

HTML:
A	Beginner’s	Guide

Fifth	Edition

Wendy	Willard

	New	York		Chicago		San	Francisco		Lisbon		London
	Madrid		Mexico	City		Milan		New	Delhi		San	Juan
	Seoul		Singapore		Sydney		Toronto	

Copyright	©	2013	by	The	McGraw-Hill	Companies.	All	rights	reserved.	Except	as	permitted	under	the
United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may	be	reproduced	or	distributed	in	any
form	or	by	any	means,	or	stored	in	a	database	or	retrieval	system,	without	the	prior	written	permission	of
the	publisher,	with	the	exception	that	the	program	listings	may	be	entered,	stored,	and	executed	in	a
computer	system,	but	they	may	not	be	reproduced	for	publication.

ISBN:	978-0-07-180928-3

MHID:	0-07-180928-7

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-180927-6,

MHID:	0-07-180927-9

McGraw-Hill	eBooks	are	available	at	special	quantity	discounts	to	use	as	premiums	and	sales	promotions,
or	for	use	in	corporate	training	programs.	To	contact	a	representative	please	e-mail	us	at
bulksales@mcgraw-hill.com.

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark	symbol	after	every
occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial	fashion	only,	and	to	the	benefit	of	the
trademark	owner,	with	no	intention	of	infringement	of	the	trademark.	Where	such	designations	appear	in
this	book,	they	have	been	printed	with	initial	caps.

Information	has	been	obtained	by	McGraw-Hill	from	sources	believed	to	be	reliable.	However,	because	of
the	possibility	of	human	or	mechanical	error	by	our	sources,	McGraw-Hill,	or	others,	McGraw-Hill	does
not	guarantee	the	accuracy,	adequacy,	or	completeness	of	any	information	and	is	not	responsible	for	any
errors	or	omissions	or	the	results	obtained	from	the	use	of	such	information.

TERMS	OF	USE
This	is	a	copyrighted	work	and	The	McGraw-Hill	Companies,	Inc.	(“McGrawHill”)	and	its	licensors
reserve	all	rights	in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted	under
the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,	you	may	not	decompile,
disassemble,	reverse	engineer,	reproduce,	modify,	create	derivative	works	based	upon,	transmit,	distribute,
disseminate,	sell,	publish	or	sublicense	the	work	or	any	part	of	it	without	McGraw-Hill’s	prior	consent.	You
may	use	the	work	for	your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly
prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these	terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	AND	ITS	LICENSORS	MAKE	NO
GUARANTEES	OR	WARRANTIES	AS	TO	THE	ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF
OR	RESULTS	TO	BE	OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION
THAT	CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,	AND
EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT
LIMITED	TO	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR
PURPOSE.	McGraw-Hill	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.	Neither	McGraw-
Hill	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for	any	inaccuracy,	error	or	omission,	regardless
of	cause,	in	the	work	or	for	any	damages	resulting	therefrom.	McGraw-Hill	has	no	responsibility	for	the
content	of	any	information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill	and/or
its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,	consequential	or	similar	damages	that
result	from	the	use	of	or	inability	to	use	the	work,	even	if	any	of	them	has	been	advised	of	the	possibility	of
such	damages.	This	limitation	of	liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim

mailto:bulksales@mcgraw-hill.com

or	cause	arises	in	contract,	tort	or	otherwise.

To	Corinna	and	Caeli—that	you	might	remember	your	mom	once
knew	some	“cool	stuff,”	even	when	HTML	becomes	for	you	what

eight-track	tapes	are	to	me.	“Heaven	and	earth	will	pass	away,	but	my
words	will	never	pass	away.”

—Luke	21:33

About	the	Author
Wendy	Willard	is	a	designer,	consultant,	writer,	and	educator	who	has	been
involved	in	web	design	and	development	for	more	than	17	years.	She	has
published	on	HTML,	CSS,	web	design,	and	Photoshop.	She’s	previously	held
the	titles	of	Art	Director,	Creative	Director,	and	Marketing	Manager	at	firms	in
the	Northeast,	and	now	freelances	for	companies	worldwide.	Wendy	has	a
degree	in	Illustration	from	Art	Center	College	of	Design	in	Pasadena,	California,
and	splits	her	time	between	Maine,	Maryland,	and	Nicaragua,	with	her	husband
and	two	daughters.

