp file:

puppet/finish/puppet/modules/apache2/manifests/init.pp
class apache2{

package {
"apache2":
ensure => present,
before => File["/etc/apache2/apache2.conf"]

}

service {
"apache2":
ensure => true,
enable => true,
subscribe => File["/etc/apache2/apache2.conf"]

}
file {

"/etc/apache2/apache2.conf":
source => "puppet:///modules/apache2/apache2.conf",
owner => root,
group => root,
require => Package["apache2"]

}
file {

"/etc/apache2/sites-available/webdev.conf":
source => "puppet:///modules/apache2/webdev.conf",
owner => root,
group => root,
notify => Exec["a2ensite webdev"],
require => Package["apache2"]

}

file {
"/etc/ssl/private/awesomeco.key":
source => "puppet:///modules/apache2/awesomeco.key",
owner => root,
group => root,
notify => File["/etc/ssl/certs/awesomeco.crt"],
require => Package["apache2"]

report erratum • discuss

Configuring a Virtual Machine with Puppet • 321

http://media.pragprog.com/titles/wbdev2/code/puppet/finish/puppet/modules/apache2/manifests/init.pp
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

}

file {
"/etc/ssl/certs/awesomeco.crt":
source => "puppet:///modules/apache2/awesomeco.crt",
owner => root,
group => root,
notify => File["/etc/apache2/sites-available/webdevssl.conf"],
require => File["/etc/ssl/private/awesomeco.key"]

}

file {
"/etc/apache2/sites-available/webdevssl.conf":
source => "puppet:///modules/apache2/webdevssl.conf",
owner => root,
group => root,
notify => Exec["a2enmod ssl"],
require => File["/etc/ssl/certs/awesomeco.crt"],

}

exec { 'a2ensite webdev':
command => 'a2ensite webdev',
require => File["/etc/apache2/sites-available/webdev.conf"],
notify => Service["apache2"]

}

exec { 'a2enmod ssl':
command => 'a2enmod ssl',
require => File["/etc/apache2/sites-available/webdevssl.conf"],
notify => Exec["a2ensite webdev"],

}

exec { 'a2ensite webdevssl':
command => 'a2ensite webdev',
require => File["/etc/apache2/sites-available/webdevssl.conf"],
notify => Service["apache2"]

}

file { '/etc/apache2/sites-enabled/000-default.conf':
ensure => absent,
require => Package["apache2"],
notify => Service["apache2"]

}

exec {'site-permission':
command => 'sudo chmod -R 775 /var/www/site'

}

}

Chapter 7. Hosting and Deployment Recipes • 322

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Looking at apache2/manifests/init.pp, we notice that we have both exec blocks and
package blocks, and also two new block types: file and service. The file block
allows us to make sure a file exists in a specific location. This is a handy tool
for configuration files such as Apache2 configs and SSL certificates. The service
block tells Puppet to check to see that a service exists and, in our case, is
enabled.

Let’s break down a file block and see what it’s doing.

puppet/finish/puppet/modules/apache2/manifests/init.pp
file {

"/etc/apache2/apache2.conf":
source => "puppet:///modules/apache2/apache2.conf",
owner => root,
group => root,
require => Package["apache2"]

}

First we have the definition of the file block, which is the final location on the
provisioned machine. Then we have definitions for source, owner, and group.
source is the place where Puppet should get the file from. In our case, we’re
getting it from the modules/apache2/files folder. Our starter code from the book’s
repository saved us the trouble of gathering all the config files from Recipe
41, Configuring Secure Websites with Apache on page 292, and Recipe 39,
Setting Up a Virtual Machine on page 282, so we don’t have to do that.

Now that our Puppet files are created, we can start our VM. We need to make
sure that we cd into the start folder from our command line and then start
the process with the following command:

$ vagrant up

We see a lot of output from Vagrant as the VM powers up and provisions.
When it finishes, we see some output similar to the following:

==> default: Notice: Finished catalog run in 200.96 seconds

To verify that everything is working we can visit http://33.33.13.37/index.html in our
browser. We see the page shown in the following figure:

Now that we have a working web server, we can use Vagrant to do a couple
more things. We can ssh into the VM with $ vagrant ssh, which is easier than

report erratum • discuss

Configuring a Virtual Machine with Puppet • 323

http://media.pragprog.com/titles/wbdev2/code/puppet/finish/puppet/modules/apache2/manifests/init.pp
http://33.33.13.37/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

remembering an IP, a username, and a password, as in Recipe 39, Setting Up
a Virtual Machine on page 282. Typing $ exit while in the VM will bring us back
to our machine. To stop the VM, we can use $ vagrant halt. Lastly, if we want to
scrap our VM, we can use $ vagrant destroy.

Further Exploration
Vagrant and Puppet take our virtual-machine playground one step further
and allow us to trash it and rebuild it, completely configured, in record time.

One perk of using Puppet for configuring virtual machines is we can use it
to configure production and candidate machines. Also, because it’s code, we
can commit it to our version-control system and share it with team members.
Puppet Labs31 is a great resource for learning about Puppet and includes a
search for many already created modules to add to other projects.

Also See
• Recipe 39, Setting Up a Virtual Machine on page 282
• Recipe 41, Configuring Secure Websites with Apache on page 292

31. http://puppetlabs.com/

Chapter 7. Hosting and Deployment Recipes • 324

report erratum • discuss

http://puppetlabs.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

APPENDIX 1

Bibliography
[Bur15] Trevor Burnham. CoffeeScript: Accelerated JavaScript Development, Second

Edition. The Pragmatic Bookshelf, Raleigh, NC, and Dallas, TX, 2015.

[CC11] Hampton Catlin and Michael Lintorn Catlin. Pragmatic Guide to Sass. The
Pragmatic Bookshelf, Raleigh, NC, and Dallas, TX, 2011.

[Hog13] Brian P. Hogan. HTML5 and CSS3 (2nd edition). The Pragmatic Bookshelf,
Raleigh, NC, and Dallas, TX, 2nd, 2013.

[Kle15] Benjamin Klein. The VimL Primer. The Pragmatic Bookshelf, Raleigh, NC,
and Dallas, TX, 2015.

[Nei12] Drew Neil. Practical Vim. The Pragmatic Bookshelf, Raleigh, NC, and Dallas,
TX, 2012.

[Nor10] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy, Bryan
Helmkamp, Dan North. The RSpec Book. The Pragmatic Bookshelf, Raleigh,
NC, and Dallas, TX, 2010.

