Brian P. Hogan,
Chris Warren,
Mike Weber, and
Chris Johnson

edited by Rebecca Gulick

Early praise for this new edition of Web Development Recipes

If you are a front-end web developer, Web Development Recipes is a must for your
bookshelf. This book is a ready reckoner for developers at all levels.

» Shreerang Patwardhan, CSM
Technical Consultant, GSPANN Technologies, Inc.

The second edition of Web Development Recipes continues its status as a veritable
grab bag of interesting front-end web development tips, tricks, and techniques
that will be of particular use to those new to front-end development, those devel-
opers who've missed the HTML5 and CSS3 wave so far, or anyone ready to try
out a few new things to make their projects better. Web Development Recipes’ real
skill is in giving you enough ammunition to try new things and to then inspire
you to explore and take things further on your own.

» Peter Cooper
Editor, JavaScript Weekly

Web Development Recipes is a reference book, a training manual, and a technology
guide all in one and should be included in every developer’s library. The authors
are seasoned experts who have separated the wheat from the chaff and brought
you the best examples of modern web development to learn from and use imme-
diately in your work.

» Steve Heffernan
Author of Video.js

A really thorough explanation of good web development solutions.
» Todd H. Gardner
President and Co-Founder, TrackdS

Whether you're just getting started with the web or looking to expand your skill
set, this updated version of Web Development Recipes provides crisp, clear, and
concise examples across a variety of the latest web technologies. No fluff, no frills.
Just solid, practical advice on how to leverage these tools to work for you.
» Kevin Gisi

Senior Staff Engineer, Mashable

I believe the recipes in this book will rekindle your joy of coding, as they have for
me. This book is designed to suit novices, intermediates, and ninjas, with recipes
that combine code snippets with superb explanation. With its diversity of topics
and real-world examples of tasks you face daily, the book will be a favorite that
you go back to as a reference time after time.
» Nouran Mahmoud Marouf

Front-End Engineer, Tarifah

Web Development Recipes
Second Edition

Brian P. Hogan
Chris Warren
Mike Weber
Chris Johnson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)

Potomac Indexing, LLC (index)

Eileen Cohen; Cathleen Small (copyedit)
Dave Thomas (layout)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-056-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

Contents

Acknowledgmeénts v

13
18
25
29

35
36

47
53

61
69
76
82
87
97
107

121
122
128
136
144

Al.

Recipe 21.

Creating a Widget to Embed in Other Sites

Contents ® vi

148

154

163
164
168
173
180
190

193
194
203
213
221
230

241
242
250
253
258
267

277

278
282

287
292
296
300
304
317

325
327

Acknowledgments

Thanks for picking up our book. We really appreciate it, but you should know
that although we wrote the book, many other awesome people helped make
it what it is.

When we shipped the first edition of the book, we relied on our experiences
as professional web developers working in a wide range of industries. With
this edition, we thought we could come in quickly, update things, drop things
that don’t matter anymore, and call it good. But it’s never that easy. Our
editor, Rebecca Gulick, offered just the right amount of great advice and
prodding to push us all in the right direction.

We're all extremely grateful to Dave Thomas and Andy Hunt for giving us the
opportunity to write for the Pragmatic Bookshelf. They’ve built a system that
puts readers first but gives authors all the support we need to meet their
expectations. We're better people because of the work they've done. In addition,
we're thankful to Susannah Pfalzer, who offered some great feedback and
support along the way.

Thanks to Joel Andritsch, Kevin Gisi, Nouran Mahmoud Marouf, and Shree-
rang Patwardhan for their help reviewing this book for technical issues. Joel
and Kevin were especially helpful with their deep dive and awesome insights.

Additionally, we want to thank our other business associates, including Erich
Tesky, Austen Ott, Jeff Holland, and Nick LaMuro, for their support and
feedback throughout the process.

Brian Hogan

I love learning about code and showing other people how to use it, and it's
great to be able to share that with Mike, Chris, and CJ. It's always a pleasure
working with these gentlemen on any project, but it’s great to have them join
me on a book like this where there are so many different technologies. We
each have areas that we focus on, which makes it much more manageable.
Thank you for your help, guys.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Acknowledgments ® viii

I can’t write books without my wonderful wife, Carissa. Sometimes I wonder
if she should get credit on the cover too for putting up with the writing process,
which mostly revolves around me lamenting the fact that I can’t get something
working. She always assures me it'll work out. Thank you, Carissa, for your
support and love.

Chris Warren

I can’t thank my awesome wife, Kaitlin, enough for her support during the
writing and editing of this book.

Thanks to Brian, Mike, and CJ for sharing in this experience. I've known
these guys for a long time, and it was great to get to do this with friends.

Mike Weber

I'd like to thank Brian Hogan for being my mentor over the years and for
getting me started as a web developer. Without him, I wouldn’t be where I am
today.

I'd also like to thank my other coauthors, Chris and CJ, for helping me and
for their effort. I'm lucky to have such hardworking associates.

And, finally, I'd like to thank my wife, Kaley, for putting up with my late nights
writing and revising so we could finish the book.

Chris Johnson

To my wife, Laura, thank you for supporting me every step of this journey.
You gave me strength to work on this project, and your love and support
fueled me all those late nights. To my daughter, Kenzie, I hope you see this
some day and realize that no goal is too big to accomplish.

To my parents, thank you for teaching me to work for things I want and to
never give up.

Thanks to Brian, Chris, and Mike for collaborating on this; you have made
me a better writer with your constant feedback and support. You guys kept
me going when sections got tough, and I really appreciated that.

To my colleagues at both Getty and Madison College, thank you for your
support and feedback.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Preface

It’s no longer enough to know how to wrangle HTML, CSS, and a bit of Java-
Script. Today’s web developer needs to know how to write testable code, build
interactive interfaces, integrate with other services, and sometimes even do
some server configuration, or at least a little bit of back-end work. This book
is a collection of more than forty practical recipes that range from clever user-
interface tricks that will make your clients happy to server-side configurations
that will make life easier for you and your users. You'll find a mix of tried-
and-true techniques and cutting-edge solutions, all aimed at helping you
truly discover the best tools for the job.

Who's This Book For?

If you make things on the web, this book is for you. If you're a web designer
or front-end developer who’s looking to expand into other areas of web
development, you'll get a chance to play with some new libraries and workflows
that will help you be more productive, and you’ll get exposed to a little bit of
that server-side stuff along the way.

If you've been spending a lot of time on the back end and you need to get up
to speed on some front-end techniques, you'll find some good recipes here as
well, especially in the chapters on workflow and testing.

One last thing—a lot of these recipes assume you've had a little experience
writing client-side code with JavaScript and jQuery. If you don’t think you
have that experience, read through the recipes anyway and pick apart the
provided source code. Consider the more advanced recipes as a challenge.

What’s in This Book?

We've included a bunch of great topics to get you started on the path to more
advanced web development. Each recipe poses a general problem and then
lays out a specific solution to a scenario you're likely to encounter, whether
it’s how to test your site across multiple web browsers, how to quickly build

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Preface ® x

and automatically deploy a simple static site, how to create a simple contact
form that emails results, or how to configure Apache to redirect URLs and
serve pages securely. We'll take you through both the how and the why so
you can feel comfortable using these solutions in your projects. Since this is
a book of recipes, we can’t go into a lot of detail about more complex system
architecture, but you’ll find some suggestions on where to go next in each
recipe’s Further Exploration section.

We've organized the recipes into chapters by topic, but you should feel free
to jump around to the topics that interest you. Each chapter contains a mix
of beginner and intermediate recipes, with the more complex recipes at the
end of each chapter.

In Chapter 1, Eye-Candy Recipes, on page 1, we cover some ways you can

use CSS and other techniques to spice up the appearance of your pages.

In Chapter 2, User Interface Recipes, on page 35, you'll use a variety of tech-
niques to craft better user interfaces—including use of JavaScript frameworks
like Knockout and Angular—and you’ll look at how to make better templates

for sending HTML emails.

In Chapter 3, Data Recipes, on page 121, you'll look at ways you can work with
user data. You'll construct a simple contact form and do some work with
charts, and you’ll take a peek at how to build a database-driven application

using CouchDB.

In Chapter 4, Mobile Recipes, on page 163, you'll take user interfaces a step
further and look at ways you can work with the various mobile computing
platforms. You'll spend some time with jQuery Mobile, look at how to handle
multitouch events, and dig a little deeper into determining how and when to

serve a mobile version of a page to your visitors.

In Chapter 5, Workflow Recipes, on page 193, you'll discover ways you can
improve your development process to produce quality code while being more
productive in the process. We'll investigate how Sass can make your life eas-
ier when you're managing large style sheets. And we’ll explore CoffeeScript,
a language that produces JavaScript that works everywhere but lets you take

advantage of more modern language capabilities.

In Chapter 6, Testing Recipes, on page 241, you'll create more bulletproof sites

by using automated tests, and we’ll show you how to start testing the Java-
Script code you write.

Finally, we’ll turn our attention to moving into production in Chapter 7,

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

What You Need ® xi

a virtual machine so you have a testing environment to try things in before
you set up your production environment, and we’ll cover how to set up secure
sites, do redirects properly, and protect your content. We’ll also show you
how to automate the deployment of websites so you won't accidentally forget
to upload a file.

What You Need

We'll be introducing you to many new technologies in this book. Some of them
are fairly new and somewhat subject to change, but we think they’re com-
pelling and stable enough to talk about at an introductory level. That said,
web development moves quickly. We've taken steps to ensure that you can
still follow along, by providing copies of the libraries we use in these recipes
with the book’s source code where appropriate.

We've tried to keep the prerequisites to a minimum, but you’ll want to famil-
iarize yourself with a few things before you dig in.

HTML5 and jQuery

We use HTML5 markup in our recipes—you won'’t find any self-closing tags
in our markup, and you’ll see some new tags like <header> and <section> in
some of the examples. If you're not familiar with HTML5, you might want to
read HTML5 and CSS3: Level Up With Today’s Web Technologies [Hog13].

We'll also use jQuery when it's appropriate. Several of the libraries we intro-
duce in these recipes rely on it, and it often results in code that’s easier to
understand. In most cases, our code examples will fetch jQuery from Google’s
content delivery network. In a couple of cases libraries will require specific
versions of jQuery, and we’ll be sure to point those out.

JavaScript Coding Conventions

To ensure that JavaScript doesn’t block the page from loading quickly, we’ll
place all of our JavaScript code in the body of the page, right above the closing
<body> tag. This also eliminates the need for us to use any checks to see if
the document is ready.

As a convention, we’ll prepend any variable names that reference jQuery
objects with a dollar sign so we know when we're referencing jQuery objects
vs. regular variables. This makes these variables easier to identify when we're
reading the code later:

// jQuery object // not jQuery
var $images = $("#images"); var options = {fx: fade};

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Preface * xii

Finally, we’ll enclose all of our JavaScript inside an Immediately-Invoked
Function Expression (IIFE) to avoid polluting the global state:
(function($){

// Our code goes here.

// All variables within are local to this function expression.
}) (jQuery);

This also can have an impact on performance, as JavaScript can reference
the variables directly in the IIFE instead of having to look in the global scope.

The Shell

You'll work with various command-line programs in these recipes whenever
possible. Working on the command line is often a huge productivity boost,
because a single command can replace multiple mouse clicks, and you can
write your own scripts to automate these command-line tools. The shell is
the program that interprets these commands. If you're on a Windows machine,
you'll use the Command Prompt. If youre on OS X or Linux, that’s the
Terminal.

Shell commands will look something like this:

$ mkdir javascripts

The $ represents the prompt in the shell, so you're not meant to type it in.
The commands and processes you'll use are platform-independent, so whether
you're on Windows, OS X, or Linux, you’ll have no trouble following along.

Node.js

Several recipes in this book require that you have Node.js installed. We'll be
using some tools that require Node.js to run, such as Grunt, Enfield, Coffee-
Script, and Sass. Visit the Node.js website' and install the version for your
operating system.

QEDServer

Several of the recipes in this book make use of an existing product-manage-
ment web application. You can work with this application by installing
QEDServer,” a stand-alone web application and database that requires mini-
mal setup. QEDServer works on Windows, OS X, and Linux. All you need is
a Java Runtime Environment. Whenever we refer to our development server,
we're talking about this. It gives us a stable web-application back end for our

1. http://nodejs.org/

2. A version for this book is available at http://webdevelopmentrecipes.com/.

http://nodejs.org/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Online Resources ® xiii

demonstrations, and it gives you a hassle-free way to work with Ajax requests
on your local machine.

The examples in this book will run against the version of QEDServer that
we've bundled with the book’s code examples, which you should download
from the book’s website.’

To use QEDServer, you start the server with server.bat on Windows or ./server.sh
on OS X and Linux. This creates a public folder that you can use for your
workspace. If you create a file called index.html in that public folder, you can

A Virtual Machine

Several chapters in this book use a Linux-based web server with Apache and
PHP. You'll learn how to set up your own copy of this server in Recipe 39,

machine.

Online Resources

The book’s website® has links to an interactive discussion forum as well as a
place to submit errata for the book. You'll also find the source code for all the
projects we build. Readers of the ebook can interact with the box above each
code excerpt to view that snippet directly.

With all that out of the way, we're ready to jump in. We hope you enjoy this
book and that it gives you some ideas for your next web project!

Brian, Chris, CJ, and Mike

3. http://webdevelopmentrecipes.com

4. http://www.virtualbox.org/

5. http://pragprog.com/titles/wbdev2

http://localhost:8080/index.html
http://www.webdevelopmentrecipes.com/
http://www.webdevelopmentrecipes.com/
http://webdevelopmentrecipes.com
http://www.virtualbox.org/
http://pragprog.com/titles/wbdev2
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 1

Eye-Candy Recipes

A solid application is great, but a couple of extra touches on the user interface
can make a huge difference. If they're easy to implement, that’s even better.

In this chapter, we’'ll use CSS to style some buttons and text, and we’ll do
some animations using CSS and JavaScript.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 2

Recipe 1

Styling Buttons and Links

Problem

Buttons are an important element in user interaction with our websites, but
each browser has its own idea of what a button should look like. On top of
that, sometimes we might want links to look like buttons. For example, if we
have a form on a page, we may want a button that submits the form, and a
link that cancels the process and takes us to another part of the site—and
we want those elements to match visually. Additionally, it'd be great if we
could control the look of form buttons without having to create a new graphic
with new text each time we need one.

Ingredient

e A CSS3-compliant web browser, such as Internet Explorer 9 or higher,
Safari, Opera, Firefox, or Chrome

Solution

Using CSS to style form elements or links is common, but by using a single
class and a few CSS rules, we can create a style that makes links and buttons
match. This gives us a consistent style across our elements without resorting
to using buttons for links, or links to submit forms. Best of all, we can override
the default styles that vary among browsers and operating systems.

Since we want to achieve a common appearance for both links and buttons,
we start by creating a simple prototype HTML page containing a link and a
button:

cssbuttons/index.html
<p>
<input class="button" type="button" value="A Button!">
A Link!
</p>

Note that we assign a class of button to both elements. We'll use this class to
style both the link and the input elements so that you can’t tell one from the
other on the page.

http://media.pragprog.com/titles/wbdev2/code/cssbuttons/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Styling Buttons and Links ¢ 3

As we set up our button class, many of the attributes that we set apply to both
the link and input elements, while a few serve to make them consistent with
each other.

First we apply the basic CSS attributes for both:

cssbuttons/css-buttons.css

.button {
border: 1lpx solid #282727;
background-color: #DBC73C;
display: inline-block;
font-weight: bold;
font-family: "Verdana";
text-transform: uppercase;

}

We use display: inline-block to ensure that both elements can have proper widths
and heights. On modern browsers, buttons already have this property set,
but links don’t. The result looks like the following figure:

A LINK!

With these basic attributes, we already have some consistency between the
objects, as the preceding figure shows, but we're far from done. The font sizes
don’t match and the padding is different, so it’s easy to tell that these are not
the same type of element. So, we tweak those values in the .button rule:

font-size: 1.2em;
line-height: 1.22em;
padding: 6px 20px;

By setting the font-size, line-height, and padding on the class, we override any values
already set on the <a> element and input elements. Now our buttons look a
little better:

A BUTTON! H A LINK!

We still need to address a few inconsistencies that give away that these two
elements aren’t the same. When you hover over a button, the cursor doesn’t
change from an arrow to a pointer, as it does when you hover over a link. So
we have to choose the behavior we want and apply it to both. Additionally,
links pick up the default link color on the page, and linked text is underlined.
So we unify those as well:

cursor: pointer;
color: #000;
text-decoration: none;

http://media.pragprog.com/titles/wbdev2/code/cssbuttons/css-buttons.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Yvy

vy

Chapter 1. Eye-Candy Recipes ® 4

Zooming in on our buttons in the Firefox browser reveals that, although
they’re close to the same height, the link is slightly smaller. This discrepancy
is enough to be noticeable, so we want to address it. Firefox adds a little extra
padding to its buttons, but we can override that by specifically targeting
buttons in Firefox like this:
input::-moz-focus-inner {

border: 0;

padding: 0;
}

And in Chrome, when you click the first button, you see an outline around
the box. To remove that outline, we can add this style:

input.button { outline: none; }

This removes the last discrepancy between our two buttons, allowing us to
focus on their overall look. We can improve that by rounding the corners and
adding a bit of a drop shadow, by adding this code to our existing .button rule:

cursor: pointer;

color: #000;

text-decoration: none;

border-radius: 12px;

-webkit-box-shadow: 1px 3px 5px #999;
box-shadow: 1px 3px 5px #999;

Our buttons now look like the ones in the following figure:

| ABUTTON! | ALINK! |

All modern browsers support the border-radius property, but notice that we're
adding two lines to our style sheet for box-shadow. The second line is enough
for most modern browsers with CSS3 support, but by also including the -webkit
prefixed property, we provide support for older versions of Safari and the
Android browser. The -webkit prefix is for WebKit-based browsers such as
Safari, Opera, and Chrome. (Chrome and Opera use the Blink rendering
engine, which is a fork of WebKit.)

As a final touch, let’s add a subtle gradient for texture. We'll use this to our
advantage shortly when we set the look of the buttons when they're clicked.
First, we add this to the end of our .button rule:

background: -webkit-linear-gradient(top, #FFF089, #DBC73C);

background: linear-gradient(to bottom, #FFF089, #DBC73C);
}

And with those lines added, our buttons look like this:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Styling Buttons and Links ¢ 5

[A BUTTON! }[A LINK!]

Once again, two lines achieve the same effect across multiple browsers. In
this case, were not only prefixing a rule. The syntax that WebKit-based
browsers use is slightly different from the standard.

Finally, we want to add some CSS associated with click events so that a
visual indicator shows that the button was clicked. Users expect that indica-
tion, and its absence can be disconcerting. Although we have numerous ways
to convey that the button was clicked, the simplest is to reverse the gradient:

.button:active, .button:focus {

color: #000;

background: -webkit-linear-gradient(top, #DBC73C, #FFF089);

background: linear-gradient(to bottom, #DBC73C, #FFF089);
}

We can reverse the gradient in several ways, but the easiest way to do it
consistently across browsers is to swap the colors at each end of the gradient.
By setting this background on .button:active and .button:focus, we ensure that the
excepted changes happen, whether the link or the input button is clicked.

CSS-styled links and input buttons allow us to style otherwise disparate ele-
ments and use them in the appropriate manner—Ilinks for navigating between
pages and input buttons for submitting data—while presenting a consistent
interface. By not relying on JavaScript to make a link submit a form or a
button outside of a form redirect to a page, we avoid breaking functionality
in older browsers, and we make it easier to understand how the page is
working.

Further Exploration

We've chosen the colors for the buttons in this recipe, but you'll probably
want to change them for your own projects. If you need help getting your own

If a button isn’t available to the user, you can remove it from the interface.
Or you can add a disabled class to it and style it appropriately, making it look
more faded out. Once you have a disabled-button style that you like, what
else must you do to truly disable it? Form inputs have a disabled attribute, but
for links you’ll need to use JavaScript to apply the disabled class.

Also See

e Recipe 2, Styling Stand-Alone Quotes with CSS on page 6

http://www.westciv.com/tools/gradients/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 6

Recipe 2

Styling Stand-Alone Quotes with CSS

Problem

Quotations from experts and praise from customers carry a lot of weight, so
we often want to draw attention to these quotations visually. Sometimes we
offset the margins a bit, increase the font size, or use large curly quotation
marks to make the quotation stand out. On a website, we want to do that in
a simple and repeatable fashion while keeping the presentation of the quota-
tion separate from the markup.

Ingredient
e A web browser that supports HTML5 and CSS3

Solution

We typically use CSS to separate our presentation from the content, and
styling quotations shouldn’t be any different. Modern browsers support some
more advanced properties we can use to make our quotations stand out,
without adding much additional markup to the page.

We've been asked to add some short customer reviews for the product pages
of our store. They're only a couple of sentences long, but each product page
will have several quotes, and we want them to stand out from the product
descriptions. First, let's look at the HTML and CSS techniques we’ll pull
together to make this happen.

We want to have a solid foundation to build our CSS upon, so we start by
setting up our HTML structure. Using the <blockquote> and <cite> tags makes
sense for wrapping the quote and the source, respectively:

cssquotes/quote.html
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<title>Quote</title>
<link rel="stylesheet" href="basic.css">
</head>
<body>

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quote.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

<blockquote>
<p>

Styling Stand-Alone Quotes with CSS ® 7

Determine that the thing can and shall be done,

and then we shall find the way.
</p>
<cite>Abraham Lincoln</cite>
</blockquote>
</body>
</html>

Now that we have good semantic markup for our quotes, we’ll start styling
them. First we take a simple approach: we put a border around the quote
and increase the size of the text, while putting a bit less emphasis on the
author’s name and sliding that to the right. The quotes look like this:

Determine

that the thing
can and shall
be done, and
then we shall
find the way.

Here’s how we make that happen:

cssquotes/basic.css

blockquote {
border: 1lpx solid black;
padding: 5px;
width: 225px;

}

blockquote p {
font-size: 2.4em;
margin: 5px;

}

blockquote > cite {
color: #AAA;
display: block;
font-size: 1.2em;
text-align: right;

http://media.pragprog.com/titles/wbdev2/code/cssquotes/basic.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYVYY

vy

Chapter 1. Eye-Candy Recipes ® 8

In this basic style, we give the <blockquote> a width and a border. We then use
a direct child selector on the <cite> tag to make sure we're styling it only if it’s
a child of the <blockquote>. We change the color of the author’s name, adjust
the padding to line everything up as we’d like, and end up with a simple but
good-looking quote.

Now that we've established our basic quote style, we can start to get fancier.
Rather than using a border, let’s surround the quote with large styled quota-
tion marks. First, we style the quote itself. We add some space on the left
using a left margin so we have some room for the quote:

cssquotes/quotation-marks.css

blockquote {
margin-left: 50px;
padding: 5px;
position: relative;
width: 225px;

}

Then we adjust the paragraph inside the quote. We want to place the quotation
marks behind the text, so we need to pull the paragraph out of the normal
flow by setting its position and z-index properties:

cssquotes/quotation-marks.css
blockquote p {
font-size: 2.4em;
margin: 5px;
z-index: 10;
position: relative;

}
Next we add the quotation marks:

cssquotes/quotation-marks.css
blockquote:after, blockquote:before {
position: absolute;
z-index: 1;
font-size: 12em;
color: #2ABBD5;
text-shadow: 2px 2px 0 #DDD;
font-family: serif;
height: 0;
}

blockquote:before {
content: "\201C";
top: -30px;
left: -55px;

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Styling Stand-Alone Quotes with CSS * 9

blockquote:after {

content: "\201D";

bottom: 30px;

right: 0;
}
To achieve this effect, we use the :before and :after selectors, which let us insert
content into the document when the specified tags are encountered on the
page. Using the content attribute, we can specify what that content should be,
whether it’s open-quote and close-quote codes, a specific character code, or a
string. Although open-quote and close-quote are the standards, not every browser
understands them, so we're using character codes.

The text we add can be styled like any other element. Here we adjust the
color, font family, and font size of the quotes, and we add a text shadow to
make the quotes pop a little.

Pay attention to the z-index attribute that was added, as well as the position:relative;
attribute on blockquote p. Using the position attributes plus z-index lets us place
the quotation marks behind the quote, so we don’t need any extra space for
the marks; plus, it looks cool to have the text overlaying them. We also position
our blockquote:after along the bottom so that no matter how long the quote gets,
the closing quotation mark stays at the end.