About	the	Technical	Editor
Christie	Sorenson	is	a	senior	software	engineer	at	ZingChart.	She	has	worked
on	JavaScript-based	systems	in	analytics,	content	management,	and	business
applications	since	1997	and	has	been	fascinated	with	the	evolution	of	the
language	and	its	users.	She	has	collaborated	on	several	books,	including	Ajax:
The	Complete	Reference	and	HTML	&	CSS:	The	Complete	Reference	and	was
also	the	tech	editor	on	JavaScript:	The	Complete	Reference	and	JavaScript:	A
Beginner’s	Guide.	She	has	a	B.S.	in	Computer	Science	from	UC	San	Diego	and
now	lives	in	San	Francisco	with	her	husband	Luke	and	daughters	Ali	and	Keira.

Contents	at	a	Glance

PART	I	Laying	the	Foundation

1	Getting	Started

2	Document	Setup

3	Style	Sheet	Setup

4	Working	with	Text

5	Page	Structure

6	Positioning	Page	Elements

PART	II	Adding	the	Content

7	Working	with	Links

8	Working	with	Images

9	Working	with	Multimedia

10	Creating	Lists

11	Using	Tables

12	Creating	Forms

13	Formatting	and	Styling	Forms

14	Beyond	Static	HTML

PART	III	Going	Live

15	Publishing	Pages

16	HTML	for	Email

PART	IV	Appendixes

A	Answers	to	Self	Tests

B	HTML/CSS	Reference	Table

C	Troubleshooting	(FAQs)

D	Special	Characters

E	File	Types

Index

Contents

ACKNOWLEDGMENTS
INTRODUCTION

PART	I	Laying	the	Foundation

1	Getting	Started
Understand	the	Internet	as	a	Medium	for	Disseminating	Information

The	Anatomy	of	a	Web	Site
Web	Browsers
Internet	Service	Providers

Be	Aware	of	the	Current	Version	of	HTML
Plan	for	the	Audience,	Goals,	Structure,	Content,	and	Navigation	of	Your

Site
Identify	the	Target	Audience
Set	Goals
Create	the	Structure
Organize	Content.
Develop	Navigation

Identify	the	Best	HTML	Editor	for	You
Which	Is	Best?

Learn	from	the	Pros	Using	the	View	Source	Command	of	Popular	Web
Browsers

2	Document	Setup
Create	an	HTML	File

Naming	Conventions

Preview	an	HTML	File	in	a	Browser
Describe	and	Apply	the	Basic	HTML	Document	Format

Types	of	Elements
Types	of	Tags
Attributes
Required	Tags
Capitalization
Quotation	Marks
Nesting
Spacing	and	Breaks	Within	the	Code
Spacing	and	Breaks	Between	Tags
Spacing	Between	Lines	of	Text

Use	Character	Entities	to	Display	Special	Characters
Add	Comments	to	an	HTML	File

3	Style	Sheet	Setup
Set	Up	Style	Sheets	in	an	HTML	File

Define	the	Style
Define	the	Values
Create	the	Structure
Understand	the	Cascade

Identify	the	Ways	in	Which	Color	Is	Referenced	in	Web	Development
Hexadecimal	Color
RGB	Values	and	Percentages
Color	Names
So	Which	Should	I	Use?

New	and	Notable	Color	Options
RGBA
Opacity

Specify	Document	Colors

4	Working	with	Text
Ensure	Onscreen	Readability	of	Text

Markup	Text
Style	Text

Font	Faces
Font	Sizes
Font	Colors
Other	Font	Style	Properties

Offer	Printer-Friendly	Versions	of	Text	Content
PDFs
Printer-Specific	Style	Sheets
Final	Tips	for	Printer-Friendly	Pages

5	Page	Structure
Organize	Sections	of	Content

Identifying	Natural	Divisions
Set	the	Outline
Get	Inspired

Organize	Text
Paragraphs
Line	Breaks
Quotation	Blocks
Box	Properties
Alignment

6	Positioning	Page	Elements
Understand	the	Concept	and	Uses	of	Style	Sheets	for	Page	Layout
Create	a	Single-Column,	Centered,	Fluid	Page	Layout

Break	Down	the	Code
Pull	It	All	Together
Browser	Support

Create	a	Multicolumn	Fluid	Page	Layout
Break	Down	the	Code
Pull	It	Back	Together
Browser	Support..