[Swi08] Travis Swicegood. Pragmatic Version Control Using Git. The Pragmatic
Bookshelf, Raleigh, NC, and Dallas, TX, 2008.

report erratum • discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Index

SYMBOLS
$ sign

referencing jQuery ob-
jects, xi, 22, 56, 150

Sass variables, 214
shell prompt, xii

& symbol, URL parameters,
67

() (parentheses)
CoffeeScript, 225
ES6, 229
mixins, 216

+ graphic, 190–192

- (hyphen), YAML front mat-
ter, 206

- graphic, 190–192

-> symbol, 223, 225

: key, Vim, 289

? key, keyboard shortcuts, 67

? mark, URL parameters, 67

_ (underscore), Sass prefix,
214

{} (curly braces)
Angular, 111
ES6, 229
Handlebars templates,

71–72
Liquid template language,

205
mixins, 216

DIGITS
301 Redirect header, 302

404 Error page, 287–291

A
-a flag, Git, 232

absolute positioning
pop-up windows, 174
quotes, 11

abstraction layers, 86

accessibility
about, 92
animations, 17
expanding and collapsing

lists, 53–60
images in HTML emails,

46
keyboard shortcuts, 61–

68
tooltips, 25–28
updates with Knockout,

88, 90

addToDo(), to-do list, 270–274

addresses
collection recipe, 304–312
contact forms, 136–143
Git and, 231, 237
verifying email, 139–143

:after selector, quotes, 9

Ajax
Backbone and, 86
endless pagination, 79,

82–86
form submission, 60
remote accessing data,

145
requests with Coffee-

Script, 225–228
search interface, 97–106
synchronizing shopping

cart data, 94
widgets, 152

ajax()
remote accessing data,

145
rendering templates, 227
widgets, 152

alert recipe, see status site
recipe

alias, controller, 114

AllowOverride, 290, 302

alpha transparency, 216

alternative text, see also ac-
cessibility

animations, 17
images, 46

ampersand symbol, URL pa-
rameters, 67

anchors, 183, 186

Android, see mobile devices

Angular, 107–119

animations
CSS transformations, 13–

17
font icons, 34
slideshows, 18–24

anonymous functions, wid-
gets, 148, 151

Apache
configuring, 284
configuring error page,

289–291
installing and configuring

with Puppet, 319, 321
logs, 252
rewriting URLs, 300–303
securing, 292–299
testing with virtual ma-

chines, 282–286

Apache2, 321

Apache2-Utils, 296

appliances, virtual machines,
286

applyBindings(), 89

apps, Angular framework,
107–119, see also product
website recipes

apt-get package manager, 319

area graphs, 130

ARIA, see HTML5 ARIA

aria-describedby tag, 26, 28

aria-live attribute, 88, 90

arrow, skinny, 223, 225

arrow icon, 183

arrow keys
keyboard navigation, 62,

66
Vim, 288

assertions, 253, see also test-
ing

asset management, 316

asset packaging, 304–305

assets folder, Grunt, 310

attributes
Angular directives, 110
component properties,

101

authentication, see also secu-
rity

HTTP, 296–299
remote repositories, 236

authors, blog posts, 208

automating
CoffeeScript, 227, 314–

316
deployment on Windows

servers, 312
deployment with SCP,

312–316
static site deployment,

229, 304–316
testing with Browser-

Stack, 264
testing with Jasmine,

267–276
testing with Nightwatch,

258–266
testing with Selenium,

253–257

automation tools, Selenium
as, 257

B
Babel, 229

Back button
Ajax sites, 82–86
jQuery Mobile, 188

Backbone, Ajax and, 86

backgrounds
accessible tooltips, 27
blog posts, 209
buttons, 4, 214–215
email template, 39, 43
font icons, 33
images in HTML emails,

37
Media Queries, 199
Sass, 214
speech bubbles, 10, 215
sprites on mobile devices,

191
tabs, 51

backing up files with Drop-
box, 280

bandwidth, see also load
times; speed

animations, 16
images on mobile devices,

190
simulating latency, 247,

249
synchronizing shopping

cart data, 94

bar graphs, 132–135

bare repositories, 238

BDD (behavior-driven develop-
ment), 267, 271

:before selector, quotes, 9

beforeEach(), Jasmine, 270

behavior-driven development
(BDD), 267, 271

binding
Angular support, 107
collapsing and expanding

lists, 57
control-flow, 92–94
events, 95
keyboard shortcuts, 61–

64
map markers, 122, 126
page updates, 87–96
tap events, 188
to-do list, 272

blind users, see accessibility

Blink, 4

blocking
image requests, 298
users, 296, 299

<blockquote> tag, styling, 6–12

blogs
creating with Enfield,

203–212
hosting with Dropbox,

281

blurring, see sheen animation

<body> tag, HTML emails, 37–
38

Bootstrap, 31, 202

borders
box model, 243
buttons, 4
colors, 214
HTML email templates,

43
quotes, 7, 11
Sass, 214
Skeleton grids, 199
speech bubbles, 10–11
static site landing page,

311
tabs, 51

Bower, 307

box model, 243, see al-
so search boxes and forms

box-shadow property, 4

box-sizing property, 243

branches, Git, 233–239

Bridged network type, 283

Broccoli, 316

Brown, Tait, 166

browsers
emulators, 185
headless, 276
pushState() support, 85
testing with Browser-

Sync, 242–249
testing with Jasmine,

267–276
testing with Nightwatch,

258–266
testing with Selenium,

253–257
titles, 85
transitions and transfor-

mations support, 14
WebKit-based, 4, 10, 14

BrowserStack, 258, 264

BrowserSync, 242–249

bubbles, speech, 10–12, 213–
219

bubbling up, stopping, 57–
58, 172

Index • 328

build
Enfield, 211
Grunt, 308, 313, 315
search interface with

JSX, 106

bullets, replacing with icons,
32

Burnham, Trevor, 222

buttons
adding, 21
disabling, 5
icons, 183
jQuery Mobile, 183–184
styling, 2–5, 183, 213–

219
testing with Jasmine,

269–276
tracking activity, 250–

252

C
-c flag, Apache, 297

Campaign Monitor, 42

Capistrano, 316

Cascading Style Sheets,
see CSS

cat command, Apache, 297

categorized lists, see collaps-
ing and expanding lists

Ceaser, 15

centering
email templates, 39
images, 201
static site landing page,

311

certificate providers, 294

certificates, SSL, 292–295

chart property, 129

chartOptions variable, 129

charts, 128–135

cherry picking, 234

childSelector, tabbed interfaces,
49

Chrome
emulator, 185
testing with Nightwatch,

263

<cite> tag, styling, 6–12

click events
collapsing and expanding

lists, 57–59
drop-down menus, 171–

172
map markers, 122, 126

pause button for
slideshow, 21

stopping propagation,
57, 172

styling buttons and links,
5

tabbed interfaces, 50
testing with Jasmine,

269–276
testing with Selenium,

255
to-do list, 272
tracking with heatmaps,

250–252

ClickHeat, 250–252

cloning
Git repositories, 238
virtual machines, 286

close-quote, 9
Cloudant, 154–155

code
isolating with anonymous

functions, 148, 151
JavaScript conventions,

xi
sharing with mixins, 219
source code for this book,

xiii, 133

CoffeeScript
automated deployment

with Grunt, 314–316
improving JavaScript

with, 221–229
Jasmine and, 276

CoffeeScript: Accelerated
JavaScript Development,
222

collapsing and expanding
lists, 53–60, 164–172, 190–
192

collections, CouchDB, 155

color
blog posts, 209
buttons, 3, 214
email template, 39, 43
font icons, 33
footers, 211
links, 3, 211
quotes, 8–9, 11
reversing, 5
Sass, 214
Skeleton grids, 199
speech bubbles, 10
sprites, 190
static pages, 211
tabs, 51

