

HTML	and	CSS
Visual	QuickStart	Guide

Eighth	Edition

Elizabeth	Castro	•	Bruce	Hyslop

Peachpit	Press

Visual	QuickStart	Guide
HTML	and	CSS,	Eighth	Edition
Elizabeth	Castro	and	Bruce	Hyslop

Peachpit	Press
www.peachpit.com

To	report	errors,	please	send	a	note	to	errata@peachpit.com.

Peachpit	Press	is	a	division	of	Pearson	Education.

Copyright	©	2014	by	Elizabeth	Castro	and	Bruce	Hyslop

Editor:	Clifford	Colby
Development	editor:	Robyn	G.	Thomas
Production	editor:	David	Van	Ness
Copyeditor:	Scout	Festa
Technical	editor:	Aubrey	Taylor
Compositor:	David	Van	Ness
Indexer:	Valerie	Haynes	Perry
Cover	design:	RHDG	/	Riezebos	Holzbaur	Design	Group,	Peachpit	Press
Interior	design:	Peachpit	Press
Logo	design:	MINE™	www.minesf.com

Notice	of	Rights

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the	prior	written	permission	of	the
publisher.	For	information	on	getting	permission	for	reprints	and	excerpts,	contact
permissions@peachpit.com.

css3generator.com	screen	shot	courtesy	of	Randy	Jensen.
css3please.com	screen	shot	courtesy	of	Paul	Irish.
dribbble.com	screen	shots	courtesy	of	Dan	Cederholm.
fontsquirrel.com	screen	shots	courtesy	of	Ethan	Dunham.
foodsense.is	screen	shots	courtesy	of	Julie	Lamba.
google.com/fonts	screen	shots	courtesy	of	Google.
namecheap.com	screen	shots	courtesy	of	Namecheap.
Silk	icon	set	courtesy	of	Mark	James	(http://www.famfamfam.com/lab/icons/silk/).
Socialico	font	courtesy	of	Fontfabric	(www.fontfabric.com).

Notice	of	Liability

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution
has	been	taken	in	the	preparation	of	the	book,	neither	the	authors	nor	the	publisher	shall	have	any	liability
to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or
indirectly	by	the	instructions	contained	in	this	book	or	by	the	computer	software	and	hardware	products
described	in	it.

Trademarks

Visual	QuickStart	Guide	is	a	registered	trademark	of	Peachpit	Press,	a	division	of	Pearson	Education.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as

http://www.peachpit.com
mailto:errata@peachpit.com
http://www.minesf.com
mailto:permissions@peachpit.com
http://css3generator.com
http://css3please.com
http://dribbble.com
http://fontsquirrel.com
http://google.com/fonts
http://namecheap.com
http://www.famfamfam.com/lab/icons/silk/
http://www.fontfabric.com

trademarks.	Where	those	designations	appear	in	this	book,	and	Peachpit	was	aware	of	a	trademark	claim,
the	designations	appear	as	requested	by	the	owner	of	the	trademark.	All	other	product	names	and	services
identified	throughout	this	book	are	used	in	editorial	fashion	only	and	for	the	benefit	of	such	companies
with	no	intention	of	infringement	of	the	trademark.	No	such	use,	or	the	use	of	any	trade	name,	is	intended
to	convey	endorsement	or	other	affiliation	with	this	book.

ISBN-13:	978-0-321-92883-2
ISBN-10:								0-321-92883-0

9	8	7	6	5	4	3	2	1

Printed	and	bound	in	the	United	States	of	America

Dedication

To	family.
To	those	I	know	who	endured	difficult	challenges,	demonstrating	courage	and	perseverance	all	the	way.

Acknowledgments

One	of	my	favorite	parts	of	working	on	this	book	has	been	the	people	I’ve	been	able	to	work	with.	All	are
dedicated,	professional,	good-natured,	and	good-humored	folks	who	made	it	a	real	pleasure.	The	book
wouldn’t	be	the	same	without	their	contributions.
A	grateful,	sincere	thank	you	goes	out	to:
Nancy	Aldrich-Ruenzel	and	Nancy	Davis,	for	their	continued	trust	in	me.
Cliff	Colby,	for	his	support,	for	bringing	the	team	together,	and	for	keeping	things	light.
Robyn	Thomas,	for	making	the	engine	go,	improving	copy,	tracking	all	the	details,	being	flexible,	and
providing	encouragement.
Scout	Festa,	for	her	skill	in	simplifying	language,	for	her	watchful	eye,	and	for	helping	to	keep	things
consistent	and	polished.
Aubrey	Taylor,	for	all	the	great	suggestions	and	technical	feedback.	They	were	very	helpful,	and	readers
are	better	off	for	them.
David	Van	Ness,	for	leading	the	charge	in	making	it	all	look	great	and	for	all	his	efforts	in	refining	the
layouts.
Valerie	Haynes	Perry,	for	compiling	the	all-important	index,	which	will	be	the	first	destination	for	many
readers	in	search	of	information.
The	marketing,	sales,	and	other	folks	at	Peachpit,	for	working	hard	to	make	the	book	available	to	readers.
Natalia	Ammon,	for	the	wonderful	design	of	the	example	webpage	that	adorns	the	pages	of	Chapters	11
and	12,	and	other	spots.	You	can	see	more	of	her	work	at	www.nataliaammon.com.
Zach	Szukala,	for	recommending	Natalia.
Scott	Boms,	Ian	Devlin,	Seth	Lemoine,	Erik	Vorhes,	and	Brian	Warren,	for	their	contributions	to	the
previous	edition.
Victor	Gavenda,	for	providing	access	to	necessary	software.
Dan	Cederholm,	Ethan	Dunham,	Paul	Irish,	Mark	James,	Randy	Jensen,	Julie	Lamba,	Fontfabric,	Google,
and	Namecheap,	for	allowing	me	to	use	screen	shots	or	design	assets	(as	the	case	may	be).
C.R.	Freer,	for	working	her	camera	magic.
My	family	and	friends,	for	providing	inspiration	and	breaks,	for	being	patient,	and	for	not	disowning	me
while	I	was	holed	up	writing	for	months.
Robert	Reinhardt,	as	always,	for	getting	me	started	in	writing	books	and	for	having	a	swell	beard.
The	Boston	Bruins,	for	providing	a	lot	of	playoffs	thrills	during	my	infrequent	breaks.
The	numerous	folks	in	the	web	community	who	have	shared	their	expertise	and	experiences	for	the
betterment	of	others.	(I’ve	cited	many	of	you	throughout	the	book.)
To	you	readers,	for	inspiring	me	to	recall	when	I	began	learning	HTML	and	CSS	so	that	I	may	explain
them	in	ways	I	hope	you	find	helpful.	Thank	you	for	choosing	this	book	as	part	of	your	journey	in
contributing	to	the	web.	Happy	reading!
And,	lastly,	I	would	like	to	give	a	special	thank	you	to	Elizabeth	Castro,	who	created	this	title	in	the
1990s.	She	has	taught	countless	readers	how	to	build	webpages	over	many	editions	and	many	years.
Because	the	web	has	given	me	so	much,	I’m	genuinely	appreciative	of	the	opportunity	to	teach	readers	via
this	title	as	well.

http://www.nataliaammon.com

—Bruce

Contents	at	a	Glance

Introduction

Chapter	1	Webpage	Building	Blocks

Chapter	2	Working	with	Webpage	Files

Chapter	3	Basic	HTML	Structure

Chapter	4	Text

Chapter	5	Images

Chapter	6	Links

Chapter	7	CSS	Building	Blocks

Chapter	8	Working	with	Style	Sheets

Chapter	9	Defining	Selectors

Chapter	10	Formatting	Text	with	Styles

Chapter	11	Layout	with	Styles

Chapter	12	Building	Responsive	Webpages

Chapter	13	Working	with	Web	Fonts

Chapter	14	Enhancements	and	Effects	with	CSS

Chapter	15	Lists

Chapter	16	Forms

Chapter	17	Video,	Audio,	and	Other	Multimedia

Chapter	18	Tables

Chapter	19	Adding	JavaScript

Chapter	20	Testing	&	Debugging	Webpages

Chapter	21	Publishing	Your	Pages	on	the	Web

Appendix	HTML	Reference

Index

Table	of	Contents

Introduction

HTML	and	CSS	in	Brief
Web	Browsers
Web	Standards	and	Specifications
Progressive	Enhancement:	A	Best	Practice
Is	This	Book	for	You?
How	This	Book	Works
Companion	Website

Chapter	1	Webpage	Building	Blocks
Thinking	in	HTML
A	Basic	HTML	Page
Markup:	Elements,	Attributes,	Values,	and	More
A	Webpage’s	Text	Content
Links,	Images,	and	Other	Non-Text	Content
File	and	Folder	Names
URLs
HTML:	Markup	with	Meaning
A	Browser’s	Default	Display	of	Webpages
Key	Takeaways

Chapter	2	Working	with	Webpage	Files
Planning	Your	Site
Creating	a	New	Webpage
Saving	Your	Webpage
Specifying	a	Default	Page	or	Homepage
Editing	Webpages
Organizing	Files
Viewing	Your	Page	in	a	Browser
The	Inspiration	of	Others

Chapter	3	Basic	HTML	Structure
Starting	Your	Webpage
Creating	a	Title
Creating	Headings
Common	Page	Constructs

Creating	a	Header
Marking	Navigation
Marking	the	Main	Area	of	a	Webpage
Creating	an	Article
Defining	a	Section
Specifying	an	Aside
Creating	a	Footer
Creating	Generic	Containers
Improving	Accessibility	with	ARIA
Naming	Elements	with	a	Class	or	ID
Adding	the	Title	Attribute	to	Elements
Adding	Comments

Chapter	4	Text
Adding	a	Paragraph
Specifying	Fine	Print
Marking	Important	and	Emphasized	Text
Creating	a	Figure
Indicating	a	Citation	or	Reference
Quoting	Text
Specifying	Time
Explaining	Abbreviations
Defining	a	Term
Creating	Superscripts	and	Subscripts
Adding	Author	Contact	Information
Noting	Edits	and	Inaccurate	Text
Marking	Up	Code
Using	Preformatted	Text
Highlighting	Text
Creating	a	Line	Break
Creating	Spans
Other	Elements

Chapter	5	Images
Images	for	the	Web
Getting	Images
Choosing	an	Image	Editor
Saving	Your	Images

Inserting	Images	on	a	Page
Offering	Alternative	Text
Specifying	Image	Sizes
Scaling	Images	with	the	Browser
Scaling	Images	with	an	Image	Editor
Adding	Icons	for	Your	Website

Chapter	6	Links
Creating	a	Link	to	Another	Webpage	(and	Other	Link	Basics)
Creating	and	Linking	to	Anchors
Creating	Other	Kinds	of	Links

Chapter	7	CSS	Building	Blocks
Constructing	a	Style	Rule
Adding	Comments	to	Style	Rules
Understanding	Inheritance
The	Cascade:	When	Rules	Collide
A	Property’s	Value

Chapter	8	Working	with	Style	Sheets
Creating	an	External	Style	Sheet
Linking	to	External	Style	Sheets
Creating	an	Embedded	Style	Sheet
Applying	Inline	Styles
The	Cascade	and	the	Order	of	Styles
Using	Media-Specific	Style	Sheets
The	Inspiration	of	Others:	CSS

Chapter	9	Defining	Selectors
Constructing	Selectors
Selecting	Elements	by	Name
Selecting	Elements	by	Class	or	ID
Selecting	Elements	by	Context
Selecting	an	Element	That	Is	the	First	or	Last	Child
Selecting	the	First	Letter	or	First	Line	of	an	Element
Selecting	Links	Based	on	Their	State
Selecting	Elements	Based	on	Attributes
Specifying	Groups	of	Elements
Combining	Selectors

Chapter	10	Formatting	Text	with	Styles
Before	and	After
Choosing	a	Font	Family
Specifying	Alternate	Fonts
Creating	Italics
Applying	Bold	Formatting
Setting	the	Font	Size
Setting	the	Line	Height
Setting	All	Font	Values	at	Once
Setting	the	Color
Setting	the	Background
Controlling	Spacing
Adding	Indents
Aligning	Text
Changing	the	Text	Case
Using	Small	Caps
Decorating	Text
Setting	Whitespace	Properties

Chapter	11	Layout	with	Styles
Considerations	When	Beginning	a	Layout
Structuring	Your	Pages
Styling	HTML5	Elements	in	Older	Browsers
Resetting	or	Normalizing	Default	Styles
The	Box	Model
Controlling	the	Display	Type	and	Visibility	of	Elements
Setting	the	Height	or	Width	for	an	Element
Adding	Padding	Around	an	Element
Setting	the	Border
Setting	the	Margins	Around	an	Element
Making	Elements	Float
Controlling	Where	Elements	Float
Positioning	Elements	Relatively
Positioning	Elements	Absolutely
Positioning	Elements	in	a	Stack
Determining	How	to	Treat	Overflow
Aligning	Elements	Vertically

Changing	the	Cursor

Chapter	12	Building	Responsive	Webpages
Responsive	Web	Design:	An	Overview
Making	Images	Flexible
Creating	a	Flexible	Layout	Grid
Understanding	and	Implementing	Media	Queries
Putting	It	All	Together
Accommodating	Older	Versions	of	Internet	Explorer

Chapter	13	Working	with	Web	Fonts
What	Is	a	Web	Font?
Where	to	Find	Web	Fonts
Downloading	Your	First	Web	Font
Understanding	the	@font-face	Rule
Styling	Text	with	a	Web	Font
Applying	Italics	and	Bold	with	a	Web	Font
Using	Web	Fonts	from	Google	Fonts

Chapter	14	Enhancements	and	Effects	with	CSS
Browser	Compatibility,	Progressive	Enhancement,	and	Polyfills
Understanding	Vendor	Prefixes
Rounding	the	Corners	of	Elements
Adding	Drop	Shadows	to	Text
Adding	Drop	Shadows	to	Elements
Applying	Multiple	Backgrounds
Using	Gradient	Backgrounds
Setting	the	Opacity	of	Elements
Effects	with	Generated	Content
Combining	Images	with	Sprites

Chapter	15	Lists
Creating	Ordered	and	Unordered	Lists
Choosing	Your	Markers
Using	Custom	Markers
Choosing	Where	to	Start	List	Numbering
Controlling	Where	Markers	Hang
Setting	All	List-Style	Properties	at	Once
Styling	Nested	Lists

Creating	Description	Lists

Chapter	16	Forms
Improvements	to	Forms	in	HTML5
Creating	Forms
Processing	Forms
Organizing	the	Form	Elements
Creating	Text	Boxes
Labeling	Form	Parts
Creating	Password	Boxes
Creating	Email,	Search,	Telephone,	and	URL	Boxes
Creating	Radio	Buttons
Creating	Checkboxes
Creating	Text	Areas
Creating	Select	Boxes
Allowing	Visitors	to	Upload	Files
Creating	Hidden	Fields
Creating	a	Submit	Button
Disabling	Form	Elements
Styling	Forms	Based	on	Their	State

Chapter	17	Video,	Audio,	and	Other	Multimedia
Third-Party	Plugins	and	Going	Native
Video	File	Formats
Adding	a	Video	to	Your	Webpage
Adding	Controls	and	Autoplay	to	Your	Video
Looping	a	Video	and	Specifying	a	Poster	Image
Preventing	a	Video	from	Preloading
Using	Video	with	Multiple	Sources	and	a	Text	Fallback
Providing	Accessibility
Audio	File	Formats
Adding	an	Audio	File	with	Controls	to	Your	Webpage
Autoplaying,	Looping,	and	Preloading	Audio
Providing	Multiple	Audio	Sources	with	a	Fallback
Adding	Video	and	Audio	with	a	Flash	Fallback
Advanced	Multimedia
Further	Resources

Chapter	18	Tables

Structuring	Tables
Spanning	Columns	and	Rows

Chapter	19	Adding	JavaScript
Loading	an	External	Script
Adding	an	Embedded	Script
JavaScript	Events

Chapter	20	Testing	&	Debugging	Webpages
Validating	Your	Code
Testing	Your	Pages
Trying	Some	Debugging	Techniques
Checking	the	Easy	Stuff:	General
Checking	the	Easy	Stuff:	HTML
Checking	the	Easy	Stuff:	CSS
When	Images	Don’t	Display

Chapter	21	Publishing	Your	Pages	on	the	Web
Getting	Your	Own	Domain	Name
Finding	a	Host	for	Your	Site
Transferring	Files	to	the	Server

Appendix	HTML	Reference

Index

Introduction

Whether	you	are	just	beginning	your	venture	into	building	websites	or	have	built	some	before	but	want	to
ensure	that	your	knowledge	is	current,	you’ve	come	along	at	a	very	exciting	time.
How	we	code	and	style	webpages,	the	browsers	in	which	we	view	the	pages,	and	the	devices	on	which
we	visit	the	web	have	all	advanced	substantially	the	past	few	years.	Once	limited	to	browsing	the	web
from	our	desktop	computers	or	laptops,	we	can	now	take	the	web	with	us	on	any	number	of	devices:
phones,	tablets,	and,	yes,	laptops	and	desktops.
Which	is	as	it	should	be,	because	the	web’s	promise	has	always	been	the	dissolution	of	boundaries—the
power	to	share	and	access	information	from	any	metropolis,	rural	community,	or	anywhere	in	between
and	on	any	web-enabled	device.	In	short,	the	web’s	promise	lies	in	its	universality.	And	its	reach
continues	to	expand	as	technology	finds	its	way	to	communities	that	were	once	shut	out.
Better	still,	the	web	belongs	to	everyone,	and	anyone	is	free	to	create	and	launch	a	site.	This	book	shows
you	how.	It	is	ideal	for	the	beginner	with	no	knowledge	of	HTML	or	CSS	who	wants	to	begin	to	create
webpages.	You’ll	find	clear,	easy-to-follow	instructions	that	take	you	through	the	process	of	creating
pages	step	by	step.	And	the	book	is	a	helpful	guide	to	keep	handy.	You	can	look	up	topics	in	the	table	of
contents	or	index	and	consult	just	those	subjects	about	which	you	need	more	information.

HTML	and	CSS	in	Brief
At	the	root	of	the	web’s	success	is	a	simple,	text-based	markup	language	that	is	easy	to	learn	and	that	any
device	with	a	basic	web	browser	can	read:	HTML.	Every	webpage	requires	at	least	some	HTML;	it
wouldn’t	be	a	webpage	without	it.
As	you	will	learn	in	greater	detail	as	you	read	this	book,	HTML	is	used	to	define	your	content,	and	CSS	is
used	to	control	how	your	content	and	webpage	will	look.	Both	HTML	pages	and	CSS	files	(style	sheets)
are	text	files,	making	them	easy	to	edit.	You	can	see	snippets	of	HTML	and	CSS	in	“How	This	Book
Works,”	near	the	end	of	this	introduction.
You’ll	dive	into	learning	a	basic	HTML	page	right	off	the	bat	in	Chapter	1,	and	you’ll	begin	to	learn	how
to	style	your	pages	with	CSS	in	Chapter	7.	See	“What	this	book	will	teach	you”	later	in	this	introduction
for	an	overview	of	the	chapters	and	a	summary	of	the	primary	topics	covered.
The	word	HTML	is	all	encompassing,	representing	the	language	in	general.	HTML5	is	used	when
referring	to	that	specific	version	of	HTML,	such	as	when	discussing	a	feature	that	is	new	in	HTML5	and
doesn’t	exist	in	previous	versions.	The	same	approach	applies	to	usage	of	the	terms	CSS	(general)	and
CSS3	(specific	to	CSS3).

HTML	and	HTML5
It	helps	to	know	some	basics	about	the	origins	of	HTML	to	understand	HTML5.
HTML	began	in	the	early	1990s	as	a	short	document	that	detailed	a	handful	of	elements	used	to	build
webpages.	Many	of	those	elements	were	for	content	such	as	headings,	paragraphs,	lists,	and	links	to	other
pages.	HTML’s	version	number	has	increased	as	the	language	has	evolved	with	the	introduction	of	other
elements	and	adjustments	to	its	rules.	The	most	current	version	is	HTML5.
HTML5	is	a	natural	evolution	of	earlier	versions	of	HTML	and	strives	to	reflect	the	needs	of	both	current
and	future	websites.	It	inherits	the	vast	majority	of	features	from	its	predecessors,	meaning	that	if	you
coded	HTML	before	HTML5	came	on	the	scene,	you	already	know	a	lot	of	HTML5.	This	also	means	that
much	of	HTML5	works	in	both	old	and	new	browsers;	being	backward	compatible	is	a	key	design

principle	of	HTML5	(see	www.w3.org/TR/html-design-principles/).
HTML5	also	adds	a	bevy	of	new	features.	Many	are	straightforward,	such	as	additional	elements
(article,	main,	figure,	and	many	more)	that	are	used	to	describe	content.	Others	are	complex	and
aid	in	creating	powerful	web	applications.	You’ll	need	a	firm	grasp	of	creating	webpages	before	you	can
graduate	to	the	more	complicated	features	that	HTML5	provides,	which	is	why	this	book	focuses	on	the
former.	HTML5	also	introduces	native	audio	and	video	playback	to	your	webpages,	which	the	book	also
covers.

CSS	and	CSS3
The	first	version	of	CSS	didn’t	exist	until	after	HTML	had	been	around	for	a	few	years,	becoming	official
in	1996.	Like	HTML5	and	its	relationship	to	earlier	versions	of	HTML,	CSS3	is	a	natural	extension	of	the
versions	of	CSS	that	preceded	it.
CSS3	is	more	powerful	than	earlier	versions	of	CSS	and	introduces	numerous	visual	effects,	such	as	drop
shadows,	rounded	corners,	gradients,	and	much	more.	(See	“What	this	book	will	teach	you”	for	details	of
what’s	covered.)

Browser	Version	Numbers
Like	HTML	and	CSS,	browsers	have	version	numbers.	The	higher	the	number,	the	more
recent	it	is.
For	instance,	Safari	7	is	more	recent	than	Safari	6,	which	is	more	recent	than	Safari	5.
Internet	Explorer	10	is	more	recent	than	Internet	Explorer	9.	But	Internet	Explorer	10	is	not
more	recent	than	Safari	7.
This	is	true	because	Microsoft,	Apple,	and	the	other	browser	vendors	do	not	collectively
coordinate	either	their	version	numbers	or	when	they	will	all	release	new	versions.
Chrome	and	Firefox	release	new	versions	every	six	weeks	so	naturally	have	much	higher
version	numbers	than	the	other	browsers,	which	are	updated	roughly	once	a	year	at	best.
Regardless	of	who	is	releasing	what	and	when,	the	latest	version	of	a	browser	will	have
better	support	for	HTML	and	CSS	(and	other)	features	than	the	previous	versions	do,	as
you	would	expect.

Web	Browsers
We	all	use	a	web	browser	to	visit	websites,	whether	on	a	computer	 ,	a	phone,	or	another	device.
However,	the	browser	you	use	might	be	different	than	the	one	someone	else	uses.

http://www.w3.org/TR/html-design-principles/

	The	desktop	version	of	Firefox

Windows	comes	preinstalled	with	Internet	Explorer,	Microsoft’s	browser.	OS	X	comes	preinstalled	with
Safari,	Apple’s	browser.	There	are	other	browsers	you	may	download	for	free	and	use	instead,	such	as
Chrome	(by	Google),	Firefox	(by	Mozilla)	 ,	and	Opera	(by	Opera	Software)—and	that’s	just	for	the
desktop.
On	mobile	devices,	you’ll	find	the	mobile	version	of	Safari	(for	iPhone,	iPad,	and	iPod	touch);	various
default	Android	browsers;	Chrome	for	Android;	Firefox	for	Android;	Opera	Mini;	and	more.
I’ll	refer	to	various	browsers	throughout	the	book.	For	the	most	part,	the	latest	version	of	each	one	has
similar	support	for	the	HTML	and	CSS	features	you’ll	learn	about.	But	sometimes	a	feature	doesn’t	work
on	one	or	more	browsers	(or	works	differently).	I’ll	note	those	cases	and	typically	offer	a	way	to	handle
them.	This	mostly	pertains	to	Internet	Explorer	8,	the	oldest	browser	that	is	still	relevant	enough	to	be	of
concern.	(Its	usage	is	dropping,	so	that	could	change	in	2014	or	so.)

“Testing	Your	Pages”	in	Chapter	20	provides	information	about	how	to	acquire	various	browsers,	which
ones	are	the	most	important	for	testing	your	webpages,	and	how	to	test	your	pages.

Web	Standards	and	Specifications
You	might	be	wondering	who	created	HTML	and	CSS	in	the	first	place,	and	who	continues	to	evolve
them.	The	World	Wide	Web	Consortium	(W3C)—directed	by	the	inventor	of	the	web	and	HTML,	Tim
Berners-Lee—is	the	organization	responsible	for	shepherding	the	development	of	web	standards.
The	W3C	releases	specifications	(or	specs,	for	short)	that	document	these	web	standards.	They	define	the
parameters	of	languages	like	HTML	and	CSS.	In	other	words,	specs	standardize	the	rules.	Follow	the
W3C’s	activity	at	www.w3.org	 .

http://www.w3.org

	The	W3C	site	is	the	industry’s	primary	source	of	web	standards	specifications.

The	W3C	and	WHATWG
For	a	variety	of	reasons,	another	organization—the	Web	Hypertext	Application	Technology
Working	Group	(WHATWG)—is	developing	most	of	the	HTML5	specification.	The	W3C
incorporates	WHATWG’s	work	into	its	official	version	of	the	in-progress	spec.	You	can
find	the	WHATWG	at	www.whatwg.org.
If	you	want	to	dig	into	various	specs	(recommended!),	here	are	the	latest	versions:
	HTML5	(W3C):
http://www.w3.org/TR/html5/
	HTML5.1	(W3C):
http://www.w3.org/TR/html51/
	HTML	Living	Standard	(WHATWG):
http://www.whatwg.org/specs/web-apps/current-work/multipage/

The	HTML	Living	Standard	includes	newer	features	under	development	(and	very	much	in
flux)	and	informs	the	W3C’s	HTML5.1	spec.
There	are	too	many	CSS	specs	to	list,	but	you	can	see	them	at
http://www.w3.org/standards/techs/css#w3c_all.

Differences	Between	HTML4	and	HTML5
If	you	have	prior	experience	with	HTML4	and	are	wondering	what	is	different	in	HTML5,
the	W3C	has	created	just	the	document	for	you:	http://www.w3.org/TR/html5-diff/.
I	call	out	many	of	the	differences	at	various	points	in	the	book.	They	aren’t	particularly
important	to	know	for	those	of	you	who	are	new	to	HTML,	because	HTML5	is	what
virtually	everyone	uses	now.	But	you	might	find	the	W3C’s	document	interesting	to	peruse
regardless.

With	standards	in	place,	we	can	build	our	pages	from	the	agreed-upon	set	of	rules,	and	browsers	can	be
built	to	display	our	pages	with	those	rules	in	mind.	(On	the	whole,	browsers	implement	the	standards
well.	Older	versions	of	Internet	Explorer,	especially	Internet	Explorer	8,	have	some	issues.)
Specifications	go	through	several	stages	of	development	before	they	are	considered	final,	at	which	point
they	are	dubbed	a	Recommendation	(www.w3.org/2005/10/Process-20051014/tr).
Parts	of	the	HTML5	and	CSS3	specs	are	still	being	finalized,	but	that	doesn’t	mean	you	can’t	use	them.	It
just	takes	time	(literally	years)	for	the	standardization	process	to	run	its	course.	Browsers	begin	to
implement	a	spec’s	features	long	before	it	becomes	a	Recommendation,	because	that	informs	the	spec
development	process	itself.	So	browsers	already	include	a	wide	variety	of	features	in	HTML5	and	CSS3,
even	though	they	aren’t	Recommendations	yet.
On	the	whole,	the	features	covered	in	this	book	are	well	entrenched	in	their	respective	specs,	so	the	risk
of	their	changing	prior	to	becoming	a	Recommendation	is	minimal.	Developers	have	been	using	many
HTML5	and	CSS3	features	for	some	time.	So	can	you.

http://www.whatwg.org
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html51/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/standards/techs/css#w3c_all
http://www.w3.org/TR/html5-diff/
http://www.w3.org/2005/10/Process-20051014/tr

Progressive	Enhancement:	A	Best	Practice
I	began	the	introduction	by	speaking	of	the	universality	of	the	web—the	notion	that	the	web	should	be
accessible	to	all.	Progressive	enhancement	helps	you	build	sites	with	universality	in	mind.	It	is	not	a
language,	but	rather	an	approach	to	building	sites	that	Steve	Champeon	promoted	beginning	in	2003
(http://en.wikipedia.org/wiki/Progressive_enhancement).
The	idea	is	simple	but	powerful:	Start	your	site	with	HTML	content	and	basic	behavior	that	is	accessible
to	all	visitors	 .	To	the	same	page,	add	your	design	with	CSS	 	and	additional	behavior	with
JavaScript	(a	programming	language).	These	components	are	kept	separate	but	work	together.

	A	basic	HTML	page	with	no	custom	CSS	applied	to	it.	Primarily,	only	very	old	browsers	would
display	it	this	way.	The	page	may	not	look	great,	but	the	information	is	accessible—and	that’s	what’s

important.

http://en.wikipedia.org/wiki/Progressive_enhancement

	The	same	page	as	viewed	in	a	browser	that	supports	CSS.	It’s	the	same	information,	just	presented
differently.	(The	content	on	the	right	side	would	be	visible	in	 	if	you	were	to	scroll	down	the	page.)

More	Examples
Take	an	early	peek	at	Chapter	12	if	you’re	interested	in	seeing	how	the	principle	of
progressive	enhancement	helps	you	build	a	website	that	adapts	its	layout	based	on	a
device’s	screen	size	and	browser	capabilities.	It	can	look	great	on	mobile,	desktop,	and
beyond.
Or	see	Chapter	14	for	how	older	browsers	can	display	simplified	designs	while	modern
browsers	display	ones	enhanced	with	CSS3	effects.
Elsewhere	in	the	book,	you’ll	learn	other	techniques	that	allow	you	to	build	progressively
enhanced	webpages.

The	result	is	that	browsers	capable	of	accessing	basic	pages	will	get	the	simplified,	default	experience	
.	Even	browsers	from	the	inception	of	the	web	more	than	20	years	ago	can	display	this	page;	so	too	can
the	oldest	or	simplest	of	mobile	phones	with	web	browsers.	And	screen	readers,	software	that	reads
webpages	aloud	to	visually	impaired	visitors,	will	be	able	to	navigate	it	easily.
Meanwhile,	modern	browsers	capable	of	viewing	more-robust	sites	will	see	the	enhanced	version	 .
The	capabilities	of	yet	other	(somewhat	older)	browsers	might	fall	somewhere	in	between;	so,	too,	could
the	way	they	display	the	page.	The	experience	on	your	site	doesn’t	have	to	be	the	same	for	everyone,	as
long	as	your	content	is	accessible.
In	essence,	the	idea	behind	progressive	enhancement	is	that	everyone	wins.

Is	This	Book	for	You?
This	book	assumes	no	prior	knowledge	of	building	websites.	So	in	that	sense,	it	is	for	the	absolute
beginner.	You	will	learn	both	HTML	and	CSS	from	the	ground	up.	In	the	course	of	doing	so,	you	will	also
learn	about	features	that	are	new	in	HTML5	and	CSS3,	with	an	emphasis	on	many	that	designers	and
developers	are	using	today	in	their	daily	work.
But	even	if	you	are	familiar	with	HTML	and	CSS,	you	still	stand	to	learn	from	this	book,	especially	if	you
want	to	get	up	to	speed	on	the	new	elements	in	HTML5,	several	CSS3	effects,	responsive	web	design,
and	various	best	practices.

What	this	book	will	teach	you
The	chapters	are	organized	like	so:

	Chapters	1	through	6	and	15	through	18	cover	the	principles	of	creating	HTML	pages	and	most	of
the	HTML	elements	at	your	disposal,	with	clear	examples	demonstrating	how	and	when	to	use	each
one.
	Chapters	7	through	14	dive	into	CSS,	all	the	way	from	creating	your	first	style	rule	to	applying
enhanced	visual	effects	with	CSS3.
	Chapter	19	shows	you	how	to	add	prewritten	JavaScript	to	your	pages.
	Chapter	20	tells	you	how	to	test	and	debug	your	pages	before	putting	them	on	the	web.
	Chapter	21	explains	how	to	secure	your	own	domain	name	and	then	publish	your	site	on	the	web	for
all	to	see.

Covered	topics	include	the	following:
	Creating,	saving,	and	editing	HTML	and	CSS	files.
	What	it	means	to	write	semantic	HTML	and	why	it	is	important.
	How	to	separate	your	page’s	HTML	content,	CSS	presentation,	and	JavaScript	behavior—a	key
aspect	of	progressive	enhancement.
	Structuring	your	content	in	a	meaningful	way	by	using	HTML	elements	that	have	been	around	for
years	as	well	as	ones	that	are	new	in	HTML5.
	Linking	from	one	webpage	to	another,	or	from	one	part	of	a	page	to	another	part.
	Adding	images	to	your	pages	and	optimizing	them	for	the	web.	This	includes	creating	images
targeted	for	Apple’s	Retina	display	and	other	high-pixel-density	screens.
	Improving	your	site’s	accessibility	with	ARIA	(Accessible	Rich	Internet	Applications)	landmark
roles	and	other	good	coding	practices.
	Styling	text	(size,	color,	bold,	italics,	and	more)	and	adding	background	colors	and	images.
	Implementing	a	multi-column	webpage	layout.
	Building	a	responsive	webpage.	That	is,	a	page	that	shrinks	or	expands	to	fit	your	visitor’s	screen
and	with	a	layout	that	adapts	in	other	ways	as	you	wish.	The	result	is	a	page	that’s	appropriate	for
mobile	phones,	tablets,	laptops,	desktop	computers,	and	other	web-enabled	devices.
	Adding	custom	web	fonts	to	your	pages	with	@font-face	and	using	fonts	from	services	like	Font
Squirrel	and	Google	Fonts.
	Using	CSS3	effects	such	as	opacity,	background	alpha	transparency,	gradients,	rounded	corners,
drop	shadows,	shadows	inside	elements,	text	shadows,	and	multiple	background	images.
	Taking	advantage	of	CSS	generated	content	and	using	sprites	to	minimize	the	number	of	images	your

page	needs,	making	it	load	faster	for	your	visitors.
	Building	forms	to	solicit	input	from	your	visitors,	including	using	some	of	the	new	form	input	types
in	HTML5.
	Including	media	in	your	pages	with	the	HTML5	audio	and	video	elements	for	modern	browsers,
and	a	Flash	fallback	audio	or	video	player	for	older	browsers.
	And	more.

These	topics	are	complemented	by	many	dozens	of	code	samples	that	demonstrate	how	to	implement	the
features	based	on	best	practices	in	the	industry.

What	this	book	won’t	teach	you
Alas,	with	so	many	developments	in	the	world	of	HTML	and	CSS	in	recent	years,	we	had	to	leave	out
some	topics.	With	a	couple	of	exceptions,	we	stuck	to	omitting	items	that	you	would	likely	have	fewer
occasions	to	use,	are	still	subject	to	change,	lack	widespread	browser	support,	require	JavaScript
knowledge,	or	are	advanced	subjects.
Some	of	the	topics	not	covered	include	the	following:

	The	HTML5	details,	summary,	menu,	command,	output,	and	keygen	elements.	The
W3C	has	included	some	of	these	on	their	list	of	features	that	might	not	make	the	cut	when	HTML5	is
finalized	in	2014.	The	others	are	used	infrequently	at	best.
	The	HTML5	canvas	element,	which	allows	you	to	draw	graphics,	create	games,	and	more.	Also,
Scalable	Vector	Graphics	(SVG).	Both	are	mentioned	briefly	in	Chapter	17,	with	links	to	more
information.
	The	HTML5	APIs	and	other	advanced	features	that	require	JavaScript	knowledge	or	are	otherwise
not	directly	related	to	the	new	HTML5	elements.
	CSS3	transforms,	animations,	and	transitions.	See	www.htmlcssvqs.com/resources/	for	links	to
learn	more.
	CSS3’s	new	layout	methods,	such	as	FlexBox,	Grid,	and	more.	They	are	poised	to	change	the	way
we	lay	out	pages	once	the	specs	shake	out	and	browser	support	is	stronger.	See	Zoe	Mickley
Gillenwater’s	presentation	at	www.slideshare.net/zomigi/css3-layout,	or	see	Peter	Gasston’s
article	at	www.netmagazine.com/features/pros-guide-css-layouts.

How	This	Book	Works
Nearly	every	section	of	the	book	contains	practical	code	examples	that	demonstrate	real-world	use	(
and).	Typically,	they	are	coupled	with	screen	shots	that	show	the	results	of	the	code	when	you	view	the
webpage	in	a	browser	 .
Click	here	to	view	code	image

http://www.htmlcssvqs.com/resources/
http://www.slideshare.net/zomigi/css3-layout
http://www.netmagazine.com/features/pros-guide-css-layouts

...
<body>
<header	class="masthead"	role="banner">
					...
								<nav	role="navigation">
											<ul	class="nav-main">
															Home
															About
															Contact
													
								</nav>
					...
</header>
...
</body>
</html>

	You’ll	find	a	snippet	of	HTML	code	on	many	pages,	with	the	pertinent	sections	highlighted.	An	ellipsis
(...)	represents	additional	code	or	content	that	was	omitted	for	brevity.	Often,	the	omitted	portion	is

shown	in	a	different	code	figure.
Click	here	to	view	code	image

body	{
					font-family:	Georgia,	"Times	New	Roman",	serif;
}

/*	Site	Navigation	*/
.nav-main	{
					list-style:	none;
					padding:	.45em	0	.5em;
}

.nav-main	li	{
					border-left:	1px	solid	#c8c8c8;
}

.nav-main	a	{
					color:	#292929;
					font-size:	1.125em;
					font-weight:	bold;
}

	If	CSS	code	is	relevant	to	the	example,	it	is	shown	in	its	own	box,	with	the	pertinent	sections
highlighted.

	Screen	shots	of	one	or	more	browsers	demonstrate	how	the	code	affects	the	page.

Most	of	the	screen	shots	are	of	the	latest	version	of	Firefox	that	was	available	at	the	time.	However,	this
doesn’t	imply	a	recommendation	of	Firefox	over	any	other	browser.	The	code	samples	will	look	similar
in	any	of	the	latest	versions	of	Chrome,	Internet	Explorer,	Opera,	or	Safari.
The	code	and	screen	shots	are	accompanied	by	descriptions	of	the	HTML	elements	or	CSS	properties	in
question,	both	to	increase	your	understanding	of	them	and	to	give	the	samples	context.
In	many	cases,	you	may	find	that	the	descriptions	and	code	samples	are	enough	for	you	to	start	using	the
HTML	and	CSS	features.	But	if	you	need	explicit	guidance	on	how	to	use	them,	step-by-step	instructions
are	provided	as	well.
Finally,	most	sections	contain	tips	that	relay	additional	usage	information,	best	practices,	references	to
related	parts	of	the	book,	links	to	relevant	resources,	and	more.

Conventions	used	in	this	book
The	book	uses	the	following	conventions:

	Text	that	is	a	placeholder	for	a	value	you	would	create	yourself	is	italicized.	Most	placeholders
appear	in	the	step-by-step	instructions.	For	example,	“Type	padding:	x;,	where	x	is	the	amount
of	desired	space	to	be	added.
	Code	that	you	should	actually	type	or	that	represents	HTML	or	CSS	code	appears	in	this	font.
	An	arrow	()	in	a	code	figure	indicates	a	continuation	of	the	previous	line—the	line	has	been
wrapped	to	fit	in	the	book’s	column	 .	The	arrow	is	not	part	of	the	code	itself,	so	it’s	not
something	you	would	type.	Instead,	type	the	line	continuously,	as	if	it	had	not	wrapped	to	another
line.
	The	first	occurrence	of	a	word	is	italicized	when	it	is	defined.
	IE	is	often	used	as	a	popular	abbreviation	of	Internet	Explorer.	For	instance,	IE9	is	synonymous
with	Internet	Explorer	9.
	Modern	browsers	collectively	refers	to	the	versions	of	browsers	with	solid	support	for	the	latest
HTML5	and	CSS3	features.	Generally,	this	includes	recent	versions	of	the	browsers	discussed	in
the	“Web	Browsers”	section	of	this	introduction,	but	not	IE8.
	Whenever	a	plus	sign	(+)	follows	a	browser	version	number,	it	means	“the	version	listed	plus
subsequent	versions.”	For	instance,	IE8+	refers	to	Internet	Explorer	8	and	all	versions	after	it.

Companion	Website
The	book’s	companion	website	contains	the	table	of	contents,	every	complete	code	example	featured	in
the	book	(plus	some	additional	ones	that	wouldn’t	fit),	links	to	resources	cited	in	the	book	(as	well	as
additional	ones),	a	list	of	errata,	and	more.
The	URLs	for	some	of	the	key	pages	on	the	site	follow:

	Home	page:
www.htmlcssvqs.com
	Code	examples:
www.htmlcssvqs.com/8ed/examples/

You	can	view	the	code	examples	directly	from	the	site	or	download	them	to	your	computer—all	the
HTML	and	CSS	files	are	yours	for	the	taking.
In	some	cases,	I’ve	included	additional	comments	in	the	code	to	explain	more	about	what	it	does	or	how

http://www.htmlcssvqs.com
http://www.htmlcssvqs.com/8ed/examples/

to	use	it.	A	handful	of	the	code	samples	in	the	book	are	truncated	for	space	considerations,	but	the
complete	versions	are	on	the	website.
Please	feel	free	to	use	the	code	as	you	please,	modifying	it	as	needed	for	your	own	projects.
I	hope	you	find	the	site	helpful!

1.	Webpage	Building	Blocks

In	This	Chapter
Thinking	in	HTML
A	Basic	HTML	Page
Markup:	Elements,	Attributes,	Values,	and	More
A	Webpage’s	Text	Content
Links,	Images,	and	Other	Non-Text	Content
File	and	Folder	Names
URLs
HTML:	Markup	with	Meaning
A	Browser’s	Default	Display	of	Webpages
Key	Takeaways

Although	webpages	have	become	increasingly	complex,	their	underlying	structure	remains	remarkably
simple.	As	I	mentioned	in	the	Introduction,	it’s	impossible	to	create	a	webpage	without	HTML.	As	you
will	learn,	HTML	contains	your	page	content	and	describes	its	meaning.	In	turn,	web	browsers	display
your	content	for	users.
A	webpage	is	primarily	made	up	of	three	components:

	Text	content:	The	bare	text	that	appears	on	the	page	to	inform	visitors	about	your	business,	family
vacation,	products,	or	whatever	the	focus	of	your	page	may	be.
	References	to	other	files:	These	load	items	such	as	images,	video,	and	audio	files,	as	well	as	style
sheets	(which	contain	the	CSS	that	controls	how	your	page	looks)	and	JavaScript	files	(which	add
special	behavior	to	your	page).	They	also	link	to	other	HTML	pages	and	assets.
	Markup:	The	HTML	elements	that	describe	your	text	content	and	make	the	references	work.	(HTML
stands	for	Hypertext	Markup	Language.)

Additionally,	at	the	beginning	of	each	HTML	page	there’s	a	bit	of	information	that	is	meant	primarily	for
browsers	and	search	engines	(that	is,	Bing,	Duck	Duck	Go,	Google,	Yahoo,	and	the	like).	Browsers	don’t
display	it	to	your	visitors.
It’s	important	to	note	that	each	of	these	components	in	a	webpage	is	made	up	exclusively	of	text.	This
means	that	pages	are	saved	in	text-only	format,	ensuring	they	are	accessible	via	practically	any	browser
on	any	platform,	whether	desktop,	mobile,	tablet,	or	otherwise.	It	also	contributes	to	HTML	pages	being
simple	to	create.
In	this	chapter,	I	will	walk	you	through	a	basic	HTML	page,	explain	HTML	fundamentals	(including	the
three	components	I	mentioned	at	the	onset),	and	discuss	some	best	practices.
Note:	As	mentioned	in	the	book’s	introduction,	I	use	HTML	to	refer	to	the	language	in	general.	For	those
instances	in	which	I’m	highlighting	special	characteristics	unique	to	a	version	of	the	language,	I	will	use
the	individual	name.	For	example,	“HTML5	introduces	several	new	elements	and	redefines	or	eliminates
others	that	previously	existed	in	HTML	4	and	XHTML	1.0.”

Thinking	in	HTML
Picture	this	scenario:	You’re	in	a	kitchen.	In	one	hand,	you	have	a	pad	of	sticky	notes	with	a	word	on	each
sheet.	On	some	sticky	notes	is	printed	“soup,”	and	on	others	“cereal,”	“plate,”	“sauce,”	and	so	on.
You	open	a	cupboard,	and	as	you	look	through	it,	you	tag	each	item	with	the	sticky	note	that	best	describes
it.	A	yellow	box	of	cereal	gets	a	“cereal”	sticky	note.	You	see	a	red	box	of	cereal	and	tag	that	with
“cereal,”	too.	And	so	on	for	the	other	items.
Writing	HTML	is	a	lot	like	this	exercise,	but	instead	of	tagging	food	and	dinnerware,	you	apply	tags	that
describe	your	webpage’s	content.	You	don’t	make	up	the	words	on	the	tags—HTML	has	done	that	for	you
in	the	form	of	predefined	elements.	The	p	element	is	for	paragraphs.	The	abbr	element	is	for
abbreviations.	The	li	element	is	for	list	items.	You’ll	learn	about	these	and	dozens	more	throughout	the
book.
Notice	that	the	sticky	notes	had	words	like	“cereal,”	not	“yellow	box	of	cereal”	or	“red	box	of	cereal.”
Similarly,	HTML	elements	describe	what	your	content	is,	not	how	it	looks.	CSS,	which	you’ll	learn
beginning	with	Chapter	7,	controls	your	content’s	appearance	(the	fonts,	colors,	drop	shadows,	and	much
more).	So	even	if	you	ultimately	make	some	paragraphs	green	and	others	orange,	they	are	all	p	elements
as	far	as	HTML	is	concerned.
Keep	this	approach	in	mind	as	you	progress	through	the	book	and	work	on	your	own	websites.	The	basic
webpage	that	follows	shows	it	in	action.

A	Basic	HTML	Page
Let’s	take	a	look	at	a	basic	HTML	page	to	give	you	context	for	what’s	to	follow	in	this	chapter	and
beyond.	You’ll	learn	some	bits	about	the	code	in	this	section,	but	don’t	worry	if	you	don’t	understand	it	all
right	now.	This	is	just	to	give	you	a	taste	of	HTML.	I’ll	cover	more	of	it	later	in	the	chapter	and,	of
course,	in	greater	detail	as	you	progress	through	the	book.	Also,	because	we	all	learn	a	little	differently,
some	of	you	might	find	it	helpful	to	first	read	“Markup:	Elements,	Attributes,	Values,	and	More”	(the	next
section)	and	then	return	here.
Every	webpage	begins	with	the	simple	structure	shown	in	 .	It	is	the	HTML	equivalent	of	a	blank	sheet
of	paper	 	because	the	content	shown	to	your	visitors	goes	in	the	body—the	area	between	<body>	and
</body>—and	so	far	that’s	empty.	We’ll	fill	it	up	in	a	minute.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Your	page	title</title>
</head>
<body>

</body>
</html>

	Every	webpage	contains	the	DOCTYPE,	as	well	as	the	html,	head,	and	body	elements,	as	its
foundation.	The	two	parts	you	customize	in	this	page	shell	are	the	language	code	assigned	to	lang	and

the	text	between	<title>	and	</title>.

	Not	a	particularly	exciting	page	unless	you’re	a	minimalist!

First,	a	quick	primer	(the	next	section	elaborates).	HTML	uses	<	and	>	to	enclose	each	HTML	tag.	A	start
tag,	like	<head>,	marks	the	beginning	of	an	element;	an	end	tag,	like	</head>,	marks	its	end.	A	few
elements,	like	meta	 ,	don’t	have	an	end	tag.

The	Top	and	Head	of	a	Webpage
I	mentioned	that	your	page	content	goes	in	the	body,	but	what	does	the	rest	of	the	code	do?	Well,
everything	above	the	<body>	start	tag	is	primarily	instructional	information	for	browsers	and	search
engines.	The	<!DOCTYPE	html>	portion	(known	as	the	DOCTYPE)	tells	browsers	that	this	is	an
HTML5	page.	It	should	always	be	the	first	line	in	your	pages.
Next	is	the	html	element,	which	encloses	the	rest	of	the	page	between	<html	lang="en">	and	the
</html>	end	tag	that	signals	the	end	of	the	page.	The	lang="en"	portion	indicates	that	English	is	the
default	language	of	the	page’s	content.	You	can	specify	a	different	language,	as	explained	in	“Starting	Your
Webpage”	in	Chapter	3.
Following	that	is	the	document	head—the	area	between	<head>	and	</head>.	I	cover	<meta
charset="utf-8"	/>	a	little	later	in	“A	Webpage’s	Text	Content.”	The	one	part	above	the	body	that
is	visible	to	users	is	the	text	between	<title>	and	</title>.	It	appears	on	the	browser	tab	and	as
the	title	at	the	very	top	of	the	browser	window	(in	some	browsers)	 .	Additionally,	it’s	typically	the
default	name	of	a	browser	bookmark	and	is	valuable	information	for	search	engines.
“Starting	Your	Webpage”	and	“Creating	a	Title”	in	Chapter	3	cover	the	DOCTYPE	and	head	area	in	more
detail.
So	that’s	it	for	a	webpage’s	foundation.	Not	too	tough,	right?

The	Body	of	a	Webpage:	Your	Content
Now	let’s	make	things	a	little	more	interesting	by	adding	content	to	our	page	 .	Figure	 	illustrates	how
a	desktop	browser	typically	renders	(displays)	that	HTML	before	you	make	it	look	better	with	CSS.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Blue	Flax	(Linum	lewisii)</title>
</head>
<body>
<article>
					<h1>The	Ephemeral	Blue	Flax</h1>

					

					<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a
href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about
Blue	Flax">Blue	Flax	that	somehow	took	hold	in	my	garden.	They	are	awash	in	color
every	morning,	yet	not	a	single	flower	remains	by	the	afternoon.	They	are	the	very
definition	of	ephemeral.</p>
</article>
</body>
</html>

	This	page	has	the	three	components	I	mentioned	at	the	beginning	of	the	chapter:	text	content,	references
to	other	files	(the	image	src	and	link	href	values),	and	markup.	I’ve	highlighted	the	HTML	tags	in	the
body	so	you	can	distinguish	them	from	the	page’s	text	content.	Note	that	some	parts	are	separated	by	a

blank	line.	This	isn’t	mandatory	and	does	not	affect	the	page’s	display.

	A	typical	default	rendering	of	the	page.	Although	this	shows	the	page	in	Firefox,	the	page	displays
similarly	in	other	browsers.	Later	in	the	chapter,	“A	Browser’s	Default	Display	of	Webpages”	explains

why	some	text	looks	different	than	other	text.

Just	as	before	 ,	the	markup	surrounding	the	text	content	doesn’t	appear	when	you	view	the	page	in	a
browser.	But	those	HTML	element	tags—such	as	the	<p>	that	starts	a	paragraph—are	essential	because
they	describe	your	content,	as	explained	further	in	“HTML:	Markup	with	Meaning.”

Indenting	Your	HTML
The	code’s	indentation	 	has	absolutely	no	bearing	on	how	the	content	displays	in	the
browser	 	(the	pre	element,	which	you’ll	learn	about	in	Chapter	4,	is	the	one	exception).
However,	it’s	customary	to	indent	some	elements	when	they	are	contained	in	another
element.	It	makes	it	easier	to	glean	the	hierarchy	of	elements	as	you	read	through	and	work
with	your	code.

HTML	provides	numerous	such	elements.	The	example	 	demonstrates	six	of	the	most	common	ones:	a,
article,	em,	h1,	img,	and	p.	Each	has	its	own	meaning;	for	instance,	h1	is	a	heading,	a	is	a	link,	and
img	is	an	image.
Before	we	get	too	deep	into	the	example	code,	I’ll	cover	more	about	HTML	fundamentals	such	as
elements	in	general,	attributes,	file	names,	and	URLs.	Once	you	have	that	foundation,	I’ll	return	to	our
basic	page	and	explain	further	why	I	marked	up	the	content	the	way	I	did.	You’ll	also	learn	more	about	the
default	way	that	browsers	display	webpages.

Markup:	Elements,	Attributes,	Values,	and	More
Now	that	you’ve	seen	some	HTML,	we’ll	take	a	closer	look	at	the	pieces	that	constitute	markup:
elements,	attributes,	and	values.	We’ll	also	discuss	what	it	means	for	an	element	to	be	a	parent	or	child
in	your	HTML.	You’ve	seen	examples	of	all	these	in	our	basic	page,	perhaps	without	even	realizing	it.
(Tricky	of	me,	I	know.)

Elements
As	my	sticky	notes	metaphor	suggested,	elements	are	like	little	labels	that	describe	the	different	parts	of	a
webpage:	“This	is	a	heading,	that	thing	over	there	is	a	paragraph,	and	that	group	of	links	is	navigation.”
Some	elements	have	one	or	more	attributes,	which	further	describe	the	element.
Most	elements	can	contain	both	text	and	other	elements	(as	the	p	element	did	in	our	basic	page).	As
mentioned,	these	elements	consist	of	a	start	tag	(the	element’s	name	and	attributes,	if	any,	enclosed	in	less-
than	and	greater-than	signs),	the	content,	and	an	end	tag	(a	forward	slash	followed	by	the	element’s	name,
again	enclosed	in	less-than	and	greater-than	signs)	 .

	Here	is	a	typical	HTML	element.	The	start	tag	and	end	tag	surround	the	text	the	element	describes.	It’s
customary	to	type	your	element	tags	in	lowercase.

There	are	also	a	handful	of	empty	elements	(also	called	void	elements),	which	cannot	contain	text	or
other	elements.	They	look	like	a	combination	start	and	end	tag,	with	an	initial	less-than	sign,	the	element’s
name	followed	by	any	attributes	it	may	have,	an	optional	space,	an	optional	forward	slash,	and	the	final
greater-than	sign,	which	is	required	 .

	Empty	elements,	like	img	shown	here,	do	not	surround	any	text	content	(the	alt	attribute	text	is	part
of	the	element,	not	surrounded	by	it).	They	have	a	single	tag	that	serves	to	both	open	and	close	the

element.	The	space	and	forward	slash	at	the	end	are	optional	in	HTML5.	However,	the	>	that	completes
the	element	is	required.

As	noted,	the	space	and	forward	slash	before	the	end	of	an	empty	element	are	optional	in	HTML5.	Many
of	us	who	previously	coded	in	XHTML	(which	requires	the	forward	slash	to	close	an	empty	element)	tend
to	use	it	in	HTML5	too,	though	certainly	others	have	dropped	it.	If	you	choose	to	omit	it,	the	page	will
behave	exactly	the	same.	Whichever	style	you	use,	I	recommend	using	it	consistently.
It’s	customary	to	type	your	element	names	in	all	lowercase,	although	HTML5	isn’t	picky	here	either,
allowing	uppercase	letters	instead.	However,	it’s	now	rare	to	find	someone	who	codes	in	uppercase,	so
unless	the	rebel	in	you	just	can’t	resist,	I	don’t	recommend	it.	It’s	looked	upon	as	a	dated	practice.

Attributes	and	Values
Attributes	contain	additional	information	about	an	element	(and).	In	HTML5,	an	attribute’s	value
may	optionally	be	enclosed	in	quotation	marks—it’s	customary	to	include	them,	so	I	recommend	you
always	do	so.	(It	is	required	when	the	value	is	more	than	one	word.)	And	just	as	with	element	names,	I
recommend	you	type	your	attribute	names	in	lowercase.

	Here	is	a	label	element	(which	associates	a	text	label	with	a	form	field)	with	a	simple	attribute-
value	pair.	Attributes	are	always	located	inside	an	element’s	start	tag.	It’s	customary	to	enclose	them	in

quotation	marks.

	Some	elements,	like	a	(shown	here)	and	img	 ,	can	have	one	or	more	attributes,	each	with	its	own
value.	The	order	is	not	important.	Separate	each	attribute-value	pair	from	the	next	with	a	space.

Although	you’ll	find	details	about	allowed	values	for	most	attributes	in	this	book,	let	me	give	you	an	idea
of	the	kinds	of	values	you’ll	run	into	as	you	progress.
Some	attributes	can	accept	any	value,	while	others	are	more	limited.	Perhaps	the	most	common	are	those

that	accept	predefined	(or	enumerated)	values.	In	other	words,	you	must	select	a	value	from	a	standard
list	of	choices	 .	Be	sure	to	write	enumerated	values	in	all	lowercase	letters.

	Some	attributes	accept	only	specific	values.	For	example,	the	media	attribute	in	the	link	element
(Chapter	8)	can	be	set	to	all,	screen,	or	print,	among	others,	but	you	can’t	just	make	up	a	value	for

it	like	you	can	with	the	href	attribute	or	the	title	attribute	 .

A	handful	of	attributes	require	a	number	for	their	value,	particularly	those	describing	size	and	length.	A
numeric	value	never	includes	a	unit	type,	just	the	number.	Where	units	are	applicable,	as	in	the	width	and
height	of	an	image	 	or	video,	they	are	understood	to	be	pixels.
Some	attributes,	like	href	 	and	src	 ,	reference	other	files	and	thus	must	contain	values	in	the	form
of	a	URL	(uniform	resource	locator),	a	file’s	unique	address	on	the	web.	You’ll	learn	more	about	them	in
the	“URLs”	section	of	this	chapter.
Lastly,	there’s	a	special	kind	of	attribute	called	a	Boolean	attribute.	Providing	a	value	is	optional,
because	if	the	attribute	is	present	it	evaluates	to	true	 .	If	you	do	include	a	value,	set	it	to	the	name	of	the
attribute	itself	(the	result	is	the	same	regardless).	Boolean	attributes	are	also	predefined;	you	can’t	just
make	up	your	own	(you	really	are	a	rebel,	aren’t	you?).

	This	code	provides	a	form	box	for	users	to	enter	an	email	address	(Chapter	16).	The	Boolean	attribute
required	makes	it	mandatory	for	users	to	fill	out.	A	Boolean	attribute	doesn’t	need	a	value,	but	if	you

were	to	include	one	in	this	case,	the	code	would	be	required="required".

Parents	and	Children
If	one	element	contains	another,	it	is	considered	to	be	the	parent	of	the	enclosed,	or	child,	element.	Any
elements	contained	in	the	child	element	are	considered	descendants	of	the	outer,	parent	element	 .	This
underlying,	family	tree-like	structure	is	a	key	feature	of	HTML	code.	It	facilitates	both	styling	elements
with	CSS	(which	you’ll	begin	learning	about	in	Chapter	7)	and	applying	JavaScript	behavior	to	them
(which	is	beyond	the	scope	of	this	book).
Click	here	to	view	code	image

<article>
			<h1>The	Ephemeral	Blue	Flax</h1>
			
			<p>...	continually	amazed	...	delicate	<a	...>Blue	Flax	...</p>
</article>

	In	this	abbreviated	HTML,	the	article	element	is	parent	to	the	h1,	img,	and	p	elements.
Conversely,	the	h1,	img,	and	p	elements	are	children	(and	descendants)	of	the	article.	The	p	element
is	parent	to	both	the	em	and	a	elements.	The	em	and	a	are	children	of	the	p	and	also	descendants	(but	not

children)	of	the	article.	In	turn,	article	is	their	ancestor.

It’s	important	to	note	that	when	elements	contain	other	elements,	each	element	must	be	properly	nested—
that	is,	fully	contained	within	its	parent.	Whenever	you	use	an	end	tag,	it	should	correspond	to	the
previous	unclosed	start	tag.	In	other	words,	first	open	element	1,	then	open	element	2,	then	close	element
2,	and	then	close	element	1	 .

	Elements	must	be	properly	nested.	If	you	open	p	and	then	em,	you	must	close	em	before	you	close	p.

A	Webpage’s	Text	Content
The	text	contained	within	elements	is	perhaps	a	webpage’s	most	basic	ingredient.	If	you’ve	ever	used	a
word	processor,	you’ve	typed	some	text.	Text	in	an	HTML	page,	however,	has	some	important
differences.
First,	when	a	browser	renders	HTML	it	collapses	extra	spaces	or	tabs	into	a	single	space	and	either
converts	returns	and	line	feeds	into	a	single	space	or	ignores	them	altogether	(and).
Click	here	to	view	code	image

...
<body>
<p>I	am	continually	amazed	at	the	beautiful,				delicate	Blue	Flax	that	somehow
took	hold	in	my	garden.

They	are	awash	in							color	every	morning,	yet	not	a	single	flower	remains	by	the
afternoon.

They	are	the	very	definition	of	ephemeral.</p>
<p><small>©	Blue	Flax	Society.</small>	</p>
</body>
</html>

	A	page’s	text	content	(highlighted)	is	mostly	anything	besides	the	markup.	In	this	example,	note	that
each	sentence	in	the	first	paragraph	is	separated	by	at	least	one	carriage	return,	and	some	words	are
separated	by	several	spaces	(just	to	emphasize	the	point	about	collapsing	returns	and	spaces).	The

second	paragraph	includes	a	special	character	reference	(©)	for	the	copyright	symbol.

	When	you	view	the	document	with	a	browser,	the	extra	returns	and	spaces	are	ignored	and	the
character	reference	is	replaced	by	the	corresponding	symbol	(©).

Next,	HTML	used	to	be	restricted	to	ASCII	characters—basically	the	letters	of	the	English	language,
numerals,	and	a	few	of	the	most	common	symbols.	Accented	characters	(common	to	many	languages	of
Western	Europe)	and	many	everyday	symbols	had	to	be	created	with	special	character	references	like
é	(for	é)	or	©	(for	©).	See	a	full	list	at
www.elizabethcastro.com/html/extras/entities.html.
Unicode	mitigates	a	lot	of	issues	with	special	characters,	so	it’s	standard	practice	to	encode	pages	in
UTF-8	 	and	to	save	HTML	files	with	the	same	encoding	(see	“Saving	Your	Webpage”	in	Chapter	2).	I
recommend	you	do	the	same.	Specifying	UTF-8	or	utf-8	as	the	charset	value	in	 	yields	identical
results.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Blue	Flax	(Linum	lewisii)</title>
</head>
<body>
...
</body>
</html>

	Specify	your	document’s	character	encoding	directly	after	the	head	start	tag.	The	charset	attribute
sets	the	encoding	type	(UTF-8	is	the	norm).

It’s	still	common	to	use	character	references	at	times,	such	as	for	the	copyright	symbol	since	it’s	easy	to
remember	and	type	©	 .

Links,	Images,	and	Other	Non-Text	Content
Of	course,	part	of	what	makes	the	web	so	vibrant	are	the	links	from	one	page	to	another,	and	the	images,
videos,	music,	and	more.	Instead	of	actually	enclosing	assets	such	as	images	in	the	HTML	file,	they	are
saved	as	independent	files	and	are	simply	referenced	from	within	the	page	 .
Click	here	to	view	code	image

http://www.elizabethcastro.com/html/extras/entities.html

...
<body>
<article>
					<h1>The	Ephemeral	Blue	Flax</h1>

					

					<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a
href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about
the	Blue	Flax">	Blue	Flax	that	somehow	took	hold	in	my	garden.	They	are	awash	in
color	every	morning,	yet	not	a	single	flower	remains	by	the	afternoon.	They	are	the	very
definition	of	ephemeral.</p>
</article>
</body>
</html>

	In	our	basic	HTML	document,	there	is	a	reference	to	an	image	file	called	blueflax.jpg	in	the	src
attribute	of	the	img	tag.	The	browser	will	request,	load,	and	display	it	when	it	loads	the	page.	The	page
also	includes	a	link	to	a	page	on	Wikipedia	about	Blue	Flax,	as	specified	in	the	href	attribute	of	the	a

tag.

Browsers	can	handle	links	and	images	without	skipping	a	beat	 .	However,	they	can’t	necessarily	handle
every	other	kind	of	file.	For	example,	some	browsers	require	you	to	have	Adobe	Reader	on	your
computer	to	view	PDFs,	and	you	may	need	a	program	like	OpenOffice	to	view	a	spreadsheet.

	Images	and	other	non-text	content	are	referenced	from	a	webpage,	and	the	browser	displays	them
together	with	the	text.	As	you	saw	earlier,	linked	text	displays	in	a	different	color	than	regular	text	and	is

underlined	by	default.

There	was	a	time	when	HTML	had	no	built-in	means	to	play	a	video	or	audio	file.	As	a	result,	various
companies	created	software,	known	as	plugins,	that	you	could	download	and	install	in	your	browser	to
provide	missing	features.

The	most	widespread	of	these	is	Flash,	which	has	driven	vast	amounts	of	video	on	the	web	for	years.	It
has	some	issues,	however,	most	notably	that	it	often	demands	a	lot	of	computing	power.
Thankfully,	HTML5	has	made	strides	toward	remedying	this	by	providing	audio	and	video	elements.
They	don’t	require	a	plugin.	Instead,	modern	browsers	have	the	media	players	built	in,	and	you	can	still
provide	a	Flash	player	as	a	fallback	for	older	browsers.	HTML5	audio	and	video	aren’t	perfect	either,
but	they	are	a	good	start	toward	making	websites	free	of	plugins,	and	they	continue	to	evolve.
You’ll	learn	more	about	images	in	Chapter	5,	links	in	Chapter	6,	and	HTML5	audio	and	video	in	Chapter
17.

File	and	Folder	Names
Like	any	other	text	document,	a	webpage	has	a	file	name.	When	you’re	assigning	file	and	folder	names,
there	are	a	few	tips	to	keep	in	mind	that	will	help	you	organize	your	files,	make	it	easier	for	your	visitors
to	find	and	access	your	pages,	ensure	that	their	browsers	view	the	pages	correctly,	and	improve	search
engine	optimization	(SEO)	(and).	(Please	note	that	I	use	the	words	“folder”	and	“directory”
interchangeably.)

	Remember	to	use	all	lowercase	letters	for	your	file	names,	separate	words	with	a	dash,	and	add	the
.html	extension.	Mixing	upper-	and	lowercase	letters	makes	it	harder	to	type	the	proper	address.

	Use	all	lowercase	letters	and	dashes	for	your	folders	as	well.	The	key	is	consistency.	If	you	don’t	use
uppercase	letters,	your	visitors	(and	you)	don’t	have	to	waste	time	wondering,	“Now,	was	that	a	capital	B

or	a	small	one?”

Use	Lowercase	Names
Since	the	names	you	choose	for	your	webpage	can	determine	what	your	visitors	will	have	to	type	in	order
to	get	to	your	page,	you	can	save	them	from	inadvertent	typos	by	using	only	lowercase	letters	in	your	file
and	folder	names.	It’s	also	a	big	help	when	you	create	links	between	your	pages	yourself.	If	all	your
names	have	only	lowercase	letters,	it’s	just	one	less	thing	you’ll	have	to	worry	about.

Use	the	Proper	Extension
One	way	a	browser	knows	it	should	read	a	text	document	as	a	webpage	is	by	looking	at	its	file	name
extension.	Although	.htm	also	works,	.html	is	customary.	If	the	page	has	some	other	extension,	such	as
.txt,	browsers	will	treat	it	as	text	and	show	all	your	nice	code	to	visitors.

Separate	Words	with	a	Dash
Never	include	spaces	between	words	in	your	file	and	folder	names.	Instead,	use	a	dash;	for	example,
company-history.html	and	my-favorite-movies.html.	You’ll	come	across	the	occasional
site	that	uses	underscores	(_)	instead,	but	don’t	do	the	same,	because	search	engines	prefer	dashes.

Tip
SEO	pertains	to	getting	your	webpages	to	appear	early	in	search	engine	results.

Tip
Be	aware	that	neither	OS	X	nor	Windows	always	reveals	a	document’s	extension.	Change
your	folder	options,	if	necessary,	so	you	can	see	extensions	(see	Chapter	2).

URLs
Uniform	resource	locator,	or	URL,	is	a	fancy	name	for	address.	It	contains	information	about	where	a	file
is	and	what	a	browser	should	do	with	it.	Each	file	on	the	Internet	has	a	unique	URL.
The	first	part	of	the	URL	is	called	the	scheme.	It	tells	the	browser	how	to	deal	with	the	file	that	it	is	about
to	open.	The	most	common	scheme	you	will	see	is	HTTP,	or	Hypertext	Transfer	Protocol.	As	you	are
probably	well	aware	from	your	own	experience	online,	it	is	used	to	access	webpages	 .	Its	cousin	is
HTTPS,	used	for	secure	webpages	such	as	those	on	e-commerce	sites.	The	format	is	the	same	 ,	except
https	replaces	http.

	Your	basic	URL	contains	a	scheme,	a	host,	and	a	path.	The	path	may	contain	one	or	more	directory
(folder)	names	and	a	single	file	name	at	the	end.

The	second	part	of	the	URL	is	the	host	(or	host	name)	where	the	file	is	located.	That	is	followed	by	the
path,	which	includes	both	any	directory	names	that	lead	to	a	file	and	the	file	name	itself,	all	of	which	are
optional.	If	the	path	in	 	were	tofu/soft/index.html,	it	would	mean	index.html	is	inside	the
soft	directory	and	soft	is	inside	the	tofu	directory,	just	like	you	might	organize	files	and	folders	on
your	computer.	(Though	I	doubt	you	have	folders	for	different	types	of	tofu!)
Sometimes,	a	URL	path	omits	a	file	name	and	ends	with	a	directory,	which	may	or	may	not	include	a
trailing	forward	slash	 .	In	this	case,	the	URL	refers	to	the	default	file	in	the	last	directory	in	the	path,
typically	named	index.html.	(Virtually	all	web	servers	are	configured	to	recognize	index.html	as
a	default	file	name,	so	you	don’t	have	to	change	any	server	settings.)

	A	URL	with	a	trailing	forward	slash	and	no	file	name	points	to	the	default	file	in	the	last	directory
named	(in	this	case,	the	tofu	directory).	The	most	common	default	file	name	is	index.html.	So,	this

URL	and	the	one	in	the	previous	example	point	to	the	same	page.

Other	common	schemes	are	ftp	(File	Transfer	Protocol),	for	downloading	files	 ,	and	mailto,	for
sending	email	 	(see	Chapter	6).

	When	the	user	clicks	this	URL,	the	browser	will	begin	an	FTP	transfer	of	the	proposal.pdf	file.
(Sometimes	a	username	and	password	are	required	first.)

	A	URL	for	an	email	address	includes	the	mailto	scheme	followed	by	a	colon	but	no	forward
slashes,	and	then	the	email	address	itself.

A	scheme	is	generally	followed	by	a	colon	and	two	forward	slashes;	mailto	is	an	exception	in	that	it
takes	only	a	colon.	Always	type	schemes	in	lowercase	letters.
Of	these	schemes,	you	will	use	http	(and	perhaps	https)	the	most,	with	mailto	a	distant	second	and
ftp	behind	that.	There	are	other	schemes	for	specialized	cases	that	you’ll	probably	never	face.

Absolute	URLs
URLs	can	be	either	absolute	or	relative.	An	absolute	URL	contains	all	the	information	that	points	to	a
directory	or	file,	including	the	scheme,	the	host,	and	the	path	(and).	An	absolute	URL	is	analogous
to	a	complete	street	address,	including	name,	street	and	number,	city,	state	or	province,	zip	code,	and
country.	No	matter	where	a	letter	is	sent	from,	the	post	office	will	be	able	to	find	the	recipient.	In	terms	of
URLs,	this	means	you	can	reference	an	absolute	URL	from	any	webpage	on	any	host	by	using	the	same
URL	every	time.
When	you’re	referencing	a	file	located	on	someone	else’s	web	server,	you’ll	always	use	an	absolute	URL.
This	concept	is	the	same	as	when	you	might	have	shared	a	URL	to	a	news	article	or	YouTube	video	via
email—your	friends	can’t	access	the	item	if	you	only	give	them	part	of	the	URL.	And	it’s	the	same	reason
why	the	href	value	of	the	Wikipedia	link	in	our	basic	webpage	 	is	the	full	URL	instead	of	simply
Linum_lewisii.
Click	here	to	view	code	image

<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a
href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about
the	Blue	Flax">Blue	Flax	that	somehow	took	hold	in	my	garden	.	.	.</p>

	Because	our	basic	page	is	not	located	at	en.wikipedia.org,	we	need	to	include	the	absolute
URL	when	linking	to	the	page	about	Blue	Flax	(Linum	lewisii	in	Latin).	Chapter	6	gives	the	full	scoop	on

links,	including	the	rel	attribute,	which	is	recommended	for	links	pointing	outside	your	site.

You’ll	also	need	to	use	absolute	URLs	for	FTP	sites	or,	generally,	any	kind	of	URL	that	doesn’t	use	an
HTTP	protocol.

Relative	URLs
To	give	you	directions	to	my	neighbor’s	house	from	my	house,	instead	of	giving	her	complete	address	I
might	just	say,	“it’s	three	doors	down	on	the	right.”	This	is	a	relative	address—where	it	points	to	depends
on	where	the	information	originates;	in	this	case,	my	house.	With	the	same	information	in	a	different	city,
you’d	never	find	my	neighbor.	(Truth	is,	she’s	out	of	town	a	lot	so	you	might	not	find	her	anyway.)
In	the	same	way,	a	relative	URL	describes	the	location	of	the	desired	file	in	consideration	of	the	location
of	the	file	that	contains	the	URL	reference	itself.	So,	you	might	have	the	URL	say	something	like	“link	to
the	xyz	page	that’s	in	the	same	directory	as	this	page.”
Referencing	a	File	in	the	Same	Directory
The	relative	URL	for	a	file	that	is	in	the	same	directory	as	the	current	page	(that	is,	the	one	containing	the
URL	in	question)	is	simply	the	file	name	and	extension	 .	For	example,	the	HTML	for	the	link	would	be
Take	me	to	history.html!.

	The	relative	URL	to	link	to	a	file	in	the	same	folder	(see).	Only	the	file’s	name	and	extension	are
required	in	the	URL,	rather	than	preceding	those	with	http://www.site.com/about/	(the	host

and	folder	in	which	both	files	live).

Referencing	a	File	in	a	Subdirectory
You	create	the	URL	for	a	file	in	a	subdirectory	of	the	current	directory	by	typing	the	name	of	the
subdirectory	followed	by	a	forward	slash	and	then	the	name	and	extension	of	the	desired	file	 .	For
example,	Data	supports	my	hypothesis.

	To	reference	a	file	(data.html,	in	this	example)	that	is	within	a	folder	inside	the	current	folder	(see
),	add	the	sub-folder’s	name	and	a	forward	slash	in	front	of	the	file	name.

Referencing	a	File	in	a	Higher	Directory
To	reference	a	file	in	a	directory	at	a	higher	level	of	the	file	hierarchy,	use	two	periods	and	a	forward
slash	 .	For	example,	our	products.	Each	../

http://www.site.com/about/

means	“go	up	one	directory	level	from	the	current	file,”	so	../../	would	go	up	two	levels	and
../../../	would	go	up	three.

	This	file,	as	you	can	see	in	 ,	is	in	a	folder	(img)	that	sits	alongside	the	current	folder	(about)	in
the	site’s	root	directory.	In	that	case,	you	use	two	periods	and	a	forward	slash	to	go	up	a	level,	and	then
note	the	subdirectory	(img)	to	go	down	into,	followed	by	a	forward	slash,	followed	by	the	file	name.	(In

normal	practice,	you’d	choose	a	more	descriptive	image	file	name	than	image.png,	which	is
deliberately	generic	for	the	example.)

Root	Relative	URLs
Alternatively,	if	your	files	are	on	a	web	server,	you	can	avoid	cumbersome	file	paths	such	as
../../img/family/vacation.jpg	by	first	jumping	straight	to	your	site’s	root	and	then	drilling
down	from	there	to	the	targeted	file	 .	A	single	forward	slash	at	the	beginning	achieves	this,	so	the	root
relative	URL	in	this	case	would	be	/img/family/vacation.jpg	(assuming	the	img	folder	sits	in
the	site’s	root	folder,	which	is	common).	Again,	this	only	works	on	a	web	server,	like	at	the	hosting
provider	that	serves	your	site	or	one	you’re	running	locally	on	your	machine	(see	the	tips).

	The	same	root	relative	URL	can	be	used	by	all	pages	regardless	of	where	each	page	is	located	in	your
site’s	folder	structure.	For	instance,	with	the	URL	shown,	your	homepage	could	locate	vacation.jpg	just	as

easily	as	another	page	six	folders	deep.	(Not	that	I	would	advise	having	that	many	folder	levels.)

If	you	aren’t	developing	your	site	on	a	web	server	on	your	computer,	then	generally	you’ll	want	to	use
relative	URLs	(except	when	pointing	to	files	on	someone	else’s	server,	of	course).	They’ll	make	it	easy	to
move	your	pages	from	your	computer	to	your	host’s	server.	As	long	as	the	relative	position	of	each	file
remains	constant,	you	won’t	have	to	change	any	of	the	paths,	so	the	links	and	references	to	files	will	work
correctly.

Tip
Apache	is	the	most	popular	choice	for	running	a	development	server	on	your	computer.
Search	online	for	“set	up	local	dev	environment.”

Tip
Chapter	21	discusses	finding	a	web	host.

Absolute	and	Relative	URLs	Compared
To	reinforce	what	we’ve	covered,	Table	1.1	and	 	work	together	to	illustrate	the	difference	between
absolute	and	relative	URLs.	 	shows	an	arrangement	of	files	and	folders	on	two	different	websites.	The
table	describes	how	you	could	access	various	files	from	you-are-here.html	when	some	of	those
files	are	on	the	same	site	(www.site.com)	as	that	webpage	and	some	are	on	another	site
(www.remote.com).	Although	you	could	use	the	absolute	URLs	to	access	the	files	shown	in	the	first	three
rows,	it’s	better	to	use	relative	URLs	when	accessing	files	on	the	same	server.

	The	document	that	contains	the	URLs	(you-are-here.html	in	this	case)	is	the	reference	point	for
relative	URLs.	In	other	words,	relative	URLs	are	relative	to	that	file’s	location	on	the	server.	Absolute

URLs	will	work	no	matter	where	they	are	located,	because	they	always	contain	the	full	URL	to	a
resource.

TABLE	1.1	Absolute	URLs	vs.	Relative	URLs

http://www.site.com
http://www.remote.com

HTML:	Markup	with	Meaning
I	began	the	chapter	by	comparing	marking	up	content	in	your	webpages	to	tagging	items	in	a	cupboard.
Subsequently,	you’ve	learned	more	about	HTML’s	role	and	fundamental	pieces.
The	point	of	emphasis	throughout	has	been	that	HTML	describes	the	meaning	of	a	webpage’s	content;	that
is,	the	semantics.	In	the	web	community,	the	term	semantic	HTML	simply	refers	to	content	that	is	marked
up	with	the	HTML	elements	that	best	describe	it	and	without	regard	for	how	the	content	should	look.	I’m
sure	you’ll	agree	this	makes	more	sense	than	choosing	elements	willy-nilly.
Better	yet,	it’s	easy	to	do,	as	the	following	exploration	of	our	basic	page	demonstrates.	After	that,	“Why
Semantics	Matter”	reinforces	why	writing	semantic	HTML	is	a	cornerstone	of	an	effective	website.

The	Semantics	of	Our	Basic	HTML	Page
Earlier	in	the	chapter,	I	said	we’d	return	to	our	basic	webpage,	and	now’s	the	time.	I’ll	give	you	a	minute
to	gather	up	the	family.
OK,	let’s	look	a	little	deeper	at	the	thought	process	behind	marking	up	the	content.	While	doing	so,	you’ll
get	a	taste	of	some	of	the	most	frequently	used	HTML	elements	 ,	all	of	which	we’ll	cover	in	greater
detail	in	subsequent	chapters.	As	you’ll	see,	there’s	no	magic	to	creating	HTML	that	has	good	semantics.
It’s	mostly	common	sense	once	you’re	familiar	with	the	elements	at	your	disposal.
Click	here	to	view	code	image

...
<body>
<article>
					<h1>The	Ephemeral	Blue	Flax</h1>

					

					<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a
href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about
Blue	Flax">Blue	Flax	that	somehow	took	hold	in	my	garden.	They	are	awash	in	color
every	morning,	yet	not	a	single	flower	remains	by	the	afternoon.	They	are	the	very
definition	of	ephemeral.</p>
</article>
</body>
</html>

	The	body	of	our	basic	page,	which	contains	the	article,	h1,	img,	p,	em,	and	a	elements.	All	the
content	is	nested	in	the	article.

All	the	content	is	contained	in	an	article	element	 .	In	short,	article	defines	a	self-contained
composition	that	can	stand	on	its	own	if	reused	elsewhere.	The	article	element	is	a	good	choice	for
our	basic	webpage,	but	not	necessarily	for	every	webpage	you’ll	write.	You’ll	learn	more	about
article	in	Chapter	3.
Next	is	a	heading	 .	HTML	provides	you	six	heading	levels,	h1–h6,	with	h1	being	the	most	important.
An	h2	is	a	subheading	of	an	h1,	an	h3	is	a	subheading	of	an	h2,	and	so	on,	just	like	when	you	type	a
document	with	various	headings	in	a	word	processor.
Click	here	to	view	code	image

<h1>The	Ephemeral	Blue	Flax</h1>

	Headings	are	critical	elements	in	defining	a	page’s	structure.	They	make	a	page	more	accessible	to
users	of	screen	readers,	and	search	engines	use	them	to	determine	the	focus	of	a	page.

Every	HTML	page	should	have	an	h1	(or	more,	depending	on	your	content),	so	marking	up	our	only
heading	with	h1	was	the	obvious	choice.	The	heading	elements	h1–h6	are	covered	more	in	Chapter	3.
Next,	you	have	an	image	 .	The	img	element	is	the	primary	means	for	displaying	an	image,	so	again,
there	was	no	debate	about	which	element	was	appropriate.	The	alt	attribute	provides	text	that	may
display	if	the	browser	has	trouble	loading	the	image	or	if	the	page	is	viewed	in	a	text-only	browser
(admittedly	rare	these	days).	Screen	readers	may	also	announce	alt	text	(see	“Accessibility”	in	the	next
section).	You’ll	learn	more	about	images	in	Chapter	5.
Click	here	to	view	code	image

	It’s	easy	to	add	an	image	to	a	page	with	img.

The	paragraph	is	marked	up	with	the	p	element	 .	Just	as	in	printed	materials,	a	paragraph	can	contain	a
single	sentence	or	several	sentences.	If	our	page	needed	another	paragraph,	you’d	simply	add	another	p
element	after	the	first	one.
Click	here	to	view	code	image

<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a	href="http://
en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about	Blue
Flax">Blue	Flax	that	somehow	took	hold	in	my	garden.	They	are	awash	in	color	every
morning,	yet	not	a	single	flower	remains	by	the	afternoon.	They	are	the	very	definition
of	ephemeral.</p>

	The	p	element	may	contain	other	elements	that	define	the	semantics	of	phrases	within	a	paragraph.	The
em	and	a	elements	are	two	examples.

There	are	two	elements	nested	within	our	paragraph	that	define	the	meaning	of	bits	(phrases)	of	text:	em
and	a	 .	These	are	examples	of	the	numerous	phrasing	content	elements	that	HTML5	provides,	the
majority	of	which	improve	the	semantics	of	paragraph	text.	Those,	along	with	p,	are	discussed	in	Chapter
4.
The	em	element	means	“stress	emphasis,”	sort	of	like	you	might	stress	words	in	speech.	In	the	case	of	our
page,	it	emphasizes	the	amazement	that	the	flowers	induced	 .	Remember	that	because	HTML	describes
the	meaning	of	content,	em	dictates	semantic,	not	visual,	emphasis	even	though	it’s	common	for	browsers
to	render	em	text	in	italics	(you	can	change	that	with	CSS).
Finally,	the	basic	page	defines	a	link	to	another	page	with	the	a	element	(“anchor”).	This	is	the	most
powerful	element	in	all	of	HTML	because	it	makes	the	web,	the	web:	It	links	to	other	pages,	specific	page
sections,	and	files.	In	the	example,	it	signifies	that	the	text	“Blue	Flax”	is	a	link	to	a	page	on	Wikipedia	
.
Click	here	to	view	code	image

<a	href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more
about	Blue	Flax">Blue	Flax

	This	a	element	defines	a	link	to	the	Wikipedia	page	about	Blue	Flax.	The	optional	rel	attribute	adds
to	the	semantics	by	indicating	that	the	link	points	to	another	site.	The	link	works	without	it,	though.	The

optional	title	attribute	enhances	the	semantics	of	the	a	by	providing	information	about	the	linked	page.
It	appears	in	the	browser	when	a	user	hovers	over	the	link.

Pretty	easy,	right?	Once	you’ve	learned	more	about	the	HTML	elements	available	to	you,	choosing	the
right	ones	for	your	content	is	usually	a	straightforward	task.	Occasionally,	you’ll	come	across	a	piece	of
content	that	reasonably	could	be	marked	up	in	more	than	one	way,	and	that’s	OK.	There	isn’t	always	a
right	and	wrong	way,	just	most	of	the	time.
Besides,	browsers	will	display	your	content	regardless.	They	aren’t	smart	enough	to	know	that	a	piece	of
content	would	be	more	accurately	described	as	a	paragraph	than	some	other	element.
Lastly,	HTML	doesn’t	try	to	provide	an	element	for	every	type	of	content	imaginable,	because	the
language	would	become	unwieldy.	Instead,	it	takes	a	practical,	real-world	stance,	defining	elements	that
cover	the	vast	majority	of	cases.
Part	of	HTML’s	beauty	is	that	it’s	simple	for	anyone	to	learn	the	basics,	build	some	pages,	and	grow	their
knowledge	from	there.	So	although	there	are	more	than	100	HTML	elements,	don’t	let	that	number	scare
you.	There’s	a	core	handful	you’ll	find	yourself	using	time	and	again,	while	the	remaining	ones	are
reserved	for	less	common	cases.	And	frankly,	there	are	many	you’ll	likely	never	have	occasion	to	use.
You’ve	learned	the	basics	of	several	common	elements,	so	you’re	well	on	your	way.

Why	Semantics	Matter
Here	are	some	of	the	most	important	reasons	why	using	good	semantics	in	your	HTML	matters.	This	isn’t
an	exhaustive	list,	and	we’ve	touched	on	some	of	these	items	already:

	Improved	accessibility	and	interoperability,	meaning	that	content	is	available	to	assistive
technologies	for	visitors	with	disabilities,	and	to	browsers	on	desktop,	mobile,	tablet,	and	other
devices	alike.
	Improved	search	engine	optimization	(SEO).
	Easier	code	maintenance	and	styling	with	CSS.
	(Often)	lighter	code	and	faster	pages.

Accessibility
If	you	aren’t	familiar	with	accessibility,	it’s	the	practice	of	making	your	content	available	to	all	users,
regardless	of	their	capabilities	(see	www.w3.org/standards/webdesign/accessibility).	Tim	Berners-Lee,
inventor	of	the	web,	famously	said,	“The	power	of	the	web	is	in	its	universality.	Access	by	everyone
regardless	of	disability	is	an	essential	aspect.”
Any	device	with	a	browser	is	capable	of	displaying	HTML,	since	it’s	just	text.	The	means	by	which	a
user	accesses	content	can	vary,	however.	For	instance,	sighted	users	view	the	content,	whereas	some
visually	impaired	users	may	use	a	screen	reader	to	have	the	content	read	aloud	to	them	(this	is	one
example	of	assistive	technology).
In	some	cases,	screen	readers	announce	the	type	of	HTML	element	surrounding	webpage	content	in	order
to	give	the	user	context	for	what’s	to	follow.	For	example,	the	user	may	be	told	that	a	list	with	five	items
has	been	encountered	before	the	individual	items	are	read	aloud.	Similarly,	users	are	told	when	a	link	is

http://www.w3.org/standards/webdesign/accessibility

encountered	so	they	can	decide	whether	to	follow	it.
Screen	reader	users	can	navigate	a	page	in	a	variety	of	ways,	such	as	jumping	from	one	heading	to	the
next	via	a	keyboard	command.	This	allows	them	to	glean	the	key	topics	of	a	page	and	listen	in	more	detail
to	the	ones	that	interest	them	rather	than	having	to	listen	to	the	entire	page	sequentially.
So	you	can	see	why	good	semantics	makes	a	marked	difference	to	users	with	disabilities.
Search	Engine	Optimization	(SEO)
SEO—that	is,	your	page’s	ranking	in	search	engine	results—can	improve,	because	search	engines	put	an
emphasis	on	the	portions	of	your	content	that	are	marked	up	in	a	particular	way.	For	instance,	the	headings
tell	the	search	engine	spider	the	primary	topics	of	your	page,	helping	the	search	engine	determine	how	to
catalog	(or	index)	your	page’s	content.
Easier	Code	Maintenance	and	Styling	with	CSS
As	you’ll	learn,	CSS	makes	it	easy	to	style	a	particular	element	consistently—say,	make	all	paragraph	text
display	as	dark	gray	in	the	Georgia	font.	If	you	mark	up	some	paragraphs	with	p	and	others	with	an
element	not	intended	for	that,	you’ll	have	to	account	for	both	in	your	CSS.	This	unnecessarily	complicates
styling	pages.
Such	deviations	make	it	harder	to	work	with	your	HTML,	too.	Good	semantics	can	help	you	keep	your
webpages	consistent	and	“clean”	as	a	result.	That	often	leads	to	smaller	file	sizes,	which	contributes	to
browsers	loading	your	pages	faster.

A	Browser’s	Default	Display	of	Webpages
All	along	I’ve	insisted	that	HTML	 	doesn’t	control	how	your	pages	look,	CSS	does.	And	yet	some	of
the	text	in	our	basic	page	looks	larger	than	other	text,	or	is	bold	or	italicized	when	viewed	in	a	browser	
.	Why	is	that?

Click	here	to	view	code	image

...
<body>
<article>
					<h1>The	Ephemeral	Blue	Flax</h1>

					

					<p>I	am	continually	amazed	at	the	beautiful,	delicate	<a
href="http://en.wikipedia.org/wiki/Linum_lewisii"	rel="external"	title="Learn	more	about
Blue	Flax">Blue	Flax	that	somehow	took	hold	in	my	garden.	They	are	awash	in	color
every	morning,	yet	not	a	single	flower	remains	by	the	afternoon.	They	are	the	very
definition	of	ephemeral.</p>

					<p><small>©	Blue	Flax	Society.	</small></p>
</article>
</body>
</html>

	I’ve	added	a	second	paragraph	to	our	basic	page	so	you	can	see	that	each	paragraph	occupies	its	own
line	when	displayed	in	browsers	 .	By	the	way,	the	meaning	of	the	small	element	is	small	(or	fine)
print,	like	a	legal	notice.	It	happens	to	display	smaller	than	other	text	by	default,	but	that’s	not	why	you’d

use	it.

	A	browser’s	default	style	sheet	renders	headings	(h1–h6	elements)	differently	than	normal	text,
italicizes	em	text,	colors	and	underlines	links,	and	makes	small	text	smaller.	Additionally,	some

elements	begin	on	their	own	line	(h1	and	p,	for	example),	and	others	display	within	surrounding	content
(like	a,	em,	and	small).	It’s	simple	to	overwrite	any	or	all	of	these	presentation	rules	with	your	own

CSS.

The	reason	is	that	every	web	browser	has	a	built-in	CSS	file	(a	style	sheet)	that	dictates	how	each	HTML
element	displays	by	default.	When	you	write	your	own	CSS,	it	overwrites	these	settings.	The	default
presentation	varies	slightly	from	browser	to	browser,	but	on	the	whole	it	is	fairly	consistent.	More
importantly,	the	content’s	underlying	structure	and	meaning	as	defined	by	your	HTML	remain	the	same.

Block-level,	Inline,	and	HTML5
As	you	can	see,	some	HTML	elements	(for	example,	article,	h1,	and	p)	display	beginning	on	their
own	line	like	a	paragraph	does	in	a	book.	Others	(for	example,	a	and	em)	render	in	the	same	line	as	other
content	 .	Again,	this	is	a	function	of	the	browser’s	default	style	rules,	not	the	HTML	elements
themselves	or	the	blank	lines	I’ve	included	(or	not)	between	elements	in	the	code	 .
Allow	me	to	elaborate.	Before	HTML5,	most	elements	were	categorized	as	either	block-level	(the	ones
that	displayed	on	their	own	line)	or	inline	(the	ones	that	displayed	within	a	line	of	text).	HTML5	does
away	with	these	terms	because	they	associate	elements	with	presentation,	which	you’ve	learned	isn’t
HTML’s	role.	(In	general,	the	old	inline	elements	are	now	categorized	as	phrasing	content.)
With	that	said,	browsers	haven’t	changed	the	default	display	rules	for	these	elements,	nor	should	they.
After	all,	you	wouldn’t	want,	say,	the	two	paragraphs	running	into	each	other,	or	the	em	text	(“amazed”)	to
break	the	sentence	by	appearing	on	its	own	line.
So	usually	headings,	paragraphs,	and	elements	like	article	display	on	their	own	line,	and	phrasing
content	(like	em,	a,	and	small)	displays	on	the	same	line	as	surrounding	content.
And	even	though	HTML5	no	longer	uses	the	terms	“block-level”	and	“inline,”	it	helps	to	know	what	they

mean.	It’s	common	for	tutorials	to	use	them	since	they	were	entrenched	in	HTML	vernacular	before
HTML5.	I	might	use	them	occasionally	in	the	book	to	quickly	convey	whether	an	element	occupies	its
own	line	or	shares	a	line	by	default.
We’ll	cover	CSS	in	detail	beginning	with	Chapter	7,	but	for	now	know	that	a	style	sheet,	like	an	HTML
page,	is	just	text,	so	you	can	create	one	with	the	same	text	editor	as	your	HTML...which	conveniently
leads	to	the	next	chapter!

Key	Takeaways
The	basics	of	HTML	and	some	key	best	practices	provide	the	foundation	for	building	effective	websites.
Let’s	revisit	the	key	takeaways:

	A	webpage	is	primarily	made	up	of	three	components:	text	content,	references	to	other	files,	and
markup.
	HTML	markup	is	composed	of	elements,	attributes,	and	values.
	It’s	customary	to	write	your	HTML	in	all	lowercase	(DOCTYPE	is	an	exception)	and	surround	your
attribute	values	with	quotes.
	Create	file	and	folder	names	in	all	lowercase,	and	separate	words	with	a	dash	instead	of	a	space	or
underscore.
	Always	begin	your	HTML	documents	with	the	DOCTYPE	declaration	so	browsers	know	it’s	an
HTML5	page:
<!DOCTYPE	html>

	A	page’s	content	goes	in	the	body	element.	Instructions	primarily	intended	for	the	browser	and
search	engines	are	before	that,	mostly	in	the	head.
	Mark	up	your	content	with	semantic	HTML.	Do	not	consider	how	it	should	appear	in	a	browser.
	Semantic	HTML	improves	accessibility	and	can	make	your	site	more	efficient,	and	easier	to
maintain	and	style.
	CSS	controls	the	presentation	of	HTML	content.
	Each	browser’s	own	style	sheet	dictates	the	default	presentation	of	HTML.	You	can	overwrite	these
rules	with	your	own	CSS.

2.	Working	with	Webpage	Files

In	This	Chapter
Planning	Your	Site
Creating	a	New	Webpage
Saving	Your	Webpage
Specifying	a	Default	Page	or	Homepage
Editing	Webpages
Organizing	Files
Viewing	Your	Page	in	a	Browser
The	Inspiration	of	Others

Before	you	start	writing	HTML	elements	and	attributes,	you	must	create	the	file	in	which	you’ll	type	such
code.	In	this	chapter,	you’ll	learn	how	to	create,	edit,	save,	and	view	webpage	files.	I’ll	also	touch	on
some	basic	planning	and	organizational	considerations.
If	you	can’t	wait	any	longer	and	already	know	how	to	create	the	actual	files,	skip	ahead	to	Chapter	3,
where	I	begin	to	explain	more	about	the	HTML	code	itself.

Planning	Your	Site
Although	you	can	jump	in	and	start	writing	webpages	right	away,	it’s	a	good	idea	to	first	think	about	and
plan	your	site.	That	way,	you’ll	give	yourself	direction,	and	you’ll	need	to	make	fewer	changes	and	do
less	reorganizing	later.	There’s	more	to	creating	an	effective	site	than	simply	knowing	how	to	code	it.	The
following	information	is	not	comprehensive	but	does	touch	on	some	aspects	to	consider.

To	plan	your	site
	Figure	out	why	you’re	creating	this	site.	What	do	you	want	to	convey?
	Think	about	your	audience.	How	can	you	tailor	your	content	to	appeal	to	this	audience?
	How	many	pages	will	it	need?	What	sort	of	structure	would	you	like	it	to	have	 ?	Do	you	want
visitors	to	go	through	your	site	in	a	particular	sequence,	or	do	you	want	to	make	it	easy	for	them	to
explore	in	any	direction?

	Sketching	out	your	site	and	thinking	about	what	it	might	contain	can	help	you	decide	what	sort	of
structure	it	needs.

	Sketch	out	your	site	on	paper,	and	identify	what	components	you	want	on	each	page.	Among	other
things,	this	can	help	guide	your	design.
	Devise	a	simple,	consistent	naming	convention	for	your	pages,	images,	and	other	external	files	(see
“File	and	Folder	Names”	in	Chapter	1).

Tip
If	you’re	looking	for	inspiration,	take	a	look	around	the	web	to	get	an	idea	of	the
possibilities.	You	might	start	with	the	sites	of	some	of	your	competitors.

Tip
A	List	Apart	(www.alistapart.com)	and	Smashing	Magazine
(www.smashingmagazine.com)	are	two	popular	resources	that	cover	the	many	facets	of
creating	sites:	content	strategy,	user	experience	(UX),	design,	development,	and	more.

Tip
See	Erin	Kissane’s	article	“A	Checklist	for	Content	Work”
(www.alistapart.com/articles/a-checklist-for-content-work/)	for	ideas	about	how	you
might	approach	crafting	your	site’s	content.	It’s	a	taste	of	her	book,	which	elaborates	on	the
subject	of	content	strategy.

http://www.alistapart.com
http://www.smashingmagazine.com
http://www.alistapart.com/articles/a-checklist-for-content-work/

Tip
Jason	Beaird’s	The	Principles	of	Beautiful	Web	Design	(SitePoint,	2010)	and	Mark
Boulton’s	A	Practical	Guide	to	Designing	for	the	Web	(Five	Simple	Steps,	2009)	may
interest	you	if	you’re	a	non-designer	or	novice	designer	looking	for	guidance	on	how	to
approach	designing	websites.	Initially	available	only	by	purchase,	Boulton’s	book	now	has
a	free	version	(http://designingfortheweb.co.uk/book/).	In	addition	to	explaining	design
theory,	he	provides	guidance	on	how	to	work	in	the	industry	as	a	web	designer.

Tip
It’s	common,	but	not	required,	to	map	your	site’s	folder	structure	to	how	it’s	organized	on
paper	 .	See	“Organizing	Files.”

Creating	a	New	Webpage
You	don’t	need	any	special	tools	to	create	a	webpage.	You	can	use	any	text	editor,	even	Notepad	(and	
),	which	is	included	with	Windows,	or	TextWrangler	(and),	which	is	a	free	download	for	OS	X

(www.barebones.com/products/textwrangler).	(Macs	include	an	editor	called	TextEdit,	but	in	some
versions	of	OS	X	it	has	a	bug	that	makes	it	to	difficult	to	work	with	HTML	files.)

	Open	your	text	editor.	Type	your	HTML	in	the	blank	document	that	appears,	or	choose	File	>	New.	The
exact	menu	option	may	vary	slightly.	If	you’re	using	TextWrangler	(Mac),	it’s	File	>	New	>	Text

Document,	as	shown	(top).	The	bottom	image	is	Notepad	(Windows).

http://designingfortheweb.co.uk/book/
http://www.barebones.com/products/textwrangler

	On	a	Mac,	you	can	use	TextWrangler	to	write	the	HTML	code	for	your	pages.	See	the	tips	for	a	list	of
Mac	editors	with	more-robust	features	for	writing	code.

	This	is	Notepad,	the	most	basic	program	Windows	users	can	use	to	create	HTML	pages.	Several
others	are	available	(see	the	tips).

To	create	a	new	webpage
1.	Open	any	text	editor.
2.	Choose	File	>	New	to	create	a	new,	blank	document	 .
3.	Create	the	HTML	content	as	explained	in	the	rest	of	this	book,	starting	with	Chapter	3.
4.	Be	sure	to	save	your	file	as	directed	in	“Saving	Your	Webpage.”

Tip
There	are	various	text	editors	for	OS	X	and	Windows	that	are	specifically	tailored	for
coding	HTML	(and	CSS).	They	have	code-hinting	and	code-completion	features	to	help
you	code	more	accurately	and	quickly,	they	highlight	code	to	make	it	easier	to	distinguish
between	HTML	elements	and	the	text	content	you’ve	written	within	them,	and	they	have
assorted	other	helpful	features.	Notepad	doesn’t	do	any	of	this,	and	TextWrangler	only
does	some	of	it.	Some	free	HTML	editors	are	available,	but	the	ones	that	aren’t	free	are
usually	worth	the	investment	and	often	include	a	free	trial	version	you	can	test	before
making	a	purchase.

Tip
Some	popular	editors	for	OS	X	are	BBEdit	(www.barebones.com/products/bbedit/),	Coda
(www.panic.com/coda/),	Espresso	(http://macrabbit.com/espresso/),	Sublime	Text
(www.sublimetext.com),	and	TextMate	(http://macromates.com).	(TextWrangler	is
commonly	thought	of	as	“BBEdit	Lite.”)	Sublime	Text	is	also	available	on	Windows,	as
are	Notepad++	(http://notepad-plus-plus.org)	and	many	others.	Search	online	for	“HTML
editor”	if	you’d	like	to	find	more.

Tip
The	process	for	creating	a	new	page	is	similar	in	all	editors.	And	to	edit	an	existing	page,
just	choose	File	>	Open	in	your	text	editor	of	choice	and	open	the	file	(see	“Editing
Webpages”).

Tip
Don’t	use	word	processors,	like	Microsoft	Word,	to	code	your	HTML	pages.	They	may
add	unnecessary	or	invalid	code	to	your	files.

Saving	Your	Webpage
Although	you	create	HTML	pages	with	a	text	editor,	they	are	meant	to	be	viewable	with	multiple
browsers	on	multiple	platforms	and	devices.	To	be	accessible	to	all	of	these,	you	save	webpages	in	a
universal,	basic	“text	only”	format—without	any	of	the	proprietary	formatting	that	a	word	processor	might
apply.
HTML	pages	typically	have	the	.html	or	.htm	extension	in	their	file	names.	This	allows	browsers	to
recognize	them	as	webpages	and	know	to	interpret	the	code	they	contain.	It	also	distinguishes	these	files
from	plain	text	files	that	are	not	webpages.	Although	both	.html	and	.htm	work,	it’s	customary	to	use	the
.html	extension	(using	.htm	is	a	little	dated),	so	I	recommend	you	use	it	for	your	files.
Because	of	that	extension,	a	webpage’s	icon	matches	your	computer’s	default	browser—not	the	editor
with	which	the	file	was	written	 .	Indeed,	when	you	double-click	a	webpage	file,	it	is	opened	in	a
browser,	not	a	text	editor.	This	is	great	for	testing	a	page	in	a	browser,	but	does	add	an	extra	step	to
editing	webpages	(see	“Editing	Webpages”).

http://www.barebones.com/products/bbedit/
http://www.panic.com/coda/
http://macrabbit.com/espresso/
http://www.sublimetext.com
http://macromates.com
http://notepad-plus-plus.org

	A	text	file	has	the	.txt	extension	and	is	identified	with	the	generic	text	document	icon	on	Windows
(left).	If	you	double-click	it,	it	is	displayed	in	Notepad	(or	another	text	editor	you’ve	associated	with	it).
A	webpage	file	(right),	no	matter	the	text	editor	you	create	it	with,	has	the	.html	or	.htm	extension	and	is
identified	with	the	default	browser’s	icon	(Firefox,	in	this	case).	If	you	double-click	it,	it	is	displayed	in

your	default	browser,	not	in	the	text	editor.

To	summarize,	when	you	save	your	webpage,	you	must	save	it	in	text-only	format	with	either	the	.html	or
.htm	extension.

To	save	your	webpage
1.	Once	you’ve	created	your	webpage,	choose	File	>	Save	As	from	your	text	editor	 .

	Choose	File	>	Save	As	from	your	text	editor.	Notepad	is	shown.	TextWrangler	has	this	option,	too,	just
in	a	longer	menu.

2.	In	the	dialog	that	appears,	choose	Plain	Text	or	Text	Document	(or	however	your	program	words	it)
for	the	format.

3.	Give	the	document	the	.html	(preferably)	or	.htm	extension.	(This	is	very	important!)
4.	Choose	the	folder	in	which	to	save	the	webpage.
5.	Click	Save	(and).

	In	Notepad,	give	your	file	a	name	with	the	.html	or	.htm	extension,	choose	Text	Documents	from	the
“Save	as	type”	drop-down	menu,	make	sure	Encoding	is	set	to	UTF-8	(see	the	last	tip),	and	click	Save.

The	options	may	be	different	(but	are	similar)	in	another	text	editor.

	In	TextWrangler,	give	your	file	a	name	and	choose	a	location	to	save	it.	TextWrangler	defaults	to	UTF-
8	(which	is	what	you’ll	want),	but	you	can	make	a	different	choice	from	the	Encoding	drop-down	menu

(see	the	last	tip).	Click	Save	to	save	the	file.

Tip
Whether	you	use	.html	or	.htm,	be	consistent.	Using	the	same	file	extension	will	make	it
easier	to	remember	your	URLs	later	when	you	create	links	to	your	pages.

Tip
Some	text	editors	on	Windows	may	add	their	default	extension	to	your	file	name,	even	if
you’ve	already	specified	.html	or	.htm.	(Note	that	this	shouldn’t	be	a	problem	with	most
editors	designed	specifically	for	editing	HTML	pages,	such	as	the	ones	I	mentioned	in	the
previous	section.)	Your	file,	now	named	webpage.html.txt,	won’t	be	properly
viewed	in	a	browser.	To	make	matters	worse,	Windows	often	hides	extensions	so	that	the
problem	is	not	completely	obvious,	especially	to	the	uninitiated.	There	are	two	solutions.
The	first	is	to	enclose	your	file	name	in	double	quotes	when	you	save	your	document	the
first	time.	This	should	keep	the	extra	extension	from	being	added.	Next,	you	can	tell
Windows	to	display	file	extensions	(and),	so	you	can	see	the	offending	one	and
remove	it	from	your	file	name.

	The	menus	differ	among	versions	of	Windows	 .	If	you	use	Windows	8,	from	Windows
Explorer	choose	the	View	tab	to	display	this	menu.	Select	“File	name	extensions”	(so	the	box	is
checked)	if	you	want	to	be	able	to	see	a	file’s	extension	(like	.html)	on	the	Desktop	and	in	folders.

	Earlier	versions	of	Windows	have	a	menu	like	this	one	from	Windows	7	(it	may	look	a	little
different	depending	on	your	version).	From	Windows	Explorer,	choose	either	Organize	>	Folder
and	Search	Options,	or	Tools	>	Folder	Options	(depending	on	your	version	of	Windows)	to	view
it.	Click	the	View	tab	and	scroll	down	until	you	see	“Hide	extensions	for	known	file	types.”	Make

sure	it	is	unselected	to	show	a	file’s	extension	on	the	Desktop	and	in	folders.

Tip
When	you	choose	a	text-only	format,	your	file	is	usually	saved	with	your	system’s	default
character	encoding.	If	you	want	to	create	webpages	in	another	encoding,	you’ll	have	to	use
a	text	editor	that	lets	you	choose	the	encoding.	Typically,	UTF-8	is	the	best	encoding
choice.	If	your	editor	has	an	option	to	save	files	encoded	as	“UTF-8,	no	BOM,”	“UTF-8,
without	BOM,”	or	something	similar,	choose	that.	Otherwise,	choose	UTF-8	 .	In	some
cases,	an	editor’s	UTF-8	mode	doesn’t	include	the	BOM	even	if	it	doesn’t	explicitly	note
that	fact	in	its	encoding	menu.	(See	http://en.wikipedia.org/wiki/Byte_order_mark	if
you’re	really	curious	about	BOM’s	meaning.	Prepare	to	be	enthralled!)

	Many	text	editors	let	you	choose	the	encoding	for	your	file.	UTF-8	is	the	recommended
encoding.	Choose	the	UTF-8,	no	BOM	option	if	it’s	available	in	your	editor.	Otherwise,	choose

UTF-8.	Some	editors	(like	TextWrangler,	shown	here)	default	to	it.

When	a	Default	Page	Doesn’t	Exist
If	you	don’t	have	a	default	page	in	each	directory,	some	servers	may	show	a	list	of	the
directory’s	contents	(which	you	may	or	may	not	want	to	reveal	to	your	visitors).	To	keep
those	prying	eyes	out,	create	a	default	page	for	every	directory	on	your	site	that	contains
HTML	pages.	Alternatively,	you	can	change	the	server	setting	so	the	list	of	files	is	hidden
(you	can	also	show	it	if	it’s	already	hidden).	Hiding	the	list	is	advisable	for	folders	that
contain	assets,	such	as	your	images,	media	files,	style	sheets,	and	JavaScript	files.	Ask
your	web	hosting	provider	for	instructions	on	how	to	do	this.

http://en.wikipedia.org/wiki/Byte_order_mark

Specifying	a	Default	Page	or	Homepage
Most	web	servers	have	a	system	for	recognizing	a	default	page	in	each	folder,	based	on	the	name	of	the
file.	In	almost	all	cases,	index.html	is	recognized	as	the	default	page	 ,	though	if	index.html
doesn’t	exist,	servers	will	typically	look	for	file	names	like	index.htm	and	default.htm.	If	your
visitors	type	a	URL	with	a	directory	name	but	don’t	specify	a	file	name,	the	default	file	is	used	 .	(A
directory	is	just	a	folder,	like	the	ones	you	have	on	your	computer.)

	Save	the	file	as	index.html	to	designate	the	file	as	the	default	page	that	should	be	opened	in	that
directory.	(TextWrangler	shown	at	top	and	Notepad	at	bottom.)

	When	the	visitor	types	the	path	to	the	directory	but	omits	the	file	name	itself,	the	file	with	the	default
name	is	used.	I	typed	http://htmlcssvqs.com/gaudi/	in	this	case.	If	I	had	typed

http://htmlcssvqs.com/gaudi/index.html	instead,	the	same	page	would	have	loaded.

The	default	page	that	you	create	at	the	top	level	of	your	site’s	folder	structure	(often	called	the	root)	is
your	site’s	homepage.	This	is	the	page	that	will	appear	when	your	visitors	type	your	domain	with	no
additional	path	information:	www.yourdomain.com.	It’s	the	same	as	typing
www.yourdomain.com/index.html,	assuming	that’s	what	you	named	your	homepage.
Similarly,	you	can	(and	usually	should)	create	a	default	page	for	any	and	every	directory	on	your	site.	For
instance,	the	landing	page	(that	is,	the	main	page)	for	a	/products/	or	/about-us/	directory	in
your	site	would	also	be	called	index.html,	but	it	would	exist	in	its	specific	folder.	Visitors	typically
access	these	sections	of	your	site	from	your	homepage	or	via	main	navigation	that	exists	on	every	page.

To	specify	a	homepage	for	your	site	or	a	landing	page	for	a	directory	within	it
Save	your	file	as	index.html	in	the	desired	folder.	(If	index.html	doesn’t	work	as	the	default	page
on	your	site’s	server,	consult	your	web	hosting	provider	per	Chapter	21.)

Editing	Webpages
Because	webpages	are	most	often	viewed	with	a	web	browser,	when	you	double-click	them	on	the
desktop,	the	default	browser	cheerily	opens	and	displays	them.	So	if	you	want	to	edit	the	page,	you’ll
have	to	manually	open	it	in	your	text	editor.

To	edit	webpages
1.	Open	your	text	editor.
2.	Choose	File	>	Open.
3.	Navigate	to	the	directory	that	contains	the	desired	file.
4.	If	you	don’t	see	your	file	listed,	choose	All	Files	(or	a	similar	option)	(and).	The	name	and
location	may	vary	slightly	from	program	to	program	and	platform	to	platform.

http://htmlcssvqs.com/gaudi/
http://htmlcssvqs.com/gaudi/index.html

	Some	text	editors	in	Windows,	like	Notepad,	can’t	automatically	see	HTML	files.	Choose	All	Files	to
reveal	files	with	any	extension.

	Once	files	with	any	extension	are	displayed,	you	can	choose	the	desired	HTML	file	and	click	Open.

5.	Click	Open.	Your	file	is	ready	to	edit.

Tip
You	can	also	open	a	file	directly	from	its	folder	(or	the	Desktop	if	that’s	where	it	is)	 .

	In	Windows	(shown),	you	can	also	right-click	the	document’s	icon	or	file	name	and	choose
Edit	or	Open	With	to	choose	the	desired	text	editor	(the	options	that	appear	may	vary).	On	a	Mac,
right-click	the	icon	or	file	name,	select	Open	With,	and	choose	the	desired	text	editor.	On	both

systems,	the	editor	will	start	up	if	it	had	been	closed.

Tip
Once	you’ve	made	changes	to	an	already	saved	document,	choose	File	>	Save	to	save	the
changes	without	having	to	worry	about	the	format	(as	described	in	“Saving	Your
Webpage”).	An	even	quicker	way	is	to	use	a	keyboard	shortcut.	Typically,	editors	save
files	via	Command-S	on	OS	X	and	Ctrl-S	on	Windows.

Organizing	Files
Before	you	have	too	many	files,	it’s	a	good	idea	to	figure	out	where	you’re	going	to	put	them.	It’s
customary	(but	not	required)	to	create	a	folder	for	each	main	section	within	your	site,	allowing	you	to
group	related	HTML	pages.

To	organize	your	files
1.	Create	a	central	folder	or	directory	to	hold	everything	that	will	be	available	on	your	website.	On
the	Mac,	choose	File	>	New	Folder	in	the	Finder	 .	In	Windows,	from	the	desktop	(or	within
Windows	Explorer),	right-click	and	choose	New	>	Folder	 .	Give	the	folder	a	name.

	On	a	Mac,	choose	New	Folder	and	then	give	the	folder	a	name.	Create	a	separate	folder	for	each
section	of	your	site.

	In	Windows,	from	the	desktop	or	Windows	Explorer,	right-click	and	choose	New	>	Folder.

2.	Create	sub-folders	in	a	way	that	reflects	the	organization	of	your	website	(and).	For	instance,
you	may	decide	to	create	a	separate	folder	for	each	section	of	your	site,	along	with	individual	sub-
folders	within	those	as	necessary.

	You	can	divide	the	folder	into	sub-folders	if	needed.

3.	Create	one	or	more	folders	for	your	site’s	images,	style	sheets	(CSS	files),	and	JavaScript	files,
each	optionally	with	sub-folders	of	their	own.	There	are	many	ways	to	organize	files;	it’s	entirely
up	to	you.	One	approach	is	shown	in	 	and	 .	Another	is	to	place	your	CSS	and	JavaScript
folders	at	the	root	with	your	images	folder	(and	other	folders),	or	to	group	them	in	a	root-level
assets	folder

Tip
Steps	2	and	3	are	optional	but	recommended.

Tip
Use	short,	descriptive	names	for	your	files	and	folders,	preferably	separating	words	in	a
name	with	a	dash	(not	a	space).	Use	all	lowercase	letters	so	that	your	URLs	are	easier	to
type	and	thus	your	pages	are	easier	to	reach.	For	more	details	on	how	to	create	good	file
names,	consult	“File	and	Folder	Names”	in	Chapter	1.

Viewing	Your	Page	in	a	Browser
Once	you’ve	created	a	page,	you’ll	want	to	see	what	it	looks	like	in	a	browser.	In	fact,	since	you	don’t
know	which	browser	your	visitors	will	be	using—and	browsers	don’t	always	render	pages	exactly	the
same	way—it’s	recommended	to	look	at	the	page	in	several	browsers	(see	“Testing	Your	Pages”	in
Chapter	20).

To	view	your	page	in	a	browser
1.	Open	a	browser.
2.	If	the	browser	has	a	File	menu,	you	may	choose	File	>	Open	File	(the	second	term	may	vary
depending	on	the	browser;	regardless,	don’t	choose	Open	Location)	 .	Or	use	the	keyboard
shortcut	Command-O	(OS	X)	or	Ctrl-O	(Windows),	both	of	which	take	you	straight	to	step	3	except
in	Internet	Explorer—it	displays	an	intermediary	Open	dialog	 .

	On	OS	X,	choose	File	>	Open	File	from	the	desired	browser	(Chrome	is	at	top).	If	you	use	Ctrl-O	in
Internet	Explorer	(bottom),	click	Browse	in	the	Open	dialog	box	to	move	to	the	next	step.

3.	In	the	dialog	box	that	appears,	navigate	to	the	folder	on	your	computer	that	contains	the	desired
webpage,	select	the	page,	and	click	Open	 .	The	page	is	displayed	in	the	browser	 	just	as	it	will
appear	when	you	actually	publish	it	on	your	web	server	(see	Chapter	21).	These	steps	may	vary
slightly	in	different	browsers.

	Choose	the	file	that	you	want	to	open,	and	click	the	Open	button.	(This	is	OS	X,	but	the	Windows
dialog	is	comparable.)

	The	page	appears	in	the	browser.	Check	it	over	carefully	to	see	if	it’s	displaying	the	way	you	planned.

Disabling	Chrome’s	Cache
Chrome’s	cache	can	be	a	little	finicky.	Even	if	you	use	Command-R	(OS	X)	or	Ctrl-F5
(Windows)	to	refresh	the	page,	sometimes	it	will	use	files	from	its	cache	rather	than	the
latest	versions	you’ve	saved.	This	can	be	misleading	and	frustrating	when	checking	your
pages.	Fortunately,	it’s	possible	to	disable	the	cache	so	Chrome	will	always	use	the	latest
versions.	Here’s	how:
1.	With	Chrome	open,	press	Command-Option-I	(OS	X)	or	Ctrl-Shift-I	(Windows)	to	open
Chrome’s	Developer	Tools.

2.	Click	the	gear	icon	in	the	lower-right	corner.
3.	Under	Settings	>	General,	select	Disable	Cache.
4.	Close	the	Settings	panel	but	do	not	close	Developer	Tools.	The	cache	will	remain
disabled	as	long	as	Developer	Tools	is	open	(or	until	you	deselect	Disable	Cache).

By	the	way,	to	undock	Developer	Tools	from	the	main	Chrome	window	and	display	it	in	its
own	window,	click	the	icon	in	the	lower-left	corner	of	Developer	Tools.

Tip
You	can	(usually)	double-click	a	webpage’s	file	name	or	icon	to	view	it	in	a	browser.	Or,
if	you	already	have	a	browser	open,	drag	the	file	name	or	icon	and	drop	it	in	the	browser
window.	That’s	often	the	easiest	way	to	view	a	page	in	a	browser	once	you	get	the	hang	of
it.

Tip
Some	modern	browsers	don’t	have	a	menu	option	equivalent	to	File	>	Open	File	for
opening	a	page.	Try	the	keyboard	shortcut	in	step	2	or	the	drag-and-drop	method	described
in	the	previous	tip	instead.

Tip
If	your	webpage	does	not	appear	in	the	dialog	for	choosing	a	file	 ,	make	sure	that	you
have	saved	it	as	text-only	and	given	it	the	.html	or	.htm	extension	(see	“Saving	Your
Webpage”).

Tip
You	don’t	have	to	close	the	document	in	the	text	editor	before	you	view	it	with	a	browser,
but	you	do	have	to	save	it.	If	you	make	a	change	to	the	page	in	your	text	editor	after	you’ve
opened	it	in	a	browser,	save	the	file	again	and	use	the	browser’s	reload	button	to	refresh
the	page.	Better	yet,	use	the	browser’s	keyboard	shortcuts:	Command-R	(OS	X)	or	Ctrl-F5
(Windows).	Those	shortcuts	refresh	the	webpage	without	using	files	in	the	browser’s
cache	(see	the	sidebar	regarding	Chrome).

Tip
Your	visitors	won’t	be	able	to	view	your	website	until	you	publish	it	to	your	web	server
(see	Chapter	21).

The	Inspiration	of	Others
One	of	the	easiest	ways	to	expand	your	HTML	fluency	is	by	looking	at	how	other	people	have	created
their	pages.	Luckily,	HTML	code	is	easy	to	view	and	learn	from.	However,	text	content,	graphics,	sounds,
videos,	and	other	external	files	may	be	copyrighted.	Use	other’s	pages	for	inspiration	for	your	HTML,	and
then	create	your	own	content.

To	view	others’	HTML	code	with	View	Source
1.	Open	a	webpage	with	any	browser.
2.	Choose	View	Source	(or	the	appropriate	choice	for	a	particular	browser)	via	one	of	the	methods
shown	in	 	and	 .	The	HTML	code	will	be	displayed	 .

	All	desktop	browsers	have	a	menu	command	that	lets	you	view	a	page’s	HTML	code.	The	name	varies
from	View	Source	to	Page	Source	(in	Firefox,	shown)	to	similar	names.	(In	Chrome,	it’s	Tools	>	View

Page	Source.)

	Most	browsers	will	also	let	you	right-click	the	page	and	then	choose	the	View	Source	command
(whatever	it’s	called)	from	the	menu	that	appears.	Chrome	is	shown.	This	is	often	the	easiest	way	to	view

source,	because	it	can	be	hard	to	find	the	option	in	the	main	menu	or	sub-menu.

	Modern	browsers	display	the	code	in	their	own	tab	or	window	(as	shown),	whereas	older	browsers
may	show	it	in	a	specified	text	editor.	Colors	distinguish	page	content	from	HTML	elements,	attributes,
and	attribute	values.	This	is	called	syntax	highlighting.	The	line	numbers	on	the	left	are	not	part	of	the

HTML	code,	and	not	all	browsers	show	them	in	their	View	Source	modes.

3.	If	desired,	save	the	file	for	further	study	(see	the	tips).

To	view	other	designers’	HTML	code	with	developer	tools
Another	way	to	view	a	page’s	source	is	with	a	browser’s	developer	tools.	The	tools	are	different	for	each
browser	vendor,	but	they	all	have	some	features	that	overlap.
These	tools	show	a	more	interactive	view	of	the	source	code.	You	can	inspect	the	HTML	and	CSS	for
specific	parts	of	a	page,	edit	it	in	the	browser,	and	see	the	changes	reflected	in	the	page	immediately.	And
you	can	use	the	tools	on	any	site,	not	just	your	own.	The	changes	are	temporary—they	don’t	write	over	the

actual	HTML	and	CSS	files	the	page	loaded.	This	is	valuable	for	learning,	because	you	can	see	how	a
particular	effect	was	achieved	or	fiddle	with	the	code	to	see	what	happens	with	no	fear	of	damaging
anything.
See	the	“Browser	Developer	Tools”	sidebar	in	Chapter	20	for	information	about	the	tools	available	for
both	modern	and	older	browsers.

Tip
There’s	no	rule	about	who	gets	to	put	a	site	on	the	web.	That’s	what’s	so	great	about	it—
it’s	an	open	medium	with	a	relatively	low	barrier	to	entry.	You	can	be	a	novice,	an	expert,
or	anywhere	in	between.	Keep	this	in	mind	when	you	review	the	code	from	other	sites.	If
some	of	the	code	looks	fishy,	don’t	assume	its	author	knows	better	than	you	just	because
their	site	is	on	the	web.	There	are	plenty	of	sites	that	serve	as	great	examples	of	coding
best	practices,	and	there	are	plenty	of	others	that	are,	shall	we	say,	less	than	ideal.	So	keep
a	critical	eye,	and	check	this	book	and	other	resources	when	in	doubt	about	the
appropriateness	of	a	particular	technique.

Tip
You	can	also	save	the	source	code	by	copying	it	from	the	View	Source	window	and	pasting
it	into	your	text	editor.	Then	you	can	save	the	file.	On	OS	X,	use	Command-A	to	select	all
the	code	and	Command-C	to	copy	it.	Then	switch	over	to	your	editor	and	paste	it	with
Command-V.	The	process	is	the	same	for	Windows,	but	use	the	Ctrl	key	instead	of	the
Command	key.

Tip
You	can	also	save	the	source	code	and	typically	many	of	its	assets	(such	as	images)	by
selecting	File	>	Save	As	(or	File	>	Save	Page	As)	in	most	browsers.	However,	the
browser	may	rewrite	portions	of	the	code	when	saving	the	page,	so	it	won’t	be	exactly	the
same	as	if	you’d	saved	it	using	the	previous	tip.

Tip
For	viewing	the	CSS	in	a	webpage,	see	“The	Inspiration	of	Others:	CSS”	in	Chapter	8.

3.	Basic	HTML	Structure

In	This	Chapter
Starting	Your	Webpage
Creating	a	Title
Creating	Headings
Common	Page	Constructs
Creating	a	Header
Marking	Navigation
Marking	the	Main	Area	of	a	Webpage
Creating	an	Article
Defining	a	Section
Specifying	an	Aside
Creating	a	Footer
Creating	Generic	Containers
Improving	Accessibility	with	ARIA
Naming	Elements	with	a	Class	or	ID
Adding	the	Title	Attribute	to	Elements
Adding	Comments

This	chapter	covers	the	HTML	elements	you	need	to	establish	the	foundation	and	structure	of	your
documents;	that	is,	the	primary	semantic	containers	for	your	content.
You’ll	learn	about:

	Starting	a	webpage
	Using	the	h1–h6,	header,	nav,	main,	article,	section,	aside,	footer,	and	div
elements	(most	of	which	are	new	in	HTML5)
	Improving	your	page’s	accessibility	with	ARIA	role	attributes
	Applying	a	class	or	ID	to	elements
	Applying	the	title	attribute	to	elements
	Adding	comments	to	your	code

Creating	a	clear	and	consistent	structure	not	only	sets	up	a	good	semantic	foundation	for	your	page	but
also	makes	it	that	much	easier	to	apply	styles	to	your	document	with	Cascading	Style	Sheets	(CSS)
(coverage	begins	in	Chapter	7).

Starting	Your	Webpage
At	its	most	basic	level,	each	of	your	HTML	documents	should	contain	the	following	components,	as
shown	in	 :

	The	DOCTYPE
	The	html	element	(with	the	lang	attribute,	which	is	optional	but	recommended)

	The	head	element
	The	character	encoding	in	a	meta	element
	The	title	element	(you’ll	add	its	content	in	a	bit)
	The	body	element

Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title></title>
</head>
<body>

</body>
</html>

	Here’s	the	foundation	of	every	HTML	page.	The	indentation	of	the	code	doesn’t	matter,	but	the
structure	is	crucial.	The	html	element,	which	follows	the	DOCTYPE,	must	enclose	all	other	elements	in
your	page.	In	this	example,	the	default	language	(per	the	lang	attribute)	is	set	to	en	for	English.	The

character	encoding	is	set	to	UTF-8.

As	I	noted	in	Chapter	1,	these	HTML	components	create	the	equivalent	of	a	blank	sheet	of	paper,	since
there	is	no	content	in	the	body	 .

	The	minimal	HTML	foundation	code	viewed	in	Firefox.	As	you	can	see,	there’s	nothing	to	see!
However,	you’ll	start	adding	content	soon	enough.

Before	you	add	content	or	other	information,	you	need	to	set	up	the	foundation	of	your	page.

To	start	an	HTML5	page
1.	Type	<!DOCTYPE	html>	to	declare	your	page	as	an	HTML5	document.	(See	the	“HTML5’s
Improved	DOCTYPE”	sidebar.)

2.	Type	<html	lang="language-code">	to	begin	the	actual	HTML	portion	of	your	document,

where	language-code	is	the	language	code	that	matches	the	primary	language	of	your	page’s
content.	For	instance,	<html	lang="es">	for	Spanish	or	<html	lang="fr">	for	French.
You	can	also	be	more	specific,	such	as	<html	lang="en-US">	for	American	English	versus
<html	lang="en-GB">	for	British	English.

Reviewing	Chapter	1
If	you	haven’t	done	so	already,	I	strongly	suggest	you	read	Chapter	1	before	continuing.	It
shows	a	simple	HTML	page	and	explains	some	of	the	basic	concepts.	Since	that	is	your
first	glimpse	at	a	webpage,	I’ll	repeat	some	(but	not	all)	of	the	information	and	assume
you’re	familiar	with	the	rest	so	you	can	build	on	those	ideas.

3.	Type	<head>	to	begin	the	document	head	of	your	page.
4.	Type	<meta	charset="utf-8"	/>	or	<meta	charset="UTF-8"	/>	to	declare	the
character	encoding	of	your	document	as	UTF-8.	Also,	the	space	and	forward	slash	are	optional,	so
<meta	charset="utf-8">	and	<meta	charset="UTF-8">	work	the	same	as	the
others.	(Character	encodings	besides	UTF-8	are	valid	too,	but	UTF-8	is	the	most	versatile,	and	it’s
rare	that	you’d	need	to	deviate.)

5.	Type	<title></title>.	This	will	contain	your	page’s	title.	You’ll	add	title	text	in	the
“Creating	a	Title”	section.

6.	Type	</head>	to	end	the	document	head	of	your	page.
7.	Type	<body>	to	start	the	body	of	your	page.	This	is	where	your	content	will	go	(eventually).
8.	If	desired,	leave	a	few	blank	lines	for	creating	your	page	content,	which	you’ll	do	throughout	the
rest	of	this	book.

9.	Type	</body>	to	end	the	body.
10.	Type	</html>	to	end	your	page.

That’s	a	pretty	healthy	number	of	steps,	but	since	all	your	pages	will	start	that	way,	you	could	use	a	single
HTML	page	as	the	template	from	which	to	begin	every	page,	saving	yourself	some	typing.	In	fact,	most
code	editors	allow	you	to	specify	the	starter	code	for	each	new	page,	making	it	even	easier.	If	you	don’t
find	a	Settings	or	Preferences	menu	in	your	editor,	search	its	Help	section.

A	page’s	two	sections:	head	and	body
Just	as	a	quick	recap	of	what	you	learned	in	Chapter	1,	pages	are	divided	into	two	sections	within	the
html	element:	the	head	and	the	body	 .	The	DOCTYPE,	which	starts	each	page,	is	a	preamble	of
sorts.	It	tells	the	browser	the	HTML	version	of	the	page.	You	should	include	it	in	all	your	pages.
The	document	head	is	where	you	define	the	title	of	your	page,	include	information	about	your	page	for
search	engines,	load	style	sheets,	and	occasionally	load	JavaScript	files	(see	Chapter	19	for	why	to	avoid
loading	JavaScript	here	most	of	the	time).	You’ll	see	examples	of	these	as	you	progress	through	the	book.
Except	for	the	title,	the	content	of	the	head	is	not	visible	to	users	when	they	visit	your	page.
The	body	element	encloses	your	page’s	content,	including	text,	images,	forms,	audio,	video,	and	more.
There	are	several	chapters	dedicated	to	HTML’s	content-related	elements,	some	of	which	you’ll	get	an
early	look	at	in	this	chapter.

A	Note	About	the	Word	“Section”
Both	here	and	in	the	pages	to	follow,	I’ll	often	use	“section”	as	a	generic	term	to	mean	a
distinct	part	of	a	page,	as	opposed	to	the	section	element	specifically.	When	I	am
referring	to	the	section	element,	the	word	will	be	styled	as	code,	just	like	it	is	in	this
sentence.

HTML5’s	Improved	DOCTYPE
Oh,	how	much	simpler	it	is	to	start	your	webpage	now	that	HTML5	is	here.	HTML5’s
DOCTYPE	is	refreshingly	short,	especially	when	compared	to	the	DOCTYPEs	of	yore.
In	the	days	of	HTML	4	and	XHTML	1.0,	there	were	several	DOCTYPEs	from	which	to
choose.	You	invariably	had	to	copy	them	from	somewhere	else	because	they	were	too
convoluted	to	remember.
For	instance,	here’s	the	DOCTYPE	for	XHTML	Strict	documents.

Click	here	to	view	code	image

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Gobbledygook.
Luckily,	all	browsers—both	old	and	new—understand	HTML5s	DOCTYPE,	so	you	can
stick	with	it	for	all	your	pages	and	forget	the	other	ones	ever	existed.

Tip
The	HTML5	DOCTYPE	makes	sure	browsers	display	pages	in	a	reliable	mode	and	tells
the	HTML	validators	to	judge	your	code	against	HTML5’s	allowed	elements	and	syntax.
HTML	validators	are	discussed	in	Chapter	20.

Tip
HTML5’s	DOCTYPE	isn’t	case	sensitive.	For	instance,	some	choose	to	type	it	as
<!doctype	html>,	but	it’s	probably	more	common	to	use	<!DOCTYPE	html>	 .

Tip
A	search	engine	could	use	the	language	specified	in	lang	to	categorize	search	results	and
display	only	those	that	match	the	language	of	the	searched	phrase.	Screen	readers	might
adjust	the	pronunciation	of	a	word	based	on	the	language	code	specified.

Tip
Richard	Ishida’s	language	subtag	lookup	tool	(http://rishida.net/utils/subtags/)	helps	you
look	up	language	codes.

http://rishida.net/utils/subtags/

Tip
Be	sure	your	code	editor	is	configured	to	save	files	as	UTF-8	to	match	the	character
encoding	specified	in	the	code	by	<meta	charset="utf-8"	/>	 .	(Or	if	you’ve
specified	a	different	charset,	save	your	files	in	that.)	Not	all	code	editors	will	save
your	pages	as	UTF-8	by	default,	but	most	do	allow	you	to	choose	the	encoding	from	a
menu	or	in	a	panel	(see	“Saving	Your	Webpage”	in	Chapter	2).	If	you	don’t	use	UTF-8,	you
may	occasionally	see	funny	characters	in	your	content	rather	than	the	intended	letter,	such
as	an	accented	i	or	an	n	with	a	tilde	(~).

Tip
You	don’t	have	to	indent	the	code	that	is	nested	in	the	head	element	 .	However,	the
benefit	of	doing	so	is	that	you	can	see	at	a	glance	where	the	head	begins,	what’s	in	it,	and
where	it	ends.	It’s	not	unusual	for	the	head	to	become	very	long	in	some	pages.

Creating	a	Title
The	HTML	foundation	code	in	the	previous	section	had	<title></title>	as	a	placeholder	until	it
was	time	to	discuss	title	further.	Now’s	the	time!
Each	HTML	page	must	have	a	title	element.	A	title	should	be	short,	descriptive,	and	unique	to	each
page	 .	In	most	browsers,	the	title	appears	in	the	title	bar	of	the	window	(Chrome	is	one	exception)	and
on	the	browser	tab	 .	The	title	also	shows	in	your	visitors’	browser	history	lists	and	bookmarks	 .
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>Antoni	Gaudí	-	Introduction	</title>
</head>
<body>
</body>
</html>

	The	title	element	must	be	placed	in	the	head	section.	Place	it	after	the	meta	element	that
specifies	the	character	encoding.

	In	most	browsers,	like	Firefox,	the	title	of	a	webpage	is	displayed	both	in	the	title	bar	of	the	window
and	on	the	tab.	However,	Chrome	(bottom)	displays	the	title	only	on	the	tab.

	The	title	also	appears	in	your	visitor’s	History	pane	(shown),	Favorites	list,	and	Bookmarks	list.

Perhaps	most	importantly,	the	title	is	used	by	search	engines	like	Google,	Bing,	DuckDuckGo,	and	Yahoo
to	get	a	sense	of	your	page’s	content	and	typically	as	the	link	that	appears	in	their	search	results	 .

	The	title	is	typically	used	as	the	linked	text	pointing	to	your	page	in	search	results.	It’s	also	an
important	factor	for	determining	a	page’s	relevance	in	search	results.	Typically,	search	engines	display

the	title	and	part	of	the	copy	from	your	page’s	body.

In	short,	make	your	title	unique	and	relevant	to	each	page	to	improve	search	engine	results	and	make
your	visitors’	experience	better.

A	Deeper	Look	at	Page	Titles
Many	developers—even	well-intentioned,	fairly	experienced	ones—give	little
consideration	to	the	title	element.	They’ll	simply	input	the	name	of	their	site	and	then
copy	it	across	all	HTML	pages.	Or	even	worse,	they’ll	leave	the	title	text	that	their
code	editor	may	insert	by	default.	If	one	of	your	goals	is	to	drive	traffic	to	your	site,	you’d
be	doing	yourself	and	your	potential	readers	a	huge	disservice	by	following	suit.
Search	engines	have	different	algorithms	that	determine	a	page’s	rank	and	how	its	content
is	indexed.	Universally,	though,	title	plays	a	key	role.	Search	engines	may	look	to	the
title	for	an	indication	of	what	a	page	is	about,	and	index	a	page’s	content	in	search	of
related	text.	An	effective	title	focuses	on	a	handful	of	key	words	that	are	central	to	a
page’s	content.
As	a	best	practice,	choose	title	text	that	briefly	summarizes	a	page’s	content.	In
addition	to	benefiting	your	search	engine	rankings,	it	helps	screen	reader	users	learn	the
focus	of	your	page	quickly	(the	title	may	be	read	aloud).
Secondarily,	and	optionally,	indicate	your	site’s	name	in	the	title.	Although	it’s	common
to	see	a	site’s	name	at	the	beginning	of	the	title,	it’s	better	to	put	the	unique,	page-
specific	title	text	at	the	beginning	instead.
I	recommend	you	get	your	title’s	core	message	into	the	first	60	characters,	including
spaces,	because	search	engines	often	cut	them	off	in	their	results	at	around	that	number	(as
a	baseline).	Browsers	display	a	varying	number	of	characters	in	the	title	bar	at	the	top	of
the	browser	before	cutting	off	the	text.	Browser	tabs	cut	off	the	title	even	sooner	because
there’s	less	real	estate.

To	create	a	title
1.	Place	the	cursor	between	<title>	and	</title>	in	the	document	head.
2.	Enter	the	title	of	your	webpage.

Tip
The	title	element	is	required.

Tip
A	title	cannot	contain	any	formatting,	HTML,	images,	or	links	to	other	pages.

Tip
Some	code	editors	pre-populate	the	title	with	default	text	when	you	start	a	new	page
unless	you’ve	configured	it	to	use	specific	starter	template	code,	as	described	in	“Starting
Your	Webpage.”	So	be	on	the	lookout	for	that,	and	be	sure	to	replace	any	default	text	with	a
title	of	your	own	making.

Creating	Headings
HTML	provides	six	heading	levels	for	describing	the	hierarchy	of	information	in	your	pages.	Mark	up
each	heading	with	an	h1,	h2,	h3,	h4,	h5,	or	h6	element.	Organizationally,	h1	is	a	top-level	heading,	h2
is	a	heading	beneath	h1,	h3	is	a	heading	beneath	h2,	and	so	on.	For	brevity,	I’ll	refer	to	them
collectively	as	h1–h6	rather	than	listing	them.
Think	of	h1–h6	like	headings	within	a	non-HTML	document	you	might	write,	such	as	a	term	paper,	sales
report,	news	article,	product	manual—you	get	the	idea.	When	you	write	those	types	of	documents,	you
start	each	major	section	of	content	with	a	heading.	Each	subsection	gets	a	subheading,	as	do	sub-
subsections,	and	so	on.	Collectively,	those	headings	represent	the	outline	of	your	document.	The	same	is
true	for	your	webpages	(and).
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>Antoni	Gaudí	-	Introduction</title>
</head>
<body>
<h1>Barcelona's	Architect</h1>
<h2	lang="es">La	Sagrada	Família</h2>
<h2>Park	Guell</h2>
</body>
</html>

	Use	headings	to	define	your	document	structure,	just	like	an	outline.	Here,	“La	Sagrada	Família”	and
“Park	Guell”—marked	up	as	h2	elements—represent	sections	under	the	top-level	heading,	“Barcelona’s
Architect,”	because	it’s	an	h1.	If	“Park	Guell”	were	an	h3	instead,	then	it	would	fall	under	“La	Sagrada
Família”	(and	be	a	sub-subheading	of	the	h1).	If	I	were	coding	the	rest	of	the	page	right	now,	the	related

content	(paragraphs,	images,	video,	and	so	on)	would	follow	each	heading.
Click	here	to	view	code	image

...
<body>
<h1>Product	User	Guide</h1>
					<h2>Setting	it	up</h2>

					<h2>Basic	Features</h2>
								<h3>Video	Playback</h3>
											<h4>Basic	Controls</h4>
											<h4>Jumping	to	Markers</h4>

								<h3>Recording	Video</h3>
											<h4>Manual	Recording</h4>
											<h4>Scheduling	a	Recording</h4>

					<h2>Advanced	Features</h2>
								<h3>Sharing	Video</h3>
								<h3>Compressing	Video</h3>
</body>
</html>

	In	this	example,	there	are	three	main	areas	within	the	product	guide,	each	with	varying	degrees	of
subheadings.	I’ve	included	spaces	and	indentation	only	to	make	the	hierarchy	clear	to	you—I	wouldn’t
indent	them	like	this	in	practice,	though	you	could	with	no	effect	on	how	they	display	in	browsers.

The	importance	of	headings
Headings	are	among	the	most	important	HTML	elements	in	any	page.	Because	headings	typically	convey
your	page’s	topic(s),	search	engines	weigh	them	heavily	when	matching	your	pages	against	search	terms.
This	is	particularly	true	for	the	likes	of	h1,	the	heading	of	the	highest	rank.	(Which	is	not	to	say	to	load
your	page	up	with	h1s;	search	engines	are	wise	to	that!)
Humans	love	good	headings,	too.	Sighted	users	scan	a	page’s	headings	to	determine	its	content.	Screen
reader	users	do	the	same,	but	with	their	hands	and	ears.	They’ll	often	navigate	a	page	by	headings	via	the
keyboard.	Listening	to	the	headings	allows	them	to	quickly	assess	a	page’s	content	and	find	areas	of
interest	without	having	to	listen	to	the	whole	page.	Once	they	find	an	interesting	heading,	they	can	choose
to	listen	to	the	associated	content	that	follows.	The	usability	and	accessibility	benefits	of	h1–h6	are	big.
In	short,	a	good	structure	of	headings	helps	both	you	and	your	visitors.

To	organize	your	webpage	with	headings
1.	In	the	body	section	of	your	HTML	document,	type	<hn>,	where	n	is	a	number	from	1	to	6,
depending	on	the	rank	of	the	heading	that	you	want	to	create.	h1	has	the	highest	rank,	and	h6	has	the
lowest	rank.

2.	Type	the	contents	of	the	header.
3.	Type	</hn>	where	n	is	the	same	number	used	in	step	1.

Tip
By	default,	browsers	typically	display	headings	progressively	smaller	moving	from	h1	to
h6	 .	(In	some	browsers,	h1	and	h2	look	the	same	by	default	when	nested	in	certain
elements.)	But	don’t	forget	to	choose	your	heading	levels	solely	based	on	what	hierarchy	is
appropriate	for	your	content,	not	on	how	big	or	small	you	want	the	text	to	appear.	You	can
style	the	headings	as	you	please	with	a	particular	font,	size,	color,	and	more.	For	details
about	achieving	this	with	CSS,	consult	Chapter	10.

	While	all	headings	display	in	boldface	by	default,	h1	is	in	a	larger	font	than	h2,	which	is
larger	than	h3,	and	so	on.	The	space	between	each	heading	is	also	a	product	of	the	default

browser	CSS,	not	any	blank	lines	you	might	include	in	your	HTML	document.

Tip
Avoid	skipping	a	level	when	creating	headings;	for	example,	from	h3	to	h5.	However,
you	can	move	from	a	lower	ranked	heading	to	a	higher	ranked	heading,	as	appropriate.	For
instance,	in	 	we	have	<h4>Scheduling	a	Recording</h4>	and	then
<h2>Advanced	Features</h2>.	That	sequence	makes	sense—just	like	it	might	if
this	were	a	printed	product	guide—because	the	Basic	Features	(also	an	h2)	section
containing	Scheduling	a	Recording	has	ended	and	Advanced	Features	is	beginning.

Tip
Don’t	use	an	h1–h6	to	markup	a	subtitle,	tagline,	or	a	subheading	that	isn’t	a	heading	for
its	own	section.	For	example,	think	of	a	news	story	that	has	a	main	heading	and	then	a
subheading	immediately	after	it.	In	that	case,	use	a	paragraph	 	or	other	non-heading
element.

Click	here	to	view	code	image

...
					<h1>Giraffe	Escapes	from	Zoo</h1>
					<p	class="subhead">Animals	Worldwide	Rejoice</p>

					<p>...	story	content	...</p>
...

	Here	is	one	approach	to	marking	up	a	subheading	or	subtitle	of	an	article,	a	blog	entry,	or	the
like.	You	could	include	a	class	(named	subhead	or	whatever	you	prefer)	to	facilitate	styling

it	with	CSS.

Tip
Previously,	HTML5	included	an	element	named	hgroup	for	grouping	consecutive
headings,	but	the	W3C	removed	it	from	the	HTML5	spec.

Tip
As	a	side	note,	in	 	I	used	the	lang	attribute	on	each	h2	to	indicate	that	its	text	is	in	a
different	language	(Spanish,	represented	by	the	language	code	es)	than	the	page’s	default
(English,	as	declared	by	<html	lang="en">).

Tip
At	the	time	of	this	writing,	there	is	talk	about	possibly	adding	a	subhead	element	to
HTML	for	marking	up	subheadings,	subtitles,	taglines,	and	bylines.	It’s	too	early	to	tell	if	it
will	be	adopted.