Other	CSS	Page	Layouts
Layer	Content	Within	a	Layout

Realistic	Uses	of	Layers	in	Web	Pages
Use	External	Style	Sheets

Link	to	an	External	Style	Sheet
Import	an	External	Style	Sheet

PART	II	Adding	the	Content

7	Working	with	Links
Add	Links	to	Other	Web	Pages

Absolute	Links
Relative	Links

Add	Links	to	Sections	Within	the	Same	Web	Page
Create	an	Anchor
Link	to	an	Anchor

Add	Links	to	Email	Addresses	and	Downloadable	Files
Email	Addresses
FTP	and	Downloadable	Files

Recognize	Effective	Links
Extra	Credit

Style	Links
Default	Link	Colors
Beyond	Colors

Customize	Links	by	Setting	the	Tab	Order,	Keyboard	Shortcut,	and
Target	Window

Title
Tab	Order
Keyboard	Shortcuts
Target	Windows

8	Working	with	Images
Locating	Web	Image	Sources

Use	Stock	Images
Creating	Your	Own	Graphics

Become	Familiar	with	Graphics	Software
Adobe	Photoshop	and	Illustrator
Other	Options

Recognize	Appropriate	Web	Image	File	Formats
Terminology
GIF
JPEG
PNG
Choose	the	Best	File	Format	for	the	Job

Use	Images	as	Elements	in	the	Foreground	of	a	Web	Page
Specify	the	Height	and	Width	of	Images
Provide	Alternative	Text	and	Titles	for	Images
Link	Images	to	Other	Content	on	a	Web	Site

Link	the	Entire	Image
Link	Sections	of	an	Image

Add	Figure	Captions
Style	Foreground	Images

Borders
Floats
Padding	and	Margins
Centering
Pulling	It	All	Together

Use	Images	as	Elements	in	the	Background	of	a	Web	Page
Extra	Credit

9	Working	with	Multimedia
Understand	How	Plug-ins	Are	Used	with	Web	Browsers

Identify	the	Installed	Components
Recognize	File	Types,	Extensions,	and	Appropriate	Plug-ins

Link	to	Different	Types	of	Media	from	a	Web	Page
Embed	Different	Types	of	Media	onto	a	Web	Page

Start	with	the	audio	and	video	Elements
Customize	with	Attributes
Specify	Sources
Provide	Fallback	Options
Add	Text	Tracks
Use	embed	for	Non-native	Multimedia	Content

Style	Multimedia	Content

10	Creating	Lists
Use	Ordered	Lists	in	a	Web	Page
Use	Unordered	Lists	in	a	Web	Page
Use	Definition	Lists	in	a	Web	Page
Combine	and	Nest	Two	or	More	Types	of	Lists	in	a	Web	Page
Style	Lists

Customize	the	Bullets
Customize	the	Spacing
Customize	the	Entire	Layout

11	Using	Tables
Understand	the	Concept	and	Uses	of	Tables	in	Web	Pages
Create	a	Basic	Table	Structure

Table	Structure
Cell	Content

Format	Tables	Within	Web	Pages
Borders	and	Margins
Width	and	Height
Basic	Alignment
Colors
Background	Images
Captions

Format	Content	Within	Table	Cells
Alignment
Width	and	Height

Cell	Padding
Colors
Prohibit	Line	Breaks
Spanning	Columns
Span	Rows

Additional	Formatting	Techniques	for	Tables
Group	Rows
Group	Columns

12	Creating	Forms
Understand	the	Concept	and	Uses	of	Forms	in	Web	Pages
Create	a	Basic	Form

Text	Input
Radio	Buttons
Check	Boxes
Date	and	Time	Inputs
Other	Number	Inputs
Contact	Methods
Color	Selectors
Select	Menus
Disable	Form	Elements
Hidden	Fields
File	Uploads
Buttons