columns, Skeleton grid, 195–
196

Command action in Seleni-
um, 255

command line
CoffeeScript, 225, 227
CouchDB, 156
Enfield, 207
Grunt, 307
Sass, 214
shell, xii

command mode, Vim, 288–
290

command property, Puppet, 320

comment systems, blogs, 212

comments, minification, 305

committing files
Git, 232, 234
log widget, 148–153

Compass, 219

componentDidMount(), 100

components, properties, 101

computed(), Knockout, 91, 94

concatenation, see string
concatenation

conditional statements, 72

configuration files, changing
with Vim, 287–291

configuration rules, 290

conflicts, Dropbox, 280, see
also version control

constraining
blog posts, 209
BrowserSync testing,

243–244

constructors, JavaScript
functions, 89

contact forms, creating, 136–
143

container class, Skeleton, 196

content attribute, quotes, 9

content encoding, Skeleton,
201

control-flow binding, 92–94

controlgroup role, jQuery Mobile,
183

controller syntax, 111, 114, 116

controllers, Angular app,
109–119

corners, 4, 10, 215

CORS (Cross-Origin Resource
Sharing), 147

Couch library, 159

Index • 329

CouchApp, 157–158

CouchDB, 154–161

CrazyEgg, 252

createTab(), 49–50

createTabs(), 49–50

Cross-Origin Resource Shar-
ing (CORS), 147

cross-site data with JSONP,
144–147

CSS
accessible tooltips, 25–28
blogs, 209
BrowserSync, 242–249
buttons, 2–5, 213–219
collapsing and expanding

lists, 54, 59
drop-down menus, 169
endless pagination, 78
font icons, 29–34
headers, 14
HTML emails, 37, 43
landing page, 310–312
links, 2–5
lists for mobile devices,

164–167
maps, 124
Media Queries, 164–167,

195, 199
minification, 305, 307–

308
mobile devices interfaces,

180, 182, 184, 186
pop-up windows, 173
quotes, 6–12
resources, 12
Sass modular style

sheets, 213–219
selectors in Nightwatch,

260
Skeleton, 194–202
speech bubbles, 10–12,

213–219
sprites, 190–192
tabbed interfaces, 47,

49, 51
transformations, 13–17
widget recipe, 148, 152

Ctrl+C , shutting down server,
207

cURL, 156

curly braces
Angular, 111
ES6, 229
Handlebars templates,

71–72

Liquid template language,
205

mixins, 216

currentEntry variable, 64

currentPage variable, 79

current_page parameter, 84

cursors
drag and drop, 178
search box shortcut, 68

custom error page, 287–291

custom events, 184, 188

customer data
modeling, 132–135
widget, 153

Cyberduck, 285

Cycle2 jQuery plug-in, 18–24

cycling images, 18–24

D
-d flag, cURL, 156

data
charts and graphs, 128–

135
CouchDB, 154–161
document databases, 155
querying, 158
relational databases, 155
remote access with

JSONP, 144–147
resetting databases dur-

ing testing, 262, 264,
266

widget recipe, 148–153

data-bind, Knockout, 93

data-direction attribute, jQuery
Mobile, 188

data-product-id attribute, jQuery
Mobile, 186

deep links, 107

definitions, HTML emails, 37

DELETE, Angular app, 109

deleting
branches in Git, 236
buttons, 5
products in Angular app,

109
records while testing with

Nightwatch, 262
virtual machine, 323

dependency injection, Angu-
lar app, 107, 112

deploy, 313

deployment
automated, 229, 304–316

SCP, 312–316
virtual machines, 286
Windows servers, 312

describe(), Jasmine, 269–270

design
heatmaps, 252
mixing implementation

with, 201
Reupholster design docu-

ments, 158
Skeleton, 194–202
testing websites with

BrowserSync, 242–249

destroy, Vagrant, 323

device-height, 164

device-width, 164

devices, see mobile devices

dialog boxes, see also search
boxes and forms

authentication, 297
map markers, 122, 126

dir /a, viewing hidden files, 301

directions, map, 122, 127

Directives (Angular), 108, 110

directives (configuration
rules), 290

directories, locking, 297

disabling buttons, 5

disk partitioning, virtual ma-
chines, 284

display property, accessible
tooltips, 27

displayPhotos(), 146

Disqus, 212

<div> tag
conditional statements,

72
endless pagination, 79

docs folder in CouchApp, 157

document databases, 155,
see also CouchDB

dollar sign
referencing jQuery ob-

jects, xi, 22, 56, 150
Sass variables, 214
shell prompt, xii

DOM
testing with Jasmine, 274
virtual DOM and React,

97

domain name redirection,
281, 303

DomReady(), 274

Index • 330

downtime alert, see status
site recipe

drag and drop on mobile de-
vices, 173–179

drop shadows
accessible tooltips, 27
buttons, 4, 215, 219
font icons, 29
Skeleton grids, 199
speech bubbles, 215, 219

drop-down menus, 168–172

Dropbox, 278–281

duplication, reducing
with control flow bind-

ings, 92
with mixins, 215–219
with nesting, 217
with templates, 117

E
-e flag, Nightwatch, 264

each(), jQuery, 146

ECMAScript 6, 221–222, 229

editing files with Vim, 287–
291

email
address collection recipe,

304–312
addresses and Git, 231,

237
contact forms, 136–143
HTML templates, 36–46
multipart, 42
verifying addresses, 139–

143

Email Standards Project, 37

embedding widgets, 148–153

emulators, browser, 185, see
also BrowserSync

end-to-end tests, Nightwatch,
259

endless pagination, 76–86

Enfield, 203–212

enhancement, progressive, 59

errors
CouchDB, 161
form, 140–141
.htaccess, 296
Page Not Found page,

287–291
testing error messages,

256

ES6, 221–222, 229

ESC key, Vim, 288, 290

event handlers
drag and drop windows,

178
drop-down menus, 172
endless pagination, 80
keyboard shortcuts, 63
map markers, 126

event propagation, stopping,
57–58, 172

excluding, files and folders
from root directory, 210

exit, Vagrant, 323

expanding and collapsing
lists, 53–60, 168–172, 190–
192

Explorer, see Internet Explor-
er

External address, BrowserSync,
244

external templates, 74

F
[F] flag, Apache, 299

<fa> class, font icons, 32

Facebook, keyboard short-
cuts, 61

fading, slideshows, 20

fakes, 273

feedback, contact forms, 136,
141

file block, Puppet, 323

files
excluding from root direc-

tory, 210
file management with Git,

230–239
hidden, 301
locking, 296–299
virtual servers, 284

FileZilla, 285

Firefox testing
with Jasmine, 267–276
with Nightwatch, 259–

264
with Selenium, 253–257

fixtures, 270, 275

Flash, 13, 18

Flickr recipe, 144–147

Flux, 106

focus(), search boxes, 68

folders, excluding from root
directory, 210

Font Awesome, 29–34

font icons, 29–34

fonts
buttons, 3
charts and graphs, 131
contact forms, 138
font icons, 29–34
links, 3
mobile devices, 165
quotes, 7, 9, 11
Skeleton grid, 195
speech bubbles, 10
static site landing page,