Finally, we add a dash before the author’s name, using the same technique
we used for the quotation marks:

cssquotes/quotation-marks.css
blockquote > cite:before {
content: "-- ";

}

When we're done, we get something like this:

¢ (Determine
that the thing
can and shall
be done, and
then we shall

find the way.

29

http://media.pragprog.com/titles/wbdev2/code/cssquotes/quotation-marks.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ¢ 10

And that’s pretty nice. And we didn’'t have to make any modifications to the
markup.

For our last style, we’ll go all out and style the quotes to look like speech
bubbles. Our goal is to create something that looks like the following:

Determine that the
thing can and
shall be done, and
then we shall find
the way.

Abraham Lincoln

Thanks to CSS3, we don’t need images to put our quote inside a speech
bubble. We can use a combination of the techniques we've used so far to get
the same result. We start by setting a background color on the blockquote. This
will be displayed in all browsers, even ones that don’t support the CSS3 effects
we're applying. Next we use the linear-gradient attribute to apply a background
that has a gradient, and then we round the corners of the element by using
the border-radius attribute. Now we have this:

cssquotes/speech-bubble.css
blockquote {
background-color: #FAF205;
background-image: -webkit-linear-gradient(top, #FAF205 20%, #FFFC9C 100%);
background-image: linear-gradient (#FAF205 20%, #FFFC9C 100%);
border-radius: 20px;
padding: 15px 30px;
position: relative;
margin: 0;
width: 225px;
}

As you learned in Recipe 1, Styling Buttons and Links on page 2, because
different browsers use different syntax for linear-gradient, we must use multiple
lines of code to get the same (or similar) effects across browsers. Although
current versions of Safari and Chrome no longer need this special prefix, we're

including it to support some older Android and iOS devices that still do.

We place the unprefixed linear-gradient, which covers all of the current web
browsers, after the prefixed ones.

We need to make a few changes in the blockquote p and blockquote > cite styles:

http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Styling Stand-Alone Quotes with CSS ® 11

cssquotes/speech-bubble.css

blockquote p {
font-size: 1.8em;
margin: 5px;
position: relative;
z-index: 10;

}

blockquote > cite {
bottom: -70px;
left: 50px;
display: block;
font-size: 1.1lem;
position: absolute;

}

We change the size of the paragraph text slightly, and we use absolute posi-
tioning to push the citation down, away from the quote.

Finally, we create the bottom triangle of our speech bubble by using block-
quote:after:

cssquotes/speech-bubble.css
blockquote:after {

border-color: transparent #FFFC9C;

border-style: solid;

border-width: @ 15px 50px Opx;

content: "";

display: block;

bottom: -50px;

left: 40px;

position: absolute;

width: 0;

z-index: 1;
}
We set the content to an empty string because there’s no need for actual content
here; we want to create a new content element so we can style its borders.
By setting the border widths to different thicknesses between the top and
bottom, and left and right, we create a triangle. Multiple values can be set on
any CSS attribute that can specify values for each side, in the clockwise order
of top, right, bottom, left. We use this to set the sizes of the borders as well
as the border-colors, with transparent borders on the top and bottom and color
on the right and left.

Further Exploration

We focused on styling quotations in this recipe, but the techniques can be
applied in many other situations. For example, by combining the CSS you

http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://media.pragprog.com/titles/wbdev2/code/cssquotes/speech-bubble.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 12

wrote with the code in Recipe 8, Swapping Between Content with Tabbed

examples, tweaking colors to help distinguish between different sets of data.
You can also apply the ideas in Recipe 27, Using Sprites with CSS on page

What other styles can you come up with for quotes? In our final example, we
created a speech bubble. Swapping a border from right to left on the block-
quote:after flips it on the vertical axis, but what would we have to do to move
the author’s name and the triangle to the top of the bubble?

We can use these same techniques to create other kinds of irregular shapes
that can make design elements stand out, including stars, hearts, and the
infinity symbol. The CSS-Tricks site has some great examples of these different
shapes;' you can experiment with the examples there and see what else you
can come up with.

Also See

e Recipe 1, Styling Buttons and Links on page 2

1. https://css-tricks.com/examples/ShapesOfCSS/

https://css-tricks.com/examples/ShapesOfCSS/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Animations with CSS3 Transformations ® 13

Recipe 3

Creating Animations with CSS3 Transformations

Problem

Flash used to be the go-to tool for developers wanting to add animations to
their sites. But as Flash animations become a distant memory, we have a
new, built-in tool for animating content with CSS3. However, we may still
run into sites that rely on Flash and need to be modernized.

Our client’s website originally had its logo done in Flash so that a “sheen”
could be seen crossing the logo when the user loaded the page. He just noticed
that his site looks different on his phone, and he’s not only frustrated that
his animation doesn’t display, but he’s even more concerned that his logo
doesn’t show up at all. While the missing effect doesn’t break the entire site,
the missing logo removes some of the site’s branding.

Ingredient
e CSS3

Solution

We'll replace the Flash logo with an image so it appears in all browsers. And
we’ll add back the animation for browsers that support CSS3 transformations.

Since the advent of CSS3 transitions and transformations, we’ve been able
to add animations to sites natively without resorting to plug-ins like Flash,
or even having to rely on large JavaScript libraries. The animation we’ll add
will be visible to all users except those who might still be using Internet
Explorer 9 or older.

Let’s start with the markup for the header that contains the logo. We add an
ID of banner to our <header> element and a class to the tag so we can
access them from the style sheet later:

csssheen/index.html
<header id="banner">

<div class="sheen"></div>

</header>

http://media.pragprog.com/titles/wbdev2/code/csssheen/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 14

To get the effect we're looking for, we can create a semitransparent, angled,
and blurred HTML block that moves across the screen after the Document
Object Model (DOM) is loaded. So, let’s start by defining our header’s basic
style. We want a blue banner that crosses the top of our content. To do this,
we give our header the desired width and position the logo in the upper-left
corner of our header:

csssheen/style.css

body {
background: #CCC;
margin: 0;

}

#banner {
background: #436999;
margin: 0 auto;
width: 800px;
height: 150px;
display: block;
position: relative;

}

#banner img.logo {
float: left;
padding: 10px;
height: 130px;

}

With our basic layout in place, we can add the decorative elements for the
animation. Let’s first create the blurred HTML element. Since this is an extra
effect that has nothing to do with the content of our site, we want to do it
with as little extra HTML markup as possible. We use the <div> with the sheen
class that we defined in our markup:

csssheen/style.css

#banner .sheen {
height: 200px;

width: 15px;
background: rgba(255, 255, 255, 0.5);
float: left;

In the current state of our page, as shown in the preceding image, we see
that we've added a thin, white, transparent line that’s taller than our header.

report erratum - discuss

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Animations with CSS3 Transformations ® 15

We're off to a great start. Now we want to blur the sheen element and reposi-
tion it so it starts left of the header and is slightly angled. To change the angle
of the rectangle, we need to add a browser-specific prefix to our transform style.
Browser-specific prefixes were created to add “new” CSS3 features before the
CSS3 specs were finalized. As of the writing of this book, the CSS3 specs are
still in development, but not nearly as many prefixes are required. Because
browser prefixes are a bit of a moving target, we recommend referencing David
Hund’s site” to find out which prefixes are still necessary. While it won’t hurt
to add prefixes to styles that used to require them, maintaining these styles
can be tedious and error-prone.

csssheen/style.css

#banner .sheen {
position: absolute;
left: -100px;
top: -25px;
box-shadow: 0 0 20px #FFF;
-webkit-transform: rotate(20deg);
transform: rotate(20deg);

}

With our styles in place, we're almost ready to animate our sheen. Next we
add the transition declarations, which we use for controlling the animation:

csssheen/style.css
#banner .sheen {
transition: left 2s ease-in-out;

}

The transition definition takes three arguments. The first tells the browser which
CSS attributes should be tracked. For our example, we only want to track
the left attribute, since we’re animating the sheen as it travels across the
header. (This can be set to all to control the transition of any attribute changes.)
The second parameter defines how long the animation takes, in seconds. This
value can be a decimal, such as 0.5s, up to multiple seconds for a longer
transition when slower changes are desired. The final argument is the name
of the timing function to use. We use one of the default functions, but you
can define your own. Ceaser” is a tool that we could potentially use to define
our own function.

Next, we need to add a style declaration that defines where we want the sheen
to end up. In this case, it should end on the right side of the header. We could
attach this to the hover event:

2. http://shouldiprefix.com
3.

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://shouldiprefix.com
http://matthewlein.com/ceaser/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 16

header:hover .sheen {
left: 900px;
}

But if we do that, the sheen will revert to its starting spot when the user
hovers away from the header. We want to make this a one-time deal, so we
need to use a little bit of JavaScript to change the state of the page. We add
a special class called loaded to our style sheet; this class positions the sheen
all the way at the end of the logo:

csssheen/style.css
#banner.loaded .sheen { left: 900px; }

Then we add the following JavaScript at the end of the <body> to add that
class to the header, which triggers the transition:

csssheen/index.html

<script>
setTimeout (function() {
document.getElementById('banner').className = 'loaded’;
}, 50);
</script>

In the preceding image, it might appear that all we're doing is moving a
blurry bar across the screen. But now that we're done styling the sheen, we
can clean up the overall look by tweaking the style once more. We add a style
of overflow: hidden; to the header, which hides the part of the sheen that hangs
over the edges:

csssheen/style.css
#banner {
overflow: hidden;

}

With all of our styles in place, we can trigger the entire animation with the
change of a CSS class. We no longer have to rely on a whole JavaScript ani-
mation suite or Flash for adding smooth animations to our websites.

This approach has the added advantage of saving our users’ bandwidth.
Although this doesn’t affect most users, we don’t always know when a user
might visit our site from an iPad or other mobile device using cellular coverage.

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://media.pragprog.com/titles/wbdev2/code/csssheen/index.html
http://media.pragprog.com/titles/wbdev2/code/csssheen/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Animations with CSS3 Transformations ® 17

This approach requires fewer files to download, so our users enjoy faster load
times with less stress on their data plans. We should always keep site opti-
mization in mind when developing websites.

In browsers that don’t support these new style rules, our site simply displays
the logo image. By separating style from content, we get the benefit of back-
ward compatibility and better accessibility for users with screen readers,
thanks to the alternative text on the tag.

Further Exploration

We covered only a few of the transformations and transitions that are available
to us. Other transformation options include scaling and skewing. We can also
get more fine-grained control over how long each transformation takes, or
even which transformations we actually want to transition. Some browsers
also enable us to define our own transitions. The built-in control that web
developers finally have over animation is exciting and long overdue.

Also See

e Recipe 1, Styling Buttons and Links on page 2

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 18

Recipe 4

Creating Interactive Slideshows with jQuery

Problem

A few years ago, if you wanted to have an animated slideshow on your website,
you’d probably create a Flash movie. Simple tools make this an easy process,
but maintaining the photographs in the slideshow often means rebuilding
the Flash movie. Additionally, many mobile devices don’t support Flash
Player, so those users can'’t see the slideshows at all. We need an alternative
solution that works on multiple platforms and is easy to maintain.

Ingredients

* jQuery
e The Cycle2 jQuery plug-in*

Solution

We can build a simple and elegant image slideshow using jQuery and the
jQuery Cycle plug-in. This open-source tool will give our users a nice slideshow
and only requires a browser with JavaScript support.

Many JavaScript-based image-cycling plug-ins are available, but what sets
the Cycle2 plug-in apart is its ease of use. It has many built-in transition
effects and provides controls for the user to navigate through images. It’s well
maintained and has an active developer community. It’s the perfect choice
for our slideshow.

Our current home page is somewhat static and boring, so our boss wants us
to build a slideshow showcasing the best of our company’s photographs. We’'ll
take some sample photographs and build a simple prototype that uses the
Cycle2 plug-in.

We start by creating a simple home-page template containing the usual boil-
erplate code, named index.html, that will hold our image slideshow:

4. http://jquery.malsup.com/cycle2/

http://jquery.malsup.com/cycle2/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Interactive Slideshows with jQuery * 19

image_cycling/index.html
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<title>AwesomeCo</title>
</head>
<body>
<h1>AwesomeCo</h1>
</body>
</html>

Next, we download the Cycle2 plug-in and place it in the same folder as our
HTML page. We also create an images folder and place a few sample images
our boss gave us to use for the slideshow. You can find these images in the
book’s source-code folder in the image cycling folder.

Next, we add jQuery and the jQuery Cycle2 plug-in to our page, right above
the closing <body> tag. We pull jQuery from Google, and we reference our local
version of the Cycle2 plug-in. We also need to add a link to a file called rotate.js,
which will contain all of the JavaScript we need to configure our image rotator:

image_cycling/index.html

<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>

<script src="jquery.cycle2.min.js"></script>

<script src="rotate.js"></script>

Then, we add a <div> with an ID of slideshow and add the images inside:

image_cycling/index.html
<div id="slideshow">

</div>

When we look at our page in the browser, we see something like the figure
on page 20.

We haven’t added the functionality to trigger the Cycle2 plug-in yet, so we
see the images listed in order. This also shows us what our page looks like
for a user who doesn’t have JavaScript support. We see that all of the content
is available to users so they don’t miss out on anything.

http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://media.pragprog.com/titles/wbdev2/code/image_cycling/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 20

AOA AwesomeCo
4| » + | file:/ /Users /¢johnson /Dropbox /Books /whdev/Book/co & KQ- Google H
AwesomeCo

At this point we have a choice to make. Suppose we add the cycle-slideshow auto
class to our <div> like this:

<div class="cycle-slideshow auto" id="slideshow">

Then the plug-in would immediately convert the set of images into a slideshow
for us with a nice crossfade transition. And we’d be done. But instead, let’s
explore how to interact with the slideshow programmatically using its Java-
Script API.

We start by adding the JavaScript to initialize the plug-in and start the
slideshow. We create the rotate js file and add this code, which configures the

jQuery Cycle plug-in:

image_cycling/rotate.js
(function($){

$('#slideshow') .cycle({fx: 'fade'});
}) (jQuery);

The jQuery Cycle2 plug-in has many options that control how the slideshow’s
transitions work. We can make the images fade, fade with zooming, wipe, or

report erratum -

discuss

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Interactive Slideshows with jQuery ® 21

even toss as they transition. You can find the full list of options on Cycle2’s
website.” Let’s stick with the fade function, because it’s simple and elegant.
That’s what the fx: 'fade' in the cycle() call does.

Now that we have all the pieces in place, let’s look at our page again. This
time we see only one image, and after a few seconds, we begin to see the
images rotate.

When we show our boss the working slideshow, she says, “That’s great, but
I'd like to have a Pause button to let customers pause the slideshow on an
image they like.” Lucky for us, the plug-in we've used makes this easy.

We’'ll add a pause button to the page with JavaScript, since it’s needed only
when the slideshow is active. This way, we don’t present useless controls to
users who don’t have JavaScript support. We’ll do this with function called
setupButtons(). It adds our button to the page and attaches a click event that tells
the slideshow to either pause or resume, based on the current state. We also
toggle the text of the button so it’s apparent whether the slideshow can be
paused or resumed.

We place this code above our code that initializes the slideshow:

image_cycling/rotate.js
function setupButton() {
var $pauseButton, $slideShow;

$slideShow = $('#slideshow');
$pauseButton = $('<button>Pause</button>"');

$pauseButton.on('click', function() {
if (isPaused($slideShow)) {
playSlideShow($slideShow, $(this));
} else {
pauseSlideShow($slideShow, $(this));
}
1)

function isPaused($player) {
return $player.is('.cycle-paused');

}

function playSlideShow($player, $button) {
$player.cycle('resume');
$button.html('Pause');

}

5. http://jquery.malsup.com/cycle2/api/#options

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://jquery.malsup.com/cycle2/api/#options
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 22

function pauseSlideShow($player, $button) {
$player.cycle('pause');
$button.html('Resume');

}

$pauseButton.insertAfter($slideShow);
}

First, we define the setupButton() function and declare variables for the Pause
button and our slideshow. Then we use jQuery to locate the slideshow by its
ID. As a reminder, we're using dollar signs in front of variables that reference
jQuery objects.

Then we use jQuery to create the Pause button by using an HTML fragment.
We're using a button element here, but you could use any element that responds
to a click event.

Next, we add a click() event to the button. If the slideshow is currently running,
then we pause the slideshow and change the button text to Resume. Other-
wise, we resume the slideshow and change the button text back to Pause.

When the slideshow is paused, the plug-in applies the .cycle-paused class to the
<div> containing our slideshow. We use that to see if the slideshow is paused.
It’s a cleaner technique than looking at the current name of the button.

We add the Pause button by inserting the new button into the DOM, right
after the slideShow using insertAfter().

Finally, we need to invoke the setupButton() to place the button on the page. We
place that right below our cycle() call that fires off the slideshow:
image_cycling/rotate.js

$('#slideshow').cycle({fx: 'fade'});
setupButton();

Let’s check out the page in the browser again. We can see the Pause button
show up on the page, as in the figure on page 23.

After our slideshow starts, we can click the Pause button, and we’ll see the
Resume button replace the Pause button as the transitions stop. When we
click the Resume button, the images will begin to change again.

http://media.pragprog.com/titles/wbdev2/code/image_cycling/rotate.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Interactive Slideshows with jQuery ® 23

AwesomeCo

| Pause |

Further Exploration

This slideshow was easy to implement, and with all of the options that are
provided at the plug-in’s website,’ we can extend the slideshow to include
even more functionality.

To enhance the visual experience, the Cycle2 plug-in has many transition
settings, such as shuffle, a toss, and uncover transitions. We can change our
slideshow to use any of these by changing the value of the fx: option in our
cycle() call. We can also cycle other elements besides images, including more
complex HTML regions and even videos.

In addition to implementing the animation features, we can improve the way
pages load by taking advantage of the plug-in’s ability to preload the images.
Instead of loading all the images in the HTML, we can load one image:

image_cycling/index_preload.html
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<title>AwesomeCo</title>
</head>
<body>

6. http://jquery.malsup.com/cycle2/api/#options

report erratum

- discuss

http://media.pragprog.com/titles/wbdev2/code/image_cycling/index_preload.html
http://jquery.malsup.com/cycle2/api/#options
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 24

<h1l>AwesomeCo</h1>

<div id="slideshow">

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

<script src="jquery.cycle2.min.js"></script>

<script src="preload.js"></script>

</body>
</html>

Then, we specify the rest in our JavaScript code:

image_cycling/preload.js
(function($){
var images = [

'",
'",
'",
'",
'"

1;

$('#slideshow') .cycle(
{
fx: 'fade',
load: true,
progressive: images
}
)i
}) (3Query);
We pass the array of HTML elements for the slideshow when we create the
slideshow. This can drastically improve load time, because the images can

load in the background while the first image is displayed to the visitor.

In this example we're loading images, but this can actually be any HTML you
want. You could even use jQuery to fetch other off-the-page elements.

These are some of the possibilities baked into the Cycle2 plug-in, so go explore
and try them.

Also See

¢ Recipe 3, Creating Animations with CSS3 Transformations on page 13

http://media.pragprog.com/titles/wbdev2/code/image_cycling/preload.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating and Styling Accessible Tooltips ® 25

Creating and Styling Accessible Tooltips

Problem

We have a page with lots of jargon, and we've been asked to build in function-
ality that lets visitors hover over terms to see their definitions. However, we
have to ensure that the functionality can be used with assistive devices such
as screen readers, since the page we’re building will be accessed by people
with disabilities.

Ingredient
* jQuery

Solution

With a small amount of CSS, some jQuery, the HTML5 ARIA specification,’

and only a tiny amount of effort, we can create tooltips that work for everyone.
When we're done we’ll have something that looks like this:

It's a perfectly cromulent word.

Another paragi adjective Appearing legitimate but actually being spurious.

We'll construct a library that’ll work for widespread use throughout our site,
but let’s develop it by making a prototype page with a basic HTML skeleton:

accessible_tooltips/index.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Definitions</title>
<link rel="stylesheet" href="tooltips.css">
</head>
<body>

</body>
</html>

7.

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://www.w3.org/TR/html5-author/wai-aria.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 26

The skeleton includes link to a style sheet file, tooltips.css, which will control
the visibility of elements and the way our tooltips look. It’ll also contain code
that styles the word so it’'s apparent to users that they can interact with it.

Next, let’s add some dummy text. We need a paragraph, and in that paragraph
we want to have a specific keyword. When we hover over that word we want
the definition to appear, so let’s mark up the paragraph like this:
accessible_tooltips/index.html

<p>It's a perfectly

cromulent

adjective
Appearing legitimate but actually being spurious.

word.
</p>

<p>Another paragraph of text.</p>

We place the keyword in a tag, and we place the definition of that word
inside its own . We apply a tabindex to the outer so that visitors
can interact with the keyword via the keyboard by pressing the Tab key.

We also associate the keyword to its definition in our markup, using the aria-
describedby tag, and we apply role="tooltip" to the element that makes up the
tooltip. These small touches are what make interfaces more friendly to tech-
nologies like screen readers, which are used by blind and low-vision visitors
who need the text on the screen read to them by the computer.

Now let’s link up jQuery and our own custom tooltips.js file:

accessible_tooltips/index.html

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

<script src="tooltips.js"></script>

We'll look through our document for any elements that have the definition class.
For each one we find, we’ll find its associated tooltip and hide it. But we won’t
use jQuery’s show() or hide() methods. Instead, we modify the aria-hidden attribute
of the tooltip, setting its value to true to ensure that screen-reading software
is aware of the tooltip’s visible state:

accessible_tooltips/tooltips.js
(function($){
var $definitions = $('.definition');

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/index.html
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating and Styling Accessible Tooltips ¢ 27

$definitions.find('.tooltip').attr('aria-hidden', 'true');
}) (jQuery);

Then in tooltips.css we locate the elements with the aria-hidden attributes and
style them appropriately:

accessible_tooltips/tooltips.css
.definition .tooltip[aria-hidden="'true'] {
display: none;

}

.definition .tooltip[aria-hidden='false'] {
display:block ;
}

As soon as our JavaScript code sets the aria-hidden attribute to true, these CSS
rules hide the element. And when we set the value to false, the elements show
up again.

While we're here, let’s add the styling for the definition. We add an underline
to the word so we let users know it’'s something they can interact with. And
we set the display property of the word we're defining to inline-block, which helps
the definition appear closer to the word and ensures that any trailing spaces
aren’t underlined. We also add a slight drop shadow and a background to the
tooltip:

accessible_tooltips/tooltips.css
.definition {
display: inline-block;
text-decoration: underline;

}

.definition .tooltip {
background-color: #ffe;
box-shadow: 5px 5px 5px #ddd;
padding: lem;
position: absolute;

}

All that’s left to do is apply the actual behavior. When the user hovers or tabs
to a keyword, we want to show the definition. And when the user moves focus
away, we want to hide it. That means we need to handle mouse events as well
as focus events for keyboard navigation. That turns out to be pretty easy with

jQuery:

accessible_tooltips/tooltips.js

function showTip(){
$(this).find('.tooltip').attr('aria-hidden', 'false');

}

http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.css
http://media.pragprog.com/titles/wbdev2/code/accessible_tooltips/tooltips.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 28

function hideTip(){
$(this).find('.tooltip').attr('aria-hidden', 'true');
}

$definitions.on('mouseover focusin', showTip);
$definitions.on('mouseout focusout', hideTip);

And if you want to support other events, such as the touch events we work
with in Recipe 25, Mobile Drag and Drop on page 173, you can add those to

the event handlers, too.

That’s all there is to it. When we open the page, we can hover over our word
and see the definition. Best of all, because we applied a tabindex, we can activate
it when we hit the Tab key also. And because the tooltip is associated with
its parent, it should work well for screen-reading software.

Further Exploration

In our implementation, the tooltip is a child element of the element we hover
on, and we used a element, so we can’t place <div> elements or other
block-level elements in the tooltip. But it doesn’t have to work that way. We
could move the tooltip contents elsewhere in the markup and then use the
aria-describedby role to locate the element and display its contents in our Java-
Script code. Then we could place video content, images, or pretty much any-
thing we want in that tooltip. And it would be accessible to everyone.

In this recipe we used our tooltips for definitions, but we can place any content
we want, whether it’s more information about a hyperlink or an inline help
documentation for user interface items. Don’t get carried away; the information
you place should supplement the main content. After all, it does require
interaction from the user to read the content you've hidden. Also, be sure you
don’t attach it to an element in such a way that it’s triggered accidentally,
obscuring the text on the screen. Some people track the words they read with
the mouse, and surprise pop-ups won’t keep you in their good graces.