Validate	the	Form	Content
Using	Patterns

Provide	a	Way	for	Your	Form	to	Be	Processed
The	action	Attribute
The	method	and	enctype	Attributes

13	Formatting	and	Styling	Forms
Apply	Tables	to	Forms
Make	Forms	More	User-Friendly

Set	Tab	Order	and	Keyboard	Shortcuts
Include	Labels
Group-Related	Controls
Add	Data	Lists
Show	Progress
Assist	Your	Users

Style	Forms
Use	Styles	and	Fieldsets	to	Eliminate	the	Table	Layout
Use	Styles	for	Client-Side	Validation

14	Beyond	Static	HTML
Understand	the	Concept	and	Uses	of	JavaScript	and	HTML5	APIs	in

Web	Pages
Troubleshoot	JavaScript
Terminology
JavaScript	Logic

New	and	Notable
Multitasking
Storage
Offline
Geolocation
Canvas

Sample	Scripts
Add	the	Current	Date	and	Time
Format	a	New	Window
Create	a	Dynamic	Navigation	Bar
Display	a	User’s	Location	on	a	Map

Learn	More
Online	References	and	Scripts

PART	III	Going	Live

15	Publishing	Pages

Select	Possible	Domain	Names	for	Your	Site
Determine	the	Most	Appropriate	Type	of	Hosting	for	Your	Site

Personal	Site	Hosting
Business	Site	Hosting

Prepare	Your	Site	for	Its	Public	Debut
Update	Meta	Content
Troubleshoot	the	Code
Validate	the	Code
Preview	on	Mobile	Devices
Preview	in	Other	Browsers

Upload	Your	Site	to	a	Host	Computer
Desktop	FTP	Programs
Web-Based	FTP

Test	Your	Published	Site
Publicize	Your	Web	Site

Marketing	Tips
Make	the	Site	Live!

16	HTML	for	Email
Email	Standards	Project
Determine	Whether	HTML	Email	Is	Appropriate	for	Your	Needs

The	Purpose	of	Email	Is	to	Communicate
The	End-User	Display	Is	Unknown
Plain-Text	Email	Is	Safer	and	Smaller
But	…	HTML	Email	Marketing	Works

Don’t	Send	Spam
Email	the	Right	People
Always	Provide	a	Way	to	Opt	Out
Adhere	to	Other	FTC	Rules

Identify	the	Necessary	Tools	for	the	Task
Send	Live	Web	Pages	with	a	Personal	Email	Account
Using	an	Email	Service	Provider

Code	for	Email	Readers,	Not	Web	Browsers

Absolute	Paths
Images.
Tables	for	Layout
Inline	CSS

Reference	Guide	to	CSS	Support	in	Email	Clients
Interactivity	and	Multimedia	in	HTML	Email

Video	in	Email
Flash
Forms

Test,	Test,	Test
Spam	Test

PART	IV	Appendixes

A	Answers	to	Self	Tests
Chapter	1:	Getting	Started
Chapter	2:	Page	Setup
Chapter	3:	Style	Sheet	Setup408
Chapter	4:	Working	with	Text
Chapter	5:	Page	Structure
Chapter	6:	Positioning	Page	Elements
Chapter	7:	Working	with	Links
Chapter	8:	Working	with	Images
Chapter	9:	Working	with	Multimedia
Chapter	10:	Creating	Lists
Chapter	11:	Using	Tables
Chapter	12:	Creating	Forms
Chapter	13:	Formatting	and	Styling	Forms
Chapter	14:	Beyond	Static	HTML
Chapter	15:	Making	Pages	Available	to	Others
Chapter	16:	HTML	for	Email

B	HTML/CSS	Reference	Table

Generic	Attributes
Group	Type:	Core
Group	Type:	Events
Group	Type:	Intl

HTML	Tags
CSS	Properties

C	Troubleshooting	(FAQs)
My	Page	Is	Blank	in	the	Browser!
All	I	See	Is	Code	in	the	Browser!
My	Images	Don’t	Appear!
I	Tried	to	Change	the	Font,	But	Nothing	Happened!
When	I	Use	a	Special	Character,	It	Doesn’t	Appear!
My	Links	Don’t	Work!
My	Page	Looks	Great	in	One	Browser,	But	Terrible	in	Another!
When	I	Link	My	Images,	They	Have	Little	Colored	Dashes	Next	to