311
tabs, 51

footers
email template, 38, 41
jQuery Mobile, 182, 187
static pages with Enfield,

211

force deleting branches, 236

forms, see also search boxes
and forms

Angular app, 109
contact, 136–143
errors, 136, 140–141
HTML templates, 69–74
intercepting submit events,

60
Knockout, 91
landing page, 310–312
static site deployment,

310
testing, 136, 140, 256,

270

Foundation, 202

frameworks
about, 118
Angular, 107–119
Bootstrap, 202
Compass, 219
Foundation, 202
Skeleton, 194–202

fresh_start, QEDServer, 262

functions
CoffeeScript, 222
locator functions in Sele-

nium, 255
object constructors in

JavaScript, 89
spies, 273

fx: option, cycling images, 23

G
-g flag, Grunt, 307

geolocation, 122, 127

gesture commands, 179

GET
Angular app, 109

Index • 331

HTML templates, 74
links and endless pagina-

tion, 84

get(), Angular, 111, 113, 115,
118

getCurrentPageNumber(), 66

getInitialState(), 100

getJSON(), 186, 188

getNextPage(), 80, 84

getQueryString(), 65

getResults(), 105

getSearchResults(), 103

Git, 230–239

Git Bash, 231

GitHub, 239

global scope, JSONP, 145

Google APIs, 127

Google Chrome
emulator, 185
testing with Nightwatch,

263

Google Developer Products
Page, 127

Google Mail, 37

Google Maps, 122–127

Google Maps Open Streetmap
Latitude, Longitude Popup,
124

gradients
buttons, 4, 215, 217
resources, 5
reversing, 5
speech bubbles, 10, 215

graphics, see images

graphs, 128–135

grid frameworks
Bootstrap, 202
Compass, 219
Foundation, 202
Skeleton, 194–202

group, Puppet, 323

groups, heatmap, 252

Grunt, 304–316

Gruntfiles, 307

Gulp, 316

H
-H flag, cURL, 156

h key, Vim, 288

halt, Vagrant, 323

handleCollapseAll(), 57

handleExpandAll(), 57

Handlebars
Ajax request with Coffee-

Script, 225–228
endless pagination, 76–

81, 83–86
HTML templates, 69–74,

225–228
resources, 74
status site, 159

handshaking, 237

Harp, 229

headers
animation, 14–17
email template, 38, 43
Grunt and, 310
jQuery Mobile, 182, 187
multipart emails, 42
rewriting URLs, 300, 302
Skeleton grid, 195–196,

198
styling, 14

headless browsers, 276

heatmaps, 250–252

height
buttons, 3
links, 3
mobile devices, 164, 191
Skeleton, 195, 198
sprites, 191
tabs, 51
widgets, 153

helper links, collapsing and
expanding, 55

hidden files, 301

hiding, see also collapsing
and expanding lists

pop-up windows, 176
sheen animation, 16
spinner image in endless

pagination, 81
tabbed interfaces, 50

Highcharts, 128–135

highlighting, syntax, 204

History API, 86

hosting
changing config files with

Vim, 287–291
Dropbox, 278–281
email images, 45
HTML emails, 42
preserving links, 300–303
virtual machines, 282–

286

hostname, virtual machines,
284

hover events
accessible tooltips, 26
animations, 15
drop-down menus, 168–

172
gradients, 215, 217
map markers, 126
styling buttons and links,

3, 215, 217

href attribute, jQuery Mobile,
183

.htaccess
basic authentication,

296–299
custom error page, 289–

291
rewriting URLs, 302–303
viewing, 301

HTML, see also CSS; HTML5
accessible tooltips, 25–28
Angular extension, 107–

108
control-flow binding, 92–

94
cycling regions, 23
email templates, 36–46
forms, 91, 136–143
Handlebars templates,

69–74, 225–228
Jasmine support, 270
page updates with

Knockout, 90–96
reusing in blogs, 204
Skeleton framework,

194–202
tabs, 47–52
widget embedding, 148–

153

html folder in CouchApp, 157

HTML5
gestures, 179
input types, 142
interfaces with jQuery

Mobile, 180
resources, xi, 143

HTML5 and CSS3: Level Up
With Today’s Web Technolo-
gies, xi, 142

HTML5 ARIA
accessible tooltips, 25–28
updates with Knockout,

88, 90, 92

HTML5 Rocks, 179

htpasswd command, 297

.htpasswd file, 298

HTTP
authentication, 296–299

Index • 332

cURL, 156
HTTPS, 292–295

HTTPS, 292–295

Hund, David, 14

hyphen, YAML front matter,
206

I
i key, Vim, 288

<i> tag, font icons, 32

icons
button, 183
CSS sprites, 190
font, 29–34
replacing bullets with, 32

IDEs, Vim as, 291

IDs
HTML templates, 72
locator functions in Sele-

nium, 255
Nightwatch testing, 262
product IDs and mobile

devices, 186

ifconfig, finding server IP ad-
dress, 313

IIFE (Immediately-Invoked
Function Expression), xii,
145

IIFE> (Immediately-Invoked
Function Expression), 228

image rotators, 19

images
accessibility, 17, 46
accessing remotely with

JSONP, 144–147
background, 37
blocking off-site requests,

298
blogs, 209–210
collapsing and expand-

ing, 60
CSS sprites, 190–192
HTML emails, 37, 45
placeholder, 197
preloading, 23
slideshow, 18–24
version control with Git,

239

Immediately-Invoked Func-
tion Expression (IIFE), xii,
145, 228

implementation, mixing de-
sign with, 201

@import statement, 215–216

imports, Sass, 214–216

@include statement, Sass, 216

indentation
CoffeeScript, 222–223,

225
Sass syntax, 220

Indented Sass, 220, see al-
so Sass

init, Angular app, 111

initTabs(), tabbed interfaces, 50

inline Google Maps, 122–127

insert mode, Vim, 288

insertAfter(), slideshow, 22

Inspired jQuery Mobile
Theme, 166

interactive maps, 122–127

interactive slideshows, 18–24

Internet Explorer
animations, 13
testing on BrowserStack,

264

invoice email template, 38–46

IP addresses
blocking users, 299
servers, 313
virtual machines, 285

iPad, see mobile devices

iPhone, see also mobile de-
vices

lists, 164–167
testing with Browser-

Sync, 244–247

isTouchSupported(), drag and
drop windows, 178

isolating widget code, 148,
151

J
j key

navigation, 62, 64
Vim, 288

Jasmine, 267–276

Jasmine-jQuery plugin, 267–
276

JavaScript
accessibility, 92
coding conventions, xi
CoffeeScript, 221–229
decoupling, 59
files in blogs, 210
functions as object con-

structors, 89
Immediately-Invoked

Function Expression
(IIFE), xii, 145, 228

minification, 305, 307–
308

mobile devices interfaces,
180

slideshow, 20–24
status site recipe, 154–

161
testing with Jasmine,

267–276
widget embedding, 148–

153

Jekyll, 203, 210, 212

jQuery
accessible tooltips, 25–28
accessing cross-site data

with JSONP, 144
automating deployment

with Grunt, 307
checking availability, 150
CoffeeScript, 221–229
collapsing and expanding

lists, 53, 57–59
conventions, 57
Couch library, 159
embedding widgets, 148–

153
endless pagination, 76–

81, 83–86
HTML templates, 69–74
keyboard shortcuts, 61–

68
mobile interfaces, 180–

189
referencing objects with

$ sign, xi, 22, 56, 150
search interface with Re-

act, 97–106
slideshow animation, 18–

24
status site, 159
tab toggling, 47, 50
tabbed interfaces, 47–50
targeting mobile devices,