Also See

e Recipe 31, Cleaner JavaScript with CoffeeScript on page 221

¢ Recipe 30, Building Modular Style Sheets with Sass on page 213

* Recipe 37, Testing JavaScript with Jasmine on page 267

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Using Font Icons ® 29

Recipe 6

Using Font Icons

Problem

Adding icons to a website can help illustrate what a button does or where a
link goes, highlight a message, or otherwise clarify a page’s components and
functions. But creating those icons can be a lot of work, especially if you're
not a graphic designer. Whether we're creating a site concept, redesigning an
existing page, or working on a project without access to a designer, it'd be
great to have access to icons that are easy to use and modify, that add visual
interest, and that have a uniform look—without having to go dig around the
web for icons.

Ingredients

e CSS3
e Font Awesome®

Solution

Font icons are vector images that can be manipulated with CSS, enabling us
to have lightweight icons that are easily adaptable to our needs and style
without having to create new graphics. We can also use drop shadows and
easy scaling to adjust the way they look, and even use CSS animations such
as the ones in Recipe 3, Creating Animations with CSS3 Transformations on

We'll use the Font Awesome font icon library in our solution. Font Awesome
is one of the most popular font icon sets. It includes hundreds of icons we
can use for many common user interface elements as well as many other
situations, such as media-player controls and brand logos.

We start with a simple HTML page containing some basic elements on the
page, like a header and some navigation:

8. http://fontawesome.io

http://fontawesome.io
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 30

fonticons/original.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Font Icons</title>
<link rel="stylesheet" href="original-style.css">
</head>
<body>
<div id="header">
<div id="header navigation">
<i class="fa fa-user"></i> My Account
</div>

AwesomeCo

</div>
<div id="navigation">

Home</1i>
Team</1i>
Store
Puppies</1li>

</div>
<div id="content">
</div>
</body>
</html>

Next, we create a style sheet that sets up a simple two-column layout with a
header and left-side navigation:

fonticons/original-style.css
body {
height: 100%;
width: 580px;
}

aq
text-decoration: none;
color: black;

#header {
background-color: #ccc;
height: 100px;
padding: 5px;
text-align: center;
width: 100%;

http://media.pragprog.com/titles/wbdev2/code/fonticons/original.html
http://media.pragprog.com/titles/wbdev2/code/fonticons/original-style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

vy

Using Font Icons © 31

#header #logo { font-size: 3em; }

#header #header navigation {
text-align: right;
width: 100%;

}

#navigation {
background-color: #888;
float: left;
min-height: 600px;
width: 150px;

}

#navigation 1i i { margin-right: 5px; }

#content{
float: left;
margin: 5px;
width: 600px;

}

We include the Font Awesome style sheet. This gives us access to all of the
icons in the library, and it needs to be loaded only once no matter how many
icons we use on the page:
fonticons/original.html

<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/font-awesome/

4.3.0/css/font-awesome.min.css">
<link rel="stylesheet" href="original-style.css">

This single style sheet link loads the Font Awesome style sheet from the
Bootstrap CDN and makes the icons available to use on our site with some
easy CSS classes. Right now the page looks like the following figure:

My Account

AwesomeCo

report erratum - discuss

http://media.pragprog.com/titles/wbdev2/code/fonticons/original.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 32

The page doesn’t have much on it now, but it includes some elements that
would benefit from having icons on them. Let’s start by adding an icon next
to the My Account link in the upper-right corner, so that it stands out a bit
more and gives some clues as to what it’s about.

The My Account section of the site is where our users manage their informa-
tion, so let’s use an icon that represents a person. The <user> icon looks like
a good one:

fonticons/index.html
<i class="fa fa-user"></i> My Account

The <i> tag is a short tag that creates an inline element. A tag could
also be used, but generally the <i> tag is used for brevity. The Font Awesome
style sheet gives us access to all of its classes, so we can load the font icon
associated with the class into the <i> tag. We use two classes: <fa> to indicate
that we want to use a Font Awesome icon, and <fa-user> to load the actual
Font Awesome <user> icon. Then we can refresh the page, and we see the icon
alongside the My Account link, as in the following figure:

& My Account

AwesomeCo

That was simple, wasn’t it? Now that we've added one icon to the header, let’s
replace the bullets on the left-hand navigation list with icons that communi-
cate more about what each list item is for.

Font Awesome includes a shortcut to replace bullets with icons, so we don’t
have to go through the work of removing the bullets ourselves with CSS:

fonticons/index.html
<div id="navigation">
<ul class="fa-ul">
<i class="fa fa-li fa-home"></i> Home</1i>
<i class="fa fa-li fa-users"></i> Team
<i class="fa fa-li fa-shopping-cart"></i> Store
<i class="fa fa-li fa-paw"></i> Puppies

</div>

report erratum -

discuss

http://media.pragprog.com/titles/wbdev2/code/fonticons/index.html
http://media.pragprog.com/titles/wbdev2/code/fonticons/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Using Font Icons © 33

We add a <fa-ul> class to the tag and a <fa-li> class to each of the tags,
along with the <fa> and <fa-ICON> classes we would normally add to the <i>
elements. Now when we reload the page we see the bullet icons, as in the
following figure:

& My Account

AwesomeCo

We added icons for all of the navigation items, and we're pretty happy with
how things look, but the client wants to change the color scheme of the
sidebar to black. We're using black text in the original design, which means
our icons are also black and disappear on the black background, so we need
to change that. We've also been asked to increase the size of the icons and
text on the page. Fortunately, font icons are treated no differently than any
text on the page, so it’'s easy to change the color and size:

fonticons/style.css

#navigation {
background-color: black;
color: white;
float: left;
font-size: 1.3em;
min-height: 600px;
width: 150px;

}

We want the icon color to match the font color in the navigation, so all we
need to do is change the <color> style and the <background-color>. Now, when we
reload the page, our icons’ colors change along with the color changes we
make, and everything continues to match the style guide. And we didn’t have
to make a single new icon to do it.

We also increased the font size slightly, and the icons adjusted accordingly,
as shown in the following image:

http://media.pragprog.com/titles/wbdev2/code/fonticons/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 1. Eye-Candy Recipes ® 34

& My Account

AwesomeCo

If we had made the icons as regular image files, we would have had to redraw
them for the new navigation-item size. But because they're vector images,
they automatically adjust to the new line size, and we do no extra work!

Font icons give us many great options for adding graphical elements to our
sites in a flexible and easily adaptable way. With them we can avoid a lot of
trouble having to re-create images if other elements of the design change.
Plus, they're fast to load, so our users don’'t have to wait for multiple images
to load.

Further Exploration

Font Awesome includes a lot of ways to manipulate the icons. We can flip
them, stack them on top of one another, make them rotate, and more. Beyond
the built-in effects, we can use CSS3 animation to change the way the icons
render so that we get the exact look that we want.

Also See

* Recipe 3, Creating Animations with CSS3 Transformations on page 13

e Recipe 1, Styling Buttons and Links on page 2

¢ Recipe 2, Styling Stand-Alone Quotes with CSS on page 6

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 2

User Interface Recipes

Whether you're delivering static content or presenting an interactive applica-
tion, you have to create a usable interface. This collection of recipes explores
the presentation of information as well as some new ways to build more
maintainable and responsive client-side interfaces.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 36

Recipe 7

Creating an HTML Email Template

Problem

Building HTML emails is a bit like traveling back in time—a time before CSS,
when everyone used tables for layout and tags reigned supreme. A lot
of the best practices we've come to know and love aren’t usable in HTML
emails, because the email readers don’t handle them. Testing a web page on
multiple browsers is easy compared to the amount of testing we have to do
when we create an email that will be read in Outlook, Hotmail, Gmail, or
Thunderbird, not to mention the various mail applications on mobile devices.

But our job isn’t to complain about how difficult things are going to be; our
job is to deliver results. And we have a lot of work to do. Not only do we need
to produce readable HTML emails; we also need to ensure that our messages
don’t get flagged as spam. We need to build something that is usable, readable,
and effective on multiple platforms.

Ingredients

¢ A free trial account on Litmus.com for testing emails

Solution

Designing HTML emails means discarding many current web development
techniques because of the constraints of email clients. While staying aware
of these limitations, we also need to avoid techniques that might get our
messages marked as junk, and we need to easily test our email on multiple
devices. The best approach will be to use good old trusty HTML with table-
based layouts.

HTML Email Basics

Conceptually, HTML emails aren’t difficult. After all, creating a simple HTML
page is something we can do without much effort. But as with web pages, we
can’t guarantee that all users will see the same thing when they look at what
we create. Each email client does something a little different when presenting
messages to its users.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating an HTML Email Template ¢ 37

For starters, many web-based clients like Gmail, Hotmail, and Yahoo often
strip out or ignore style sheet definitions from the markup. Google Mail
actually removes styles declared in the <style> tag, in an attempt to prevent
styles in emails from colliding with the styles it uses to display its interface.
We also can’t rely on an external style sheet, because many email clients
won't automatically fetch remote files without first prompting the user. So,
we can’t really use CSS for layout in an HTML email.

Google Mail and Yahoo either remove or rename the <body> tag in the email,
so it’s best to wrap the email in another tag that can stand in for the <body>.

Some clients choke on CSS shorthand declarations, so any definitions we do
use need to be spelled out. For example, older clients might ignore this defi-
nition:

#header{padding: 20px;}

So instead, we need to expand it:

#header{
padding-top: 20px;
padding-right: 20px;
padding-bottom: 20px;
padding-left: 20px;
}

Desktop clients such as Outlook can’t handle background images, and some
older ones can’'t display PNG images. That might not seem like a big deal at
first, but millions of enterprise users use these as their primary client.

These aren’t the only issues we’ll run into, but they are the most prevalent.
The Email Standards Project' has comprehensive lists of issues for the various
email clients.

Partying Like It's 1999

When it comes down to it, the most effective HTML emails are designed using
the most basic HTML features:

e They're built with simple HTML markup with minimal CSS styling.

¢ They're laid out with HTML tables instead of more modern techniques.
e They don’t use intricate typography.

e The CSS styles are extremely simple.

In short, we need to develop emails as if the last ten years of web development
didn’'t happen. With that in mind, let’s code up a simple invoice email template

1. http://www.email-standards.org/

http://www.email-standards.org/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 38

using tables for layout. The application developers will take this template and
handle all of the real content, but we need to figure out how to code up the
template so that it’s readable in all of the popular email clients.

Our invoice will have the typical items: a header and footer, as well as sections
for our address and the customer’s billing address. It'll have a list of the items
the customer purchased, and each line will have the price, quantity, and
subtotal. We'll need to provide the grand total for the invoice, and we’ll have
an area to display some notes to the customer.

Since some web-based email clients strip out or rename the <body> element,
we’ll need to use our own top-level element to act as the container for our
email. To keep it as bulletproof as possible, we’ll create an outer table for the
container and place additional tables inside of that container for the header,
footer, and content. The following figure gives a rough example of how we’ll
mark this up:

header

invoice date

from to

subtotal
total

notes

footer

Let’s start by writing the wrapper for the email template, using an HTML 4.0
doctype:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating an HTML Email Template ® 39

htmlemail/template.html
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<meta content="text/html; charset=IS0-8859-1" http-equiv="content-type">
<title>Invoice</title>
</head>
<body>
<center>
<table id="inv container"
width="95%" border="0" cellpadding="0" cellspacing="0">
<tr>
<td align="center" valign="top">
</td>
</tr>
</table>
</center>
</body>
</html>

To ensure that our invoice shows up centered in the email client, we must
resort to the old, deprecated <center> tag. It's the only approach that comes
close to working across all of the various clients. (Don’t worry, though; we
won’t be using <blink>.)

Next, we need to create the header. We use one table for our company name
and a second table with two columns for the invoice number and the date:

htmlemail/template.html
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tr>
<td align="center" bgcolor="#5d8eb6" valign="top">
<hl>AwesomeCo</hl>
</td>
</tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="98%">
<tr>
<td align="left" width="70%"><h2>Invoice for Order #533102 </h2></td>
<td align="right" width="30%"><h3>December 31, 2099</h3></td>
</tr>
</table>

Some of the web-based clients strip out CSS, so we have to use HTML
attributes to specify the background and text color. The first table has a width
of 100 percent, but the second table has a width of 98 percent. Since our

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 40

tables are centered on the page, this gives us space on the left and right edges
so that the text isn’t touching the edge of the outer table.

Next, let’s add another table that contains the From and To addresses:

htmlemail/template.html
<table id="inv addresses" border="0"
cellpadding="2" cellspacing="0" width="98%">
<tr>
<td align="left" valign="top" width="50%">
<h3>From</h3>
AwesomeCo Inc.

123 Fake Street

Chicago, IL 55555
</td>
<td align="left" valign="top" width="50%">
<h3>To</h3>
GNB

456 Industry Way

New York, NY 55555
</td>
</tr>
</table>

Next, we add a table for the invoice itself:

htmlemail/template.html
<table border="0" cellpadding="2" cellspacing="0" width="98%">
<caption>0rder Summary</caption>
<tr>
<th bgcolor="#cccccc" align="left" valign="top">SKU</th>
<th bgcolor="#cccccc" align="left" valign="top">Item</th>
<th bgcolor="#cccccc" valign="top">Price</th>
<th bgcolor="#cccccc" valign="top" width="10%">QTY</th>
<th bgcolor="#cccccc" valign="top" width="10%">Total</th>
</tr>
<tr>
<td valign="top">10042</td>
<td valign="top">15-inch MacBook Pro</td>
<td align="right" valign="top">$1799.00</td>
<td align="center" valign="top">1</td>
<td align="right" valign="top">$1799.00</td>
</tr>
<tr>
<td valign="top">20005</td>
<td valign="top">Mini-Display Port to DVI Adapter</td>
<td align="right" valign="top">$19.99</td>
<td align="center" valign="top">1</td>
<td align="right" valign="top">$19.99</td>
</tr>
</table>

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating an HTML Email Template © 41

This is an actual data table, so we’ll make sure it has all of the right attributes,
such as column headers and a caption.

Then we add a table for the total. We need to use a separate table for this
because, believe it or not, some email clients still have trouble displaying
tables with rows that span multiple columns.

htmlemail/template.html
<hr>
<table border="0" cellpadding="2" cellspacing="0" width="98%">
<tr>
<td align="right" valign="top">Subtotal: </td>
<td align="right" valign="top" width="10%">$1818.99</td>
</tr>
<tr>
<td align="right" valign="top">Total Due: </td>
<td align="right" valign="top">$1818.99 </td>
</tr>
</table>

We place another simple table to display the invoice notes next:

htmlemail/template.html
<table border="0" cellpadding="0" cellspacing="0" width="98%">
<tr><td align="left">
<h2>Notes</h2>
<p>Thank you for your business!</p>
</td></tr>
</table>

And finally, we add the footer, which we define as a single-celled table with
full width, like the header:

htmlemail/template.html
<table id="inv footer" border="0"
cellpadding="0" cellspacing="0" width="100%">
<tr>
<td align="center" valign="top">
<h4>Copyright © 2099 AwesomeCo</h4>
<h4>
You are receiving this email because you purchased
products from us.
</h4>
</td>
</tr>
</table>

The footer is a good place to explain to recipients why they got the email in
the first place. For an invoice the reason is obvious, but for a newsletter we’d

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes © 42

use this area to give readers some links to manage their subscriptions or opt
out of future mailings.

With that, we've created a simple but readable HTML invoice. But what about
those clients that can’t handle HTML emails?

Many standards-focused developers choose to avoid using tables in favor of semantic
markup that relies on CSS to manage the layout. They’re not concerned with the mail
clients stripping out the CSS, because the email will still be readable and accessible.

Unfortunately, if your stakeholders insist that the design of the email must be con-
sistent across clients, standards-based web development techniques won't cut it.
That’s why we use a table-based approach in this recipe.

Supporting the Unsupportable

Not every HTML email client supports HTML email, and, as we've learned,
even those that do are inconsistent. We should provide a way for people to
read the content under those situations, and the most common solution is
to provide a link at the top of the message that links to a copy of the email
that we host on our servers. When users click the link, they can read the
message in their web browser of choice.

In our case, we can place a link to a copy of the invoice that’s within the user’s
account. We want to place the link at the top of the email, above the content
table, so that it’s easily visible. As a bonus, some mail programs provide a
preview that lets the reader jump into the invoice without opening the email.

htmlemail/template.html
<p>

Unable to view this invoice?

View it in your browser instead.
</p>

Third-party systems like MailChimp and Campaign Monitor provide this
functionality by hosting the HTML email on their servers as static pages.

We could also construct a multipart email, sending both a plain-text version
of the invoice and the HTML version. When we do this, we're inserting two
bodies into the email and using a special set of headers in the email that tell

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating an HTML Email Template ® 43

the email client that the email contains both text and HTML versions. To do
that effectively, we’d need to develop and maintain a text version of the invoice
in addition to our HTML version. Alternatively, we could place a link to the
web-page version of the invoice that we're hosting.

Sending multipart emails is beyond the scope of this recipe, but most web-
based frameworks and email clients have options for sending out multipart
messages. Wikipedia’s entry on MIME? has a good overview of how multipart
messages work.

Styling with CSS

We're using tables for layout because we can't rely on floating or absolute
positioning with CSS, since many web-based email clients strip out CSS
styles. Those clients aren’t stripping things out because their developers are
mean-spirited standards haters. They're doing it because if they allowed CSS,
the email’s contents could potentially conflict with styles in the web-based
application.

For two reasons, however, we may still want to try to use CSS. First, we want
things to look nicer for people who have email clients that support CSS.
Second, we can reuse this invoice template for the static page we talked about
in Supporting the Unsupportable, on page 42.

Since many email clients strip off the <head> section of our document, we’ll
place our style information in a <style> tag right above our container table.

Let’s remove the margins around our heading tags to reduce the wasted space.
Let’s also apply a background color and a border to our table and add some
space between each of the inner tables—except for the footer—so things aren’t
so crowded:

htmlemail/template.html
<style>
table#inv_addresses h3,
table#inv_footer h4{
margin: O;

}
table{ margin-bottom: 20px; }
table#inv_footer{ margin-bottom: 0; }

body{ background-color: #eeeeee; }

2. http://en.wikipedia.org/wiki/MIME

http://media.pragprog.com/titles/wbdev2/code/htmlemail/template.html
http://en.wikipedia.org/wiki/MIME
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes © 44

table#inv_container{
background-color: #ffffff;
border: 1lpx solid #000000;

}
</style>

With the styles in place, the invoice looks like the following figure:

Unable to view this invoice? View it in your browser instead.

Invoice for Order #533102 December 31,2099
From To
AwesomeCo Inc. GNB
123 Fake Street 456 Industry Way
Chicago, IL 55555 New York, NY 55555
Order Summary
SKU Ttem Price QTY Total
10042 15-inch MacBook Pro $1799.00 1 $1799.00
20005 Mini-Display Port to DVI Adapter $19.99 1 $19.99
Subtotal: $1818.99
Total Due: $1818.99
Notes
‘Thank you for your business!
Copyright © 2099 AwesomeCo
You are receiving this email because you purchased products from us.

We're not done, though; we need to test things out.

Testing Our Emails

Before we can show it off to our client, we need to see how this email works
in some email readers. We can send it around to our colleagues, or we could
create accounts at Gmail, Yahoo Mail, Hotmail, and others to see how things
look. But manual testing is time-consuming.

Litmus® provides a suite of tools that help people test web pages and emails.
It supports a wide range of email clients and browsers, including mobile
devices. Although the service isn't free, it does provide a trial account that
we can use to ensure that our invoices work as expected.

Within a Litmus account, we can create a test that lets us choose the target
clients. We can then email our invoice to some addresses that Litmus provides,
or we can upload our HTML file through the web interface. Using the HTML
upload doesn’t provide a text fallback, so some of the test results will show

3. http://litmus.com/

report erratum -« discuss

http://litmus.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating an HTML Email Template ©® 45

only the HTML source, not a text fallback—but that’s good enough for our
test.

Litmus renders our email on the target email clients and provides us with a
detailed report, like the one in the following figure:

Brian Hogan 3

ALL TESTS 2 Rename (B, Download (3 Publish [Share Versiona % Retest
650 You have 3 months left on your Plus Subseription to try out Litmus! To continue without interruption, we'll need your billing info. Keep using Litmus
= 34 of your soreenshots are ready. The rest are in our queue and shouid be processed in a few minutes

Link Check Desktop Clients

Image Check = . = 7 e

Code Analysis

TaGs Apple Mail 7 Apple Mail 8 Lotus Notes 6.5 Lotus Notes 7 Lotus Notes 8 Lotus Notes 8.5

+ Add tags

Outlook 2000 Qutlook 2002 Quitlook 2003 OQutlook 2007 Outlook 2010 Qutlook 2011

Outlook 2013 OQutlock 2016 Thunderbird 31

Each thumbnail is clickable so you can get a more detailed view of how things
work on an individual device. You'll want to check all of the devices and
browsers that matter to you and make any adjustments necessary.

With the code we've written, it looks like we have an email invoice that looks
fairly consistent across the major platforms and is readable on most of the
others. In your own projects, you may have to do a little more tweaking to get
the results you want.

Images and Emails

We haven't talked about images yet in this recipe for two reasons. First, we’d
need to host our images on a server and include absolute links into the email.
The second reason is that many email clients turn images off, since many
companies that send emails use images to track whether the email was
opened. The email message contains a link to an image on their server, and
when you open the email, the images load, and the sender now knows it's
been opened.

If you do decide to use images in your emails, follow a few simple rules:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 46

e Be sure to host the images on a server that will be available, and don’t
change the URLs to the images. You never know when someone will open
the email you sent.

e Since images are often disabled by default, make sure you specify useful
and descriptive alt attributes on your images.

e Place the images into your email with regular tags. Many email
clients don’t support images as table-cell backgrounds, and even fewer
support images as CSS backgrounds.

e Because images are often blocked by default, it’s a bad idea to use images
as the entire content of your email. It may look nice, but it causes acces-
sibility problems.

Images in emails can be effective when used properly. Don’t be afraid to use
them, but be mindful of the issues you will encounter.

Further Exploration

Our simple email template presents a readable invoice to our recipients, but
an invoice doesn’t need to be as engaging as a marketing announcement or
a newsletter. For that, we’d need to do more styling, use more images, and
do more exception handling for various email clients.

MailChimp* knows a thing or two about sending emails. After all, that’s its
business. If you're looking to learn more about email templates, you can dig
into the email templates MailChimp has open sourced.’ They're tested on all
of the major clients, too, and have some well-commented source code that
gives more insight into some of the hacks we have to employ to make things
work well across all of the major email clients.

Also See

¢ Recipe 38, Using Dropbox to Collaborate and Host a Static Site on page 278

4. http://www.mailchimp.com

http://www.mailchimp.com
https://github.com/mailchimp/Email-Blueprints
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Swapping Between Content with Tabbed Interfaces ¢ 47

Recipe 8

Swapping Between Content with Tabbed Interfaces

Problem

We sometimes have multiple, similar pieces of information that we want to
display together, such as a phrase in multiple languages or code examples
in several programming languages. We could display them one after another,
but that can take up a lot of space, especially with longer content. We need
to give our users an easier way to compare content, without taking up an
unnecessary amount of screen space.

Ingredients

* jQuery

Solution

We can use CSS and JavaScript to display the content on our page in a slick
tabbed interface. Each section of content will have a tab generated for it based
on a data attribute, and only one tab’s content will be displayed at a time.
We'll also make sure that we can have as many tabs as we want so that our
design is flexible. In the end, we’ll have something that looks like this:

ENGLISH LATIN

Nor again is there anyone who loves or pursues or

desires to obtain pain of itself, because it is pain,
but occasionally circumstances occur in which toil
and pain can procure him some great pleasure.

We've been asked to display product descriptions in multiple languages in
an attempt to reach a wider audience. We’'ll build a simple proof-of-concept
page so we can determine the best approach.

Building the HTML

Let’s start by building out the HTML for the elements we want to show our
users. As a proof of concept, let’s use two pieces of text, one in English and
one in its Latin translation. To start, we create this index.html file to set up the
basic structure of our elements:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 48

swapping/index.html
<!DOCTYPE html>
<html>

<head>
<title>Swapping Examples</title>

<link rel="stylesheet" href="swapping.css" type="text/css" media="all" />
</head>
<body>
<div class="languages">
<div class="language" data-tab-title="English">
Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but occasionally
circumstances occur in which toil and pain can procure him some
great pleasure.
</div>

<div class="language" data-tab-title="Latin">
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.
</div>
</div>
</body>
</html>

This index.html contains a languages <div> that holds each of the sections we
want to display. Inside that are our individual language <div>s, which contain
the content we want users to switch between.