Them!
I	Saved	My	Image	as	a	JPEG,	But	the	Browser	Says	It’s	Not	a	Valid	File

Format!
Strange	Characters	Are	at	the	Top	of	My	Page!
I	Added	Internal	Links	to	Sections	of	a	Web	Page,	But	When	I	Click

Them,	the	Browser	Launches	a	Brand	New	Window!
I	Specified	One	Color,	But	Got	a	Totally	Different	One!
I	Need	to	Protect	Some	of	My	Pages	from	Unwanted	Visitors!
I	Need	to	Prevent	People	from	Stealing	My	Images!
I	Tried	to	Send	My	Web	Page	in	an	Email,	But	the	Page	Looked	Terrible!
I	Updated	My	Web	Page,	But	I	Don’t	See	the	Changes	in	the	Browser!
My	Whole	Page	Is	_____________!	(Fill	in	the	Blank)
My	Page	Has	a	White	Background	in	One	Browser,	But	Not	in	Others!
I	Shrank	My	Images,	But	They	Still	Take	Forever	to	Download!
I	Embedded	a	Flash	File	That	Works	Fine	on	My	Computer,	But	Doesn’t

Work	Properly	on	Other	Computers!
My	Tables	Look	Fine	in	One	Browser,	But	Terrible	in	Another!
I	Still	Have	Questions!

D	Special	Characters
Standard	HTML	Entities

E	FileTypes

Index

A

Acknowledgments

s	always,	I’m	so	grateful	to	everyone	at	McGraw-Hill	Education	for
making	it	easy	to	write	and	update	this	book.	This	edition	underwent	a

pretty	significant	overhaul,	which	meant	it	needed	a	careful	and	dedicated
technical	editor.	Thankfully,	Christie	fulfilled	that	role	beautifully.

Because	I	wrote	this	revision	during	the	first	three	months	after	my	family
and	I	moved	to	Nicaragua	for	a	year,	I	cannot	forget	to	acknowledge	the	various
friends	and	family	who	helped	make	it	happen.	The	support,	prayers,	and
encouragement	we	received	were	instrumental	in	getting	our	family’s	grand
adventure	off	to	a	successful	start.

And	finally,	Wyeth,	Corinna,	and	Caeli—you	are	my	inspiration	and	my
reward.	I	am	humbled	and	honored	to	be	able	to	share	this	adventure	with	you.

W
Introduction

hen	I	was	first	approached	about	writing	this	book—over	13	years	ago
now—I	must	admit	that	my	thought	was,	“Another	HTML	book—how

many	do	we	need?”	I	learned	HTML	by	experience	when	there	was	only	one
version	of	Netscape,	and	it	had	been	a	long	time	since	I’d	even	looked	at	an
HTML	book.	But	after	I	researched	the	other	HTML	books	on	the	market,	I	felt
compelled	to	write	a	book	that	gives	readers	a	realistic,	easy-to-understand
approach	to	learning	HTML	while	at	the	same	time	offering	real-world	practice
activities	and	advice	on	related	issues.

HTML:	A	Beginner’s	Guide	is	that	book,	offering	you	practical	tools	and
knowledge	that	can	easily	be	applied	to	a	variety	of	development	situations,
without	the	boring	rhetoric	or	lengthy	technical	fluff.	This	book	tells	you	what
you	need	to	know,	when	you	need	to	know	it.	In	revising	this	book	for	the	fifth
edition,	I	again	reviewed	competing	books	to	determine	what	readers	wanted	and
needed	in	a	“new”	HTML	book.	Again	and	again,	I	saw	that	you	wanted	a	book
that	combined	an	explanation	of	HTML5	and	the	latest	aspects	of	CSS	in	a	way
that	was	easy	to	understand	and	use.	Furthermore,	readers	clamored	for	a
beginning-level	HTML	book	that	covered	the	standards-compliant	way	to	code
usable	web	pages.	This	is	that	book.