HTML5’s	Document	Outline
At	the	time	of	this	writing,	HTML5	includes	an	algorithm	for	how	it	treats	any	of	h1–h6
when	nested	in	the	article,	aside,	nav,	and	section	elements.	The	algorithm	is
often	referred	to	as	the	HTML5	document	outline.	No	browser	has	implemented	it,
however,	and	signs	point	to	that	remaining	the	case.	Furthermore,	among	screen	readers,
only	JAWS	(a	screen	reader	for	Windows)	accounts	for	it,	but	its	implementation	is	faulty.
With	this	in	mind,	the	W3C	has	included	the	document	outline	on	the	list	of	features	at	risk
of	being	removed	from	the	spec	by	the	time	it	goes	final	in	2014.	Even	if	it	happens	to
remain	in	the	spec	or	browsers	implement	it,	you	can	continue	to	mark	up	your	headings	as
I’ve	shown	here.	It	reflects	current	practices	and	is	future-proof—the	document	outline
won’t	break	your	pages.
In	other	words,	nothing	to	see	here!	I’m	mentioning	all	this	just	in	case	you	come	across	the
document	outline	elsewhere	and	wonder	if	you	need	to	learn	how	it	works.

Common	Page	Constructs
No	doubt	you’ve	visited	dozens	of	sites	arranged	like	the	one	shown	in	 .	Stripping	away	the	content,
you	can	see	that	there	are	four	main	components:	a	masthead	with	navigation,	an	article	in	the	main
content	area,	a	sidebar	with	tangential	information,	and	a	footer	 .

	A	common	layout	with	main	navigation	along	the	top,	main	content	on	the	left,	a	sidebar	on	the	right,
and	the	footer	at	the	bottom.	CSS	is	required	to	make	the	page	look	like	this.

	The	types	of	information	commonly	found	in	a	page.	This	is	just	one	type	of	arrangement,	though	a
common	one.

Now,	you	can’t	style	a	page	like	this	or	arrange	it	as	shown	without	CSS.	You’ll	start	learning	CSS	in
Chapter	7,	learn	how	to	format	text	and	add	colors	beginning	in	Chapter	10,	and	do	a	multi-column	layout
in	Chapter	11.
However,	the	semantics	that	apply	to	these	common	page	constructs	are	similar	no	matter	the	layout.
You’ll	explore	them	for	most	of	the	remaining	pages	of	this	chapter.	You’ll	see	how	to	use	the	header,
nav,	main,	article,	section,	aside,	and	footer	elements	to	define	the	structure	of	your	pages,
and	then	how	to	use	div	as	a	generic	container	for	additional	styling	and	other	purposes.	Except	for	div,
none	of	these	elements	existed	until	HTML5.
As	you	learn	about	these	elements,	don’t	get	too	attached	to	where	they	display	in	the	sample	layouts,	and
instead	focus	on	their	semantic	meaning.
In	the	ensuing	pages,	you’ll	get	an	early	look	at	some	other	elements,	such	as	the	ul	(unordered	list),
which	is	used	for	structuring	most	lists	of	links	(a	elements),	among	other	lists.	Those	will	be	explained
in	later	chapters.

Creating	a	Header
If	a	section	of	your	page	has	a	group	of	introductory	or	navigational	content,	mark	it	up	with	the	header
element.
A	page	can	have	any	number	of	header	elements,	and	their	meaning	can	vary	depending	on	their	context.
For	instance,	a	header	at	or	near	the	top	of	a	page	may	represent	the	header	(sometimes	called	a
masthead)	for	the	whole	page	 .	Typically,	the	page	header	includes	the	site’s	logo,	the	main	navigation	
,	other	global	links,	and	possibly	even	a	search	box	 .	Undoubtedly,	this	is	the	header	element’s

most	common	use,	but	don’t	mistake	it	for	its	only	one.
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav>
								
											Barcelona's	Architect
											<li	lang="es">La	Sagrada	Família
											Park	Guell
								
					</nav>
</header>
</body>
</html>

	This	header	represents	the	header	for	the	whole	page.	It	contains	a	list	of	links	in	a	nav	element	to
indicate	it’s	a	primary	set	of	navigation	on	the	page.	The	optional	role="banner"	portion	is	not

appropriate	for	every	header.	It	improves	accessibility	by	explicitly	marking	the	page-level	header.	See	
	for	another	example	and	“Improving	Accessibility	with	ARIA”	to	learn	more.	(See	“Marking

Navigation”	for	the	role	value	that’s	specific	to	the	nav	element.)

	The	page-level	header	containing	the	navigation.

	Here’s	a	styled	header	for	another	site.	This	type	of	page-level	header	is	common	across	the	web.	It
has	the	name	of	the	site	(usually	a	logo),	links	to	navigate	the	primary	areas	of	the	site,	and	a	search	box.

A	header	can	also	appear	deeper	within	a	page,	as	long	as	it	fits	the	bill.	One	example	is	a	section’s
table	of	contents	 .
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					...	[site	logo,	navigation,	etc.]	...
</header>

<main	role="main">
<article>
					<header>
								<h1>Frequently	Asked	Questions</h1>
								<nav>
											
															What	is	your	return	policy?
															How	do	I	find	a	location?
															...
											
								</nav>
					</header>

					<!--	links	in	2nd	header	point	to	these	-->
					<article	id="answer1">
								<h2>What	is	your	return	policy?</h2>
								<p>	...	[answer]	...	</p>
					</article>

					<article	id="answer2">
								<h2>How	do	I	find	a	location?</h2>
								<p>	...	[answer]	...	</p>
					</article>
					...
</article>	<!--	end	parent	article	-->
</main>
</body>
</html>

	This	page	has	two	headers:	one	serving	as	the	whole	page’s	header	and	another	as	the	header	for	the
Frequently	Asked	Questions	parent	article	element.	Note	that	the	first	one	doesn’t	have	any	h1–h6

headings,	but	the	second	one	does.	Also,	only	the	first	header	includes	role="banner"	because	it	is
the	page-level	header.

A	header	often	includes	its	section’s	heading	(an	h1–h6),	but	this	isn’t	mandatory.	For	example,	you
see	headings	in	 	but	not	in	 .

To	create	a	header
1.	Place	the	cursor	within	the	element	for	which	you	want	to	create	a	header.
2.	Type	<header>.
3.	Type	the	contents	of	the	header,	which	can	include	a	variety	of	content	types	marked	up	with	their
respective	HTML	elements	(most	of	which	you’ll	learn	about	in	the	coming	chapters).	For	instance,
a	header	might	contain	h1–h6	headings,	a	logo	or	series	of	logos,	navigation,	a	search	box,	and
more.

4.	Type	</header>.

Tip
Don’t	use	header	unnecessarily.	If	all	you	have	is	an	h1–h6,	there’s	no	need	to	wrap	it
in	a	header	in	most	cases.

Tip
A	header	is	not	interchangeable	with	a	heading,	as	in	the	h1–h6	elements	(see	“Creating
Headings”).	Each	has	its	own	semantic	purpose.

Tip
You	may	not	nest	a	footer	element	or	another	header	within	a	header,	nor	may	you
nest	a	header	within	a	footer	or	address	element.

Tip
A	header	doesn’t	always	have	to	contain	a	nav	element	as	the	examples	do	(and),
but	in	most	cases,	it	likely	will	if	the	header	contains	navigational	links.	In	the	case	of	
,	nav	is	appropriate	around	the	list	of	Frequently	Asked	Questions	links,	since	it’s	a

major	navigation	group	within	the	page,	as	discussed	in	“Marking	Navigation.”

Tip
See	“Creating	Generic	Containers”	to	learn	about	how	header	has	replaced	one	of	the
div	element’s	roles	from	its	pre-HTML5	days.

Marking	Navigation
Earlier	versions	of	HTML	didn’t	have	an	element	that	explicitly	represents	a	section	of	major	navigation
links,	but	HTML5	does:	the	nav	element.	Links	in	a	nav	may	point	to	content	within	the	page	 ,	to	other
pages	or	resources,	or	both.	Whatever	the	case	may	be,	use	nav	only	for	your	page’s	most	important
groups	of	links,	not	all	of	them.
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav	role="navigation">
								
											Barcelona's	Architect
											<li	lang="es">La	Sagrada	Família	
											Park	Guell
								
					</nav>
</header>
</body>
</html>

	These	links	(the	a	elements)	represent	an	important	set	of	navigation,	so	I’ve	nested	them	in	a	nav
element.	The	role	attribute	is	not	required	but	improves	accessibility.	See	the	last	tip	in	this	section	for

information	about	applying	role="navigation"	to	nav.

If	you	looked	closely	at	the	code	in	the	previous	section,	you	got	a	look	at	the	nav	element	in	action.	I’ve
carried	that	code	sample	over	to	this	page,	while	highlighting	nav.	The	nav	element	doesn’t	impose	any
default	formatting	on	its	contents	 .

	Our	navigation	looks	rather	plain	by	default.	The	bullets	are	not	a	product	of	the	nav	element,	which
has	no	default	styling	other	than	starting	on	its	own	line.	The	bullets	display	because	each	link	is	in	an	li
element	(a	list	item).	With	CSS,	you	can	turn	off	the	bullets	or	show	different	ones,	as	well	as	lay	out	the
links	horizontally,	change	their	color,	make	them	look	like	buttons,	and	more.	Chapters	11	and	15	have

examples	of	styled	lists	of	links.

To	designate	a	group	of	links	as	important	navigation
1.	Type	<nav>.
2.	Type	your	list	of	links	structured	as	a	ul	(unordered	list)	 	unless	the	order	of	the	links	is
meaningful	(like	breadcrumb	navigation),	in	which	case	you	could	structure	them	as	an	ol	(ordered
list).	(See	Chapters	6	and	15	to	learn	about	links	and	lists,	respectively.)

3.	Type	</nav>.

Tip
If	you	have	some	experience	with	HTML	or	XHTML,	you’re	probably	accustomed	to
structuring	your	links	in	a	ul	or	ol	element,	as	appropriate.	In	HTML5,	nav	doesn’t
replace	that	best	practice;	continue	to	use	those	elements,	and	simply	wrap	a	nav	around
them	 .

Tip
Although	screen	readers	on	the	whole	are	still	catching	up	with	the	new	semantics	in
HTML5,	the	nav	element	can	help	them	identify	your	page’s	important	navigation	and
allow	users	to	jump	to	them	via	the	keyboard.	This	makes	your	page	more	accessible,
improving	your	visitors’	experience.	Don’t	go	overboard,	though—if	too	many	groups	of
links	are	marked	with	nav,	the	page	becomes	noisier	for	screen	readers	and	the
importance	of	each	group	is	diminished.

Tip
The	HTML5	spec	recommends	not	wrapping	ancillary	page	footer	links	like	“Terms	of
Use”	and	“Privacy	Policy”	in	a	nav,	which	makes	sense.	Sometimes,	though,	your	page
footer	might	include	a	series	of	links	you	consider	very	important,	such	as	for	“Store
Locator,”	“Careers,”	and	the	like.	If	these	are	not	grouped	in	a	nav	elsewhere	in	your
page,	you	could	consider	putting	those	types	of	footer	links	in	a	nav.

Tip
HTML5	doesn’t	allow	nesting	a	nav	within	an	address	element.

Tip
See	“Improving	Accessibility	with	ARIA”	to	learn	how	to	use	role="navigation"
with	nav	 .

A	Deeper	Look	at	nav
As	I	mentioned	earlier,	just	because	you	have	a	group	of	links	in	your	page	doesn’t	mean	it
should	be	contained	in	a	nav.
Suppose	you	have	a	news	page	like	the	one	in	 .	It’s	an	article	about	a	gallery	opening	in
the	Arts	&	Entertainment	section	of	a	paper.	The	page	includes	four	lists	of	links,	only	two
of	which	are	considered	major	enough	to	warrant	being	wrapped	in	a	nav.	(I’ve
abbreviated	portions	of	the	code.)

Click	here	to	view	code	image

...
<body>
					<!--	====	Start	Page	Header	====	-->
					<header	role="banner">
								<!--	site	logo	could	go	here	-->
								<!--	site	global	navigation	-->
								<nav	role="navigation">
												...	
								</nav>
					</header>

					<!--	====	Start	Main	Content	====	-->
					<main	role="main">
								<h1>Arts	&	Entertainment:	Museums</h1>

								<article>
											<h2>Gallery	Opening	Features	the	Inspired,	Inspiring</h2>
											<p>...	[story	content]	...	</p>
								</article>

								<aside>
											<h2>Other	Stories</h2>
											<!--	not	wrapped	in	nav	-->
												...	[story	links]	...	
								</aside>
					</main>

					<!--	====	Start	Sidebar	====	-->
					<aside>
								<!--	secondary	navigation	-->
								<nav	role="navigation">
											
															Movies
															Music
															...
											
								</nav>
					</aside>

					<!--	====	Start	Page	Footer	====	-->
					<footer	role="contentinfo">
								<!--	Ancillary	links	not	wrapped	in	nav.	-->
									...	
					</footer>
</body>
</html>

	Only	two	of	this	page’s	groups	of	links	are	wrapped	in	nav.	The	other	two	aren’t	considered
major	groups	of	navigation.

The	secondary	navigation	in	the	aside	allows	the	user	to	navigate	to	category	pages	in
Arts	&	Entertainment	(such	as	Movies	and	Music),	so	I	felt	it	constitutes	a	major
navigational	section	of	the	page.	However,	the	Other	Stories	aside	with	links	does	not,
nor	do	the	footer	links.	(See	“Specifying	an	Aside”	regarding	the	aside	element.)
So	how	do	you	decide	when	a	group	of	links	deserves	a	nav?	Ultimately,	it’s	a	judgment
call	based	on	your	content.	At	a	minimum,	mark	up	your	site’s	global	navigation	(that	is,
what	allows	users	to	jump	to	sections	of	the	site)	with	nav.	Usually,	that	particular	nav

appears	within	a	header	for	the	whole	page	(see	“Creating	a	Header”).

Marking	the	Main	Area	of	a	Webpage
Most	webpages	have	a	variety	of	sections:	a	header,	a	footer,	perhaps	a	sidebar	with	additional
information	or	links	to	other	sites,	and	more.	However,	only	one	part	of	a	page	represents	its	main	content
—that	is,	its	primary	focus.	Wrap	this	content	with	the	aptly	named	main	element,	using	it	only	once	per
page	(and).
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav	role="navigation">
								...	[ul	with	links]	...
					</nav>
</header>

<main	role="main">
					<article>
								<h1	id="gaudi">Barcelona's	Architect</h1>
								<p>Antoni	Gaudí's	incredible	buildings	bring	millions	...</p>

								...	[rest	of	main	page	content]	...
					</article>
</main>

<aside	role="complementary">
					<h1>Architectural	Wonders	of	Barcelona</h1>

					...	[rest	of	aside]	...
</aside>

<footer	role="contentinfo">
					...	[copyright]	...
</footer>
</body>
</html>

	Here	is	a	look	ahead	at	the	completed	page	we	are	evolving	throughout	the	chapter.	Some	of	the
elements	will	look	unfamiliar	to	you,	but	we’ll	cover	them	shortly.	The	main	element	surrounds	the
content	for	the	page’s	central	topic.	It’s	good	practice	to	include	role="main"	in	the	main	start	tag

(see	the	last	tip).

	The	display	of	the	main	element	begins	on	its	own	line,	just	like	a	p,	header,	footer,	and	some
other	elements,	but	otherwise	does	not	affect	the	style	of	your	page	at	all.	(The	layout	you	see	here	is

because	of	CSS,	not	main.)	I’ve	added	a	blue	outline	to	help	you	see	what	part	of	the	styled,	completed
page	main	encompasses.

Tip
main	is	one	of	the	newest	elements	in	HTML5.	Remember	to	use	it	only	once	in	each
page.

Tip
If	you’re	creating	a	web	application,	wrap	main	around	its	main	functionality.

Tip
You	cannot	place	main	inside	an	article,	aside,	footer,	header,	or	nav
element.

Tip
The	role="main"	attribute-value	pair	 	can	help	screen	readers	locate	the	main
content	of	your	pages.	See	“Improving	Accessibility	with	ARIA”	to	learn	more	about
ARIA	landmarks	like	this	one.

Creating	an	Article
Another	element	that’s	new	thanks	to	HTML5	is	article	(and).	You’ve	seen	some	examples	of	it
in	play	already.	Now	let’s	learn	more	about	what	makes	it	tick.
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav	role="navigation">
								...	[ul	with	links]	...
					</nav>
</header>

<main	role="main">
					<article>
								<h1	id="gaudi">Barcelona's	Architect</h1>

								<p>Antoni	Gaudí's	incredible	buildings	bring	millions	of	tourists	to	Barcelona
each	year.</p>

								<p>Gaudí's	non-conformity,	already	visible	in	his	teenage	years,	coupled	with	his
quiet	but	firm	devotion	to	the	church,	made	a	unique	foundation	for	his	thoughts	and
ideas.	His	search	for	simplicity...is	quite	apparent	in	his	work,	from	the	Park	Guell	and	its	incredible	sculptures	and	mosaics,	to...</p>

								<h2	id="sagrada-familia"	lang="es">La	Sagrada	Família</h2>

								<p><img	src="img/towers.jpg"	width="75"	height="100"	alt="Sagrada	Família	Towers"
/>	The	complicatedly	named	and	curiously	unfinished	masterpiece...</p>

								<h2	id="park-guell">Park	Guell</h2>

								...	[image	and	paragraphs]	...
					</article>
</main>
</body>
</html>

	I’ve	abbreviated	the	article	contents	and	the	nav	code	from	the	previous	section	to	keep	it	simple.	You
can	see	the	complete	version	of	the	page	code	on	the	book	site	at	www.htmlcssvqs.com/8ed/structure-
final.	Although	this	example	includes	only	paragraphs	and	images,	an	article	can	contain	a	variety	of

content	types.

http://www.htmlcssvqs.com/8ed/structure-final

	Now	the	page	has	header,	nav,	main,	and	article	elements,	as	well	as	their	contents.	The
article	headings	may	be	a	different	size	by	default	depending	on	the	browser.	You	can	standardize

their	look	across	browsers	with	CSS	(see	Chapter	10).

Based	on	its	name,	you’d	rightly	guess	that	you	can	use	article	to	contain	content	like	a	newspaper
article.	However,	it	isn’t	limited	to	that.	In	HTML5,	“article”	isn’t	meant	literally.
Here’s	how	HTML5	defines	it:

The	article	element	represents	a	complete,	or	self-contained,	composition	in	a	document,
page,	application,	or	site	and	that	is,	in	principle,	independently	distributable	or	reusable,	for

example	in	syndication.	This	could	be	a	forum	post,	a	magazine	or	newspaper	article,	a	blog
entry,	a	user-submitted	comment,	an	interactive	widget	or	gadget,	or	any	other	independent	item
of	content.

Other	article	examples	could	include	a	movie	or	music	review,	a	case	study,	a	product	description,
and	more.	You	might	have	been	surprised	to	learn	that	it	also	can	be	an	interactive	widget	or	gadget,	but
those	too	are	independent,	reusable	items	of	content.

To	create	an	article
1.	Type	<article>.
2.	Type	the	article’s	contents,	which	could	include	any	number	of	elements,	such	as	paragraphs,	lists,
audio,	video,	images,	and	figures.

3.	Type	</article>.

Tip
You	can	nest	an	article	inside	another	one	as	long	as	the	inner	article	is	related	to
the	article	on	the	whole.	See	the	sidebar	for	an	example.

Tip
A	page	may	contain	several	article	elements	(or	none	at	all).	For	example,	a	blog’s
homepage	typically	includes	a	few	of	the	most	recent	postings;	each	could	be	its	own
article.

Tip
An	article	may	have	one	or	more	section	elements	(covered	next).	It’s	also
perfectly	valid	to	let	the	h1–h6	elements	alone	indicate	the	parts	within	your	article,
as	I	did	here.

More	article	Examples
The	previous	example	 	is	just	one	way	to	use	article.	Let’s	take	a	look	at	some	more
possibilities.
Figure	 	illustrates	how	you	could	mark	up	a	basic	news	story	or	report.	Note	the	use	of
the	footer	and	address	elements	(see	discussions	about	them	in	this	chapter	and
Chapter	4,	respectively).	Here,	address	applies	only	to	its	parent	article	(the	one
shown),	not	to	the	page	or	any	article	elements	nested	within	that	article,	such	as
the	reader	comments	in	 .

Click	here	to	view	code	image

...
<article>
					<h1>The	Diversity	of	Papua	New	Guinea</h1>
					<p>Papua	New	Guinea	is	home	to	more	than	800	tribes	and	languages	...</p>

					...	[rest	of	story	content]	...

					<!--	article's	footer,	not	the	page's	-->
					<footer>
								<p>Leandra	Allen	is	a	freelance	journalist	who	earned	her	degree	in
anthropology	from	the	University	of	Copenhagen.</p>

								<address>
								You	may	reach	her	at	
leandra@therunningwriter.com.
								</address>
					</footer>
</article>
...

	A	common	way	to	mark	up	an	article	that	includes	information	about	the	author.
Click	here	to	view	code	image

...
<article>
					<h1>The	Diversity	of	Papua	New	Guinea</h1>
					...	[parent	article	content]	...

					<footer>
								...	[parent	article	footer]	...
					</footer>

					<section>
								<h2>Reader	Comments</h2>
								<article>
											<footer>travelgal	wrote	on	<time	datetime="2014-02-26">February	26,
2014</time>:</footer>
											<p>Great	article!	I've	always	been	curious	about	Papua	New	Guinea.</p>
								</article>

								<article>
											...	[next	reader	comment]	...
								</article>
					</section>
</article>
...

	Each	reader	comment	is	an	article	nested	in	the	main	article.

Figure	 	demonstrates	nested	article	elements	in	the	form	of	user-submitted	comments
to	the	parent	article,	just	like	you	see	in	the	comments	section	of	blogs	or	news	sites.	It
also	shows	one	use	for	the	section	element	(see	“Defining	a	Section”)	and	the	time
element,	covered	in	Chapter	4.
These	are	just	a	couple	of	more	common	ways	to	leverage	article	and	its	companion
elements.

Defining	a	Section
Another	of	the	new	elements	in	HTML5	is	section	(through).	In	part,	HTML5	defines	it	as
follows:

The	section	element	represents	a	generic	section	of	a	document	or	application.	A	section,	in
this	context,	is	a	thematic	grouping	of	content,	typically	with	a	heading.
Examples	of	sections	would	be	chapters,	the	various	tabbed	pages	in	a	tabbed	dialog	box,	or	the
numbered	sections	of	a	thesis.	A	website’s	home	page	could	be	split	into	sections	for	an
introduction,	news	items,	and	contact	information.

Click	here	to	view	code	image

...
<body>
...
<main	role="main">
					<h1>Latest	World	News</h1>
					<section>
								<h2>Breaking	News</h2>
								...	[list	of	headlines]	...
					</section>

					<section>
								<h2>Business</h2>
								...	[list	of	headlines]	...
					</section>

					<section>
								<h2>Arts</h2>
								...	[list	of	headlines]	...
					</section>
</main>
...
</body>
</html>

	Take	a	look	at	virtually	any	news	site	and	you’re	likely	to	see	news	headlines	grouped	in	various
categories.	Each	group	could	be	marked	with	a	section.

Click	here	to	view	code	image

...
<h1>Graduation	Program</h1>
<section>
					<h2>Ceremony</h2>
					
								Opening	Procession
								Speech	by	Valedictorian
								Speech	by	Class	President
								...
					
</section>

<section>
					<h2>Graduates	(alphabetical)</h2>
					
								Molly	Carpenter
								...
					
</section>
...

	In	this	slightly	modified	example	from	the	HTML5	spec,	you	see	section	used	to	demarcate	the
sections	of	a	graduation	program	 .

	Like	most	elements	in	this	chapter,	section	doesn’t	affect	a	page’s	display.	The	numbers	appear
because	of	the	ordered	lists	(ol)	in	 .	(Please	see	lists	in	Chapter	15.)

Although	section	is	partly	defined	as	a	“generic”	section,	don’t	confuse	it	with	the	truly	generic	div
element	(see	“Creating	Generic	Containers”).	Semantically,	section	marks	a	distinct	section	of	your
page,	whereas	div	conveys	no	meaning	whatsoever.

To	define	a	section
1.	Type	<section>.
2.	Type	the	section’s	contents,	which	could	include	any	number	of	elements,	such	as	paragraphs,	lists,
audio,	video,	images,	figures,	and	more.

3.	Type	</section>.

Tip
You	may	nest	section	elements	in	an	article	to	explicitly	mark	the	various	sections
or	chapters	of	a	report,	a	story,	a	manual,	and	so	on.	For	example,	I	could	use	it	in	the
Antoni	Gaudí	example	shown	in	this	chapter—one	section	surrounding	the	La	Sagrada
Família	h2	and	related	paragraph	and	another	section	around	the	Park	Guell	h2	and
related	paragraphs.

Tip
If	you	need	to	add	a	container	around	content	solely	for	styling	purposes,	use	div	instead
of	section.

Getting	a	Feel	for	the	section	Element
I	quoted	HTML5’s	definition	of	section	so	you’d	get	it	straight	from	the	source.	The
section	element	has	been	the	subject	of	a	fair	amount	of	discussion	in	the	web
community	because	its	usage	seems	open	to	interpretation.
When	considering	when	to	use	section,	it	can	help	to	keep	the	“thematic	grouping”	part
of	its	definition	in	mind.	It’s	another	reason	why	section	is	different	than	the	likes	of
div.	To	differentiate	between	section	and	article,	consider	that	section	is	more
organizational	and	structural	in	nature,	whereas	article	represents	a	self-contained
composition.
As	mentioned	in	Chapter	1,	there	isn’t	always	a	right	choice	and	wrong	choice	when	it
comes	to	marking	up	your	content—just	most	of	the	time.	The	other	times	come	down	to
personal	decisions	about	which	HTML	elements	you	feel	best	describe	your	content.
So	think	carefully	when	you’re	deciding	when	to	use	section,	but	don’t	wring	your
hands	worrying	about	whether	you	get	it	and	other	elements	exactly	right	every	time.
Sometimes	it’s	a	little	subjective,	and	in	any	case,	your	page	will	continue	to	work.	Plus,
no	one’s	going	to	come	knocking	at	your	door	in	the	middle	of	the	night.
Well,	I	might,	but	that’s	just	because	it’s	dark	and	scary	outside.

Specifying	an	Aside
Sometimes	you	have	a	section	of	content	that	is	tangentially	related	to	the	content	around	it	but	that	is
sufficient	on	its	own	(conceptually,	if	not	visually)	(and).	How	would	you	indicate	the	semantics
for	that?
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav	role="navigation">
								...	[ul	with	links]	...
					</nav>
</header>

<main	role="main">
					<article>
								<h1	id="gaudi">Barcelona's	Architect</h1>

					...	[rest	of	article]	...
					</article>
</main>

<aside	role="complementary">
					<h1>Architectural	Wonders	of	Barcelona</h1>

					<p>Barcelona	is	home	to	many	architectural	wonders	in	addition	to	Gaudí's	work.	Some
of	them	include:</p>
					
								<li	lang="es">Arc	de	Triomf
								The	cathedral	(La	Seu)
								<li	lang="es">Gran	Teatre	del	Liceu
								<li	lang="es">Pavilion	Mies	van	der	Rohe
								<li	lang="es">Santa	Maria	del	Mar
					

					<p><small>Credit:	<a	href="http://www.barcelona.de/en/barcelona-architecture-
buildings.html"	rel="external"><cite>Barcelona.de</cite>.</small></p>
</aside>
</body>
</html>

	This	aside,	featuring	information	about	Barcelona’s	architectural	wonders,	is	tangentially	related	to
the	Antoni	Gaudí	content	that’s	the	focus	of	the	page,	but	it	also	would	work	fine	by	itself	without	that

context.	I	could	have	nested	it	within	the	article	since	they	are	related,	but	I	decided	to	put	it	after	the
article	in	order	to	treat	it	visually	like	a	sidebar	with	CSS	 .	The	role="complementary"	on

the	aside	is	optional	but	can	improve	accessibility.	See	the	last	tip	for	more	information.

	The	aside	appears	below	the	article	because	it	follows	it	in	the	HTML	itself	 .	As	you	can	see,
browsers	don’t	apply	any	special	formatting	to	an	aside	by	default	(except	starting	them	on	their	own

line).	However,	you	have	complete	control	over	its	appearance	with	CSS	 .

Until	HTML5,	there	was	no	way	to	do	this	explicitly.	Now,	you	have	the	aside	element.
Examples	of	aside	include	a	pull	quote,	a	sidebar	 ,	a	box	of	links	to	related	articles	on	a	news	site,
advertising,	groups	of	nav	elements	(for	instance,	a	blog	roll),	a	Twitter	feed,	and	a	list	of	related
products	on	a	commerce	site.

	When	you	apply	CSS	to	the	finished	page,	you	can	make	the	aside	(which	begins	with	“Architectural
Wonders	of	Barcelona”)	appear	alongside	the	main	content	instead	of	below	it.	So	in	this	case,	you’ve
treated	the	aside	like	a	sidebar.	(You’ll	learn	how	to	do	a	two-column	CSS	layout	in	Chapter	11.)

Although	it’s	common	to	think	of	an	aside	as	a	sidebar,	you	can	place	an	aside	element	in	a	variety	of
places	in	your	page,	depending	on	the	context.	An	aside	nested	within	the	primary	content	of	a	page
(instead	of	placed	outside	as	with	sidebars)	should	be	related	to	that	content	specifically,	rather	than	to
only	the	page	on	the	whole.	Example	1	in	the	sidebar	“Other	aside	Examples”	demonstrates	this.

To	specify	an	aside
1.	Type	<aside>.
2.	Type	the	content	for	the	aside,	which	could	include	any	number	of	elements,	such	as	paragraphs,
lists,	audio,	video,	images,	figures,	and	more.

3.	Type	</aside>.

Tip
Place	sidebar	content	after	your	page’s	main	content	in	the	HTML	 .	It’s	better	for	SEO
and	accessibility	purposes	to	place	the	most	important	content	first.	You	can	change	the
order	in	which	they	display	in	the	browser	with	CSS.

Tip
Use	the	figure	element	(see	Chapter	4),	not	aside,	to	mark	up	figures	that	are	related
to	and	referenced	from	your	content,	such	as	a	chart,	a	graph,	or	an	inset	photo	with	a
caption.

Tip
HTML5	disallows	nesting	an	aside	inside	an	address	element.

Tip
See	“Improving	Accessibility	with	ARIA”	to	learn	how	you	may	use
role="complementary"	with	aside.

Other	aside	Examples
As	mentioned,	aside	can	appear	within	your	primary	content	or	outside	it

Example	1	(nested	in	related	primary	content):
Click	here	to	view	code	image

...
<body>
<main	role="main">
				<article>
								<h1>The	Diversity	of	Papua	New	Guinea</h1>
								...	[article	content]	...
								<aside>
												<h2>Papua	New	Guinea	Quick	Facts</h2>
												
																	The	country	has	38	of	the	43	known	birds	of	paradise
																	Though	quite	tropical	in	some	regions,	others	occasionally
experience	snowfall.
																	...
												
								</aside>
				...	[more	article	content]	...
				</article>
</main>
</body>
</html>

That	same	story	might	include	a	pull	quote	from	the	article	text.	That,	too,	would	be	in	an
aside.	Or	it	could	have	a	“Related	Stories”	aside	containing	a	list	of	links	to	other
essays	about	the	country.	Alternatively,	that	aside	could	be	in	a	different	page	section
instead	of	nested	in	the	article	in	main.

You’ve	already	seen	one	example	of	an	aside	in	a	sidebar	(and).	Now,	let’s
consider	an	example	of	a	design	portfolio	or	set	of	case	studies,	in	which	each	HTML	page
focuses	on	a	single	project	and	you	provide	links	(nested	in	a	nav)	to	the	other	project
pages	in	an	adjacent	column	(as	controlled	by	CSS,	not	simply	by	virtue	of	arranging	the
code	as	shown	in	Example	2).

Example	2	(aside	not	nested	in	main	content	and	containing	a	nav):
Click	here	to	view	code	image

...
<body>
<main	role="main">
				<article>
								<h1>...	[name	of	project]	...</h1>
								<figure>...	[project	photo]	...</figure>
								<p>...	[project	write-up]	...</p>
				</article>
</main>

<!--	this	aside	is	not	nested	in	the	main	content	-->
<aside>
				<h2>Other	Projects</h2>
				<nav>
								
												Habitat	for	Humanity
brochure
												Royal	Philharmonic	Orchestra
website
												...
								
				</nav>
</aside>
</body>
</html>

This	aside	is	outside	the	article	because	it	is	tangentially	related	to	the	page	on	the
whole,	but	it	is	not	about	the	article	content	specifically.

Creating	a	Footer
When	you	think	of	a	footer,	you	probably	think	of	a	page	footer—the	part	of	a	page	that	often	contains	a
copyright	notice	and	maybe	links	to	a	privacy	policy	and	the	like.	HTML5’s	footer	element	is
appropriate	for	that,	but	like	header,	it	can	also	be	used	elsewhere.
The	footer	element	represents	a	footer	for	the	nearest	article,	aside,	blockquote,	body,
details,	fieldset,	figure,	nav,	section,	or	td	element	in	which	it	is	nested.	It’s	the	footer
for	the	whole	page	only	when	its	nearest	ancestor	from	that	list	of	elements	is	the	body	(and).
Click	here	to	view	code	image

...
<body>
<header	role="banner">
					<nav	role="navigation">
								...	[ul	with	links]	...
					</nav>
</header>

<main	role="main">
					<article>
								<h1	id="gaudi">Barcelona's	Architect</h1>
								...	[rest	of	article]	...

								<h2	id="sagrada-familia"	lang="es">La	Sagrada	Família</h2>
									...	[image	and	paragraph]	...

								<h2	id="park-guell">Park	Guell</h2>
								...	[another	image	and	paragraphs]	...
					</article>
</main>

<aside	role="complementary">
					<h1>Architectural	Wonders	of	Barcelona	</h1>
					...	[rest	of	aside]	...
</aside>

<footer>
					<p><small>©	Copyright	All	About	Gaudí</small></p>
</footer>
</body>
</html>

	This	footer	represents	the	footer	for	the	whole	page,	since	its	nearest	ancestor	is	the	body	element.
Our	page	now	has	header,	nav,	main,	article,	aside,	and	footer	elements.	Not	every	page
requires	them	all,	but,	along	with	section,	they	do	represent	the	primary	page	constructs	available	in

HTML.

	This	footer	appears	at	the	very	bottom	of	the	page,	after	the	aside.	The	footer	element	itself
doesn’t	impose	any	formatting	on	the	text	by	default.	Here,	the	copyright	notice	is	smaller	than	normal	text

because	it’s	nested	in	a	small	element	to	represent	legal	print	semantically	(see	Chapter	4).	Like
everything	else,	the	font	size	can	be	changed	with	CSS.

And	if	a	footer	wraps	all	the	content	in	its	section	(an	article,	for	example),	it	represents	the	likes
of	an	appendix,	index,	long	colophon,	or	long	license	agreement,	depending	on	its	content.

To	create	a	footer
1.	Place	the	cursor	within	the	element	for	which	you	want	to	create	a	footer.
2.	Type	<footer>.
3.	Type	the	contents	of	the	footer.
4.	Type	</footer>.

Tip
A	footer	typically	includes	information	about	its	section,	such	as	links	to	related
documents,	copyright	information,	its	author,	and	similar	items.	See	the	first	two	examples
in	the	“Other	footer	Examples”	sidebar.

Tip
A	footer	doesn’t	need	to	be	at	the	end	of	its	containing	element,	though	usually	it	is.

Tip
It’s	invalid	to	nest	a	header	or	another	footer	within	a	footer.	Also,	you	can’t	nest
a	footer	within	a	header	or	address	element.

Tip
See	“Creating	Generic	Containers”	to	learn	how	footer	has	replaced	one	of	the	div
element’s	roles	from	its	pre-HTML5	days.

Tip
See	“Improving	Accessibility	with	ARIA”	to	learn	why	to	use	role="contentinfo"
on	the	footer	for	a	whole	page.	It	would	be	appropriate	to	include	it	on	the	footer	in	
	because	it	is	a	page-level	footer,	but	I	omitted	it	to	avoid	giving	the	impression	that

role="contentinfo"	is	right	for	all	footer	elements.	See	“Other	footer
Examples”	for	an	example	that	shows	the	distinction	and	uses	the	role	properly.

Other	footer	Examples
You	saw	one	small	example	of	a	footer	for	the	whole	page	(and).	Figure	 	is
another	example	of	a	page	footer,	but	with	more	content.

Click	here	to	view	code	image

...
<body>
...	[page	header	with	global	navigation]	...
...	[page	content]	...

<!--	this	is	a	page	footer	because	body	is	its	nearest	ancestor	-->
<footer	role="contentinfo">
					<p><small>©	Copyright	2014	The	Corporation,	Inc.</small></p>

					
								Terms	of	Use
								Privacy	Policy
					
</footer>
</body>
</html>

	The	footer	for	a	whole	page	often	has	a	copyright	notice	and	links	that	aren’t	part	of	the	global
navigation	in	the	header	for	the	whole	page.

Figure	 	demonstrates	a	footer	in	the	context	of	a	page	section	(in	this	case	an
article),	and	a	second	footer	for	the	whole	page.	(See	“More	article	Examples”
for	an	explanation	of	the	address	element’s	scope	here.)

Click	here	to	view	code	image

...
<body>
...
<article>
					<h1>...	[article	heading]	...</h1>
					<p>...	[article	content]	...</p>

					<!--	the	article	footer	-->
					<footer>
								<p>Leandra	Allen	is	a	freelance	journalist	who	earned	her	degree	in
anthropology	from	the	University	of	Copenhagen.</p>
								<address>
											You	may	reach	her	at	leandra@therunningwriter.com.
								</address>
					</footer>
</article>

<!--	the	page	footer	-->
<footer	role="contentinfo">
					...	[copyright	and	so	on]	...
</footer>
</body>
</html>

	The	first	footer	is	for	the	article,	by	virtue	of	being	nested	within	it.	The	second
footer	is	for	the	whole	page.	Use	role="contentinfo"	only	on	the	page	footer,	and	thus

only	once	per	page.

Note	that	only	the	page	footer	is	given	the	optional	(but	recommended)
role="contentinfo".	See	“Improving	Accessibility	with	ARIA”	to	learn	more	about	this
role.

Creating	Generic	Containers
Sometimes	you	need	to	wrap	a	container	around	a	segment	of	content	because	you	want	to	apply	some
styling	with	CSS	or	maybe	an	effect	with	JavaScript.	Your	page	just	wouldn’t	be	the	same	without	it	 .
But	maybe	when	you	assess	the	content,	you	determine	that	using	article,	section,	aside,	nav,	or
other	elements	wouldn’t	be	appropriate	semantically.

	I	achieved	this	design	without	any	div	elements.	But	by	adding	a	div	around	the	whole	page	 ,	I
now	have	a	generic	container	to	which	I	can	apply	more	styles	(see	the	results	in).

What	you	really	need	is	a	generic	container,	one	without	any	semantic	meaning	at	all.	That	container	is	the
div	element	(think	of	a	“division”)	 .	With	a	div	in	place,	you	can	apply	the	desired	style	 	or
JavaScript	to	it.	Be	sure	to	read	the	sidebar	“About	div	and	When	to	Use	It	in	HTML5”	to	learn	more
about	when	to	use	div	in	your	pages.
Click	here	to	view	code	image

...
<body>
<div>
					<header	role="banner">
								<nav	role="navigation">
											...	[ul	with	links]	...
								</nav>
					</header>

					<main	role="main">
								<article>
											<h1	id="gaudi">Barcelona's	Architect</h1>
											...	[rest	of	article]	...

											<h2	id="sagrada-familia"	lang="es">La	Sagrada	Família</h2>
											...	[image	and	paragraph]	...

											<h2	id="park-guell">Park	Guell</h2>
											...	[another	image	and	paragraphs]	...
								</article>
					</main>

					<aside	role="complementary">
								<h1>Architectural	Wonders	of	Barcelona</h1>
								...	[rest	of	aside]	...
					</aside>

					<footer	role="contentinfo">
								<p><small>©	Copyright	All	About	Gaudí</small></p>
					</footer>
</div>
</body>
</html>

	Now	a	div	surrounds	all	the	content.	The	page’s	semantics	are	unchanged,	but	now	I	have	a	generic
container	I	can	hook	some	styles	onto	with	CSS	 .

	A	div	element	doesn’t	have	any	of	its	own	styling	by	default	except	that	it	starts	on	a	new	line	 .
However,	you	can	apply	styles	to	div	to	implement	your	designs.	Here,	I	added	the	light	background	and
a	drop	shadow	to	the	div.	That	allowed	me	to	change	the	body	element’s	background	to	a	red	gradient

so	the	content	pops.	You	can	see	how	I	achieved	this	in	the	page’s	HTML	and	CSS
(www.htmlcssvqs.com/8ed/structure-final).

To	create	a	generic	container
1.	Type	<div>.
2.	Create	the	contents	of	the	container,	which	could	include	any	number	of	elements.
3.	At	the	end	of	the	container,	type	</div>.

http://www.htmlcssvqs.com/8ed/structure-final

Tip
Like	header,	footer,	main,	article,	section,	aside,	nav,	h1–h6,	p,	and
many	others,	div	automatically	displays	on	a	new	line	by	default	 .

	The	same	page	with	no	CSS	applied	to	the	div,	the	headings,	the	paragraphs,	or	any	other
element.	As	you	can	see,	the	div	doesn’t	make	anything	look	fancy	on	its	own.

Tip
div	is	also	helpful	when	implementing	certain	interactions	or	effects	with	JavaScript.	For
instance,	displaying	a	photo	or	dialog	box	in	an	overlay	that	covers	the	page	(the	overlay	is
typically	a	div).

Tip
For	all	of	my	stressing	the	point	that	HTML	describes	the	meaning	of	your	content,	div
isn’t	the	only	element	that	has	no	semantic	value.	The	span	element	is	div’s	counterpart.
Whereas	div	is	a	semantic-less	container	for	blocks	of	content,	span	(written	as
content	is	here)	is	one	for	phrases,	like	within	a	p	element	for
paragraphs.	See	more	about	span	in	Chapter	4.

Tip
See	“Improving	Accessibility	with	ARIA”	to	learn	how	you	may	use	landmark	roles	with
div.

About	div	and	When	to	Use	It	in	HTML5
Of	the	structural	elements	featured	in	this	chapter,	div	is	the	only	one	besides	h1–h6	that
pre-dates	HTML5.	Until	HTML5,	div	was	the	de	facto	choice	for	surrounding	chunks	of
content	such	as	a	page’s	header,	footer,	main	content,	insets,	and	sidebars	so	you	could
style	them	with	CSS.	But	div	had	no	semantic	meaning	then,	and	it	still	doesn’t	today.
That’s	why	HTML5	introduced	header,	footer,	main,	article,	section,
aside,	and	nav.	These	types	of	building	blocks	were	so	prevalent	on	webpages	that	they
deserved	their	own	elements	with	meaning.	div	doesn’t	go	away	in	HTML5,	you’ll	just
have	fewer	occasions	to	use	it	than	in	the	past.
Let’s	look	at	a	couple	of	common	instances	in	which	div	is	the	right	choice.
You’ve	seen	one	already:	to	wrap	a	whole	page	with	a	container	for	styling	purposes	(
and).
How	did	I	get	the	two-column	layout	with	div?	I	applied	some	CSS	to	the	main	element
to	make	it	display	as	column	one	and	to	the	aside	element	to	make	it	display	as	column
two.
Much	of	the	time,	however,	each	of	your	columns	has	more	than	one	section	of	content.	For
instance,	maybe	you	want	another	article	(or	section,	or	aside,	and	so	on)	in	the
main	content	area	below	the	first	article.	And	maybe	you	want	an	additional	aside	in
the	second	column,	say,	with	a	list	of	links	to	other	sites	about	Gaudí.	Or	perhaps	you’d
like	yet	another	type	of	element	in	that	column.
You’d	need	to	group	together	the	sidebar	content	in	a	div	 	and	then	style	that	div
accordingly.	(If	you	were	thinking	section	would	be	an	option	instead,	it	isn’t	intended
as	a	generic	container	for	styling.)	I’ve	provided	a	diagram	 	to	help	you	visualize	the
relationship	between	the	code	and	a	potential	CSS	layout.	Keep	in	mind	that	it’s	just	one
layout	possibility	for	this	HTML;	CSS	is	quite	powerful.

Click	here	to	view	code	image

...
<body>
<!--	Start	page	container	-->
<div	class="container">
					<header	role="banner">
								...
					</header>

					<!--	Column	One	when	CSS	applied	-->
					<main	role="main">
								<article>
											...
								</article>

								<article>
											...
								</article>

								...	[more	sections	as	desired]	...
					</main>
					<!--	end	column	one	-->

					<!--	Column	Two	when	CSS	applied	-->
					<div	class="sidebar">
								<aside	role="complementary">
											...
								</aside>

								<aside	role="complementary">
											...
								</aside>

								...	[more	sections	as	desired]	...
					</div>
					<!--	end	column	two	-->

					<footer	role="contentinfo">
								...
					</footer>
</div>
<!--	end	page	container	-->
</body>
</html>

	This	page	has	the	div	that	contains	the	whole	page,	plus	one	that	wraps	the	sidebar	content.
The	div	with	class="sidebar"	(any	class	name	will	do)	surrounds	the	content	you	want	to
display	as	column	two.	Then	you	can	use	the	class	in	your	CSS	to	target	each	specific	div	for

styling.	The	main	element	can	be	styled	for	column	one.

	This	diagram	illustrates	how	the	code	in	 	(minus	the	role	attributes)	could	map	to	a	CSS
layout	conceptually.	It’s	a	very	common	arrangement,	but	just	one	of	many	possibilities	that	CSS
affords	you	with	the	same	HTML.	Be	sure	to	see	the	next	section,	“Improving	Accessibility	with

ARIA,”	to	learn	how	to	enhance	the	semantics	and	accessibility	of	your	pages.

So,	it’s	very	common	to	have	a	div	around	a	group	of	content	that	you	want	to	style	as	a
column	or	even	a	module	within	a	column.	In	terms	of	what	goes	in	the	div	elements,	well
that	can	vary	wildly,	based	on	what	content	you	want	in	your	pages.	Don’t	forget	that,	as
your	primary	semantic	containers	for	sections	of	content,	article,	section,	aside,
and	nav	can	go	nearly	anywhere.	As	can	header	and	footer.	Don’t	read	too	much	into
the	fact	that	the	example	(and)	shows	only	article	elements	in	the	main
content	area	and	aside	elements	in	the	sidebar.
To	be	sure,	though,	div	should	be	your	last	resort	as	a	container	due	to	its	lack	of
semantic	value.	Most	of	the	time,	it’ll	be	right	to	use	header,	footer,	main	(once),
article,	section,	aside,	and	possibly	nav	instead.	However,	don’t	use	one	of
those	just	to	avoid	div	if	it’s	not	semantically	appropriate	to	do	so.	div	has	its	place;	you
just	want	to	limit	its	use.
Having	said	that,	there	is	a	valid	situation	in	which	it	is	fine	to	use	div	for	all	(or	most,
it’s	up	to	you)	containers	in	a	page	instead	of	the	new	HTML5	elements.	See	“Styling
HTML5	Elements	in	Older	Browsers”	in	Chapter	11	for	more	information.

Improving	Accessibility	with	ARIA
WAI-ARIA	(Web	Accessibility	Initiative’s	Accessible	Rich	Internet	Applications),	or	ARIA	for	short,	is
a	specification	that	declares	itself	“a	bridging	technology.”	That	is,	it	fills	semantic	gaps	with	attributes
you	can	use	in	your	pages	until	languages	like	HTML	provide	their	own	equivalent	semantics.

You’ve	likely	noticed	that	most	examples	in	this	chapter	include	one	or	more	ARIA	role	attributes,
along	with	a	note	pointing	you	to	this	section	to	learn	more.	Here	we	go!	Oh,	wait.	I’ll	get	to	role	in	a
second,	but	first	let’s	review	what	we	know	about	accessibility	so	far.
Accessibility	is	about	making	your	site’s	content	available	to	all	visitors.	Some	visitors	to	your	sites	will
rely	on	assistive	technologies	such	as	screen	readers	to	access	your	page	content	(see	the	sidebar	“Trying
Screen	Readers”).
Making	your	sites	accessible	is	part	of	being	a	thoughtful,	responsible	citizen	of	the	web.	Plus,	it’s	good
for	you—why	wouldn’t	you	want	visitors	to	be	able	to	access	your	content?
Fortunately,	it’s	simple	to	make	your	pages	accessible	in	most	cases.	You	can	improve	your	site’s
accessibility	simply	by	marking	up	your	content	with	the	HTML	that	best	describes	it.	So	if	you’re	already
doing	that,	you’re	doing	great.	In	this	section,	I’ll	tell	you	how	adding	a	few	simple	attributes	to	your
HTML	can	help	your	visitors	even	more.

Trying	Screen	Readers
The	following	screen	readers	are	among	the	popular	ones	available.	All	but	VoiceOver	are
for	Windows.
	JAWS:	Free	demo	version	available	at	www.freedomscientific.com.
	NVDA:	Free	at	www.nvda-project.org.
	VoiceOver:	Free	as	part	of	OS	X	and	iOS	4+.	Type	Command-F5	to	start	or	stop	it	in
OS	X.	See	https://support.apple.com/kb/HT3598	to	learn	how	to	use	it	on	iOS	devices.
	Window-Eyes:	Free	demo	version	available	at	www.gwmicro.com.

I	can’t	recommend	strongly	enough	that	you	try	at	least	one	of	these.	I	think	you’ll	come
away	with	an	even	greater	appreciation	for	the	screen	reader	user	experience.	Plus,	you
will	learn	first-hand	how	your	semantic	HTML	choices	influence	that	experience.	Better
yet,	you	can	test	your	pages	in	a	screen	reader	as	part	of	your	normal	process	of	building
sites.

Landmark	roles
A	bit	ago	I	mentioned	that	ARIA	fills	semantic	gaps	in	HTML.	For	instance,	what	HTML	markup	would
you	use	to	let	a	screen	reader	know	how	to	jump	to	the	footer	for	your	whole	page?	Marking	it	with
footer	isn’t	sufficient—remember,	your	pages	can	contain	more	than	one	footer.
HTML	doesn’t	have	a	solution	for	this—but	ARIA’s	landmark	roles	do.	Landmark	roles	identify	a	set	of
important	webpage	regions	so	screen	reader	users	can	navigate	directly	to	them.	Naturally,	you	specify
them	with	the	role	attribute.
As	Table	3.1	illustrates,	there	is	some	overlap	between	ARIA	and	HTML5,	which	has	also	tried	to	fill
some	of	the	gaps	with	the	new	elements	covered	in	this	chapter.	Where	there	is	overlap,	screen	reader
support	is	currently	further	along	for	ARIA.	So	you	can	continue	to	create	HTML	as	you	always	would
(including	the	new	elements)	and	add	ARIA	roles	to	enhance	the	accessibility	of	your	pages.

http://www.freedomscientific.com
http://www.nvda-project.org
https://support.apple.com/kb/HT3598
http://www.gwmicro.com

TABLE	3.1	Some	of	the	Available	ARIA	Landmark	Roles

It’s	very	simple	to	do.	 	is	the	same	as	the	example	from	“Creating	Generic	Containers”	except	I’ve
added	a	nav	element	and	highlighted	the	landmark	roles.
Click	here	to	view	code	image

...
<body>
<!--	Start	page	container	-->
<div	class="container">
					<header	role="banner">
								...
								<nav	role="navigation">
											...	[ul	with	links]	...
								</nav>
					</header>

					<!--	Column	One	when	CSS	applied	-->
					<main	role="main">
								<article>
											...
								</article>

								<article>
											...
								</article>

								...	[more	sections	as	desired]	...
					</main>
					<!--	end	column	one	-->

					<!--	Column	Two	when	CSS	applied	-->
					<div	class="sidebar">
								<aside	role="complementary">
											...
								</aside>

								<aside	role="complementary">
											...
								</aside>

								...	[more	sections	as	desired]	...
					</div>
					<!--	end	column	two	-->

					<footer	role="contentinfo">
								...
					</footer>
</div>
<!--	end	page	container	-->
</body>
</html>

	This	page	uses	all	five	landmark	roles	from	Table	3.1	and	six	in	all.

Table	3.1	includes	excerpts	from	some	of	the	landmark	role	definitions	found	in	the	ARIA	spec
(www.w3.org/TR/wai-aria/roles#landmark_roles),	along	with	usage	recommendations.	(See	the	first	tip
regarding	the	other	three	roles.)	The	descriptions	will	sound	familiar	because	of	their	similarity	to	how
you	use	certain	HTML	elements	(and).

http://www.w3.org/TR/wai-aria/roles#landmark_roles

	This	diagram	is	similar	to	the	one	in	“Creating	Generic	Containers.”	It	aims	to	help	you	visualize
common	uses	for	some	landmark	roles,	not	to	suggest	they	affect	layout	at	all.	For	instance,	in	the	main
element,	you	could	have	local	navigation	in	a	nav	with	role="navigation".	Unrelated,	the	div
with	class="sidebar"	could	have	role="complementary"	instead	of	the	aside	elements	if

the	entire	sidebar	qualifies	as	complementary	content.

To	be	clear,	your	pages	will	work	without	ARIA	landmark	roles,	but	including	them	can	improve	the
experience	for	users	of	assistive	technology.	For	that	reason,	I	recommend	them.	I’ve	included	them	in
some	other	examples	throughout	the	book,	as	well	as	on	the	book	site.

Tip
Table	3.1	does	not	include	three	of	the	landmark	roles.	The	form	role	is	redundant
semantically	with	the	form	element,	search	marks	a	search	form,	and	application
is	for	advanced	use.	See	“Creating	Email,	Search,	Telephone,	and	URL	Boxes”	in	Chapter
16	for	an	example	that	uses	role="search".

Tip
Don’t	go	crazy	with	landmark	roles	in	your	pages.	Too	many	makes	the	page	verbose	for
screen	reader	users,	diminishing	the	value	of	the	landmarks	and	the	overall	experience.

Tip
Accessibility	expert	Steve	Faulkner	elaborates	on	landmark	roles	at
blog.paciellogroup.com/2013/02/using-wai-aria-landmarks-2013/.	(Any	similarities
between	Table	3.1	and	his	table	are	unintentional.)	He	also	includes	a	short	video	by
fellow	expert	Léonie	Watson	that	demonstrates	how	a	screen	reader	user	navigates	a	page.
Recommended	viewing!

Tip
WebAIM	periodically	conducts	a	survey	of	screen	reader	users	to	better	understand	their
preferences	and	challenges	when	visiting	sites.	The	latest	results	are	well	worth	a	read:
webaim.org/projects/screenreadersurvey4/.

Tip
Landmark	roles	are	just	one	of	many	features	of	the	ARIA	spec	(www.w3.org/TR/wai-
aria/).	You	may	also	be	interested	in	the	implementation	guide	at
www.w3.org/WAI/PF/aria-practices/.

Tip
You	can	use	ARIA	role	attributes	in	your	CSS	selectors	to	style	the	elements	marked	with
them.	See	Chapter	11	for	details.

Naming	Elements	with	a	Class	or	ID
Although	it	isn’t	required,	you	can	give	your	HTML	elements	a	unique	identifier,	assign	them	a	particular
class	(or	classes),	or	both	 .
Click	here	to	view	code	image

http://blog.paciellogroup.com/2013/02/using-wai-aria-landmarks-2013/
http://webaim.org/projects/screenreadersurvey4/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/WAI/PF/aria-practices/

...
<body>
<div	class="container">
					<header	role="banner">
								<nav	role="navigation">
											
															Barcelona's	Architect
															La	Sagrada	Família
															Park	Guell
											
								</nav>
					</header>

					<main	role="main">
								<article	class="architect	gaudi">
											<h1	id="gaudi">Barcelona's	Architect</h1>

											<p>Antoni	Gaudí's	incredible	buildings...</p>
											...

											<h2	id="sagrada-familia"	lang="es">La	Sagrada	Família</h2>
											...

											<h2	id="park-guell">Park	Guell</h2>
											...
								</article>
					</main>
					...
</div>
</body>
</html>

	The	links	in	the	nav	point	to	the	ids	on	the	h1	and	h2s.	Add	a	class	attribute	to	one	or	more
elements	to	be	able	to	style	them	all	in	one	fell	swoop.	For	example,	the	architect	class	could	be
applied	to	content	about	other	architects	for	consistent	formatting.	The	gaudi	class	could	provide

additional	styling	for	the	content	about	him.

After	doing	so,	you	can	apply	styles	to	all	elements	with	a	given	class	name	or	id	(though	I	discourage
using	ids	for	styling).	Or	link	directly	to	each	element	with	a	particular	id	 .	Or	use	JavaScript	to
access	id	and	class	attributes	to	apply	custom	behavior	to	particular	elements.	(See	the	second	tip.)

To	name	an	element	with	a	unique	ID
Within	the	start	tag	of	the	element,	type	id="name",	where	name	uniquely	identifies	the	element	 .
name	can	be	almost	anything,	as	long	as	it	doesn’t	start	with	a	number	or	contain	any	spaces.

To	assign	an	element	a	class
Within	the	start	tag	of	the	element,	type	class="name",	where	name	is	the	identifying	name	of	the
class	 .	If	you	want	to	assign	more	than	one	class,	separate	each	one	with	a	space,	as	in	class="name
anothername".	(You	may	assign	more	than	two	class	names.)

Tip
For	information	about	applying	styles	to	an	element	with	a	particular	class	or	ID,	consult
“Selecting	Elements	by	Class	or	ID”	in	Chapter	9.	However,	as	I	explain	there,	I
recommend	sticking	with	classes	for	styling.

Tip
See	“Creating	and	Linking	to	Anchors”	in	Chapter	6	for	more	details	about	linking	to	an
element	with	an	id.	Explaining	how	to	use	JavaScript	on	elements	with	an	id	or	class
is	beyond	the	scope	of	this	book,	but	you	can	see	an	example	in	Chapter	19.

Tip
Each	id	in	an	HTML	document	must	be	unique.	In	other	words,	no	two	elements	in	the
same	page	can	be	named	with	the	same	id,	and	each	element	may	have	only	one	id.	The
same	id	can	appear	on	multiple	pages	and	doesn’t	have	to	be	assigned	to	the	same	element
each	time,	though	it	is	customary	to	do	so.

Tip
Conversely,	a	particular	class	name	can	be	assigned	to	any	number	of	elements	in	a
page,	and	an	element	may	have	more	than	one	class.

Tip
The	class	and	id	attributes	may	be	added	to	any	HTML	element.	An	element	may	have
both	an	id	and	any	number	of	classes.

Tip
It’s	customary	to	separate	multi-word	class	and	id	names	with	a	dash,	for	example,
class="footer-page".

Tip
Choose	meaningful	names	for	your	ids	and	classes,	regardless	of	how	you	intend	to	use
them.	For	instance,	if	you	use	a	class	for	styling,	avoid	names	that	describe	the
presentation,	like	class="red"—that’s	a	cardinal	sin	(get	it,	red,	cardinal?).	In	all
seriousness,	class="red"	is	a	poor	choice	because	you	might	decide	next	week	to
change	your	site’s	color	scheme	to	blue.	Changing	the	color	assigned	to	a	class	in	CSS
is	incredibly	simple,	but	then	your	HTML	would	have	a	class	called	red	that	really
renders	in	a	different	color.	Changing	all	the	class	names	in	your	HTML	usually	isn’t
trivial.	This	will	become	more	evident	to	you	as	you	begin	to	learn	CSS	later.

Tip
You	can	use	the	class	attribute	to	implement	what	are	known	as	microformats.	See
http://microformats.org	to	learn	more.

Adding	the	Title	Attribute	to	Elements
You	can	use	the	title	attribute—not	to	be	confused	with	the	title	element—to	add	a	tool	tip	label	to
practically	any	part	of	your	website	(through).	They	aren’t	just	for	tool	tips,	though.	Screen	readers
may	read	title	text	to	users,	improving	accessibility.
Click	here	to	view	code	image

...
<ul	title="Table	of	Contents">
					Barcelona's	Architect
					La	Sagrada	Família
					Park	Guell

...
</body>
</html>

	You	can	add	titles	to	any	elements	you	wish,	though	it’s	most	common	to	use	them	on	links.

	When	your	visitors	point	at	the	labeled	element,	the	title	will	appear	as	a	tool	tip.	If	you	were	pointing
at	the	Barcelona’s	Architect	link...

	...you’d	see	“Learn	about	Antoni	Gaudí,”	since	it	has	its	own	title	attribute.

http://microformats.org

To	add	a	title	to	elements	in	a	webpage
In	the	start	tag	of	the	desired	HTML	element,	add	title="label",	where	label	is	the	brief
descriptive	text	that	should	appear	as	a	tool	tip	or	that	will	be	read	aloud	by	a	screen	reader.

Tip
Old	versions	of	Internet	Explorer	(IE7	and	earlier)	also	make	tool	tips	out	of	the	alt
attribute	used	in	img	elements	(see	Chapter	5).	However,	if	both	the	title	and	alt
attributes	are	present	in	an	img	element,	the	tool	tip	is	set	to	the	contents	of	the	title
attribute,	not	the	alt	attribute.

Adding	Comments
You	can	add	comments	to	your	HTML	documents	to	note	where	sections	begin	or	end,	to	comment	to
yourself	(or	future	coders)	the	purpose	of	a	particular	piece	of	code,	to	prevent	content	from	displaying,
and	more	 .	These	comments	only	appear	when	the	document	is	opened	with	a	text	editor	or	via	a
browser’s	View	Source	option.	They	are	invisible	to	visitors	in	the	browser	otherwise	 .
Click	here	to	view	code	image

...

<!--	====	START	MAIN	CONTENT	====	-->
<main	role="main">
					<article	class="architect">
								<h1	id="gaudi">Barcelona's	Architect</h1>

								<!--	This	paragraph	doesn't	display	because	it's	commented	out.
								<p>Antoni	Gaudí's	incredible	buildings	bring	millions	of	tourists	to	Barcelona
each	year.</p>
								-->

								<p>Gaudí's	non-conformity,	already	visible	in	his	teenage	years...</p>
								...
					</article>
</main>
<!--	end	main	content	-->

<!--	====	START	SIDEBAR	====	-->
...	[sidebar	content]	...
<!--	end	sidebar	-->

...

	This	sample	includes	five	comments.	Four	combine	to	mark	the	beginning	and	end	of	two	sections	of
the	page	(main	and	sidebar).	Another	“comments	out”	the	first	paragraph	so	it	won’t	be	displayed	in	the
page	(if	you	want	the	paragraph	to	be	removed	long-term,	it	would	be	best	to	delete	it	from	the	HTML).

	Comments	are	invisible	in	the	page.	Similarly,	if	you	wrap	a	comment	around	some	of	your	content,	it
won’t	display.	Here,	the	first	paragraph	in	the	code	doesn’t	show.

To	add	a	comment	to	your	HTML
1.	In	your	HTML	page,	where	you	wish	to	insert	a	comment,	type	<!--.
2.	Type	the	comments.
3.	Type	-->	to	complete	the	comment.

Tip
It’s	common	to	comment	the	beginning	and	end	of	major	sections	of	code	to	make	it	easier
for	you	or	fellow	coders	to	modify	later	(pages	can	get	long).	I	like	to	use	a	different,	more
prominent	format	for	a	starting	comment	than	for	one	signifying	the	end	of	a	block	so	my
eye	can	easily	distinguish	between	the	two	points	as	I	scan	the	code	 .

Tip
You	should	view	your	commented	page	with	a	browser	before	publishing.	This	will	help
you	avoid	displaying	your	(possibly)	private	comments	to	the	public	because	you
accidentally	formatted	a	comment	wrong.

Tip
Beware,	however,	of	comments	that	are	too	private.	Although	invisible	when	visiting	your
page	normally	in	the	browser,	they	can	be	seen	via	a	browser’s	View	Source	feature	or	if
the	user	saves	the	page	as	HTML	code.

Tip
Comments	may	not	be	nested	within	other	comments.

4.	Text

In	This	Chapter
Adding	a	Paragraph
Specifying	Fine	Print
Marking	Important	and	Emphasized	Text
Creating	a	Figure
Indicating	a	Citation	or	Reference
Quoting	Text
Specifying	Time
Explaining	Abbreviations
Defining	a	Term
Creating	Superscripts	and	Subscripts
Adding	Author	Contact	Information
Noting	Edits	and	Inaccurate	Text
Marking	Up	Code
Using	Preformatted	Text
Highlighting	Text
Creating	a	Line	Break
Creating	Spans
Other	Elements

Unless	a	site	is	heavy	on	videos	or	photo	galleries,	most	content	on	webpages	is	text.	This	chapter
explains	which	HTML	semantics	are	appropriate	for	different	types	of	text,	especially	(but	not	solely)	for
text	within	a	sentence	or	phrase.
For	example,	the	em	element	is	specifically	designed	for	indicating	emphasized	text,	and	the	cite
element’s	purpose	is	to	cite	works	of	art,	movies,	books,	and	more.
Browsers	typically	style	many	text	elements	differently	than	normal	text.	For	instance,	both	the	em	and
cite	elements	are	italicized.	Another	element,	code,	which	is	specifically	designed	for	formatting	lines
of	code	from	a	script	or	program,	displays	in	a	monospace	font	by	default.
How	content	will	look	is	irrelevant	when	deciding	how	to	mark	it	up.	So,	you	shouldn’t	use	em	or	cite
just	because	you	want	to	italicize	text.	That’s	the	job	of	CSS.
Instead,	focus	on	choosing	HTML	elements	that	describe	the	content.	If	by	default	a	browser	styles	it	as
you	would	yourself	with	CSS,	that’s	a	bonus.	If	not,	just	override	the	default	formatting	with	your	own
CSS.

Adding	a	Paragraph
HTML	does	not	recognize	the	returns	or	other	extra	whitespace	that	you	enter	in	your	text	editor.	To	start	a
new	paragraph	in	your	webpage,	you	use	the	p	element	(and).

Click	here	to	view	code	image

...
<body>

<h1>Antoni	Gaudí</h1>
<p>Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's	incredible	architecture.
</p>

<p>Barcelona	celebrated	the	150th	anniversary	of	Gaudí's	birth	in	2002.</p>

<h2	lang="es">La	Casa	Milà</h2>
<p>Gaudí's	work	was	essentially	useful.	La	Casa	Milà	is	an
apartment	building	and	real	people	live	there.</p>

<h2	lang="es">La	Sagrada	Família</h2>
<p>The	complicatedly	named	and	curiously	unfinished	Expiatory	Temple	of	the	Sacred	Family
is	the	most	visited	building	in	Barcelona.</p>

</body>
</html>

	Unsurprisingly,	p	is	one	of	the	most	frequently	used	HTML	elements.	(Note:	In	practice,	I	would	wrap
an	article	around	this	particular	content.	I	omitted	it	to	make	the	example	generic	and	to	avoid	giving

the	impression	that	p	elements	must	always	be	nested	in	an	article.)

	Here	you	see	the	typical	default	rendering	of	paragraphs.	By	default,	browsers	provide	vertical	space
between	headings	and	paragraphs,	and	between	paragraphs	themselves.	As	with	all	content	elements,	you

have	full	control	over	the	formatting	with	CSS.

To	create	a	new	paragraph
1.	Type	<p>.

2.	Type	the	contents	of	the	new	paragraph.
3.	Type	</p>	to	end	the	paragraph.

Tip
You	can	use	styles	to	format	paragraphs	(and	other	page	text)	with	a	particular	font,	size,	or
color	(and	more).	For	details,	consult	Chapter	10.

Tip
To	control	the	amount	of	space	between	lines	within	a	paragraph,	consult	“Setting	the	Line
Height”	in	Chapter	10.	To	control	the	amount	of	space	before	or	after	a	paragraph,	consult
“Setting	the	Margins	Around	an	Element”	or	“Adding	Padding	Around	an	Element,”	both
of	which	are	in	Chapter	11.

Tip
You	can	justify	paragraph	text	or	align	it	to	the	left,	right,	or	center	with	CSS	(see
“Aligning	Text”	in	Chapter	10).

Specifying	Fine	Print
The	small	element	represents	side	comments	such	as	fine	print,	which,	according	to	the	HTML5	spec,
“typically	features	disclaimers,	caveats,	legal	restrictions,	or	copyrights.	Small	print	is	also	sometimes
used	for	attribution	or	for	satisfying	licensing	requirements.”
The	small	element	is	intended	for	brief	portions	of	inline	text,	not	for	text	spanning	multiple	paragraphs
or	other	elements	(and).
Click	here	to	view	code	image

...
<body>

<p>Order	now	to	receive	free	shipping.
<small>(Some	restrictions	may	apply.)</small></p>

...

<footer	role="contentinfo">
					<p><small>©	2013	The	Super	Store.	All	Rights	Reserved.</small></p>
</footer>

</body>
</html>

	The	small	element	denotes	brief	legal	notices	in	both	instances	shown.	The	second	one	is	a	copyright
notice	contained	in	a	page-level	footer,	a	common	convention.

	The	small	element	may	render	smaller	than	normal	text	in	some	browsers,	but	the	visual	size	is
immaterial	to	whether	you	should	mark	up	your	content	with	it.

To	specify	fine	print
1.	Type	<small>.
2.	Type	the	text	that	represents	a	legal	disclaimer,	note,	attribution,	and	so	on.
3.	Type	</small>.

Tip
Be	sure	to	use	small	only	because	it’s	appropriate	for	your	content,	not	because	you	want
to	reduce	the	text	size,	as	happens	in	some	browsers	 .	You	can	always	adjust	the	size
with	CSS	(even	making	it	larger	if	you’d	like).	See	“Setting	the	Font	Size”	in	Chapter	10
for	more	information.

Tip
The	small	element	is	a	common	choice	for	marking	up	your	page’s	copyright	notice	(
and).	It’s	meant	for	short	phrases	like	that,	so	don’t	wrap	it	around	long	legal	notices,
such	as	your	Terms	of	Use	or	Privacy	Policy	pages.	Those	should	be	marked	up	with
paragraphs	and	other	semantics,	as	necessary.

Marking	Important	and	Emphasized	Text
The	strong	element	denotes	important	text,	whereas	em	represents	stress	emphasis.	You	can	use	them
individually	or	together,	as	your	content	requires	(and).
Click	here	to	view	code	image

...
<body>

<p>Warning:	Do	not	approach	the	zombies	under	any	circumstances
.	They	may	look	friendly,	but	that's	just	because	they	want	to	eat	your
arm.</p>

</body>
</html>

	The	first	sentence	has	both	strong	and	em,	whereas	the	second	has	em	only.

	Browsers	typically	display	strong	text	in	boldface	and	em	text	in	italics.	If	em	is	a	child	of	a
strong	element	(see	the	first	sentence	in),	its	text	will	be	both	italicized	and	bold.

To	mark	important	text
1.	Type	.
2.	Type	the	text	that	you	want	to	mark	as	important.
3.	Type	.

To	emphasize	text
1.	Type	.
2.	Type	the	text	that	you	want	to	emphasize.
3.	Type	.

Tip
Do	not	use	the	b	and	i	elements	as	replacements	for	strong	and	em,	respectively.
Although	they	may	look	similar	in	a	browser,	their	meanings	are	very	different	(see	the
sidebar	“The	b	and	i	Elements:	Redefined	in	HTML5”).

Tip
Just	as	when	you	emphasize	words	in	speech,	where	you	place	em	in	a	sentence	affects	its
meaning.	For	example,	<p>Run	over	here.</p>	and	<p>Run	over
here.</p>	convey	different	messages.

Tip
The	importance	of	strong	text	increases	each	time	it’s	a	child	of	another	strong.	The
same	is	true	of	the	level	of	emphasis	for	em	text	in	another	em.	For	example,	“due	by	April
12th”	is	marked	as	more	important	semantically	than	the	other	strong	text	in	this
sentence:	<p>Remember	that	entries	are	due	by
March	12th.</p>.

Tip
You	can	style	any	text	as	bold	or	italic	with	CSS,	as	well	as	negate	the	browser’s	default
styling	of	elements	like	strong	and	em	 .	For	details,	consult	“Creating	Italics”	and
“Applying	Bold	Formatting”	in	Chapter	10.

Tip
If	you	had	experience	with	HTML	before	HTML5,	you	may	know	that	at	that	time	strong
represented	text	with	stronger	emphasis	than	em	text.	In	HTML5,	however,	em	is	the	only
element	that	indicates	emphasis,	and	strong	has	shifted	to	importance.

The	b	and	i	Elements:	Redefined	in	HTML5
HTML5	focuses	on	semantics,	not	on	an	element’s	presentation.	The	b	and	i	elements	are
holdovers	from	the	earliest	days	of	HTML,	when	they	were	used	to	make	text	bold	or	italic
(CSS	didn’t	exist	yet).	They	fell	out	of	favor	in	HTML	4	and	XHTML	1	because	of	their
presentational	nature.	Coders	were	encouraged	to	use	strong	instead	of	b,	and	em
instead	of	i.	It	turns	out,	though,	that	em	and	strong	are	not	always	semantically
appropriate.	HTML5	addresses	this	by	redefining	b	and	i.
Some	typographic	conventions	in	traditional	publishing	fall	through	the	cracks	of	available
HTML	semantics.	Among	them	are	italicizing	certain	scientific	names	(for	example,	“The
Ulmus	americana	is	the	Massachusetts	state	tree.”),	named	vehicles	(for	example,	“We
rode	the	Orient	Express.”),	and	foreign	(to	English)	language	phrases	(for	example,	“The
couple	exhibited	a	joie	de	vivre	that	was	infectious.”).	These	terms	aren’t	italicized	for
emphasis,	just	stylized	per	convention.
Rather	than	create	several	new	semantic	elements	to	address	cases	like	these	(and	further
muddy	the	waters),	HTML5	takes	a	practical	stance	by	trying	to	make	do	with	what	is
available:	em	for	all	levels	of	stress	emphasis,	strong	for	importance,	and	b	and	i	for
the	through-the-cracks	cases.	HTML5	emphasizes	that	you	use	b	and	i	only	as	a	last	resort
when	another	element	(such	as	strong,	em,	cite,	and	others)	won’t	do.

The	b	Element	in	Brief
HTML5	redefines	the	b	element	this	way:
The	b	element	represents	a	span	of	text	to	which	attention	is	being	drawn	for	utilitarian
purposes	without	conveying	any	extra	importance	and	with	no	implication	of	an	alternate
voice	or	mood,	such	as	key	words	in	a	document	abstract,	product	names	in	a	review,
actionable	words	in	interactive	text-driven	software,	or	an	article	lede.
For	example:
<p>The	XR-5,	also	dubbed	the	Extreme	Robot	5,	is
the	best	robot	we’ve	ever	tested.</p>
The	b	element	renders	as	bold	by	default.

The	i	Element	in	Brief
HTML5	redefines	the	i	element	this	way:

The	i	element	represents	a	span	of	text	in	an	alternate	voice	or	mood,	or	otherwise	offset
from	the	normal	prose	in	a	manner	indicating	a	different	quality	of	text,	such	as	a
taxonomic	designation,	a	technical	term,	an	idiomatic	phrase	or	short	span	of	transliterated
prose	from	another	language,	a	thought,	or	a	ship	name	in	Western	texts.
Here	are	some	examples:
<p>The	<i	lang="la">Ulmus	americana</i>	is	the	Massachusetts
state	tree.</p>
<p>We	rode	the	<i>Orient	Express</i>.<p>
<p>The	couple	exhibited	a	<i	lang="fr">joie	de	vivre</i>	that
was	infectious.<p>
The	i	element	displays	in	italics	by	default.

Creating	a	Figure
No	doubt	you’ve	seen	figures	in	printed	newspapers,	magazines,	reports,	and	more.	Typically,	figures	are
referenced	from	the	main	text	on	a	page	(like	a	news	story).	This	very	book	has	them	on	most	pages.
Prior	to	HTML5,	there	wasn’t	an	element	designed	for	this	use,	so	developers	cobbled	together	solutions
on	their	own.	This	often	involved	the	less-than-ideal,	non-semantic	div	element.	HTML5	has	changed
that	with	figure	and	figcaption	(and).	A	figure	element	may	contain	a	chart,	a	photo,	a
graph,	an	illustration,	a	code	segment,	or	similar	self-contained	content.
Click	here	to	view	code	image

...
<body>
...
<article>
					<h1>2013	Revenue	by	Industry</h1>

					<p>...	[report	content]	...</p>

					<figure>
								<figcaption>Figure	3:	Breakdown	of	Revenue	by	Industry</figcaption>

								<img	src="chart-revenue.png"	width="180"	height="143"	alt=	"Revenue	chart:
Clothing	42%,	Toys	36%,	Food	22%"	/>
					</figure>

					<p>As	Figure	3	illustrates,	...	</p>

					<p>...	[more	report	content]	...</p>
</article>
...
</body>
</html>

	This	figure	has	a	chart	image,	though	more	than	one	image	or	other	types	of	content	(such	as	a	data
table	or	video)	are	allowed	as	well.	The	figcaption	element	isn’t	required,	but	it	must	be	the	first	or
last	element	in	a	figure	if	you	do	include	it.	A	figure	doesn’t	have	a	default	styling	aside	from

starting	on	its	own	line	in	modern	browsers	 .	(Note:	figures	aren’t	required	to	be	in	an	article,
but	it’s	probably	suitable	in	most	cases.)

	The	figure	of	the	chart	and	caption	appears	within	the	article	text.	The	figure	is	indented
because	of	the	browser’s	default	styling	(see	the	last	tip).

You	may	refer	to	a	figure	from	other	content	on	your	page	(as	shown	in	 	and),	but	it	isn’t
required.	The	optional	figcaption	is	a	figure’s	caption	or	legend	and	may	appear	either	at	the
beginning	or	at	the	end	of	a	figure’s	content.

To	create	a	figure	and	figure	caption
1.	Type	<figure>.
2.	Optionally,	type	<figcaption>	to	begin	the	figure’s	caption.
3.	Type	the	caption	text.
4.	Type	</figcaption>	if	you	created	a	caption	in	steps	2	and	3.
5.	Create	your	figure	by	adding	code	for	images,	videos,	data	tables,	and	so	on.
6.	If	you	didn’t	include	a	figcaption	before	your	figure’s	content,	optionally	follow	steps	2–4
to	add	one	after	the	content.

7.	Type	</figure>.

Tip
Typically,	figure	is	part	of	the	content	that	refers	to	it	 ,	but	it	could	also	live
elsewhere	on	the	page	or	on	another	page,	such	as	in	an	appendix.

Tip
The	figure	element	may	include	multiple	pieces	of	content.	For	instance,	 	could
include	two	charts:	one	for	revenue	and	another	for	profits.	You	can	even	nest	one
figure	inside	another	one.	Keep	in	mind,	though,	that	regardless	of	how	much	content	a
figure	has,	only	one	figcaption	is	allowed	per	figure.

Tip
Don’t	use	figure	simply	as	a	means	to	embed	all	instances	of	self-contained	bits	of
content	within	text.	Oftentimes,	the	aside	element	may	be	appropriate	instead	(see
“Specifying	an	Aside”	in	Chapter	3).

Tip
See	“Quoting	Text”	to	learn	how	to	use	figure	with	a	blockquote	element.

Tip
You	can’t	use	the	figcaption	element	unless	it’s	in	a	figure	with	other	content.

Tip
figcaption	text	doesn’t	have	to	begin	with	“Figure	3”	or	“Exhibit	B.”	It	could	just	as
well	be	a	brief	description	of	the	content,	like	a	photo	caption.

Tip
Modern	browsers	apply	left	and	right	margins	of	40px	to	a	figure	by	default	 .	You
can	change	that	with	the	margin-left	and	margin-right	CSS	properties.	For
example,	margin-left:	0;	would	make	the	figure	flush	left.	Also,	you	can	make	the
text	containing	a	figure	wrap	around	it	with	figure	{	float:	left;}	(so	the
text	will	wrap	around	the	right	side)	or	figure	{	float:	right;}	(so	the	text	will
wrap	around	the	left	side).	You	may	need	to	set	a	width	to	the	figure	as	well	so	it
doesn’t	occupy	too	much	horizontal	real	estate.	CSS	coverage	begins	in	Chapter	7,	and	the
float	and	width	properties	are	demonstrated	in	Chapter	11.

	You	can	differentiate	your	figure	from	the	surrounding	text	with	just	a	little	bit	of	CSS.	This
simple	example	is	available	at	www.htmlcssvqs.com/8ed/figure-styled/.

Indicating	a	Citation	or	Reference
Use	the	cite	element	for	a	citation	or	reference	to	a	source.	Examples	include	the	title	of	a	play,	script,
or	book;	the	name	of	a	song,	movie,	photo,	or	sculpture;	a	concert	or	musical	tour;	a	specification;	a
news-paper	or	legal	paper;	and	more	(and).
Click	here	to	view	code	image

http://www.htmlcssvqs.com/8ed/figure-styled/

...
<body>

<p>He	listened	to	<cite>Abbey	Road</cite>	while	watching	<cite>A	Hard	Day's	Night</cite>
and	reading	<cite>The	Beatles	Anthology</cite>.

<p>When	he	went	to	The	Louvre,	he	learned	that	<cite>Mona	Lisa</cite>	is	also	known	as
<cite	lang="it">La	Gioconda</cite>.</p>

</body>
</html>

	In	this	example,	the	cite	element	marks	up	the	titles	of	an	album,	a	movie,	a	book,	and	a	work	of	art.
(Note:	The	lang="it"	in	the	last	instance	declares	that	the	language	of	the	cite	text	is	Italian.)

	The	cite	element	renders	in	italics	by	default.

To	cite	a	reference
1.	Type	<cite>.
2.	Type	the	reference’s	name.
3.	Type	</cite>.

Tip
For	instances	in	which	you	are	quoting	from	the	cited	source,	use	the	blockquote	or	q
elements,	as	appropriate,	to	mark	up	the	quoted	text	(see	“Quoting	Text”).	To	be	clear,
cite	is	only	for	the	source,	not	for	what	you	are	quoting	from	it.

HTML5	and	Using	the	cite	Element	for	Names
Amid	a	good	amount	of	disagreement	from	the	development	community,	HTML5	explicitly
declares	that	using	cite	for	a	reference	to	a	person’s	name	is	invalid,	even	though
previous	versions	of	HTML	allowed	it	and	many	developers	and	designers	used	it	that
way.
The	HTML	4	spec	provides	the	following	example	(I’ve	changed	the	element	names	from
uppercase	to	lowercase):

Click	here	to	view	code	image

As	<cite>Harry	S.	Truman</cite>	said,
<q	lang="en-us">The	buck	stops	here.</q>

In	addition	to	instances	like	that,	sites	have	often	used	cite	for	the	name	of	people	who
leave	comments	in	blog	postings	and	articles	(the	default	WordPress	theme	does,	too).
Many	developers	have	made	it	clear	that	they	intend	to	continue	to	use	cite	on	names
associated	with	quotes	in	their	HTML5	pages,	because	they	find	the	alternatives	that
HTML5	provides	unacceptable	(namely,	the	span	and	b	elements).	Jeremy	Keith	made
the	case	vociferously	in	http://24ways.org/2009/incite-a-riot/.

Quoting	Text
There	are	two	special	elements	for	marking	text	quoted	from	a	source.	The	blockquote	element
represents	a	standalone	quote	(generally	a	longer	one,	but	not	necessarily)	(and)	and	displays	on	its
own	line	by	default	 .	Meanwhile,	the	q	element	is	for	short	quotes,	like	those	within	a	sentence	 .
Click	here	to	view	code	image

...
<body>

<p>He	especially	enjoyed	this	selection	from	<cite>The	Adventures	of	Huckleberry
Finn</cite>	by	Mark	Twain:</p>

<blockquote	cite="http://www.marktwainbooks.edu/the-adventures-of-huckleberry-finn/">
					<p>We	said	there	warn't	no	home	like	a	raft,	after	all.	Other	places	do	seem	so
cramped	up	and	smothery,	but	a	raft	don't.	You	feel	mighty	free	and	easy	and	comfortable
on	a	raft.</p>
</blockquote>

<p>It	reminded	him	of	his	own	youth	exploring	the	county	by	river	in	the	summertime.</p>

</body>
</html>

	A	blockquote	can	be	as	short	or	as	long	as	you	need.	Optionally,	include	the	cite	attribute—not
to	be	confused	with	the	cite	element	shown	in	the	first	paragraph—to	provide	the	location	of	the	quoted

text.
Click	here	to	view	code	image

http://24ways.org/2009/incite-a-riot/

...

<figure>
					<blockquote>
					I	want	all	my	senses	engaged.	Let	me	absorb	the	world's	variety	and	uniqueness.
					</blockquote>
					<figcaption>—	Maya	Angelou</figcaption>
</figure>

...

	If	you’d	like	to	provide	attribution,	it	must	be	outside	the	blockquote.	You	could	place	the
attribution	in	a	p,	but	the	most	explicit	way	to	associate	a	quote	with	its	source	is	with	a	figure	and

figcaption,	as	shown	(see	“Creating	a	Figure”).

	Browsers	typically	indent	blockquote	text	by	default,	and	don’t	display	the	cite	attribute	value.
(See	the	second	tip	for	a	related	recommendation.)	The	cite	element,	on	the	other	hand,	is	supported	by
all	browsers	and	typically	renders	in	italics,	as	shown.	All	of	these	defaults	can	be	overridden	with	CSS.
Click	here	to	view	code	image

...
<body>

<p>And	then	she	said,	<q>Have	you	read	Barbara	Kingsolver's	<cite>High	Tide	in
Tucson</cite>?	It's	inspiring.</q></p>

<p>She	tried	again,	this	time	in	French:	<q	lang="fr">Avez-vous	lu	le	livre	<cite
lang="en">High	Tide	in	Tucson</cite>	de	Kingsolver?	C'est	inspirational.</q></p>

</body>
</html>

	Here	we	see	two	q	examples.	Add	the	lang	attribute	to	the	q	element	if	the	quoted	text	is	in	a
different	language	than	the	page’s	default	(as	specified	by	the	lang	attribute	on	the	html	element).

Browsers	are	supposed	to	enclose	q	element	text	in	language-specific	quotation	marks	automatically,	but
the	results	are	mixed	 .	Be	sure	to	read	the	tips	to	learn	about	alternatives	to	using	the	q	element.

	Browsers	are	supposed	to	add	language-specific	quotation	marks	around	q	elements	automatically.	In
this	example,	that	means	curly	double	quotes	for	English	and	guillemets	for	French.	IE	(shown	on	top)	and
Chrome	do	this	correctly.	Firefox	(shown	on	bottom)	is	correct	for	English	but	not	French.	Opera	and
Safari	do	neither,	rendering	straight	quotes	instead,	including	for	French.	Inconsistencies	like	these	limit

the	usefulness	of	the	q	element.

To	quote	a	block	of	text
1.	Type	<blockquote	to	begin	a	block	quote.
2.	If	desired,	type	cite="url",	where	url	is	the	address	of	the	source	of	the	quote.
3.	Type	>	to	complete	the	start	tag.
4.	Type	the	text	you	wish	to	quote,	surrounding	it	with	paragraphs	and	other	elements	as	appropriate.
5.	Type	</blockquote>.

To	quote	a	short	phrase
1.	Type	<q	to	begin	quoting	a	word	or	phrase.
2.	If	desired,	type	cite="url",	where	url	is	the	address	of	the	source	of	the	quote.
3.	If	the	quote’s	language	is	different	than	the	page’s	default	language	(as	specified	by	the	lang
attribute	on	the	html	element),	type	lang="xx",	where	xx	is	the	code	for	the	language	the	quote
will	be	in.	This	code	is	supposed	to	determine	the	type	of	quote	marks	that	will	be	used	(“”	for
English,	«»	for	many	European	languages,	and	so	on),	though	browser	support	for	this	rendering	can
vary.

4.	Type	>	to	complete	the	start	tag.
5.	Type	the	text	that	should	be	quoted.
6.	Type	</q>.

Tip
If	your	blockquote	contains	only	a	single	paragraph	or	phrase,	you	don’t	have	to
enclose	it	in	a	p	within	the	blockquote.

Tip
You	can	use	the	optional	cite	attribute	on	blockquote	and	q	to	provide	a	URL	to	the
source	you	are	quoting.	Although	historically	browsers	haven’t	displayed	the	cite
attribute’s	URL	 ,	in	theory	it	can	be	handy	for	search	engines	or	other	automated	tools
that	gather	quotes	and	their	references.	If	you	would	like	visitors	to	have	access	to	it,	you
could	repeat	the	URL	in	a	link	(via	the	a	element)	in	your	content.	Less	effectively,	you
could	expose	cite’s	value	via	JavaScript	(search	online	for	sample	code).

Tip
The	q	element	is	invalid	for	a	quote	that	extends	beyond	one	paragraph.	Instead,	use
blockquote.

Tip
Be	sure	you	don’t	use	q	simply	because	you	want	quotation	marks	around	a	word	or
phrase.	For	instance,	<p>Every	time	I	hear	the	word	<q>soy</q>,	I
jump	for	joy.</p>	is	improper	because	“soy”	isn’t	a	quote	from	a	source.	In	that
case,	simply	type	quotation	marks	around	the	word.

Tip
You	can	nest	blockquote	and	q	elements.	For	example,	<p>The	short	story
began,	<q>When	she	was	a	child,	she	would	say,	<q>Howdy,
stranger!</q>	to	everyone	she	passed.</q></p>.	Nested	q	elements
should	display	the	appropriate	quotation	marks	automatically—for	example,	in	English	the
outer	quotes	should	be	double	and	the	inner	ones	should	be	single.	Since	outer	and	inner
quotations	are	treated	differently	in	languages,	add	the	lang	attribute	to	q	as	needed	 .
Unfortunately,	browsers	are	inconsistent	with	nested	q	elements	much	like	they	are	for
non-nested	ones	 .

Tip
Because	of	cross-browser	issues	with	q	 ,	many	(most	likely	the	majority	of)	coders
choose	to	simply	type	the	desired	quotation	marks	or	use	character	entities	instead	of	the	q
element.

Specifying	Time
You	can	mark	up	a	time,	date,	or	duration	with	the	time	element,	which	is	new	in	HTML5.	It	allows	you
to	represent	this	information	in	a	variety	of	ways	(and).
Click	here	to	view	code	image

...
<body>

<p>The	train	arrives	at	<time>08:45</time>	and	<time>16:20</time>	on	<time>2017-03-
19</time>.</p>

<p>They	made	their	dinner	reservation	for	<time	datetime="2013-11-20T18:30:00">tonight	at
6:30</time>.</p>

<p>We	began	our	descent	from	the	peak	of	Everest	on	<time	datetime="1952-06-
12T11:05:00">June	12,	1952	at	11:05	a.m.</time></p>

<p>The	film	festival	is	<time	datetime="2014-07-13">July	13</time>-<time	datetime="2014-
07-16">16</time>.</p>

<!--	Example	with	no	year	-->
<p>Her	birthday	is	<time	datetime="03-29">March	29th</time>.</p>

<!--	Example	of	durations	-->
<p>The	meeting	lasted	<time>2h	41m	3s</time>	instead	of	the	scheduled	<time	datetime="2h
30m">two	hours	and	thirty	minutes</time>.</p>

</body>
</html>

	As	shown	in	the	first	example,	the	simplest	form	of	the	time	element	lacks	a	datetime	attribute.
But	it	does	provide	the	times	and	date	in	the	valid	machine-readable	format	as	required	when	datetime
is	omitted.	The	remaining	examples	show	that	the	text	between	the	time	tags	doesn’t	need	to	match	the

valid	format	when	datetime	is	present	(the	last	example	shows	one	case	of	each	approach).

	Only	the	time	text	displays	in	browsers,	not	the	datetime	value.
Click	here	to	view	code	image

...
<body>

<article>
					<h1>Cheetah	and	Gazelle	Make	Fast	Friends</h1>
					<p><time	datetime="2014-10-15">October	15,	2014</time></p>

					...	[article	content]	...
</article>

</body>
</html>

	This	shows	how	you	might	include	a	date	for	a	blog	post	or	news	article.	As	is	required	for	all	cases
of	datetime,	its	value	represents	the	text	content	in	a	machine-readable	format.

The	text	content	inside	time	(that	is,	<time>text</time>)	appears	on	the	screen	for	us	humans	(
and),	whereas	the	value	of	the	optional	datetime	attribute	is	intended	for	the	machines	among	us.	It
requires	a	specific	format;	the	sidebar	“Understanding	the	Valid	Time	Format”	covers	the	basics,	and	the
first	tip	explains	another	case	when	the	format	is	required.

	As	expected,	the	date	is	below	the	heading.

To	specify	a	time,	date,	or	duration
1.	Type	<time	to	begin	a	time	element.
2.	If	desired,	type	datetime="time"	where	time	is	in	the	approved	machine-readable	format
(see	the	sidebar)	that	represents	the	text	you’ll	enter	in	step	4.

3.	Type	>	to	complete	the	start	tag.
4.	Type	the	text	that	reflects	the	time,	the	date,	or	the	duration	that	you	want	to	display	in	the	browser.
(See	the	first	tip	if	you	did	not	include	datetime	in	step	2.)

5.	Type	</time>.

Tip
If	you	omit	the	datetime	attribute,	the	text	content	inside	time	must	follow	the
machine-friendly	format	rather	than	being	“free-form.”	In	other	words,	the	first	example	in	
	could	not	be	coded	as	<p>The	train	arrives	at	<time>8:45	a.m.

</time>	and	<time>4:20	p.m.</time>	on	<time>April	20th,
2015</time>.</p>	because	the	time	text	doesn’t	follow	the	format	in	any	of	the
three	instances.	However,	when	you	do	include	datetime,	you’re	free	to	represent	the
date,	time,	or	duration	in	the	text	content	as	you	wish,	as	seen	in	the	other	examples	in	 .

Tip
The	datetime	attribute	doesn’t	do	anything	on	its	own	but	could	be	used	for	syncing
dates	and	times	between	web	applications	and	the	like	(for	example,	think	of	a	calendar
application).	That’s	why	it	requires	a	standard,	machine-readable	format;	it	allows	these
programs	to	share	information	by	speaking	the	same	“language.”

Tip
You	may	not	nest	a	time	element	inside	another	one	or	place	any	other	elements	(just	text)
in	a	time	element	that	lacks	a	datetime	attribute.

Tip
The	time	element	allowed	an	optional	attribute	named	pubdate	in	an	earlier	iteration
of	HTML5	(remember	that	the	language	is	still	evolving).	However,	pubdate	is	no
longer	part	of	HTML5.	I	mention	this	in	case	you	come	across	it	in	an	older	tutorial	or
book	(such	as	the	seventh	edition	of	this	book!)	and	wonder	if	you	should	use	it	(you
shouldn’t).

Understanding	the	Valid	Time	Format
The	datetime	attribute—or	a	time	element	without	datetime—must	provide	the
desired	date	and/or	time	in	a	specific	machine-readable	format.	I’ve	simplified	it	below:
YYYY-MM-DDThh:mm:ss
For	example	(local	time):
1985-11-03T17:19:10
This	means	“November	3,	1985,	at	10	seconds	after	5:19	p.m.	local	time.”	The	hours
portion	uses	a	24-hour	clock,	hence	17	instead	of	05	for	5	p.m.	If	you	include	a	time,	the
seconds	are	optional.	(You	may	also	provide	time	with	milliseconds	in	the	format	of
hh:mm.sss.	Note	the	period	before	the	milliseconds.)
The	format	is	a	little	different	when	representing	a	duration.	There	are	a	couple	of	syntax
options,	but	this	is	the	simplest	to	follow:
nh	nm	ns
(Where	n	is	the	number	of	hours,	minutes,	and	seconds,	respectively.)
The	last	example	in	 	shows	it	in	action.

Global	Dates	and	Times	and	Time	Zone	Offsets
If	you’d	like,	you	can	represent	your	dates	and	times	in	a	global	context	instead	of	a	local
one.	(Or	simply	the	time	by	omitting	the	date.)	Add	a	Z	at	the	end	to	mark	the	time	zone	as
UTC	(Coordinated	Universal	Time),	the	primary	global	time	standard.	(See
https://en.wikipedia.org/wiki/Coordinated_Universal_Time.)
For	example	(global	date	and	time	in	UTC):
1985-11-03T17:19:10Z
Or,	you	can	specify	a	time-zone	offset	from	UTC	by	omitting	Z	and	preceding	the	offset
with	–	(minus)	or	+	(plus).
For	example	(global	date	and	time	with	offset	from	UTC):
1985-11-03T17:19:10-03:30
This	means	“November	3,	1985,	at	10	seconds	after	5:19	p.m.	Newfoundland	Standard
Time	(NST),”	because	NST	is	minus	three	and	a	half	hours	from	UTC.	A	list	of	time	zones
by	UTC	offsets	is	available	at
http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset.
Just	as	a	reminder,	if	you	do	include	datetime,	it	doesn’t	require	the	full	complement	of
information	I	just	described,	as	the	examples	in	 	show.

Explaining	Abbreviations
Abbreviations	abound,	whether	as	Jr.,	M.D.,	or	even	good	ol’	HTML.	You	can	use	the	abbr	element	to
mark	up	abbreviations	and	explain	their	meaning	(through).	You	don’t	have	to	wrap	every
abbreviation	in	abbr,	only	when	you	think	it	would	be	helpful	for	visitors	to	be	given	the	expanded
meaning.
Click	here	to	view	code	image

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset

...
<body>

<p>The	<abbr	title="National	Football	League">NFL</abbr>	promised	a	<abbr	title="light
amplification	by	stimulated	emission	of	radiation">	laser</abbr>	show	at	9	p.m.	after
every	night	game.</p>

<p>But,	that's	nothing	compared	to	what	<abbr>MLB</abbr>	(Major	League	Baseball)	did.
They	gave	out	free	<abbr	title="self-contained	underwater	breathing
apparatus">scuba</abbr>	gear	during	rain	delays.</p>

</body>
</html>

	Use	the	optional	title	attribute	to	provide	the	expanded	version	of	an	abbreviation.	Alternatively,
and	arguably	preferably,	you	could	place	the	expansion	in	parentheses	after	the	abbreviation.	Or	mix	and
match.	Most	people	will	be	familiar	with	words	like	laser	and	scuba,	so	marking	them	up	with	abbr	and

providing	titles	isn’t	really	necessary,	but	I’ve	done	it	here	for	demonstration	purposes.

	When	abbreviations	have	a	title	attribute,	Firefox	and	Opera	draw	attention	to	them	with	dots
underneath	the	text.	You	can	instruct	other	browsers	 	to	do	the	same	with	CSS;	see	the	tips.

	Browsers	display	the	title	of	abbreviations	as	a	tool	tip	when	you	hover	the	pointer	over	text
marked	up	with	abbr.	(This	figure	also	demonstrates	an	example	of	a	browser—Chrome	in	this	case—

that	doesn’t	style	abbreviations	with	a	title	any	differently	than	regular	text	by	default.)

To	explain	abbreviations
1.	Type	<abbr.

2.	Optionally,	next	type	title="expansion",	where	expansion	is	the	words	represented	by
the	abbreviation.

3.	Type	>.
4.	Then	type	the	abbreviation	itself.
5.	Finally,	finish	up	with	</abbr>.
6.	Optionally,	type	a	space	and	(expansion),	where	expansion	is	the	words	represented	by	the
abbreviation.

Tip
It’s	common	practice	to	include	an	abbreviation’s	expansion	(by	way	of	a	title	or	a
parenthetical)	only	the	first	time	it	appears	on	a	page.

Tip
A	parenthetical	abbreviation	expansion	is	the	most	explicit	way	to	describe	an
abbreviation,	making	it	available	to	the	widest	set	of	visitors	 .	For	instance,	users	on
touchscreen	devices	like	smartphones	and	tablets	may	not	be	able	to	hover	on	an	abbr
element	to	see	a	title	tool	tip.	So	if	you	provide	an	expansion,	consider	putting	it	in
parentheses	whenever	possible.

Tip
If	you	use	an	abbreviation	in	its	plural	form,	make	the	expansion	plural	as	well.

Tip
As	a	visual	cue	to	sighted	users,	Firefox	and	Opera	display	abbr	with	a	dotted	bottom
border	if	it	has	a	title	 .	If	you’d	like	to	replicate	that	effect	in	other	browsers,	add	the
following	to	your	style	sheet:	abbr[title]	{	border-bottom:	1px	dotted
#000;	}.	Browsers	provide	the	title	attribute’s	contents	as	a	tool	tip	 	regardless	of
whether	the	abbr	is	styled	with	a	border.

Tip
If	you	don’t	see	the	dotted	bottom	border	under	your	abbr,	try	adjusting	the	parent
element’s	CSS	line-height	property	(see	Chapter	10).

Tip
HTML	had	an	acronym	element	before	HTML5,	but	coders	were	often	confused	by	the
difference	between	an	abbreviation	and	an	acronym,	so	HTML5	eliminated	the	acronym
element	in	favor	of	abbr	for	all	instances.

Proximity	of	a	Term	and	Its	Definition
The	location	of	a	term	marked	with	dfn	relative	to	the	location	of	its	definition	is
important.	HTML5	states,	“The	paragraph,	description	list	group,	or	section	that	is	the
nearest	ancestor	of	the	dfn	element	must	also	contain	the	definition(s)	for	the	term	given
by	the	dfn	element.”	Simplified,	this	means	that	the	dfn	and	its	definition	should	be	near
each	other,	which	makes	sense.	This	is	the	case	in	both	 	and	the	example	given	in	the
fourth	tip;	the	dfn	and	its	definition	are	in	the	same	paragraph.

Defining	a	Term
In	the	print	world,	it’s	customary	to	differentiate	a	term	visually	when	you	define	it.	Typically,	this	is	done
with	italics;	subsequent	uses	of	the	term	are	not	italicized.
In	HTML,	when	you	define	a	term,	you	differentiate	it	semantically	with	the	dfn	element.	You	wrap	its
tags	only	around	the	term	you’re	defining,	not	around	the	definition	 .	And	just	as	in	print	convention,
subsequent	uses	of	the	term	are	not	marked	with	dfn,	because	you	aren’t	defining	them	again.	(HTML
refers	to	the	point	where	you	define	a	term	as	the	“defining	instance	of	a	term.”)
Click	here	to	view	code	image

...
<body>

<p>The	contestant	was	asked	to	spell	"pleonasm."	She	requested	the	definition	and	was
told	that	<dfn>pleonasm</dfn>	means	"a	redundant	word	or	expression"	(Ref:	<cite>dictionary.com
</cite>).</p>

</body>
</html>

	Note	that	although	pleonasm	appears	twice	in	the	example,	dfn	marks	only	the	second	one,	because
that’s	when	I	defined	the	term.	Similarly,	if	I	were	to	use	pleonasm	subsequently	in	the	document,	I

wouldn’t	use	dfn.	Although	browsers	style	dfn	text	differently	than	normal	text	 ,	what’s	important	is
that	the	term	is	marked	up	differently.	Also,	you	don’t	have	to	use	the	cite	element	each	time	you	use

dfn,	just	when	you	reference	a	source.

	Typically,	the	dfn	element	renders	in	italics	by	default,	as	does	cite.

To	mark	the	defining	instance	of	a	term
1.	Type	<dfn>.
2.	Type	the	term	you	wish	to	define.

3.	Type	</dfn>.

Tip
You	can	also	use	dfn	in	a	description	list	(the	dl	element).	See	“Creating	Description
Lists”	in	Chapter	15.

Tip
Use	dfn	only	when	defining	a	term,	not	simply	because	you	want	to	italicize	text.	CSS
allows	you	to	style	any	text	in	italics	(see	“Creating	Italics”	in	Chapter	10).

Tip
dfn	may	also	enclose	another	phrasing	element,	like	abbr,	when	appropriate.	For
example,	<p>A	<dfn><abbr	title="Junior">Jr.</abbr></dfn>	is	a
son	with	the	same	full	name	as	his	father.</p>.

Tip
If	you	use	the	optional	title	attribute	on	a	dfn,	it	should	have	the	same	value	as	the
dfn	term.	If	you	nest	a	single	abbr	in	dfn	and	the	dfn	has	no	text	of	its	own,	the
optional	title	should	be	on	the	abbr	only,	as	in	the	previous	tip.

Creating	Superscripts	and	Subscripts
Letters	or	numbers	that	are	raised	or	lowered	slightly	relative	to	the	main	body	text	are	called
superscripts	and	subscripts,	respectively	 .	HTML	includes	elements	for	defining	both	kinds	of	text.
Common	uses	for	superscripts	include	marking	trademark	symbols,	exponents,	and	footnotes	 .
Subscripts	are	common	in	chemical	notation.
Click	here	to	view	code	image

...
<body>

<article>
					<h1>Famous	Catalans</h1>
					<p>...	Actually,	Pablo	Casals'	real	name	was	<i>Pau</i>	Casals,	Pau	being	the
Catalan	equivalent	of	Pablo	¹
.</p>

					<p>...	Pau	Casals	is	remembered	in	this	country	for	his	empassioned	speech	against
nuclear	proliferation	at	the	United	Nations	<a	href="#footnote-2"	title="Read	footnote
2">²	...</p>

					<footer>
								<p	id="footnote-1">¹It	means	Paul	in	English.</p>
								<p	id="footnote-2">²In	1963,	I	believe.</p>
					</footer>
</article>

</body>
</html>

	One	use	of	the	sup	element	is	to	indicate	footnotes.	I	placed	the	footnotes	in	a	footer	within	the
article	rather	than	in	the	page	at	large	because	they	are	associated.	I	also	linked	each	footnote	number
within	the	text	to	its	footnote	in	the	footer	so	visitors	can	access	them	more	easily.	Note,	too,	that	the

title	attribute	on	the	links	provides	another	cue.

	The	sup	elements	display	higher	than	text	in	the	same	line.	In	the	process,	unfortunately,	they	change
the	spacing	between	lines	(see	the	last	tip).

To	create	superscripts	or	subscripts
1.	Type	<sub>	to	create	a	subscript	or	<sup>	to	create	a	superscript.

2.	Type	the	characters	or	symbols	that	represent	the	subscript	or	superscript.
3.	Type	</sub>	or	</sup>,	depending	on	what	you	used	in	step	1,	to	complete	the	element.

Tip
Most	browsers	automatically	reduce	the	font	size	of	sub-	or	superscripted	text	by	a	few
points.

Tip
Superscripts	are	the	ideal	way	to	mark	up	certain	foreign-language	abbreviations—such	as
Mlle	for	Mademoiselle	in	French	or	3a	for	tercera	in	Spanish—or	to	mark	up	numerics	like
2nd	and	5th.

Tip
One	proper	use	of	subscripts	is	for	writing	out	chemical	molecules,	such	as	H20.	For
example,	<p>I'm	parched.	Could	I	please	have	a	glass	of
H₂O?</p>.

Tip
Super-	and	subscripted	characters	gently	spoil	the	even	spacing	between	lines.	In	 ,	for
example,	notice	that	there	is	more	space	between	lines	4	and	5	of	the	first	paragraph	and
lines	2	and	3	of	the	second	than	between	the	other	lines.	CSS	comes	to	the	rescue,	though;
see	the	sidebar	to	learn	how	to	fix	this.

Fixing	the	Spacing	Between	Lines	When	Using	sub	or	sup
With	a	little	bit	of	CSS,	you	can	fix	the	line	height	discrepancies	caused	by	the	sub	and
sup	elements.	The	code	below	comes	from	Nicolas	Gallagher	and	Jonathan	Neal’s
excellent	normalize.css	(http://necolas.github.com/normalize.css/).	They	didn’t
invent	the	method	that	follows;	they	borrowed	it	from	https://gist.github.com/413930,
which	includes	a	full	explanation	of	what	this	CSS	does,	so	I	encourage	you	to	give	it	a
look.
I	also	recommend	checking	out	normalize.css,	which	you	can	use	on	your	own
projects.	It	helps	you	achieve	a	consistent	baseline	display	of	elements	across	browsers
and	is	documented	thoroughly	(see	“Resetting	or	Normalizing	Default	Styles”	in	Chapter
11).

Click	here	to	view	code	image

/*
*	Prevents	sub	and	sup	affecting	line-height	in	all	browsers
*	gist.github.com/413930
*/
sub,
sup	{
				font-size:	75%;
				line-height:	0;
				position:	relative;
				vertical-align:	baseline;
}
sup	{
				top:	-0.5em;
}
sub	{
				bottom:	-0.25em;
}

You	may	need	to	adjust	this	CSS	a	bit	to	level	out	the	line	heights,	depending	on	your
content’s	font	size,	but	this	should	give	you	a	very	good	start	at	the	least.	You’ll	learn	about
creating	style	sheets	and	how	to	add	this	CSS	to	your	site	in	Chapter	8.

Adding	Author	Contact	Information
You	might	think	the	address	element	is	for	marking	up	a	postal	or	street	address,	but	it	isn’t	(except	for
one	circumstance;	see	the	first	tip).	In	fact,	there	isn’t	an	HTML	element	explicitly	designed	for	that
purpose.
Instead,	address	defines	the	contact	information	for	the	author,	people,	or	organization	responsible	for
either	a	part	of	a	webpage	(such	as	a	news	article,	product	review,	or	report)	or	a	whole	page	(and	
).	Which	of	those	is	true	depends	on	where	address	appears.	The	first	step	describes	each	scenario.
Click	here	to	view	code	image

http://necolas.github.com/normalize.css/
https://gist.github.com/413930

...
<body>
<main	role="main">
<article>
					<h1>Museum	Opens	on	the	Waterfront</h1>
					<p>The	new	art	museum	not	only	introduces	a	range	of	contemporary	works	to	the	city,
it's	part	of	larger	development	effort	on	the	waterfront.</p>

					...	[rest	of	story	content]	...

					<!--	the	article's	footer	with	address	information	for	the	article	-->
					<footer>
								<p>Tracey	Wong	has	written	for	<cite>The	Paper	of	Papers</cite>	since	receiving
her	MFA	in	art	history	three	years	ago.</p>
								<address>
								Email	her	at	<a	href="mailto:
traceyw@thepaperofpapers.com">traceyw@thepaperofpapers.com.
								</address>
					</footer>
</article>
</main>

<!--	the	page's	footer	with	address	information	for	the	whole	page	-->
<footer	role="contentinfo">
					<p><small>©	2014	The	Paper	of	Papers,	Inc.</small></p>
					<address>
					Have	a	question	or	comment	about	the	site?	Contact	our
web	team.
					</address>
</footer>
</body>
</html>

	This	page	has	two	address	elements:	one	for	the	article’s	author	and	the	other	in	a	page-level
footer	for	the	people	who	maintain	the	whole	page.	Note	that	the	address	for	the	article	contains

only	contact	information.	Although	the	background	information	about	Tracey	Wong	is	also	in	the
article’s	footer,	it’s	outside	the	address	element.

	The	address	element	renders	in	italics	by	default.	(The	text	“The	Paper	of	Papers”	is	also	italicized,
but	it	is	enclosed	in	the	cite	element,	covered	in	“Indicating	a	Citation	or	Reference”	in	this	chapter.)

To	provide	the	author’s	contact	information
1.	If	you	want	to	provide	author	contact	information	for	an	article,	place	the	cursor	within	that
article	(see	the	first	instance	in).	Alternatively,	place	the	cursor	within	the	body	(or,	more
commonly,	the	page-level	footer)	if	you	want	to	provide	author	contact	information	for	the	page
at	large	(see	the	second	instance	in).

2.	Type	<address>.
3.	Type	the	author’s	email	address,	a	link	to	a	page	with	contact	information,	and	so	on.
4.	Type	</address>.

Tip
Most	of	the	time,	contact	information	takes	the	form	of	the	author’s	email	address	or	a	link
to	a	page	with	more	contact	information.	The	contact	information	could	very	well	be	the
author’s	postal	address,	in	which	case	marking	it	up	with	address	would	be	valid.	But	if
you’re	creating	the	Contact	Us	page	for	your	business	and	want	to	include	your	office
locations,	it	would	be	incorrect	to	code	those	with	address.	The	example	in	“Creating	a
Line	Break”	shows	one	way	to	mark	up	a	postal	or	street	address.

Tip
The	address	element	pertains	to	the	nearest	article	it	is	contained	in,	or	to	the	page’s
body	if	address	isn’t	nested	within	an	article.	It’s	customary	to	place	address	in
a	footer	element	when	noting	author	contact	information	for	the	page	at	large,	like	the
second	instance	of	address	in	 .

Tip
An	address	in	an	article	provides	contact	information	for	the	author	of	that
article	 ,	not	for	any	articles	nested	within	that	article,	such	as	user
comments.

Tip
The	address	element	may	contain	only	author	contact	information,	not	anything	else	such
as	the	document	or	article’s	last	modified	date	 .	Additionally,	HTML5	forbids
nesting	any	of	the	following	elements	inside	address:	h1–h6,	article,	address,
aside,	footer,	header,	hgroup,	nav,	and	section.

Tip
See	Chapter	3	to	learn	more	about	the	article	and	footer	elements.

Noting	Edits	and	Inaccurate	Text
Sometimes	you	may	want	to	indicate	content	edits	that	have	occurred	since	the	previous	version	of	your
page.	There	are	two	elements	for	noting	edits:	the	ins	element	represents	content	that	has	been	added,
and	the	del	element	marks	content	that	has	been	removed	(through).	You	may	use	them	together	or
individually.
Click	here	to	view	code	image

...
<body>

<h1>Charitable	Gifts	Wishlist</h1>

<p>Please	consider	donating	one	or	more	of	the	following	items	to	the	village's	community
center:</p>

					2	desks
					1	chalkboard
					4	solar-powered	tablets
					<ins>1	bicycle</ins>

</body>
</html>

	One	item	(the	bicycle)	has	been	added	to	this	gift	list	since	it	was	previously	published,	and	purchased
items	have	been	removed,	as	noted	by	the	del	elements.	You	are	not	required	to	use	del	each	time	you
use	ins,	or	vice	versa.	Browsers	differentiate	the	contents	of	each	element	visually	by	default	 .

	Browsers	typically	display	a	line	through	deleted	text,	and	they	typically	underline	inserted	text.	You
can	change	these	treatments	with	CSS.

Click	here	to	view	code	image

...
<body>

<h1>Charitable	Gifts	Wishlist</h1>

					<p>Please	consider	donating	one	or	more	of	the	following	items	to	the	village's
community	center:</p>

<ins>
					<p>Please	note	that	all	gifts	have	been	purchased.</p>
					<p>Thank	you	so	much	for	your	generous	donations!</p>
</ins>

					
								2	desks
								1	chalkboard
								4	solar-powered	tablets
								<ins>1	bicycle</ins>
					

</body>
</html>

	Both	del	and	ins	are	rare	in	that	they	can	surround	both	phrasing	content	(“inline”	content,	in	pre-
HTML5	parlance)	and	blocks	of	content	like	entire	paragraphs	or	lists,	as	shown	here.

	Just	as	before,	browsers	indicate	which	content	has	been	deleted	or	inserted.

Meanwhile,	the	s	element	notes	content	that	is	no	longer	accurate	or	relevant	(it’s	not	for	edits)	(and	
).

Click	here	to	view	code	image

...
<body>

<h1>Today's	Showtimes</h1>
<p>Tickets	are	available	for	the	following	times	today:</p>

					<ins>2	p.m.	(this	show	just	added!)</ins>
					<s>5	p.m.</s>	SOLD	OUT
					<s>8:30	p.m.</s>	SOLD	OUT

</body>
</html>

	This	example	shows	an	ordered	list	(the	ol	element)	of	show	times.	The	time	slots	for	which	ticket
availability	is	no	longer	relevant	have	been	marked	with	the	s	element.	You	can	use	s	around	any
phrases,	not	just	around	text	within	list	items	(li	elements),	but	you	cannot	use	it	around	a	whole

paragraph	or	other	“block-level”	element	like	you	can	with	del	and	ins.

	The	s	element	renders	as	a	strikethrough	by	default	in	browsers.

To	mark	newly	inserted	text
1.	Type	<ins>.
2.	Type	the	new	content.
3.	Type	</ins>.

To	mark	deleted	text
1.	Place	the	cursor	before	the	text	or	element	you	wish	to	mark	as	deleted.
2.	Type	.
3.	Place	the	cursor	after	the	text	or	element	you	wish	to	mark	as	deleted.
4.	Type	.

To	mark	text	that	is	no	longer	accurate	or	relevant
1.	Place	the	cursor	before	the	text	you	wish	to	mark	as	no	longer	accurate	or	relevant.
2.	Type	<s>.
3.	Place	the	cursor	after	the	text	you	wish	to	mark.
4.	Type	</s>.

Tip
Both	del	and	ins	support	two	attributes:	cite	and	datetime.	The	cite	attribute
(not	the	same	as	the	cite	element)	is	for	providing	a	URL	to	a	source	that	explains	why
an	edit	was	made.	For	example,	<ins
cite="http://www.movienews.com/ticket-demand-high.html">2
p.m.	(this	show	just	added!)</ins>.	Use	the	datetime	attribute	to
indicate	the	time	of	the	edit.	(See	“Specifying	Time”	to	learn	about	datetime’s
acceptable	format.)	Browsers	don’t	display	the	values	you	assign	to	either	of	these
attributes,	so	their	use	isn’t	widespread	with	del	and	ins,	but	feel	free	to	include	them	to
add	context	to	your	content.	The	values	could	be	extracted	with	JavaScript	or	a	program
that	parses	through	your	page.

Tip
Use	del	and	ins	anytime	you	want	to	inform	your	visitors	of	your	content’s	evolution.
For	instance,	you’ll	often	see	them	used	in	a	web	development	or	design	tutorial	to
indicate	information	that	was	learned	since	it	was	initially	posted,	while	maintaining	the
copy	as	it	originally	stood	for	completeness.	The	same	is	true	of	blogs,	news	sites,	and	so
on.

Tip
Text	marked	with	the	ins	element	is	generally	underlined	by	default	 .	Since	links	are
often	underlined	as	well	(if	not	in	your	site,	then	in	many	others),	this	may	be	confusing	to
visitors.	You	may	want	to	use	CSS	to	change	how	inserted	passages	(or	links)	are
displayed	(see	Chapter	10).

Tip
Text	marked	with	the	del	element	is	generally	struck	out	 .	Why	not	just	erase	it	and	be
done	with	it?	It	depends	on	whether	you	think	it’s	important	to	indicate	what’s	been
removed.	Striking	out	content	makes	it	easy	for	sighted	users	to	know	what	has	changed.
(Also,	screen	readers	could	announce	the	content	as	having	been	removed,	but	their
support	for	doing	so	has	historically	been	lacking.)

Tip
Only	use	del,	ins,	and	s	for	their	semantic	value.	If	you	wish	to	underline	or	strike	out
text	purely	for	cosmetic	reasons,	you	can	do	so	with	CSS	(see	“Decorating	Text”	in
Chapter	10).

Tip
HTML5	notes	that	“The	s	element	is	not	appropriate	when	indicating	document	edits;	to
mark	a	span	of	text	as	having	been	removed	from	a	document,	use	the	del	element.”	You
may	find	the	distinction	a	little	subtle	at	times.	It’s	up	to	you	to	decide	which	is	the
appropriate	semantic	choice	for	your	content.

Marking	Up	Code
If	your	content	contains	code	samples	or	file	names,	the	code	element	is	for	you	(and).
Click	here	to	view	code	image

...
<body>

<p>The	<code>showPhoto()</code>	function	displays	the	full-size	photo	of	the	thumbnail	in
our	<code><ul	id="thumbnail"></code>	carousel	list.</p>

<p>This	CSS	shorthand	example	applies	a	margin	to	all	sides	of	paragraphs:	<code>p	{
margin:	1.25em;	}</code>.	Take	a	look	at	<code>base.css</code>	to	see	more	examples.</p>

</body>
</html>

	The	code	element	indicates	that	the	text	is	code	or	a	file	name.	If	your	code	needs	to	display	<	or	>
signs,	use	the	<	and	>	character	entities,	respectively	(see	the	last	tip).	Here,	the	second	instance
of	code	demonstrates	this.	If	you	were	to	use	<	and	>,	the	browser	would	treat	your	code	as	an	HTML

element,	not	as	text	to	display.

	The	code	element’s	text	even	looks	like	code	because	of	the	monospaced	default	font.

The	examples	show	code	used	in	a	sentence.	To	show	a	standalone	block	of	code	(outside	of	a
sentence),	wrap	the	code	element	with	a	pre	element	to	maintain	its	formatting	(see	“Using
Preformatted	Text”	for	an	example).

To	mark	up	code	or	a	file	name
1.	Type	<code>.
2.	Type	the	code	or	file	name.
3.	Type	</code>.

Tip
You	can	change	the	default	monospaced	font	applied	to	code	 	with	CSS	(see	Chapter
10).

Tip
See	“A	Webpage’s	Text	Content”	in	Chapter	1	regarding	character	entities	 .

Other	Computer	and	Related	Elements:	kbd,	samp,	and	var
The	kbd,	samp,	and	var	elements	see	infrequent	use,	but	you	may	have	occasion	to	take
advantage	of	them	in	your	content.

The	kbd	Element
Use	kbd	to	mark	up	user	input	instructions.

Click	here	to	view	code	image

<p>To	log	into	the	demo:</p>

				Type	<kbd>tryDemo</kbd>	in	the	User	Name	field
				<kbd>TAB</kbd>	to	the	Password	field	and	type	<kbd>demoPass</kbd>
				Hit	<kbd>RETURN</kbd>	or	<kbd>ENTER</kbd>

Like	code,	kbd	renders	as	a	monospaced	font	by	default.
The	samp	Element
The	samp	element	indicates	sample	output	from	a	program	or	system.

Click	here	to	view	code	image

<p>Once	the	payment	went	through,	the	site	returned	a	message	reading,
<samp>Thanks	for	your	order!</samp></p>

samp	also	renders	as	a	monospaced	font	by	default.
The	var	Element
The	var	element	represents	a	variable	or	placeholder	value.

Click	here	to	view	code	image

<p>Einstein	is	best	known	for	<var>E</var>=<var>m</var><var>c</var>
².</p>

var	can	also	be	a	placeholder	value	in	content,	like	a	Mad	Libs	sheet	in	which	you’d	put
<var>adjective</var>,	<var>verb</var>,	and	so	on.
var	renders	in	italics	by	default.
Note	that	you	can	use	math	and	other	MathML	elements	in	your	HTML5	pages	for
advanced	math-related	markup.	See	http://dev.w3.org/html5/spec-author-
view/mathml.html	for	more	information.

Using	Preformatted	Text
Usually,	browsers	collapse	all	extra	returns	and	spaces	and	automatically	break	lines	of	text	according	to
the	width	of	the	browser	window.	Preformatted	text	lets	you	maintain	and	display	the	original	line	breaks
and	spacing	that	you’ve	inserted	in	the	text.	It	is	ideal	for	computer	code	examples	 ,	though	you	can	also
use	it	for	text	(hello,	ASCII	art!).
Click	here	to	view	code	image

http://dev.w3.org/html5/spec-author-view/mathml.html

...
<body>

<p>Add	this	to	your	style	sheet	if	you	want	to	display	a	dotted	border	underneath	the
<code>abbr</code>	element	whenever	it	has	a	<code>title</code>	attribute.</p>

<pre>
					<code>
					abbr[title]	{
								border-bottom:	1px	dotted	#000;
					}
					</code>
</pre>

</body>
</html>

	The	pre	element	is	ideal	for	text	that	contains	important	spaces	and	line	breaks,	like	the	bit	of	CSS
code	shown	here.	Note,	too,	the	use	of	the	code	element	to	mark	up	pieces	of	code	or	code-related	text

outside	of	pre	(see	“Marking	Up	Code”	for	more	details).

To	use	preformatted	text
1.	Type	<pre>.
2.	Type	or	paste	the	text	that	you	wish	to	display	as	is,	with	all	the	necessary	spaces,	returns,	and	line
breaks.	Unless	it	is	code,	do	not	mark	up	the	text	with	any	HTML,	such	as	p	elements.

3.	Type	</pre>.

Presentation	Considerations	with	pre
Be	aware	that	browsers	typically	disable	automatic	word	wrapping	of	content	inside	a
pre,	so	if	the	text	is	too	wide,	it	might	affect	your	layout	or	force	a	horizontal	scrollbar.
The	following	CSS	rule	enables	wrapping	within	pre	in	many	browsers,	but	not	in
Internet	Explorer	7	and	below.	(In	the	vast	majority	of	cases,	those	versions	are	too	old	to
worry	about.)

pre	{
				white-space:	pre-wrap;
}

On	a	related	note,	in	most	cases	I	don’t	recommend	you	use	the	white-space:	pre;
CSS	declaration	on	an	element	such	as	div	as	a	substitute	for	pre.	Whitespace	can	be
crucial	to	the	semantics	of	content,	especially	code,	and	only	pre	always	preserves	it.
(Also,	if	the	user	has	disabled	CSS	in	his	or	her	browser,	the	formatting	will	be	lost.)
Please	see	CSS	coverage	beginning	in	Chapter	7.	Text	formatting,	in	particular,	is
discussed	in	Chapter	10.

Tip
Preformatted	text	is	typically	displayed	with	a	monospaced	font	like	Courier	or	Courier
New	 .	You	can	use	CSS	to	change	the	font,	if	you	like	(see	Chapter	10).

	Notice	that	the	indentation	and	line	breaks	are	maintained	in	the	pre	content.

Tip
If	what	you	want	to	display—such	as	a	code	sample	in	a	tutorial—contains	HTML
elements,	you’ll	have	to	substitute	each	<	and	>	around	the	element	name	with	their
appropriate	character	entities:	<	and	>	respectively	(see	“Marking	Up	Code”	for
an	example).	Otherwise	the	browser	may	try	to	display	those	elements.

Tip
Be	sure	to	validate	your	pages	to	see	if	you’ve	nested	HTML	elements	in	pre	when	you
shouldn’t	have	(see	“Validating	Your	Code”	in	Chapter	20).

Tip
The	pre	element	isn’t	a	shortcut	for	avoiding	marking	up	your	content	with	proper
semantics	and	then	styling	the	way	it	looks	with	CSS.	For	instance,	if	you	want	to	post	a
news	article	you	wrote	in	a	word	processor,	don’t	simply	copy	and	paste	it	into	a	pre
because	you	like	the	spacing	the	way	it	is.	Instead,	wrap	your	content	in	p	(and	other
relevant	text	elements)	and	write	CSS	to	control	the	layout	as	desired.

Tip
pre,	like	a	paragraph,	always	displays	on	a	new	line	by	default	 .

Highlighting	Text
We’ve	all	used	a	highlighter	pen	at	some	point	or	another.	Maybe	it	was	when	studying	for	an	exam	or
going	through	a	contract.	Whatever	the	case,	you	used	the	highlighter	to	mark	key	words	or	phrases.
HTML5	replicates	this	with	the	new	mark	element.	Think	of	mark	as	a	semantic	version	of	a	highlighter
pen.	In	other	words,	what’s	important	is	that	you’re	noting	certain	words;	how	they	appear	isn’t	important.
Style	its	text	with	CSS	as	you	please	(or	not	at	all),	but	use	mark	only	when	it’s	pertinent	to	do	so.
No	matter	when	you	use	mark,	it’s	to	draw	the	reader’s	attention	to	a	particular	text	segment.	Here	are
some	use	cases	for	it:

	To	highlight	a	search	term	when	it	appears	in	a	search	results	page	or	an	article.	When	people	talk

about	mark,	this	is	the	most	common	context.	Suppose	you	used	a	site’s	search	feature	to	look	for
“solar	panels.”	The	search	results	or	each	resulting	article	could	use	<mark>solar
panels</mark>	to	highlight	the	term	throughout	the	text.
	To	call	attention	to	part	of	a	quote	that	wasn’t	highlighted	by	the	author	in	its	original	form	(and	

).	This	is	akin	to	the	real-world	task	of	highlighting	a	textbook	or	contract.
Click	here	to	view	code	image

...
<body>

<p>So,	I	went	back	and	read	the	instructions	myself	to	see	what	I'd	done	wrong.	They
said:</p>

<blockquote>
					<p>Remove	the	tray	from	the	box.	Pierce	the	overwrap	several	times	with	a	fork	and
cook	on	High	for	<mark>15	minutes</mark>,	rotating	it	half	way	through.</p>
</blockquote>

<p>I	thought	he'd	told	me	fifty.	No	wonder	it	exploded	in	my	microwave.</p>

</body>
</html>

	Although	mark	may	see	its	most	widespread	use	in	search	results,	here’s	another	valid	use	of	it.	The
phrase	“15	minutes”	was	not	highlighted	in	the	instructions	on	the	packaging.	Instead,	the	author	of	this

HTML	used	mark	to	call	out	the	phrase	as	part	of	the	story.

	Browsers	with	native	support	of	the	mark	element	display	a	yellow	background	behind	the	text	by
default.	Older	browsers	don’t,	but	you	can	tell	them	to	do	so	with	a	simple	rule	in	your	style	sheet	(see	the

tips).

	To	draw	attention	to	a	code	fragment	(and).
Click	here	to	view	code	image

...
<body>

<p>It's	usually	bad	practice	to	use	a	class	name	that	explicitly	describes	how	an	element
should	look,	such	as	the	highlighted	portion	of	CSS	below:</p>

<pre>
					<code>
								<mark>.greenText</mark>	{
											color:	green;
								}
					</code>
</pre>

</body>
</html>

	This	example	uses	mark	to	draw	attention	to	a	code	segment.

	The	code	noted	with	mark	is	called	out.

To	highlight	text
1.	Type	<mark>.
2.	Type	the	word	or	words	to	which	you	want	to	call	attention.
3.	Type	</mark>.

Tip
The	mark	element	is	not	the	same	as	either	em	(which	represents	stress	emphasis)	or
strong	(which	represents	importance).	Both	are	covered	earlier	in	this	chapter.

Tip
Since	mark	is	new	in	HTML5,	older	browsers	don’t	render	a	background	color	by
default.	You	can	instruct	them	to	do	so	by	adding	mark	{	background-color:
yellow;	}	to	your	style	sheet.

Tip
Be	sure	not	to	use	mark	simply	to	give	text	a	background	color	or	other	visual	treatment.
If	all	you’re	looking	for	is	a	means	to	style	text	and	there’s	no	proper	semantic	HTML
element	to	contain	it,	use	the	span	element	(covered	later	in	this	chapter),	perhaps	with	a
class	assigned	to	it,	and	style	it	with	CSS.

Creating	a	Line	Break
Browsers	automatically	wrap	text	according	to	the	width	of	the	block	or	window	that	contains	content.
It’s	best	to	let	content	flow	like	this	in	most	cases,	but	sometimes	you’ll	want	to	force	a	line	break
manually.	You	achieve	this	with	the	br	element.
Using	br	is	a	last	resort	tactic	because	it	mixes	presentation	with	your	HTML	instead	of	leaving	all
display	control	to	your	CSS.	For	instance,	never	use	br	to	simulate	spacing	between	paragraphs.	Instead,
mark	up	the	two	paragraphs	with	p	elements	and	define	the	spacing	between	the	two	with	the	CSS
margin	property	(see	the	second	tip).
So	when	might	br	be	OK?	Well,	the	br	element	is	suitable	for	creating	line	breaks	in	poems,	in	a	street
address	(and),	and	occasionally	in	other	short	lines	of	text	that	should	appear	one	after	another.
Click	here	to	view	code	image

...
<body>

<p>53	North	Railway	Street

Okotoks,	Alberta

Canada	T1Q	4H5</p>

<p>53	North	Railway	Street	
Okotoks,	Alberta	
Canada	T1Q	4H5</p>

</body>
</html>

	The	same	address	appears	twice,	but	I	coded	them	a	little	differently	for	demonstration	purposes.
Remember	that	the	returns	in	your	code	are	always	ignored,	so	both	paragraphs	shown	display	the	same

way	 .

	Each	br	element	forces	the	subsequent	content	to	a	new	line.	Without	them,	the	entire	address	would
display	on	one	line,	unless	the	browser	were	narrow	enough	to	force	wrapping.

To	insert	a	line	break
Type	
	(or	
)	where	the	line	break	should	occur.	There	is	no	separate	end	br	tag	because	it’s
what’s	known	as	an	empty	(or	void)	element;	it	lacks	content.

Tip
Typing	br	as	either	
	or	
	is	perfectly	valid	in	HTML5.

Tip
CSS	allows	you	to	control	the	space	between	lines	in	a	paragraph	(see	“Setting	the	Line
Height”	in	Chapter	10)	and	between	the	paragraphs	themselves	(see	“Setting	the	Margins
Around	an	Element”	in	Chapter	11).

Tip
The	hCard	microformat	(http://microformats.org/wiki/hcard)	is	for	representing	people,
companies,	organizations,	and	places	in	a	semantic	manner	that’s	human-	and	machine-
readable.	You	could	use	it	to	represent	a	street	address	instead	of	using	the	provided
example	 .

Creating	Spans
The	span	element,	like	div,	has	absolutely	no	semantic	meaning.	The	difference	is	that	span	is
appropriate	around	a	word	or	phrase	only,	whereas	div	is	for	blocks	of	content	(see	“Creating	Generic
Containers”	in	Chapter	3).
The	span	element	is	useful	when	you	want	to	apply	any	of	the	following	to	a	snippet	of	content	for	which
HTML	doesn’t	provide	an	appropriate	semantic	element:

	Attributes,	like	class,	dir,	id,	lang,	title,	and	more	(and)
Click	here	to	view	code	image

...
<body>

<h1	lang="es">La	Casa	Milà</h1>

<p>Gaudí's	work	was	essentially	useful.	La	Casa	Milà	is	an
apartment	building	and	real	people	live	there.</p>

</body>
</html>

http://microformats.org/wiki/hcard

	In	this	case,	I	want	to	specify	the	language	of	a	portion	of	text,	but	there	isn’t	an	HTML	element	whose
semantics	are	a	fit	for	“La	Casa	Milà”	in	the	context	of	a	sentence.	The	h1	that	contains	“La	Casa	Milà”
before	the	paragraph	is	appropriate	semantically	because	the	text	is	the	heading	for	the	content	that

follows.	So	for	the	heading,	I	simply	added	the	lang	attribute	to	the	h1	rather	than	wrap	a	span	around
the	heading	text	unnecessarily	for	that	purpose.	(The	lang	attribute	allows	you	to	declare	the	language	of

the	element’s	text.)

	The	span	element	has	no	default	styling.

	Styling	with	CSS
	Behavior	with	JavaScript

Because	span	has	no	semantic	meaning,	use	it	as	a	last	resort	when	no	other	element	will	do.

To	add	a	span
1.	Type	<span.
2.	If	desired,	type	id="name",	where	name	uniquely	identifies	the	spanned	content.
3.	If	desired,	type	class="name",	where	name	is	the	name	of	the	class	that	the	spanned	content
belongs	to.

4.	If	desired,	type	other	attributes	(such	as	dir,	lang,	or	title)	and	their	values.
5.	Type	>	to	complete	the	start	span	tag.
6.	Create	the	content	you	wish	to	contain	in	the	span.
7.	Type	.

Tip
A	span	doesn’t	have	default	formatting	 ,	but	just	as	with	other	HTML	elements,	you	can
apply	your	own	with	CSS.

Tip
You	may	apply	both	a	class	and	id	attribute	to	the	same	span	element,	although	it’s
more	common	to	apply	one	or	the	other,	if	at	all.	The	principal	difference	is	that	class	is
for	a	group	of	elements,	whereas	id	is	for	identifying	individual,	unique	elements	on	a
page.

Tip
Microformats	often	use	span	to	attach	semantic	class	names	to	content	as	a	way	of	filling
the	gaps	where	HTML	doesn’t	provide	a	suitable	semantic	element.	You	can	learn	more
about	them	at	http://microformats.org.

Other	Elements
This	section	covers	other	elements	that	you	can	include	within	your	text,	but	which	typically	have	fewer
occasions	to	be	used	or	have	limited	browser	support	(or	both).

The	u	element
Like	b,	i,	s,	and	small,	the	u	element	has	been	redefined	in	HTML5	to	disassociate	it	from	its	past	as	a
non-semantic,	presentational	element.	In	those	days,	the	u	element	was	for	underlining	text.	Now,	it’s	for
unarticulated	annotations	(sounds	a	little	befuddling,	I	know).	HTML5	defines	it	thus:

The	u	element	represents	a	span	of	text	with	an	unarticulated,	though	explicitly	rendered,	non-
textual	annotation,	such	as	labeling	the	text	as	being	a	proper	name	in	Chinese	text	(a	Chinese
proper	name	mark),	or	labeling	the	text	as	being	misspelt.

Here	is	an	example	of	how	you	could	use	u	to	note	misspelled	words:
Click	here	to	view	code	image

<p>When	they	<u	class="spelling">recieved</u>	the	package,	they	put	it	with	<u
class="spelling">there</u>	other	ones	with	the	intention	of	opening	them	all	later.
</p>

The	class	is	entirely	optional,	and	its	value	(which	can	be	whatever	you’d	like)	doesn’t	render	with	the
content	to	explicitly	indicate	a	spelling	error.	But	you	could	use	it	to	style	misspelled	words	differently
(though	u	still	renders	as	underlined	text	by	default).	Or	you	could	add	a	title	attribute	with	a	note
such	as	“[sic]”—a	convention	in	some	languages	to	indicate	a	misspelling.
Use	u	only	when	an	element	like	cite,	em,	or	mark	doesn’t	fit	your	desired	semantics.	Also,	it’s	best	to
change	its	styling	if	u	text	will	be	confused	with	linked	text,	which	is	also	underlined	by	default	 .

	Like	links,	u	elements	are	underlined	by	default,	which	can	cause	confusion	unless	you	change	one	or
both	with	CSS.

The	wbr	element
HTML5	introduces	a	cousin	of	br	named	wbr.	It	represents	“a	line	break	opportunity.”	Use	it	in	between
words	or	letters	in	a	long,	unbroken	phrase	(or,	say,	a	URL)	to	indicate	where	it	could	wrap	if	necessary
to	fit	the	text	in	the	available	space	in	a	readable	fashion.	So	unlike	br,	wbr	doesn’t	force	a	wrap;	it	just
lets	the	browser	know	where	it	can	force	a	line	break	if	needed.

http://microformats.org

Here	are	a	couple	of	examples:
Click	here	to	view	code	image

<p>They	liked	to	say,	"FriendlyFleasandFireFlies<wbr/>	FriendlyFleasandFireFlies<wbr
/>FriendlyFleasandFireFlies<wbr	/>"	as	fast	as	they	could	over	and	over.</p>

<p>His	favorite	site	is	this<wbr	/>is<wbr	/>a<wbr	/>really<wbr	/>really<wbr
/>longurl.com.</p>

You	can	type	wbr	as	either	<wbr	/>	or	<wbr>.	As	you	might	have	guessed,	you	won’t	find	many
occasions	to	use	wbr.	Additionally,	browser	support	is	inconsistent	as	of	this	writing.	Although	wbr
works	in	current	versions	of	Chrome	and	Firefox,	Internet	Explorer	and	Opera	simply	ignore	it.

The	ruby,	rp,	and	rt	elements
A	ruby	annotation	is	a	convention	in	East	Asian	languages,	such	as	Chinese	and	Japanese,	and	is
typically	used	to	show	the	pronunciation	of	lesser-known	characters.	These	small	annotative	characters
appear	either	above	or	to	the	right	of	the	characters	they	annotate.	They	are	often	called	simply	ruby	or
rubi,	and	the	Japanese	ruby	characters	are	known	as	furigana.
The	ruby	element,	as	well	as	its	rt	and	rp	child	elements,	is	HTML5’s	mechanism	for	adding	them	to
your	content.	rt	specifies	the	ruby	characters	that	annotate	the	base	characters.	The	optional	rp	element
allows	you	to	display	parentheses	around	the	ruby	text	in	browsers	that	don’t	support	ruby.
The	following	example	demonstrates	this	structure	with	English	placeholder	copy	to	help	you	understand
the	arrangement	of	information	both	in	the	code	and	in	supporting	 	and	non-supporting	 	browsers.
The	area	for	ruby	text	is	highlighted:

	A	supporting	browser	will	display	the	ruby	text	above	the	base	(or	possibly	on	the	side)	without
parentheses	because	it	ignores	the	rp	elements.

	A	non-supporting	browser	displays	the	rt	con-tent	in	parentheses	in	the	normal	flow	of	content.
Click	here	to	view	code	image

<ruby>
				base	<rp>(</rp><rt>ruby	chars</rt><rp>)</rp>
				base	<rp>(</rp><rt>ruby	chars</rt><rp>)</rp>
</ruby>

Now,	a	real-world	example	with	the	two	Chinese	base	characters	for	“Beijing,”	and	their	accompanying
ruby	characters	 :
Click	here	to	view	code	image

<ruby>
				 	<rp>(</rp><rt> </rt><rp>)</rp>
				 	<rp>(</rp><rt> </rt><rp>)</rp>
</ruby>

	Now,	the	ruby	markup	for	“Beijing”	as	seen	in	a	supporting	browser.

You	can	see	how	important	the	parentheses	are	for	browsers	that	don’t	support	ruby	 .	Without	them,
the	base	and	ruby	text	would	run	together,	clouding	the	message.

	In	a	non-supporting	browser,	the	content	could	be	harder	to	understand	without	the	parentheses.

Tip
At	the	time	of	this	writing,	Firefox	and	Opera	lack	basic	ruby	support	(all	the	more
reason	to	use	rp	in	your	markup).	The	Firefox	add-on	HTML	Ruby
(https://addons.mozilla.org/en-US/firefox/addon/html-ruby/)	provides	support	for	Firefox
in	the	meantime.

Tip
You	can	learn	more	about	ruby	characters	at	http://en.wikipedia.org/wiki/Ruby_character.

The	bdi	and	bdo	elements
If	your	HTML	pages	ever	mix	left-to-right	characters	(like	Latin	characters	in	most	languages)	and	right-
to-left	characters	(like	characters	in	Arabic	or	Hebrew),	the	bdi	and	bdo	elements	may	be	of	interest.
But	first,	a	little	backstory.	The	base	directionality	of	your	content	defaults	to	left-to-right	unless	you	set
the	dir	attribute	on	the	html	element	to	rtl.	For	instance,	<html	dir="rtl"	lang="he">
specifies	that	the	base	directionality	of	your	content	is	right-to-left	and	that	the	base	language	is	Hebrew.
Just	as	I’ve	done	with	lang	in	several	examples	throughout	the	book,	you	may	also	set	dir	on	elements
within	the	page	when	the	content	deviates	from	the	page’s	base	setting.	So	if	the	base	were	set	to	English
(<html	lang="en">)	and	you	wanted	to	include	a	paragraph	in	Hebrew,	you’d	mark	it	up	as	<p
dir="rtl"	lang="he">...</p>.
With	those	settings	in	place,	the	content	will	display	in	the	desired	directionality	most	of	the	time;
Unicode’s	bidirectional	(“bidi”)	algorithm	takes	care	of	figuring	it	out.
The	bdo	(“bidirectional	override”)	element	is	for	those	occasions	when	the	algorithm	doesn’t	display	the
content	as	intended,	and	you	need	to	override	it.	Typically,	that’s	the	case	when	the	content	in	the	HTML
source	is	in	visual	order	instead	of	logical	order.
Visual	order	is	just	what	it	sounds	like—the	HTML	source	code	content	is	in	the	same	order	in	which	you
want	it	displayed.	Logical	order	is	the	opposite	for	a	right-to-left	language	like	Hebrew;	the	first
character	going	right	to	left	is	typed	first,	then	the	second	character	(in	other	words,	the	one	to	the	left	of
it),	and	so	on.
In	line	with	best	practices,	Unicode	expects	bidirectional	text	in	logical	order.	So	if	it’s	visual	instead,	the
algorithm	will	still	reverse	the	characters,	displaying	them	opposite	of	what	is	intended.	If	you	aren’t	able

https://addons.mozilla.org/en-US/firefox/addon/html-ruby/
http://en.wikipedia.org/wiki/Ruby_character

to	change	the	text	in	the	HTML	source	to	logical	order	(for	instance,	maybe	it’s	coming	from	a	database	or
a	feed),	your	only	recourse	is	to	wrap	it	in	a	bdo.
To	use	bdo,	you	must	include	the	dir	attribute	and	set	it	to	either	ltr	(left-to-right)	or	rtl	(right-to-
left)	to	specify	the	direction	you	want.	Continuing	our	earlier	example	of	a	Hebrew	paragraph	within	an
otherwise	English	page,	you	would	type	<p	lang=	"he"><bdo	dir="rtl">...</bdo></p>.
The	bdo	element	is	appropriate	for	phrases	or	sentences	within	a	paragraph.	You	wouldn’t	wrap	it
around	several	paragraphs.
The	bdi	element,	new	in	HTML5,	is	for	cases	when	the	content’s	directionality	is	unknown.	You	don’t
have	to	include	the	dir	attribute,	because	it’s	set	to	auto	by	default.	HTML5	provides	the	following
example,	which	I’ve	modified	slightly:

This	element	is	especially	useful	when	embedding	user-generated	content	with	an	unknown
directionality.

In	this	example,	usernames	are	shown	along	with	the	number	of	posts	that	the	user	has	submitted.	If	the
bdi	element	were	not	used,	the	username	of	the	Arabic	user	would	end	up	confusing	the	text	(the
bidirectional	algorithm	would	put	the	colon	and	the	number	“3”	next	to	the	word	“User”	rather	than	next
to	the	word	“posts”).
Click	here	to	view	code	image

				User	<bdi>jcranmer</bdi>:	12	posts.
				User	<bdi>hober</bdi>:	5	posts.
				User	<bdi> </bdi>:	3	posts.