Yes, we definitely could, but there’s a lot in Ul tabs that we won't be using, such as
event hooks. Creating our own tabs lets us focus on keeping things light and gives
us more insight into how things work.

Now, let’s pull together some JavaScript to create a tabbed interface so our
users can toggle between the two examples.

Creating the Tabbed Interface

We'll use the jQuery library to get some helper methods and shortcuts, and
we’ll put our code in a custom file called swapping.js. We need to link both of
those files right above the closing <body> tag in our HTML page:

report erratum

« discuss

http://media.pragprog.com/titles/wbdev2/code/swapping/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYVY

Swapping Between Content with Tabbed Interfaces ® 49

swapping/index.html
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>
<script src="swapping.js"></script>
</body>
</html>

Then we need to write the code to make the tabs swap. First, we create a
function that adds the markup for the tabs to the DOM. We call it createTabs(),
and we place it in swapping.js:

swapping/swapping.js
function createTabs($container, childSelector) {
var $list = $('").addClass('tabs"');
$container.find(childSelector).each(function() {
var $newTab = createTab($container, $(this), childSelector);
$list.append($newTab);

s
$container.prepend($list);

}

This function takes in two arguments. The first argument is a jQuery object
that represents the element on the page that should contain the tabs. The
second argument is the CSS selector that the function should use to find
each element that will be a tab. For our example, we might invoke this function
like this:

createTabs($('.languages'), '.language');
But don’t do that yet.

The createTabs() function starts by creating a new unordered list that will hold
each of the tabs to be created. We then find each of the child elements that
matches the childSelector and pass each child element to a function called cre-
ateTab() that returns a newly created list item, which we add to the unordered
list. That means we need to define a createTab() function next, and that code
looks like this:

swapping/swapping.js

function createTab($container, $content, childSelector) {
var tabTitle, $newTab;
tabTitle = $content.data('tab-title');
$newTab = $('').addClass('tab').html(tabTitle);
$newTab.on('click', function() {

switchTab($container, $(this), $content, childSelector);

1)

return $newTab;

http://media.pragprog.com/titles/wbdev2/code/swapping/index.html
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 50

In the createTab() function, we read the data-tab-title attribute of the element that’s
passed in to determine what the tab’s title should be. Then we add a class
for styling purposes, and finally we add a click observer for this new tab ele-
ment that will be responsible for changing which tab content is visible to the
user.

At this point, if we were to call createTabs($('.languages'), '.language');, we would at
least have an idea of what our tabs will look like. But clicking on the tabs will
only cause an exception, because we haven’t defined the switchTab() function
yet. So let’s do that now.

Switching Between Tabs

When we switch tabs, we have to hide all of the examples that we don’t want
to show, and we also have to remove the selected class from those tabs. Rather
than finding the current active tab and content, it’s easier to get everything
to an unselected state and then activate the tab we want. This also increases
the code’s readability. So we first write the code to hide everything:
swapping/swapping.js

$container.find(childSelector).hide();
$container.find('ul.tabs > 1i').removeClass('selected');

With all of the tabs hidden, we can now find and activate the selected tab. To
do that we add a selected class to the tab, and we make the tab’s content visible
by calling the jQuery slideDown() function, or any other jQuery function that
makes a <div> element visible:

swapping/swapping.js

$content.slideDown('fast');
$tab.addClass('selected');

In the end, we have a function that looks like this:

swapping/swapping.js

function switchTab($container, $tab, $content, childSelector) {
$container.find(childSelector) .hide();
$container.find('ul.tabs > 1i').removeClass('selected');

$content.slideDown (' fast');
$tab.addClass('selected');
}

Tying It All Together

We're almost done, but our solution lacks a few finishing touches. For one
thing, when we bring up the page, we see all of the content still, instead of
only the first tab. Also, if we had multiple groups of tabs on a single page—

http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Swapping Between Content with Tabbed Interfaces ¢ 51

for example, multiple <div>s with the languages class—the same tabs would
appear in all of the containers. To fix this we create one more function, initTabs(),
that iterates over each of the containers and adds the tabs separately. And
for each of the containers, we show only the first tab. We’ll invoke this function
when we load the page, and it will invoke our createTabs() for each group of
tabs on the page.

swapping/swapping.js
function initTabs($containers, childSelector){
$containers.each(function() {

var $div, $firstTab;

$div = $(this);

createTabs($div, childSelector);

$firstTab = $div.find('ul.tabs > 1i').first();
switchTab($div, $firstTab, $div.find(childSelector).first(), childSelector);
1)
}

To fire this off, we add a call to initTabs() at the bottom of the script:

swapping/swapping.js
initTabs($('div.languages'), 'div.language');

All that’s left to do now is to make the tabs look a little nicer.

Styling the Tabs

Now that we have all of the behavior wired up, let’s apply a little CSS to make
it look more like the interface we want:

swapping/swapping.css

li.tab {
background-color: #DDD;
color: #333;
cursor: pointer;
float: left;
font-size: 120%;
list-style: none outside none;
line-height: 1.5;
margin: 0;
padding: 0;
text-align: center;
text-transform: uppercase;
width: 80px;

}

li.tab.selected { background-color: #AAA; }

ul.tabs {
font-size: 12px;

http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.js
http://media.pragprog.com/titles/wbdev2/code/swapping/swapping.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 52

line-height: 1;
list-style: none outside none;
margin: 0;
padding: 0;
position: absolute;
right: 20;
top: O;
}

div.language {
font-family: "Helvetica", "san-serif";
font-size: 16px;

}

div.languages {
background-color: #000;
border: 5px solid #DDD;
color: #DDD;
font-size: 14px;
margin-bottom: 20px;
padding: 10px;
padding-top: 30px;
position: relative;

}

That’s it. We now have some generic code that we can use to build out our
real site so we can easily switch the product descriptions between different
languages.

This solution saves quite a bit of space; we often see it used on sites where
space is limited. Some sites use this technique to show product information,
reviews, and related items as tabs, while still making that information viewable
in a linear format when JavaScript is unavailable.

Further Exploration

What if we wanted to always load a specific tab on the page? For example, if
we display code examples in Ruby, Python, and Java, and pythonistas are
interested only in the Python examples, it'd be nice if they didn’t have to click
the Python tab on every new page they visit. We'll leave it up to you to explore
that solution on your own.

Also See
¢ Recipe 9, Accessible Expand and Collapse on page 53

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Accessible Expand and Collapse ¢ 53

Accessible Expand and Collapse

Problem

When we need to present long, categorized lists on a website, the best way to
do it is with nested, unordered lists. However, with this kind of layout, it can
be hard for users to quickly navigate, or even comprehend, such a large list.
Anything we can do to assist our users will be appreciated. Plus, we want to
make sure that our list is accessible in case JavaScript is disabled or a user
is visiting our site through a screen reader.

Ingredient
* jQuery

Solution

A relatively easy way to organize a nested list, without separating the categories
into different pages, is to make the list collapsible. This means that entire
sections of the list can be hidden or displayed to better convey selective
information. At the same time, the user can easily manipulate which content
to make visible.

For our example, we’ll start with an unordered list that displays products
grouped by subcategories:

collapsiblelist/index.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>0ur example collapsible list</title>
<link rel="stylesheet" href="style.css">
</head>
<body>
<hl>Categorized Products</hl>

<ul class='collapsible'>

Music Players

report erratum - discuss

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 54

<1i>16 Gb MP3 player
<1i>32 Gb MP3 player
<1i>64 Gb MP3 player

</1i>
<li class='expanded'>
Cameras & Camcorders

SLR

<1i>D2000</1i>
<1i>D2100</1i>

<li class='expanded'>
Point and Shoot

G6</1i>
<1i>G12</1li>
<1i>CS240</1i>
L120</1i>

Camcorders

<1i>HD Cam</1li>
<1i>HDR-150</1i>
Standard Def Cam

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>
<script src='collapsible.js'></script>

We want to be able to indicate that some of the nodes should be collapsed or
expanded from the start. It would be tempting to simply mark the collapsed
nodes by setting the style to display: none. But that would break accessibility,
since screen readers ignore content hidden in this way. Instead, we’ll rely on
CSS to toggle each node’s visibility at runtime. We’ll do this by adding a CSS
class of expanded to set the initial state of the list.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Accessible Expand and Collapse ¢ 55

For example, suppose we know that a user wants to look at point-and-shoot
cameras when first reaching this page. This markup doesn’t show the limited
list yet:

collapsiblelist/style.css

ul.collapsible li.collapsed > ul {
visibility: hidden;
height: 0;

}

Right now it displays the full categorized product list:

Categorized Products

= Music Players
o 16 Gb MP3 player
o 32 Gb MP3 player
o 64 Gb MP3 player
= (Cameras & Camcorders
o SLR
= D2000
= D2100
o Point and Shoot
= G6
= G12
= CS240
= 1120
o Camcorders
= HD Cam
= HDR-150
= Standard Def Cam

But once the list is made collapsible, and the expanded class is added to that
category, users see only the names of the types of products they were looking
for, as shown in the figure on page 56.

<li class='expanded'>
Point and Shoot

Next we need to write the JavaScript for adding our collapsible functionality,
as well as some expand-all and collapse-all helper links at the top of the list.
We'll add the links via the JavaScript code as well. As with the collapsible
functionality itself, we don’t want to change the markup unless we know this
code is going to be used. This also gives us the advantage of being able to
easily apply this behavior to any list on our site without having to change any
markup beyond adding a .collapsible class to a element.

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 56

Categorized Products

Expand all | Collapse all
+Music Players
+Tablets
+Computers
-Cameras & Camcorders
+SLR
- Point and Shoot
G6
G12
CS240
L120
+Camcorders

collapsiblelist/collapsible.js
(function($) {
$.fn.prependToggleAllLinks = function() {

var $container = $('<div>').attr('class', 'expand or collapse all');
$container.append(
$('<a>")

attr('href', '#')
.html('Expand all')
.click(handleExpandAll.bind(this))
).append(' | ')
.append (
$('<a>")
.attr('href', '#')
.html('Collapse all')
.click(handleCollapseAll.bind(this))
)
this.prepend($container);
return this;

}i

function handleExpandAll(event) {
this.find('li.collapsed').toggleExpandCollapse(event);
}

function handleCollapseAll(event) {
this.find('li.expanded').toggleExpandCollapse(event);
}
}) (iQuery);

For this recipe, we wrap all of the code in a self-executing function where we
pass in jQuery as an argument and assign it to the $ variable. This is to avoid
a conflict with any other frameworks or code that also use the dollar sign.

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Accessible Expand and Collapse ® 57

We can quickly create a virtual DOM object by wrapping a string representing
the element type we want, in this case an <a> tag, in a jQuery element. Then
we set the attributes and HTML through jQuery’s API. For simplicity, we’ll
create two links (Expand all and Collapse all) separated by a pipe symbol.
The two links will trigger their corresponding helper functions when they're
clicked.

For the click events, notice the use of the bind() function. This keeps the this
keyword the same when in the handleExpandAll() and handleCollapseAll() functions.
That way we’ll continue to interact with the jQuery element that was used to
initialize this plug-in in the first place. Which leads us to the next function.

The prependToggleAllLinks() function adds the expand-all/collapse-all links, but
these links won't work yet, since we're calling a function that doesn’t exist
yet: toggleExpandCollapse(). Next we write that function, which toggles whether a
node is expanded or collapsed. Since this is a function that will act on a DOM
object, we write it as a jQuery plug-in. That means we’ll assign the function
definition to the jQueryfn prototype. We can then trigger the function within
the scope of the element that it’s called against. Finally, to ensure that our
jQuery function is chainable and a responsible jQuery citizen, we return this.
This is a good practice to follow when writing jQuery plug-ins; our plug-in
functions will work the same way that we expect other jQuery plug-ins to
work.

collapsiblelist/collapsible.js
(function($) {
$.fn.toggleExpandCollapse = function(event) {
event.stopPropagation();
if (this.find('ul').length > 0) {
event.preventDefault();

this.toggleClass('collapsed').toggleClass('expanded');
}

return this;
I

}) (3Query);

We'll bind the toggleExpandCollapse() to the click event for all elements,
including the elements with nothing underneath them, which are also known
as leaf nodes. That’s because we want the leaf nodes to do something cru-
cial—absolutely nothing. Unhandled click events bubble up the DOM, so if
we only attach a click observer to the elements with .expanded or .collapsed
classes, the click event for a leaf node would bubble up to the parent
element, which is one of our collapsible nodes. That means the code would

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 58

trigger that node’s click event, which would make the leaf node’s parent col-
lapse suddenly and unexpectedly, and we’d be liable for causing undue harm
to our users’ fragile psyches. To prevent this Rube Goldberg-styled catastrophe
from happening, we call event.stopPropagation(). Adding an event handler to all
 elements ensures that the click event will never bubble up and nothing
will happen, as we expect. For more details on event propagation, read Why
Not Return False?, on page 58.

In a jQuery function, return false works double duty by telling the event not to bubble
up the DOM tree and not to do whatever the element’s default action is. This works
for most events, but sometimes we want to make the distinction between stopping
event propagation and preventing a default action from triggering. Or we may be in
a situation where we always want to prevent the default action, even if the code in
our function somehow breaks. That's why at times it may make more sense to call
event.stopPropagation() or event.preventDefault() explicitly rather than waiting until the end
of the function to return false.?

a. http://api.jquery.com/category/events/event-object/

Now we write the makeCollapsible() function that gets called when we select the
list element we want to turn into a collapsible list. This function also hides
any nodes that weren’t marked as .expanded and adds the .collapsed class to the
rest of the elements:

collapsiblelist/collapsible.js
$.fn.makeCollapsible = function() {
this.prependToggleAllLinks();
this.find('li').click(function(event) {
$(this).toggleExpandCollapse(event);
b
this.find('li ul'")
.parent(':not(.expanded)")
.addClass('collapsed');

return this;
i

We bind the click event to all of the elements that are in a .collapsible list.
We also add the expand/collapse classes to all of the elements, except
the products themselves. These classes will help us when it comes time to
style our list.

report erratum -« discuss

http://api.jquery.com/category/events/event-object/
http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/collapsible.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Accessible Expand and Collapse ¢ 59

When the DOM is ready, we tie it all together by initializing the list and adding
the Expand all | Collapse all links to the page:

collapsiblelist/index.html

<script>
$('ul.collapsible').makeCollapsible();

</script>

Since this is a jQuery plug-in, we can easily add this functionality to any list
on our site by adding a .collapsible class to an unordered list. This makes the
code easily reusable so that any long and cluttered list can be made easy to
navigate and understand.

Finally, we add some style to this list and attach it to the same .collapsible class
that our code depends on:

collapsiblelist/style.css
ul.collapsible li.collapsed > ul {
visibility: hidden;
height: 0;
}
ul.collapsible 1i {
cursor: default;
list-style: none;

}

ul.collapsible li.expanded, ul.collapsible li.collapsed {
cursor: pointer;

}

ul.collapsible li:before {
display: block;

float: left;
text-align: center;
width: 10px;
}
ul.collapsible li.expanded:before { content: '-'; }

ul.collapsible li.collapsed:before { content: '+'; }

Further Exploration

If we start out by building solid, working markup without JavaScript, we can
build on that foundation to add in extra behavior. And if we write the Java-
Script and connect the behavior into the page by using CSS classes rather
than adding the JavaScript directly to the HTML, everything is completely
decoupled. This also keeps our sites from becoming too JavaScript-dependent,
which means more people can use our sites when JavaScript isn’t available.

http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/index.html
http://media.pragprog.com/titles/wbdev2/code/collapsiblelist/style.css
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 60

We call this progressive enhancement, and it’s an approach we strongly rec-
ommend.

This same approach could be used for building photo galleries. We’d make
each thumbnail link to a larger version of the image that opens on its own
page. Then we’d use JavaScript to intercept the click event on the image and
display the full-sized image in a lightbox, along with any additional controls
that are useful only when JavaScript is enabled, as we did in this recipe.

When submitting data to a server, rather than retrieving it as in the previous
example, it would make sense to create a form with a regular HTTP POST
request first, and then intercept the form’s submit event with JavaScript and
do the post via Ajax. This sounds like more work, but you end up saving a
lot of time; you get to leverage the form’s semantic markup and use things
like jQuery’s serialize() method to prepare the form data, rather than reading
each input field and constructing your own POST request.

Techniques like this are well supported by jQuery and other modern libraries
because they make it easy to build simple, accessible solutions for your
audience.

Also See
e Recipe 10, Interacting with Web Pages Using Keyboard Shortcuts on page

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Interacting with Web Pages Using Keyboard Shortcuts ¢ 61

Recipe 10

Interacting with Web Pages Using Keyboard Shortcuts

Problem

Website visitors expect to use the mouse to interact with the site, but using
the mouse isn’t always the most efficient way. Keyboard shortcuts are com-
mon; Gmail, Tumblr, and Facebook use them as a way to improve accessibil-
ity and allow users to quickly and comfortably perform common tasks.
Facebook even supports some of the Vim commands discussed in Recipe 40,

bring this functionality to our site, but we need to make sure we don't interfere
with our application’s normal, expected behavior, such as our search box.

Ingredients
* jQuery

Solution

Keyboard shortcuts use JavaScript to monitor the page for certain keys being
pressed. We accomplish this by binding a function to the document’s keydown
event. Each key press is identified by a unique code. When a key is pressed,
we check whether a code matches one we are using for a shortcut and invoke
the specified function for that key.

We have a site with a large number of blog entries about a variety of topics.
After some usability testing, we saw that users decide whether they want to
read the entry by scanning the title and part of the first sentence. If they're
not interested, they scroll on to the next article. Because some entries are
long, users end up doing a lot of scrolling before they get to the next article.
We'll create some basic shortcuts to let users quickly jump among the entries
on the page, navigate between pages, and easily access the search box. We'll
work with an interface that looks like the one in the following figure:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 62

search
This is the title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse
sollicitudin nulla. Nullam elementum elit a leo laoreet sed porta orei ¢
accumsan condimentum. Morbi enim augue, aliquam id condimentus
lectus non sapien suscipit cursus. Donec laoreet tempor sapien, eu el
tempus sed, lacinia in lorem. Proin pretium posuere turpis, in tempus
elementum, tellus erat lacinia erat, sed rhoncus felis diam eget dolor.
arcu. Maecenas venenatis molestie augue, id convallis sem lobortis u

This is the title of the second one

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse
sollicitudin nulla. Nullam elementum elit a leo laoreet sed porta orci ¢
accumsan condimentum. Morbi enim augue, aliquam id condimentus

Getting Set Up

First we’ll add the ability to scroll between entries on the current page. We'll
start by creating a page containing several items that all share a class of entry
and use the j key to go to the next entry and k to go to the previous one.
These letters are used for navigating to previous and next records in many
applications, including Vim, which we cover in Recipe 40, Changing Web

with the convention. Once we have these shortcuts set up, we’ll handle navi-
gating between pages using the right and left arrows, followed by creating a
shortcut to the search box.

Let’s start by creating a prototype that has a search box and a few search
results so we have something we can test our keyboard navigation on:

keyboardnavigation/index.html
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<title>Keyboard Navigation</title>
</head>
<body>
<p>Make this page longer so you can tell that we're scrolling!</p>
<form>
<input id="search" type="text"size="28" value="search">
</form>
<div id="entry 1" class="entry">
<h2>This is the title</h2>
<p>Lorem ipsum dolor sit amet...</p>
</div>

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Interacting with Web Pages Using Keyboard Shortcuts ® 63

<div id="entry 2" class="entry">
<h2>This is the title of the second one</h2>
<p>In hac habitasse platea dictumst...</p>
</div>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script
src="'keyboard navigation.js'></script>
</body>
</html>

Because of size constraints, this example page is short. To see the full effect
as we scroll between elements, add a few more of the <divid="entry x" class="entry">
sections. Make sure the content is longer than your browser can display at
once so that you can see the effect of scrolling between entries, and make
sure that each entry’s ID is unique.

Catching Key Presses

We'll use jQuery to set up a few event handlers when the page loads. When
someone presses one of our navigation keys, we’ll call the functions that
navigate through the page. The $(document).keydown() function allows us to
specify exactly what to call for different keys by using a case statement. Each
case we define represents a different key by its key code:®

keyboardnavigation/keyboard_navigation.js
$(document) .keydown (function(e) {
if($(document.activeElement)[0] === $(document.body)[0]){
switch(e.keyCode){
// In Page Navigation
case 74: // j
scrollToNext();
break;
case 75: // k
scrollToPrevious();
break;
// Between Page Navigation
case 39: // right arrow
loadNextPage();
break;
case 37: // left arrow
loadPreviousPage();
break;
// Search
case 191: // / (and ? with shift)

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://www.cambiaresearch.com/c4/702b8cd1-e5b0-42e6-83ac-25f0306e3e25/javascript-char-codes-key-codes.aspx
http://www.cambiaresearch.com/c4/702b8cd1-e5b0-42e6-83ac-25f0306e3e25/javascript-char-codes-key-codes.aspx
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 64

if(e.shiftKey){
$('#search').focus().val('"');
return false;

}

break;

1)

Before we check whether one of our keys is pressed, it’s important to make
sure we're not interrupting normal user activity. The first line of our keydown
function is if($(document.activeElement)[0] == $(document.body)[0]), which makes sure
that the active element on the page is the body of the page itself. By doing
this, we avoid catching key presses when a user is typing in a search box or
a text area.

Scrolling

Scrolling between entries on our page involves getting a list of the current
entries and knowing which one we last used the keyboard to scroll to. First
we want to set everything so that when we first scroll on the page we go to
the first entry on the page:

keyboardnavigation/keyboard_navigation.js
var currentEntry = -1;

When the page loads, we set a variable called currentEntry to -1, meaning that
we haven’t scrolled anywhere yet. We use -1 because we are going to figure
out which entry to display by loading all objects on the page with a class of
.entry and picking the correct one based on its index in the resulting array.
JavaScript arrays are zero-based, so the first entry will be at the O position.

In Catching Key Presses, on page 63, we defined the functions to call when

certain keys were pressed. When the j key is pressed, we want to scroll to the
next entry on the page, so we call the scrollToNext() function:

keyboardnavigation/keyboard_navigation.js
function scrollToNext(){
if($('.entry').size() > currentEntry + 1){
currentEntry++;
scrollToEntry(currentEntry);

}
}

In scrollToNext(), we first check that we’re not trying to scroll to an entry that
doesn’t exist by ensuring that incrementing the currentEntry counter won'’t
exceed the number of entries on the page. If there’s an entry to scroll to, we
increase the currentEntry by 1 and call scrollToEntry():

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Interacting with Web Pages Using Keyboard Shortcuts ® 65

keyboardnavigation/keyboard_navigation.js

function scrollToEntry(entryIndex){
var top = $("#" + $('.entry')[entryIndex].id).offset().top;
$('html,body') .animate({ scrollTop: top }, 'slow');

}

scrollToEntry() uses the jQuery animation libraries to scroll our view to the ID
of the specified entry. Since the currentEntry represents the index of the entry
we want to display, we grab the ID of that entry and tell jQuery to scroll there.

When the user presses the k key, we call a similar function called scrollToPrevi-
ous():

keyboardnavigation/keyboard_navigation.js
function scrollToPrevious(){
if(currentEntry > 0){
currentEntry--;
scrollToEntry(currentEntry);
}
}

scrollToPrevious() makes sure we aren’t trying to load a smaller entry than O,
since that will always be the first entry on the page. If we're not on the first
entry, we reduce the currentEntry by 1 and once again call scrollToEntry().

Now that our users can scroll between entries on the page, it’'s easy for them
to quickly review the page content. But when they get to the end of the page,
they need to be able to move to the next page of records. Let’s work on that
next.

Pagination

Navigation between pages can happen in a variety of ways. For this example,
we’ll assume that the desired page is indicated by the page=5 querystring in
the URL; however, this could easily be changed to work with p=5, entries/5, or
any other page indicator you might encounter.