Who	Should	Read	This	Book
Since	this	book	is	geared	toward	anyone	with	little	or	no	prior	HTML
knowledge,	it’s	perfect	for	anyone	wishing	to	learn	HTML.	If	you	are	a	stay-at-
home	mom	who	wants	to	create	a	web	site	for	your	family	without	relying	on
half-baked	tools	or	cookie-cutter	templates,	you’ve	come	to	the	right	place.	If
you	are	a	business	professional	seeking	to	acquire	web	development	skills,	this
is	the	book	for	you.	If	you	are	interested	in	learning	HTML	to	further	your
programming	skills,	this	book	is	for	you.

You	don’t	need	to	know	anything	about	computer	programming	or	web
development	in	order	to	learn	HTML,	and	you	certainly	don’t	need	to	know
either	of	those	things	to	get	a	lot	from	this	book.

What	This	Book	Covers
The	book	is	divided	into	four	parts:	Laying	the	Foundation,	Adding	the	Content,
Going	Live,	and	Appendixes.

Part	I,	“Laying	the	Foundation,”	covers	all	you	need	to	know	in	order	to	start
coding	effective	and	efficient	web	pages	with	HTML.	Part	I	consists	of	six
chapters	in	which	information	is	broken	up	into	manageable	chunks.	Each
chapter	contains	one	or	more	step-by-step,	real-world	suggestions	for	practicing
what	you’ve	learned.

Chapter	1,	“Getting	Started,”	helps	you	understand	the	Web	by	answering
common	questions,	such	as	“Who	created	HTML?”	and	“Who	maintains
HTML?”	and	also	by	tackling	the	anatomy	of	a	web	site,	web	browsers,	and
HTML.	Issues	surrounding	how	to	plan	your	web	site,	using	HTML	editors,	and
learning	from	the	pros	are	also	discussed.

Chapter	2,	“Document	Setup,”	explains	beginning	terminology,	such	as	tags,
attributes,	and	nesting,	while	also	describing	naming	conventions	and	proper
page	structure.

Chapter	3,	“Style	Sheet	Setup,”	gives	you	details	on	how	to	set	up	style
sheets	in	an	HTML	file,	as	well	as	ways	to	work	with	and	reference	color	in	your
web	pages.

Chapter	4,	“Working	with	Text,”	teaches	you	how	to	format	text	within	your
web	pages,	whether	that	means	changing	the	font	style	or	color,	or	adding	line
breaks	and	emphasis.	In	addition,	this	chapter	provides	essential	dos	and	don’ts
for	working	with	web	content.

Chapter	5,	“Page	Structure,”	expands	on	the	content	covered	in	Chapter	4	to
help	you	organize	and	structure	various	sections	of	content,	as	well	as	to	format
paragraphs	and	other	page	elements.	All	of	this	is	setting	the	stage	for	Chapter	6,
in	which	you’ll	learn	how	to	position	those	page	elements.

Chapter	6,	“Positioning	Page	Elements,”	is	the	capstone	chapter	in	this	first
section.	It	is	here	that	we	pull	all	you’ve	learned	thus	far	together	to	enable	you
to	create	single-	and	multicolumn	page	layouts	with	HTML	and	CSS.

Part	II,	“Adding	the	Content,”	helps	you	add	all	the	page	details	necessary
for	the	bulk	of	your	site’s	text,	image,	and	multimedia	content.	In	this	section,
we’ll	cover	not	only	how	to	add	images	to	your	sites,	but	also	using	lists,	tables,
and	forms—all	of	which	are	key	components	of	usable	and	effective	web	pages.

Chapter	7,	“Working	with	Links,”	discusses	the	core	of	HTML:	hypertext
links.	This	chapter	gives	details	on	how	to	add	and	customize	links	in	your	web
pages,	whether	you’re	linking	to	another	web	page,	a	section	on	a	web	page,	or
an	email	address.

Chapter	8,	“Working	with	Images,”	helps	you	use	images	in	your	web	pages
by	describing	different	image	types,	how	to	add	them	to	a	page,	and	how	to	link
to	and	from	them.	A	review	of	popular	web	graphics	software,	as	well	as
guidelines	you	can	use	when	creating	images	for	the	Web,	are	also	provided.

Chapter	9,	“Working	with	Multimedia,”	explains	different	types	of
multimedia	you	can	add	to	your	pages	and	tells	how	to	do	so	in	ways	that	work
in	multiple	browsers.