Tip
If	you	want	to	learn	more	on	the	subject	of	incorporating	right-to-left	languages,	I
recommend	reading	the	W3C’s	article	“Creating	HTML	Pages	in	Arabic,	Hebrew,	and
Other	Right-to-Left	Scripts”	(www.w3.org/International/tutorials/bidi-xhtml/).

The	meter	element
The	meter	element	is	another	that	is	new	thanks	to	HTML5.	At	first	glance,	it	seems	very	similar	to	the
progress	element,	covered	next,	which	is	for	indicating	“the	completion	progress	of	a	task”	(to	quote
the	spec).
In	contrast,	you	can	use	meter	to	indicate	a	fractional	value	or	a	measurement	within	a	known	range.	In
plain	language,	it’s	the	type	of	gauge	you	use	for	the	likes	of	voting	results	(for	example,	“30%	Smith,
37%	Garcia,	33%	Hawkins”),	the	number	of	tickets	sold	(for	example,	“811	out	of	850”),	a	numerical	test
grade	(for	example,	“91	out	of	100”),	and	disk	usage	(for	example,	“74	GB	out	of	256	GB”).
HTML5	suggests	(but	doesn’t	require)	that	browsers	could	render	a	meter	not	unlike	a	thermometer	on
its	side—a	horizontal	bar	with	the	measured	value	colored	differently	than	the	maximum	value	(unless
they’re	the	same,	of	course).	Firefox,	one	of	the	browsers	that	supports	meter	so	far,	does	just	that	 .
For	non-supporting	browsers,	you	can	style	meter	to	some	extent	with	CSS	or	enhance	it	further	with
JavaScript.

http://www.w3.org/International/tutorials/bidi-xhtml/

	A	browser,	like	Firefox,	that	supports	meter	displays	the	gauge	automatically,	coloring	it	based	on
the	attribute	values.	It	doesn’t	display	the	text	in	between	<meter>	and	</meter>.	As	seen	in	the	last

example,	if	you	include	title	text,	it	displays	when	you	hover	over	the	meter.

Although	it’s	not	required,	it’s	best	to	include	text	inside	meter	that	reflects	the	current	measurement	for
non-supporting	browsers	to	display	 .

	IE9	doesn’t	support	meter,	so	instead	of	a	colored	bar,	it	displays	the	text	content	inside	the	meter
element.	You	can	change	the	look	with	CSS.

Here	are	some	meter	examples	(as	seen	in	 	and):
Click	here	to	view	code	image

<p>Project	completion	status:	<meter	value="0.80">80%	completed</meter>	</p>
<p>Car	brake	pad	wear:	<meter	low=	"0.25"	high="0.75"	optimum="0"	value="0.21">21%
worn</meter></p>
<p>Miles	walked	during	half-marathon:	<meter	min="0"	max="13.1"	value="5.5"
title="Miles">4.5</meter></p>

The	meter	element	doesn’t	have	defined	units	of	measure,	but	you	can	use	the	title	attribute	to
specify	text	of	your	choosing,	as	in	the	last	example.	As	is	usual	with	title	text,	browsers	display	it	as
a	tooltip	 .

Tip
meter	supports	several	attributes.	The	value	attribute	is	the	only	one	that’s	required.
The	min	and	max	attributes	default	to	0	and	1.0,	respectively,	if	omitted.	The	low,	high,
and	optimum	attributes	work	together	to	split	the	range	into	low,	medium,	and	high
segments.	The	number	assigned	to	optimum	indicates	the	optimum	position	within	the
range,	such	as	“0	brake	pad	wear”	in	one	of	the	examples.	Set	optimum	in	between	if
neither	a	low	nor	a	high	value	is	optimal.

Tip
At	the	time	of	this	writing,	browser	support	of	meter	is	still	evolving:	It’s	not	supported
by	Internet	Explorer,	mobile	Safari	(iOS	devices),	or	Android’s	browser.	This	partially
explains	why	you	don’t	yet	see	it	much	in	the	wild.	Feel	free	to	use	it,	but	just	understand
that	these	browsers	will	render	the	meter	text	rather	than	the	visual	gauge	by	default	 .
See	http://caniuse.com/#feat=progressmeter	for	the	latest	browser	support.

Tip
The	style	of	the	gauge	that	each	supporting	browser	displays	may	vary.

Tip
Some	people	have	experimented	with	styling	meter	CSS	for	both	supporting	and	non-
supporting	browsers.	Search	online	for	“style	HTML5	meter	with	CSS”	to	see	some	of	the
results	(note	that	some	use	JavaScript).

Tip
The	meter	element	is	not	for	marking	up	general	measurements—such	as	height,	weight,
distance,	or	circumference—that	have	no	known	range.	For	example,	you	cannot	use	it	for
the	following	because	the	number	of	miles	walked	isn’t	gauged	against	a	range:	<p>I
walked	<meter	value="4.5">4.5</meter>	miles	yesterday.</p>.

Tip
Be	sure	not	to	mix	up	your	uses	of	the	meter	and	progress	elements.

The	progress	element
The	progress	element	is	yet	another	of	the	new	elements	in	HTML5.	As	stated	earlier,	it	indicates	the
completion	progress	of	a	task.	Think	of	a	progress	bar,	like	the	kind	you	might	see	in	a	web	application	to
indicate	progress	while	it	is	saving	or	loading	a	large	amount	of	data.
As	with	meter,	supporting	browsers	automatically	display	a	progress	bar	based	on	the	values	of	the
attributes	 .	And	again	like	meter,	it’s	usually	best	to	include	text	(for	example,	“0%	saved,”	as	shown
in	the	example)	inside	progress	to	reflect	the	current	progress	for	older	browsers	to	display	 ,	even
though	it’s	not	required.

http://caniuse.com/#feat=progressmeter

	A	browser,	like	Firefox,	that	supports	progress	displays	the	progress	bar	automatically,	coloring	it
based	on	the	value.	It	doesn’t	display	the	text	in	between	<progress>	and	</progress>.	The

value	attribute	is	set	to	0	in	this	example,	so	the	bar	indicates	no	progress.

	IE9	doesn’t	support	progress,	so	instead	of	a	colored	bar,	it	displays	the	text	content	inside	the
element.	You	can	change	the	look	with	CSS.

Here’s	an	example:
Click	here	to	view	code	image

<p>Please	wait	while	we	save	your	data.</p>

<p>Current	progress:	<progress	max="100"	value="0">0%	saved	</progress></p>

A	full	discussion	of	progress	is	beyond	the	scope	of	this	book,	since	typically	you	would	dynamically
update	both	the	value	attribute	and	the	inner	text	with	JavaScript	as	the	task	progresses	(for	example,	to
indicate	that	it’s	37%	completed).	The	visual	results	are	the	same	whether	you	do	that	with	JavaScript	or
code	it	that	way	in	the	HTML	initially;	for	example,	<progress	max="100"	value="37">37%
saved</progress>	 .	Of	course,	non-supporting	browsers	would	display	it	similarly	to	 .

	The	progress	bar	in	Firefox	when	the	value	attribute	is	set	to	37	programmatically	with
JavaScript	(or	directly	in	the	HTML),	assuming	max="100".	The	blue	area	reflects	the	amount	of

progress.

Tip
The	progress	element	supports	three	attributes,	all	of	which	are	optional:	max,	value,
and	form.	The	max	attribute	specifies	the	total	amount	of	work	for	the	task	and	must	be
greater	than	0.	The	value	attribute	specifies	the	amount	completed	relative	to	the	task.
Assign	the	form	attribute	to	the	id	of	a	form	element	on	the	page	if	you	want	to
associate	the	progress	element	with	a	form	it	isn’t	nested	within.

Tip
Here’s	a	small	taste	of	how	to	modify	a	progress	element	with	JavaScript.	Let’s	assume
that	the	element	had	been	coded	with	an	id	of	your	choosing,	like	this:

Click	here	to	view	code	image

<progress	max="100"	value="0"	id="progressBar">0%	saved</progress>

JavaScript	such	as	the	following	would	give	you	access	to	the	element:
Click	here	to	view	code	image

var	bar	=	document.getElementById	('progressBar');

Then	you	could	get	or	set	the	value	via	bar.value	as	needed.	For	example,
bar.value	=	37;	would	set	it	to	37,	and	the	appearance	of	the	progress	element
would	change	accordingly.

Tip
The	progress	element	is	supported	by	the	most	current	version	of	all	desktop	browsers
as	of	this	writing.	IE9	and	prior,	mobile	Safari,	and	Android	browsers	don’t	support	it.
See	http://caniuse.com/#feat=progressmeter	for	the	latest	support	information.

Tip
The	style	of	the	progress	bar	that	each	supporting	browser	displays	may	vary,	though
you	can	style	it	yourself	to	some	extent	with	CSS.

http://caniuse.com/#feat=progressmeter

5.	Images

In	This	Chapter
Images	for	the	Web
Getting	Images
Choosing	an	Image	Editor
Saving	Your	Images
Inserting	Images	on	a	Page
Offering	Alternative	Text
Specifying	Image	Sizes
Scaling	Images	with	the	Browser
Scaling	Images	with	an	Image	Editor
Adding	Icons	for	Your	Website

Creating	images	for	the	web	is	a	bit	different	from	creating	images	for	output	on	paper.	Although	the	basic
characteristics	of	web	images	and	printable	images	are	the	same,	six	main	factors	distinguish	them:
format,	download	speed,	color,	size	(dimensions),	transparency,	and	animation.
This	chapter	will	discuss	the	important	aspects	of	these	six	factors	and	explain	how	to	use	that	knowledge
to	create	effective	images	for	your	website.	You’ll	also	learn	how	to	insert	images	on	a	webpage.

Images	for	the	Web
Let’s	look	at	the	six	factors	you	should	keep	in	mind	as	you	create	web	images.	If	you’re	in	a	hurry	or
want	to	avoid	the	details,	you	can	skip	to	“Summary”	at	the	end	of	this	section.

Format	and	download	speed
People	who	print	images	on	paper	don’t	have	to	worry	about	what	their	readers	will	use	to	look	at	the
images.	And	their	readers	don’t	have	to	wait	for	images	to	appear	when	they	turn	a	page	in	a	magazine	or
newspaper.	It’s	a	different	story	on	the	web.
The	web	is	accessed	every	day	by	millions	of	Macs,	Windows-based	PCs,	Linux	machines,	phones,
tablets,	and	other	kinds	of	devices.	The	graphics	you	use	in	your	webpage	should	be	in	a	format	that	any
of	these	devices	can	recognize.	Currently,	the	three	formats	that	are	most	widely	supported	by	browsers
are	JPEG,	PNG,	and	GIF.	Your	goal	is	to	choose	a	format	that	gives	you	the	best	quality	with	the	smallest
file	size	for	each	image.
JPEG

The	JPEG	format	is	great	for	color	photographs	because	it	handles	large	amounts	of	color	and	compresses
well,	reducing	your	file	sizes	 .	When	an	image’s	file	size	is	smaller—regardless	of	the	format—it
downloads	faster,	so	your	visitors	don’t	have	to	wait	as	long	to	view	it.

	Full-color	photographs	are	typically	saved	in	the	JPEG	format.	PNG-24	also	works	but	usually	results
in	much	larger	files.

However,	JPEG	is	a	lossy	format,	meaning	you	lose	some	of	the	image’s	original	clarity	when	you	save	it
as	a	JPEG.	Usually	this	is	a	worthy	compromise,	because	you	can	choose	a	difference	in	quality	that	isn’t
very	noticeable	yet	still	make	your	pages	load	more	quickly.
Be	aware	that	uncompressing	a	JPEG	will	not	restore	the	lost	image	details.	So	if	you	plan	to	edit	the
image	in	the	future,	you	should	keep	a	copy	in	an	uncompressed	format	(for	example,	PSD	or	TIFF)	and
only	save	it	as	a	JPEG	after	you	have	made	your	final	edits.
PNG	and	GIF

PNG	and	GIF	are	lossless	formats,	so	they	can	compress	your	images	without	losing	quality.	GIF	is
limited	to	256	colors,	but	PNG	can	support	millions.	Unlike	JPEG,	PNG	and	GIF	both	support
transparency	and	are	better	for	saving	non-photographic	graphics.	Images	that	have	large	areas	of	a	single
color,	like	logos,	patterns,	illustrations,	and	rendered	text	are	the	best	candidates.
You	may	use	PNG	for	photos,	but	because	the	image	quality	isn’t	altered,	the	file	sizes	will	be	(often
considerably)	larger	than	JPEG.	So	typically	you’ll	use	PNG	for	photos	only	if	it’s	essential	that	the
image	not	have	any	artifacts	introduced	by	compression.
PNG	has	a	few	flavors:	PNG-8,	PNG-24,	and	PNG-32.	PNG	is	usually	preferred	over	GIF,	partly
because	it	has	superior	transparency	support	and	a	better	compression	algorithm	for	smaller	file	sizes.
See	Table	5.1	for	a	quick	comparison	of	all	formats,	including	the	PNG	variations.	“Saving	Your	Images”
contains	examples	of	images	with	various	compression	settings	and	formats.

TABLE	5.1	Comparison	of	Image	Formats

The	WebP	Image	Format
Google	has	created	another	image	format,	named	WebP.	This	format	supports	both	lossy
and	lossless	compression	and	can	result	in	significant	file-size	savings	over	JPEG	and
PNG.	It	also	features	alpha	transparency,	like	PNG.
WebP	is	still	evolving,	and	browser	support	is	limited	at	the	time	of	this	writing:	Chrome,
Opera	12+,	and	some	Android	browsers	are	the	only	ones	with	full	support,	and	it’s
uncertain	if	other	browsers	will	adopt	it.	But	it	is	worth	keeping	an	eye	on	its	progress,
and	before	long	there	may	be	a	way	to	deliver	WebP	images	to	supporting	browsers	while
other	browsers	fall	back	to	one	of	the	other	formats.	You	can	learn	more	about	WebP	at
https://developers.google.com/speed/webp/,	and	you	can	track	the	latest	browser	support
at	http://caniuse.com/#search=webp.

Color
Most	computer	monitors	can	display	millions	of	colors,	but	this	wasn’t	always	the	case.	Some	image
formats	have	a	limited	color	palette.	GIF	and	PNG-8	images	can	have	only	256	colors,	which	is	often	fine
for	icons	and	logos	 .

https://developers.google.com/speed/webp/
http://caniuse.com/#search=webp

	Logos	and	other	graphics	with	few	colors	are	often	saved	in	the	PNG-8	format	(or	its	less	desirable
counterpart,	GIF).

JPEG,	PNG-24,	and	PNG-32	all	support	more	than	16	million	colors,	which	is	why	they	represent
photographs	and	complex	illustrations	well.	But,	as	noted,	you’ll	use	JPEG	in	most	cases	for	these	types
of	images.

Size	(dimensions)
Have	you	ever	been	emailed	a	photo	that	looks	enormous	on	your	screen?	Chances	are	it	was	taken	with	a
digital	camera	and	whoever	sent	it	to	you	didn’t	reduce	the	size	before	emailing	it.	But	why	was	it	so
large	to	begin	with,	and	how	large	should	images	be	for	your	websites?
Digital	images	are	measured	in	pixels.	Nowadays,	digital	cameras	in	excess	of	8	megapixels	are	common,
but	let’s	consider	a	3-megapixel	capability	as	an	example.	A	3-megapixel	digital	camera	can	take	pictures
that	are	2048	pixels	wide	by	1536	pixels	high.	How	big	is	that	in	a	browser?	It	depends	on	your	display,
but	in	most	cases,	much	too	big	 ,	just	like	when	viewed	in	your	email.

	This	image	is	2048	pixels	wide	and	1536	pixels	tall,	which	means	scrolling	both	vertically	and
horizontally	is	required	to	see	the	rest	of	it.	Blech.	Not	to	mention	that	the	file	size	is	enormous,	so	it	takes

a	long	time	for	the	image	to	display.	Talk	about	not	seeing	the	forest	for	the	trees	(ba	dum-bum).

So	how	large	should	images	be	for	your	website?	The	short	answer	is	that,	generally	speaking,	you	should
keep	your	images	to	within	a	few	hundred	pixels	wide	at	most	 .	The	larger	the	image	size,	the	larger	the
file	size,	and	the	slower	your	webpages	will	load.	Choosing	your	image	sizes	is	about	finding	a	balance.
Plus,	as	we’ve	seen,	if	your	images	are	really	large,	visitors	may	need	to	scroll	horizontally	to	see	the	full
width	 .

	Behold,	there’s	more	to	our	image	after	all!	I	reduced	the	size	to	make	it	easy	to	see	all	of	it	(see
“Scaling	Images	with	an	Image	Editor”).	This	version	is	400	pixels	wide	and	300	pixels	high,	maintaining

the	4:3	aspect	ratio	of	the	original	image	so	it’s	not	distorted.	As	you	will	learn	in	Chapter	12,	it’s
possible	to	control	the	width	and	height	of	your	images	with	CSS	to	shrink	or	expand	them	for	optimal

viewing	on	everything	from	mobile	phones	to	big	screens.

Of	course,	your	image’s	dimensions	will	vary	depending	on	its	purpose.	Icons	will	naturally	be	small.
Logos,	a	little	bigger.	Photos,	usually	bigger	still.	And	sometimes	you’ll	want	to	make	a	big	impact	with
an	image	that	occupies	the	full	width	of	your	site’s	content	or	beyond.	Those	are	often	a	maximum	of	about
960	pixels	wide.
Lastly,	images	typically	print	smaller	than	they	appear	on	a	display.	Printers	print	more	dots	per	inch	(dpi)
than	most	displays	have	pixels	per	inch	(ppi).	The	screen	resolution	of	your	display	plays	into	this,	too.
That’s	why	the	same	image	can	look	much	larger	on	a	monitor	or	laptop	than	on	paper.

Scalable	Vector	Graphics	(SVG)
The	SVG	graphics	language	allows	you	to	create	graphics	that	can	scale	up	or	down
without	compromising	quality	(and	more).	Also,	the	file	size	is	consistent	for	a	particular
SVG	graphic	no	matter	how	large	or	small	you	display	it	in	a	page.	You	can	include	SVG
in	your	webpages;	gradually,	we’re	seeing	more	of	that,	because	all	modern	browsers
provide	basic	support.	However,	IE8	does	not.	You	can	use	the	JavaScript	libraries	SVG
Web	(http://code.google.com/p/svgweb/)	or	Raphaël	(http://raphaeljs.com/)	to	realize
similar	effects	in	IE8.	See	“Coupling	video	with	SVG”	in	Chapter	17	for	more	information
about	SVG	in	general	and	using	it	with	HTML	video	in	particular.

http://code.google.com/p/svgweb/
http://raphaeljs.com/

Transparency
You	can	take	advantage	of	transparency	to	give	an	image	a	non-rectangular	outline,	allowing	it	to	blend	in
with	a	background	color	or	texture	behind	the	image.	Both	PNG	and	GIF	allow	transparency;	JPEG	does
not.
In	the	GIF	format,	a	pixel	can	be	transparent	or	not.	This	is	known	as	index	transparency.	PNG	supports
both	index	transparency	and	alpha	transparency,	the	latter	of	which	allows	you	to	control	the	degree	to
which	a	pixel	is	transparent.	In	other	words,	a	pixel	can	be	partially	transparent—it’s	not	all	or	nothing.
This	means	that	images	with	transparency	look	better	as	a	PNG	 	than	as	a	GIF	no	matter	what	kind	of
background	is	behind	them—the	edges	appear	smooth	instead	of	jagged.

	Neither	the	solid	blue	background	nor	the	black-to-red	gradient	background	is	part	of	the	stars	PNG
image.	Instead,	they	are	colors	I	applied	to	the	body	of	the	pages	with	CSS.	The	stars	image	has	alpha
transparency,	which	allows	the	background	to	show	through	and	look	“clean”	no	matter	what	is	in	the

background	(colors,	gradients,	another	image,	or	text).	You	cannot	do	this	with	a	JPEG,	and	GIF	supports
a	simpler	form	of	transparency	that	doesn’t	look	good	except	on	solid	backgrounds.

PNG-8	supports	both	index	and	alpha	transparencies,	but	you’ll	need	a	program	like	Fireworks	to	save	an
alpha	PNG-8.	Photoshop	doesn’t	support	alpha	transparency	for	PNG-8,	but	it	does	support	it	for	PNG-
32.	(See	the	“Photoshop,	PNG-24,	and	PNG-32”	sidebar.)	This	is	one	reason	why	most	transparent	PNGs
on	the	web	are	PNG-32.
In	short,	use	PNG-8	or	PNG-32	for	transparent	images.	The	latter	is	required	if	your	image	has	more	than
256	colors.

Photoshop,	PNG-24,	and	PNG-32
PNG-24	and	PNG-32	are	essentially	the	same	except	the	latter	supports	alpha
transparency.	Just	to	keep	things	interesting,	Photoshop	refers	to	both	PNG-24	and	PNG-32
as	PNG-24,	so	it’s	common	to	think	PNG-24	has	alpha	transparency.	In	truth,	when	you
select	the	Transparency	option	for	a	PNG-24	in	Photoshop,	it	creates	a	PNG-32	behind	the
scenes.
But	it’s	probably	safe	to	say	that	most	people	don’t	know	this.	Many	haven’t	even	heard	of
PNG-32.	As	a	result,	the	term	“PNG-24”	is	often	used	when	speaking	of	alpha	transparent
images,	even	though	it	isn’t	technically	accurate.

Animation
Animated	images	can	be	saved	as	GIFs	but	not	as	JPEGs	or	PNGs.	Even	so,	using	an	image	for	animation
is	becoming	increasingly	uncommon.	(Notable	exceptions	are	the	popular	and	often	funny	animated	GIFs
that	get	circulated	in	places	like	Tumblr.)	Nowadays,	animation	is	generally	created	using	CSS
Animations,	JavaScript,	HTML5	Canvas,	SVG	(the	dark	horse	of	the	bunch),	and	Flash.	In	recent	years,
the	use	of	Flash	for	animations	on	the	web	has	declined	significantly.	Primarily,	this	is	due	to	iOS’s	lack
of	Flash	support	and	the	increasing	capabilities	of,	and	browser	support	for,	the	other	standard	web
technologies.

Summary
Let’s	review	the	key	takeaways	for	working	with	images	for	the	web:

	Save	most	photographs	in	the	JPEG	format;	save	most	images	that	have	fewer	colors,	like	logos	and
icons,	in	the	PNG	format.
	Create	alpha	transparent	images	with	PNG-8	or	PNG-32	(often	incorrectly	referred	to	as	PNG-24).
	Reasonable	image	sizes	(dimensions)	make	your	image	file	sizes	smaller.	Keep	your	image	file
sizes	as	small	as	possible	to	minimize	the	load	time	of	your	pages.

Getting	Images
So	how	do	you	get	an	image	that	you	can	use	for	your	webpage?	You	can	buy	or	download	ready-made
images,	use	a	digital	camera,	digitize	traditional	photographs	or	hand-drawn	images	with	a	scanner,	or
draw	images	from	scratch	in	an	image	editing	program	like	Adobe	Photoshop.	Once	you’ve	got	them	in
your	computer,	you	can	adapt	them	for	use	on	the	web	by	saving	them	in	one	of	the	formats	discussed
earlier.

To	get	images
	Use	a	search	engine	to	find	images	on	the	web.	Select	the	Images	link	in	the	top	navigation	bar,	and
enter	search	criteria	as	usual.	Be	aware	that,	generally,	even	free	images	found	on	the	web	are
restricted	in	one	form	or	another	(see	the	“Creative	Commons	Licenses”	sidebar).	Images	you	buy
can	usually	be	used	for	any	purpose	(except	reselling	the	images	themselves).	Read	any	disclaimers
or	licenses	carefully.
	Many	companies	sell	stock	photography	and	images	for	a	very	reasonable	price.	They	often	have
several	versions	of	each	image	for	different	purposes	and	resolutions.
	Digital	cameras	(including	those	in	smartphones)	are	probably	the	most	popular	way	to	create	your
own	images.

Creative	Commons	Licenses
CreativeCommons.org	is	a	non-profit	organization	that	has	developed	a	system	of
copyright	templates	that	let	artists	share	their	work	in	specified	ways	without	giving	up	all
rights	over	their	work.	Website	designers,	musicians,	and	photographers	are	some	of	the
many	artists	who	use	Creative	Commons	licenses	to	get	their	work	out	in	the	marketplace
without	fear	that	it	will	be	used	in	a	way	they	don’t	agree	with.
Flickr,	the	popular	photo-sharing	web	application	(www.flickr.com),	asks	its	users	to
designate	a	Creative	Commons	license	for	each	photo	they	upload.	Flickr	then	lets	visitors
search	for	photos	according	to	the	licenses	assigned	to	them.	It	can	be	a	great	place	to	find
photos	for	your	website.
You	can	also	use	Google	to	restrict	searches	based	on	usage	rights.	(Go	to
www.google.com/advanced_search	and	then	choose	the	desired	option	from	the	Usage
Rights	drop-down	menu	near	the	bottom.)

Alternatives	to	Photoshop	and	Fireworks
You	aren’t	limited	to	using	either	Photoshop	or	Fireworks	to	create	your	images.	Some	of
the	alternatives	include	the	following:
	Gimp	(Linux	or	OS	X:	www.gimp.org;	Windows:	http://gimp-
win.sourceforge.net/stable.html)	free
	Acorn	(OS	X;	http://flyingmeat.com/acorn/)
	Pixelmator	(OS	X;	www.pixelmator.com)
	Paint.NET	(Windows;	www.getpaint.net)	free
	PaintShop	Pro	(Windows;	www.corel.com)

Each	has	its	own	way	of	working	with	images,	so	your	decision	is	just	a	matter	of	personal
preference.

Choosing	an	Image	Editor
There	are	many,	many	different	software	programs	that	you	can	use	to	create	and	save	images	for	the	web.
Most	modern	image	editors	have	special	tools	for	creating	web	images,	which	take	into	account	the
factors	discussed	earlier	in	this	chapter.

http://CreativeCommons.org
http://www.flickr.com
http://www.google.com/advanced_search
http://www.gimp.org
http://gimp-win.sourceforge.net/stable.html
http://flyingmeat.com/acorn/
http://www.pixelmator.com
http://www.getpaint.net
http://www.corel.com

The	industry	standard	is	no	doubt	Adobe	Photoshop	(www.adobe.com).	Adobe	Fireworks	also	has	a
dedicated	following.	Both	programs	are	available	for	OS	X	and	Windows,	although	in	the	spring	of	2013,
Adobe	announced	they	will	continue	to	sell	Fireworks	but	won’t	be	adding	new	features—something	to
consider	before	making	a	purchase.	There	are	many	alternatives	to	Photoshop	and	Fireworks	(and	much
cheaper	ones	at	that);	see	the	sidebar.
All	of	them	are	capable	of	at	least	the	most	common	tasks	related	to	preparing	images	for	a	website,	such
as	resizing,	cropping,	adjusting	colors,	applying	effects,	and	optimizing.	There	are	free	trial	versions
available	for	the	ones	that	aren’t	free.	OS	X	comes	with	a	very	basic	image	editor	named	Preview.	You
can	find	others	by	searching	online	for	“image	editors.”
Let	me	stress,	however,	that	the	basic	strategies	for	optimizing	images	for	the	web	are	the	same	regardless
of	the	software	you	choose.	The	command	names	may	be	slightly	different	and	there	may	be	more	or
fewer	steps,	but	the	ideas	remain	the	same.

Saving	Your	Images
Now	that	you	have	your	images,	it’s	time	to	save	them.	This	process	is	a	balancing	act	between	the	visual
quality	of	the	image	and	its	file	size.
You	can	use	a	trial	version	of	Photoshop	if	you	don’t	have	the	software	installed	on	your	computer.

Adobe	Photoshop
Photoshop	offers	the	Save	for	Web	command	on	the	File	menu.	It	lets	you	visually	compare	the	original
image	with	up	to	three	versions	that	you	can	optimize	while	keeping	an	eye	on	any	resulting	savings	in	file
size	and	download	time.

To	use	Photoshop’s	Save	for	Web	command
1.	Open	Photoshop	and	create	your	image.	Or	open	an	existing	image,	and	prepare	it	for	publishing	by
cropping,	sizing,	and	editing	it	as	desired.

2.	Choose	File	>	Save	for	Web.	(This	was	named	Save	for	Web	&	Devices	in	earlier	versions.)	The
Save	for	Web	dialog	appears	 .

http://www.adobe.com

	The	Save	for	Web	dialog	defaults	to	the	Original	tab,	showing	the	original	image.

3.	Click	the	Optimized	tab	to	see	one	optimized	version,	click	the	2-Up	tab	to	see	one	optimized
version	next	to	the	original,	or	click	the	4-Up	tab	to	see	three	next	to	the	original	 .

	By	selecting	the	4-Up	tab	(top),	you	can	compare	the	original	to	three	versions	with	optimization
settings	of	your	choosing.	I’ve	selected	the	lower-left	square	so	I	can	change	its	settings	 .

4.	Click	an	optimized	version,	if	necessary	 .
5.	Choose	the	desired	format	 .

	The	right	side	of	the	Save	for	Web	dialog	has	controls	for	changing	the	optimization	settings.	Select	an
image	format	from	the	drop-down	menu	(top)	and	then	specify	a	quality	by	either	typing	directly	in	the

Quality	box	or	dragging	the	slider	(bottom).	The	higher	the	number,	the	better	the	quality	but	the	larger	the
file	size.	(Alternatively,	choose	a	preset	such	as	“Very	High”	from	the	drop-down	menu	to	the	left	of

Quality.)	Although	JPEG	is	usually	the	best	choice	for	photographs,	large	sections	of	a	color	(like	the	blue
sky	in	this	photo)	can	appear	a	little	smudgy	if	you	set	the	quality	too	low.

In	general,	images	that	have	been	created	on	a	computer—including	logos,	charts,	graphs,	line	art,
and	any	graphic	with	large	areas	of	a	single	color	and	sharp	detail—should	be	saved	in	PNG-8
format.
Images	like	photographs,	should	be	saved	in	either	JPEG	or	(sometimes)	PNG-24	format.

6.	Adjust	the	additional	settings	that	appear	until	you	get	the	smallest	file	possible	with	an	acceptable
quality	 .

	My	changes	are	reflected	in	the	lower-left	square.	If	I	were	to	save	it,	it	would	be	62.39K	now	as
opposed	to	the	19.44K	it	was	in	 ,	but	the	improved	sharpness	is	worth	it	in	this	case.	I’ve	changed	the
settings	for	the	other	two	squares	as	well.	The	PNG-8	(upper	right)	compression	pixelates	the	photograph
in	spots,	plus	the	file	size	(70.56K)	is	larger	than	the	JPEG.	The	PNG-24	(lower	right)	offers	a	high-
quality	image	but	at	a	much	larger	file	size	(224.3K).	Clearly,	JPEG	is	the	best	choice	for	this	photo.

7.	Click	Save.	Choose	a	directory,	and	name	the	new	file.	It	will	automatically	carry	the	extension	of
the	selected	format	(and	thus	normally	will	not	replace	the	original	image).
The	steps	are	the	same	for	outputting	PNG	images	(and).

	This	image	(I’ve	zoomed	in)	has	a	lot	of	flat	color,	as	well	as	text,	that	should	be	kept	sharp.	Note	that
the	PNG-8	format	(lower	left)	compresses	the	image	the	best,	to	just	over	5.5K.	Reducing	the	number	of
colors	would	make	it	even	smaller.	PNG-24,	with	more	colors	available,	is	11.17K.	JPEG	at	maximum
quality	is	19.76k.	If	you	cut	the	JPEG	quality	to	50	(not	shown),	it’s	slightly	smaller	than	PNG-8	but	looks

terrible.

	Choose	PNG-24	with	Transparency	selected	(top)	to	save	an	image	with	alpha	transparency,	like	our
stars	image	(bottom)	from	earlier	in	the	chapter.	Other	image	editors	might	label	this	choice	as	PNG-32.

(Note:	You	have	to	give	the	image	transparent	areas	prior	to	opening	Save	for	Web.)

Tip
Images	should	be	created	in	RGB,	not	CMYK	(which	is	for	print).

Tip
There	is	no	single	right	or	wrong	setting	when	it	comes	to	optimizing	and	outputting	an
image.	Just	remember	that	your	main	objective	is	to	get	the	smallest	file	size	possible
while	maintaining	acceptable	image	quality.

Tip
Various	tools	are	available	for	shrinking	your	image	file	sizes	further	even	after	optimizing
them	with	an	image	editor.	Some,	like	ImageOptim	(http://imageoptim.com,	OS	X	only)
and	JPEGmini	(www.jpegmini.com),	run	on	your	machine,	whereas	others,	like
www.smushit.com,	are	web-based.	Search	online	for	“image	optimization	tools”	to	find
others.	I	encourage	you	to	use	one	of	them.

Tip
If	you’re	not	sure	which	format	to	choose,	compare	two	optimizations	and	see	which
format	compresses	better.	Also,	not	all	image	editors	generate	optimized	images	of	the
same	file	size.

http://imageoptim.com
http://www.jpegmini.com
http://www.smushit.com

Tip
The	Save	for	Web	command	creates	a	new	image	and	leaves	the	original	image	intact—
unless	you	save	the	new	image	with	the	same	name	and	extension,	and	in	the	same	folder,
as	the	old.

Tip
PSDs	(Photoshop	documents)	allow	you	to	design	parts	of	your	image	on	different	layers
that	you	can	turn	on	or	off.	Typically,	only	an	image’s	visible	layers	are	saved	in	the
optimized	version.	Fireworks	allows	you	to	save	additional	data	in	a	PNG	so	it	can	have
layers.	Note	that	Photoshop	cannot	show	those	layers.

Inserting	Images	on	a	Page
You	can	place	all	kinds	of	images	on	your	webpage,	from	logos	to	photographs.	Images	placed	in	your
HTML	as	described	here	 	appear	automatically	when	the	visitor	goes	to	your	page	 .	However,	the
time	it	takes	for	each	image	to	appear	depends	on	the	strength	of	your	visitor’s	Internet	connection,	the	file
size	of	the	images,	and	how	many	images	your	page	contains.
Click	here	to	view	code	image

...
<body>
<h1>Barcelona's	Market</h1>

<p>This	first	picture	shows	one	of	the	fruit	stands	in	the	Mercat	de	la
Boquería,	the	central	market	that	is	just	off	the	Rambles.	It's	an	incredible
place,	full	of	every	kind	of	food	you	might	happen	to	need.	It	took	me	a	long	time	to	get
up	the	nerve	to	actually	take	a	picture	there.	You	might	say	I'm	kind	of	a	chicken,	but
since	I	lived	there,	it	was	just	sort	of	strange.	Do	you	take	pictures	of	your
supermarket?</p>
</body>
</html>

	The	URL	for	this	image—since	it	contains	only	the	file	name	and	no	folder	name	before	it—indicates
that	the	image	is	located	in	the	same	folder	as	this	webpage.	See	the	first	tip	regarding	how	to	reference

the	image	if	it	is	in	a	different	folder.

	By	default,	images	are	aligned	to	the	left	side	of	the	page	to	match	the	alignment	of	the	text.	You	can
change	the	alignment	or	wrap	text	around	an	image	by	using	CSS	properties	such	as	float	(see	“Making

Elements	Float”	in	Chapter	11).

To	insert	an	image	on	a	page
1.	Place	the	cursor	in	the	HTML	code	where	you	want	the	image	to	appear.
2.	Type	<img	src="image.url",	where	image.url	indicates	the	location	of	the	image	file
on	the	server.

3.	Type	a	space	and	then	the	final	>	or	/>	(either	is	fine	in	HTML5).

Tip
The	example	in	 	shows	the	simplest	form	of	an	image	path:	just	the	file	name.	However,
it’s	common	practice	to	store	your	images	in	their	own	folder	to	keep	your	files	organized.
The	src	URL	in	your	img	tags	needs	to	reflect	this.	Suppose	the	webpage	in	 	were
located	in	a	folder	that	itself	contains	a	folder	named	images.	Assuming	the	market
image	is	in	images,	the	HTML	for	displaying	it	would	be	.	See	“URLs”	in	Chapter	1	for	more
information	about	how	to	reference	files.

Tip
Images	must	be	uploaded	to	a	web	server	before	visitors	will	be	able	to	see	them.	You
upload	them	the	same	way	you	do	HTML,	CSS,	JavaScript,	and	other	files.	See
“Transferring	Files	to	the	Server”	in	Chapter	21.

Tip
Don’t	expect	your	visitors	to	wait	very	long	for	your	page	to	load	so	they	can	view	it.	Test
it	(keeping	in	mind	that	you	may	have	a	faster	connection	than	your	visitors).	If	you	can’t
wait,	they	won’t	either.	If	your	page	has	a	lot	of	images	or	even	a	few	very	large	ones,	one
alternative	is	to	create	miniatures	(thumbnails)	of	large	images	and	let	visitors	choose	to
view	the	larger	images	through	a	link.	See	“Creating	Other	Kinds	of	Links”	in	Chapter	6	to
learn	how	to	do	this.	Charles	(www.charlesproxy.com)	and	Fiddler	(http://fiddler2.com)
are	two	good	tools	for	simulating	slower	connections.

Tip
You	can	apply	a	border	to	images	with	the	CSS	border	shorthand	property	(and	related
properties),	covered	in	Chapter	11.	Older	browsers	add	a	border	to	linked	images
automatically.	You	can	remove	it	with	img	{	border:	none;	}	in	your	CSS.

Offering	Alternative	Text
With	the	alt	attribute,	you	can	add	text	that	will	appear	if	the	image,	for	whatever	reason,	does	not
appear.	Screen	readers	may	also	read	this	text	aloud,	helping	visually	impaired	visitors	understand	the
content	of	the	image	in	a	different	manner.	The	HTML5	spec	encourages	you	to	think	of	alt	text	as	a
replacement	for	the	image:	“In	general,	alternative	text	can	be	written	by	considering	what	one	would
have	written	had	one	not	been	able	to	include	the	image.”	Usually,	this	means	writing	alt	text	that	works
in	the	flow	of	the	surrounding	text;	it	is	not	meant	for	describing	the	image	in	most	cases.

To	offer	alternative	text	when	images	don’t	appear
1.	Within	the	img	tag,	after	the	src	attribute	and	value,	type	alt=".
2.	Type	the	text	that	should	act	as	a	replacement	for	the	image	(and).

Click	here	to	view	code	image

...
<body>
<h1>Barcelona's	Market</h1>

<img	src="market.jpg"	alt="Oranges,	bananas,	apples,	and	other	fruit	abound	at	the	Mercat
de	la	Boquería."	/>

<p>The	Mercat	de	la	Boquería	is	the	central	market	that	is	just
off	the	Rambles.	It's	an	incredible	place,	full	of	every	kind	of	food	you	might	happen	to
need....</p>
</body>
</html>

http://www.charlesproxy.com
http://fiddler2.com

	I	referenced	an	image	(market.jpg)	that	doesn’t	exist	in	my	site	to	demonstrate	the	effect	of
including	alt	text	 .

	In	Internet	Explorer	10,	the	alt	text	appears	alongside	an	icon	in	a	box.	In	other	browsers,	like
Firefox	and	Opera,	the	alt	text	appears	alone.	In	Chrome	and	Safari,	a	missing-image	icon	displays

instead	of	the	alt	text.

3.	Type	".

Tip
The	HTML5	spec	contains	an	extensive	discussion	with	examples	of	how	to	use	alt
effectively	in	a	variety	of	scenarios	(www.w3.org/TR/html5/embedded-content-
0.html#alt).	I	encourage	you	to	take	a	look.

Tip
If	the	image	does	not	add	value	to	the	content	and	thus	is	not	particularly	useful	to
nonvisual	users,	provide	blank	alternative	text	with	alt="".	Images	with	nearby	text	that
communicate	similar	information	as	the	image	can	have	blank	alt	text	as	well.	(You	could
make	an	argument	that	the	example	in	 	fits	this	criterion,	especially	if	the	paragraph
mentioned	the	type	of	fruit.)

Tip
Do	not	place	an	image’s	caption	in	the	alt	text.	Instead,	consider	including	the	img	in	a
figure	and	with	a	figcaption.	“Creating	a	Figure”	in	Chapter	4	has	an	example.

Tip
If	an	image	is	part	of	your	page	design	instead	of	being	content,	include	it	in	your	page	with
the	CSS	background-image	property	instead	of	an	img	tag.	See	“Setting	the
Background”	in	Chapter	10	to	learn	how.

http://www.w3.org/TR/html5/embedded-content-0.html#alt

Why	Images	Might	Not	Appear
An	image	may	not	appear	for	a	variety	of	reasons.	Perhaps	you	coded	the	wrong	URL	in
the	src	attribute	 	or	you	forgot	to	upload	the	image	to	the	web	server.	Other	reasons	are
beyond	your	control.	For	example,	your	visitor	might	have	a	poor	connection.	Also,	did
you	know	you	can	instruct	your	browser	not	to	load	images?	Most	browsers	contain	a
setting	in	a	preferences	menu	to	toggle	image	loading.	Typically,	a	visitor	would	do	this	to
speed	up	pages	(try	it	some	time!)	or,	in	the	case	of	a	mobile	or	tablet	browser,	to	prevent
eating	into	their	data	plan	limit	by	downloading	images.	Not	all	devices	allow	this.

Specifying	Image	Sizes
Sometimes	when	you	load	a	webpage,	you	see	the	text	first,	and	then	when	the	images	load	a	few	moments
later,	the	text	jumps	around	to	accommodate	them.	This	happens	because	the	size	of	the	image	is	not
specified	in	the	HTML.	It	is	more	likely	to	happen	on	older	browsers	or	when	a	visitor’s	connection	is
slow.
If	you	specify	the	image’s	dimensions	in	your	code,	the	browser	will	reserve	the	space	and	can	fill	in	the
text	around	the	image	as	the	image	loads,	so	that	your	layout	will	remain	stable	as	your	page	loads.
You	can	use	either	your	browser	or	your	image	editing	program	to	get	the	exact	dimensions	of	your	image.

To	find	the	size	of	your	image	with	your	browser
1.	Right-click	the	image.	A	context	menu	appears	 .

	Right-click	the	image	in	the	browser	to	make	the	menu	appear.	The	browser	will	offer	a	way	to	inspect
the	image,	show	its	properties,	or	get	the	dimensions.

2.	Choose	Properties	or	View	Image	Info	(depending	on	your	browser).	A	box	appears	that	shows	the
dimensions	of	your	image	in	pixels	 .

	A	box	appears	(its	appearance	varies	depending	on	the	browser	you’re	using)	that	shows	the	size	of
the	image	in	pixels.

To	find	the	size	of	your	image	with	Photoshop
1.	Open	the	image	in	Photoshop.
2.	Choose	Image	>	Image	Size	 .	The	Image	Size	dialog	displays	 .

	In	Photoshop,	choose	Image	Size	from	the	Image	menu.

	The	Image	Size	dialog	box	indicates	this	image	is	300	x	399	pixels.	(You	can	change	the	size	with	this
dialog	box.	Make	sure	you	have	selected	Pixels	from	the	drop-down	menu	next	to	either	Width	or	Height.

Then	type	in	a	new	Width	value.	The	Height	will	change	automatically	to	maintain	the	image’s
proportions.	See	the	last	tip	for	more.)

To	specify	the	size	of	your	image	in	HTML
1.	Determine	the	size	of	your	image	using	one	of	the	techniques	described	in	“To	find	the	size	of	your
image	with	your	browser”	or	“To	find	the	size	of	your	image	with	Photoshop.”

2.	Within	the	img	tag,	after	the	src	attribute,	type	width="x"	height="y",	using	the	values

you	found	in	step	1	to	specify	the	values	for	x	and	y	(the	width	and	height	of	your	image)	in	pixels	
.

Click	here	to	view	code	image

...
<body>
<h1>Barcelona's	Market</h1>

<img	src="corner-market.jpg"	width="300"	height="399"	alt="Oranges,	bananas,	apples,	and
other	fruit	abound	at	the	Mercat	de	la	Boquería."	/>

<p>The	Mercat	de	la	Boquería	is	the	central	market	that	is	just
off	the	Rambles.	It's	an	incredible	place...</p>

</body>
</html>

	It’s	common	to	specify	the	width	and	height	in	the	HTML	to	save	the	browser	the	work	of	determining
the	dimensions.	One	case	in	which	you	should	omit	width	and	height	attributes	is	when	displaying

responsive	images,	as	discussed	in	Chapter	12	(“Making	Images	Flexible”).

Tip
The	width	and	height	attributes	don’t	necessarily	have	to	reflect	the	actual	size	of	the
image.

Tip
If	you	have	several	images	that	are	the	same	size,	you	can	set	their	height	and	width	all	at
the	same	time	with	CSS.	Of	course,	you	can	do	it	for	a	single	image	too.

Tip
You	can	also	find	the	size	of	an	image	in	a	browser	by	opening	the	image	in	its	own
window	 .

	If	you	drag	and	drop	or	open	an	image	directly	in	a	browser,	its	dimensions	are	displayed	in
the	title	bar.

Tip
In	Photoshop,	you	can	select	the	entire	image	and	then	view	the	Info	panel	for	the	image’s
dimensions.

Tip
If	you	use	the	Image	Size	dialog	 	to	change	an	image’s	size,	make	sure	the	Resample
check	box	is	selected.	The	Resolution	check	box	is	irrelevant	for	web	images.	See
“Scaling	Images	with	an	Image	Editor”	for	another	way	to	change	an	image’s	size	in
Photoshop.

Scaling	Images	with	the	Browser
You	can	change	the	display	size	of	an	image	just	by	specifying	a	new	height	and	width	in	pixels	(
through).	This	can	help	provide	sharper	images	to	visitors	using	Retina	displays	while	presenting	the
image	at	the	same	size	in	all	displays.	See	the	sidebar	“Creating	and	Sizing	Images	for	Retina	Displays”
for	details.

	I	intend	to	display	this	image	at	half	the	size	(220	x	170	pixels)	in	a	page,	but	I	created	it	at	double	the
size	(440	x	340	pixels)	to	improve	its	sharpness	on	Retina	displays	and	others	with	high	pixel	density.

(The	black	outline	is	from	the	browser,	not	the	image	itself.)
Click	here	to	view	code	image

...
<figure>
					

					<figcaption>These	stupas	in	Yunnan,	China,	are	Buddhist	monuments	used	as	a	place
for	worship.</figcaption>
</figure>
...

	I’ve	set	the	width	and	height	to	half	their	respective	sizes	in	the	image.	The	aspect	ratio	remains
the	same,	ensuring	the	image	won’t	look	distorted.

	The	image	appears	at	half	its	original	size.	It’s	important	to	note,	however,	that	it	takes	the	same	time
to	load	as	before.	After	all,	it’s	the	same	file.

To	scale	an	image	with	the	browser
1.	Type	<img	src="image.url",	where	image.url	is	the	location	on	the	server	of	the	image.
2.	Type	width="x"	height="y"	where	x	and	y	are	the	desired	width	and	height,	respectively,
in	pixels,	of	your	image.

3.	Add	any	other	image	attributes	as	desired,	and	then	type	the	final	/>.

Tip
With	Retina	images	as	a	noted	exception,	using	the	width	and	height	attributes	is	a
quick	and	dirty	way	to	change	how	the	image	displays	on	a	webpage.	Since	the	file	itself	is
not	changed,	the	visitor	always	gets	cheated—reduced	images	take	longer	to	load	than
images	that	are	really	that	size;	enlarged	images	lose	sharpness.	A	better	solution	is	to	use
your	image	editor	to	change	the	size	of	the	image.

Tip
Thomas	Fuchs	(http://retinafy.me)	and	Daan	Jobsis	(http://blog.netvlies.nl/design-
interactie/retina-revolution/)	discuss	an	interesting	technique	for	creating	images	for
Retina	and	similar	displays	while	keeping	the	file	sizes	reasonable:	Double	the	image	size,
but	use	a	high	compression	setting	(or	in	Photoshop	terms,	a	low	Quality	setting).	When
you	display	the	image	at	half	its	size,	most	artifacts	resulting	from	the	high	compression
aren’t	perceptible.	Results	vary	depending	on	an	image’s	content.

Creating	and	Sizing	Images	for	Retina	Displays
You’ve	likely	heard	the	term	Retina	display	associated	with	some	of	Apple’s	iPhones,
iPads,	and	MacBooks.	What	is	it?
Well,	imagine	you	make	a	painting	using	only	dots	of	paint,	like	Claude	Monet	or	George

http://retinafy.me
http://blog.netvlies.nl/design-interactie/retina-revolution/

Seurat.	Now	imagine	you	do	the	same	painting	on	the	same	size	canvas,	but	with	four	dots
for	every	one	dot	in	the	first	painting.	The	second	painting	would	be	more	detailed,	and	it
would	be	harder	to	see	the	individual	dots.
Apple’s	Retina	display	is	similar	to	that	second	painting.	It	has	four	times	as	many	pixels
in	the	same	amount	of	space	 	as	in	an	otherwise	comparable	normal	display,	resulting	in
sharper	images.	Or,	in	more	technical	terms,	it	has	more	pixels	per	inch	(PPI),	or	greater
pixel	density.	There	are	also	other	displays	with	high	pixel	density	besides	Apple’s.

	This	diagram	might	help	you	visualize	that	Retina	displays	(right)	fit	four	pixels	in	the	space
used	by	one	pixel	on	most	displays	(left).	This	isn’t	to	scale;	actual	pixels	are	much	smaller,	as

I’m	sure	you	know.

There	is	a	catch.	In	some	cases,	images	need	to	be	made	with	the	Retina	display	and
similar	displays	in	mind,	otherwise	they	might	look	a	little	blurry	in	a	browser.	If	you	don’t
care	about	why	that	happens,	here’s	all	you	need	to	know	to	avoid	it:	Double	the	size	of
your	images,	but	display	them	at	half	that	size.
For	example,	if	you	want	your	image	to	be	40×30	on	all	displays	(not	just	Retina),	create	it
at	80×60	and	code	the	dimensions	at	the	desired	display	size:	.	Browsers	will
shrink	the	80×60	image	down	and	show	it	at	40×30.	(Figures	 	through	 	demonstrate
this	approach	with	different	dimensions.)
Here’s	why	that	works.	At	4800	total	pixels	(80×60),	the	image	has	four	times	as	many
pixels	as	the	desired	size	(1200,	which	is	40×30).	This	gives	the	Retina	display	the	extra
pixels	it	needs	to	render	a	sharp	image.	If	you	use	a	40×30	image	instead,	Retina	displays
will	stretch	those	pixels	to	fill	the	space,	which	reduces	the	sharpness.	How	obvious	this
is	varies	from	one	image	to	the	next.
Although	it’s	up	to	you,	coders	and	designers	often	don’t	double	the	resolution	of	every
image	on	a	site.	If	the	images	are	particularly	important—like	on	a	photographer’s
portfolio	site,	for	instance—then,	yes,	it’s	highly	recommended.	The	file	sizes	may	be
larger—see	the	second	tip	for	a	possible	way	to	avoid	this—and	keep	in	mind	that	double-
resolution	images	consume	much	more	memory	on	devices.	(Primarily	an	issue	for	mobile
devices.)	Testing	on	at	least	one	mobile	device	is	recommended.

Icon	fonts	and	SVG
Icon	fonts	and	SVG	scale	without	losing	fidelity.	I	recommend	you	use	an	icon	font	instead
of	an	image	for	single-color	icons	whenever	possible.	(See	“Where	to	Find	Web	Fonts”	in
Chapter	13.)	For	logos	and	other	non-photographic	images,	you	may	want	to	consider	using

SVG.	(See	the	sidebar	about	SVG	in	“Images	for	the	Web.”)

Scaling	Images	with	an	Image	Editor
Most	images	are	too	big	for	a	webpage.	While	an	image	destined	for	print	might	measure	1800	pixels
across	(to	print	at	300	dpi	and	be	six	inches	wide),	images	for	webpages	should	rarely	be	wider	than	600
pixels	or	so,	and	are	typically	much	smaller.
You	can	scale	images	down	or	up	from	their	original	size	with	an	image	editor.	However,	an	image	that	is
scaled	up	usually	doesn’t	look	as	sharp	and	can	look	downright	awful.	Also,	it	will	increase	the	image’s
file	size	and	your	page’s	load	time.

To	scale	an	image	with	Photoshop
1.	In	the	lower-right	portion	of	the	Save	for	Web	window,	click	the	W	(Width)	box	or	the	H	(Height)
box	in	the	Image	Size	section	 .

	The	original	photograph,	snapped	with	a	digital	camera’s	default	settings,	measured	2816	by	2112
pixels,	which	(besides	being	far	too	big	for	a	typical	webpage)	weighed	in	at	a	whopping	1.177MB	when
compressed	as	a	high-quality	JPEG!	Using	that	would	be	a	surefire	way	to	see	your	visitors	scurrying	for

another	website.

2.	Enter	a	new	width	or	height	in	pixels,	or	a	percentage,	and	then	press	the	Tab	key	to	resize	the

image	 .

	Type	the	new	width,	such	as	400	pixels,	in	the	W	field	(top).	The	height	value	in	the	H	field	will
change	proportionally.	The	reduced	image	(bottom)	will	fit	properly	in	a	webpage	and,	by	changing	the

compression	settings,	the	file	size	is	dropped	to	a	friendly	37.75k.

3.	You	can	continue	to	adjust	the	size	up	or	down	until	you’re	satisfied.	The	image	is	not	resampled
until	you	press	Save.

Tip
You	can	also	change	the	size	of	an	image	before	you	Save	for	Web	by	using	the	Image	Size
command	under	the	Image	menu	item.	See	Figures	 	and	 	in	“Specifying	Image	Sizes.”

Tip
Another	great	way	to	reduce	the	size	of	an	image	is	to	crop	out	unwanted	areas.

Adding	Icons	for	Your	Website
The	small	icon	(associated	with	a	website)	that	you	see	in	browser	tabs	 ,	history,	bookmarks,	favorites,
and	address	bars	is	known	as	a	favicon,	which	is	short	for	favorites	icon.	At	a	minimum,	you	should
create	a	16×16	icon	(all	icon	sizes	are	in	pixels).	If	you	don’t,	browsers	will	try	to	load	it	anyway.

	The	favicon	is	typically	shown	in	tabs	(as	it	is	here),	among	other	places	within	the	browser.	Internet
Explorer	is	the	only	one	that	shows	it	in	the	address	bar,	before	the	URL.	Because	the	browser	often

displays	your	icon	over	gray	or	other	colors,	you	may	want	to	make	your	icon’s	background	transparent	
.

You	can	also	create	one	or	more	icons—commonly	dubbed	touch	icons—that	will	display	when	a	site	is
added	to	the	home	screens	of	Apple	and	other	touch	devices.	Apple’s	specified	sizes	are	57×57	and
114×114	(Retina)	for	iPhone	and	iPod	touch,	and	72×72	and	144×144	(Retina)	for	iPad.	The	Android
operating	system	supports	these	icons	as	well.

To	add	an	icon	for	your	website
1.	Create	a	16×16	image,	and	save	it	in	the	ICO	format	as	favicon.ico	 .	Optionally,	include	a
32×32	image	for	Retina	displays.	ICO	files	allow	more	than	one	size	in	the	same	file.

	Favicons,	in	real	life,	are	small:	a	measly	16×16	pixels	at	their	smallest.

2.	(Recommended)	Create	at	least	one	image	for	touch	devices	 .	Save	it	in	the	PNG	format,	and	if
you	create	only	one,	name	it	apple-touch-icon.png.	Create	additional	touch	favicons	as
desired.

	The	apple-touch-icon	is	used	when	you	add	your	website	to	the	home	screen	of	iOS	devices
from	mobile	Safari.

4.	Place	the	icon	images	at	the	root	of	your	website.	Browsers	look	for	those	specific	file	names	at	the
root	automatically.

Tip
X-Icon	Editor	(http://xiconeditor.com)	is	one	of	many	ICO-format	editors	available.	There
are	Photoshop	plug-ins	available,	too	(search	online	for	these).

Tip
It	is	possible	to	put	your	icons	in	a	location	other	than	the	root,	although	you	will	need	to
add	link	elements	to	your	HTML	so	browsers	can	locate	them.	See	the	resources	in	the
sidebar	for	more	details.

Tip
HTML5	Boilerplate	(h5bp.com)	comes	with	a	good	example	of	the	various	touch	icon
sizes.

More	About	Favicons
See	www.netmagazine.com/features/create-perfect-favicon	for	more	about	creating
favicons.	(Note	that	some	of	its	information	is	out	of	date.)	Thomas	Fuchs	covers	favicons
at	http://davidwalsh.name/retina-favicons.

http://xiconeditor.com
http://h5bp.com
http://www.netmagazine.com/features/create-perfect-favicon
http://davidwalsh.name/retina-favicons

6.	Links

In	This	Chapter
Creating	a	Link	to	Another	Webpage	(and	Other	Link	Basics)
Creating	and	Linking	to	Anchors
Creating	Other	Kinds	of	Links

Links	are	the	lifeblood	of	the	web.	Without	them,	every	webpage	would	just	exist	on	its	own,	completely
disconnected	from	all	the	others.	That	makes	for	sad	webpages.
A	link	has	two	main	parts:	a	destination	and	a	label.	You	use	the	destination	to	specify	what	will	happen
when	the	visitor	triggers	the	link.	You	can	create	links	that	go	to	another	page	or	website,	jump	within	a
page,	show	an	image,	download	files,	prompt	a	phone	call,	and	more.	The	most	common	links,	however,
connect	to	other	webpages,	and	sometimes	to	specific	locations	on	webpages,	which	are	called	anchors.
Destinations	are	defined	by	writing	a	URL	and	are	generally	visible	to	the	visitor	only	in	the	browser’s
status	bar	(on	desktop	browsers).
The	second	part	of	the	link	is	the	label,	the	part	the	visitor	sees	in	a	webpage	or	hears	in	a	screen	reader.
It	is	the	part	you	interact	with	to	reach	the	link’s	destination.	For	instance,	a	link	on	an	airline	site	might
be	labeled	Book	a	Flight.	A	label	can	be	text,	an	image,	or	both.	Browsers	typically	show	label	text	as
underlined	and	in	blue	by	default.	It’s	easy	to	change	this	with	CSS.

Creating	a	Link	to	Another	Webpage	(and	Other	Link	Basics)
The	a	element	is	your	key	to	creating	links	 .	If	you	have	more	than	one	webpage,	you	will	probably
want	to	create	links	from	one	page	to	the	next	(through)	and	possibly	back	again.	You	can	also	link
to	pages	on	other	sites,	whether	they	are	your	own	or	someone	else’s	(through).

	Each	link	has	a	destination	(indicated	by	the	href	attribute)	and	a	label.	The	label	is	text	in	this
example,	but	it	can	be	(or	include)	an	image.

Click	here	to	view	code	image

...
<body>

<h1>Cookie	and	Woody</h1>

<p>Generally	considered	the	sweetest	and	yet	most	independent	cats	in	the	Pioneer	Valley,	Cookie	and	Woody	are	consistently
underestimated	by	their	humble	humans.</p>

</body>
</html>

	Since	there	is	only	a	file	name	(and	no	domain	or	directories)	referenced	in	the	href	attribute,	the	file
pioneer-valley.html	must	be	in	the	same	directory	as	the	page	that	contains	the	link	to	it.

Otherwise,	the	browser	won’t	be	able	to	find	pioneer-valley.html	when	the	user	activates	the
link.

	When	a	visitor	points	at	a	link,	the	destination	URL	is	shown	in	the	status	bar	of	most	browsers.	(The
example	in	 	assumes	both	pages	live	on	www.fictitious-site.com.)	When	a	user	activates	a	link...

http://www.fictitious-site.com

	...the	page	associated	with	that	destination	URL	is	displayed	in	the	user’s	browser.
Click	here	to	view	code	image

...
<body>

<h1>The	Glory	of	Cats</h1>

<p><a	href="http://en.wikipedia.org/wiki/Cat"	rel="external"	title="Cat	entry	on
Wikipedia">Cats	are	wonderful	companions.	Whether	it's	a	bottle	cap,	long	string,	or
your	legs,	they	always	find	something	to	chase	around.</p>

<p>In	fact,	cats	are	so	great	they	even	have	<a	href="http://www.catsthemusical.com"
rel="external"	title="Official	site	of	Andrew	Lloyd	Webber's	musical">their	own
musical.	It	was	inspired	by	T.S.	Eliot's	<cite>Old	Possum's	Book	of	Practical
Cats</cite>.</p>

</body>
</html>

	If	you’re	creating	links	to	someone	else’s	website,	you’ll	have	to	use	an	absolute	URL,	with	the
http://,	host,	and	(if	necessary)	full	path.	Like	rel,	the	title	attribute	is	optional.	(See	Chapter	4

to	learn	about	the	cite	element.)

	Just	as	with	a	link	to	a	page	within	your	site,	when	a	visitor	points	at	a	link	to	another	site,	the
destination	URL	is	shown	in	the	status	bar	and	the	title	text,	if	specified,	displays	near	the	link.	When

the	visitor	activates	a	link...

	...the	page	associated	with	that	destination	URL	is	displayed	in	the	visitor’s	browser.

To	create	a	link	to	another	webpage
1.	Type	,	where	page.html	is	the	URL	of	the	destination	webpage.

2.	Type	the	label	text;	that	is,	the	text	that	is	usually	blue	and	underlined	by	default	 	and	that	when
triggered	will	take	the	user	to	the	page	referenced	in	step	1.	Alternatively	(or	in	addition	to	label
text),	add	an	img	element	as	the	label.	(See	“Creating	Other	Kinds	of	Links”	and	the	sidebar
“Linking	Thumbnail	Images.”)

3.	Type		to	complete	the	definition	of	the	link.

Navigating	Links	with	a	Keyboard
You	may	navigate	through	a	webpage	with	the	keyboard.	In	fact,	some	people	do	so	out	of
necessity	because	they	lack	the	motor	skills	to	use	devices	like	a	mouse.
Each	time	you	press	Tab,	the	focus	shifts	to	the	next	(or,	with	Shift-Tab,	previous)	link,
form	control,	or	image	map	link	as	it	appears	in	the	HTML	code.	This	is	not	necessarily
the	same	as	where	it	appears	onscreen,	because	a	page’s	CSS	layout	may	arrange	items
differently.	HTML’s	tabindex	attribute	allows	you	to	change	the	tabbing	sequence,	but	I
discourage	you	from	using	it,	because	it’s	unnecessary	in	most	instances	and	can	present
accessibility	issues.	Namely,	screen	reader	users	may	become	disoriented.	("Effects	with
Generated	Content"	in	Chapter	14	shows	a	use	of	tabindex	that	is	helpful.)
Instead,	take	care	to	mark	up	your	content	so	the	tabbing	sequence	is	logical.	Test	this	by
tabbing	through	your	own	pages	to	see	how	you	like	it	as	a	user,	and	adjust	the	HTML
accordingly.	(Note	that	this	might	be	disabled	if	you	are	on	a	Mac.	Search	online	for
“Enabling	keyboard	navigation	in	OS	X	browsers”	if	you	want	to	turn	it	on.)

You	can	link	to	a	page	at	another	site	too.	For	example,	Label
text	(through).	Replace	the	href	value	with	the	URL	of	the	destination.	The	rel	attribute
is	optional,	since	the	link	works	the	same	without	it,	but	I	recommend	including	it	for	links	that	point	to
another	website.	It	describes	the	relationship	between	the	page	containing	the	link	and	the	page	to	which
you’re	linking,	and	it	is	yet	another	way	of	improving	the	semantics	of	your	HTML.	Search	engines	may
leverage	the	information	too.	Additionally,	as	a	cue	to	visitors,	you	could	style	links	with
rel="external"	differently	than	links	that	point	within	your	site.	(See	“Selecting	Elements	Based	on
Attributes”	in	Chapter	9.)

Linking	blocks	of	content
So	far,	I’ve	shown	you	examples	of	links	around	brief	text	phrases	within	an	element.	But	HTML5	allows
wrapping	a	link	around	nearly	any	kind	of	element	or	group	of	elements	 .	Examples	include
paragraphs,	lists,	entire	articles—pretty	much	anything	except	interactive	content	such	as	other	links,
audio,	video,	form	elements,	iframes,	and	so	on.	(Most	of	these	were	known	as	block-level	elements
prior	to	HTML5.)	Testing	your	pages	in	an	HTML	validator	(see	“Validating	Your	Code”	in	Chapter	20)
will	reveal	when	you’ve	wrapped	a	link	around	an	element	that	isn’t	allowed.
Click	here	to	view	code	image

...

					<p>A	giraffe	escaped	from	the	zoo	today,	and	animals	rejoiced	worldwide.</p>
					<p>Read	more</p>

...	[more	headlines]	...

	We’ve	all	probably	visited	sites	with	story	snippets	that	link	to	a	full	article.	This	is	a	good	use	of	a
block-level	link	if	you	want	to	link	both	the	snippet	and	the	prompt	(like	“Read	more”)	to	the	story	page.

You	can	style	the	link	with	CSS	so	that	not	all	(or	none)	of	the	text	is	underlined.

These	block-level	links,	as	they	often	are	called	unofficially,	are	a	big	departure	from	previous	versions
of	HTML,	which	only	allowed	linking	images,	text	phrases,	and	elements	that	mark	up	text	phrases	(such
as	em,	strong,	and	cite).
The	funny	thing	is	that	although	block-level	links	were	disallowed	in	the	previous	HTML	specifications,
browsers	supported	them	anyway.	This	means	you	can	use	them	now	and	they’ll	work	in	all	browsers,
both	new	and	old.	But	use	them	with	care	(and).
Click	here	to	view	code	image

...
<body>

					<h1>Cookie	and	Woody</h1>
					

					

					<p>Generally	considered	the	sweetest	and	yet	most	independent	cats	in	the	Pioneer
Valley,	Cookie	and	Woody	are	consistently	underestimated	by	their	humble	humans.</p>

...
</body>
</html>

	Don’t	go	overboard.	Avoid	doing	what	is	shown	here,	which	is	to	wrap	a	link	around	a	large	chunk	of
content.	Although	the	link	will	work	and	it’s	valid	HTML5,	a	screen	reader	may	read	all	the	content	more
than	once,	and	even	that	much	content	once	is	more	link	information	than	a	visitor	typically	wants	to	hear.

It’s	better	to	narrow	the	focus	of	your	link	to	the	most	relevant	content.

There	are	some	accessibility	concerns	to	consider,	particularly	pertaining	to	how	different	screen	readers
treat	block-level	links.	Two	articles,	by	accessibility	experts	Derek	Featherstone	and	Steve	Faulkner,
respectively,	discuss	the	issues	in	more	depth:	http://simplyaccessible.com/article/html5-block-links/	and
http://blog.paciellogroup.com/2011/06/html5-accessibility-chops-block-links/.	They	advise	putting	the
most	pertinent	content	at	the	beginning	of	a	link	and	not	putting	too	much	content	in	one	link.	As
Featherstone	notes,	the	accessibility	issues	are	likely	temporary	as	screen	readers	and	browsers	catch	up
with	supporting	block-level	links.
Most	of	the	time,	you’ll	want	to	stick	with	the	simpler,	traditional	style	of	link	 ,	but	know	that	smartly
crafted	block-level	links	are	available	to	you	as	well.

http://simplyaccessible.com/article/html5-block-links/
http://blog.paciellogroup.com/2011/06/html5-accessibility-chops-block-links/

Tip
You	can	change	the	default	styling	of	the	label	text	(see	“Selecting	Links	Based	on	Their
State”	in	Chapter	9)	or	even	use	an	image	as	a	label	(see	“Creating	Other	Kinds	of	Links”
in	this	chapter).

Tip
href	stands	for	hypertext	reference.	As	a	general	rule,	use	relative	URLs	for	links	to
webpages	on	your	site,	and	use	absolute	URLs	for	links	to	webpages	on	other	sites.	For
more	details,	consult	“URLs”	in	Chapter	1.

Tip
Omit	the	file	name	from	the	path	to	link	to	the	default	file	for	a	directory,	which	is	typically
index.html:	http://www.site.com/directory/.	Omit	the	path	entirely	to	link	to
a	site’s	default	(home)	page:	http://www.site.com.

Tip
Use	all	lowercase	letters	for	your	URLs	unless	you’re	pointing	to	a	page	or	directory	name
that	has	uppercase	letters.	(For	your	own	sites,	name	all	folders	and	files	in	lowercase	and
match	your	link	URLs	accordingly.)	See	“File	Names”	in	Chapter	1	for	more	information.

Tip
Don’t	make	the	link’s	label	too	long.	If	the	link	is	part	of	a	sentence,	use	only	the	key
words	as	the	label	within	the	link.

Tip
Whatever	you	do,	avoid	using	“click	here”	as	a	label.	This	type	of	linked	text	is
unfortunately	all	too	common	on	the	web,	and	it’s	bad	for	usability,	for	accessibility,	and
for	you	as	a	site	owner.	When	users	quickly	scan	links	on	a	page	(whether	visually	or	via	a
screen	reader),	“click	here”	lacks	context	(“Click	here?	Why?”).	There’s	little	incentive	to
trigger	the	link,	and	it	relies	on	the	visitor	reading	the	link’s	surrounding	text	in	hopes	that
it	will	explain	the	link’s	purpose.	Understandably,	your	visitor	is	probably	more	likely	to
skip	it.	Also,	the	word	“click”	doesn’t	always	apply	to	how	users	activate	links.	Instead,
identify	the	link	by	using	the	key	words	that	already	exist	in	your	text.	For	example,	“Learn
about	our	sale”	instead	of	“Click	here	to	learn	about	our	sale.”

http://www.site.com/directory/
http://www.site.com

Tip
This	is	getting	ahead	of	ourselves	a	bit,	but	if	you’d	like	to	apply	style	properties	such	as
background,	border,	margin,	or	padding	to	a	block-level	link,	you	may	also
have	to	set	display:	block	on	the	link	in	your	style	sheet.	See	“Controlling	the
Display	Type	and	Visibility	of	Elements”	in	Chapter	11	concerning	the	CSS	display
property.

Tip
Although	used	rarely,	image	maps	allow	you	to	add	a	link	to	one	or	more	regions	of	a
single	image.	You	can	learn	more	about	them	by	searching	online	for	“HTML	image	maps.”

Tip
An	ever-evolving	list	of	rel	values	is	maintained	at
http://microformats.org/wiki/existing-rel-values.

Tip
Be	sure	each	page	on	your	site	contains	navigation	to	the	key	sections	of	your	site,
including	the	home	page.	This	allows	visitors	to	browse	your	site	freely,	whether	they
came	to	your	site	directly	or	via	a	link	from	another	site.	You	never	know	where	visitors
will	enter	your	site.	It	might	be	via	a	link	that	“deep	links”	to	one	of	your	inner	pages,	so
you’ll	typically	want	to	allow	them	to	access	the	rest	of	the	site	from	there.

http://microformats.org/wiki/existing-rel-values

How	to	Use	and	Why	Not	to	Use	the	target	Attribute	(Most	of	the	Time)
It’s	possible	to	make	a	link	open	in	a	new	window	(or	tab,	depending	on	the	browser),	but
it’s	considered	bad	practice	in	most	cases.	There	are	a	few	arguments	against	it.
Primarily,	it	should	be	the	user’s	decision	to	open	a	link	in	a	different	window	or	tab,	not
yours	or	mine	as	HTML	developers.	Otherwise,	we’re	dictating	the	browsing	behavior	on
our	users’	behalf.
There	are	usability	and	accessibility	concerns	as	well.	Less-experienced	users	may	be
confused	when	they	activate	a	link	and	don’t	see	the	results	display	in	their	current
window.	Using	a	browser	isn’t	straightforward	for	everyone;	I’ve	shown	browser	tabs	to
people	of	various	ages	who	previously	had	no	idea	that	they	could	have	more	than	one
page	open	at	a	time.	Similarly,	users	of	assistive	devices	such	as	screen	readers	will	have
to	negotiate	their	way	over	to	that	new	window	or	tab,	assuming	it’s	even	clear	which	one
loaded	the	new	content.
If	all	this	hasn’t	convinced	you	to	avoid	loading	links	in	other	windows,	or	your	boss	or
client	won’t	listen	to	your	reasoned	argument	against	it,	here’s	how	to	do	it:	Type
target="window"	in	your	link	code,	where	window	is	the	name	(of	your	own
choosing)	of	the	window	where	the	corresponding	page	should	be	displayed.
For	instance,	Some
page	opens	some-page.html	in	a	new	window	or	tab	named	doodad.	(Visitors
don’t	see	the	name.	It	just	helps	the	browser	differentiate	one	window	or	tab	from	another.)
If	you	target	several	links	to	the	same	name,	the	links	will	all	open	in	that	same	window	or
tab.	Or,	if	you	always	want	a	link	to	open	in	a	different	window	or	tab	(even	if	you
triggered	the	same	link	more	than	once),	use	HTML’s	predefined	name,	_blank,	as	in
target="_blank".
But	remember,	you	didn’t	read	any	of	that	here.
There	is	one	other	use	for	target,	which	is	to	open	a	link	in	an	iframe.	You	code	the
target	the	same	way,	except	its	value	should	match	the	id	of	the	iframe.	You’ll	rarely
have	occasion	to	use	this,	especially	since	iframes	are	generally	discouraged
(sometimes	they	have	their	place,	though).	Learn	more	about	the	iframe	element	at
https://developer.mozilla.org/en/HTML/Element/iframe.

Creating	and	Linking	to	Anchors
Generally,	activating	a	link	brings	the	user	to	the	top	of	the	corresponding	webpage.	If	you	want	to	have
the	user	jump	to	a	specific	section	of	the	webpage,	create	an	anchor	and	reference	that	anchor	in	the	link	(
,	 ,	and).	FAQ	pages	are	perhaps	the	most	common	use	for	anchor	links.

Click	here	to	view	code	image

https://developer.mozilla.org/en/HTML/Element/iframe

...
<body>

<article>
				<header>
							<h1>Frequently	Asked	Questions	(FAQ)</h1>

							<nav>
										
													Can	an	id	have	more	than	word?
													Can	visitors	bookmark	anchor	links?
													My	anchor	link	isn't	working.	What	am	I	doing
wrong?
													...
										
							</nav>
			</header>

			<h2	id="question-01">Can	an	id	have	more	than	word?</h2>
			<p>Yes,	your	ids	can	have	more	than	one	word	as	long	as	there	are	no	spaces.	Separate
each	word	with	a	dash	instead.</p>

			<h2	id="question-02">Can	visitors	bookmark	anchor	links?</h2>
			<p>Yes,	they	can!	And	when	they	visit	that	link,	the	browser	will	jump	down	to	the
anchor	as	expected.	Visitors	can	share	the	link	with	others,	too,	so	all	the	more	reason
to	choose	meaningful	anchor	names.</p>

			<h2	id="question-03">My	anchor	link	isn't	working.	What	am	I	doing	wrong?</h2>
			<p>The	problem	could	be	a	few	things.	First,	double-check	that	you	added	an	id
(without	"#")	to	the	element	your	link	should	point	to.	Also,	be	sure	that	the	anchor	in
your	link	is	preceded	by	"#"	and	that	it	matches	the	anchor	id.</p>

			...
</article>

</body>
</html>

	Each	link	href	value	that	begins	with	#	anchors	to	the	element	with	the	corresponding	id	(without
the	#).	For	instance,	...	anchors	to	<h2	id="question-
03">...</h2>.	You	may	apply	an	id	to	any	element	as	long	as	any	given	id	exists	in	a	page	only
once	(see	“Naming	Elements	with	a	Class	or	ID”	in	Chapter	3).	This	example	also	gives	you	an	early
look	at	an	unordered	list	(ul),	by	far	the	most	frequently	used	list	type	on	the	web.	(Lists	are	covered

extensively	in	Chapter	15.)

	When	the	visitor	points	at	a	link	that	refers	to	an	anchor,	the	URL	and	the	anchor	name	appear	in	the
status	bar	(in	the	lower-left	corner	of	the	window)	on	desktop	browsers.

	Once	the	visitor	activates	the	link,	the	particular	part	of	the	page	that	the	anchor	references	is
displayed	at	the	top	of	the	browser	window.	(Ironically,	in	this	case,	it	links	to	information	about	what	to

do	when	an	anchor	link	doesn’t	work!)

To	create	an	anchor
1.	Place	the	cursor	in	the	start	tag	of	the	element	that	you	wish	the	user	to	jump	to.
2.	Type	id="anchor-name",	where	anchor-name	is	the	text	you	will	use	internally	to	identify
that	section	of	the	webpage.	Be	sure	there	is	a	space	between	the	element’s	name	and	the	id;	for
example,	<h2	id="features">.

To	create	a	link	to	an	anchor
1.	Type	,	where	anchor-name	is	the	value	of	the	destination’s
id	attribute	(per	step	2	in	“To	create	an	anchor”).	For	example,	.

2.	Type	the	label	text;	that	is,	the	text	that	is	highlighted	(usually	blue	and	underlined	by	default)	and
that	when	activated	will	take	the	user	to	the	section	referenced	in	step	1.	As	usual,	images	are
allowed	too.

3.	Type		to	complete	the	definition	of	the	link.

Tip
Give	each	anchor	an	id	with	a	meaningful	name	to	increase	the	semantic	richness	of	your
HTML	document.	In	other	words,	avoid	a	generic	id	like	anchor3.

Tip
If	the	anchor	is	in	a	separate	document,	use	<a	href="page.html#anchor-
name">	to	reference	the	section.	(There	should	be	no	space	between	the	URL	and	the	#.)
If	the	anchor	is	on	a	page	on	a	different	site,	you’ll	have	to	type	
(with	no	spaces).

Tip
If	an	anchor	is	near	the	bottom	of	the	page	and	the	content	below	it	isn’t	at	least	as	tall	as
the	viewable	area	in	the	browser,	the	anchor	may	not	display	at	the	top	of	the	window,	but
rather	toward	the	middle.

Creating	Other	Kinds	of	Links
You	are	not	limited	to	creating	links	to	other	webpages.	You	can	create	a	link	to	any	URL:	RSS	feeds,
images,	files	that	you	want	visitors	to	be	able	to	download,	email	addresses,	phone	numbers,	and	more	
.
Click	here	to	view	code	image

http://www.site.com/directory/page.html#anchor-name

...
<h1>Other	Types	of	Links</h1>

<p>There	are	lots	of	different	kinds	of	links	that	you	can	create	on	a	webpage.	Following
are	some	examples.</p>

<h2>Images</h2>
<p>You	can	link	directly	to	a	photo	or	even	make	links	out
of	photos.	For	example,	the	following	image	is	linked	to	a	flowers	photo	gallery	page.	<img	src="img/blueflax.jpg"
width="165"	height="105"	alt="Blue	Flax"	/></p>

<h2>Other	Assets</h2>
<p>Listen	to	tickling	of	the	ivories	(MP3,	1.3	MB)	or	watch	a	paddle	steamer	(MP4,	2.4	MB).	These	link
directly	to	the	files	(handy	for	downloading).</p>

<h2>Email	Addresses</h2>
<p>Send	feedback	to	someone@somedomain.com.
</p>

<h2>Phone	Numbers</h2>
<p>Call	now	for	free	things!	1	(800)	123-4567</p>
...

	You	can	create	links	to	many	different	kinds	of	URLs.	This	page	includes	six	links.	The	link	around	the
image	may	not	be	obvious	in	all	browsers	 .

	No	matter	where	a	link	points,	it	looks	similar	by	default	in	browsers	unless	you	wrap	it	around	a
photo	(some	browsers	show	a	border	around	the	image,	and	some	don’t).	Notice	that	I’ve	created	labels

that	read	naturally	with	the	text,	instead	of	using	“click	me.”

To	create	other	kinds	of	links
1.	Type	<a	href=".
2.	Type	the	URL.
For	a	link	to	any	file	on	the	web,	including	images,	ZIP	files,	programs,	PDFs,	or	whatever,	type
http://www.site.com/dir/file.ext,	where	www.site.com	is	the	name	of	the	host
and	/dir/file.ext	is	the	path	to	the	desired	file.	The	latter	includes	the	directory	or
directories	that	lead	to	the	file,	as	well	as	the	file	name	itself	(with	its	extension).
For	an	email	address,	type	mailto:name@domain.com,	(not	preceded	by	http://),	where
name@domain.com	is	the	email	address.	(But	see	the	tips	for	a	reason	to	avoid	linking	to	email
addresses.)
For	a	phone	number,	type	tel:+	(not	preceded	by	http://)	followed	by	the	country	code	and
then	the	phone	number,	all	without	dashes.	The	total	number	of	digits	will	vary	from	country	to
country.	For	example,	1	is	the	country	code	for	the	United	States,	so	a	number	could	be
tel:+18889995555	(whereas	the	UK’s	country	code	is	44,	Kenya’s	is	254,	and	so	on).

http://www.site.com

3.	Type	">.
4.	Type	the	label	for	the	link;	that	is,	the	text	that	will	be	underlined	and	a	different	color	by	default
and	that	when	activated	will	take	the	visitor	to	the	URL	referenced	in	step	2.	Alternatively	(or	in
addition	to	label	text),	add	an	img	element	as	the	label.	(See	 	and	the	“Linking	Thumbnail
Images”	sidebar.)

5.	Type	.

Tip
If	you	create	a	link	to	a	file	that	a	browser	doesn’t	know	how	to	handle	(an	Excel	file,	for
example),	the	browser	will	either	try	to	open	a	helper	program	to	view	the	file	or	try	to
download	it	to	the	visitor’s	drive.

Tip
I	recommend	you	avoid	linking	email	addresses,	because	spambots	grab	them	from
webpages	and	bombard	them	with	spam.	It’s	better	to	offer	an	email	address	in	a
descriptive	way,	like	“someone	at	somedomain,”	although	that	isn’t	always	foolproof
either.

Tip
A	smartphone	that	understands	tel:	links	will	ask	if	you	want	to	call	the	number	when
you	trigger	a	link.	Some	non-phone	devices,	like	the	iPad,	will	ask	if	you’d	like	to	add	the
number	to	one	of	your	contacts.	Finally,	some	desktop	browsers	may	initiate	Google	Voice
or	Skype,	but	others	won’t	know	what	to	do	with	a	tel:	link	when	it’s	triggered.

Tip
Although	you	can	link	to	PDFs	and	other	non-HTML	documents	(Word,	Excel,	and	so	on),
try	to	avoid	it	whenever	possible.	Instead,	link	to	an	HTML	page	that	contains	the
information.	PDFs	can	take	a	long	time	to	load,	and	some	browsers	can	get	sluggish	while
trying	to	display	them.	For	those	times	when	a	PDF	is	your	only	option,	make	it	clear	to
users	that	the	link	points	to	a	PDF	rather	than	to	another	HTML	page	so	they	won’t	be
surprised	(users	don’t	appreciate	being	tricked	into	time-consuming	downloads).	That
advice	goes	for	most	other	non-HTML	documents,	too.	You	can	message	this	simply	by
putting	the	file	type	and	size	in	parentheses;	showing	an	icon	helps	as	well.	Here’s	an
example	(without	an	icon):	<p>Q2	Sales
Report	(PDF,	725kb)</p>.	You	may	also	want	to	include	a	title	attribute
(such	as	title="View	PDF")	on	the	link.

Tip
It’s	a	good	idea	to	compress	large	files	and	groups	of	files	that	you	want	visitors	to
download.	For	instance,	a	set	of	Photoshop	templates	saved	as	PSD	files.	Search	online
for	“ZIP	and	RAR”	to	find	tools	for	creating	and	opening	file	archives	using	these	popular
compression	formats.

Tip
If	you	want	to	“create	links	to	content	on	the	iTunes	Store,	the	App	Store,	the	iBookstore,
and	the	Mac	App	Store”	(per	the	URL	that	follows),	you	can	use	Apple’s	Link	Maker
(http://itunes.apple.com/linkmaker)	to	generate	the	URL	to	include	in	your	HTML.	If	you
are	an	affiliate	(www.apple.com/itunes/affiliates/),	Apple	pays	you	a	commission	on	items
people	buy	through	your	links.

Linking	Thumbnail	Images
No	doubt	you’ve	visited	a	photo	gallery	page	that	shows	several	thumbnails	(miniature
versions	of	your	images)	linked	to	larger	versions.	This	allows	you	to	see	a	lot	of	photos	at
a	glance	before	choosing	which	ones	to	view	full	size.
Implementing	a	basic	version	of	this	would	be	similar	to	the	example	code	that	links	the
flower	image	to	another	page	 .	Each	of	those	pages	could	contain	a	full-size	photo,	plus
a	link	back	to	the	thumbnails	page.	(Advanced	approaches	beyond	the	capabilities	of
HTML	alone	could	allow	for	a	single	dynamic	page.)
Be	careful	not	to	go	crazy	with	the	number	of	thumbnails	on	any	given	page.	They	may	be
small,	but	each	thumbnail	is	a	separate	request	to	the	web	server,	and	those	add	up,
slowing	down	your	page.	There’s	no	set	rule	for	how	many	is	appropriate.	It	partially
depends	on	the	number	and	size	of	other	assets	your	page	loads,	as	well	as	your	intended
audience.	For	instance,	mobile	phones	typically	load	images	more	slowly.
If	you	have	a	lot	of	thumbnails,	consider	splitting	them	up	into	more	than	one	page.	Test
your	pages	to	determine	what	works	best.
Lastly,	I	recommend	marking	up	your	list	of	thumbnails	with	an	unordered	list	(ul),
covered	in	Chapter	15.

http://itunes.apple.com/linkmaker
http://www.apple.com/itunes/affiliates/

7.	CSS	Building	Blocks

In	This	Chapter
Constructing	a	Style	Rule
Adding	Comments	to	Style	Rules
Understanding	Inheritance
The	Cascade:	When	Rules	Collide
A	Property’s	Value

Let’s	face	it—most	of	the	webpages	I’ve	shown	you	so	far	aren’t	particularly	compelling	visually.	That’s
because	we’ve	been	focusing	on	defining	our	content	with	HTML,	not	on	styling	our	webpages	with	CSS
(Cascading	Style	Sheets).	But	that’s	about	to	change.	Over	the	next	handful	of	chapters,	you’ll	learn	how
to	style	text	and	backgrounds,	implement	multi-column	layouts,	build	a	layout	that	looks	good	on
everything	from	phones	to	desktops	(and	beyond),	and	more.	In	this	chapter,	we’ll	lay	the	groundwork	by
covering	the	basic	CSS	concepts.
A	style	sheet	is	simply	text	that	contains	one	or	more	rules	that	determine—through	properties	and	values
—how	certain	elements	in	your	webpage	should	be	displayed.	There	are	CSS	properties	for	controlling
basic	formatting	(such	as	font-size	and	color),	layout	properties	(such	as	position	and
float),	and	printing	(such	as	deciding	where	page	breaks	should	appear	when	visitors	print	a	page).
CSS	also	has	a	number	of	dynamic	properties	that	allow	items	to	look	different	when	a	user	interacts	with
them,	to	appear	and	disappear,	and	much	more.
CSS2	is	the	version	of	CSS	that	is	best	supported	across	browsers	both	new	and	old,	so	this	book	will
cover	it	extensively.	CSS3,	which	is	still	evolving	as	a	specification,	encapsulates	and	builds	upon	CSS2
to	provide	features	that	designers	and	developers	desired	for	years;	these	include	rounded	corners,	drop
shadows,	text	shadows,	custom	fonts,	rotated	text,	semitransparent	background	colors,	multiple
background	images,	gradients,	and	much	more.	The	great	news	is	that	modern	browsers	have	already
implemented	these	and	other	CSS3	features	(and	continue	to	add	more),	so	you	can	use	them	today.
In	fact,	there	have	been	so	many	features	added	to	CSS	in	recent	years	that	we	can’t	possibly	fit	them	all
in	this	book.	Heck,	even	CSS4	is	already	underway.	But	you’ll	learn	some	of	the	most	useful	CSS3
features,	and	I’ll	point	you	to	resources	you	can	use	to	learn	about	some	features	not	covered	in	this	book.
The	wonderful	thing	about	CSS	is	that	your	styles	can	be	created	in	a	different	text	file	than	your	HTML
pages	and	then	be	applied	to	all	the	pages	on	your	site.	This	simplifies	styling	your	site	both	when	you
build	it	and	as	you	make	changes	over	time.	And	when	it	comes	time	to	redesign	a	site,	if	your	content	and
structure	remain	the	same,	it’s	even	possible	to	give	it	an	entirely	new	look	without	having	to	change	the
HTML.
To	get	the	full	benefit	of	CSS,	consistently	mark	up	your	webpages	according	to	the	recommendations	in
the	HTML	chapters.

Constructing	a	Style	Rule
A	style	sheet	contains	the	rules	that	define	how	a	webpage	looks.	Each	rule	has	two	main	parts:	the
selector,	which	determines	which	part	of	your	page	is	affected,	and	the	declaration	block,	which	is	made
up	of	one	or	more	property-value	pairs	(each	constitutes	a	declaration)	that	specifies	the	design
treatments	to	apply	(through).

	A	style	rule	is	made	up	of	a	selector	(which	indicates	what	will	be	formatted)	and	a	declaration	block
(which	describes	the	formatting	that	should	be	executed).	Each	declaration	within	the	block	is	a	property-
value	pair	separated	by	a	colon	and	ending	with	a	semicolon.	A	left	curly	brace	begins	a	declaration

block,	and	a	right	curly	brace	ends	it.

	The	order	of	declarations	doesn’t	matter	unless	the	same	property	is	defined	twice.	In	this	example,
color:	red	could	be	before	background-color:	yellow	and	have	the	same	effect.	Note	the
spacing	and	indenting	(optional,	but	customary	and	recommended),	which	keeps	everything	readable.

Click	here	to	view	code	image

...
<body>
					<h1>Hey,	I've	got	style!</h1>
</body>
</html>

	When	a	style	rule	like	the	one	in	 	is	applied	to	this	simple	bit	of	HTML	...

	...	the	heading	colors	change	from	the	default	browser	styling	of	black	text	on	a	white	background.

To	construct	a	style	rule
1.	Type	selector,	where	selector	identifies	the	part	or	parts	of	your	page	you	wish	to	format.
You’ll	learn	how	to	create	all	sorts	of	selectors	in	Chapter	9.

2.	Type	{	(an	opening	curly	bracket)	to	begin	the	declaration	block.
3.	Type	property:	value;,	where	property	is	the	name	of	the	CSS	property	that	describes	the
sort	of	formatting	you’d	like	to	apply	and	value	is	one	of	a	list	of	allowable	options	for	that
property.	Descriptions	of	CSS	properties	and	values	begin	in	earnest	in	Chapter	10.

4.	Repeat	step	3	as	needed.	It’s	common	practice	to	enter	each	property-value	pair	(a	declaration)	on
its	own	line	 ,	but	this	isn’t	required.

5.	Type	}	to	complete	the	declaration	block	and	the	style	rule.

Tip
You	may	add	extra	spaces,	tabs,	or	returns	in	a	style	rule	to	keep	the	style	sheet	readable	
.	The	format	in	the	example	is	perhaps	the	most	common	among	coders.

Tip
Technically,	you	may	omit	the	semicolon	that	follows	the	last	declaration	in	a	style	rule,
but	it’s	a	best	practice	to	include	it.

Adding	Comments	to	Style	Rules
It’s	a	good	idea	to	add	comments	to	your	CSS	to	note	the	primary	sections	of	your	style	sheets	or	simply
to	explain	something	about	a	particular	rule	or	declaration.	Comments	do	not	display	in	your	webpages,
so	you	don’t	have	to	worry	about	them	distracting	your	visitors.	CSS	comments	help	not	only	you	but	also
others	who	are	viewing	and	possibly	contributing	to	your	code.	And	even	if	you’re	the	only	one	working
on	a	site,	you’ll	be	happy	that	you	left	yourself	comments	if	you	revisit	the	code	months	later.

To	add	comments	to	a	style	sheet
1.	In	your	style	sheet,	type	/*	to	begin	your	comment.
2.	Type	the	comment.
3.	Type	*/	to	signal	the	end	of	the	comment.

Tip
Comments	may	include	returns	and	thus	span	several	lines.	Similarly,	the	/*	and	*/	may
appear	on	their	own	lines	or	alongside	your	comment	text	 .	You	may	also	put	comments
inside	a	declaration	block	or	after	a	rule	 .

Click	here	to	view	code	image

/*
This	is	a	CSS	comment.	It	can	be	one	line	long	or	span	several	lines.	This	one	is
much	longer	than	most.	Regardless,	a	CSS	comment	never	displays	in	the	browser
with	your	site's	HTML	content.

Of	course,	you	wouldn't	really	write	a	silly	comment	like	this	that	merely	talks
about	comments.	The	next	comment	is	more	in	line	with	a	comment's	typical	use.
*/

/*	Set	default	rendering	of	certain	HTML5	elements	for	older	browsers.	*/
article,
aside,
figcaption,
figure,
footer,
header,
main,
nav,
section	{
					display:	block;
}

	Comments	can	be	long	or	short,	though	they	tend	to	be	short.	Use	them	as	you	see	fit	to
describe	the	purpose	of	a	style	rule	or	a	group	of	related	rules.

Click	here	to	view	code	image

.byline	{
					color:	green;
					font-size:	.875em;
					text-shadow:	2px	1px	5px	orange;	/*	IE9	and	earlier	don't	support	*/
}	/*	You	can	put	comments	here,	too!	*/

	You	can	also	insert	comments	within	the	declaration	block	or	after	a	rule.

Tip
You	may	not	put	comments	inside	other	comments.	This	is	incorrect:

Click	here	to	view	code	image

/*	Wrong	because	/*	this	comment	*/	is	inside	a	comment.	*/.

Tip
Comments	are	extremely	helpful	as	an	organizational	tool.	Style	sheets	can	quickly	get
long,	so	organizing	them	is	critical	to	making	your	CSS	easy	to	maintain.	It’s	common
practice	to	group	related	rules	together	and	precede	them	with	a	descriptive	comment	 .

Click	here	to	view	code	image

/*	GLOBAL	NAVIGATION
----------------------------------	*/
...	rules	for	global	nav	...

/*	MAIN	CONTENT
----------------------------------	*/
...	rules	for	main	content	...

/*	SIGN-UP	FORM
----------------------------------	*/
...	rules	for	sign-up	form	...

/*	PAGE	FOOTER
----------------------------------	*/
...	rules	for	page	footer	...

	Comment	primary	sections	of	rules	within	your	style	sheets	to	keep	them	organized.	I	find	that
using	a	format	like	this	(all-caps	and	an	underline)	makes	it	clear	where	each	major	grouping

begins.

Tip
However	you	format	your	comments,	decide	on	a	convention	and	use	it	consistently,
especially	if	you’re	working	with	a	team.

Tip
You	can	put	comments	within	 	or	around	 	style	rules	to	hide	them	from	the	browser.
This	is	a	good	way	to	test	a	style	sheet	change	without	permanently	removing	the
commented	portion	until	you	are	ready	to	do	so.	It’s	also	helpful	when	debugging;	comment
out	something	you	think	might	be	causing	a	problem,	refresh	the	page	in	the	browser,	and
see	if	the	problem	is	fixed.

Click	here	to	view	code	image

img	{
					border:	4px	solid	red;
					/*	margin-right:	12px;	*/
}

	You	can	“comment	out”	a	declaration	that	you	don’t	want	to	affect	the	page.	Here,	all	images
will	get	a	4-pixel	solid	red	border	but	not	a	right	margin	treatment,	because	margin-right:

12px;	is	inside	a	comment.
Click	here	to	view	code	image

p	{
					line-height:	1.2;
}

/*
.byline	{
					color:	black;
					font-size:	.875em;
					text-shadow:	2px	1px	5px	orange;
}

img	{
					border:	4px	solid	red;
					margin-right:	12px;
}
*/

	A	comment	can	go	around	an	entire	rule	or	multiple	rules.	In	this	style	sheet,	only	the	line-
height	for	paragraphs	is	applied,	because	the	rules	for	.byline	and	img	are	commented	out.
Note	that	I	removed	their	comments	(shown	in	 	and)	so	I	could	place	a	comment	around

them	without	creating	an	error.

Tip
Although	these	examples	are	heavy	on	comments	for	demonstration	purposes,	don’t	feel	the
need	to	comment	everything.	Style	sheets	can	be	harder	to	read	if	they	have	too	many
comments.	You’ll	probably	find	that	a	good	mix	entails	organizational	comments	coupled
with	descriptive	ones	as	needed.	Find	the	balance	that	works	for	you	and	the	others	on
your	team.

Understanding	Inheritance
Inheritance	is	one	of	the	key	concepts	behind	CSS.	Take	a	look	at	the	webpage	in	 .	Behind	the	scenes,
browsers	look	at	your	HTML	as	a	document	tree	 .	Doing	the	same	can	help	you	understand	CSS.	Here’s
why:	When	you	apply	certain	CSS	properties	to	an	element,	they	not	only	affect	that	element	but	also	flow
down	the	branch	or	branches	beneath	them.	These	lower	elements	are	said	to	inherit	from	their	ancestors.
Except	they	inherit	things	like	colors	and	font	sizes	instead	of	cold	hard	cash	(a	raw	deal?).
Click	here	to	view	code	image

...
<body>
<div>
					<h1>The	Ephemeral	Blue	Flax</h1>

					<img	src="img/blueflax.jpg"	width="300"	height="175"	alt="Blue	Flax	(Linum	lewisii)"
/>

					<p>I	am	continually	amazed	at	the	beautiful,	delicate	Blue	Flax	that
somehow	took	hold	in	my	garden.	They	are	awash	in	color	every	morning,	yet	not	a	single
flower	remains	by	the	afternoon.	They	are	the	very	definition	of	ephemeral.</p>

					<p><small>©	Blue	Flax	Society.</small></p>
</div>
</body>
</html>

	All	content	elements	are	descendants	of	the	body	element,	and	in	this	case,	a	div	wraps	around
everything	inside	that.	Digging	deeper,	the	em	and	small	elements	are	contained	within	a	p	element	and

thus	are	descendants	of	p	(and	div	and	body),	as	the	diagram	illustrates	 .

	It’s	easy	to	see	which	elements	are	descendants	of	others	when	you	visualize	an	HTML	page	as	a	tree
structure.	Each	element	that	is	inside	another	immediate	element	in	your	code—for	example,	as	img	is

inside	div	in	 —is	a	branch	of	its	parent.

Figures	 ,	 ,	and	 	demonstrate	inheritance	at	work.	Remember,	not	all	properties	are	inherited.	For
instance,	font-family	is	inherited,	but	border	and	padding	are	not.	That	is	why	all	text	on	the
page	displays	in	Verdana,	but	only	the	div—and	none	of	its	descendants—has	a	border	(the	thin	black
box)	and	padding	(the	space	between	the	border	and	content	inside)	 .	The	color	and	font-weight

properties	are	inherited,	too,	which	explains	why	the	text	in	the	em	and	small	elements	is	blue	and	bold
like	the	other	paragraph	text	instead	of	black	and	not	bold	per	the	default	browser	styles.	I’ve	listed	other
properties	that	are	inherited	in	the	aptly	titled	sidebar	“Which	Properties	Are	Inherited?”
Click	here	to	view	code	image

body	{
					font-family:	Verdana,	Geneva,	sans-serif;
}

div	{
					border:	1px	solid	#000;
					overflow:	hidden;
					padding:	0	1em	.25em;
}

p	{
					color:	#36c;	/*	a	blue	color	*/
					font-weight:	bold;
}

img	{
					float:	left;	/*	makes	text	wrap	it	*/
					margin-right:	1em;
}

	This	style	sheet	for	the	HTML	document	in	 	takes	advantage	of	inheritance	to	apply	certain	styles	to
the	page.	Don’t	worry	too	much	about	the	details	right	now,	but	do	notice	that	there	are	rules	for	the

body,	div,	and	p	elements,	but	not	for	the	h1,	em,	and	small	elements.

	Here	we	see	inheritance	(and	the	lack	thereof)	in	action.	The	h1	inherits	the	Verdana	font-family
styling	from	body.	But	it	does	not	have	its	own	style	rule	defined	in	 ,	so	it	otherwise	displays	in

accordance	with	the	browser	defaults,	which	make	headings	bold	and	black.	Similarly,	in	the	absence	of	a
rule	specified	explicitly	for	the	em	and	small	elements,	they	also	inherit	Verdana	from	the	body,	and
their	font-weight	and	color	from	the	p	rule.	The	italics	come	from	the	browser’s	default	styling	of
em.	The	slightly	reduced	size	of	the	legal	notice	marked	up	with	small	(that	is,	legal	“fine	print”)	is	also
due	to	a	browser	default	style.	Finally,	the	div	surrounding	the	content	shows	a	thin	border	and	padding
inside	it,	but	as	expected,	no	other	elements	inside	the	div	do	because	those	properties	aren’t	inherited.

As	you	can	see,	inheritance	helps	simplify	your	style	sheets.	Imagine	if	you	had	to	define	the	font	for	each
element	on	your	page	individually!	Keep	this	in	mind	while	writing	your	own	CSS	and	take	advantage	of
inheritance	whenever	it	makes	sense.

Which	Properties	Are	Inherited?
Following	are	the	CSS	display	properties	that	are	inherited,	grouped	by	type.	Most	of	them
are	covered	later	in	the	book,	but	I	bet	you	can	guess	from	their	names	what	many	of	them
do.

Text
	color	(except	by	the	a	element)
	direction
	font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	letter-spacing
	line-height
	text-align
	text-indent
	text-transform
	visibility
	white-space
	word-spacing

Lists
	list-style
	list-style-image
	list-style-position
	list-style-type

Tables

	border-collapse
	border-spacing
	caption-side
	empty-cells

Paged	Media	(as	in	printing)
	orphans
	page-break-inside
	widows

Other
	cursor
	quotes

You	can	also	use	a	CSS	value	of	inherit	with	most	properties	to	force	inheritance	(see	the	section,	“A
Property’s	Value”).

The	Cascade:	When	Rules	Collide
Styles	come	from	many	sources.	As	you	learned	in	Chapter	1,	every	browser	has	its	own	default	styles.
But	you	can	apply	your	own	styles	to	override	or	complement	those	in	three	ways:	You	can	load	one	or
more	from	an	external	style	sheet	file	(the	recommended	method)	 ,	insert	them	at	the	top	of	an	HTML
document,	or	apply	them	to	a	specific	HTML	element	right	in	the	code	(though	this	is	to	be	avoided
whenever	possible).	See	the	next	chapter	for	specifics	about	each	method.
Click	here	to	view	code	image

p	{
					color:	red;
}

.example	{
					color:	blue;
}

.example.example-2	{
					color:	magenta;
					/*	negated	by	next	rule	*/
}

.example.example-2	{
					color:	green;
}

	In	this	example,	there	are	four	rules	of	varying	specificity.	The	first	affects	any	p	element,	the	second
affects	only	those	elements	with	a	class	equal	to	example	in	the	HTML	 ,	and	the	third	and	fourth
affect	any	element	with	both	the	example	and	example-2	classes.	The	order	of	these	rules	is	not
important—except	for	the	last	two	relative	to	one	another,	because	they	have	the	same	selector.

Click	here	to	view	code	image

...
					<link	rel="stylesheet"	href="style.css"	/>
</head>
<body>

<p>Here's	a	generic	<code>p</code>	element.	It	will	be	red.</p>

<p	class="example">Here's	a	<code>p</code>	element	with	a	<code>class</code>	of
<code>example</code>.	There	are	two	rules	that	could	apply,	but	since	the
<code>.example</code>	selector	is	more	specific,	this	paragraph	will	be	blue.</p>

<p	class="example	example-2">Here's	a	<code>p</code>	element	with	two	classes:
<code>example</code>	and	<code>example-2</code>.	There	are	four	rules	that	could	apply	to
this	paragraph.	The	first	two	are	overruled	by	the	more	specific	last	two.	However,
because	the	last	two	have	the	same	selector,	the	order	breaks	the	tie	between	them:	the
one	that	appears	later	wins,	and	thus	this	paragraph	will	be	green	instead	of	magenta.
</p>

</body>
</html>

	Three	paragraphs:	one	generic	one,	one	with	a	single	class,	and	one	with	two	classes.	Note	that	when
an	element	has	more	than	one	class,	you	separate	each	one	with	a	space	in	the	HTML,	but	not	in	a	CSS
selector	that	targets	the	element.	Also,	class	names	are	preceded	by	a	period	in	CSS.	(The	style	sheet	in	

	is	in	a	file	named	style.css.	The	link	tag	in	line	two	loads	it	into	the	page.	The	next	chapter
elaborates.)

What	happens	when	there	is	more	than	one	style	rule	that	applies	to	a	given	element?	Well,	if	one	rule
defines,	say,	an	element’s	color	and	another	its	width,	those	rules	are	effectively	combined	and	both
properties	are	applied.
However,	sometimes	multiple	rules	define	the	same	property	on	an	element	 .	What	then?	CSS	uses	the
principle	of	the	cascade	to	determine	which	of	a	group	of	conflicting	style	declarations	should	win	out.
First,	any	style	you	write	takes	precedence	over	a	conflicting	browser	default	style.	Beyond	that,	the
cascade	takes	into	account	a	style’s	specificity,	order,	and	importance	to	determine	winners.	Don’t	be	put
off	by	all	the	lingo.	The	way	CSS	decides	which	styles	are	applied—and	when—will	make	sense	once
you	try	it	out.
Let’s	take	a	closer	look	at	specificity,	order,	and	importance.

Specificity
The	law	of	specificity	states	that	the	more	specific	the	selector	 ,	the	stronger	the	rule—and	the
conflicting	style	in	the	stronger	rule	wins	(and).	Makes	sense,	right?

	The	second	paragraph	is	blue	because	it	has	the	example	class.	For	the	third	paragraph,	since	the
third	and	fourth	rules	have	the	same	specificity,	their	order	in	the	style	sheet	becomes	a	factor—and	thus

the	fourth	rule	wins	out	since	it	appears	last.

	This	table	lists	a	few	selectors,	from	least	specific	(an	element	name,	at	the	top)	to	most	specific	(an
ID,	at	the	bottom).	The	behavior	played	out	in	 	through	 	reflects	this.

You	aren’t	limited	to	defining	styles	with	the	basic	selectors	shown	in	the	examples.	Chapter	9	covers
other	selector	types	of	varying	specificity	weights.	Among	those,	note	that	id	selectors	are	considered	the
most	specific	by	a	vast	margin	(since	each	id	must	be	unique	in	an	HTML	page)	 .	On	the	flip	side,
inherited	styles	are	considered	the	most	general	of	all	styles	(besides	browser	defaults)	and	thus	are
overruled	by	any	other	rule.
I	cover	id	selectors	further	in	Chapter	9	(“Selecting	Elements	by	Class	or	ID”),	but	for	now,	I’ll	mention
that	I	recommend	you	favor	classes	and	avoid	IDs	in	your	style	sheets.	Using	IDs	for	styling	is	typically
overkill	and	does	not	allow	for	as	much	flexibility.

Order
Sometimes,	the	specificity	is	the	same	for	competing	rules,	so	it	can’t	determine	a	winner.	In	that	case,	the
order	of	the	rules	breaks	the	tie:	Rules	that	appear	later	take	precedence	(as	exemplified	by	the	styling	of
the	third	HTML	paragraph	in	 	through).	Also,	rules	that	are	applied	inline	right	in	the	HTML	element
(not	recommended)	are	considered	to	appear	after	(and	thus	take	precedence	over)	rules	applied	in	either
an	external	style	sheet	or	one	embedded	in	the	HTML	document.

Importance
If	all	that	isn’t	enough,	you	can	override	the	whole	system	by	declaring	that	a	particular	style	should	be
more	important	than	the	others,	regardless	of	the	rule’s	specificity	or	order.	You	do	so	by	adding
!important	at	the	end	of	the	declaration.	For	example,	p	{	color:	orange	!important;	}.
(This	isn’t	recommended	except	in	uncommon	cases.)
For	more	details,	consult	“The	Cascade	and	the	Order	of	Styles”	in	Chapter	8.

Recap
The	styles	you	write	override	browser	defaults.	With	two	or	more	competing	styles,	the	style	declaration
in	the	more	specific	rule	takes	precedence,	regardless	of	its	order	in	your	style	sheets.	With	two	or	more
rules	of	equal	specificity,	the	one	that	appears	last	wins	unless	one	of	the	others	is	marked	with
!important.
And,	in	the	absence	of	a	rule	targeting	an	element	directly,	the	element’s	inherited	value	(if	any)	is	used.
If	any	of	this	sounds	confusing,	don’t	worry	too	much	about	it	right	now.	Once	you	start	playing	with	CSS
and	different	selectors,	I	think	you’ll	find	that	in	most	cases	the	cascade	operates	just	as	you’d	expect	it	to.

Tip
If	you	need	a	refresher	on	classes	and	IDs	in	HTML,	see	“Naming	Elements	with	a	Class
or	ID”	in	Chapter	3.

Tip
If	you’re	interested	in	the	nitty-gritty	of	how	browsers	calculate	specificity	weight,	see
Section	9	of	the	CSS	specifications	(www.w3.org/TR/selectors/#specificity).	Keep	in
mind	that	a	lot	of	it	will	look	foreign	to	you	unless	you’ve	skipped	ahead	to	Chapter	9.	You
absolutely	do	not	have	to	commit	the	formula	to	memory	to	write	CSS.	The	truth	is	that
very	few	coders—even	those	with	years	of	experience—can	recite	those	specificity	rules.
They	(and	you)	don’t	need	to,	because	CSS	specificity	works	intuitively.	And	if	a	style
you’ve	written	doesn’t	work,	it	could	be	because	it	isn’t	specific	enough,	so	you’ll	learn
by	doing.

http://www.w3.org/TR/selectors/#specificity

Tip
At	the	onset,	I	mentioned	that	style	sheets	may	originate	from	the	browser	and	from	you.
There	is	a	third	potential,	although	unlikely,	source:	Your	visitors.	Some	browsers	let	users
create	and	apply	their	own	style	sheets	to	pages	they	visit—including	yours—so	they	can
customize	their	experience	to	their	liking.	For	instance,	a	vision-impaired	user	might	prefer
a	specific	amount	of	contrast	between	the	text	and	background	colors.	In	truth,	very	few
people	know	about	this	browser	feature	and	even	fewer	take	advantage	of	it.	These	styles
do	affect	the	cascade.	They	are	given	precedence	over	default	browser	styles,	but	not	over
the	style	sheets	you	create	for	your	site	unless	a	user	style	sheet	declaration	is	marked	with
!important.	I	mention	this	primarily	in	case	it	is	helpful	for	you	to	know	as	a	user.	It
doesn’t	change	how	you	go	about	styling	your	own	webpages	for	others	to	visit.

A	Property’s	Value
Each	CSS	property	has	different	rules	about	what	values	it	can	accept.	Some	properties	accept	only	one
of	a	list	of	predefined	values.	Others	accept	numbers,	integers,	relative	values,	percentages,	URLs,	or
colors.	Some	can	accept	more	than	one	type	of	value.	The	acceptable	values	for	each	property	are	listed
throughout	this	book	in	the	section	describing	that	property	(Chapters	10,	11,	and	14),	but	you’ll	learn	the
basic	systems	here.

Inherit
Use	the	inherit	value	when	you	want	to	explicitly	specify	that	the	value	of	a	property	be	the	same	as
that	of	the	element’s	parent.	For	example,	suppose	a	couple	of	paragraphs	are	inside	an	article
element	that	has	a	border	setting.	Borders	aren’t	normally	inherited,	so	the	rule	p	{	border:
inherit;	}	would	apply	the	same	border	to	those	paragraphs.	(Versions	of	Internet	Explorer	prior	to
IE8	don’t	support	the	inherit	value	for	most	properties,	but	it’s	unlikely	you’ll	need	to	support
browsers	that	old	for	most	sites.)

Predefined	values
Most	CSS	properties	have	a	few	predefined	values	that	can	be	used.	For	example,	the	float	property
can	be	set	to	left,	right,	or	none.	In	contrast	with	HTML,	you	don’t	need	to—and	indeed	must	not
—enclose	predefined	values	in	quotation	marks	 .	In	fact,	that’s	true	of	most	CSS	values,	predefined	or
not.	(Some	exemptions	include	font-family	names	that	are	more	than	one	word,	and	what’s	known	as
generated	content.)

	Many	CSS	properties	will	accept	only	values	from	a	predefined	list.	Type	them	exactly,	and	do	not
enclose	them	in	quotation	marks.

Lengths	and	percentages
Many	CSS	properties	take	a	length	as	their	value.	All	length	values	must	contain	a	quantity	and	a	unit,
with	no	spaces	between	them;	for	example,	3em	or	10px	 .	The	only	exception	is	0,	which	may	be	used
with	or	without	units.	The	effect	is	the	same	regardless,	so	it’s	customary	to	leave	off	the	unit	for	a	0
value.

	Lengths	must	always	explicitly	state	the	unit.	There	should	be	no	space	between	the	unit	and	the
measurement.

There	are	length	types	that	are	relative	to	other	values.	An	em	is	equal	to	the	element’s	font	size.	For
example,	setting	margin-left:	2em	on	an	element	would	mean,	“set	a	left	margin	that’s	twice	the
font	size”	of	the	element.	(When	the	em	is	used	to	set	the	element’s	font-size	property	itself,	as	shown
in	Chapter	10,	its	value	is	relative	to	the	font	size	of	the	element’s	parent.)	The	relative	nature	of	an	em
makes	it	an	essential	part	of	building	sites	today,	especially	those	designed	to	adjust	for	screen	sizes.
(This	practice	is	known	as	responsive	web	design,	which	is	covered	in	Chapter	12.)	Meanwhile,	a	rem
unit	is	relative	to	the	font	size	of	the	html	element.	See	“Setting	the	Font	Size”	in	Chapter	10.
If	you’ve	used	software	such	as	Adobe	Photoshop,	you’re	no	doubt	familiar	with	pixels.	Unlike	ems,	CSS
pixels	(px)	are	not	relative	to	other	style	rules.	So	values	in	px	aren’t	affected	by	the	font	size	of	an
element.	However,	in	today’s	broad	device	landscape	(phones,	tablets,	and	so	on),	a	pixel	isn’t
considered	the	predictable	unit	of	measure	it	once	was.	That’s	because	a	pixel	isn’t	necessarily	the	same
size	on	one	type	of	device	as	it	is	on	another.	(See	Peter-Paul	Koch’s	detailed	description	at
www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html.	Warning:	It	can	be	a	confusing	topic!)
You’ll	still	have	occasion	to	use	px,	just	not	as	frequently.
There	are	also	absolute	units,	such	as	points	(pt),	which	is	a	unit	that	typically	is	reserved	for	print	style
sheets.	In	general,	you	should	use	absolute	lengths	only	when	the	size	of	the	output	is	known	(as	with	pt
and	the	printed	page).
A	percentage	value—65%,	for	example—works	much	like	an	em,	in	that	it	is	relative	to	some	other	value	
.	For	this	reason,	percentage	values	are	another	powerful	tool	for	building	responsive	websites,	as	you

will	learn.

	Percentages	are	generally	relative	to	the	parent	element.	So	in	this	example,	the	width	would	be	set	to
80	percent	of	the	parent’s	width.

Of	all	these,	you	will	use	ems,	percentages,	and	pixels	the	most,	with	rem	gaining	steam.	Your	style	sheets
can	use	any	combination	of	them;	they	can	be	combined	even	within	the	same	style	rule.	There	are	other
units,	too,	but	they	see	little	use.

http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html

Bare	numbers
A	very	few	CSS	properties	accept	a	value	in	the	form	of	a	number	without	a	unit,	like	3	or	.65.	The	most
common	are	line-height	 ,	opacity,	and	z-index	(see	“Setting	the	Line	Height”	in	Chapter	10,
“Setting	the	Opacity	of	Elements”	in	Chapter	14,	and	“Positioning	Elements	in	a	Stack”	in	Chapter	11,
respectively).

	Don’t	confuse	numbers	and	integers	with	length.	A	number	or	integer	has	no	unit	(like	px).	In	this	case,
the	value	shown	here	is	a	factor	that	will	be	multiplied	by	the	font	size	to	get	the	line	height.

URLs
Some	CSS	properties	allow	you	to	specify	the	URL	of	another	file,	particularly	images	(background-
image	is	one	such	property).	In	that	case,	use	url(file.ext),	where	file.ext	is	the	path	and	file
name	of	the	desired	asset	 .	Note	that	relative	URLs	should	be	relative	to	the	location	of	the	style	sheet
in	your	site’s	folder	structure	and	not	to	the	HTML	file.	I’ve	provided	an	example	in	“Setting	the
Background”	in	Chapter	10.

	URLs	in	CSS	properties	do	not	need	to	be	enclosed	in	quotation	marks.

You	can	use	quotation	marks	around	the	file	name,	but	they’re	not	required.	There	should	be	no	space
between	the	word	url	and	the	opening	parenthesis.	White	space	between	the	parenthesis	and	the	address
to	the	file	is	allowed	but	not	required	(or	customary).
For	more	information	on	writing	the	URLs	themselves,	consult	“URLs”	in	Chapter	1.

CSS	colors
You	can	specify	colors	for	CSS	properties	by	using	a	predefined	color	keyword	or	by	using	a	value
represented	in	hexadecimal	(usually	called	hex),	RGB,	HSL,	RGBA,	or	HSLA.	Those	last	two	are	for
colors	with	a	level	of	alpha	transparency,	and	they,	along	with	HSL,	were	introduced	in	CSS3.
CSS3	specifies	a	basic	list	of	16	color	keywords	carried	over	from	CSS2.1	 	and	adds	131	more.	The
full	list	is	available	at	www.w3.org/TR/css3-color/#svg-color.

http://www.w3.org/TR/css3-color/#svg-color

	The	16	basic	color	keywords,	along	with	their	hex	equivalents.	CSS3	provides	131	additional
keywords,	but	you	can	define	far	more	colors	using	hex,	RGB,	or	HSL.

I’d	wager	that	few	people	remember	any	but	the	most	obvious	color	keywords,	but	you’ll	see	them	used
occasionally.	And	you	typically	grab	colors	from	tools	like	Adobe	Photoshop,	which	gives	you	the	RGB
and	hex	value	rather	than	the	CSS	color	name.	Besides,	the	color	keywords	cover	only	a	fraction	of	the
colors	available	to	you.	So	in	practice,	it’s	more	common	to	define	your	CSS	colors	with	the	hex	format
(the	most	common)	or	the	RGB	format—unless	you	want	to	specify	alpha	transparency,	in	which	case
either	RGBA	or	HSLA	will	do.

RGB
You	can	construct	your	own	color	by	specifying	its	amount	of	red,	green,	and	blue	(hence	the	name	RGB).
You	can	give	the	value	of	each	contributing	color	as	a	number	from	0–255	or	a	percentage.	For	example,
if	you	wanted	to	create	a	dark	purple,	you	might	use	89	red,	no	green,	and	127	blue.	That	color	could	be
written	rgb(89,	0,	127)	 .

	Another	way	to	express	color	in	CSS	is	with	RGB	numeric	values	from	0–255.	Define	red	first,
followed	by	green	and	then	blue.

Alternatively,	you	could	represent	each	value	as	a	percentage,	though	it	is	far	less	common	to	do	so,	likely
because	image	editors	like	Photoshop	provide	you	numerical	RGB	values.	But	if	you	do	want	to	use

percentages,	you	would	write	the	same	color	as	rgb(35%,	0%,	50%),	since	89	is	35%	of	255	and
127	is	50%	of	255.

Hexadecimal
I’ve	saved	the	most	common	method	for	last	 .	Convert	those	numerical	values	to	hexadecimal,	join
them	together,	and	prefix	the	value	with	a	#,	as	in	#59007F.	If	you’re	saying	to	yourself,
“whatadecimal?,”	don’t	fret.	Photoshop	and	the	like	include	tools	for	choosing	colors	and	displaying	their
hex	values,	just	as	they	do	for	RGB.	You	can	also	find	free	tools	by	searching	online	for	“rgb	to	hex
converter”	(or	vice	versa).

	The	most	common	way	to	define	a	color	in	CSS	is	by	using	hexadecimal	numbers	to	specify	the
amounts	of	red,	green,	and	blue	that	it	contains.

For	the	example	of	#59007F,	59	is	the	hex	equivalent	of	89,	00	is	the	hex	equivalent	of	0,	and	7F	is	the
hex	equivalent	of	127.	You	can	also	write	the	letters	in	lowercase;	for	example,	7F	as	7f	(my	preference,
but	plenty	of	others	like	to	capitalize	them).
When	a	hex	color	is	composed	of	three	pairs	of	repeating	digits,	as	in	#ff3344,	you	may	abbreviate	the
color	to	#f34.	In	fact,	it’s	a	best	practice	to	do	so,	since	there’s	no	reason	to	make	your	code	longer	than
it	needs	to	be.

More	color	options	in	CSS3:	RGBA,	HSLA,	and	HSL
Thanks	to	CSS3,	we	now	have	another	way	to	specify	colors—HSL—and	the	ability	to	set	alpha
transparency	via	RGBA	and	HSLA.	(You	can’t	indicate	alpha	transparency	with	hex	notation.)
RGBA
RGBA	is	the	same	as	RGB	except	the	A	stands	for	alpha	transparency.	It’s	common	to	leverage	alpha
transparency	on	the	background-color	(or	background)	of	an	element	(and)	because	alpha
transparency	allows	whatever	is	behind	the	element—an	image,	other	colors,	text,	and	more—to	peek
through	and	blend	with	it	 .	To	be	clear,	though,	you	can	also	set	alpha	transparency	on	other	color-
based	properties,	such	as	border,	border-color,	box-shadow,	color,	and	text-shadow.
All	modern	browsers	support	it,	but	versions	of	Internet	Explorer	prior	to	IE9	do	not	 .
Click	here	to	view	code	image

/*	Set	repeating	page	background	image,	and	default	color,	font,	and	size	for	all	text.
*/
body	{
					background:	url(../img/bg-pattern.png);

					/*	Because	of	inheritance,	these	text	styles	cascade	down	to	all	text	on	a	page
unless	overridden	by	styles	elsewhere.	*/
					color:	#ff0;	/*	Hex	yellow	*/
					font-family:	arial,	helvetica,	sans-serif;
					font-size:	100%;
}

/*	Solid	background	(not	transparent)	for	all	paragraphs	unless	given	one	of	the	classes
below.	Versions	of	IE	older	than	IE9	will	show	this	background	color	regardless.	*/
p	{
					background-color:	rgb(60,143,0);
					font-size:	1.75em;
					padding:	.5em;
}

/*	25%	transparent	*/
.test-1	{
					background-color:	rgba(60,143,0,.75);
}

/*	60%	transparent	*/
.test-2	{
					background-color:	rgba(60,143,0,.4);
}

	This	style	sheet	applies	a	repeating	background	image	and	default	text	formatting	to	the	whole	page,
with	slightly	different	background-color	treatments	for	the	paragraphs	depending	on	what	class	they
have	(if	any)	 .	Modern	browsers	display	the	result	shown	in	 .	IE9	and	later	support	RGBA,	but	older
versions	ignore	the	declarations	on	.test-1	and	.test-2,	showing	the	RGB	style	assigned	to	p

instead	 .
Click	here	to	view	code	image

...
<body>

<p	class="test-1">This	background	is	25%	transparent.</p>

<p	class="test-2">This	background	is	60%	transparent.</p>

<p>This	has	the	same	background	color	as	the	other	two,	but	doesn't	have	an	alpha
transparency	setting.</p>

</body>
</html>

	The	first	paragraph	is	given	a	class	of	test-1,	so	it	will	have	a	25%	transparent	background	color
according	to	the	style	sheet.	The	second	is	assigned	test-2	for	60%	transparency.	The	final	paragraph
does	not	have	a	class,	so	its	background	color	will	be	solid,	as	specified	in	the	default	styling	for	all	p

elements	by	the	second	rule	in	 .

	You	can	see	the	background	pattern	peeking	through	the	background	color	of	the	top	two	paragraphs	but
not	of	the	bottom	one.	The	background	color	for	all	three	is	the	same,	but	they	look	like	three	different

shades	of	green	because	of	their	different	alpha	transparency	settings.	(See	the	CSS	comment	in	the	body
rule	in	 	to	learn	how	the	text	styling	was	achieved.)

	IE	didn’t	start	supporting	alpha	transparency	(RGBA	or	HSLA)	until	IE9.	This	screen	shot	shows	IE8,
which	ignores	the	RGBA	declarations	in	the	style	sheet	because	it	doesn’t	understand	them.	So	all

paragraphs	have	the	solid	background	color	defined	for	p	elements	in	the	second	rule;	without	that,	the
paragraphs	wouldn’t	have	a	background	color.	(The	text	in	the	paragraphs	is	now	misleading,	because

there	is	no	transparency.)

You	specify	the	amount	of	transparency	with	a	decimal	from	0	to	1	after	the	red,	green,	and	blue	values.
So	the	syntax	is	as	follows:
property:	rgba(red,	green,	blue,	alpha	transparency);
The	closer	to	0	the	alpha	setting,	the	more	transparent	the	color	becomes.	If	it	is	0,	it’s	completely
transparent,	as	if	you	hadn’t	set	a	color	at	all.	Similarly,	1	is	completely	opaque,	meaning	it’s	not
transparent	at	all.
Here	are	some	example	declarations	to	illustrate	the	point:
/*	no	transparency,	so	the	same	as	rgb(89,	0,	127);	*/
background-color:	rgba(89,0,127,1);
/*	completely	transparent	*/
background-color:	rgba(89,0,127,0);
/*	25%	transparent	*/
background-color:	rgba(89,0,127,0.75);
/*	60%	transparent	*/
background-color:	rgba(89,0,127,0.4);
Of	course,	to	make	those	work,	you’ll	need	to	include	them	in	one	or	more	rules	 .	As	you	can	see,	the
RGB	color	values	are	the	same	throughout	the	style	sheet,	but	the	colors	themselves	appear	different	in	the
browser	because	of	their	different	levels	of	transparency	 .
HSL	and	HSLA
HSL	and	HSLA	are	the	other	new	additions	in	CSS3.	The	latter	is	the	alternative	to	RGBA	for	setting
alpha	transparency	on	a	color.	You	specify	the	alpha	the	same	way	you	do	with	RGBA.	You’ll	see	that	in
a	second,	but	first	take	a	look	at	how	HSL	works.
HSL	stands	for	hue,	saturation,	and	lightness,	where	hue	is	a	number	from	0–360,	and	both	saturation
and	lightness	are	percentages	from	0	to	100.	You	can	think	of	the	hue	value	as	a	degree	on	a	color	circle	
,	with	0	and	360	meeting	at	the	top.	(This	means	that	both	0	and	360	are	the	same	color:	red.)	The

saturation	and	lightness	settings	are	applied	to	that	color.	(Don’t	confuse	HSL	with	HSB	or	HSV.	They	are
similar	but	not	the	same,	and	CSS	doesn’t	allow	expressing	colors	in	HSB	or	HSV.)

	HSL	hue	values	run	clockwise	on	the	circle.	So	90	is	the	rightmost	point,	180	is	at	the	bottom,	270	is
the	leftmost	point,	and	360	meets	0	at	the	top.	See	the	sidebar	“How	to	Think	in	HSL”	for	a	list	of

standard	colors	and	their	hue	values.

In	CSS	 ,	the	HSL	syntax	is:
property:	hsl(hue,	saturation,	lightness);

	The	breakdown	of	the	HSL	format.

And	the	HSLA	format	is	this:
property:	hsla(hue,	saturation,	lightness,	alpha	transparency);

Take	a	look	at	the	updated	(and	slightly	abbreviated)	style	sheet	 ,	which	defines	the	same	green	from
the	RGB	and	RGBA	example	in	HSL	and	HSLA.
Click	here	to	view	code	image

body	{
					...	same	styles	as	before	...
}

/*	Solid	background	(not	transparent)	for	all	paragraphs	unless	given	one	of	the	classes
below,	with	the	exception	of	older	versions	of	IE,	which	will	show	the	hex	color	always.
*/
p	{
					background-color:	#3c8f00;	/*	for	IE	before	IE9	*/
					background-color:	hsl(95,100%,28%);
					...
}

/*	25%	transparent	*/
.test-1	{
					background-color:	hsla(95,100%,28%,.75);
}

/*	60%	transparent	*/
.test-2	{
					background-color:	hsla(95,100%,28%,.4);
}

	The	same	style	sheet	as	 	except	it	uses	HSL	and	HSLA.	Plus,	I’ve	defined	a	fallback	hex
background-color	for	styling	paragraphs	in	older	browsers.	The	order	of	the	declarations	in	the	p
rule	is	important.	Older	versions	of	IE	use	the	first	line	because	they	understand	it,	and	modern	browsers

understand	both	lines	but	apply	the	second	because	it’s	last.

If	you	look	closely,	you’ll	notice	something	a	bit	curious	in	the	rule	that	styles	p	elements.	Namely,	I
defined	a	background-color	in	hex	and	then	in	HSL	immediately	after	it.	This	is	necessary	because
all	versions	of	Internet	Explorer	understand	hex	colors,	but	they	didn’t	support	either	HSL	or	HSLA	until
IE9.	Those	older	browsers	ignore	HSL	and	HSLA	styles,	just	like	they	ignore	RGBA,	but	other	browsers
display	them.	The	result	of	this	new	style	sheet	is	the	same	in	modern	browsers	 	and	IE8	 	as	before.
Not	all	image	editors	specify	HSL	out	of	the	box	(Photoshop	doesn’t	support	it	at	the	time	of	this	writing,
but	you	can	search	online	for	a	plugin).	But	Brandon	Mathis’s	HSL	Color	Picker	(hslpicker.com)	is	a	free
online	tool	that	allows	you	to	pick	a	color	and	get	its	HSL,	hex,	and	RGB	values.	Or,	you	can	type	in
values	for	any	of	those	formats	to	see	the	color	change.	You	can	find	other	color	tools	by	searching	online.

Tip
As	noted,	versions	of	IE	prior	to	IE9	don’t	understand	RGBA,	HSL,	or	HSLA.	You	can
define	a	fallback	solid	color	for	those	older	browsers	in	separate	rules	 	or	in	the	same
rule	 .

http://hslpicker.com

Tip
If	you	really	want	to	show	alpha	transparency	background	colors	in	old	versions	of	IE,	you
have	a	couple	of	options.	One	is	to	use	a	1-pixel	semi-transparent	PNG	as	a	repeating
background	(see	“Setting	the	Background”	in	Chapter	10).	Define	this	fallback
background	property	before	the	one	that	uses	RGBA	or	HSLA	(similar	to).	The	site
rgbapng.com	can	create	the	image	for	you;	just	be	sure	to	save	it	without	the	.part	filename
extension	it	defaults	to.	Or,	you	can	use	IE’s	proprietary	Gradient	filter.	The	syntax	will
make	you	dizzy,	but	luckily	there’s	a	tool	that	writes	it	for	you:	Michael	Bester’s	RGBA	&
HSLA	CSS	Generator	for	Internet	Explorer	(http://kimili.com/journal/rgba-hsla-css-
generator-for-internet-explorer).	Keep	in	mind	that	too	many	filters	can	slow	down	your
pages	in	these	versions	of	IE.

How	to	Think	in	HSL
Learning	HSL’s	logic	takes	some	time,	but	once	you	get	a	feel	for	it	you	may	find	it	easier
to	work	with	than	other	formats.	In	the	“Why?”	section	of	his	HSL	Color	Picker	site,
Mathis	provides	a	nice	explanation	of	HSL.	He	writes,	“Pick	a	hue	from	0	to	360,	and	with
saturation	at	100	and	luminosity	at	50	you’ll	have	the	purest	form	of	that	color.	Reduce	the
saturation	and	you	move	toward	gray.	Increasing	the	luminosity	moves	you	toward	white;
decreasing	it	moves	you	toward	black.”
For	example,	here	are	some	core	colors	as	you	move	around	the	circle:
	Red	is	hsl(0,100%,50%);
	Yellow	is	hsl(60,100%,50%);
	Green	is	hsl(120,100%,50%);
	Cyan	is	hsl(180,100%,50%);
	Blue	is	hsl(240,100%,50%);
	Magenta	is	hsl(300,100%,50%);

http://rgbapng.com
http://kimili.com/journal/rgba-hsla-css-generator-for-internet-explorer

8.	Working	with	Style	Sheets

In	This	Chapter
Creating	an	External	Style	Sheet
Linking	to	External	Style	Sheets
Creating	an	Embedded	Style	Sheet
Applying	Inline	Styles
The	Cascade	and	the	Order	of	Styles
Using	Media-Specific	Style	Sheets
The	Inspiration	of	Others:	CSS

Before	you	start	defining	your	style	sheets,	it’s	important	to	know	how	to	create	and	use	the	files	that	will
contain	them.	In	this	chapter,	you’ll	learn	how	to	create	a	style	sheet	file	and	then	how	to	apply	CSS	to
multiple	webpages	(including	a	whole	site),	a	single	page,	or	an	individual	HTML	element.	You	achieve
these	via	three	methods:	external	style	sheets	(the	preferred	choice),	embedded	style	sheets,	and	inline
styles	(the	least	desirable).
You’ll	learn	how	to	create	the	content	of	your	style	sheets	in	the	chapters	that	follow.

Creating	an	External	Style	Sheet
External	style	sheets	are	ideal	for	giving	the	pages	on	your	website	a	consistent	look.	You	can	define	all
your	styles	in	an	external	style	sheet	and	then	tell	each	page	on	your	site	to	load	the	external	sheet,	thus
ensuring	that	each	page	will	have	consistent	design	elements.	Later	you	will	learn	about	two	other
methods	of	applying	CSS:	embedded	styles	and	inline	styles.	Loading	CSS	via	an	external	style	sheet	is	a
best	practice	and	the	recommended	method	(with	a	few	exceptions).

To	create	an	external	style	sheet
1.	Create	a	new	text	document	in	your	text	editor	of	choice	(see	the	first	tip).	Most	people	use	the
same	editor	to	create	both	HTML	and	CSS	documents.

2.	Define	as	many	style	rules	for	your	webpages	as	desired.	Also,	include	CSS	comments	as	you	see
fit	(see	“Constructing	a	Style	Rule”	and	“Adding	Comments	to	Style	Rules”	in	Chapter	7)	 .

	Use	any	text	editor	you	like	to	create	a	style	sheet.	This	is	TextWrangler	on	a	Mac.	I	included	a	CSS
comment	at	the	bottom	so	you’d	understand	how	the	border	property	works;	this	becomes	relevant	in
“The	Cascade	and	the	Order	of	Styles”	later	in	the	chapter.	I	absolutely	don’t	suggest	you	explain	every

rule	in	your	own	style	sheets!

3.	Save	the	document	in	a	text-only	format	in	the	desired	directory	of	your	website.	Any	file	name
will	do	as	long	as	you	include	the	extension	.css	to	designate	it	as	a	Cascading	Style	Sheet	 .

	Be	sure	to	save	the	CSS	file	with	the	.css	extension	and	with	UTF-8	encoding.	Although	TextWrangler
doesn’t,	your	editor	may	require	you	to	specify	that	you	want	the	file	saved	in	text-only	format	(as	a	Text
Document	or	Plain	Text	or	ASCII	or	whatever	your	text	editor	calls	it).	Notepad	does	this;	see	“Saving
Your	Webpage”	in	Chapter	2	for	more	information.	Note	that	I	am	saving	style.css	alongside	the

HTML	page	(example.html)	that	will	use	it.	I	did	this	to	keep	the	example	simple,	but	in	practice,	it’s
best	to	save	your	style	sheets	in	a	separate	folder	so	your	site	is	organized.

In	the	next	section,	you’ll	learn	how	to	load	the	style	sheet	in	your	HTML	pages	so	the	style	rules	are
applied	to	them.

Tip
See	“Creating	a	New	Webpage”	in	Chapter	2	for	more	information	about	text	editors	you
can	use	for	writing	CSS.

Tip
Don’t	worry	too	much	about	the	intricacies	of	the	CSS	 	at	this	point;	you’ll	learn	more
about	creating	rules	like	this	in	the	chapters	to	follow.	But	as	you	likely	figured	out,	this
one	means,	“add	a	solid	red	border	that’s	four	pixels	wide	around	all	img	elements	in	the
page.”

Tip
You	can	name	your	style	sheets	however	you	like.	The	names	style.css	and
styles.css	are	commonly	used	by	websites	that	have	a	single	style	sheet.	For	larger
sites,	it’s	not	uncommon	to	have	more	than	one	style	sheet.	In	those	cases,	base.css,
global.css,	and	main.css	are	popular	names	for	the	style	sheet	that	contains	the
display	rules	intended	for	all	or	most	of	the	pages	on	a	site.	Section-specific	style	sheets
complement	those	base	styles	(both	are	loaded	into	relevant	pages).	For	instance,	if	you’re
building	a	commerce	site,	products.css	could	contain	the	rules	for	your	product-
related	pages.	Regardless	of	the	file	names	you	choose,	make	sure	they	end	in	.css	and
don’t	contain	any	spaces.

Tip
External	style	sheets	can	be	either	linked	to	(as	demonstrated	in	“Linking	to	External	Style
Sheets”)	or	imported	(via	@import),	but	I	don’t	recommend	you	import	them.	The
@import	directive	negatively	affects	the	speed	at	which	pages	download	and	display,
particularly	in	Internet	Explorer.	Steve	Souders,	a	web	performance	expert,	discusses	this
at	www.stevesouders.com/blog/2009/04/09/dont-use-import/.	If	you’re	still	curious	about
@import,	see	http://reference.sitepoint.com/css/at-import	for	the	basics.

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
http://reference.sitepoint.com/css/at-import

Tip
CSS	comments	 	neither	affect	your	webpage’s	display	nor	appear	in	your	webpage,	but
they	are	visible	if	a	visitor	views	your	source	code	(see	“The	Inspiration	of	Others:	CSS”
later	in	this	chapter).

Linking	to	External	Style	Sheets
Now	that	you’ve	created	a	style	sheet	 ,	you	need	to	load	it	into	your	HTML	pages	so	the	style	rules	are
applied	to	the	content.	The	best	way	to	do	this	is	to	link	to	the	style	sheet	 .
Click	here	to	view	code	image

img	{
					border:	4px	solid	red;
}

	The	style.css	external	style	sheet	created	earlier	in	the	chapter,	minus	the	CSS	comment	for
brevity.

Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>El	Palau	de	la	Música</title>
					<link	rel="stylesheet"	href="style.css"	/>
</head>
<body>
<article>
					<h1>El	Palau	de	la	Música</h1>

					

					

					<p>I	love	the	Palau	de	la	Música.	It	is	ornate	and	gaudy	and
everything	that	was	wonderful	about	modernism.	It's	also	the	home	of	the	Orfeó	Català	,	where	I	learned	the	benefits	of	Moscatell.</p>
</article>
</body>
</html>

	The	link	element	goes	inside	the	head	section	of	your	HTML	document.	Your	page	may	contain
more	than	one	link	element,	but	it’s	best	to	keep	the	total	to	a	minimum	so	your	page	loads	faster.

To	link	an	external	style	sheet
1.	Type	<link	rel="stylesheet"	in	the	head	section	of	each	HTML	page	in	which	you	wish
to	use	the	style	sheet.

2.	Type	a	space,	and	then	type	href="url.css",	where	url.css	is	the	location	and	name	of
your	CSS	style	sheet.

3.	Type	a	space	and	the	final	/>.	(Or,	if	you	prefer,	type	>	without	the	leading	space.	HTML5	allows
both	approaches,	and	they	work	exactly	the	same.)

Tip
When	you	make	a	change	to	an	external	style	sheet,	all	the	pages	that	reference	it	are
automatically	updated	as	well	(and).	That	is	the	awesome	power	of	an	external	style
sheet!

	The	style	rule	(a	solid	red	border	that	is	four	pixels	thick)	is	applied	to	each	img	element.

	Other	documents	can	link	to	the	very	same	external	style	sheet	to	have	the	same	styles	applied.

Tip
Another	benefit	of	an	external	style	sheet	is	that	once	a	browser	has	loaded	it	for	one	page,
it	typically	doesn’t	need	to	retrieve	it	from	the	web	server	for	subsequent	pages.	The
browser	caches	the	file,	which	means	it	saves	it	on	the	user’s	computer	and	uses	that
version,	speeding	up	the	load	time	of	your	pages.	If	later	you	make	changes	to	your	style
sheet	and	upload	it	to	your	web	server,	browsers	will	download	your	updated	file	rather
than	use	the	cached	one	(technically	there	are	exceptions,	but	none	that	you’re	likely	to	face
often).

Tip
For	simplicity’s	sake,	the	link	example	shown	here	assumes	that	the	HTML	page	lives	in
the	same	directory	as	style.css	 .	In	practice	it	is	best	to	organize	your	style	sheets
in	a	subfolder	rather	than	mix	them	with	your	HTML	pages.	Popular	style	sheet	folder
names	include	css	and	styles,	but	you	can	name	it	whatever	you	like	as	long	as	you
refer	to	it	properly	in	the	link’s	href	value.	For	example,	if	style.css	is	in	a	folder
named	css	and	your	HTML	page	is	in	the	folder	above	it	 ,	the	link	element	would
read	as	shown	in	 .

	These	screen	shots	show	one	common	way	to	organize	a	site.	The	first	is	a	bird’s-eye	view	of
the	structure,	followed	by	all	folders	open	so	you	can	see	all	the	files.

Click	here	to	view	code	image

...
<head>
					<meta	charset="UTF-8"	/>
					<title>El	Palau	de	la	Música</title>
					<link	rel="stylesheet"	href="css/style.css"	/>
</head>
...

	Because	style.css	is	located	in	a	subfolder	named	css,	the	path	in	example.html
needs	to	be	updated	when	linking	to	the	style	sheet.

Tip
URLs	within	an	external	style	sheet	are	relative	to	the	location	of	the	style	sheet	file	on	the
server,	not	to	the	HTML	page’s	location.	You’ll	see	this	in	action	when	you	learn	about
CSS	background	images	in	Chapter	10	(“Setting	the	Background”).

Tip
You	can	load	more	than	one	style	sheet	in	your	page	by	using	multiple	link	elements.	In
the	event	that	a	competing	display	declaration	appears	in	more	than	one	file,	the	one	in	the
later	file	takes	precedence	over	the	earlier	ones.

Tip
An	external	style	sheet’s	rules	may	be	overridden	by	styles	within	an	HTML	document.
The	relative	influence	of	styles	applied	in	different	ways	is	summarized	in	“The	Cascade
and	the	Order	of	Styles”	later	in	this	chapter.

Tip
You	can	limit	style	sheets	to	a	particular	kind	of	output	by	setting	the	media	attribute.	For
more	details,	see	“Using	Media-Specific	Style	Sheets,”	later	in	this	chapter.

Tip
Previous	versions	of	HTML	asked	you	to	include	type="text/css"	in	your	link
elements,	but	HTML5	doesn’t	require	it.	You	can	omit	it,	as	I	have	in	the	code	examples
throughout	the	book.

Creating	an	Embedded	Style	Sheet
An	embedded	style	sheet	is	the	second	way	to	apply	CSS	to	a	page.	You	create	one	with	the	style
element,	which	contains	your	style	sheet	and	goes	in	the	head	section	of	the	HTML	page	you	want	to
affect	 .	Because	the	styles	are	in	only	that	HTML	file,	they	won’t	apply	to	other	pages	(like	the	styles	in
a	linked	external	style	sheet	do),	and	you	won’t	get	the	caching	benefits	described	in	the	previous	section
either.	As	mentioned,	an	external	style	sheet	is	the	recommended	approach	for	most	cases,	but	it’s
important	to	understand	your	options	for	the	times	you’ll	need	to	deviate.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>El	Palau	de	la	Música</title>
					<style>
					img	{
								border:	4px	solid	red;
					}
					</style>
</head>
<body>
<article>
					<h1>El	Palau	de	la	Música</h1>

					

					

					<p>I	love	the	Palau	de	la	Música.	It	is	ornate	and	gaudy	and
everything	that	was	wonderful	about	modernism.	It's	also	the	home	of	the	Orfeó	Català	,	where	I	learned	the	benefits	of	Moscatell.</p>
</article>
</body>
</html>

	When	you	embed	a	style	sheet,	the	style	element	and	its	enclosed	style	rules	go	in	the	head	section
of	your	document.	The	browser	renders	your	page	the	same	way	it	would	had	the	styles	been	loaded	from

an	external	style	sheet	 .

	The	result	is	exactly	the	same	as	if	you	had	linked	to	the	styles	in	an	external	style	sheet.	The
difference	is	that	no	other	webpage	can	take	advantage	of	the	styles	used	on	this	page.

To	create	an	embedded	style	sheet
1.	Type	<style>	in	the	head	section	of	your	HTML	document.

2.	Define	as	many	style	rules	for	your	webpages	as	desired,	including	CSS	comments	as	you	see	fit
(see	“Constructing	a	Style	Rule”	and	“Adding	Comments	to	Style	Rules”	in	Chapter	7).

3.	Type	</style>	to	complete	the	embedded	style	sheet	 .

Tip
Conflicting	styles	applied	in	an	embedded	style	sheet	override	those	in	external	style
sheets	if	the	style	element	comes	after	the	link	element.	For	more	details,	see	“The
Cascade	and	the	Order	of	Styles”	later	in	this	chapter.

Tip
Embedded	style	sheets	are	the	second-best	way	to	add	CSS	to	your	page.	(There	are	rare
exceptions,	such	as	very	high-trafficked	sites	under	certain	conditions.)

Tip
Previous	versions	of	HTML	asked	you	to	include	type="text/css"	as	an	attribute	in
your	style	start	tags,	but	HTML5	doesn’t	require	it.	You	can	omit	it,	as	I	have	in	the
code	examples	throughout	the	book.