To keep our code nice and clean, let’s write a function called getQueryString()
that pulls the page number out of the URL:

keyboardnavigation/keyboard_navigation.js

function getQueryString(name){
var reg = new RegExp("("|&)"+ name +"=(["&]*)(&|$)");
var r = window.location.search.substr(1l).match(reg);
var val = null;
if (r !== null) val = unescape(r[2]);
return val;

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 66

Now we’ll build a getCurrentPageNumber() function that uses the getQueryString()
function to check whether page even exists. If it does, we get it and turn it
from a string to an integer and then return it. If it doesn’t exist, that means
that no page is currently set. If this is the case, we’ll assume we’re on the
first page and return 1. It's important that we return an integer and not a
string, because we're going to need to do math with the page number.
keyboardnavigation/keyboard_navigation.js

function getCurrentPageNumber(){

return parselInt(getQueryString('page') || 1);
}

Our keycode watcher listens for the left and right arrows to be pressed. When
the user presses the right arrow, we call the loadNextPage() function, which fig-
ures out what page number we're on and directs the browser to the next one:

keyboardnavigation/keyboard_navigation.js

function loadNextPage(){
var pageNumber = getCurrentPageNumber() + 1;
var url = window.location.href;

if (url.indexO0f('page="') '== -1){
window.location.href = replacePageNumber(pageNumber);
else {
var joinChar = (url.indexOf('?') > -1) ? '&' : '?';
window.location.href += joinChar + pageNumber;
}

}

We first determine our current page number, and then increase pageNumber
by 1 because we’re going to the next page. Then we grab the current URL so
we can update it and load the next page. This is the most involved part of the
process, because the URL can be structured in several ways.

First we check whether the URL contains page= in the querystring. If it does,

using a regular expression and the replace() function:

keyboardnavigation/keyboard_navigation.js
if (url.indexO0f('page=') '== -1){
window.location.href = replacePageNumber(pageNumber);

We also need to replace the page number when going to the previous page,
so we have a replacePageNumber() function. If our URL structure changes, we
only have to update our code in one place:

keyboardnavigation/keyboard_navigation.js
function replacePageNumber(pageNumber){
return window.location.href.replace(/page=(\d+)/, 'page="'+pageNumber);

}

http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://example.com?page=4
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Interacting with Web Pages Using Keyboard Shortcuts ® 67

If the URL doesn’t contain page=, then we need to add the entire parameter
to the querystring. Before we do that we should check whether the URL con-
tains other parameters. If it does, they’ll be listed after the ? in the URL, so
we check for ?. If it exists, as in http://example.com?foo=bar, then we add an

ampersand (&) before the parameter name. Otherwise, we need to add the ?
before appending the page parameter to the URL:

keyboardnavigation/keyboard_navigation.js

else {
var joinChar = (url.indexOf('?') > -1) ? '&' : '?';
window.location.href += joinChar + pageNumber;

}

We can use a similar, but simpler, technique to load the previous page. After
figuring out the current page number and reducing it by 1, we need to make
sure we're not trying to load a page number that’s less than 1. So first we
make sure the new pageNumber is greater than O. If it is, we update page= with
the new number, and we're on our way:

keyboardnavigation/keyboard_navigation.js
function loadPreviousPage(){
pageNumber = getCurrentPageNumber() - 1;
if (pageNumber > 0){
window.location.href = replacePageNumber(pageNumber);
}
}

Now that we can move between pages and among entries, let’s create a way
for users to quickly get access to the search box.

Navigating to the Search Box

The keyboard shortcut that makes the most sense for navigating to the search
box is the ? key, but that’s done by pressing two keys together, so we need
to do things a little bit differently from our other shortcuts. First, we watch
for the keycode of 191, which represents the / key. When this key is pressed,
we query the shiftkey property on the event, which returns true if the Shift key
is down:

keyboardnavigation/keyboard_navigation.js
case 191: // / (and ? with shift)
if(e.shiftKey){
$('#search').focus().val('"');
return false;
}
break;

}

http://example.com?foo=bar
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://media.pragprog.com/titles/wbdev2/code/keyboardnavigation/keyboard_navigation.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 68

If the Shift key was pressed, we retrieve the search box by using its DOM ID
and call the focus() method to place the cursor inside the search box. We then
erase any content currently in it by calling val(") with an empty string. Finally,
we call return false;, which prevents the ? that was typed from being returned
by the function and placed in the search box.

Further Exploration

We've added some quick keyboard shortcuts that let our users navigate
throughout our site without having to take their hands off of their keyboards.
Once the framework is in place, adding new keyboard shortcuts is a breeze.
You could use keyboard shortcuts to display a lightbox with the full article
that opens when the user presses the spacebar. You could use keyboard
shortcuts to pop up a console with information about ongoing tasks or use
them to reveal further content in a blog post.

Many of the other JavaScript-based chapters in this book could have keyboard
shortcuts added to them, such as browsing through the images in Recipe 4,

Also See
e Recipe 4, Creating Interactive Slideshows with jQuery on page 18

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Rendering HTML with Handlebars Templates ® 69

Recipe 11

Rendering HTML with Handlebars Templates

Problem

Amazing interfaces require lots of dynamic and asynchronous HTML. Thanks
to Ajax and JavaScript libraries like jQuery, we can change the user interface
without reloading the page by generating HTML with JavaScript. We typically
use methods such as string concatenation to add new elements to our inter-
faces, but these are hard to manage and are prone to error. We have to dance
around mixing single and double quotes and often are left to use jQuery’s
append() method endlessly.

Ingredients
* jQuery
e Handlebars.js’
e QEDServer (for our test server)®

Solution

Thankfully, client-side templating tools such as Handlebars allow us to write
real HTML, render data with it, and insert it into the document. With Handle-
bars, we can create client-side views with clean HTML that are abstracted
away from the JavaScript code. It allows for conditional logic as well as itera-
tion.

With Handlebars, we can simplify HTML creation when generating new con-
tent. Let’'s explore the Handlebars templating syntax by working with a
JavaScript-driven product-management application.

The existing application lets us manage products by adding new ones to a
list. The example uses our standard development server, since the requests
are all handled by JavaScript and Ajax. When the user fills in the form to add
a new product and submits the form, the associated code tells the server to
save the product and then renders a new product in the list. To build the list

7. http://handlebarsjs.com/

8. A version for this book is available at http://webdevelopmentrecipes.com/.

http://handlebarsjs.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 70

of products, we have to use string concatenation, which becomes awkward
and hard to read:

handlebars/old_index.html

var newProduct = $('<div class="product"></div>");

newProduct.append('"' +
products[index].name + '');

newProduct.append('<em class="product-price">"' +
products[index].price + '");

newProduct.append('<div class="product-description">' +
products[index].description + '</div>"');

$("body") .append(newProduct);

What a mess! We want something more readable and easier to maintain.

Rendering a Template

Using Handlebars is as easy as loading the script on the page. For this exer-
cise, we'll use QEDServer as our back end so we can use its products API.
So, first, we create a basic HTML page called index.html in the QEDServer public
folder. We create a basic HTML5 template and load jQuery and Handlebars
right above the closing <body> tag:

handlebars/index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>List Products</title>
</head>
<body>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/3.0.3/
handlebars.min. js"></script>
</body>
</html>

Note that we load Handlebars from a CDN as we do with jQuery. However,
you can always download your own local copy and keep it with your code.

To refactor our existing application, we first need to know how to render a
template using Handlebars. This involves two steps. First, we compile a
Handlebars template. Second, we convert the template to HTML. The process
looks like this:

template = Handlebars.compile(templateString);
html = template(data);

http://media.pragprog.com/titles/wbdev2/code/handlebars/old_index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Rendering HTML with Handlebars Templates ® 71

The first line compiles the template, which we pass in as a string. The second
line converts the compiled template to HTML. We pass the data to be injected
into the HTML. The data variable is an object whose keys become the local
variables in the template. Examine the following code:

var artist = {name: "John Coltrane"};
var template =
Handlebars.compile('{{ name }}"');
var html = template(artist);
$('body') .append(rendered);

The html variable contains our final HTML that was spit back out of the con-
version. To place the name property in our HTML, Handlebars uses a style of
tags with double curly braces. Inside the curly braces, we place the name of
a property. The data from our object gets injected into those curly braces
when we render the template, converting it to HTML. We can then append
the rendered HTML to the <body>, as if we’d built up our own string.

This is the simplest method for rendering a template with Handlebars. Our
application will also contain code that’s related to sending a request to a
server to retrieve the data, but the process for creating the template will be
the same.

Displaying Products from the Server

Now that you understand how to render a template, we can remove the old
method of string concatenation from the existing application. Let’s examine
the existing app’s code again to see what we can change:

handlebars/old_index.html
<script>
$.9etJSON('/products.json', function(products) {
for(var index = 0, length = products.length; index < length; index++){
var newProduct = $('<div class="product"></div>");
newProduct.append('"' +
products[index].name + '');
newProduct.append('<em class="product-price">' +
products[index].price + '");
newProduct.append('<div class="product-description">"' +
products[index].description + '</div>');

$("body") .append(newProduct);
}
1)

</script>

In this version we use jQuery to get the products from the API, and then we
iterate over the products, constructing new elements and appending them to

http://media.pragprog.com/titles/wbdev2/code/handlebars/old_index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 72

the list of products. This messy code is a headache to read and even worse
to maintain. Instead of using jQuery’s append() method to build up the HTML
incrementally, let’s use Handlebars to render the HTML by passing the data
we get from the server to a Handlebars template. Our first step toward
reducing the JavaScript madness is to build that template.

If we create a <script> element with a content type of text/x-handlebars-template,
then we can place Handlebars HTML inside of that element and pull it out
for our template. The browser will ignore the contents of the <script> tag when
the page renders, thanks to the content type we chose. We'll give the <script>
tag an ID so that we can reference it with jQuery and grab its content so we
can send it to the Handlebars renderer. Above the calls to the jQuery libraries,
add this code:

handlebars/index.html
<script type="text/x-handlebars-template" id="products template">
</script>

When we get our data from the server, it'll come back in object form:

{
name: "iPad",
description: "Ooooh shiny!"
price: "$499"

}

So we can use the object’s properties as the variable names in our template,
like this:

handlebars/index.html
<div class="product">
<h2>
{{name}}
<em class="product-price">{{price}}
</h2>
</div>

We access the object’s name and price properties right in between the HTML
tags, using the curly-brace syntax Handlebars understands. The actual values
will get placed in those placeholders when we render the template.

Now let’s tackle the description of the product. We don’t need to show the
description if no description is coming back from the server. We don’t want
to render the corresponding <div> if the description isn’t present. Thankfully,
Handlebars allows for conditional statements. We can check whether the
description is there and conditionally render the <div>:

http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Rendering HTML with Handlebars Templates ® 73

handlebars/index.html
{{#if description}}
<div class="product-description">{{description}}</div>

{{7if}}

The template we've made renders a single product. In our original code, we
used a JavaScript for loop to iterate over the products and render a chunk of
HTML. But with Handlebars, we can render all of our products by altering
the template to tell the templating engine that it should render multiple
products:

handlebars/index.html
{{#products}}
<div class="product">
<h2>
{{name}}
<em class="product-price">{{price}}
</h2>
{{#if description}}
<div class="product-description">{{description}}</div>
{{/7if}}
</div>
{{/products}}

With our template in place, we can change how we insert the HTML. We grab
a reference to the template with jQuery and use the html() function to grab the
inner content. Then all we need to do is pass the HTML and the data to
Handlebars:

handlebars/index.html
<script>
(function(){
$.9etJSON('/products. json', function(products) {
var data = {products: products};
var template = Handlebars.compile($("#products template").html());
var html = template(data);
$("body") .append(html);
b
HO;

</script>

And now our list of products is built using client-side templates instead of
HTML. It's so much simpler now, and if we decide we want to change the
HTML, it’s easy to do—much easier than modifying strings of HTML embedded
in JavaScript strings. Handlebars templates give us a simple way to remove
string concatenation and build our interfaces in a semantic and readable
way.

http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://media.pragprog.com/titles/wbdev2/code/handlebars/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 74

Inline templates are handy, but we want to remove the template logic from the server
views. On our server, we create a folder to hold all of our view files. Then, when we
want to render one of the templates, we make a GET request with jQuery and fetch
the template:

$.get("http://mysite.com/js_views/external template.html",
function(template) {
var template, html;
template = Handlebars.compile(template);
html = template(data)
$("body") .append(html);
}
);

This allows us to serve views separate from our client views.

Further Exploration

One downside to the way we used Handlebars is that the templates must be
compiled to HTML in the browser, and that can significantly slow down some
sites, especially on mobile devices. Handlebars offers a solution to this, though.
By installing a command-line tool, you can precompile your templates before
you deploy your site. Check out the Handlebars documentation for more
details on how that works.’

Client-side templating tools let you keep your client-side code clean, but you
can also use Handlebars to create server-side templates in Node.js applica-
tions.

This means you can use Handlebars templates as the templating engine on
both the back end and front end of a project. For example, if you have a
Handlebars template that represents a row of an HTML table and you use
that template inside a loop to construct the initial table when you initially
render the page, you can reuse that same template to append a row to the
table after a successful Ajax request.

And if you don’t use Node as your server-side language, you've got another
option. Handlebars is mostly compatible with another templating library called
Mustache, and implementations of Mustache are available in Node, Ruby,

9. http://handlebarsjs.com/precompilation.html

report erratum - discuss

http://handlebarsjs.com/precompilation.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Rendering HTML with Handlebars Templates ® 75

Java, Python, ColdFusion, and many more. You can find more on these
implementations at the official site.°

Also See
e Recipe 12, Displaying Information with Endless Pagination on page 76

10. http://mustache.github.com/

http://mustache.github.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 76

Recipe 12

Displaying Information with Endless Pagination

Problem

To prevent information overload for our users and to keep our servers from
grinding to a halt, it’s important to limit how much data is shown at once on
our list pages. This is traditionally handled by adding pagination to these
pages. That is, we show only a small subset of data to start with while allowing
the users to jump among the pages of information at their own discretion.
What they see is a small part of all of the information that is potentially
available to them.

As websites have evolved, web developers have learned that most of the time
users go through these pages sequentially. They would actually be happy to
scroll through an entire list of data until they find what they’re looking for or
reach the end of the dataset. We need to provide that type of experience for
our users without taxing our servers.

Ingredients
* jQuery
e Handlebars''
e QEDServer (for our test server)'?

Solution

By implementing endless pagination, we can provide an efficient way of
managing our resources while improving the end-user experience. Instead of
forcing users to choose the next page of results and then reloading the entire
interface, we load the next page of results in the background and add those
results to the current page as the user scrolls toward the end of the page.

We want to add a list of our products to our site, but our inventory is much
too big to reasonably load all at once. We'll have to add pagination for this
list and limit the user to loading ten products at a time. To make our users’

11. http://handlebarsjs.com

http://handlebarsjs.com
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Displaying Information with Endless Pagination ¢ 77

lives even easier, we're going to ditch the Next Page button and automatically
load the following page when we think they’re ready for it. It will seem to the
users as if the entire product list was available to them since they first loaded
the page.

We'll use QEDServer and its product catalog to build a working prototype.
We'll place all of our code in the public folder in QEDServer’s workspace, start
up QEDServer, and then create a new file called products.html in the public folder
that QEDServer creates. You can look at QEDServer, on page xii, for details
on how QEDServer works.

To keep our code clean, we'll use the Handlebars template library to separate
our pagination functionality from the presentation of the actual products.
For more details about Handlebars, check out Recipe 11, Rendering HTML
with Handlebars Templates on page 69.

We start out by creating a simple HTML5 skeleton in products.html that includes
jQuery, the Handlebars template library, and endless_pagination.js, which we’ll
create to hold our pagination code:

endlesspagination/products.html
<!DOCTYPE html>
<html>
<head>
<meta charset='utf-8'>
<title>AwesomeCo Products</title>
<link rel='stylesheet' href='endless pagination.css'>
</head>
<body>
<div id="wrap">
<header>
<h1>Products</hl>
</header>
</div>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/handlebars.js/3.0.3/
handlebars.min. js">
</script>
<script src="endless pagination.js"></script>
</body>
</html>

For the body of this initial page, we add a content placeholder and a spinner
image. The spinner is there so that if the user ever does reach the end of the
current page, it will indicate that the next page is already loading, as shown
in the following figure:

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/products.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 78

T OIUTT INCUCT Z310 IS IC (A IaCINg
Description of Canon Rebel XS Kit (Black)

DVIto VGA Adapter

Description of DVI to VGA Adapter

Mini DVI to VGA Adapter

Description of Mini DVI to VGA Adapter

Mini DisplayPort to DVI Adapter

Description of Mini DisplayPort to DVI Adapter

Mini DisplayPort to VGA Adapter

Description of Mini DisplayPort to VGA Adapter

Apple Wireless Keyboard

Description of Apple Wireless Keyboard

Airport Extreme Base Station

Description of Airport Extreme Base Station

Q
NN

Here’s how we code that up:

endlesspagination/products.html

<div id='content'>

</div>

And here’s the basic CSS we need for our page, which goes in endless_pagina-
tion.css:

endlesspagination/endless_pagination.css
.product {
margin: 40px auto;

}

.product a {
/* Make the text big enough that the products run off the page */
font-size: 300%;

}

#current _page {
display: none;

}
QEDServer’s API is set up to return paginated results and responds to JSON

Notice that the page number is part of the URL.

Now that we know what information we're getting from the server, we can
start building the code that’ll update the interface. We’ll write a function that
takes in a JSON array, marks it up using a Handlebars template, and appends
it to the end of the page. We’'ll put this code into a file named endless_pagination.js.
We start by writing the functions that’ll do the heavy lifting. First we need a
function that renders the JSON response into HTML:

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/products.html
http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.css
http://localhost:8080/products.json?page=2
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Displaying Information with Endless Pagination ¢ 79

endlesspagination/endless_pagination.js
(function($) {
function loadData(data) {
$('#content') .append(Handlebars.compile("{{#products}} \
<div class='product'> |\
{{name}} \

 |\
{{description}} |\
</div>{{/products}}")({ products: data }));
}
}) (jQuery);

All of our code will be in this same self-executing function, where we're
defining loadData().

As we loop through each product, our template will create a <div> where the
content is the name of the product as a link. Then the new items are
appended to the end of the product list so they appear on the page.

Next, since we're going to request the next page when we reach the end of the
current page, we need a way to determine what the next page is. We can do
this by storing the current page as a global variable. Then when we're ready,
we can build the URL for the next page:

endlesspagination/endless_pagination.js

var currentPage = 0;

function nextPageWithJSON() {
currentPage += 1;
var newURL = '/products. json?page=

+ currentPage;

var splitHref = document.URL.split('?');
var parameters = splitHref[1];
if (parameters) {

parameters = parameters.replace(/[?&]page=[~&]*/, '');
newURL += '&' + parameters;

}

return newURL;

}

The nextPageWith)SON() function increments the currentPage variable and appends
it to the current URL as a page= parameter. We also want to remember any
other parameters that were in the current URL. At the same time, we want
to make sure that the old page parameter, if it exists, gets overridden. This
way we’ll get the desired response from the server.

Now that we have functions in place to show new content and determine what
the URL is for the next page, let’s add the function that requests that content
from our server. At its core, this function is an Ajax call to the server. However,

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 80

we do need to implement a rudimentary way to prevent extra, unwanted calls
to the server. We add a global variable called loadingPage that we initialize to
0. We increment it before we make the Ajax call and set it back when we're
done. This creates a mutex, or locking mechanism. Without this lock in place,
we could potentially make dozens of calls to the server for the next page,
which the server would obligingly deliver, even if it’s not really what we want.

endlesspagination/endless_pagination.js
var loadingPage = 0;
function getNextPage() {
if (loadingPage === 0) {
loadingPage++;
$.9etJISON(nextPageWithJSON(), {}, updateContent)
.complete(function() { loadingPage--; });

}

function updateContent(response) {
loadData(response);

}

After the Ajax call finishes, we pass the response to the loadData() function we
defined earlier. After loadData() adds the new content, we update the URL stored
in the nextPage variable. This way, we're all set up to make the next Ajax call.

Now we need a way to determine whether the user is ready to load the next
page. Normally this is where the user would click the Next Page link, but
instead we want a function that returns true when the bottom of the browser’s
screen is within a given distance of the bottom of the page:

function readyForNextPage() {
if (!$('#next page spinner').is(':visible')) return;

var threshold = 200;

var bottomPosition = $(window).scrollTop() + $(window).height();
var distanceFromBottom = $(document).height() - bottomPosition;
return distanceFromBottom <= threshold;

}

Finally, we apply a scroll event handler that calls the observeScroll() function.
That way, every time the user scrolls through the page, we call the newly
created readyForNextPage() helper function. When the helper function returns
true, we call getNextPage() to make our Ajax request:

function observeScroll(event) {
if (readyForNextPage()) getNextPage();
}

$(document).scroll(observeScroll);

http://media.pragprog.com/titles/wbdev2/code/endlesspagination/endless_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Displaying Information with Endless Pagination ¢ 81

The first time we load the page, we call getNextPage() directly. This is because
readyForNextPage() returns false until the user scrolls, but there’s no need to scroll
when the only thing visible on the page is a spinner. This first call is how the
user sees the first page of products.

We've taken care of the endless part of endless pagination, but in reality there
will be an end to our content. We want to hide the spinner after the user sees
the last product, since it would make the user think that either the Internet
connection has slowed or our site is broken. To remove the spinner, we add
a final check to hide it when the server returns an empty list:

function loadData(data) {
$('#content') .append(Handlebars.compile("{{#products}} \
<div class='product'> |\
{{name}} |\

 |\
{{description}} |\
</div>{{/products}}")({ products: data }));
if (data.length === 0) $('#next page spinner').hide();
}

And that’s it. When we reach the bottom of our list, the spinner disappears.

Further Exploration

This technique is excellent for displaying long lists of information and is a
behavior users have come to expect. Since we've separated our functionality
into separate functions, it’ll be easy to adapt this solution to other scenarios.
We can change the code to load the content earlier or later by changing the
threshold variable or to render an HTML or XML response instead of one from
JSON by modifying the loadData() function. And best of all, we can rest easy
knowing that our site will still be accessible even if jQuery somehow goes
missing, which we can test by disabling JavaScript.

In Recipe 13, Extending Endless Pagination with pushState() on page 82, we'll

explore how we can make this code more user-friendly by adding support for
URL changes and the back button.

Also See

e Recipe 13, Extending Endless Pagination with pushState() on page 82

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 82

Recipe 13

Extending Endless Pagination with pushState()

Problem

One of the things that makes the Internet great is that, from news articles to
cat GIFs, everyone can easily share links with one another. But with more
applications using Ajax, this is no longer the case by default; clicking an Ajax
link no longer guarantees that the browser’s URL is updated to reflect what
the user is seeing. For many Ajax requests this is fine, but when large parts
of the site change after a request, not keeping the URL up to date can cause
issues. Not only does this prevent the sharing of links, but it breaks the back
and refresh buttons.

Unfortunately, the endless-pagination code we wrote in Recipe 12, Displaying

scroll through the page and request new pages via Ajax, the browser’'s URL
never updates to reflect the new content on the screen.

So, for example, if a user is on page 5 of a catalog and wants to share it with
some friends via email, he’d likely copy and paste the browser’s URL and say,
“Check out this great deal!” Unfortunately, when the friends open the link
they’ll see page 1 and have no idea what he was talking about.

A user’s own experience is also affected. When she clicks the back button on
an all-Ajax site, she often ends up at whatever page led her to the site instead
of the last Ajax page loaded. Then, frustrated, she clicks the forward button
and ends up somewhere completely different. Thankfully, we have a solution
for these common problems.

Ingredients
* jQuery
e Handlebars.js"’
e QEDServer (for our test server)'*

13. http://handlebarsjs.com/

http://handlebarsjs.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Extending Endless Pagination with pushState() ® 83

Solution

We'll start with the code that we wrote in Recipe 12, Displaying Information

works, but users can’t easily share links with anyone. To keep our web karma
in alignment and prevent user frustration, the right thing to do is to make
this list page stateless. When we change the page that the user is looking at,
we’ll change the current URL to reflect these changes.

The HTML5 specification introduced a JavaScript function called pushState(),
which lets us alter the URL without leaving the page. This is great news for
web developers! We can make an entire Ajax web application that never goes
through the traditional request/reload life cycle while behaving like a multi-
page site. This means there’s no need to re-request resources like images,
style sheets, or JavaScript files every time we move to a new screen. And
users can quickly share the current URL with others or use the refresh and
back buttons as usual.