Chapter	10,	“Creating	Lists,”	teaches	you	how	to	create	and	format	the	three
different	types	of	lists	available	in	HTML,	as	well	as	how	to	style	them	with
CSS.

Chapter	11,	“Using	Tables,”	tackles	the	somewhat	tricky	but	very	useful
topic	of	HTML	tables.	In	step-by-step	fashion,	this	chapter	takes	you	through
creating	a	very	basic	table	structure	and	then	formatting	it	with	CSS.

Chapter	12,	“Creating	Forms,”	introduces	a	key	ingredient	for	most	web	sites
—forms	providing	communication	methods	for	customers.	Various	types	of
input	controls	are	taught,	including	text	fields,	check	boxes,	file	uploads,	select
menus,	and	buttons,	as	well	as	information	about	providing	a	way	for	your	form
to	be	processed.

Chapter	13,	“Formatting	and	Styling	Forms,”	builds	upon	the	skills	you
learned	in	Chapter	12	to	make	forms	more	user-friendly	and	efficient.	Layout
techniques	specific	to	web	forms	are	discussed,	as	well	as	client-side	form
validation.

Chapter	14,	“Beyond	Static	HTML,”	offers	you	an	introduction	to
JavaScript,	a	technology	used	to	add	dynamic	aspects	to	otherwise	static	HTML
pages.	Sample	scripts	allow	you	to	add	the	current	date	and	time	to	a	web	page,
create	a	dynamic	navigation	bar,	and	display	a	user’s	location	on	a	map.

Part	III,	“Going	Live,”	includes	two	chapters	that	cover	ways	to	publish	the
pages	you’ve	created,	as	well	as	tips	for	translating	them	to	be	accessed	via
email	readers.

Chapter	15,	“Publishing	Pages,”	teaches	you	to	prepare	your	pages	for	online
distribution	before	guiding	you	on	important	decisions,	such	as	where	to	host
your	site,	what	domain	name	to	use,	and	how	to	upload	the	site.	Testing,
submission	to	search	engines	and	directories,	and	general	marketing	tips	are	also
discussed.

Chapter	16,	“HTML	for	Email,”	is	a	brand-new	chapter	in	this	edition	of	the
book,	added	to	help	web	editors	translate	web	page	development	skills	to	the
world	of	HTML	email	(specifically	for	business	marketing	purposes).

Part	IV,	“Appendixes,”	provides	additional	information	in	quick-reference
formats	and	puts	commonly	used	details	at	the	fingertips	of	both	beginning	and
advanced	HTML	coders.

Appendix	A,	“Answers	to	Self	Tests,”	contains	the	answers	to	the	questions
asked	at	the	end	of	each	chapter.

Appendix	B,	“HTML/CSS	Reference	Table,”	outlines	all	of	the	HTML	tags

and	CSS	properties	taught	in	the	book	in	an	easy-to-read	alphabetical	reference
format.

Appendix	C,	“Troubleshooting	(FAQs),”	provides	answers	to	commonly
asked	questions	from	beginning	and	advanced	HTML	coders.

Appendix	D,	“Special	Characters,”	lists	the	character	entities	used	to	embed
special	characters,	such	as	the	copyright	symbol	and	an	ampersand,	into	a	web
page.

Appendix	E,	“File	Types,”	includes	a	list	of	the	file	types	you	are	most	likely
to	encounter	while	creating	web	pages,	as	well	as	a	brief	description	and	MIME
type	for	each.

How	to	Read	This	Book
The	content	is	structured	so	that	you	can	read	a	single	chapter	as	needed	or	the
entire	book	from	cover	to	cover.	While	beginners	should	read	through	the	book,
chapter	by	chapter,	in	order	to	efficiently	grasp	the	concepts	taught,	intermediate
and	advanced	users	can	use	certain	chapters	as	reference	materials.

The	projects	at	the	end	of	each	chapter	are	intended	to	build	upon	each	other
as	you	create	your	own	web	site,	but	you	could	certainly	adapt	a	specific	project
to	your	own	needs	if	you	read	them	out	of	order.

Special	Features
Each	chapter	includes	Tips	and	Notes	to	provide	additional	reference
information	wherever	needed.	Detailed	code	listings	are	included,	many	times
with	certain	tags	or	features	highlighted	with	further	explanation.