Applying	Inline	Styles
Inline	styles	are	the	third	way	to	apply	CSS	to	HTML.	However,	they	are	by	far	the	least	desirable	option
because	they	intertwine	your	content	(HTML)	and	your	presentation	(CSS),	a	cruel	slap	in	the	face	to	best
practices	 .	An	inline	style	affects	only	one	element	 ,	so	you	lose	one	of	the	key	benefits	an	external
style	sheet	provides:	Write	once	and	see	everywhere.	Imagine	having	to	sift	through	a	slew	of	HTML
pages	to	make	the	same	font-color	change	over	and	over,	and	you	can	see	why	inline	styles	aren’t	intended
for	regular	use.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>El	Palau	de	la	Música</title>
</head>
<body>
...
					<img	src="img/palau.jpg"	width="250"	height="163"	alt="El	Palau	de	la	Música"
style="border:	4px	solid	red"	/>

					
...
</body>
</html>

	Rules	applied	inline	affect	only	a	single	element;	in	this	case,	the	first	img.

	Only	the	first	image	has	a	border.	If	you	wanted	to	apply	the	border	to	images	in	your	website	via
inline	styles,	you’d	have	to	add	style="border:	4px	solid	red"	to	every	single	img	element
individually.	As	you	can	see,	inline	styles	are	not	particularly	efficient	and	would	be	a	headache	to	apply

and	update	across	a	site.	A	better	way	to	do	this	is	shown	in	 	and	 .
Click	here	to	view	code	image

...
<body>
...
					<img	src="img/palau.jpg"	width="250"	height="163"	alt="El	Palau	de	la	Música"
class="frame"	/>

					
...
</body>
</html>

	Here’s	a	preferred	approach	to	achieve	the	look	of	 .	Assign	a	class—instead	of	an	inline	style—to
the	first	img.	Then,	create	a	rule	in	an	external	style	sheet	that	targets	that	class	 .	If	you	want	other
elements	to	have	the	same	style,	just	add	class="frame"	to	them,	too.	Any	class	name	will	do;

frame	is	just	an	example.
Click	here	to	view	code	image

.frame	{
					border:	4px	solid	red;
}

	By	using	a	class	selector,	this	rule	adds	a	red	border	to	any	element	(not	just	img)	with
class="frame"	assigned	to	it	in	the	HTML.	Include	it	in	an	external	style	sheet	to	make	it	easy	to

apply	across	your	site.	You’ll	learn	about	this	and	other	selector	types	in	the	next	chapter.

However,	an	inline	style	can	be	helpful	if	you	want	to	try	something	quickly	as	a	test	before	removing	it
from	your	HTML	and	placing	it	in	your	external	style	sheet	(assuming	you	were	happy	with	the	test
results),	where	it’ll	be	easier	to	maintain	moving	forward.

To	apply	inline	styles
1.	Type	style="	within	the	start	tag	of	the	HTML	element	that	you	want	to	format	(or	simply	within
the	tag	of	void	elements	like	img,	which	don’t	have	an	end	tag.)

2.	Create	a	style	rule	without	a	selector	or	curly	brackets.	The	selector	isn’t	necessary	since	you’re
placing	the	rule	directly	inside	the	desired	element.	If	your	rule	has	more	than	one	declaration,
separate	each	one	by	typing	;	(a	semicolon).

3.	Type	the	final	quote	mark	"	 .

Tip
Be	careful	not	to	confuse	the	equal	sign	with	the	colon.	Since	they	both	assign	values,	it’s
easy	to	interchange	them	without	thinking.

Tip
Don’t	forget	to	enclose	your	style	definitions	in	straight	quote	marks	(")	and	to	separate
multiple	property	definitions	with	a	semicolon	(;).

Tip
Styles	applied	inline	take	precedence	over	all	other	styles	unless	a	conflicting	style
elsewhere	is	marked	with	!important	(see	“The	Cascade	and	the	Order	of	Styles”	in
this	chapter).

Tip
If	you	specify	the	font	family	(Chapter	10)	in	an	inline	style	declaration,	you’ll	have	to
enclose	multi-word	font	names	with	single	quotes	to	avoid	conflict	with	the	style
element’s	double	quotes.	You	can’t	use	the	same	type	of	quotes	in	both	places.

Tip
Probably	the	most	common	use	of	inline	styles	is	applying	them	to	elements	from
JavaScript	functions	as	part	of	making	portions	of	a	page	dynamic.	You	may	notice	these
generated	inline	styles	when	looking	at	the	source	of	a	page	in,	say,	Firebug	or	Chrome’s
Developer	Tools.	The	inline	styles	aren’t	part	of	the	HTML	file	itself;	JavaScript	adds
them.	And	in	most	cases,	the	JavaScript	that	applies	them	is	in	a	different	file	than	the
HTML,	so	it	still	maintains	the	desired	separation	of	content	(HTML),	presentation	(CSS),
and	behavior	(JavaScript).

The	Cascade	and	the	Order	of	Styles
It’s	not	unusual	for	more	than	one	style	rule	to	apply	to	the	same	element,	particularly	on	larger	sites	that
require	more	effort	to	manage	the	CSS.	Sometimes	these	rules	address	the	same	property.	As	mentioned	in
“The	Cascade:	When	Rules	Collide”	in	Chapter	7,	in	these	cases	a	style’s	order	can	break	a	tie	when	the
specificity	of	the	rules	is	the	same.	The	basic	tenet	is	that,	with	all	else	equal,	the	later	the	style	appears,
the	more	precedence	it	has	(through).	Here	is	how	that	plays	out	when	considering	different	orders:

	The	relationship	between	an	embedded	style	sheet	(you’ll	recall	that	that’s	one	in	a	style
element)	and	any	linked	external	style	sheets	depends	on	their	relative	positions	in	your	HTML.	If
the	link	element	comes	earlier	in	the	code	 ,	the	style	element	(and	any	@import	style
sheets	it	contains)	overrides	the	linked	style	sheet	where	they	conflict	 .	If	the	link	element
comes	later	 ,	conflicting	styles	in	it	(and	any	@import	style	sheets	it	contains)	override	any	in
the	style	element	 .
	Inline	styles—by	virtue	of	being	applied	directly	to	elements—come	after	external	and	embedded
style	sheets.	By	being	last,	they	have	the	most	precedence	and	will	override	any	conflicting	styles
applied	elsewhere.
	There	is	one	exception	to	how	the	order	of	conflicting	styles	affects	which	one	wins	out.	A	style
marked	with	!important	always	wins,	whether	it’s	first	in	the	order,	last,	or	somewhere	in
between.	Here’s	an	example:
p	{	margin-top:	1em	!important;	}

You	should	avoid	using	it,	though	(although	there	are	exceptions).	You	can	achieve	the	same	result
with	a	selector	almost	every	time.	Meanwhile,	!important	makes	your	declarations	too	strong,
and	your	CSS	will	get	bogged	down	with	additional	!important	declarations	if	you	need	to
override	any.

Click	here	to	view	code	image

img	{
					border:	4px	solid	red;
}

/*
That	is	a	shorter	way	of	writing	this:

img	{
					border-width:	4px;
					border-style:	solid;
					border-color:	red;
}
*/

	Here	is	our	familiar	external	style	sheet,	style.css,	from	earlier	examples.
Click	here	to	view	code	image

...
<head>
					<title>El	Palau	de	la	Música</title>

					<link	rel="stylesheet"	href="style.css"	/>

					<style>
					img	{
								border-style:	dashed;
					}
					</style>
</head>
...

	In	this	example,	the	embedded	style	sheet	comes	last.	Therefore,	its	styles	will	have	precedence	over
the	ones	in	style.css	(as	long	as	the	conflicting	rules	have	the	same	inheritance	and	specificity
factors).	The	embedded	style	sheet	overrides	the	style	of	border	in	style.css,	making	it	dashed

instead	of	solid,	but	doesn’t	affect	the	width	or	color	 .

	The	style	element’s	dashed	border	wins	out	over	the	solid	border	from	the	linked	style.css,	but
the	border	width	and	color	specified	in	style.css	remain.

Click	here	to	view	code	image

...
<head>
					<title>El	Palau	de	la	Música</title>
					<style>
					img	{
								border-style:	dashed;
					}
					</style>
					<link	rel="stylesheet"	href="style.css"	/>
</head>
...

	Here,	the	linked	style	sheet	comes	last	and	has	precedence	over	rules	in	the	style	element	(all	else
being	equal).

	The	solid	border	from	the	style.css	style	sheet	wins	out	over	the	internal	style	element’s
dashed	border.

Got	all	that?	The	goods	news	is—because	you’re	going	to	use	only	external	style	sheets	and	avoid	using
!important	(you	are,	right?)—you	don’t	even	have	to	worry	about	the	rules	I	just	explained.	But	it
still	helps	to	understand	them	in	case	you	come	across	someone	else’s	code	that	is	different.
The	order	rule	that	will	matter	the	most	to	you	is	this:	If	a	webpage	contains	more	than	one	link	element,
conflicting	styles	in	the	external	style	sheet	linked	later	take	precedence.

Tip
I	advise	not	using	@import,	for	performance	reasons.	But	if	it	is	used,	imported	styles
will	lose	out	to	any	conflicting	styles	that	appear	later	than	them,	as	you	would	expect.

Tip
Here	is	one	valid	reason	to	use	!important.	Sometimes	a	webpage	contains	HTML	that
you	can’t	change;	for	instance,	a	news	feed	that	comes	from	a	third-party	service.	Suppose
that	HTML	has	inline	styles	that	don’t	fit	in	with	your	design.	You	can	override	them	with
!important	in	your	style	sheet.

Using	Media-Specific	Style	Sheets
You	can	designate	a	style	sheet	to	be	used	only	for	a	particular	output,	such	as	only	for	printing	or	only	for
viewing	onscreen	in	a	browser.	For	example,	you	might	create	one	general	style	sheet	with	features
common	to	both	the	print	and	screen	versions,	and	then	create	individual	print	and	screen	style	sheets	with
properties	to	be	used	only	for	print	or	screen,	respectively.

To	designate	media-specific	style	sheets
	Add	media="output"	to	the	link	or	style	element	start	tags,	where	output	is	one	or
more	of	the	following:	print,	screen,	or	all	(these	are	the	most	common	types,	though	others
exist;	see	the	tips)	 .	Separate	multiple	values	with	commas.

Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="UTF-8"	/>
					<title>El	Palau	de	la	Música</title>
					<link	rel="stylesheet"	href="style.css"	media="screen"	/>
					<link	rel="stylesheet"	href="print.css"	media="print"	/>
</head>
<body>
<article>
					<h1>El	Palau	de	la	Música</h1>

					

					

					<p>I	love	the	Palau	de	la	Música.	It	is	ornate	and	gaudy	and
everything	that	was	wonderful	about	modernism.	It's	also	the	home	of	the	Orfeó	Català,	where	I	learned	the	benefits	of	Moscatell.</p>
</article>
</body>
</html>

	Limit	the	style	sheet	to	a	particular	output	by	adding	the	media	attribute	to	the	link	element.	In	this
example,	style.css	affects	the	page	when	viewed	in	the	browser	(due	to	media="screen"),	while

print.css	affects	how	the	page	prints	(due	to	media="print").	If	the	first	link	element	had
media="all"	or	no	media	attribute	at	all,	the	rules	in	style.css	would	apply	to	printed	pages,

too.

	Alternatively,	use	the	@media	at-rule	in	your	style	sheet	 .	This	method	does	not	require
specifying	a	media	type	in	the	link	element.

Click	here	to	view	code	image

/*	Styles	for	all	media	*/
img	{
					border:	4px	solid	red;
}

p	{
					color:	orange;
					font-style:	italic;
}

/*	Print	Style	Sheet	*/
@media	print	{

					body	{
								/*	make	text	larger	*/
								font-size:	25pt;	
					}

					p	{
								/*	hex	for	black	*/
								color:	#000;	
					}

					img	{
								/*	don't	show	images	*/
								display:	none;
					}

}

	The	@media	at-rule	in	a	style	sheet	is	another	way	to	target	other	media	types	(see	Chapter	12	for
more	discussion).	This	example	shows	styles	affecting	all	media	types	(including	print)	on	top,	and	print-
specific	styles	at	the	bottom	contained	within	@media	print	{	}.	Viewed	in	a	browser,	this	page
would	look	similar	to	other	figures	in	this	chapter,	except	the	text	would	be	orange	and	italicized.	The

print	version	of	this	page	is	shown	in	 .

	The	Chrome	browser’s	print	preview	feature	shows	how	the	page	in	 	would	print.	The	text	is
enlarged,	images	are	omitted,	and	paragraph	text	is	italicized	and	black	instead	of	orange.	The	font-
style:	italic	declaration	applies	to	print	mode,	too,	since	the	print	style	sheet	doesn’t	specify	a

different	font-style.

Tip
The	default	value	for	the	media	attribute	is	all,	so	declaring	media="all"	is
redundant.	In	other	words,	you	can	leave	out	the	media	attribute	unless	you	need	to	be
specific.	Some	coders	prefer	to	be	explicit	by	always	including	media="all".

Tip
See	Christian	Krammer’s	article	at	www.smashingmagazine.com/2011/11/24/how-to-set-
up-a-print-style-sheet/	to	learn	more	about	creating	a	print	style	sheet.

http://www.smashingmagazine.com/2011/11/24/how-to-set-up-a-print-style-sheet/

Tip
There	are	nine	possible	output	types:	all,	aural,	braille,	handheld,	print,
projection,	screen,	tty,	and	tv.	They	have	varying	degrees	of	browser	support
(most	have	modest	support).	Practically	speaking,	the	ones	you	will	likely	ever	use	are
screen	and	print	(and	perhaps	all);	each	has	very	wide	browser	support.	The
handheld	type	never	got	much	support	from	devices,	so	you’ll	typically	use	screen
instead	when	designing	for	mobile	(Chapter	12).	Opera’s	projection	mode,	Opera	Show,
supports	the	projection	type,	which	is	geared	toward	projectors	and	similar	views.

Tip
Media	queries,	introduced	by	CSS3,	combine	with	the	media	output	types	discussed	here
to	grant	you	more	styling	power.	They	allow	you	to	specify	which	styles	are	applied	to	a
page	based	on	characteristics	of	the	output	devices.	For	example,	you	can	make	your	page
look	one	way	on	a	narrow	screen	like	a	smartphone,	and	another	way	on	a	wider	screen
like	a	laptop.	With	the	vast	array	of	devices	in	the	wild	nowadays,	media	queries	are	an
essential	tool	for	coders.	Chapter	12	shows	you	how	to	build	a	site	that	works	across
devices.	The	discussion	on	media	queries	begins	in	“Understanding	and	Implementing
Media	Queries.”

The	Inspiration	of	Others:	CSS
In	Chapter	2,	you	learned	how	to	see	the	source	code	for	a	webpage.	Viewing	someone’s	CSS	is	not	much
more	difficult.

To	view	others’	CSS	code
1.	First	view	the	page’s	HTML	code	 .	For	more	details	on	viewing	HTML	source	code,	see	“The
Inspiration	of	Others”	in	Chapter	2.

	View	the	source	code	for	the	HTML	page	that	contains	the	style	sheet	you	want	to	view,	and	click	the
style	sheet	file	name.

If	the	CSS	code	is	in	an	embedded	style	sheet,	you’ll	be	able	to	see	it	already.

2.	If	the	CSS	is	in	an	external	style	sheet,	locate	the	reference	to	it	in	the	HTML	and	click	the	file
name	 .	The	style	sheet	displays	in	the	browser	window	 .	You	can	copy	it	from	there	and	paste
it	into	your	text	editor	if	you	like.

	The	style	sheet	displays	in	the	browser	window,	including	the	CSS	comment	below	the	img	rule	(so
make	sure	you	keep	it	clean	in	your	comments!).

Tip
As	with	HTML,	use	others’	code	for	inspiration,	then	write	your	own	style	sheets.	View
their	code	with	a	careful	eye,	though.	Just	because	it’s	on	the	web	doesn’t	mean	it’s	always
an	example	of	the	best	way	to	code	a	particular	design	or	effect,	despite	the	author’s	best
intentions.

Tip
Modern	browsers	allow	you	to	click	the	style	sheet	name	in	the	HTML	source,	as	shown	in
.	To	view	a	style	sheet	in	an	older	browser,	you	may	need	to	copy	the	URL	shown	in	the

link	element,	paste	it	in	the	address	bar	of	your	browser	(replacing	the	HTML	file
name),	and	press	Enter.	If	the	style	sheet’s	URL	is	a	relative	address	(see	“URLs”	in
Chapter	1),	you	may	have	to	reconstruct	the	style	sheet’s	URL	by	combining	the	webpage’s
URL	with	the	style	sheet’s	relative	URL.

Tip
The	developer	tools	offered	in	modern	browsers	also	allow	quick	access	to	viewing	a
page’s	CSS.	They	come	bundled	with	most	browsers,	and	there’s	an	extension	called
Firebug	for	Firefox	(Chapter	20).

9.	Defining	Selectors

In	This	Chapter
Constructing	Selectors
Selecting	Elements	by	Name
Selecting	Elements	by	Class	or	ID
Selecting	Elements	by	Context
Selecting	an	Element	That	Is	the	First	or	Last	Child
Selecting	the	First	Letter	or	First	Line	of	an	Element
Selecting	Links	Based	on	Their	State
Selecting	Elements	Based	on	Attributes
Specifying	Groups	of	Elements
Combining	Selectors

As	you	saw	in	“Constructing	a	Style	Rule”	in	Chapter	7,	there	are	two	principal	parts	of	a	CSS	style	rule.
The	selector	determines	which	elements	the	formatting	will	be	applied	to,	and	the	declarations	define
just	what	formatting	will	be	applied.	In	this	chapter,	you’ll	learn	how	to	define	CSS	selectors.
Whereas	the	simplest	selectors	let	you	format	all	the	elements	of	a	given	type—say,	all	the	h2	headings—
other	selectors	let	you	apply	formatting	rules	to	elements	based	on	their	class,	context,	state,	and	more.	As
you	progress	through	the	chapter	and	learn	about	numerous	selector	types,	please	keep	in	mind	that	they
can	be	combined	in	a	single	selector.	For	instance,	you	can	write	a	selector	that	combines	a	class	selector
and	an	attribute	selector.
Once	you’ve	defined	the	selectors,	you	can	go	on	to	create	the	declarations	(with	actual	properties	and
values)	explained	in	Chapters	10–16.	Until	then,	you’ll	use	the	very	simple	and	relatively	obvious
color:	red	in	most	examples.

Constructing	Selectors
The	selector	determines	which	elements	a	style	rule	is	applied	to.	For	example,	if	you	want	to	format	all
p	elements	with	the	Georgia	font,	12	pixels	high,	you’d	need	to	create	a	selector	that	identifies	just	the	p
elements	and	leaves	the	other	elements	in	your	code	alone.	If	you	want	to	format	the	first	p	in	each	section
with	a	special	indent,	you’ll	need	to	create	a	slightly	more	specific	selector	that	identifies	only	those	p
elements	that	are	the	first	element	in	their	section	of	the	page.
A	selector	can	define	up	to	five	different	criteria	for	choosing	the	elements	that	should	be	formatted:

	The	type	or	name	of	the	element	 .

	The	simplest	kind	of	selector	is	simply	the	name	of	the	type	of	element	that	should	be	formatted—in
this	case,	the	h1	element.

	The	context	in	which	the	element	is	found	 .

	This	selector	uses	context.	The	style	will	be	applied	only	to	the	em	elements	within	h1	elements.	The
em	elements	found	elsewhere	are	not	affected.

	The	class	or	ID	of	an	element	(and).

	The	first	selector	chooses	all	elements	that	belong	to	the	error	class;	in	other	words,	any	element
with	class="error"	in	its	HTML	start	tag.	The	second	selector	chooses	the	one	element	with	an	id
of	gaudi,	as	specified	by	id="gaudi"	in	its	HTML	start	tag.	You’ll	recall	that	an	ID	may	appear	only
once	in	each	page,	whereas	a	class	may	appear	any	number	of	times.	This	is	the	main	reason	why	class
selectors	are	recommended	(and	ID	selectors	are	not)—you	can	reuse	their	styles	on	as	many	elements	as

you	like.

	You	can	be	more	specific	by	prefixing	a	class	selector	(or	ID	selector)	with	the	element	name	to	target.
In	this	case,	the	selector	chooses	only	the	strong	elements	with	the	error	class	rather	than	every
element	with	the	error	class.	In	general,	don’t	use	this	approach	unless	you	have	to;	the	less	specific

class	selector	in	the	previous	example	 	is	typically	preferred,	because	of	its	flexibility.

	A	pseudo-element	or	the	pseudo-class	of	an	element	 	(I’ll	explain	both	of	those	later,	I	promise).

	In	this	example,	the	selector	chooses	a	elements	that	belong	to	the	link	pseudo-class	(that	is,	the
links	on	your	page	that	haven’t	yet	been	visited).

	Whether	or	not	an	element	has	certain	attributes	and	values	 .

	You	can	use	the	square	brackets	to	add	to	a	selector	information	about	the	desired	element’s	attributes
(or	attributes	and	values).	The	first	example	targets	all	a	elements	with	a	title	attribute,	and	the	second

targets	only	those	that	point	to	Wikipedia.

Selectors	can	include	any	combination	of	these	to	pinpoint	the	desired	elements.	Mostly,	you	use	one	or
two	at	a	time.	In	addition,	you	can	apply	the	same	declarations	to	several	selectors	at	once	if	you	need	to
apply	the	same	style	rules	to	different	groups	of	elements	(see	“Specifying	Groups	of	Elements,”	later	in
this	chapter).
The	rest	of	this	chapter	explains	exactly	how	to	define	selectors.

Tip
I	recommend	that	you	avoid	ID	selectors	 .	I’ll	elaborate	in	“Selecting	Elements	by	Class
or	ID.”

Tip
As	you	will	learn	in	“Selecting	Elements	Based	on	Attributes,”	your	selectors	are	not
limited	to	targeting	an	attribute’s	exact	value,	as	in	the	diagram	in	 .

Tip
A	key	goal	when	writing	CSS	is	to	keep	your	selectors	as	simple	as	you	can	while	making
them	only	as	specific	as	necessary.	Take	advantage	of	the	fact	that	many	styles	cascade
down	to	an	element’s	descendants.	Also,	identify	common	design	elements	in	your	pages
and	write	a	selector	(like	a	class)	that	allows	you	to	share	the	styles	across	various
elements.	Style	sheets	are	typically	smaller	and	easier	to	manage	as	a	result.	These	tips
will	become	more	obvious	as	you	gain	experience	building	pages,	but	I’m	mentioning	them
now	to	plant	the	seed.

Selecting	Elements	by	Name
One	of	the	most	common	criteria	for	choosing	which	elements	 	to	format	is	the	element’s	name	(known
as	a	type	selector,	because	you	specify	what	type	of	element	to	style).	For	example,	you	might	want	to
make	all	the	h1	elements	big	and	green	and	format	all	the	p	elements	with	the	Verdana	font.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
...
</head>
<body>
...
<article	class="architect">
					<h1>Antoni	Gaudí</h1>
					<p>Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's	incredible
architecture.</p>

					<p>Barcelona	<a	href="http://www.gaudi2002.bcn.es/english/"
rel="external">celebrated	the	150th	anniversary	of	Gaudí's	birth	in	2002.</p>

					<h2	lang="es">La	Casa	Milà</h2>
					<p>Gaudí's	work	was	essentially	useful.	La	Casa	Milà	is	an
apartment	building	and	real	people	live	there.</p>

					<h2	lang="es">La	Sagrada	Família</h2>
					<p>The	complicatedly	named	and	curiously	unfinished	Expiatory	Temple	of	the	Sacred
Family	is	the	most	visited	building	in	Barcelona.</p>
</article>
...

	This	HTML	code	has	two	h2	elements.	(In	case	you’re	wondering,	placing	the	lang	attribute	on	an
element	indicates	that	the	content	is	in	a	different	language	than	the	page’s	default	language,	which	is
specified	on	the	html	element	that	follows	the	DOCTYPE	at	the	beginning	of	each	page.	In	this	case,

lang="es"	on	each	h2	indicates	that	their	content	is	in	Spanish.)

To	select	elements	to	format	based	on	their	type
1.	Type	selector,	where	selector	is	the	name	of	the	desired	type	of	element,	without	any
attributes	 .

Click	here	to	view	code	image

h2	{
					color:	red;
}

	This	selector	will	choose	all	the	h2	elements	in	the	document	and	make	them	red	 .

	All	the	h2	elements	are	colored	red.

2.	Type	{.
3.	Type	the	styles	you’d	like	to	apply	to	the	selected	element,	expressed	in	property:	value
pairs.	Descriptions	of	CSS	properties	and	values	begin	in	earnest	in	the	next	chapter.

4.	Type	}	to	finish	your	style	rule.
Please	note	that	I	won’t	repeat	steps	2–4	in	the	steps	of	the	remaining	sections	in	this	chapter,	but	they	are
required	to	build	a	complete	style	rule.	See	“Constructing	a	Style	Rule”	in	Chapter	7	for	more

information.

Tip
Unless	you	specify	otherwise	(using	the	techniques	in	the	rest	of	this	chapter),	all	the
elements	of	the	specified	type	will	be	formatted,	no	matter	where	they	appear	in	your
document.

Tip
Not	all	selectors	need	to	specify	an	element’s	name.	If	you	want	to	apply	formatting	to	an
entire	class	of	elements,	regardless	of	which	type	of	elements	have	been	identified	with
that	class,	leave	the	name	out	of	the	selector.	The	next	section	explains	how	to	do	this.

Tip
The	wildcard,	*	(asterisk),	matches	any	element	name	in	your	code.	For	example,	*	{
border:	2px	solid	green;	}	gives	every	element	a	two-pixel,	green,	solid
border!	Because	it	has	a	wide	reach	and	takes	browsers	longer	to	apply,	be	careful	about
using	a	wildcard.	In	practice,	you	won’t	have	many	occasions	where	it’s	appropriate
anyway.

Tip
You	can	choose	a	group	of	element	names	for	a	selector	by	using	the	comma	to	separate
them.	For	more	details,	consult	“Specifying	Groups	of	Elements,”	later	in	this	chapter.

Selecting	Elements	by	Class	or	ID
If	you’ve	labeled	elements	with	a	class	 	or	an	ID	(see	the	last	tip),	you	can	use	that	criterion	in	a
selector	to	apply	formatting	to	only	those	elements	that	are	so	labeled	 .	However,	using	a	class	is
preferred,	as	I’ll	explain.
Click	here	to	view	code	image

...
<article	id="gaudi"	class="architect">
					<h1>Antoni	Gaudí</h1>
					<p>Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's	incredible
architecture.</p>

					<p>Barcelona	<a	href="http://www.gaudi2002.bcn.es/english/"
rel="external">celebrated	the	150th	anniversary	of	Gaudí's	birth	in	2002.</p>

					<h2	lang="es">La	Casa	Milà</h2>
					<p>Gaudí's	work	was	essentially	useful.	La	Casa	Milà	is	an
apartment	building	and	real	people	live	there.</p>
					...
</article>

<p>This	paragraph	doesn't	have	<code>class="architect"</code>,	so	it	isn't	red	when	the
CSS	is	applied.</p>

<article	class="architect">
					<h1>Lluís	Domènech	i	Montaner</h1>
					<p>Lluís	Domènech	i	Montaner	was	a	contemporary	of	Gaudí.</p>
					...
</article>
...

	There	are	two	article	elements	with	a	class	of	architect.	A	short	paragraph	without	the
class	is	between	them.

Click	here	to	view	code	image

.architect	{
					color:	red;
}

	This	selector	will	choose	the	elements	with	a	class	equal	to	architect.	In	this	case,	they’re	both
article	elements,	but	you	could	apply	the	classes	to	any	elements.	If	you	wanted	to	apply	the	style	only
when	an	article	element	has	this	class,	you	would	write	the	selector	as	article.architect.	But

that’s	more	specific	than	you’ll	usually	need	to	be.

	The	article	elements	with	the	architect	class	are	displayed	in	red,	but	the	p	element	between
those	elements	is	not.	(In	case	you’re	wondering,	the	link	is	blue	because	of	the	browser’s	default	link

style,	but	you	can	write	your	own	rule	to	override	it.)

To	select	elements	to	format	based	on	their	class
1.	Type	.	(a	period).
2.	With	no	intervening	space,	immediately	type	classname,	where	classname	identifies	the
class	to	which	you’d	like	to	apply	the	styles.

To	select	elements	to	format	based	on	their	ID
1.	Type	#	(a	hash,	or	pound,	sign).
2.	With	no	intervening	space,	immediately	type	id,	where	id	uniquely	identifies	the	element	to	which
you’d	like	to	apply	the	styles.

Tip
You	can	use	class	and	ID	selectors	alone	or	with	other	selector	criteria.	For	example,
.news	{	color:	red;	}	would	affect	all	elements	with	the	news	class,	while
h1.news	{	color:	red;	}	would	affect	only	the	h1	elements	with	the	news
class.	It’s	best	to	omit	the	element	name	from	an	ID	or	class	selector	unless	you	have	to
target	it	specifically.

Tip
Notice	in	 	and	 	that	I	used	a	class	name	(architect)	that	conveys	the	meaning	of
the	content	to	which	it’s	applied	rather	than	calling	it	red.	Though	there	are	exceptions,
it’s	generally	best	to	avoid	creating	a	class	name	that	describes	how	something	looks
(often	called	presentational	class	names),	because	you	might	change	the	styles	later,	like
making	the	text	green	in	this	case.

Tip
If	you	want	to	target	an	element	that	has	multiple	classes,	you	can	chain	together	the	class
names	in	your	selector,	like	this:	.architect.bio	{	color:	blue;	}.	Any	rules
with	.architect	or	.bio	selectors	would	still	apply	to	the	element,	but	a	rule	with
.architect.bio	is	more	specific,	so	any	competing	styles	it	has	would	take
precedence.	Please	note	that	there	is	not	a	space	between	the	class	names.	If	there	were,	it
would	style	any	element	with	the	bio	class	that	is	nested	inside	any	element	with	the
architect	class,	as	described	in	“Selecting	Elements	by	Context.”

Tip
If	the	example	in	 	were	written	instead	as	#gaudi	{	color:	red;	},	only	the
text	in	the	first	article	would	be	red,	because	it’s	the	only	one	with	id="gaudi".
Each	ID	must	be	unique,	so	you	can’t	reuse	that	ID	on	the	article	about	Lluís	Domènech
i	Montaner.

Tip
For	more	information	on	assigning	classes	to	elements	in	the	HTML	code,	consult	“Naming
Elements	with	a	Class	or	ID”	in	Chapter	3.

Class	Selectors	vs.	ID	Selectors
When	deciding	between	class	selectors	and	ID	selectors,	I	suggest	using	class	selectors
whenever	possible,	in	large	part	because	you	can	reuse	them.	Many	advocate	not	using	ID
selectors	at	all,	an	argument	I	agree	with	and	adhere	to	in	my	own	work,	although
ultimately	the	choice	comes	down	to	you	as	you	develop	your	sites.	Here	are	two	of	the
issues	that	ID	selectors	introduce:
	Their	associated	styles	can’t	be	reused	on	other	elements	(remember,	an	ID	may	appear
on	only	one	element	in	a	page).	This	can	lead	to	repeating	styles	on	other	elements,
rather	than	sharing	them	via	a	class.
	They	are	far	more	specific	than	class	selectors.	It’s	sort	of	like	using	a	sledgehammer
instead	of	your	fingers	to	press	a	tack	into	a	corkboard—a	stronger	tool	than	is
necessary	for	the	job	and	harder	to	undo.	In	CSS,	it	means	that	if	you	ever	need	to
override	styling	that	was	defined	with	an	ID	selector,	you’ll	need	to	write	a	CSS	rule
that’s	even	more	specific.	A	few	of	these	might	not	be	hard	to	manage,	but	once	you’re
working	on	a	site	of	a	decent	size,	your	selectors	and	your	CSS	overall	can	get	longer
and	more	complicated	than	necessary.	The	problems	can	compound	if	you	are	working
with	a	team—using	ID	selectors	or	other	selectors	that	create	a	very	high	specificity	can
be	a	big	headache	for	all	involved.

Those	two	points	probably	will	become	more	clear	to	you	as	you	work	with	CSS	more.
(On	the	flip	side,	one	reason	some	people	like	using	IDs	is	so	they’ll	know	at	a	glance	if	an
element	is	unique.	However,	in	my	own	experience,	I	don’t	think	the	trade-off	is	worth	it.
Besides,	if	your	site	design	changes	and	makes	an	element	no	longer	unique,	the	ID
selector	won’t	suffice.)
So,	I	recommend	looking	for	opportunities	to	combine	shared	styles	into	one	or	more	class
selectors	so	you	can	reuse	them,	and	to	keep	ID	selectors	to	a	minimum	if	you	do	use	them.
I	think	you’ll	find	your	style	sheets	shorter	and	easier	to	manage.
To	be	clear,	though,	ID	selectors	still	play	a	role	in	your	HTML.	They	identify	link	anchors
within	a	page	(see	“Creating	and	Linking	to	Anchors”	in	Chapter	6)	and	are	invaluable
when	you’re	writing	JavaScript	to	apply	special	behavior	to	a	specific	page	element
(JavaScript	is	a	subject	all	its	own,	so	I	won’t	dive	into	it	in	this	book).

Selecting	Elements	by	Context
In	CSS,	you	can	pinpoint	elements	depending	on	their	ancestors,	their	parent,	or	their	siblings	(see
“Parents	and	Children”	in	Chapter	1)	(through).
Click	here	to	view	code	image

...
<article	class="architect">
					<h1>Antoni	Gaudí</h1>
					<p>Many	tourists	...	</p>
					<p>Barcelona	...	</p>

					<section>
								<h2	lang="es">La	Casa	Milà</h2>
								<p>Gaudí's	work	...	</p>
					</section>

					<section>
								<h2	lang="es">La	Sagrada	Família</h2>
								...
					</section>
</article>
...

	I’ve	added	a	section	element	around	part	of	the	article	so	I	can	demonstrate	a	page	with	a	few
generations.	I’ve	also	shortened	the	text	to	make	the	relationships	between	elements	easier	to	see.	Note
that	in	this	snippet	there	are	two	second-generation	p	elements	directly	within	the	article	with	the

architect	class,	and	one	third-generation	p	element	within	the	first	section	(within	the
article).	There’s	another	third-generation	p	in	the	full	code,	not	shown.	The	h2	instances	are	also

third	generation.
Click	here	to	view	code	image

.architect	p	{
					color:	red;
}

	This	combines	a	class	selector	with	a	type	selector.	The	space	between	.architect	and	p	means
that	this	selector	will	find	any	p	element	that	is	a	descendant	of	any	element	with	the	architect	class,

regardless	of	its	generation.	See	the	results	in	 	and	other	ways	to	create	the	same	effect	in	 .
Click	here	to	view	code	image

/*	Other	ways	to	get	the	same	effect
--------------------------------------	*/
/*	Any	p	that	is	a	descendant	of	any	article.	The	least	specific	of	the	three.	*/
article	p	{
					color:	red;
}

/*	Any	p	that	is	a	descendant	of	article	elements	with	the	architect	class.	The	most
specific	of	the	three.	*/
article.architect	p	{
					color:	red;
}

	The	selector	in	the	first	example	here	(article	p	{	})	is	less	specific	than	the	one	in	 	and	the
one	that	follows	it	(article.architect	p	{	}).	The	second	example	here	is	more	specific	than
all	of	them,	but	prefixing	a	class	(or	especially	an	ID)	with	the	element	name	is	usually	more	specific	than

you	need	to	be	in	practice.

	All	the	p	elements	that	are	contained	within	the	element	with	the	architect	class	are	red	even	if
they’re	also	within	other	elements	that	are	within	the	element	with	the	architect	class.	The	style	rules

in	 	and	 	yield	the	result	shown	here.

An	ancestor	is	any	element	that	contains	the	desired	element	(the	descendant),	regardless	of	the	number
of	generations	that	separate	them.	(A	parent	is	an	element	that	directly	contains	another	element	[a	child],
meaning	they	are	only	one	generation	away.)	It’s	common	practice	to	indent	elements	that	are	children	of
another	element	so	you	can	see	their	relationship	at	a	glance	 .	The	indentation	has	no	bearing	on	how
your	page	looks.
There	is	often	more	than	one	way	to	craft	your	selectors	to	get	the	desired	effect.	It	comes	down	to	how
specific	you	need	to	be	 .

To	select	an	element	to	format	based	on	its	ancestor
1.	Type	ancestor,	where	ancestor	is	the	selector	for	the	element	that	contains	the	element	you
wish	to	format.

2.	Type	a	space.	(This	is	critical.)
3.	If	necessary,	repeat	steps	1	and	2	for	each	successive	generation	of	ancestors.
4.	Type	descendant,	where	descendant	is	the	selector	for	the	element	you	wish	to	format.

Tip
If	you’re	keeping	score	at	home,	a	selector	based	on	an	element’s	ancestor	had	been	known
as	a	descendant	selector,	but	CSS3	renamed	it	a	descendant	combinator.	(Some	people
still	say	“selector.”)

Tip
Don’t	be	thrown	off	by	the	article.architect	portion	of	the	second	example	in	 .
Remember	that	it	simply	means	“the	article	whose	class	is	equal	to	architect.”
So	article.architect	p	means	“any	p	element	that	is	contained	in	the	article
element	whose	class	is	equal	to	architect.”	By	comparison,	the	less-specific
.architect	p	means	“any	p	element	that	is	contained	in	any	element	whose	class	is
equal	to	architect”	 .

To	select	an	element	to	format	based	on	its	parent
The	previous	examples	showed	descendant	combinators.	CSS	also	has	child	combinators,	which	allow
you	to	define	a	rule	for	an	immediate	descendant	(in	other	words,	a	child)	of	a	parent	element.	You	may
know	them	as	child	selectors,	the	pre-CSS3	terminology.

1.	Type	parent,	where	parent	is	the	selector	for	the	element	that	directly	contains	the	element	you
wish	to	format.

2.	Type	>	(the	greater-than	sign)	 .
Click	here	to	view	code	image

.architect	>	p	{
					color:	red;
}

	This	selector	will	choose	only	those	p	elements	that	are	children	(not	grandchildren,	not	great-
grandchildren,	and	so	on)	of	elements	with	the	architect	class.	To	qualify,	they	may	not	be	contained

within	any	other	element	 .

	Only	the	first	two	p	elements	are	children	of	the	element	with	the	architect	class.	The	two	other	p
elements	are	children	of	the	section	elements	within	the	article	element.	For	the	HTML	code	used

in	this	example,	see	 .

3.	If	necessary,	repeat	steps	1	and	2	for	each	successive	generation	of	parents.
4.	Type	child,	where	child	is	the	selector	for	the	element	you	wish	to	format.

Tip
Just	as	you	saw	with	the	descendant	combinator,	you	can	add	the	element	name	before	the
class.	For	example,	article.architect	>	p	{	color:	red;	}	yields	the
same	effect	in	this	case,	but	it	is	more	specific.	Or,	to	be	less	specific	than	either	this	or	
,	leave	out	the	class	entirely,	as	in	article	>	p	{	color:	red;	}.	Some	of	the
examples	that	follow	in	the	rest	of	the	chapter	could	be	simplified	in	a	similar	manner.
Now	that	you	have	a	taste	for	how	it’s	done,	I	won’t	call	out	these	alternatives.	As	I’ve
mentioned	before,	but	just	to	reinforce	the	point,	use	simpler	forms	when	appropriate
before	resorting	to	more-specific	ones.

Tip
You	may	also	use	ID	selectors	in	child	combinators,	but	as	you	know	by	now,	I	recommend
using	less-specific	selectors,	like	those	with	a	class,	whenever	possible.

Tip
Also	see	“Parents	and	Children”	in	Chapter	1.

To	select	an	element	to	format	based	on	an	adjacent	sibling
Continuing	with	the	familial	theme,	sibling	elements	are	elements	of	any	kind	that	are	children	of	the	same
parent.	Adjacent	siblings	are	elements	that	are	next	to	each	other	directly,	meaning	no	other	sibling	sits
between	them.	In	the	following	crude	example,	the	h1	and	p	are	adjacent	siblings,	and	the	p	and	h2	are
adjacent	siblings,	but	the	h1	and	h2	are	not.	However,	they	are	all	siblings	(and	children	of	the	body
element):

...
<body>
				<h1>...</h1>
				<p>...</p>
				<h2>...</h2>
</body>
</html>

The	CSS	adjacent	sibling	combinator	allows	you	to	target	a	sibling	element	that	is	preceded	immediately
by	a	sibling	you	specify	(and).	(See	the	tip	regarding	the	general	sibling	combinator,	new	in
CSS3.)
Click	here	to	view	code	image

.architect	p+p	{
					color:	red;
}

	This	adjacent	sibling	combinator	chooses	only	those	p	elements	that	directly	follow	a	sibling	p
element.

	Only	the	p	elements	that	directly	follow	a	sibling	p	element	are	red.	If	there	were	a	third,	fourth,	or
more	consecutive	paragraphs,	they	too	would	be	red.	For	example,	an	adjacent	sibling	combinator	would

be	useful	for	indenting	all	paragraphs	except	the	first.

1.	Type	sibling,	where	sibling	is	the	selector	for	the	element	that	directly	precedes	the	desired
element	within	the	same	parent	element.	(As	long	as	they	are	directly	next	to	each	other,	they	don’t
have	to	be	the	same	element	type,	as	explained	previously.)

2.	Type	+	(a	plus	sign).
3.	If	necessary,	repeat	steps	1	and	2	for	each	successive	sibling.
4.	Type	element,	where	element	is	the	selector	for	the	element	you	wish	to	format.

Tip
You	may	also	use	a	general	sibling	combinator,	which	allows	you	to	select	a	sibling	that
is	not	necessarily	immediately	preceded	by	another	sibling.	The	only	difference	in	syntax
from	an	adjacent	sibling	combinator	is	that	you	use	a	~	(tilde)	instead	of	a	+	to	separate	the
siblings.	For	instance,	h1~h2	{	color:	red;	}	would	make	any	h2	element	red	as
long	as	it	is	preceded	by	a	sibling	h1	somewhere	within	the	parent	(it	could	be
immediately	adjacent,	but	it	doesn’t	have	to	be).

Selecting	an	Element	That	Is	the	First	or	Last	Child
The	previous	section	explained	how	to	select	an	element	that	is	the	child	of	another	element.	The	example
given	was	.architect	>	p,	which	selects	all	paragraphs	that	are	children	of	the	element	with	the
architect	class.	But	it’s	sometimes	useful	to	be	able	to	select	an	element	only	when	it	is	the	first	or
last	child	of	an	element.	The	:first-child	(through)	and	:last-child	(,	 ,	and)
pseudo-classes	are	what	you	need	to	achieve	this.
Click	here	to	view	code	image

...
<p>A	partial	list	of	Gaudí's	projects	follows:</p>

					<li	lang="es">La	Casa	Milà
					<li	lang="es">La	Sagrada	Família
					College	of	the	Teresians	(Colegio	Teresiano)
					Park	Güell

...

	We’ll	cover	lists	extensively	in	Chapter	15,	but	this	is	an	unordered	list	(ul),	and	each	list	item	(li)
is	a	child	of	it.	It	is	common	to	use	:first-child	and	:last-child	to	style	list	items,	though	often

it	is	to	apply	or	remove	a	border	rather	than	to	make	a	simple	text	color	change.
Click	here	to	view	code	image

li:first-child	{
					color:	red;
}

	This	selector	chooses	only	the	li	element	that	is	the	first	child	of	its	parent.

	By	virtue	of	being	the	first	child	of	the	ul,	the	first	li	is	red.	(The	indentation	and	bullets	are	due	to
the	browser’s	default	styling	of	unordered	lists.)

Click	here	to	view	code	image

li:last-child	{
					color:	red;
}

	This	selector	chooses	only	the	li	element	that	is	the	last	child	of	its	parent.

	As	you	would	expect,	only	the	last	li	is	red	in	this	case.

Initially,	some	people	get	a	little	tripped	up	by	how	they	work.	They	think	that	a	selector	such	as
li:first-child	will	select	the	li	element’s	first	child	and	that	li:last-child	will	select	its
last	child.	If	that	were	true,	“(Colegio	Teresiano)”	would	be	red	in	both	cases	(and),	because	the
span	it	is	in	is	both	the	first	and	last	child	of	an	li	 .	What	actually	happens	is	that	those	pseudo-
classes	select	an	element—in	this	case,	an	li—when	it	is	the	first	child	or	the	last	child.

To	select	an	element	to	format	that	is	the	first	or	last	child	of	its	parent
1.	Optionally,	type	the	selector	that	represents	the	first	child	or	last	child	you	want	to	style	(for
example,	p	or	.news).	(See	the	last	tip.)	Do	not	follow	it	with	a	space.

2.	Type	:first-child	 	or	:last-child	 ,	as	desired.

Tip
I	discuss	pseudo-classes	more	in	the	sidebar	of	the	next	section.

Tip
The	:last-child	pseudo-class	was	added	to	CSS	later	than	was	:first-child.
As	a	result,	it	is	not	supported	in	versions	of	Internet	Explorer	prior	to	IE9.	The	good	news
is	that	you	can	work	often	around	this,	because	IE8	and	later	do	support	:first-child.
Here’s	a	common	scenario,	although	it	does	get	ahead	of	us	by	touching	on	margins
(Chapter	11).	Suppose	you	want	a	margin	of	20px	below	every	list	item	except	the	last
one.	Set	li	{	margin-bottom:	0;	margin-top:	20px;	}	so	the	list	items
have	space	at	the	top	instead	of	the	bottom.	Then	use	li:first-child	{	margin-
top:	0;	}	to	negate	the	top	margin	on	the	first	item.	It’s	sort	of	like	coding	in	reverse	to
get	the	same	effect.

Tip
You	can	target	pseudo-classes	more	specifically	by	adding	another	selector	before	them.
For	example,	.architect	h1:first-child	{	color:	red;	}	would	style
only	those	h1	elements	that	are	the	first	child	of	an	element	with	the	.architect	class.

Tip
Although	it’s	common	to	do	so,	you	do	not	have	to	specify	a	selector	in	step	1.	For
instance,	simply	:first-child	{	color:	red;	}	would	apply	to	each	element
that	is	a	first	child	of	another	element.	In	the	case	of	our	example	 ,	that	would	result	in
the	paragraph	(it	is	the	first	child	of	body),	the	first	li	(it	is	the	first	child	of	the	ul),	and
“(Colegio	Teresiano)”	(the	span	it’s	in	is	the	first	child	of	an	li)	all	being	red.

Selecting	the	First	Letter	or	First	Line	of	an	Element
You	can	select	just	the	first	letter	(through)	or	first	line	(,	 ,	and)	of	an	element	with	the
:first-letter	and	:first-line	pseudo-elements,	respectively.	(See	the	sidebar	for	more	info.)
Click	here	to	view	code	image

...
<article	class="architect">
					<h1>Antoni	Gaudí</h1>
					<p>Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's	incredible
architecture.</p>
					<p>Barcelona	<a	href="http://www.gaudi2002.bcn.es/english/"
rel="external">celebrated	the	150th	anniversary	of	Gaudí's	birth	in	2002.</p>

					<h2	lang="es">La	Casa	Milà</h2>
					<p>Gaudí's	work	was	essentially	useful...</p>
					...
</article>
...

	It’s	easy	to	tell	which	are	the	first	letters	that	:first-letter	will	target,	but	there’s	no	telling
which	words	will	be	affected	by	:first-line	until	you	view	the	page	in	the	browser	and	see	how	the

content	flows	 .	It’s	not	determined	by	what	line	the	words	are	on	in	the	HTML	itself.
Click	here	to	view	code	image

p:first-letter	{
					color:	red;
					font-size:	1.4em;	/*	make	letter	larger	*/
					font-weight:	bold;
}

	Here	the	selector	will	choose	just	the	first	letter	of	each	p	element.

	The	first-letter	selector	can	be	used	to	create	a	drop-cap	effect.
Click	here	to	view	code	image

p:first-line	{
					color:	red;
}

	Here	the	selector	will	choose	the	first	line	of	each	p	element.

	Adjusting	the	width	of	the	window	changes	the	content	of	the	first	lines	(and	thus,	what	is	formatted).

To	select	the	first	letter	of	an	element
1.	Type	element,	where	element	is	the	selector	for	the	element	whose	first	letter	you’d	like	to
format.

2.	Type	:first-letter	to	select	the	first	letter	of	the	element	referenced	in	step	1.

To	select	the	first	line	of	an	element
1.	Type	element,	where	element	is	the	selector	for	the	element	whose	first	line	you’d	like	to
format.

2.	Type	:first-line	to	select	the	entire	first	line	of	the	element	referenced	in	step	1.

Tip
You	may	combine	the	:first-letter	or	:first-line	pseudo-elements	with	more-
complicated	selectors	than	those	used	in	this	example.	For	example,	if	you	wanted	to	select
just	the	first	letter	of	each	paragraph	contained	in	elements	with	a	class	named	project,
your	selector	would	be	.project	p:first-letter.

Tip
Only	certain	CSS	properties	can	be	applied	to	:first-letter	pseudo-elements:
font,	color,	background,	text-decoration,	vertical-align	(as	long	as
the	:first-letter	is	not	floated),	text-transform,	line-height,	margin,
padding,	border,	float,	and	clear.	You’ll	learn	about	all	these	in	Chapters	10	and
11.

Tip
Punctuation	(like	a	quotation	mark)	that	precedes	the	first	letter	is	formatted	as	if	it	is	part
of	the	first	letter.	Modern	browsers	support	this,	but	versions	of	IE	prior	to	IE8	don’t.
Instead,	they	consider	the	punctuation	itself	as	the	first	letter.

Pseudo-Elements,	Pseudo-Classes,	and	CSS3’s	Syntax
In	CSS3,	the	syntax	of	:first-line	is	::first-line	and	the	syntax	of	:first-
letter	is	::first-letter.	Note	the	double,	rather	than	single,	colons.	The	intent	of
this	change	was	to	distinguish	the	four	pseudo-elements—::first-line,	::first-
letter,	::before,	and	::after—from	pseudo-classes	like	:first-child,
:last-child,	:link,	:hover,	and	others.
A	pseudo-element	is	one	that	doesn’t	exist	as	an	element	in	the	HTML.	For	instance,	you
don’t	mark	up	your	first	letter	or	first	line	of	text	with	HTML	that	defines	it	as	such.
Instead,	it	represents	content	that’s	part	of	other	elements,	like	the	p	elements	in	the
example.
A	pseudo-class	identifies	a	group	of	elements	without	your	having	to	mark	them	with	a
class	in	the	HTML	code.	You	saw	that	with	:first-child—I	didn’t	have	to	add
class="first-child"	to	an	element	for	it	to	work.	You	will	learn	more	pseudo-
classes	in	the	next	section.
The	double-colon	syntax	of	::first-line	and	::first-letter	is	preferred
moving	forward,	and	modern	browsers	support	it.	The	original,	single-colon	syntax	is
deprecated,	but	browsers	continue	to	support	it	for	backward	compatibility.	However,	no
version	of	Internet	Explorer	prior	to	IE9	supports	the	double	colon,	so	you	may	decide	to
continue	using	the	single-colon	syntax	unless	you	serve	different	CSS	to	IE8	and	below
(see	http://reference.sitepoint.com/css/conditionalcomments).

Selecting	Links	Based	on	Their	State
CSS	lets	you	apply	formatting	to	links	 	based	on	their	current	state;	that	is,	whether	the	visitor	is
hovering	their	cursor	on	top	of	one,	whether	a	link	has	been	visited,	or	whatever.	You	achieve	these	with
a	series	of	pseudo-classes.
Click	here	to	view	code	image

http://reference.sitepoint.com/css/conditionalcomments

...
					<p>Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's	incredible
architecture.</p>

					<p>Barcelona	celebrated	the	150th
anniversary	of	Gaudí's	birth	in	2002.</p>
...

	You	can’t	specify	in	the	HTML	what	state	a	link	will	have;	it’s	controlled	by	your	visitors.	Pseudo-
classes	allow	you	to	access	the	state	and	change	the	display	as	you	please.

To	select	links	to	format	based	on	their	state
1.	Type	a	(since	a	is	the	name	of	the	element	for	links).
2.	Optionally,	type	:	(a	colon)	with	no	spaces	before	or	after	it.
3.	If	you	did	step	2,	do	one	of	the	following	to	indicate	the	link	state	you	wish	to	affect	 :

Click	here	to	view	code	image

a:link	{
					color:	red;
}

a:visited	{
					color:	orange;
}

a:focus	{
					color:	purple;
}

a:hover	{
					color:	green;
}

a:active	{
					color:	blue;
}

	Styles	for	links	should	always	be	defined	in	this	order,	to	avoid	overriding	properties	when	a	link	is	in
more	than	one	state	(say,	focused	and	active,	which	happens	whenever	you	activate	a	link).

	Type	link	to	change	the	appearance	of	links	that	haven’t	yet	been	or	aren’t	currently	being
activated	or	pointed	at	 .

	Links	will	be	red	when	new	and	not	visited.

	Type	visited	to	change	links	that	the	visitor	has	already	activated	 .

	Once	the	link	has	been	visited,	it	turns	orange.

	Type	focus	if	the	link	is	selected	via	the	keyboard	and	is	ready	to	be	activated	 .	(Note:	Focus
also	happens	when	a	link	is	active.)

	If	the	link	gets	the	focus	(such	as	with	the	Tab	key),	it	is	purple.

	Type	hover	to	change	the	appearance	of	links	when	they’re	pointed	to	with	the	cursor	 .	(See
the	last	tip.)

	When	the	visitor	hovers	over	the	link	with	the	pointer,	it	is	green.

	Type	active	to	change	the	appearance	of	links	as	they	are	activated	 .

	As	the	visitor	activates	the	link,	it	turns	blue.

Tip
You	do	not	have	to	specify	a	pseudo-class	to	style	links	(this	is	why	steps	2	and	3	are
optional).	For	example,	a	{	color:	red;	}	styles	all	link	states	the	same	way.
However,	it	is	good	practice	to	differentiate	the	states	for	your	visitors’	benefit	by	using
the	pseudo-classes.

Tip
You	may	also	apply	the	:active	and	:hover	pseudo-classes	to	other	elements.	For
instance,	p:hover	{	color:	red;	}	would	change	the	color	of	each	paragraph	to
red	when	it	is	hovered	over.

Tip
Since	a	link	can	be	in	more	than	one	state	at	a	time	(say,	simultaneously	active	and	hovered
above)	and	later	rules	override	earlier	ones,	it’s	important	to	define	the	rules	in	the
following	order:	link,	visited,	focus,	hover,	active	(LVFHA).	One	popular
way	to	remember	this	is	the	mnemonic	“Lord	Vader’s	Former	Handle	Anakin.”	Some	argue
for	ordering	the	rules	LVHFA	instead;	it	works	too.

Tip
Browsers	on	touch	devices	like	smartphones	and	tablets	don’t	have	a	hover	state	like
desktop	browsers	do.	That’s	because	a	device	such	as	an	iPad	doesn’t	detect	when	your
finger	is	“hovering”	above	a	link,	only	when	you	tap	it	to	activate	it.	However,	iPhones
and	iPads	do	display	what	you	specify	with	:hover	when	a	visitor	activates	the	link.
Other	touch	devices	vary	in	behavior.

Selecting	Elements	Based	on	Attributes
You	can	also	apply	formatting	to	elements	with	specific	attributes	or	attribute	values	 .	CSS	provides
numerous	ways	to	match	these,	including	checking	for	just	the	attribute	name,	or	for	a	whole	or	partial
value	(see	Table	9.1	for	more	information).	If	you	omit	the	value	from	your	selector	 ,	you	can	style	an
element	with	a	given	attribute	regardless	of	its	value	 .
Click	here	to	view	code	image

...
<article	class="architect">
					<h1>Antoni	Gaudí</h1>

					<p	class="intro">Many	tourists	are	drawn	to	Barcelona	to	see	Antoni	Gaudí's
incredible	architecture.</p>

					<p>Barcelona	<a	href="http://www.gaudi2002.bcn.es/english/"
rel="external">celebrated	the	150th	anniversary	of	Gaudí's	birth	in	2002.</p>

					<h2	lang="es">La	Casa	Milà</h2>
					<p	class="highlight">Gaudí's	work	was	essentially	useful.	La	Casa
Milà	is	an	apartment	building	and	real	people	live	there.</p>

					<h2	lang="es">La	Sagrada	Família</h2>
					<p>The	complicatedly	named	and	curiously	unfinished	Expiatory	Temple	of	the	Sacred
Family	is	the	most	visited	building	in	Barcelona.</p>
</article>
...

	For	demonstration	purposes,	I’ve	added	a	class	on	two	paragraphs.
Click	here	to	view	code	image

p[class]	{
					color:	red;
}

	The	square	brackets	enclose	the	desired	attribute	and	any	desired	value.	In	this	case,	the	value	is
omitted	to	select	any	paragraph	with	any	class	attribute.

	Every	p	element	that	contains	a	class	attribute,	regardless	of	the	class’s	value,	is	red.	If	the	selector
had	been	p[class="intro"],	only	the	first	paragraph	would	be	red.	And	if	the	selector	had	been

p[class^="intro"],	the	first	paragraph	would	be	red	as	well	as	any	paragraph	with
class="introduction",	class="introductory",	and	so	on.

TABLE	9.1	Attribute	Selector	Options

To	select	elements	to	format	based	on	their	attributes
1.	Type	element,	where	element	is	the	selector	for	the	element	whose	attributes	you	want	to
target.

2.	Type	[attribute,	where	attribute	is	the	name	of	the	attribute	that	an	element	must	have	to
be	selected.

3.	Optionally,	do	one	of	the	following:
	Type	="value"	if	you	want	to	specify	the	value	that	the	attribute’s	value	must	equal	for	its
element	to	be	selected.
	Type	~="value"	to	specify	an	exact	value	that	the	attribute’s	value	must	contain	(among	any
other	space-separated	values)	for	its	element	to	be	selected.	It	matches	a	complete	word,	not	part
of	a	word.
	Type	|="value"	(that	was	the	pipe	symbol,	not	a	“1”	or	the	letter	“l”)	to	specify	that	the
attribute’s	value	must	be	equal	to	value	or	begin	with	value	and	be	followed	by	a	hyphen	for
its	element	to	be	selected.	Don’t	type	the	hyphen;	browsers	know	to	look	for	it.	(This	is	most
common	when	searching	for	elements	containing	the	lang	attribute;	for	example,
[lang|="en"]	would	match	both	lang="en"	and	lang="en-US"	in	the	HTML.)
	Type	^="value"	to	specify	that	the	attribute’s	value	must	begin	with	value	as	either	a	full
word	or	part	of	a	word	(new	in	CSS3;	see	the	tip	in	this	section).
	Type	$="value"	to	specify	that	the	attribute’s	value	must	end	with	value	as	either	a	full
word	or	part	of	a	word	for	its	element	to	be	selected	(new	in	CSS3;	see	the	tip	in	this	section).
	Type	*="value"	to	specify	that	the	attribute’s	value	must	contain	at	least	one	instance	of	the
value	substring	for	its	element	to	be	selected.	In	other	words,	value	doesn’t	need	to	be	a
complete	word	in	the	attribute’s	value	(new	in	CSS3;	see	the	tip	in	this	section).

4.	Type].	If	you	would	like	to	specify	additional	attributes	or	attribute	values	for	element,	repeat
beginning	with	step	2.

Tip
Selecting	elements	based	on	the	attributes	(and	values)	they	contain	is	supported	by	all
current	major	browsers.	IE7	and	IE8	have	a	few	quirks	related	to	the	three	new	CSS3
attribute	selectors	noted	in	step	3.	See
http://reference.sitepoint.com/css/css3attributeselectors	for	more	information.

More	Attribute	Selector	Examples
Attribute	selectors	can	be	a	little	funny-looking	(Table	9.1),	but	they	give	you	a	lot	of
flexibility	to	match	attributes	and	their	values.	Here	are	a	few	more	examples	to
demonstrate	some	of	the	diverse	ways	in	which	you	can	use	them.
	This	example	selects	any	a	element	with	a	rel	attribute	equal	to	external	(it	has	to
be	an	exact	match).	It’s	good	practice	to	include	rel="external"	on	any	a	element
that	links	to	a	page	outside	your	website	(an	external	link).	By	using	the	following	rule,
you	can	style	external	links	differently	to	give	your	visitors	a	cue	that	the	link	leaves

http://reference.sitepoint.com/css/css3attributeselectors

your	site.
a[rel="external"]	{
			color:	red;
}

	Imagine	you	have	one	article	element	with	two	classes,	such	as	<article
class="project	barcelona">,	and	another	that	has	one,	<article
class="barcelona">.	The	~=	syntax	tests	for	a	partial	match	of	a	complete	word
within	a	whitespace-separated	list	of	words,	making	both	elements	red	in	the	following
example.

Click	here	to	view	code	image

article[class~="barcelona"]	{
			color:	red;
}

/*	This	would	also	match	because	this	selector	matches	partial	strings
(complete	words	not	required).	*/
article[class*="barc"]	{
			color:	red;
}

/*	This	would	NOT	match	because	barc	is	not	a	complete	word	in	the	whitespace-
separated	list,	as	required	by	~=.	*/
article[class~="barc"]	{
			color:	red;
}

	This	example	selects	any	h2	with	a	lang	attribute	that	is	es	or	es	followed	by	a	–
(such	as	es-ES	for	Spanish	in	Spain	or	es-PE	for	Spanish	in	Peru).	There	are	two
instances	of	these	in	the	HTML	code	in	 .

h2[lang|="es"]	{
			color:	red;
}

	By	using	the	universal	selector,	this	example	selects	any	element	with	a	lang	attribute
that	begins	with	es	or	es	followed	by	a	–.	There	are	three	instances	of	these	in	the
HTML	code	in	 .

*[lang|="es"]	{
			color:	red;
}

	Combining	a	couple	of	the	methods,	this	example	selects	any	a	element	with	both	any
href	attribute	and	any	title	attribute	containing	the	word	howdy.
a[href][title~="howdy"]	{
			color:	red;
}

	As	a	less	precise	variation	of	the	previous	one,	this	example	selects	any	a	element	with
both	any	href	attribute	and	any	title	attribute	containing	how	as	a	complete	word	or
a	substring	(it	matches	if	the	title’s	value	is	how,	howdy,	show,	and	so	on,	regardless
of	where	in	the	value	how	appears).
a[href][title*="how"]	{

			color:	red;
}

	This	example	matches	any	a	element	with	an	href	attribute	value	that	begins	with
http://.
a[href^="http://"]	{
			color:	orange;
}

	This	example	matches	any	img	element	with	a	src	attribute	value	of	exactly
logo.png.
img[src="logo.png"]	{
			border:	1px	solid	green;
}

	This	example	is	less	specific	than	the	previous	one,	matching	any	img	element	with	a
src	attribute	value	that	ends	with	.png.
img[src$=".png"]	{
			border:	1px	solid	green;
}

That’s	by	no	means	the	limit	of	what	you	can	do,	but	hopefully	it	inspires	you	to	explore
further.

Specifying	Groups	of	Elements
It’s	often	necessary	to	apply	the	same	style	rules	to	more	than	one	element.	You	can	either	reiterate	the
rules	for	each	element,	or	you	can	combine	selectors	and	apply	the	rules	in	one	fell	swoop	(through	
).	Of	course,	the	latter	approach	is	more	efficient	and	generally	makes	your	style	sheets	easier	to	maintain.
Click	here	to	view	code	image

...
<article	class="architect">
					<h1>Antoni	Gaudí</h1>
					<p>Many	tourists	are	drawn	...</p>
					<p>Barcelona	...</p>

					<h2	lang="es">La	Casa	Milà</h2>
					<p>Gaudí's	work	was	...</p>

					<h2	lang="es">La	Sagrada	Família</h2>
					<p>The	complicatedly	named	...</p>
</article>
...

	The	code	contains	one	h1	and	two	h2	elements.
Click	here	to	view	code	image

h1,
h2	{
					color:	red;
}

	You	can	list	any	number	of	individual	selectors	(whether	they	include	element	names,	classes,	pseudo-
elements,	and	more),	as	long	as	you	separate	each	with	a	comma.

	The	h1	and	h2	elements	are	colored	red	with	a	single	rule.

To	apply	styles	to	groups	of	elements
1.	Type	selector1,	where	selector1	is	the	name	of	the	first	element	that	should	be	affected	by
the	style	rule.

2.	Type	,	(a	comma).
3.	Type	selector2,	where	selector2	is	the	next	element	that	should	be	affected	by	the	style
rule.

4.	Repeat	steps	2	and	3	for	each	additional	element.

Tip
Styling	elements	as	a	group	is	nothing	more	than	a	handy	shortcut.	The	rule	in	 	is
precisely	the	same	as	these	two	rules:	h1	{	color:	red;	}	and	h2	{	color:
red;	}.

Tip
You	can	group	any	kind	of	selector,	from	the	simplest	 	to	the	most	complex.	For
example,	you	could	use	h2,	.project	p:first-letter	to	choose	the	level	two
headings	and	the	first	letter	of	the	p	elements	in	elements	whose	class	is	equal	to
project.

Tip
Each	selector	doesn’t	have	to	be	on	its	own	line	(as	in),	but	many	coders	use	this
convention	to	make	it	easier	to	read.

Tip
It	is	sometimes	useful	to	create	a	single	style	rule	with	the	common	styles	that	apply	to
several	selectors	and	then	create	individual	style	rules	with	the	styles	they	do	not	share.
Remember	that	rules	specified	later	override	rules	specified	earlier	in	the	style	sheet.

Combining	Selectors
The	examples	throughout	the	chapter	have	been	simple	to	help	you	get	a	feel	for	various	selector	types.
However,	the	real	power	lies	in	the	fact	that	you	can	combine	any	of	the	techniques	to	pinpoint	the
elements	that	you	want	to	format.
An	extreme	example	is	shown	in	 	to	demonstrate	what’s	possible	(though	not	recommended	in	this
case).	Here	are	a	few	ways	you	could	achieve	the	same	results	 ,	moving	from	least	specific	to	most
specific:

em	{
				color:	red;
}

.project	em	{
				color:	red;
}

.architect	.project	em	{
				color:	red;
}

Click	here	to	view	code	image

.project	h2[lang|="es"]	+	p	em	{
					color:	red;
}

	Here’s	a	doozy	for	you.	Moving	right	to	left,	it	says	“choose	only	the	em	elements	that	are	found	within
p	elements	that	are	immediately	adjacent	siblings	to	h2	elements	that	have	a	lang	attribute	whose	value
begins	with	es	inside	of	any	element	with	a	class	equal	to	project.”	Got	that?	I	hope	you	never	feel

compelled	to	write	something	that	complicated,	but	at	least	you	know	what’s	possible.

	All	that	code	 	just	to	turn	the	em	elements	red?	If	you’re	thinking	it	would	be	much	better	(and
easier)	to	simply	write	something	like	em	{	color:	red;	}	or	.architect	em	{	color:

red;	},	you’re	absolutely	right—unless	you	need	to	be	more	specific.

It	doesn’t	require	a	lot	of	crazy	selectors	to	implement	most	designs,	no	matter	how	intricate	they	may
appear	in	a	browser.	So	combine	selectors	when	it	makes	sense	to,	but	to	reiterate,	I	recommend	making
your	style	rules	only	as	specific	as	necessary.	For	instance,	if	you	just	want	to	target	em	elements	inside
elements	with	class="project",	go	with	.project	em	{	color:	red;	}.	Even	though	the
em	elements	are	nested	inside	p	elements	in	the	HTML,	there’s	no	point	in	writing	.project	p	em	{
color:	red;	}	unless	there	are	em	elements	outside	of	paragraphs	you	want	to	leave	alone.	In	short,
start	simple	and	get	more	specific	as	needed.

More	Selectors	in	CSS3
CSS3	adds	a	lot	of	new	selectors	to	your	toolbox.	You	saw	some	of	them	in	this	chapter.
Most	of	the	other	new	ones	are	pseudo-classes,	some	of	which	are	fairly	complex,	but
powerful	as	a	result.	You	can	find	a	table	of	CSS3	selectors	and	full	descriptions	at
www.w3.org/TR/css3-selectors/#selectors,	and	brief	descriptions	and	examples	at
www.w3.org/wiki/CSS/Selectors.
Browser	support	is	solid	except	in	Internet	Explorer,	which	didn’t	begin	supporting	most
of	the	new	CSS3	selectors	(particularly	the	new	pseudo-classes	and	pseudo-elements)
until	IE9.
In	many	cases,	it’s	just	fine	if	your	site	is	a	little	different	in	older	browsers	than	in	modern
ones.	But	if	you	really	want	IE8	and	prior	to	honor	some	of	these	selectors,	you	might	want
to	consider	Keith	Clark’s	Selectivizr	(http://selectivizr.com).	In	his	words,	it	is	“a
JavaScript	utility	that	emulates	CSS3	pseudo-classes	and	attribute	selectors	in	Internet
Explorer	6–8.”	As	he	notes,	Selectivizr	has	some	limitations.	I	recommend	doing	without	it
if	you	can,	which	I	don’t	at	all	mean	as	a	slight	on	his	tool.	It’s	just	that	the	more	JavaScript
your	webpage	uses,	the	longer	it	takes	to	load	and	display	(see	Chapter	19),	and	older
browsers	(like	IE8)	are	not	as	efficient	at	processing	it.

http://www.w3.org/TR/css3-selectors/#selectors
http://www.w3.org/wiki/CSS/Selectors
http://selectivizr.com

10.	Formatting	Text	with	Styles

In	This	Chapter
Before	and	After
Choosing	a	Font	Family
Specifying	Alternate	Fonts
Creating	Italics
Applying	Bold	Formatting
Setting	the	Font	Size
Setting	the	Line	Height
Setting	All	Font	Values	at	Once
Setting	the	Color
Setting	the	Background
Controlling	Spacing
Adding	Indents
Aligning	Text
Changing	the	Text	Case
Using	Small	Caps
Decorating	Text
Setting	Whitespace	Properties

With	CSS,	you	can	change	the	font,	size,	weight,	slant,	line	height,	foreground	and	background,	spacing,
and	alignment	of	text.	You	can	decide	whether	text	should	be	underlined	or	struck	through,	and	you	can
convert	it	to	all	uppercase,	all	lowercase,	or	small	caps.	And	you	can	apply	those	changes	to	an	entire
page	or	an	entire	site	in	just	a	handful	of	lines	of	code.	In	this	chapter,	you’ll	learn	how.
While	most	properties	discussed	in	this	chapter	apply	solely	to	text,	the	section	“Setting	the	Background”
also	applies	to	non-text	elements.	Additionally,	there	are	a	couple	of	text-related	topics	covered
elsewhere:	web	fonts	in	Chapter	13,	and	“Adding	Drop	Shadows	to	Text”	in	Chapter	14.
All	these	CSS	features	are	integral	parts	of	designing	your	webpages.	We’ll	continue	in	that	vein	with
CSS	layout	in	Chapter	11.

Before	and	After
Browsers	apply	minimal	styling	to	a	page	by	default	 .	Throughout	the	chapter,	we’ll	attempt	to	spruce
up	this	page	a	bit	 	by	applying	our	own	CSS	for	the	text	and	background.	You	may	want	to	refer	to	the
abbreviated	HTML	 	as	you	progress	through	the	chapter,	paying	particular	attention	to	how	some	of	the
classes	are	utilized	in	the	CSS.	The	complete	HTML	and	all	examples	from	the	chapter	are	available	on
the	companion	website	at	www.htmlcssvqs.com/8ed/10.

http://www.htmlcssvqs.com/8ed/10

	The	default	page	rendering	for	all	browsers	is	similar	to	this,	although	the	heading	sizes	in	particular
may	vary.

	As	you’ll	learn,	you	can	alter	the	feel	of	a	page	with	just	a	handful	of	styles.	You	can	view	this	page	at
www.htmlcssvqs.com/8ed/text-final.

Click	here	to	view	code	image

...
<body>
<article	class="architect">
					<div	class="intro">
								<h1>Barcelona's	Architect</h1>

								<p	class="subhead">Antoni	Gaudí's	incredible	buildings	bring...</p>

								<p>Gaudí's...search	for	simplicity...is	quite	apparent	in	his	work,	from	the	Park	Guell	...	to	the	Church	of	the	<a	href="#sagrada-
familia">Sacred	Family	...</p>
					</div>

					<section	class="project	family">
								<h2	id="sagrada-familia">La	Sagrada	Família</h2>

								<div	class="photos">
											
											...	6	more	images	...
								</div>

								<p>The	complicatedly	named...</p>
								<p>The	Sagrada	Família	attracts...</p>
					</section>

					<section	class="project	guell">
								<h2	id="park-guell">Park	Guell</h2>

								<div	class="photos">
											...	5	images	...
								</div>

								<p>The	Park	Guell	always	reminds	me	of	...	Howard	Roark	in	...	<cite>The	Fountainhead</cite>...</p>
								<p>...now	we	all	get	to	enjoy	it...</p>
					</section>
</article>
</body>
</html>

	The	HTML	contains	various	classes	for	targeting	specific	areas	with	CSS.

Choosing	a	Font	Family
One	of	the	most	important	choices	you’ll	make	for	your	website	is	the	font	for	the	body	text	and	headlines.
As	you’ll	learn,	not	every	system	has	the	same	fonts	by	default,	so	you	should	define	alternate	fonts	as
fallbacks.	But	first	let’s	see	how	to	define	a	single	font	family	(and)	and	the	ramifications	of	not
providing	the	alternates	 .
Click	here	to	view	code	image

http://www.htmlcssvqs.com/8ed/text-final

body	{
					font-family:	Geneva;
}

h1,	h2	{
					font-family:	"Gill	Sans";
}

	Because	font-family	is	an	inherited	property,	I	specified	Geneva	on	the	body	element	so	that	all
elements	in	the	page	take	on	the	style.	I	overrode	that	setting	for	the	h1	and	h2	elements	by	setting	their

font	to	Gill	Sans.

	Both	Geneva	and	Gill	Sans	are	common	on	OS	X,	so	they	display	properly	here.	The	p	and	a	elements
inherit	the	body	font-family	setting,	so	all	text	except	for	the	headings	is	styled	in	Geneva.	The	h1

and	h2	headings	would	show	it,	too,	if	we	hadn’t	specified	Gill	Sans	for	them.

	Typically,	Geneva	and	Gill	Sans	do	not	come	installed	on	Windows	systems.	If	you	choose	a	font	that
is	not	installed	on	your	visitor’s	system,	their	browser	will	use	the	default	browser	font	instead.	Times

New	Roman	is	the	default	on	Windows,	as	shown	here.

To	set	the	font	family
After	the	desired	selector	in	your	style	sheet,	type	font-family:	name,	where	name	is	your	first
choice	of	font.

Tip
Surround	multi-word	font	names	with	quotes	(single	or	double)	 .

Tip
You	can	specify	font	names	in	lowercase	as	well.	For	example,	font-family:
geneva;.

Tip
While	you	can	specify	any	font	you	want,	your	visitor	will	see	only	the	fonts	that	they
already	have	installed	on	their	system.	(The	exception	to	this	is	when	you	load	a	web	font,
as	described	in	Chapter	13.)	See	the	next	section	for	more	details	about	standard	fonts
shared	by	OS	X	and	Windows.

Tip
Although	the	font-family	property	is	inherited,	a	few	elements	are	stubborn	and	don’t
take	on	their	parent’s	font	setting.	Among	these	are	form	select,	textarea,	and
input	elements	(Chapter	16).	You	can	force	them	to	inherit	with	input,	select,
textarea	{	font-family:	inherit;	}.

Tip
You	can	set	the	font	family,	font	size,	and	line	height	all	at	once	by	using	the	general	font
property.	See	“Setting	All	Font	Values	at	Once,”	later	in	this	chapter.

Specifying	Alternate	Fonts
Although	you	can	specify	whichever	font	you	want,	it	might	not	display	on	every	system	(as	shown	in	the
previous	section).	To	combat	this,	the	font-family	property	lets	you	list	more	than	one	font	 .	The
browser	will	use	the	first	listed	font	that’s	available	on	the	visitor’s	system	(and)	or	loaded	as	a
web	font	(Chapter	13).
Click	here	to	view	code	image

body	{
					font-family:	Geneva,	Tahoma,	sans-serif;
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
}

	The	first	font	stack	tells	the	browser	to	look	for	Tahoma	on	systems	that	don’t	have	Geneva,	and	then
fall	back	to	a	standard	sans-serif	font	if	neither	is	installed.	The	font	stack	for	the	headings	provides	three
fallbacks.	Your	alternates	might	not	match	your	first	choice	exactly,	but	the	goal	is	to	specify	a	font	that’s

as	close	as	possible	 .

	Systems	that	have	Geneva	and	Gill	Sans	installed—like	this	OS	X	one—will	continue	to	use	those
fonts.	Consequently,	the	fonts	are	identical	to	figure	 	in	the	previous	section	(the	screen	shots	look

different	because	the	browser	is	narrower	here).

	Systems	that	don’t	have	Geneva	will	use	Tahoma	for	the	main	text	if	they	have	it	(as	most	Windows
systems	do,	like	this	one).	If	they	don’t	have	Tahoma	either,	the	browser	will	use	the	font	mapped	to	sans-
serif.	The	same	goes	for	the	headings.	This	Windows	machine	doesn’t	have	either	Gill	Sans	or	Gill	Sans

MT,	so	the	headings	are	shown	in	Calibri,	the	third	choice.

A	list	of	fonts	is	known	as	a	font	stack.	Typically,	a	font	stack	will	include	at	least	three	fonts:	the
preferred	font,	one	or	more	alternates,	and	a	generic	standard	font	for	“if	all	else	fails,	use	this”	situations
(see	the	first	tip).
The	sidebar	“Default	Fonts	Shared	by	OS	X	and	Windows”	discusses	the	small	set	of	fonts	that	both
systems	share	out	of	the	box.	It’s	common	to	use	one	or	more	of	these	or	a	web	font	so	visitors	see	the
same	font.

To	specify	alternate	fonts
1.	Type	font-family:	name,	where	name	is	your	first	choice	of	font.
2.	Type	,	name2,	where	name2	is	your	second	font	choice.	Separate	each	choice	with	a	comma	and
a	space.

3.	Repeat	step	2	as	desired,	and	finish	your	list	of	fonts	with	a	generic	font	name	(serif,	sans-
serif,	cursive,	fantasy,	or	monospace;	whichever	style	is	most	appropriate	based	on
your	preferred	font).

Default	Fonts	Shared	by	OS	X	and	Windows
There	is	a	very	limited	list	of	fonts	to	choose	from	that	both	OS	X	and	Windows	have	by
default:	Arial,	Comic	Sans	MS,	Courier	New,	Georgia,	Impact,	Trebuchet	MS,	Times	New
Roman,	and	Verdana.	Consequently,	the	majority	of	sites	on	the	web	use	one	of	these	fonts
in	some	capacity.	They	might	not	render	in	exactly	the	same	way	in	browsers	on	OS	X	and
Windows,	but	you	can	be	confident	that	they	will	display.
You	also	have	options	beyond	these,	as	shown	in	 .	Both	OS	X	and	Windows	include
more	(but	different)	system	fonts	you	can	use	in	your	font	stacks.	Search	online	for	“font
stacks”	to	see	a	range	of	font-family	declarations	that	you	can	copy	and	paste	into
your	style	sheets	to	provide	each	visitor	a	similar	font.
Lastly,	you	also	can	load	a	font	that	systems	don’t	have	by	default.	Web	designers
fantasized	about	this	for	eons,	and	it	finally	became	possible	in	recent	years.	Web	fonts,	as
they	are	known,	are	common	on	sites	now	that	more	quality	fonts	are	available.	You’ll
learn	how	to	use	web	fonts	in	Chapter	13.

Showing	Arial	on	Windows	and	Helvetica	on	OS	X
Here’s	a	neat	trick.	But	first,	a	little	background.
Arial	is	almost	certainly	the	most	used	font	on	the	web—the	font-family:	arial,
helvetica,	sans-serif;	declaration	is	everywhere.	Problem	is,	designers	would
often	prefer	to	use	Helvetica	when	it’s	available,	but	most	OS	X	machines	have	Arial,	so
Helvetica	is	ignored	in	that	font	stack.
All	OS	X	machines	have	Helvetica,	but	it’s	not	common	on	Windows.	Even	if	a	user	has
installed	it	on	Windows,	sometimes	it	displays	quite	poorly.	That’s	why	listing	Helvetica
before	Arial	in	a	font	stack	isn’t	ideal.
What	to	do?	The	solution	is	deceptively	simple:	Use	font-family:	sans-serif;.
Because	of	the	way	each	operating	system	maps	to	sans-serif,	Windows	browsers
will	show	Arial	and	OS	X	browsers	will	show	Helvetica.

Tip
Systems	typically	have	a	font	that	maps	to	the	following	generic	font	names:	serif,	sans-
serif,	cursive,	fantasy,	and	monospace—which	is	why	it’s	standard	practice	to	specify	one
at	the	end	of	your	font	stack.	Of	these,	you’ll	use	serif	and	sans-serif	the	most	(by	far),
since	they	correspond	to	the	most	commonly	used	font	types.	Typically,	serif	maps	to
Times	New	Roman	on	Windows	and	Times	on	OS	X.	And	sans-serif	typically	maps	to
Arial	on	Windows	and	Helvetica	on	OS	X.

Tip
Geneva	font	stacks	typically	include	Verdana	in	the	third	slot	before	sans-serif	to
account	for	the	small	percentage	of	systems	that	don’t	have	either	Geneva	or	Tahoma.	I	left
it	out	to	demonstrate	that	font	stacks	can	have	different	numbers	of	fonts,	but	I’ve	included
it	in	subsequent	examples.

Tip
You	can	specify	fonts	for	different	alphabets	(such	as	Japanese	and	English)	in	the	same
font-family	declaration	to	format	a	chunk	of	text	that	contains	different	languages	and
writing	systems.

Creating	Italics
In	traditional	publishing,	italics	are	used	often	to	set	off	quotations,	emphasized	text,	words	that	are
foreign	relative	to	a	language	(for	example,	de	rigueur),	some	scientific	names	(for	example,	Homo
sapiens),	movie	titles,	and	much	more.
Browsers	typically	italicize	some	HTML	elements	(such	as	cite,	em,	and	i)	by	default,	so	you	don’t
need	to	italicize	them	in	your	CSS.	However,	sometimes	none	of	those	elements	is	the	proper	semantic
choice	for	marking	up	your	content,	yet	you	still	want	to	make	some	text	italic.	The	CSS	font-style
property	allows	you	to	do	this.
Just	as	an	example,	let’s	see	how	to	do	this	to	paragraphs	 .	(We	won’t	leave	them	this	way	because
they’d	be	exceedingly	difficult	to	read	 ,	so	we’ll	omit	the	rule	from	subsequent	examples.)
Click	here	to	view	code	image

body	{
					font-family:	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
}

p	{
					font-style:	italic;
}

	In	this	example,	I’ve	made	the	paragraphs	display	in	italics.

	The	paragraphs	and	the	links	within	them	are	italicized,	but	the	headings	are	not.

To	create	italics
1.	Type	font-style:.
2.	After	the	colon	(:),	type	italic	for	italic	text,	or	oblique	for	oblique	text.	(You’ll	probably
use	italic	99	percent	of	the	time.	You	might	not	notice	a	difference	with	oblique	in	all
instances.)

To	remove	italics
Type	font-style:	normal.

Tip
One	reason	you	might	want	to	remove	italics	is	to	emphasize	some	text	in	a	paragraph	that
has	inherited	italic	formatting	from	a	parent	element.	For	more	details	about	inheritance,
consult	“Understanding	Inheritance”	in	Chapter	7.

Tip
See	“HTML:	Markup	with	Meaning”	in	Chapter	1	regarding	the	importance	of	writing
semantic	HTML.

Tip
The	font-style	property	is	inherited.

Real	Italics	vs.	Faux	Italics,	plus	Oblique	Text
A	font	designer	often	creates	the	italic	version	of	a	font	from	scratch,	especially	for	serif
fonts.	It	is	not	merely	a	slanted	version	of	the	normal	text,	but	instead	includes	differences
appropriate	to	the	form.	For	example,	Palatino	Linotype	has	a	true	italic	font	face	 .	The
letter	“a”	in	particular	is	clearly	not	just	slanted	to	mimic	italics.

	Here	is	a	line	of	normal	text	followed	by	one	styled	with	font-style:	italic;	for	two
fonts.	If	you	look	closely,	you	can	see	that	Palatino	Linotype	has	characters	specifically	for	italic
display.	The	difference	between	normal	and	italic	text	is	especially	clear	in	letters	such	as	“a,”
“p,”	and	“y.”	Because	Geneva	lacks	italic	characters,	the	browser	merely	slants	the	normal

characters	to	simulate	italic	styling.

But	a	font	may	not	have	an	italic	version.	That	is	the	case	with	Geneva.	If	you	set	text	in
that	font	to	font-style:	italic,	the	browser	may	display	a	computer-simulated,
faux	italic	that	does	simply	slant	the	normal	letters	to	mimic	the	style	 .	However,	the
quality	isn’t	the	same	as	if	the	characters	had	been	tailored	for	italic.
Additionally,	a	font	designer	may	create	an	oblique	version	of	a	font,	which	typically	is	the
normal	letters	slanted,	perhaps	with	some	adjustments	to	spacing	and	the	like,	but	with	the
same	letters.	You	can	set	font-style:	oblique;,	though	it’s	uncommon	to	do	so.
Faux	italic	may	show	in	the	absence	of	an	oblique	or	italic	version	of	the	font.

Applying	Bold	Formatting
Bold	formatting	is	probably	the	most	common	and	effective	way	to	make	text	stand	out.	For	instance,
browsers	typically	style	the	h1–h6	headings	in	bold	by	default.	Just	as	with	italics,	you	may	style	any
text	in	bold	or	turn	it	off.	To	do	so,	use	the	font-weight	property	(and).
Click	here	to	view	code	image

body	{
					font-family:	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
}

em,
a:link,
.intro	.subhead	{
					font-weight:	bold;
}

	Browsers	add	bold	formatting	to	h1–h6	headings	automatically.	I	applied	a	normal	font	weight	to
remove	it	from	all	h1	and	h2	elements.	I’ve	also	added	bold	formatting	to	em	text,	links,	and	the

.subhead	paragraph	below	the	h1	 .

	The	headings	have	a	normal	weight	instead	of	their	default	bold	(as	seen	in	figure	 	of	“Creating
Italics”).	The	paragraph	with	the	.subhead	class	is	bold,	as	are	all	links.

To	apply	bold	formatting
1.	Type	font-weight:.
2.	Type	bold	to	give	a	regular	bold	weight	to	the	text.	You’ll	likely	use	this	value	the	majority	of	the
time.
Or	type	a	multiple	of	100	(up	to	900),	where	400	typically	represents	normal	weight	(that	is,	not
bold)	and	700	is	the	same	as	typing	bold.	This	approach	is	useful	when	you’re	working	with	fonts

that	have	numerous	weights	available	(for	example,	you’ll	encounter	this	with	some	web	fonts).
Or	type	bolder	or	lighter	to	use	a	value	relative	to	the	current	weight	(it’s	uncommon	to	use
these).

To	remove	bold	formatting
Type	font-weight:	normal.	(Some	web	font	services,	like	Google	Fonts,	ask	you	to	use	font-
weight:	400	instead.)

Tip
Since	the	way	weights	are	defined	varies	from	font	to	font,	the	predefined	values	may	not
be	relative	from	font	to	font.	They	are	designed	to	be	relative	within	a	given	font	family,	so
700	in	one	font	might	look	heavier	than	in	another.

Tip
Fonts	themselves	don’t	always	include	different	weights	that	map	to	relative	values.	If	the
font	family	has	fewer	than	nine	weights,	or	if	they	are	concentrated	on	one	end	of	the	scale,
some	numeric	values	will	correspond	to	the	same	font	weight,	making	them	look	the	same	
.

	At	the	bottom	of	the	page,	you	see	a	link	(“The	Fountainhead”)	and	the	word	“all.”	Both	are
bold	because	of	our	new	style	rule,	but	they’re	also	italic	because	of	the	default	browser	styles.
The	phrases	are	marked	up	with	cite	and	em,	respectively,	to	reflect	their	meaning.	(You’ll	also

notice	that	the	“Park	Guell”	h2	has	a	normal	weight,	not	bold.)

Tip
For	the	reasons	noted	in	the	previous	two	tips,	it’s	customary	to	assign	bold	simply	with
font-weight:	bold.

Tip
Some	fonts	do	not	contain	a	set	of	bold	letters.	To	compensate,	browsers	will	create	a	faux
bold	effect	when	you	declare	font-weight:	bold;	with	such	a	font	(and).	See
a	related	discussion	of	faux	italics	in	“Creating	Italics.”

	Some	of	the	weights	look	the	same	because	Helvetica	doesn’t	have	a	different	set	of	characters
for	each	relative	weight.

	Just	as	with	italic	styling,	Palatino	Linotype	has	bold	letters	but	Geneva	doesn’t.	Consequently,
the	browser	fattens	Geneva	to	simulate	bold,	but	the	result	lacks	the	sharpness,	elegance,	and

attention	to	spacing	found	in	a	font	with	bold	letters.

Tip
What	can	you	remove	bold	formatting	from?	Any	element	where	it’s	been	applied
automatically	(strong,	h1–h6,	and	b	come	to	mind)	or	where	it’s	been	inherited	from	a
parent	element	(see	“Understanding	Inheritance”	in	Chapter	7).

Tip
The	font-weight	property	is	inherited.

Setting	the	Font	Size
There	are	two	primary	ways	to	set	the	font	size	for	the	text	in	your	webpage.	You	can	mandate	that	a
specific	size	be	defined	in	pixels	(through),	or	you	can	have	the	size	be	relative	to	the	element’s
parent	font	size	by	using	percentage,	em	(and),	or	rem	values	(see	the	“Sizing	Fonts	with	rem”
sidebar).
Click	here	to	view	code	image

...	[previous	CSS]	...

em,
a:link,
.intro	.subhead	{
					font-weight:	bold;
}

h1	{
					font-size:	35px;
}

h2	{
					font-size:	28px;
}

.intro	.subhead	{
					font-size:	18px;
}

.intro	p	{
					font-size:	17px;
}

.project	p	{
					font-size:	15px;
}

	Here	I	use	pixel	values	to	dictate	the	size	of	the	text	(and).

	The	font	sizes	I’ve	specified	are	displayed	in	the	browser.	The	different	heading	sizes	reflect	the
hierarchy	of	information.	The	paragraph	text	in	the	introductory	area	below	the	main	heading	is	larger	than

...

	...	the	paragraph	text	in	the	rest	of	the	page.
Click	here	to	view	code	image

body	{
					font-family:	Geneva,	Tahoma,	Verdana,	sans-serif;
					font-size:	100%;	/*	16px	*/
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
}

h1	{
					font-size:	2.1875em;	/*	35px/16px	*/
}

h2	{
					font-size:	1.75em;	/*	28px/16px	*/
}

em,
a:link,
.intro	.subhead	{
					font-weight:	bold;
}

.intro	.subhead	{
					font-size:	1.125em;	/*	18px/16px	*/
}

.intro	p	{
					font-size:	1.0625em;	/*	17px/16px	*/
}

.project	p	{
					font-size:	.9375em;	/*	15px/16px	*/
}

	The	font-size:	100%	declaration	on	body	sets	a	baseline	from	which	the	em	font	sizes	are
based.	That	100%	translates	to	an	equivalent	default	text	size	of	16	pixels	on	most	systems.	So	this	style
sheet	result	will	be	equivalent	to	the	one	shown	in	 .	The	comment	following	each	font-size	value

explains	how	it	was	calculated,	showing	the	typical	pixel	equivalents.

	On	most	systems	with	default	settings,	the	em-based	font	sizes	match	those	from	the	pixel-based
version	(and).

Pixels	are	often	easier	for	beginners	to	use,	but	I	really	encourage	you	to	learn	and	use	a	relative	unit	like
ems.	They	allow	for	greater	flexibility	and	for	sizing	various	parts	of	your	page	designs—such	as	spacing
and	padding—relative	to	font	sizes.	Relative	units	have	become	even	more	valuable	with	the	explosion	of
devices	of	various	sizes	(smartphones,	tablets,	and	so	on);	relative	units	can	help	you	build	sites	that
display	nicely	across	that	spectrum.	(This	is	what	responsive	web	design	is	all	about;	see	Chapter	12.)

Understanding	em	and	percentage	font	sizes
Setting	the	size	relative	to	the	parent	takes	a	little	getting	used	to;	you	need	to	understand	how	the	browser
treats	these	units	relative	to	their	parents.	I’ll	explain	that	in	a	minute.

But	first,	when	you	use	relative	font	sizes	it’s	best	to	establish	a	baseline	on	the	body	element;	you	do
that	by	declaring	body	{	font-size:	100%;	}	 .	Most	of	the	time,	this	sets	the	size	to	the
equivalent	of	16px,	because	that	is	the	default	font	size	in	most	browsers.	As	usual,	that	value	flows	down
to	the	other	elements—remember,	font-size	is	an	inherited	property—unless	they	are	given	their	own
font-size	by	a	browser	default	or	by	you	in	your	style	sheet.	(Most	elements	will	be	16px,	but	h1–h6
headings	are	larger	by	default.)
So	how	do	you	figure	out	what	em	values	to	specify?	Well,	1em	is	always	equal	to	the	parent’s	size;	that’s
how	ems	work.	In	this	case,	1em	is	equivalent	to	16px	because	we’ve	established	that	as	the	default	for
elements.	From	there	you	can	determine	the	em	(or	percentage)	values	with	just	a	tiny	bit	of	division:
Click	here	to	view	code	image

desired	size	/	parent's	size	=	value

Let’s	look	at	how	to	apply	that	to	change	some	of	our	pixel	values	from	figure	 	to	ems.	For	example,
you	want	the	h1	to	resemble	35px,	and	you	already	know	that	the	parent’s	size	is	16px.	So:

35	/	16	=	2.1875

So	by	defining	h1	{	font-size:	2.1875em;	},	you’re	all	set	 .	What	this	says	is,	“Make	the
h1	text	2.1875	times	as	large	as	its	parent’s	text.”	Another	way	to	write	the	rule	would	be	h1	{	font-
size:	218.75%;	}.	However,	aside	from	setting	the	base	font-size	on	body	with	a	percentage,
it’s	more	common	to	size	type	in	ems	rather	than	percentages.
Here’s	another	one.	You	want	the	paragraphs	in	the	sections	with	the	project	class	to	be	15px,	and:

15	/	16	=	.9375

So	you	set	.project	p	{	font-size:	.9375em;	}	 .	(Alternatively,	this	could	be	93.75%.)
Let’s	discuss	one	more	example,	since	this	is	where	you	can	get	tripped	up	with	relative	values.	The
second	paragraph	on	the	page	(“Gaudí’s	non-conformity...”)	contains	two	links	(and).	The
paragraph	itself	is	styled	with	.intro	p	{	font-size:	1.0625em;	}	 ,	which	makes	it	17
pixels	because	17/16	=	1.0625.
Click	here	to	view	code	image

...
<div	class="intro">
					<h1>Barcelona's	Architect</h1>
					...
					<p>Gaudí's	non-conformity...His	search	for	simplicity...is	quite	apparent	in	his
work,	from	the	Park	Guell	...	to	the	Church	of	the	Sacred	Family	and	its	organic,	bulbous	towers.</p>
</div>
...

	Part	of	the	HTML,	which	has	two	a	elements	nested	in	their	parent	p.	The	intro	class	on	the	div
container	allows	for	styling	the	paragraphs	and	links	for	this	part	of	the	page	(and)	without	affecting

the	same	elements	elsewhere.

Now	suppose	you	want	to	make	the	links	16px	while	leaving	the	other	paragraph	text	at	17px.	You	might
be	inclined	to	set	the	links	with	.intro	a	{	font-size:	1em;	},	thinking	that	1em	=	16px.
But	remember	that	these	values	are	relative	to	their	parent,	and	the	parent	in	this	case	is	the	p.	And	that

paragraph’s	size	is	17px,	not	16px,	making	1em	equivalent	to	17px	(as	I	said	earlier,	1em	always	equals
the	parent’s	font	size).
So	in	order	to	make	the	links	16px,	you	need	to	use	an	em	value	smaller	than	1em.	We’ll	use	the	same
handy	formula	as	before:	desired	size	/	parent's	size	=	value.

16	/	17	=	.941176

So	the	slightly	verbose	.intro	a	{	font-size:	.941176em;	}	gives	us	the	desired	result.	(I
truncated	the	number	a	bit	so	as	not	to	frighten	you	too	much.)
One	final	point	regarding	relative	font	sizes:	Remember	that	a	body	font-size	of	100%	maps	to	a
default	of	16px	most	of	the	time.	One	case	in	which	that	can	deviate	is	when	a	user	overrides	the	default
in	their	browser	settings;	for	instance,	making	it	22px	if	they	prefer	(or	require)	larger	text.	With	body	set
to	100%,	your	page	respects	this	and	sizes	the	rest	of	the	text	accordingly,	er,	relatively!	That’s	the	beauty
of	sizing	your	text	with	the	likes	of	ems	and	percentages.	(The	same	is	true	of	rem	units	when	you	set	the
html	element	to	100%;	see	the	“Sizing	Fonts	with	Rem”	sidebar.)	See	the	last	tip	for	more	reasons	to
use	ems.

Sizing	Fonts	with	rem
CSS3	introduces	some	new	units.	One	of	the	most	interesting	ones	is	rem,	short	for	root
em.	It’s	like	em,	but	it	sizes	everything	relative	to	the	root	 	instead	of	to	the	parent
element.	The	root	is	the	html	element	(because	it	contains	body,	which	in	turn	contains
the	rest	of	your	content).

Click	here	to	view	code	image

html	{
					font-size:	100%;	/*	16px	usually	*/
}

.intro	p	{
					font-size:	17px;	/*	optional	*/
					font-size:	1.0625rem;	/*	17px/16px	*/
}

.intro	a	{
					font-size:	16px;	/*	optional	*/
					font-size:	1rem;	/*	was	.941176em	*/
}

	With	rems,	only	the	root	element’s	font	size	matters,	not	the	size	of	the	links’	parent	p.	Since
the	root	(html)	is	set	to	100%,	which	typically	maps	to	16px,	setting	the	a	elements	to	1rem
makes	the	links	the	equivalent	of	16px,	too.	Separately,	the	styles	marked	/*	optional	*/
show	how	you	can	provide	pixel	sizes	as	a	fallback	for	IE8	and	other	browsers	that	don’t	support

rem.

This	simplifies	matters	because	the	font	size	of	html	won’t	vary,	unlike	a	parent’s	size
can,	as	I	demonstrated	with	the	example	of	sizing	links	in	a	paragraph.	(See
“Understanding	em	and	percentage	font	sizes.”)	This	means	our	formula	(adjusted	from
earlier)	is:
desired	size	/	root	size	=	value
Which	is	really:
desired	size	/	16	=	value
Easier,	right?	I	can	hear	you	rejoicing	already.
Hold	your	horses.	Support	for	rem	is	strong	in	modern	browsers,	but	unfortunately	Internet
Explorer	didn’t	support	it	until	version	9	(http://caniuse.com/#search=rem).	IE8	still	has	a
large	enough	market	share	in	most	parts	of	the	world	that	it	is	usually	worth
accommodating	when	building	a	site.	This	is	one	reason	why	more	coders	haven’t	used
rems.
However,	one	strategy	you	can	use	is	to	provide	a	default	px	value	for	earlier	versions	of
IE,	followed	by	the	rem	equivalent	for	modern	browsers	 .	Of	course,	one	drawback	to
that	is	that	it’s	extra	code	for	you	to	manage	and	for	browsers	to	load.	Another	is	that	users
cannot	resize	text	in	IE8	if	it	is	pixel-based	(see	the	tips);	admittedly,	this	affects	a	small
percentage	of	users.	You	might	decide	that	the	trade-offs	are	worth	it.

http://caniuse.com/#search=rem

To	mandate	a	specific	font	size
1.	Type	font-size:.
2.	Type	a	specific	size	after	the	colon	(:),	such	as	13px.	(See	 	for	pixel	examples.)
Or	use	a	keyword	to	specify	the	size:
xx-small,	x-small,	small,	medium,	large,	x-large,	or	xx-large.
See	“A	Property’s	Value”	in	Chapter	7	for	details	about	units.

Tip
There	shouldn’t	be	any	spaces	between	the	number	and	the	unit.

Tip
If	you	set	the	font	size	with	pixels,	visitors	using	IE8	or	earlier	versions	will	not	be	able	to
make	the	text	bigger	or	smaller	with	the	browser’s	text	size	option.	That’s	one	argument	for
sizing	your	fonts	with	ems	or	percentages.	Beginning	with	IE7,	visitors	can	zoom	the	entire
page	in	and	out,	though	it	isn’t	the	same	as	changing	only	the	text	size.	Nowadays,	coders
don’t	worry	about	IE6	and	IE7	for	most	sites	because	their	user	base	is	so	low.	One
exception	is	China,	where	IE6	still	represents	roughly	25	percent	of	users	at	the	time	of
this	writing.	You	can	check	approximate	worldwide	numbers	at	www.ie6countdown.com.

Tip
Different	browsers	may	interpret	the	keywords	in	different	ways.

Tip
Use	points	(pt)	as	the	unit	type	in	print	style	sheets.

Tip
The	font-size	property	is	inherited.

To	set	a	size	that	depends	on	the	parent	element’s	size
1.	Type	font-size:.
2.	Type	the	relative	value	following	the	colon	(:),	such	as	1.5em	or	150%.	(See	 	for	em	and
percentage	examples.)
Or	use	a	relative	keyword:	larger	or	smaller.	(These	are	less	common	to	use	than
percentages,	which	are	themselves	less	common	than	ems.)

To	set	a	size	that	depends	on	the	root	element’s	size
1.	Type	font-size:.
2.	Type	the	root	relative	value	following	the	colon	(:),	such	as.875rem.	(See	 	for	rem	examples.)

http://www.ie6countdown.com

Tip
The	parent	element’s	size	may	be	set	by	the	user	(pretty	uncommon)	or	by	you	as	the	coder,
may	be	inherited	from	its	parent,	or	may	come	from	the	browser’s	defaults.	As	mentioned,
on	most	current	browsers	the	default	font	size	for	the	body	element	is	16	pixels.

Tip
The	child	of	an	element	with	a	relative	size	inherits	the	size,	not	the	relative	factor.	So,	the
a	elements	in	the	p	 	inherit	a	size	of	15	pixels	 ,	not	a	relative	value	of	.9375em.	The
links	display	as	15px	just	like	the	paragraph	text	unless	you	override	it.

Tip
You	can	set	font	size	together	with	other	font	values.	See	“Setting	All	Font	Values	at
Once,”	later	in	this	chapter.

Tip
Chris	Coyier	notes	a	variety	of	reasons	why	ems	are	preferable	to	pixels	at	http://css-
tricks.com/why-ems/.

Setting	the	Line	Height
Line	height	refers	to	a	paragraph’s	leading,	which	is	the	amount	of	space	between	each	line	in	a	paragraph
(and).	Using	a	large	line	height	can	sometimes	make	your	body	text	easier	to	read.	A	small	line
height	for	headings	with	more	than	one	line	often	makes	them	look	more	cohesive.
Click	here	to	view	code	image

...	previous	CSS	...

.intro	{
					line-height:	1.45;
}

.intro	.subhead	{
					font-size:	1.125em;
}

.intro	p	{
					font-size:	1.0625em;
}

.project	p	{
					font-size:	.9375em;	/*	15px/16px	*/
					line-height:	1.65;	/*	15px*1.65	=	24.75px	*/
}

http://css-tricks.com/why-ems/

	Assuming	a	default	body	element	font	size	of	16	pixels,	the	font	size	of	the	paragraphs	within
.project	typically	will	equal	15	pixels	when	set	to	.9375em	(15/16	=	.9375).	The	line	height	will
be	1.65	times	those	15	pixels,	or	about	24.75	pixels.	I	also	set	the	.intro	container’s	line-height,

which	is	inherited	by	its	descendants.

	Spacing	out	lines	with	line-height	can	make	them	easier	to	read.	The	difference	in	this	case	is
more	obvious	for	the	main	text	(at	the	bottom)	than	for	the	intro	text	(at	the	top).

To	set	the	line	height
1.	Type	line-height:.
2.	Type	n,	where	n	is	a	number	that	will	be	multiplied	by	the	element’s	font	size	to	obtain	the	desired
line	height.	(This	is	the	most	common	approach;	just	a	number	with	no	unit.)
Or	type	a,	where	a	is	a	value	in	ems,	pixels,	or	points	that	does	include	the	unit	type	(em,	px,	or
pt).	(Use	points	only	for	print.)
Or	type	p%,	where	p%	is	a	percentage	of	the	font	size.

Tip
If	you	use	a	number	to	determine	the	line	height	(as	is	common),	this	factor	is	inherited	by
all	child	items.	So	if	a	parent’s	font	size	is	set	to	16px	(or	the	equivalent	in	ems	or	such)
and	the	line	height	is	1.5,	the	parent’s	line	height	will	be	24	(16	×	1.5).	If	the	child’s	font
size	is	10,	its	line	height	will	be	15	(10	×	1.5).

Tip
If	you	use	a	percentage	or	em	value,	only	the	resulting	size	(or	“computed	value”)	is
inherited.	So	given	a	parent	at	16	pixels	with	a	line	height	of	150%,	the	parent’s	line	height
will	still	be	24	pixels;	however,	all	child	elements	will	also	inherit	a	line	height	of	24
pixels,	regardless	of	their	font	size.

Tip
You	can	specify	the	line	height	together	with	the	font	family,	size,	weight,	style,	and
variant,	as	described	in	the	next	section.

Setting	All	Font	Values	at	Once
You	can	set	the	font	style,	weight,	variant,	size,	line	height,	and	family	all	at	once	with	the	font
shorthand	property	(and).	This	is	more	efficient	than	declaring	the	properties	separately,	so	it	can
help	keep	your	style	sheets	lean.
Click	here	to	view	code	image

body	{
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,
h2	{
					/*	Can't	combine	these	into
					font	shorthand	unless	you	include
					font	size	in	the	shorthand.	*/
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
}

h1	{	font-size:	2.1875em;	}

h2	{	font-size:	1.75em;	}

em,
a:link,
.intro	.subhead	{
					font-weight:	bold;
}

.intro	{
					line-height:	1.45;
}

.intro	.subhead	{
					font-size:	1.125em;
}

.intro	p	{
					font-size:	1.0625em;
}

.project	p	{
					/*	Can't	combine	these	into
					font	shorthand	unless	you	include
					font	family	in	the	shorthand.	*/
					font-size:	.9375em;
					line-height:	1.65;
}

	This	style	sheet	is	equivalent	to	the	one	shown	in	 	in	“Setting	the	Line	Height,”	as	is	the	resulting
display	 .	I’ve	simply	consolidated	the	font	properties	for	the	body.	I	couldn’t	consolidate	either	the
h1	or	h2	font	styles	or	those	for	.project	p	because	font	shorthand	requires	both	the	family	and

size	properties	at	a	minimum.	See	 	and	 	for	more	examples.

	This	page	is	identical	to	the	one	shown	in	 	in	“Setting	the	Line	Height.”

You	don’t	have	to	specify	all	font	properties,	but	each	use	of	font	shorthand	must	include	the	font	size
and	family	at	a	minimum	(hence	the	two	comments	in	 	noting	where	shorthand	cannot	be	used).

To	set	all	font	values	at	once
1.	Type	font:.
2.	Optionally	type	normal,	italic,	or	oblique	to	set	the	font	style	(see	“Creating	Italics”).

3.	Optionally	type	normal,	bold,	bolder,	lighter,	or	a	multiple	of	100	(up	to	900)	to	set	the
font	weight	(see	“Applying	Bold	Formatting”).

4.	Optionally	type	normal	or	small-caps	to	remove	or	set	small	caps	as	the	font	variant	(see
“Using	Small	Caps”).

5.	Type	the	desired	font	size	(see	“Setting	the	Font	Size”).
6.	If	desired,	type	/line-height,	where	line-height	is	the	amount	of	space	there	should	be
between	lines	(see	“Setting	the	Line	Height”).

7.	Type	a	space	followed	by	the	desired	font	family	or	families	in	order	of	preference,	separated	by
commas,	as	described	in	“Choosing	a	Font	Family.”

Tip
The	size	and	family	properties	must	always	be	specified	in	this	order:	first	the	size,	then
the	family.

Tip
The	line	height,	which	is	optional,	must	come	directly	after	the	size	and	the	forward	slash
and	before	the	family	(and).

Click	here	to	view	code	image

.example-2	{
					font:	.875em/1.3	"Palatino	Linotype",	Palatino,	serif;
}

	This	example	combines	the	font-size,	line-height,	and	font-family	declarations
into	font	shorthand.	The	line	height	follows	the	size	and	forward	slash.	You	can	also	include	the

font-style,	font-variant,	and	font-weight	 .
Click	here	to	view	code	image

.example-3	{
					font:	italic	small-caps	bold	.875em/1.3	"Palatino	Linotype",	Palatino,	serif;
}

	This	example	has	all	possible	properties	in	a	font	declaration.	You	can	use	any	combination
of	the	properties	as	long	as	both	the	size	and	family	are	declared.	The	order	of	the	first	three

properties	is	not	important.

Tip
The	properties	in	steps	2–4	may	be	specified	in	any	order	 	or	omitted	(and).	If	you
omit	them,	they	are	set	to	normal—which	may	not	be	what	you	expected.

Tip
The	font	property	is	inherited.

Setting	the	Color
You	can	also	change	the	color	of	the	text	on	your	webpage.	Your	style	sheets	can	contain	any	combination
of	color	name,	hexadecimal,	RGB,	HSL,	RGBA,	and	HSLA	values	to	define	your	colors	(and).
(See	“CSS	colors”	in	the	Chapter	7	section	“A	Property’s	Value”	for	more	about	these	various	color
values.)
Click	here	to	view	code	image

body	{
					color:	blue;
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

...

h2	{
					color:	#7d717c;
					font-size:	1.75em;
}

...

/*	::::	Links	::::	*/
a:link	{
					color:	#e10000;	/*	a	red	*/
}

a:visited	{
					color:	#b44f4f;
}

a:hover	{
					color:	#f00;
}

.intro	a	{
					color:	#fdb09d;	/*	a	little	pinkish	*/
}

.intro	a:hover	{
					color:	#fec4b6;
}

	Set	your	page’s	default	text	color	on	body	so	all	elements	(except	links)	will	inherit	it.	Then	declare
other	colors	directly	on	elements	as	desired,	like	I’ve	done	with	h2.	Note	that	the	a:hover	color
(#f00)	uses	the	abbreviation	discussed	in	the	first	tip.	(I’ve	used	the	blue	on	body	just	to	show	the

effect;	I	won’t	leave	it	this	way.)

	As	expected,	the,	umm,	rather	obvious	blue	is	applied	to	most	text.	The	h2	headings	override	that	with
a	medium	gray	(#7d717c).	The	default	link	color	is	red	(#e10000)	but	is	overridden	by	the	setting	for
the	pinkish	(#fdb09d)	link	color	in	the	.intro	area	at	the	top.	I’ll	be	setting	some	text	to	white	in	the

next	section	when	I	apply	background	colors—if	I	were	to	do	it	now,	you	wouldn’t	see	it!

To	set	the	color
1.	Type	color:.
2.	Type	colorname,	where	colorname	is	one	of	the	predefined	colors.
Or	type	#rrggbb,	where	rrggbb	is	the	color’s	hexadecimal	representation.	This	is	the	most
common	way	to	specify	colors.
Or	type	rgb(r,	g,	b),	where	r,	g,	and	b	are	integers	from	0–255	that	specify	the	amount	of	red,
green,	and	blue,	respectively,	in	the	desired	color.
Or	type	rgb(r%,	g%,	b%),	where	r,	g,	and	b	give	the	percentage	of	red,	green,	and	blue	in	the
desired	color.
Or	type	hsl(h,	s,	l),	where	h	is	an	integer	from	0–360	that	specifies	the	hue,	and	s	and	l	are
percentages	from	0	to	100	that	specify	the	amount	of	saturation	and	lightness,	respectively,	in	the
desired	color.	(Generally,	it’s	better	to	instead	use	hex	or	RGB	for	non-transparent	colors.)
Or	type	rgba(r,	g,	b,	a),	where	r,	g,	and	b	are	integers	from	0–255	that	specify	the	amount	of
red,	green,	and	blue,	and	a	is	a	decimal	from	0	to	1	that	specifies	the	amount	of	alpha	transparency
in	the	desired	color.
Or	type	hsla(h,	s,	l,	a),	where	h	is	an	integer	from	0–360	that	specifies	the	hue,	s	and	l	are
percentages	from	0	to	100	that	specify	the	amount	of	saturation	and	lightness,	respectively,	and	a	is
a	decimal	from	0	to	1	that	specifies	the	amount	of	alpha	transparency	in	the	desired	color.
If	you	type	a	value	higher	than	255	for	r,	g,	or	b,	255	will	be	used.	Similarly,	a	percentage	higher
than	100	will	be	substituted	with	100.

Tip
You	can	abbreviate	hexadecimal	notation	when	a	hex	value	contains	three	pairs	of	repeated
digits.	In	fact,	I	recommend	it.	So	you	could	(and	should)	write	#FF0099	as	#F09	or
#f09.	Similarly,	#CC0000	would	become	#C00	or	#c00.	However,	a	value	like
#31AA55	contains	only	two	pairs	that	repeat,	so	it	cannot	be	shortened	to	#31a5.

Tip
Keep	in	mind	that	Internet	Explorer	didn’t	support	HSL,	RGBA,	and	HSLA	until	IE9,	so	if
you	use	any	of	those	in	your	color	declarations	you’ll	have	to	define	fallback	colors	for
older	versions	of	IE.	See	“CSS	colors”	in	the	Chapter	7	section	“A	Property’s	Value”	for
details.

Tip
Figure	 	in	“Decorating	Text”	shows	the	:hover	link	colors	in	action.

Tip
The	color	property	is	inherited	by	all	text	elements	except	links	(the	a	element).	Links
must	be	styled	explicitly,	as	shown	in	 .

Setting	the	Background
You	have	a	lot	of	options	when	styling	backgrounds.	You	can	set	the	background	of	individual	elements,
the	whole	page,	or	any	combination	of	the	two.	In	so	doing,	you	can	change	the	background	of	just	a	few
paragraphs	or	words,	links	in	their	different	states,	sections	of	content,	and	more.	In	short,	you	can	apply
backgrounds	to	nearly	every	element,	even	forms	and	images	(yes,	an	image	can	have	a	background
image!).
You	also	have	a	lot	of	properties	to	leverage.	Some	of	them	are	background-color,
background-image,	background-repeat,	background-attachment,	and
background-position.	Better	still,	the	background	shorthand	property	allows	you	to	save	a	lot
of	typing	by	combining	the	properties.	We’ll	cover	all	of	these	in	this	section.
We’ll	start	out	by	adding	background	colors	to	our	evolving	page	before	deviating	for	a	bit	with
additional	background-related	examples.

To	change	the	background	color
1.	Type	background-color:.
2.	Type	transparent	(to	let	the	parent	element’s	background	show	through)	or	color,	where
color	is	a	color	name	or	a	hex,	RGB,	RGBA,	HSL,	or	HSLA	color	value	(see	step	2	in	“Setting
the	Color”)	(through).	Hex	colors	are	the	most	common.

Click	here	to	view	code	image

body	{
					background-color:	#88b2d2;
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

...

h2	{
					background-color:	#eaebef;
					color:	#7d717c;
					font-size:	1.75em;
}

.intro	{
					background-color:	#686a63;
					color:	#fff;
					line-height:	1.45;
}

...

	Setting	the	background	color	of	the	body	element	colors	the	whole	page	except	where	other	elements
are	given	their	own	backgrounds.	The	background	set	on	the	div	element	with	the	intro	class

distinguishes	that	area	from	other	parts	of	the	page	 .

	The	entire	page	(the	body)	has	a	light	blue	background.	It	is	overridden	in	two	cases:	the	brown
background	of	the	intro	div	and	the	light	gray	background	of	the	level	2	heading.

Click	here	to	view	code	image

.architect	{
					background-color:	#fff;
}

	The	article	element	that	contains	all	content	has	class="architect"	assigned	to	it,	so	this
CSS	will	give	it	a	white	background	except	in	a	couple	of	spots	 .

	The	white	fills	out	the	content	area.	The	.intro	area	and	the	h2	are	also	descendants	of	the
article	with	the	architect	class,	so	their	backgrounds	would	also	be	white	if	not	for	the	different
backgrounds	we	gave	them	earlier	 .	We	still	see	some	of	the	light	blue	body	background	around	the

.architect	article	because	of	the	browser’s	default	margin	setting	on	body.
Click	here	to	view	code	image

...

.architect	{
					background-color:	#fff;
					padding:	1.5em	1.75em;
}

.intro	{
					background-color:	#686a63;
					color:	#fff;
					line-height:	1.45;
					padding:	1px	1.875em	.7em;
}

...

	I’m	cheating	a	little	bit	by	using	a	property	we	won’t	cover	until	the	next	chapter	(see	“Adding
Padding	Around	an	Element”).	Hopefully,	you’ll	forgive	me.

	Amazing	what	a	little	padding	can	do—the	page	is	actually	looking	respectable	now.

To	use	a	background	image
1.	Type	background-image:.
2.	Then	type	url(image.png),	where	image.png	is	the	location	and	file	name	of	the
background	image	relative	to	the	location	of	the	style	sheet	 .	Or	type	none	to	use	no	image	at	all,
as	in	background-image:	none;	(you’d	only	use	this	when	overriding	another	style	rule
that’s	applying	a	background	image	to	the	element).

Click	here	to	view	code	image

body	{
					background-color:	#ccc;
					background-image:	url(bg-pattern.png);
					...
}

	The	image	URL	reflects	the	location	of	the	style	sheet	relative	to	the	image.	I’ve	kept	it	simple	here;
see	the	second	tip.	I	want	the	image	to	fill	out	the	entire	page,	but	I	don’t	have	to	set	background-

repeat,	because	background	images	repeat	by	default	 .	Visitors	will	see	the	background	color	only	if
the	image	loads	slowly	(like	on	a	mobile	connection)	or	if	the	image	fails	to	load	for	some	reason.

	The	background	image	(top)	contains	a	nice	pattern.	When	added	to	the	page	body,	it	repeats
infinitely	both	horizontally	and	vertically.	I	made	the	content	narrower	so	you	could	see	the	effect.

To	repeat	a	background	image
Type	background-repeat:	direction,	where	direction	is	either	repeat	to	tile	the	image
both	horizontally	and	vertically	 ,	repeat-x	to	tile	the	image	only	horizontally	(through),
repeat-y	to	tile	the	image	only	vertically,	or	no-repeat	to	not	tile	the	image	at	all.	(Leaving	out
background-repeat	defaults	to	repeat	 .)
Click	here	to	view	code	image

body	{
					background-image:	url(sky.png);
					background-repeat:	repeat-x;
					background-position:	left	bottom;
					...
}

	This	time	we	want	the	image	to	repeat	only	horizontally	(the	x-axis).	Its	starting	position	will	be	the
lower-left	corner	of	the	page.	Notice	that	I	didn’t	provide	a	background	color.

	This	background	image	(top)	goes	from	black	to	blue	to	green,	so	it’s	better	suited	for	tiling
horizontally.	But	it	isn’t	tall	enough	to	fill	the	page,	making	the	downside	of	not	specifying	a	background
color	obvious.	The	text	isn’t	cut	off,	we	just	can’t	see	it	because	it’s	the	same	color	as	the	default	white

background.
Click	here	to	view	code	image

html	{
					min-height:	100%;
}

body	{
					background-color:	#000;
					...
}

	Building	on	figure	 ,	the	background	color	will	fill	in	the	spots	that	the	image	doesn’t	cover.	I’ve	also
added	a	rule	that	forces	the	html	element	to	have	a	minimum	height	of	100%	of	the	browser	window’s
height	 .	(Note:	This	html	rule	isn’t	necessary	when	background-attachment	is	set	to	fixed,

as	you’ll	see	shortly.)

	The	black	(#000)	background	color	blends	perfectly	with	the	black	at	the	top	of	the	image.	And	now
you	can	see	the	text!	This	composite	image	shows	two	snapshots	of	the	page	in	browser	windows	of

identical	height.	The	sliver	on	the	left	shows	what	happens	when	you	don’t	include	the	rule	in	 	for	the
html	element—the	background	image	stops	a	little	below	the	text	because	that’s	where	the	page	ends,

revealing	the	black	background	color	below	it.

To	control	whether	the	background	image	is	attached
1.	Type	background-attachment:.
2.	Then	type	fixed	 	to	stick	the	background	image	to	the	browser	window	(meaning	it	will
continue	to	show	even	if	the	visitor	scrolls	the	page),	scroll	to	let	it	move	when	the	visitor

scrolls	the	whole	page	 ,	or	local	so	it	scrolls	only	when	the	visitor	scrolls	its	element	(not	the
whole	page).	(Leaving	out	background-attachment,	as	is	usually	the	case,	defaults	to
scroll.)

Click	here	to	view	code	image

body	{
					background-color:	#000;
					background-image:	url(sky.png);
					background-repeat:	repeat-x;
					background-attachment:	fixed;
					background-position:	left	bottom;
					...
}

	When	combined	with	our	background-position	setting,	the	fixed	value	will	ensure	that	our
background	image	is	attached	to	the	lower-left	corner	of	the	browser	window.

	The	background	image	stays	fixed	in	place	no	matter	how	much	content	there	is	or	how	much	you
scroll.

	This	is	how	 	would	look	without	background-attachment:	fixed;.	(Leaving	it	out	is	the
same	as	setting	background-attachment:	scroll;,	because	scroll	is	the	default.)	The
background	image	moves	with	the	content,	so	you	can’t	see	all	of	it	until	you	scroll	to	the	bottom	of	the

page	(shown	at	right).

To	specify	the	position	of	an	element’s	background	image
Type	background-position:	x	y,	where	x	and	y	can	be	expressed	as	a	percentage	or	as	an
absolute	distance	 ,	such	as	20px	147px	(negative	values	are	also	allowed).	Or	use	the	values	left,
center,	or	right	for	x	and	top,	center,	or	bottom	for	y	 .	(If	both	values	are	keywords,	they
can	be	in	either	order;	for	example,	top	right	is	the	same	as	right	top).
Click	here	to	view	code	image

body	{
					background:	#004	url(../img/ufo.png)	no-repeat	170px	20px;
					color:	greenyellow;
					...
}

	It’s	high	time	we	condensed	all	those	individual	declarations	into	the	background	shorthand
notation.	In	doing	so,	instead	of	using	background-position,	I’ve	tacked	the	horizontal	and	vertical

position	values	at	the	end.	Note	the	use	of	no-repeat	to	make	the	image	appear	only	once	 .

	The	UFO	appears	170	pixels	from	the	left	edge	of	the	page	and	20	pixels	from	the	top,	making	room
for	our	Martian-green	text.	The	image	is	transparent	around	the	shape	(and	the	tractor	beam	has	alpha

transparency),	so	it	blends	right	in	with	the	dark	blue	body	background	color.

To	change	all	the	background	properties	at	once
1.	Type	background:.
2.	Specify	any	of	the	accepted	background	property	values	(as	described	beginning	with	“To	change
the	background	color”	and	continuing	through	“To	specify	the	position	of	an	element’s	background
image”)	in	any	order	 .

Tip
Although	most	examples	involve	styling	the	body,	don’t	forget	you	can	apply	backgrounds
to	nearly	every	HTML	element.

Tip
I	used	basic	background	image	URLs	to	simplify	most	examples.	In	practice,	your	URLs
will	be	something	like	../img/ufo.png	 	because	it’s	better	to	avoid	putting	your
images	in	the	same	folder	as	your	style	sheets.	This	chapter’s	examples	on	the	book’s	site
use	a	folder	structure	similar	to	 ,	with	CSS	background	image	paths	adjusted
accordingly.

	With	the	structure	shown,	style.css	would	need	a	declaration	like	background:
url(../img/pattern.png);	to	show	pattern.bg.	See	“URLs”	in	Chapter	7	for	more

information.

Tip
The	default	for	background-color	is	transparent.	The	default	for
background-image	is	none.	The	default	for	background-repeat	is	repeat.
The	default	for	background-attachment	is	scroll.	The	default	for
background-position	is	0	0	(this	is	the	same	as	top	left).	You	only	need	to
explicitly	set	default	values	when	you	want	to	override	another	style	rule.

Tip
It’s	common	to	use	the	background	shorthand	whenever	possible.	You	needn’t	specify
all	the	properties	with	it.	For	example,	in	practice	I	would	usually	rewrite	the	rule	in	 	as
background:	#ccc	url(bg-pattern.png);.	But	be	aware	that	if	any	non-
specified	properties	are	set	to	their	defaults,	they	may	override	earlier	style	rules.

Tip
By	default,	an	element’s	background	fills	its	content	and	padding	areas	(and)	and
extends	behind	its	border	(see	“The	Box	Model”	in	Chapter	11).	You	can	change	this	with
background-clip	(see	the	sidebar	“More	Background	Control	with	CSS3”).

Tip
The	local	value	for	background-attachment	is	new	in	CSS3.	Lea	Verou
demonstrates	it	at	http://lea.verou.me/2012/04/background-attachment-local/.	Browser
support	is	limited	to	IE9+,	Chrome,	Safari,	and	Opera—no	Firefox.

Tip
You	can	use	negative	values	with	the	background-position	property.	For	example,
background-position:	-45px	80px	positions	the	image	to	the	left—not	from
the	left—45	pixels	(so	you	won’t	see	the	first	45	horizontal	pixels	of	the	image)	and	80
pixels	down	from	the	top	of	the	element.

Tip
Be	sure	to	create	enough	contrast	between	the	text	and	background.	Not	only	does	this	help
the	average	user,	but	it’s	important	for	vision-impaired	visitors.	(See
http://contrastrebellion.com.)	Lea	Verou	comes	through	again	here,	having	created	a	tool
(http://leaverou.github.com/contrast-ratio/)	that	helps	you	choose	colors	with	sufficient
contrast	to	meet	accessibility	guidelines.

Tip
If	we	had	not	used	background-position:	left	bottom;	for	 ,	the	effect
would	be	reversed.	We’d	see	the	image	repeat	across	the	top	of	the	page	(the	default
position).	As	you	scroll	down,	the	image	would	scroll	out	of	view	along	with	the	content.

http://lea.verou.me/2012/04/background-attachment-local/
http://contrastrebellion.com
http://leaverou.github.com/contrast-ratio/

More	Background	Control	with	CSS3
CSS3	provides	more	background	effects.	I	cover	gradients	and	multiple	backgrounds	in
Chapter	14.
The	background-clip	and	background-origin	properties	control	where	an
element’s	background	displays	and	begins,	respectively.	Both	properties	accept	the	same
values:	content-box	encompasses	the	content;	padding-box	encompasses	the
content	and	padding;	and	border-box	encompasses	the	content,	padding,	and	border.
(See	“The	Box	Model”	in	Chapter	11.)	The	defaults	are	background-clip:	border-
box;	and	background-origin:	padding-box;.	Learn	more	at	http://css-
tricks.com/transparent-borders-with-background-clip/.
The	background-size	property	controls	a	background	image’s	size	via	the	following
values:
	contain–Makes	the	image	as	large	as	possible	while	showing	its	full	width	and
height.	It	might	not	fill	the	entire	background	area.
	cover–Makes	the	image	as	small	as	possible	while	filling	the	element’s	entire
background	area.	Part	of	the	image	might	be	scaled	out	of	view.
	A	length,	percentage,	or	auto–For	example,	background-size:	250px
400px;	or	background-size:	50%	50%;.

Learn	more	at	www.css3.info/background-size/.	The	property	is	especially	handy	with
sprites	(see	the	last	page	of	“Putting	It	All	Together”	in	Chapter	12).
Most	of	the	new	background	styles	are	covered	at	www.sitepoint.com/new-properties-
and-values-in-backgrounds-with-css3/.

Controlling	Spacing
You	can	add	or	reduce	space	between	words	(which	is	called	tracking)	or	between	letters	(which	is
called	kerning)	 .
Click	here	to	view	code	image

http://css-tricks.com/transparent-borders-with-background-clip/
http://www.css3.info/background-size/
http://www.sitepoint.com/new-properties-and-values-in-backgrounds-with-css3/

body	{
					background-color:	#88b2d2;
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;

					/*	temporary	for	demo	purposes	*/
					letter-spacing:	7px;
}

h1	{
					font-size:	2.1875em;
}

...	rest	of	CSS	...

	I’ve	added	seven	pixels	of	extra	space	between	each	heading	letter	to	make	the	effect	of	letter-
spacing	more	clear	 .	I’ll	reduce	this	value	to	1px	in	subsequent	examples.

	The	letters	in	all	headings	now	have	more	space	between	them.	Compare	the	spacing	here	with	figure	
	in	“Setting	the	Background.”	This	is	temporary,	however;	I’ll	reduce	it	in	the	next	section.

To	specify	tracking
Type	word-spacing:	length,	where	length	is	a	number	with	units,	as	in	0.4em	or	5px.

To	specify	kerning
Type	letter-spacing:	length,	where	length	is	a	number	with	units,	as	in	0.4em	or	5px.

Tip
You	may	use	negative	values	for	word	and	letter	spacing.

Tip
Word	and	letter	spacing	values	may	also	be	affected	by	your	choice	of	alignment	(via	the
text-align	property)	and	font	family.

Tip
Use	a	value	of	normal	or	0	to	set	the	letter	and	word	spacing	back	to	their	defaults	(that
is,	to	add	no	extra	space).

Tip
If	you	use	an	em	value,	only	the	resulting	size	(or	“computed	value”)	is	inherited.	So	a
parent	at	16	pixels	with	.1em	of	extra	word-spacing	will	have	1.6	pixels	of	extra
space	between	each	word	(16	x	0.1).	And	all	child	elements	will	also	have	1.6	pixels	of
extra	space	between	words,	regardless	of	their	font	size.	Set	the	extra	spacing	explicitly
for	the	child	elements	if	you	need	to	override	such	a	value.

Tip
The	word-spacing	and	letter-spacing	properties	are	inherited.

Adding	Indents
You	can	determine	how	much	space	should	precede	the	first	line	of	a	paragraph	by	setting	the	text-
indent	property	(and).
Click	here	to	view	code	image

...

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
					letter-spacing:	1px;
}

...

.project	p	{
					font-size:	.9375em;	/*	15px/16px	*/
					line-height:	1.65;
					text-indent:	2em;	/*	30px	*/
}

...	rest	of	CSS	...

	This	code	adds	a	2em	indent	to	the	p	elements.	Since	their	.9375em	font	size	is	equivalent	to	15
pixels	(15	/	16	=	.9375),	the	indent	will	be	30	pixels	(15	×	2)	 .

	The	first	line	in	each	paragraph	is	indented	30	pixels.

To	add	indents
Type	text-indent:	length,	where	length	is	a	number	with	units,	as	in	1.5em	or	18px.

Tip
You	can	apply	text-indent	to	other	elements,	not	only	paragraphs.	However,	it	has	no
effect	on	inline	elements	like	em,	strong,	and	cite	by	default.	You	can	force	it	to	apply
if	you	set	them	to	display:	block;	or	display:	inline-block;.

Tip
A	negative	value	creates	a	hanging	indent.	You	may	need	to	increase	the	padding	or
margins	around	a	text	box	with	a	hanging	indent	in	order	to	accommodate	the	overhanging
text.	(See	“Adding	Padding	Around	an	Element”	and	“Setting	the	Margins	Around	an
Element”	in	Chapter	11.)

Tip
Em	values	for	text-indent	are	calculated	with	respect	to	the	element’s	font	size	(not
its	parent’s)	 .	Percentages	are	calculated	with	respect	to	the	width	of	the	parent	element.

Tip
The	text-indent	property	is	inherited.

Tip
If	you	use	a	percentage	or	an	em	value,	only	the	resulting	size	(or	“computed	value”)	is
inherited.	So	if	the	parent	is	300	pixels	wide,	a	text-indent	of	10%	will	be	30	pixels;
and	child	elements	will	also	have	their	first	lines	indented	30	pixels,	regardless	of	the
width	of	their	respective	parents.

Tip
Use	a	value	of	0	to	remove	an	inherited	indent.

Aligning	Text
You	can	set	up	text	so	that	it	always	aligns	right,	left,	center,	or	justified,	as	desired	 .
Click	here	to	view	code	image

...

h1,	h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
					letter-spacing:	1px;
					text-align:	center;
}

...

p	{
					text-align:	justify;
}

.intro	.subhead	{
					font-size:	1.125em;
					text-align:	center;
}

...	rest	of	CSS	...

	Some	text	is	centered,	but	most	is	justified	(meaning	it	will	align	with	both	the	left	and	right	sides)	 .

	After	the	changes,	the	headings	and	.subhead	paragraph	are	centered,	while	all	other	paragraph	text
is	justified.	The	text-indent	value	set	on	paragraphs	earlier	remains.	(Note:	I	removed	the	images

below	the	second	heading	so	you	could	see	more	text	in	this	figure.)

To	align	text
1.	Type	text-align:.
2.	Type	left	to	align	the	text	to	the	left.
Or	type	right	to	align	the	text	to	the	right.
Or	type	center	to	center	the	text	in	the	middle	of	the	screen.
Or	type	justify	to	align	the	text	on	both	the	right	and	the	left.

Tip
If	you	choose	to	justify	the	text,	be	aware	that	the	word	spacing	and	letter	spacing	may	be
adversely	affected.	For	related	information,	see	“Controlling	Spacing.”

Tip
The	text-align	property	works	great	out	of	the	box	for	elements,	like	h1–h6	and	p,
that	display	on	their	own	line	by	default.	But	unless	you	force	it,	text-align	doesn’t
work	on	phrasing	content	elements—such	as	strong,	em,	a,	cite,	and	others—that
display	within	lines.	(These	were	known	as	“inline”	elements	before	HTML5;	see	the
Chapter	1	section	“A	Browser’s	Default	Display	of	Webpages.”)	To	align	the	text	in	these
elements	separate	from	their	surrounding	text,	you	must	first	override	their	default
display:	inline;	style	with	either	display:	block;	(to	make	them	display	on
their	own	line	like	paragraphs)	or	display:	inline-block;	and	then	set	text-
align	accordingly.	For	those	with	display:	inline-block;,	you	may	also	need
to	add	a	width	to	see	the	alignment	effect.	In	truth,	the	occasions	you’ll	have	a	need	to	set
text-align	on	“inline”	content	are	pretty	limited.

Tip
The	text-align	property	is	inherited.	Its	default	value	is	supposed	to	depend	on	the
page’s	language	and	writing	system	(meaning	right-to-left	or	left-to-right),	but	in	most
cases	it’s	indiscriminately	set	to	left.

Changing	the	Text	Case
You	can	define	the	text	case	for	your	style	by	using	the	text-transform	property	 .	In	this	way,	you
can	display	the	text	with	initial	capital	letters,	with	all	capital	letters	 ,	with	all	lowercase	letters,	or	as
it	was	typed.
Click	here	to	view	code	image

body	{
					background-color:	#88b2d2;
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
					letter-spacing:	1px;
					text-align:	center;
}

h1	{
					font-size:	2.1875em;
					text-transform:	uppercase;
}

...	rest	of	CSS	...

	I’ve	decided	to	display	the	level	1	heading	in	all	uppercase	letters	for	emphasis	 .

	Now	the	main	heading	really	stands	out.	The	h2	headings	are	unchanged.

To	change	the	text	case
1.	Type	text-transform:.
2.	Type	capitalize	after	the	colon	(:)	to	put	the	first	character	of	each	word	in	uppercase.
Or	type	uppercase	to	change	all	the	letters	to	uppercase.
Or	type	lowercase	to	change	all	the	letters	to	lowercase.
Or	type	none	to	leave	the	text	as	is	(possibly	canceling	out	an	inherited	value).

Tip
The	capitalize	value	has	its	limitations.	It	doesn’t	know	when	a	language’s	word
shouldn’t	be	capitalized	by	convention;	it	just	capitalizes	every	word.	So,	text	in	your
HTML	like	“Jim	Rice	enters	the	Hall	of	Fame”	would	render	as	“Jim	Rice	Enters	The	Hall
Of	Fame.”

Tip
Why	use	text-transform	if	you	can	just	change	the	text	in	the	HTML?	Well,
sometimes	the	content	is	beyond	your	reach.	For	example,	it	could	be	stored	in	a	database
or	pulled	from	another	site’s	news	feed.	In	those	cases,	you’re	dependent	on	adjusting	the
text	case	with	CSS.	Also,	search	engines	typically	index	the	text	as	it’s	typed	in	the	HTML,
and	the	text	may	be	more	legible	in	search	results	in	standard	case.

Tip
The	lowercase	value	can	be	useful	for	creating	stylish	headings	(or	if	you’re	e.e.
cummings).

Tip
The	text-transform	property	is	inherited.

Using	Small	Caps
Many	fonts	have	a	corresponding	small	caps	variant	that	includes	uppercase	versions	of	the	letters
proportionately	reduced	to	small	caps	size.	You	can	invoke	the	small	caps	variant	with	the	font-
variant	property	 .
Click	here	to	view	code	image

...

h1,
h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
					letter-spacing:	1px;
					text-align:	center;
}

h1	{
					font-size:	2.1875em;
					text-transform:	uppercase;
}

h2	{
					background-color:	#eaebef;
					color:	#7d717c;
					font-size:	1.75em;
					font-variant:	small-caps;
}

...	rest	of	CSS	...

	I’ve	changed	the	level	2	headings	to	small-caps	 .	Don’t	forget	the	hyphen	in	both	font-
variant	and	small-caps.

	Now	the	h2	letters	are	in	small	caps.	The	rendering	of	small	caps	may	vary	a	tiny	bit	from	browser	to
browser.

To	use	a	small	caps	font
Type	font-variant:	small-caps.

To	remove	small	caps
Type	font-variant:	none.

Tip
Small	caps	are	not	quite	as	heavy	as	uppercase	letters	that	have	simply	been	reduced	in
size.

Tip
Not	all	fonts	have	a	corresponding	small	caps	face.	In	these	cases,	browsers	often	fake
small	caps	by	simply	reducing	the	size	of	uppercase	letters	(which	tends	to	make	them	look
a	bit	squat).	Alternatively,	they	may	display	the	text	in	all	uppercase	(similar	to	text-
transform:	uppercase,	as	described	earlier).

Tip
The	font-variant	property	is	inherited.

Decorating	Text
CSS	lets	you	adorn	your	text	with	underlines	and	other	types	of	lines	via	the	text-decoration
property.	By	far,	its	most	common	use	is	for	styling	link	states	(and).
Click	here	to	view	code	image

body	{
					background-color:	#88b2d2;
					font:	100%	Geneva,	Tahoma,	Verdana,	sans-serif;
}

h1,	h2	{
					font-family:	"Gill	Sans",	"Gill	Sans	MT",	Calibri,	sans-serif;
					font-weight:	normal;
					letter-spacing:	1px;
					text-align:	center;
}

h1	{
					font-size:	2.1875em;	/*	35px/16px	*/
					text-transform:	uppercase;

}

h2	{
					background-color:	#eaebef;
					color:	#7d717c;
					font-size:	1.75em;	/*	28px/16px	*/
					font-variant:	small-caps;
}

p	{	text-align:	justify;	}

em,
a:link,
.intro	.subhead	{
					font-weight:	bold;
}

.architect	{
					background-color:	#fff;
					padding:	1.5em	1.75em;
}
.intro	{
					background-color:	#686a63;
					color:	#fff;
					line-height:	1.45;
					padding:	1px	1.875em	.7em;
}

.intro	.subhead	{
					font-size:	1.125em;	/*	18px/16px	*/
					text-align:	center;
}

.intro	p	{
					font-size:	1.0625em;	/*	17px/16px	*/
}

.project	p	{
					text-indent:	2em;
					font-size:	.9375em;	/*	15px/16px	*/
					line-height:	1.65;
}

a:link	{
					color:	#e10000;
					text-decoration:	none;
}

a:visited	{	color:	#b44f4f;	}

a:hover	{
					color:	#f00;
					text-decoration:	underline;
}

.intro	a	{	color:	#fdb09d;	}

.intro	a:hover	{	color:	#fec4b6;	}

	Here’s	the	entire	style	sheet	from	the	chapter,	including	the	text-decoration	changes	to	the	links	
.	The	version	on	the	companion	website	has	more	comments.

	You	can	see	that	the	underline	is	removed	from	all	links	in	their	default	state.	When	they	are	being
hovered	over,	the	underline	returns	and	the	link	colors	get	slightly	lighter.	These	effects	reinforce	to	users

that	they	are	interacting	with	a	link	and	encourage	them	to	take	action.

To	decorate	text
1.	Type	text-decoration:.
2.	Type	underline	after	the	colon	(:)	to	underline	text.
Or	type	overline	for	a	line	above	the	text.
Or	type	line-through	to	strike	out	the	text.

To	get	rid	of	decorations
Type	text-decoration:	none;.

Tip
You	can	apply	text-decoration	to	other	elements,	not	just	a	elements	as	in	the
example.

Tip
You	can	eliminate	decorations	from	elements	that	normally	have	them	(like	a,	del,	or
ins)	or	from	elements	that	inherit	decorations	from	their	parents.

Tip
Although	it’s	perfectly	fine	to	remove	underlines	from	links,	be	sure	to	distinguish	them
sufficiently	from	surrounding	text	another	way	(and),	or	visitors	may	not	realize
they’re	actionable.

Setting	Whitespace	Properties
By	default,	multiple	spaces	and	returns	in	an	HTML	document	are	either	displayed	as	a	single	space	or
ignored.	If	you	want	to	change	the	way	they	are	treated,	use	the	white-space	property	(and).
Click	here	to	view	code	image

...

.intro	{
					background-color:	#686a63;
					color:	#fff;
					line-height:	1.45;
					padding:	1px	1.875em	.7em;
}

.intro	.subhead	{
					font-size:	1.125em;

					/*	temporary	for	demo	only	*/
					color:	lime;
					text-shadow:	3px	2px	2px	black;
					white-space:	nowrap;
}

...	rest	of	CSS	...

	I’ve	prevented	the.subhead	paragraph	text	from	wrapping	and	styled	it	so	the	impact	of	nowrap	is
obvious	against	both	dark	and	light	backgrounds	 .	The	text-shadow	property	is	covered	in	Chapter

14	(“Adding	Drop	Shadows	to	Text”).

	The	.subhead	text	won’t	wrap,	even	when	the	browser	window	is	too	narrow	to	display	the	entire
line.	As	a	result,	a	horizontal	scrollbar	appears	so	you	can	scroll	over	to	see	the	rest	of	the	text.

To	set	whitespace	properties
1.	Type	white-space:.
2.	Type	pre	to	have	browsers	display	all	the	spaces	and	returns	in	the	original	text.
Or	type	nowrap	to	treat	all	spaces	as	non-breaking,	meaning	the	text	won’t	wrap	to	the	next	line.
Or	type	normal	to	treat	whitespace	as	usual.

Tip
The	value	of	pre	for	the	white-space	property	gets	its	name	from	the	pre	element
(Chapter	4),	which	displays	text	in	a	monospace	font	while	maintaining	all	of	its	spaces
and	returns.	However,	white-space:	pre;	does	not	display	text	in	a	monospace	font.

Tip
If	you	were	to	add	overflow:	hidden;	text-overflow:	ellipses;	to	the
.intro	.subhead	rule	in	 ,	an	ellipsis	would	show	instead	of	the	text	that	breaks	out
of	the	box	in	 .

Tip
You	may	use	the	br	element	to	manually	create	line	breaks	in	an	element	styled	with
white-space:	nowrap.	Having	said	that,	it’s	best	to	avoid	using	br	unless	you	have
no	alternative,	because	it	mixes	presentation	with	your	HTML	instead	of	letting	CSS	take
care	of	it.	For	details	about	the	br	element,	consult	“Creating	a	Line	Break”	in	Chapter	4.

11.	Layout	with	Styles

In	This	Chapter
Considerations	When	Beginning	a	Layout
Structuring	Your	Pages
Styling	HTML5	Elements	in	Older	Browsers
Resetting	or	Normalizing	Default	Styles
The	Box	Model
Controlling	the	Display	Type	and	Visibility	of	Elements
Setting	the	Height	or	Width	for	an	Element
Adding	Padding	Around	an	Element
Setting	the	Border
Setting	the	Margins	Around	an	Element
Making	Elements	Float
Controlling	Where	Elements	Float
Positioning	Elements	Relatively
Positioning	Elements	Absolutely
Positioning	Elements	in	a	Stack
Determining	How	to	Treat	Overflow
Aligning	Elements	Vertically
Changing	the	Cursor

You	can	create	a	wide	variety	of	layouts	with	CSS.	This	chapter	demonstrates	how	to	build	a	common
layout	type:	a	masthead	(page	header)	on	top,	two	columns	of	content,	and	a	footer	on	the	bottom	 	(on
the	next	page).	However,	you	can	apply	the	CSS	properties	you’ll	learn	about	to	make	vastly	different
layouts.

	This	page,	with	two	columns,	a	header,	and	a	footer,	was	laid	out	with	CSS.	CSS	gives	you
tremendous	versatility	in	how	your	pages	look.	This	particular	page	design	aims	to	be	clean	and	content-
focused.	Building	this	layout	is	explained	step	by	step	throughout	this	chapter,	and	the	layout	is	made

responsive	in	Chapter	12.