164, 166
testing JavaScript with

Jasmine, 267–276
touch events, 179
UI Tabs, 48
version, xi, 150

jQuery Mobile, 166, 180–189

jQuery variable, 150

jQuery.fn prototype, 57

JSFiddle.net, 135

JSON
Angular app, 109
charts and graphs data,

134

Index • 333

document databases, 156
endless pagination, 78
mobile devices, 186
pushState(), 85
remote data access, 144–

147
widget data, 148, 151

JSONP
remote data access, 144–

147
widget data, 148, 151

JSX
precompiling, 106
Transformer, 98

K
k key

navigation, 62, 65
Vim, 288

key codes, 63, 66

keyboard, Vim, 288

keyboard shortcuts
deleting branches, 236
navigation, 61–68
shutting down server,

207

keydown events, binding, 61–
64

keys
signing, 293
SSH, 236, 313

Klein, Ben, 291

Knockout, 87–96

L
l key, Vim, 288

[L] option, rewriting URLs,
302

labels
charts and graphs, 130
contact forms, 138

landing page recipe, 304–312

language tabs recipe, multi-
ple, 47–52

lastTouchedElement, drop-down
menus, 172

latency, simulating with
BrowserSync, 247, 249

latitude, 124, 126

layouts
blog, 204–206, 208–210
Skeleton grid, 195–201
static pages in Enfield,

211

table-based, 36–46, 90
version control recipe,

233–236

leaf nodes, 57

Learn more button, 250

line graphs, 130

line-height, buttons, 3

linear-gradient attribute, speech
bubbles, 10

links
blocking off-site requests,

298
blog posts, 206
collapsing and expand-

ing, 55
deep, 107
drop-down menus, 168–

172
HTML email alternative,

42
mobile devices, 166, 186–

189
pop-up windows, 175
preserving, 300–303
selector in Selenium, 255
sharing from endless

pagination, 82–86
styling, 2–5, 166, 211
testing with Nightwatch,

258–266

Liquid, 205

lists
Angular app, 111
collapsing and expand-

ing, 53–60, 164–172,
190–192

endless pagination, 76–
81

font icons, 33
list comprehension, 222,

228
mobile devices, 164–167,

184–189
styling, 54, 59, 164–167

listview role, 184

Litmus, 36, 44

load times, see also speed
animations, 16
font icons, 34
images on mobile devices,

190
simulating latency, 247,

249
slide shows, 23

loadData(), endless pagination,
79–81

loadFixtures(), Jasmine, 270

loadMap(), 124

loadNextPage(), keyboard naviga-
tion, 66

loadPhotos(), 145–146

loaded class, sheen animation,
16

loadingPage(), endless pagina-
tion, 79

Local address, BrowserSync,
244

locator functions in Selenium,
255

locking
files, 296–299
next page calls, 79, 85

Lodash, 228

logins, see also security
HTTP authentication,

296–299
remote repositories, 236

logo animation, 13–17

logs
Apache, 252
ClickHeat, 251–252

longitude, 124, 126

Lotus Notes, 37

ls -la, viewing hidden files, 301

LTS release, Ubuntu, 282

M
-m flag, Git, 232

mail(), PHP, 138, 140

MailChimp, 42, 46

makeCollapsible(), 58

manifests, Puppet, 319

map(), rendering with React,
102

Map constructor, 125

mapTypeId, 125

maps
Google, 122–127
heatmaps, 250–252

margins
box model, 243
contact forms, 138
HTML email templates,

43
mobile devices, 165

Markdown, 206, 211

markers, map, 122, 126

master branch, 233–239

media attribute, 165

Index • 334

Media Queries, 164–167,
195, 199

menus, drop-down, 168–172

merging, see also version
control

Dropbox, 280
Git, 234–236
Grunt, 307

messages, commit, 232

<meta> tag, Skeleton, 201

Middleman, 212

MIME, 43

minification, 305–316

mixins, 215–219

mobile devices
CSS sprites, 190–192
drag and drop, 173–179
drop-down menus, 168–

172
jQuery interfaces, 180–

189
precompiling templates,

74
Skeleton framework,

194–202
tables, 198
targeting, 164–167
testing with Browser-

Sync, 242–249

mocks, Jasmine, 271, 273

mod_rewrite, 289, 298, 300–303

Model-View-Controller (MVC),
107

modeling data, 132–135

modes, Vim, 288

modular style sheets, 213–
219

modules
Angular, 112
Puppet, 319

mouse
accessible tooltips, 27
drag and drop windows,

177
map markers, 122

MsysGit, 231

multipart emails, 42

Multiple Listing Service
(MLS), see property listing
recipe

Mustache, 74

mutex, endless pagination,
79, 85

MVC (Model-View-Controller),
107

N
naming

blog post files, 206, 208
files in Sass, 214
Git usernames, 231

NAT network type, 283

navigation
drop-down, 168–172
jQuery Mobile, 183–184
keyboard shortcuts, 61–

68
Vim, 288

Neil, Drew, 291

nested lists, see collapsing
and expanding lists

nesting, 217

network types, 283

next entry, 62–65

next page, 65–67, 76–86

Nightwatch, 257–266

noConflict(), widget, 150

Node
blog with Enfield, 203
Handlebars templates, 74
installation, xii, 307
Sass, 214
sprite generator, 192

nodes
collapsing and expanding

lists, 54–59
leaf, 57

normal mode, Vim, 288

O
object constructors, Java-

Script functions, 89

observable(), Knockout, 91

observableArray(), Knockout, 93

observeMove(), dragging and
dropping, 177, 179

observeScroll(), endless pagina-
tion, 80

onSubmit attribute, forms, 104

open source projects, Git, 239

open-quote, 9
OpenSSH, 285, 312

otherwise(), Angular app, 113

outlines, removing from but-
tons, 4

Outlook 2007, 37

overflow
hidden style, 16
widgets, 153

overlays, map, 126

overriding
branch merge warnings,

236
configuration properties,

289
default button and link

styles, 2

owner, Puppet, 323

P
package block, Puppet, 320

padding
box model, 243
buttons, 3
contact forms, 138
links, 3
mobile devices, 166
quotes, 8
tabs, 51