Using the pushState() Function

Although pushState() is widely implemented, some older browser versions don’t
support it. The available fallback solution relies on modifying the hash portion
of a URL, but it’s ugly—and it’s not only an issue of having URLs that are
displeasing to the eye. The Internet has a good long-term memory. Web pages
may exist that include links that were added years ago, but the content has
moved to a new server. If we use the URL hash as a stopgap for important
information, we could be stuck supporting those deprecated links until the
end of time. Since URL hashes are never sent to the server, our application
would have to continue to read the URLs with JavaScript and redirect to the
requested page.

With that said, let’s see what it takes to make our endless products page
stateless.

Parameters to Track

Because we don’t know which page a user will load on the first request, we’ll
keep track of the starting page as well as the current page. If users go
directly to page three, we want them to be able to get back to page three on
subsequent visits. If they start scrolling down from page three and load mul-
tiple pages, for instance to page seven, we want to know that, too. We need
a way to keep track of the start and end pages so that a hard refresh won’t
require the user to scroll through the site again.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 84

Next we need a way to send the start and end pages from the client. The most
direct way is to set these parameters in the URL during a GET request. When
a page is first loaded, we’ll set the page parameter of the URL to be the current
page and assume the user wants to see only that page. If the client also
passes in a start_page parameter, we’ll know that the user wants to see a range
of pages, from start_page through page. So following our earlier example, if the
user is on page seven but started browsing from page three, our URL would
look like this: http://localhost:8080/products?start page=3&page=7.

This set of parameters should be enough information for us to re-create a list
of products from the server and subsequently show users the same page they
saw when they last visited this page:

statefulpagination/stateful_pagination.js
function getParameterByName(name) {
var match = RegExp('[?&]' + name + '=(["&]*)")
.exec(window.location.search);

return match & decodeURIComponent(match[1l].replace(/\+/g, ' '));
}

var currentPage = 0;
var startPage = 0;

function readParameters() {
startPage = parselnt(getParameterByName('start page'));
if (isNaN(startPage)) {
startPage = parselnt(getParameterByName('page'));
}
if (isNaN(startPage)) {
startPage = 1;
}

currentPage = startPage - 1;

if (getParameterByName('page')) {
endPage = parselnt(getParameterByName('page'));
for (i = currentPage; i < endPage; i++) {
getNextPage(true);
}
}

observeScroll();

}

All we're doing here is figuring out the start_page and current_page and then
requesting those pages from the server. We use mostly the same function
from the previous chapter, getNextPage(), but it’s been slightly modified to allow
multiple requests at a time:

http://localhost:8080/products?start_page=3&page=7
http://media.pragprog.com/titles/wbdev2/code/statefulpagination/stateful_pagination.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Extending Endless Pagination with pushState() ® 85

var loadingPage = 0;
function getNextPage(ignoreMutexBlocking) {
if (!ignoreMutexBlocking && loadingPage != 0) return;

loadingPage++;
$.9etJISON(nextPageWithJSON(), {}, updateContent).
complete(function() { loadingPage-- });
}

Normally when the user is scrolling we want to prevent multiple, overlapping
requests. But right now it’s all right, since we know exactly which pages
should be requested, so we’ll pass in true to ignore the mutex block. Then we
want to call the readParameters() function when the page loads to set the initial
state of the page:

readParameters();

Just as we tracked the currentPage in the code on page 79, we want to track
the startPage. We'll grab this parameter from the URL so we can make the
requests for the pages that haven’t been loaded yet. This number will never
change, but we do want to make sure that it gets added to the URL and stays

there every time a new page is requested.

Updating the Browser’s URL

To update the URL, let’s write a function called updateBrowserUrl() that'll call
pushState() and set the parameters for the start page and page. It’s important to
remember that not every browser supports pushState(), so we need to check
that it’s defined before we can call it:

function updateBrowserUrl() {

if (window.history.pushState == undefined) return;
var newURL = '?start page=' + startPage + '&page=' + currentPage;
window.history.pushState({}, '', newURL);

}

The pushState() function takes three parameters. The first allows us to track
any state we want with a JSON object. This argument could potentially be a
storage point for information we want the browser to remember that doesn’t
make sense to have in the parameters, such as the JSON we've already
received from the server when we scrolled. But since our data is relatively
lightweight and easy to get from the server, we skip this. For now we’ll pass
in an empty hash. The second argument is the title of the page. This feature
isn’t widely implemented yet, and for our purposes, even if it were, we don’t
have a reason to update this page’s title. We pass in a filler argument again;
this time an empty string.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 86

Now we get to the meat, or the tofu if youre vegetarian, of the pushState()
function. The third parameter is how we want the URL to change. This method
is flexible and can be either an absolute path or only the parameters to be
updated at the end of the URL. For security reasons, we can’t change the
domain of the URL, but we can change everything after the top-level domain
with relative ease. Since we're worried only about updating the parameters
of the URL, we prepend the pushState()’s third parameter with a question mark
(7). Finally, we set the start_page and page parameters, and if they already exist,
pushState() is smart enough to update these parameters for us.

Lastly, we add a call to updateBrowserUrl() from the updateContent() function to
make our endless pagination code state-aware:
statefulpagination/stateful_pagination.js
function updateContent(response) {

loadData(response);

updateBrowserUrl();

}

Now our users can use the back button to leave our page and return with the
forward button without losing their spot. They can also hit the refresh button
with impunity and get the same results. Most important, our links are now
sharable across the web. We've been able to make the URL for our index page
behave like a traditional non-Ajax site with minimal effort, thanks to the hard
work of modern browser developers.

Further Exploration

As we add more JavaScript and Ajax to our pages, we have to be aware of
how the interfaces behave. HTML5’s pushState() method and the History API
give us the tools we need to provide support for the regular controls in the
browser that people already know how to use. Abstraction layers like Histo-
ry.js'° make it even easier to use and provide graceful fallbacks for browsers
that don’t support the History API.

The approaches we discussed in this recipe are regularly being used by
frameworks like Backbone.js, which means even easier back button support
for the most complex single-page applications.

Also See
e Recipe 11, Rendering HTML with Handlebars Templates on page 69

http://media.pragprog.com/titles/wbdev2/code/statefulpagination/stateful_pagination.js
https://github.com/browserstate/history.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Snappier Client-Side Interfaces with Knockout.js ¢ 87

Recipe 14

Snappier Client-Side Interfaces with Knockout.js

Problem

When developing modern web applications, we often try to update only part
of the interface in response to user interaction instead of refreshing the entire
page. Calls to the server are often expensive, and refreshing the entire page
can cause users to lose their place.

Unfortunately, the JavaScript code for this can quickly become difficult to
manage. We start out watching only a couple of events, but eventually we
have several callbacks updating several regions of the page, which becomes
a maintenance nightmare. We need an easy-to-use tool that keeps track of
all of this for us.

Ingredients
 Knockout.js'

Solution

Knockout.js is a simple yet powerful framework that lets us bind objects to
our interface and can automatically update one part of the interface when
another part changes, without lots of nested event handlers. Knockout.js
uses view models, which encapsulate much of the view logic associated with
interface changes. We can then bind properties of these models to elements
in our interface.

We want our customers to be able to modify the quantity of items in their
shopping carts and see the updated total in real time. We can use Knockout’s
view models and data bindings to build the update screen for our shopping
cart. We’ll have a line for each item, a field for the customer to update the
quantity, and a button to remove the item from the cart. We'll update the
subtotal for each line when the quantity changes, and we’ll update the grand
total whenever anything on the line changes. When we're done, we’ll have an
interface that looks like the following figure:

16. http://knockoutjs.com

http://knockoutjs.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 88

Product Price Quantity Total
Machook Pro 15 inch 1699 1 1699 (Remove)
Mini Display Port to VGA Adapter 29 1 29 (Remove)
Magic Trackpad 69 1 69 (Remove)
Apple Wireless Keyboard 69 1 69 (Remove)
Total 1866

Knockout Basics

Knockout’s view models are regular JavaScript objects with properties,
methods, and a few special keywords. Here’s a simple Person object with
methods for first name, last name, and full name:

knockout/binding.html

(function(){
var Person = function(){

this.firstname = ko.observable("John");

this.lastname ko.observable("Smith");

this.fullname = ko.computed(function(){
return(

this.firstname() +

)

}, this);

}

+ this.lastname()

ko.applyBindings(new Person);
HO;

We use HTML5’s data- attributes to bind this object’s methods and logic to
elements on our interface:
knockout/binding.html
<p>First name: <input type="text" data-bind="value: firstname"></p>
<p>Last name: <input type="text" data-bind="value: lastname"></p>
<p>Full name:

</p>

When we update either the first-name or the last-name text box, the full name
shows up on the page. Since the update happens dynamically, this can cause
troubles for blind users with screen readers. To solve that issue, we use the
aria-live attribute to give the screen readers a hint that this part changes
dynamically.

That’s a relatively trivial example, so let’s dig into Knockout a little more by
building a single line of our cart, getting the total to change when we update

http://media.pragprog.com/titles/wbdev2/code/knockout/binding.html
http://media.pragprog.com/titles/wbdev2/code/knockout/binding.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Snappier Client-Side Interfaces with Knockout.js ® 89

the quantity. Then we’ll refactor it so we can build the entire shopping cart.
We'll start with the data model.

We'll represent the line item by using a simple JavaScript object called Lineltem
with properties for name and price. Create a new HTML page and include the
Knockout.js library right above the page’s closing <body> tag:

knockout/item.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Update Quantities</title>
</head>

<body>
<script src="http://ajax.aspnetcdn.com/ajax/knockout/knockout-3.3.0.js">
</script>

</body>

</html>

Add a new <script> block at the bottom of the page, above the closing <body>
tag and below the <script> tag we just added. Add the following code between
the <script> tags:

knockout/item.html
(function(){
var LineItem = function(product name, product price){
this.name = product name;
this.price = product price;

HOo;

In JavaScript, functions are object constructors, so we can use a function to
mimic a class. In this case, the class’s constructor accepts the name and the
price when we create a new Lineltem instance.

Now we need to tell Knockout that we want to use this lineltem class as our
view model, so that its properties are visible to our HTML markup. We do that
by adding the following call to our script block:

knockout/item.html
var item = new LinelItem("Macbook Pro 15", 1699.00);
ko.applyBindings(item);

We're creating a new instance of our Lineltem to Knockout’s applyBindings() method,
and we're setting the product name and price. We’'ll make this more dynamic
later; for now we’ll hard-code these values.

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 90

With the object in place, we can build our interface and pull data from the
object. We use an HTML table to mark up our cart, and we use <thead> and
<tbody> tags to give it a little more structure:

knockout/item.html
<div role="application">
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr aria-live="polite">
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>
</tr>
</tbody>
</table>
</div>

Since our table row updates based on user input, we use the aria-live attribute
on the table row so screen readers know to watch that row for changes. We
also wrap the whole cart within a <div> with the HTML5 ARIA role of application,
which tells screen readers that this is an interactive application. You can
learn about these in the HTML5 specification.”

Pay special attention to these two lines:

knockout/item.html
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>

Our Lineltem instance is now a global, visible object on our page, and its name
and price properties are visible as well. So with these two lines we're saying
that we want the text of each element to get its value from the property we
specify.

When we load the page in our browser, we see the row of our table start to
take shape, and the name and price are filled in!

Let’s add a text field to the table so that the user can update the quantity:

17. http://www.w3.0rg/TR/html5-author/wai-aria.html

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://www.w3.org/TR/html5-author/wai-aria.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Snappier Client-Side Interfaces with Knockout.js ® 91

knockout/item.html
<td><input type="text" name="quantity"

data-bind='value: quantity, valueUpdate: "keyup"'s>
</td>

In Knockout, we reference data fields within regular HTML elements with text,
but HTML form elements like <input> have value attributes. This time we bind
the value attribute to a quantity property in our view model, which we need to
define next.

The quantity property isn’t only for displaying data; it'll set data as well. And
when we set data, we need events to fire. We do that by using Knockout’s
ko.observable() function as the value of our quantity property in our class:

knockout/item.html
this.quantity = ko.observable(1l);

We're passing a default value to ko.observable() so the text field has a value when
we bring the page up for the first time.

Now we can enter the quantity, but we need to show the row’s subtotal. Let’s
add a table column to print out the subtotal:

knockout/item.html
<td data-bind="text: subtotal "></td>

As with our name and price columns, we set the text of the table cell to the
value of our view model’s subtotal property.

This brings us to one of the more powerful features of Knockout.js: the com-
puted() method. We defined our quantity property as observable, which means
that other elements notice when that field changes. We declare a computed()
method, which executes code whenever our observed field changes, and we
assign computed() to a property on our object so it can be bound to our user
interface:

knockout/item.html
this.subtotal = ko.computed(function() {
return(
this.price * parseInt("0"+this.quantity(), 10)
); //<label id="code.subtotal" />
}, this);

But how does the computed() method know which fields to watch? It looks at
the observable properties we access in the function we define! Since we're
adding the price and quantity together, Knockout tracks them both and runs
the preceding code when either one changes.

http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://media.pragprog.com/titles/wbdev2/code/knockout/item.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 92

The computed() method takes a second parameter that specifies the context for
the properties. This is necessary because of how JavaScript’s functions and
objects work; you can read more about this in the Knockout.js documentation.

And that’s it for a single row. When we change the quantity, our price updates
in real time. Now let’s take what we learned here and turn this into a multiple-
line shopping cart with line totals and a grand total.

Interfaces that rely heavily on JavaScript often raise a red flag when it comes to
accessibility, but the use of JavaScript alone doesn’t make a site inaccessible to the
disabled.

In this recipe, we made use of the HTML5 ARIA roles and attributes to help screen
readers understand the application we're developing. But accessibility is about much
more than screen readers; it's about making our applications usable by the widest
audience possible.

Knockout is a JavaScript solution and will work only when JavaScript is enabled or
available, so you need to take that under consideration. We recommend that you
build applications to work without JavaScript and then use Knockout to enhance
your application. Our example uses Knockout to render the cart’s contents, but if we
were using a server-side framework we could render the HTML for the cart and use
Knockout’s binding features on top of the rendered HTML. The accessibility of a site
depends much more on the implementation than on the library or technology used.

Using Control Flow Bindings

Binding objects to HTML is handy, but users will likely have more than one
item in their carts, and duplicating all that code will get tedious—not to
mention more difficult—since we’ll have more than one Lineltem object to bind.
We need to rethink the interface a bit.

Instead of working with a Lineltem as the view model, let’s create another object
that represents the shopping cart. This Cart object will hold all of the Lineltem
objects. Using what we know about Knockout’s computed() method, we can give
this new Cart object a property that computes the total when any item in the
cart changes.

But what about the HTML for the line item? Well, we can reduce duplication
by using a control-flow binding and tell Knockout to render our line-item HTML
once for each item in our cart. Let’s get started.

report erratum -« discuss

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

>

Snappier Client-Side Interfaces with Knockout.js ® 93

First, let’s define an array of items we’ll use to populate the cart:

knockout/update_cart.html
var products = [
{name: "Macbook Pro 15 inch", price: 1699.00},
{name: "Mini Display Port to VGA Adapter", price: 29.00},
{name: "Magic Trackpad", price: 69.00},
{name: "Apple Wireless Keyboard", price: 69.00}
1;

In a real-world situation, we would get this data from a web service or Ajax
call or by generating this array on the server side when we serve up the page.

Now, let’s create a Cart object that holds the items. We define it the same way
we defined our Lineltem:

knockout/update_cart.html
var Cart = function(items){
this.items = ko.observableArray();

for(var i in items){
var item = new Lineltem(items[i].name, items[i].price);
this.items.push(item);
}
}

We also need to change the binding in our templates from using the Lineltem
class to using the Cart class:

knockout/update_cart.html
var cartViewModel = new Cart(products);
ko.applyBindings(cartViewModel);

The items are stored in the cart using an observableArray(), which works like
observable() but has the properties of an array. When we created a new instance
of our cart, we passed in the array of data. Our object iterates over the items
of data and creates new Lineltem instances that get stored in the items array.
Since this array is observable, our user interface will change whenever the
array’s contents change. Of course, now that we're dealing with more than
one item, we need to modify the user interface.

Next we modify our HTML page and tell Knockout to repeat the table rows by
using a Knockout data-bind call on the <tbody> tag:

knockout/update_cart.html
<tbody data-bind="foreach: items">
<tr aria=live="polite">
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>
<td><input type="text" name="quantity" data-bind='value: quantity's></td>

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 94

<td data-bind="text: subtotal "></td>
</tr>
</tbody>

We tell Knockout to render the contents of the <tbody> for each entry in the
items array. We don’'t have to change anything else in that row.

At this point, we have multiple lines displaying on the page, each subtotaling
correctly. Now let’s handle computing the grand total and removal of items.

The Grand Total

We saw how Knockout’s computed() method works when we used it to calculate
the subtotal for each item. We can use the same approach to calculate the
total for the entire cart by adding a computed() to the Cart itself:

knockout/update_cart.html
this.total = ko.computed(function(){
var total = 0;
for (item in this.items()){
total += this.items()[item].subtotal();
}
return total;
}, this);

Any time any of the items in our array changes, this code will fire. To display
the grand total on the form, we simply need to add the appropriate table row.
Since it’s the total for the cart and not for a line item, it doesn’t go in the
<tbody>. Instead, we’ll put it in a <tfoot> tag, which we place right above the
closing <thead> tag. Placing the footer above the table body can help some
browsers and assistive devices more quickly identify the table structure.

knockout/update_cart.html
<tfoot>
<tr>
<td colspan="4">Total</td>
<td aria-live="polite" data-bind="text: total()"></td>
</tr>
</tfoot>

When we refresh our page, we can change any quantity and update both the
line total and the cart total simultaneously. Now, about that Remove button...

Building a shopping cart update screen entirely on the client side is becoming more
popular. In some cases, it may not be possible to send Ajax requests back and forth
every time a user makes a change to the interface, due to bandwidth issues or back-
end limitations.

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Snappier Client-Side Interfaces with Knockout.js ® 95

When you use an approach like this, you’ll want to synchronize the data in the cart
on the client side with data on the server. After all, you wouldn't want someone
changing prices on you!

When the user checks out, submit the updated quantities to the server and recompute
the totals on the server side before checking out.

Removing Items

To wrap up this project, we need to add a Remove button to the end of each
row that removes the item from the row. Thanks to all the work we’ve done,
this is a simple task. First, we add the ability to remove an item from the cart
by adding a remove() method to our Cart:

knockout/update_cart.html
this.remove = function(item){

this.items.remove(item);
}.bind(this);

Notice the use of bind(this)() after the declaration of the function. We need that
so the function can reference the scope of the Cart. If we omit it, the remove()
function can’t figure out where this.items is.

With the remove() method in place, we modify the table to add the Remove
button:

knockout/update_cart.html
<td>
<button
data-bind="click: $parent.remove">Remove
</button>
</td>

This time, instead of binding data to the interface, we bind an event and a
function we want to call—in this case, the remove() method of our cartViewModel
instance. But at this point in our code, we're within the context of a specific
item. Knockout lets us use the $parent property to reference the parent view
model. And best of all, it automatically passes a reference to the current item
to the function.

That’s it! Since the items array is an observableArray, our entire interface gets
updated. Even our grand total changes!

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://media.pragprog.com/titles/wbdev2/code/knockout/update_cart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 96

Further Exploration

Knockout is great for situations where we need to build a dynamic single-
page interface. And because it’s not tied to a specific web framework, we can
use it anywhere.

More important, the view models Knockout uses are ordinary JavaScript, so
we can use Knockout to implement many commonly requested user interface
features. For example, we could very easily implement an Ajax-based live
search, build in-place editing controls that save the data back to the server,
or even update the contents of one drop-down field based on the selected
value of another field.

Also See
e Recipe 11, Rendering HTML with Handlebars Templates on page 69

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating a Search Interface with React ® 97

Recipe 15

Creating a Search Interface with React

Problem

Thanks to Gmail and Facebook, people are accustomed to seeing real-time
search results, instead of the “traditional” approach in which they type in a
value, hit a submit button, and wait for the entire results page to redraw. So
we've been asked to build a simple product-search interface, with the explicit
requirement that the search must be quick and must be done without
refreshing the page.

Ingredients
* jQuery
¢ React'®
e QEDServer (for our test server)'’

Solution

React is a JavaScript library designed for creating user interfaces that need
to efficiently respond to a flow of data. Manipulating the DOM is one of the
most expensive things we can do in a web browser. React solves this by using
a virtual DOM for its components. We don’t ever manipulate elements on our
page. Instead, we create them as React components that get rendered to the
page. When we update our data, these components get refreshed—but only
the components that changed, rather than the whole page. It’s incredibly fast,
but it'll require us to think differently about how we construct our page.

To test this out, we’ll create a simple search interface using QEDServer and
its product database as the back end for our Ajax requests. We'll place all of
our files in the public folder that QEDServer creates in our workspace so our
development server will serve them properly and allow us to make Ajax

http://localhost:8080/
http://localhost:8080/
http://facebook.github.io/react/index.html
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYVY

Chapter 2. User Interface Recipes ® 98

We'll place a new index.html file inside the public folder that QEDServer created
for us when we started it up. In this file, we place our usual HTML skeleton
and a <div> element that will hold our application. We'll tell React to render
its contents into this area of the page. We also import a few libraries in the
header section of the page:

react/index.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Product Search</title>
</head>
<body>
<div aria-live="polite" id="content">Waiting...</div>
<script src="https://code. jquery.com/jquery-2.1.4.min.js"></script>
<script src="https://fb.me/react-0.13.3.js"></script>
<script src="https://fb.me/JSXTransformer-0.13.3.js"></script>
<script type="text/jsx" src="search.js"></script>
</body>
</html>

We're including React, but we're going to use jQuery for making our Ajax
requests. React is purely a Ul library; it doesn’t have its own way of fetching
data from servers. The third library we're loading is React’s JSX Transformer.
React has its own dialect of JavaScript, called JSX, that makes creating
templates easier. In production applications, you'd set up a development
workflow that converts JSX files into regular JavaScript files—much as we
do when we use CoffeeScript in Recipe 31, Cleaner JavaScript with CoffeeScript

do the transformations in the browser in exchange for a hit on performance.
The last file we're including is the file that will contain the JavaScript code
that builds our search interface. We have to specify that we're using JSX for
this file so that the JSX Transformer can convert it.

Our Component Architecture

We'll create a component called ProductSearch, which will be made up of two
smaller components—a ProductSearchForm and a Productlist—as illustrated in the
diagram on page 99.

The top-level component will communicate with our back end and will render
the two child components. When a visitor submits the search form, we’ll pass
the data up from the inner component to the outer component. The outer
component will fetch the search results from the back end and then rerender
the list of products using the new data.

http://media.pragprog.com/titles/wbdev2/code/react/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating a Search Interface with React ® 99

ProductSearch
ProductSearchForm
Keyword || Search |
ProductList
Name Description Price

Let’s start by creating the outer component. In search.js, we create the initial
version of our ProductSearch component:

react/search.js
var ProductSearch = React.createClass({
render: function() {
return (
<div>
<h1>Product Search</hl>
</div>

);

1)

The preceding code doesn’t do too much other than render a <div> with an
<hl> inside. But it won’t actually render the component until we tell React to
render it, like this:

React.render(<ProductSearch />, document.getElementById('content'));

We pass in the component we want to render, and the element on the HTML
page that’ll contain the component. In our case, we're rendering our Product-
Search component into the element on our page that has the ID of content. When
we reload the page in our browser, we see the component rendered to the
screen, as in the figure on page 100.

Now let’s get a little more interesting content on the page.

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YVYY

Chapter 2. User Interface Recipes ® 100

v
'

L o e
I

i
_ L
|
|
Product Search :
o e L
| |
i i
i i
I i
I I
| |
i i
I I
I I
| |
i i
I I
I I
| |
i i
I I
I I
| |
i i
I I
I I
I I
| |
i i
I I
i i
m L3 Inspector > Console () Debugger [# style Editor @ Performance T Network = P - I =R
html body div#content n hl m Computed Fonts Box Model
<!—— START: skeleton ——> element { inline
<!DOCTYPE html=
<html> @

<head=></head>
<body>

<div id="content" aria-live="polite">

«<hl data-reactid=".@.@"=</hl>
</fdiv>

<fdiv>

<script sre="

<script s

<script src="

@.min. js"s</script>
ript=
Li5"=</script>

Rendering Server-Side Data

Let’s fetch the most recent results from the server and use that data to render
the list of products so there’s something there when the page loads.