This	chapter	and	the	next	are	companion	pieces.	As	a	way	of	easing	you	into	layouts,	this	chapter	shows
you	how	to	create	a	fixed-width	layout.	But	most	of	what	you	will	learn	applies	to	any	layout.	In	Chapter
12,	you	will	see	how	to	lay	out	the	same	page	but	make	it	responsive.	The	next	section	explains	these
terms.
I	won’t	show	every	line	of	CSS	needed	for	the	page	in	this	chapter.	For	instance,	the	text	formatting	was
done	ahead	of	time	(per	lessons	from	Chapters	10	and	13).	Please	see	the	complete	code	at
www.htmlcssvqs.com/8ed/11/finished-page.	I’ve	included	comments	in	all	of	the	files	(especially	the
style	sheets)	to	help	explain	the	code.

Considerations	When	Beginning	a	Layout
Here	are	a	few	things	to	help	you	along	as	you	lay	out	your	own	sites	and	hone	them	before	releasing	them
into	the	wild.

Separating	content	and	presentation
I’ve	mentioned	this	before,	but	it	bears	repeating	because	it’s	so	fundamental	to	building	webpages.	As	a
best	practice,	always	separate	your	content	(HTML)	and	presentation	(CSS).	You	learned	how	(and	why)
to	do	this	in	Chapter	8	by	linking	to	an	external	style	sheet.	If	you	do	so	from	all	your	pages,	they	can	all
share	the	same	layout	and	overall	style,	with	page-specific	differences	as	desired.

Layout	approaches
There	are	two	main	types	of	website	designs:	fixed-width	and	responsive.

	A	fixed-width	page	has	pixel-based	widths	for	the	whole	page	and	for	each	column	of	content
within	it.	As	its	name	suggests,	its	width	doesn’t	change	when	viewed	on	smaller	devices	like
mobile	phones	and	tablets	or	when	a	desktop	browser	window	is	reduced.	Chances	are,	the
majority	of	sites	you’ve	visited	have	fixed	widths.	This	is	how	most	sites	were	built	until
responsive	web	design	became	possible.	So	even	though	their	numbers	may	be	diminishing,	fixed-
width	layouts	are	still	common,	particularly	on	corporate	and	big-brand	sites.	Also,	fixed-width
layouts	are	the	easiest	to	get	the	hang	of	when	learning	CSS,	which	is	why	this	chapter	shows	you
how	to	build	one.
	A	responsive	webpage	is	known	to	be	fluid	(or	liquid)	because	it	uses	percentages	instead	of	pixels
for	widths,	allowing	the	page	to	shrink	and	expand	depending	on	the	viewing	conditions.	In	addition
to	having	fluid	columns,	responsive	webpages	can	shift	their	design	in	specific	ways	based	on	the
screen	size.	For	instance,	images	can	change	sizes	and	columns	can	be	rearranged	to	fit	better.	This
allows	for	tailoring	the	experience	to	mobile,	tablet,	and	desktop	users	independently—but	with	the
same	HTML,	not	with	three	different	sites.

The	Origins	of	Responsive	Web	Design
Ethan	Marcotte	coined	the	term	responsive	web	design	and	made	known	the	group	of
techniques	behind	creating	a	responsive	site.	The	approach	first	gained	wide	attention	from
his	article	on	A	List	Apart:	www.alistapart.com/articles/responsive-web-design/.	He	went
into	greater	detail	in	his	outstanding	book	Responsive	Web	Design	(A	Book	Apart,	2011),
which	I	highly	recommend.
Chapter	12	of	this	book	echoes	the	techniques	he	has	popularized	and	that	others	in	the
web	community	have	evolved.

http://www.htmlcssvqs.com/8ed/11/finished-page
http://www.alistapart.com/articles/responsive-web-design/

There	is	no	single	layout	approach	that	is	right	for	every	circumstance.	However,	given	the	explosion	of
smartphones	and	tablets—not	to	mention	the	inevitable	arrival	of	devices	of	all	sizes	we	haven’t	even
conceived	of	yet—it	stands	to	reason	that	making	your	site	responsive	is	probably	in	your	best	interest.	It
also	explains	why	more	responsive	sites	turn	up	seemingly	every	day.	As	mentioned,	you	will	build	upon
what	you	learn	here	to	create	a	responsive	webpage	in	the	next	chapter.

Browser	considerations
Not	all	visitors	will	use	the	same	browser,	operating	system,	or	even	device	when	accessing	your	site.	So
in	most	cases,	you	will	want	to	test	your	pages	on	a	range	of	browsers	before	making	them	live	on	your
web	server.	I	recommend	testing	each	page	in	a	few	browsers	periodically	as	you	develop	it	so	you’ll
have	fewer	issues	to	address	at	the	end	when	you	perform	comprehensive	testing.	See	“Testing	Your
Page”	in	Chapter	20	for	information	about	both	how	to	test	your	pages	and	the	browsers	in	which	to	check
them.

Structuring	Your	Pages
CSS	brings	your	content	to	life,	allowing	you	to	work	your	design	magic.	You	can	style	the	content
containers	that	represent	a	page’s	primary	structural	elements	(which	you	learned	about	in	Chapter	3)	as
well	as	the	content	within	them	(covered	in	Chapters	4–5	and	15–18).	But	first,	at	the	heart	of	any
effective	webpage	is	well-structured,	semantic	HTML	 .
Click	here	to	view	code	image

...
<body>
<div	class="page">
					<!--	====	START	MASTHEAD	====	-->
					<header	class="masthead"	role="banner">
								<p	class="logo"></p>

								<ul	class="social-sites">
											...	[social	icons	links]	...
								

								<nav	role="navigation">
											...	[list	of	main	navigation	links]	...
								</nav>
					</header>
					<!--	end	masthead	-->

					<div	class="container">
								<!--	====	START	MAIN	====	-->
								<main	role="main">
											<section	class="post">
															<h1>Sunny	East	Garden	at	the	Getty	Villa</h1>

															

															<div	class="post-blurb">
																		<p>It	is	hard	to	believe	...</p>
															</div>

															<footer	class="footer">
																		...	[blog	post	snippet	footer]	...
															</footer>
											</section>

											<section	class="post">
															<h1>The	City	Named	After	Queen	Victoria</h1>

															

															<div	class="post-blurb">
																		<p>An	hour	and	a	half	aboard	...</p>
															</div>

															<footer	class="footer">
																		...	[blog	post	snippet	footer]	...
															</footer>
											</section>
											<nav	role="navigation">
															<ol	class="pagination">
																		...	[links	list	items]	...
															
											</nav>
								</main>
								<!--	end	main	-->

								<!--	====	START	SIDEBAR	====	-->
								<div	class="sidebar">
											<article	class="about">
															<h2>About	Me</h2>
															...
											</article>

											<div	class="mod">
															<h2>My	Travels</h2>
															...	[map	image]	...
											</div>

											<aside	class="mod">
															<h2>Popular	Posts</h2>
															<ul	class="links">
																		...	[links	list	items]	...
															
											</aside>

											<aside	class="mod">
															<h2>Recently	Shared</h2>
															<ul	class="links">
																		...	[links	list	items]	...
															
											</aside>
								</div>
								<!--	end	sidebar	-->
					</div>
					<!--	end	container	-->

					<!--	====	START	PAGE	FOOTER	====	-->
					<footer	role="contentinfo"	class="footer">
								<p	class="legal"><small>©	2013	Le	Journal	...</small></p>
					</footer>
					<!--	end	page	footer	-->
</div>
<!--	end	page	-->
</body>
</html>

	This	is	the	HTML	page	I	use	throughout	this	chapter	and	the	next.	There	are	four	main	sections
(masthead,	main,	sidebar,	and	page	footer).	The	main	and	sidebar	areas	are	wrapped	in	a	div	with

class="container".	The	entire	page	is	wrapped	in	a	div	with	class="page".	You	can	find	the
complete	file	at	www.htmlcssvqs.com/8ed/11/finished-page.	By	default,	the	page	is	plain	but	still

functional	 .

To	structure	your	page
1.	Divide	sections	of	your	page	into	article,	aside,	main,	nav,	section,	header,
footer,	and	div	elements,	as	appropriate.	Also	apply	ARIA	landmark	roles	as	appropriate.	See
Chapter	3	for	more	details	on	both.	In	 ,	you	have	a	fictitious	blog	named	Le	Journal	with:
	A	div	that	wraps	around	the	whole	page	and	another	one	that	contains	two	main	parts	to	apply
some	design
	A	header	for	the	masthead,	which	contains	the	logo,	links	to	social	media	sites,	and	main
navigation
	A	main	element	divided	into	multiple	blog	post	section	elements,	each	with	their	own
footer
	A	sidebar	div	(that	also	uses	article	and	aside)	to	provide	information	about	the	blog
author	and	links	to	blog	posts	in	the	right	column	(once	CSS	is	applied)
	A	page-level	footer	element	for	copyright	info

A	Note	About	the	Semantics
You	may	have	noticed	I	used	section	elements	in	the	example	 	to	contain	each	partial
blog	post	(shows	one).	Had	they	been	complete	posts,	I	would	have	marked	them	up
with	article	instead,	just	as	I	would	for	pages	dedicated	to	individual	complete	blog
entries.	Using	article	for	these	instead	of	section	wouldn’t	be	wrong,	just	an
indication	that	the	snippets	are	sufficient	as	self-contained	compositions.	See	Chapter	3	for
a	variety	of	examples	that	use	article	and	section.

2.	Put	your	content	in	an	order	that	would	be	the	most	useful	if	the	CSS	were	not	used	 .	For
example,	the	masthead,	followed	by	the	main	content,	followed	by	one	or	more	sidebars,	followed
by	the	page-level	footer.	This	can	make	it	easier	for	you	to	provide	the	most	important	content	on
top	for	visitors	on	smaller	screens	like	smartphones	and	tablets.	In	addition,	search	engines	“see”
your	page	as	if	CSS	weren’t	applied,	so	if	you	prioritize	your	main	content,	they’ll	be	better	able	to
properly	index	your	site.	It	benefits	screen-reader	users	as	well.

http://www.htmlcssvqs.com/8ed/11/finished-page

	Here’s	what	some	of	our	example	page	looks	like	with	no	styles	except	the	browser	defaults.	The	page
is	all	in	one	column.	Thanks	to	its	solid	semantics,	it	is	perfectly	usable	and	intelligible,	if	a	bit	spare.

3.	Use	heading	elements	(h1–h6)	consistently	to	identify	and	prioritize	information	on	your	page
within	the	sections.

4.	Mark	up	the	rest	of	your	content	with	the	appropriate	semantics,	such	as	paragraphs,	figures,	and
lists.

5.	Use	comments	as	desired	to	identify	different	areas	of	your	page	and	their	contents.	As	 	shows,
my	preference	is	to	use	a	different	format	for	comments	that	mark	the	start,	rather	than	the	end,	of	a
section.

Tip
You	don’t	have	to	mark	up	your	entire	page	before	you	apply	CSS.	In	practice,	it’s	not
uncommon	to	do	the	HTML	for	a	section	and	then	some	or	all	of	its	CSS,	then	the	same	for
the	next	section,	and	so	on.	It’s	really	a	matter	of	personal	preference	and	what	process
works	best	for	you.

Styling	HTML5	Elements	in	Older	Browsers
As	you	know,	HTML5	has	introduced	several	new	semantic	elements,	most	of	which	you	learned	about	in
Chapters	3	and	4.	In	most	cases,	modern	browsers	support	those	elements	natively.	From	a	styling	point	of
view,	that	means	these	browsers	apply	default	styles	to	the	new	elements	just	as	they	do	for	HTML
elements	that	have	existed	since	the	earliest	days	of	the	language.	For	example,	article,	footer,
header,	nav,	and	some	others	display	on	their	own	line,	just	like	div,	blockquote,	p,	and	others
that	were	defined	as	block-level	elements	in	versions	of	HTML	before	HTML5.
You	might	be	wondering,	“What	about	older	browsers?	How	can	I	use	the	new	HTML5	elements	if	they
didn’t	exist	when	those	browsers	were	created?”
Well,	the	good	news	is	that	most	browsers	allow	you	to	style	elements	that	they	don’t	yet	support	natively.
Internet	Explorer	8	(and	previous	versions)	is	the	exception,	but	there’s	an	easy	workaround	that	I
describe	in	step	2.	So	follow	these	three	easy	steps	to	begin	styling	pages	that	use	the	new	HTML5
elements.

To	style	new	HTML5	elements	in	all	browsers
1.	Add	the	code	in	 	to	your	site’s	main	style	sheet	(the	one	that	all	pages	use).	Note:	You	can	skip
this	step	if	you	use	a	CSS	reset	or	normalize.css	(see	the	next	section).	They	include	the	code.

Click	here	to	view	code	image

article,	aside,	figcaption,	figure,	footer,	header,	main,	nav,	section	{
					display:	block;
}

	Most	browsers	treat	elements	they	don’t	recognize	as	inline	elements	by	default.	So	this	bit	of	CSS
forces	certain	new	HTML5	semantics	to	render	on	their	own	line.	display:	block;	is	the	same

declaration	applied	to	div,	blockquote,	p,	and	others	by	each	browser’s	built-in	default	style	sheet.
See	“Controlling	the	Display	Type	and	Visibility	of	Elements”	to	learn	more	about	it.

2.	There	are	two	ways	to	get	the	styling	of	new	HTML5	elements	to	work	in	Internet	Explorer	prior	to
version	9.	(Do	one	or	the	other,	not	both.)	They	both	use	the	HTML5	shiv	JavaScript	file	(see	the
sidebar	“The	HTML5	Shiv”).
Of	the	two,	the	easier	way	is	to	add	the	highlighted	code	in	 	to	the	head	element	(not	the

header	element)	of	each	of	your	pages.	That	loads	the	file	from	another	website
(googlecode.com).

Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
<meta	charset="utf-8"	/>
<title>Le	Journal</title>
<link	rel="stylesheet"	href="css/lejournal.css"	/>
<!--[if	lt	IE	9]>
					<script	src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<body>
...

	The	script	element	is	wrapped	in	what’s	known	as	a	conditional	comment.	Place	it	after	your
link(s)	to	style	sheets.	The	part	of	the	code	that	reads	[if	lt	IE	9]	means	that	only	versions	less
than	Internet	Explorer	9	load	the	file.	Usually	it’s	best	to	load	JavaScript	at	the	end	of	your	page	(you’ll
see	why	in	Chapter	19).	However,	loading	the	HTML5	shiv	is	one	of	the	few	instances	in	which	it’s

necessary	to	place	JavaScript	in	the	head.	It	won’t	work	otherwise.

The	better	way	is	to	host	the	JavaScript	file	on	your	website.	I	recommend	you	go	this	route.	It
prevents	your	site	from	breaking	in	the	older	versions	of	IE	if	anything	should	happen	to	the	file	at
googlecode.com	(unlikely,	but	not	unimaginable).	Download	the	HTML5	shiv	ZIP	file	from
https://github.com/aFarkas/html5shiv/	 	(this	is	where	the	code	is	maintained),	and	include	the
enclosed	JavaScript	file	in	your	site	(and).

	Save	the	HTML5	shiv	ZIP	file	to	your	computer	so	you	can	extract	the	JavaScript	file	you	will	use	 .

	When	you	open	the	ZIP	on	your	computer,	you’ll	see	that	it	contains	several	folders	(shown).	You	can
ignore	all	of	them	except	dist,	which	has	the	html5shiv.js	file	you	will	use.	Copy	the	file	into	one

of	your	website’s	folders,	such	as	one	named	js.	(Alternatively,	you	can	use	html5shiv-
printshiv.js.	It’s	the	same	as	html5shiv.js,	but	it	allows	IE8	and	prior	versions	to	print	the

new	HTML5	elements	accurately.)
Click	here	to	view	code	image

https://github.com/aFarkas/html5shiv/

...
<link	rel="stylesheet"	href="css/lejournal.css"	/>
<!--[if	lt	IE	9]>
					<script	src="js/html5-shiv.js"></script>
<![endif]-->
</head>
<body>
...

	The	highlighted	code	goes	in	the	head	of	your	webpages	after	your	link(s)	to	style	sheets.	The	only
difference	between	this	and	 	is	the	src	value.	It	should	reference	the	JavaScript	file	in	the	location	you
pasted	it	among	the	other	files	in	your	site.	The	code	shown	assumes	you	put	it	in	a	folder	named	js	that
is	itself	in	the	folder	containing	the	HTML	page	(see	“URLs”	in	Chapter	1).	Modify	the	src	path	to	match

your	site’s	structure	as	necessary.

3.	Now,	style	away	with	CSS	as	you	please!

The	HTML5	Shiv
Unlike	other	mainstream	browsers,	Internet	Explorer	8	and	older	ignore	CSS	on	elements
they	don’t	support	natively.	The	HTML5	shiv	is	a	bit	of	JavaScript	that	fixes	that.	(It’s	also
referred	to	as	the	HTML5	shim.)	The	script	was	created	by	several	members	of	the	web
community	based	on	a	discovery	about	IE	made	by	Sjoerd	Visscher.
The	HTML5	shiv	has	been	bundled	into	some	JavaScript	libraries,	like	Modernizr
(www.modernizr.com).	So	if	you	add	Modernizr	to	your	pages,	you	won’t	need	to	load	the
HTML5	shiv	separately.	In	other	words,	you	can	skip	step	2	on	the	previous	page.
Incidentally,	Modernizr	is	a	handy	library	that	allows	you	to	detect	whether	a	browser
supports	various	HTML5	and	CSS3	features.

Resetting	or	Normalizing	Default	Styles
By	now,	you	know	that	each	browser	has	a	built-in	style	sheet	that	dictates	the	look	of	your	HTML	unless
you	write	your	own	CSS	to	override	it.	The	default	browser	styles	are	pretty	similar	on	the	whole,	but
they	have	enough	differences	that	it’s	common	for	developers	to	level	the	playing	field	before	they	apply
their	own	CSS.
There	are	two	main	ways	to	level	the	playing	field	(you	would	use	one,	not	both):

	Begin	the	main	style	sheet	with	a	CSS	reset,	like	the	Meyer	reset	created	by	Eric	Meyer
(http://meyerweb.com/eric/tools/css/reset/).	There	are	also	other	reset	style	sheets	available.
	Begin	the	main	style	sheet	with	normalize.css,	created	by	Nicolas	Gallagher	and	Jonathan
Neal.	Find	it	at	http://necolas.github.io/normalize.css/	(use	the	Download	button	for	the	latest
version).

To	do	so,	you	copy	the	CSS	from	the	appropriate	URL	above	and	paste	it	into	your	own	style	sheet.
A	CSS	reset	effectively	sets	all	the	default	element	styles	to	“zero”	 .	The	second	method,
normalize.css,	takes	a	different	approach.	Instead	of	resetting	everything,	it	tweaks	the	default	styles
so	they	are	more	consistent	across	browsers	 .	(Important	note:	I	removed	the	large	images	from	those
two	figures	so	you	could	see	more	text.	Neither	a	reset	nor	normalize.css	will	hide	your	images!)

http://www.modernizr.com
http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.io/normalize.css/

	Here’s	our	example	page	with	a	reset	applied	to	it.	The	most	obvious	differences	are	that	all	font	sizes
are	the	same,	any	bolding	of	text	and	styling	of	lists	are	removed,	and	all	margins	and	padding	are	set	to

zero.

	Here’s	the	example	page	using	normalize.css	instead	of	the	reset.	It’s	similar	to	the	unstyled,
default	rendering,	but	there	are	differences.	More	to	the	point,	this	version	would	look	very	similar	if	you

were	to	view	it	in	today’s	browsers.

You	aren’t	required	to	use	either	of	these	approaches,	although	doing	so	is	common.	It’s	perfectly	fine	if
you	just	let	the	browser	defaults	remain	and	write	your	CSS	accordingly.
And	if	you	do	use	normalize.css	or	a	reset,	you	don’t	have	to	keep	all	the	CSS	they	provide.	Some
of	their	style	rules	may	apply	to	HTML	elements	your	site	doesn’t	use.	In	that	case,	there’s	no	point	in
including	extra	CSS	in	your	style	sheet.
For	this	chapter,	I	have	used	a	portion	of	normalize.css	 	and	have	styled	the	text	to	get	the	page
started.	So	before	applying	the	remaining	styling	described	in	this	chapter,	the	page	looks	like	 .	You	can
see	the	full	page,	as	well	as	those	for	 	and	 ,	at	www.htmlcssvqs.com/8ed/11.
Click	here	to	view	code	image

http://www.htmlcssvqs.com/8ed/11

/*!	normalize.css	v2.1.2	|	MIT	License	|	git.io/normalize	*/

article,	aside,	figcaption,	figure,	footer,	header,	main,	nav,	section	{
					display:	block;
}

html	{
					-ms-text-size-adjust:	100%;
					-webkit-text-size-adjust:	100%;
}

body	{
					margin:	0;
}

a:focus	{
					outline:	thin	dotted;
}

a:active,
a:hover	{
					outline:	0;
}

small	{
					font-size:	80%;
}

img	{
					border:	0;
}

	Here’s	what	remains	of	my	version	of	normalize.css	after	I	removed	the	rules	the	site	won’t
need.

	Here’s	the	example	page	with	the	reset	and	text	formatting	applied.	You’ll	begin	styling	the	rest	of	the
page	from	here,	evolving	it	as	you	step	through	the	chapter.

The	Box	Model
CSS	treats	your	webpage	as	if	every	element	it	contains	were	enclosed	in	an	invisible	box.	The	box
model,	as	it	is	known,	is	made	up	of	a	content	area,	the	space	surrounding	that	area	(padding),	the	border
around	the	padding,	and	the	space	around	the	border	that	separates	one	element	from	the	next	(margin)	 .
It’s	akin	to	a	framed	picture	on	a	wall,	where	the	picture	is	the	content,	the	matting	is	the	padding,	the
frame	is	the	border,	and	the	distance	between	that	picture	frame	and	the	next	one	is	the	margin.

	Each	element’s	box	has	the	same	components	that	determine	how	much	space	it	occupies	and	how	it
looks.	You	can	control	each	component	individually	with	CSS.	Note	that	the	width	and	height	define	only
the	content	area	dimensions	by	default.	The	background	(the	blue	area)	extends	behind	the	border,	so	it	is
only	visible	as	far	out	as	the	padding	extends	unless	you	make	the	border	color	transparent	or	semi-

transparent.

You	can	use	CSS	to	determine	the	appearance	of	each	element’s	box,	and	in	so	doing,	you	have
considerable	control	over	the	layout	of	your	webpage	 .	Throughout	the	chapter,	you	will	learn	in	depth
about	the	width,	padding,	border,	margin,	and	other	properties	that	facilitate	this.	But	it	helps	to
understand	the	fundamentals	of	the	box	model	first.

	The	box	model	in	the	context	of	the	sidebar	in	our	page.	Remember,	each	element	has	its	own	box.	For
example,	the	img	element	shown	has	a	border,	but	the	space	on	the	left	and	right	of	it	is	padding	applied

to	the	article	element	that	contains	the	image.

Width,	height,	and	the	box	model
The	box	model	can	operate	in	one	of	two	ways	regarding	how	the	CSS	width	property	affects	how	wide
an	element	displays.	(Not	including	any	margin	separating	it	from	adjacent	elements.)
The	default	behavior—which	maps	to	figure	 —is	actually	a	little	counterintuitive.	An	element’s	width
in	browsers	does	not	match	its	width	property	value	(unless	it	doesn’t	have	padding	or	borders).	The
width	only	dictates	the	width	of	the	content	area	inside	the	padding,	as	reflected	in	 .	Instead,	an
element’s	display	width	is	determined	by	the	total	of	the	width,	the	padding	on	left	and	right,	and	the
border	on	left	and	right.	The	display	height	works	similarly,	taking	into	account	top	and	bottom	padding
and	border	values.
The	second	way	it	can	operate	is	more	intuitive	for	most	coders.	In	this	case,	the	display	width	of	an
element	does	match	the	value	of	the	width	property.	The	content	width,	padding,	and	border	fall	within
it	 .	The	height	property	works	similarly.	You	trigger	this	model	by	setting	box-sizing:
border-box;	on	an	element.

	When	box-sizing:	border-box;	is	set,	the	width	and	height	encompass	everything	but	the
margins.	Otherwise,	the	box	behaves	the	same	as	 .

All	this	might	seem	too	abstract,	so	let’s	see	an	example	that	uses	both	approaches	 .	Be	aware	that	the
padding	and	border-width	values	shown	are	applied	to	each	side.	For	example,	padding:
15px;	results	in	30	pixels	of	total	horizontal	padding	(15	on	the	left	and	15	on	the	right)	and	30	pixels	of
total	vertical	padding	(15	on	top	and	15	on	bottom).

	Both	divs	have	the	same	border-width	(the	lighter	green),	padding,	and	width	settings.	The
top	one	renders	per	the	default	box	model	 .	The	bottom	one	is	set	to	box-sizing:	border-box;

	to	make	its	display	width	the	same	as	the	width	property	(300px).	Both	boxes	are	set	to	height:
170px;	(not	shown),	but	the	first	one	is	taller	due	to	the	top	and	bottom	padding	and	border	sizes	being
added	to	the	height.	(Note:	The	black	strips	are	superimposed;	they	are	not	part	of	the	divs	and	so	don’t

affect	their	height.)

Tip
The	illustration	in	 	was	inspired	by	Rich	Hauck’s	box	model	diagram	(which	is	itself
inspired	by	the	one	in	the	CSS	spec).

Tip
See	“Setting	the	Height	or	Width	for	an	Element”	for	more	about	box-sizing:
border-box;,	why	you	won’t	usually	set	a	height	value,	and	more.

Controlling	the	Display	Type	and	Visibility	of	Elements
As	discussed	in	Chapter	1,	by	default	each	element	displays	either	on	its	own	line	(like	h1-h6	and	p)	or
within	a	line	(like	em,	strong,	and	cite)	 .	I	also	explained	in	Chapter	1	that,	unofficially,	the
former	are	referred	to	as	block-level	elements	and	the	latter	are	referred	to	as	inline	elements.
Click	here	to	view	code	image

<p>This	is	the	first	paragraph.</p>
<p>This	is	the	second	paragraph.</p>

	These	simple	paragraphs	with	nested	em	elements	demonstrate	the	difference	between	display:
block	and	display:	inline.

The	source	of	those	terms	is	their	default	display	property	setting:	Block-level	elements	are	set	to
display:	block	(or	display:	list-item	in	the	case	of	the	li	element),	and	inline	elements
are	set	to	display:	inline.
Of	course,	with	CSS	being	all-powerful,	you	can	change	an	element’s	natural	display,	such	as	changing	it
from	block	to	inline	 	or	vice	versa	 .	There	is	also	a	hybrid	display	type	called	inline-
block,	which	allows	an	element	to	appear	on	the	same	line	as	other	content	while	otherwise	behaving
like	a	block-level	element	(through).	Lastly,	you	may	also	set	an	element	to	not	display	at	all	 .
Click	here	to	view	code	image

p	{
					display:	inline;
}

	The	two	paragraphs	look	like	one.
Click	here	to	view	code	image

em	{
					display:	block;
}

	The	ems	display	on	their	own	lines	like	paragraphs.

em	{
					background:	lightgreen;
					display:	inline-block;
					width:	300px;
}

	Elements	set	to	inline	ignore	any	width,	height,	margin-top,	and	margin-bottom
settings.	However,	those	properties	are	applied	to	elements	set	to	inline-block,	like	the	ems	shown
here	that	have	a	width.	So,	if	they	were	set	to	display:	inline;	instead,	this	example	would	look
just	like	 —minus	the	background	color—even	with	the	width	specified.	(All	display	types	accept

a	background	style.	I	made	it	green	here	so	the	width	of	the	ems	would	be	evident.)
Click	here	to	view	code	image

.social-sites	li	{
					display:	inline;
}

.nav-main	li	{
					display:	inline-block;
}

.nav-main	a	{
					color:	#292929;
					display:	inline-block;
					font-family:	'Open	Sans',	sans-serif;
					font-size:	1.125em;
					font-weight:	700;
					text-transform:	uppercase;
}

	I	set	the	main	navigation	links	and	their	parent	list	items	to	inline-block	to	allow	me	to	add	some
top	and	bottom	padding	to	the	links	later	(see	“Adding	Padding	Around	an	Element”).	The	social	icons
won’t	need	further	adjustments	that	can	only	be	achieved	when	elements	behave	like	a	block,	so	setting

them	to	inline	is	sufficient.

	Here’s	a	practical	example	of	how	changing	the	display	setting	can	be	advantageous.	By	default,	the
social	icon	links	and	main	navigation	links	are	stacked	(as	shown	in	the	figure	on	the	left)	because	they
are	contained	in	list	items	(li).	By	overriding	their	default	display:	list-item;	setting	 ,	the

items	in	each	list	of	links	appear	in	a	single	row.

em	{
					display:	none;
}

	The	em	text	neither	displays	nor	occupies	any	visual	space.	Instead,	the	words	that	follow	it	in	the
HTML	shift	over,	leaving	no	hint	the	em	text	was	ever	there.

The	Document	Flow
By	default,	elements	are	displayed	in	the	same	order	as	they	appear	in	the	HTML	code
from	top	to	bottom—this	is	known	as	the	document	flow—with	line	breaks	at	the	beginning
and	end	of	each	element	that	isn’t	inline.	For	a	longer	example	than	the	ones	shown	here,
see	the	example	page	in	figures	 	and	 	of	“Structuring	Your	Pages.”

To	specify	how	elements	should	be	displayed
1.	In	your	style	sheet	rule,	type	display:.
2.	Type	block	to	display	the	element	as	block-level	(thus	like	starting	a	new	paragraph)	 .
Or	type	inline	to	display	the	element	as	inline	(not	like	starting	a	new	paragraph)	 .
Or	type	inline-block	to	display	the	element	as	inline	but	with	block-level	characteristics,
meaning	you	can	also	assign	the	element	properties,	such	as	width,	height,	margin,	and
padding,	on	all	four	sides	(through).
Or	type	none	to	hide	the	given	element	and	completely	remove	it	from	the	document	flow	 .
See	the	tips	for	a	link	to	other	display	values.

To	control	an	element’s	visibility
Meanwhile,	the	visibility	property’s	primary	purpose	is	to	control	whether	an	element	is,	well,
visible.	Unlike	the	display	property,	when	you	hide	an	element	with	visibility,	a	blank	space
shows	where	the	element	and	its	content	would	appear	otherwise	 .	The	space	that	the	hidden	element
would	have	taken	up	still	remains	in	the	document	flow.
Click	here	to	view	code	image

em	{
					visibility:	hidden;
}

	An	empty	space	remains	where	the	hidden	em	text	used	to	be.	It’s	as	if	we	made	the	em	text	white—the
size	of	the	space	matches	the	size	of	the	text	(or	whatever	content	you	hide).

1.	In	your	style	sheet	rule,	type	visibility:.
2.	Type	hidden	to	make	the	element	invisible	without	removing	it	from	the	document	flow	 .
Or	type	visible	to	reveal	the	element.

Tip
An	element	set	to	display:	inline;	does	accept	padding,	but	padding-top	and
padding-bottom	will	cross	into	the	territory	of	adjacent	elements	rather	than	remain
confined	to	the	element.	You	can	see	what	I	mean	if	you	also	add	background:	red;
to	the	element	as	a	test.

Tip
Chapter	12	shows	a	practical	example	of	setting	a	naturally	inline	element	to	display:
block;	for	narrow	screens	(like	phones)	and	back	to	display:	inline;	for	wider
ones	(like	desktops).

Tip
All	content	(including	any	descendants)	within	an	element	set	to	display:	none;	or
visibility:	hidden;	is	also	affected.	For	instance,	if	you	set	display:	none;
to	an	article	that	contains	several	p,	figure,	and	img	elements,	none	of	them	would
display.	If	you	set	visibility:	hidden;	to	the	article	instead,	a	blank	space
(probably	large!)	would	show.

Tip
The	display	property	has	several	other	values	as	well,	with	varying	degrees	of	maturity
and	browser	support.	For	example,	the	grid	and	flex	properties	are	for	additional
layout	techniques	that	are	still	being	finalized	in	the	specs.	See	more	information	at
https://developer.mozilla.org/CSS/display.

Tip
The	visibility	property	has	another	value	(apart	from	inherit):	collapse,
which	you	use	with	certain	parts	of	table	elements.	Browser	support	varies.	Learn	more
about	collapse	at	https://developer.mozilla.org/CSS/visibility.

Setting	the	Height	or	Width	for	an	Element
You	can	set	a	height	and	width	on	elements	such	as	sectioning	content,	paragraphs,	list	items,	divs,
images,	video,	form	elements,	and	more	(through).
Click	here	to	view	code	image

https://developer.mozilla.org/CSS/display
https://developer.mozilla.org/CSS/visibility

main	{
					width:	600px;	/*	62.5%	=	600px/960px	*/
}

.sidebar	{
					width:	300px;	/*	31.25%	=	300px/960px	*/
}

	Eventually,	our	page	will	have	two	columns:	One	with	the	content	in	main	and	one	with	the	content	in
the	div	with	class="sidebar".	The	rules	set	their	respective	fixed	widths	(and).

	I	set	the	width	of	main	to	600px	to	match	the	width	of	the	image.	Now,	the	main	area	remains	at	600
pixels	wide	no	matter	how	wide	you	make	the	browser	window.	As	a	result,	the	text	wraps	instead	of

continuing	beyond	the	width	of	the	image.

	The	sidebar	begins	with	the	About	Me	module.	Currently,	our	page	is	one	long	column,	so	you	can	see
the	end	of	the	main	content	above	the	sidebar.	This	also	demonstrates	that	the	sidebar	(now	set	to

300px)	is	half	the	width	of	main.

Also,	you	can	set	phrasing	content	elements	(which	display	as	inline	by	default)	to	display:	block;
or	display:	inline-block;	and	then	apply	a	width	or	height	to	them	too.	(See	“Controlling	the
Display	Type	and	Visibility	of	Elements”	for	more	information	about	the	display	property.)

To	set	the	height	or	width	for	an	element
1.	Type	width:	w,	where	w	is	the	width	of	the	element’s	content	area	and	can	be	expressed	either	as
a	length	(with	units	like	px	and	em)	or	as	a	percentage	of	the	parent	element.	Or	use	auto	to	let	the
browser	calculate	the	width	(this	is	the	default).

2.	Type	height:	h,	where	h	is	the	height	of	the	element	and	can	be	expressed	only	as	a	length	(with
units	like	px	and	em).	Or	use	auto	to	let	the	browser	calculate	the	height	(this	is	the	default).

Pixels	for	Fixed-Width	Pages,	Percentages	for	Responsive	Web	Designs
This	chapter	uses	pixels	for	widths	as	a	way	of	introducing	you	to	laying	out	webpages.	In
the	code	comments,	I	have	included	the	equivalent	percentages	of	the	pixel	widths,	and
how	I	arrived	at	those	values	 .	I	will	use	the	percentages	instead	of	the	pixels	in	Chapter
12	when	I	show	you	how	to	make	this	layout	responsive.

Tip
The	padding,	borders,	and	margin	are	not	included	in	the	value	of	width	or	height	(see
“The	Box	Model”	and	“Width,	margins,	and	auto”).	“The	Box	Model”	also	shows	how
applying	box-sizing:	border-box;	to	an	element	 	will	make	the	values	of
width	and	height	include	the	padding	and	borders.

Click	here	to	view	code	image

*	{
					-webkit-box-sizing:	border-box;
					-moz-box-sizing:	border-box;
					box-sizing:	border-box;
}

	You	can	apply	border-box	to	every	element	using	the	*	wildcard.	Alternatively,	you	can
apply	it	to	elements	individually	just	like	any	other	style	(replace	*	with	the	selector	of	your
choice).	The	funny-looking	property	prefixes	-webkit-	and	-moz-	make	it	work	in	older

Android	and	iOS	devices	and	in	Firefox,	respectively.

Tip
A	percentage	width	value	is	relative	to	the	width	of	the	element’s	parent.	For	example,
assume	a	div	is	100	pixels	wide	and	you	set	an	element	within	it	to	width:	70%;.	The
child	element	will	be	70	pixels	wide	(70%	of	100).	You	will	see	this	in	the	next	chapter.

Tip
You	can’t	set	a	height	or	width	on	elements	that	display	as	inline	elements	(like
phrasing	content)	unless	you	set	them	to	display:	inline-block	or	display:
block.	See	“Controlling	the	Display	Type	and	Visibility	of	Elements”	for	more
information	about	the	display	property.

Tip
There	are	also	min-width,	min-height,	max-width,	and	max-height
properties	for	setting	minimum	and	maximum	sizes.	The	max-width	property	is	ideal	for
setting	the	outside	limit	of	a	fluid	layout,	like	the	one	you’ll	see	in	the	next	chapter.	In	that
case,	I	set	the	.page	div	that	wraps	around	the	whole	page	to	max-width:
960px;.	When	combined	with	percentage-based	widths	for	main	and	.sidebar,	this
allows	the	page	to	be	narrower	on	smaller	screens	but	no	wider	than	960	pixels,	even	if
visitors	have	huge	displays.	See	also	“Why	min-height	Is	Often	Preferable	to
height.”

Tip
widths	and	heights	are	not	inherited.

Width,	margins,	and	auto
If	you	don’t	explicitly	set	the	width	or	height,	auto	is	used	as	the	value.	For	elements	that	display	as
a	block,	the	auto	value	for	width	is	calculated	from	the	width	of	the	containing	block	minus	the
element’s	padding,	borders,	and	margins	(and).	In	simple	terms,	the	containing	block	in	this	context
is	the	content	area	of	the	parent	element	that	contains	the	element.
Click	here	to	view	code	image

div	{	/*	containing	block	*/
					background:	khaki;	/*	tan	*/
					width:	300px;
}

p,
.second	{
					background:	white;
					border:	3px	solid	royalblue;
					margin:	10px;
					padding:	8px;
}

.second	{	/*	the	second	paragraph	*/
					border-color:	orangered;
					width:	200px;
}

	In	this	example,	I’ve	set	the	width	of	the	parent	div	to	300	pixels.	This	will	be	our	containing	block.
Then,	both	paragraphs	have	10-pixel	margins,	3-pixel	borders,	and	8-pixel	padding	on	all	sides.	The	first
paragraph	has	the	width	set	automatically,	since	auto	is	the	default	width	value	unless	you	specify
otherwise.	The	second	paragraph	(which	has	class="second"	in	the	HTML)	is	set	at	200px.

	If	the	width	is	auto,	as	in	the	top	paragraph,	its	value	is	derived	from	the	width	of	the	containing
block	(tan	area)	minus	its	own	margins,	border,	and	padding.	If	the	width	is	set	manually	(as	in	the

bottom	paragraph),	the	right	margin	is	usually	adjusted	to	pick	up	the	slack.

For	example,	a	p	contained	in	a	space	that	is	200	pixels	wide	automatically	will	be	200	pixels	wide	as
well.	But	if	it	has	padding-right:	10px,	the	auto	width	will	be	190	pixels.

Why	min-height	Is	Often	Preferable	to	height
Unless	you’re	certain	an	element’s	content	won’t	get	taller,	it’s	almost	always	best	to	avoid
giving	it	a	height	in	your	style	sheet.	In	most	cases,	you’ll	let	the	content	and	browser
dictate	the	height	automatically.	This	lets	content	flow	as	needed	on	the	range	of	browsers
and	devices.
If	you	do	set	a	height	and	the	content	grows,	it	could	break	out	of	the	element’s	box,
which	might	not	be	what	you’d	expect.	Browsers	do	not	expand	the	height	automatically	in
this	circumstance;	they	take	your	word	for	it	when	you	specify	a	height,	and	they	stick	to	it.
See	“Determining	How	to	Treat	Overflow”	for	an	example.
However,	if	you	always	want	the	element	to	be	at	least	a	certain	height,	set	a	min-
height.	If	the	content	later	grows,	the	element’s	height	will	grow	automatically	as
desired.	That	is	the	difference	between	height	and	min-height,	as	well	as	between
width	and	min-width.
And	in	case	you’re	wondering,	there	are	a	variety	of	reasons	beyond	your	control	that
content	might	grow.	Your	content	might	come	from	a	database	or	a	feed	from	a	third	party
or	be	user-generated.	Also,	your	visitor	may	increase	the	font	size	in	his	or	her	browser,
overriding	the	style	you	specified.

Elements	like	images	have	an	auto	width	equal	to	their	intrinsic	value;	that	is,	the	actual	dimensions	of
the	external	file	(like	the	example	page’s	largest	image,	which	is	600	x	365).	Inline	elements	ignore	the
width	property	altogether	(meaning	you	can’t	set	a	width	on	elements	like	em	and	cite	unless	you	set
them	to	display:	inline-block	or	display:	block).	See	“Controlling	the	Display	Type	and
Visibility	of	Elements”	for	more	information	about	display.
If	you	manually	set	the	width,	margin-left,	and	margin-right	values,	but	together	with	the
border	and	padding	they	don’t	equal	the	size	of	the	containing	block,	something’s	got	to	give.	And	indeed,
the	browser	will	honor	the	width,	making	the	space	to	the	right	larger	than	your	margin-right
setting	(see	the	bottom	paragraph	in).
If	you	manually	set	the	width	but	set	one	of	the	margins	to	auto,	then	that	margin	will	stretch	or	shrink
to	make	up	the	difference.
However,	if	you	manually	set	the	width	but	leave	both	margins	set	to	auto,	both	margins	will	be	set	to
the	same	maximum	value,	resulting	in	your	element	being	centered.	For	example,	.page	{	margin:
0	auto;	}	centers	the	page.	That’s	precisely	what	I’ve	done	for	the	example	page,	as	shown	in	figures	
	and	 	of	“Setting	the	Margins	Around	an	Element.”

Adding	Padding	Around	an	Element
Padding	is	just	what	it	sounds	like:	extra	space	around	the	contents	of	an	element	but	inside	the	outer	edge
(the	border).	You	might	recall	my	analogy	from	before—padding	is	like	the	matting	between	a	photo	(the
content)	and	a	picture	frame	(the	border).	You	can	change	the	padding’s	thickness	(through)	but	not
its	color	or	texture.	The	color	or	texture	that	shows	in	the	padded	area	is	the	element’s	background,	as	set
via	background,	background-color	 ,	or	background-image.
Click	here	to	view	code	image

.about	{
					background-color:	#2b2b2b;
					padding:	.3125em	.625em	.625em;
}

/*
Similar	to
					padding:	5px	10px	10px;
because	font-size	is	16px	and
.3125	=	5px/16px
.625	=	10px/16px
*/

	As	with	setting	margins,	when	you	set	three	values	for	padding	they	are	assigned,	in	clockwise
order,	to	the	top,	right	and	left,	and	bottom.	So	here,	there	will	be	padding	on	all	four	sides	 .

	Without	the	padding	(left),	the	content	touches	the	edges.	When	you	add	padding,	space	is	created
inside	the	element	and	around	its	content	(right).	Also,	the	background	color	shows	through	the	padding.
(If	we	were	to	add	.about	{	border:	1px	solid	red;	},	a	red	border	would	be	around	the
whole	box,	outside	the	padding.)	You’ll	notice	there	is	more	space	at	the	top	and	bottom	of	the	module

than	is	specified	by	the	padding.	This	happens	in	part	because	the	browser	applies	a	default	top	margin	to
headings	(“ABOUT	ME”)	and	bottom	margin	to	paragraphs	(like	the	one	below	the	image).	The	padding

on	the	surrounding	.about	box	forces	the	margins	to	take	effect	inside	the	box.
Click	here	to	view	code	image

.nav-main	a	{
					color:	#292929;
					display:	inline-block;
					font-family:	'Open	Sans',	sans-serif;
					font-size:	1.125em;	/*	18px/16px	*/
					font-weight:	700;
					padding:	.5em	1.15em	.5em	1.4em;
					text-transform:	uppercase;
}

/*
Similar	to
					padding:	9px	20.7px	9px	25.2px;
because	font-size	is	18px	and
.5			=	9px/18px
1.15	=	20.7px/18px
1.4		=	25.2px/18px
*/

	Now	I’ve	added	padding	to	all	sides	of	the	main	navigation	links.	The	top	and	bottom	padding	will	be
more	evident	when	I	add	borders	in	the	next	section.

	The	links	were	cramped	before	(top),	but	thanks	to	the	padding,	they	now	have	room	to	breathe
(bottom).

Shorthand	Notation	for	padding
As	with	the	border	and	margin	properties,	you	can	use	shorthand	notation	instead	of
defining	padding	for	each	side	with	padding-top,	padding-right,	and	so	on.
	padding:	5px;—With	one	value,	it	applies	to	all	sides.
	padding:	5px	9px;—With	two	values,	the	first	value	applies	to	the	top	and
bottom	and	the	second	value	applies	to	the	right	and	left.
	padding:	5px	9px	11px;—With	three	values,	the	first	applies	to	the	top,	the
second	to	the	right	and	left,	and	the	third	to	the	bottom	(and).
	padding:	5px	9px	11px	0;—With	four	values,	they	are	applied	to	the	top,
right,	bottom,	and	left,	in	clockwise	order	(and).

Padding	can	be	expressed	in	any	combination	of	pixels,	percentages,	ems,	or	rems.

To	add	padding	around	an	element
Type	padding:	x;,	where	x	is	the	amount	of	desired	space	to	be	added,	expressed	in	units	(typically
in	ems	or	pixels)	or	as	a	percentage	of	the	width	of	the	parent	element	(for	example,	20%).
Or	apply	padding	to	a	single	side	by	typing	padding-top:	x;,	padding-right:	x;,	padding-
bottom:	x;,	or	padding-left:	x;	(and).

Click	here	to	view	code	image

.links	{
					padding-left:	0;
					width:	270px;	/*	90%	=	270px/300px	*/
}

	The	sidebar	contains	two	groups	of	links,	each	of	which	is	contained	in	an	unordered	list	(ul)	that	has
class="links".	I	set	the	padding	to	0	to	override	the	browser	default	of	40px	 .	The	width	style
ensures	that	the	links	wrap	30	pixels	before	the	right	edge	of	the	sidebar,	which	is	300px	wide,	as

defined	earlier.	(See	Chapter	15	for	more	about	lists,	and	specifically	“Using	Custom	Markers”	regarding
the	default	left	padding.)

	The	default	list	indentation	was	unsightly	(top),	but	now	the	links	line	up	with	their	heading	because	I
negated	the	padding	(bottom).

Tip
See	the	“Understanding	em	Values	for	Padding	and	Margin”	sidebar	for	more	about	how	I
determined	the	em	values	in	 	and	 .

Tip
By	default,	your	width	and	height	settings	for	an	element	do	not	include	its	padding
size.	See	“Width,	margins,	and	auto”	(in	the	previous	section)	and	“The	Box	Model,”
which	also	shows	how	to	override	the	default.

Tip
Background	styling	is	covered	in	the	Chapter	10	section	“Setting	the	Background”	and	the
Chapter	14	sections	“Applying	Multiple	Backgrounds”	and	“Using	Gradient
Backgrounds.”

Tip
Padding	is	not	inherited.

Setting	the	Border
You	can	create	a	border	around	an	element	(and)	or	on	individual	sides	of	an	element	(through	
)	and	set	its	thickness,	style,	and	color.	If	you’ve	specified	any	padding	(see	“Adding	Padding	Around

an	Element”),	the	border	encloses	both	the	padding	and	the	contents	of	the	element	(through).
Figures	 	and	 	demonstrate	all	border	style	options	available	to	you.
Click	here	to	view	code	image

.about	img	{
					border:	5px	solid	#bebebe;
}

	Borders	may	be	applied	to	any	element,	including	images.	If	you	intend	to	use	the	same	border
treatment	on	more	than	one	element,	it	would	be	best	to	apply	it	with	a	class	so	it’s	easy	to	reuse.	For

example,	.frame	{	border:	5px	solid	#bebebe;	}

	The	border	frames	the	image	nicely.
Click	here	to	view	code	image

.nav-main	{
					/*	green	*/
					border-top:	5px	solid	#019443;
					/*	gray	*/
					border-bottom:	1px	solid	#c8c8c8;
}

.nav-main	li	{
					border-left:	1px	solid	#c8c8c8;
					display:	inline-block;
}

.nav-main	li:first-child	{
					border-left:	none;
}

	These	simple	borders	give	both	the	main	navigation	and	the	page	masthead	overall	a	little	more
definition	 .	As	is	customary,	each	navigation	link	is	contained	in	a	list	item	(li).	Notice	that	I	turned

off	the	left	border	of	the	first	one	with	border-left:	none;,	which	resets	it	to	the	default.

	The	borders	make	the	main	navigation	more	prominent,	distinguish	each	navigation	link,	and	help
separate	the	masthead	from	the	page	content	below	it	(not	shown).	The	horizontal	borders	stretch	across

the	width	of	the	page.
Click	here	to	view	code	image

.nav-main	{
					padding:	.45em	0	.5em;	/*	7px	0	8px	*/
}

	A	little	padding	on	the	top	and	bottom	of	the	navigation	container	adds	a	subtle	touch	 .

	Now	space	separates	the	horizontal	lines	from	the	vertical	lines.
Click	here	to	view	code	image

.about	h2,

.mod	h2	{
					font-size:	0.875em;
}

.about	h2,

.mod	h2,

.nav-main	a	{
					font-family:	'Open	Sans',sans-serif;
					font-weight:	700;
					text-transform:	uppercase;
}

.mod	h2	{
					border-bottom:	1px	solid	#dbdbdb;
					padding-bottom:	0.75em;
}

	I	add	a	border	to	several	headings	at	once	with	a	single	rule	 .	(The	class	name	mod	represents	a
generic	module	on	my	page.)

	The	same	treatment	is	applied	to	three	headings	in	the	sidebar.	The	bottom	padding	gave	the	border	a
little	distance	from	the	heading	text.

Click	here	to	view	code	image

.footer	p	{
					font-size:	.6875em;	/*	11px/16px	*/
}

.post-footer	{
					border-bottom:	1px	solid	#dbdbdb;
					border-top:	1px	solid	#dbdbdb;
					padding-bottom:	.7em;	/*	7.7px/11px	*/
					padding-top:	.7em;
}

	I	apply	a	similar	effect	to	the	footers	below	each	blog	post	snippet,	except	they	get	a	top	border	as
well	 .	Each	one	is	a	paragraph	with	class="post-footer".

	Without	the	top	and	bottom	padding	 ,	the	borders	almost	touch	the	text	(top).	It	looks	much	better
with	the	padding	(bottom).

Click	here	to	view	code	image

p	{
					border:	10px	solid	red;
					padding:	15px;
}

.ddd	{
					border-width:	4px;
					border-style:	dotted	dashed	double;
}

.ridge	{
					border-style:	ridge;
					border-color:	orange;
}

.groove	{
					border-style:	groove;
					border-color:	purple;
}

.inset	{
					border-style:	inset;
					border-color:	blue;
}

.outset	{
					border-style:	outset;
					border-color:	green;
}

	In	this	example,	I	set	the	padding	and	default	border	for	each	paragraph.	Then	for	the	first	paragraph,	I
set	the	border	width	for	all	four	sides,	and	then	the	style	for	each	side.	For	the	four	remaining	paragraphs,
I	define	only	their	styles	and	colors	because	the	border	width	of	10px	is	taken	from	the	first	rule	that

covered	all	paragraphs.

	Border	styles	aren’t	treated	consistently	across	browsers,	but	this	view	of	Firefox	gives	you	a	sense	of
the	differences	between	the	style	types.

To	define	the	border	style
Type	border-style:	type,	where	type	is	none,	dotted,	dashed,	solid,	double,
groove,	ridge,	inset,	or	outset.

To	set	the	width	of	the	border
Type	border-width:	n,	where	n	is	the	desired	width,	including	units	(for	example,	4px).

To	set	the	color	of	the	border
Type	border-color:	color,	where	color	is	a	color	name,	hex	value,	or	RGB,	HSL,	RGBA,	or
HSLA	color	(see	“CSS	colors”	in	Chapter	7).

To	set	one	or	more	border	properties	at	once	with	a	shortcut
1.	Type	border.
2.	If	desired,	type	-top,	-right,	-bottom,	or	-left	to	limit	the	effect	to	a	single	side.
3.	If	desired,	type	-property,	where	property	is	style,	width,	or	color,	to	limit	the	effect
to	a	single	property.

4.	Type	:	(a	colon).
5.	Type	the	appropriate	values	(as	described	in	the	three	previous	techniques).	If	you	skipped	step	3,
you	can	specify	any	or	all	of	the	three	types	of	border	properties	(for	example,	border:	1px
solid	or	border-right:	2px	dashed	green;).	If	you	specified	a	property	type	in	step
3,	use	an	accepted	value	for	just	that	property	(for	example,	border-right-style:

dotted;).

Tip
By	default,	Internet	Explorer	shows	a	blue	border	around	images	that	are	linked.	To	negate
this,	include	img	{	border:	none;	}	in	your	style	sheet.	I’ve	done	this	for	the
example	page	because	the	site	logo	is	contained	in	an	a	element	that	links	to	the	homepage.
(The	example	is	the	homepage,	but	the	same	logo	code	would	be	used	throughout	the	site.)

Tip
The	border	shorthand	property	or	individual	properties	(border-width,	border-
style,	and	border-color)	can	have	from	one	to	four	values.	If	you	use	one	value,	it
is	applied	to	all	four	sides.	If	you	use	two,	the	first	is	used	for	the	top	and	bottom,	and	the
second	for	the	right	and	left.	If	you	use	three,	the	first	is	used	for	the	top,	the	second	for	the
right	and	left,	and	the	third	for	the	bottom.	And	if	you	use	four,	they	are	applied	to	the	top,
right,	bottom,	and	left,	in	clockwise	order.

Tip
You	must	define	at	least	the	style	for	a	border	to	display.	If	there’s	no	style,	there	will	be
no	border.	The	default	is	border-style:	none.

Tip
If	you	use	a	shortcut,	like	border	or	border-left	(and	so	on),	the	properties	you
don’t	give	values	for	are	set	to	their	defaults.	So	border:	1px	black;	means
border:	1px	black	none;,	which	means	you	won’t	get	a	border	(even	if	you
specified	a	style	earlier	with	border-style).

Tip
The	default	border	color	is	the	value	of	the	element’s	color	property	(see	“Setting	the
Color”	in	Chapter	10).

Tip
The	border	property	can	be	used	for	tables	and	their	cells	(see	“Structuring	Tables”	in
Chapter	18	for	an	example).

Tip
By	default,	your	width	and	height	settings	for	an	element	do	not	include	the	size	of	its
borders.	The	first	tip	in	“Setting	the	Height	or	Width	for	an	Element”	explains	how	to
override	this.

Tip
CSS3	introduces	the	border-image	property.	Browser	support	is	good	outside	of
Internet	Explorer	(see	http://caniuse.com/#search=border-image).	You	can	learn	about
border-image	at	www.sitepoint.com/css3-border-imageandcss-
tricks.com/understanding-border-image.

Tip
Borders	are	not	inherited.

Setting	the	Margins	Around	an	Element
The	margin	is	the	amount	of	transparent	space	between	one	element	and	the	next	(and).	See	“The
Box	Model”	for	how	it	relates	to	an	element’s	border	and	padding.
Click	here	to	view	code	image

h1	{
					color:	#212121;
					font-family:	"Lato",	sans-serif;
					font-size:	3.25em;	/*	36px/16px	*/
					font-weight:	300;
					letter-spacing:	2px;
					line-height:	.975;
					margin-bottom:	.4125em;	/*	21.45px	*/
}

	I	have	overridden	the	default	bottom	margin	with	my	own	setting,	which	is	smaller.	See	the	sidebar	for
an	explanation	of	how	to	use	ems	for	margins.

http://caniuse.com/#search=border-image
http://www.sitepoint.com/css3-border-imageandcss-tricks.com/understanding-border-image

	The	default	space	between	each	blog	post	heading	and	image	seemed	too	large	for	this	design	(top).
Now	the	space	is	a	little	tighter	and	feels	more	appropriate	(bottom).

To	set	an	element’s	margins
Type	margin:	x,	where	x	is	the	amount	of	desired	space	to	be	added,	expressed	as	a	length,	a
percentage	of	the	width	of	the	parent	element,	or	auto.
Or	apply	a	margin	to	a	single	side	by	typing	margin-top:	x;,	margin-right:	x;,	margin-
bottom:	x;	(and),	or	margin-left:	x;.
Click	here	to	view	code	image

.map	{
					margin:	1.4375em	0	.8125em;
					/*	23px	0	13px	*/
}

.links	{
					margin:	1.5em	0	4.125em;
					/*	24px	0	66px	*/
					padding:	0;
}

.links	li	{
					margin-bottom:	1.1em;
}

	These	rules	tackle	the	space	between	a	few	elements.	The	first	one	allows	the	map	to	breathe	 .	The
final	two	rules	affect	the	links	in	the	sidebar	 .

	The	map	was	crowded	between	the	two	headings	(left),	but	the	margins	solved	that	(right).

	There	is	more	space	between	each	group	of	links,	as	well	as	between	the	links	themselves.	(You	can
see	how	it	was	before	in	figure	 	of	“Adding	Padding	Around	an	Element.”)

Tip
If	you	use	one	value	for	margin,	that	value	is	applied	to	all	four	sides	equally.	If	you	use
two	values	 ,	the	first	value	applies	to	the	top	and	bottom	and	the	second	value	applies	to
the	right	and	left.	If	you	use	three	values	 ,	the	first	applies	to	the	top,	the	second	to	the
right	and	left,	and	the	third	to	the	bottom.	If	you	use	four	values,	they	are	applied	to	the	top,
right,	bottom,	and	left,	in	clockwise	order.

Tip
The	margin	property’s	auto	value	depends	on	the	value	of	the	element’s	width
property	 .	(See	“Setting	the	Height	or	Width	for	an	Element.”)

Click	here	to	view	code	image

.page	{
					border:	1px	solid	red;	/*	temporary	*/
					margin:	0	auto;
					width:	960px;
}

	It’s	common	to	center	a	webpage	horizontally	in	browsers.	It’s	also	simple	to	implement.	First,
give	its	container	a	width	(max-width	works,	too).	Then	set	the	left	and	right	margins	to
auto.	That	tells	the	browser	to	figure	out	those	margins	based	on	the	difference	between	the
width	of	the	browser	window	and	the	width	specified	for	the	container.	In	our	example,	a	div

with	class="page"	contains	the	entire	page	 .

	The	content	within	the	page	may	be	left-aligned,	but	the	page	itself	is	centered	in	the	browser
window.	I	added	a	temporary	red	border	to	the	.page	div	to	make	this	clear.	I	made	the	same
div‘s	width	960px	to	make	room	for	the	sidebar,	which	will	occupy	the	space	on	the	right	once

we	learn	how	to	show	it	there	in	the	next	section.

Tip
If	one	element	is	placed	above	another,	only	the	greater	of	the	two	touching	margins—that
is,	the	touching	bottom	and	top	margins	of	the	elements—is	used.	The	other	margin	is	said
to	collapse.	Left	and	right	margins	don’t	collapse.

Tip
You	may	want	to	keep	a	calculator	handy	for	determining	em	values,	or	you	can	use	a	tool
like	http://pxtoem.com,	which	calculates	the	values	for	you.

Tip
Margins	are	not	inherited.

Understanding	em	Values	for	Padding	and	Margin
When	used	for	padding	and	margins,	em	values	are	relative	to	the	element’s	font	size,	not
to	its	parent’s	font	size	as	you	might	think	(see	“Setting	the	Font	Size”	in	Chapter	10).	The
formula	to	determine	a	margin	or	padding	em	value	is
desired	size	/	element’s	font	size	=	value
Consider	a	simple	example	in	which	paragraphs	are	styled	with	p	{	font-size:
14px;	padding:	.5em;	}.	The	padding	on	all	sides	would	be	7	pixels,	because
7/14	=	.5.	If	the	font	size	were	changed	to	20px,	the	padding	would	automatically	change
to	10	pixels	(10/20	=	.5).	That	is	the	power	of	a	relative	unit	like	em—a	layout’s
proportions	remain	as	the	layout	scales	up	and	down.
The	same	applies	to	margins.	As	shown	in	 ,	the	h1’s	font	size	is	roughly	the	equivalent
of	36	pixels	(3.25em	=	36px/16px).	So,	the	bottom	margin	of	.4125em	is	about	21.45
pixels	(21.45/36	=	.4125).
The	advantages	of	relative	units	like	ems,	percentages,	and	rems	are	more	evident	in
responsive	web	pages,	which	you	will	learn	about	in	the	next	chapter.	But	they	can	benefit
fixed-width	layouts,	too.	Trent	Walton	makes	a	strong	case	for	using	relative	units	at
http://trentwalton.com/2013/01/07/flexible-foundations.
I	recommend	using	relative	units	such	as	ems	for	padding	and	margins,	as	I	have	in	the
examples.	However,	I	know	they	can	take	some	time	to	get	used	to	when	you’re	new	to
building	sites.	That’s	why	I’ve	given	you	values	in	both	ems	and	pixels.	Initially,	you	might
feel	more	comfortable	using	pixels	for	padding	and	margins,	and	that’s	OK.	You	can	switch
to	ems	and	the	like	when	you’re	ready.
One	quick	note:	If	you	use	percentages	for	padding	and	margin,	typically	you	won’t	want	to
use	them	for	top	or	bottom	values,	because	they	are	based	on	the	containing	block’s	width.

Making	Elements	Float
You	can	make	elements	float	in	a	sea	of	text	(or	other	elements)	with	the	float	property.	You	can	use
this	technique	to	make	text	wrap	around	images	(through)	or	other	elements,	to	create	multi-column
layouts	(and),	and	more.

http://pxtoem.com
http://trentwalton.com/2013/01/07/flexible-foundations

	This	is	one	of	the	blog	post	snippets.	By	default,	the	paragraph	appears	below	the	image.	I	haven’t
applied	a	width	to	the	paragraph;	the	text	wraps	because	the	paragraph	(and	the	image)	is	inside	the	main
element,	which	I	set	to	600	pixels	wide	earlier	(and	as	seen	in).	The	image’s	width	(370)	is	specified

in	the	HTML.	How	can	we	make	the	text	wrap	around	the	image?
Click	here	to	view	code	image

.post-photo	{
					float:	left;
					margin-bottom:	2px;
					margin-right:	22px;
}

	Easy!	When	you	float	an	element	that	has	a	width	set,	the	content	that	would	normally	display	below	it
flows	around	it—as	long	as	that	content	does	not	have	a	width	set.	Our	image	(which	has

class="post-photo")	and	paragraph	meet	these	criteria,	which	is	why	floating	the	image	to	the	left
works	 .	The	margins	add	a	little	space	between	the	image	and	text.

	When	the	image	is	floated	left,	the	text	scoots	up	alongside	it	and	wraps	around	it	when	it’s	taller.	This
example	uses	an	image,	but	you	could	apply	the	same	approach	to	float	a	figure,	an	aside,	or	other

elements.
Click	here	to	view	code	image

main	{
					float:	left;
					width:	600px;	/*	62.5%	=	600px/960px	*/
}

.sidebar	{
					float:	right;
					margin-top:	1.875em;	/*	30px/16px	*/
					width:	300px;	/*	31.25%	=	300px/960px	*/
}

	You	can	use	a	similar	approach	to	make	two	elements	appear	next	to	each	other,	such	as	the	main
content	and	sidebar.	Both	have	explicit	widths,	so	I’ll	float	both	of	them.

	Voilà,	a	two-column	layout!	But	what	is	that	sitting	between	the	left	and	right	columns?	Let’s	take	a
closer	look...	

	It’s	the	footer!	How	did	it	get	up	there?	First,	remember	that	our	page	is	960	pixels	wide,	main	is	600
pixels	wide,	and	the	sidebar	is	300	pixels	wide.	With	the	columns	floated	to	opposite	sides,	that	leaves
60	pixels	of	space	between	them.	Second,	if	you	look	at	the	HTML,	the	code	for	main	is	directly	before
the	sidebar,	which	is	directly	before	the	footer.	Because	the	columns	are	floated,	the	footer	content	flows
in	between	them,	just	like	the	paragraph	text	flowed	around	the	image	in	 .	You’ll	learn	how	to	get	the

footer	back	down	where	it	belongs	in	the	next	section.

To	wrap	text	around	elements
1.	Type	float:.
2.	Type	left	if	you	want	the	element	on	the	left	and	the	rest	of	the	content	to	flow	to	its	right.
Or	type	right	if	you	want	the	element	on	the	right	and	the	rest	of	the	content	to	flow	to	its	left.
Or	type	none	if	you	don’t	want	the	element	to	float	at	all.	(none	is	the	default	value,	so	you’d	only
set	it	explicitly	if	you	were	overriding	another	rule	that	made	an	element	float.)

3.	Use	the	width	property	to	explicitly	set	the	width	of	the	floated	element	(see	“Setting	the	Height
and	Width	for	an	Element”)	so	there’s	room	for	content	to	flow	next	to	it.

Tip
Remember,	the	direction	you	choose	applies	to	the	element	you’re	floating,	not	to	the
elements	that	flow	around	it.	When	you	float:	left,	the	following	content	flows	to	the
right,	and	vice	versa.

Tip
The	float	property	is	not	inherited.

Controlling	Where	Elements	Float
You	can	control	when	floating	stops,	but	before	I	show	you	how,	it	helps	to	understand	more	about	how
the	float	property	affects	your	pages.
Consider	the	HTML	in	 ,	which	represents	one	of	the	blog	post	introductions	(minus	the	heading).	As
you	can	see,	the	section	element	contains	all	associated	content.	Assume	the	styling	is	the	same	as
shown	earlier,	except	you	add	a	garish	background	color	to	the	section	so	its	height	is	evident	 .
Click	here	to	view	code	image

<section	class="post">
					

					<div	class="post-blurb">
								<p>An	hour	and	a	half	...</p>
					</div>

					<footer	class="footer">
								<p	class="post-footer">Posted	...</p>
					</footer>
</section>

	This	simple	structure	keeps	all	blog	post	introductory	content	in	a	section.	In	the	real	page	shown
throughout	the	chapter,	<h1>The	City	Named	After	Queen	Victoria</h1>	is	directly

before	the	img	inside	the	section.

	The	image	has	float:	left;	applied	to	it,	forcing	the	text	to	flow	around	it.	The	height	of	the
section	element	(the	yellow	area)	seems	to	be	affected	by	the	image,	but	looks	can	be	deceiving.

A	floated	element	affects	the	document	flow	differently	than	a	non-floated	element.	As	you’ve	seen,	a
floated	element	(like	the	image)	forces	subsequent	content	to	wrap	around	it	 .	However,	it	does	not
factor	into	the	height	of	its	parent	or	other	ancestors,	so	in	this	sense	it	is	taken	out	of	the	document	flow.
To	illustrate	this,	I’ve	removed	some	of	the	text	from	the	blog	post	snippet	 .	You	may	be	surprised	to
see	that	the	section	is	shorter	than	the	image,	even	though	the	image	is	a	child	of	the	section!	Only
the	content	in	the	normal	document	flow	affects	the	parent’s	height.	In	this	case,	that	includes	the	blog
snippet	text	and	the	blog	post	footer,	but	not	the	image.

	Now	you	can	really	see	how	a	floated	element	affects	the	document	flow—it	doesn’t	affect	the	parent
element’s	height	at	all.

And	what	about	that	footer?	It	makes	sense	that	it	scooted	up	next	to	the	image	when	the	text	before	it
became	shorter.	But	clearly,	this	is	undesirable.	After	all,	you	might	have	a	blog	post	snippet	with	short
text	sometimes.	How	can	you	guard	against	this?
Fortunately,	you	can	stop	the	floating	effect	with	the	clear	property	(and).	When	applied	to	an
element,	it	and	subsequent	elements	display	after	the	floated	element.
Click	here	to	view	code	image

.post-footer	{
					clear:	left;
}

	Use	clear:	left;	to	make	content	display	after	(or	clear	of)	an	element	that	is	floated	left	 .

	Now	the	post	footer	won’t	appear	next	to	the	image,	no	matter	how	short	the	text	preceding	it	may	be.
The	parent’s	height	has	expanded	accordingly.	You	could	add	a	margin-top	style	to	the	footer	so	it
doesn’t	sit	so	close	to	the	image.	Also,	once	you’ve	cleared	a	float,	the	effect	is	gone,	so	you	don’t	have

to	apply	it	to	every	element	you	want	to	appear	after	the	image.

Making	a	parent	of	a	float	“self-clearing”
Looking	back	at	“Making	Elements	Float”	(figure),	we	still	have	a	layout	issue	to	resolve.	The	page
footer	doesn’t	display	after	the	main	and	sidebar	columns,	even	though	it	appears	after	them	in	the
HTML	 .
Click	here	to	view	code	image

...
<body>
<div	class="page">
					...	[masthead]	...

					<div	class="container">
								<main	role="main">
											...
								</main>

								<div	class="sidebar">
											...
								</div>
					</div>	<!--	end	container	-->

					<footer	role="contentinfo"	...>
								<p	class="legal"><small>©	2013	Le	Journal.	All	Rights	Reserved.</small></p>
					</footer>
</div>
</body>
</html>

	The	basic	structure	of	our	page.	The	div	with	class="container"	is	the	parent	of	the	main	and
sidebar	areas.	The	page	footer	is	after	it.

Remember	that,	from	styles	applied	earlier,	the	main	element	has	float:	left;	and	the	sidebar	has
float:	right;.	Now	that	you	know	that	floated	elements	don’t	contribute	to	the	height	of	their
parents,	it	makes	more	sense	that	the	page	footer	appears	near	the	top	of	the	page.	The	height	of	the
columns’	parent—the	container	div—is	0!	Don’t	believe	it?	Take	a	look	at	 .

	If	you	apply	.container	{	border:	1px	solid	red;	},	you	don’t	see	a	border	around
both	child	columns	as	you	might	expect.	Instead,	the	border	looks	like	a	single	line	at	the	top	because	all
the	container	div’s	content	is	floated	either	left	or	right,	giving	it	a	height	of	0.	That’s	why	the	page	footer

is	directly	below	the	container.

You	could	solve	the	footer	issue	by	applying	clear:	both;	to	it.	This	is	the	same	approach	used	in	
to	stop	the	floating	effect,	except	that	it	clears	both	left	and	right	floats.
That	would	make	the	page	footer	appear	below	the	floated	columns,	but	the	container	div	would	still
have	a	height	of	0.	Unlike	the	.post-footer	that	was	cleared	inside	the	same	parent	as	the	float	(the
section	in	 	and	as	seen	in),	the	page	footer	is	outside	the	container	parent	 .	This	means	it	can’t

possibly	affect	the	container’s	height,	floats	or	no	floats.
This	might	not	be	a	problem	most	of	the	time.	But	I	want	to	add	a	background	to	the	container,	and	it	won’t
show	if	the	container	has	no	height.	The	solution	is	to	make	the	container	clear	the	floats	itself.
There	are	a	few	ways	to	do	this,	but	the	most	reliable	is	to	use	what’s	known	as	the	clearfix	method.	To
do	so,	include	the	.clearfix	rules	in	your	style	sheet	 ,	and	add	the	clearfix	class	to	the	parent
of	the	floated	element(s)	you	wish	to	clear	 	so	the	parent	grows	taller	and	can	be	styled	as	desired	(
and).
Click	here	to	view	code	image

.clearfix:before,

.clearfix:after	{
					content:	"	";
					display:	table;
}

.clearfix:after	{
					clear:	both;
}

.clearfix	{
					*zoom:	1;
}

	Websites	far	and	wide	use	this	clearfix	class	or	one	very	similar	to	it	to	clear	floats.	I	won’t
explain	what	all	the	code	means	since	it’s	a	little	involved.	But	keep	it	handy;	paste	it	into	a	style	sheet	for

each	website	that	needs	it.
Click	here	to	view	code	image

...
<div	class="container	clearfix">
					<main	role="main">
								...
					</main>

					<div	class="sidebar">
								...
					</div>
</div>
...

	Adding	clearfix	to	the	container	will	clear	the	floated	main	and	sidebar	elements	and	make	the
container	height	equal	to	the	taller	of	the	two	columns.

Click	here	to	view	code	image

.container	{
					background:	url(../img/bg.png)	repeat-y	629px	0;
					padding-bottom:	1.9375em;
}

footer[role="contentinfo"]	{
					border-top:	1px	solid	#cacbcb;
}

	When	positioned	629	pixels	from	the	left	and	repeated	vertically,	the	simple	5	x	20	background	image
provides	a	subtle	divider	between	the	two	columns.	You	can	also	add	a	border	across	the	top	of	the	page

footer	to	separate	the	footer	 .

	The	page	footer	border	is	perpendicular	to	the	column	divider	background	image.	The	padding	that
was	added	to	the	bottom	of	the	container	provides	some	space	between	the	pagination	links	and	the	page

footer	below	them.

To	control	where	elements	float
1.	Type	clear:	 .
2.	Type	left	to	keep	elements	from	floating	to	the	left	of	the	element	you’re	styling.
Or	type	right	to	keep	elements	from	floating	to	the	right	of	the	element	you’re	styling.
Or	type	both	to	keep	elements	from	floating	to	either	side	of	the	element	you’re	styling.
Or	type	none	(the	default)	to	let	elements	float	to	either	side	of	the	element	you’re	styling.

3.	Or,	to	make	an	ancestor	of	a	float	include	the	floated	element	in	its	height	and	stop	floating	behavior
after	it,	use	the	clearfix	(and)	or	overflow	methods	instead	of	steps	1	and	2.	(See	the
sidebar	“Using	overflow	for	Self-Clearing	Floats.”)

Tip
You	add	the	clear	property	to	the	element	whose	sides	you	want	to	be	clear	of	floating
objects	(through).	So	if	you	want	an	element	not	to	be	displayed	until	the	right	side	is
clear	of	floating	elements,	add	clear:	right;	to	it	(and	not	to	the	floating	elements).
By	comparison,	the	clearfix	and	overflow	methods	are	applied	to	a	parent	or	ancestor
of	a	float.

Tip
Many	people	have	refined	the	clearfix	code	over	the	years.	The	version	shown	 	is	by
Nicolas	Gallagher	(http://nicolasgallagher.com/micro-clearfix-hack/,	but	be	warned	that
the	discussion	is	pretty	technical)	and	is	taken	from	the	very	helpful	HTML5	Boilerplate
(www.h5bp.com),	a	project	started	by	Paul	Irish.

Tip
The	display	property	of	a	floated	element	becomes	display:	block;	even	if	it
had	been	set	previously	to	display:	inline;	either	via	a	browser	default	or	by	you
explicitly.

Using	overflow	for	Self-Clearing	Floats
Often,	you	can	use	the	overflow	property	on	the	parent	of	a	float	instead	of	the	clearfix
method	(and).	For	example,	this	would	yield	the	same	result	in	our	example	page:

.container	{
				overflow:	hidden;
}

Sometimes	overflow:	hidden;	will	cut	off	content,	so	keep	an	eye	out	for	that.
Using	overflow:	auto;	instead	also	works	and	doesn’t	cut	off	content,	but	sometimes
you	might	see	a	scroll	bar,	which	is	obviously	undesirable	in	its	own	way.	Consequently,
some	coders	choose	to	use	overflow	to	solve	float	issues	when	it’s	able	to	do	the	job,
and	use	clearfix	for	the	rest.	Others	prefer	to	use	clearfix	all	the	time.
Incidentally,	you	can	apply	either	clearfix	or	overflow	to	a	non-parent	ancestor	of	a
float.	That	won’t	make	the	parent	taller,	but	the	ancestor’s	height	will	encompass	the	float.
See	“Determining	How	to	Treat	Overflow”	for	more	about	the	overflow	property.

Positioning	Elements	Relatively
Each	element	has	a	natural	location	in	a	page’s	flow	(and).	Moving	the	element	with	respect	to	this
original	location	is	called	relative	positioning	(and).	The	surrounding	content	and	elements	are	not
affected	at	all	 .
Click	here	to	view	code	image

http://nicolasgallagher.com/micro-clearfix-hack/
http://www.h5bp.com

...
<h1>Relative	Positioning</h1>

<p>When	you	position	an	element	relatively,	you	position	it
relative	to	its	normal	location.</p>
...

	The	span	text	I’ll	position	in	a	moment.

	This	is	a	normal	paragraph,	so	there	are	no	surprises	in	the	rendering	here.
Click	here	to	view	code	image

.example	{
					position:	relative;
					top:	35px;
					left:	100px;
}

	Remember	to	specify	the	relative	positioning	and	also	declare	at	least	one	offset.	It	can	be	either	a
positive	or	negative	value.	I	used	pixels	to	simplify	the	example,	but	using	ems	would	keep	the	offset	in
proportion	with	the	size	of	the	text,	even	if	the	text	got	smaller	or	larger.	Because	1em	is	equal	to	an

element’s	font	size	and	text	is	typically	16	pixels	by	default,	in	this	example	top:	-3em;	would	move
the	text	up	the	equivalent	of	48	pixels.

	The	text	displays	35	pixels	from	the	top	and	100	pixels	from	the	left	of	its	normal	location,	which	is
left	as	a	blank	space.	If	I	had	set	it	to	top:	-55px;,	the	text	would	sit	on	top	of	the	h1	text.

To	offset	elements	within	the	natural	flow
1.	Type	position:	relative;.
2.	Type	top,	right,	bottom,	or	left.

Then	type	:d,	where	d	is	the	desired	distance	that	you	want	to	offset	the	element	from	its	natural
location,	expressed	either	as	an	absolute	or	relative	value	(10px	or	2em,	for	example)	or	as	a
percentage.	The	value	can	be	positive	or	negative.	Repeat	this	step	as	desired	for	additional	offsets.

Tip
The	other	elements	flow	as	usual	with	respect	to	the	original	containing	block	of	the
element.	Depending	on	your	top,	right,	bottom,	or	left	values,	your	relatively
positioned	content	may	overlap	other	content.

Tip
Use	the	z-index	property	to	specify	the	stacking	order	of	elements	that	overlap	each
other	when	positioned	with	relative,	absolute,	or	fixed.	See	“Positioning
Elements	in	a	Stack”	for	details.

Tip
Set	an	element	to	position:	static	to	override	a	position:	relative
setting.	static	is	the	default	value	for	elements,	which	is	why	they	appear	in	the	normal
document	flow.	See	an	example	in	“Positioning	Elements	in	a	Stack.”

Tip
Positioning	is	not	inherited.

Positioning	Elements	Absolutely
As	noted,	the	elements	in	your	webpage	flow	in	the	order	in	which	they	appear	in	the	HTML	source	code
(and),	unless	you	instruct	them	to	do	otherwise	with	CSS.	That	is,	if	an	img	element	comes	before
a	p	in	the	code,	that	image	displays	before	that	paragraph	in	browsers.
Click	here	to	view	code	image

...
<header	class="masthead"	role="banner">
					<p	class="logo"></p>

					<ul	class="social-sites">
								...
					

					<nav	role="navigation">
								<ul	class="nav-main">
											...
								
					</nav>
</header>
...

	Our	page	masthead	(or	header,	if	your	prefer)	contains	the	site	logo,	the	social	icon	links,	and	main
navigation,	in	that	order.	Their	default	display	follows	suit	 .	Soon	you’ll	see	how	to	position	the	icons

absolutely	within	the	masthead	by	leveraging	the	two	highlighted	classes.

	Our	list	of	social	icons	sits	between	the	logo	and	navigation	as	a	result	of	the	normal	document	flow.	I
want	it	to	display	about	halfway	down	from	the	top	and	on	the	far	right	side	of	the	masthead	header	that

contains	it	 .

You	can	position	elements	absolutely—which	takes	them	out	of	the	normal	flow	entirely—by	specifying
their	precise	position	with	respect	to	the	body	(and)	or	to	their	nearest	positioned	ancestor
element	(and).
Click	here	to	view	code	image

.masthead	.social-sites	{
					position:	absolute;
					top:	41px;
					right:	0;
}

	By	positioning	the	list	of	icons	absolutely,	I’ve	taken	it	completely	out	of	the	document	flow.	This	code
alone	doesn’t	achieve	our	desired	results	because,	unless	you	specify	otherwise,	an	element	with
position:	absolute	is	positioned	relative	to	the	body	element,	as	you	can	see	in	 .

	The	icons	display	41	pixels	from	the	top	of	the	body	and	0	from	the	right.	Clearly,	this	isn’t	good,
because	the	wider	you	make	the	browser	window,	the	more	the	icons	run	away	from	the	rest	of	the	page!
Click	here	to	view	code	image

.masthead	{
					position:	relative;
}

.masthead	.social-sites	{
					position:	absolute;
					top:	41px;
					right:	0;
}

	I	set	the	header	that	contains	the	list	of	icons	 	to	position:	relative	so	the	icons	will	be
positioned	absolutely	relative	to	the	header,	not	to	the	body	element.	This	gets	the	icons	where	you

want	them	 .

	Perfection!

This	is	different	than	relative	positioning	in	that	no	space	is	left	where	an	absolutely	positioned	element
would	have	appeared	normally.	It’s	also	different	than	when	you	float	an	element.	Other	elements	do	not

flow	around	an	absolutely	positioned	element.	In	fact,	they	don’t	even	know	it	exists,	and	vice	versa.

To	position	elements	absolutely
1.	Type	position:	absolute;.
2.	If	desired,	type	top,	right,	bottom,	or	left.
Then	type	:	d;,	where	d	is	expressed	as	the	desired	distance	that	you	want	to	offset	the	element
from	its	ancestor	(10px	or	2em,	for	example)	or	as	a	percentage	of	the	ancestor.	(See	the	second
tip	for	a	related	note.)

3.	If	desired,	repeat	step	2	for	additional	offsets.
4.	If	desired,	add	position:	relative;	to	the	ancestor	element	to	which	you	want	your
absolutely	positioned	element	to	be	offset	(and).	If	you	skip	this	step	(as	in),	the	element
will	be	offset	with	respect	to	the	body	 .

Tip
Because	absolutely	positioned	elements	are	taken	out	of	the	flow	of	the	document,	they	can
overlap	each	other	and	other	elements.	(This	is	not	always	bad.)

Tip
If	you	don’t	specify	an	offset	for	an	absolutely	positioned	item,	the	item	appears	in	its
natural	position	but	does	not	affect	the	flow	of	subsequent	items.

Tip
There	is	also	a	fixed	positioning	type.	When	a	visitor	scrolls	in	the	browser	window,	the
contents	of	the	page	usually	move	up	or	down.	When	you	set	an	element	to	position:
fixed;,	it	is	affixed	to	the	browser	window	so	that	it	doesn’t	move	when	the	visitor
scrolls	up	or	down.	The	rest	of	the	page	does	scroll	as	usual.	It’s	much	like	the	way	fixed
background	images	work	(see	“Setting	the	Background”	in	Chapter	10).	Fixed	positioning
is	notoriously	buggy	in	many	mobile	browsers,	so	it’s	best	to	avoid	using	it	for	sites	you
expect	to	be	viewed	with	mobile	devices.

Tip
Use	the	z-index	property	to	specify	the	stacking	order	of	elements	that	overlap	each
other	when	positioned	with	relative,	absolute,	or	fixed.	See	“Positioning
Elements	in	a	Stack”	for	details.

Tip
Set	an	element	to	position:	static;	to	override	a	position:	absolute;
setting.	static	is	the	default	value	for	elements,	which	is	why	they	appear	in	the	normal
document	flow.	See	an	example	in	“Positioning	Elements	in	a	Stack.”

Tip
Positioning	is	not	inherited.

Positioning	Elements	in	a	Stack
Once	you	start	using	relative,	absolute,	or	fixed	positioning,	it’s	quite	possible	that	you’ll	find	that	your
elements	have	overlapped.	You	can	choose	which	element	should	display	on	top	(through).
Click	here	to	view	code	image

<div	class="box1"><p>Box	1</p></div>
<div	class="box2"><p>Box	2</p></div>
<div	class="box3"><p>Box	3</p></div>
<div	class="box4"><p>Box	4</p></div>

	The	order	of	the	divs	in	the	HTML.
Click	here	to	view	code	image

div	{
					border:	1px	solid	#666;
					height:	125px;
					position:	absolute;
					width:	200px;
}

.box1	{
					background:	pink;
					left:	110px;
					top:	50px;
					z-index:	120;
}

.box2	{
					background:	yellow;
					left:	0;
					top:	130px;
					z-index:	530;
}

.box3	{
					background:	#ccc;
					position:	static;
					/*	Static,	so	has	no	effect.	*/
					z-index:	1000;
}

.box4	{
					background:	orange;
					left:	285px;
					top:	65px;
					z-index:	3;
}

	The	positioned	element	with	the	highest	z-index	number	always	shows	on	top	 ,	regardless	of
where	it	is	in	the	HTML	 .	The	first	rule	sets	all	four	divs	to	position:	absolute;,	but	then	I

set	.box3	back	to	the	default	value	of	static.	So,	even	though	it	has	the	highest	z-index,	that	has	no
effect	and	.box3	will	always	be	on	the	bottom.

	The	positioned	boxes	are	stacked	from	highest	z-index	down	to	lowest.	The	third	box	is	below	all
of	them	because	it’s	in	the	normal	document	flow.

To	position	elements	in	a	stack
Type	z-index:	n,	where	n	is	a	number	that	indicates	the	element’s	level	in	the	stack	of	positioned
objects.

Tip
The	higher	the	value	of	the	z-index	property,	the	higher	up	the	element	will	be	in	the
stack	(and).

Tip
The	z-index	property	only	works	on	positioned	elements	(that	is,	absolute,
relative,	or	fixed).	The	example	 	shows	absolute	elements	only,	but	you	can
mix	and	match,	and	the	z-index	settings	will	apply	collectively,	not	separately	within
the	absolute,	relative,	and	fixed	elements.

Tip
The	z-index	property	is	not	inherited.

Determining	How	to	Treat	Overflow
Elements	are	not	always	contained	in	their	boxes.	Sometimes	the	box	is	simply	not	big	enough.	For
example,	an	image	that	is	wider	than	its	container	will	spill	out	of	it.	Or	perhaps	you’ve	positioned	the
content	outside	of	the	box,	either	with	negative	margins	or	absolute	positioning.	Or	maybe	you	set	an
explicit	height	on	an	element	and	its	content	is	too	tall	to	fit.	Regardless	of	the	cause,	you	can	control	the
area	outside	of	the	element’s	box	with	the	overflow	property	(and).
Click	here	to	view	code	image

div	{
					background:	#e0f7ac;
					border:	1px	solid	#666;
					height:	88px;
					width:	300px;
}

.example-hidden	{	/*	div	2	*/
					overflow:	hidden;
}

.example-scroll	{	/*	div	3	*/
					overflow:	scroll;
}

.example-auto	{	/*	div	4	*/
					overflow:	auto;
}

	Usually	it’s	best	not	to	set	a	height	on	an	element,	as	I	have	done	here	with	div.	I	added	a
background	color	and	border	so	you	can	see	why.	The	three	classes	demonstrate	your	options	for

controlling	content	that	overflows	its	container	 .

	Each	green	area	with	a	border	is	a	div	that	contains	two	paragraphs.	Browsers	honor	the	height
you	specify	on	an	element.	As	a	result,	if	the	content	is	too	tall	to	fit,	it	spills	outside	(like	the	first	div)

unless	you	apply	an	overflow	setting	that	overrides	the	default.

To	determine	how	the	browser	should	treat	overflow
1.	Type	overflow:.
2.	Type	visible	to	let	the	content	show.	This	is	the	default	option.
Or	type	hidden	to	hide	any	contents	that	don’t	fit	in	the	element’s	box.
Or	type	scroll	to	always	add	scroll	bars	to	the	element,	even	if	they	aren’t	needed.
Or	type	auto	to	have	scroll	bars	appear	only	when	necessary	for	visitors	to	access	the	overflow
content.

Tip
If	the	div	in	 	had	min-height:	88px;	instead	of	height	88px;,	the	divs	in	
	would	grow	to	fit	the	content.	If	the	content	were	shorter	than	88	pixels,	the	div	would

still	be	88	pixels	tall	because	min-height	sets	the	minimum	height.

Tip
The	overflow	property	is	also	handy	for	stopping	floats.	See	the	sidebar	in
“Controlling	Where	Elements	Float.”

Tip
The	overflow	property	is	not	inherited.

Aligning	Elements	Vertically
You	can	align	elements	vertically	in	many	ways	to	make	them	look	better	than	the	default	alignment	(
through).
Click	here	to	view	code	image

...
<form	action="results.php"	method="get"	role="search">
					<label	for="search">Search</label>
					<input	type="search"	id="search"	name="search"	/>
					<input	type="image"	src="img/btn-go.png"	alt="Submit	search"	/>
</form>
...

	Here	is	a	simple	form	with	a	text	label,	text	input	field,	and	image	submit	button.	For	more	information
on	forms,	see	Chapter	16.

	By	default,	inline	content	is	vertically	aligned	according	to	the	text	baseline.	I	entered	text	in	the	form
field	to	illustrate	this—the	label	text	(“Search”),	the	text	in	the	field,	and	the	bottom	of	the	image	all	sit

at	the	baseline.
Click	here	to	view	code	image

input[type="image"]	{
					vertical-align:	bottom;
}

	There	is	an	invisible	box—the	line	box—around	each	entire	line	of	content.	It	represents	the	height	of
the	line.	In	this	case,	the	text	input	field	dictates	the	bottom	of	the	line	box	because	it’s	the	lowest	part	of

the	line	 .	With	the	CSS	shown,	the	image	will	align	to	the	bottom	of	the	line	box	 .

	Bingo!

To	align	elements	vertically
1.	Type	vertical-align:.
2.	Type	baseline	to	align	the	element’s	baseline	with	the	parent’s	baseline.
Or	type	middle	to	align	the	middle	of	the	element	slightly	above	the	parent’s	baseline.
Or	type	sub	to	position	the	element	as	a	subscript	of	the	parent’s	baseline.
Or	type	super	to	position	the	element	as	a	superscript	of	the	parent’s	baseline.

More	About	vertical-align
You	may	also	use	vertical-align	to	align	content	in	table	cells.	Typically,	the	default
setting	is	middle	in	this	context,	as	opposed	to	baseline	for	content	not	in	a	table.
Tables	are	covered	in	Chapter	18.	Beyond	tables,	the	vertical-align	property	works
only	on	elements	displayed	inline,	not	on	elements	that	display	as	a	block.	See	Chris
Coyier’s	explanation	at	http://css-tricks.com/what-is-vertical-align/	for	more	details.

Or	type	text-top	to	align	the	top	of	the	element	with	the	top	of	the	parent’s	content.
Or	type	text-bottom	to	align	the	bottom	of	the	element	with	the	bottom	of	the	parent’s	content.
Or	type	top	to	align	the	top	of	the	element	with	the	top	of	the	line	box.
Or	type	bottom	to	align	the	bottom	of	the	element	to	the	bottom	of	the	line	box	(explained	in).
Or	type	a	percentage	of	the	line	height	of	the	element,	which	may	be	positive	or	negative.
Or	type	a	positive	or	negative	value	(such	as	in	pixels	or	ems)	to	shift	the	element	up	or	down,
respectively,	by	that	amount.

Changing	the	Cursor
Normally,	the	browser	takes	care	of	the	cursor	shape	for	you,	using	an	arrow	most	of	the	time	and	a
pointing	finger	to	highlight	links	 ,	as	well	as	some	others.	CSS	lets	you	take	the	reins	(and).

	When	you	point	to	the	Home	link,	the	cursor	changes	to	a	pointing	hand	and	the	link	is	highlighted,	just
as	for	any	other	main	navigation	link.

Click	here	to	view	code	image

http://css-tricks.com/what-is-vertical-align/

.nav-main	.current-page,

.nav-main	.current-page:hover	{
					color:	#747474;
					cursor:	default;
}

	I’ve	assigned	class="current-page"	to	the	Home	link	when	the	visitor	is	on	the	homepage.	By
doing	so,	I	can	then	change	the	default	color,	the	hover	state	color,	and	the	cursor	so	the	Home	link	doesn’t
look	like	a	link.	(Alternatively,	you	could	remove	the	a	element	around	the	Home	link	from	the	navigation

in	this	instance.)

	Although	this	continues	to	be	a	real,	live	link,	it	no	longer	looks	like	one.	Since	you	are	already	on	the
page	to	which	this	link	goes,	that	makes	sense.

To	change	the	cursor
1.	Type	cursor:.
2.	Type	pointer	for	the	cursor	that	usually	appears	over	links	(),	type	default	for	an	arrow	(
),	or	type	crosshair	(),	move	(),	wait	(),	help	(),	text	(),	or	progress	().
Or	type	auto	to	get	whatever	cursor	usually	appears	in	that	situation.
Or	type	x-resize	to	get	a	double-sided	arrow,	where	x	is	the	cardinal	direction	one	of	the
arrows	should	point—that	is,	n	(north),	nw	(northwest),	e	(east),	and	so	on.	For	example,	the	e-
resize	cursor	might	look	like	this:	 .

Tip
The	cursors	vary	slightly	from	browser	to	browser	and	system	to	system.

12.	Building	Responsive	Webpages

In	This	Chapter
Responsive	Web	Design:	An	Overview
Making	Images	Flexible
Creating	a	Flexible	Layout	Grid
Understanding	and	Implementing	Media	Queries
Putting	It	All	Together
Accommodating	Older	Versions	of	Internet	Explorer

A	last-minute	decision	to	go	to	the	movies.	A	bet	about	the	official	language	of	Andorra.	The	phone
number	for	a	company	where	you’re	fifteen	minutes	late	for	a	meeting.	A	map	to	the	company,	because	the
reason	you’re	late	is	that	you	can’t	find	it.
We	want	information	immediately,	and	with	the	proliferation	of	powerful	mobile	devices	of	all	shapes
and	sizes,	the	web	can	be	in	your	pocket,	purse,	or	backpack	just	as	easily	as	it’s	at	your	desk	or	kitchen
table	or	in	your	living	room.
So	now	it’s	up	to	you	and	me	to	build	sites	that	make	it	possible	for	visitors	to	access	information	from
any	mobile	phone,	smartphone,	tablet,	laptop,	desktop	computer,	game	console,	TV,	or	future	web-enabled
devices	that	don’t	exist	yet.	Responsive	web	design	facilitates	this.
In	this	chapter,	you’ll	learn	how	to	build	a	page	that	works	on	the	entire	range	of	devices,	adapting	its
layout	according	to	the	device’s	capabilities	and	characteristics.

Responsive	Web	Design:	An	Overview
It	wasn’t	too	long	ago	that	if	you	wanted	to	cater	to	mobile	users,	you’d	build	a	separate	site	specifically
for	mobile.	Some	companies	still	do	this	today,	although	that	is	becoming	less	common.	A	few	may	even
have	a	third	site	for	tablets.
There	is	no	single	correct	approach	that	applies	to	every	situation.	However,	with	new	devices	seemingly
hitting	the	market	each	week	and	new	types	of	devices	no	doubt	being	envisioned	behind	company	walls,
is	it	realistic—or	even	desirable—to	build	and	maintain	separate	sites?	We	can’t	know	what’s	around	the
corner.
Thankfully,	we	can	build	a	single	site	that	will	work	on	devices	now	and	in	the	future.	Better	yet,	we	can
make	it	look	different	on	small	screens	than	on	large	screens	or	anywhere	in	between	(through).

	Believe	it	or	not,	the	versions	of	the	Food	Sense	home	page	shown	here	and	in	the	next	two	figures	are
all	from	the	same	site,	www.foodsense.is,	not	separate	sites	hosted	at	their	own	URLs.	The	site	uses	the
responsive	web	design	approach,	so	its	layout	changes	based	on	the	viewing	conditions.	The	iPhone
(shown	here)	and	devices	with	similar	screen	sizes	display	the	layout	according	to	specific	CSS	rules.
Different	CSS	rules	target	other,	larger	browser	views	(and),	adjusting	the	layout	accordingly.	The

HTML	never	changes.

http://www.foodsense.is

	Here	is	Food	Sense	as	seen	on	the	iPad	and	other	devices	with	similar	screen	sizes.	The	CSS	for	this
view	changes	the	logo	and	navigation	since	the	browser	has	more	space	to	display	content.

	This	is	the	widest	view	of	the	site,	shown	on	a	desktop	browser.	The	site	has	two	other	layouts	not
shown	in	these	figures.	You	can	view	them	by	visiting	www.foodsense.is	on	your	computer	and	dragging

the	corner	of	the	browser	to	make	it	narrower	or	wider.

Components	of	a	responsive	page
With	responsive	web	design,	Ethan	Marcotte	has	given	us	a	blueprint	for	doing	this.	(See	“Considerations
When	Beginning	a	Layout”	in	Chapter	11	for	some	history.)	His	approach	is	rooted	in	three	things:

	Flexible	images	and	media.	Assets	are	sized	with	percentages	so	that	they	scale	up	and	down	in	the
space	available	to	them.
	A	flexible	(fluid),	grid-based	layout.	A	responsive	webpage	has	all	width	properties	set	in
percentages	so	that	layout	components	can	shrink	or	expand.	Other	horizontal	properties	typically
use	a	relative	unit	too	(em,	percentage,	or	rem).
	Media	queries.	Adding	these	to	your	style	sheet	allows	you	to	adjust	your	page	design	based	on	the
width	of	the	browser’s	viewable	page	area	and	other	characteristics.

We’ll	cover	each	of	these	in	the	coming	sections.	Then	you’ll	learn	how	to	build	a	responsive	version	of

http://www.foodsense.is

Chapter	11’s	example	page	from	scratch.

Tip
John	Allsopp’s	article	“A	Dao	of	Web	Design”	(http://alistapart.com/article/dao),	written
all	the	way	back	in	2000,	made	the	argument	for	designing	and	building	flexible	websites.
It	was	a	precursor	to	responsive	web	design,	and	Marcotte	and	many	others	have	cited	it
as	a	big	influence.	It’s	well	worth	a	read.

Tip
Jeremy	Keith	summed	up	the	value	in	building	one	site	for	all	devices	in	his	“One	Web”
presentation	(www.vimeo.com/27484362/).	The	transcript	is	available	at
www.adactio.com/articles/4938/.

Making	Images	Flexible
As	you	learned	in	Chapter	5,	an	image	displays	by	default	according	to	the	width	and	height	attribute
values	you	specify	in	the	HTML	 .	If	you	omit	those	attributes,	it	will	show	at	its	normal	size
automatically.	Alternatively,	you	could	set	the	width	and	height	in	pixels	in	CSS.
Click	here	to	view	code	image

...
					<meta	name="viewport"	content="width=device-width,	initial-scale=1"	/>
</head>
<body>

<img	src="img/victoria.jpg"	width="370"

height="220"	alt=""	class="post-photo"	/>
</body>
</html>

	A	couple	of	typical	img	tags	with	width	and	height	specified	 .	These	appeared	in	the	code	for
Chapter	11.	(Note:	I’ve	left	the	alt	text	blank	to	keep	the	code	samples	short.)

Clearly,	showing	an	image	at	its	normal	size	isn’t	always	suitable	when	screen	real	estate	is	limited	 .
With	the	flexible	images	technique	(and),	you	can	make	images	scale	up	or	down	in	the	available
space	but	never	get	wider	than	their	normal	width	(and).	The	available	space	is	determined	by	the
element	that	contains	the	image	(see	the	first	tip).	In	 ,	it	is	the	body	element,	and	in	 	it	is	the	main
element	in	our	example	page.

http://alistapart.com/article/dao
http://www.vimeo.com/27484362/
http://www.adactio.com/articles/4938/

	With	fixed	width	and	height	values,	the	images	stay	the	same	size	even	if	the	viewable	area	is
reduced.	Desktop	browsers	show	a	scroll	bar	(left).	On	a	phone	(right),	they	can	take	up	the	whole	screen

or	more.
Click	here	to	view	code	image

...

...

	Images	can’t	be	made	flexible	unless	you	omit	the	width	and	height.	If	you	like,	you	can	include	a
class	to	facilitate	styling	the	images.

Click	here	to	view	code	image

.post-photo,

.post-photo-full	{
					max-width:	100%;
}

	The	magic	bit	of	CSS	that	makes	flexible	images	work.

	Flexible	images	scale	proportionally	to	fit	in	the	element	that	contains	them	(body,	in	this	case).	They
will	never	be	wider	than	their	natural	width,	as	the	bottom	image	demonstrates.	In	this	case,	one	is	a

maximum	of	600	pixels	wide	and	the	other	is	370.

	The	responsive	page	we’ll	build	later	in	the	chapter	as	viewed	at	320	pixels	wide	(left)	and	480
pixels	wide	(right).	The	image	scales	to	fit!

To	make	your	images	flexible
1.	For	each	image	you	wish	to	make	flexible,	omit	the	width	and	height	attributes	from	the	img
tag	in	your	HTML	 .

2.	In	your	style	sheet,	apply	max-width:	100%;	to	each	image	you	want	to	be	flexible	 .

Tip
Specifically,	the	space	an	image	fits	within	is	the	containing	block	established	by	its
parent.	If	the	parent	has	horizontal	padding,	the	available	space	would	be	reduced.	See
“Setting	the	Height	or	Width	for	an	Element”	in	Chapter	11	for	a	refresher	on	the	containing
block.

Tip
Be	sure	to	use	max-width:	100%	and	not	width:	100%;.	They	both	scale	an	image
within	its	container.	However,	width:	100%;	tells	the	image	to	be	as	wide	as	its
containing	element	at	all	costs.	If	that	element	is	wider	than	the	image,	the	image	will	scale
up	beyond	its	normal	size,	possibly	making	it	look	a	little	fuzzier	than	you’d	like.

Tip
Icon	fonts	and	SVG	allow	you	to	include	graphics	that	scale	up	and	down	with	no	loss	in
fidelity.	See	“Where	to	Find	Web	Fonts”	in	Chapter	13	and	“Images	for	the	Web”	in
Chapter	5,	respectively.

Tip
Don’t	forget	to	optimize	your	images	so	their	file	sizes	are	as	small	as	possible.	See
“Saving	Your	Images”	in	Chapter	5.

Tip
This	technique	also	works	for	images	you’ve	made	twice	as	large	for	the	benefit	of	Retina
displays.	Of	course,	double-resolution	images	can	have	much	larger	file	sizes	too.	See
“Scaling	Images	with	the	Browser”	in	Chapter	5	regarding	preparing	images	for	Retina
displays,	including	a	tip	that	could	help	you	reduce	the	file	sizes	quite	a	bit.

Tip
Except	in	IE8,	you	can	make	background	images	scale	with	the	background-size
property.	See	www.css3.info/preview/background-size/	for	more	information.

Tip
You	also	can	make	HTML5	video	and	other	media	flexible	with	video,	embed,
object	{	max-width:	100%;	}	(and	by	not	including	width	and	height	for
them	in	the	HTML).	Jonathan	Nicol’s	article	may	help	in	cases	where	videos	don’t	scale
as	expected	(http://f6design.com/journal/2011/10/18/responsive-elements-that-retain-
their-aspect-ratio/).

http://www.css3.info/preview/background-size/
http://f6design.com/journal/2011/10/18/responsive-elements-that-retain-their-aspect-ratio/

Responsive	Design	and	the	Images	Conundrum
Flexible	images	are	pretty	sweet,	right?	“But	wait,”	I	can	hear	you	saying,	“isn’t	it	bad	to
load	a	larger	image	than	what	you’ll	show	on	a	page?	Especially	on	mobile	devices	that
have	slower	connections?”
You	are	absolutely	correct,	and	therein	lies	the	biggest	issue	people	are	trying	to	tackle
regarding	responsive	web	design.
Ideally,	we	want	to	use	images	that	are	only	as	large	as	necessary	for	a	particular	device.
Mobile	phones	get	small	images,	tablets	get	larger	ones,	and	so	on.	This	keeps	file	sizes
down	and	reduces	the	amount	of	memory	a	device	uses	to	display	the	image	(which	is
especially	important	on	phones).	Typically,	this	results	in	faster	pages.	It’s	also	friendlier
to	visitors	who	are	paying	for	a	mobile	data	plan	that	limits	how	much	they	can	download
from	the	web	each	month.
Additionally,	sometimes	you	may	want	a	different	image	to	appear	rather	than	simply	a
smaller	version.	A	common	example	of	this	is	a	photo	of	a	person.	Small	screens	could	be
served	a	photo	of	the	person’s	face.	Larger	screens	could	show	the	person	head	to	toe.
A	lot	of	sharp	folks	have	been	working	on	a	way	to	facilitate	this,	but	there	is	no	simple
solution	at	the	time	of	this	writing.
Two	proposals	in	the	mix	suggest	adding	features	to	HTML.	One	proposes	a	new	img
attribute	named	srcset,	and	the	other	proposes	a	new	element	named	picture
(www.w3.org/community/respimg/).	They	look	to	solve	similar	but	not	identical	issues,	so
it’s	possible	there	could	be	room	for	both	ideas.	Stay	tuned!
In	the	meantime,	try	to	be	smart	about	the	images	you	include	in	your	pages.	At	600	pixels
wide,	the	biggest	image	in	our	example	page	 	is	larger	than	desired	for	smartphones
(most	are	320	pixels	wide)—visitors	would	likely	notice	it	taking	a	bit	too	long	to	load.
Fortunately,	the	page	has	only	one	image	that	large.	See	also	the	second	tip	above
regarding	images	for	Retina	displays.

Creating	a	Flexible	Layout	Grid
A	webpage	that	has	fixed-width	containers	is	rigid.	Such	is	the	case	with	the	sample	page	from	the
previous	chapter	(through).	If	you	make	a	desktop	browser	narrower	than	the	page	width,	a
horizontal	scroll	bar	appears	 .
Click	here	to	view	code	image

http://www.w3.org/community/respimg/

...
<body>
<div	class="page">
					<header	class="masthead"	role="banner">
								...
					</header>

					<div	class="container">
								<main	role="main">
											...
								</main>

								<div	class="sidebar">
											...
								</div>
					</div>

					<footer	role="contentinfo"	class="footer">
								...
					</footer>
</div>
</body>
</html>

	Our	entire	page	from	Chapter	11	is	contained	in	a	div	that	has	the	page	class.	The	basic	structure
within	that	is	made	up	of	the	masthead	(header),	main	and	sidebar	areas	wrapped	in	a	div	(with	the

container	class),	and	the	page	footer.
Click	here	to	view	code	image

.page	{
					width:	960px;
}

main	{
					width:	600px;
}

.sidebar	{
					width:	300px;
}

	These	are	the	fixed	widths	we	set	on	the	containers	in	Chapter	11	 .	We	didn’t	set	widths	for	the
header,	footer,	and	container	div	around	the	main	and	sidebar	content.	Instead,	we	left	them	at	the
browser	default,	width:	auto;,	so	they’d	be	as	wide	as	their	parent.	Their	parent	is	the	page	div	

,	so	they	are	960	pixels	wide	too	 .

	At	its	most	basic	level,	the	page	has	four	primary	sections	of	content.	The	.page	and	.container
divs	are	not	shown	explicitly	because	they	are	merely	wrappers	with	no	content	of	their	own.	With	no
widths	specified	 ,	the	.container	div,	masthead,	and	footer	automatically	are	the	same	width	as
the	.page	div.	(Note:	The	CSS	in	 	and	 	does	not	cause	the	main	and	sidebar	areas	to	sit	next	to

each	other.	See	“Making	Elements	Float”	in	Chapter	11	to	see	how	that	is	done.)

	The	width	remains	the	same	even	if	you	make	the	browser	narrower.

A	mobile	browser	could	show	the	full	width,	but	the	page	would	be	tiny	and	not	very	friendly	 .

	Phones	like	the	iPhone	can	shrink	the	page	if	you	want	them	to,	but	visitors	would	have	to	zoom	in	a	lot
to	read	any	of	the	content.

This	isn’t	suitable	for	a	responsive	webpage.	You	want	its	width	to	shrink	or	expand	to	fit	in	the	viewable
area	in	browsers,	just	like	flexible	images.	A	fluid	or	flexible	layout	achieves	this.
It	is	simple	to	create	a	flexible	layout	once	you	get	the	hang	of	it.	You	use	percentage-based	widths,
applying	them	to	the	main	sections	of	your	page	(and).	It	requires	a	tiny	bit	of	math,	but	fear	not,	it’s
no	more	complicated	than	what	you	learned	in	elementary	school.	When	in	doubt,	keep	a	calculator
handy!
Click	here	to	view	code	image

.page	{
					max-width:	960px;
}

main	{
					/*	
					desired	width	/	containing	block	width
					using	600px/960px	
					*/
					width:	62.5%;
}

.sidebar	{
					width:	31.25%;	/*	300px/960px	*/
}

	This	is	the	fluid	equivalent	of	the	fixed-width	layout	in	 .	The	rigid	width:	960px;	of	the
.page	div	has	been	replaced	by	max-width:	960px;.	This	allows	it	to	shrink	but	never	expand
beyond	960	pixels.	I	used	the	formula	shown	earlier	to	determine	the	percentage	widths	for	main	and

.sidebar.

So	how	do	you	know	what	percentages	to	use?	Well,	an	element’s	percentage	width	is	based	on	the	space
available	within	its	parent;	that	is,	its	containing	block.	If	that	sounds	familiar,	it’s	because	it’s	the	same
as	for	flexible	images.	You	can	use	this	formula	to	determine	the	value	you’ll	use	for	the	percentage:
Click	here	to	view	code	image

desired	width	in	pixels	/	containing	block	width	in	pixels	=	value

(This	the	same	as	Ethan	Marcotte’s	formula	target	/	context	=	value,	just	with	more	explicit
terminology.)	You	take	the	pixel	values	you	would	use	if	you	were	making	a	fixed-width	layout,	and	you
plug	them	into	the	formula.

A	real-world	example
Let’s	consider	the	layout	for	the	sample	page	I’ll	build	later	in	the	chapter.	I’ll	show	you	how	to	arrive	at
62.5%	for	the	width	of	main	 .	Using	the	formula,	here’s	the	quick	explanation:
Click	here	to	view	code	image

desired	width	in	pixels	(600)	/	containing	block	width	in	pixels	(960)	=	value	(.625)

Then	you	convert	the	value	to	a	percentage	by	moving	the	decimal	point	two	spots	to	the	right,	giving	you
62.5%.	You	use	that	number	as	the	width	 .	Done!
I’ll	elaborate	in	case	you’re	still	a	little	fuzzy	on	the	numbers.	The	layout	is	960	pixels	at	its	widest,	as
determined	by	the	rule	on	.page	 .	With	no	width	of	its	own	specified,	the	.container	div	
that	is	the	parent	of	main	has	an	automatic	width	of	960	pixels	too.	(The	.container	div’s	parent	is
the	.page	div.)
At	most,	I	want	main	to	occupy	600	of	those	960	pixels.	Using	the	formula	from	earlier	gives	me
600/960	=	.625.	As	a	percentage,	that	is	62.5%.	I	used	the	same	approach	for	.sidebar,	except	I	never
want	it	to	exceed	300	pixels	in	width.	The	calculation	was	300/960,	and	.3125	becomes	31.25%	 .
When	combined	with	flexible	images,	a	flexible	grid	allows	a	whole	page	to	expand	and	contract	(and
).

	The	columns	keep	their	proportions	regardless	of	how	wide	you	view	the	page.	The	page	stops
growing	wider	at	960	pixels,	as	the	top	image	shows.

	When	applied	to	the	responsive	page	built	later	in	the	chapter,	the	styles	from	 	allow	the	layout	to
shrink	and	expand.	But	it	never	gets	wider	than	960	pixels,	no	matter	how	wide	you	make	the	browser

window	(bottom).

To	make	your	layout	flexible
1.	For	elements	requiring	a	width	to	achieve	your	desired	layout,	set	width:	percentage;,
where	percentage	represents	the	percentage	of	horizontal	space	you	want	the	element	to	occupy
within	its	containing	block	 .	Generally	speaking,	avoid	setting	elements	to	width:	100%;.
Elements	set	to	display:	block;	by	default	(like	p	and	many	others)	or	manually	will	fill	the
entire	space	available	to	them	by	default.

2.	Optionally,	apply	max-width:	value;	to	the	element	that	contains	your	whole	page,	where
value	represents	the	maximum	width	to	which	your	page	can	grow	(,	 ,	and).	Typically,
value	is	specified	in	pixels,	but	it	can	be	expressed	as	a	percentage	or	in	ems	or	another	unit
value.

Tip
If	the	parent	has	horizontal	padding,	it	establishes	a	smaller	containing	block	for	its
children.	See	“Setting	the	Height	or	Width	for	an	Element”	in	Chapter	11	for	a	refresher	on
the	containing	block.

Tip
You	may	also	apply	percentage-based	horizontal	margin	and	padding	values	to	an
element.	I	use	ems	for	these	properties	in	the	sample	page,	which	is	pretty	common.
Padding	and	margins	set	in	ems	are	relative	to	the	element’s	font-size	while
percentage-based	values	are	relative	to	the	element’s	containing	block.

Tip
One	neat	advantage	to	using	ems	for	font-size,	margin,	padding,	and	max-
width	with	body	{	font-size:	100%;	}	is	the	page	scales	up	and	down	in
proportion	if	the	user	changes	the	browser’s	default	font	size.	For	example,	in	Firefox,	you
can	change	the	default	font	size	in	the	Content	tab	of	Preferences.	Give	it	a	try	while
viewing	www.htmlcssvqs.com/8ed/examples/12/finished-page.html!

Tip
Don’t	forget	that	when	you	use	the	formula	to	calculate	a	percentage	width	for	an	element,
its	containing	block	comes	from	its	immediate	ancestor	(that	is	the	context).

Tip
Setting	the	box-sizing	property	to	border-box	allows	you	to	define	percentage
widths	on	elements	that	have	horizontal	padding	in	ems	or	another	unit	without	having	to
do	complicated	math	to	get	the	percentages	right.	This	is	very	handy	for	responsive	pages.
See	“The	Box	Model”	in	Chapter	11	for	more	information.

http://www.htmlcssvqs.com/8ed/examples/12/finished-page.html

Setting	a	Relative	max-width
The	.page	div	that	contains	the	whole	page	 	was	given	a	max-width	in	pixels
(960)	 .	How	could	you	express	this	as	a	flexible,	relative	unit	instead?	Well,	.page	{
max-width:	60em;	}	would	do	the	trick.	Here’s	why:
An	em	width	is	based	on	the	element’s	font	size.	For	example,	if	its	font	size	is	the
equivalent	of	14	pixels,	width:	10em;	would	make	it	140	pixels	wide.
The	.page	div	wasn’t	given	a	font-size	so	it	inherits	it	from	its	parent,	the	body
element.	As	you	know,	body	has	a	default	font	size	that	is	typically	the	equivalent	of	16
pixels.	So,	with	a	target	maximum	width	of	960	pixels	for	.page,	960/16	=	60em.
Setting	.page	{	max-width:	60em;	}	is	similar	to	using	960px	with	one	notable
exception:	it	will	scale	according	to	the	browser’s	default	font	size.	The	third	tip	explains
how	to	see	this.

Understanding	and	Implementing	Media	Queries
As	you	learned	in	the	Chapter	8	section	“Using	Media-Specific	Style	Sheets,”	you	can	target	your	CSS	to
specific	media	types	in	two	ways.	(There	is	a	third	way,	the	@import	rule,	but	we	didn’t	cover	it
because	it	affects	performance.)	To	recap,	the	first	way	is	via	the	media	attribute	of	the	link	element,
which	goes	in	your	page’s	head	 .	The	second	way	is	with	an	@media	rule	in	your	style	sheet	 .
Click	here	to	view	code	image

...
<head>
					...
					<link	rel="stylesheet"	href="your-styles.css"	media="screen"	/>
</head>
...

	The	styles	in	your-styles.css	are	applied	when	the	page	is	viewed	on	a	screen.
Click	here	to	view	code	image

/*	Styles	shared	by	screen	and	print	*/
...

/*	Styles	for	print	only	*/
@media	print	{
					header[role="banner"]	nav,
					.ad	{
								display:	none;
					}
}

	The	@media	print	rule	allows	you	to	define	styles	in	your	style	sheet	specifically	for	printing
pages	from	the	browser.	They	may	be	alongside	styles	for	other	media.

Media	queries	enhance	the	media	type	methods,	allowing	you	to	target	your	styles	to	specific	device
features	 .	They’re	particularly	handy	for	changing	how	your	site	looks	on	different	screen	sizes,	as	you

will	learn.	The	following	is	a	list	of	media	features	you	can	include	in	media	queries:
	width
	height
	device-width
	device-height
	orientation
	aspect-ratio
	device-aspect-ratio
	color
	color-index
	monochrome
	resolution
	scan
	grid

Click	here	to	view	code	image

...
<head>
					<meta	charset="utf-8"	/>
					<title>Media	query	in	link</title>
					<meta	name="viewport"	content="width=device-width,	initial-scale=1.0"	/>
					<link	rel="stylesheet"	href="base.css"	media="all"	/>

					<!--
					The	logic	is	only.
					The	type	is	screen.
					The	feature:	value	is	min-width:	480px.
					-->
					<link	rel="stylesheet"	media="only	screen	and	(min-width:	480px)"	href="styles-
480.css"	/>
</head>
...

	The	styles	in	base.css	are	used	for	all	output	devices.	The	styles	in	styles-480.css	are	used
only	in	browsers	that	support	media	queries	and	when	the	viewport	is	at	least	480	pixels	wide.

There	are	some	non-standard	media	features	too,	such	as
	-webkit-device-pixel-ratio
	-moz-device-pixel-ratio

For	all	but	orientation,	scan,	and	grid,	you	can	include	min-	and	max-	prefixes.	The	min-
prefix	targets	values	that	are	“greater	than	or	equal	to,”	and	max-	targets	values	that	are	“smaller	than	or
equal	to.”
We’ll	focus	on	min-width	and	max-width	in	this	chapter,	because	they’re	the	ones	you’ll	use	over
and	over	for	responsive	webpages.
Media	queries	enjoy	great	support	among	modern	desktop	and	smartphone	browsers.	However,	Internet

Explorer	8	and	below	does	not	support	them.	See	“Accommodating	Older	Versions	of	Internet	Explorer”
for	a	couple	of	solutions.

Media	query	syntax	and	examples
With	a	large	nod	to	Peter	Gasston’s	The	Book	of	CSS3	(No	Starch	Press,	2011),	which	summarizes	this
very	well,	here’s	the	basic	syntax	for	media	queries.

	For	a	link	to	an	external	style	sheet:
Click	here	to	view	code	image

<link	rel="stylesheet"	media="logic	type	and	(feature:	value)"	href="your-
stylesheet.css"	/>

	For	a	media	query	within	a	style	sheet:
Click	here	to	view	code	image

@media	logic	type	and	(feature:	value)	{
		/*	your	targeted	CSS	rules	go	here	*/

}
I’ll	explain	the	syntax	shortly,	but	a	couple	of	quick	examples	(and)	will	help	put	everything	in
context.	The	queries	in	the	examples	are	identical,	but	the	means	by	which	they	deliver	the	styles	are
different.
Click	here	to	view	code	image

/*	Your	regular	styles	go	here.	Every	device	gets	them	unless	they	are	overridden	by
rules	in	the	media	queries.	*/
body	{
					font:	200%/1.3	sans-serif;
}

p	{
					color:	green;
}

/*
The	logic	is	only.
The	type	is	screen.
The	feature:	value	is	min-width:	480px.
*/
@media	only	screen	and	(min-width:	480px)	{
					p	{
								color:	red;
								font-weight:	bold;
					}
}

	This	crude	example	contains	default	paragraph	styling	followed	by	changes	to	the	paragraph	text	when
the	media	query	is	true.	I’ve	saved	this	style	sheet	in	basic-media-query.css,	and	I’ve	loaded	it

into	the	page	shown	in	 .	You	can	see	the	results	in	 	through	 .

The	example	in	 	translates	to	“Load	and	use	the	rules	in	styles-480.css	only	when	the	media	type
is	screen	and	the	minimum	width	of	the	viewport	is	480	pixels.”	The	example	in	 	translates	to	“Use
the	following	rules	only	when	the	media	type	is	screen	and	the	minimum	width	of	the	viewport	is	480

pixels.”	(See	the	sidebar	“The	Viewport	and	Using	the	Viewport	meta	Element”	to	learn	the	meaning	of
viewport.)	For	responsive	pages,	you	will	place	the	media	queries	in	your	style	sheet	most	of	the	time.
I’ve	created	a	test	page	 	that	links	to	a	style	sheet	that	contains	the	code	from	 .	You	can	see	the	results
on	an	iPhone	 ,	an	iPad	 ,	and	a	narrow	desktop	browser	 .
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Basic	media	query	example</title>
					<meta	name="viewport"	content="width=device-width,	initial-scale=1.0"	/>
					<link	rel="stylesheet"	href="assets/css/basic-media-query.css"	/>
</head>
<body>
					<p>Hi,	I'm	a	paragraph.	By	default,	I'm	green	and	normal.	But	get	me	in	a	viewport
that's	at	least	480px	wide,	and	I	get	red	and	bold!</p>
</body>
</html>

	The	style	sheet	containing	the	media	query	is	loaded	just	like	any	other	style	sheet.

	Mobile	Safari’s	viewport	in	portrait	mode	is	320	pixels	wide,	so	the	text	remains	green	per	the	base
styles	in	the	style	sheet.	(I	made	the	font-size	twice	as	big	as	normal	for	legibility.)	However,	when

the	page	is	viewed	on	an	iPad...

	...the	text	turns	red	and	bold	because	the	browser’s	viewport	is	768	pixels	wide	in	portrait	view	on
the	iPad,	and	the	media	query	triggers	when	the	width	is	480	pixels	or	greater.	It	also	takes	effect	on	the

iPhone	in	landscape	mode,	which	has	a	viewport	width	of	exactly	480	pixels.

	Modern	desktop	browsers	understand	media	queries	too.	Here	is	Firefox	with	the	lower-right	corner
dragged	in	to	make	the	viewport	narrower	than	480	pixels,	so	the	text	is	green	with	a	normal	font-
weight.	If	I	were	to	stretch	the	window	so	it’s	at	least	480	pixels,	the	text	would	turn	bold	and	red

immediately—no	page	refresh	required.

Returning	to	the	syntax,	let’s	explore	its	components:
	The	logic	portion	is	optional	and	can	have	a	value	of	either	only	or	not.	The	only	keyword
ensures	that	older	browsers	don’t	try	to	read	the	rest	of	the	media	query.	The	not	keyword	negates
the	result	of	the	media	query,	making	the	opposite	true.	For	example,	when	used	on	the	link
element,	media="not	screen"	will	load	the	style	sheet	if	the	media	type	is	anything	other	than
screen.
	The	type	portion	is	the	media	type,	such	as	screen	or	print.
	A	feature:	value	pair	is	optional,	but	if	present	it	must	be	enclosed	in	parentheses	and
preceded	by	the	word	and.	The	feature	is	one	of	the	predefined	media	features,	such	as	min-
width,	max-width,	or	resolution.	The	value	is	optional	for	the	color,	color-
index,	and	monochrome	features.

You	can	chain	together	sets	of	features	and	values	with	and,	as	well	as	create	a	list	of	media	queries	by
separating	each	media	query	with	a	comma.	A	whole	media	query	list	is	true	if	any	one	of	the	media
queries	in	the	comma-separated	list	is	true.	 	and	 	show	a	variety	of	media	queries.
Click	here	to	view	code	image

...
					<link	rel="stylesheet"	media="only	screen	and	(min-width:	480px)	and	(max-width:
767px)"	href="styles.css"	/>

					<link	rel="stylesheet"	media="only	screen	and	(orientation:	landscape)"
href="styles.css"	/>

					<link	rel="stylesheet"	media="only	print	and	(color)"	href="color-pages.css"	/>

					<link	rel="stylesheet"	media="only	print	and	(monochrome)"	href="monochrome-
pages.css"	/>

					<link	rel="stylesheet"	media="only	screen	and	(color),	projection	and	(color)"
href="styles.css"	/>
</head>
<body>
...

	Examples	of	other	media	queries	used	to	load	external	style	sheets	when	true.
Click	here	to	view	code	image

/*	Base	Styles
--	*/

/*	your	base	rules	for	all	devices	*/
...

/*	Begin	Media	Queries
--	*/
@media	only	screen	and	(min-width:	480px)	and	(max-width:	767px)	{
					/*	your	rules	*/
}

@media	only	screen	and	(orientation:	landscape)	{
					/*	your	rules	*/
}

@media	only	print	and	(color)	{
					/*	your	rules	*/
}

@media	only	print	and	(monochrome)	{
					/*	your	rules	*/
}

@media	only	screen	and	(color),	projection	and	(color)	{
					/*	your	rules	*/
}

	These	are	the	same	media	queries	as	in	 ,	but	they	appear	directly	in	a	style	sheet.

Summary
Media	queries	let	you	apply	styles	to	a	page	based	on	specific	media	features	of	a	device.	Although	there
are	several	features	media	queries	can	include,	min-width	and	max-width	are	what	you	will	use	the
most	for	responsive	webpages.

Using	Ems	in	Media	Queries
So	far	I’ve	used	pixels	for	min-width	and	max-width	values	in	the	media	query
examples	(,	 ,	 ,	and),	because	I	thought	that	would	help	you	get	the	hang	of	how
media	queries	work.	In	practice,	it’s	better	to	use	ems,	because	your	media	queries	will
trigger	in	relation	to	the	font	size	in	your	visitor’s	browser.	Lyza	Gardner	explains	the
benefits	further	in	http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-
ftw/.
I	use	em	values	in	the	media	queries	for	building	the	sample	responsive	page	in	the	next
section.	For	context,	I	include	comments	that	note	what	pixel	values	they	generally
approximate.

Tip
Any	base	style	rules	you	include	outside	the	media	queries	are	applied	to	all	devices.	You
can	override	those	as	desired	with	media	queries.	To	clarify,	declarations	within	media
query	rules	only	write	over	conflicting	declarations	in	the	regular	styles,	such	as	color:
green;	in	the	case	of	 .	If	the	p	rule	before	the	media	query	had	included	font-
style:	italic;,	paragraph	text	would	still	be	italicized	when	the	media	query	is
true,	because	the	p	rule	within	the	media	query	doesn’t	specify	font-style.

Tip
If	you	own	a	Mac,	you	can	use	Apple’s	free	iOS	Simulator	to	test	the	example	pages	on	the
iPhone	and	iPad.	See	“Testing	Your	Pages”	in	Chapter	20	for	more	information.

Tip
Descriptions	for	all	media	features	are	available	in	the	CSS3	Media	Queries	spec
(www.w3.org/TR/css3-mediaqueries/#media1).

The	Viewport	and	Using	the	Viewport	meta	Element
The	viewport	is	the	area	within	a	desktop	or	mobile	browser	that	displays	your	page.	It
doesn’t	include	things	like	the	browser’s	address	bar	or	buttons,	just	the	browsing	area.
The	media	query	width	feature	maps	to	the	viewport	width.	However,	this	is	different
than	the	device-width	media	feature,	which	is	the	width	of	the	screen.
These	values	are	often	different	by	default	on	mobile	devices	such	as	the	iPhone.	The
viewport	of	Mobile	Safari,	which	is	the	iPhone’s	browser,	is	980	pixels	wide	by	default,
but	the	iPhone	device	width	is	only	320	pixels	wide.	(Retina	display	iPhones	have	a
screen	resolution	of	640	pixels	wide,	but	they	squeeze	twice	as	many	pixels	in	the	same
amount	of	space,	so	the	device	width	is	still	320.)
So	the	iPhone	takes	what	is	akin	to	a	desktop	browser	set	to	980	pixels	wide	and	scales	it
down	to	fit	in	the	screen	width	of	320	pixels	in	portrait	mode	 .	As	a	result,	when	you
navigate	in	Mobile	Safari	to	most	websites	that	have	been	built	for	desktop	browsers,	it

http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://www.w3.org/TR/css3-mediaqueries/#media1

displays	a	small,	zoomed-out	view	of	them.	It	does	the	same	thing	in	landscape	mode,	but
the	width	is	480	pixels	(or	568	for	iPhone	5).	As	you	can	see	in	 ,	pages	are	often	hard	to
read	without	zooming	in.	(Be	aware	that	the	default	viewport	width	varies	among	devices.)

Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
				<meta	charset="utf-8"	/>
				<title>Your	page	title</title>
				<meta	name="viewport"	content="width=device-width,	initial-scale=1"	/>
				...
</head>
<body>
...

	My	test	page	contains	a	green	div	that	is	320×480.	By	default,	Mobile	Safari’s	viewport	is
980	pixels	wide,	so	the	iPhone	shrinks	it	to	display	it	within	the	320-pixel-wide	screen.	That’s

why	the	green	box	occupies	roughly	a	third	of	the	screen’s	width	(that	is,	320/980).

Fortunately,	there’s	a	quick	solution.	Simply	add	the	viewport	meta	element	to	the	head
of	your	pages.
The	important	part	of	this	code	is	width=device-width.	With	that	in	place,	the
viewport	width	is	set	to	be	the	same	as	the	device	width	(for	the	iPhone,	that’s	320	pixels),
so	page	content	of	that	width	fills	the	screen	in	portrait	mode	 .	Without	including	this,
you	won’t	get	the	results	you	expect	from	your	media	queries	that	leverage	min-width
and	max-width.

	This	test	page’s	code	is	exactly	the	same	as	in	 	except	it	has	the	viewport	meta	element	set
to	width=device-width.	As	you	can	see,	the	viewport	width	and	the	screen	width	are	the

same	now.

The	initial-scale=1	portion	of	the	code	has	no	bearing	on	the	width	and
device-width	values.	It	sets	the	page	zoom	level	to	100%,	even	with	an	orientation
change	to	landscape.	(Note	that	there	is	a	bug	in	versions	of	iOS	prior	to	6	that	crops	some
content;	see	http://adactio.com/journal/5802/.)	If	you	omit	initial-scale=1,	the
iPhone	will	scale	the	page	up	in	landscape	mode	so	the	layout	is	the	same	as	in	portrait
mode	but	larger.

Putting	It	All	Together
Now	that	you	understand	flexible	images,	flexible	layouts,	and	media	queries,	it’s	time	to	put	them
together	to	build	a	responsive	webpage.
I’m	not	going	to	show	you	all	the	style	rules	I	apply.	Instead,	I	will	focus	on	the	kinds	of	decisions	you
might	make	to	shift	your	content’s	display	as	a	page	expands	or	shrinks.	Overall,	the	important	thing	is	to
know	how	to	approach	building	a	responsive	site,	and	the	types	of	media	queries	used	in	the	process.	You
can	access	the	finished	page	and	its	code	at	www.htmlcssvqs.com/8ed/12.
Just	to	clarify,	you	don’t	build	a	fixed-width	design	and	then	convert	it	to	be	responsive.	Chapter	11
showed	you	how	to	build	a	fixed-width	page;	this	chapter	(and	this	section	in	particular)	shows	you	how
to	build	a	responsive	page	from	the	ground	up,	as	if	you	hadn’t	built	the	fixed-width	page.

Creating	your	content	and	HTML
Everything	should	begin	with	carefully	considered	content.	If	you	attempt	to	design	and	build	your	site
with	placeholder	text	(the	vaunted	lorem	ipsum),	you	may	find	that	it	doesn’t	hold	together	well	when	you
drop	in	real	content.	So	if	possible,	do	the	legwork	up	front	so	you	can	be	confident	you’re	designing	and
developing	a	site	that	will	serve	your	visitors	(and	you)	well.
The	underlying	HTML	for	the	example	page	is	the	same	as	that	of	the	page	in	Chapter	11,	but	I	added
<meta	name="viewport"	content="width=device-width,	initial-scale=1"
/>	to	the	head	element.	See	the	earlier	sidebar	“The	Viewport	and	Using	the	Viewport	meta	Element”
for	why	this	is	important.

The	mobile	first	approach
I	will	follow	the	mobile	first	approach	to	style	the	page,	and	I	recommend	you	do	the	same	for	yours.
Here’s	how:

1.	Provide	baseline	styles	for	all	devices	 .	This	is	also	the	version	that	old	browsers	and	less
capable	devices	will	display.	This	baseline	usually	includes	basic	styles	for	text	(fonts,	colors,
sizes),	padding,	borders,	margins,	and	backgrounds	(as	appropriate),	and	styles	for	making	images
flexible.	Typically,	at	this	stage	you	will	want	to	avoid	floating	content	left	or	right,	or	defining
widths	on	containers,	because	the	smallest	screens	aren’t	wide	enough.	Content	will	run	top	to
bottom	according	to	the	normal	document	flow.	The	goal	is	for	your	site	to	be	legible	and
presentable	in	a	single	column	 .	As	a	result,	the	site	will	be	accessible	to	all	devices,	new	and
old.	It	might	look	a	little	different	from	device	to	device,	but	that	is	to	be	expected	and	is	perfectly
fine.

Click	here	to	view	code	image

http://adactio.com/journal/5802/
http://www.htmlcssvqs.com/8ed/12

/*	Base	Styles
-----------------------------------	*/
body	{
					font:	100%/1.2	Georgia,	"Times	New	Roman",	serif;
					margin:	0;
					...
}

*	{	/*	See	Chapter	11	*/
					-webkit-box-sizing:	border-box;
								-moz-box-sizing:	border-box;
											box-sizing:	border-box;
}

.page	{
					margin:	0	auto;
					max-width:	60em;	/*	960px	*/
}

h1	{
					font-family:	"Lato",	sans-serif;
					font-size:	2.25em;	/*	36px/16px	*/
					font-weight:	300;
					...
}

.about	h2,	.mod	h2	{
					font-size:	.875em;	/*	15px/16px	*/
}

.logo,

.social-sites,

.nav-main	li	{
					text-align:	center;
}

/*	Make	images	flexible	*/
.post-photo,	.post-photo-full,
.about	img,	.map	{
					max-width:	100%;	
}
...

	A	sampling	of	the	base	styling	I	apply	for	all	viewports,	both	small	and	large.	The	rules	are	just	like
others	you’ve	seen	leading	up	to	this	chapter—they	are	not	encased	in	media	query	blocks.	Notice	that	I
gave	the	entire	page	a	maximum	width	of	60em	(typically	the	equivalent	960	pixels)	and	center	it	with
auto	margins.	I	also	set	all	elements	to	use	box-sizing:	border-box;,	and	I	made	most	images

flexible.

	The	starting	point	of	the	page	with	the	base	styles	applied.	The	page	layout	is	linear	on	all	browsers
(the	portion	in	the	image	on	the	right	appears	below	the	part	on	the	left).	These	screen	shots	are

representative	of	what	older	mobile	browsers	that	don’t	support	media	queries	will	render.	It	is	perfectly
usable	in	this	state.	If	you	were	to	view	this	in	a	desktop	browser,	the	content	would	stretch	out	as	wide

as	the	browser	window	because	I	haven’t	applied	column	widths	yet.

2.	Work	your	way	up	from	there,	using	media	queries	to	define	styles	for	progressively	larger	screen
sizes	(or	other	media	features,	like	orientation).	The	min-width	and	max-width	media
query	features	will	be	your	main	tools	most	of	the	time.

This	is	progressive	enhancement	in	action.	(Please	see	“Progressive	Enhancement:	A	Best	Practice”	in
the	book’s	introduction	for	a	refresher.)	Less	capable	(usually	older)	devices	and	browsers	will	show	a
simpler	version	of	the	site	per	the	CSS	they	understand.	More-capable	devices	and	browsers	show	the
enhanced	version.	Everyone	has	access	to	the	content.

Evolving	your	layout:	step	by	step
In	responsive	web	design	lingo,	you	leverage	media	queries	to	define	styles	for	each	breakpoint	in	your
page—that	is,	each	width	at	which	your	content	would	benefit	from	adjustments.	In	the	case	of	the
example,	after	applying	the	base	styles	 ,	I	created	style	rules	for	the	breakpoints	in	the	list	that	follows.
Keep	in	mind	that	for	each	min-width	case	with	no	max-width	counterpart,	the	styles	target	devices
at	that	min-width	and	all	the	way	up,	including	the	desktop	and	beyond.

	A	minimum	width	of	20em	(which	generally	is	320	pixels)	(and).	This	targets	the	iPhone,	the
iPod	touch,	and	numerous	Android	and	other	mobile	phones	in	portrait	mode.

Click	here	to	view	code	image

/*	Base	Styles
-----------------------------------	*/
...

/*	20em	(320px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	20em)	{
					.nav-main	li	{
								border-left:	1px	solid	#c8c8c8;
								display:	inline-block;
								text-align:	left;
					}

					.nav-main	li:first-child	{
								border-left:	none;
					}

					.nav-main	a	{
								display:	inline-block;
								font-size:	1em;
								padding:	.5em	.9em	.5em	1.15em;
					}
}

	I	modify	the	main	navigation	for	browsers	with	a	viewport	that	is	at	least	20em	wide.	(Usually	this
translates	to	320	pixels	because	20	*	16	=	320,	assuming	your	body	element’s	font	size	is	the	equivalent
of	16	pixels).	This	makes	the	links	appear	on	a	single	line	instead	of	stacked	 .	I	didn’t	do	this	in	the

base	styles	because	some	phones	have	narrower	screens	that	would	have	made	the	links	look	cramped	or
would	have	forced	one	to	wrap	to	a	second	line.

	The	main	navigation	is	on	a	single	line,	with	the	links	separated	by	a	gray	vertical	border,	thanks	to	the
media	query	in	 .	The	style	takes	effect	in	the	iPhone	(and	many	others)	because	the	viewport	is	320
pixels	wide	in	portrait	mode.	If	you	wanted	to	shorten	the	masthead	area	more,	you	could	add	rules	to
move	the	logo	to	the	left	and	place	the	social	icons	to	the	right.	But	I’ve	saved	that	for	the	next	media

query	(and).

	A	minimum	width	of	30em	(which	generally	is	480	pixels)	(through).	This	targets	larger
mobile	phones,	as	well	as	many	of	the	320-pixel	devices	when	in	landscape	mode	(the	iPhone,	the
iPod	touch,	and	certain	Android	models	among	them).

Click	here	to	view	code	image

/*	Base	Styles
-----------------------------------	*/
...

/*	20em	(320px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	20em)	{
					...
}

/*	30em	(480px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	{
					.masthead	{	position:	relative;	}

					.social-sites	{
								position:	absolute;
								right:	-3px;
								top:	41px;
					}

					.logo	{
								margin-bottom:	8px;
								text-align:	left;
					}

					.nav-main	{
								margin-top:	0;
					}
}

	Now	the	style	sheet	has	a	media	query	that	targets	a	viewport	of	at	least	30em,	which	is	typically	480
pixels.	This	represents	larger	phones	as	well	as	phones	like	the	iPhone	in	landscape	mode	 .	These

styles	adjust	the	masthead	once	again.	The	first	two	rules	are	the	same	ones	we	used	in	Chapter	11	for	the
same	effect.

	Here’s	the	top	of	the	page	viewed	at	30em	(480	pixels)	wide.	The	masthead	is	complete.	It	will	grow
wider	automatically	in	larger	viewports.

Click	here	to	view	code	image

...

/*	30em	(480px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	{

					...	masthead	styles	...

					.post-photo	{
								float:	left;
								margin-bottom:	2px;
								margin-right:	22px;
								max-width:	61.667%;
					}

					.post-footer	{
								clear:	left;
					}

}

	Continuing	with	styles	in	the	same	media	query	block,	I	float	an	image	to	the	left	and	reduce	its	max-
width	to	allow	more	text	to	flow	to	its	side	than	would	fit	otherwise.	“Controlling	Where	Elements
Float”	in	Chapter	11	explains	why	I	set	clear:	left;	on	the	footer	below	the	blog	post	snippet.

	The	text	wraps	around	the	floated	image.

	Within	the	range	of	a	minimum	width	of	30em	(generally	480	pixels)	and	a	maximum	width	of
47.9375em	(generally	767	pixels)	(and).	The	changes	here	are	viewable	on	some	phones	in
landscape	mode	and	tablets	like	certain	versions	of	the	Galaxy	Tab	and	Kindle	Fire,	and	when	a
desktop	browser	is	a	little	narrower	than	usual.

Click	here	to	view	code	image

/*	Base	Styles
-----------------------------------	*/
...

/*	20em	(320px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	20em)	{
					...
}

/*	30em	(480px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	{
					...
}

/*	30em	–	47.9375em
					(From	480px–767px,	not	beyond)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	and	(max-width:	47.9375em)	{	
					.about	{	/*	self-clear	float	*/
								overflow:	hidden;
					}

					.about	img	{
								float:	left;
								margin-right:	15px;
					}
}

	Now	I	float	the	About	Me	image,	but	only	when	the	viewport	is	from	30em	 	to	47.9375em	wide.
Beyond	that	width,	I’ll	make	the	layout	switch	to	two	columns,	and	the	About	Me	text	will	display

underneath	the	image	again.	I’ll	do	that	next.

	The	floated	About	Me	image	is	displaying	at	its	normal	width	(270	pixels)	already,	which	is	plenty
narrow	for	text	to	fit	next	to	it	comfortably.	That’s	why	I	didn’t	reduce	its	max-width	like	I	did	for	the

previous	image	(and).

	A	minimum	width	of	48em	(which	generally	is	768	pixels)	(through).	This	suits	the	iPad	and
other	tablets,	desktop	browsers	at	typical	widths,	and	everything	wider.

Click	here	to	view	code	image

/*	Base	Styles
-----------------------------------	*/
...

/*	20em	(320px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	20em)	{
					...
}

/*	30em	(480px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	{
					...
}

/*	30em	–	47.9375em
					(From	480px–767px,	not	beyond)
-----------------------------------	*/
@media	only	screen	and	(min-width:	30em)	and	(max-width:	47.9375em)	{
					...
}

/*	48em	(768px	and	up)
-----------------------------------	*/
@media	only	screen	and	(min-width:	48em)	{
					.container	{
								background:	url(../img/bg.png)	repeat-y	65.9375%	0;
								padding-bottom:	1.875em;
					}

					main	{
								float:	left;
								width:	62.5%;	/*	600px/960px	*/
					}

					.sidebar	{
								float:	right;
								margin-top:	1.875em;
								width:	31.25%;	/*	300px/960px	*/
					}

					.nav-main	{	margin-bottom:	0;	}
}

	This	is	the	final	media	query,	targeting	viewports	that	are	at	least	48em	wide.	This	is	true	for	most
desktop	browsers	 	(unless	the	user	has	made	it	narrower),	but	it	also	maps	to	the	width	of	the	iPad	and

some	other	tablets	in	portrait	mode	 .

	The	page	is	complete.	The	iPad’s	rendering	is	shown	here,	but	it	looks	similar	on	desktop	browsers
(though	wider	if	the	visitor	has	expanded	the	browser).	The	columns	automatically	stretch,	because	their

widths	are	percentage	values.

	In	a	browser	of	at	least	960	pixels	wide,	it	looks	just	like	our	fixed-width	layout	from	Chapter	11.	If
you	make	the	browser	narrower,	the	layout	scales	and	shifts	just	like	it	does	on	mobile	devices.

Your	breakpoints	may	be	different	from	the	ones	I	used.	It	depends	on	what	is	right	for	your	content	and
design.	It’s	not	unusual	to	see	breakpoints	beyond	48em	to	adapt	a	layout	more	for	wider	viewports.	You
also	can	stray	from	the	breakpoints	that	align	with	the	exact	device	viewport	widths.	If	a	media	query

based	on	(min-width:	36em)	is	best	for	presenting	your	content,	use	it.

To	build	a	responsive	webpage
1.	Create	your	content	and	HTML.
2.	In	the	head	element	of	your	HTML	page,	type	<meta	name="viewport"
content="width=device-width"	/>	or	<meta	name="viewport"	content=
"width=device-width,	initial-scale=1"	/>.

3.	Apply	your	baseline	styles	for	all	devices	(see	“The	mobile-first	approach”).	Make	sure	you	set
images	to	shrink	and	expand	(see	“Making	Images	Flexible”).

4.	Identify	breakpoints	that	are	appropriate	for	your	content.	Create	associated	media	queries	to	adapt
your	layout	for	the	different	viewport	widths,	moving	from	small-screen	to	large-screen.	(See
“Evolving	your	layout:	step	by	step.”)

5.	If	you	need	to	assign	widths	to	parts	of	your	page	in	step	4,	use	percentages	(see	“Creating	a
Flexible	Layout	Grid”).

6.	Choose	how	you	would	like	older	versions	of	IE	to	display	your	page.	(See	“Accommodating
Older	Versions	of	Internet	Explorer.”)

7.	Test	away!	(See	the	“Testing	a	Responsive	Page”	sidebar.)
8.	Refine	your	CSS	in	steps	3–5	as	necessary,	and	test	until	the	page	renders	as	desired	across	a	range
of	devices.

Tip
Eivind	Uggedal’s	http://mediaqueri.es	site	is	an	ever-expanding	gallery	of	responsive	sites
in	the	wild.	It’s	worth	a	look	for	inspiration.

Tip
The	Screen	Sizes	website	(http://screensiz.es)	provides	screen	resolution	and	device
width	information	for	popular	devices	and	monitors.	The	information	may	be	helpful	when
crafting	media	queries.

Tip
Maximiliano	Firtman	maintains	a	matrix	of	HTML5	and	CSS3	support	among	modern
mobile	devices	at	http://mobilehtml5.org.	(Most	of	the	information	pertains	to	advanced
features	not	covered	in	this	book.)

http://mediaqueri.es
http://screensiz.es
http://mobilehtml5.org

Testing	a	Responsive	Page
You	will	want	to	check	your	responsive	page	on	mobile	devices	and	desktop	browsers
before	releasing	it	in	the	wild.
While	you	are	building	a	responsive	page,	you	can	resize	your	desktop	browser	to
approximate	the	viewport	size	of	various	mobile	phones	and	tablets.	Then	you	can	adjust
your	styles	accordingly.	This	is	a	crude	method	to	be	sure,	but	it	can	help	you	get	your
styles	in	the	ballpark	so	you’ll	have	less	refining	to	do	after	you’ve	done	proper	testing	on
devices.	You	might	find	Malte	Wasserman’s	Viewport	Resizer
(http://lab.maltewassermann.com/viewport-resizer/)	helpful	for	this.
But	don’t	stop	there.	Resize	your	browser	all	the	way	in	and	out	to	test	how	your	layout
adjusts	when	viewed	at	any	width	on	the	desktop.	You	may	find	other	breakpoints	that	need
attention	with	additional	media	queries.
I	describe	proper	ways	to	do	mobile	and	desktop	testing	in	“Testing	Your	Pages”	in
Chapter	20.