Page Not Found error page,
287–291

page parameter, endless pagi-
nation, 84, 86

page=, endless pagination, 79

pagebeforeshow, jQuery Mobile,
186

pagination
endless, 76–86
keyboard shortcuts, 61–

68
tracking for links, 83–86

parallel testing, 264

parameters, Angular apps,
115

parentheses
CoffeeScript, 225
ES6, 229
mixins, 216

partitioning, virtual ma-
chines, 284

passphrases
SSH keys, 237
SSL certificates, 293

passwords
ClickHeat, 251
generating, 297
HTTP authentication,

296–299
remote repositories, 236
SSH keys, 237, 313

Index • 335

SSL certificates, 293
storing, 298, 313

Pathogen, 291

Pause button, slideshow, 21

performance, see also speed
CSS sprites, 190
endless pagination, 76
Immediately-Invoked

Function Expression
(IIFE>), xii

minification, 305

permalinks, 206

permissions, ClickHeat, 251

PhantomJS, 276

photos, see images

Photoshop, version control
with Git, 239

PHP
contact forms, 136–143
heatmaps, 250–252
installing and configuring

with Puppet, 319–320
testing with virtual ma-

chines, 282, 284

PHP5, 284

pie charts, 128–132

Pivotal Labs, 267

Placehold.it, 197

placeholder images, 197

plotOptions property, 130

plug-in management, 291

PNG images, 37

pop-up windows, dragging,
173–179

position property, quotes, 8–9

POST
Angular app, 109, 118
contact forms, 138

posts, blog, see blogs

Practical Vim, 291

precompiling
HTML templates, 74
JSX code, 106

preloading, images, 23

prependToggleAllLinks(), 57

preserving links, 300–303

pressing keys, see keydown
events

preventDefault()
calling explicitly, 58
to-do list, 273

previews, HTML email, 42

previous entry, 62–65

previous page, 65–67, 76–86

private keys, 237, 293

product website recipes
blog, 203–212
charts and graphs, 128–

135
collapsing and expanding

lists, 53–60, 164–172,
190–192

contact forms, 136–143
CSS sprites, 190–192
drag and drop, 173–179
drop-down menus, 168–

172
endless pagination, 76–

86
fetching with Coffee-

Script, 221, 225–229
file management with Git,

230–239
heatmaps, 250–252
HTML templates, 69–74
language tabs, 47–52
mobile devices interface,

180–189
rewriting URLs, 300–303
search interface, 97–106
shopping cart updates,

87–96
targeting mobile devices,

164–167
testing, 253–257
updating with Angular,

107–119
version control, 233–236

progressive enhancement, 59

propagation, stopping, 57,
172

properties, components, 101

property listing recipe, 194–
202

-proxy option, BrowserSync,
249

pseudoclasses, 217

public folders, Dropbox, 278

public keys, 237

Puppet, 286, 317–324

Puppet Labs, 324

pushState(), sharing from end-
less pagination, 82–86

PUT
Angular app, 109, 118
CouchDB, 156

Pygments, 204

Q
:q command, Vim, 289–290

QEDServer, see also servers
about, xii
Ajax request with Coffee-

Script, 225–228
BrowserSync, 249
endless pagination, 77
Selenium testing, 253–

257
testing with Nightwatch,

258–266

quantity property, Knockout,
91

queries, CouchDB, 158

question mark, URL parame-
ters, 67

quitting
server, 207
Vim, 289–290
virtual machines, 238,

323

quotation marks, styling, 8

quotes, styling, 6–12

R
R=301 option, 302

race condition in testing, 264

radius, buttons, 4

RAM, virtual machines, 283

React, 97–106

readParameters(), endless pagina-
tion, 85

readyForNextPage(), endless pagi-
nation, 80

real estate listing recipe,
see property listing recipe

rebase command, Git, 234

rectangle, changing angle of,
14

redirection
domain name, 281, 303
Dropbox, 281
offsite image requests,

298
preserving links, 300–303

ref attribute, forms, 104

Refresh button, Ajax sites,
82–86

regular expressions
rewriting URLs, 300, 302
validating email address-

es, 139–143

relational databases, 155

Index • 336

reloading, BrowserSync, 244

remote access
BrowserSync, 248
cross-site data with

JSONP, 144–147
Dropbox, 278–281
Git repositories, 236–239
widgets, 148–153

Remove button for shopping
cart, 95

rendering, server-side data for
search interface, 100–102

repeat, Angular app, 111

replace(), keyboard navigation,
66

replacePageNumber(), keyboard
navigation, 66

repositories
bare, 238
local Git, 231–236
remote Git, 236–239

representational state trans-
fer (REST), 108–109, 118

resetting, database during
testing, 262, 264, 266

Resource (Angular), 108, 112–
113, 115, 118

resources
Apache, 299
book resources, xii–xiii
browser prefixes, 14
BrowserStack, 266
CoffeeScript, 222, 228
CSS, 12
Cycle2, 20, 23
email standards, 37
Google APIs, 127
Google Maps, 125
gradients, 5
Handlebars, 74
Highcharts, 135
HTML5, xi, 142
jQuery Mobile, 189
Jekyll, 210
key codes, 63
multipart emails, 43
Mustache, 74
Node, xii
Puppet, 324
Selenium, 258
source code for this book,

xiii, 133
Vim, 291

REST (representational state
transfer), 108–109, 118

Resume button, slideshow,
22

return false, jQuery, 58

Reupholster, 154–155, 157,
161

reverse value, transition direc-
tion, 188

reversing
gradients, 5
transition direction, 188

RewriteEngine, 302

RewriteRule, 302

rewriting URLs, see also redi-
rection

blocked image requests,
298

CouchDB, 161
enabling, 289
preserving links, 300–303

root scopes, 108, 113, 118

rotators, image, 19, see al-
so cycling images

rounding corners
buttons, 4, 215
speech bubbles, 10, 215

Router (Angular), 108, 112–
119

rows, Skeleton grid, 196

RSpec, 267, 269

The RSpec Book, 267

Ruby and Jekyll, 212

Ruby on Rails
commit logs widget, 148–

153
preserving URLs, 303

S
same-origin policy, 144

sandbox, see VirtualBox

Sass
abstraction layer, 201
automated deployment

with Grunt, 314–316
CoffeeScript and, 229
modular style sheets,

213–219

Sass Classic, 220

--save-dev flag, Grunt, 307

saving
Angular app, 117
Grunt, 309
Selenium tests, 255
Vim, 289–290

scaling
font icons, 29
images in Skeleton, 198
maps, 124
transformations, 17

scatter plots, 130

scope
global, 145
root scopes, 108, 113,

118
variables in CoffeeScript,

222

$scope, avoiding, 111

Scopes (Angular), 108, 113,
118

scp command
deployment with Grunt,

312–316
files on virtual servers,

285
transferring files, 140,

251

screen readers
accessibility, 92
animations, 17
expanding and collapsing

lists, 53–60
updates with Knockout,

88, 90

<script> block, CoffeeScript,
225–227

scrolling
endless pagination, 76–

86
keyboard shortcuts, 61–

65
widget, 153

SCSS syntax, 220, see al-
so Sass

search boxes and forms
icons, 183
keyboard shortcuts, 61,

67
mobile devices, 183
real-time, 97–106

search engines, rewriting
URLs, 300, 302

<section> tag, Skeleton, 197

security
Apache, 292–299
content, 296–299
SSL certificates, 292–295
virtual machines, 285