To do this, we’ll declare the ProductList component, which can display data. The
ProductSearch component will do the fetching of data and then render the Pro-
ductlist component, passing it the data to display. This way we can reuse the
ProductList component elsewhere in our app if we want to.

But first we need some data we can render. We'll fetch the data from our back
end and store it in the ProductSearch component’s state. You can think of the
component’s state as its own internal data collection. It can’t be accessed
outside of the component.

To use the state, we need to set up its initial value by declaring a method
called getlinitialState(). This method needs to return a data structure making up
the initial value of the component’s state. We have it return an empty data
object:
react/search.js
var ProductSearch = React.createClass({

getInitialState: function() {

return {data: []};
1

If we declare a method called componentDidMount(), it'll run automatically when
the component is attached to the page. This is a great place for us to hit our

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYYYYYYYYYYY

Creating a Search Interface with React ® 101

back end and grab the initial data we want to display. We do that with a little
bit of jQuery:

react/search.js
var ProductSearch = React.createClass({
componentDidMount: function() {
$.ajax({
url: '/products.json',
dataType: 'json',
success: function(data) {
this.setState({data: data});
}.bind(this),
error: function(xhr, status, err) {
console.error(this.props.url, status, err.toString());
}.bind(this)
1)
1

When we successfully get data back from our server, we call this.setState, which
updates the data in the state by merging what we pass in with what’s in the
current state. Any time we update the component’s state, the component’s
render() method will be called.

Now we can render the list of products. We alter the ProductSearch component’s
render() method by adding in our ProductList component, passing the data as an
attribute:

react/search.js
render: function() {
return (
<div>
<h1l>Product Search</hl>
{ /* START HIGHLIGHT */ }
<ProductList data={this.state.data} />
</div>
);
}

Finally, we define the ProductList component, which renders the data. The data
was passed in as an attribute called data, so to access it inside the ProductList
component we use this.props.data. Any attributes passed to a component become
its properties. We use properties to pass data around our components, and
we use this.state to manage the component’s internal data that should trigger
rendering.

Our list of products will be an HTML table, with the results displayed as the
table rows. So our ProductList component ends up looking like this:

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 102

react/search.js
var ProductList = React.createClass({
render: function() {
var products = this.props.data.map(function (product) {
return (
<tr>
<td>{product.name}</td>
<td>{product.description}</td>
<td>{product.price}</td>
</tr>
);
1)
return (
<table>
<thead>
<tr>
<th>Name</th><th>Description</th><th>Price</th>
</tr>
</thead>
<tbody>
{products}
</tbody>
</table>
)
}
1)

We first take the data stored in the component’s props and transform it into
an array of table rows by using JavaScript’s map() function. Then we return
an HTML table that contains those rows. This pattern is common in rendering
collections of data in React. You construct the inner part first and then wrap
it with the outer parts of the component.

When we refresh the page in the browser, we see our list of products, as in
the figure on page 103.

The outer component is rendering the inner component, passing it data. The
inner component doesn’t need to know where it got its data from; it's com-
pletely decoupled. That means we can send it data we get from a search query,
rather than the most recent data. So let’s build the search feature.

Adding the Form

Our ProductSearchForm will contain the HTML form that visitors will use to per-
form the search. The outer component, ProductSearch, is responsible for talking
to our back end, but we have to put the code that handles the form submission
inside the ProductSearchForm component. So we’ll make the submit handler in

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating a Search Interface with React ® 103

Product Search

Keywords search

Name Description Price
AirPort Express Description of AirPort Express 99.0
DVIto VGA Adapter Description of DVI to VGA Adapter 29.0
Mini DVT to VGA Adapter Description of Mini DVI to VGA Adapter 29.0

Mini DisplayPort to DVI Adapter Description of Mini DisplayPort to DVI Adapter 290
Mini DisplayPort to VGA Adapter Description of Mini DisplayPort to VGA Adapter 29.0

Apple Wireless Keyboard Description of Apple Wireless Keyboard 69.0
Airport Extreme Base Station Description of Airport Extreme Base Station 179.0
Apple Magic Trackpad Description of Apple Magic Trackpad 69.0
Apple Keyboard with Numeric Keypad Description of Apple Keyboard with Numeric Keypad 49.0
Apple Magic Mouse Description of Apple Magic Mouse 69.0

ProductSearchForm delegate to a function that we declare in the ProductSearch
component. The following diagram explains how this will work:

ProductSearch
ProductSearchForm
Keyword || Search |
sendSearchQuery
A\
getSearchResults

¥

ProductList

Name | Description | Price

When we render the form, we’ll pass a reference to the getSearchResults() function
into the ProductForm component. So, let’s build the ProductForm component first
and get it rendering. We’ll wire it up later.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYYYYY

Chapter 2. User Interface Recipes ® 104

The form itself ends up being another component with a render() function that
returns an HTML form. However, we can add a few important pieces to the
markup. We use the ref attribute to name a form field so we can easily locate
it later. And we attach the function that will handle the form directly to the
form by using the onSubmit attribute:

react/search.js
var ProductSearchForm = React.createClass({
render: function(){
return (
<form onSubmit={this.sendSearchQuery}>
<label forInput="query">Keywords</label>
<input id="query" type="search" ref="query" />
<input type="submit" value="search" />
</form>

);
1)

Then, when the form is submitted, we have to capture the submission event
and prevent its default behavior. Then we get the value from the form by using
this.refs and referencing the ref we gave our form field, which was query:

react/search.js
var ProductSearchForm = React.createClass({
sendSearchQuery: function(e){
e.preventDefault();
var query = this.refs.query.getDOMNode().value.trim();

iy
In ProductSearch, we render the search form, passing in the callback function:

react/search.js
render: function() {
return (
<div>
<h1l>Product Search</hl>
{ /* START HIGHLIGHT */ }
<ProductSearchForm onSearchRequest={this.getResults} />
<ProductList data={this.state.data} />
</div>
);
}

And then in ProductSearchForm’s sendSearchQuery() method we add a line of code
that invokes the callback, passing it the query. Since we pass it in to the

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating a Search Interface with React ® 105

component, we access it via this.props, as we did when we accessed the data
we wanted to display:

react/search.js
sendSearchQuery: function(e){
e.preventDefault();
var query = this.refs.query.getDOMNode().value.trim();

this.props.onSearchRequest(query);

}

All that remains is to declare the getResults() method in the ProductSearch compo-
nent. This method looks almost identical to the method that we used to display
our initial data from the server, but it sends the request to /products.json?q=
followed by the search query:

react/search.js
getResults: function(query){
$.ajax({
url: '/products.json?q=' + query,
dataType: 'json',
success: function(data) {
this.setState({data: data});
}.bind(this),
error: function(xhr, status, err) {
console.error(this.props.url, status, err.toString());
}.bind(this)
1)
1

And with that, we have a complete search page, driven by React, as shown
in the following figure:

Product Search

Keywords Keyboard| | search

Name Description Price
Apple Keyboard with Numeric Keypad Description of Apple Keyboard with Numeric Keypad 49.0
Apple Wireless Keyboard Description of Apple Wireless Keyboard 69.0

Of course we can do lots more. The price should be formatted in dollars and
cents, and we should probably add in support for pagination so we can see
more results. But this is a great start and solves our immediate problem. We
can show off this interface and get the feedback we need.

http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://media.pragprog.com/titles/wbdev2/code/react/search.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 106

Further Exploration

We built the entire application using the client-side JSX Transformer, but if
you're going to do more with React you’ll want to look into precompiling your
JSX code. You can use npm to install the compiler:

$ npm install -g react-tools
Then create a src folder and a build folder:

$ mkdir src/
$ mkdir build/

Place your JSX code in the src folder. Then run the jsx command-line tool, tell
it to watch the src folder for any changes, and place the resulting JavaScript
code in the build folder:

$ jsx --watch src/ build/

Finally, ensure that your HTML file references the JavaScript code from the
build folder. When it comes time to deploy files to production, you only need
to transfer your HTML pages and the build folder.

The application we built was small. If you plan to build a more robust appli-
cation with React, you might want to look at the Flux architecture,* a design
pattern for developing more complex apps with React.

Also See

L Recipe 16, Creating Client—Side Apps with Angular Js on page 107

20. http://facebook.github.io/flux/docs/overview.html

http://facebook.github.io/flux/docs/overview.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 107

Recipe 16

Creating Client-Side Apps with Angular.js

Problem

As users demand more robust and responsive client-side applications,
developers respond with amazing JavaScript libraries. But as applications
get more complex, the client-side code starts to look like a kitchen junk
drawer, with libraries crammed together in a disorganized pile of event bind-
ings, jQuery Ajax calls, and JSON parsing functions.

We need to develop our client-side applications with the same approach we've
used for years for our server-side code. We need a framework. With a robust
JavaScript framework, we can keep our code organized, reduce duplication,
and use a coding standard that other developers can understand.

Our boss has asked us to build a proof-of-concept (PoC) application to make
our product-management interface much more responsive. The current
interface is slow and requires a full page refresh every time a user adds or
modifies product information. The boss wants us to build a single-page
interface, and we must do it all without changing our back-end application.
We need a framework that will let us develop the application quickly while
keeping things organized so we can maintain them over the long term.

Ingredients

e Angular®'
e QEDServer (for our test server)*

Solution

We have our pick of JavaScript frameworks that will help us solve this issue.
For this case we choose Angular because its Model-View-Controller (MVC)
style architecture draws parallels to some common web frameworks such as
Ruby on Rails, ASP.NET MVC, and Spring MVC for Java. The MVC pattern
allows us to organize our code in a common way that keeps things like display
logic from getting mixed up with domain objects. In addition to the MVC

21. http://angularjs.org/

http://angularjs.org/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 108

architecture pattern, Angular’s support for two-way data binding, HTML
templates, deep linking, and dependency injection makes it a great fit for our
PoC.

Before we get into building our interface, let’s take a 30,000-foot overview of
what Angular is and how we can use it to solve our problem.

Angular Basics

Angular uses a different philosophy from other JavaScript frameworks. Others
work around the issue that HTML isn’t designed for dynamic views, whereas
Angular solves that problem head-on by extending HTML.

Frameworks like jQuery focus on manipulating the DOM and targeting ele-
ments with CSS selectors. Angular uses properties added to HTML elements
for controlling and manipulating the view. Let’s look at a few concepts and
terms to get our feet wet:

e Representational state transfer (REST) is a software architecture style that
is commonly used on the web as a means of communication among
multiple systems.

e Resource is Angular’s built-in way of communicating with RESTful web
services.

¢ Routeris an Angular module that allows us to specify routes and how our
application will respond to them.

e Views complement the route service. They allow us to create snippets of
HTML—often referred to as templates—that we can substitute in our page.

¢ Directives are markers on HTML elements that tell Angular to attach
behavior to those elements and their children, if any. Angular comes with
a set of built-in directives such as ng-view and ng-app. We can create our
own directives if the built-in ones do not meet our needs.

e Scopes are objects on the application model that mimic the application’s
DOM structure. Scopes are arranged hierarchically, and every application
has a single root scope. The root scope can be used as a mechanism to
provide a publish-and-subscribe message-bus pattern.

Building Our Interface

We'll build a simple, single-page interface to manage products in our store.
One version of the interface will end up like the one in the following figure:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 109

Web Page Title
€>CH

Name

Description

Price

Save or Cancel

* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00
* Product Name $2.00

Add New Product

We'll have a form at the top of the page for adding or editing products, and
below that we’ll always display a list of the products. We'll use Angular to
talk to our back end to retrieve or modify our product inventory, using its
REST-like interface:

of a product in the request body updates the product with the ID of 1.
e A DELETE request to /products/1.json deletes the product with the ID of 1.

To build our interface we’ll organize our code into templates and controllers.
To keep things separate and easier to organize we start by creating a couple
of folders inside of the QEDServer public directory: a folder for controllers
(named controllers) and another for templates (named templates).

http://example.com/products.json
http:///products/1.json
http:///products.json
http://example.com/products/1.json
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 110

All Products

Let’s create index.html alongside the folders we just created and add some
boilerplate code to it:

angular/index.html
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<title>Products</title>
<link rel="stylesheet" href="/style.css">
</head>
</html>

Next, let’s add the elements that make this an Angular application. We add
a <body> tag and its content, as well as the Angular libraries:

angular/index.html
<body ng-app="products">
<div id="wrap">
<ng-view> </ng-view>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.16/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.16/angular-resource.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.16/angular-route.min. js"></script>
</body>

Angular directives let us attach Angular functionality to the DOM. In our
<body> tag we have an ng-app directive that tells Angular that this is the root
element for our application. It also gives our application a name.

The next directive we add is the <ng-view> tag. This directive is used to mark
where we’ll add different sections of the page.

Directives can be attributes, like the ng-app attribute, or tags, like <ng-view>.
Angular has many built-in directives, and their use is based entirely on how
the directive was defined by the developer of the directive.

In our mock-up we have a list of products at the bottom of the page. As we
work forward we’ll swap out the top of the page with elements needed for
actions such as creating, editing, and viewing our products. Those elements
will be rendered into the <ng-view> area. The one thing that will stay consistent
is the list of products, so we add some markup for that right below our closing
<ng-view> tag:

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 111

angular/index.html
<div ng-controller="ProductsCtrl as productsCtrl"
ng-init="productsCtrl.get()">
<h2>0ther Products</h2>
<div>

<li ng-repeat="product in productsCtrl.products">

{{ product.name }} $ {{ product.price }}

</div>
Add a new product
</div>

We're adding a few more ng directives here. First we specify a directive on the
outside <div> called ng-controller. In Angular apps, controllers are where we set
up the data to be sent to our view. In this case we're setting that value to
ProductsCtrl as productsList, which specifies the name of the controller, followed by
the variable we use to reference that controller in this block of HTML.

If you've looked into Angular at all, you've undoubtedly seen $scope in many code
examples. $scope is a common way to get data from the controller to the view, and
from the view to the controller.

Angular version 1.2.0 introduced the controller as syntax, which lets us name our objects
in our controllers and views. This keeps our Angular code more consistent with
standard JavaScript, and some developers consider it easier to read.

The $scope approach to building applications is valid, and it’s fine for simple examples.
But in our experience, the controller as syntax is clearer to read and understand, and
it offers more flexibility down the road.

The last directive in the outside <div> takes advantage of this controller defi-
nition. The ng-init directive specifies a method call of productsList.get(), which
translates to calling a method called .get() on the ProductsCtrl. To make that
work, we need to define a .get() function in our controller that will fetch the
products from the back end and store them in a variable inside of the con-
troller.

The ng-repeat directive, which is added to the tag, starts to show some of
the power of Angular. This directive iterates everything inside of the block

report erratum -« discuss

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 112

for all of the objects in a collection. In our case we loop over all of the products
and add a new for each. The last bit of syntax should look familiar from
our work in Recipe 11, Rendering HTML with Handlebars Templates on page

Now that we have our first block of HTML ready, let’s get it connected to our
controller.

Let’s start by adding a couple of files and then including them just before our
HTML file’s closing <body> tag. We'll need a routes.js file in the same directory
as our HTML file. We also need to create the ProductsCtrl.js file inside the controllers
folder we created earlier. And we must include them in our index.html page
right above the closing <body> tag, below our other scripts:

angular/index.html
<script src="./routes.js"></script>
<script src="./controllers/ProductsCtrl.js"></script>

Now we can start defining our routes, where we specify which controllers and
views are needed for each URL pattern:

angular/routes.js
var ProductsApp = angular.module("products", ["ngResource", "ngRoute"]);

We start out by declaring ProductsApp, which we define as an Angular module.
All of our other Angular components will be built from this module. We assign
angular.module() to the ProductsApp variable, which is Angular’s way of specifying
a main() method for our application.

We pass in two arguments to angularmodule(). The first argument is our appli-
cation, which matches what we defined in our ng-app directive. The second
argument is an array of modules that our application depends on. In this
case we're requiring the use of ngResource, which lets us talk to web services,
and ngRoute, which lets us define routes for our application. Since not every
Angular application needs these features, we must specifically load them in
and make sure we've included those libraries in our HTML page.

Next, we configure our application by loading our ngRoute module’s dependen-
cies via Angular’s dependency-injection mechanism and specify our main
controller and route:

angular/routes.js
ProductsApp.config(['$routeProvider', function($routeProvider) {
$routeProvider.
when("/", { controller: "ProductsCtrl" }).
otherwise({ redirectTo: "/" });
LE

http://media.pragprog.com/titles/wbdev2/code/angular/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 113

Let’s look closer at the lines inside of the callback function where we're
defining our routes:

angular/routes.js

$routeProvider.
when("/", { controller: "ProductsCtrl" }).
otherwise({ redirectTo: "/" });

We start off with the $routeProvider we passed into the function and are calling
the when() with two parameters: the path and a route hash. The path is the
URL that this route will respond to. The route hash tells Angular which con-
troller is used to respond to the route. In this case it should use ProductsCtrl.
This means we need to create a controller called ProductsCtrl. The second method
in the chain is otherwise(), which is used when our app doesn’t have a route
that matches. We'll send the user to the root of our app.

Now let’s create the ProductsCtrl that we referenced in the route. We create a
file called controllers/ProductsCtrl.js and add the following code:

angular/controllers/ProductsCtrl.js
ProductsApp.controller("ProductsCtrl", function($resource, $rootScope) {
var Products = $resource('/products.json');
this.get = function() {
this.products = Products.query();
b
$rootScope.$on("products.updated", this.get.bind(this));
1)

In ProductsCtrl.js, we start by calling the controller() function against our ProductsApp
to register a controller with our app. The controller() function takes two
parameters: the name of our controller and a callback function that handles
our controller’s logic. The code we've added in this controller requires Angular’s
$resource and $rootScope modules, so we include these modules via Angular’s
dependency-injection mechanism. The first line in the controller defines our
product’s resource, which will allow us to communicate with the QEDServer’s
products endpoint.

Next we define a get() function, which we use for assigning the products sent
back to us from the server to the view. Lastly, we create a listener on $rootScope
called products.updated, which triggers a call to the QEDServer to get all the
products. Note that we bind it to this so the scope of the function doesn’t
change on us during the callback. This call to the QEDServer will happen
any time we choose to broadcast an products.updated event. With this all set up,
we're ready to give our app a test.

http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 114

Displaying a Single Product
We make sure our QEDServer is running by using the specific executable for

something similar to the following figure:

Other Products

« Time Capsule - 3TB $ 499.0

o Time Capsule - 2TB $ 299.0

« AirPort Express $ 99.0

» Canon Rebel XS Kit (Black) $ 549.95

» DVIto VGA Adapter $ 29.0

« Mini DVI to VGA Adapter $ 29.0

« Mini DisplayPort to DVI Adapter $ 29.0
« Mini DisplayPort to VGA Adapter $ 29.0
» Apple Wireless Keyboard $ 69.0

« Airport Extreme Base Station $ 179.0

Add a new product

When we click the links, notice that the URL is changing but nothing is
happening on the screen. That’s because we haven't yet defined our /prod-
ucts/product_id route. Let’s add a route to handle this in routes.js:

angular/routes.js

when("/products/:id", {
controller: "ProductCtrl as productCtrl"”,
templateUrl: "/templates/show.html"

1.

The show route looks similar to the index route with a couple of slight modifica-
tions. We are now passing in a templateUrl option to this route’s option hash
to specify a template to display in place of the ng-view directive. We're also
specifying the controller by using the controller as syntax, as we did in our main
index.html file. This lets us create an alias for our controller so we can easily
and clearly reference it in our template.

Now let’s build our show template. Add the following code in a file in the templates
directory called show.html:

angular/templates/show.html
<div>
<div>
<h2>{{ productCtrl.product.name }}</h2>
<p> {{ productCtrl.product.description }} </p>
<p> {{ productCtrl.product.price }} </p>
</div>
Edit
</div>

http://localhost:8080/index.html
http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/templates/show.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 115

Here we set up some HTML and then insert some placeholders that our con-
troller will populate with data. Our template items here give us an idea of
how we should structure our controller.

Let’s add a definition for our ProductCtrl to the ProductsCtrl.js file. You could create
a new file for this controller, but you’d need to go back and link that new file
to the index.html file. To keep things simple, we’ll add this code right below our
existing ProductsCtrl:

angular/controllers/ProductsCtrl.js

ProductsApp.controller("ProductCtrl", function($resource, $routeParams) {
var Product = $resource('/products/:id.json', { id: "@id" });

this.product = Product.get({ id: $routeParams.id });

b

This new controller isn’t much different from ProductsCtrl. Again, we have a
controller name followed by the controller function. This time, however, the
function takes in $routeParams in addition to $resource. $routeParams is an Angular
service that allows us to access the current route parameters. In this case
we're interested in pulling the id from the query string.

Let’s dig deeper and explore the code inside of our ProductCtrl, starting with the
first line. Again, we're creating a variable to hold our $resource, which we use
to get a specific product from the back end. The Product function does a get()
call on our resource and passes the ID from our $routeParams service, assigning
the response to this.product. In our show template we are setting our binding to
Product.product.some_attribute. So in our code this is our controller, and product is
the one product from our back-end system.

Now we’re ready to test our show route so we can move on to editing products.
To verify the show action, make sure your QEDServer is running and point

Finishing Up
Let’s wrap up our PoC by finishing the last two of our create, read, update
and delete actions—for editing a product and for creating a new one. We'll

add the needed routes and then view and tie them together with the necessary
controllers.

http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://localhost:8080/index.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 116

Time Capsule - 3TB

Description of Time Capsule - 3TB
499.0

Edit
Other Products

« Time Capsule - 3TB $ 499.0
« Time Capsule - 2TB $ 299.0

« AirPort Express $ 99.0

« Canon Rebel XS Kit (Black) $ 549.95

« DVI to VGA Adapter $ 29.0

+ Mini DVI to VGA Adapter $ 29.0

« Mini DisplayPort to DVI Adapter $ 29.0
« Mini DisplayPort to VGA Adapter $ 29.0
+ Apple Wireless Keyboard $ 69.0

« Airport Extreme Base Station $ 179.0

Add a new product

We need to add the following code to our routes js file, between our index route
and our show route:

angular/routes.js

when("/products/new", {
controller: "ProductNewCtrl as productFormCtrl",
templateUrl: "/templates/form.html"

.

when("/products/:id/edit", {
controller: "ProductEditCtrl as productFormCtrl",
templateUrl: "/templates/form.html"

.

The makeup of these two routes is consistent with our show route. They use
the controller as syntax pattern and specify a template. The controller as syntax
names the two controllers we’ll end up creating, along with how we should
access information in our template. Let’s create the template next. We’ll want
to create a form.html file in our templates folder:

angular/templates/form.html
<div>
<h2>{{ productFormCtrl.product.name }}</h2>
<p>
<label for="product name">Name:</label>
<input type="text" id="product name"
ng-model="productFormCtrl.product.name">
</p>
<p>

report erratum

- discuss

http://media.pragprog.com/titles/wbdev2/code/angular/routes.js
http://media.pragprog.com/titles/wbdev2/code/angular/templates/form.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 117

<label for="product description">Description:</label>
<textarea id="product name"
ng-model="productFormCtrl.product.description"></textarea>
</p>
<p>
<label for="product price">Price:</label>
<input type="text" id="product price"
ng-model="productFormCtrl.product.price">
</p>
<p>
<button ng-click="productFormCtrl.saveProduct()">Save</button> or
Cancel
</p>
</div>

Using one template allows us to eliminate code duplication and keep our
forms consistent. This works in our case because we can create a save()
function in both controllers. Let’s create our two controllers and get this PoC
completed for our boss.

We'll put the other two controllers in our same ProductsCtrl.js file. We're not
doing anything major, so keeping the logic in one file is fine for now:

angular/controllers/ProductsCtrl.js
ProductsApp.controller("ProductEditCtrl", function($resource, $routeParams,
$location, $rootScope) {

var Product = $resource('/products/:id.json',
{ id: "@id" },

{ update: { method: 'PUT' } }

);

var id = $routeParams.id;
this.product = Product.get({ id: id });

this.saveProduct = function() {

var self = this;

Product.update(self.product, function() {
alert("Product Updated");
$location.path("/products/" + self.product.id);

$rootScope.$broadcast("products.updated");
b

+

1)

ProductsApp.controller("ProductNewCtrl", function($resource, $location,
$rootScope) {

var Product = $resource('/products.json');
this.product = new Product();

http://media.pragprog.com/titles/wbdev2/code/angular/controllers/ProductsCtrl.js
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 2. User Interface Recipes ® 118

this.saveProduct = function() {
var self = this;
Product.save(self.product, function(product) {
alert("Product Created");
self.product = product;
$location.path("/products/" + self.product.id);
$rootScope.$broadcast("products.updated");
1)
+
1)
Again, our new controllers are similar to the ones we've already created. The
edit controller is closer to our show controller in that our $resource has some
extra parameters. In this case we're specifying an id and an HTTP method for
our update service call. The edit controller also has a call to get the details

of a product, like the call in our show controller.