Media	Query	for	Retina	and	Similar	Displays
Sometimes	you	may	want	to	target	styles	for	high-pixel-density	devices.	(See	“Scaling
Images	with	the	Browser”	in	Chapter	5.)	A	common	use	case	is	to	serve	them	a	double-
sized	(2x)	sprite	so	your	images	look	sharp.	(See	“Combining	Images	in	a	Sprite”	in
Chapter	14.)
Suppose	your	normal-sized	sprite	is	200×150	and	each	image	within	it	is	separated	by	one
pixel.	You	create	a	double-sized	version	that	is	400×300	and	that	has	two	pixels	between
each	image.	Also,	each	image	in	the	sprite	should	be	twice	its	normal	size.	Use	the
following	media	query	to	target	the	high-pixel-density	devices:

@media	(-o-min-device-pixel-ratio:	5/4),
(-webkit-min-device-pixel-ratio:	1.25),
(min-resolution:	120dpi)	{
				.your-class	{
								background-image:	url(sprite-2x.png);
								background-size:	200px	150px;
				}
}

Note	that	background-size	is	set	to	the	normal	dimensions,	not	400px	300px.
That	shrinks	it	so	the	styles	you	create	for	the	normal	sprite	work	for	the	2x	version	too.

Accommodating	Older	Versions	of	Internet	Explorer
There’s	one	caveat	to	the	mobile	first	approach:	Internet	Explorer	8	and	lower	don’t	support	media
queries.	That	means	they	render	only	the	styles	you	define	outside	of	media	queries;	namely,	the	baseline
styles.	IE6	and	IE7	have	very	low	market	share	in	most	parts	of	the	world,	so	the	real	decision	for	you	to
make	is	for	IE8.	Its	share	is	less	than	9	percent	of	users	worldwide,	and	that’s	going	down.	(See
http://gs.statcounter.com.)
You	have	at	least	three	options	for	IE8	(and	earlier	versions):

	Do	nothing.	Let	them	display	the	basic	version	of	your	site.

http://lab.maltewassermann.com/viewport-resizer/
http://gs.statcounter.com

	Create	a	separate	style	sheet	specifically	for	them	so	they	display	the	widest	version	of	the	site	(it
won’t	be	responsive).	One	way	to	do	this	is	to	start	with	a	copy	of	your	regular	style	sheet.	Name	it
something	similar	to	old-ie.css.	Remove	the	media	queries	but	not	the	style	rules	inside	them.
Add	conditional	comments	to	your	HTML	to	deliver	the	right	style	sheets	to	the	right	browsers	 .

Click	here	to	view	code	image

...
<head>
					...

					<!--[if	gt	IE	8]><!-->
					<link	rel="stylesheet"	href="css/styles.css"	/>
					<!--<![endif]-->

					<!--[if	lt	IE	9]>
					<link	rel="stylesheet"	href="css/old-ie.css"	/>
					<![endif]-->
</head>
...

	There’s	a	lot	of	weird-looking	code	here.	The	parts	you	probably	don’t	recognize	are	called
conditional	comments	(www.quirksmode.org/css/condcom.html).	The	first	one	goes	around	the	link	to
the	style	sheet	intended	for	all	browsers	except	IE8	and	older.	The	second	one	goes	around	the	style	sheet

meant	only	for	IE	lower	than	IE9.

	If	you	want	them	to	display	your	page	responsively,	load	respond.min.js	in	your	page	 .
Scott	Jehl	created	this	lightweight	script,	which	makes	min-width	and	max-width	media
queries	work	in	the	older	versions	of	IE.	See	the	sidebar.

Click	here	to	view	code	image

...
<head>
...
					<link	rel="stylesheet"	href="css/styles.css"	/>

					<!--[if	lt	IE	9]>
					<script	src="js/respond.min.js"></script>
					<![endif]-->
</head>
...

	Replace	the	js	part	of	the	src	value	with	the	location	(if	different)	of	the	file	in	your	site.	When	all	is
set,	IE8	and	below	will	understand	your	min-width	and	max-width	media	queries	and	render	the
styles	accordingly.	There’s	no	need	for	a	separate	IE	style	sheet	with	this	option.	The	conditional

comment	around	the	script	element	is	optional,	but	if	you	include	it,	only	IE8	and	below	will	load
respond.min.js.

The	second	option	is	the	more	reliable	and	gives	IE8	users	the	full	layout	version	of	the	site.

http://www.quirksmode.org/css/condcom.html

Tip
You	can	automate	creating	a	style	sheet	for	older	IE	versions	if	you	use	a	CSS
preprocessor	like	Sass,	LESS,	or	Stylus.	Nicolas	Gallagher	shares	an	approach	that	uses
Sass	(http://nicolasgallagher.com/mobile-first-css-sass-and-ie/).

Using	Respond.js
You	can	download	Respond.js	at	https://github.com/scottjehl/Respond	by	clicking	the	ZIP
button.	Open	the	zip	file	on	your	computer,	and	copy	respond.min.js	into	a	folder	in
your	website.	Take	a	look	at	the	“Support	&	Caveats”	section	at	the	github	link	if	the	script
isn’t	working.	Respond.js	isn’t	a	perfect	solution	for	all	sites.

http://nicolasgallagher.com/mobile-first-css-sass-and-ie/
https://github.com/scottjehl/Respond

13.	Working	with	Web	Fonts

In	This	Chapter
What	Is	a	Web	Font?
Where	to	Find	Web	Fonts
Downloading	Your	First	Web	Font
Understanding	the	@font-face	Rule
Styling	Text	with	a	Web	Font
Applying	Italics	and	Bold	with	a	Web	Font
Using	Web	Fonts	from	Google	Fonts

Over	the	past	handful	of	years,	we	have	observed	a	renaissance	in	using	fonts	on	the	web.	We	used	to
have	a	very	limited	choice	of	typefaces.	As	Chapter	10	explains,	we	had	to	stick	to	the	fonts	you	could
expect	users	to	have	installed	on	their	computers.	This	is	the	reason	most	websites	have	their	body	copy
set	in	Arial,	Georgia,	Verdana,	or	Trebuchet	MS.
Now,	thanks	to	web	fonts,	we	have	myriad	options	for	choosing	typefaces	for	web	projects.	Consequently,
web	designers	can	create	better-crafted	experiences	for	visitors.	Watching	this	change	unfold	has	been
extremely	exciting.
This	chapter	explains	web	font	basics,	how	to	use	self-hosted	web	fonts	(with	fonts	from	Font	Squirrel	as
an	example),	and	how	to	use	fonts	hosted	by	Google	Fonts.	It	takes	a	little	longer	to	learn	how	to	use	self-
hosted	fonts.	If	you	want	to	fast-track	your	usage	of	web	fonts,	you	might	consider	hopping	to	“Using	Web
Fonts	from	Google	Fonts,”	at	the	end	of	this	chapter.

What	Is	a	Web	Font?
Web	fonts	are	made	possible	thanks	to	the	@font-face	CSS	rule,	which	allows	CSS	to	link	to	a	font	on
a	server	for	use	in	a	webpage.
Many	people	think	web	fonts	are	new.	In	fact,	web	fonts	have	been	around	since	1998.	Netscape
Navigator	4	and	Internet	Explorer	4	both	adopted	this	technology,	but	neither	of	their	implementations
supported	standard	font	file	formats,	so	they	didn’t	see	much	use.	It	wasn’t	until	nearly	a	decade	later	that
browsers	started	adopting	this	standard	with	more	common	font	file	types.	Consequently,	the	use	of	web
fonts	started	to	become	commonplace.

Web	font	file	formats	and	browser	support
Web	fonts	come	in	an	array	of	file	types.	In	particular,	the	first	three	types	described	below	are	used
regularly	today.

	Embedded	OpenType	(.eot).	Internet	Explorer	8	and	earlier	support	only	Embedded	OpenType	for
use	with	@font-face.	A	Microsoft	proprietary	format,	Embedded	OpenType	uses	digital	rights
management	technology	to	prevent	unlicensed	use	of	the	font.
	TrueType	(.ttf)	and	OpenType	(.otf).	The	standard	font	file	types	used	for	desktop	computers,
TrueType	and	OpenType	are	widely	supported	by	Mozilla	Firefox	(3.5	and	later),	Opera	(10	and
later),	Safari	(3.1	and	later),	Mobile	Safari	(iOS	4.2	and	later),	Google	Chrome	(4.0	and	later),	and
Internet	Explorer	(9	and	later).	These	formats	do	not	use	digital	rights	management.

	Web	Open	Font	Format	(.woff).	This	newer	standard	is	designed	specifically	for	use	as	a	web	font.
A	Web	Open	Font	Format	font	is	a	TrueType	or	OpenType	font	that	has	been	compressed.	The
WOFF	format	also	allows	additional	metadata	to	be	attached	to	the	file;	this	can	be	used	by	font
designers	or	vendors	to	include	licensing	or	other	information	beyond	what	is	present	in	the	original
font.	Such	metadata	does	not	affect	the	rendering	of	the	font	in	any	way,	but	it	may	be	displayed	to
the	user	on	request.	Web	Open	Font	Format	is	supported	by	Mozilla	Firefox	(3.6	and	later),	Opera
(11.1	and	later),	Safari	(5.1	and	later),	Google	Chrome	(6.0	and	later),	and	Internet	Explorer	(9	and
later).
	Scalable	Vector	Graphics	(.svg).	In	short,	avoid	using	SVG	for	web	font	files.	It	was	used	more	in
the	early	days	of	web	fonts	because	it	was	the	only	format	that	mobile	Safari	on	iOS	4.1	supported
(it	also	caused	some	crashes).	Mobile	Safari	began	supporting	TrueType	in	iOS	4.2,	which	gained
wide	usage	in	early	2011.

As	you	can	see,	the	support	for	web	fonts	across	browsers	is	robust,	so	there	is	nothing	holding	you	back
from	using	them	on	your	websites	today.

Legal	issues
Fonts	are,	at	a	technical	level,	little	pieces	of	software.	There	are	people	who	make	their	living	designing
and	building	fonts,	and	it’s	a	painstaking	and	detailed	creative	process	that	is	not	for	the	faint	of	heart.
For	this	reason,	it’s	understandable	that	it	might	ruffle	some	feathers	that	the	@font-face	feature	even
exists	in	the	first	place.	After	all,	if	a	browser	can	link	to	and	download	a	font,	then	that	means	anybody
can	download	and	install	that	font	onto	their	computers,	whether	they’ve	purchased	it	or	not.
This	is	why	we,	as	web	designers	and	developers,	must	make	sure	that	any	fonts	we	use	in	our	websites
are	properly	licensed	for	use	on	the	web.	Most	font	foundries	and	font	services	offer	this	licensing	as	a
part	of	the	purchase	of	a	font	or	as	an	à	la	carte	option.
However	you	proceed,	make	sure	you’re	solidly	in	the	right	when	it	comes	to	using	web	fonts	in	a	project.
You	can	do	this	by	taking	a	look	at	the	license	for	any	fonts	you	purchase.	Some	fonts	may	be	used	for
desktop	applications	like	Adobe	Photoshop	and	Adobe	Illustrator,	but	not	as	web	fonts	on	your	site.	This
information	is	often	mentioned	on	the	website	of	the	font	foundry	you	are	purchasing	from.	When	in	doubt,
contact	the	foundry	to	see	what	is	allowed.
If	you	have	purchased	a	font	and	know	for	sure	that	you	can	use	it	as	a	web	font,	one	tool	that	might	come
in	handy	is	Font	Squirrel’s	free	@font-face	generator	(www.fontsquirrel.com/tools/webfont-
generator).	This	tool	converts	your	font	to	all	the	web	font	file	types	you	will	need	for	using	it	on	the	web.
The	real	boon	is	the	numerous	web	font	services	that	have	surfaced.	Combined,	they	offer	thousands	of
fonts	with	licenses	that	allow	web	usage	(see	“Where	to	Find	Web	Fonts”).	Many	of	these	fonts	are	free.

Managing	file	size
One	potential	risk	with	web	fonts,	especially	when	you’re	using	more	than	a	couple	of	them,	is	that	they
can	start	to	weigh	down	the	page.	I’m	not	talking	about	French	fries	and	doughnuts	here—I’m	talking
about	kilobytes	and	megabytes.
All	the	fonts	used	on	a	webpage	need	to	be	downloaded	to	the	user’s	computer	before	they	can	be
rendered	on	the	page.	This	can	slow	down	the	website	considerably,	especially	for	mobile	users.	My
recommendation	to	you	is	to	be	prudent	with	your	web	font	choices.	If	you	find	yourself	using	more	than	a
couple	of	web	fonts,	look	for	ways	to	consolidate	your	font	choices.
Subsetting
One	way	to	save	some	page	weight	is	through	subsetting.	Subsetting	is	a	way	to	trim	the	size	of	the	actual

http://www.fontsquirrel.com/tools/webfont-generator

font	by	including	only	the	characters	you	know	you	will	use.	For	instance,	if	you	are	using	League	Gothic
for	headlines	but	the	design	of	the	site	requires	that	the	headlines	are	always	in	all	caps,	then	there	is	no
need	for	lowercase	letters.	Using	subsetting,	you	can	remove	those	letters	from	the	font,	and	the	font’s	file
size	will	be	measurably	smaller.
Additionally,	you	can	select	language-specific	subsets	for	many	fonts.	I	show	you	how	to	do	this	at	Font
Squirrel	in	“Downloading	Your	First	Web	Font.”
Explaining	the	nuts	and	bolts	of	subsetting	is	beyond	the	scope	of	this	book,	but	Font	Squirrel’s	@font-
face	generator	(mentioned	earlier)	can	help	you	do	expert-level	subsetting.

Where	to	Find	Web	Fonts
You	have	two	options	for	using	web	fonts	in	a	website:	self-hosting	and	web	font	services.	Both	are
perfectly	valid	options	and	have	pros	and	cons	to	consider.	Regardless	of	which	option	you	choose,	you
will	find	that	not	all	web	fonts	are	available	everywhere.	You	may	find	that	even	though	you	want	to	go
with	self-hosting,	the	font	you	need	is	available	only	from	a	web	font	service.	Or,	you	may	find	that	the
service	you	prefer	does	not	have	a	particular	font	you	want.	This	may	require	finding	a	close	substitute	or
rethinking	your	approach.	It	pays	to	be	flexible	and	to	weigh	all	your	options	before	you	commit	to	a
direction.

Self-hosting
With	self-hosting,	the	web	fonts	are	served	up	from	your	own	server	much	like	any	other	asset,	such	as	an
image	or	a	CSS	file.	If	there’s	a	cost	associated	with	the	font,	it’s	usually	a	one-time	purchase,	and	it’s	up
to	you	to	upload	the	font	files	and	create	the	CSS	for	displaying	the	font	on	your	site.	In	the	sections	that
follow,	we	will	cover	self-hosting	step	by	step,	using	a	free	web	font	downloaded	from	Font	Squirrel.
It’s	pretty	easy	to	find	web	fonts	for	self-hosting,	because	there	are	plenty	of	them	out	there.	And	they
come	in	a	wide	range	of	qualities	and	prices	(some	are	even	free).	Some	of	the	more	popular	ones	are:

	Font	Squirrel	(www.fontsquirrel.com)	free	

http://www.fontsquirrel.com

	Font	Squirrel	is	a	popular	destination	for	finding	free	web	fonts	you	can	host	yourself.	You	will	learn
how	to	use	it	across	the	next	four	sections	of	this	chapter.	You	don’t	need	to	know	everything	they	cover	to
use	a	web	font	service	like	Google	Fonts,	but	they	will	give	you	a	better	understanding	of	how	web	fonts

work	and	some	pitfalls	to	avoid.

	MyFonts	(http://myfonts.com)
	The	League	of	Moveable	Type	(www.theleagueofmoveabletype.com)	free
	FontShop	(www.fontshop.com)

Web	font	services
Web	font	services	typically	offer	a	subscription	approach	to	web	fonts.	Instead	of	buying	the	fonts
outright,	you	pay	monthly	or	annually	for	the	rights	to	use	the	fonts.	Typekit	was	the	pioneer	in	this	space,
and	now	several	services	exist.
These	services	host	the	fonts	and	give	you	a	small	piece	of	code	to	put	into	your	webpages.	Depending	on
the	service,	this	code	is	JavaScript	or	CSS.	It	includes	all	the	necessary	code	for	the	font	files	to	be
served	up	from	a	remote	server.	Many	favor	this	approach	because	it’s	usually	cheaper	than	purchasing
fonts	individually	and	it	lets	you	try	many	different	fonts.	It	can	be	easier	to	implement	a	font	as	well.
A	few	of	the	more	popular	web	font	services	are:

	Cloud.typography	(www.typography.com/cloud/welcome/)
	Edge	Web	Fonts	(www.edgefonts.com)	free
	Fontdeck	(http://fontdeck.com)

http://myfonts.com
http://www.theleagueofmoveabletype.com
http://www.fontshop.com
http://www.typography.com/cloud/welcome/
http://www.edgefonts.com
http://fontdeck.com

	Fonts.com	(www.fonts.com/web-fonts)
	Fontspring.com	(www.fontspring.com)
	Google	Fonts	(www.google.com/fonts)	free	

	Google	Fonts	is	a	popular	free	web	font	service.	You	will	learn	how	to	use	it	at	the	end	of	the	chapter,
in	“Using	Web	Fonts	from	Google	Fonts.”

	Typekit	(https://typekit.com)
	WebINK	(www.webink.com)

By	nature,	web	font	services	are	able	to	offer	more	features	than	self-hosting.	If	better	font	files	or
improved	code	for	serving	them	become	available,	the	services	can	easily	provide	it.	For	instance,
Typekit	improved	their	offering	when	they	began	to	serve	up	some	of	their	fonts	using	PostScript-based
outlines	to	Windows	browsers	to	make	the	rendering	smoother.
Many	of	these	services	use	JavaScript	to	embed	the	code	for	serving	up	web	fonts.	This	comes	with	some
benefits	and	drawbacks.	JavaScript	can	help	a	service	fine-tune	web	font	display	settings	and	give	added
control	over	loading	the	fonts.	This	can	lead	to	a	genuinely	better	experience	for	your	site’s	visitors.
The	cost	of	this	luxury,	of	course,	is	that	you’re	relying	100	percent	on	JavaScript,	which	can	slow	down
the	loading	of	a	page.	The	user	will	have	to	wait	for	the	JavaScript	to	load	before	any	of	the	web	fonts
load	on	the	page.	This	is	worth	keeping	in	mind	as	you	decide	how	to	bring	web	fonts	to	your	site.	But
don’t	let	this	scare	you	away	from	web	font	services.	I	and	untold	others	have	used	them	with	success.

http://www.fonts.com/web-fonts
http://www.fontspring.com
http://www.google.com/fonts
https://typekit.com
http://www.webink.com

Web	font	quality	and	rendering
Unfortunately,	not	all	web	fonts	are	created	equal.	There	can	be	noticeable	differences	in	how	they	look
across	web	browsers.	This	is	most	apparent	in	some	fonts	that	just	don’t	look	good	in	earlier	versions	of
Internet	Explorer.
Additionally,	some	fonts	look	better	at	some	sizes	than	at	other	sizes.	They	might	be	too	frail	and	become
difficult	to	read	when	used	for	body	text,	or	lack	authority	at	heading	size.

Icon	Fonts	and	Where	to	Get	Them
Icon	fonts	are	web	fonts	that	have	icons	instead	of	letters,	numbers,	and	punctuation.	You
can	style	them	with	the	same	CSS	you	use	for	styling	text,	such	as	setting	their	color.
The	best	part	is	that	no	matter	what	font-size	value	you	use,	an	icon	font	will	scale
nicely	and	look	sharp.	This	makes	them	a	better	option	than	icon	images	because	no	extra
work	is	required	to	make	them	look	crisp	on	any	type	of	display	(including	Retina)	or
when	changing	their	size	in	a	responsive	webpage.
I	used	Socialico	by	Fontfabric	(www.fontfabric.com)	for	the	social	icons	you	see	in	the
masthead	of	the	Chapter	11	and	12	example.	I	created	the	necessary	web	font	formats	for	it
by	uploading	the	font	to	Font	Squirrel’s	Webfont	Generator.
Chris	Coyier	has	a	great	roundup	of	where	to	get	icon	fonts	(http://css-tricks.com/flat-
icons-icon-fonts/)	and	he	demonstrates	how	to	create	your	own	(http://css-
tricks.com/video-screencasts/113-creating-and-using-a-custom-icon-font/)	with	IcoMoon
(http://icomoon.io).

As	you	select	your	fonts,	do	your	best	to	vet	potential	web	font	choices	by	examining	how	they	will	look
in	a	variety	of	browsers.	This	has	gotten	easier	because	many	web	font	companies	now	provide	live
examples	of	the	web	fonts,	and	some	companies	provide	screenshots	of	the	fonts	on	a	variety	of	browsers
and	platforms.
If	you	are	stuck	doing	these	tests	on	your	own,	try	out	the	resource	that	is	available	from	the	site	Web	Font
Specimen	(http://webfontspecimen.com).	It’s	a	tool	that	lets	you	test	how	your	web	fonts	will	look	in	a
variety	of	contexts	and	sizes.

OK,	how	do	I	get	started?
The	rest	of	this	chapter	focuses	on	two	areas:	how	to	use	self-hosted	web	fonts	 	and	how	to	use	Google
Fonts	 .	Of	the	two,	Google	Fonts	is	more	straightforward,	so	you	might	prefer	to	start	there.

Downloading	Your	First	Web	Font
Before	you	can	style	your	pages	with	self-hosted	web	fonts,	you	must	get	your	hands	on	web	font	files.
Downloading	a	free	web	font	is	quick	and	easy.	We	will	be	using	Font	Squirrel,	but	the	steps	are	similar
with	other	services	that	offer	fonts	for	self-hosting.

To	download	a	web	font	from	Font	Squirrel
1.	Go	to	Font	Squirrel	(www.fontsquirrel.com),	and	select	a	font	you	want	to	use.	There	are	many
ways	to	browse	fonts,	whether	via	the	homepage,	through	the	Popular	or	Recent	sections,	or	by
searching.	I’ve	selected	PT	Sans	 .

http://www.fontfabric.com
http://css-tricks.com/flat-icons-icon-fonts/
http://css-tricks.com/video-screencasts/113-creating-and-using-a-custom-icon-font/
http://icomoon.io
http://webfontspecimen.com
http://www.fontsquirrel.com

	Select	a	font	by	activating	its	name	(shown),	not	by	using	the	blue	download	button	at	the	far	right	(not
shown).	That	download	button	is	for	using	the	font	on	your	system,	not	for	downloading	the	web	font	files.

2.	From	the	font’s	page,	choose	Webfont	Kit	 .

	The	Specimens	section	gives	you	options	for	seeing	the	font	used	as	regular,	bold,	italic,	and	other	text
styles	(depending	on	what	the	font	offers).	You	can	type	in	your	own	sample	text	in	the	Test	Drive	section.
Glyphs	displays	each	character	in	the	font,	and	the	License	section	explains	the	allowed	usage.	If	you’re

happy	with	the	font,	choose	Webfont	Kit.

3.	Deselect	the	SVG	option	under	Choose	Font	Formats	 .	If	you	want	visitors	using	Internet
Explorer	8	(and	prior)	to	see	the	web	font	when	you	add	it	to	your	page,	leave	EOT	selected;
otherwise,	deselect	it.

	SVG	isn’t	recommended	for	web	fonts	anymore,	so	I’ve	chosen	not	to	include	it.	Deselect	EOT	if	you
don’t	anticipate	many	IE8	visitors	on	your	site.

4.	Choose	the	subset	for	the	font.	Usually,	you	will	want	either	the	default	option	or	the	language	of
your	site’s	content.	(I	chose	English	 .)

	Subsetting	a	web	font	reduces	the	number	of	characters,	which	reduces	the	file	sizes	of	font	files.

5.	Click	the	DOWNLOAD	@FONT-FACE	KIT	button	 ,	and	your	download	should	begin
immediately.	The	download	is	a	ZIP	archive.

	Download	the	kit	to	your	computer.

6.	Once	the	download	is	finished,	open	the	archive.	You	should	have	a	folder	containing	at	least	one
font	folder	inside	a	folder	named	web	fonts	 .

	Holy	smokes,	that’s	a	lot	of	files	and	folders!	Why	so	many?	The	total	varies	by	font	and	by	the	number
of	font	formats	you	chose	in	step	3	 .	If	you	select	the	Specimens	tab	 	on	Font	Squirrel’s	PT	Sans	page
and	scroll	down,	you’ll	see	eight	fonts	listed	 .	They	represent	the	various	PT	Sans	styles	and	weights.
And	we	chose	three	formats,	so	the	ZIP	file	has	eight	font	folders	with	three	format	files	in	each	to	go
along	with	demo	HTML	and	stylesheet.css	files.	In	this	chapter,	I’ll	use	the	font	format	files	and

part	of	the	code	from	each	stylesheet.css	file	shown	in	the	four	expanded	font	folders.

	PT	Sans	offers	eight	styles	among	three	versions:	PT	Sans	(Regular,	Bold,	Italic,	and	Bold	Italic),	PT
Sans	Caption	(Regular	and	Bold),	and	PT	Sans	Narrow	(Regular	and	Bold).	I	won’t	use	PT	Sans	Caption
or	PT	Sans	Narrow	in	this	chapter.	Some	other	fonts	are	limited	to	a	few	styles,	or	in	some	cases—like

Bebas	Neue,	for	example—just	one	style.

To	view	a	selected	font	in	its	demo	HTML	file
Each	font	folder	within	the	web	fonts	folder	contains	an	HTML	file	that	demon-strates	the	font.	Its	file
name	ends	with	-demo.html.	Open	the	file	in	your	browser	 .	(See	“Viewing	Your	Page	in	a
Browser”	in	Chapter	2.)

	The	PTS75F-demo.html	file	that	came	with	the	PT	Sans	web	font	kit	I	downloaded	from	Font
Squirrel.	This	file	was	in	the	ptsans_bold_english	folder.	If	I	wanted	to	view	one	of	the	other	PT

Sans	styles,	I	would	open	its	demo	file.	For	instance,	PTS55F-demo.html	from	the
ptsans_regular_english	folder.	Each	demo	file	uses	the	stylesheet.css	file	found	in	the

same	folder.

This	demo	file	shows	that	the	web	font	does	indeed	work.	This	is	very	exciting!	Before	you	declare
victory	and	call	it	a	day,	we’ll	explore	more	about	how	this	works	in	the	next	section,	and	then	move	on	to
seeing	how	to	apply	the	font	to	your	own	pages.

Tip
Generally	speaking,	you	shouldn’t	use	more	than	two	(three	at	the	most)	web	fonts	in	a
page	because	that’s	more	files	for	your	visitor’s	browser	to	download.	This	slows	down
your	page	loading	and	rendering,	especially	for	visitors	on	smartphones	and	the	like,
because	connections	are	slower.	To	clarify,	I	mean	a	total	of	two	or	three	styles	or	weights
from	one	or	more	font	families.	For	example,	PT	Sans	regular,	bold,	and	italic	count	as
three,	so	if	you	introduce	another	web	font	family,	that	would	count	as	at	least	a	fourth	font.

Tip
Need	some	inspiration	on	which	fonts	to	choose	for	your	next	project?	The	team	at	Typekit
writes	a	wonderful	blog	with	lots	of	great	information	on	web	fonts	and	on	typography	in
general.	Try	the	“Sites	we	like”	series	for	starters	(http://blog.typekit.com/category/sites-
we-like/).

Tip
Do	you	need	to	use	any	of	these	fonts	to	mock	something	up	in	Photoshop?	Install	the
TrueType	(.ttf)	font	that	comes	with	the	web	font	kit	onto	your	computer.	Once	you	install
it,	you	can	use	it	just	like	any	other	font	on	your	computer.

Understanding	the	@font-face	Rule
Now	it’s	time	to	look	under	the	hood	and	see	how	web	fonts	work.	Let’s	look	at	the	stylesheet.css
files	found	in	the	first	four	PT	Sans	font	folders.	Each	file	has	a	rule	for	one	of	the	PT	Sans	styles,
contained	in	the	odd-looking	@font-face	{	...	}	 .
Click	here	to	view	code	image

http://blog.typekit.com/category/sites-we-like/

@font-face	{
					font-family:	'pt_sansregular';
					src:	url('PTS55F-webfont.eot');
					src:	url('PTS55F-webfont.eot?#iefix')format('embedded-opentype'),
								url('PTS55F-webfont.woff')format('woff'),
								url('PTS55F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

@font-face	{
					font-family:	'pt_sansitalic';
					src:	url('PTS56F-webfont.eot');
					src:	url('PTS56F-webfont.eot?#iefix')format('embedded-opentype'),
								url('PTS56F-webfont.woff')format('woff'),
								url('PTS56F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

@font-face	{
					font-family:	'pt_sansbold';
					src:	url('PTS75F-webfont.eot');
					...
}

@font-face	{
					font-family:	'pt_sansbold_italic';
					src:	url('PTS76F-webfont.eot');
					...
}

...

	The	combined	rules	from	the	first	four	PT	Sans	stylesheet.css	files.	(I’ve	changed	the	order	to
match	the	sequence	in	this	chapter.)	All	of	them	are	the	same	except	for	the	parts	I’ve	highlighted—the
font-family	value	and	the	prefix	in	each	web	font	file	name.	(Note:	You	might	notice	an	additional
url	that	references	SVG	in	your	own	stylesheet.css.	I	omitted	it	because	I	didn’t	download	that

format.)

The	syntax	is	a	bit	different	from	traditional	CSS	because	the	@font-face	portion	is	not	a	selector	of
an	element	you	wish	to	style.	So	this	rule	doesn’t	affect	the	style	of	any	element	by	itself.	Instead,	it	lets
your	style	sheets	know	that	the	web	font	exists	so	you	can	use	it	to	style	text	in	other	rules.	(Each	folder’s
demo	HTML	file	loads	stylesheet.css	and	contains	the	CSS	rule	that	uses	the	font.)
The	second	line	in	each	rule	is	for	the	font	family.	For	example,	font-family:
'pt_sansregular';	or	font-family:	'pt_sansbold';.
This	establishes	the	name	for	this	particular	web	font—the	name	you	will	use	to	apply	it	to	elements,	just
like	regular	fonts.	The	name	can	be	whatever	you	choose.	Instead	of	pt_sansregular,	you	could
choose	Banana	or	The	Best	Font	Ever.	It’s	up	to	you.	In	fact,	we’ll	change	it	when	we	apply	PT
Sans	to	a	page	in	the	next	section.
The	next	few	lines	in	the	rule	are	for	telling	the	browser	where	the	font	files	live.	These	include	the	three
font	file	formats	we	chose	so	each	browser	would	get	a	format	it	supports.	This	syntax	can	look	a	little
scary,	but	for	our	purposes	it’s	not	necessary	to	understand	it	completely.	If	you	do	want	to	learn	the	ins-

and-outs,	I	recommend	Ethan	Dunham’s	post	at	www.fontspring.com/blog/further-hardening-of-the-
bulletproof-syntax.

Styling	Text	with	a	Web	Font
We’ve	covered	the	@font-face	syntax,	but	we	haven’t	actually	put	the	web	fonts	onto	our	own	page
yet.	Although	we	will	use	the	font	downloaded	from	Font	Squirrel,	the	methods	you	will	learn	here	apply
to	using	any	fonts	you	self-host.
There	are	a	few	methods	for	using	web	fonts	in	a	style	sheet.	One	is	the	way	Font	Squirrel	does	it,	as
shown	in	each	stylesheet.css	and	demo	HTML	file.	I	will	show	you	another	approach.
Neither	method	is	inherently	right	or	wrong,	but	I	do	recommend	the	way	I’ll	demonstrate.	It	more	closely
reflects	how	you	are	accustomed	to	styling	text	with	regular	fonts,	is	easier	to	manage	(especially	if
you’re	new	to	web	fonts),	and	provides	the	appropriate	fallback	if	the	web	font	fails	to	load.
Luckily,	the	CSS	required	for	the	second	method	is	largely	the	same	as	the	first.	So	we	are	going	to	use
the	@font-face	rules	from	the	first	four	PT	Sans	stylesheet.css	files	in	our	own	style	sheet,
modifying	them	as	necessary.	For	now,	we’ll	stick	with	applying	the	regular	style	of	the	font.	We’ll	cover
italic,	bold,	and	bold	italic	styling	in	the	next	section.
We	will	use	the	sample	HTML	shown	in	 	and	add	the	CSS	to	example.css,	which	is	blank	at	the
moment.	Although	our	example	uses	PT	Sans,	I’ve	written	the	following	steps	in	a	generic	manner	so	they
may	apply	to	any	web	font	you	use	from	Font	Squirrel.	Likewise,	the	@font-face	method	you	will
learn	works	with	any	web	font	you	self-host.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Styling	Text	with	a	Web	Font</title>
					<link	rel="stylesheet"	href="example.css"	/>
</head>
<body>
<h1>Local	Teen	Prefers	Vinyl	Over	Digital</h1>

<p>A	local	teenager	has	replaced	all	her	digital	tracks	with	vinyl.	"It's	really
groovy,"	she	said,	on	the	record.	Without	skipping	a	beat,	she	added,	"Besides,	it's	like
going	through	a	time	warp."</p>

<p>Some	of	her	iPod-toting	classmates	aren't	as	enthusiastic.	"Yeah,	they	needle	me	about
it.	What	a	bunch	of	ones	and	zeros."</p>
</body>
</html>

	I’m	beginning	with	a	simple	HTML	page	and	a	blank	style	sheet.	To	simplify	the	demo,	both	files	live
in	the	same	folder.	Note	that	the	folder	doesn’t	contain	any	PT	Sans	font	files	yet.

To	use	a	web	font	to	style	regular	text
1.	Look	in	the	web	fonts	folder	from	the	ZIP	file	that	you	downloaded	from	Font	Squirrel	in
“Downloading	Your	First	Web	Font.”	If	you	see	a	sub-folder	for	the	regular	text	version	of	the	font,
open	the	stylesheet.css	file	from	that	sub-folder.

2.	Copy	the	@font-face	rule	for	regular	text	and	paste	it	into	your	style	sheet	 .

http://www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax

Click	here	to	view	code	image

/*	example.css	*/

@font-face	{
					font-family:	'pt_sansregular';
					src:	url('PTS55F-webfont.eot');
					src:	url('PTS55F-webfont.eot?#iefix')format('embedded-opentype'),
								url('PTS55F-webfont.woff')format('woff'),
								url('PTS55F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

	I’ve	updated	example.css	so	it	contains	the	@font-face	rule	from	stylesheet.css	in	the
ptsans_regular_english	folder.

3.	Copy	the	font	files	(that	are	referenced	in	your	style	sheet)	from	the	Font	Squirrel	folder	to	the
folder	that	contains	your	style	sheet	 .

	I’ve	copied	the	three	PT	Sans	Regular	font	format	files	from	the	folder	downloaded	from	Font	Squirrel
(top)	to	my	example	folder	(bottom).

4.	Rename	the	font-family	value	so	its	name	is	generic	to	the	font.	For	example,	use	the	name	of
the	font	minus	any	mention	of	its	style	 .	(The	name	you	choose	isn’t	important.	What	is	important
is	that	you	must	use	the	same	font-family	name	for	all	flavors	the	font	supports,	such	as
regular,	bold,	italic,	and	bold	italic.	This	will	become	clearer	when	you	learn	how	to	apply	the
other	flavors	in	the	next	section.)

Click	here	to	view	code	image

/*	example.css	*/

@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
}

	The	only	modification	I’ve	made	to	example.css	is	changing	pt_sansregular	to	PTSans	to
make	the	name	more	generic	to	the	font.

5.	Create	rules	to	style	text	elements	as	desired	and	as	discussed	in	Chapter	10.	To	apply	the	web
font,	type	font-family:	'Web	Font	Name';	in	your	rules	 ,	where	Web	Font	Name	is
the	name	you	created	in	step	4.	Be	sure	to	save	the	file.

Click	here	to	view	code	image

/*	example.css	*/

body	{
					font-family:	'PTSans',	sans-serif;
					font-size:	100%;
					line-height:	1.25;
}

@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
}

	This	rule	for	body	is	just	like	your	typical	CSS	for	styling	text.	The	font-family	name	(PTSans,
in	this	case)	in	a	font	stack	must	match	the	one	in	the	@font-face	rule.	The	font-size	and	line-

height	styles	aren’t	required	to	make	a	web	font	work.

If	you	refresh	the	page,	it	displays	the	web	font	 .	However,	we	aren’t	quite	finished.	All	may	look	good
at	first	glance,	but	a	closer	inspection	reveals	that	the	undesirable	faux	bold	(on	the	heading)	and	faux
italic	(on	“really”)	have	taken	effect.	I	will	show	you	how	to	correct	those	in	the	next	section.

	Because	I	applied	PT	Sans	to	body,	the	whole	page	is	styled	with	it.

Tip
Normally,	I	would	write	the	first	rule	in	 	as	body	{	font:	100%/1.25
'PTSans',	sans-serif;	}	to	take	advantage	of	the	font	shorthand	syntax.	I	listed
the	properties	individually	so	it	would	be	clear	how	to	apply	the	web	font	by	itself.

Tip
For	simplicity,	the	chapter’s	examples	assume	that	the	HTML,	style	sheet,	and	fonts	are	in
the	same	folder.	In	practice,	I	recommend	separating	them.	See	the	last	tip	in	“Applying
Italics	and	Bold	with	a	Web	Font”	for	one	approach.

Single	Quotes	vs.	Double	Quotes
The	@font-face	rules	that	Font	Squirrel	provides	use	single	quotes	around	font	family
names	instead	of	the	double	quotes	shown	in	CSS	examples	throughout	this	book.	Single
quotes	and	double	quotes	work	the	same	way	in	CSS,	so	use	whichever	method	you	prefer.

@font-face	Methods
Roger	Johansson	has	written	an	article	summarizing	two	of	the	methods	for	using	web	fonts
in	your	style	sheets.	The	URL	is	quite	long,	but	if	you	visit	www.htmlcssvqs.com/8ed/font-
face	you	will	be	redirected	to	the	article	within	his	site,	www.456bereastreet.com.	He
covers	Font	Squirrel’s	method	first,	followed	by	the	method	I	show	you	in	this	chapter.
As	I	said,	I	prefer	the	second	method,	but	it	does	come	with	a	potential	limitation:	If	you
use	more	than	a	total	of	four	weights	and	styles	of	a	single	web	font	family—not	of	all	web
font	families	in	your	page—Internet	Explorer	6–8	might	convert	certain	weights	to	regular
(normal)	weight.
In	practice,	this	isn’t	very	limiting	in	the	vast	majority	of	cases.	It’s	unlikely	you	will	use
more	than	four	weights	and	styles	for	a	single	font	in	the	first	place.	Remember	that	by
using	that	many,	you’re	typically	requiring	the	browser	to	download	more	or	larger	font
files	than	is	desired.
On	top	of	that,	among	those	three	versions	of	IE,	only	IE8	has	a	user	base	of	any	size	in
most	parts	of	the	world,	and	even	that	is	diminishing	at	a	decent	clip.	For	example,	at	the
time	of	this	writing,	IE8	is	at	6.9%	in	Europe	and	9.5%	in	North	America.	It	was	about
40%	higher	a	year	before	that	(http://gs.statcounter.com).

Applying	Italics	and	Bold	with	a	Web	Font
A	situation	in	which	web	fonts	can	act	a	little	strangely	is	when	you	want	to	do	what	seems	like	the	most
basic	styling	of	them.	The	thing	to	keep	in	mind	is	that	web	fonts	come	in	only	one	weight	and	one	style
per	font	file.	If	you	want	to	use	bold	or	italic,	you	need	to	create	separate	@font-face	rules	for	them,
each	referencing	their	own	web	font.	Otherwise,	the	browser	may	apply	faux	bold	or	faux	italic	 .	Or	a
double-whammy	of	faux	bold	italic,	which	you	will	see	later.

	In	the	example	from	the	previous	section,	the	browser	artificially	made	the	regular	text	a	little	fatter	for
the	bold	and	a	bit	more	slanted	for	the	italic.	What	we	want	it	to	do	is	use	the	proper	bold	and	italic	that
were	designed	for	the	font.	For	a	refresher	on	faux	italics	and	faux	bold,	see	“Creating	Italics”	and

“Applying	Bold	Formatting,”	respectively,	in	Chapter	10.

In	the	previous	section,	we	never	specified	any	text	to	be	bold	or	italic	in	our	style	sheet	 .	So	why	did
those	styles	occur?	I	bet	you’ve	already	figured	it	out.	Browser	default	styles.	The	browser	applied	bold
to	the	h1	and	italic	to	the	em	 ,	just	as	it	does	by	default	when	you’re	not	using	a	web	font.
Click	here	to	view	code	image

http://www.htmlcssvqs.com/8ed/font-face
http://www.456bereastreet.com
http://gs.statcounter.com

body	{
					font-family:	'PTSans',	sans-serif;
					font-size:	100%;
					line-height:	1.25;
}

@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
					font-weight:	normal;
					font-style:	normal;
}

	We	didn’t	use	font-weight:	bold;	or	font-weight:	italic;	anywhere	in
example.css.

Click	here	to	view	code	image

...
<h1>Local	Teen	Prefers	Vinyl	Over	Digital</h1>

<p>..."It's	really	groovy,"	she	said,	on	the	record...</p>
...

	Our	heading	is	in	an	h1,	and	the	text	we	wish	to	stress	is	in	an	em.

Fortunately,	remedying	this	is	easy.	We’ll	follow	steps	that	are	similar	to	those	for	implementing	a	web
font	for	regular	text,	but	with	a	couple	of	changes	to	the	CSS.	As	before,	I’ll	use	PT	Sans	as	the	example,
but	the	steps	can	apply	to	any	font	you	obtain	from	Font	Squirrel.

To	apply	italic	with	a	web	font
1.	Look	in	the	web	fonts	folder	from	the	ZIP	file	that	you	downloaded	from	Font	Squirrel	in
“Downloading	Your	First	Web	Font.”	If	you	see	a	sub-folder	for	the	italic	text	version	of	the	font,
open	the	stylesheet.css	file	from	that	sub-folder.

2.	Copy	the	@font-face	rule	for	italic	text	and	paste	it	into	your	style	sheet	 .
Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

/*	Regular	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
}

/*	Italic	text	*/
@font-face	{
					font-family:	'pt_sansitalic';
					src:	url('PTS56F-webfont.eot');
					src:	url('PTS56F-webfont.eot?#iefix')format('embedded-opentype'),
										url('PTS56F-webfont.woff')format('woff'),
										url('PTS56F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

	Now	example.css	contains	the	@font-face	rule	for	PT	Sans	Italic.

3.	Copy	the	italic	font	files	(that	are	referenced	in	your	style	sheet)	from	the	Font	Squirrel	folder	to
the	folder	that	contains	your	style	sheet	 .

	I’ve	copied	the	three	font	format	files	for	PT	Sans	Italic	from	the	Font	Squirrel	folder	that	I
downloaded	earlier	(top)	to	my	example	folder	(bottom).

4.	Rename	the	font-family	value	in	the	italic	text	@font-face	rule	so	it	is	the	same	as	in	the

rule	for	regular	text	 .
Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

/*	Regular	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
					font-weight:	normal;
					font-style:	normal;
}

/*	Italic	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS56F-webfont.eot');
					...
					font-weight:	normal;
					font-style:	italic;
}

	I’ve	made	two	critical	changes	to	the	code.	I’ve	changed	font-family:	'pt_sansitalic'	to
simply	font-family:	'PTSans'	to	match	the	name	in	the	regular	text	@font-face	rule.	And

I’ve	modified	the	font-style	value	in	the	italic	text	@font-face	rule	to	reflect	the	style	of	the	font.

5.	Change	the	font-style	value	in	the	italic	text	@font-face	rule	to	font-style:
italic	 .	Save	your	changes.

Now	the	italic	web	font	will	display	wherever	font-style:	italic;	exists	in	the	browser	default
style	sheet	 	or	in	your	own	 .

	The	difference	between	the	faux	italics	from	before	(top)	and	the	proper	version	that	displays	now
(bottom)	is	especially	evident	in	the	“a”	and	“e.”	The	real	italic	font	is	a	tad	smaller	than	the	artificially

slanted	text,	allowing	it	to	fit	naturally	alongside	regular	text.
Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

p	{
					font-style:	italic;
}

/*	Regular	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS55F-webfont.eot');
					...
					font-weight:	normal;
					font-style:	normal;
}

/*	Italic	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS56F-webfont.eot');
					...
					font-weight:	normal;
					font-style:	italic;
}

	Just	to	make	the	point,	I’ve	styled	all	paragraph	text	to	display	in	italics.	I	won’t	leave	it	this	way	in
subsequent	examples.

To	apply	bold	with	a	web	font
Applying	bold	is	much	the	same	as	applying	italic.

1.	Follow	steps	1–3	in	“To	apply	italic	with	a	web	font,”	but	use	the	files	from	the	sub-folder	for	the
bold	version	of	the	font.	Paste	the	@font-face	rule	for	bold	text	into	your	style	sheet	(step	2
from	that	section)	 	and	copy	the	bold	font	files	to	your	folder	(step	3	from	that	section)	 .

Click	here	to	view	code	image

...

...	Regular	and	Italic	@font-face	rules	...

/*	Bold	text	*/
@font-face	{
					font-family:	'pt_sansbold';
					src:	url('PTS75F-webfont.eot');
					src:	url('PTS75F-webfont.eot?#iefix')format('embedded-opentype'),
								url('PTS75F-webfont.woff')format('woff'),
								url('PTS75F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

	Now	example.css	contains	the	@font-face	rule	for	PT	Sans	Bold.

	I’ve	copied	the	three	PT	Sans	Bold	files	from	my	Font	Squirrel	folder	(not	shown)	to	my	example
folder.	The	file	names	begin	with	PTS75F.

2.	Rename	the	font-family	value	in	the	bold	text	@font-face	rule	so	it	is	the	same	as	in	the
other	rules	for	the	font	 .

Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

/*	Regular	text	*/
@font-face	{
					font-family:	'PTSans';
					...
					font-weight:	normal;
					font-style:	normal;
}

/*	Italic	text	*/
@font-face	{
					font-family:	'PTSans';
					...
					font-weight:	normal;
					font-style:	italic;
}

/*	Bold	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS75F-webfont.eot');
					...
					font-weight:	bold;
					font-style:	normal;
}

	I’ve	changed	font-family:	'pt_sansbold'	to	simply	font-family:	'PTSans'	to
match	the	name	in	the	other	@font-face	rules.	Secondly,	I’ve	modified	the	font-weight	value	in

the	bold	text	@font-face	rule	to	reflect	the	style	of	the	font.

3.	Change	the	font-weight	value	in	the	bold	text	@font-face	rule	to	font-weight:	bold
.	Save	your	changes.

Now	the	bold	web	font	will	display	on	whatever	elements	browsers	make	bold	by	default	(like	the	h1	in	
)	or	that	you	specify	in	your	own	style	sheets.	For	example,	adding	p	{	font-weight:	bold;	}

to	 	would	make	all	paragraph	text	bold	(with	a	side	effect	on	em,	mentioned	shortly).

	If	you	compare	the	faux	bold	from	before	(top)	to	the	proper	version	(bottom),	you	can	see	that	the
letters	are	cleaner	and	spaced	more	appropriately	in	the	latter.	Furthermore,	we	now	have	proper	bold	for

the	heading,	proper	italic	for	the	em	text,	and	regular	text	for	everything	else.

To	apply	bold	italic	with	a	web	font
Previously,	we	saw	how	to	apply	a	web	font	for	regular	(normal),	italic,	or	bold	text.	This	leaves	us	with
one	unaccounted	for	combination:	Making	text	both	bold	and	italic.
Remember,	each	web	font	handles	only	one	weight	and	one	style.	Of	the	three	PT	Sans	fonts	we’ve
implemented	 ,	none	is	for	font-weight:	bold	and	font-style:	italic.	Just	one	or	the
other,	or	neither	in	the	case	of	regular	text.	This	is	why	the	code	in	 	doesn’t	work	as	you	might	expect.
(Incidentally,	it’s	also	why	em	would	get	fake	styling	from	p	{	font-weight:	bold;	}—it
would	inherit	the	bold	from	p.)
Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

em	{
					font-weight:	bold;
}

...	@font-face	rules	...

	I’ve	added	a	rule	to	the	style	sheet	from	 	in	an	attempt	to	make	em	text	both	italic	(the	default)	and
bold.	Except	there’s	a	problem:	We	haven’t	loaded	the	PT	Sans	Bold	Italic	font,	so	the	em	has	fake	styling

(admittedly,	it’s	harder	to	detect).

Let’s	add	Bold	Italic	to	our	page:
1.	Follow	steps	1–3	in	“To	apply	italic	with	a	web	font,”	but	use	the	files	from	the	sub-folder	for	the
bold	italic	version	of	the	font.	Paste	the	@font-face	rule	for	bold	italic	text	into	your	style	sheet
(step	2	from	that	section)	 	and	copy	the	bold	italic	font	format	files	to	your	folder	(step	3	from
that	section)	 .

Click	here	to	view	code	image

...

em	{
					font-weight:	bold;
}

...	other	@font-face	rules	...

/*	Bold	Italic	text	*/
@font-face	{
					font-family:	'pt_sansbold_italic';
					src:	url('PTS76F-webfont.eot');
					src:	url('PTS76F-webfont.eot?#iefix')format('embedded-opentype'),
								url('PTS76F-webfont.woff')format('woff'),
								url('PTS76F-webfont.ttf')format('truetype');
					font-weight:	normal;
					font-style:	normal;
}

	Building	off	 ,	now	example.css	contains	the	@font-face	rule	for	PT	Sans	Bold	Italic.

	I’ve	copied	the	three	PT	Sans	Bold	Italic	files	from	my	Font	Squirrel	folder	(not	shown)	to	my
example	folder.	The	file	names	begin	with	PTS76F.

2.	Rename	the	font-family	value	in	the	bold	text	@font-face	rule	so	it	is	the	same	as	in	the
other	rules	for	the	font	 .

Click	here	to	view	code	image

body	{
					font-family:	'PTSans',	sans-serif;
					...
}

em	{
					font-weight:	bold;
}

/*	Regular	text	*/
@font-face	{
					font-family:	'PTSans';
					...
					font-weight:	normal;
					font-style:	normal;
}

/*	Italic	text	*/
@font-face	{
					font-family:	'PTSans';
					...
					font-weight:	normal;
					font-style:	italic;
}

/*	Bold	text	*/
@font-face	{
					font-family:	'PTSans';
					...
					font-weight:	bold;
					font-style:	normal;
}

/*	Bold	Italic	text	*/
@font-face	{
					font-family:	'PTSans';
					src:	url('PTS76F-webfont.eot');
					...
					font-weight:	bold;
					font-style:	italic;
}

	I’ve	changed	font-family:	'pt_sansbold_italic'	to	simply	font-family:
'PTSans'	to	match	the	name	in	the	other	@font-face	rules.	I’ve	also	modified	the	font-weight

and	font-style	values	in	the	new	rule	to	reflect	the	style	of	the	font.

3.	Change	the	font-weight	value	in	the	bold	italic	text	@font-face	rule	to	font-weight:
bold.	Also,	change	the	font-style	value	to	font-style:	italic	 .	Save	your	changes	
.

	The	difference	is	subtle,	but	the	letters	in	the	faked	effect	(top)	are	a	little	fatter	and	are	spaced	farther
apart	than	in	the	proper	font	(bottom).

Tip
If	a	web	font	does	not	have	bold,	italic,	or	bold	italic	versions	but	you	apply	one	of	those
text	treatments,	browsers	may	apply	faux	styling.

Tip
Some	fonts,	like	ChunkFive,	are	heavy	by	nature	and	don’t	have	alternative	forms.	You	use
them	at	font-weight:	normal;	(their	regular	state)	because	font-weight:
bold;	would	make	browsers	fake	an	even	bolder	rendering.

Tip
Remember	that	each	style	and	weight	that	requires	a	new	font	file	adds	to	the	file	size	that
the	browser	needs	to	download.	This	can	affect	performance.	For	this	reason,	many
designers	choose	to	use	web	fonts	only	for	headlines.

Tip
With	all	sorts	of	different	files	in	it,	our	folder	got	pretty	messy	 .	Now	you	can	see	why	I
recommend	putting	your	style	sheets	and	fonts	in	separate	folders!	Figure	 	shows	one
way	to	organize	them.	You	would	need	to	change	each	url	in	your	style	sheet	to	reflect
this.	For	example,	url('font/PTS55F-webfont.woff').	Also,	you	would	need
to	change	your	HTML	so	the	link	element	looks	for	your	style	sheet	in	the	right	location:
<link	rel="stylesheet"	href="css/example.css"	/>.

	With	this	structure,	all	font	files	are	in	the	font	folder,	which	is	within	the	css	folder.

Using	Web	Fonts	from	Google	Fonts
The	previous	sections	explained	how	to	add	self-hosted	web	fonts	to	your	page,	using	a	font	from	Font
Squirrel	as	an	example.	Google	Fonts,	on	the	other	hand,	is	one	of	several	web	font	services	that	host	the
web	fonts	for	you.	(See	“What	Is	a	Web	Font.”)
Like	other	web	font	services,	Google	Fonts	saves	you	the	trouble	of	creating	or	modifying	any	@font-
face	rules.	That	is	one	clear	difference	(advantage,	some	would	say)	between	self-hosting	fonts	and
using	a	service	like	Google	Fonts.
Google	Fonts	has	become	a	popular	choice	because	it’s	free	(unlike	most	of	these	services),	has	hundreds
of	fonts,	and	allows	you	to	add	a	web	font	to	your	page	in	less	than	a	minute	once	you	know	how	it	works.
Once	you’ve	selected	a	font,	all	you	have	to	do	is	drop	one	line	of	Google	Fonts	code	into	your	HTML
page,	and	then	style	your	text	as	you	please	with	CSS.

To	use	a	web	font	from	Google	Fonts
1.	Browse	www.google.com/fonts.	When	you	find	a	font	you	like,	click	Add	to	Collection	 .

	I’m	adding	Lato	to	my	collection	of	web	fonts.	Though	not	shown,	I	also	added	Open	Sans.	These	are
the	fonts	I	used	for	the	headings	in	the	page	shown	throughout	most	of	Chapters	11	and	12.

2.	Scroll	to	the	bottom	of	the	page	and	click	Use	 .

	The	bottom	of	the	page	lists	the	fonts	you	have	chosen	(top).	That	same	area	has	three	buttons	(bottom).
The	Choose	button	is	for	where	you	are	now—browsing	through	fonts	and	choosing	the	ones	you	like.

Click	the	Review	button	to	see	more	samples	and	other	information	for	the	fonts	in	your	collection.	Click
the	Use	button	to	use	the	fonts	in	your	page.

3.	Select	only	the	weights	and	styles	you	intend	to	use.	This	helps	keep	the	size	of	your	font	files	as
small	as	possible	 .

http://www.google.com/fonts

	My	webpage	needs	only	one	weight	for	each	web	font.	The	Page	Load	meter	indicates	how	much	the
size	of	the	font	files	could	affect	webpages	that	use	the	fonts.	I’m	in	pretty	good	shape	now,	but	if	I	were

to	add	another	weight,	it	would	take	browsers	even	longer	to	load	my	pages.

4.	Select	only	the	character	sets	your	content	requires	 .	This	also	affects	the	size	of	your	font	files.

	Subset	your	fonts	to	the	characters	your	content	needs.	Latin	is	the	default.

5.	Copy	the	link	element	code	 	and	paste	it	into	the	head	of	your	webpage	 .

	Copy	the	link	code	in	the	Standard	tab.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Le	Journal</title>
					<link	href="http://fonts.googleapis.com/css?family=Lato:300|Open+Sans:700"
rel="stylesheet"	/>
					<link	rel="stylesheet"	href="style.css"	/>
</head>
<body>
...
<h1>Sunny	East	Garden	at	the	Getty	Villa</h1>

<p>It	is	hard	to	believe,	but	there	are	about...</p>

...

<h2>Popular	Posts</h2>
...
</body>
</html>

	I’ve	pasted	the	link	code	from	Google	Fonts	before	the	link	for	my	own	style	sheet
(style.css).	Note	that	the	href	URL	in	the	Google	Fonts	link	contains	the	font	families	and

weights	I	selected	earlier	(and).	This	will	load	all	the	web	font	files	and	the	@font-face	rules
needed	to	use	them.

6.	Style	your	text	with	the	web	font	by	using	the	font-family	name	specified	by	Google	Fonts.	Set
the	font-weight	to	one	of	the	weights	you	selected	in	step	3	 .	If	you	are	using	an	italic	web
font,	set	font-style:	italic;	in	your	CSS	rule	as	well.

Click	here	to	view	code	image

body	{
					font:	100%/1.2	Georgia,	'Times	New	Roman',	serif;
}

h1	{
					color:	#333;
					font-family:	'Lato',	sans-serif;
					font-size:	3.25em;	/*	52px/16px	*/
					font-weight:	300;
					letter-spacing:	-2px;
					line-height:	.975;
					margin-bottom:	.4125em;
}

h2	{
					border-bottom:	1px	solid	#dbdbdb;
					font-family:	'Open	Sans',	sans-serif;
					font-size:	.875em;	/*	15px/16px	*/
					font-weight:	700;
					text-transform:	uppercase;
					padding-bottom:	.75em;
}

...	more	CSS	for	the	page	...

	Google	Fonts	(at	bottom)	shows	you	how	to	reference	the	font	families.	I’ve	applied	Lato	at	a	weight
of	300	to	h1	elements	and	Open	Sans	at	a	weight	of	700	to	h2	elements.	Those	font-weight
numbers	match	the	numbers	in	the	link	element	 ,	which	match	the	weights	I	selected	 .	The	other

CSS	shown	here	is	not	required	to	make	the	web	fonts	work.

7.	Save	your	HTML	page	and	style	sheet.
Checking	the	page	in	a	browser	 	reveals	the	glory	of	web	fonts!

	The	big	heading	is	Lato,	and	the	small	bold	one	is	Open	Sans.

Tip
If	you	want	to	style	any	of	your	text	in	italic,	make	sure	you	choose	the	italic	version	of	the
font	when	selecting	your	styles	(step	3)	and	specify	the	proper	font-weight	value	and
font-style:	italic	in	your	CSS	(step	6).	Otherwise,	the	font	might	render	in	faux
italic.	Similarly,	browsers	might	display	faux	bold	if	you	don’t	account	for	the	bold
version	of	the	font.	See	examples	and	further	discussion	of	these	faked	text	treatments	in
“Applying	Italics	and	Bold	with	a	Web	Font”	(this	chapter),	and	“Creating	Italics”	and
“Applying	Bold	Formatting”	in	Chapter	10.

14.	Enhancements	and	Effects	with	CSS

In	This	Chapter
Browser	Compatibility,	Progressive	Enhancement,	and	Polyfills
Understanding	Vendor	Prefixes
Rounding	the	Corners	of	Elements
Adding	Drop	Shadows	to	Text
Adding	Drop	Shadows	to	Elements
Applying	Multiple	Backgrounds
Using	Gradient	Backgrounds
Setting	the	Opacity	of	Elements
Effects	with	Generated	Content
Combining	Images	with	Sprites

One	of	the	challenges	faced	by	website	authors	until	a	few	years	ago	was	the	limited	number	of	options
for	producing	rich	designs	using	CSS.	In	most	cases,	it	meant	using	additional	HTML	and	CSS	and	a	lot	of
images.	Combined,	this	resulted	in	pages	that	were	more	complicated,	took	longer	to	download	and
display	in	the	browser,	and	were	simply	more	fragile	and	difficult	to	maintain.
Browsers’	rapid	adoption	of	many	new	CSS3	properties	changed	things	for	the	better.	Today,	it’s	possible
to	create	rounded	corners,	gradients,	and	drop	shadows,	to	adjust	transparency,	and	to	do	much	more	by
using	only	CSS.	You	will	see	how	in	this	chapter	while	also	learning	how	to	approach	older	browsers
that	do	not	support	these	features.
The	result	is	webpages	that	use	less	markup	and	fewer	images,	and	that	typically	download	and	display
faster	as	a	result.	This	benefits	all	users,	but	especially	those	on	less	powerful	devices	such	as
smartphones.

Browser	Compatibility,	Progressive	Enhancement,	and	Polyfills
Because	the	pace	at	which	browsers	are	evolving	has	increased	significantly	in	recent	years,	it’s
important	to	understand	when	you	can	expect	reliable	support	for	these	new	CSS	properties.	Here’s	a
snapshot	of	when	browsers	began	providing	basic	support	for	each	property	covered	in	this	chapter	 .

	This	table	focuses	on	desktop	browsers,	but	let’s	not	forget	mobile,	which	grows	in	importance	every
day.	For	mobile	support	information	and	more	details	about	desktop	browsers,	look	up	each	property	on

Alexis	Deveria’s	indispensable	site	Can	I	Use	(www.caniuse.com).	It	is	the	source	of	most	of	the
information	in	the	table.	You	can	find	a	nice,	but	less	detailed,	support	summary	at

http://fmbip.com/litmus/.

The	versions	listed	for	most	browsers	are	ancient	history,	but	IE8	is	still	hanging	on	a	bit.	It’s	about	8.5
percent	of	the	worldwide	market	and	trending	downward	at	the	time	of	this	writing.	Its	users	can’t	enjoy
most	of	the	features	discussed	in	this	chapter,	but	that’s	OK,	as	you	will	see.

Progressive	enhancement
At	various	times	you’ve	heard	me	mention	progressive	enhancement.	I	discussed	it	first	in	the	book’s
introduction.	Briefly,	it	emphasizes	creating	content	and	functionality	that	is	accessible	to	all	users
regardless	of	web	browser	while	providing	more-capable	browsers	an	enhanced	experience.	In	simpler
terms,	it	means	that	it’s	perfectly	acceptable	for	websites	to	look	and	behave	differently	in	different	web
browsers	as	long	as	the	content	is	accessible.
An	example	of	this	in	practice	is	Dribbble	(http://dribbble.com)	 ,	which	uses	CSS3	to	provide	a	richer
experience	in	modern	browsers.	Older	browsers,	such	as	Internet	Explorer	8	 ,	are	presented	a	slightly
different	visual	experience	but	with	no	loss	of	functionality.

	The	Dribbble	site	uses	border-radius	and	box-shadow	to	provide	an	enhanced	experience	for
users	with	modern	browsers,	but	it	is	built	with	less-capable	browsers	in	mind	 .

http://www.caniuse.com
http://fmbip.com/litmus/
http://dribbble.com

	When	viewed	in	older	browsers	(such	as	IE8)	that	do	not	support	border-radius	or	box-
shadow,	the	experience	differs.	The	slight	shadow	on	the	drop-down	menu	is	missing,	and	rounded

corners	are	simply	squared	off.	Everything	still	works.	This	is	one	example	of	progressive	enhancement.

More	CSS3	Effects
Alas,	CSS3	provides	more	effects	than	could	fit	in	these	pages.	Chief	among	them	are
transforms,	transitions,	and	animations.	For	example,	you	can	create	a	gradual	hover	effect:

Click	here	to	view	code	image

a	{	/*	removed	prefixes	for	brevity	*/
				color:	#007c21;
				transition:	color	.4s	ease;
}
a:hover	{	color:	#00bf32;	}

See	www.htmlcssvqs.com/resources/	for	links	to	learn	more.

Later	in	the	chapter,	you’ll	learn	how	to	apply	a	subtle	gradient	and	drop	shadow	to	the	About	Me	box
from	Chapters	11	and	12	 .	IE8	displays	a	solid	background	and	no	drop	shadow,	but	the	content	is	still
legible.

http://www.htmlcssvqs.com/resources/

	On	the	left	is	what	modern	browsers	display.	IE8	(right)	and	other	older	browsers	show	a	simpler
version.

Using	polyfills	for	non-supporting	browsers
There	may	be	times	when	you	want	to	bridge	the	gap	between	a	less-capable	browser	and	modern	ones
by	using	polyfills	(or	shims,	as	they’re	often	called).
Typically	implemented	using	JavaScript,	polyfills	enable	a	degree	of	support	for	HTML5	APIs	and	CSS3
properties	in	less-capable	browsers	while	silently	falling	back	to	official	support	when	the	capabilities
exist	natively	in	a	browser.	It’s	important	to	note	that	these	generally	incur	a	performance	penalty,	because
JavaScript	is	measurably	slower	in	less-capable	browsers	(particularly	in	older	versions	of	IE).
Speaking	of	IE,	Jason	Johnston’s	CSS3	PIE	(http://css3pie.com)	is	one	of	the	best-known	polyfills.	It
provides	support	to	Internet	Explorer	6	through	9	for	most	of	the	CSS3	effects	discussed	in	this	chapter.
(Of	them,	IE9	requires	PIE	to	display	linear	gradients	only;	it	has	native	support	for	the	others.)

Tip
HTML5	Please	(http://html5please.com)	is	a	great	resource	for	finding	out	which	HTML5
and	CSS3	features	are	safe	to	use	and	which	polyfills	are	best	for	filling	the	gaps.

Tip
Modernizr	(www.modernizr.com)	is	a	JavaScript	library	that	detects	whether	a	browser
supports	various	HTML5	and	CSS3	features.	You	can	use	the	information	it	provides	to
customize	your	scripts	and	styles.

http://css3pie.com
http://html5please.com
http://www.modernizr.com

Understanding	Vendor	Prefixes
It	takes	years	for	a	CSS3	specification	to	reach	the	W3C’s	Recommendation	status	(meaning	that	it’s
final).	Browsers	typically	implement	features	prior	to	this	as	part	of	the	W3C	process	for	developing
specifications.	It	informs	where	the	standards	can	be	improved	before	being	locked	down.
In	the	initial	stages	of	including	a	feature,	browsers	routinely	used	to	implement	them	with	what	are	called
vendor	prefixes	 .	These	allowed	each	browser	to	introduce	its	own	support	for	a	property	in	order	to
get	feedback	and	as	a	safeguard	in	case	the	specification	changes.
Click	here	to	view	code	image

div	{
					-webkit-border-radius:	10px;
					border-radius:	10px;
}

	An	example	of	the	border-radius	property,	which	requires	using	the	-webkit-	prefix	to
support	older	versions	of	Android,	iOS,	and	Safari	browsers.	More	recent	versions	of	those	browsers	no
longer	use	the	prefixed	property	and	instead	use	the	proper	property	(that	is,	simply	border-radius:
10px;).	As	always,	the	last	competing	declaration	in	a	rule	takes	precedence,	which	is	why	the	non-

prefixed,	standard	version	should	be	last.

However,	this	approach	got	messy,	so	most	browsers	are	moving	away	from	using	vendor	prefixes.	As
you	will	see	in	this	chapter,	there	remain	some	instances	in	which	you	may	want	to	use	them,	at	least	until
the	older	browsers	that	rely	on	them	have	an	insignificant	user	base.
Each	of	the	major	browsers	has	its	own	prefix:	-webkit-	(Webkit/Safari/older	versions	of	Chrome),	-
moz-	(Firefox),	-ms-	(Internet	Explorer),	and	-o-	(Opera).	They	are	used	by	placing	the	prefix	before
the	CSS	property	name	 .	Nowadays,	you’ll	need	only	-webkit-	in	most	cases.

Tip
Not	all	CSS3	properties,	such	as	text-shadow	and	opacity,	require	the	use	of
prefixes	for	any	browser,	as	you	will	see.

Tip
Several	tools	that	create	CSS3	code	(including	prefixes)	for	you	are	available	online	 .
CSS3	Please!	also	indicates	which	browsers	support	the	non-prefixed	syntax	and	which
ones	require	a	prefix.	This	is	very	helpful	when	determining	whether	to	include	a	prefix—
you	may	decide	it’s	fine	that	those	browsers	won’t	show	the	effect.

	CSS3	Generator	(www.css3generator.com),	by	Randy	Jensen,	and	CSS3,	Please!
(css3please.com),	by	Paul	Irish	and	Jonathan	Neal,	remove	the	repetitious	work	of	writing
prefixed	and	non-prefixed	CSS	properties	yourself.	CSS	preprocessors	like	LESS,	Sass,	and

Stylus	are	even	more	convenient	for	this	task.	See	http://css-tricks.com/how-to-deal-with-vendor-
prefixes/	for	more	information	and	other	vendor	prefix	ideas.

Rounding	the	Corners	of	Elements
Using	CSS3,	you	can	round	the	corners	of	most	elements,	including	form	elements,	images,	and	even
paragraphs	of	text,	without	needing	additional	markup	or	images	(through).
Click	here	to	view	code	image

...
<body>
<div	class="all-corners"></div>
<div	class="one-corner"></div>
<div	class="elliptical-corners"></div>
<div	class="circle"></div>
</body>
</html>

	This	document	contains	example	divs	with	class	attributes.	Each	is	used	to	illustrate	a	different	use
of	border-radius	and	the	different	syntaxes	for	setting	all	corners	equally,	for	setting	a	single	corner
individually	using	the	long-form	syntax,	for	creating	an	elliptical	corner,	and	for	shapes	such	as	circles.

Click	here	to	view	code	image

div	{
					background:	#999;
					float:	left;
					height:	150px;
					margin:	10px;
					width:	150px;
}
					
.all-corners	{
					-webkit-border-radius:	20px;
					border-radius:	20px;
}
					
.one-corner	{
					-webkit-border-top-left-radius:	75px;
					border-top-left-radius:	75px;
}
					
.elliptical-corners	{
					-webkit-border-radius:	50px	/	20px;
					border-radius:	50px	/	20px;
}
					
.circle	{
					-webkit-border-radius:	50%;
					border-radius:	50%;
}

http://www.css3generator.com
http://css3please.com
http://css-tricks.com/how-to-deal-with-vendor-prefixes/

	The	CSS	for	the	four	border-radius	examples,	including	the	vendor-prefixed	properties
necessary	to	support	older	versions	of	Android,	Mobile	Safari,	and	Safari	browsers.	A	value	of	75px	for

.circle	would	have	the	same	effect	as	50%	because	the	element	is	150×150.

	Browsers	that	support	the	border-radius	property	with	or	without	vendor	prefixes	should	render
the	examples	similarly	to	these.	Note	that	there	are	subtle	visual	differences	between	implementations,

particularly	in	older	versions	of	Safari	and	Firefox.
Click	here	to	view	code	image

.about	{
					background-color:	#2b2b2b;
					border-radius:	10px;
					padding:	.3125em	.625em	.625em;
}
					
.about	img	{
					border:	5px	solid	#bebebe;
					border-radius:	15px;
}

	Here’s	a	real-world	example,	applying	rounded	corners	to	our	familiar	About	Me	module	from	earlier
in	the	book	 .	Note	that	the	rule	for	the	image	combines	styling	the	border	and	the	border-radius.

	The	rounded	corners	on	the	outside	are	a	little	subtler	than	the	15-pixel	border-radius	applied	to
the	image.	Older	browsers	would	show	square	corners	for	both,	making	this	module	look	like	it	does	in

Chapters	11	and	12.

Like	the	border,	margin,	and	padding	properties,	a	border-radius	can	be	defined	in	long-
form	or	shorthand	syntaxes	(and).	Include	the	–webkit-	prefix	only	if	you	want	the	effect	to	show
in	really	old	versions	of	Android,	Mobile	Safari,	and	Safari	browsers	(http://caniuse.com/#feat=border-
radius).
Click	here	to	view	code	image

http://caniuse.com/#feat=border-radius

div	{
					background:	#ff6;
					border:	5px	solid	#326795;
					...
}
					
.example-1	{
					/*	Makes	the	radius	of	the	top-left	and	bottom-right	corners	10px	and	the	top-	right
and	bottom-left	corners	20px	*/
					border-radius:	10px	20px;
}
					
.example-2	{
					/*	Makes	the	radius	of	the	top-left	corner	20px,	and	all	other	corners	0	*/
					border-radius:	20px	0	0;
}
					
.example-3	{
					/*	Makes	the	radius	of	the	top-left	corner	10px,	the	top-right	corner	20px,	the
bottom-right	corner	0,	and	the	bottom-left	corner	30px	*/
					border-radius:	10px	20px	0	30px;
}

	More	examples	of	how	you	can	use	shorthand	to	style	more	than	one	corner	rather	than	writing	out
border-top-left-radius	and	so	on.	I’ve	omitted	the	-webkit-	prefixed	versions	for	brevity,

but	they	otherwise	would	be	the	same	as	what	is	shown.

	The	corners	are	styled	just	as	if	you’d	used	the	long-form	syntax.

To	round	all	corners	of	an	element	equally
1.	Optionally,	type	-webkit-border-radius:	r,	where	r	is	the	radius	value	of	the	corners,
expressed	as	a	length	(with	units).

2.	Type	border-radius:	r,	where	r	is	the	same	value	as	in	step	1	 .	This	is	the	standard
shorthand	property	syntax.

To	round	one	corner	of	an	element
1.	Optionally,	type	-webkit-border-top-left-radius:	r,	where	r	is	the	radius	value	of
the	top-left	corner,	expressed	as	a	length	(with	units).

2.	Type	border-top-left-radius:	r,	where	r	is	the	same	value	as	in	step	1	 .	This	is	the
standard	long-form	property	syntax.
Note	that	these	steps	describe	how	to	style	the	top-left	corner	only,	but	you	can	style	the	other
corners	individually	too.	Here’s	how:
	To	round	the	top-right	corner:	Replace	top-left	in	steps	1	and	2	with	top-right.
	To	round	the	bottom-right	corner:	Replace	top-left	in	steps	1	and	2	with	bottom-right.
	To	round	the	bottom-left	corner:	Replace	top-left	in	steps	1	and	2	with	bottom-left.

To	create	elliptical	corners
1.	Optionally,	type	-webkit-border-radius:	x	/	y,	where	x	is	the	horizontal	radius	value	of
the	corners	and	y	is	the	vertical	radius	value	of	the	corners,	expressed	as	a	length	(with	units).	The
values	should	be	separated	by	a	forward	slash.

2.	Type	border-radius:	x	/	y,	where	x	and	y	are	the	same	values	as	in	step	1	 .

To	create	a	circle	using	border-radius
1.	Optionally,	type	-webkit-border-radius:	r,	where	r	is	the	radius	value	of	the	element
(with	length	units).	To	create	a	circle,	you	can	use	the	short-form	syntax,	and	the	value	of	r	should
be	half	the	height	or	width	of	the	element.

2.	Type	border-radius:	r,	where	r	is	the	same	value	as	in	step	1	 .	This	is	the	standard,	non-
prefixed	syntax.

Tip
Older	browsers	that	don’t	support	border-radius	will	simply	render	the	element	with
square	corners.

Tip
border-radius	rounds	only	the	corners	of	the	element	you	apply	it	to,	not	its	children.
So,	if	a	child	has	a	background,	it	may	show	in	one	or	more	of	the	parent’s	corners	that	you
might	expect	to	be	rounded.

Tip
Sometimes	a	bit	of	an	element’s	background	(not	its	child’s	in	this	case)	can	leak	through
its	rounded	corner.	Add	background-clip:	padding-box;	to	the	element’s	rule
after	the	border-radius	declaration	to	prevent	this.

Tip
Figures	 ,	 ,	and	 	demonstrate	combining	border	and	border-radius.

Tip
The	border-radius	property	is	not	inherited.

Adding	Drop	Shadows	to	Text
Originally	included	as	part	of	the	CSS2	specification,	removed	in	CSS2.1,	and	later	resurrected	in	CSS3,
the	text-shadow	property	allows	you	to	add	dynamic	drop-shadow	effects	to	text	in	elements	such	as
paragraphs	and	headings	(through).
Click	here	to	view	code	image

...
<body>

<p	class="basic">Basic	Shadow</p>
<p	class="basic-negative">Basic	Shadow</p>
<p	class="blur">Blur	Radius</p>
<p	class="blur-inversed">Blur	Radius</p>
<p	class="multiple">Multiple	Text	Shadows</p>

</body>
</html>

	The	paragraphs	and	class	names	I’ll	use	to	demonstrate	the	use	of	text-shadow.
Click	here	to	view	code	image

p	{
					color:	#222;	/*	nearly	black	*/
					font-size:	4.5em;
					font-weight:	bold;
}
					
.basic	{
					text-shadow:	3px	3px	#aaa;
}
					
.basic-negative	{	/*	negative	offsets	*/
					text-shadow:	-4px	-2px	#ccc;
}
					
.blur	{
					text-shadow:	2px	2px	10px	grey;
}
					
.blur-inversed	{
					color:	white;
					text-shadow:	2px	2px	10px	#000;
}
					
.multiple	{
					text-shadow:
								2px	2px	white,
								6px	6px	rgba(50,50,50,.25);
}

	These	classes	demonstrate	some	of	the	variety	that	text-shadow	affords.	The	first,	second,	and
fifth	omit	a	blur	radius	value.	The	.multiple	class	shows	it’s	possible	to	add	more	than	one	drop
shadow	to	a	single	element	by	separating	the	sets	of	property	values	with	a	comma.	This	allows	you	to

combine	drop	shadows	to	create	unique	and	interesting	effects.

	The	first	paragraph	has	positive	offsets,	and	the	second	one	has	negative	offsets.	(Offsets	don’t	need	to
be	either	both	negative	or	both	positive.)	Neither	paragraph	has	a	blur	radius,	but	the	third	and	fourth
paragraphs	do.	The	fourth	one	is	inversed	because	I	set	the	text	color	to	white	 .	The	last	one	has	two

text	shadows,	but	you	could	add	more.

	This	heading	and	form	button	from	Chapter	16	use	both	text-shadow	and	box-shadow
(explained	in	the	next	section).	The	code	is	available	at	www.htmlcssvqs.com/8ed/16.

http://www.htmlcssvqs.com/8ed/16

To	add	a	drop	shadow	to	an	element’s	text
1.	Type	text-shadow:.
2.	Type	the	values	for	x-offset,	y-offset,	blur-radius	(all	three	with	length	units),	and
color	without	commas	separating	them.	For	example,	2px	3px	7px	#999.	The	value	for
blur-radius	is	optional.	(See	the	tips	for	more	about	what	values	are	allowed.)

To	add	multiple	drop-shadow	styles	to	an	element’s	text
1.	Type	text-shadow:.
2.	Type	the	values	for	x-offset,	y-offset,	blur-radius	(all	three	with	length	units),	and
color	without	commas	separating	them.	The	value	for	blur-radius	is	optional.

3.	Type	,	(a	comma).
4.	Repeat	step	2	using	different	values	as	desired.

To	reset	text-shadow	to	its	default	value
Type	text-shadow:	none;.

Tip
Vendor	prefixes	are	not	needed	for	the	text-shadow	property.

Tip
The	property	accepts	four	values:	x-offset	with	length	units,	y-offset	with	length
units,	an	optional	blur-radius	with	length	units,	and	finally	a	color	value.	If	you	do
not	specify	the	blur	radius,	it	is	assumed	to	be	zero	(has	three	examples	of	this).

Tip
The	x-offset	and	y-offset	values	can	be	positive	or	negative	integers;	that	is,	both
1px	and	-1px	are	valid.	The	blur-radius	value	cannot	be	a	negative	integer.	All
three	values	can	also	be	zero.

Tip
Color	can	be	specified	using	hex,	RGB,	RGBA,	or	HSLA	values	(see	“CSS	colors”	in
Chapter	7).

Tip
Although	the	syntax	may	appear	similar,	it’s	not	possible	to	individually	specify	the	four
property	values	for	text-shadow	as	you	can	for	borders	and	backgrounds.

Tip
The	initial	property	value	is	none	if	not	set.

Tip
The	text-shadow	property	is	inherited.

Adding	Drop	Shadows	to	Elements
The	text-shadow	property	allows	you	to	apply	shadows	to	an	element’s	text,	but	the	box-shadow
property	allows	you	to	add	shadows	to	the	elements	themselves	(through).	Although	based	on	the
same	basic	set	of	values,	box-shadow	allows	two	more	optional	values:	the	inset	keyword	and	a
spread	value	to	expand	or	shrink	the	shadow.
Click	here	to	view	code	image

...
<body>
<div	class="shadow">
					<p>Shadow	with	Blur</p>
</div>
					
<div	class="shadow-negative">
					<p>Shadow	with	Negative	Offsets	and	Blur</p>
</div>
					
<div	class="shadow-spread">
					<p>Shadow	with	Blur	and	Spread</p>
</div>
					
<div	class="shadow-offsets-0">
					<p>Shadow	with	Offsets	Zero,	Blur,	and	Spread</p>
</div>
					
<div	class="inset-shadow">
					<p>Inset	Shadow</p>
</div>
					
<div	class="multiple">
					<p>Multiple	Shadows</p>
</div>
</body>
</html>

	This	document	contains	six	divs	with	classes	that	I’ll	use	to	demonstrate	various	box-shadow
effects.

Click	here	to	view	code	image

div	{
					background:	#fff;
					...
}
					
.shadow	{
					-webkit-box-shadow:	4px	4px	5px	#999;
					box-shadow:	4px	4px	5px	#999;
}
					
.shadow-negative	{
					-webkit-box-shadow:	-4px	-4px	5px	#999;
					box-shadow:	-4px	-4px	5px	#999;
}
					
.shadow-spread	{
					-webkit-box-shadow:	4px	4px	5px	3px	#999;
					box-shadow:	4px	4px	5px	3px	#999;
}
					
.shadow-offsets-0	{
					-webkit-box-shadow:	0	0	9px	3px	#999;
					box-shadow:	0	0	9px	3px	#999;
}
					
.inset-shadow	{
					-webkit-box-shadow:	2px	2px	10px	#666	inset;
					box-shadow:	2px	2px	10px	#666	inset;
}
					
.multiple	{
					-webkit-box-shadow:
								2px	2px	10px	rgba(255,0,0,.75),
								5px	5px	20px	blue;
					
					box-shadow:
								2px	2px	10px	rgba(255,0,0,.75),
								5px	5px	20px	blue;
}

	Each	of	the	first	five	classes	applies	a	single,	but	different,	shadow.	The	last	one	applies	two	shadows
(you	can	add	more).	Browsers	that	don’t	understand	box-shadow	will	simply	ignore	those	CSS	rules

and	render	the	page	without	the	shadows.

	Supporting	browsers	show	the	sampling	of	box-shadow	effects.

	This	element	is	styled	with	box-shadow:	0	20px	10px	-11px	#999;.	The	negative	spread
value	makes	the	shadow	narrower	than	the	element.	The	0	x-offset	value	means	the	shadow	won’t	appear

to	the	left	or	right	of	the	element.
Click	here	to	view	code	image

.about	{
					border:	1px	solid	#d0d0d0;
					-webkit-box-shadow:	0	0	3px	#d0d0d0;
					box-shadow:	0	0	3px	#d0d0d0;
					padding:	0.313em	0.625em	0.625em;
}

	Here’s	a	real-world	example	using	the	About	Me	box	from	Chapters	11	and	12.	I’ve	set	both	offsets	to
zero	so	the	subtle	shadow	will	appear	on	all	sides.

	The	About	Me	box	gets	a	new	treatment.	This	time	it	has	a	one-pixel	border	and	a	subtle	shadow	on	all
four	sides.	(The	dark	background	color	has	been	replaced	by	the	default	white.)

The	box-shadow	property	also	differs	from	its	text-shadow	counterpart	in	that	it	requires	the	-
webkit-	vendor	prefix	if	you	want	the	effect	to	show	in	older	versions	of	the	Android,	Mobile	Safari,
and	Safari	browsers.	See	http://caniuse.com/#search=box-shadow	for	the	latest	support	information.	You
may	decide	to	omit	the	prefix.
The	box-shadow	property	accepts	six	values:	x-offset	and	y-offset	with	length	units,	an
optional	blur-radius	with	length	unit,	an	optional	spread	value	with	length	unit,	an	optional
color	value,	and	an	optional	inset	keyword.	If	you	do	not	specify	the	optional	blur-radius	or
spread	values,	they	are	assumed	to	be	zero.

To	add	a	drop	shadow	to	an	element
1.	Type	-webkit-box-shadow:.
2.	Type	the	values	for	x-offset,	y-offset,	blur-radius,	spread	(all	four	with	length
units),	and	color	without	commas	separating	them.	For	example,	2px	2px	3px	5px	#333.

3.	Type	box-shadow:	and	repeat	step	2.

http://caniuse.com/#search=box-shadow

To	create	an	inset	shadow
1.	Type	-webkit-box-shadow:.
2.	Type	the	values	for	x-offset,	y-offset,	blur-radius,	spread	(all	four	with	length
units),	and	color	without	commas	separating	them.	For	example,	2px	2px	3px	5px	#333.

3.	Type	a	space	followed	by	inset.	(Alternatively,	add	inset	and	a	space	before	step	2.)
4.	Type	box-shadow:	and	repeat	steps	2	and	3.

To	apply	multiple	shadows	to	an	element
1.	Type	-webkit-box-shadow:	to	begin	the	style.
2.	Type	the	values	for	x-offset,	y-offset,	blur-radius,	spread	(all	four	with	length
units),	and	color	without	commas	separating	them.	For	example,	2px	2px	3px	5px	#333.
Include	the	inset	keyword	as	desired.

3.	Type	,	(a	comma).
4.	Repeat	step	2	using	different	values	for	each	of	the	properties.
5.	Type	box-shadow:	and	repeat	steps	2	through	4.

To	reset	box-shadow	to	its	default	value
1.	Type	-webkit-box-shadow:	none;.
2.	Type	box-shadow:	none;.

Tip
The	x-offset,	y-offset,	and	spread	values	can	be	positive	or	negative	integers;
that	is,	both	1px	and	-1px	are	valid.	The	blur-radius	value	must	be	a	positive
integer.	The	values	for	each	of	these	attributes	can	also	be	zero.

Tip
You	can	use	a	negative	spread	value	to	make	the	shadow	smaller	than	the	element	to
which	it’s	applied	 .

Tip
Color	can	be	specified	using	hex,	RGB,	RGBA,	or	HSLA	values	(see	“CSS	colors”	in
Chapter	7).

Tip
The	initial	property	value	is	none	if	not	set.

Tip
The	inset	keyword	puts	the	shadow	inside	the	element.

Tip
The	box-shadow	property	is	not	inherited.

Applying	Multiple	Backgrounds
CSS3	also	introduced	the	ability	to	specify	multiple	backgrounds	on	a	single	HTML	element	(through	
).	This	simplifies	your	HTML	code	by	reducing	the	need	for	elements	whose	sole	purpose	is	to	attach

additional	images	using	CSS.	Multiple	backgrounds	can	be	applied	to	just	about	any	element.
Click	here	to	view	code	image

...
<body>
<div	class="night-sky">
					<h1>In	the	night	sky...</h1>
</div>
</body>
</html>

	I’ll	apply	multiple	backgrounds	to	the	single	div	that	has	class="night-sky".
Click	here	to	view	code	image

.night-sky	{
					background-color:	navy;	/*	fallback	*/
					background-image:
								url(ufo.png),	url(stars.png),
								url(stars.png),	url(sky.png);

					background-position:
								50%	102%,	100%	-150px,
								0	-150px,	50%	100%;

					background-repeat:
								no-repeat,	no-repeat,
								no-repeat,	repeat-x;

					height:	300px;
					margin:	0	auto;
					padding-top:	36px;
					width:	75%;
}

	First,	define	a	background-color	to	benefit	visitors	with	older	browsers.	This	is	optional	but
recommended	to	ensure	your	content	is	accessible.	Then	define	the	properties	to	load	and	position	your

background	images,	and	declare	how	they	should	repeat,	if	at	all.

	Browsers	that	support	multiple	backgrounds	will	render	our	example	by	layering	the	images	on	top	of
each	other,	with	the	first	one	in	the	comma-separated	list	at	the	top	of	the	stacking	order.

To	apply	multiple	background	images	to	a	single	element
1.	Type	background-color:	b,	where	b	is	the	color	you	want	applied	as	the	background	for
older	browsers	to	show	 .

	IE8	(shown)	and	other	old	browsers	that	don’t	support	multiple	background	images	will	display	the
background-color	you	specify	as	a	fallback.

2.	Type	background-image:	u,	where	u	is	a	comma-separated	list	of	url	values	that	point	to
your	images.

3.	Type	background-position:	p,	where	p	is	a	comma-separated	set	of	positive	or	negative
x-offset	and	y-offset	pairs	with	length	units	or	keywords	(for	example,	center	top).
There	should	be	one	set	of	coordinates	for	each	URL	specified	in	step	2.

4.	Type	background-repeat:	r,	where	r	is	a	comma-separated	list	of	repeat-x,	repeat-
y,	or	no-repeat	values.	There	should	be	one	value	for	each	URL	specified	in	step	2.

Tip
See	“Setting	the	Background”	in	Chapter	10	for	more	information	about	the	properties
listed	in	the	steps.

Tip
You	can	use	the	standard	background	shorthand	syntax	with	multiple	background
images	by	separating	each	set	of	background	parameters	with	a	comma	 .	As	a	bonus,	this
allows	you	to	specify	both	a	fallback	background	color	and	image	for	older	browsers	 .

Click	here	to	view	code	image

.night-sky	{
					/*	fallback	color	and	img	*/
					background:	navy	url(ufo.png)	no-repeat
center	bottom;
					
					background:
								url(ufo.png)	no-repeat	50%	102%,
								url(stars.png)	no-repeat	100%	-150px,
								url(stars.png)	no-repeat	0	-150px,
								url(sky.png)	repeat-x	50%	100%;
					
					...
}

	This	is	the	same	as	 	except	it’s	written	in	shorthand,	and	IE8	and	other	older	browsers	are
given	both	a	background	color	and	image	 .	For	supporting	browsers,	the	result	is	the	same	as	

.

	Older	browsers	now	display	a	version	of	the	page	that’s	more	representative	of	the	enhanced
version	 .

Tip
Vendor	prefixes	are	not	required	when	specifying	multiple	backgrounds.

Using	Gradient	Backgrounds
Gradient	backgrounds,	also	a	feature	of	CSS3,	allow	you	to	create	transitions	from	one	color	to	another
without	using	images	(through).
Click	here	to	view	code	image

...
<body>
<div	class="vertical-down"><p>default</p></div>
<div	class="vertical-up"><p>to	top</p></div>
<div	class="horizontal-rt"><p>to	right</p></div>

...	rest	of	the	divs	with	classes	...
</body>
</html>

	This	will	serve	as	the	HTML	for	all	CSS	gradient	examples	except	 	and	 .	It	contains	a	series	of
divs,	each	with	a	class	I’ll	use	to	apply	the	gradients.	(In	case	you’re	wondering,	gradients	work	on	most

elements,	not	only	div.)	The	complete	version	of	this	page	is	available	on	the	companion	website.
Click	here	to	view	code	image

.vertical-down	{	/*	default	*/
					background:	silver;	/*	fallback	*/
					background:	linear-gradient(silver,	black);
}
					
.vertical-up	{
background:	silver;
					background:	linear-gradient(to	top,	silver,	black);
}

	A	CSS	gradient	is	a	background	image,	so	the	properties	used	in	this	and	the	other	examples	could	be
background-image	instead	of	the	shorthand	background.	Always	apply	a	baseline	background
for	older	browsers	before	the	background	with	the	gradient.	By	default,	a	linear	gradient	goes	from	top	to
bottom,	so	you	don’t	have	to	specify	to	bottom	in	the	property	value.	Making	it	run	in	the	opposite
direction	is	just	a	matter	of	including	to	top.	The	gradient	goes	from	silver	to	black	based	on	the

direction	specified.
Click	here	to	view	code	image

.horizontal-rt	{
					background:	silver;
					background:	linear-gradient(to	right,	silver,	black);
}
					
.horizontal-lt	{
					background:	silver;
					background:	linear-gradient(to	left,	silver,	black);
}

	Specify	the	direction	of	a	horizontal	gradient	with	either	to	right	or	to	left.
Click	here	to	view	code	image

.diagonal-bot-rt	{
					background:	aqua;
					background:	linear-gradient(to	bottom	right,	aqua,	navy);
}

.diagonal-bot-lt	{
					background:	aqua;
					background:	linear-gradient(to	bottom	left,	aqua,	navy);
}

.diagonal-top-rt	{
					background:	aqua;
					background:	linear-gradient(to	top	right,	aqua,	navy);
}

.diagonal-top-lt	{
					background:	aqua;
					background:	linear-gradient(to	top	left,	aqua,	navy);
}

	There	are	two	ways	to	angle	a	gradient.	The	first	is	shown	here:	include	keywords	that	specify	the
corner	the	gradient	should	move	toward.	The	gradient	will	start	in	the	opposite	(diagonal)	corner.

Click	here	to	view	code	image

.angle-120deg	{
					background:	aqua;
					background:	linear-gradient(120deg,	aqua,	navy);
}
					
.angle-290deg	{
					background:	aqua;
					background:	linear-gradient(290deg,	aqua,	navy);
}

	The	keywords	 	limit	you	to	creating	diagonal	gradients	that	move	from	one	corner	to	another.	The
second	way	to	specify	a	gradient	angle	is	with	deg;	for	example,	90deg.	The	number	is	the	point	on	the
circumference	of	a	circle:	0	on	top,	90	on	the	right,	180	on	the	bottom,	and	270	on	the	left.	The	value	you
list	determines	the	end	point	of	the	gradient.	So,	0deg	is	the	same	as	to	top,	90deg	is	the	same	as	to

right,	and	so	on.

Click	here	to	view	code	image

.radial-center	{	/*	default	*/
					background:	red;
					background:	radial-gradient(yellow,	red);
}
.radial-top	{
					background:	red;
					background:	radial-gradient(at	top,	yellow,	red);
}

	Radial	gradients	include	additional	optional	parameters,	but	the	simplest	example	is	the	default,	which
uses	the	same	parameters	as	a	linear	gradient.	In	this	case,	the	origin	for	the	gradient	is	the	center	of	the
element.	You	can	use	keywords	like	at	top	to	specify	the	center’s	location.	As	always,	provide	a

background	for	older	browsers	prior	to	your	radial-gradient	declaration.
Click	here	to	view	code	image

.radial-size-1	{
					background:	red;
					background:	radial-gradient(100px	50px,	yellow,	red);
}
.radial-size-2	{
					background:	red;
					background:	radial-gradient(70%	90%	at	bottom	left,	yellow,	red);
}

	You	may	also	control	the	gradient’s	size.	This	demonstrates	just	a	couple	of	your	options.
Click	here	to	view	code	image

.radial-various-1	{
					background:	red;
					background:	radial-gradient(closest-side	at	70px	60px,	yellow,	lime,	red);
}
.radial-various-2	{
					background:	red;
					background:	radial-gradient(30px	30px	at	65%	70%,	yellow,	lime,	red);
}

	These	examples	combine	several	parameters,	including	three	colors.	The	values	after	the	word	at
specify	the	coordinates	of	the	gradient’s	center.	In	the	second	example,	30px	30px	marks	the	gradient’s
size.	In	the	first	example,	closest-side	determines	its	size	by	telling	the	gradient	to	stretch	from	the

center	indicated	with	at	70px	60px	to	the	closest	side	of	the	area	that	contains	the	gradient.
Click	here	to	view	code	image

.color-stops-1	{
					background:	green;
					background:	linear-gradient(yellow	10%,	green);
}
.color-stops-2	{
					background:	green;
					background:	linear-gradient(to	top	right,	yellow,	green	70%,	blue);
}

	You	can	specify	one	or	more	color	stop	positions	with	a	percentage.
Click	here	to	view	code	image

.about	{
					/*	fallback	*/
					background-color:	#ededed;

					background-image:	linear-gradient(#fff,	#ededed);
					border:	1px	solid	#d0d0d0;
					-webkit-box-shadow:	0	0	3px	#d0d0d0;
					box-shadow:	0	0	3px	#d0d0d0;
					padding:	0.313em	0.625em	0.625em;
}

	What	do	you	say	we	style	the	About	Me	box	once	more	for	old	times’	sake?	You’ll	notice	I	used
background-image	instead	of	the	background	shorthand	(the	result	is	the	same	either	way).

	Now	it	has	a	simple	linear	gradient	to	go	along	with	the	drop	shadow	and	border	applied	earlier.

There	are	two	primary	styles	of	gradients:	linear	(through	 ,	 	and)	and	radial	(through).
Each	has	a	different	set	of	required	and	optional	parameters.	Browsers	automatically	determine	the
transitions	between	colors	unless	you	specify	the	color	stop	position	of	one	or	more	colors	yourself	 .
The	syntax	for	CSS	gradients	has	changed	during	the	specification	process.	The	current	syntax	is	stable,
but	unfortunately	several	browsers	use	an	older	syntax.	Consequently,	a	lot	of	vendor-prefixed	code	is
required	to	support	the	widest	array	of	browsers	 .	Cumbersome,	to	say	the	least!
Click	here	to	view	code	image

.vertical-down	{
					background:	silver;
					
					/*	Chrome	10-25,	iOS	5+,	Safari	5.1+	*/
					background:	-webkit-linear-gradient(top,	silver,	black);
					
					/*	Firefox	3.6-15	*/
					background:	-moz-linear-gradient(top,	silver,	black);
					
					/*	Opera	11.10-12.00	*/
					background:	-o-linear-gradient(top,	silver,	black);
					
					/*	Standard	syntax,	supported	by
								Chrome	26+,	Firefox	16+,	IE	10+,	Opera	12.10+
					*/
					background:	linear-gradient(silver,	black);
}

	Wowza.	This	is	what’s	required	to	make	the	first	gradient	rule	in	 	work	across	supporting	browsers.
It	could	even	be	worse;	I	left	out	the	declaration	for	Safari	4–5	and	Chrome	prior	to	version	10.	Most	of

this	code	was	generated	by	CSS3	Please!	(www.css3please.com),	including	the	browser	support
comments.

With	that	in	mind,	I’ll	ease	you	into	using	gradients	by	demonstrating	them	with	the	correct,	non-prefixed
properties.	Additional	information	can	be	found	in	the	tips	for	this	section,	and	you	can	find	complete
examples,	including	the	required	vendor-prefixed	properties,	in	the	code	download	for	this	chapter.
In	keeping	with	the	philosophy	of	progressive	enhancement,	it’s	a	best	practice	to	include	a	fallback
background	for	browsers	that	don’t	support	gradients.	You	specify	it	before	the	gradient	in	your	CSS,	as
shown	in	 	through	 .

To	create	a	fallback	background
Type	background:	color	or	background-color:	color,	where	color	is	a	hex	or	RGB
value	or	any	of	the	supported	color	names.	(Alternatively,	you	may	use	an	image.)	It’s	generally	best	to
avoid	RGBA,	HSL,	or	HSLA	values	for	this	because	IE8	and	earlier	versions	don’t	support	them.

To	define	a	linear	gradient
1.	Type	background:	linear-gradient(.
2.	Skip	this	step	if	you	want	the	gradient	to	run	from	top	to	bottom	(the	default	direction).
Type	direction	followed	by	,	(a	comma)	where	direction	specifies	the	direction	of	the
gradient	as	to	top,	to	right,	to	left,	to	bottom	right,	to	bottom	left,	to
top	right,	or	to	top	left.
Or	type	direction	followed	by	,	(a	comma)	where	direction	specifies	the	direction	of	the
gradient	as	an	angle	value	(like	45deg,	107deg,	180deg,	or	310deg).

3.	Define	the	gradient	colors	per	“To	specify	the	colors”	or	“To	specify	the	colors	and	color	stops,”
later	in	this	section.

4.	Type);	to	complete	your	gradient.

To	define	a	radial	gradient
1.	Type	background:	radial-gradient(.

http://www.css3please.com

2.	Specify	the	gradient’s	shape.	Skip	this	step	if	you	want	the	gradient	shape	to	be	determined
automatically	based	on	the	size	in	step	3.	Otherwise,	type	circle	or	ellipse.	(Note	that	this
declaration	is	ignored	in	some	cases.)

3.	Specify	the	gradient’s	size.	Skip	this	step	if	you	want	the	gradient	size	to	be	determined
automatically	(the	default	value	is	farthest-corner).
Type	size,	where	size	is	a	single	length	representing	both	the	width	and	height	of	the	gradient
(such	as	200px	or	7em)	or	a	pair	of	values	for	the	width	and	height	(such	as	390px	175px	or
60%	85%).	Note	that	if	you	use	a	single	length,	it	cannot	be	a	percentage.
Or	type	size,	where	size	is	closest-side,	farthest-side,	closest-corner,	or
farthest-corner.	These	keywords	refer	to	where	the	gradient	should	stretch	within	the	space
that	contains	it,	relative	to	the	gradient’s	center.	The	resulting	boundary	determines	the	gradient’s
size.

4.	Specify	the	gradient’s	position.	Skip	this	step	if	you	want	the	gradient	to	emanate	from	the	center	of
the	element	(the	default).
Type	pos,	where	pos	is	the	position	of	the	center	of	the	gradient	as	at	top,	at	right,	at
left,	at	bottom	right,	at	bottom	left,	at	top	right,	or	at	top	left.
Or	type	pos,	where	pos	is	the	position	of	the	center	of	the	gradient	as	a	pair	of	horizontal	and
vertical	coordinates	preceded	by	the	word	at.	Examples	include	at	200px	43px,	at	33%
70%,	and	at	50%	-10px.	(Specify	one	pair	only.)

5.	Type	,	(a	comma)	if	you	specified	a	value	for	any	of	steps	2–4.	To	clarify,	if	you	did	more	than	one
of	those	steps,	do	not	separate	each	one	with	a	comma.

6.	Define	the	gradient	colors	per	“To	specify	the	colors”	or	“To	specify	the	colors	and	color	stops,”
later	in	this	section.

7.	Type);	to	complete	your	gradient.

To	specify	the	colors
Type	at	least	two	colors,	separating	each	with	a	comma.	The	first	color	you	specify	appears	at	the	start	of
the	gradient,	and	the	last	color	appears	at	the	end.	For	radial	gradients,	they	are	the	innermost	and
outermost	colors,	respectively.
Colors	can	be	specified	using	any	combination	of	color	names	or	hex,	RGB,	RGBA,	HSL,	or	HSLA
values.	Browsers	automatically	determine	where	the	colors	shift	within	a	gradient	unless	you	specify	one
or	more	color	stops.

To	specify	the	colors	and	color	stops
Follow	the	instructions	in	“To	specify	the	colors.”	As	desired,	include	a	percentage	with	each	color	value
to	control	where	the	color	appears	within	the	gradient	 .	Negative	percentages	are	allowed,	as	are
values	greater	than	100%.

Creating	gradient	code	for	older	browsers
Earlier,	I	hinted	that	a	veritable	boatload	of	code	is	required	to	apply	even	a	simple	gradient	across
browsers.	Now	you	can	see	for	yourself	 .	Nobody	wants	to	write	all	that	by	hand	even	if	they	know
how.	Fortunately,	there	are	tools	that	can	do	it	for	you	(see	the	tips).
On	the	positive	side,	most	of	the	browsers	that	require	a	vendor	prefix	will	be	old	enough	at	some	point
(not	really	far	down	the	line)	that	you’ll	be	able	to	safely	omit	most	of	the	extra	declarations.

Tip
I	used	color	keywords	in	most	of	the	examples	to	make	them	easier	to	follow.	You’ll	likely
find	yourself	using	hex	or	other	values	for	colors	most	of	the	time.

Tip
See	http://caniuse.com/#search=gradient	for	the	latest	browser	support	information.

Tip
Gradients	are	quite	versatile.	You	can	define	multiple	gradients	in	a	single	background	by
separating	each	one	with	a	comma.	By	doing	so,	you	can	create	many	interesting	effects.
Check	out	Lea	Verou’s	CSS3	Patterns	Gallery	(http://lea.verou.me/css3patterns/)	to	get	a
taste	of	what’s	possible.

Tip
You	can	use	a	visual	tool	like	Microsoft’s	CSS	gradient	background	maker
(http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/)	to	bypass	the
tedious	work	of	creating	CSS	gradient	code.	It	also	creates	all	the	vendor	prefix	properties
for	you	to	ensure	the	maximum	level	of	compatibility	with	older	browser	versions.
ColorZilla’s	gradient	generator	(http://colorzilla.com/gradient-editor/)	is	similar,	but	be
aware	that	it	typically	generates	far	more	code	than	you’ll	need.

Tip
You	should	accommodate	unsupported	browsers	by	specifying	either	a	background-
color	or	a	background-image,	but	you	should	keep	in	mind	that	images	in	the	CSS
will	be	downloaded	by	browsers	whether	they	are	used	or	not.

Setting	the	Opacity	of	Elements
Using	the	opacity	property,	you	can	change	the	transparency	of	elements,	including	images	(through	
).

Click	here	to	view	code	image

...
<body>

<div	class="box">
					
</div>

</body>
</html>

http://caniuse.com/#search=gradient
http://lea.verou.me/css3patterns/
http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/
http://colorzilla.com/gradient-editor/

	This	document	contains	a	div	element	with	an	image	enclosed.

	Here’s	how	the	div	looks	like	by	default.	As	they	do	with	other	elements,	browsers	give	it
opacity:	1;	without	your	having	to	specify	that	in	your	style	sheet.	The	div	has	a	black	background,

which	shows	around	the	image	because	of	the	padding.	The	body	background	is	brown.
Click	here	to	view	code	image

.body	{
					background:	#a2735f;	/*	brown	*/
}

.box	{
					background:	#000;	/*	black	*/
					opacity:	.5;
					padding:	20px;
					width:	420px;
}

	By	making	the	opacity	value	less	than	1,	you	can	make	an	element	and	its	children	transparent.	In
this	case,	I	changed	the	opacity	to	50	percent	by	using	.5	 .

	Here’s	how	the	div	looks	with	its	opacity	set	to	.5.	Notice	that	the	solid	black	background	of	the
div	element	is	now	dark	brown	and	that	the	image	is	semi-transparent	and	a	little	browner	as	well.	When
you	set	an	element’s	opacity	to	less	than	1,	the	background	it	sits	on	from	a	surrounding	element	will	show
through.	In	this	case,	it’s	the	brown	background	from	body.	This	effect	is	more	evident	with	a	color	like

red	 .

	The	div	is	still	set	to	opacity:	.5;	but	the	body	now	has	background-color:	red;.	The
extent	of	the	filter-through	effect	depends	on	the	opacity.	More	red	would	show	through	if	the	div	had	an

opacity	of	.35,	and	less	would	show	through	with	it	set	to	.8.

To	change	the	opacity	of	an	element
Type	opacity:	o,	where	o	is	the	level	of	opaqueness	of	the	element	to	two	decimal	places	(without
units).

Tip
The	default	value	of	opacity	is	1	 .	Values	can	be	set	in	increments	from	0.00
(completely	transparent)	to	1.00	(completely	opaque).	For	example,	opacity:	.09;,
opacity:	.2;,	or	opacity:	.75;.	(Including	a	zero	before	the	decimal	point	is	not
required.)	You	can	write	0.00	as	0	and	1.00	as	1.

Tip
Text	is	affected	by	opacity	too.	If	the	div	had	(for	example)	white	text,	it	would	take	on
some	brown	in	 	and	some	red	in	 .

Tip
You	can	produce	some	interesting	and	practical	effects	by	using	the	opacity	property
along	with	the	:hover	pseudo-property.	As	a	basic	example,	img	{	opacity:
.75;	}	would	set	images	to	75%	opacity	by	default	and	img:hover	{	opacity:
1;	}	would	make	them	opaque	when	hovered	upon.	You	see	this	effect	often	with
thumbnail	images	that	are	linked	to	full-size	versions.	The	hover	effect	reinforces	to
visitors	that	the	images	are	actionable.

Tip
It’s	easy	to	confuse	the	opacity	property	with	alpha	transparent	background	colors	set
with	RGBA	or	HSLA.	As	you	saw	in	 	and	 ,	opacity	affects	an	entire	element,
content	and	all.	But	a	setting	such	as	background-color:
rgba(128,0,64,.6);	affects	only	the	level	of	transparency	of	the	background.	See
“A	Property’s	Value”	in	Chapter	7	for	a	discussion	of	CSS	colors	and	an	example	of
RGBA.

Tip
The	opacity	property	does	not	natively	work	in	Internet	Explorer	versions	prior	to	IE9,
but	it	is	possible	to	replicate	by	using	the	proprietary	filter	effect	 .	Be	sure	not	to	apply	a
lot	of	these	filters	to	a	page,	because	they	adversely	affect	the	performance	of	the	versions
of	IE	that	apply	them.

Click	here	to	view	code	image

div	{
					-ms-filter:	progid:DXImageTransform.	Microsoft.Alpha(opacity=50);
					filter:	alpha(opacity=50);
					opacity:	.5;
					zoom:	1;
}

	This	demonstrates	how	you	can	apply	IE’s	proprietary	filters	for	older	versions.	The	zoom:
1;	portion	is	also	proprietary	to	IE	and	helps	the	filters	take	effect.	Modern	browsers	will	use
the	opacity:	.5;	setting,	per	usual.	Note	that	the	IE	filters	use	a	different	number.	In	this

case,	50	is	required	instead	of	.5	to	apply	50	percent	opacity.

Tip
Despite	how	it	may	appear,	opacity	is	not	an	inherited	property.	Children	of	an	element
with	an	opacity	of	less	than	1	will	also	be	affected,	but	the	opacity	value	for	those
child	elements	will	still	be	1.

Effects	with	Generated	Content
The	:before	and	:after	pseudo-elements	are	incredibly	handy	for	adding	design	flourishes	to	your
pages.	You	can	use	them	with	the	content	property	to	include	what	is	known	as	generated	content.
That	is,	content	that	is	added	to	your	page	from	CSS,	not	its	usual	spot	in	HTML.
Don’t	get	the	wrong	idea,	though—it	isn’t	for	adding	paragraphs	or	headings	to	your	page.	Those	still
belong	in	your	HTML.	Instead,	you	can	use	it	to	add	symbols	(through),	to	create	what	is	like	a
blank	content	element	that	you	can	style	as	you	please	(through),	and	to	do	more	(see	the	tips).
Click	here	to	view	code	image

...

<pThis	area	is	one	of	the	most	tranquil	spaces	at	the	Villa.	As	I	wandered	around,
enjoying	shade	provided	by	sycamore	and	laurel	trees	and	serenaded	by	splashing	water
from	two	sculptural	fountains,	I	couldn't	help	but	think	…	<a	href="victoria.html"
class="more">Read	More</p>

...

	A	simple	paragraph	that	contains	a	link	with	a	class.	Notice	that	there	are	not	two	arrows	after	the
words	“Read	More.”

	The	paragraph	with	basic	CSS	text	styling.	No	arrows	appear	after	the	link.
Click	here	to	view	code	image

...
					
.more:after	{
					content:	"	»";
}

	Here’s	where	the	magic	happens.

	Now,	any	element	given	class="more"	will	display	double	arrows	after	it.
Click	here	to	view	code	image

...
<div	class="travels">
					<h2>My	Travels</h2>
					

					<ul	class="cities	clearfix">
								Victoria
								Los	Angeles
								Mexico	City
								Buenos	Aires
								Paris
								Kampala
								Lagos
								Cairo
								Beijing
					
</div>
...

	The	list	of	cities	will	be	styled	as	a	bubble	with	an	arrow	on	the	bottom.
Click	here	to	view	code	image

.travels	{
					/*	Allows	positioning	.cities
								absolutely	within	it.	*/
					position:	relative;
}

.map:focus	+	.cities,

.map:hover	+	.cities	{
					left:	50%;	/*	show	*/
}

/*	bubble	*/
.cities	{
					background:	#2B2B2B;
					border-radius:	5px	5px;
					left:	-999em;	/*	hide	*/
					margin-left:	-111px;
					padding:	.5em	0	.9375em	.9375em;
					position:	absolute;
					top:	-75px;
					width:	222px;
}

/*	triangle	under	bubble	*/
.cities:after	{
					border:	solid	transparent;
					border-top-color:	#2b2b2b;
					border-width:	15px;
					content:	"	";	/*	blank	space	*/
					height:	0;
					left:	50%;
					margin-left:	-15px;
					position:	absolute;
					top:	99.9%;
					width:	0;
}

...

	There	are	a	few	effects	going	on	here.	The	last	rule	uses	the	:after	pseudo-element	to	create	and
position	a	triangle	below	the	list	of	cities.	The	second	rule	positions	the	list	off-screen	by	default.	The
third	rule	puts	the	list	back	onscreen	when	a	visitor	interacts	with	the	map	(and).	It	is	positioned

absolutely,	but	relative	to	the	.travels	div	that	contains	it	in	the	HTML	 .

	The	arrow	at	the	bottom	of	the	bubble	is	pure	CSS,	not	an	image!	The	cities	bubble	shows	when	you
hover	anywhere	over	the	map.	But	that’s	not	all...

	The	tabindex="0"	attribute	on	the	img	 	allows	the	:focus	pseudo-selector	 	to	work	so	a
visitor	can	tab	to	the	map	with	the	keyboard	to	reveal	the	cities	instead	of	using	a	mouse	to	hover.	Another

win	for	accessibility!	(The	dotted	outline	shows	around	the	map	only	when	you	tab	to	it.)

I	could	have	included	the	arrows	in	the	HTML	of	the	first	example	 ,	but	they	are	a	stylistic	touch	that	I
might	want	to	change	later.	If	so,	I	can	simply	modify	the	.more	class	 	rather	than	remove	potentially
hundreds	of	arrows	from	my	HTML	pages.

In	the	second	example,	I	create	a	blank	space	with	content:	"	";	and	style	it	as	a	triangle	using	CSS
borders	 	(see	the	tips).	You	can	style	generated	content	with	background	colors	and	images	(including
gradients),	width,	height,	rounded	corners—you	name	it.

Tip
The	complete	code	for	the	examples	is	available	at	www.htmlcssvqs.com/8ed/14/gencon.

Tip
You	can	apply	both	:before	and	:after	to	a	single	element,	giving	you	two	extra
containers	for	styling.	For	example,	you	could	apply	multiple	backgrounds	in	a	different
manner	than	the	way	shown	in	“Applying	Multiple	Backgrounds.”	Chris	Coyier
demonstrates	more	great	uses	for	:before	and	:after	at	http://css-tricks.com/pseudo-
element-roundup/.

Tip
Joel	Glover	goes	in-depth	about	creating	triangles	with	border	styles	at
http://appendto.com/blog/2013/03/pure-css-triangles-explained/.

Tip
CSS	Arrow	Please!	(http://cssarrowplease.com/)	by	Simon	Højberg	is	a	great	tool	that
creates	CSS	triangle	code	for	you.

Tip
The	:focus	pseudo-class	works	on	links	and	form	elements	by	default.	You	do	not	have
to	add	tabindex="0"	to	those	elements.

Tip
The	.clearfix	class	I	showed	in	Chapter	11	uses	generated	content.

Combining	Images	with	Sprites
Text	usually	appears	quickly	on	a	page,	but	each	image	a	browser	has	to	load	slows	down	your	page	load.
Usually,	this	is	even	more	pronounced	on	mobile	devices.	To	offset	this,	you	can	combine	multiple	images
into	a	single	background	image	file	(a	sprite)	and	use	CSS	to	control	which	part	of	the	image	displays.
The	secret	is	in	the	background-position	property.
Figure	 	shows	a	standard	unordered	list	(see	Chapter	15).	The	goal	is	to	show	an	icon	from	the	sprite	
	before	each	document	link.

Click	here	to	view	code	image

http://www.htmlcssvqs.com/8ed/14/gencon
http://css-tricks.com/pseudo-element-roundup/
http://appendto.com/blog/2013/03/pure-css-triangles-explained/
http://cssarrowplease.com/

...
<ul	class="documents">
					Business	expenses
					User	Manual
					Short	story
					Vacation	brochure

...

	You	can	leverage	the	file	name	extensions	and	the	.icon	class	to	display	an	icon	that	matches	the
document	type.	But	before	you	do,	the	list	shows	round	markers	by	default.

	This	sprite	image	contains	three	icons.	Each	is	16	pixels	by	16	pixels	and	is	separated	from	the	next	by
two	pixels.

You	apply	the	sprite	to	as	many	elements	as	desired.	In	this	case,	I	do	so	with	.icon:before	 .	With
that,	the	sprite	is	the	background	image	for	the	empty	space	generated	by	content:	"	";.	Setting	that
to	display:	block;	allows	you	to	set	its	height	and	width	to	match	the	size	of	the	icon;	it	won’t
show	without	these	three	properties.	You	use	background-position	 	to	shift	the	right	icon	into
place	 .
Click	here	to	view	code	image

...

.documents	{	list-style:	none;	}

.icon	{
					display:	inline-block;
					min-height:	16px;
					padding-left:	23px;
					position:	relative;
					...
}

.icon:before	{
					background-image:	url(sprite.png);
					content:	"	";
					display:	block;
					height:	16px;	/*	icon	height	*/
					position:	absolute;
					width:	16px;	/*	icon	width	*/
}

a[href$=".xls"]:before	{
					background-position:	-17px	0;
}

a[href$=".docx"]:before	{
					background-position:	-34px	0;
}

	You	could	apply	class="pdf",	class="xls",	and	so	on	to	each	relevant	a	element	in	the
HTML	 .	But	you	already	know	what	kind	of	document	each	link	points	to	based	on	its	href	value.

That	allows	you	to	use	$=	to	match	a	href	value	that	ends	with	a	specific	extension.

	The	correct	icon	appears	before	each	link!

Tip
A	sprite	can	contain	images	of	varying	sizes	and	with	varying	distances	between	them.	You
can	arrange	them	both	horizontally	and	vertically.

Tip
You	do	not	have	to	use	:before	or	:after	to	use	sprites.	You	can	apply	a	sprite
background	directly	to	an	element	instead.

Tip
You	can	create	rollover	effects	by	changing	the	sprite’s	background-position	in	the
:hover	state	of	a	link	or	other	element.

Tip
CSS	Sprite	Generator	(http://spritegen.website-performance.org)	by	Project	Fondue	is	one
of	many	similar	tools	that	create	sprites	and	the	background	positioning	CSS	for	you.

Tip
The	sprite	icons	are	from	the	free	Silk	icon	set	by	Mark	James
(www.famfamfam.com/lab/icons/silk/).

Tip
You	can	create	sprites	for	Retina	and	other	high-pixel-density	displays.	See	the	last	page	of
Chapter	12’s	“Putting	It	All	Together.”

http://spritegen.website-performance.org
http://www.famfamfam.com/lab/icons/silk/

15.	Lists

In	This	Chapter
Creating	Ordered	and	Unordered	Lists
Choosing	Your	Markers
Using	Custom	Markers
Choosing	Where	to	Start	List	Numbering
Controlling	Where	Markers	Hang
Setting	All	List-Style	Properties	at	Once
Styling	Nested	Lists
Creating	Description	Lists

HTML	contains	elements	specifically	for	creating	lists	of	items.	You	can	create	plain,	numbered,	or
bulleted	lists,	as	well	as	lists	containing	descriptions.	You	can	also	nest	one	or	more	lists	inside	another
one.
All	lists	are	formed	by	a	parent	element	that	specifies	what	sort	of	list	you	want	to	create,	and	child
elements	that	mark	the	items	within	the	list.	Here	are	the	three	list	types,	along	with	the	elements	they	are
composed	of:

	Ordered	list:	ol	for	the	parent,	li	for	each	list	item
	Unordered	list:	ul	for	the	parent,	li	for	each	list	item
	Description	list:	dl	for	the	parent,	dt	marks	the	term	to	describe,	and	dd	marks	the	description	of
the	term.	This	was	known	as	a	definition	list	before	HTML5.

Of	these,	the	unordered	list	is	used	the	most	because	it’s	the	de	facto	standard	for	marking	up	most	kinds
of	navigation	(there	are	several	examples	of	this	throughout	the	book).	But	all	three	list	types	have	their
place,	as	you’ll	learn	in	this	chapter.

Creating	Ordered	and	Unordered	Lists
An	ordered	list	is	the	right	choice	when	the	order	of	the	list	items	is	critical	to	the	list’s	meaning.	For
example,	an	ol	is	perfect	for	providing	step-by-step	instructions	on	how	to	complete	a	particular	task	(
and),	or	for	creating	an	outline	or	table	of	contents	of	a	larger	document—in	short,	any	list	of	items	for
which	the	order	is	meaningful.
Click	here	to	view	code	image

...
<body>

<h1>Changing	a	light	bulb</h1>

					Make	sure	you	have	unplugged	the	lamp	from	the	wall	socket.
					Unscrew	the	old	bulb.
					Get	the	new	bulb	out	of	the	package.
					Check	the	wattage	to	make	sure	it's	correct.
					Screw	in	the	new	bulb.
					Plug	in	the	lamp	and	turn	it	on!

</body>
</html>

	There	is	no	official	way	to	format	a	list’s	title.	Most	of	the	time,	a	regular	heading	or	a	paragraph	is	the
appropriate	lead-in	to	a	list	like	the	one	in	this	example.	It’s	conventional,	but	not	required,	to	indent	list
items	in	your	HTML	to	indicate	that	they	are	children	of	an	ol	or	ul.	That	doesn’t	make	them	indent

when	displayed,	though;	that’s	purely	a	function	of	the	CSS	applied	to	the	list.

	This	list	uses	the	default	option	of	Arabic	numerals	to	create	a	numbered	ordered	list.	You	can	change
this	with	CSS.	Both	ordered	and	unordered	lists	display	indented	by	default,	whether	or	not	they	are

indented	in	the	HTML	itself	 .

Unordered	lists	are	the	opposite	(and	are	more	prevalent)—use	them	when	the	order	of	list	items	isn’t
tied	to	the	list’s	meaning	(through).
Click	here	to	view	code	image

...
<body>

<h1>Product	Features</h1>

					One-click	page	layout.
					Spell-checker	for	327	languages.
					Image	retouching	tool.
					Unlimited	undos	and	redos.

</body>
</html>

	The	ul	element	defines	this	as	an	unordered	list.	Each	list	item	is	marked	up	with	an	li	element—the
same	as	with	ordered	lists.

	Unordered	lists	have	solid	round	bullets	by	default.	You	can	change	these	with	CSS.
Click	here	to	view	code	image

...
<h1	class="hdg">Product	Features</h1>

					One-click	page	layout.
					...

...

	As	you	can	see	 ,	the	default	spacing	between	elements	isn’t	ideal.	I’ll	show	you	how	to	adjust	that.
This	is	the	same	HTML	as	 	except	I’ve	added	a	class	to	the	h1	as	an	excuse	to	reinforce	why	classes
are	handy.	With	the	styles	in	 	in	place,	you	can	apply	.hdg	to	any	heading	that	immediately	precedes	a
ul	or	ol	and	get	the	same	results.	Similarly,	you	could	style	the	list	with	a	class	so	the	indentation	and

spacing	rules	could	be	used	on	either	an	ol	or	ul,	too.
Click	here	to	view	code	image

body	{
					font-family:	sans-serif;
}

.hdg	{
					font-size:	1.5em;
					margin-bottom:	0;
}

.hdg	+	ul,

.hdg	+	ol	{	/*	works	for	either	ul	or	ol	*/
					margin-top:	.5em;	/*	~8px	*/
}

ul	{	/*	reduce	indentation	*/
					margin-left:	0;	/*	for	<=IE7	*/
					padding-left:	18px;	/*	~1.125em	*/
}

ul	li	{
					/*	space	between	each	item	*/
					margin-top:	.4em;	/*	~6px	*/
}

	I’ve	addressed	the	spacing	between	the	heading	and	the	list	with	the	second	and	third	rules,	and	the
space	between	each	list	item	with	the	last	rule.	The	fourth	rule	reduces	the	indentation	so	the	bullets

appear	near	the	left	edge.	The	padding-left:	18px;	portion	makes	room	for	the	bullets.	If	it	were
0,	the	text	would	line	up	with	the	left	edge,	and	the	bullets	would	be	out	of	view	because	markers	display
outside	list	items	by	default.	You	don’t	have	to	use	ems	for	the	other	values	as	I	did;	if	you	do,	remember

that	they	are	relative	to	the	parent	element’s	font	size.

	The	page	is	much	more	presentable	now.

Both	list	types	are	appropriate	for	marking	up	certain	types	of	navigation	(see	the	second	tip).

To	create	lists
1.	Type		for	an	ordered	list	or		for	an	unordered	list.	For	an	ordered	list,	you	can	include
any	of	the	optional	attributes	start,	type,	and	reversed.	(See	“Choosing	Where	to	Start	List
Numbering”	regarding	start,	“Choosing	Your	Markers”	regarding	type,	and	the	last	tip	to	learn
about	reversed.)

2.	Type		to	begin	the	first	list	item.	For	an	ordered	list,	you	can	include	the	optional	value
attribute	(see	“Choosing	Where	to	Start	List	Numbering”	for	details).

3.	Add	the	content	(such	as	text,	links,	or	img	elements)	to	be	included	in	the	list	item.
4.	Type		to	complete	each	list	item.
5.	Repeat	steps	2	through	4	for	each	new	list	item.
6.	Type		or	,	to	match	the	start	tag	(from	step	1)	and	complete	the	list.

Tip
Don’t	make	the	decision	about	which	list	type	to	use	based	on	which	marker	style	you	want
next	to	your	content.	After	all,	you	may	always	change	that	with	CSS	(yes,	you	can	even
show	bullets	on	an	ordered	list).	Instead,	think	about	your	list’s	meaning—would	it	change
if	the	order	of	the	list	items	changed?	If	the	answer	is	yes,	mark	up	the	list	as	an	ordered
list.	Otherwise,	use	an	unordered	list.

Tip
Use	unordered	lists	to	mark	up	most	groups	of	links,	such	as	your	main	navigation,	a	list	of
links	to	related	stories	or	videos,	or	groups	of	links	in	your	page	footer.	Meanwhile,	use
ordered	lists	to	mark	up	breadcrumb	navigation	and	pagination,	since	the	links	represent	a
distinct	sequence	of	links	(in	other	words,	the	order	is	meaningful).	Breadcrumb	navigation
is	often	displayed	horizontally	above	the	main	content	area	to	indicate	where	the	current
page	exists	in	the	site’s	navigation	path.	Pagination	is	the	horizontal	list	of	links—like	1	|	2
|	3	|	4—that	often	appears	with	a	list	of	search	results	or	products,	allowing	you	to	jump
between	pages	of	results.	I’ve	included	an	example	of	main	navigation	and	a	breadcrumb
in	Figure	 	of	“Styling	Nested	Lists.”

Tip
The	completed	sample	webpage	in	Chapters	11	and	12	demonstrate	lists	used	and
presented	in	a	variety	of	ways.	It	includes	unordered	lists	for	the	navigation	and	other
groups	of	links,	and	an	ordered	list	for	a	list	of	sequential	links	to	previous	blog	postings.
Chapter	3	also	has	examples	that	include	a	ul	as	navigation.

Tip
Unless	you	specify	otherwise,	items	in	ordered	lists	will	be	numbered	with	Arabic
numerals	(1,	2,	3,	and	so	on)	 .

Tip
Items	in	unordered	lists	have	solid	round	bullets	by	default	 .	You	can	choose	different
bullets	(see	“Choosing	Your	Markers”)	or	even	create	your	own	(see	“Using	Custom
Markers”).

Tip
Lists	are	indented	from	the	left	side	by	default,	although	you	can	remove	or	reduce	the
indentation	 	(or	add	more)	with	CSS	 .	“Using	Custom	Markers”	illustrates	this,	too.
Depending	on	how	much	you	reduce	the	indentation,	your	bullets	might	stick	outside	your
content	or	disappear	beyond	the	left	edge	of	the	window	(see	the	note	about	zero	padding
in).

Tip
You	may	create	one	list	inside	another—known	as	nesting	lists—even	mixing	and
matching	ordered	and	unordered	lists.	Be	sure	to	nest	each	list	properly,	using	all	the
required	start	and	end	tags.	See	examples	of	nested	ordered	and	unordered	lists	in	“Styling
Nested	Lists.”

Tip
Be	sure	to	place	list	content	only	within	li	elements.	For	instance,	you	aren’t	allowed	to
put	content	between	the	start	ol	or	ul	tag	and	the	first	li	element.	Various	types	of
elements	are	allowed	in	li	elements,	such	as	any	of	the	phrasing	content	elements	(like
em,	a,	cite,	and	so	on).	Nesting	the	likes	of	paragraphs	and	divs	in	list	items	is	valid,
too.

Tip
If	you	specify	your	content	direction	as	right-to-left,	as	you	would	if	the	page’s	base
language	were	Hebrew	(as	an	example),	the	lists	are	indented	from	the	right	margin	instead
of	the	left.	To	achieve	this,	set	the	dir	attribute	on	your	page’s	html	element:	<html
dir="rtl"	lang="he">.	In	this	case,	lang	is	set	to	he	for	Hebrew.	You	also	can
set	dir	and	lang	on	elements	(such	as	ol	and	ul)	within	the	body	to	override	the
settings	on	the	html	element.	The	dir	attribute	defaults	to	ltr.

Tip
At	the	time	of	this	writing,	browser	support	for	the	Boolean	reversed	attribute	is	less
than	ideal,	with	only	Chrome	18+,	Firefox	18+,	and	Safari	5.2+	recognizing	it.	The
purpose	of	reversed	is	to	indicate	a	descending	ordered	list	(you	can	specify	it	with
either	<ol	reversed>	or	<ol	reversed="reversed">).	Supporting	browsers
will	reverse	the	list’s	numbering	automatically.

Choosing	Your	Markers
When	you	create	a	list,	be	it	ordered	 	or	unordered,	you	can	also	choose	what	sort	of	markers	should
appear	to	the	left	of	each	list	item,	or	choose	not	to	show	any.
Click	here	to	view	code	image

...
<body>

<h1	class="hdg">The	Great	American	Novel</h1>

					Introduction
					Development
					Climax
					Denouement
					Epilogue

</body>
</html>

	Here	is	our	simple	ordered	list,	to	which	we	will	apply	capital	Roman	numerals	(upper-roman).
(Note	that	I’ve	applied	class="hdg"	to	the	h1	to	take	advantage	of	the	.hdg	rules	in	figure	 	of

“Creating	Ordered	and	Unordered	Lists.”)

To	choose	your	markers
In	the	style	sheet	rule,	type	list-style-type:	marker,	where	marker	is	one	of	the	following
values:

	disc	()
	circle	()
	square	()
	decimal	(1,	2,	3,	...)
	upper-alpha	(A,	B,	C,	...)
	lower-alpha	(a,	b,	c,	...)
	upper-roman	(I,	II,	III,	IV,	...)	(and)

Click	here	to	view	code	image

li	{
					list-style-type:	upper-roman;
}

/*	This	would	have	the	same	effect	because	the	li	elements	inherit	list-style-type.

ol	{
					list-style-type:	upper-roman;
}
*/

	You	can	apply	the	list-style-type	property	to	an	ol	(see	the	comment),	a	ul,	or	the	list	items
themselves,	as	shown	here.	Though	not	shown,	I	also	assigned	a	font	to	body.

	Now	the	ordered	list	has	capital	Roman	numerals.	Note	that	most	browsers	align	numeric	markers	to
the	right.

	lower-roman	(i,	ii,	iii,	iv,	...)

To	display	lists	without	markers
In	the	style	sheet	rule,	type	list-style-type:	none.

Tip
You	may	apply	any	of	the	marker	styles	to	both	ol	and	ul	with	list-style-type.	In
other	words,	an	ol	could	have	square	markers	and	a	ul	decimal	markers.

Tip
More	marker	types	are	available,	though	they	have	varying	degrees	of	browser	support
(see	www.quirksmode.org/css/lists.html).

Tip
You	can	also	specify	an	ol’s	marker	with	the	type	attribute	in	your	HTML,	although	I
recommend	defining	it	in	CSS	in	most	cases.	See	html5doctor.com/ol-element-attributes/
for	an	exception.	The	acceptable	values	for	type	are	A,	a,	I,	i,	and	1	(1	is	the	default).
For	example,	<ol	type="I">	specifies	uppercase	Roman	numerals.

Using	Custom	Markers
If	you	get	tired	of	circles,	squares,	and	discs,	or	even	Roman	numerals,	you	can	create	your	own	custom
marker	with	an	image.	You	don’t	have	to	change	your	HTML	 ,	just	the	CSS	(through).
Click	here	to	view	code	image

http://www.quirksmode.org/css/lists.html

...
<body>

<h1	class="hdg">Product	Features</h1>

					One-click	page	layout.
					Spell-checker	for	327	major	languages.
					Image	retouching	tool.
					Unlimited	undos	and	redos.

</body>
</html>

	This	is	just	like	any	ordinary	unordered	list,	but	with	a	little	CSS	we	can	make	it	look	different.
Click	here	to	view	code	image

ul	{
					/*	turn	off	the	default	markers	*/
					list-style:	none;

					/*	remove	indentation	of	list	items	*/
					margin-left:	0;
					padding-left:	0;
}

li	{
					/*	show	custom	marker	*/
					background:	url(../img/checkmark.png)	no-repeat	0	0;
}

	I’ll	show	you	how	to	use	a	custom	marker	in	three	steps	so	it’s	clear	how	various	CSS	properties
affect	the	layout.	First	you	can	turn	off	the	default	markers	(so	you	don’t	see	both	bullets	and	the
checkmarks).	If	you	want	the	list	items	to	be	flush	left,	you	need	to	set	both	margin-left	and

padding-left	to	0	(see	the	second-to-last	tip).	The	URL	to	the	custom	marker	you	apply	to	list	items
will	likely	vary	(see	the	first	tip).	It’s	typical	to	use	a	PNG,	but	a	GIF	or	JPEG	also	works.

	The	default	bullets	are	replaced	by	checkmark	images,	and	the	list	items	are	flush	left.	However,	the
text	is	sitting	on	the	new	markers.	Should	we	add	left	padding	back	into	our	list	to	make	room	for	them?

Let’s	try	 .
Click	here	to	view	code	image

ul	{
					list-style:	none;
					margin-left:	0;
					padding-left:	30px;
					outline:	2px	solid	red;
}

li	{
					background:	url(../img/checkmark.png)	no-repeat	0	0;
					outline:	1px	solid	blue;
}

	With	margin-left	set	to	0,	we	can	control	the	amount	of	list	item	indentation	for	all	browsers	with
padding-left.	I’ve	added	temporary	outlines	to	the	ul	and	to	each	li	so	you	can	see	clearly	where

the	padding	is	applied	 .

	This	indented	our	list	items,	but	the	problem	of	text	overlapping	the	markers	remains	because	I	added
left	padding	to	the	list	itself	(the	ul),	rather	than	to	the	list	items	that	contain	the	checkmarks.	Time	to	fix

that	 .
Click	here	to	view	code	image

ul	{
					list-style:	none;
					margin-left:	0;
					padding-left:	0;
}

li	{
					/*	show	image	slightly	down	from	top	of	item.	*/
					background:	url(../img/checkmark.png)	no-repeat	0	.1em;

					/*	make	line	tall	enough	to	show	full	checkmark	*/
					line-height:	1.8;

					/*	bump	the	text	over	to	make	room	for	the	checkmark	*/
					padding-left:	1.75em;
}

	I	set	the	ul	left	padding	back	to	0	so	the	list	is	flush	left	again.	Setting	left	padding	on	the	lis	allows
us	to	see	most	of	each	marker	image,	and	by	increasing	the	line-height	I’ve	ensured	that	the	images
aren’t	cut	off	at	the	bottom.	I	also	nudged	the	checkmarks	down	a	bit	to	align	with	the	text	better	 .

	Much	better!

To	use	custom	markers
1.	In	the	rule	for	the	desired	list	or	list	item,	type	list-style:	none;	to	turn	off	normal
markers.

2.	In	the	rule	for	the	desired	list,	set	the	margin-left	and/or	padding-left	properties	to
dictate	how	much	the	list	items	will	be	indented.	Both	properties	are	usually	necessary	to	achieve
similar	results	across	browsers	(and).	Note	that	if	you’ve	set	dir="rtl"	for	your	content,
you	should	adjust	the	margin-right	and	padding-right	properties	instead.	See	the	tips	in
“Creating	Ordered	and	Unordered	Lists”	for	more	details	about	dir,	lang,	and	right-to-left
languages	in	these	list	types.

3.	In	the	rule	for	the	li	elements	within	the	desired	list,	type	background:	url(image.ext)
repeat-type	horizontal	vertical;,	where	image.ext	is	the	path	and	file	name	of	the
image	you’d	like	to	use	as	the	custom	marker;	repeat-type	is	a	value	of	no-repeat	(typical),
repeat-x,	or	repeat-y;	and	horizontal	and	vertical	are	values	for	the	position	of	the
background	within	the	list	items	 .

4.	Type	padding-left:	value;,	where	value	is	at	least	the	width	of	the	background	image,	in
order	to	prevent	the	list	item	content	from	overlapping	the	custom	marker.

Tip
Note	that	relative	background	URLs	are	relative	to	the	location	of	the	style	sheet,	not	to	the
location	of	the	webpage	 .	(See	“Setting	the	Background”	in	Chapter	10.)	There	should
be	no	space	between	url	and	the	opening	parenthesis,	and	quotes	around	the	URL	are
optional.

Tip
Unlike	default	markers,	which	appear	outside	the	list	items	by	default,	custom	markers
display	inside	them	because	you	apply	the	marker	background	image	to	the	list	items
themselves	 .	For	comparison	with	default	markers,	see	 	through	 	in	“Creating
Ordered	and	Unordered	Lists.”	That	also	shows	how	I	reduced	the	space	below	the
heading	and	formatted	the	text	in	 	here.

Tip
Apply	a	class	to	one	or	more	li	elements	and	define	a	style	rule	for	it	if	you	want	to	apply
a	custom	marker	only	to	certain	list	items.

Tip
Most	browsers	set	the	default	list	indentation	via	padding-left,	but	older	browsers
(like	Internet	Explorer	prior	to	IE8)	do	it	with	margin-left.	That’s	why	it’s	necessary
to	set	margin-left:	0;	to	achieve	consistent	results	with	padding-left.
Nowadays,	it’s	common	to	not	worry	about	IE7	and	older	(in	most	countries),	but	there’s
no	harm	in	including	margin-left:	0;	anyway.

Tip
Another	way	to	display	custom	markers	is	with	the	list-style-image	property.
Here’s	an	example:	li	{	list-style-image:	url(marker.png);	}.
However,	it	never	quite	lived	up	to	its	promise,	because	browsers	don’t	render	them
consistently,	and	you	have	less	control	over	the	placement	of	image	markers	than	with	the
background	image	method	I	showed.

Choosing	Where	to	Start	List	Numbering
You	might	want	to	start	a	numbered	list	with	something	other	than	1	 .
Click	here	to	view	code	image

...
<body>

<h1	class="hdg">Changing	a	light	bulb	(with	a	few	steps	missing)</h1>

<ol	start="2">
					Unscrew	the	old	bulb.
					<li	value="5">Screw	in	the	new	bulb.
					Plug	in	the	lamp	and	turn	it	on!

</body>
</html>

	In	this	example,	I’ve	omitted	some	steps	but	want	to	maintain	the	original	numbering	of	the	remaining
steps.	So	I	start	the	whole	list	at	2	(with	start="2")	and	then	set	the	value	of	the	second	item	to	5
(with	value="5").	Both	attributes	are	optional	and	don’t	have	to	be	used	together	as	they	are	here.

	Notice	that	not	only	are	the	first	and	second	items	numbered	as	we	specified,	but	the	third	item	(“Plug
in	the	lamp	and	turn	it	on!”)	is	also	affected.	(Though	the	CSS	isn’t	shown,	I	also	styled	the	page	a	bit.

Namely,	I	set	the	body	font	to	Georgia,	and	leveraged	class="hdg"	on	the	h1	 	to	take	advantage	of
the	.hdg	rules	in	figure	 	of	“Creating	Ordered	and	Unordered	Lists.”)

To	specify	the	initial	value	of	an	entire	list’s	numbering	scheme
Within	the	ol	start	tag,	type	start="n",	where	n	represents	the	list’s	initial	value.

To	change	the	numbering	of	a	given	list	item	in	an	ordered	list
In	the	desired	li	item,	type	value="n",	where	n	represents	the	value	for	this	list	item.

Tip
If	you	use	start	or	type,	always	give	it	a	numeric	value	even	if	you	decide	to	have	the
list	display	with	letters	or	Roman	numerals	via	CSS	or	the	type	attribute	(see	“Choosing
Your	Markers”).

Tip
The	value	attribute	overrides	the	start	value.

Tip
When	you	change	a	given	list	item’s	number	with	the	value	attribute,	the	subsequent	list
items	are	also	renumbered	accordingly.

Tip
Using	value	is	handy	to	indicate	that	two	or	more	items	hold	the	same	spot	in	an	ordered
list.	Take,	for	example,	a	list	with	the	top	five	finishers	in	a	road	race.	Normally,	they
would	display	as	1,	2,	3,	4,	5.	But	if	there	were	a	tie	for	second,	by	specifying	the	third	list
item	as	<li	value="2">,	the	list	would	display	as	1,	2,	2,	3,	4.

Tip
Your	list	can	include	more	than	one	li	with	a	value	attribute.

Controlling	Where	Markers	Hang
By	default,	lists	are	indented	from	the	left	side	(of	their	parent).	Your	markers	can	either	sit	outside	the
text	 ,	which	is	the	default,	or	be	flush	with	the	rest	of	the	text	(called	inside)	(and).

	This	demonstrates	how	browsers	render	the	marker	relative	to	wrapped	text	in	a	list	item	by	default.
The	markers	are	outside	the	content.

Click	here	to	view	code	image

ul	{
					list-style-position:	inside;
}

	Setting	list-style-position	to	inside	changes	the	display.

	The	markers	for	the	lines	that	wrap	begin	at	the	left	edge	of	the	list	item,	instead	of	outside	the	content.

To	control	where	markers	hang
1.	In	the	style	sheet	rule	for	the	desired	list	or	list	item,	type	list-style-position:.
2.	Type	inside	to	display	the	markers	flush	with	the	list	item	text	 ,	or	outside	to	display	the
markers	to	the	left	of	the	list	item	text	(the	default).

Tip
Because	outside	is	the	default,	you	don’t	need	to	specify	list-style-position:
outside;	unless	you	want	to	override	a	list-style-position:	inside;	setting
you’d	made	elsewhere.

Tip
You	can	set	list-style-position	to	ul	 ,	ol,	or	li.	The	result	is	the	same
unless	you	target	a	specific	li	(say,	with	a	class),	in	which	case	your	list	could	have	both
inside	and	outside	markers	if	you’d	like.

Tip
If	the	text	within	your	list	items	is	cramped,	as	it	is	in	the	first	bullet	point	in	 	and	 ,
you	can	increase	the	space	between	each	line	of	text	with	line-height.	For	example,
li	{	line-height:	1.3;	}.	Don’t	confuse	this	with	changing	the	space	between
the	list	items	themselves,	which	you	can	do	by	setting	either	margin-top	or	margin-
bottom	on	li.	For	example,	li	{	margin-bottom:	.5em;	}.

Tip
See	 	through	 	in	“Creating	Ordered	and	Unordered	Lists”	for	how	I	reduced	both	the
list	indentation	and	space	below	the	heading,	and	how	I	formatted	the	text.

Tip
The	list-style-position	property	is	inherited.

Setting	All	List-Style	Properties	at	Once
Just	as	CSS	has	shorthand	properties	for	background,	border,	font,	outline,	and	more,	it	has
one	for	the	list-style	features	 .	It	combines	list-style-type,	list-style-position,
and	the	seldom-used	list-style-image	into	one	property.
Click	here	to	view	code	image

ul	{
					list-style:	circle	inside;
}

/*
Use	ol	as	the	selector	to	style	an	unordered	list.
You	may	also	use	li	instead	for	either.
*/

	This	style	rule	is	equivalent	to	setting	the	list-style-type	to	circle	and	list-style-
position	to	inside	on	an	unordered	list—it’s	just	shorter.	If	you	want	to	specify	a	list-style-
image	in	the	shorthand	property,	this	example	could	instead	be	ul	{	list-style:	url(arrow-
right.png)	circle	inside;	}.	But	as	noted	in	“Using	Custom	Markers,”	it’s	better	to	apply	a

background	image	on	li	rather	than	using	list-style-image.

	The	result	is	the	same	as	in	 	in	“Controlling	Where	Markers	Hang,”	but	I’ve	switched	the	markers	to
circles.

To	set	all	the	list-style	properties	at	once
1.	Type	list-style:.
2.	If	desired,	specify	the	type	of	markers	that	should	appear	next	to	the	list	items,	if	any	(as	described
in	“Choosing	Your	Markers”).

3.	If	desired,	specify	whether	markers	should	hang	outside	the	list	paragraphs	or	flush	with	the	text	(as
described	in	“Controlling	Where	Markers	Hang”).

4.	If	desired,	specify	the	custom	image	marker	that	should	be	used	for	list	items	(as	described	in	the
last	tip	of	“Using	Custom	Markers”).

Tip
You	may	specify	any	or	all	of	the	three	list-style	properties,	and	in	any	order.	
shows	two.	Properties	not	explicitly	set	are	returned	to	their	defaults	(disc	for	list-
style-type,	outside	for	list-style-position,	and	none	for	list-
style-image).

Tip
Perhaps	the	most	common	use	of	list-style	is	to	turn	off	markers	quickly	with	list-
style:	none.

Tip
The	list-style	property	is	inherited—just	like	list-style-type,	list-
style-position,	and	list-style-image—which	is	why	you	can	apply	it	to	the
parent	ol	or	ul	(so	each	li	will	use	it)	or	to	li	directly.