Index • 337

selectors
locating elements with

Nightwatch, 260
tabbed interfaces, 49

Selenium
browser testing, 253–257
Nightwatch, 258

Selenium Grid, 256

Selenium Remote Control,
256

Selenium Standalone Server,
258

self-signed certificates, 292–
294

semantic markup, 7, 42, 201

Send button, contact forms,
139

sendSearchQuery(), 104

serialize(), jQuery, 60

series property, charts, 129–
130

Server Name Indication (SNI)
certificates, 295

servers, see also Apache;
QEDServer

blogging with Enfield,
207

changing config files with
Vim, 287–291

deploying Windows
servers, 312

IP address, 313
rendering data for search

interface, 100–102
securing Apache, 292–

299
securing content, 296–

299
shutting down shortcut,

207
synchronizing shopping

cart data, 94
testing with virtual ma-

chines, 282–286
virtual, 284

service block, Puppet, 323

setState, real-time search, 101

SFTP client, 285

shadows
accessible tooltips, 27
buttons, 4, 215, 219
font icons, 29
quotes, 9
Skeleton grids, 199
speech bubbles, 215, 219

shapes
changing angles, 14
creating irregular, 11–12

sharing, Dropbox, 278–281

sheen animation, 13–17

shell commands, xii

Shift key, keyboard shortcuts,
67

shopping cart updates, 87–96

shortcuts, keyboard, 61–68

shuffle transition setting, 23

Sign-up button, 250

signed SSL certificates, 292,
294

signing keys, 293

site directory, Puppet, 317

sites, heatmap, 252

size
animations, 16
box model, 243
buttons and links, 3
charts and graphs, 131
quotes, 7
Skeleton grid, 195
speech bubbles, 10
tabs, 51

Skeleton, 167, 194–202

skewing, 17

slideshows, 18–24

sliding
tabs, 50
transition for mobile de-

vices, 188

snapshots
Git, 231–232
VirtualBox, 286

SNI (Server Name Indication)
certificates, 295

Son of Suckerfish menu, 170

source, Puppet, 323

source code for this book,
xiii, 133

spam, avoiding flagging as,
36

speech bubbles, 10–12, 213–
219

speed
animations, 16
CoffeeScript, 225
font icons, 34
HTML templates, 74
simulating latency, 247,

249
slide shows, 23

spies, Jasmine, 273

spinner image, endless pagi-
nation, 77, 81

sprites, 190–192

spyOn(), 273

spyOnEvent(), 274

SSH
keys, 236, 313
OpenSSH, 285, 312
removing password from

deployment script, 313
Vagrant, 323
Windows servers, 312

SSH keys, 236, 313

SSL, 292–295

staging files, 232

startPage parameter, endless
pagination, 85

start_page parameter, endless
pagination, 84, 86

stash command, Git, 235

state
Immediately-Invoked

Function Expression
(IIFE), xii

links and endless pagina-
tion, 83

real-time search, 100

static maps, 122

static sites
advantages, 212
automated deployment,

229, 304–316
CoffeeScript and Sass,

229
creating with Enfield, 211
hosting with Dropbox,

278–281
HTML emails, 42

static-site generators, Enfield,
203–212

status site recipe, 154–161

stopPropagation(), 57–58, 172

storing
changes in Git, 235
.htpasswd file, 298
passwords, 298, 313

street views, maps, 122, 125,
127

string concatenation
CoffeeScript, 223
removing with Handle-

bars templates, 70–71,
73

Index • 338

strings
CoffeeScript, 223
pagination queries, 65

stubs, 273

style sheets, see CSS; Sass;
styling

<style>tag and emails, 43

styling
accessible tooltips, 25–28
blogs, 209
BrowserSync, 242–249
buttons, 2–5, 183, 213–

219
charts and graphs, 130
drop-down menus, 169
endless pagination, 78
font icons, 29–34
form errors, 141
forms, 138
headers, 14
HTML email templates,

37, 43
landing page, 310–312
links, 2–5, 166, 211
lists, 54, 59, 164–167
maps, 124
pop-up windows, 173
quotation marks, 8
quotes, 6–12
Sass modular style

sheets, 213–219
sheen animation, 14–16
Skeleton, 194–201
speech bubbles, 10–12,

213–219
static pages with Enfield,

211
tabs, 47, 49–51
widgets, 148, 152

subcategories, see drop-down
menus

Submit button, contact
forms, 138

submit event, intercepting, 60

success
status site with Couch

DB, 161
widgets, 152

swapping, tabbed interfaces,
47–52

switchTab(), 50

synchronizing
files with Dropbox, 280
files with Git, 230–239
shopping cart data, 94
testing with Browser-

Sync, 242–249

Syntactically Awesome Style
Sheets, see Sass

syntax
controller as, 111, 114, 116
ES6, 229
form errors, 141
Handlebars templates,

69, 71
highlighting, 204
improving JavaScript

with CoffeeScript, 221–
229

Jasmine, 267
PHP, 136, 141
Sass, 213, 220
WebKit-based browsers,

4, 10, 14

system updates, virtual ma-
chines, 285

T
Tab key, accessible tooltips,

26, 28

tabbed interfaces, toggling,
47–52

tabindex, accessible tooltips,
26, 28

table-based layouts, 36–46,
90

tables, mobile devices, 198

tablets, see mobile devices

tags
Angular directives, 110
Liquid template language,

205

tapping
binding for mobile de-

vices interfaces, 188
drop-down menus, 171–

172

Target action in Selenium,
255

targeting mobile devices, 164–
167

<tbody>, Skeleton, 198

TDD (test-driven develop-
ment), 267, 271, 276

templates
Angular app, 107–109,

114–117
blog, 204–206
external, 74
Handlebars, 69–74, 225–

228
HTML email, 36–46
jQuery Mobile, 186–189

precompiling, 74
Reupholster, 157
Skeleton grid framework,

194–202
status site, 157, 159

test folder in CouchApp, 157

test-driven development
(TDD), 267, 271, 276

testing
BrowserSync, 242–249
CouchApps, 157
end-to-end tests, 259
forms, 136, 140, 256,

270
heatmaps, 250–252
HTML email, 44
jQuery Mobile, 185
JavaScript with Jasmine,

267–276
Nightwatch, 258–266
parallel testing, 264
saving tests, 255
Selenium, 253–257
user, 266
virtual machines, 282–