Our edit controller uses the Product.get() function to prepopulate the form for
our users. The last function of our edit controller is saveProduct(), which sends
an HTTP PUT request to our server, triggering a save of the updated information.

The controller for creating new products works in a similar fashion. We start
by creating an empty product object. Then—as in our edit controller—we have
a saveProduct() function. The function here performs a bit differently in that it
sends a POST request to our server, triggering the creation of a new product.

Both the edit controller’s and the new controller’s saveProduct() functions publish
a message on the $rootScope, which we set up a listener for in our ProductsCtrl.
By publishing the products.updated event, our list of products will be updated
every time we create or save one.

With all of our code in place, we can try out the entire app in our browser
and then report back to our boss with our findings:

¢ Client-side frameworks allow for code organization and consistency with
traditional web frameworks.

e Angular allows for easy integration with existing RESTful web services.

e Angular provides snappy user interfaces that provide users with a modern
web experience.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Client-Side Apps with Angular.js ® 119

Further Exploration

We can take this recipe a bit further and add the delete action to our applica-
tion, or do some more refactoring to take some of the common elements from
the different controllers and combine them into our own modules.

Also See
* Recipe 11, Rendering HTML with Handlebars Templates on page 69

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

CHAPTER 3

Data Recipes

Web developers work with data in many forms. Sometimes we're pulling in a
widget from another service, and other times we're taking data from our users.
In these recipes, we spend some time consuming, manipulating, and present-
ing data.

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 122

Recipe 17

Adding an Inline Google Map

Problem

People want simple, accessible, and quick ways to locate a geographical des-
tination. Addresses and written directions work, but the simplest method is
to glance at a map, memorize the street number and general location, grab
your keys, and go. We want to add a map to our site so that visitors can get
an immediate a sense of where something is located and how they can get
there.

Ingredients
e The Google Maps API

Solution

Using the Google Maps API, we can bring the power and functionality of Google
Maps into our own application. We can render maps of two types: static and
interactive. The static map is an image that we can insert into our page,
whereas the interactive map allows for zooming and panning. The Google
Maps API supports any programming language that can make a request to
Google’s servers. The documentation includes many of JavaScript examples,
which is perfect for our needs.'

Along with rendering maps, the JavaScript API lets us insert other elements
in the maps. We can place markers and bind mouse events to the markers.
We can also create pop-out dialog boxes that show information directly
within the map. We can show street views, geolocate the user, create routes
and directions, and draw custom models on the map. The sky’s the limit, at
least until Google launches its space program and takes over NASA.”

We're working with a local university to develop a map for its web page for
new visitors. The admissions office wants to show these visitors where they
can find places and where to park. We'll create an interactive map that con-
tains markers and information, using the JavaScript Google Maps API.

1. https://developers.google.com/maps/documentation/javascript/reference

https://developers.google.com/maps/documentation/javascript/reference
http://www.google.com/space
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Adding an Inline Google Map * 123

We start with our basic HTML5 template:

googlemaps/map_example.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Freshman Landing Page</title>
<style>
</style>
</head>
<body>
<script>
window.onload = loadMap;
function loadMap() {

}

var latLong = new google.maps.LatlLng(44.798609, -91.504912);

var mapOptions = {
zoom: 15,
mapTypeld: google.maps.MapTypeId.ROADMAP,
center: latLong

+

var map = new google.maps.Map(document.getElementById("map canvas"),
mapOptions);
mogiesLatLong = new google.maps.LatlLng(44.802293, -91.509376);
var marker = new google.maps.Marker({
position: mogieslLatlLong,

map: map,
title: "Mogie's Pub & Restaurant"
1)
var mogiesDescription = "<h4>Mogie's Pub & Restaurant</h4>" +

"<p>Excellent local restaurant with top of the line burgers " +
"and sandwiches.</p>";
var infoPopup = new google.maps.InfoWindow({
content: mogiesDescription
1)
google.maps.event.addListener(marker, "click", function() {
infoPopup.open(map,marker);
1)

</script>
</body>

</html>

Next, we include the Google Maps JavaScript API in our document, right
above the closing <body> tag:

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 124

googlemaps/map_example.html
<script src="https://maps.qgoogleapis.com/maps/api/js?v=3.18"></script>

The API requires a <div> to act as a container for the map, so we add that to
our page.

<body>
<div id="map_ canvas"></div>

The map will scale to the size of this container, so let’s set dimensions on this
<div> with CSS in the <style> section of our page’s <head> region:

#map_canvas {
height: 400px;
width: 600px;

}

This container is now ready to hold a map that is 600x400 pixels. Let’'s go
fetch some data.

Loading the Map with JavaScript

At the bottom of our page, right below the <script> tag we added to load the
Google Maps API code, we add a <script> block to hold the code that initializes
our map. We'll create a function called loadMap() to load the map with the lati-
tude and longitude we want to center on, and we’ll run it when the browser
window loads. We could put our code in a separate JavaScript file, but
keeping it with this file makes development of the map much easier:

<script>
window.onload = loadMap;
</script>

Next, we’ll create the loadMap() function. Since we're not using a sensor, we’ll
hard-code our latitude and longitude. These coordinates define the center
point of the map. To find these values, we have a few options. We can browse
to Google Maps, find what we want to center our map on, right-click a pin,
and select What's here? to see the values for latitude and longitude in the
search box. Alternatively, we can use the Google Maps / Open Streetmap
Latitude, Longitude Popup,® a website where you can click a location on a
map to find its latitude and longitude.

function loadMap() {
var latLong = new google.maps.LatlLng(44.798609, -91.504912);

var mapOptions = {
zoom: 15,

3. http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://www.gorissen.info/Pierre/maps/googleMapLocationv3.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Adding an Inline Google Map ® 125

mapTypeId: google.maps.MapTypeId.ROADMAP,
center: latlLong
+

var map = new google.maps.Map(document.getElementById("map canvas"),
mapOptions);

}

Within this function, we create an object to hold options for our map. We can
define the type of map we want, a zoom value, and more. The zoom requires
some experimentation; the higher the number, the farther in it zooms. A value
of 15 works well for street-level maps.

We can change how the map appears by setting a different mapTypeld. Note
that zoom values, along with maximum ranges for zoom, change when you
change the map type. You can find a reference for map types in the Google
Maps API documentation.*

Finally, we create the map. The Map constructor requires that we pass the
DOM element that will hold the map, along with our object containing the
options. When we load this page in our browser, we see a map centered on
our desired location that looks like the following figure:

7, 2

o b 4.5 (o] o T " J
=2 el z . AR - o Map | Satellite |
Miagara 5t T Niagara St = = = e
F.9 = b ¥
< o [~}
W Fhippewa St Chippewa 5t % (
= Yery e
> < ve i
! T Water 5t o g
@ 4
F I'-,Ir—nnl1_|'|n|=- St 1 ‘Sm””'-‘.'.',q e
Ll st River
= 1 a =
hf,‘i.+ Chlppew Park by A
Little Niagara e 2 X, 5
Creek garhe’ = “ g
; 5
f— w)
g TeKinle
& !
k Ridga i+ 5 .
B L.ni'-'r_'.' ',I|:r' Dr. v Uoge,
sker Dr
-
UW-Eau Claire
:)
— Chippewa Valley — ~
Technical College = (T Putnam Pa
Y10, Cy Matural
e B Frontage Rd

i)

Map data ©2015 Google Terms of Use Report a map error

Now let’s plot some points of interest on the map that our visitors can click.

4. http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeld

http://code.google.com/apis/maps/documentation/javascript/reference.html#MapTypeId
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 126

Creating Marker Points

To show incoming students where they can go to get a bite to eat or otherwise
be social, we'll create markers on the map. A marker in Google Maps is one
of many overlays that we can add. Overlays respond to a click event, and we
will use this to show an info window when the marker is clicked.

Since we already have a map, creating the marker is as simple as invoking
the constructor and passing some options:

googlemaps/map_example.html
mogiesLatlLong = new google.maps.LatlLng(44.802293, -91.509376);
var marker = new google.maps.Marker({
position: mogiesLatlLong,
map: map,
title: "Mogie's Pub & Restaurant"
1)

To define a marker, we pass the latitude and longitude coordinates, the map
that will hold the marker, and a title that will appear when the user’s mouse
pointer hovers over the marker. You can get the points of interest for your
location by searching through Google Maps, but we're using our favorite
burger joint for this example.

Next, we create the info window that appears when this marker is clicked:

googlemaps/map_example.html

var mogiesDescription = "<h4>Mogie's Pub & Restaurant</h4>" +
"<p>Excellent local restaurant with top of the line burgers " +
"and sandwiches.</p>";

var infoPopup = new google.maps.InfoWindow({

content: mogiesDescription

1}

Finally, we add an event handler to the marker. Using the Google Maps event
object, we add a listener to open the info window we just created:

googlemaps/map_example.html
google.maps.event.addListener(marker, "click", function() {
infoPopup.open(map,marker) ;

1)

When the user clicks the marker, a new window shows information about
the location, as in the figure on page 127.

We can add as much HTML content as we want to the window to show more
information. From here, we can gather the coordinates of other points of
interest and build the rest of the map.

http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://media.pragprog.com/titles/wbdev2/code/googlemaps/map_example.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Adding an Inline Google Map * 127

WOk sR -
o 2 W Grand fve 2 wGres Map | Satellite
~ P =
< > 9) B
W -
Mogie's Pub & Restaurant
.)) in Park
ﬁ]| Excellent local restaurant with top of the line burgers and e
| g sandwiches. o
+| o : Miagara St \ w Miagara 5t = ‘:‘D'
= z o
- > [o
_:? & Chippewa St Chippewa St E
=)
= =
- ° Water St 3
= L
) =
- = Menomonie 5t ; Stirn,
St j’] 25X E’Lll'v'c-‘_r
i L) et = e :
z e chipP€ Park
Little Niagara e
Creek Garie™
wel | —
Ik g DL
o
e
oo
1k Oak Ridge [y o e =
et Map data ©2015 Google - Terms of Use Report a map error

Further Exploration

We've only scratched the surface of what can be accomplished with the Google
Maps API. Along with markers, other layers of interaction can make the map
more usable for your customers. You can create directions, map routes, use
geolocation, and even add street views. Each of these features is well explained
in the Google Maps API documentation,’ with several working examples.

Google Maps is just one component of the Google APIs. To see a full list of
Google APIs, take a look at the Google Developers Products Page.’

Also See

e Recipe 19, Building a Simple Contact Form on page 136

5. https://developers.google.com/maps/documentation/javascript/reference

6. https://developers.google.com/products/

https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/products/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 128

Recipe 18

Creating Charts and Graphs with Highcharts

Problem

Our sales team has developed an affiliate program for our company’s shopping
site. We've been tasked with developing an interface for our affiliates, and we
want to show their data in a visual and attractive way. However, we need to
ensure that these charts are viewable on mobile devices as well as desktops.

Ingredients

* jQuery
e Highcharts’
e QEDServer (for our test server)®

Solution

The Highcharts JavaScript library lets us easily create interactive and readable
charts and graphs. It works across platforms, and since it runs on the client’s
machine, it doesn’t require any special configuration on our servers. The
interface built into Highcharts is highly interactive and customizable, letting
us present data in a number of ways. In this recipe, we’ll build and customize
a simple chart and then build a more complex one using some remote data.

Building a Simple Chart

Let’s create a simple pie chart so you can get acquainted with Highcharts and
its various options. First, we build a simple HTML document and include the
necessary JavaScript files. We also add a <div> tag, which Highcharts will use
to render the chart on our page:

highcharts/example_chart.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Example Pie Chart</title>

7. http://www.highcharts.com/

8. A version for this book is available at http://webdevelopmentrecipes.com/.

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://www.highcharts.com/
http://webdevelopmentrecipes.com/
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Charts and Graphs with Highcharts ¢ 129

</head>
<body>
<div id="pie chart"></div>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

<script
src="http://cdnjs.cloudflare.com/ajax/libs/highcharts/4.1.5/highcharts.js">

</script>

All the magic is done by creating a new instance of the Highcharts.Chart class
and passing it some options. Highcharts has many options for configuring a
chart, and this configuration can quickly get long and unwieldy. To keep it
simple, we create a variable called chartOptions and set some values on it that
Highcharts expects. For this simple chart we add a new <script> block to the
HTML page rather than putting the code in a separate file:

highcharts/example_chart.html
<script>
(function($, Highcharts){
var chartOptions = {};

chartOptions.chart { renderTo: "pie chart" };
chartOptions.title = { text: "A sample pie chart" };

chartOptions.series = [{

type: "pie",
name: "Sample chart",
data: [

["Section 1", 30],
["Section 2", 507,
["Section 3", 20]
1
N
var chart = new Highcharts.Chart(chartOptions);

}) (jQuery, Highcharts);
</script>

The first value we set is a chart property that contains information about the
chart itself. This is where we pass the ID of the <div> we created earlier. Then
we set a title for the chart with some sample text. Finally, the series property
is an array that contains an object for each type of chart you want to render.
Highcharts allows us to pass any number of objects that will be rendered on
top of one another. Each object defines a chart type, a name, and a dataset.
The format of this data changes depending on the type of chart we're using.

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 130

For the pie chart, the data is a two-dimensional array in which the inner
arrays are pairs of X and Y data.

With just a few lines of code, we have a chart that looks like the following
figure:

A sample pie chart

Section 3

Section 1

/

Let’s go a little further now and explore some additional options to customize
our chart.

Section 2

Customizing Our Chart’s Appearance

Highcharts supports pie graphs, line graphs, area graphs, and scatter plots,
and the extensibility of the graph types lets us create any number of more
interesting graphs.

Consider our chartOptions variable from before. We can define a property on it
called plotOptions, which is an object containing a number of settings for modi-
fying how the graph is drawn. Let’s define some options on our pie chart from
earlier.

We can set options for all charts by defining them in the series property on
our chartOptions object, but we can also define options for each chart type. Let’s
customize our pie chart by changing the appearance of the labels that point
to each section of the chart. We add this new code right before we render the
chart:

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

YYYYYYYYYYYVYY

Creating Charts and Graphs with Highcharts ¢ 131

highcharts/example_chart.html
var pieChartOptions = {
datalLabels: {
style: { fontSize: 20 },
connectorWidth: 3,
formatter: function() {
var label = this.point.name +
return label;

+ this.percentage + "%";

}
}
};

chartOptions.plotOptions = { pie: pieChartOptions };
var chart = new Highcharts.Chart(chartOptions);

We first increase the font size to make it more visible. Then we increase the
connector width to match the font size. Lastly, we create a function that
returns a newly formatted label with our desired information. The default
label shows only the point name, so we change it to show the percentage as
well. Our finished chart looks like the following figure:

A sample pie chart

Section 3 : 20%

Section 1 : 30%

Section 2 : 50%

The plotOptions property has a ton of options; refer to the Highcharts documen-
tation on the plotOptions property to see them all.’

9. http://www.highcharts.com/ref/#plotOptions

report erratum -

discuss

http://media.pragprog.com/titles/wbdev2/code/highcharts/example_chart.html
http://www.highcharts.com/ref/#plotOptions
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 132

Now that we know how to create and configure a simple chart, let’s use
Highcharts to model our affiliate data.

Modeling the Affiliate Datasets

Our affiliate program tracks quite a bit of data, including the customer’s
name, age, and location. This kind of information is useful for profiling cus-
tomers and making assumptions about how to market products. It’s our job
to transform this raw data into a graph that our marketing folks can quickly
analyze before they dig into the hard data.

We want our users to be able to glance at the data and understand how old
the customers are. Let’s use a bar graph so that it's easy to see the mean and
the most frequent value. We'll create something that looks like the following
figure:

Customer Data

39
Customer Ages: 2

Values

Customer Ages

To get started, let’s create a new HTML document with jQuery and Highcharts
included in it. We’ll be working with JSON data and Ajax requests, so fire up
QEDServer and place this new HTML file in the public directory of your QED-
Server installation:

highcharts/affiliates.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Affiliate Customer Data</title>
</head>

<body>
<div id="customer data"></div>

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">
</script>

http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Charts and Graphs with Highcharts ¢ 133

<script
src="http://cdnjs.cloudflare.com/ajax/libs/highcharts/4.1.5/highcharts.js">
</script>
</body>
</html>

Within this file, we create a <script> block and set up our new instance of the
Highcharts.Chart class. Let’s set a few simple options, including the chart’s title
and the target element on our page where the chart will go:

highcharts/affiliates.html
<script>

(function($, Highcharts) {
var options = {
chart: { renderTo: "customer data" },
title: { text: "Customer Data" },
credits: { enabled: false }
};

}) (jQuery, Highcharts);
</script>

Now that our document is ready to go, let’s do some work with our data.

Showing the Customer Data

Normally, we’'d get our customer data from a back-end system, but for the
purpose of this recipe, we've created some sample data you can use. You’'ll
find it in the book’s source code, which you can download from the book’s
website.'® You'll want the highcharts/sample_data/customer data.json file.

Or you can create the file yourself, using something like this:

{

"customers": [

{ "name": "Adrienne Sargent", "age": 20 },
{ "name": "Stella Albin", "age": 55 },

{ "name": "Dolores Krauss", "age": 28 },

{ "name": "Jerry Ayala", "age": 34 },

{ "name": "Keith Shuman", "age": 35 },

{ "name": "Timothy Navarra", "age": 33 },
{ "name": "Norman Tanaka", "age": 36 }

10. http://webdevelopmentrecipes.com

http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://webdevelopmentrecipes.com
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 134

Our index.html page and our data file must be hosted on the same web server.
Remember that we can’t just pull in regular JSON data from a remote server,
because of the web browser’s security restrictions. So place this sample data
file in a folder called sample_data within the public folder that QEDServer uses.

To show the ages in a bar graph, we need to pair an age with the number of
times it occurs. Right now, we have only a list of ages. Let’s write some
JavaScript to collect the ages and sum up the frequencies. We make a request
to get our customer data and do all our work inside of the success callback,
which is invoked when we get data back from our Ajax request:

highcharts/affiliates.html
$.9etJSON('sample data/customer data.json', function(data) {
var ages = [];

$.each(data.customers, function(index, customer) {
if (typeof ages[customer.age] === "undefined") {
ages[customer.age] = 1;
} else {
ages[customer.age] += 1;
}
1)

var age data = [];
$.each(ages, function(index, e

if (typeof e !== "undefined"
age data.push([index, el);

) {
) {

Here we use an array to store some intermediate data. The ages array uses
ages as indexes and stores the number of occurrences for that age. Then we
look through and collect ages that exist in the array to map them to the two-
dimensional array that Highcharts needs. Now that we have our data in the
correct format, let’s render our chart:

highcharts/affiliates.html

options.series = [{
type: "column",
name: "Customer Ages",
data: age_data

I

var chart = new Highcharts.Chart(options);

http://localhost:8080/sample_data/customer_data.json
http://localhost:8080/sample_data/customer_data.json
http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://media.pragprog.com/titles/wbdev2/code/highcharts/affiliates.html
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Creating Charts and Graphs with Highcharts ¢ 135

Now with our final chart rendered, we can easily see the most frequently
occurring ages for our customers.

Further Exploration

Highcharts is a powerful JavaScript library. In this recipe, we built simple to
complex charts that only begin to take advantage of the number of available
options. The Highcharts reference'' is a great way to learn what Highcharts
is capable of. We recommend taking a look at the documentation and consid-
ering what options you would like to use in future projects. Also, the docu-
mentation includes a link to an example of most of the available options on
JSFiddle.net. "

Also See
¢ Recipe 20, Accessing Cross-Site Data with JSONP on page 144

11. http://highcharts.com/ref

http://highcharts.com/ref
http://jsfiddle.net
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 136

Recipe 19

Building a Simple Contact Form

Problem

Websites—even mostly static websites—should provide a way for visitors to
contact the site’s owner. An email address isn’t always good enough; it’s not
inviting or engaging for the user, and it makes it harder for the site owner to
sort and organize messages that come from visitors. Sites should have an
easy, intuitive way for visitors to get in touch.

Our current website has no way to contact us, and we’re concerned that we've
missed out on potential business opportunities as a result. Our manager
wants us to create a simple form that sends us an email.

Ingredients

¢ A server running PHP

Solution

A contact form lets visitors email us without having an email client configured,
making it more likely that we’ll hear from them by email. We can create an
HTML form to handle the data entry, write some scripts to handle sending
the email, and give users feedback for errors and successful emails.

We can choose among many server-side languages, but the PHP scripting
language is perfect for this situation. We needn’t do much heavy lifting: the
script that processes the data from our contact form will be easy to build,
thanks to PHP’s simple syntax. PHP is readily available on most shared
hosting solutions, and it's easy to install on servers where it’s not already
present. It’s a handy tool for simple back-end functions like this, where
heavier frameworks would be overkill.

To create our contact form, we’ll create both HTML components and PHP
components. We’ll use HTML to build the form to ask for the data, and then
we’ll use PHP to handle the data and send the email. We'll also add a few
important interface features, such as error feedback. We’ll use our virtual
machine to test this form. If you haven't already, refer to either Recipe 39,

http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Building a Simple Contact Form ® 137

Setting Up a Virtual Machine on page 282, or Recipe 45, Configuring a Virtual

Creating the HTML

Let’s start by creating the HTML for the form. The form will ask the user for
four things: a name, an email address, a subject, and a message. We'll require
that the email address be provided; otherwise, we’ll be unable to easily get
back to the user. We'll also set a default value for the subject to get them
started. Now that we know what we're collecting, let’s create the contact.php file
and create the form:

contact/contact.php
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Awesome Web Development - Contact Us</title>
</head>
<body>

<h2>Contact Us</h2>

<p>
Please fill out this quick form to send us an email. We are excited
to hear from you!

</p>

<form id="contact-form" action="contact.php" method="post">

<label for="name">Name</label>
<input class="full-width" type="text" name="name">

<label for="email">Your Email</label>
<input class="full-width" type="text" name="email">

<label for="subject">Subject</label>
<input class="full-width" type="text" name="subject"

value="Web Consulting Inquiry">

<label for="body">Body</label>
<textarea class="full-width" name="body"></textarea>

<input type="submit" name="send" value="Send">
</form>

</body>
</html>

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Chapter 3. Data Recipes ® 138

The form’s action points to itself, using the POST method. This lets us do all
of the scripting for sending the email on the same page as the contact form.
We create a field for each part of the email and include a submit button. At
this point, the form is on the page but looks like a jumble of words and boxes.
Let’s add some styling to arrange the labels and inputs:

contact/contact.php
<style type="text/css">
body {
font-size: 12px;
font-family: Verdana;

}

#contact-form {
width: 320px;
}

#contact-form label {
display: block;
margin: 1@px Opx;

}

#contact-form input, #contact-form textarea {
padding: 4px;
}

#contact-form .full-width {
width: 100%;
}

#contact-form textarea {
height: 100px;
}
</style>

We change some font properties, add a good amount of padding and margin,
and move form items to read well. The form is much more readable and usable,
as shown in the figure on page 139.

Now we're ready to bring the form to life and write some back-end code.

Sending the Email

When the page is processed by PHP, we want to catch any POST requests and
send an email. We've already set our page to post to itself, so we just need to
add some PHP to the top of the page. When the submit button is clicked, we
need to grab data from the $_POST variable, validate the data, and send it
through PHP’s mail() function. All of our code for the preprocessing is in a PHP
block above the <html> tag:

http://media.pragprog.com/titles/wbdev2/code/contact/contact.php
http://pragprog.com/titles/wbdev2/errata/add
http://forums.pragprog.com/forums/wbdev2

Building a Simple Contact Form ® 139

Your Email

Subject

Web Consulting Inquiry

Body
A
(Send)
contact/contact.php
<?php
if (isset($ POST["send"1)) {
}
?>

The preprocessing should run only if the Send button is clicked. Since we
gave the button a name attribute in our HTML, we check it in the $_POST array.
Now, let’s get the data that the user has entered. We can use the same $_POST
array to get the data, so let’s store the data in variables so that it's easier to
work with:

$name = $ POST["name"];
$email = $ POST["email"];
$subject = $ P