Styling	Nested	Lists
You	may	insert	one	type	of	list	in	another;	the	inner	list	is	known	as	a	nested	list.	You	can	do	this	with
ordered	and	unordered	lists	(together	or	independently).	There’s	also	another	kind	of	nested	list;	see
“Creating	Description	Lists”	for	an	example.
Nesting	lists	is	particularly	useful	with	an	outline	structured	as	ordered	lists—where	you	may	want
several	levels	of	items	(through)—or	for	navigation	with	sub-menus	structured	as	unordered	lists	(
	and	 ;	see	the	sidebar	“Using	Nested	Lists	for	Drop-Down	Navigation”	for	more	details).	You	can

style	nested	lists	a	variety	of	ways,	as	the	examples	demonstrate.
Click	here	to	view	code	image

...
<body>
<h1	class="hdg">The	Great	American	Novel</h1>

					Introduction
								
											Boy's	childhood
											Girl's	childhood
								
					
					Development
								
											Boy	meets	Girl
											Boy	and	Girl	fall	in	love	
											Boy	and	Girl	have	fight	
								
					
					Climax
								
											Boy	gives	Girl	ultimatum
															
																		Girl	can't	believe	her	ears
																		Boy	is	indignant	at	Girl's	indignance
																
											
											Girl	tells	Boy	to	get	lost
								
					
					Denouement
					Epilogue

</body>
</html>

	Note	that	each	nested	ol	is	contained	within	its	parent	start	tag		and	end	tag	.	There	are
four	nested	lists	in	total:	one	in	the	Introduction	list	item,	one	in	the	Development	item,	one	in	the	Climax

item,	and	one	inside	the	“Boy	gives	Girl	ultimatum”	item	(which	is	inside	the	Climax	item).

Click	here	to	view	code	image

ol	{
					list-style-type:	upper-roman;
}

ol	ol	{
					list-style-type:	upper-alpha;
}

ol	ol	ol	{
					list-style-type:	decimal;
}

ol	li	{
					font-size:	.875em;
}

li	li	{
					font-size:	1em;	/*	prevent	shrinking
text!	*/
}

	You	can	format	each	level	of	a	nested	ordered	list	separately,	as	shown	(see	the	second	tip	for	another
way).	If	you	use	ems	or	percentages	for	the	font	size	of	the	list	text,	be	sure	to	add	li	li	{	font-
size:	1em;	}	(or	100%	instead	of	1em)	so	that	it	doesn’t	shrink	to	the	point	of	being	illegible	in	the

nested	lists	(see	the	last	tip).

	The	first-level	lists	(ol)	have	capital	Roman	numerals.	The	second-level	lists	(ol	ol)	have	capital
letters.	The	third-level	lists	(ol	ol	ol)	have	Arabic	numerals.

Click	here	to	view	code	image

...
<body>
<nav	role="navigation">
					<ul	class="nav">
								Home
								Products
											<ul	class="subnav">
															Phones
															Accessories
											
								
								Support
											<ul	class="subnav">
															Community	Forum
															Contact	Us
															How-to	Guides
											
								
								About	Us
					<!--	end	.nav	-->
</nav>
...
</body>
</html>

	Here’s	another	example	of	nested	lists.	In	this	case,	a	navigation	menu	(which	has	class="nav")	is
structured	as	an	unordered	list	with	two	nested	unordered	lists	for	sub-navigation	(each	has

class="subnav").	With	a	little	CSS,	you	can	display	the	navigation	horizontally,	hide	the	sub-
navigation	by	default,	and	show	them	based	on	the	visitor’s	interaction	 .

	Both	the	Products	and	Support	list	items	contain	sub-navigation	in	nested	uls,	but	neither	shows	by
default	because	of	the	CSS	I’ve	applied.	In	this	case,	the	Support	sub-navigation	displays	because	I’ve
hovered	over	the	list	item	that	contains	both	the	Support	link	and	its	sub-navigation	nested	list	 .	This
screenshot	also	shows	an	example	of	breadcrumb	navigation	(below	the	black	bar),	marked	up	as	an
ordered	list	to	reflect	where	the	current	page	sits	in	the	site’s	hierarchy.	Each	item	in	the	list	except	the
last	is	linked,	since	the	visitor	is	on	the	page	for	The	Fone	7.0.	The	complete	code	for	this	page	is

available	on	the	book	site.

To	style	nested	lists
1.	For	styling	the	outermost	list,	type	toplevel	{style_rules},	where	toplevel	is	the	list
type	of	the	outermost	list	(for	example,	ol	or	ul)	and	style_rules	are	the	styles	that	should	be
applied.

2.	For	the	second-level	list,	type	toplevel	2ndlevel	{style_rules},	where	toplevel
matches	the	toplevel	in	step	1,	2ndlevel	is	the	list	type	of	the	second-level	list,	and
style_rules	are	the	styles	that	should	be	applied.

3.	For	the	third-level	list,	type	toplevel	2ndlevel	3rdlevel	{style_rules},	where
toplevel	and	2ndlevel	match	the	values	used	in	steps	1	and	2,	3rdlevel	is	the	kind	of	list
used	for	the	third	nested	list,	and	style_rules	are	the	styles	that	should	be	applied.

4.	Continue	in	this	fashion	for	each	nested	list	that	you	wish	to	style.
You	may	include	li	at	the	end	of	each	selector	to	target	the	list	items	directly.	For	instance,	step	3	could
be	toplevel	2ndlevel	3rdlevel	li	{style_rules}.	The	sample	code	 	has	examples	of
both.

Tip
Your	selectors	should	reflect	the	types	of	nested	lists	in	your	document;	that	is,	you	might
need	something	like	ul	ul	ol	(or	ul	ul	ol	li	to	target	the	list	items	directly	in	this
case).

Tip
Alternatively,	you	could	add	a	class	to	each	nested	list	and	style	it	accordingly.	The
method	shown	in	 	allows	you	to	control	the	styling	without	changing	the	HTML.

Tip
Ordered	lists	always	use	Arabic	numerals	(1,	2,	3)	by	default,	regardless	of	their	nesting
position.	Use	list-style-type	to	specify	other	numbering	schemes	(see	“Choosing
Your	Markers”).	In	traditional	writing	terms,	according	to	The	Chicago	Manual	of	Style,
the	correct	nesting	order	for	list	markers	is	I	(that’s	a	Roman	numeral),	A,	1,	a	(and	the	1
and	a	levels	are	repeated	from	then	on).

Tip
By	default,	unordered	lists	use	discs	for	the	first	level,	circles	for	the	first	nested	level,
and	squares	for	the	third	and	subsequent	level	lists.	Again,	use	list-style-type	to
specify	the	type	of	bullets	you	want	(see	“Choosing	Your	Markers”).

Tip
Since	list	items	(li	elements)	can	be	nested	within	other	list	items,	you	have	to	be	a	bit
careful	with	font	sizes	specified	in	relative	values.	If	you	use	something	like	li	{font-
size:	.75em;	},	the	font	size	of	the	outermost	list	item	will	be	75	percent	of	its
parent	element;	so	if	the	parent	is	a	default	16	pixels,	the	outermost	list	item	will	be	12
pixels.	However,	the	font	size	of	the	first	nested	list	item	will	be	75	percent	of	its	parent
(the	first	list	item,	which	is	12	pixels)	and	thus	will	be	only	9	pixels.	Each	level	gets
worse	quickly,	making	the	text	inconsistent	and	hard	to	read.	One	solution	is	to	add	li	li
{font-size:	1em;	}	 	(or	100%	instead	of	1em).	Now	nested	list	items	will
always	be	the	same	size	as	top-level	ones	 .	(Thanks	to	Eric	Meyer,
www.meyerweb.com,	for	the	tip.)

Using	Nested	Lists	for	Drop-Down	Navigation
One	use	for	nested	lists	is	to	structure	drop-down	(or	fly-out)	navigation	menus	 .	You
can	style	the	navigation	with	CSS	so	that	each	sub-navigation	shows	only	when	the	visitor
hovers	over	the	parent	list	item	 	and	hides	again	when	the	visitor	moves	the	pointer
away.
You	can	implement	this	effect	a	few	ways,	but	it	always	involves	leveraging	the	:hover
pseudo-class	as	part	of	the	selector	that	reveals	the	sub-navigation.	Here’s	one	such
approach	to	hide	the	nested	lists	by	default	and	then	reveal	them	when	the	visitor	hovers:

Click	here	to	view	code	image

/*	Default	state	of	sub-navigation	*/
.nav	.subnav	{
				left:	-999em;	/*	moves	subnav	off	screen	*/
				position:	absolute;
				z-index:	1000;
}

/*	State	of	sub-navigation	when	parent	li	hovered	upon	*/
.nav	li:hover	.subnav	{
				left:	auto;	/*	puts	subnav	back	in	natural	spot	*/
}

The	corresponding	HTML	is	shown	in	 .	You’ll	need	more	CSS	than	this	to	implement	the
horizontal	layout,	remove	the	bullets	from	the	list	items,	and	otherwise	adjust	the
presentation	to	meet	your	needs.	The	complete	HTML	and	CSS	for	the	page	shown	in	 	is
available	on	the	book	site	at	www.htmlcssvqs.com/8ed/15/dropdown-nav.	I’ve	also
included	several	comments	in	the	code	to	explain	various	parts.
You	can	use	a	similar	approach	for	a	vertical	navigation	with	fly-out	sub-menus	that
appear	to	the	side.

Creating	Description	Lists
HTML	provides	a	type	of	list	specifically	for	describing	an	association	between	names	(or	terms)	and
values	in	groups.	Dubbed	description	lists	in	HTML5,	they	were	known	as	definition	lists	in	previous
versions	of	HTML.

http://www.meyerweb.com
http://www.htmlcssvqs.com/8ed/15/dropdown-nav

According	to	the	HTML5	specification,	“Name-value	groups	may	be	terms	and	definitions,	metadata
topics	and	values,	questions	and	answers,	or	any	other	groups	of	name-value	data.”	Each	list	is	contained
in	a	dl,	and	each	name-value	group	within	it	has	one	or	more	dt	elements	(the	names	or	terms)	followed
by	one	or	more	dd	elements	(their	values).	 	shows	a	basic	description	list	example.	Aside	from	some
boldfacing	applied	with	a	simple	style	rule	 ,	it	renders	by	default	as	 .
Click	here	to	view	code	image

...
<body>
<h1>List	of	Horror	Movie	Legends</h1>

<dl>
					<dt>Boris	Karloff</dt>
					<dd>Best	known	for	his	role	in	<cite>Frankenstein</cite>	and	related	horror	films,
this	scaremaster's	real	name	was	William	Henry	Pratt.</dd>

					<dt>Christopher	Lee</dt>
					<dd>Lee	took	a	bite	out	of	audiences	as	Dracula	in	multiple	Hammer	horror	classics.
</dd>

					...	[more	scary	legends]	...
</dl>

</body>
</html>

	This	is	the	most	basic	type	of	description	list,	with	one	dt	matched	with	one	dd	in	each	name-value
group.	Each	group	is	separated	by	a	blank	line	merely	for	legibility;	the	space	between	groups	isn’t

required,	doesn’t	change	the	meaning	of	the	content,	and	doesn’t	affect	its	display.
Click	here	to	view	code	image

dt	{
					font-weight:	bold;
}

	You	may	want	to	add	formatting	to	the	terms	in	the	dt	elements	to	help	them	stand	out	 .

	By	default,	the	name	(the	dt)	is	aligned	to	the	left,	and	the	value	(the	dd)	is	indented.	The	names	are
in	bold	thanks	to	the	simple	rule	in	 .	Otherwise	they’d	appear	as	normal	text.

All	the	following	arrangements	are	valid	for	a	group	of	dt	and	dd	elements	within	a	dl:
	A	single	dt	grouped	with	a	single	dd	 .	(Also,	see	Director	and	the	nested	description	list	under
Cast	in	 .)	This	is	the	most	common	occurrence.
	A	single	dt	grouped	with	multiple	dd	elements.	See	Writers	in	 .
	Multiple	dt	elements	grouped	with	a	single	dd	 .	(With	sample	styling	adjustments	shown	in	
and	 .)

Click	here	to	view	code	image

...
<body>

<h1>Defining	words	with	multiple	spellings</h1>

<dl>
					<dt><dfn>bogeyman</dfn>,	n.</dt>
					<dt><dfn>boogeyman</dfn>,	n.</dt>
					<dd>A	mythical	creature	that	lurks	under	the	beds	of	small	children.</dd>

					<dt><dfn	lang="en-gb">aluminium	</dfn>,	n.</dt>
					<dt><dfn>aluminum</dfn>,	n.</dt>
					<dd>...</dd>
</dl>
</body>
</html>

	This	example	includes	multiple	dts	paired	with	a	single	dd	in	each	name-value	group	because	the
defined	terms	have	more	than	one	spelling	but	share	the	same	definition.

Click	here	to	view	code	image

dd	+	dt	{
					margin-top:	1em;
}

	This	will	add	more	space	between	the	name-value	groups	than	they	have	by	default.

	Now	you	can	tell	where	one	group	of	descriptions	stops	and	the	next	starts.	The	rule	in	 	works
because	“aluminium,	n.”	is	contained	in	a	dt	right	after	the	dd	from	the	previous	name-value	group.

Click	here	to	view	code	image

...
<body>

<h1>Credits	for	<cite>Amélie</cite></h1>

<dl>
					<dt>Director</dt>
					<dd>Jean-Pierre	Jeunet</dd>

					<dt>Writers</dt>
					<dd>Guillaume	Laurant	(story,	screenplay)</dd>
					<dd>Jean-Pierre	Jeunet	(story)</dd>

					<dt>Cast</dt>
					<dd>
								<!--	Start	nested	list	-->
								<dl>
											<dt>Audrey	Tautou</dt>
											<dd>Amélie	Poulain</dd>

											<dt>Mathieu	Kassovitz</dt>
											<dd>Nino	Quincampoix</dd>

											...	[rest	of	Cast]	...
								</dl>
								<!--	end	nested	list	-->
					</dd>

					...	[rest	of	Credits]	...
</dl>

</body>
</html>

	Here’s	an	example	of	a	description	list	that	describes	a	film’s	director,	writers,	and	cast,	with	the	cast
member	names	and	their	characters	in	a	nested	description	list.	You	can	style	the	nested	list	differently,	as

desired	 .

	Multiple	dt	elements	grouped	with	multiple	dd	elements.	An	example	of	this	would	be	if
bogeyman/boogeyman	in	 	had	more	than	one	definition.

Use	the	dfn	element	around	the	names	in	the	dts	to	indicate	that	the	list	is	defining	terms,	such	as	in	a
glossary	 .	(See	“Defining	a	Term”	in	Chapter	4	for	more	about	dfn.)
You	may	also	nest	description	lists	 	and	style	them	with	CSS	as	you	please	 .	When	a	dl	is	nested	in
another	one,	it	automatically	indents	another	level	by	default	 	(you	can	also	change	that	with	CSS,	of
course).
Click	here	to	view	code	image

body	{
					font-family:	Verdana,	Geneva,	sans-serif;
}

h1	{
					font-size:	1.75em;
}

dt	{
					font-weight:	bold;
					text-transform:	uppercase;
}

/*
					style	the	dt	of	any	dl
					within	another	dl
*/
dl	dl	dt	{
					text-transform:	none;
}

dd	+	dt	{
					margin-top:	1em;
}

	I	want	to	distinguish	the	terms	in	the	main	list	from	those	nested	within	it,	so	I	style	dt	elements	with
uppercase	text	and	then	return	any	dt	elements	in	a	nested	dl	back	to	normal	(the	text-transform:
none;	declaration).	However,	note	that	all	terms	display	as	bold	 	because	the	declaration	in	the	first

rule	applies	to	all	dt	elements,	and	I	didn’t	turn	that	off	in	the	nested	list.

	When	a	dl	is	nested	in	another	one,	it	automatically	indents	another	level	by	default.	With	the	styles
from	 	applied,	the	first-level	dt	elements	are	in	uppercase	letters,	while	the	ones	in	the	nested	list	are

normal.	All	are	bold.

To	create	description	lists
1.	Type	<dl>.
2.	Type	<dt>.
3.	Type	the	word	or	short	phrase	that	will	be	described	or	defined,	including	any	additional	semantic
elements	(such	as	dfn).

4.	Type	</dt>	to	complete	the	name	or	term	in	the	name-value	group.
5.	Repeat	steps	2	through	4	as	necessary	if	the	group	has	more	than	one	name	or	term	 .
6.	Type	<dd>.
7.	Type	the	description	of	the	name	or	term	that	was	entered	in	step	3.
8.	Type	</dd>	to	complete	the	description	(the	value)	in	the	name-value	group.
9.	Repeat	steps	6	through	8	as	necessary	if	the	group	has	more	than	one	value	to	define	(see	the
Writers	group	in).

10.	Repeat	steps	2	through	9	for	each	group	of	terms	and	descriptions.
11.	Type	</dl>	to	complete	the	description	list.

Tip
By	default,	browsers	generally	indent	descriptions	(values)	on	a	new	line	below	their
terms	(names)	 .	You	can	change	the	indentation	by	defining	your	own	margin-left
value	on	dd	elements.	For	example,	dd	{	margin-left:	0;	}	makes	them	display
flush	left.

Tip
You’ll	notice	from	the	examples	(,	 ,	and)	that	you	don’t	have	to—or	more	to	the
point,	shouldn’t—mark	up	single	paragraphs	of	text	as	p	elements	within	the	dd	elements.
However,	if	a	single	description	is	more	than	one	paragraph,	do	mark	it	up	with	p
elements	inside	one	dd	instead	of	splitting	up	each	paragraph	(without	p	elements)	into	its
own	dd.

16.	Forms

In	This	Chapter
Improvements	to	Forms	in	HTML5
Creating	Forms
Processing	Forms
Organizing	the	Form	Elements
Creating	Text	Boxes
Labeling	Form	Parts
Creating	Password	Boxes
Creating	Email,	Search,	Telephone,	and	URL	Boxes
Creating	Radio	Buttons
Creating	Checkboxes
Creating	Text	Areas
Creating	Select	Boxes
Allowing	Visitors	to	Upload	Files
Creating	Hidden	Fields
Creating	a	Submit	Button
Disabling	Form	Elements
Styling	Forms	Based	on	Their	State

The	HTML	you	have	learned	so	far	has	helped	you	communicate	your	ideas	to	your	visitors.	In	this
chapter,	you’ll	learn	how	to	create	forms	that	enable	your	visitors	to	communicate	with	you.
There	are	two	basic	parts	of	a	form:	the	collection	of	controls,	labels,	and	buttons	that	the	visitor	views
on	a	page	and	hopefully	fills	out	or	activates;	and	the	processing	script	that	takes	that	information	and
converts	it	into	a	format	that	you	can	read	or	tally.	This	chapter	focuses	on	the	first	part—building	forms.
I’ve	provided	a	couple	of	sample	processing	scripts	on	the	companion	website,	at
www.htmlcssvqs.com/8ed/form-scripts.
As	you’ll	see,	constructing	a	form	is	straightforward	and	similar	to	creating	any	other	part	of	a	webpage.
Some	of	the	form	controls	include	text	boxes,	radio	buttons,	checkboxes,	drop-down	menus,	and	larger
text	areas.	If	you’ve	ever	purchased	items	online,	been	on	a	social	network,	or	composed	web-based
emails,	the	form	elements	you’ll	learn	about	here	will	look	familiar.	I’ll	also	show	you	how	to	style	forms
with	CSS.

Improvements	to	Forms	in	HTML5
If	you’re	new	to	forms,	you	might	want	to	revisit	this	section	after	getting	familiar	with	the	rest	of	the
chapter.
One	of	HTML5’s	most	helpful	features	is	the	improvement	to	forms.	In	the	past,	we	often	had	to	spend
extra	time	writing	JavaScript	to	enhance	a	form’s	behavior—for	example,	to	require	a	visitor	to	fill	out	a
field	before	submitting	a	form.	HTML5	makes	this	a	breeze	by	adding	new	form	elements,	input	types,	and

http://www.htmlcssvqs.com/8ed/form-scripts

attributes,	as	well	as	built-in	validation	of	required	fields,	email	addresses,	URLs,	and	custom	patterns.
These	additions	don’t	just	help	us	as	designers	and	developers;	they	improve	the	experience	for	your
site’s	visitors,	too.
Better	still,	older	browsers	that	don’t	support	the	new	features	won’t	choke.	They’ll	simply	ignore
attributes	they	don’t	understand,	and	the	form	fields	will	otherwise	work	as	expected.	And	if	you	want
them	to	mimic	the	HTML5	behavior,	you	can	use	JavaScript	to	bridge	the	gap,	just	like	in	the	old	days
(see	the	last	tip).
Tables	16.1	and	16.2	summarize	most	of	the	features	HTML5	has	brought	to	forms	and	tell	you	where	you
can	learn	more	about	them.	As	you’ll	see,	we’ll	focus	our	efforts	on	covering	those	features	that	are	used
most	widely.

TABLE	16.1	Inputs	and	Elements

TABLE	16.2	Attributes

Tip
The	browser	support	information	at	caniuse.com	is	typically	more	current	than	that	at
www.wufoo.com/html5,	but	the	latter	is	still	a	great	resource	for	information	about
HTML5	forms.

Tip
It’s	possible—but	not	certain—that	some	of	the	form	elements	dubbed	as	at	risk	for
HTML5	could	be	included	in	the	final	version	of	5.1,	which	is	currently	targeted	for	2016.

Tip
One	JavaScript	solution	for	providing	many	HTML5	form	features	to	older	browsers	is
Ryan	Seddon’s	H5F	(https://github.com/ryanseddon/H5F).

http://www.wufoo.com/html5
https://github.com/ryanseddon/H5F

Creating	Forms
Each	form	begins	with	the	form	start	tag	and	ends	with	the	form	end	tag.	In	between	are	all	the	labels,
controls,	and	buttons	that	make	up	the	form	 .	(Note:	I’ll	use	the	words	control	and	field
interchangeably.)	Each	of	those	controls	has	a	name	attribute	that	will	serve	to	identify	the	data	once	the
form	is	submitted.	Visitors	submit	a	form	via	a	submit	button	that	you	provide—when	they	trigger	it,	the
data	they’ve	entered	in	the	form	is	sent	to	the	script	on	the	server	that	handles	the	data.
Click	here	to	view	code	image

...
<body>
<h1>Create	a	New	Account</h1>
<form	method="post"	action="show-data.php">
					<!--	Various	form	elements	-->
					<fieldset>
								<h2	class="hdr-account">Account</h2>

								<div	class="fields">
											<p	class="row">
															<label	for="first-name">First	Name:</label>
															<input	type="text"	id="first-name"	name="first_name"	class="field-large"
/>
											</p>
											<p	class="row">
															<label	for="last-name">Last	Name:</label>
															<input	type="text"	id="last-name"	name="last_name"	class="field-large"	/>
											</p>
											...
								</div>
					</fieldset>
					...	more	form	elements	...

					<!--	Submit	Button	-->
					<input	type="submit"	value="Create	Account"	class="btn"	/>
</form>
</body>
</html>

	Every	form	includes	the	form	element	itself,	the	other	form	elements	inside	that	where	the	visitor
enters	information,	and	a	submit	button	that	sends	the	collected	information	to	the	server.

Now	that	you	know	the	big	picture	of	a	form,	let’s	look	a	little	closer.	The	form	start	tag	allows	a	few
attributes,	the	most	important	of	which	are	action	and	method	 .
You	set	the	action	attribute	to	the	URL	of	the	script	that	will	process	your	form	when	a	visitor	submits
it.	For	example,	action="save-info.php".
The	method	attribute	may	have	a	value	of	either	get	or	post.	You	will	use	post	most	of	the	time,	but
each	method	has	a	purpose,	so	it	helps	to	understand	them;	please	see	the	sidebar	for	more	details.

To	create	a	form
1.	Type	<form	method="formmethod",	where	formmethod	is	either	get	or	post.
2.	Type	action="script.url">,	where	script.url	is	the	location	on	the	server	of	the
script	that	will	run	when	the	form	is	submitted.

3.	Create	the	form’s	contents	(including	a	submit	button),	as	described	in	the	sections	starting	with

“Creating	Text	Boxes.”
4.	Type	</form>	to	complete	the	form.

Tip
You	can	use	CSS	to	lay	out	your	form	elements	 .	The	form	example	that	I	demonstrate
throughout	this	chapter	is	shown	in	 .

Click	here	to	view	code	image

fieldset	{
					background-color:	#f1f1f1;
					border:	none;
					border-radius:	2px;
					margin-bottom:	12px;
					overflow:	hidden;
					padding:	0	.625em;	/*	10px	*/
}

.fields	{
					background-color:	#fff;
					border:	1px	solid	#eaeaea;
					margin:	.75em;	/*	12px	*/
					padding:	.75em;
}

.fields	.row	{
					margin:	0.5em	0;
}

label	{
					cursor:	pointer;
					display:	inline-block;
					padding:	3px	6px;
					text-align:	right;
					width:	150px;
					vertical-align:	top;
}

input,	select,	button	{
					font-size:	inherit;
}

/*	Various	form	field	widths	*/
.field-small	{
					width:	75px;
}

.field-medium	{
					width:	150px;
}

.field-large	{
					width:	250px;
}

	Here	is	a	portion	of	the	style	sheet	used	to	format	the	form.	You	can	find	the	full	style	sheet	on
the	book’s	website.

	Here	is	the	complete	form	discussed	in	this	chapter.

Tip
The	complete	HTML	and	CSS	for	the	code	in	 	and	 	is	available	at	the	book’s	website
(www.htmlcssvqs.com/8ed/16).	You’ll	also	see	parts	of	the	code	throughout	this	chapter.
Additionally,	the	companion	site	includes	the	show-data.php	script	that	the	form
references	in	its	action	attribute.	Feel	free	to	use	it	to	test	your	form	as	you	go	through
this	chapter.	Keep	in	mind	that	it	won’t	work	unless	PHP	is	installed	on	your	server	(see
“Processing	Forms”).

Tip
You	can	disable	a	form’s	HTML5	validation	features	(shown	later	in	the	chapter)	by
applying	the	novalidate	attribute	to	the	form	element.	For	example,	<form
method="post"	action="show-data.php"	novalidate>.

The	Differences	Between	method="get"	and	method="post"
As	noted,	the	form	element’s	method	attribute	may	be	to	set	to	either	get	or	post.
If	your	form	uses	method="get",	your	form	data	will	show	in	your	browser’s	address
bar	after	the	form	is	submitted.	Generally	speaking,	use	get	whenever	you	want	to	get
information	from	the	server	after	the	form	is	submitted.	For	instance,	most	search	engines
use	it	in	their	search	forms—you	type	in	“Kermit	meets	Yoda,”	submit	the	form,	and	the
search	engine	gets	results.	Because	the	data	appears	in	the	URL,	you	can	save	a	search
query	or	send	it	to	a	friend.
If	your	form	uses	method="post",	the	information	in	your	form	is	not	shown	in	the
URL	after	the	form	is	submitted,	making	it	more	secure.	Also,	you	can	send	more	data	to
the	server	with	post	than	with	get.	Generally	speaking,	post	is	for	putting—or
posting,	as	it’s	called—data	on	your	server	rather	than	getting	data	from	it.	So	if	you’re
saving,	adding,	and	deleting	data	in	a	database,	post	is	the	correct	choice.	For	example,
e-commerce	sites	use	post	to	save	the	credit	card,	mailing	address,	and	other	information
you	enter.
As	a	(very)	general	rule,	when	in	doubt,	use	post	so	the	data	isn’t	exposed	in	the	URL.

Processing	Forms
A	form	gathers	the	information	from	your	visitor,	and	the	script	on	your	server	processes	that	information.
The	script	can	log	the	information	to	a	database	on	the	server,	send	the	information	via	email,	or	perform
any	number	of	other	functions.
There	are	several	languages	you	can	use	to	write	your	form	processing	scripts.	PHP	is	a	popular	choice
by	those	just	getting	started	because	it’s	simple	to	use	for	many	common	tasks.	Plus,	there	are	oodles	of
books,	online	tutorials,	and	forums	to	help	you	learn	it.	Explaining	PHP	is	beyond	the	scope	of	this	book,
but	I	have	provided	two	basic	sample	scripts	at	www.htmlcssvqs.com/8ed/form-scripts	 .

http://www.htmlcssvqs.com/8ed/16
http://www.htmlcssvqs.com/8ed/form-scripts

	One	of	the	scripts	on	the	companion	website	is	show-data.php.	As	you	can	see	in	part	here,	it
displays	the	name	and	values	for	each	form	field	after	you	fill	it	out	and	submit	it.	The	other	file

(email-data.php)	sends	the	submitted	form	data	to	an	email	address	you	specify	in	the	script.

There	are	many	alternatives	to	PHP,	such	as	Django	(a	framework	that	uses	Python),	Ruby	on	Rails,
ASP.NET,	JSP	(JavaServer	Pages),	and	more.

Form	validation
To	validate	a	form	means	to	check	that	the	visitor	has	completed	each	necessary	field	and	that	the
submitted	data	is	in	the	format	you	expect	(for	example,	an	email	address	format	for	an	email	field).	As
noted	earlier,	some	form	elements	have	built-in	validation	features.	Some	sites	use	JavaScript	to	perform
validation	as	well	(tutorials	and	scripts	are	available	online).	These	are	not	replacements	for	server-side
validation,	because	older	browsers	or	browsers	with	JavaScript	disabled	will	not	perform	client-side
validation.	There	are	also	security	concerns	to	consider	as	part	of	proper	server-side	validation	(see	the
“Form	Security”	sidebar).	In	short,	server-side	validation	is	one	crucial	task	you	should	always	perform
with	your	processing	script.

Organizing	the	Form	Elements
You	can	use	a	fieldset	element	to	group	related	elements	and	make	the	form	easier	to	follow.	The
easier	it	is	for	your	visitors	to	understand	the	form,	the	more	likely	they	are	to	fill	it	out	correctly.	You	can
also	use	the	legend	element	to	give	each	fieldset	a	caption	that	describes	the	purpose	of	each	grouping,
or	in	some	cases,	you	can	provide	those	descriptions	with	an	h1–h6	heading	 .	The	legend	element	is
particularly	important	for	any	group	of	radio	buttons	(see	“Creating	Radio	Buttons”),	which	often
wouldn’t	have	an	obvious	context	for	visitors	otherwise.
Click	here	to	view	code	image

...
<h1>Create	a	New	Account</h1>
<form	method="post"	action="show-data.php">
					<fieldset>
								<h2	class="hdr-account">Account</h2>
								...	Account	fields	...
					</fieldset>

					<fieldset>
								<h2	class="hdr-address">Address</h2>
								...	Address	fields	...
					</fieldset>

					<fieldset>
								<h2	class="hdr-public-profile">Public	Profile</h2>
								...	Public	Profile	fields	...

								<div	class="row">
											<fieldset	class="radios">
														<legend>Gender:</legend>
														<input	type="radio"	id="gender-male"	name="gender"	value="male"	/>
														<label	for="gender-male">Male</label>

														<input	type="radio"	id="gender-female"	name="gender"	value="female"	/>
														<label	for="gender-female">Female</label>
											</fieldset>
								</div>
					</fieldset>

					<fieldset>
								<h2	class="hdr-emails">Emails</h2>
								...	Emails	fields	...
					</fieldset>

					<input	type="submit"	value="Create	Account"	class="btn"	/>
</form>
...

	I	organized	each	of	the	four	form	sections	in	its	own	fieldset,	and	I	grouped	the	Gender	radio
buttons	in	a	fieldset	within	the	Public	Profile	area.	Notice	that	I	added	a	class	named	radios	to

style	that	nested	fieldset	differently,	and	I	included	a	legend	element	to	describe	the	radio	buttons.
(I	removed	a	couple	of	divs	to	keep	this	example	simple;	see	“Creating	Radio	Buttons”	for	the	full	code

of	this	nested	fieldset.)

Form	Security
You	need	to	be	very	careful	with	regard	to	security	when	you’re	receiving	form	data	on
your	server.	Never	assume	anything	about	data.	Just	because	you	build	safeguards	into	your
form	doesn’t	mean	fiends	won’t	create	their	own	form	that	calls	your	script	to	send	out
millions	of	spam	emails.	They	may	also	submit	nefarious	text	that	can	compromise	data	on
your	server.	Securing	forms	is	an	advanced	topic,	but	I’ve	provided	some	links	at
www.htmlcssvqs.com/8ed/form-security.

http://www.htmlcssvqs.com/8ed/form-security

Server-side	vs.	Client-side
PHP	(and	others	like	it)	is	a	server-side	language,	which	means	it	runs	on	the	computer	that
serves	your	webpages	(aptly	called	a	server),	not	on	your	visitor’s	computer	where	the
page	is	viewed.	Your	script	must	be	uploaded	to	a	server	to	work;	typically	it’s	the	same
one	that	hosts	your	webpages,	images,	and	so	on	(see	Chapter	21	regarding	finding	a
webhost	and	transferring	files).	In	addition,	that	server	must	have	PHP	installed	for	the
script	to	be	interpreted.	The	vast	majority	of	web	hosts	install	PHP	for	you,	so	you	should
have	no	difficulty	finding	one	that	supports	it.	Server-side	languages	are	needed	for	many
functions	of	a	professional	website,	such	as	storing	data	and	sending	emails.
As	you’ve	seen,	client-side	languages,	like	HTML	and	CSS,	work	inside	the	browser.
JavaScript	is	another	client-side	language	(you	can	also	use	it	server-side).	It	can	do	many
tasks	without	interacting	with	the	server	at	all.	For	example,	you	can	use	JavaScript	to
check	that	all	form	data	has	been	entered	before	a	form	is	submitted,	among	a	multitude	of
other	tasks	and	behaviors	unrelated	to	forms.

Browsers	make	it	clear	which	form	controls	belong	to	a	fieldset	even	when	you	don’t	style	the	page	with
CSS	 .	But	of	course,	you	can	style	fieldset	and	legend	(as	well	as	headings)	yourself	to	make
your	form	more	appealing	and	easier	to	use	(and).

	With	no	CSS	applied	to	the	page,	you	can	see	that	browsers	apply	a	thin	border	around	each	fieldset
by	default,	including	the	one	for	Gender	nested	in	the	Public	Profile	fieldset.

Click	here	to	view	code	image

fieldset	{
				background-color:	#f1f1f1;
				border:	none;
				border-radius:	2px;
				margin-bottom:	12px;
				overflow:	hidden;
				padding:	0	.625em;
}

.radios	{	/*	nested	fieldset	*/
				background-color:	transparent;
				position:	relative;
				margin-bottom:	0;
}

h2	{
				background-color:	#dedede;
				border-bottom:	1px	solid	#d4d4d4;
				border-top:	1px	solid	#d4d4d4;
				border-radius:	5px;
				box-shadow:	3px	3px	3px	#ccc;
				color:	#fff;
				font-size:	1.1em;
				margin:	12px;
				padding:	0.3em	1em;
				text-shadow:	#9FBEB9	1px	1px	1px;
				text-transform:	uppercase;
}

.hdr-account	{	background-color:	#0b5586;	}

.hdr-address	{	background-color:	#4494c9;	}

.hdr-public-profile	{	background-color:	#377d87;	}

.hdr-emails	{	background-color:	#717f88;	}

	I	gave	all	the	fieldset	elements	a	margin,	a	background	color,	and	padding,	along	with	special
background	colors	for	each	heading.

	With	a	little	CSS	applied,	each	major	group	of	form	fields	is	clearly	distinguished.

To	organize	the	form	elements
1.	Below	the	form	start	tag	but	above	any	form	elements	that	you	wish	to	have	contained	in	the	first
group,	type	<fieldset>.

2.	If	desired,	type	<legend>.	(If	you	include	a	legend,	it	must	be	the	first	element	inside	the
fieldset.)

3.	Type	the	text	for	the	legend.

4.	Type	</legend>	to	complete	the	legend.
5.	If	you	didn’t	include	a	legend,	create	a	heading	(h1–h6)	that	identifies	the	group	of	form
controls	in	the	fieldset.	(See	the	sidebar	“The	legend	Element,	Headings,	Screen	Readers,	and
Styling.”)

6.	Create	the	form	elements	that	belong	in	the	first	group.	For	more	information,	see	the	sections
beginning	with	“Creating	Text	Boxes.”

7.	Type	</fieldset>	to	complete	the	first	group	of	form	elements.
8.	Repeat	steps	1	through	7	for	each	group	of	form	elements.

The	legend	Element,	Headings,	Screen	Readers,	and	Styling
The	legend	element	can	help	make	your	forms	more	accessible.	Screen	readers	may
announce	the	legend	text	for	each	form	field	associated	with	it,	giving	it	additional
context.	This	behavior	varies	by	screen	reader	and	browser,	as	well	as	by	mode	(screen
reader	modes	allow	users	to	listen	to	and	navigate	webpages	a	variety	of	ways).
In	many	cases,	the	legend	is	read	just	as	you	would	hope.	In	others,	the	text	is	not	read,	and
in	others	still,	a	screen	reader	may	go	overboard	by	announcing	the	legend	multiple	times
for	each	control.	Secondarily,	some	browsers	limit	how	you	can	style	legend	or	make	it
more	difficult	to	do	so.
Considering	all	these	factors,	using	an	h1–h6	heading	element	as	I	did	to	identify	some
(but	not	all)	fieldsets	 	can	be	a	sensible	alternative	to	using	legend.	JAWS—the
screen	reader	with	the	largest	user	base—reads	the	heading	in	conjunction	with	related
form	fields	as	if	it	were	a	legend	element,	so	the	accessibility	benefit	remains	for	its
users.	And	all	screen	readers	allow	users	to	navigate	a	page	via	headings.	As	a	bonus,	you
can	style	headings	easily.
Not	all	forms	are	alike,	so	you	can	vary	your	approach.	Regardless,	I	encourage	you	to	you
always	use	fieldset	and	legend	for	radio	buttons.

Tip
Organizing	your	form	into	fieldset	elements	is	optional,	as	is	using	a	legend	(though
that	does	require	a	fieldset).	But	I	highly	recommend	you	use	fieldset	and
legend	to	group	and	identify	related	radio	buttons	at	the	least.

Tip
There	are	some	limits	to	how	much	the	legend	element	can	be	styled	in	browsers,
particularly	regarding	positioning.	Search	online	for	help	if	you	get	stuck,	because	there
are	some	workarounds.

Creating	Text	Boxes
Text	boxes	can	contain	one	line	of	freeform	text—that	is,	anything	that	the	visitor	wants	to	type—and	are
typically	used	for	gathering	names,	addresses,	and	the	like.

Each	text	box	is	represented	by	an	input	tag	with	type="text"	assigned.	Several	other	attributes	are
available	in	addition	to	type,	the	most	important	of	which	is	name	 .	Server-side	scripts	use	the	name
you	assign	to	retrieve	the	value	a	visitor	enters	in	the	text	box	or	that	you	prepopulate	with	the	value
attribute.	In	fact,	name	and	value	are	essential	to	other	form	field	types,	too,	as	you’ll	see	throughout
the	chapter.
Click	here	to	view	code	image

...
<form	method="post"	action="show-data.php">
<fieldset>
					<h2	class="account">Account</h2>
					<div	class="fields">
								<p	class="row">
											<label	for="first-name">First	Name:</label>
											<input	type="text"	id="first-name"	name="first_name"	class="field-large"
required	aria-required="true"	/>
								</p>
								<p	class="row">
											<label	for="last-name">Last	Name:</label>
											<input	type="text"	id="last-name"	name="last_name"	class="field-large"	/>
								</p>
								<p	class="row">
											<label	for="email">Email:</label>
											<input	type="email"	id="email"	name="email"	placeholder="yourname@example.com"
class="field-large"	/>
								</p>
								...	more	fields	...
					</div>
...

	While	it’s	essential	to	set	the	name	attribute	for	each	text	box,	you	only	have	to	set	the	value
attribute	when	you	want	to	add	a	default	value	for	a	text	box.	The	third	text	input	uses	the	placeholder

attribute	 ,	and	the	first	uses	the	required	attribute	 .	Note	that	I	also	set	aria-
required="true"	(see	the	tips).	This	example	also	demonstrates	that	name	can	be	different	than

for	and	id,	or	the	same	as	them	(see	the	sidebar	in	“Labeling	Form	Parts”).

To	create	a	text	box
1.	If	desired,	type	the	label	that	will	identify	the	text	box	to	your	visitor.	For	example,	<label
for="idlabel">Last	Name:</label>,	where	idlabel	matches	the	label	in	step	4.	(I
explain	this	more	in	the	next	section,	“Labeling	Form	Parts.”)

2.	Type	<input	type="text".
3.	Type	name="dataname",	where	dataname	is	the	text	that	will	identify	the	input	data	to	the
server	(and	your	script).

Separating	Your	Form	Elements
There	are	many	ways	to	separate	your	form	elements	from	each	other.	In	these	examples,
we	are	using	the	p	element	in	most	cases	and	divs	in	others	(like	when	nesting	a	p)	 .	In
each	case,	I	apply	class="row"	as	a	styling	hook.	Alternatively,	some	choose	to
structure	form	elements	in	an	ol	or	ul.	Generally,	lists	can	be	quite	helpful	to	screen
reader	users.	But	some	screen	readers	can	be	a	little	verbose	when	announcing	forms	that
are	in	a	list,	which	could	distract	some	users.	So	I’ve	opted	for	ps	and	divs	instead.

4.	If	you	created	a	label	in	step	1,	type	id="idlabel",	where	idlabel	is	the	same	text
assigned	to	the	for	attribute	in	step	1.	This	associates	the	label	element	with	the	text	box
explicitly.	Although	it’s	not	required,	many	(perhaps	most)	coders	make	the	for	and	the	id	the
same	as	the	name	(shows	both	approaches).

5.	If	desired,	type	value="default",	where	default	is	the	data	that	will	initially	be	shown	in
the	field	and	that	will	be	sent	to	the	server	if	the	visitor	doesn’t	type	something	else.

6.	If	desired,	type	placeholder="hinttext",	where	hinttext	is	the	data	that	will	initially
be	shown	in	the	field	as	a	hint	to	the	user	of	what	to	enter	 .	The	text	will	disappear	if	the	input	has
focus	or	if	the	user	types	in	the	field	(browsers	do	one	or	the	other).

	Placeholders	are	a	great	way	to	give	users	a	hint	for	filling	out	a	text	box,	like	this	email	address	field.
The	placeholder	attribute	will	put	text	in	a	lighter	color	inside	your	text	box.	When	the	user	begins	to
input	text	in	the	field,	the	placeholder	text	will	disappear.	(One	exception:	IE10	hides	the	placeholder	text
when	the	field	gains	focus,	not	when	a	user	starts	typing.)	The	text	will	come	back	if	the	user	leaves	the
field	without	entering	any	information.	This	is	another	feature	found	only	in	HTML5,	and	older	browsers

will	simply	ignore	it.

7.	If	desired,	type	required	or	required="required"	(either	is	fine	in	HTML5)	to	ensure
that	the	form	will	not	submit	unless	the	field	has	a	value	 .

	If	the	user	submits	a	form	before	completing	a	field	that	has	the	required	attribute,	the	browser
displays	a	message	like	the	one	shown.	The	visual	treatment	varies	in	supporting	browsers.	This	feature
is	specific	to	HTML5,	so	older	browsers	will	ignore	required	(the	form	will	still	work,	though).	As
noted	in	“Processing	Forms,”	you	can	use	JavaScript	to	validate	the	field	in	older	browsers,	and	you

should	always	validate	your	form	on	the	server	regardless	of	the	browser	used.

8.	If	desired,	type	autofocus	or	autofocus="autofocus"	(either	is	fine	in	HTML5)	 .	If
it’s	the	first	form	control	to	have	this	attribute,	the	input	element	will	have	focus	when	the	page
loads.

Click	here	to	view	code	image

<input	type="text"	id="first-name"	name="first_name"	class="field-large"	required	aria-
required="true"	autofocus	/>

	When	your	page	loads,	it’s	helpful	to	have	a	field	focused	automatically	so	the	user	can	begin	typing
right	away.	Use	the	autofocus	attribute	to	achieve	this.

9.	If	desired,	define	the	size	of	the	box	on	your	form	by	typing	size="n",	where	n	is	the	desired
width	of	the	box,	measured	in	characters.	You	can	also	use	CSS	to	set	the	width	on	an	input	box	 .

	Text	boxes	can	be	different	sizes	to	accommodate	different	types	of	fields.	In	our	example,	we’re	using
CSS	to	set	the	width	with	classes.

10.	If	desired,	type	maxlength="n",	where	n	is	the	maximum	number	of	characters	that	can	be
entered	in	the	box.

11.	Finish	the	text	box	by	typing	a	final	>	or	/>.	(See	the	last	tip.)

Tip
Although	labels	are	optional,	I	strongly	recommend	using	them.	They	are	crucial	to
making	your	forms	accessible	and	easy	to	use.

Tip
If	your	visitor	skips	a	field	and	you	haven’t	set	the	default	value	with	the	value	attribute,
the	name	attribute	is	sent	to	the	server	with	an	undefined,	empty	value	when	the	visitor
submits	the	form.

Tip
Don’t	confuse	the	placeholder	attribute	(and)	with	the	value	attribute.	It’s	true
that	they	both	can	cause	text	to	appear	in	a	text	box	by	default.	However,	the	text	you	assign
to	placeholder	is	merely	a	hint	to	users	of	what	to	enter	in	the	field,	and—unlike
value—is	not	sent	to	the	server.	In	this	vein,	if	a	text	box	has	both	a	placeholder	and
a	non-empty	value,	the	latter	will	show	in	the	box.

Tip
By	default,	most	browsers	store	text	you	enter	so	they	can	save	you	time	when	filling	out
similar	fields	later	 .	You	can	disable	this	by	including	autocomplete="off"	on	the
input.	This	is	useful	if	a	field	asks	for	sensitive	information	such	as	a	credit	card
number.	If	you	apply	it	to	the	form	element,	it	applies	to	every	field	in	the	form.	For
example,	<form	method="post"	action="process.php"
autocomplete="off">.

	When	I	type	“Ma,”	Firefox	suggests	text	from	previous	form	entries	that	contain	the	same
sequence	of	letters.	I	can	choose	from	the	list	or	continue	typing.	If	the	entire	form	or	this	specific

input	had	autocomplete="off"	set,	the	suggestions	wouldn’t	appear	and	the	browser
wouldn’t	store	what	I	type.

Tip
When	we	say	a	text	box	“gains	focus”	or	“has	focus,”	we	mean	the	cursor	is	in	the	box,
ready	for	the	visitor	to	type	a	value.

Tip
The	default	for	size	is	20.	However,	visitors	can	type	up	to	the	limit	imposed	by	the
maxlength	attribute.	Still,	for	larger,	multi-line	entries,	it’s	better	to	use	a	textarea
element	(see	“Creating	Text	Areas”).

Tip
As	it	does	with	other	self-closing	elements	(like	img),	HTML5	allows	you	to	finish	an
input	with	either	>	or	/>.	So,	<input	type="text"	name="city">	and
<input	type="text"	name="city"	/>	are	equally	valid.	Whichever	way	you
go,	I	recommend	you	be	consistent.

Labeling	Form	Parts
A	label	is	the	text	that	describes	the	purpose	of	a	form	field.	For	example,	you	might	have	“First	Name”
next	to	the	text	field	where	the	visitor	should	type	his	or	her	first	name.	You	mark	up	these	text	labels	with
—surprise—the	label	element.	You	may	have	noticed	them	in	the	earlier	examples.
The	label	element	has	a	special	attribute,	for.	When	for	has	the	same	value	as	a	form	field’s	id,	the
label	and	field	are	associated	explicitly	 .	This	improves	the	usability	and	accessibility	of	your	forms.
For	instance,	if	a	visitor	interacts	with	a	label	(such	as	clicking	it	with	a	mouse),	its	corresponding	form
field	gains	focus	 .	This	association	also	allows	screen	readers	to	announce	text	labels	in	conjunction
with	their	respective	fields.	Imagine	how	critical	that	is	to	a	vision-impaired	visitor	who	might	not	know
what	the	form	fields	are	for	otherwise.	For	those	reasons,	I	strongly	recommend	you	include	the	for
attribute	in	your	labels.
Click	here	to	view	code	image

...

<fieldset>
					<h2	class="account">Account</h2>
					<div	class="fields">
								<p	class="row">
											<label	for="first-name">First	Name:</label>
											<input	type="text"	id="first-name"	name="first_name"	class="field-large"	/>
								</p>
								<p	class="row">
											<label	for="last-name">Last	Name:</label>
											<input	type="text"	id="last-name"	name="last_name"	class="field-large"	/>
								</p>
								...	more	fields	...
					</div>
</fieldset>

...

	The	for	attribute	of	each	label	matches	the	id	attribute	of	its	corresponding	form	element,
associating	the	label	and	field	explicitly.

	If	a	visitor	interacts	with	a	text	box	label,	the	cursor	is	placed	in	the	box,	ready	for	typing.	Meanwhile,
labels	for	checkboxes	and	radio	buttons	allow	the	user	to	click	the	label	as	well	as	the	form	control	to

modify	the	state.	Here,	a	checkbox	is	selected.

To	formally	label	form	parts
1.	Type	<label.
2.	Type	for="idlabel">,	where	idlabel	matches	the	value	of	the	id	attribute	in	the
corresponding	form	element.

3.	Type	the	label	text	that	describes	the	form	field.
4.	Type	</label>.
5.	When	you	create	the	form	element,	be	sure	to	include	an	id	that	matches	the	for	attribute
specified	in	step	2.

Tip
You	can	format	your	labels	with	CSS.	The	example	in	 	allows	each	label	to	align	nicely
next	to	its	field	 .

Click	here	to	view	code	image

/*	Labels	that	precede	form	fields	*/
label	{
					cursor:	pointer;
					display:	inline-block;
					padding:	3px	6px;
					text-align:	right;
					width:	150px;
					vertical-align:	top;
}

/*	Labels	after	checkboxes	*/
.checkboxes	label	{
					text-align:	left;
					width:	475px;
}

	Styling	labels	is	a	great	way	to	make	your	form	easier	to	use	and	more	appealing	to	visitors.
The	cursor:	pointer;	style	displays	a	hand	instead	of	the	default	arrow	when	a	user	points
the	cursor	at	a	label—a	good	visual	cue	that	the	label	is	actionable.	The	vertical-align:

top;	style	aligns	the	label	relative	to	the	form	field	next	to	it.

Tip
The	for,	id,	and	name	attributes	can	have	any	values	as	long	as	they	don’t	have	spaces.
See	the	sidebar	on	this	page	for	related	information.

Tip
You	may	also	place	a	form	field	inside	a	label	with	the	label	text.	For	example,
<label>First	Name:	<input	type="text"	name="first_name"	/>
</label>.	(Note	that	for	and	id	aren’t	necessary	in	these	cases.)	However,	it’s	more
common	to	separate	the	label	and	field	 ,	in	part	because	it	gives	you	more	control
over	styling.

Tip
The	placeholder	attribute	is	sometimes	incorrectly	used	as	a	replacement	for	a
label.	Be	sure	to	use	the	placeholder	as	a	hint	only.

Naming	Convention	for	id,	for,	and	name	Attributes
As	noted	earlier,	it’s	common	but	not	required	for	coders	to	make	the	for,	id,	and	name
attributes	identical.	(Radio	buttons	and	checkboxes	are	the	exception,	because	the	name	is
shared	by	a	group	of	inputs	but	the	id	needs	to	be	unique	for	each	input.)	I’ve	done	this
throughout	the	chapter	for	single-word	values.	For	example,	for="email",
id="email",	and	name="email".
For	multi-word	values,	I’ve	separated	each	word	with	a	hyphen	(“-”)	in	for	and	id	and
with	an	underscore	(“_”)	in	name	 .	For	example,	for="first-name",
id="first-name",	and	name="first_name".	I	made	name	different	for	these	to
demonstrate	that	it	can	be	different,	and	because	it’s	common	to	use	underscores	in	the
multi-word	names	passed	to	form	processing	scripts.
Regardless	of	your	approach,	remember	that	for	and	id	have	to	be	the	same.

Creating	Password	Boxes
The	only	difference	between	a	password	box	and	a	text	box	is	that	whatever	is	typed	in	the	former	is
hidden	by	bullets	or	asterisks	(and).
Click	here	to	view	code	image

...
<p	class="row">
					<label	for="password">Password:</label>
					<input	type="password"	id="password"	name="password"	/>
</p>
<p	class="row">
					<label	for="password2">Re-enter	Password:</label>
					<input	type="password"	id="password2"	name="password2"	/>
</p>
...

	Create	a	password	box	by	using	type="password"	instead	of	type="text".

	When	the	visitor	enters	a	password	in	a	form,	the	password	is	hidden	with	bullets	or	asterisks.	But	the
real	value	(what	the	visitor	typed)	is	passed	to	the	server	when	the	form	is	submitted.	The	information	is

not	encrypted	when	it	is	sent.

To	create	a	password	box
1.	Create	a	label	to	identify	the	password	box	to	your	visitors,	as	described	in	“Labeling	Form
Parts.”

2.	Type	<input	type="password".
3.	Type	id="idlabel",	where	idlabel	is	the	same	as	the	label’s	for	attribute	value	in	step
1.

4.	Type	name="dataname",	where	dataname	is	the	text	that	will	identify	the	input	data	to	the
server.

5.	If	desired,	define	the	form	box’s	size	by	typing	size="n",	where	n	is	the	width	of	the	box,
measured	in	characters.

6.	If	desired,	type	maxlength="n",	where	n	is	the	maximum	character	count.
7.	If	desired,	type	required	or	required="required".	(See	“Creating	Text	Boxes.”)
8.	If	desired,	type	autofocus	or	autofocus="autofocus".	(See	“Creating	Text	Boxes.”)
9.	Finish	the	password	box	by	typing	a	final	>	or	/>.	(See	the	last	tip	in	“Creating	Text	Boxes.”)

Tip
Even	if	nothing	is	entered	in	the	password	box,	the	name	is	still	sent	to	the	server	(with	an
undefined	value).

Tip
A	password	box	only	keeps	onlookers	from	seeing	a	user’s	password	as	it’s	typed.	To
really	protect	passwords,	use	a	secure	server	(https://).

Creating	Email,	Search,	Telephone,	and	URL	Boxes
The	email,	telephone,	and	URL	input	types	 	are	among	the	new	features	in	HTML5.	They	look	exactly
like	text	boxes	but	have	helpful	features	for	validating	the	text	your	visitors	enter	(through).	In	the
past,	we’ve	had	to	rely	on	JavaScript	to	create	this	functionality	in	browsers.
Click	here	to	view	code	image

...
<p	class="row">
					<label	for="email">Email:</label>
					<input	type="email"	id="email"	name="email"	class="field-large"	/>
</p>
<div	class="row">
					<label	for="website">Website	URL:</label>
					<input	type="url"	id="website"	name="website"	class="field-large"
placeholder="http://www.example.com"	/>
					<p	class="instructions">Have	a	site	or	a	blog?	Put	the	address	here,	beginning	with
<kbd>http://</kbd>	or	<kbd>https://</kbd>.</p>
</div>
<p	class="row">
					<label	for="phone">Phone:</label>
					<input	type="tel"	id="phone"	name="phone"	class="field-large"	placeholder="xxx-xxx-
xxxx"	pattern="\d{3}-\d{3}-\d{4}"	/>
</p>
...

	The	appropriate	type	attribute	value	specifies	the	email,	URL,	and	telephone	boxes.	The	pattern
attribute	is	for	custom	validation.	It	uses	what	are	known	as	regular	expressions	to	restrict	the	content	that

a	user	puts	into	the	box.	In	the	case	of	the	telephone	input	shown	here,	the	pattern	says,	“Only
accept	entries	in	this	format:	three	digits,	a	dash,	three	more	digits,	another	dash,	and	then	four	digits”

(like	many	phone	numbers).	Don’t	worry	about	the	unusual	syntax	of	regular	expressions;	at
http://html5pattern.com	you	can	find	common	ones	that	you	can	copy	and	paste	into	your	own	pattern

attributes.

	When	the	visitor	submits	the	form	in	a	modern	browser,	it	checks	to	make	sure	that	the	Email	field	text
(if	any)	is	in	the	valid	email	address	format.	If	the	format	is	invalid,	a	message	displays	and	the	cursor	is

placed	in	the	field	so	the	visitor	can	change	the	text.

http://html5pattern.com

	When	the	visitor	submits	the	form,	the	browser	checks	to	make	sure	that	the	Website	URL	field	text	(if
any)	is	in	the	valid	URL	format.	Notice	that	www.wikipedia.org	is	not	a	valid	form	URL,	because	a	URL
must	begin	with	http://	or	https://.	This	is	a	good	place	to	use	a	placeholder	to	help	the	visitor.	For
good	measure,	I	also	mention	the	accepted	format	in	the	instructional	text	below	the	field,	as	you	can	see

unobstructed	in	 .

http://www.wikipedia.org

	When	the	visitor	submits	the	form,	the	browser	checks	to	make	sure	that	the	Phone	field	text	(if	any)
matches	the	format	specified	in	the	pattern	attribute.	Telephone	fields	are	also	handy	in	Safari	on	iOS
(iPhones	and	iPads),	because	it	will	bring	up	the	number	keyboard	instead	of	the	normal	QWERTY

format.

Search	boxes	are	also	new	in	HTML5	 .	They	are	just	like	text	boxes	except	that	some	browsers	make
them	appear	like	the	default	search	boxes	on	their	operating	system	 .
Click	here	to	view	code	image

<form	method="get"	action="search-results.php"	role="search">
					<label	for="search">Search:</label>
					<input	type="search"	id="search"	name="search"	size="30"	placeholder="e.g.,	a	book
or	magazine"	/>
					<input	type="submit"	value="Find	It!"	/>
</form>

	Search	boxes	are	perfect	candidates	for	a	placeholder.	Also,	note	the	use	of	method="get"
rather	than	method="post"	on	the	form.	This	is	customary	for	search	fields	(whether	created	via

type="search"	or	type="text").	See	the	tip	regarding	role="search".

	Browsers	such	as	Chrome	(shown	in	the	top	two	images)	and	Safari	on	OS	X	and	Mobile	Safari	on
iOS	make	the	search	box	look	like	the	rounded	search	boxes	on	their	operating	systems.	When	you	start

typing	in	it,	an	“x”	button	that	clears	the	field	appears	at	the	right.	In	other	browsers,	it	looks	like	a	normal
text	box	(shown	in	the	bottom	image).	(See	the	tips	for	more	on	styling	options.)

Browser	support	for	all	of	these	is	pretty	strong	(see	the	first	tip).	And	non-supporting	browsers	will	treat
the	fields	as	normal	text	boxes,	so	they’ll	still	work,	just	without	the	extra	features.	This	means	it’s	safe	to
use	these	input	types	today.

To	create	email,	search,	telephone,	and	URL	boxes
1.	Create	a	label	to	identify	the	input	box	to	your	visitors,	as	described	in	“Labeling	Form	Parts.”
2.	Type	<input	type="email"	for	an	email	box,	<input	type="search"	for	a	search
box,	<input	type="tel"	for	a	telephone	number	box,	or	<input	type="url"	for	a	URL
box.

3.	Type	id="idlabel",	where	idlabel	is	the	same	as	the	label’s	for	attribute	value	in	step
1.

4.	Type	name="dataname",	where	dataname	is	the	text	that	will	identify	the	input	data	to	the
server.

5.	If	desired,	type	value="default",	where	default	is	the	data	that	will	initially	be	shown	in
the	field	and	that	will	be	sent	to	the	server	if	the	visitor	doesn’t	type	something	else.

6.	If	desired,	type	placeholder="hinttext",	where	hinttext	is	the	data	that	will	initially
be	shown	in	the	field	as	a	hint	to	the	user	of	what	to	enter.	(See	“Creating	Text	Boxes.”)

7.	If	desired,	type	required	or	required="required".	(See	“Creating	Text	Boxes.”)
8.	If	desired,	type	autofocus	or	autofocus="autofocus".	(See	“Creating	Text	Boxes.”)
9.	If	desired,	define	the	size	of	the	box	on	your	form	by	typing	size="n",	where	n	is	the	desired
width	of	the	box,	measured	in	characters.	You	can	also	use	CSS	to	set	the	width	on	an	input	box	(see
“Creating	Text	Boxes”).

10.	If	desired,	type	maxlength="n",	where	n	is	the	maximum	number	of	characters	that	can	be
entered	in	the	box.

11.	Finish	the	text	box	by	typing	a	final	>	or	/>	(either	is	fine	in	HTML5).

Tip
At	the	time	of	this	writing,	Chrome,	Firefox,	IE10,	and	Opera	10+	provide	the	automatic
validation	features	of	email	and	URL	boxes	and	the	pattern	attribute.	Keep	in	mind	that
these	features	are	conveniences	for	both	you	and	your	visitors	only;	server-side	validation
is	still	strongly	recommended	(see	“Processing	Forms”).	This	is	true	even	if	you’ve	used	a
JavaScript	solution	like	the	aforementioned	H5F	(https://github.com/ryanseddon/H5F)	to
provide	these	HTML5	features	to	older	browsers.

Tip
An	empty	email,	telephone,	or	URL	box	will	pass	validation	unless	you	add	the
required	attribute.	However,	if	you	add	required	to	a	telephone	box	but	not	a
suitable	value	for	the	pattern	attribute,	the	browser	will	require	the	field	to	have
content	but	will	allow	any	text	(numbers,	letters,	and	characters).

Tip
Email	boxes	also	allow	the	multiple	attribute,	which	specifies	that	more	than	one	email
address	may	be	entered	as	long	as	a	comma	separates	each	one.

Tip
Browsers	don’t	check	whether	an	entered	email	address	or	URL	exists	in	the	wild,	just	that
it	follows	the	proper	format.

Tip
These	input	types	also	support	the	autocomplete	attribute.	See	the	tips	in	“Creating
Text	Boxes”	for	more	information.

https://github.com/ryanseddon/H5F

Tip
By	default,	styling	options	are	limited	for	search	boxes	in	browsers	like	Chrome,	Safari,
and	Mobile	Safari	 .	Use	the	proprietary	-webkit-appearance:	none;
declaration	to	override	this	and	gain	more	CSS	control.	For	example,
input[type="search"]	{	-webkit-appearance:	none;	}.	More
information	(including	Firefox	support)	is	available	at	http://css-
tricks.com/almanac/properties/a/appearance/,	but	please	remember	that	the	appearance
property	is	not	an	official	part	of	CSS,	so	browser	behavior	can	vary.

Tip
If	you	look	closely	at	 ,	you’ll	see	that	I	included	the	ARIA	landmark	role
role="search"	on	the	form.	This	improves	accessibility	by	letting	screen	readers
announce	when	a	search	area	exists	in	a	webpage.	If	your	form	includes	more	controls	than
just	for	search,	put	the	ones	related	to	search	in	a	fieldset	or	div	and	apply
role="search"	to	that	rather	than	to	the	form	element	itself.	See	Chapter	3	for	more
about	ARIA	landmark	roles.

Tip
WebKit	browsers	support	two	attributes	that	are	not	part	of	HTML5:	autosave	and
results,	which	apply	additional	behavior	and	visual	elements	to	search	boxes.	You	can
learn	more	about	them	at	www.wufoo.com/html5/types/5-search.html.

Tip
If	you	include	a	pattern	attribute,	be	sure	to	clearly	state	to	visitors	what	pattern	you
want	them	to	follow.	If	you’re	not	careful,	visitors	might	give	up	and	never	submit	the
form.

Tip
Regular	expressions	are	outside	the	scope	of	this	book,	but	there	are	many	online	resources
(search	for	“regex	tutorial”),	and	you	can	find	useful	patterns	at	http://html5pattern.com.

Creating	Radio	Buttons
In	the	“old”	days,	car	radios	had	big	black	plastic	buttons—push	one	to	listen	to	WFCR;	push	another	for
WRNX.	You	could	never	push	two	buttons	at	once.	Radio	buttons	on	forms	work	the	same	way.	Create	a
radio	button	by	setting	type="radio"	on	an	input	(and).
Click	here	to	view	code	image

http://css-tricks.com/almanac/properties/a/appearance/
http://www.wufoo.com/html5/types/5-search.html
http://html5pattern.com

...

<fieldset	class="radios">
					<legend>Gender:</legend>

					<p	class="row">
								<input	type="radio"	id="gender-male"	name="gender"	value="male"	/>
								<label	for="gender-male">Male</label>
					</p>
					<p	class="row">
								<input	type="radio"	id="gender-female"	name="gender"	value="female"	/>
								<label	for="gender-female">Female</label>
					</p>
</fieldset>

...

	The	name	attribute	must	be	the	same	on	all	radio	buttons	in	a	given	set	so	that	only	one	can	be
selected	at	a	time.	The	value	attribute	is	crucial,	since	the	visitor	has	no	way	of	typing	a	value	for	a

radio	button.
Click	here	to	view	code	image

.radios	{
					background-color:	transparent;
					position:	relative;
					margin-bottom:	0;
}

.radios	.row	{
					margin:	0	0	0	150px;
}

.radios	legend	{
					left:	0;
					padding:	0	6px;
					position:	absolute;
					text-align:	right;
					top:	2px;
					width:	148px;
}

.radios	label	{
					padding-left:	2px;
					margin-right:	5px;
					vertical-align:	middle;
					width:	auto;
}

	I	positioned	the	legend	absolutely	within	the	context	of	the	.radios	div,	which	is	set	to
position:	relative	(position	works	better	than	margin	for	legends).	Giving	the	elements

with	the	.row	class	a	large	margin-left	moves	them	to	the	right	of	the	Gender	legend.	The
vertical-align:	middle;	setting	on	the	label	elements	helps	the	label	text	align	vertically

with	the	radio	buttons	to	their	left.

To	create	radio	buttons
1.	If	desired,	type	the	introductory	text	for	your	radio	buttons.	You	might	use	something	like
<p>Select	one	of	the	following:</p>.

2.	Type	<input	type="radio".
3.	Type	name="radioset",	where	radioset	identifies	the	data	sent	to	the	server	and	also	links
the	radio	buttons	together,	ensuring	that	only	one	per	set	can	be	selected.

4.	Type	id="idlabel",	where	idlabel	matches	the	for	attribute	value	of	the	label	you’ll
create	in	step	8.	Unlike	the	name	value,	which	must	be	the	same	for	all	radio	buttons	in	a	set,	the
id	for	each	radio	button	on	the	page	must	be	unique.

5.	Type	value="data",	where	data	is	the	text	that	will	be	sent	to	the	server	if	the	radio	button	is
selected,	either	by	you	or	by	the	visitor	 .

	Because	the	labels	(Male	and	Female)	are	label	elements,	interacting	with	one	will	select	the
corresponding	radio	button.

6.	If	desired,	type	checked	or	checked="checked"	(HTML5	allows	either)	to	make	the	radio
button	active	by	default	when	the	page	is	loaded.	You	can	do	this	to	only	one	radio	button	in	the	set.

7.	Type	the	final	>	or	/>	(either	is	fine	in	HTML5).
8.	Type	<label	for="idlabel">radio	label</label>	where	idlabel	matches	the	id
value	in	your	radio	button	from	step	4,	and	radio	label	identifies	the	radio	button	to	the	visitor.
This	is	often	the	same	as	value,	but	it	doesn’t	have	to	be.

9.	Repeat	steps	2	through	8	for	each	radio	button	in	the	set.

Tip
I	recommend	nesting	each	group	of	radio	buttons	in	a	fieldset	and	describing	it	with	a
legend	 .	See	“Organizing	the	Form	Elements”	for	more	details.

Creating	Checkboxes
Whereas	radio	buttons	can	accept	only	one	answer	per	set,	a	visitor	can	select	as	many	checkboxes	in	a
set	as	they	like.	Like	radio	buttons,	all	checkboxes	in	a	set	have	the	same	name	attribute	 .
Click	here	to	view	code	image

<div	class="fields	checkboxes">
					<p	class="row">
								<input	type="checkbox"	id="email-ok-msg-from-users"	name="email_signup[]"
value="user-emails"	/>
								<label	for="email-ok-msg-from-users">It	is	okay	to	email	me	with	messages	from
other	users.</label>
					</p>
					<p	class="row">
								<input	type="checkbox"	id="email-ok-occasional-updates"	name="email_signup[]"
value="occasional-updates"	/>
								<label	for="email-ok-occasional-updates">It	is	okay	to	email	me	with	occasional
promotions	about	our	other	products.</label>
					</p>
</div>

	Notice	that	the	label	text	(not	highlighted)	does	not	need	to	match	the	value	attribute.	That’s	because
the	label	text	identifies	the	checkboxes	to	the	visitor	in	the	browser,	whereas	the	value	is	part	of	the
data	sent	to	the	server-side	script.	The	empty	brackets	in	the	name	are	for	PHP	(see	the	tip).	I	created	a

.checkboxes	class	to	limit	label	styling	to	groups	of	checkboxes	 .
Click	here	to	view	code	image

.checkboxes	label	{
					text-align:	left;
					width:	475px;
}

	For	checkboxes,	it	is	often	the	case	that	you	need	to	style	the	label	differently,	since	by	convention	it
comes	after	the	checkbox	input	itself	 .

	The	visitor	can	select	as	many	boxes	as	they	wish.	Each	corresponding	value	will	be	sent	to	the
server-side	script,	along	with	the	name	of	the	checkbox	set.

To	create	checkboxes
1.	If	desired,	type	the	introductory	text	(something	like	<p>Select	one	or	more	of	the
following:</p>)	for	your	checkboxes.

2.	Type	<input	type="checkbox".

3.	Type	name="boxset",	where	boxset	identifies	the	data	sent	to	the	server	and	also	represents
the	checkboxes	as	a	group.	(Use	the	same	name	for	all.)

4.	Type	id="idlabel",	where	idlabel	matches	the	for	attribute	value	of	the	label	you’ll
create	in	step	8.

5.	Type	value="data",	where	data	is	the	text	that	will	be	sent	to	the	server	if	the	checkbox	is
marked	(either	by	the	visitor,	or	by	you	as	described	in).

6.	If	desired,	type	checked	or	checked="checked"	(either	is	fine)	to	make	the	checkbox
selected	by	default	when	the	page	opens.	You	(or	the	visitor)	may	select	as	many	checkboxes	as
desired.

7.	Type	>	or	/>	to	complete	the	checkbox.
8.	Type	<label	for="idlabel">checkbox	label</label>,	where	idlabel	matches
the	id	value	in	your	checkbox	element	from	step	4,	and	checkbox	label	identifies	the	checkbox
to	the	visitor.

9.	Repeat	steps	2	through	8	for	each	checkbox	in	the	set.

Tip
If	you	use	PHP	to	process	your	form,	you	can	automatically	create	an	array	(named
$_POST['boxset'])	that	contains	the	checkbox	values	by	using
name="boxset[]"	in	the	HTML,	where	boxset	represents	the	data	sent	to	the	script.
For	the	example	in	 	the	PHP	would	be	$_POST['email_signup'].

Creating	Text	Areas
If	you	want	to	give	visitors	room	to	write	questions	or	comments,	use	text	areas	 .
Click	here	to	view	code	image

<label	for="bio">Bio:</label>
<textarea	id="bio"	name="bio"	cols="40"	rows="5"	class="field-large"></textarea>

	The	rows	and	cols	attributes	control	the	respective	height	and	width	of	the	text	area	unless	CSS
overrides	one	 	or	both	settings.	Even	if	you	do	set	the	dimensions	in	CSS,	rows	and	cols	are	helpful

to	include	in	the	off	chance	that	a	user	visits	your	page	with	CSS	turned	off	in	their	browser.
Click	here	to	view	code	image

textarea	{
					font:	inherit;
					padding:	2px;
}

.field-large	{
					width:	250px;
}

	The	font	properties	do	not	always	get	inherited	by	a	text	area	by	default,	so	you	must	explicitly	set
font:	inherit;	for	the	element.	If	desired,	you	can	dictate	the	width	of	a	text	area	with	the	same

class	(.field-large	in	this	case)	you	use	for	other	inputs,	such	as	text	and	URL	boxes.	In	the	absence
of	a	CSS	height	property,	the	text	area’s	height	 	is	determined	by	the	rows	attribute	in	the	HTML	

.

	Visitors	can	enter	up	to	32,700	characters	in	a	text	area	unless	you	limit	the	number	with	the
maxlength	attribute.	Scroll	bars	will	appear	inside	the	text	area	when	necessary	(not	shown).	Visitors
can	change	the	size	of	a	text	area	by	dragging	the	slanted	lines	in	the	lower-right	corner.	You	can	prevent

them	from	doing	that	by	setting	textarea	{	resize:	none;	}.

To	create	text	areas
1.	Create	a	label	to	identify	the	text	area	to	your	visitors,	as	explained	in	“Labeling	Form	Parts.”
2.	Type	<textarea.
3.	Type	id="idlabel",	where	idlabel	is	the	same	as	the	label’s	for	attribute	value	in	step
1.

4.	Type	name="dataname",	where	dataname	is	the	text	that	will	identify	the	text	area	data	to
the	server	(and	your	script).

5.	If	desired,	type	maxlength="n",	where	n	is	the	maximum	number	of	characters	that	can	be
entered	in	the	box.

6.	If	desired,	type	cols="n",	where	n	is	roughly	the	number	of	characters	visible	per	line	(the	text
area’s	width).

7.	If	desired,	type	rows="n",	where	n	is	the	number	of	visible	lines	of	text	(the	text	area’s	height).
8.	Type	>.
9.	Type	the	default	text,	if	any,	for	the	text	area.	(This	displays	in	the	text	area.)
10.	Type	</textarea>	to	complete	the	text	area.

Tip
Include	text	between	the	start	and	end	textarea	tags	if	you’d	like	to	prepopulate	a	text
area	with	a	value	(there	is	not	a	value	attribute).	As	usual,	include	the	placeholder
attribute	to	define	placeholder	text.

Tip
The	maxlength	attribute	is	new	to	text	areas	in	HTML5,	so	its	behavior	varies	across
browsers	(www.wufoo.com/html5/attributes/03-maxlength.html).	Older	browsers	ignore
it.

Tip
You	have	more	control	over	the	size	of	a	text	area	with	CSS.

Creating	Select	Boxes
Select	boxes	are	perfect	for	offering	your	visitors	a	choice	from	a	given	set	of	options	 .	They	are	most
often	rendered	as	drop-down	lists	 .	If	you	give	the	user	the	option	to	select	multiple	answers,	the	select
box	will	render	as	a	box	of	items	with	a	scroll	bar.
Click	here	to	view	code	image

<label	for="state">State:</label>
<select	id="state"	name="state">
				<option	value="AL">Alabama</option>
				<option	value="AK">Alaska</option>
				...
</select>

	Select	boxes	are	made	up	of	two	HTML	elements:	select	and	option.	You	set	the	name	attribute
in	the	select	element,	and	you	set	a	value	attribute	in	each	of	the	option	elements.	You	can	style

select	 	and	option	elements,	with	some	limitations.
Click	here	to	view	code	image

select	{
					font-size:	inherit;
}

	This	CSS	rule	makes	the	menu	text	the	same	size	as	its	parent;	it	may	otherwise	be	noticeably	smaller
by	default.	You	also	can	adjust	the	width,	the	color,	and	other	properties,	but	different	browsers

display	drop-down	lists	slightly	differently.

http://www.wufoo.com/html5/attributes/03-maxlength.html

	The	default	selection	is	either	the	first	option	in	the	menu	(as	shown)	or	the	one	you’ve	set	as
selected	in	the	HTML.	(Note	that	a	visitor	will	not	be	able	to	avoid	making	a	selection	in	a	menu

unless	you	include	the	size	attribute.)

To	create	select	boxes
1.	Create	a	label	to	describe	your	menu,	as	explained	in	“Labeling	Form	Parts.”
2.	Type	<select.
3.	Type	id="idlabel",	where	idlabel	is	the	same	as	the	label’s	for	attribute	value	in	step
1.

4.	Type	name="dataname",	where	dataname	will	identify	the	data	collected	from	the	menu
when	it	is	sent	to	the	server.

5.	If	desired,	type	size="n",	where	n	represents	the	height	(in	lines)	of	the	selectbox.
6.	If	desired,	type	multiple	or	multiple="multiple"	(HTML5	accepts	either)	to	allow	your
visitor	to	select	more	than	one	menu	option	(with	the	Control	or	Command	key).

7.	Type	>.
8.	Type	<option.
9.	Type	value="optiondata",	where	optiondata	is	the	data	that	will	be	sent	to	the	server	if
the	option	is	selected.	(Note:	If	you	omit	value,	the	text	you	type	in	step	12	is	the	option’s	value.)

10.	If	desired,	type	selected	or	selected="selected"	(HTML5	accepts	either)	to	specify
that	the	option	be	selected	by	default.

11.	Type	>.
12.	Type	the	option	text	as	you	wish	it	to	appear	in	the	menu.
13.	Type	</option>.
14.	Repeat	steps	8	through	13	for	each	option.
15.	Type	</select>.

If	you	have	a	particularly	large	menu	with	many	options,	you	may	want	to	group	the	options	into
categories	(and).
Click	here	to	view	code	image

<label	for="referral">Where	did	you	find	out	about	us?</label>
<select	id="referral"	name="referral">
					<optgroup	label="Online">
								<option	value="social_network">Social	Network</option>
								<option	value="search_engine">Search	Engine</option>
					</optgroup>
					<optgroup	label="Offline">
								<option	value="postcard">Postcard</option>
								<option	value="word_of_mouth">Word	of	Mouth</option>
					</optgroup>
</select>

	Each	sub-menu	has	a	title—specified	in	the	label	attribute	of	the	optgroup	start	tag—and	a	series
of	options	(defined	with	option	elements	and	regular	text).

	Browsers	typically	indent	each	option	within	an	optgroup	to	distinguish	them	from	the
optgroup	label	attribute	text.

To	group	select	box	options
1.	Create	a	select	box	as	described	in	“To	create	select	boxes.”
2.	Before	the	first	option	element	(see	step	8	of	“To	create	select	boxes”)	in	the	first	group	that	you
wish	to	place	together	in	a	sub-menu,	type	<optgroup.

3.	Type	label="submenutitle">,	where	submenutitle	is	the	heading	for	the	sub-menu.
4.	After	the	last	option	element	in	the	group,	type	</optgroup>.
5.	Repeat	steps	2	through	4	for	each	sub-menu.

Tip
If	you	add	the	size	attribute,	the	select	box	appears	more	like	a	list,	and	there	is	no
automatically	selected	option	 	(unless	you	use	selected).

	Because	the	size	attribute	is	set,	the	menu	displays	as	a	scrollable	list	and	no	option	is
selected	by	default.	The	code	in	this	example	is	<select	id="state"	name="state"

size="3">,	making	the	menu	three	lines	high.

Tip
If	size	is	bigger	than	the	number	of	options,	visitors	can	deselect	all	values	by	clicking	in
the	empty	space.

Tip
The	option	element	allows	a	label	attribute	for	specifying	the	text	that	should	display
in	the	menu	instead	of	the	text	between	the	option	tags	(see	step	12	in	“To	create	select
boxes”).	However,	Firefox	doesn’t	support	it,	so	it’s	best	to	avoid	it.

Allowing	Visitors	to	Upload	Files
Sometimes	you	might	want	your	users	to	upload	a	file,	such	as	a	photograph	or	a	résumé,	to	your	server	
.

Click	here	to	view	code	image

<form	method="post"	action="show-data.php"	enctype="multipart/form-data">
					...
					<label	for="picture">Picture:</label>
					<input	type="file"	id="picture"	name="picture"	/>
					<p	class="instructions">Maximum	size	of	700k.	JPG,	GIF	or	PNG.</p>
					...
</form>

	To	allow	visitors	to	upload	files,	you	must	set	the	proper	enctype	attribute	and	create	the	input
type="file"	element.	Although	it’s	not	used	here,	include	the	multiple	attribute	on	the	input	to
allow	uploading	multiple	files.	This	is	new	in	HTML5	and	is	supported	widely	across	browsers	except

for	mobile	browsers	and	IE	(only	IE10	supports	it),	which	ignore	it.

To	allow	visitors	to	upload	files
1.	When	you	begin	your	form,	type	<form	method="post"	enctype=
"multipart/form-data".	The	enctype	attribute	ensures	that	the	file	is	uploaded	in	the
proper	format.

2.	Type	action="upload.url">,	where	upload.url	is	the	URL	of	the	script	that	processes
incoming	files.

3.	Create	the	label	for	the	file	upload	area	so	your	visitors	know	what	to	upload	(see	“Labeling
Form	Parts”).

4.	Type	<input	type="file"	to	create	a	file	upload	box	and	a	Browse	button	 .

	The	file	upload	area	provides	a	way	for	the	user	to	select	a	file	on	their	system.	Browsers	create	the
Browse	button	automatically	for	a	type="file"	input	element.	Chrome	and	Safari	don’t	show	a

box,	just	a	button.	Browsers	don’t	allow	you	to	style	this	type	of	input	like	they	do	for	many	form
elements.

5.	Type	id="idlabel",	where	idlabel	is	the	same	value	as	the	label’s	for	attribute	value	in
step	3.

6.	Type	name="dataname",	where	dataname	identifies	the	file	or	files	being	uploaded.
7.	If	desired,	type	size="n",	where	n	is	the	width	of	the	field	in	which	the	visitor	will	enter	the
path	and	file	name.

8.	If	desired,	type	multiple	or	multiple="multiple"	(HTML5	accepts	either)	to	allow
visitors	to	upload	more	than	one	file	(see	caption	in).

9.	Type	the	final	>	or	/>.
10.	Complete	the	form	as	usual,	including	the	submit	button	and	</form>	end	tag.

Tip
You	can’t	use	the	get	method	for	forms	that	allow	uploading.

Handling	File	Uploads
You’ll	need	a	special	script	to	handle	uploads.	Search	online	for	“file	upload	script.”
Also,	your	web	server	may	need	to	be	properly	configured	to	store	files	before	it	can
accept	them.	Contact	your	web	host	for	help	as	needed.

Creating	Hidden	Fields
Hidden	fields	are	used	to	store	data	in	the	form	without	showing	it	to	the	visitor	(and).	You	can
think	of	them	as	invisible	text	boxes.	They	are	often	used	by	processing	scripts	to	store	information
gathered	from	an	earlier	form	so	that	it	can	be	combined	with	the	present	form’s	data	 .
Click	here	to	view	code	image

<form	method="post"	action="your-script.php">
					<input	type="hidden"	name="step"	value="6"	/>

					...	other	form	fields	...

					<input	type="submit"	value="Submit	Form"	/>
</form>

	Visitors	can’t	see	this	input,	but	when	they	submit	the	form,	the	step	name	with	a	value	of	6	is	passed
to	the	server	along	with	the	form	data	gathered	from	the	visitor	in	other	fields.

Click	here	to	view	code	image

<form	method="post"	action="your-script.php">
					<input	type="hidden"	name="email"	value="<?=	$email	?>"	/>

					...	other	form	fields	...

					<input	type="submit"	value="Submit	Form"	/>
</form>

	When	you	create	a	hidden	field,	you	can	use	the	variables	from	your	script	to	set	the	value	of	the	field
to	what	the	visitor	originally	entered	in	a	previous	form.	(This	example	uses	PHP	syntax.)

To	create	hidden	fields
1.	Type	<input	type="hidden".
2.	Type	name="dataname",	where	dataname	identifies	the	information	to	be	submitted	to	the
server.

3.	Type	value="data",	where	data	is	the	information	itself	that	is	to	be	submitted.	It	is	often	a
variable	from	the	form	processing	script	 .

4.	Type	the	final	>	or	/>	(HTML5	allows	either	one).

Tip
It	doesn’t	matter	where	the	hidden	fields	are	located	in	your	form	markup,	because	they
won’t	be	visible	in	the	browser.

Tip
Don’t	put	sensitive	information	like	a	password	or	credit	card	number	in	a	hidden	field.
Even	though	it	won’t	show	in	your	webpage,	visitors	can	see	it	if	they	view	your	HTML
source	code	(see	“The	Inspiration	of	Others”	in	Chapter	2).

Tip
There	are	two	ways	to	create	a	visible	form	element	with	a	value	that	visitors	cannot
change.	One	is	with	the	disabled	attribute	(see	“Disabling	Form	Elements”).	The	other
is	with	the	readonly	attribute.	Unlike	a	disabled	field,	a	field	with	readonly	can
have	focus,	and	visitors	can	select	and	copy—but	not	change—the	text	inside	it.	It	applies
only	to	text	inputs	and	text	areas.	For	example,	<input	type="text"
id="coupon"	name="coupon"	value="FREE"	readonly	/>.	You	also	can
specify	the	attribute	as	readonly="readonly"	(the	result	is	the	same).

When	to	Use	a	Hidden	Field?
Here	is	one	case	when	hidden	fields	can	be	handy.	Imagine	you	have	a	form	and	want	to	be
able	to	give	your	visitors	a	chance	to	review	what	they’ve	entered	before	they	submit	it.
Your	processing	script	can	show	them	the	submitted	data	and	at	the	same	time	create	a
form	with	hidden	fields	containing	the	same	data.	If	the	visitor	wants	to	edit	the	data,	they
simply	go	back.	But	if	they	want	to	submit	the	data,	the	hidden	fields	will	already	be	filled
out,	saving	them	the	task	of	entering	the	data	again.

Creating	a	Submit	Button
None	of	the	information	that	your	visitors	enter	will	be	any	good	to	you	unless	they	send	it	to	the	server.
You	should	always	create	a	submit	button	for	your	forms	so	that	the	visitor	can	deliver	the	information	to
you.	Submit	buttons	may	be	text	(through),	an	image	(and),	or	a	combination	of	both	(and	
).

Click	here	to	view	code	image

<input	type="submit"	value="Create	Profile"	class="btn"	/>

	If	you	leave	out	the	name	attribute,	the	name-value	pair	for	the	submit	button	will	not	be	passed	to	the
script.	Since	you	usually	don’t	need	this	information,	that’s	a	good	thing.

Click	here	to	view	code	image

.btn	{
					background-color:	#da820a;
					border:	none;
					border-radius:	4px;
					box-shadow:	2px	2px	2px	#333;
					color:	#fff;
					mmargin:	12px	0	0	26px;
					padding:	8px;
					text-shadow:	1px	1px	0px	#777;
}

	I	apply	a	background,	font	formatting,	spacing,	and	some	CSS3	features	to	the	submit	button	by	using	a
class.	Because	it’s	a	class,	I	can	reuse	the	styles	on	other	buttons.

	I	used	Create	Profile	as	the	button’s	value	because	it’s	more	meaningful	to	visitors	for	this	form	than
the	default	button	text	(see	the	first	tip).	Activating	the	submit	button	sends	the	form	data	to	the	script	on

your	server	so	you	can	use	the	information.
Click	here	to	view	code	image

<input	type="image"	src="button-submit.png"	width="188"	height="95"	alt="Create	Profile"
/>

	With	type="image",	you	can	create	a	submit	button	from	an	image	instead	of	text.	The	width	and
height	are	optional.

	Browsers	may	show	a	hand	instead	of	an	arrow	when	you	hover	the	cursor	over	an	image	submit
button.

Click	here	to	view	code	image

<button	type="submit"	class="btn">
Create	Profile</button>

	The	button	element	gives	you	more	flexibility	regarding	the	content	of	your	submit	buttons.	This	one
contains	both	an	image	and	text.	The	button	element	allows	other	HTML	elements	as	well.

	Aside	from	the	checkmark	image,	this	button	looks	like	the	one	in	 	because	they	both	have	the	.btn
class	 .	Browsers	show	an	arrow	when	you	hover	the	cursor	over	a	button	 .

To	create	a	submit	button
1.	Type	<input	type="submit".
2.	If	desired,	type	value="submit	message",	where	submit	message	is	the	text	that	will
appear	in	the	button.

3.	Type	the	final	>	or	/>.

To	create	a	submit	button	with	an	image
Sometimes	the	designer	creates	a	button	that	is	beyond	the	capabilities	of	CSS3,	even	with	its	fancy
gradients,	shadows,	and	rounded	corners.	In	this	case,	you	may	use	an	image	alone	as	an	input	element	to
submit	a	form	(and).

1.	Create	a	PNG,	GIF,	or	JPEG	image.	(PNG	is	usually	best	for	this	because	of	the	small	file	size.)
2.	Type	<input	type="image".
3.	Type	src="image.url",	where	image.url	is	the	location	of	the	image	on	the	server.
4.	Type	alt="description",	where	description	is	what	will	appear	if	the	image	does	not.
5.	Type	the	final	>	or	/>	to	finish	the	image	submit	button.

To	create	a	submit	button	with	text	and	an	image
The	button	element	lets	you	create	buttons	that	contain	other	HTML	elements	instead	of	just	using	a
simple	text	value	or	image	(and).	(In	case	they	are	of	concern,	versions	of	IE	prior	to	IE8	have
some	button	quirks.	Search	online	for	details.)

1.	Type	<button	type="submit">.
2.	Type	the	text,	if	any,	that	should	appear	on	the	left	side	of	the	image	in	the	button.
3.	Type	<img	src="image.url",	where	image.url	is	the	name	of	the	image	that	will	appear
on	the	button.

4.	Type	alt="alternate	text",	where	alternate	text	is	what	appears	if	the	image
doesn’t.

5.	If	desired,	add	any	other	image	attributes.
6.	Type	>	or	/>	to	complete	the	image.
7.	Type	the	text,	if	any,	that	should	appear	on	the	right	side	of	the	image	in	the	button.
8.	Type	</button>.

Tip
If	you	leave	out	the	value	attribute,	the	submit	button	will	be	labeled	Submit	or	Submit
Query	by	default,	depending	on	the	browser.

Tip
If	you	have	multiple	submit	buttons,	you	should	give	a	name	attribute	and	a	value
attribute	to	each	one	so	that	your	script	can	tell	which	one	was	pressed.	Otherwise,	it’s
generally	best	to	omit	the	name	attribute.

Tip
You	can	also	use	the	button	element	to	create	a	submit	button	without	an	image.	In	any
case,	you	may	want	to	avoid	using	button	if	your	form	requires	more	than	one	submit
button	because	browser	behavior	can	vary.

Tip
Forms	can	have	a	reset	button	that	resets	all	form	controls	back	to	how	they	were	when	the
page	loaded	(before	the	visitor	filled	them	out).	You	can	create	a	reset	button	with
<input	type="reset"	/>	or	<button	type="reset">Reset</button>.
Reset	buttons	may	be	styled,	too.

Tip
You	can	turn	off	the	browser’s	automatic	validation	of	HTML5	inputs	like
type="email"	and	type="URL"	by	placing	the	formnovalidate	attribute	on	the
submit	button:	<input	type="submit"	formnovalidate	/>.

Disabling	Form	Elements
You	can	disable	parts	of	your	form	if	you	don’t	want	visitors	to	use	them.	For	example,	a	text	area	could
be	disabled	unless	the	visitor	answers	another	part	of	a	form	 .
Click	here	to	view	code	image

...
					<div	id="choices">
								<p>
											<input	type="radio"	name="how"	value="advertisement"	id="advertisement"	/>
											<label	for="advertisement">Advertisement</label>
								</p>
								...
								<p>
											<input	type="radio"	name="how"	value="other"	id="other"	/>
											<label	for="other">Other</label>
								</p>
								<p>
											<textarea	id="other-description"	cols="35"	rows="5"	placeholder="TV,	school,
bingo	game,	etc."	title="Please	describe	how	you	heard	about	us."	disabled="disabled">
</textarea>
								</p>

								<input	type="submit"	value="Submit"	class="btn"	/>
					</div>
...
</form>

<!--	This	goes	at	the	very	end,	right	before	</body>	-->
<script	src="js/toggle-textarea.js"></script>
</body>
</html>

	Here,	I	apply	the	disabled	attribute	to	the	textarea	and	load	a	JavaScript	file	at	the	very	bottom
of	the	page.	The	file	contains	a	script	that	enables	the	textarea	only	if	a	visitor	selects	the	Other	radio
button	(and).	Selecting	any	of	the	remaining	radio	buttons	disables	it.	(Note:	In	practice,	I	would
apply	the	disabled	attribute	with	JavaScript	instead	of	in	the	HTML	in	this	case,	allowing	visitors
without	JavaScript	to	fill	out	the	text	area,	too.	The	toggle-textarea.js	file	in	Chapter	19	does

this.)

	When	the	Other	radio	button	is	not	selected,	the	text	area	is	grayed	out	and	disabled,	so	the	user	cannot
select	the	box	and	enter	text.

	When	the	visitor	chooses	the	Other	radio	button,	the	text	area	turns	white	and	the	user	can	enter	text	to
be	submitted	to	the	server—thanks	to	the	JavaScript.

The	value	of	a	disabled	form	element	is	not	submitted	to	the	server	with	the	form,	and	it	is	skipped	if	you

navigate	the	webpage	with	a	keyboard.

To	disable	a	form	element
In	the	form	element’s	start	tag,	type	disabled	or	disabled="disabled"	(either	is	fine	in
HTML5).

Tip
You	can	change	the	state	of	a	form	element	from	disabled	to	enabled	(and	vice	versa)	with
JavaScript.	Explaining	JavaScript	is	beyond	the	scope	of	this	book,	but	I’ve	provided	the
toggle-textarea.js	script	referenced	in	 	in	Chapter	19	(“Loading	an	External
Script”).	The	file	includes	several	comments	that	shed	some	light	on	how	it	works.	If	you’d
like	to	learn	more	about	JavaScript,	one	respected	resource	is	eloquentjavascript.net.

Tip
See	Chapter	19	for	more	about	the	script	element.

Tip
See	the	last	tip	in	“Creating	Hidden	Fields”	to	understand	the	difference	between	the
disabled	and	readonly	attributes.

Styling	Forms	Based	on	Their	State
Sometimes	you	may	want	to	style	a	form	element	differently	if	it	has	a	certain	state	or	a	particular
attribute.	For	instance,	perhaps	you’d	like	to	distinguish	required	fields	from	normal	ones	for	your
visitors.
You	might	recall	seeing	pseudo-classes	elsewhere	in	the	book,	including	in	“Selecting	Links	Based	on
Their	State”	in	Chapter	9.	Well,	CSS	provides	several	more	of	them	for	styling	form	elements	in	a	given
state.	Most	of	these	are	new	in	CSS3.	I’ve	summarized	the	ones	with	the	best	browser	support	in	Table
16.3.	Peter-Paul	Koch	lists	the	others,	with	support	information,	at	www.quirksmode.org/css/selectors/
(scroll	to	“UI	state	pseudo-classes”).

http://eloquentjavascript.net
http://www.quirksmode.org/css/selectors/

TABLE	16.3	Pseudo-classes
Click	here	to	view	code	image

input:focus,
textarea:focus	{
					background-color:	greenyellow;
}

	This	rule	applies	a	background	color	to	any	input	(including	submit	buttons)	or	textarea	that	has
focus.	To	target	specific	input	types,	include	an	attribute	selector.	For	example,

input[type="submit"]:focus	{	background-color:	#ff8c00;	}	would	style
focused	submit	buttons	only.

	The	first	field	has	focus,	so	its	background	is	light	green	(not	the	most	pleasant	of	colors,	but	it	makes
the	point).

Click	here	to	view	code	image

input:checked	+	label	{
					color:	green;
}

	This	rule	styles	the	label	that	follows	a	chosen	radio	button	or	checkbox	 	(or	the	one	you’ve	given
the	checked	attribute).

	Only	the	labels	for	the	selected	radio	button	and	checkbox	are	green.
Click	here	to	view	code	image

textarea:disabled	{
					background-color:	#ccc;
					border-color:	#999;
					color:	#666;
}

	This	is	the	rule	I	applied	to	 	in	“Disabling	Form	Elements.”
Click	here	to	view	code	image

input:required,
textarea:required	{
					border:	2px	solid	#000;
}

	All	required	input	and	textarea	elements	will	have	a	more	prominent	border.

	As	you	can	see,	only	the	First	Name	field	is	required.	The	red	asterisk	is	not	a	result	of	the	CSS	in	 .
It’s	common	to	note	required	fields	with	an	asterisk	or	“(required)”	in	the	label	text,	so	I	added	it.	This
way	browsers	that	don’t	support	:required	will	also	indicate	the	required	fields	in	some	manner.

Click	here	to	view	code	image

input[type="email"]:invalid	{
					color:	red;
}

input[type="email"]:valid	{
					color:	black;
}

	The	text	in	an	email	box	will	be	red	if	it	isn’t	in	the	accepted	email	address	format.

	The	text	is	red	until	you	finish	typing	a	valid	email	address,	at	which	point	it	turns	black.

To	style	form	elements	in	a	particular	state
1.	Type	selector,	where	selector	includes	one	or	more	of	the	states	shown	in	the	table,
followed	by	{	to	begin	the	declaration	block.

2.	Type	the	property:	value;	declarations	you’d	like	to	use	to	style	your	states.	Descriptions	of
CSS	properties	and	values	begin	in	Chapter	8.

3.	Type	}	to	complete	the	declaration	block	and	the	style	rule.

Tip
The	:invalid	state	applies	as	soon	as	your	webpage	loads,	which	may,	depending	on
your	styles,	cause	some	unexpected	results.	For	example,	if	your	rule	is
input:invalid	{	background-color:	pink;	},	a	required	input	field
will	have	a	pink	background	even	before	your	visitor	has	tried	to	fill	it	out.	(Empty
required	fields	are	deemed	invalid.)	To	exclude	required	fields,	you	could	use	the	:not
pseudo-class;	for	example,	input:invalid:not(:required)	{	border:	2px
solid	red;	}.	The	:not	pseudo-class	is	supported	by	all	browsers	except	Internet
Explorer	prior	to	IE9.

Tip
As	an	alternative	to	the	previous	tip,	when	a	form	is	submitted,	you	could	apply	a	class	to
the	form	element	with	JavaScript	and	use	that	class	in	your	selector	to	style	invalid
fields.	For	example,	.submitted	input:invalid	{	background-color:
red;	}.	See	Peter	Gasston’s	article	at	html5doctor.com/css3-pseudo-classes-and-html5-
forms	for	sample	JavaScript	code	as	well	as	other	tips.

http://html5doctor.com/css3-pseudo-classes-and-html5-forms

Tip
Browsers	will	ignore	a	style	rule	if	it	contains	a	selector	it	doesn’t	support.	Web	designers
and	developers	often	find	this	acceptable;	visitors	with	more	capable	browsers	will	get
the	enhanced	experience.	Keith	Clark’s	Selectivzr	(http://selectivizr.com/)	is	a	JavaScript
file	you	can	include	in	your	pages	if	you’d	like	older	browsers	to	understand	these
selectors.

Styling	Forms	with	Attribute	Selectors
Don’t	forget	you	also	can	use	attribute	selectors	to	target	form	fields	with	certain
attributes,	such	as:
	[autocomplete]
	[autofocus]
	[multiple]	(Limited	to	email	boxes	and	file	uploads)
	[placeholder]
	[type="email"]	 ,	[type="url"],	and	so	on	for	the	other	input	types

http://selectivizr.com/

17.	Video,	Audio,	and	Other	Multimedia

In	This	Chapter
Third-Party	Plugins	and	Going	Native
Video	File	Formats
Adding	a	Video	to	Your	Webpage
Adding	Controls	and	Autoplay	to	Your	Video
Looping	a	Video	and	Specifying	a	Poster	Image
Preventing	a	Video	from	Preloading
Using	Video	with	Multiple	Sources	and	a	Text	Fallback
Providing	Accessibility
Audio	File	Formats
Adding	an	Audio	File	with	Controls	to	Your	Webpage
Autoplaying,	Looping,	and	Preloading	Audio
Providing	Multiple	Audio	Sources	with	a	Fallback
Adding	Video	and	Audio	with	a	Flash	Fallback
Advanced	Multimedia
Further	Resources

The	addition	of	movies,	sound,	graphics,	and	animations	to	webpages	can	enhance	your	visitors’
experience.	Prior	to	HTML5,	the	only	method	of	adding	multimedia	to	your	webpages	was	through	third-
party	plugins	such	as	Adobe	Flash	Player	or	Apple’s	QuickTime.	HTML5	changes	all	that	with	the
introduction	of	native	multimedia—where	the	browser	takes	care	of	it	all.
Not	all	HTML5-capable	browsers	support	the	same	video	and	audio	formats.	You’ll	learn	how	to
accommodate	your	visitors	by	providing	various	formats,	including	a	Flash	fallback	for	browsers	that
don’t	support	HTML5	media	at	all.
Please	note	that	this	chapter	is	meant	to	be	an	introduction	to	adding	multimedia	to	webpages,	with	a
strong	emphasis	on	the	HTML5	code	you	need.	It	does	not	teach	you	how	to	create	the	multimedia	content,
only	how	to	make	it	available	to	your	visitors.

Third-Party	Plugins	and	Going	Native
The	third-party	plugins	I	spoke	of	in	the	introduction	allowed	for	adding	audio	and	video	to	pages	before
HTML5,	but	there	were	problems.	The	code	for	embedding	a	Flash	video	in	one	browser	didn’t
necessarily	work	in	another,	and	there	weren’t	any	elegant	ways	around	it.	More	importantly,	the
experience	of	visiting	a	site	sometimes	suffered	because	plug-ins	like	Flash	demand	a	lot	of	a	computer.
In	some	cases,	browsers	would	slow	down	or	crash.
With	such	things	in	mind,	native	multimedia	was	added	to	the	HTML5	specification.	This	brings	a	number
of	benefits:	improved	performance	and	stability	(because	browsers	can	manage	them	better	than	plug-ins),
the	media	player	buttons	and	other	controls	are	built	into	the	browser,	and	the	reliance	on	plug-ins	is
drastically	reduced	(but	not	entirely	gone—as	you’ll	see	later).

As	with	any	set	of	standards,	there	are	issues	with	HTML5’s	native	multimedia.	Despite	efforts	by	many
to	standardize	on	one	file	format	for	audio	and	one	for	video,	not	all	browsers	and	related	vendors
wanted	to	be	told	what	to	do.	This	means	that	you	need	to	provide	your	media	in	more	than	one	format	for
it	to	be	playable	by	HTML5-capable	browsers.	We’ll	look	at	this	in	detail	later.
The	usefulness	of	HTML5	and	native	media	was	enhanced	when	Apple	announced	that	they	were	not
going	to	support	Flash	on	their	mobile	devices,	including	the	iPhone	and	iPad.	This	showed	that	the	past
near-universal	reliance	on	Flash	for	playing	media	files	was	diminishing	and	that	the	day	for	HTML5’s
native	multimedia	was	at	hand.	This	is	where	HTML5	native	multimedia	stepped	in	and	showed	its
strength,	because	the	browser	on	Apple’s	mobile	devices	does	indeed	support	HTML5.	Other	mobile
devices	have	followed	suit.

Digital	Rights	Management	(DRM)
One	thing	you’ll	notice	about	embedding	audio	and	video	files	is	that	the	URLs	to	the
source	files	are	available	for	anyone	who	wants	to	download	and	“steal”	your	content—
just	as	embedded	images	and	HTML,	JavaScript,	and	CSS	source	files	are.	There’s
nothing	you	can	do	about	this.
HTML5	doesn’t	provide	any	method	to	protect	your	media	content	in	any	way,	although
there	are	discussions	underway	that	might	change	this.	So	if	you	are	concerned	about
protecting	your	media	files,	for	now	don’t	use	HTML5	native	multimedia.

What’s	a	Codec?
A	codec	is	a	computer	program	that	uses	a	compression	algorithm	to	encode	and	decode	a
digital	stream	of	data,	making	it	more	suitable	for	playback.
The	objective	of	the	codec	is	usually	to	maintain	the	highest	audio	and	video	quality	it	can
while	aiming	for	a	smaller	file	size.
Of	course,	some	codecs	are	better	than	others	at	performing	this.

Setting	the	MIME	Type
Some	browsers	may	not	play	your	media	files	unless	they	are	served	as	the	proper	MIME
type.	If	your	site	is	running	on	the	Apache	web	server—and	it	probably	is—you	can
configure	the	MIME	types	in	what	is	known	as	the	.htaccess	file.	It’s	a	text	file	that
typically	resides	in	the	root	directory	of	your	site,	alongside	your	Home	page.
Here	are	the	MIME	types	to	add	to	your	.htaccess	file	with	any	text	editor:

AddType	video/ogg	.ogv
AddType	video/mp4	.mp4
AddType	video/webm	.webm
AddType	audio/ogg	.ogg
AddType	audio/mp3	.mp3

If	your	site	already	has	the	file,	rename	it	a.htaccess,	download	it	from	your	web
server,	add	the	MIME	types	above,	upload	it	to	your	server,	and	rename	it	back	to
.htaccess.	If	your	site	doesn’t	have	it,	you	can	create	it	from	scratch.
Ask	your	web	host	about	updating	your	.htaccess	file	if	you	need	help.

Video	File	Formats
Three	different	video	file	formats,	or	codecs,	are	supported	by	HTML5:

	Ogg	Theora	uses	either	the	.ogg	or	.ogv	file	extension	and	is	supported	by	Firefox	3.5+,	Chrome	4+,
Opera	10.5+,	and	Firefox	for	Android.
	MP4	(H.264)	uses	the	.mp4	or	.m4v	file	extension	and	is	supported	by	Safari	3.2+,	Chrome	4-?	(see
tips),	Internet	Explorer	9+,	iOS	(Mobile	Safari),	Android	2.1+,	Chrome	for	Android,	Firefox	for
Android,	and	Opera	Mobile	11+.
	WebM	uses	the	.webm	file	extension	and	is	supported	by	Firefox	4+,	Chrome	6+,	Opera	10.6+,
Android	2.3+,	Chrome	for	Android,	Firefox	for	Android,	and	Opera	Mobile	14.

Tip
You	need	to	provide	your	video	in	at	least	two	different	formats—MP4	and	WebM—to
ensure	that	all	HTML5-compatible	browsers	are	supported.

Tip
Google	has	said	they	will	drop	support	for	MP4	in	Chrome,	but	haven’t	yet.	Firefox	is
rolling	out	MP4	support	gradually.	On	desktops,	Windows	7+	is	getting	it	first,	although	it
requires	users	to	have	the	codec	installed	on	their	machine.

Tip
WebM	will	work	in	IE	9+	or	Safari	if	a	visitor	has	WebM	installed	on	their	machine.

Converting	Between	File	Formats
If	you	already	have	a	video	resource	and	wish	to	convert	it	to	any	or	all	of	the	file	formats
listed,	there	are	a	number	of	free	tools	that	can	help	you	with	this.	Here	are	two:
Miro	Video	Converter,	at	www.mirovideoconverter.com
HandBrake,	at	http://handbrake.fr

Adding	a	Video	to	Your	Webpage
In	order	to	add	a	video	to	your	webpage,	you	need	to	use	the	video	element.	Doing	so	couldn’t	be
simpler	 .	Browsers	will	figure	out	your	video’s	dimensions	when	it	loads	the	file	and	display	it	at	that
size	 ,	or	you	can	set	them	yourself	 .
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"></video>
</body>
</html>

http://www.mirovideoconverter.com
http://handbrake.fr

	Specifying	a	single	WebM	video	with	no	controls.

	Video	pauses	on	the	first	frame	by	default.	You	now	have	a	video	without	a	play	button,	meaning
visitors	can’t	watch	it!	We’ll	correct	that	in	the	next	section.

Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	width="369"	height="208"></video>
</body>
</html>

	The	dimensions	I	set	here	match	the	video’s	normal	size,	so	this	would	look	the	same	as	 .	But,	as
with	images,	you	can	use	width	and	height	values	that	are	a	different	size,	and	the	browser	will	scale

the	video	the	best	it	can.

The	video	isn’t	displayed	if	the	browser	doesn’t	understand	the	video	format	you	specified	 .

	Browsers,	like	Safari,	that	don’t	support	WebM	display	a	whole	lotta	nothin’.	Not	good!	Later,	I’ll
show	you	how	to	specify	more	than	one	video	format	so	all	browsers	are	happy.

To	add	a	single	video	to	your	webpage
1.	Obtain	your	video	resource.
2.	Type	<video	src="my-video.ext"></video>,	where	my-video.ext	is	the	location,
name,	and	extension	of	the	video	file.
And	that’s	it!	Well,	almost	(and).

Exploring	video	attributes
What	other	attributes,	besides	src,	can	you	use	with	the	video	element?	As	you	can	see	in	Table	17.1,
there	are	quite	a	number	of	them,	which	gives	you	a	lot	of	flexibility	with	your	video.

TABLE	17.1	Video	Attributes

Adding	Controls	and	Autoplay	to	Your	Video
So	far,	I’ve	shown	you	the	simplest	possible	method	for	adding	video	to	your	webpage.	The	video	in	that
example	will	not	even	start	playing,	because	we	haven’t	told	it	to.	Furthermore,	your	visitors	can’t	start
the	video	themselves	because	the	player	doesn’t	display	any	controls.
You	can	change	that	easily	enough	 .	The	controls	attribute	tells	the	browser	to	add	a	set	of	default
controls	to	the	video.	Each	browser	has	its	own	set	of	default	controls,	which	look	very	different	from
each	other	(through).
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	width="369"	height="208"	controls></video>
</body>
</html>

	Adding	a	single	WebM	video	file,	this	time	with	controls.

	The	video	controls	in	Firefox.	You	see	here	that	the	video	is	a	second	longer	in	Firefox	than	in	the
other	browsers.

	The	video	controls	in	Chrome

	The	video	controls	in	Internet	Explorer	10

	The	video	controls	in	Opera

	The	video	controls	in	Safari

Normally,	a	video	doesn’t	play	unless	the	visitor	uses	the	play	button.	You	may	set	it	to	play	automatically
by	including	the	autoplay	attribute	 .
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	width="369"	height="208"	autoplay	controls></video>
</body>
</html>

	Now	the	video	element	includes	three	attributes	from	Table	17.1.	Thanks	to	autoplay,	this	video
will	play	automatically.	With	controls	set	as	well,	visitors	will	have	a	pause	button	they	can	use	at

any	time.	The	attributes	may	appear	in	any	order.

When	a	Video	Format	Isn’t	Supported
If	the	browser	you	use	to	view	the	code	samples	(and)	doesn’t	support	the	video	file
format	you’re	using,	it	will	show	its	controls	bar	and	either	an	empty,	white	rectangle	(in
most	cases)	or	the	poster	image,	if	one	is	indicated	via	the	poster	attribute.
For	example,	Internet	Explorer	and	Safari	do	not	support	WebM	but	do	support	MP4.	To
show	you	their	controls	in	 	and	 ,	respectively,	I	skipped	ahead	and	created	a	separate
webpage	that	uses	both	the	MP4	and	WebM	formats.	You’ll	learn	how	to	do	this	in	“Using
Video	with	Multiple	Sources	and	a	Text	Fallback.”
The	empty	rectangle	is	generally	300x150	if	video	dimensions	haven’t	been	specified	with
width	and	height.	If	you	include	controls	but	use	a	format	IE10	doesn’t	support,	it
will	display	a	black	empty	rectangle	and	“Invalid	Source.”

To	add	controls	to	a	video
Type	<video	src="my-video.ext"	controls></video>,	where	my-video.ext	points	to
your	video	file.

To	add	autoplay	to	a	video
Type	<video	src="my-video.ext"	autoplay	controls></video>,	where	my-
video.ext	points	to	your	video	file.

Boolean	Attributes
As	you	might	recall	from	Chapter	1,	Boolean	attributes,	such	as	controls	and
autoplay,	don’t	need	to	have	a	value	specified	for	them	(it’s	optional).	Either	way,	their
presence	on	a	video	or	audio	element	yields	the	same	result.
The	examples	in	this	chapter	don’t	specify	values	for	these	Boolean	attributes,	but	
could	also	be	written	as
<video	src="paddle-steamer.webm"	controls="controls"
autoplay="autoplay"></video>.

Looping	a	Video	and	Specifying	a	Poster	Image
In	addition	to	setting	your	video	to	play	automatically,	you	can	set	it	to	play	continuously	until	stopped	 .
(This	isn’t	recommended,	though—think	of	your	poor	users!)	You	simply	use	the	autoplay	and	loop
attributes.
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	width="369"	height="208"	autoplay	loop></video>
</body>
</html>

	A	single	WebM	video	set	to	play	automatically	and	then	loop.	With	no	controls	included	here,	your
visitors	won’t	be	able	to	stop	the	video!	So,	if	you	include	a	loop,	it’s	best	to	include	controls.	Even

so,	an	auto-playing	video	that	loops	might	drive	visitors	batty.

If	you	don’t	include	autoplay,	normally	the	browser	will	display	the	first	frame	of	the	video	in	still
mode	once	it	has	loaded.	You	may	want	to	change	this	and	specify	your	own	image,	which	you	can	do	via
a	poster	image	(and).
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	width="369"	height="208"	poster="paddle-steamer-
poster.jpg"	controls></video>
</body>
</html>

	A	single	WebM	video	with	controls	and	a	specified	poster	image	that	will	display	when	the	page	loads
and	displays	the	video.

	A	video	displaying	a	poster	image	(until	a	visitor	plays	the	video).	In	this	case,	the	image	is	a
screenshot	taken	from	within	the	video	itself.

To	add	autoplay	and	loop	a	video
Type	<video	src="my-video.ext"	autoplay	loop></video>,	where	my-video.ext
points	to	your	video	file.

To	specify	a	poster	image	for	a	video
Type	<video	src="my-video.ext"	controls	poster="my-poster.jpg"></video>,
where	my-video.ext	points	to	your	video	file	and	my-poster.jpg	points	to	the	image	that	you
want	to	use	as	the	poster	image.

Preventing	a	Video	from	Preloading
If	you	think	it	unlikely	that	a	user	will	view	your	video	(for	example,	it’s	not	the	main	content	on	your
page),	you	can	ask	the	browser	to	not	bother	preloading	it	 .	This	saves	on	bandwidth	so	is	particularly
good	for	visitors	on	mobile	devices.
Click	here	to	view	code	image

...
<body>
					<video	src="paddle-steamer.webm"	preload="none"	controls></video>
</body>
</html>

	A	single	WebM	video	that	won’t	load	when	the	page	fully	loads.	It	begins	to	load	when	the	user
attempts	to	play	it.	Note	that	I	omitted	the	width	and	height	attributes.

Browsers	vary	in	the	way	they	display	a	video	set	to	preload="none"	before	playback	is	initiated	(
	and).

	A	video	with	preload	set	to	none	in	Firefox.	It	displays	a	generic	box	above	the	controls	because
it	has	no	information	about	the	video	(not	even	the	dimensions)	and	no	poster	image	was	specified.	When

you	play	the	video,	the	browser	obtains	its	dimensions	and	resizes	the	video	accordingly.

	Chrome	(top)	displays	an	empty	rectangle	above	the	controls.	That	version	of	the	player	may	be
narrower	than	what	appears	when	a	visitor	plays	the	video	(bottom).

To	instruct	the	browser	to	not	preload	a	video
Type	<video	src="my-video.ext"	preload="none"	controls></video>,	where	my-
video.ext	points	to	your	video	file.

Tip
Include	a	poster	image	with	the	poster	attribute	if	you	want	to	set	preload="none"
but	don’t	want	a	blank	space	to	display.

Tip
If	you	don’t	want	to	show	a	poster	but	do	want	the	empty	rectangle	to	match	the	video’s
size,	include	the	width	and	height	attributes	on	the	video	element,	setting	their
values	to	the	video’s	dimensions.	This	will	prevent	the	jarring	effect	of	the	video	resizing
when	play	begins	(and).

Other	preload	Settings
The	default	value	of	preload	is	auto.	This	suggests	to	the	browser	to	“get	a	running
start”	in	downloading	the	video	in	anticipation	of	the	user	choosing	to	watch	it.	Browsers
will	preload	much	or	even	all	of	the	video.	As	a	result,	the	video	should	be	less	prone	to
potential	stops	and	starts	during	playback	while	the	browser	tries	to	download	more	for
the	visitor	to	watch.
A	happy	medium	between	none	and	auto	is	preload="metadata".	This	asks	the
browser	to	retrieve	basic	information	about	the	video,	such	as	its	dimensions,	duration,
and	possibly	a	few	frames	of	video.	Browsers	won’t	display	an	empty	rectangle	and	will
size	the	video	properly	before	playback	begins.
The	metadata	setting	also	hints	to	browsers	that	the	user’s	connection	is	limited	so	it
should	make	every	effort	to	conserve	bandwidth	without	interrupting	playback.

Using	Video	with	Multiple	Sources	and	a	Text	Fallback
This	is	all	great,	but	all	the	preceding	examples	use	only	one	video	file	and	therefore	one	format.	You’ve
already	seen	that	to	support	all	HTML5-capable	browsers,	you	need	to	supply	video	in	at	least	two
different	formats:	MP4	and	WebM.
So	how	do	you	do	that?	The	source	element	allows	you	to	define	more	than	one	source	for	a	media
element,	in	this	case	video.
Any	number	of	source	elements	can	be	contained	within	a	video	element,	so	defining	two	different
formats	for	our	video	example	is	easy	 .	Browsers	will	load	the	first	file	format	referenced	in	a
source	element	that	they	support	and	ignore	the	rest	(and).	Browsers	that	cannot	play	HTML5
video	will	display	the	fallback	link	 	or	a	message	you	provide	 .
Click	here	to	view	code	image

...
<body>
					<video	width="369"	height="208"	controls>
								<source	src="paddle-steamer.mp4"	type="video/mp4">
								<source	src="paddle-steamer.webm"	type="video/webm">
								<p>Download	the	video</p>
					</video>
</body>
</html>

	Two	sources	are	defined	here	for	the	video:	an	MP4	file	and	a	WebM	file.	(Note	that	the	video	start
tag	does	not	have	a	src	attribute	like	it	did	in	earlier	examples	when	specifying	a	single	video	source.)
Only	older	browsers	will	display	the	linked	text	contained	within	the	p	element	 .	Make	sure	your

fallback	link	or	text	is	inside	the	video	element,	otherwise	all	browsers	will	show	it.

	Browsers	like	IE10	that	support	MP4	will	load	paddle-steamer.mp4.

	Browsers	that	don’t	support	MP4	but	do	support	WebM	will	load	paddle-steamer.webm.

	IE8	ignores	the	video	and	source	elements	and	simply	displays	the	download	link.	I	have	chosen
to	include	a	link	to	the	MP4	version	of	our	video	 ,	but	I	could	just	as	easily	have	linked	to	the	WebM

file	or	to	both.

To	specify	two	different	video	sources	with	a	fallback
1.	Obtain	your	video	sources	(two	this	time).
2.	Type	<video	controls>	to	open	the	video	element	with	the	default	control	set.
3.	Type	<source	src="my-video.mp4"	type="video/mp4">,	where	my-video.mp4
points	to	your	MP4	video	source	file.

4.	Type	<source	src="my-video.webm"	type="video/webm">,	where	my-
video.webm	points	to	your	WebM	video	source	file.

5.	Create	a	fallback	link	or	message	for	older	browsers	 .
6.	Type	</video>	to	close	the	video	element.

More	about	multiple	media	sources
We’ll	go	into	the	various	attributes	available	for	the	source	element	in	a	moment,	but	let’s	quickly	look
at	why	specifying	multiple	sources	for	the	same	media	actually	works.
When	the	browser	comes	across	the	video	element,	it	first	looks	to	see	if	there’s	a	src	defined	in	the
video	element	itself.	Since	there	isn’t,	it	then	checks	for	source	elements.	It	goes	through	each	one	in
turn	looking	for	one	that	contains	something	it	can	play.	Once	it	finds	one,	it	plays	it	and	ignores	the	rest.
In	our	previous	example,	Safari	will	play	the	MP4	file	 	and	won’t	even	see	the	WebM	file,	whereas
Firefox	will	note	that	it	can’t	play	the	MP4	source	and	move	on	to	the	WebM	one,	which	it	can	play	 .
(Firefox	is	working	on	adding	MP4	support	to	all	versions,	so	this	might	have	changed	by	the	time	you	are
reading	this.)
Any	browser	that	recognizes	neither	the	video	element	nor	the	source	element	(that	is,	a	browser	that
is	not	HTML5	capable)	will	ignore	those	tags	entirely	when	parsing	the	document;	it	will	simply	display
the	fallback	message	just	before	closing	the	video	element	 .
See	Table	17.2	for	the	source	element	attributes.

TABLE	17.2	source	Attributes

Tip
Instead	of	a	link	(or	links),	the	fallback	you	provide	in	 	could	be	an	img	taken	from	the
video	or	something	like	<p>Sorry,	your	browser	doesn’t	support
HTML5	video.</p>,	followed	by	the	link.

Tip
Some	free	videos	you	can	use	for	trying	out	the	video	and	source	elements	are
available	at	www.bigbuckbunny.org/index.php/download/.	That	site	doesn’t	provide
WebM	videos,	but	you	could	output	your	own	with	one	of	the	tools	listed	in	“Video	File
Formats.”

Providing	Accessibility
Another	advantage	of	having	native	multimedia	is	that	the	content	can	be	made	more	keyboard	accessible
by	taking	advantage	of	the	natural	accessibility	of	modern	browsers.
The	keyboard	accessibility	of	HTML5	video	and	audio	is	good	in	Firefox,	Internet	Explorer,	and	Opera.
But	for	Chrome	and	Safari	at	the	time	of	this	writing,	the	only	way	to	have	an	accessible	media	player	is
by	creating	your	own	control	set.	That	requires	using	the	JavaScript	Media	API	(also	part	of	HTML5),
which	is	outside	the	scope	of	this	chapter.
HTML5	also	specifies	a	new	file	format—WebVTT	(Web	Video	Text	Tracks)—that	allows	you	to	include
text	subtitles,	captions,	descriptions,	chapters,	and	so	on	in	video	content.	Further	discussion	of	WebVTT
and	captioning	is	also	outside	the	scope	of	this	chapter,	but	you	can	find	out	more	at
www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles	(including	an	update	in	2012	to
match	specification	changes).

Tip
Ian	Devlin’s	HTML5	Multimedia:	Develop	and	Design	(Peachpit	Press,	2011)	has
chapters	dedicated	to	showing	you	how	to	create	your	own	accessible	control	set	and	how
to	use	WebVTT.	An	excerpt	is	available	at	http://net.tutsplus.com/tutorials/html-css-
techniques/an-in-depth-overview-of-html5-multimedia-and-accessibility/.

Tip
Terrill	Thompson	compares	HTML5	video	accessibility	among	browsers	at
http://terrillthompson.com/blog/366.

Tip
The	WebVTT	spec	is	still	in	development,	so	the	means	by	which	to	implement	captions
and	the	like	is	subject	to	change.

Audio	File	Formats
Now	that	you	can	add	video	to	your	webpage	using	HTML5	native	media,	let’s	take	a	look	at	how	to	add
audio.	As	with	HTML5	video,	there	are	a	number	of	different	file	formats	(codecs)	that	are	supported:

	Ogg	Vorbis	uses	the	.ogg	file	extension	and	is	supported	by	Firefox	3.5+,	Chrome	5+,	and	Opera
10.5+.
	MP3	uses	the	.mp3	file	extension	and	is	supported	by	Safari	5+,	Chrome	6+,	Internet	Explorer	9+,
and	iOS.

http://www.bigbuckbunny.org/index.php/download/
http://www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
http://net.tutsplus.com/tutorials/html-css-techniques/an-in-depth-overview-of-html5-multimedia-and-accessibility/
http://terrillthompson.com/blog/366

	WAV	uses	the	.wav	file	extension	and	is	supported	by	Firefox	3.6+,	Safari	5+,	Chrome	8+,	and
Opera	10.5+.
	AAC	uses	the	.aac	file	extension	and	is	supported	by	Safari	3+,	Internet	Explorer	9+,	iOS	3+,	and
Android	2+.
	MP4	uses	the	.mp4	file	extension	and	is	supported	by	Safari	3+,	Chrome	5+,	Internet	Explorer	9+,
iOS	3+,	and	Android	2+.
	Opus	uses	the	.opus	file	extension.	It	is	a	new	audio	format	that	only	Firefox	supports	at	the	time	of
this	writing.

You	will	remember	that	MP4	was	listed	as	a	video	codec,	but	it	can	also	be	used	to	encode	audio	data
only.

Tip
As	with	video,	your	content	needs	to	be	in	two	different	formats	to	ensure	support	across
all	HTML5-capable	browsers.	The	two	best	formats	in	which	to	provide	your	content	are
Ogg	Vorbis	and	MP3.

Tip
The	Miro	Video	Converter	application	mentioned	earlier	in	the	“Converting	Between	File
Formats”	sidebar	can	also	be	used	for	converting	audio.

Adding	an	Audio	File	with	Controls	to	Your	Webpage
Let’s	move	on	to	actually	placing	an	audio	file	in	your	webpage.	The	process	is	very	similar	to	adding	a
video,	but	this	time	you’ll	use	the	audio	element	 .	Of	course,	as	with	the	video	controls,	each	browser
has	its	own	idea	of	how	audio	controls	should	look	(through).
Click	here	to	view	code	image

...
<body>
					<audio	src="piano.ogg"	controls></audio>
</body>
</html>

	A	simple	Ogg-encoded	audio	file	with	the	default	control	set	specified.	You	could	omit	the
controls	attribute,	but	nothing	would	display	since	an	audio	file	is	not	visual.

	The	audio	controls	in	Firefox.	As	it	did	with	the	video,	Firefox	(and	IE10)	marks	this	audio	file	as
a	second	longer	than	the	other	browsers	do.

	The	audio	controls	in	Chrome

	The	audio	controls	in	Internet	Explorer	10

	The	audio	controls	in	Opera

	The	audio	controls	in	Safari

When	an	Audio	Format	Isn’t	Supported
Browsers	vary	in	what	they	display	when	they	don’t	support	an	audio	format.	For	instance,
when	you	specify	an	Ogg	file	only	 	IE10	shows	a	message	 	and	Safari	shows	the
controls	bar	and	“Loading....”	Figures	 	and	 	shows	their	controls	when	they	do
support	the	file	format,	such	as	MP3.

	IE10	when	it	doesn’t	support	the	audio	file	format	you	specify	in	src	

See	Table	17.3	for	the	attributes	you	can	use	with	the	audio	element.

TABLE	17.3	Audio	Attributes

To	add	an	audio	file	with	controls	to	your	webpage
	Obtain	your	audio	file.
	Type	<audio	src="my-audio.ext"	controls></audio>,	where	my-audio.ext	is
the	location,	name,	and	extension	of	the	audio	file.

Autoplaying,	Looping,	and	Preloading	Audio
The	attributes	in	this	section	work	just	as	they	do	with	video.	The	autoplay	attribute	makes	it	a	snap	to
make	an	audio	file	start	playing	when	the	page	loads	(and).	You	can	indicate	that	you	want	the	audio
to	play	in	a	loop	by	using	the	loop	attribute	 .	And	you	can	request	that	the	browser	preload	the	audio
file	in	different	ways	by	using	the	preload	attribute	values	in	Table	17.3	 .
Click	here	to	view	code	image

...
<body>
					<audio	src="piano.ogg"	autoplay	controls></audio>
</body>
</html>

	An	Ogg	audio	file	(with	the	default	control	set)	that	will	automatically	start	playing	when	the	page
loads

	An	audio	file	(with	controls)	that	began	to	play	automatically	on	load
Click	here	to	view	code	image

...
<body>
					<audio	src="piano.ogg"	loop	controls></audio>
</body>
</html>

	An	Ogg	audio	file	(with	the	default	control	set)	that	will	loop
Click	here	to	view	code	image

...
<body>
					<audio	src="piano.ogg"	preload="metadata"	controls></audio>
</body>
</html>

	This	Ogg	audio	file	should	have	only	its	metadata	(for	example,	length)	loaded	when	the	page	loads.

To	start	the	audio	playing	automatically
Type	<audio	src="my-audio.ext"	autoplay	controls></audio>,	where	my-
audio.ext	points	to	your	audio	file.	If	you	omit	controls,	the	audio	will	play	automatically	but
nothing	will	show	in	the	browser.

To	play	an	audio	file	in	a	loop
Type	<audio	src="my-audio.ext"	loop	controls></audio>,	where	my-audio.ext
points	to	your	audio	file.

To	ask	the	browser	to	preload	only	the	audio’s	metadata
Type	<audio	src="my-audio.ext"	preload="metadata"	controls></audio>,	where
my-audio.ext	points	to	your	audio	file.

Tip
You	can	include	any	combination	of	the	autoplay,	loop,	and	preload	attributes	on
an	audio	element.	Be	aware	that	including	the	autoplay	attribute	overrides	any
preload	attribute	setting,	because	the	audio	file	must	load	in	order	to	play.

Tip
The	information	about	the	auto,	none,	and	metadata	values	in	“Preventing	a	Video
from	Preloading”	also	applies	to	using	them	on	the	audio	element.	(The	parts	about
determining	dimensions	don’t	pertain	to	audio.)	Remember	that	a	value	for	the	preload
attribute	does	not	guarantee	the	browser’s	behavior;	it’s	merely	a	request.

Providing	Multiple	Audio	Sources	with	a	Fallback
In	order	to	support	all	HTML5-capable	browsers,	you	need	to	provide	your	audio	in	more	than	one
format.	This	is	achieved	in	exactly	the	same	way	as	it	is	with	the	video	element:	using	the	source
element.	The	fallback	method	for	audio	is	also	the	same	 .	As	you	would	expect,	the	browser	ignores
what	audio	formats	it	can’t	play	and	plays	what	it	can	(and).	Browsers	that	don’t	support	the
audio	element	display	the	fallback	 .
Click	here	to	view	code	image

...
<body>
					<audio	controls>
								<source	src="piano.ogg"	type="audio/ogg">
								<source	src="piano.mp3"	type="audio/mp3">
								<p>Your	browser	doesn't	support	HTML5	audio,	but	you	can	download	the	audio	file	(MP3,	1.3	MB).</p>
					</audio>
</body>
</html>

	Two	audio	sources	are	defined	for	this	audio	element	(which	also	has	a	default	control	set	defined):
one	encoded	as	Ogg	and	the	other	as	MP3.	They	are	followed	by	the	fallback	information.	When	including

a	fallback	link,	you	may	want	to	provide	the	file	type	and	size	to	help	a	visitor	decide	whether	to
download	it.

	Browsers	like	Firefox	that	support	Ogg	will	load	piano.ogg.	Chrome	(not	shown)	understands	both
Ogg	and	MP3,	but	will	load	the	Ogg	file	because	it	appears	before	the	MP3	file	in	the	audio	element

code	 .

	Browsers,	like	IE10,	that	don’t	support	Ogg	but	do	support	MP3	will	load	piano.mp3.

	Older	browsers,	like	IE8,	display	the	fallback	message.

The	type	Attribute
The	type	attribute	helps	the	browser	decide	whether	it	can	play	the	audio	file.	For	audio
formats,	the	value	is	always	audio/	followed	by	the	format	itself,	as	in	audio/ogg,
audio/mp3,	audio/aac,	audio/wav,	and	audio/mp4.

To	specify	two	different	audio	sources	with	a	fallback
1.	Obtain	your	audio	files.
2.	Type	<audio	controls>	to	open	the	audio	element	with	the	default	control	set.
3.	Type	<source	src="my-audio.ogg"	type="audio/ogg">,	where	my-audio.ogg
points	to	your	Ogg	Vorbis	audio	file.

4.	Type	<source	src="my-audio.mp3"	type="audio/mp3">,	where	my-audio.mp3
points	to	your	MP3	audio	file.

5.	(Optional	but	recommended)	Create	a	fallback	message	or	audio	download	link	for	browsers	that
don’t	support	HTML5	audio.

6.	Type	</audio>	to	close	the	audio	element.

Adding	Video	and	Audio	with	a	Flash	Fallback
As	well	as	providing	a	fallback	download	link,	you	could—and	probably	should—provide	a	Flash
fallback	player	that	can	play	the	MP4	video	file.	Yes,	despite	all	this	great	work	with	HTML5	and	native
multimedia,	Flash	is	necessary	for	those	older	browsers	that	can’t	cope,	like	Internet	Explorer	before
version	9.	That	said,	you	want	to	reach	as	many	users	as	possible,	so	at	least	there’s	an	option!
I	will	show	how	to	do	this	using	Media-Element.js	(http://mediaelementjs.com)	by	John	Dyer.	It	is	not	the
only	such	solution,	but	it’s	very	well	regarded	and	has	been	adopted	by	the	likes	of	WordPress,	the
omnipresent	blogging	and	CMS	software.	I’ve	listed	some	alternatives	in	the	tips.
MediaElement.js	requires	a	little	extra	work	than	going	with	native	video	or	audio	only.	First,	you	must

http://mediaelementjs.com

obtain	the	MediaElement.js	files	and	put	them	with	your	site’s	other	files	(through).	Then	you	add	a
few	of	those	files	to	your	webpage	(and).	Those	steps	are	required	for	both	video	and	audio.

	The	name	of	the	folder	from	the	ZIP	file	might	be	different	for	you,	reflecting	a	newer	version.

	You	only	need	the	build	folder	to	make	MediaElement.js	work	on	your	site.

	The	build	folder	is	pasted	into	the	folder	for	my	site	(yours	may	have	a	different	name	than
website).	To	keep	things	simple	for	the	example,	I’ve	put	build	in	the	same	folder	as	the	media	files.

Normally,	I	would	place	the	latter	in	a	separate	folder	named	media	or	the	like.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>HTML5	Media	with	Fallback	Flash	Player</title>
					<script	src="build/jquery.js"></script>
					<script	src="build/mediaelement-and-player.min.js"></script>
					<link	rel="stylesheet"	href="build/mediaelementplayer.min.css"	/>
</head>
<body>

</body>
</html>

	These	files	help	the	make	the	media	player	work	and	style	it	so	it	will	look	the	same	in	every	browser.

	Now	you	have	the	build	folder,	your	webpage,	and	your	media	files.

From	there,	you	may	add	a	video	(and)	or	an	audio	file	(and)	to	your	page.	When
MediaElement.js	is	initialized	by	the	script	in	 	and	 ,	it	automatically	determines	whether	the	browser
should	use	HTML5	native	playback	or	the	Flash	player.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>HTML5	Media	with	Fallback	Flash	Player</title>
					<script	src="build/jquery.js"></script>
					<script	src="build/mediaelement-and-player.min.js"></script>
					<link	rel="stylesheet"	href="build/mediaelementplayer.min.css"	/>
</head>
<body>
<video	width="369"	height="208"	preload="metadata"	controls>
					<source	src="paddle-steamer.mp4"	type="video/mp4">
					<source	src="paddle-steamer.webm"	type="video/webm">
					<p>Your	browser	doesn't	support	HTML5	video	or	Flash,	but	you	can	<a	href="paddle-
steamer.mp4">download	the	video	(MP4,	2.4	MB).</p>
</video>

<!--	Below	all	your	content	-->
<script>
$('video').mediaelementplayer();
</script>
</body>
</html>

	The	video	code	should	be	familiar;	it’s	the	same	method	we	used	earlier	to	list	multiple	sources.	Add
or	remove	other	attributes	to	match	your	needs.	The	script	at	the	bottom	tells	MediaElement.js	to	work

its	magic.

	The	video	controls	will	look	the	same	regardless	of	the	browser	or	whether	the	Flash	version	is	used
to	fill	the	gap	in	browsers	that	don’t	support	HTML5	video.

Click	here	to	view	code	image

...	top	of	page	same	as	Figures	D	and	F	...

<body>
<audio	controls>
					<source	src="piano.ogg"	type="audio/ogg">
					<source	src="piano.mp3"	type="audio/mp3">
					<p>Your	browser	doesn't	support	HTML5	audio	or	Flash,	but	you	can	download	the	audio	file	(MP3,	1.3	MB).</p>
</audio>

<!--	Below	all	your	content	-->
<script>
$('audio').mediaelementplayer();
</script>
</body>
</html>

	The	only	difference	between	the	script	here	and	in	 	is	that	this	one	specifies	audio	instead	of
video.	The	audio	element	code	also	looks	familiar.

	Just	as	with	video,	the	audio	controls	will	look	the	same	regardless	of	the	browser	or	whether	the
Flash	version	displays.

To	get	the	MediaElement.js	files	and	include	them	in	your	site’s	directory
1.	Go	to	http://mediaelementjs.com.	Click	the	Download	Latest	button	to	download	the	ZIP	package.
2.	Locate	the	ZIP	file	on	your	computer.	It’s	common	for	files	to	be	saved	in	the	Downloads	folder
unless	you	specified	a	different	location.	Extract	the	files	(usually	by	double-clicking	the	ZIP	file
name).	You	will	see	a	folder	with	a	name	similar	to	the	one	in	 .

3.	Open	the	folder	to	reveal	the	subfolders.	Copy	the	build	folder	 	and	paste	it	into	your	website
folder	 .

http://mediaelementjs.com

To	add	MediaElement.js	files	to	your	webpage
Your	page	needs	to	load	set	of	specific	files,	whether	you	want	it	to	have	a	fallback	player	for	video,
audio,	or	both.

1.	Create	a	new	HTML	page,	or	open	an	existing	one.
2.	Add	the	highlighted	code	in	 	so	your	page	will	load	the	required	style	sheet	and	JavaScript	files.
3.	Save	the	page	in	the	same	directory	where	you	placed	the	build	folder	 .

To	add	a	Flash	fallback	to	a	video
1.	Obtain	your	video	files.
2.	Type	<video	controls>	to	open	the	video	element	and	include	controls.	Specify	other
attributes,	like	width,	height,	poster,	and	more,	as	desired.

3.	Type	<source	src="my-video.mp4"	type="type/mp4">,	where	my-video.mp4
points	to	the	MP4	video	source	file.

4.	Type	<source	src="my-video.webm"	type="video/webm">,	where	my-
video.webm	points	to	the	WebM	video	source	file.

5.	Create	a	message	and	link	as	desired	for	browsers	that	support	neither	HTML5	video	nor	Flash.
6.	Type	</video>	to	close	the	video	element.
7.	Initialize	the	video	player	by	adding	the	code	highlighted	in	 	to	your	webpage.	Put	the	script
right	before	</body>	even	if	your	page	has	more	content	than	just	the	video.

Now	your	video	reaches	the	widest	audience	possible	 .

To	provide	a	Flash	fallback	for	your	audio
1.	Obtain	your	audio	files.
2.	Type	<audio	controls>	to	open	the	audio	element	with	the	default	control	set.	Specify
other	attributes	as	desired.

3.	Type	<source	src="my-audio.ogg"	type="audio/ogg,	where	my-audio.ogg
points	to	your	the	Ogg	Vorbis	audio	file.

4.	Type	<source	src="my-audio.mp3"	type="audio/mp3">,	where	my-audio.mp3
points	to	your	MP3	audio	file.

5.	Create	a	message	and	link	as	desired	for	browsers	that	support	neither	HTML5	audio	nor	Flash.
6.	Type	</audio>	to	close	the	audio	element.
7.	Initialize	the	audio	player	by	adding	the	code	highlighted	in	 	to	your	webpage.	Put	the	script
right	before	</body>	even	if	your	page	has	more	content	than	just	the	audio.

And	now	your	audio	reaches	the	widest	audience	possible	 .	Two	victories	in	one	day!

Tip
If	your	page	includes	video	and	audio,	change	the	script	at	the	bottom	of	the	page	to	match	
.

Click	here	to	view	code	image

...

<script>
$('audio,video').mediaelementplayer();
</script>
</body>
</html>

	This	initializes	all	audio	and	video	players	on	your	page.

Tip
A	browser	such	as	Internet	Explorer	8	will	use	the	Flash	fallback	player	that	Media-
Element.js	creates.	As	long	as	the	user	has	Flash	installed	and	enabled,	the	video	or	audio
content	will	play.

Tip
The	Flash	version	might	show	a	black	rectangle	instead	of	a	still	of	the	video	if	you	don’t
specify	preload="metadata",	as	I	did	in	 ,	or	a	poster	image	with	poster.
Regardless,	the	black	area	is	replaced	by	the	video	once	playback	begins.

Tip
If	you	specify	the	width	and	height	in	your	video	start	tag,	the	Flash	version	might
letterbox	the	video	(that	is,	put	black	bars	on	the	sides	or	top	and	bottom).	However,	if	you
don’t	specify	the	dimensions,	the	video	might	appear	larger	than	normal	for	an	instant
before	it	snaps	down	to	its	proper	size.

Tip
Video.js	(www.videojs.com),	JW	Player	(www.longtailvideo.com/jw-player/),	and
Flowplayer	(http://flowplayer.org)	are	among	the	other	Flash	fallback	solutions.	The	free
versions	of	JW	Player	and	Flowplayer	display	their	logo	on	the	media	player.

http://www.videojs.com
http://www.longtailvideo.com/jw-player/
http://flowplayer.org

Troubleshooting	Flash	Playback
Flash	has	security	settings	that	may	prevent	your	media	files	from	working	while	testing
your	webpage	on	your	computer—that	is,	when	all	files	are	located	on	your	computer
rather	than	on	your	web	server.
One	way	around	this	is	to	upload	your	MP3	and	MP4	files	to	your	web	server	and	then
reference	those	files	with	absolute	paths	in	the	HTML.
Let’s	say	you	upload	the	files	from	 	to	a	folder	named	media	on	your	server.	You
would	change	the	first	src	value	to	this	(replacing	www.yourdomain.com	with	your
actual	domain):

<source	src="http://www.yourdomain.com/media/paddle-steamer.mp4"
type="video/mp4">

You	would	then	save	your	HTML	page	and	test	it	from	your	computer	(it	doesn’t	need	to	be
on	the	server).	You	can	also	change	the	Flash	security	settings	to	allow	your	local
directory	to	work	with	Flash.	See	http://mediaelementjs.com/#installation.
If	you’re	still	having	trouble,	see	the	sidebar	“Setting	the	MIME	Type,”	earlier	in	this
chapter.

Advanced	Multimedia
Another	great	thing	about	having	native	multimedia	with	HTML5	is	that	it	can	work	with	a	lot	of	the	other
new	features	and	functionality	that	either	come	with	or	are	related	to	HTML5.	This	section	briefly
discusses	two	of	them:	the	canvas	element	and	SVG.

Using	video	with	canvas
The	canvas	element	and	its	corresponding	JavaScript	API	allow	you	to	draw	and	animate	objects	on
your	webpages.
You	can	also	use	the	API	in	conjunction	with	HTML5	video,	because	the	video	element	can	be	treated
just	like	any	other	HTML	element	and	is	therefore	accessible	to	canvas.
With	the	JavaScript	API,	you	can	capture	images	from	a	playing	video	and	redraw	them	in	the	canvas
element	as	an	image,	thus	allowing	you	to,	for	example,	take	screenshots	from	the	video.
You	can	manipulate	individual	image	pixels	via	the	API,	and	since	you	can	create	images	in	canvas
from	your	video,	this	allows	you	to	also	manipulate	the	video	pixels.	For	example,	you	could	convert
them	all	to	grayscale.
This	gives	you	only	a	small	idea	of	what	canvas	can	do	with	the	video	element,	but	a	thorough
discussion	of	it	is	outside	the	scope	of	this	book.

Coupling	video	with	SVG
SVG	(Scalable	Vector	Graphics)	is	another	technology	that	people	have	begun	to	take	more	notice	of	with
the	dawn	of	HTML5.
SVG	has	been	around	for	ages	(since	1999),	but	HTML5	brings	with	it	the	svg	element,	which	allows
SVG	definitions	to	be	embedded	within	the	webpage	itself.
SVG	allows	shapes	and	graphics	to	be	defined	in	XML,	which	the	browser	interprets	and	uses	to	draw
the	actual	shapes.	All	that	the	SVG	definition	contains	is	a	bunch	of	instructions	on	how	and	what	to	draw.

http://mediaelementjs.com/#installation

The	graphics	produced	by	SVG	are	also	vector-based	rather	than	raster-based.	This	means	that	they	scale
well,	because	the	browser	simply	uses	the	drawing	instructions	to	draw	the	shape	to	the	required	size.	By
comparison,	raster	graphics,	like	GIF,	PNG,	and	JPEG	files,	contain	pixel	data.	If	you	want	browsers	to
redraw	an	image	at	a	greater	size	than	the	original,	there	is	not	enough	pixel	data	for	the	new	size.	This
leads	to	a	loss	in	picture	quality.
A	complete	discussion	of	SVG	is	also	well	outside	the	scope	of	this	chapter,	but	it’s	mentioned	here	so
you	know	that	video	can	be	used	in	conjunction	with	SVG	definitions.	Shapes	created	by	SVG	can	be
used	to	mask	videos—that	is,	to	show	only	the	underlying	video	through	the	shape	(a	circle,	for	example).
You	could	also	create	custom	video	controls	that	scale	to	any	size.
There	are	also	a	number	of	SVG	filters	that	you	can	apply	to	HTML5	video,	such	as	black	and	white
conversion,	Gaussian	blurs,	and	color	saturation.

Further	Resources
This	chapter	covered	the	basics	of	HTML5	multimedia.	There’s	a	lot	more	to	learn,	so	here	are	a	number
of	resources	that	you	can	check	out	at	your	leisure.