286

text editors, see Vim

texture, buttons, 4

Thawte, 295

<thead>, Skeleton, 198

threshold variable, endless pag-
ination, 81

throttling, emulating, 247,
249

timeout property, Puppet, 320

timing animations and transi-
tions, 15, 17

title property, charts, 129

titles
blog post files, 206, 208
browser, 85
status notifications, 156
tabs, 49

to-do application, 267–276

toggling
expanding and collapsing

lists, 53–60
slideshow buttons, 21
tabbed interfaces, 47–52

tooltips, accessible, 25–28

toss transition setting, 23

touch events
drag and drop, 173–179

Index • 339

drop-down menus, 168–
172

mobile devices interfaces,
188

tracking activity with
heatmaps, 250–252

transformations, CSS, 13–17

transitions
CSS, 13–17
Cycle2 jQuery plug-in,

18, 23
slideshow, 20

transparency
alpha, 216
borders, 11

transpilers, 221–222

triangles, creating for speech
bubble, 11

tunneling, 248, 265

TypeScript, 221

U
Ubuntu

apt-get package manager,
319

Git installation, 237
securing Apache, 292–

295
virtual machines, 282–

286

uglify, 307–308, 315

UI Tabs, 48

 tag, mobile devices, 165

uncover transition setting, 23

underscore, Sass prefix, 214

university map, 122–127

updating
Angular framework, 107–

119
browser URLs in endless

pagination, 85
pages with Knockout, 87–

96
with Puppet, 319
virtual machines, 285

URLs
Angular app, 114
BrowserSync, 244, 248
Dropbox folders, 280
endless pagination, 78–

79, 83, 85
forbidden, 299
hashes, 83
images, 46
Nightwatch, 260

pagination, 65, 67
redirecting, 281
rewriting, 161, 298, 300–

303

user information widget, 153

user testing, 266

usernames
ClickHeat, 251
generating, 297
Git, 231
HTTP authentication,

296–299

V
Vagrant, 317–319, 323–324

validation, email addresses,
139–143

Value action in Selenium, 255

value attribute, Knockout, 91

value property, contact forms,
141

values
forms, 262
Sass variables, 214

vanity domains, 281

variables
CoffeeScript, 222, 225
embedding widgets, 151
referencing jQuery ob-

jects, xi, 22, 56, 150
Sass, 214

vector images, see font icons

verifyText, Selenium, 255

VeriSign, 295

version control
automated deployment,

316
Git, 230–239

versions
Angular, 111
jQuery, xi, 150
QEDServer, xiii
Skeleton, 196
Ubuntu, 282
Vagrant, 318

videos, cycling, 23

view models, Knockout, 87,
96

viewport tag, mobile devices,
165

views
CouchDB, 158
street, 122, 125, 127

Views (Angular), 108, 110,
115

Vim, 61–62, 287–291

VimAwesome, 291

Vimcasts, 291

The VimL Primer, 291

virtual machines
about, xiii
automated deployment,

304–316
changing config files with

Vim, 287–291
ClickHeat, 250
configuring with Puppet,

317–324
contact forms testing,

136, 140
destroying, 323
heatmaps, 250–252
logging out, 238
remote Git repositories,

236–237
rewriting URLs, 300–303
securing Apache, 292–

299
securing content, 296–

299
setting up, 282–286
updating, 285

virtual server, 284

VirtualBox, xiii, 282–286,
317–319

visual mode, Vim, 288

VMware, 286

Vundle, 291

W
:w command, Vim, 289–290

watching files
Grunt, 308, 311, 315
Jasmine, 273
Sass, 214

WebKit-based browsers, 4,
10, 14

when(), Angular app, 113

whitespace
CoffeeScript, 223
minification, 305

widget recipe, 148–153

width
box model, 243
buttons, 3
charts and graphs, 131
header, 14
links, 3
mobile devices, 164–165,

191
quotes, 8, 11

Index • 340

Skeleton grids, 198, 200
speech bubbles, 11
sprites, 191
table-based layouts, 39
widgets, 153

wildcard certificates, 295

windows, draggable pop-up,
173–179

Windows servers, deployment,
312

wrapping
HTML email template, 38
quotes, 6–12
widgets, 151

writing files in Vim, 289–290

Y
Yahoo Mail, 37

YAML, 204, 206, 208, 211

Youth Technology Days host-
ing recipe, 278–281

Z
z-index property, quotes, 8–9

zooming
maps, 125
mobile devices, 165

Index • 341

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(314 pages) ISBN: 9781937785598. $38
https://pragprog.com/book/bhh52e

Async JavaScript
With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you’ll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
https://pragprog.com/book/tbajs

https://pragprog.com/book/bhh52e
https://pragprog.com/book/tbajs

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/wbdev2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/wbdev2

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/wbdev2
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/wbdev2
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Brian Hogan
	Chris Warren
	Mike Weber
	Chris Johnson

	Preface
	Who's This Book For?
	What's in This Book?
	What You Need
	Online Resources

	1. Eye-Candy Recipes
	Recipe 1. Styling Buttons and Links
	Recipe 2. Styling Stand-Alone Quotes with CSS
	Recipe 3. Creating Animations with CSS3 Transformations
	Recipe 4. Creating Interactive Slideshows with jQuery
	Recipe 5. Creating and Styling Accessible Tooltips
	Recipe 6. Using Font Icons

	2. User Interface Recipes
	Recipe 7. Creating an HTML Email Template
	Recipe 8. Swapping Between Content with Tabbed Interfaces
	Recipe 9. Accessible Expand and Collapse
	Recipe 10. Interacting with Web Pages Using Keyboard Shortcuts
	Recipe 11. Rendering HTML with Handlebars Templates
	Recipe 12. Displaying Information with Endless Pagination
	Recipe 13. Extending Endless Pagination with pushState()
	Recipe 14. Snappier Client-Side Interfaces with Knockout.js
	Recipe 15. Creating a Search Interface with React
	Recipe 16. Creating Client-Side Apps with Angular.js

	3. Data Recipes
	Recipe 17. Adding an Inline Google Map
	Recipe 18. Creating Charts and Graphs with Highcharts
	Recipe 19. Building a Simple Contact Form
	Recipe 20. Accessing Cross-Site Data with JSONP
	Recipe 21. Creating a Widget to Embed in Other Sites
	Recipe 22. Building a Status Site with JavaScript and CouchDB

	4. Mobile Recipes
	Recipe 23. Targeting Mobile Devices
	Recipe 24. Touch-Responsive Drop-Down Menus
	Recipe 25. Mobile Drag and Drop
	Recipe 26. Creating Interfaces with jQuery Mobile
	Recipe 27. Using Sprites with CSS

	5. Workflow Recipes
	Recipe 28. Rapid, Responsive Design with Skeleton
	Recipe 29. Creating a Simple Blog with Enfield
	Recipe 30. Building Modular Style Sheets with Sass
	Recipe 31. Cleaner JavaScript with CoffeeScript
	Recipe 32. Managing Files with Git

	6. Testing Recipes
	Recipe 33. Testing Websites on Real Devices
	Recipe 34. Tracking User Activity with Heatmaps
	Recipe 35. Browser Testing with Selenium
	Recipe 36. Testing Web Interfaces with Nightwatch
	Recipe 37. Testing JavaScript with Jasmine

	7. Hosting and Deployment Recipes
	Recipe 38. Using Dropbox to Collaborate and Host a Static Site
	Recipe 39. Setting Up a Virtual Machine
	Recipe 40. Changing Web Server Configuration Files with Vim
	Recipe 41. Configuring Secure Websites with Apache
	Recipe 42. Securing Your Content
	Recipe 43. Rewriting URLs to Preserve Links
	Recipe 44. Automating Static Site Deployment with Grunt
	Recipe 45. Configuring a Virtual Machine with Puppet

	A1. Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