Online	resources
	“Video	on	the	Web”	(http://diveinto.html5doctor.com/video.html)
	“WebVTT	and	Video	Subtitles”	(www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-
subtitles)
	“An	In-depth	Analysis	of	HTML5	Multimedia	and	Accessibility”
(http://net.tutsplus.com/tutorials/html-css-techniques/an-in-depth-overview-of-html5-multimedia-
and-accessibility/)
	“HTML5	Canvas:	The	Basics”	(http://dev.opera.com/articles/view/html-5-canvas-the-basics)
	“Learning	SVG”	(http://my.opera.com/tagawa/blog/learning-svg)

Books
	Ian	Devlin.	HTML5	Multimedia:	Develop	and	Design.	Peachpit	Press,	2011.
(http://html5multimedia.com)
	Shelley	Powers.	HTML5	Media.	O’Reilly	Media,	2011.
	Silvia	Pfeiffer.	The	Definitive	Guide	to	HTML5	Video.	Apress,	2010.

http://diveinto.html5doctor.com/video.html
http://www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
http://net.tutsplus.com/tutorials/html-css-techniques/an-in-depth-overview-of-html5-multimedia-and-accessibility/
http://dev.opera.com/articles/view/html-5-canvas-the-basics
http://my.opera.com/tagawa/blog/learning-svg
http://html5multimedia.com

18.	Tables

In	This	Chapter
Structuring	Tables
Spanning	Columns	and	Rows

We’re	all	familiar	with	tabular	data	in	our	daily	lives.	It	takes	many	forms,	such	as	financial	data,	event
calendars,	transit	schedules,	and	TV	schedules.	In	most	cases,	this	information	is	presented	in	one	or	more
rows,	with	headers	above	the	columns	or	alongside	the	rows.
The	table	element—along	with	its	child	elements—is	described	in	this	chapter.	I’ll	focus	on	basic	table
structuring	and	styling.	HTML	tables	can	get	quite	complex,	though	you’ll	likely	have	few	occasions	to
implement	them	unless	you	have	a	data-rich	site.	For	advanced	examples,	see	the	following	URLs:

	“Bring	On	the	Tables”	by	Roger	Johansson
(www.456bereastreet.com/archive/200410/bring_on_the_tables/)
	“Accessible	Data	Tables”	by	Roger	Hudson	(www.usability.com.au/resources/tables.cfm)
	“Creating	Accessible	HTML	Tables”	by	Stephen	Ferg	(http://accessiblehtml.sourceforge.net/)

Structuring	Tables
The	kind	of	information	you	put	in	a	spreadsheet	is	usually	suitable	for	structuring	as	an	HTML	table.
At	the	most	fundamental	level,	a	table	element	is	made	up	of	rows	of	cells.	Each	row	(tr)	contains
header	(th)	cells,	data	(td)	cells,	or	both.	You	may	also	provide	a	caption	element	if	you	think	it’ll
help	your	visitors	better	understand	the	table.	The	caption	typically	displays	above	the	table	in	a	browser
and	serves	to	describe	its	purpose.	Furthermore,	the	scope	attribute—also	optional,	but	recommended—
informs	screen	readers	and	other	assistive	devices	that	a	th	is	the	header	for	a	table	column	(when
scope="col"),	a	table	row	(when	scope="row"),	or	a	group	of	columns	or	rows	(see	the	last	tip)	
.

Click	here	to	view	code	image

http://www.456bereastreet.com/archive/200410/bring_on_the_tables/
http://www.usability.com.au/resources/tables.cfm
http://accessiblehtml.sourceforge.net/

...
<body>

<table>
					<caption>Quarterly	Financials	for	1962-1964	(in	Thousands)</caption>
					<tr>
								<th	scope="col">1962</th>
								<th	scope="col">1963</th>
								<th	scope="col">1964</th>
					</tr>
					<tr>
								<td>$145</td>
								<td>$167</td>
								<td>$161</td>
					</tr>
					<tr>
								<td>$140</td>
								<td>$159</td>
								<td>$164</td>
					</tr>
					<tr>
								<td>$153</td>
								<td>$162</td>
								<td>$168</td>
					</tr>
					<tr>
								<td>$157</td>
								<td>$160</td>
								<td>$171</td>
					</tr>
</table>

</body>
</html>

	Each	row	is	marked	by	a	tr	element.	This	very	simple	table	has	one	row	that	contains	the	headers	(the
th	elements)	and	three	more	rows	with	cells	of	data	(the	td	elements).	I’ve	also	included	a	caption,

although	this	is	optional	(see	the	first	tip).

By	default,	browsers	display	tables	only	as	wide	as	their	information	demands	within	the	available	space
on	the	page	 .	As	you	would	expect,	you	can	change	table	formatting	with	CSS,	as	I’ll	demonstrate
shortly.

	By	default,	th	text	is	bold,	th	text	and	caption	text	are	centered,	and	the	table	is	only	as	wide	as
its	content	demands.

The	table	in	 	is	missing	something.	How	do	you	know	what	each	row	of	data	represents?	It	would	be
easier	to	tell	if	the	table	also	had	headers	alongside	each	row.	Adding	those	is	simply	a	matter	of	adding	a
th	as	the	first	element	in	each	row.	And	whereas	the	column	headers	have	scope="col",	each	row	th
that	precedes	a	td	is	given	scope="row"	 .
Click	here	to	view	code	image

...
<body>

<table>
					<caption>Quarterly	Financials	for	1962-1964	(in	Thousands)</caption>
					<thead>	<!--	table	head	-->
								<tr>
											<th	scope="col">Quarter</th>
											<th	scope="col">1962</th>
											<th	scope="col">1963</th>
											<th	scope="col">1964</th>
								</tr>
					</thead>
					<tbody>	<!--	table	body	-->
								<tr>
											<th	scope="row">Q1</th>
											<td>$145</td>
											<td>$167</td>
											<td>$161</td>
								</tr>
								<tr>
											<th	scope="row">Q2</th>
											<td>$140</td>
											<td>$159</td>
											<td>$164</td>
								</tr>
								...	[Q3	and	Q4	rows]	...
					</tbody>
					<tfoot>	<!--	table	foot	-->
								<tr>
											<th	scope="row">TOTAL</th>
											<td>$595</td>
											<td>$648</td>
											<td>$664</td>
								</tr>
					</tfoot>
</table>

</body>
</html>

	I	defined	the	table’s	sections	explicitly	with	thead,	tbody,	and	tfoot.	Next,	I	added	a	th	at	the
beginning	of	each	row;	the	ones	in	the	tbody	and	tfoot	have	scope="row"	to	indicate	that	they	are

row	headers.	The	table	now	displays	as	shown	in	 .

	The	table	has	both	column	and	row	headers.	The	caption	is	wider	than	it	was	in	 	because	the	table
itself	is	wider	with	the	new	column.

I	also	used	 	as	an	opportunity	to	introduce	a	few	other	elements	that	are	specific	to	defining	tables:
thead,	tbody,	and	tfoot.	The	thead	element	explicitly	marks	a	row	or	rows	of	headers	as	the	table
head	section.	The	tbody	element	surrounds	all	the	data	rows.	The	tfoot	element	explicitly	marks	a
row	or	rows	as	the	table	foot	section.	You	could	use	tfoot	to	include	column	calculations,	like	in	 ,	or
to	repeat	the	thead	headings	for	a	long	table,	such	as	in	a	train	schedule	(some	browsers	may	also	print
the	tfoot	and	thead	elements	on	each	page	if	a	table	is	multiple	printed	pages	long).	The	thead,
tbody,	and	tfoot	elements	don’t	affect	the	layout	and	are	not	required—although	I	recommend	using
them	to	mark	those	sections	explicitly	when	they	exist—but	tbody	is	required	whenever	you	include	a
thead	or	tfoot.	You	can	also	target	styles	to	all	three	of	them.

To	structure	a	table
1.	Type	<table>.
2.	If	desired,	type	<caption>caption	content</caption>,	where	caption	content
describes	your	table.

3.	If	desired,	before	the	first	tr	element	of	the	section	you	want	to	create,	type	<thead>,
<tbody>,	or	<tfoot>,	as	appropriate.	(To	clarify,	a	<tbody>	cannot	precede	<thead>.)

4.	Type	<tr>	to	define	the	beginning	of	a	row.
5.	Type	<th	scope="scopetype">	to	begin	a	header	cell	(where	scopetype	is	col,	row,
colgroup,	or	rowgroup),	or	type	<td>	to	define	the	beginning	of	a	data	cell.

6.	Type	the	contents	of	the	cell.
7.	Type	</th>	to	complete	a	header	cell,	or	type	</td>	to	complete	a	data	cell.
8.	Repeat	steps	5	through	7	for	each	cell	in	the	row.
9.	Type	</tr>	to	complete	the	row.
10.	Repeat	steps	4	through	9	for	each	row	in	the	section.
11.	If	you	started	a	section	in	step	3,	close	the	section	with	</thead>,	</tbody>,	or	</tfoot>,

as	appropriate.
12.	Repeat	steps	3	through	11	for	each	section.	Note	that	a	table	may	have	only	one	thead	and
tfoot	but	may	have	multiple	tbody	elements.

13.	To	finish	the	table,	type	</table>.
Tables	can	appear	a	little	squished	by	default	 .	By	applying	some	basic	CSS	 ,	you	can	add	space	in
the	cells	to	spread	things	out	(via	padding),	add	borders	to	indicate	cell	boundaries	(via	border),	and
format	text,	all	of	which	will	improve	your	table’s	legibility	 .
Click	here	to	view	code	image

body	{
					font:	100%	"Courier	New",	Courier,	monospace;
}

table	{
					border-collapse:	collapse;
}

caption	{
					font-size:	.8125em;
					font-weight:	bold;
					margin-bottom:	.5em;
}

th,
td	{
					font-size:	.875em;
					padding:	.5em	.75em;
}

td	{
					border:	1px	solid	#000;
}

tfoot	{
					font-style:	italic;
					font-weight:	bold;
}

	This	simple	style	sheet	adds	a	border	to	each	data	cell,	and	padding	within	the	header	and	data	cells.	It
also	formats	the	table	caption	and	content.	Without	border-collapse:	collapse;	defined	on	the
table,	a	space	would	appear	between	the	border	of	each	td	and	the	border	of	its	adjacent	td	(the	default
setting	is	border-collapse:	separate;).	You	can	apply	borders	to	th	elements	too,	as	shown

in	the	next	section.

	Now	the	table	has	headers	for	the	columns	and	rows,	and	it	has	a	row	with	column	totals,	which	are
enclosed	in	a	tfoot	element.	HTML	isn’t	smart	enough	to	calculate	those	totals	for	you,	so	be	sure	to

enter	the	correct	numbers	in	your	code!

Tip
If	you	include	the	caption	element,	it	must	be	the	first	element	inside	the	table	
(caption	may	also	include	p	and	other	text	elements).

Tip
A	tbody	is	required	whenever	you	include	a	thead	or	tfoot.	A	tbody	cannot
precede	thead.	A	table	may	have	only	one	thead	and	tfoot	but	may	have	multiple
tbody	elements.

Tip
If	table	is	the	only	element	other	than	figcaption	nested	in	a	figure	element,	omit
the	caption	element	and	describe	the	table	with	figcaption	instead	(see
“Creating	a	Figure”	in	Chapter	4).	To	clarify,	don’t	nest	figcaption	in	table,	but	in
figure	(as	you	usually	would).

Tip
Although	not	shown	in	the	CSS	example	 ,	you	can	define	a	background,	a	width,
and	more	in	your	style	sheet	for	the	table,	td,	or	th	elements.	In	short,	most	of	the	text
and	other	formatting	you	use	to	style	other	HTML	elements	applies	to	tables	too	(see	the
next	section	for	an	example).	You	may	notice	slight	display	differences	among	browsers,
especially	Internet	Explorer.

Tip
You	can	assign	the	scope	attribute	to	a	th	that	is	the	header	for	an	entire	group	of
columns	(scope="colgroup")	or	an	entire	group	of	rows	(scope="rowgroup").
See	an	example	of	the	latter	in	the	next	section.

Spanning	Columns	and	Rows
You	may	span	a	th	or	td	across	more	than	one	column	or	row	with	the	colspan	and	rowspan
attributes,	respectively.	The	number	you	assign	to	the	attributes	specifies	the	number	of	cells	they	span	(
and).
Click	here	to	view	code	image

...
<body>

<table>
					<caption>TV	Schedule</caption>
					<thead>	<!--	table	head	-->
								<tr>
											<th	scope="rowgroup">Time</th>
											<th	scope="col">Mon</th>
											<th	scope="col">Tue</th>
											<th	scope="col">Wed</th>
								</tr>
					</thead>
					<tbody>	<!--	table	body	-->
								<tr>
											<th	scope="row">8	pm</th>
											<td>Staring	Contest</td>
											<td	colspan="2">Celebrity	Hoedown</td>
								</tr>
								<tr>
											<th	scope="row">9	pm</th>
											<td>Hardy,	Har,	Har</td>
											<td>What's	for	Lunch?</td>
											<td	rowspan="2">Screamfest	Movie	of	the	Weak</td>
								</tr>
								<tr>
											<th	scope="row">10	pm</th>
											<td>Healers,	Wheelers	&	Dealers</td>
											<td>It's	a	Crime</td>
								</tr>
					</tbody>
</table>

</body>
</html>

	I’ve	indicated	that	Celebrity	Hoedown	runs	on	both	Tuesday	and	Wednesday	at	8	p.m.	by	applying
colspan="2"	to	the	td	that	contains	the	show.	Similarly,	I	added	rowspan="2"	to	the	td

containing	Screamfest	Movie	of	the	Weak,	because	it	runs	for	two	hours.	Note	that	the	Time	th	has
scope="rowgroup"	because	it	is	the	header	for	every	header	in	the	group	of	row	headers	directly

beneath	it.

	It	may	have	been	hard	to	tell	by	glancing	at	the	code,	but	in	the	browser	it’s	clear	how	colspan	and
rowspan	affect	the	table’s	display.	The	CSS	style	sheet	I	used	for	this	table	is	available	at

www.htmlcssvqs.com/8ed/18.

To	span	a	cell	across	two	or	more	columns
1.	When	you	get	to	the	point	at	which	you	need	to	define	the	cell	that	spans	more	than	one	column,	type
<th	followed	by	a	space	if	the	cell	is	a	header,	or	type	<td	followed	by	a	space	for	a	data	cell.

2.	Type	colspan="n">,	where	n	equals	the	number	of	columns	the	cell	should	span.
3.	Type	the	cell’s	contents.
4.	Type	</th>	if	you	started	a	header	cell	in	step	1,	or	type	</td>	if	you	started	a	data	cell.
5.	Complete	the	rest	of	the	table	as	described	in	“Structuring	Tables.”	If	you	create	a	cell	with	a
colspan	of	2,	you	will	need	to	define	one	cell	fewer	in	that	row;	if	you	create	a	cell	with	a
colspan	of	3,	you	will	need	to	define	two	cells	fewer	in	that	row;	and	so	on.

To	span	a	cell	across	two	or	more	rows
1.	When	you	get	to	the	point	at	which	you	need	to	define	the	cell	that	spans	more	than	one	row,	type
<th	followed	by	a	space	if	the	cell	is	a	header,	or	type	<td	followed	by	a	space	for	a	data	cell.

2.	Type	rowspan="n">,	where	n	equals	the	number	of	rows	the	cell	should	span.
3.	Type	the	cell’s	contents.
4.	Type	</th>	if	you	started	a	header	cell	in	step	1,	or	type	</td>	if	you	started	a	data	cell.
5.	Complete	the	rest	of	the	table	as	described	in	“Structuring	Tables.”	If	you	define	a	cell	with	a
rowspan	of	2,	you	will	not	need	to	define	the	corresponding	cell	in	the	next	row;	if	you	define	a
cell	with	a	rowspan	of	3,	you	will	not	need	to	define	the	corresponding	cells	in	the	next	two	rows;
and	so	on.

Tip
Each	row	in	a	table	must	have	the	same	number	of	cells	defined.	Cells	that	span	across
columns	count	for	as	many	cells	as	the	value	of	their	colspan	attribute.

http://www.htmlcssvqs.com/8ed/18

Tip
Each	column	in	a	table	must	have	the	same	number	of	cells	defined.	Cells	that	span	across
rows	count	for	as	many	cells	as	the	value	of	their	rowspan	attribute.

19.	Adding	JavaScript

In	This	Chapter
Loading	an	External	Script
Adding	an	Embedded	Script
JavaScript	Events

While	HTML	defines	your	webpage’s	content	and	CSS	defines	the	way	it	looks,	JavaScript	defines
special	behavior.	You	can’t	build	a	site	without	HTML	(or	CSS	if	you	want	it	to	look	appealing),	but
JavaScript	is	not	required.	In	most	cases,	JavaScript	features	enhance	your	visitor’s	experience—they
add	to	the	core	experience	defined	by	your	HTML	and	CSS.	(See	“Progressive	Enhancement:	A	Best
Practice”	in	the	book’s	introduction.)
You	can	write	simple	JavaScript	programs	to	show	and	hide	content,	and	you	can	write	more	complicated
ones	that	load	data	and	update	your	page	while	your	visitor	is	viewing	it.	You	can	build	carousels	and
slideshows	like	those	on	news	sites,	drive	custom	HTML5	audio	and	video	element	player	controls,
and	create	games	that	use	HTML5’s	canvas	element.	You	can	use	geolocation	to	customize	your
visitor’s	experience	based	on	where	they	are,	or	allow	them	to	drag	and	drop	files	onto	the	browser
window	for	uploading	(Dropbox’s	website	is	one	example	that	does	this).	And	you	can	write	full-blown
web	applications	with	JavaScript	that	leverage	some	of	the	most	powerful	features	in	HTML5	and	related
technologies	(they’re	advanced	topics,	so	they	aren’t	covered	in	this	book).
As	you	can	see,	JavaScript	has	quite	a	range	of	possibilities,	and	its	use	has	exploded.	JavaScript
libraries	like	jQuery	(jquery.com)	have	made	it	easier	to	add	simple	interactivity	and	sophisticated
behavior	to	pages.	Although	there	are	other	libraries	with	similar	goals,	jQuery	enjoys	the	most
widespread	use	by	far,	largely	because	beginners	find	it	easier	to	learn,	it	has	good	online	documentation,
and	it	has	a	large	community	behind	it.	Beyond	the	likes	of	jQuery,	various	JavaScript	frameworks	have
surfaced	that	help	you	build	and	maintain	large	web	applications.	Heck,	using	Node.js
(http://nodejs.org),	you	can	even	create	a	web	server	with	JavaScript.
Browser	vendors	have	spent	considerable	time	making	their	browsers	process	JavaScript	significantly
faster	than	their	versions	of	even	just	a	few	years	ago.	JavaScript	also	works	in	tablet	and	modern	mobile
browsers,	though	for	performance	reasons	you’ll	want	to	be	smart	about	how	much	you	load	in	pages	for
these	devices.
Alas,	JavaScript	is	its	own	large	topic,	so	we	won’t	cover	it	in	this	book.	In	this	chapter,	I’ll	stick
primarily	to	explaining	how	to	insert	created	scripts	into	your	HTML	documents.	I’ll	also	pass	along
some	advice	about	how	to	do	that	in	a	way	that	minimizes	the	impact	on	your	page’s	display	time.	And	I’ll
show	you	a	sample	script,	as	well	as	a	tiny	look	at	JavaScript	event	handlers.
I	encourage	you	to	learn	JavaScript	(and	also	jQuery)	once	you	feel	comfortable	with	HTML	and	CSS.
Eloquent	JavaScript	by	Marijn	Haverbeke	is	one	good	place	to	start.	The	original	version	is	available
for	free	at	http://eloquentjavascript.net;	there	is	also	a	revised	printed	edition.	JavaScript	Garden
(http://bonsaiden.github.io/JavaScript-Garden/)	by	Ivo	Wetzel	and	Zhang	Yi	Jiang	is	a	free,	concise
resource	for	learning	some	of	JavaScript’s	quirks	and	finer	points	once	you	have	a	general	understanding
of	the	language.
JavaScript	is	more	complicated	than	HTML	and	CSS,	so	don’t	be	discouraged	if	it	takes	you	longer	to
learn	it.	As	with	anything,	the	more	you	work	with	it,	the	more	you’ll	get	a	feel	for	it.

http://jquery.com
http://nodejs.org
http://eloquentjavascript.net
http://bonsaiden.github.io/JavaScript-Garden/

Loading	an	External	Script
There	are	two	primary	kinds	of	scripts:	those	that	you	load	from	an	external	file	(in	text-only	format)	and
those	that	are	embedded	in	your	page	(covered	in	the	next	section).	It’s	the	same	concept	as	external	and
embedded	style	sheets.
And	just	as	with	adding	style	sheets	to	your	pages,	it’s	generally	better	to	load	scripts	from	an	external
file	 	than	to	embed	them	in	your	HTML.	You	reap	some	of	the	same	benefits,	in	that	a	single	JavaScript
file	can	be	loaded	by	each	page	that	needs	it.	You	can	edit	one	script	rather	than	updating	similar	scripts
in	individual	HTML	pages.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Loading	an	External	Script</title>
					<link	rel="stylesheet"	href="css/global.css"	/>
</head>
<body>
...	All	of	your	HTML	content	is	here	...

<script	src="behavior.js"></script>
</body>
</html>

	The	src	attribute	of	the	script	element	references	the	script’s	URL.	Most	of	the	time,	it	is	best	to
load	scripts	at	the	very	end	of	your	page,	just	before	the	</body>	end	tag.	You	may	also	load	scripts	in
your	page’s	head	element	 ,	but	it	can	affect	how	quickly	your	page	displays.	See	the	“Scripting	and

Performance	Best	Practices”	sidebar	for	more	information.

Whether	loading	an	external	script	or	embedding	a	script,	you	use	the	script	element.

To	load	an	external	script
Type	<script	src="script.js"></script>,	where	script.js	is	the	location	on	the	server
and	the	file	name	of	the	external	script.	Place	each	script	element	directly	before	the	</body>	end	tag
whenever	possible	 ,	instead	of	in	the	document’s	head	element	 .
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Loading	an	External	Script</title>
					<!--	Load	style	sheets	before	any	JS	files	-->
					<link	rel="stylesheet"	href="css/global.css"	/>
					<script	src="behavior.js"></script>
</head>
<body>
...	All	of	your	HTML	content	is	here	...
</body>
</html>

	This	example	shows	a	script	loaded	in	the	head	instead.	It	is	after	the	link	element,	so	it	won’t
block	the	CSS	file	from	beginning	to	load	sooner.	See	the	“Scripting	and	Performance	Best	Practices”

sidebar	to	learn	why	you	want	to	minimize	how	often	you	load	scripts	from	the	head.

Tip
To	keep	your	files	organized,	it’s	common	to	place	your	JavaScript	files	in	a	sub-folder
(js	and	scripts	are	popular	names);	see	“Organizing	Files”	in	Chapter	2.	Your	src
attribute	values	would	need	to	reflect	this,	just	like	any	URL	that	points	to	a	resource.	For
instance,	if	the	JavaScript	file	referenced	in	 	were	in	a	folder	named	js	that	is	itself	in	a
folder	named	assets,	you	could	type	<script
src="assets/js/behavior.js"></script>.	(That’s	just	one	example;	there
are	other	ways	to	represent	the	URL.	See	“URLs”	in	Chapter	1.)

Tip
A	sample	piece	of	JavaScript	is	shown	in	 .	Because	JavaScript	is	just	text,	you	can
write	it	in	the	same	editor	you	use	to	create	your	HTML	and	CSS.	If	this	example	were
saved	in	a	file	named	behavior.js,	it	would	load	into	the	pages	shown	in	 	and	 .

Click	here	to	view	code	image

/*
	*	If	visitor	chooses	the	Other	radio
	*	button,	the	textarea	is	enabled
	*	and	the	cursor	is	placed	in	it	so
	*	visitor	can	start	typing.	Choosing
	*	any	remaining	radio	button
	*	disables	the	textarea.
	*/

(function	(window,	document)	{
					'use	strict';

					var	choices	=	document.getElementById('choices'),
								textarea	=	document.getElementById('other-description');

					if	(!choices	||	!textarea)	{
								return;
					}

					//	Disable	textarea	by	default
					textarea.disabled	=	true;

					//	Add	behavior	to	radio	buttons
					choices.onclick	=	function(e)	{
								var	target,
											e;

								if	(!e)	{
											e	=	window.event;
								}

								target	=	e.target	||	e.srcElement;

								//	Toggle	textarea	based	on
								//			radio	button	chosen
								if	(target.getAttribute('type')	===	'radio')	{
											if	(target.id	!==	'other')	{
															textarea.disabled	=	true;
											}	else	{
															textarea.disabled	=	false;
															textarea.focus();
											}
								}
					};
}(window,	document));

	As	you	can	see,	JavaScript	is	very	different	than	HTML	and	CSS!	This	is	nearly	identical	to
the	toggle-textarea.js	script	I	reference	in	the	Chapter	16	section	“Disabling	Form
Elements.”	The	example	on	the	companion	website	contains	additional	comments	that	explain
more	about	how	the	script	works	(www.htmlcssvqs.com/8ed/19).	Even	so,	I	don’t	attempt	to

explain	every	facet	of	the	code,	and	it’s	a	lot	to	digest	if	you’re	new	to	JavaScript.	I	provide	the
example	primarily	to	give	you	a	glimpse	of	the	language.

http://www.htmlcssvqs.com/8ed/19

Tip
Your	page	may	load	multiple	JavaScript	files	and	contain	multiple	embedded	scripts	(see	
	in	“Adding	an	Embedded	Script”).	By	default,	browsers	will	load	scripts	(when

necessary)	and	execute	scripts	in	the	order	in	which	they	appear	in	your	HTML.	See	the
“Scripting	and	Performance	Best	Practices”	sidebar	to	learn	why	you	should	avoid
multiple	scripts	when	possible	and	how	to	minify	them	 .

Click	here	to	view	code	image

(function(e,c){var	d=c.getElementById("choices"),b=c.getElementById("other-
description");d&&b&&(b.disabled=!0,d.onclick=function(a){a||
(a=e.event);a=a.target||a.srcElement;"radio"===a.getAttribute("type")&&
("other"!==a.id?b.disabled=!0:(b.disabled=!1,b.focus()))})})(window,document);

	Yep,	this	is	the	same	script	as	 ,	just	minified.	It	might	look	like	a	cat	ran	over	your	keyboard,
but	browsers	understand	it	just	fine.

Tip
You	can	specify	any	valid	file	names	you’d	like	for	your	external	scripts	as	long	as	they
have	the	.js	extension.	It’s	customary	to	give	minified	scripts	a	.min.js	extension	so
you	can	distinguish	easily	between	the	normal	files	and	the	condensed	ones.	Keep	both
files	on	hand—update	your	scripts	in	the	normal	file	(because	it’s	easier	for	you	to	read),
but	use	the	minified	version	on	your	site	(because	it’s	faster	for	the	browser).	And	don’t
forget	to	generate	a	new	minified	file	when	you	update	your	script;	otherwise,	visitors	will
get	the	old	version.

Tip
If	you	create	a	minified	file,	be	sure	to	change	the	reference	to	your	script	in	your	HTML.
For	example,	<script	src="behavior.min.js"></script>.	Otherwise,	your
page	will	continue	to	load	the	normal	file	and	your	visitors	won’t	reap	the	benefits	of	the
smaller	file.	You	can	change	the	src	back	to	the	normal	file	name	while	you’re	working
on	changes	to	your	script.

Tip
Browsers	that	don’t	understand	JavaScript	(these	are	admittedly	rare)	or	that	have	it
disabled	by	the	user	will	ignore	your	JavaScript	file.	So	be	sure	that	your	page	doesn’t
rely	on	JavaScript	to	provide	users	access	to	its	content	and	basic	experience.	(Web
applications	that	rely	heavily	on	JavaScript	are	often	an	exception.)

Scripting	and	Performance	Best	Practices
A	full	discussion	of	best	practices	pertaining	to	scripts	and	page	performance	is	beyond	the
scope	of	this	book,	but	I’ll	touch	on	a	few	points	that	are	high	impact.

First,	it	helps	to	understand	how	a	browser	handles	scripts.	As	a	page	loads,	by	default	the
browser	downloads	(for	external	scripts),	parses,	and	executes	each	script	in	the	order	in
which	it	appears	in	your	HTML.	As	it’s	processing,	the	browser	neither	downloads	nor
displays	any	content	that	appears	after	the	script	element—not	even	text.	This	is	known
as	blocking	behavior.
This	is	true	for	embedded	and	external	scripts,	and	as	you	can	imagine,	it	can	really	affect
how	quickly	your	page	displays,	depending	on	the	size	of	your	script	and	what	actions	it
performs.
Most	browsers	do	this	because	your	JavaScript	may	include	code	on	which	another	script
relies,	code	that	generates	page	content	immediately,	or	code	that	otherwise	alters	your
page.	Browsers	need	to	take	all	of	that	into	account	before	they	finish	rendering	your
webpage.
So	how	do	you	avoid	this?	The	easiest	technique	to	make	your	JavaScript	non-blocking	is
to	put	all	script	elements	at	the	end	of	your	HTML,	right	before	the	</body>	end	tag	
.

If	you’ve	spent	even	a	little	time	viewing	HTML	source	on	others’	sites,	no	doubt	you’ve
also	seen	scripts	loaded	in	the	head	element.	Outside	of	the	occasional	instance	where
that	may	be	necessary,	it’s	considered	a	dated	practice	that	you	should	avoid	whenever
possible.	(One	case	in	which	it	is	necessary	is	loading	the	HTML5	shiv,	as	described	in
Chapter	11.)	If	you	do	load	scripts	in	the	head,	place	them	after	all	link	elements	that
load	CSS	files	(again,	for	performance	reasons).
Another	quick	way	to	speed	up	your	script	loading	is	to	combine	all	your	JavaScript	into	a
single	file	(or	into	as	few	files	as	possible)	and	minify	the	code.	Typically,	minified	code
doesn’t	have	line	breaks,	comments,	or	extra	whitespace	(among	other	possible	differences
from	un-minified	code).	Imagine	writing	the	code	in	one	long	line	without	ever	pressing
Return	or	Enter,	and	you’ll	get	the	idea	 .
You	may	use	tools	such	as	the	following	to	minify	your	scripts	(the	“download	and
documentation”	links	are	provided	primarily	for	advanced	usage):
	Google	Closure	Compiler	(use	the	second	link):
http://code.google.com/closure/compiler/	(download	and	documentation)	http://closure-
compiler.appspot.com	(online	version	of	tool)
	UglifyJS	(use	the	second	link):	https://github.com/mishoo/UglifyJS2	(download	and
documentation)	http://lisperator.net/uglifyjs/	(online	version	of	tool,	choose	“Open
demo”)
	YUI	Compressor	(use	the	second	link):	http://developer.yahoo.com/yui/compressor/
(download	and	documentation)	http://refresh-sf.com/yui/	(unofficial	online	version	of
tool)

Each	will	reduce	your	file	size,	but	results	will	vary	from	script	to	script.	Keep	in	mind
that	sometimes	minifiers	can	be	a	little	too	aggressive	and	accidentally	break	your	script,
so	it’s	important	to	test	your	page	after	you	include	a	minified	script.	Also,	it’s	generally
faster	for	a	browser	to	load	one	file	than	two	(or	more),	even	if	the	single	file	is	larger
than	the	combined	size	of	the	individual	files	(unless	the	one	file	is	much	larger).
Those	are	two	common	and	powerful	methods	for	reducing	the	impact	of	scripts	on	your

http://code.google.com/closure/compiler/
http://closure-compiler.appspot.com
https://github.com/mishoo/UglifyJS2
http://lisperator.net/uglifyjs/
http://developer.yahoo.com/yui/compressor/
http://refresh-sf.com/yui/

page-rendering	speed,	but	they	only	scratch	the	surface	of	what’s	possible.	For	in-depth
discussions	of	script-loading	methods	and	optimization,	I	highly	recommend	Even	Faster
Web	Sites	(O’Reilly	Media,	2009)	by	Steve	Souders,	as	well	as	his	site,
www.stevesouders.com.	Be	forewarned—some	of	the	discussions	get	a	little	technical.

Tip
Technically,	there	is	a	third	way	to	add	JavaScript	to	a	page:	inline	scripts.	An	inline
script	is	a	small	bit	of	JavaScript	assigned	to	certain	element	attributes	directly	in	your
HTML.	I	hesitate	to	mention	them	except	to	point	out	that	you	should	avoid	using	them,	just
as	you	would	avoid	inline	style	sheets.	Just	as	inline	style	sheets	mix	your	HTML	and	CSS,
inline	scripts	inextricably	intertwine	your	HTML	and	JavaScript,	rather	than	keeping	them
separate	per	best	practices.

Adding	an	Embedded	Script
An	embedded	script	exists	in	your	HTML	document,	much	in	the	way	an	embedded	style	sheet	does.	An
embedded	script	is	contained	in	a	script	element	 .	Embedding	a	script	is	not	the	preferred	method
(see	“Loading	an	External	Script”),	but	sometimes	it’s	necessary.
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Adding	an	Embedded	Script</title>
					<link	rel="stylesheet"	href="css/global.css"	/>
</head>
<body>
...	All	of	your	HTML	content	is	here	...

<script>
/*
Your	JavaScript	code	goes	here
*/
</script>
</body>
</html>

	An	embedded	script	doesn’t	have	a	src	attribute.	Instead,	the	code	is	in	the	page.	If	you	embed	a
script,	do	so	directly	before	the	</body>	end	tag	whenever	possible.	It’s	also	possible	to	embed	a

script	in	the	head	 ,	but	it’s	less	desirable	from	a	performance	standpoint.
Click	here	to	view	code	image

http://www.stevesouders.com

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Loading	an	External	Script</title>
					<!--	Load	style	sheets	before	any	JS	files	-->
					<link	rel="stylesheet"	href="global.css"	/>

					<script>
					/*
					Your	JavaScript	code	goes	here
					*/
					</script>
</head>
<body>
...	All	of	your	HTML	content	is	here	...
</body>
</html>

	This	example	shows	a	script	embedded	in	the	head.	It	appears	after	the	link	element	so	that	the
style	sheet	will	load	faster.	See	the	“Scripting	and	Performance	Best	Practices”	sidebar	in	the	previous

section	to	learn	why	you	should	minimize	how	often	you	embed	scripts	in	the	head.

To	add	an	embedded	script
1.	In	your	HTML	document,	type	<script>.
2.	Type	the	content	of	the	script.
3.	Type	</script>.

Tip
Each	script	element	is	processed	in	the	order	in	which	it	appears	in	the	HTML,	whether
it’s	an	embedded	script	or	an	external	one	(see	“Loading	an	External	Script”).

Tip
Even	though	the	script	element	requires	an	end	tag	(</script>),	you	cannot	embed
code	between	it	and	the	start	tag	when	a	src	attribute	is	present	(see	“Loading	an	External
Script”).	In	other	words,	<script	src="your-functions.js">Some	other
functions	in	here</script>	is	invalid.	Any	given	script	element	may	either
load	an	external	script	with	src,	or	embed	a	script	and	not	have	a	src.

JavaScript	Events
In	this	chapter’s	introduction,	I	noted	that	diving	into	JavaScript	was	beyond	the	scope	of	the	book.
However,	I	do	want	to	give	you	a	tiny	peek	at	JavaScript	events	so	you’ll	have	a	basic	sense	of	what
JavaScript	can	do	for	you.
You	can	write	JavaScript	to	respond	to	specific,	predefined	events	that	either	your	visitor	or	the	browser
triggers.	The	list	that	follows	is	just	a	small	sample	of	the	event	handlers	(as	they	are	known)	available	to
you	when	you	write	scripts.	HTML5	introduces	numerous	other	ones,	many	of	which	revolve	around
events	related	to	the	audio	and	video	elements.	Touchscreen	devices	have	gotten	in	on	the	action	too,

with	special	touch-based	event	handlers.
Please	note	that	“mouse”	in	this	list	means	“any	pointing	device.”	For	example,	onmousedown	occurs	if
a	visitor	uses	a	digital	pen,	an	actual	mouse,	or	a	similar	device.

	onblur.	The	visitor	leaves	an	element	that	was	previously	in	focus	(see	onfocus).
	onchange.	The	visitor	modifies	the	value	or	contents	of	the	element.	This	is	most	commonly	used
on	form	fields	(see	Chapter	16	for	more	on	forms).
	onclick.	The	visitor	clicks	the	specified	area	or	hits	the	Return	or	Enter	key	while	focused	on	it
(like	on	a	link).
	ondblclick.	The	visitor	double-clicks	the	specified	area.
	onfocus.	The	visitor	selects,	clicks,	or	tabs	to	the	specified	element.
	onkeydown.	The	visitor	presses	down	on	a	key	while	in	the	specified	element.
	onkeypress.	The	visitor	presses	down	and	lets	go	of	a	key	while	in	the	specified	element.
	onkeyup.	The	visitor	lets	go	of	a	key	after	typing	in	the	specified	element.
	onload.	The	browser	finishes	loading	the	page,	including	all	external	files	(images,	style	sheets,
JavaScript,	and	so	on).
	onmousedown.	The	visitor	presses	the	mouse	button	down	over	the	specified	element.
	onmousemove.	The	visitor	moves	the	mouse	cursor.
	onmouseout.	The	visitor	moves	the	mouse	away	from	the	specified	element	after	having	been
over	it.
	onmouseover.	The	visitor	points	the	mouse	at	the	element.
	onmouseup.	The	visitor	lets	the	mouse	button	go	after	having	clicked	the	element	(the	opposite	of
onmousedown).
	onreset.	The	visitor	clicks	the	form’s	reset	button	or	presses	the	Return	or	Enter	key	while
focused	on	the	button.
	onselect.	The	visitor	selects	one	or	more	characters	or	words	in	the	element.
	onsubmit.	The	visitor	clicks	the	form’s	submit	button	or	presses	the	Return	or	Enter	key	while
focused	on	the	button.

You	can	see	a	complete	list	of	HTML5	event	handlers	at	http://dev.w3.org/html5/spec-author-
view/global-attributes.html.	The	touch-based	event	handlers	that	some	touchscreen	devices	(like
smartphones	and	tablets)	contain	include	touchstart,	touchend,	and	touchmove
(www.w3.org/TR/touch-events/).

http://dev.w3.org/html5/spec-author-view/global-attributes.html
http://www.w3.org/TR/touch-events/

20.	Testing	&	Debugging	Webpages

In	This	Chapter
Validating	Your	Code
Testing	Your	Pages
Trying	Some	Debugging	Techniques
Checking	the	Easy	Stuff:	General
Checking	the	Easy	Stuff:	HTML
Checking	the	Easy	Stuff:	CSS
When	Images	Don’t	Display

So	you	are	working	on	a	page	and	fire	it	up	in	your	browser	only	to	find	that	it	doesn’t	look	anything	like
you	expected.	Or	it	doesn’t	display	at	all.	Or	maybe	it	looks	great	in	one	browser,	but	when	you	check	it
in	another,	something	is	a	little	off.
Between	HTML,	CSS,	and	the	multitude	of	browsers	(especially	older	versions	of	Internet	Explorer)	and
devices,	it’s	easy	to	have	trouble	here	and	there.	This	chapter	will	alert	you	to	some	common	errors	and
will	also	help	you	weed	out	your	own.
Some	of	these	debugging	techniques	will	seem	pretty	basic,	but	problems	with	webpages	are	often	pretty
basic	too.	So	make	sure	you	didn’t	overlook	something	simple	before	you	go	digging	too	deep	in	search	of
the	problem.
Regardless,	you	should	test	your	site	thoroughly	on	a	few	browsers	to	see	if	each	page	works	the	way	you
want	it	to,	as	explained	in	“Testing	Your	Pages.”

Validating	Your	Code
Code	validators	point	you	to	the	source	of	an	error	 	in	your	HTML	 	and	CSS	so	you	don’t	have	to
hunt	it	down	on	your	own.	An	HTML	validator	compares	your	code	against	the	rules	of	the	language,
displaying	errors	or	warnings	for	any	inconsistencies	it	finds.	It	will	alert	you	to	syntax	errors;	invalid
elements,	attributes,	and	values;	and	improper	nesting	of	elements	 .	It	can’t	tell	if	you’ve	marked	up
your	content	with	the	elements	that	best	describe	it,	so	it’s	still	up	to	you	to	write	semantic	HTML	(see
“HTML:	Markup	with	Meaning”	in	Chapter	1).

	Oops.	Something	is	amiss—that	text	below	the	heading	isn’t	supposed	to	be	so	big.	I’ve	already
looked	through	my	CSS	to	rule	out	that	it’s	coming	from	an	unintentionally	large	font-size	setting.

What’s	the	problem?

	I’ve	pasted	the	URL	I	want	to	check	in	the	Address	field.	I	also	selected	the	Show	Source	option,	so
my	HTML	source	code	will	appear	underneath	any	errors	the	validator	catches,	with	the	errant	parts	of

the	HTML	highlighted.

	The	error	found	on	Line	10	is	the	problem—instead	of	an	</h1>	end	tag,	I’ve	used	another	<h1>
start	tag	by	mistake.	The	other	errors	are	caused	by	the	first	error,	so	once	I	fix	that,	the	page	will	be

error-free	(and).

	Checking	the	page	in	the	validator	confirms	that	the	HTML	is	valid.

	When	I	refresh	the	page...that’s	more	like	it!

You	aren’t	required	to	make	your	pages	pass	the	validators	error-free	before	you	put	them	on	the	web.
Indeed,	most	sites	have	some	errors.	Also,	the	W3C’s	CSS	validator	will	mark	vendor	prefixes	used	on
property	names	as	errors,	but	that	doesn’t	mean	you	need	to	remove	them	from	your	style	sheets	(learn
about	vendor	prefixes	in	Chapter	14).
Browsers	are	built	to	handle	many	types	of	errors	(and	ignore	some	others)	and	display	your	page	as	best
they	can.	So	even	if	your	page	has	a	validation	error,	you	might	not	see	the	difference.	Other	times,	the
error	directly	affects	a	page’s	rendering	 	or	behavior.	So	use	the	validators	to	keep	your	code	as	free
from	errors	as	possible.
See	“Checking	the	Easy	Stuff:	HTML”	and	“Checking	the	Easy	Stuff:	CSS”	for	examples	of	errors	that
validators	catch.

Checking	HTML	for	Consistency
HTML5	is	pretty	lenient	about	how	you	format	certain	parts	of	your	code.	For	instance,
ending	empty	elements	like	img	with	either	/>	or	>	is	valid.	The	validators	don’t	check
for	consistency	in	these	areas.	If	you	like	being	sure	your	code	is	consistent,	you	can	use
HTML	Lint	(http://lint.brihten.com/html/).	It	has	options	for	checking	that	empty	elements
are	closed,	start	and	end	tags	are	lowercase,	attributes	are	lowercase,	and	more.

To	validate	your	code
1.	First	check	your	HTML	with	either	http://html5.validator.nu	(and)	or	http://validator.w3.org.
See	the	first	two	tips	for	more	information.

2.	As	desired,	fix	the	HTML	errors	that	are	flagged,	save	the	changes,	and,	if	necessary,	upload	the
file	to	your	server	again.	Then	repeat	step	1.

3.	Check	for	CSS	errors	with	http://jigsaw.w3.org/css-validator/,	similarly	fixing	the	problems	as	you

http://lint.brihten.com/html/
http://html5.validator.nu
http://validator.w3.org
http://jigsaw.w3.org/css-validator/

see	fit	and	checking	your	page	again.

Tip
The	W3C’s	validator	(http://validator.w3.org)	uses	the	validation	engine	from
http://html5.validator.nu,	so	use	whichever	you	prefer.	The	W3C’s	error	messages	are
easier	to	read,	but	they	don’t	highlight	the	errant	portions	of	the	HTML	source	code.

Tip
You	can	validate	your	HTML	by	entering	the	URL	 ,	uploading	the	HTML	file,	or	pasting
the	HTML	into	the	validator.	With	the	file	upload	and	copy-paste	methods,	you	can	check
files	without	uploading	them	to	your	server.

Tip
One	HTML	error	can	cause	several	in	a	validator’s	results.	For	example,	a	missing	end	tag
can	trigger	lots	of	error	messages	 .	Fix	the	end	tag,	and	all	of	those	subsequent	errors	go
away	 .	Start	at	the	top,	fixing	a	few	errors	at	a	time,	and	then	immediately	revalidate	the
file	to	see	if	other	problems	are	resolved.

Tip
The	CSS	validator	will	show	a	couple	of	errors	if	your	style	sheet	includes	the
.clearfix	rules	shown	in	Chapter	11.	They	are	due	to	non-standard	CSS	required	for
older	versions	of	Internet	Explorer.	You	can	ignore	the	errors;	they	won’t	hurt	your	page.

Testing	Your	Pages
Even	if	your	code	validates,	your	page	still	may	not	work	the	way	you	want	it	to	(through).	Or	it
may	work	properly	in	one	browser,	but	not	in	the	next.	You	can’t	be	sure	what	browser	your	visitors	will
use,	so	it’s	important	to	test	your	page	in	a	handful	of	them	(see	the	sidebar	“More	About	Browser
Testing”).

http://validator.w3.org
http://html5.validator.nu

	This	page	validates,	but	it	doesn’t	look	anything	like	it’s	supposed	to.	What’s	the	problem?
Click	here	to	view	code	image

<!DOCTYPE	html>
<html	lang="en">
<head>
					<meta	charset="utf-8"	/>
					<title>Le	Journal</title>
					<link	rel="stylesheet"	href="css/style.css"	/>
					...
</head>
<body>
...
</body>
</html>

	The	problem	is	the	link	to	the	CSS	file—the	file	is	named	styles.css,	and	here	I’m	linking	to
style.css.	The	browser	can’t	find	the	CSS	and	thus	displays	the	page	wrong.

	After	we	fix	the	file	name	in	the	code,	the	style	sheet	loads,	and	the	page	displays	properly.

To	test	your	webpages
1.	Validate	your	HTML	and	CSS	(see	“Validating	Your	Code”),	and	make	any	necessary	changes.
2.	Open	your	page	as	explained	in	“Viewing	Your	Page	in	a	Browser”	(Chapter	2).
3.	Go	through	the	whole	page,	and	make	sure	it	looks	exactly	the	way	you	want	it	to.	For	example:

	Does	the	layout	and	formatting	look	correct?
	Does	each	link	point	to	the	proper	page	or	asset?	(Test	the	URLs	by	activating	the	links	and
seeing	if	the	right	thing	happens.)
	Do	all	your	images	appear?	Are	they	aligned	properly?
	If	you’re	checking	a	responsive	webpage,	does	the	layout	adapt	as	expected	at	different	sizes?

4.	Without	closing	the	page	in	the	browser,	open	the	appropriate	HTML	or	CSS	document	and	make
any	necessary	changes.

5.	Save	the	changes.
6.	Switch	back	to	the	browser	and	refresh	or	reload	to	see	the	changes.

7.	Repeat	steps	3–6	until	you	are	satisfied	with	your	webpage.	Sometimes	it	can	take	a	few	tries	to	get
things	right.	If	you’re	still	having	trouble,	revalidate	the	code	to	make	sure	you	haven’t	introduced
any	new	errors.

8.	Beginning	with	step	2,	perform	the	same	testing	procedure	in	other	browsers	until	you	are	satisfied
and	think	your	page	is	ready	to	go	live	on	your	site.

9.	Upload	the	files	to	the	server.
10.	Return	to	the	browser,	type	your	page’s	URL	in	the	address	bar,	and	press	Return	or	Enter.	The

page	will	appear	in	the	browser.
11.	Go	through	the	page	on	your	live	site	to	make	sure	everything	is	all	right.	(It’s	easy	to	forget	to

upload	an	image	or	other	file	the	page	needs.)	Don’t	forget	to	test	it	on	mobile	devices	too,	if
visitors	will	be	accessing	your	site	on	them.

A	Testing	Workflow
A	common	testing	workflow	is	to	check	a	page	periodically	in	a	couple	of	browsers	while
you	are	building	it.	Then	test	it	across	the	full	set	of	browsers	when	the	page	is	finished,
refining	your	code	as	necessary.	When	your	site	is	finished,	you’ll	want	to	test	it
thoroughly	in	browsers	again	to	be	sure	it’s	all	working	together	properly.
I	recommend	testing	and	refining	your	site’s	local	version	thoroughly	first	(per	steps	1–8	in
“To	test	your	webpages”);	that	is,	before	you	upload	your	files	to	your	server	(step	9).
Once	they	are	uploaded,	test	them	thoroughly	again,	but	from	your	server—regardless	of
how	much	testing	you	did	of	your	local	version	during	development—because	that’s	the
version	your	visitors	will	see	(steps	10–11).

More	About	Browser	Testing
Generally,	most	people	developing	sites	verify	them	in	the	following	desktop	browsers:
	Chrome	(www.google.com/chrome),	latest	version.	Chrome	updates	itself	automatically
on	your	computer.	A	new	release	occurs	about	once	every	six	weeks.
	Firefox	(www.firefox.com),	latest	version.	Updates	and	new	release	frequency	are	like
Chrome’s.
	Internet	Explorer	8+,	Windows	only.	(IE8	is	losing	market	share,	so	it	will	eventually
drop	off	the	list.)	Various	versions	of	IE	are	available	at	www.microsoft.com.
	Safari	(www.apple.com/safari/),	latest	version	or	sometimes	Safari	5+.	Comes	pre-
installed	with	(and	is	available	only	for)	OS	X.

As	good	as	Opera	is,	people	are	more	selective	about	testing	on	it	because	it	has	a	small
market	share	in	most	parts	of	the	world.	Download	Opera	at	www.opera.com.
The	great	news	is	that,	with	the	exception	of	IE8	and	to	a	lesser	extent	IE9,	these	browsers
have	similar	levels	of	support	for	HTML	and	CSS	features.	This	means	you	aren’t	likely	to
notice	many	differences	in	your	pages,	except	perhaps	if	your	page	uses	a	particularly	new
HTML5	or	CSS3	feature.	Because	IE8	is	much	older,	it’s	OK	if	your	site	looks	a	little
different	on	it	as	compared	with	modern	browsers.

Obtaining	Browsers	for	Testing
You	can	install	several	browsers	using	the	download	links	provided	above,	but	if	you	are	a

http://www.google.com/chrome
http://www.firefox.com
http://www.microsoft.com
http://www.apple.com/safari/
http://www.opera.com

Mac	user,	how	do	you	test	on	IE?	If	you’re	on	Windows,	how	do	you	test	Safari	or	multiple
versions	of	IE?	Here	are	some	ideas:
	A	virtual	machine	(VM)	is	an	isolated	version	of	an	operating	system	that	runs	on	your
computer.	Microsoft	provides	VMs	with	various	versions	of	Windows	and	IE	so	you
can	test	IE	from	a	Mac,	Windows,	or	Linux	computer.	They	are	available	at
www.modern.ie/en-US/virtualization-tools#downloads.	You	cannot	run	OS	X	in	a	VM
to	test	Mac	browsers	from	a	Windows	machine.
	BrowserStack	(www.browserstack.com)	and	Sauce	Labs	(http://saucelabs.com)	are
services	that	allow	you	to	test	your	pages	on	a	huge	range	of	browsers	and	mobile
devices	for	a	fee.

Testing	on	Mobile	Phones	and	Tablets
At	the	least,	you’ll	want	to	test	on	iOS	and	an	Android	device.	Testing	your	pages	for
mobile	compatibility	presents	a	special	challenge	because	it	can	be	difficult	to	get	your
hands	on	devices.	Here	are	some	options	besides	BrowserStack	and	Sauce	Labs	(please
note	that	using	the	simulators	and	emulators	is	not	the	same	as	testing	on	devices):
	Use	Apple’s	iOS	Simulator	to	test	your	pages	for	the	iPhone	and	iPad.	The	biggest
drawback	is	that	it	works	only	on	OS	X,	and	there	is	no	Windows	equivalent.	iOS
Simulator	is	part	of	the	free	Xcode	download,	available	at
http://developer.apple.com/xcode/.
	DeviceAnywhere	(www.deviceanywhere.com)	provides	online	access	to	various
mobile	devices	for	testing	for	a	fee.	There	is	also	a	free	version	of	DeviceAnywhere,
which	allows	sessions	for	10	minutes	at	a	time.
	Use	Electric	Plum’s	iPhone	and	iPad	simulator	for	Windows	(www.electricplum.com).
This	is	not	affiliated	with	Apple,	so	it	is	not	the	same	as	Apple’s	iOS	Simulator.
	Use	emulators	and	simulators	for	other	devices	and	mobile	browsers.	Mobile
Boilerplate	maintains	a	list	at	https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-
Emulators-&-Simulators.
	Look	on	Open	Device	Lab	(http://opendevicelab.com)	to	see	if	there	is	a	spot	near	you
that	has	devices	available	to	test	with	for	free.
	If	you	have	devices,	use	Adobe	Edge	Inspect	(http://html.adobe.com/edge/inspect/)	in
combination	with	them	to	simplify	testing	and	fixing	bugs.

The	browser	market	moves	fast:	By	the	time	you	read	this,	there	will	be	newer	versions	of
these	browsers	and	new	devices.	Still,	if	you	follow	the	principle	of	progressive
enhancement,	your	sites	can	offer	a	simple	experience	in	older	browsers	and	an	enhanced
one	in	modern	browsers.

Tip
If	your	HTML	code	instead	of	your	page	displays	in	the	browser,	be	sure	your	file	has
either	the	.html	or	.htm	extension	(and	not	one	like	.txt).

http://www.modern.ie/en-US/virtualization-tools#downloads
http://www.browserstack.com
http://saucelabs.com
http://developer.apple.com/xcode/
http://www.deviceanywhere.com
http://www.electricplum.com
https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-Emulators-&-Simulators
http://opendevicelab.com
http://html.adobe.com/edge/inspect/

Tip
Sometimes	it’s	not	your	fault—especially	with	styles.	Make	sure	a	browser	supports	the
feature	you’re	having	trouble	with	before	assuming	the	problem	is	with	your	code.	Can	I
Use	(http://caniuse.com)	and	Quirksmode	(www.quirksmode.org/css/)	are	two	invaluable
resources	for	browser	support	information.

Trying	Some	Debugging	Techniques
So	you’ve	done	some	testing	and	found	bugs.	Here	are	some	tried	and	true	techniques	for	getting	the	kinks
out	of	a	webpage.

	Check	the	easy	stuff	first.
	Work	incrementally.	Make	small	changes,	and	test	after	each	change.	That	way,	you’ll	be	able	to
pinpoint	the	source	of	a	problem	if	one	occurs.
	When	you’re	debugging,	start	with	what	you	know	works.	Then	add	the	hard	parts	chunk	by	chunk—
testing	the	page	in	a	browser	after	each	addition—until	you	find	the	source	of	the	problem.
	Related	to	the	previous	point,	use	the	process	of	elimination	to	figure	out	which	chunks	of	your	code
are	giving	you	trouble.	For	example,	you	can	comment	out	half	of	the	code	to	see	if	the	problem	is	in
the	other	half	 .	Then	comment	out	a	smaller	portion	of	the	offending	half,	and	so	on,	until	you	find
the	problem.	(See	“Adding	Comments”	in	Chapter	3	and	“Adding	Comments	to	Style	Rules”	in
Chapter	7.)

Click	here	to	view	code	image

http://caniuse.com
http://www.quirksmode.org/css/

...

.excerpt	{
					border-top:	1px	dotted	#ccc;
					margin:	0	.5em	2em	0;
}

.excerpt	.title	{
					font-size:	1.25em;
					line-height:	1.2;
}

/*
.more,
.excerpt	.date	{
					text-align:	right;
}

.excerpt	.date	{
					line-height:	1;
					margin:	0	1em	0	0;
					padding:	0;
					position:	relative;
					top:	1em;
}
*/

.photo	{
					float:	left;
					height:	300px;
					width:	400px;
}

...

	I’ve	commented	out	a	section	of	this	code	(that	is,	everything	between	/*	and	*/)	to	see	if	it’s	the
culprit.	On	a	separate	note,	many	HTML	and	CSS	editors	include	syntax	highlighting,	which	is	automatic
color-coding	of	elements,	selectors,	and	the	like.	This	can	aid	your	debugging.	Mistype	the	name	of	a	CSS

property,	for	example,	and	the	editor	won’t	show	it	in	the	expected	color:	a	hint	that	it	isn’t	valid.

	Be	careful	about	typos.	Many	perplexing	problems	can	end	up	being	simple	typing	mistakes—for
instance,	you	spelled	a	class	name	one	way	in	your	HTML	but	a	different	way	in	your	CSS.
	In	CSS,	if	you’re	not	sure	whether	the	problem	is	with	the	property	or	with	the	selector,	try	adding	a
very	simple	declaration	to	your	selector,	like	color:	red;	or	border:	1px	solid	red;
(or	choose	an	uncommon	site	color	like	pink	if	red	is	part	of	your	design).	If	the	element	turns
red,	the	problem	is	with	your	property;	if	it	doesn’t,	the	problem	is	with	your	selector	(assuming
you	don’t	have	another	selector	that’s	more	specific	or	that	comes	after	the	current	one).
	Test	changes	to	your	HTML	or	CSS	directly	in	the	browser	by	using	one	or	more	of	the	developer
toolbars	at	your	disposal.	Or	inspect	the	code	with	these	tools	to	try	to	locate	the	problem.	(See	the
“Browser	Developer	Tools”	sidebar.)

Browser	Developer	Tools
Browsers	include	invaluable	tools	that	help	you	debug	your	pages	and	much	more.	The
feature	you	will	find	yourself	returning	to	time	and	again	is	the	ability	to	change	CSS	or
HTML	and	see	it	affect	your	page	immediately.	This	allows	you	to	quickly	test	changes
before	incorporating	them	in	your	code.
Following	is	a	list	of	the	tools	used	most	often	for	each	browser:
	Chrome:	DevTools	(http://developers.google.com/chrome-developer-tools/).
	Firefox:	Firefox	has	built-in	tools	(https://developer.mozilla.org/en-US/docs/Tools),	but
the	Firebug	add-on	(http://getfirebug.com)	is	more	popular.	Also,	Web	Developer
(http://chrispederick.com/work/web-developer/)	is	a	slightly	different	type	of	tool,	but
it	is	very	handy.	It’s	also	available	for	Chrome	at	the	same	link.
	Internet	Explorer:	F12	Developer	Tools	(http://msdn.microsoft.com/en-
us/library/hh772704(v=vs.85).aspx).
	Opera:	Dragonfly	(www.opera.com/dragonfly/).	(This	feature	is	in	a	state	of	transition
at	the	time	of	this	writing.)
	Safari:	Web	Inspector	(http://developer.apple.com/technologies/safari/developer-
tools.html).

Documentation	and	videos	showing	how	to	use	many	of	these	tools	are	available	online.
See	an	example	of	using	Chrome	DevTools	in	“Checking	the	Easy	Stuff:	CSS.”

Checking	the	Easy	Stuff:	General
While	the	difference	you	see	between	browsers	might	be	due	to	some	obscure	browser	bug	or	some	new
technique	you’re	using,	often	it’s	just	something	simple.
Everyone	makes	the	occasional	simple	mistake	that	trips	them	up.	For	instance,	it’s	easy	to	think	the
source	of	a	problem	is	in	the	code	and	spend	a	lot	of	time	debugging	it,	only	to	find	that	you’re	changing
one	file	but	uploading	and	viewing	a	different	one	from	your	server!
Many	of	the	following	suggestions	apply	to	testing	your	site	from	the	site’s	URL	on	your	server.

To	check	the	general	easy	stuff
	Validate	your	code	as	described	in	“Validating	Your	Code.”	This	is	a	great	place	to	start,	because
you	can	eliminate	coding	syntax	and	related	errors	as	the	cause	of	the	problem	you’re	noticing.
	Make	sure	you’ve	uploaded	the	file	you	want	to	test.
	Make	sure	you’ve	uploaded	the	file	to	the	folder	where	it	belongs.
	Make	sure	you’ve	typed	the	URL	that	corresponds	to	the	file	you	want	to	test.	Or	if	you’ve	tried	to
browse	to	the	page	from	another	page,	make	sure	the	URL	you	coded	in	the	link	to	the	page	matches
its	path.
	Make	sure	you’ve	saved	the	file—including	the	very	latest	changes—before	you	upload	it.
	Make	sure	you’ve	uploaded	any	auxiliary	files—CSS,	images,	music,	videos,	and	so	on.
	Make	sure	the	upper-	and	lowercase	letters	in	your	URL	exactly	match	the	upper-	and	lowercase
letters	in	your	file	names.	(By	the	way,	this	is	one	reason	I	recommend	using	only	lowercase	letters.
It	reduces	the	room	for	error	when	typing	URLs—for	both	you	and	your	visitors.)	And	make	sure
you	haven’t	used	spaces	in	file	names	(use	hyphens	instead).

http://developers.google.com/chrome-developer-tools/
https://developer.mozilla.org/en-US/docs/Tools
http://getfirebug.com
http://chrispederick.com/work/web-developer/
http://msdn.microsoft.com/en-us/library/hh772704(v=vs.85).aspx
http://www.opera.com/dragonfly/
http://developer.apple.com/technologies/safari/developer-tools.html

	If	you	disabled	any	browser	features	(such	as	JavaScript)	during	previous	testing,	make	sure	you
haven’t	neglected	to	re-enable	them	if	your	page	relies	on	them	to	work	properly.
	Make	sure	the	problem	is	not	the	browser’s	fault.	The	easiest	way	to	do	that	is	to	test	the	page	in
another	browser.

In	the	next	two	sections,	I’ll	tell	you	how	to	check	the	easy	stuff	in	HTML	and	CSS.

Still	Stuck?
If	you’re	still	stuck	trying	to	fix	a	problem	after	going	through	this	chapter,	here	are	some
more	suggestions:
	Please	don’t	think	I’m	being	patronizing	when	I	suggest	you	take	a	break.	Sometimes	the
best	thing	is	to	leave	a	problem	alone	for	a	bit.	When	you	come	back,	the	answer	may	be
staring	you	in	the	face.	Trust	me,	I’ve	been	there!
	Go	back	to	the	most	recent	version	of	the	page	that	worked	properly.	(Related	to	that,
make	copies	of	your	page	as	you	progress	through	building	it	so	you	will	have	versions
to	go	back	to	if	necessary.)	Then	test	the	page	as	you	add	each	new	element	bit	by	bit.
	For	resources	that	your	page	links	to,	type	the	URL	for	that	CSS,	image,	JavaScript,	or
media	file	directly	in	the	browser’s	address	bar	to	make	sure	it	exists	where	you	are
expecting	it.
	There	are	numerous	sites	where	you	can	search	for	solutions	or	ask	for	guidance.	Stack
Overflow	(www.stackoverflow.com)	and	SitePoint	(www.sitepoint.com/forums/)	are
just	two	examples.	You	can	find	others	by	searching	online.

Checking	the	Easy	Stuff:	HTML
Sometimes	the	problem	is	in	your	HTML.

To	check	the	easy	stuff	in	HTML
	A	simple	typo	or	two	can	be	easy	to	miss	 .	Make	sure	you’ve	spelled	everything	correctly	and
that	you’ve	assigned	valid	values	to	attributes	 .	Use	one	of	the	HTML	validators	to	expose	these
so	you	can	correct	them	quickly	(see	“Validating	Your	Code”).

Click	here	to	view	code	image

	Can	you	see	where	the	problems	are?	I’ve	misspelled	src	and	included	a	unit	type	in	the	width	and
height	values.	The	HTML	validators	will	flag	these	types	of	errors,	saving	you	the	time	of	trying	to

hunt	them	down	elsewhere	if	you	don’t	notice	your	typos.
Click	here	to	view	code	image

	The	corrected	version	shows	the	src	attribute	spelled	correctly,	and	I’ve	removed	the	px	from	the
width	and	height	values.

http://www.stackoverflow.com
http://www.sitepoint.com/forums/

	Be	careful	about	element	nesting.	For	instance,	if	you	open	<p>	and	then	use	,	make	sure	the
end		comes	before	the	final	</p>.
	If	accented	characters	or	special	symbols	are	not	displaying	properly,	make	sure	<meta
charset="utf-8"	/>	(or	the	right	character	encoding	if	different	than	UTF-8)	appears	right
after	the	document	head	element	starts,	and	be	sure	your	text	editor	is	configured	to	save	your
HTML	files	in	the	same	encoding.	If	you’re	still	having	trouble,	try	using	the	appropriate	character
reference.
	Be	sure	attribute	values	are	enclosed	in	straight,	not	curly,	quotes.	An	attribute’s	value	can	contain
single	quotes	if	the	value	is	enclosed	in	double	quotes	 ,	which	is	the	norm.	If	the	value	itself
contains	double	quotes,	use	character	references	for	the	inner	quotes	 .

Click	here	to	view	code	image

	If	an	attribute’s	value	contains	a	single	quote,	you	can	just	enclose	it	in	double	quotes	as	usual.
Click	here	to	view	code	image

<img	src="cookie-the-cat.jpg"	width="250"	height="200"	alt="Cookie's	saying,
"Enough!""	/>

	If	an	attribute’s	value	contains	double	quotes,	use	character	references	around	the	quoted	text	within
the	value.

	Don’t	use	separate	start	and	end	tags	for	void	(empty)	elements	 .	(Technically,	browsers	may
render	elements	correctly	anyway,	but	play	it	safe.)

Click	here	to	view	code	image

	Don’t	include	an	end	tag	on	void	elements,	like	img.	The	HTML	validators	will	flag	this	as	an	error.

Checking	the	Easy	Stuff:	CSS
While	CSS	syntax	is	pretty	straightforward,	it	has	some	common	pitfalls,	especially	if	you’re	more
accustomed	to	writing	HTML.	A	CSS	validator	will	flag	syntax	errors	like	the	ones	discussed	in	this
section,	so	validate	your	style	sheets	before	you	go	digging	through	your	CSS	looking	for	errors	(see
“Validating	Your	Code”).

To	check	the	easy	stuff	in	CSS
	Make	sure	you	separate	properties	from	their	values	with	a	colon	(:),	not	an	equals	sign	(as	you	do
in	HTML)	(and).

Click	here	to	view	code	image

p	{
					font-size=1.3em;
}

	It	can	be	hard	to	break	the	habit	of	separating	properties	and	values	with	the	equals	sign.
Click	here	to	view	code	image

p	{
					font-size:	1.3em;
}

	Much	better.	Always	use	a	colon	between	the	property	and	the	value.	It	doesn’t	matter	if	you	add	extra
spaces	before	and	after	the	colon,	but	it’s	common	to	include	one	after	the	colon.

	Be	sure	to	complete	each	property/value	pair	(a	declaration)	with	a	semicolon	(;).	Make	sure	there
are	no	extra	semicolons	(and).

Click	here	to	view	code	image

p	{
					font-size:	1.3em	font-style:	italic;;	font-weight:	bold;
}

	Another	error.	You	must	put	one	and	only	one	semicolon	between	each	property/value	pair.	Here,
there’s	one	missing	and	one	extra.

Click	here	to	view	code	image

/*	Still	wrong,	but	easier	to	spot	*/
p	{
					font-size:	1.3em
					font-style:	italic;;
					font-weight:	bold;
}

/*	Here's	the	correct	version	*/
p	{
					font-size:	1.3em;
					font-style:	italic;
					font-weight:	bold;
}

	The	error	is	easier	to	spot	when	each	property/value	pair	occupies	its	own	line,	because	the
semicolons	aren’t	lost	in	a	sea	of	properties,	values,	and	colons.

	Don’t	add	spaces	between	numbers	and	their	units	(and).
Click	here	to	view	code	image

p	{
					font-size:	.8275	em;
}

	And	yet	another	error.	Never	put	spaces	between	the	number	and	the	unit.
Click	here	to	view	code	image

p	{
					font-size:	.8275em;
}

	This	will	work.	Note	that	the	space	between	the	colon	and	the	value	is	optional	but	common.

	Don’t	forget	to	close	your	curly	braces.
	Make	sure	you’re	using	an	accepted	value.	Something	like	font-style:	none;	isn’t	going	to
work,	since	the	“none”	value	for	this	property	is	called	normal.
	Don’t	forget	the	</style>	end	tag	for	embedded	style	sheets	(which	you	should	avoid	in	most
cases	anyway).
	Make	sure	the	path	to	the	desired	CSS	file	is	correct	in	your	HTML.
	Watch	the	spaces	and	punctuation	in	and	between	the	CSS	selectors.
	Make	sure	the	browser	supports	what	you’re	trying	to	do,	particularly	with	the	latest	features,
because	browser	support	continues	to	evolve	as	CSS	matures.	Check	browser	support	on	Can	I	Use
(http://caniuse.com)	or	Quirksmode	(http://www.quirksmode.org/css/).	The	CSS	validator	won’t
tell	you	if	a	particular	browser	supports	a	feature,	but	it	will	indicate	that	you’ve	typed	a	selector,
property,	or	value	that	doesn’t	exist	in	CSS.
	Use	the	browser	developer	tools	to	inspect	the	style	rules	to	quickly	highlight	which	code	isn’t
being	interpreted	as	expected	or	to	see	how	specificity	rules	have	been	applied	 .	(See	the	sidebar
“Browser	Developer	Tools”	earlier	in	the	chapter.)

http://caniuse.com
http://www.quirksmode.org/css/

	I’ve	inspected	the	code	for	<h1>The	City	Named	After	Queen	Victoria</h1>	with
Chrome’s	DevTools.	The	HTML	is	on	the	left,	and	the	CSS	applied	to	the	highlighted	HTML	element

displays	in	the	panel	on	the	right.	The	tools	in	other	browsers	are	configured	similarly.	The	CSS	portion
shows	a	line	through	a	font-size	setting	to	indicate	that	it	has	been	overridden	by	another	rule	(the
one	in	the	media	query	above	it).	This	result	is	what	I	wanted	in	this	case,	but	you	can	use	this	technique
to	track	down	why	a	style	might	not	have	been	applied	as	expected.	You	can	also	edit	the	HTML	or	CSS
rules	to	test	changes	directly	in	the	browser.	All	browser	developer	tools	allow	this.	If	you	like	the

results,	you	can	make	the	same	changes	in	your	actual	HTML	and	CSS	files.

When	Images	Don’t	Display
Alternate	text,	little	red	x’s,	broken	image	icons,	or	nothing	at	all—these	are	all	signs	that	your	images
aren’t	loading	properly	(and).
Click	here	to	view	code	image

...
<body>
<h1>The	City	Named	After	Queen	Victoria</h1>

<img	src="img/Victoria.jpg"	width="370"	height="220"	alt="A	weathered	life	ring	indicates
you're	headed	toward	another	time	and	place."	/>

<p>An	hour	and	a	half	aboard	...</p>
</body>
</html>

	The	file	name	for	the	image	is	victoria.jpg,	but	in	the	HTML,	it	is	incorrectly	referenced	as
Victoria.jpg	(with	a	capital	V).	As	result,	it	doesn’t	display	when	you	check	the	page	from	your

server.

	The	page	may	look	fine	on	your	computer	if	it	isn’t	picky	about	upper-	and	lowercase	letters.	But	when
the	page	is	published	to	the	server,	which	is	case	sensitive,	the	image	cannot	be	found.	Browsers	like

Chrome	show	a	broken	image	icon	instead.

To	fix	missing	images
	First,	check	that	the	file	name	of	the	image	on	the	server	exactly	matches	the	name	you’ve
referenced	in	the	img	element,	including	upper-	and	lowercase	letters	and	the	extension	 .	(Don’t
include	spaces	in	file	names.	See	“File	and	Folder	Names”	in	Chapter	1.)
	Make	sure	the	image’s	URL	is	correct	in	the	img	element’s	src	attribute.	One	easy	test	is	to	put	an
image	in	the	same	directory	as	the	HTML	page.	Then	you’ll	just	need	the	proper	file	name	in	the
src,	but	no	folder	name	or	additional	path	information.	If	the	image	shows	up,	the	problem	was
probably	in	the	src.	However,	it	isn’t	good	practice	to	keep	images	in	the	same	directory	as	HTML
files,	because	your	site	will	quickly	become	disorganized.	So	after	your	test,	remove	the	image	from
the	HTML	page	folder,	and	fix	the	src	path	that	points	to	it.	See	“URLs”	in	Chapter	1.
	If	the	image	shows	up	when	you	view	your	page	on	your	computer	but	not	when	you	upload	the	page
to	the	server,	make	sure	you’ve	uploaded	the	image	to	the	server.
	Have	you	saved	the	image	as	a	PNG,	JPEG,	or	GIF?	If	so,	all	browsers	will	display	it,	which	is	not
true	of	other	formats.	See	Chapter	5	for	more	information.

21.	Publishing	Your	Pages	on	the	Web

In	This	Chapter
Getting	Your	Own	Domain	Name
Finding	a	Host	for	Your	Site
Transferring	Files	to	the	Server

Once	you’ve	finished	your	masterpiece,	it’s	time	to	put	it	on	the	web	for	all	to	see.	This	chapter	covers
the	steps	required	to	do	so:	getting	a	domain	name,	finding	a	web	host,	connecting	your	domain	and	web
host,	and	transferring	your	files	to	your	host’s	server.
If	you	ever	decide	to	change	your	web	host,	you	can	move	your	site	to	another	web	host’s	server.	Your
domain	name	and	all	of	your	site’s	URLs	will	stay	exactly	the	same.
Also,	be	sure	to	test	your	pages	thoroughly	both	before	and	after	publishing	them.	Chapter	20	shows	you
how.

Getting	Your	Own	Domain	Name
Before	others	can	visit	your	site,	you	need	a	domain	name	to	associate	with	it	 .	Then,	once	you’ve
followed	the	steps	in	this	chapter,	your	web	host	will	serve	your	site	to	anyone	who	visits	the	domain	in	a
browser.

	Only	certain	companies	are	accredited	registrars	of	domain	names	(this	view	and	the	one	below	are
from	Namecheap).	You	can	use	one	of	their	sites	to	see	if	a	desired	domain	name	is	available,	or	you	can

check	through	a	web	host’s	site.

To	get	your	own	domain	name
1.	In	a	browser,	go	to	a	domain	registrar	to	see	if	the	domain	name	you	want	is	available	 .	(See	the
first	tip.)	Nowadays,	it	can	be	hard	to	find	a	name	that	isn’t	taken,	so	you	might	need	to	search	a	few
variations	of	the	name	you	like.

	If	the	name	is	available,	you	can	register	it	either	through	a	registrar	site	or	through	a	web	host.	(And
now	you	know	that	the	very	useful	catalancats.com	domain	can	be	yours!)

2.	Register	the	available	domain	you	found.	Charges	vary	from	registrar	to	registrar,	but	about	$10	a
year	for	a	.com	domain	is	not	uncommon	(other	extensions	may	have	a	different	price).

Tip
Namecheap	(www.namecheap.com)	and	Hover	(www.hover.com)	are	just	two	of	the
places	where	you	can	register	a	domain	name.	(No	endorsement	is	implied	for	either.)
Others	may	be	found	by	searching	online	for	“domain	registrars.”	Also,	many	web	hosts
allow	you	to	register	available	domains	on	their	sites;	conversely,	many	registrars	provide
hosting	services.	You	may	prefer	to	use	different	companies	for	registering	domains	and
hosting	sites,	as	do	I	and	many	others.

http://www.namecheap.com
http://www.hover.com

Tip
See	the	sidebar	“Connecting	Your	Domain	and	Your	Web	Host”	in	the	next	section	for	an
important	configuration	that’s	required	to	make	your	site	display	when	someone	visits	your
URL.

Your	ISP	as	Web	Host
If	you	have	Internet	access	(and	I	bet	you	do),	you	may	already	have	a	small	amount	of	web
space	through	your	Internet	service	provider	(ISP).	It	might	not	be	enough	for	your	entire
website,	but	it’s	certainly	enough	to	get	used	to	putting	pages	on	the	web.	Ask	your	ISP	for
details.
However,	keep	in	mind	that	these	types	of	hosting	spaces	typically	don’t	allow	you	to	put
your	site	at	a	unique	domain	name.	Instead,	they	are	in	a	sub-domain	or	sub-directory	of	the
ISP’s	domain,	like	www.someisp.com/your-site/	instead	of	www.yourdomain.com.	In
other	words,	if	you	have	professional	ambitions	for	your	site,	you	wouldn’t	want	it	to	be
hosted	on	the	free	space	your	ISP	may	provide.

Web	Analytics
Web	analytics	are	reports	that	let	you	know	how	many	people	have	visited	your	site,	which
browsers	they	have	used,	which	pages	are	the	most	(and	least)	popular,	and	other	useful
data.
Web	hosts	may	provide	this	information,	but	in	many	cases	you	will	get	richer	reports	by
adding	Google	Analytics	or	a	similar	service	to	your	site.	It’s	pretty	easy	to	implement—
you	add	a	snippet	of	code	they	provide	to	each	of	your	pages.	See
www.google.com/analytics/	for	more	information.

Finding	a	Host	for	Your	Site
Web	hosts	provide	space	on	one	of	their	web	servers	for	your	site’s	files.	They	provide	other	services
too,	like	allowing	you	to	create	email	addresses	that	are	associated	with	your	domain	name	(such	as
yourname@yourdomain.com).
There	are	hundreds	of	companies	that	provide	website	hosting.	Most	charge	a	monthly	fee	that	depends	on
the	services	you	choose.	Some	offer	free	web	hosting	in	exchange	for	placing	ads	on	your	site	(generally
not	recommended).
Although	you	can	search	the	Internet	for	a	web	host,	I	recommend	talking	to	friends	to	see	if	they	use	a
host	that	they	like.	Or	maybe	the	author	of	a	blog	you	trust	has	noted	what	company	he	or	she	uses	as	a
host;	check	in	the	site’s	footer	or	sidebar.
When	considering	a	host,	there	are	a	number	of	things—besides	price—to	keep	in	mind.

	Does	the	account	allow	you	to	host	more	than	one	domain,	or	do	you	have	to	pay	extra	for	each	site?
You	should	be	able	to	find	a	host	that	provides	the	former	if	planning	for	the	future	is	important	to
you.
	How	much	disk	space	will	they	let	you	have	for	your	website?	Don’t	pay	for	more	than	you	need.
Having	said	that,	usually	even	the	most	basic	accounts	will	have	plenty	of	space	for	your	site,	with

http://www.google.com/analytics/

room	to	spare.	Remember	that	HTML	files	take	up	very	little	space,	whereas	images,	audio	files,
and	videos	take	up	successively	larger	amounts.	You	can	always	upgrade	to	an	account	with	more
space	later	if	necessary.
	How	much	data	transfer	(bandwidth)	per	month	do	their	accounts	allow?	This	represents	the	total
size	of	data—the	HTML,	CSS,	images,	media	files,	and	so	on—they	will	serve	to	your	visitors,
rather	than	how	much	they’ll	allow	you	to	store	on	their	server.	So	if	you	expect	visitors	to	access	a
lot	of	large	files	from	your	site,	you’ll	need	a	larger	monthly	transfer	allotment.	But	just	as	with
storage,	basic	accounts	usually	provide	more	than	enough	bandwidth	when	you’re	getting	started,
and	you	can	upgrade	later.
	How	many	mailboxes	can	you	create	for	your	domain?	(Hosting	companies	often	allow	dozens.)
	Do	they	have	plans	that	cater	to	sites	with	a	lot	of	traffic,	to	ensure	the	site	won’t	crash?
	What	kind	of	technical	support	do	they	offer?	Is	it	by	phone,	by	email,	or	by	online	chat?	How	long
will	it	take	them	to	get	back	to	you?	Also,	do	they	have	a	lot	of	support	information	available	on
their	site?	(You	can	probably	check	the	quality	of	that	content	before	becoming	a	customer.)
	How	often	do	they	back	up	data	on	their	servers	(in	case	there’s	a	problem)?
	What	kind	of	server-side	languages	and	software	packages	come	with	the	account?	(You	don’t	need
these	for	a	basic	site.)	Most	provide	PHP	and	MySQL	at	a	minimum,	and	many	also	support
WordPress	and	other	features.	Some	features	require	a	more	expensive	plan.

Connecting	Your	Domain	and	Your	Web	Host
Once	you’ve	registered	a	domain	and	found	a	web	host,	an	important	step	is	required	to	tie
them	together:	You	must	point	your	domain	to	your	web	host	so	that	your	site	loads	when
visitors	type	in	your	site’s	URL.
To	make	this	work,	you	configure	what	are	known	as	the	name	servers	or	DNS	Servers
associated	with	your	domain.	Your	web	host	provides	you	the	DNS	information	to	use	in
the	configuration.
The	actual	configuration	is	done	in	one	of	two	places,	depending	on	where	you	registered
your	domain	(see	“Getting	Your	Own	Domain	Name”).	If	you	registered	it	with	a	domain
registrar,	log	in	to	your	account	with	them	and	set	the	DNS	information	for	your	domain
(your	domain	registrar	will	provide	instructions).	If	you	registered	your	domain	through
your	web	host,	you	would	log	in	to	your	account	there	to	update	the	settings.
Don’t	worry	if	all	this	sounds	a	little	confusing.	Your	web	host	and	domain	registrar	(if
different)	will	provide	instructions	on	how	to	do	this,	and	they	will	usually	provide	hands-
on	help	if	you	need	it.
One	other	point	to	keep	in	mind:	When	you	change	the	name	server	settings,	it	usually	takes
24	to	48	hours	(72	at	the	very	most)	for	the	update	to	propagate	across	the	web.	But	this
change	doesn’t	take	hold	at	the	same	time	everywhere.	So	if	you’ve	updated	your	domain’s
name	server	(and	uploaded	your	site’s	files,	as	described	in	the	next	section),	your	friends
might	be	able	to	access	your	site	fine	from	where	they	live,	even	though	you	don’t	see	it
right	away	(or	vice	versa).	Your	site	should	show	for	everyone	before	too	long.

Transferring	Files	to	the	Server
For	other	people	on	the	Internet	to	see	your	pages,	you	have	to	upload	them	to	your	web	host’s	server.	One
easy	way	to	do	that	is	with	an	FTP	client	such	as	FileZilla	(http://filezilla-project.org),	which	is	free	for
Windows,	OS	X,	and	Linux.	(See	the	tips	for	other	FTP	clients.)	Many	webpage	editors	also	include	FTP
capabilities,	so	you	can	publish	pages	right	from	there	instead	of	using	a	program	like	FileZilla.
Typically,	your	web	host	emails	FTP	connection	information	to	you	after	you	sign	up	for	a	hosting
account.	Contact	them	if	you	didn’t	receive	it	or	log	into	your	account	with	them	in	a	browser;	the
information	is	usually	available	there.	Once	you	have	that	information,	you	can	configure	your	server
connection	and	save	it	under	a	name	(through)	for	easy	access	anytime	you	want	to	publish	files	or
download	them	from	your	site’s	server.

	To	enter	information	about	a	new	server,	select	File	>	Site	Manager	from	the	main	FileZilla	window.
Site	Manager	is	where	you	configure	the	FTP	connection	details	for	each	site.

	When	you	click	the	New	Site	button,	a	temporary	name	appears	under	My	Sites.

http://filezilla-project.org

	Replace	the	temporary	name	with	a	name	of	your	choice,	and	then	configure	the	connection	details	in
the	General	tab.	Don’t	forget	to	save	the	information	by	clicking	either	Connect	or	OK.

Then,	connecting	to	your	server	 	and	transferring	files	(and)	are	straightforward.

	Now	that	your	site’s	connection	information	is	saved	in	the	Site	Manager,	you	can	connect	to	your	web
host’s	FTP	server	without	retyping	everything	each	time.	On	Mac	or	Windows,	return	to	the	Site	Manager
via	the	server	icon	shown	here	or	via	the	menu	in	 .	Alternatively	on	Windows,	as	shown	in	the	bottom
image	here,	you	can	activate	the	down	arrow	next	to	the	server	icon	and	then	choose	your	site’s	name

from	the	menu	that	displays.

	The	left	pane	shows	a	folder	on	your	computer.	The	right	pane	shows	a	folder	on	your	web	server.
Choose	Upload	to	copy	the	selected	file	or	folder	to	your	web	server	 .

	The	newly	transferred	folder	appears	in	the	pane	on	the	right	side	of	the	window.	Follow	the	same
process	for	all	the	files	and	folders	you	want	to	transfer	to	your	site.	Or,	to	transfer	several	at	once,	select

multiple	files	or	folders	and	then	right-click	to	select	Upload.

Note	that	FileZilla	looks	a	little	different	on	OS	X	and	Windows,	but	the	interfaces	are	configured	very
similarly.	Except	where	noted,	the	steps	for	using	them	are	identical	and	the	figures	show	OS	X.

To	define	a	new	FTP	site’s	properties
1.	Choose	File	>	Site	Manager	from	FileZilla’s	main	menu	 ,	or	click	the	server	icon	(shown	in),
to	display	the	Site	Manager	window.

2.	In	the	Site	Manager	window,	click	the	New	Site	button	 .
3.	Type	a	name	for	the	site	(replacing	the	temporary	name).	It	doesn’t	have	to	be	the	same	as	your
domain	name;	it’s	just	a	label.	Follow	the	information	provided	by	your	web	host	to	complete	the
appropriate	fields	under	the	General	tab.	At	a	minimum,	this	usually	involves	entering	the	host	URL,
choosing	Normal	for	the	Logon	Type	option,	and	entering	your	user	name	and	password	(usually
created	when	you	set	up	the	account	with	your	host)	 .

4.	Once	you’ve	finished	entering	the	connection	details,	either	click	the	Connect	button	to	save	the
information	and	connect	to	your	server	right	away	or	click	the	OK	button	to	save	the	information
and	connect	later	 .

To	transfer	files	to	the	server	with	FileZilla
1.	Open	FileZilla.
2.	Click	the	server	icon	(on	the	far	left)	 	to	display	the	Site	Manager	window	 .	Then	choose	your
site	from	under	My	Sites,	and	click	the	Connect	button.	(The	Windows	version	has	a	shortcut	 .)
FileZilla	will	establish	a	connection	with	your	server.

3.	On	the	right	side	of	the	window,	navigate	to	the	server	directory	to	which	you	want	to	upload	files.
4.	On	the	left	side	of	the	window,	navigate	to	the	directory	on	your	computer	that	has	the	files	you
want	to	upload.

5.	Right-click	the	desired	file	or	folder	in	the	left	pane,	and	choose	Upload	from	the	context	menu	 .
The	files	are	transferred	 	(this	will	take	longer	for	large	files,	like	videos).	You	may	also	transfer
files	in	the	other	direction	(see	the	first	tip),	as	well	as	drag	and	drop	files	from	one	side	to	another
instead	of	using	the	right-click	option.

6.	Your	site	updates	are	live	now.	Visit	your	site	at	www.yourdomain.tld,	where	yourdomain.tld	is
the	domain	you	registered	(.tld	is	the	top-level	domain,	which	will	be	.com	unless	you	registered	a
domain	with	a	different	extension).	Browse	around	to	make	sure	everything	is	working	properly.
Edit	any	of	the	files	on	your	computer	as	necessary,	and	upload	them	to	your	server	by	following
steps	3–5	(you	may	need	to	repeat	step	2	to	reconnect	if	a	lot	of	time	has	passed).	Repeat	this	step
until	the	site	is	as	you	intend	it.

7.	Close	FileZilla,	or	choose	Server	>	Disconnect	from	the	main	menu	 .

	Disconnect	from	the	server	once	you’re	finished	transferring	files.

Tip
You	can	also	transfer	files	from	your	site’s	server	to	your	computer.	To	do	so,	right-click
files	or	folders	in	the	right	pane	 	and	choose	Download	from	the	context	menu.

Tip
FileZilla	is	just	one	of	many	FTP	clients	available.	CyberDuck	(free,	http://cyberduck.ch)
is	available	for	both	OS	X	and	Windows.	Some	other	popular	ones	for	OS	X	are	Transmit
(www.panic.com/transmit)	and	Fetch	(http://fetchsoftworks.com).	OS	X	also	has	built-in
FTP	capability	(see	http://osxdaily.com/2011/02/07/ftp-from-mac/).	Search	online	for
“FTP	client”	to	find	more	for	both	Windows	and	OS	X.	They	all	work	similarly,	but	some
have	more	features	than	others.

http://cyberduck.ch
http://www.panic.com/transmit
http://fetchsoftworks.com
http://osxdaily.com/2011/02/07/ftp-from-mac/

Tip
When	you	transfer	files	and	folders,	they	are	copied	to	the	destination	folder.	The	source
location	retains	its	version	of	the	assets.

Tip
Your	FTP	program	might	prompt	you	(as	FileZilla	does)	to	be	sure	you	want	to	overwrite	a
file	or	folder	if	you	transfer	one	that	the	destination	already	contains.	Each	FTP	client	is
different,	though,	so	it’s	possible	it	won’t	ask	for	your	permission.	Try	it	on	a	test	file	to
learn	how	your	FTP	client	handles	such	a	situation.

Tip
Relative	URLs	in	your	code	are	maintained	when	you	transfer	a	folder	to	the	server.

Tip
If	your	site	doesn’t	load	when	you	visit	its	URL,	it	could	be	a	few	things.	First,	double-
check	that	you	uploaded	the	files	to	the	proper	directory.	Often,	your	pages	belong	in	a
directory	called	public_html,	www,	or	something	similar.	Your	web	host’s	instructions
should	specify	the	proper	location;	ask	them	if	you	aren’t	sure.	If	you’ve	got	the	files	in	the
right	place	and	the	site	still	doesn’t	show,	the	problem	might	be	your	domain’s	name	server
settings	(see	the	sidebar	“Connecting	Your	Domain	and	Your	Web	Host”).

Tip
If	you	have	uploaded	a	new	version	of	a	file	to	your	server	but	don’t	see	the	change	when
you	visit	your	site,	clear	your	browser’s	cache	and	check	the	page	again.	Search	the
browser’s	Help	section	if	you	aren’t	sure	how	to	clear	the	cache.	You	can	also	search	for
instructions	to	disable	the	cache.

A.	HTML	Reference

This	appendix	contains	a	nearly	complete	list	of	HTML	elements	and	attributes,	including	some	that	are
not	covered	in	the	book.	(In	most	cases,	that’s	because	it	is	a	little-used	or	an	advanced	feature.)	Each
element	has	a	short	description	and	an	annotated	list	of	its	associated	attributes.
The	Page	column	indicates	the	primary	page	that	explains	the	element	or	attribute	so	you	can	learn	more.
Sometimes	an	attribute’s	page	number	points	to	where	it	is	used	on	a	different	element—the	explanation
on	that	page	is	relevant	to	using	it	on	all	allowed	elements.
Additionally,	some	items	are	marked	with	one	of	the	following:
(5)	An	element	or	attribute	that	is	new	in	HTML5.
(*)	An	element	or	attribute	that	existed	in	HTML	before	but	which	has	been	redefined	in	HTML5.
The	new	features	in	HTML5	are	unsupported	in	some	older	browsers,	such	as	IE8.	For	the	latest	browser
support	information,	please	see	http://caniuse.com,	which	is	updated	regularly.

http://caniuse.com

CSS	Reference
Unfortunately,	due	to	space	limitations,	we	could	not	include	the	CSS	Reference	in	these
pages.	But	both	the	CSS	and	HTML	References	are	available	on	the	book	site
(www.htmlcssvqs.com).

http://www.htmlcssvqs.com

TABLE	A.1	HTML	Elements	and	Attributes

Index

Symbols
/*,	*/,	using	for	CSS	comments,	172
>	character	entity,	using,	112
<	character	entity,	using,	112
*	(asterisk)	wildcard,	using	with	selectors,	207
{}	(curly	braces)
using	with	CSS,	171

[]	(square	brackets)
using	with	attribute	selectors,	205,	222
using	with	selectors,	205

<!--	and	-->,	using	for	HTML	comments,	86
<	and	>	signs,	displaying	in	code,	112

A
a	element,	158
using,	7,	21–22,	158

abbr	element,	101
absolute	positioning	of	elements,	302–303
absolute	URLs,	16
vs.	relative	URLs,	19

accept	attribute,	412
accept-charset	attribute,	523
accessibility,	23
:focus	pseudo-class,	385
color	contrast,	256
form	labels,	425
importance	of	headings	(h1–h6),	50–51
improving	with	ARIA,	78–81
keyboard	navigation,	158
progressive	enhancement,	xx
providing	with	video,	462
screen	readers.	See	screen	readers

accesskey	attribute,	520
acronym	element,	elimination	of,	102
action	attribute,	414
address	element,	106–107
Adobe	Photoshop.	See	Photoshop
:after	pseudo-element,	384–386

aligning
elements	vertically,	306–307
text,	259

alpha	transparency
defining	with	RGBA	and	HSLA,	184–188
explained,	138–139
saving	images	with,	144
showing	in	IE	versions,	188

alt	attribute,	145,	442
using,	21
using	effectively,	148
using	for	missing	images,	147–148

alternative	text,	offering,	147–148
analytics,	513
ancestor	element,	212–213
anchors,	164–165
animated	images,	saving,	139
Apache	development	server,	18
area	element,	521
ARIA	(Accessible	Rich	Internet	Applications),	79–81
aria	attribute,	422
Arial,	showing	on	Windows,	235
article	element,	60
with	address	element,	61
examples,	62
with	footer	element,	61
multiple,	61
nesting,	61
nesting	section	element	in,	64
vs.	section,	271
with	section	elements,	61
using,	20–21,	60–61

ASCII	characters,	12
aside	element,	65–67
examples,	68–69
vs.	figure,	93

asterisk	(*)	wildcard,	using	with	selectors,	207
async	attribute,	528
attribute	selector	examples,	224–225
attributes
accepting	values,	9–10

accesskey,	520
alt,	21
aria,	520
class,	520
contenteditable,	520
data,	520
dir,	520
draggable,	520
dropzone,	520
of	elements,	9
hidden,	520
href,	10
id,	520
lang,	520
numbers	for	values,	10
role,	520
selecting	elements	based	on,	222–225
selector	options,	223
spellcheck,	520
square	brackets	([]),	222
src,	10
tabindex,	520
title,	520

audio	attributes,	465–469
audio	element,	464
audio	file	formats,	463–465
audio	files	with	controls,	adding	to	pages,	464–465
audio	sources,	providing	with	fallback,	468–469
author	contact	info,	adding,	106–107
autocomplete	attribute,	424
autofocus	attribute,	423
autoplay	attribute,	454,	466

B
b	element,	91
redefined	in	HTML5,	91
vs.	strong	element,	90

background	color,	changing,	250–251.	See	also	colors
background	images,	252–255.	See	also	images
background	properties,	255–256
background-clip	property,	256

background-origin	property,	256
backgrounds,	250–256
applying	multiple,	373–375
fallback,	378
gradient,	376–381

background-size	property,	256
banner	landmark	role,	79–80
Barcelona’s	Architect	example
adding	indents,	258
aligning	text,	259
alternate	fonts,	233–235
bold	formatting,	238–239
changing	text	case,	260
controlling	spacing,	257
decorating	text,	262–263
default	page	rendering,	230
font	family,	232
font	size,	240–244
HTML	classes,	231
italics,	236–237
line	height,	245
setting	background,	250–256
setting	color,	248–249
setting	font	values,	246–247
setting	whitespace	properties,	264
using	small	caps,	261
viewing,	230

base	element,	521
BBEdit	text	editor,	31
bdi	element,	125–127
bdo	element,	125–127
:before	pseudo-element,	384–386
block-level	elements,	explained,	24–25
block-level	links,	161–162
blockquote	element,	95–97
nesting,	97

body	element,	44
adding	to	webpages,	45–46
basic	usage,	4,	6–7
components,	20

bold	formatting
applying,	238–239

applying	with	web	fonts,	352–353
faux	bold,	239
removing,	238

bold	italic
applying	with	web	fonts,	354-355
faux	bold	italic,	355

BOM	resource,	34
Boolean	attribute
explained,	10
using	with	videos,	455

border	color,	setting,	288
border	properties,	setting	multiple,	289
border	styles,	288,	291
border	width,	setting,	288
border-image	property,	290
border-radius	property,	364–367
borders,	setting,	290–291
box	model
border,	276
components,	276
explained,	276
height,	277
margin,	276
padding,	276–277,	286–287
width,	277

box-sizing	property
applying	to	all	elements,	283
effect	on	box	model,	width,	and	height,	277
usefulness	with	responsive	webpages,	318,	326

box-shadow	property,	370–372
br	element,	118–119
vs.	wbr,	123

browser	developer	tools
Chrome,	503
Firefox,	503
Internet	Explorer,	503
Opera,	503
Safari,	503

browser	support	resources,	499
browsers.	See	also	polyfills
default	display	of	webpages,	24–25
explained	and	version	numbers,	xvii

inline,	24–25
modern	browsers,	xxv
-moz-	prefix,	364
-ms-	prefix,	364
-o-	prefix,	364
obtaining	for	testing,	500
prefixes,	364
support	for	gradients,	381
testing	sites	in,	500
viewing	pages	in,	38–39
VMs	(virtual	machines),	500
-webkit-	prefix,	364

bulleted	lists,	creating,	391,	393
button	element,	442
using	with	forms,	442–443

C
canvas	element,	475
using	with	video,	475

capitalize	value,	limitations	of,	260
caption	element,	478
captions,	creating	for	figures,	92–93
challenge	attribute,	526
character	encoding,	specifying,	12
characters
accenting,	12
dir	attribute,	126
left-to-right,	125
right-to-left,	125

charset	attribute,	45
checkboxes,	creating	for	forms,	434–435
checked	attribute,	433
checking	for	errors.	See	also	debugging	techniques
CSS	(Cascading	Style	Sheets),	508–509
general,	504–505
HTML	(Hypertext	Markup	Language),	506–507

child	element
explained,	11,	212
first	and	last,	216–217

Chrome
developer	tool,	503
refreshing	pages	in,	39

undocking	Developer	Tools,	39
testing	sites	in,	500

Chrome’s	cache,	disabling,	39
circles,	creating	using	border-radius,	367
citations,	indicating,	94
cite	attribute,	94,	95,	110
using	with	blockquote,	97

cite	element,	87,	94–95,	522
using	for	names,	94

class	attributes,	82
applying,	82–83
implementing	microformats,	83
naming,	83

class	names,	assigning	to	elements,	82
class	selectors.	See	also	pseudo-classes
vs.	ID	selectors,	211
multiple	classes	on	one	element,	177,	210
using	with	inline	styles,	197

clearfix	method,	using	with	float	property,	299
clearing	floats,	297–300
“click	here”	labels,	avoiding,	162
Cloud.typography	web	font	service,	339
Coda	text	editor,	31
code
displaying	<	and	>	signs,	112
marking	up,	112
validating,	496–497

code	editor,	funny	characters	in,	47
code	element,	explained,	87,	112
codec,	explained,	451
col	element,	522
colgroup	element,	522
colors.	See	also	background	color
per	image	formats,	136
CSS	color	options,	182–188
declared	with	hexadecimal,	183
declared	with	keywords,	182
declared	with	HSL	and	HSLA,	186–188
declared	with	RGB	and	RGBA,	183–185
setting	for	text,	248–249
specifying	for	borders,	288

colspan	attribute,	482

“commenting	out”	declarations,	173
comments
/*	and	*/	for	CSS,	172
<!--	and	-->	for	HTML,	86
adding	to	HTML,	85–86
adding	to	CSS,	172–173

complementary	landmark	role,	79–80
conditional	comments,	using	with	responsive	pages,	333
consistency,	checking	HTML	for,	496
contact	info,	adding,	106–107
containers,	creating,	73–75
content,	adding	to	webpages,	6–7
content	attribute,	527
contenteditable	attribute,	520
contentinfo	landmark	role,	79–80
controls	attribute,	454,	464
coords	attribute,	521
corners	of	elements
elliptical,	367
rounding,	365–367

Creative	Commons	licenses,	140
CSS	(Cascading	Style	Sheets).	See	also	CSS3	features;	inheritance;	selectors;	style	sheets
avoiding	@import,	199
backgrounds,	See	backgrounds
benefits,	170
browser	compatibility,	See	browser	support	resources
default	browser	styles,	24,	274–275
debugging	techniques,	508–509
generated	content,	384–386
history	and	relationship	to	CSS3,	xvi
images	and	sprites,	387–388
!important,	199
inheritance,	174–176
link	element,	199
media	attribute,	200
media	queries,	219
order	of	styles,	198–199
polyfills	for	non-supporting	browsers,	363
progressive	enhancement,	xx–xxi,	362–363
specificity,	law	of,	178–179
the	cascade,	177–179,	198
treatment	of	class	names,	177

validating	to	locate	errors,	496
vendor	prefixes,	364
viewing	others’	code,	202

CSS	Arrow	Please!	386
CSS	border	shorthand	property,	146
CSS	color	keywords,	182–183
.css	extension,	using	with	external	style	sheets,	190
CSS	gradients,	syntax	for,	376
CSS	properties
bare	numbers,	181
for	formatting,	169
hexadecimal,	183
inherit	value,	180
for	layout,	169
lengths,	180–181
percentages,	180–181
predefined	values,	180
for	printing,	169
RGB,	183
URLs,	182

CSS	validator,	using,	497
CSS2,	explained,	170
CSS3	colors
color	keywords,	182
HSL	and	HSLA,	186–188
RGBA,	184–185

CSS3	features
animations,	363
background	size,	256
browser	compatibility,	362,	499
clipping	backgrounds,	256
drop	shadows,	368–372
gradient	backgrounds,	376–381
multiple	backgrounds,	373–375
opacity	of	elements,	382–383
polyfills	for	non-supporting	browsers,	363
rounding	corners	of	elements,	365–367
text	shadows,	368–369
transforms,	363
transitions,	363

CSS3	Generator,	364
CSS3	syntax	for	pseudo-elements,	219

cursors,	changing,	308

D
data	attribute,	520
data	tables.	See	tables
datalist	element,	411
dates
local	and	global,	100
specifying,	98

datetime	attribute,	using	98–100
dd	element,	404
debugging	techniques,	overview,	502–503.	See	also	checking	for	errors
default	attribute,	530
default	homepage,	specifying,	35
default	styles.	See	also	styles
normalizing,	274–275
resetting,	274–275

defer	attribute,	528
defining	terms,	103
del	element,	108–109
cite	attribute,	110
datetime	attribute,	110
vs.	s	element,	111
text	marked	with,	111
using	with	content	changes,	110

deleted	text,	marking,	108
descendant	element,	defined,	212–213
details	element,	523
development	server,	Apache,	18
dfn	element,	103
dir	attribute,	125
using	with	bdi,	125
using	with	bdo,	126

dirname	attribute,	525
disabled	attribute,	444
display	type,	controlling,	278–281
displays,	media	queries	for,	332
div	element,	73,	125
adding	around	whole	pages,	73
containing	pages	in,	77
vs.	section	element,	63

surrounding	content,	74
using	in	HTML5,	76

dl	(description	list)	element,	404
creating,	404–407
explained,	389,	523
nesting,	407

DOCTYPE	declaration
including	in	webpages,	4–5,	44

document	flow,	explained,	278
document	head,	explained,	5,	46
document	headings	structure,	defining,	50
domain,	connecting	with	web	host,	514
domain	name,	getting,	512
double	vs.	single	quotes,	348
download	attribute,	520
draggable	attribute,	520
DRM	(digital	rights	management),	450
drop	shadows,	adding	to	text,	368–369
dropzone	attribute,	520
dt	element,	389,	404
duration,	specifying,	98

E
Edge	Web	Fonts	service,	339
editing	webpages,	36
edits,	noting,	108–111
elements.	See	also	alphabetical	list	of	HTML	elements	in	Appendix;	pseudo-elements;	selecting	elements
aligning	vertically,	306–307
ancestors,	212
assigning	classes	to,	82
attributes	of,	9
block-level,	24
components,	8
contents,	8
descendants,	212
display	type,	278–281
document	flow,	278
empty,	8
floating,	295–300
inline,	24
naming	with	unique	IDs,	82
nesting,	11

number	available,	22
offsetting	in	natural	flow,	301
parents,	11
phrasing	content,	21
positioning	absolutely,	302–303
positioning	in	stacks,	304
relative	positioning,	301
rounding	corners	of,	365–367
selecting	based	on	attributes,	222–225
selecting	by	class,	208–210
selecting	by	context,	212–215
selecting	by	ID,	208–210
selecting	by	name,	206–207
selecting	when	first	child,	216–217
selecting	when	last	child,	216-217
specifying	groups	of,	226
visibility,	278–281
void,	8
wrapping	text	around,	295–296

em	(stress	emphasis)	element,	90
explained,	87,	523
vs.	i	element,	90
and	percentage	font	sizes,	241–243
using,	21–22,	90

em	values	for	padding	and	margin,	294
email	boxes,	creating	for	forms,	428–431
embed	element,	523
embedded	style	sheets,	194–195.	See	external	style	sheets;	style	sheets
empty	elements,	8
ems,	using	in	media	queries,	322
emulators,	using	for	testing,	501
enctype	attribute,	439
Espresso	text	editor,	31
event	handlers,	494
extensions.	See	file	extensions
external	style	sheets.	See	also	embedded	style	sheets;	style	sheets
benefits,	192
creating,	190–191
importing,	191
linking	to,	191–193
loading	multiple,	193
media	attribute,	200–201,	319–322

naming,	191
saving	with	.css	extension,	190
URLs	in,	193
UTF-8	encoding,	190

F
fallback	backgrounds,	creating,	378
favicons,	155–156
fieldset	element,	418
using	with	forms,	418–421

figcaption	element,	92–93
figure	element,	92–93
file	extensions,	using	consistently,	32–34
file	names
extensions,	14
lowercase,	14,	26
separating	words	with	dashes,	14

file	uploads,	handling	for	forms,	439
files
naming	conventions,	37
organizing,	37,	193,	255,	356
transferring	to	server,	515–518

FileZilla	FTP	client
downloading,	515
using,	516–517

Firefox
developer	tool,	503
testing	sites	in,	500

Fireworks	alternatives,	141
fixed-width	page
explained,	266
pixels	for,	283

Flash	fallback,	470–474
Flash	playback,	troubleshooting,	474
Flash	plugin,	use	of,	13
Flash	security	settings,	changing,	474
Flickr	website,	140
float	property,	295–300
floats,	clearing,	297–300
folder	names
extensions,	14
lowercase,	14,	26

folders
dividing	into	sub-folders,	37
naming	conventions,	37

font	alternates,	specifying,	233–235
font	family,	setting,	232
font	sizes
basing	on	parent	element,	244
basing	on	root	element,	243–244
em	and	percentage,	241–244
pixels,	240
rem	(root	em),	243–244
setting,	240

Font	Squirrel,	338,	342–344
font	values,	setting	at	once,	246–247
Fontdeck	web	font	service,	339
@font-face	rule,	using	with	web	fonts,	336–337,	345,	348
fonts.	See	also	font	sizes;	Google	Fonts	web	font	service;	styles	for	text	formatting;	text;	web	fonts
Arial	on	Windows,	235
Geneva	stacks,	235
Helvetica	on	OS	X,	235
shared	defaults,	234
specifying	for	alphabets,	235

Food	Sense	site,	viewing,	311
footer	element,	70–72
footers,	creating,	71
for	attribute,	425,	528
form	attribute,	522
form	element,	413
form	elements
disabling,	444–445
example,	413
fieldset	element,	418–421
headings,	421
labels,	422–424
legend	element,	418–421
organizing,	418–421
placeholder	attribute,	422–424,	426
screen	readers,	421
separating,	422
styling,	421

form	fields,	placing	inside	labels,	426
form	parts,	labeling,	425–426

formaction	attribute,	522
formenctype	attribute,	522
formmethod	attribute,	522
formnovalidate	attribute,	443,	522
formtarget	attribute,	525
forms
accept	attribute,	412
attributes,	412
autocomplete	attribute,	412
autofocus	attribute,	412
checkboxes,	434–435
color,	411
creating,	413–415
creating	hidden	fields,	440
creating	text	boxes,	422–424
data	list,	411
date	input	type,	411
disabling	validation	features,	415
email	boxes,	428–431
features-enhancement	for	older	browsers,	412
file	uploads,	439
formnovalidate	attribute,	412
global	date	and	time,	411
HTML5	inputs	and	elements,	411
id	naming	convention,	426
improvements	in	HTML5,	410–412
letting	visitors	upload	files,	439
list	attribute,	412
maxlength	attribute,	423,	436
method="get",	415
method="post",	415
month,	411
multiple	attribute,	412
name	attributes,	426
for	naming	convention,	426
novalidate	attribute,	412
number	input	type,	411
output	element,	411
password	boxes,	427
pattern	attribute,	412
placeholder	attribute,	412

processing,	416–417
pseudo-classes,	446
radio	buttons,	432–433
range	input	type,	411
regular	expressions,	431
required	attribute,	412
search	boxes,	428–431
security,	416–417
select	boxes,	437–438
server-side	vs.	client-side,	417
start	and	end	tags,	413–414
styling	based	on	states,	446–448
styling	with	attribute	selectors,	448
submit	button,	441–443
telephone	boxes,	428–431
text	areas,	436
text	boxes,	422–424
URL	boxes,	428–431
validating,	417
week	input	type,	411

fractional	values,	representing,	128–129
FTP	client,	using,	515–517
FTP	site,	defining	properties	for,	516

G
generated	content,	384–386
generic	containers,	creating,	73–75
GIF	image	format,	134–135,	138
Gimp	image	editor,	141
Google	Fonts	web	font	service,	339,	357–359.	See	also	fonts
Google	Usage	Rights,	140
gradient	backgrounds,	376–380
gradient	code,	creating	for	old	browsers,	381
groups	of	elements,	specifying,	226

H
h1–h6	elements,	50
hCard	microformat,	119
head	element,	45
adding	to	webpages,	4,	45–46
indenting	code	nested	in,	47

header	attribute,	530

header	element,	54–55
multiple,	55
with	nav	element,	55
page-level	with	navigation,	54

headers,	creating,	55
headings
describing	groups	of	form	fields	with,	418–421
for	defining	document	structure,	50
importance	of,	21,	50–51
levels	h1–h6,	21,	50
navigating	with	a	screen	reader,	23
organizing	webpages	with,	51–52
proper	use	of,	52
using,	50
using	all	levels	of,	51

height,	setting	for	elements,	282–285
height	vs.	min-height,	284
Helvetica,	showing	on	OS	X,	235
hgroup	element,	removal	of,	52
hidden	attribute,	520
hidden	fields,	creating	for	forms,	440
high,	low	attributes,	128
highlighting	text,	116–117
homepage,	specifying	default,	35
hr	element,	524
href	attribute
contents,	10
explained,	162
including	for	links,	158–159

href	values,	including	on	webpages,	6,	158,	192
hreflang	attribute,	520
HSL	(hue,	saturation,	light)	and	HSLA,	186–188
HTML	(Hypertext	Markup	Language),	26
checking	for	consistency,	496
debugging	techniques,	506–507
history	and	relationship	to	HTML5,	xvi
indenting,	7
rendering	by	browsers,	12,	24–25
semantics,	20–23
thinking	in,	3
validating,	497
viewing	others’	code,	40–41

writing	in	lowercase,	26
.html	and	.htm	extensions,	32
html	element,	44
basic	usage,	4–5
including	in	webpages,	44–46

HTML	elements.	See	elements
HTML	markup.	See	markup
HTML	pages.	See	also	webpages
body	element,	4,	20
common	page	constructs,	53
components,	44
DOCTYPE,	4–5,	44,	46
example,	basic,	4
examples,	larger,	60,	230–231,	269–270
head	element,	4,	45
html	element,	4,	44
indenting	code,	7,	44
semantics,	20–23
structure,	44–46,	50–52

HTML5
DOCTYPE,	46–47
differences	with	HTML4,	xix
document	outline,	52
empty	elements,	9
event	handlers,	494
styling	elements	in	older	browsers,	272–273
terminology,	2

HTML5	pages,	starting,	44–45
HTML5	Please	resource,	363
http-equiv	attribute,	527

I
i	element,	90–91
IcoMoon,	creating	icon	fonts,	340
icon	fonts,	getting,	340.	See	also	fonts;	web	fonts
icons,	adding	for	websites,	155–156
id	attribute,	82–83,	520
ID	selectors	vs.	class	selectors,	211
IE	(Internet	Explorer),	older	versions	of	and	responsive	webpages,	333–334
iframe	element,	163,	524
image	editors
choosing,	141

scaling	images	with,	154
image	formats
GIF,	134–135,	138
JPEG,	134–135
PNG-8,	134–135,	138
PNG-24,	134–135
PNG-32,	134–135
WebP,	135

image	maps,	use	of,	162
image	optimization,	142–144
image	path,	146
image	sizes,	136–137,	139
finding,	149–151
height	attribute,	150–153
specifying,	149–151
width	attribute,	150–153

images.	See	also	background	images
adding	to	pages,	145–146
animation,	139
changing	alignment,	145
changing	display	size	of,	152
combining	with	sprites,	387–388
creating	for	Retina	displays	and	other	high-pixel-density	displays,	152
Creative	Commons	licenses,	140
debugging	problems	displaying,	148,	510
dimensions,	136–137,	139
format	colors,	136
getting,	140
Google	Usage	Rights,	140
height	attribute,	150–153
making	flexible,	312–314
offering	alternative	text,	147–148
pixels,	136
printing,	137
resizing,	154
retaining	aspect	ratio,	152
saving,	139,	142–144
scaling	proportionally,	313
scaling	with	browser,	152
simulating	slow	connections,	146
sizing	for	Retina	displays	and	other	high-pixel-density	displays,	153
storing	in	folders,	146

SVG	(scalable	vector	graphics),	137
testing	loading	time,	146
transparency,	138
width	attribute,	150–153

img	element,	145
basic	usage,	7,	21

indenting	HTML,	7,	44
indents,	adding	to	text	with	CSS,	258
index	transparency,	138–139
index.html,	saving	as	default	page,	35
inheritance,	174–176.	See	also	CSS	(Cascading	Style	Sheets)
inline	elements,	explained,	24–25
inline	styles,	196–198
input	element,	411,	422–424,	427–435,	439–444
ins	element,	108–111
inserted	text,	marking,	108
inset	shadow,	creating,	371
Internet	Explorer	8+,	testing	sites	in,	500
Internet	Explorer	developer	tool,	503
iOS	Simulator	website,	501
iPad,	testing	pages	for,	501
iPhone,	testing	pages	for,	501
ismap	attribute,	524
ISP	(Internet	service	provider),	using	as	web	host,	513
italics
applying	with	web	fonts,	350–351
creating,	236–237
real	vs.	faux,	237
removing,	237

J
JavaScript
adding	embedded	scripts,	492
inline	scripts,	491
loading	external	scripts,	487–491
minifying,	489
Node.js,	486
organizing	files,	489
overview,	485–486
performance	best	practices,	490–491
resources,	486
sample,	488–489

script	element,	490,	492
scripting	best	practices,	490–491

JavaScript	events
onblur,	493
onchange,	493
onclick,	493
ondblclick,	493
onfocus,	493
onkeydown,	493
onkeypress,	494
onkeyup,	494
onload,	494
onmousedown,	494
onmousemove,	494
onmouseout,	494
onmouseover,	494
onmouseup,	494
onreset,	494
onselect,	494
onsubmit,	494

JAWS	screen	reader,	78
Johansson,	Roger,	348
JPEG	image	format,	134–135
JPEGmini	website,	144
JW	Player	Flash	fallback	solution,	474

K
kbd	element,	113
kind	attribute,	530
kerning,	specifying,	257
keygen	element,	526
keytype	attribute,	526

L
label	attribute,	438
label	element,	425–426
landmark	roles,	79–81
lang	attribute,	44
using	q	element	with,	95–96
using	with	headings,	52

language	subtag	lookup	tool,	47

languages,	right-to-left,	127
layout	approaches
fixed-width	pages,	266
responsive	webpages,	266–267

layout	grid,	making	flexible,	315–318
layout	with	styles.	See	also	styles
absolute	positioning	of	elements,	302–303
aligning	elements	vertically,	306–307
borders,	288–291
box	model,	276–277
browser	considerations,	267
changing	cursor,	308
display	type,	278–281
elements	in	stacks,	304
height	for	elements,	282–285
HTML5	in	older	browsers,	272–273
making	elements	float,	295–300
managing	overflow,	305
margins	around	elements,	292–293
normalizing	default	styles,	274–275
padding	around	elements,	286–287
relative	positioning	of	elements,	301
resetting	default	styles,	274–275
visibility	of	elements,	278–281
width	for	elements,	282–285

legend	element,	418–421
li	element,	390
applying	classes	to,	396
placing	list	content	in,	392

line	breaks,	creating,	118–119,	123
line	height,	setting,	245
linear	gradient,	376,	378
link	element,	192
linking
blocks	of	content,	161–162
to	external	style	sheets,	191
thumbnail	images,	168

links
a	element,	158
applying	style	properties,	162
avoiding	“click	here”	labels,	162
compressing	files	for	download,	168

creating	different	kinds	of,	166–168
creating	to	other	webpages,	158–160
designating	as	navigation,	56–58
destinations,	157
to	email	addresses,	167
href	attribute,	158–159
label	lengths,	162
labels,	157
navigating	with	keyboard,	158
navigation,	162
to	PDFS,	168
rel	attribute,	160
selecting	based	on	states,	220–221
to	phone	numbers,	167
tabindex	attribute,	158

list	attribute,	411
list	numbering,	starting,	397
list	type,	choosing,	391
lists
Boolean	reversed	attribute,	392
choosing	markers,	393
content	direction,	392
creating	custom	markers,	394–396
dd	(description	of	term),	389
displaying	without	markers,	393
dl	(description	list),	389,	404–407
dt	(term	to	describe),	389
for	marking	up	navigation	links,	390
hanging	markers,	398
indentation,	392,	396
li	(list	item),	389,	392,	396
nesting,	392
ol	(ordered	list),	389–392
padding-left	indentation,	396
right-to-left,	392
styling	nested,	400–403
ul	(unordered	list),	389–392

list-style	properties,	setting	at	once,	399
list-style-position	property,	setting,	398
loop	attribute,	456,	466
lowercase

files	and	folders,	26
writing	HTML	in,	26

lowercase	value,	using,	260

M
main	element,	59
main	landmark	role,	79–80
manifest	attribute,	524
map	element,	526
Marcotte,	Ethan,	267
margins
em	values	for,	294
percentage-based	values	for,	318
setting	around	elements,	292–293

mark	element,	116–117
markers
choosing	for	lists,	393
custom	vs.	default,	396
customizing,	394–396

marking	up
code,	112
file	names,	112

markup
attributes,	9–10
children,	11
components,	26
elements,	8–9
parents,	11
values,	9–10

mathematical	markup,	113
max	attribute
for	meter	element,	128–129
for	progress	element,	130–131

maxlength	attribute,	423,	436
max,	min	attributes	for	input	range,	525
max-width,	relative,	318.	See	also	width
media	attribute,	200,	319
@media	at-rule,	using	in	style	sheets,	201
MediaElement.js,	470–471
media	queries
base	style	rules	outside	of,	323
examples,	320–322

media	features,	319–320
for	Retina	displays	and	other	high-pixel-density	displays,	332
in	style	sheets,	323
for	style	sheet	for	responsive	webpage,	329–330
syntax,	320–322
targeting	viewport	widths,	330
using	ems	in,	322

media-specific	style	sheets,	200–201,	319–323
megapixels,	136
menu	element,	526
meta	element,	45,	324–325
meter	element,	128–130
method	attribute,	414
method="get"	vs.	method="post",	415
microformats,	implementing,	83
MIME	type,	setting,	451
min-height	vs.	height,	284
Miro	Video	Converter,	451
missing	images,	fixing,	510
misspelled	words,	noting,	122
mobile	compatibility,	testing	for,	501
mobile	devices	resources,	332
mobile	first	approach,	following,	327
Modernizr	website,	363
multimedia
native,	450
resources,	476

multiple	attribute,	431,	437
muted	attribute,	453,	465

N
name	attribute,	413,	436,	437,	522
Namecheap	website,	512
native	multimedia
accessibility,	462
explained,	450

nav	element,	56
links	in,	56–58
with	ul	and	ol,	57

navigation
including	on	pages,	162
marking,	56–58

navigation	landmark	role,	79–80
nested	lists
styling,	400–403
using	for	drop-down	navigation,	403

nesting	elements,	11
nh	nm	ns	duration	format,	100
Node.js,	486
normalize.css,	105
noscript	element,	527
Notepad	text	editor
displaying	files	in,	36
naming	files,	33
Save	as	option,	33
using,	30

novalidate	attribute,	415
numbered	lists,	starting,	397
NVDA	screen	reader,	78

O
object	element,	527
oblique	text,	explained,	237
ol	(ordered	list)	element,	390
creating,	390–392
explained,	389,	527
using	with	nav,	57

“One	Web”	presentation,	311
opacity	property,	setting,	382–383
open	attribute,	523
Open	Device	Lab	website,	501
Opera	developer	tool,	503
optgroup	element,	438
optimum	attribute,	128
option	element,	437
output	element,	411
overflow	property,	300,	305

P
p	(paragraph)	element,	21,	88
padding
adding	around	elements,	286–287
em	values	for,	294
percentage-based	values	for,	318

page	constructs,	53.	See	also	webpages
pages.	See	webpages
Paint.NET	website,	141
paragraphs
creating,	21,	88
line	spacing,	88

param	element,	528
parent	element
basing	selection	on,	214
explained,	11,	212

password	boxes,	creating	for	forms,	427
pattern	attribute,	428
percentages,	for	responsive	webpage,	283
photographs,	saving,	139
Photoshop
4-Up	tab,	142
finding	image	dimensions,	151
RGB	vs.	CMYK,	144
Save	for	Web	command,	142–144
scaling	images	with,	154
shrinking	image	files,	144

Photoshop	alternatives
Acorn,	141
Gimp,	141
Paint.NET,	141
Paint	Shop	Pro,	141
Pixelmator,	141

phrasing	content	elements,	21
picture	element,	proposal	of,	314
Pixelmator	website,	141
pixels
measurement,	136
transparency,	138

placeholder	attribute,	using	with	forms,	422–424,	426
placeholder	value,	representing,	113
PNG-*	image	format	variations,	135
comparing	to	other	formats,	134
lossless,	135
transparency,	138

PNG-24,	Transparency	setting	in	Photoshop,	139
polyfills,	using	for	non-supporting	browsers,	363.	See	also	browsers
poster	attribute,	456

pre	element,	114–115
preformatted	text,	114–115
The	Principles	of	Beautiful	Web	Design,	29
printing	images,	137
preload	attribute,	457,	466
progress	element,	128–131
PSD	file	layers,	144
pseudo-classes.	See	also	class	selectors
:active,	220–221
:checked,	446
:disabled,	446
:enabled,	446
explained,	219
:focus,	220–221,	385,	446
for	forms,	446
:hover,	220–221
:invalid,	446,	448
:link,	220–221
:optional,	446
:required,	446
:valid,	446
:visited,	220–221

pseudo-elements.	See	also	elements
:after,	384–386
:before,	384–386
explained,	219

PT	Sans	font,	using,	343–345
publishing	pages	on	web.	See	also	webpages
domain	and	web	host,	514
files	to	server,	515–518
finding	site	host,	513–514
getting	domain	name,	512
ISP	as	web	host,	513
web	analytics,	513

px	(CSS	pixels),	181

Q
q	element,	95
cross-browser	issues,	97
using	with	lang	attribute,	95–96

Quirksmode	website,	499

quotes,	single	vs.	double,	348
quoting	text,	95–97

R
radial	gradients
defining,	379–380
explained,	376

radio	buttons
creating	for	forms,	432–433
nesting,	433

readonly	attribute	440
references,	citing,	94
regular	expressions	resource,	431
rel	attribute,	192
rel	values,	resource,	160,	162
using	with	external	links,	160
using	when	linking	to	external	style	sheets,	192

relative	positioning	of	elements,	301
relative	URLs
vs.	absolute	URLs,	19
referencing	files,	17–18
root,	18

rem	(root	em),	sizing	fonts	with,	243
rendering	webpages,	7,	24–25
required	attribute,	422
resizing	background	images,	256,	332
resizing	images,	154
Respond.js,	downloading,	334
responsive	webpages.	See	also	webpages
base	styling,	326
building,	331–332
components,	311
conditional	comments,	333
content	and	HTML,	326
evolving	layouts,	328–331
explained,	266–267
flexible	images,	312–314
flexible	layout	grid,	315–318
images	conundrum,	314
main	navigation,	328
media	queries,	319–322
media	query	for	style	sheet,	329

mobile	first	approach,	327
picture	element,	314
scaling	in	proportion,	318
srcset	attribute,	314
testing,	332
width,	328

Retina	displays	and	other	high-pixel-density	displays
creating	images	for,	153
icon	fonts,	153
media	queries	for,	332
scaling	images	for,	152
sizing	images	for,	153
SVG	(scalable	vector	graphics),	153

reversed	attribute,	392
right-to-left	languages,	incorporating,	127
role	attribute,	78,
root	relative	URLs,	18
rows,	cols	attributes,	436
rowspan	attribute,	482
rp	element,	124–125
rt	element,	124–125
ruby	element,	explained,	124–125
rules.	See	style	rules

S
s	element,	108,	110–111
Safari
developer	tool,	503
testing	sites	in,	500

samp	element,	113
sandbox	attribute,	524
saving
animated	images,	139
external	style	sheets,	190
images,	139,	142–144
images	with	alpha	transparency,	144
photographs,	139
source	code,	41
webpages,	32–36

scope	attribute,	478
screen	readers,	xxi,	23,	49,	50,	78
Screen	Sizes	website,	332

script	element,	487
seamless	attribute,	524
search	boxes,	creating	for	forms,	428–431
section	element,	63–64
vs.	article,	271
considering	use	of,	64
vs.	div	element,	63
nesting	in	article	element,	64

section	(the	word)	vs.	section	element,	46
select	boxes,	creating	for	forms,	437–438
select	element,	437
selected	attribute,	437
selecting
first	letter	of	elements,	218–219
first	line	of	elements,	218–219
links	based	on	states,	220–221

selecting	elements.	See	also	elements
based	on	attributes,	222–225
by	class,	208–210
by	context,	212–215
first	child,	216–217
by	ID,	208–210
last	child,	216–217
by	name,	206–207

Selectivizr,	448
selectors.	See	also	CSS	(Cascading	Style	Sheets)
ancestors,	212
class	vs.	ID,	211
combining,	227–228
constructing,	204
descendants,	212
examples,	204–205
keeping	simple,	205
pseudo-classes	for	forms,	446
resource,	228
sibling	elements,	215
using	*	(asterisk)	wildcard,	207
using	square	brackets	([])	with,	206

semantic	HTML,	20–23,	26
semantics
accessibility,	23
code	maintenance,	23

CSS	styling,	23
importance	of,	23
SEO	(search	engine	optimization),	23

shadows,	applying	to	elements,	372
shape	attribute,	521
sibling	elements,	basing	selections	on,	215
Silk	icon	set,	388
simulators,	using	for	testing,	501
single	vs.	double	quotes,	348
sites.	See	also	websites
getting	inspiration,	29
identifying	audiences,	28
mapping	folder	structure,	28–29
naming	conventions,	28
number	of	pages,	28
planning,	28
reason	for	creating,	28
resources,	29
sketching	on	paper,	28

size	attribute,	423,	437
sizes	attribute,	526
small	caps
removing,	261
using,	261

small	element,	24–25,	89
Smashing	Magazine	website,	29
Socialico	icon	font,	340
source	code
saving,	41
viewing	CSS,	202
viewing	HTML,	40

source	element,	468,	459
spacing
specifying	kerning,	257
specifying	tracking,	257

span	attribute,	522
span	element,	120–121
special	characters,	treatment	of,	12
specificity,	law	of,	178–179
spellcheck	attribute,	520
sprites,	combining	images	with,	387–388
square	brackets	([])

using	with	attributes,	222
using	with	selectors,	205

src	attribute,	145–146,	452,	459,	464,	487
including	on	audio,	464
including	on	img,	145–146
including	on	video,	452

srclang	attribute,	531
srcdoc	attribute,	524
srcset	attribute,	proposal	of,	314
stacks,	positioning	elements	in,	304
start	attribute,	397
step	attribute,	525
strong	element,	90
structure	of	documents,	defining,	44–45,	50,	53
style	element,	194,	196
style	rules
adding	comments	to,	172–173
collision	of,	177–179
constructing,	171
ignored	by	browsers,	448
!important,	179
law	of	specificity,	178–179
order	of,	179

style	sheets.	See	also	CSS	(Cascading	Style	Sheets);	embedded	style	sheets;	external	style	sheets
defined,	169
inline	styles,	196–197
location	of	external,	193
media-specific,	200–201
saving	external,	190
sources,	179

styles.	See	also	default	styles;	layout	with	styles
applying	to	groups	of	elements,	226
order	of,	198–199

styles	for	text	formatting.	See	also	fonts;	text
adding	indents,	258
aligning	text,	259
alternate	fonts,	233–235
backgrounds,	250–252
bold,	238–239
controlling	spacing,	257
decorating	text,	262–263
font	family,	232

font	sizes,	240–244
font	values	at	once,	246–247
italics,	236–237
line	height,	245
setting	color,	248–249
small	caps,	261
text	case,	260
whitespace	properties,	264

sub	element,	103–104
fixing	line	spacing,	105

sub-folders,	creating	from	folders,	37
subhead	element,	52
Sublime	Text	editor,	31
submit	button,	creating	for	forms,	441–443
subscripts,	creating,	103–104
subsetting,	using	with	web	fonts,	337
summary	element,	529
sup	element,	103–105
superscripts,	creating,	103–104
SVG	(scalable	vector	graphics)
coupling	video	with,	475
explained,	137

svg	element,	475

T
tabindex	attribute,	158
table	element,	478
tables
adding	padding,	481
advanced	examples,	477
caption	element,	481
colspan	attribute,	482–483
column	headers,	479
row	headers,	479
rowspan	attribute,	482–483
scope	attribute	for	th,	481
spanning	columns,	482–483
spanning	rows,	482–483
structuring,	478–481
tbody	(table	body)	element,	481
td	(table	data)	element,	478
tfoot	(table	footer)	element	479–480

th	(table	header	cell)	element,	478,	480
thead	(table	header)	element,	479
tr	(table	row)	element,	478,	480

target	attribute,	163
accessibility	concerns,	163
best	practices,	163
opening	links	in	iframes,	163
usability	concerns,	163

tbody	element,	479
td	element,	478
telephone	boxes,	creating	for	forms,	428–431
terms,	defining,	103
testing
browsers,	500
with	emulators,	501
for	mobile	compatibility,	501
obtaining	browsers	for,	500
with	simulators,	501
webpages,	498–499

text.	See	also	fonts;	styles	for	text	formatting
adding	drop	shadows	to,	368–369
aligning,	259
alternative	for	missing	images,	147–148
blank	alternative,	148
character	references	or	entities,	12
decorating,	262–263
emphasizing,	90
encoding,	12
highlighting,	116–117
marking	as	important,	90
marking	deleted,	108–109
marking	inserted,	108–109
noting	inaccuracies,	108–111
preformatted,	114–115
quoting,	95–97
styling	with	web	fonts,	346–348
wrapping	around	elements,	295–296

text	areas,	creating	for	forms,	436
text	boxes,	creating	for	forms,	422–424
text	case
capitalize	value,	260
changing,	260

lowercase	value,	260
uppercase	value,	260

text	editors
availability,	31
BBEdit,	31
Coda,	31
creating	webpages	in,	31
displaying	files	in,	36
Espresso,	31
Notepad,	30–31
for	OS	X,	31
Sublime	Text,	31
TextMate,	31
TextWrangler,	30–31
for	Windows,	31

text	formatting.	See	styles	for	text	formatting
textarea	element,	436
TextMate	editor,	31
text-shadow	property,	using,	368–371
TextWrangler	text	editor
naming	files,	33
using,	30

tfoot	element,	479
th	element,	478
thead	element,	479
third-party	plugins,	450
time	element,	98–99
time	formats
datetime	attribute,	100
nh	nm	ns,	100
YYYY-MM-DDThh:mm:ss,	100

time	zone	offsets,	100
times,	global,	100
title	attribute,	84,	103
adding	to	elements,	84
using	with	abbreviations,	101

title	element,	45–49
touch	icons,	creating,	155–156
tr	element,	478
track	element,	84,	462
tracking,	specifying,	257

transferring	files	to	server,	515–518
transparency
alpha,	138,	144
availability	of,	138
borders,	276
index,	138

triangles,	creating	with	border	styles,	386
troubleshooting.	See	debugging	techniques;	testing
.txt	extension,	32
type	attribute,	393,	411,	422,	461,	523
type	selector,	explained,	206
Typekit	web	font	service,	339,	344
typemustmatch	attribute,	527

U
u	element,	122–123
ul	(unordered	list)	element,	390
creating,	390–392
explained,	389
using	with	nav,	57

Unicode,	use	of,	12
URL	boxes,	creating	for	forms,	428–431
URLs	(uniform	resource	locators)
absolute,	16
absolute	vs.	relative,	19
components,	15
creating	links	to,	166–168
ftp	scheme,	15–16
hosts,	15
http	and	https,	16
lowercase	convention,	162
mailto	scheme,	15–16
paths,	15
relative,	17–18
schemes,	15–16
separating	words	with	dashes,	14

usemap	attribute,	524
user	input	instructions,	marking	up,	113
UTF-8
encoding	pages	in,	12,	34
saving	files	as,	32–34,	47,	190
without	BOM,	34

V
validating	code,	496–497
value	attribute,	128,	130,	397,	422,	437,	443
values,	including	in	attributes,	9–10
var	element,	113
vertical	alignment,	applying	to	elements,	306–307
video	element,	452
accessibility,	462
adding	to	webpages,	452–453
adding	with	Flash	fallback,	470–474
autoplay,	454–455
Boolean	attributes,	455
controls,	454–455
coupling	with	SVG	(Scalable	Vector	Graphics),	475
with	multiple	sources,	459–461
preventing	from	preloading,	457–458
resources,	476
using	with	canvas	element,	475

video	element	attributes
autoplay,	453,	456
controls,	453
height,	453
loop,	453,	456
media	attribute,	461
muted,	453
poster,	453–454
preload,	453
source,	461
src,	453
type,	461
width,	453

video	file	formats
converting	between,	451
.m4v,	451
.mp4,	451
.ogv	(Ogg	Theora),	451
unsupported,	454
.webm,	451

Video.js	Flash	fallback	solution,	474
View	Source,	viewing	HTML	code	with,	40–41
viewports,	324–325

meta	element,	324–325
targeting	with	media	queries,	330

visibility	of	elements,	controlling,	278–281
visitors,	allowing	to	upload	files,	439
VMs	(virtual	machines),	using	to	test	browsers,	500
VoiceOver	screen	reader,	78
void	elements,	8

W
W3C’s	validator,	accessing,	497
WAI-ARIA	(Web	Accessibility	Initiative’s	Accessible	Rich	Internet	Applications),	78–81
wbr	element,	123
web	analytics,	513
web	browsers.	See	browsers
web	font	services
Cloud.typography,	339
Edge	Web	Fonts,	339
Fontdeck,	339
Fonts.com,	339
Fontspring.com,	339
Google	Fonts,	339
Typekit,	339
WebINK,	339

web	fonts.	See	also	fonts;	icon	fonts
applying	bold	italic	with,	354–356
applying	bold	with,	352–353
applying	italics	with,	350–351
browser	support,	336
choosing,	344
downloading,	342–344
.eot	(Embedded	OpenType),	336
explained,	336
file	formats,	336
finding,	338–341
Font	Squirrel,	338
@font-face,	336–337,	345
from	Google	Fonts,	357–359
The	League	of	Moveable	Type	website,	338
legal	issues,	336–337
managing	file	sizes,	337
MyFonts,	338
.otf	(OpenType),	336

PT	Sans,	343–345
quality	and	rendering,	340
self-hosting,	338
single	vs.	double	quotes,	348
styling	text	with,	346–348
subsetting,	337
.svg	(Scalable	Vector	Graphics),	336
.ttf	(TrueType),	336
Typekit	web	font	service,	344
using	in	Photoshop,	344
using	in	style	sheets,	346–348
using	number	of,	344
viewing	in	demo	HTML,	344
.woff	(Web	Open	Font	Format),	336

web	host
connecting	domain	with,	514
finding,	513–514
ISP	as,	513

web	server,	creating	with	JavaScript,	486
WebP	image	format,	135
webpages.	See	also	HTML	pages;	page	constructs;	publishing	pages	on	web;	responsive	webpages
alt	attribute,	148
ARIA	spec,	81
components,	26
connection-speed	simulations,	146
content,	6–7
content	placement,	26
creating,	30
creating	in	text	editors,	31
Creative	Commons,	140
default	missing,	35
document	head,	5,	45–46
editing,	36
ending,	45
file	references,	1
fixed-width,	266
getting	inspiration	from,	40–41
html	element,	5,	44
language	subtag	lookup	tool,	47
markup,	1
meta	tag,	4
refreshing	in	Chrome,	39

rel	value	resource,	162
rendering,	7
responsive,	266
saving,	32–36
sections,	46
structuring	pages,	268–271
testing,	498–499
text	content,	1,	12
viewing	in	browsers,	38–39

websites.	See	also	sites
Acorn,	141
Adobe	Edge	Inspect,	501
background	properties,	256
BBEdit	text	editor,	31
BrowserStack,	500
Can	I	Use,	499
Coda	text	editor,	31
CSS	Arrow	Please!	386
CSS	gradient	background	maker,	381
CSS	Sprite	Generator,	388
CSS3	Generator,	364
CSS3	Patterns	Gallery,	381
CSS3	PIE,	363
“A	Dao	of	Web	Design,”	311
DeviceAnywhere,	501
domain	names,	512
Dribbble,	362
Electric	Plum,	501
Espresso	text	editor,	31
favicons,	156
Flickr,	140
Flowplayer	solution,	474
Font	Squirrel,	342
@font-face	generator,	337
Fontfabric,	340
FTP	clients,	515,	518
Gimp,	141
Hover,	512
HTML5	Boilerplate,	156
HTML5	Please,	363
icon	fonts,	340
ImageOptim,	144

IcoMoon,	340
iOS	Simulator,	501
JAWS,	78
JPEGmini,	144
JW	Player	solution,	474
A	List	Apart,	29
MediaElement.js,	470–471
microformats,	119
Miro	Video	Converter,	451
Mobile	HTML5,	332
Modernizr,	363
multimedia	resources,	476
Namecheap,	512
normalize.css,	105
NVDA,	78
“One	Web”	presentation,	311
Open	Device	Lab,	501
Paint.NET,	141
Photoshop,	141
Pixelmator,	141
Quirksmode,	499
Resources	for	creating,	29
Respond.js,	334
responsive	website	examples,	332
Retina	images,	152
Screen	Sizes,	332
Selectivizr,	448
selectors	in	CSS3,	228
Silk	icon	set,	388
Smashing	Magazine,	29
specificity	weights,	179
Sublime	Text	editor,	31
table	examples,	477
TextMate	editor,	31
TextWrangler	text	editor,	30
verifying	in	desktop	browsers,	500
video	resources,	476
Video.js	solution,	474
VoiceOver,	78
W3C’s	validator,	497
Window-Eyes,	78
X-Icon	Editor,	156

WebVTT	file	format,	462
white-space	property,	264
width,	height	attributes,	150,	442,	452
width.	See	also	max-width
calculating	auto	value	for,	284–285
setting	for	elements,	282–285

Window-Eyes	screen	reader,	78
word	processors,	avoiding,	31
words,	noting	misspellings,	122
wrap	attribute,	530

X
XHTML,	use	of	space	and	forward	slash,	9
X-Icon	Editor,	156

Z
z-index	property,	using,	304

	Title Page
	Copyright Page
	Dedication
	Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	HTML and CSS in Brief
	Web Browsers
	Web Standards and Specifications
	Progressive Enhancement: A Best Practice
	Is This Book for You?
	How This Book Works
	Companion Website

	1. Webpage Building Blocks
	Thinking in HTML
	A Basic HTML Page
	Markup: Elements, Attributes, Values, and More
	A Webpage’s Text Content
	Links, Images, and Other Non-Text Content
	File and Folder Names
	URLs
	HTML: Markup with Meaning
	A Browser’s Default Display of Webpages
	Key Takeaways

	2. Working with Webpage Files
	Planning Your Site
	Creating a New Webpage
	Saving Your Webpage
	Specifying a Default Page or Homepage
	Editing Webpages
	Organizing Files
	Viewing Your Page in a Browser
	The Inspiration of Others

	3. Basic HTML Structure
	Starting Your Webpage
	Creating a Title
	Creating Headings
	Common Page Constructs
	Creating a Header
	Marking Navigation
	Marking the Main Area of a Webpage
	Creating an Article
	Defining a Section
	Specifying an Aside
	Creating a Footer
	Creating Generic Containers
	Improving Accessibility with ARIA
	Naming Elements with a Class or ID
	Adding the Title Attribute to Elements
	Adding Comments

	4. Text
	Adding a Paragraph
	Specifying Fine Print
	Marking Important and Emphasized Text
	Creating a Figure
	Indicating a Citation or Reference
	Quoting Text
	Specifying Time
	Explaining Abbreviations
	Defining a Term
	Creating Superscripts and Subscripts
	Adding Author Contact Information
	Noting Edits and Inaccurate Text
	Marking Up Code
	Using Preformatted Text
	Highlighting Text
	Creating a Line Break
	Creating Spans
	Other Elements

	5. Images
	Images for the Web
	Getting Images
	Choosing an Image Editor
	Saving Your Images
	Inserting Images on a Page
	Offering Alternative Text
	Specifying Image Sizes
	Scaling Images with the Browser
	Scaling Images with an Image Editor
	Adding Icons for Your Website

	6. Links
	Creating a Link to Another Webpage (and Other Link Basics)
	Creating and Linking to Anchors
	Creating Other Kinds of Links

	7. CSS Building Blocks
	Constructing a Style Rule
	Adding Comments to Style Rules
	Understanding Inheritance
	The Cascade: When Rules Collide
	A Property’s Value

	8. Working with Style Sheets
	Creating an External Style Sheet
	Linking to External Style Sheets
	Creating an Embedded Style Sheet
	Applying Inline Styles
	The Cascade and the Order of Styles
	Using Media-Specific Style Sheets
	The Inspiration of Others: CSS

	9. Defining Selectors
	Constructing Selectors
	Selecting Elements by Name
	Selecting Elements by Class or ID
	Selecting Elements by Context
	Selecting an Element That Is the First or Last Child
	Selecting the First Letter or First Line of an Element
	Selecting Links Based on Their State
	Selecting Elements Based on Attributes
	Specifying Groups of Elements
	Combining Selectors

	10. Formatting Text with Styles
	Before and After
	Choosing a Font Family
	Specifying Alternate Fonts
	Creating Italics
	Applying Bold Formatting
	Setting the Font Size
	Setting the Line Height
	Setting All Font Values at Once
	Setting the Color
	Setting the Background
	Controlling Spacing
	Adding Indents
	Aligning Text
	Changing the Text Case
	Using Small Caps
	Decorating Text
	Setting Whitespace Properties

	11. Layout with Styles
	Considerations When Beginning a Layout
	Structuring Your Pages
	Styling HTML5 Elements in Older Browsers
	Resetting or Normalizing Default Styles
	The Box Model
	Controlling the Display Type and Visibility of Elements
	Setting the Height or Width for an Element
	Adding Padding Around an Element
	Setting the Border
	Setting the Margins Around an Element
	Making Elements Float
	Controlling Where Elements Float
	Positioning Elements Relatively
	Positioning Elements Absolutely
	Positioning Elements in a Stack
	Determining How to Treat Overflow
	Aligning Elements Vertically
	Changing the Cursor

	12. Building Responsive Webpages
	Responsive Web Design: An Overview
	Making Images Flexible
	Creating a Flexible Layout Grid
	Understanding and Implementing Media Queries
	Putting It All Together
	Accommodating Older Versions of Internet Explorer

	13. Working with Web Fonts
	What Is a Web Font?
	Where to Find Web Fonts
	Downloading Your First Web Font
	Understanding the @font-face Rule
	Styling Text with a Web Font
	Applying Italics and Bold with a Web Font
	Using Web Fonts from Google Fonts

	14. Enhancements and Effects with CSS
	Browser Compatibility, Progressive Enhancement, and Polyfills
	Understanding Vendor Prefixes
	Rounding the Corners of Elements
	Adding Drop Shadows to Text
	Adding Drop Shadows to Elements
	Applying Multiple Backgrounds
	Using Gradient Backgrounds
	Setting the Opacity of Elements
	Effects with Generated Content
	Combining Images with Sprites

	15. Lists
	Creating Ordered and Unordered Lists
	Choosing Your Markers
	Using Custom Markers
	Choosing Where to Start List Numbering
	Controlling Where Markers Hang
	Setting All List-Style Properties at Once
	Styling Nested Lists
	Creating Description Lists

	16. Forms
	Improvements to Forms in HTML5
	Creating Forms
	Processing Forms
	Organizing the Form Elements
	Creating Text Boxes
	Labeling Form Parts
	Creating Password Boxes
	Creating Email, Search, Telephone, and URL Boxes
	Creating Radio Buttons
	Creating Checkboxes
	Creating Text Areas
	Creating Select Boxes
	Allowing Visitors to Upload Files
	Creating Hidden Fields
	Creating a Submit Button
	Disabling Form Elements
	Styling Forms Based on Their State

	17. Video, Audio, and Other Multimedia
	Third-Party Plugins and Going Native
	Video File Formats
	Adding a Video to Your Webpage
	Adding Controls and Autoplay to Your Video
	Looping a Video and Specifying a Poster Image
	Preventing a Video from Preloading
	Using Video with Multiple Sources and a Text Fallback
	Providing Accessibility
	Audio File Formats
	Adding an Audio File with Controls to Your Webpage
	Autoplaying, Looping, and Preloading Audio
	Providing Multiple Audio Sources with a Fallback
	Adding Video and Audio with a Flash Fallback
	Advanced Multimedia
	Further Resources

	18. Tables
	Structuring Tables
	Spanning Columns and Rows

	19. Adding JavaScript
	Loading an External Script
	Adding an Embedded Script
	JavaScript Events

	20. Testing & Debugging Webpages
	Validating Your Code
	Testing Your Pages
	Trying Some Debugging Techniques
	Checking the Easy Stuff: General
	Checking the Easy Stuff: HTML
	Checking the Easy Stuff: CSS
	When Images Don’t Display

	21. Publishing Your Pages on the Web
	Getting Your Own Domain Name
	Finding a Host for Your Site
	Transferring Files to the Server

	A. HTML Reference
	Index