Many	chapters	contain	Ask	the	Expert	question-and-answer	sections	to
address	potentially	confusing	issues.	Each	chapter	contains	Try	This	exercises
and	step-by-step	projects	to	give	you	a	chance	to	practice	the	concepts	taught
thus	far.	The	intention	is	that	you	use	these	projects	to	build	a	web	site	from
scratch	for	yourself	or	the	business	or	organization	of	your	choosing.

Self	Tests	are	included	at	the	end	of	each	chapter	to	give	you	another	chance
to	review	the	concepts	taught	in	the	chapter.	The	answers	to	the	Self	Tests	are	in
Appendix	A.

Throughout	the	development	of	this	book,	our	objective	has	always	been	to
provide	you	with	a	cohesive,	easy-to-understand	guide	for	coding	HTML	to	help
you	get	up	and	running	in	no	time.	As	you’ll	hear	me	say	countless	times,
HTML	is	not	that	difficult	and	is	definitely	within	your	reach.	I	applaud	your
decision	to	learn	HTML	and	encourage	you	to	use	the	Internet	to	its	fullest

potential,	both	during	the	learning	process	and	in	your	ensuing	web	development
aspirations.	As	Chapter	1	discusses,	visit	the	web	sites	you	love	and	love	to	hate
to	determine	how	they	accomplished	various	features.	Follow	the	links	identified
in	the	book	for	additional	information,	and	don’t	forget	to	perform	your	own
web	searches	for	related	content.	Have	fun	and	good	luck!

Part		I
Laying	the	Foundation

F

Chapter	1
Getting	Started

Key	Skills	&	Concepts

•	Understand	the	Internet	as	a	Medium	for	Disseminating	Information

•	Be	Aware	of	the	Current	Version	of	HTML

•	Plan	for	the	Audience,	Goals,	Structure,	Content,	and	Navigation	of	Your	Site
•	Identify	the	Best	HTML	Editor	for	You

•	Learn	from	the	Pros	Using	the	View	Source	Command	of	Popular	Web
Browsers

or	as	long	as	I’ve	been	involved	in	making	web	pages,	people	have	asked
me	to	teach	them	the	process.	At	the	start,	many	are	intimidated	by	the

thought	of	learning	HTML.	But	fear	not!	After	all,	one	of	the	reasons	I	decided
to	attend	art	school	was	to	avoid	all	the	math	and	science	classes.	So,	as	I	tell	my
students	…	if	I	could	learn	HTML,	so	can	you.

HTML	is	not	rocket	science.	Quite	simply,	it	is	a	means	of	telling	a	web
browser	how	to	display	a	page.	That’s	why	it’s	called	HTML,	which	is	the
acronym	for	Hypertext	Markup	Language.	Like	any	new	skill,	HTML	takes
practice	to	comprehend	what	you	are	doing.

Before	we	dive	into	the	actual	creation	of	web	pages,	you	must	first
understand	a	few	things	about	the	Internet.	I	could	probably	fill	an	entire	book
with	the	material	in	this	initial	chapter,	but	the	following	should	provide	you
with	a	firm	foundation.

Understand	the	Internet	as	a	Medium	for
Disseminating	Information
When	you’re	asked	to	write	a	term	paper	in	school,	you	don’t	sit	down	and	just
start	writing.	First,	you	have	to	do	research	and	learn	how	to	format	the	paper.
The	process	for	writing	and	designing	a	web	page	is	similar.

The	Anatomy	of	a	Web	Site
Undoubtedly,	you’ve	seen	more	than	a	few	web	sites	by	now.	Perhaps	you	know
someone	who’s	a	skilled	web	navigator,	and	you’ve	watched	him	surf	through	a
web	site	by	chopping	off	pieces	of	the	web	address.	Have	you	ever	wondered
what	he’s	doing?	It’s	not	too	difficult.	He	just	knows	a	little	about	the	anatomy
of	a	web	site	and	how	the	underlying	structure	is	laid	out.

URLs
The	fancy	word	for	“web	address”	is	uniform	resource	locator,	also	referenced
by	its	acronym	URL	(pronounced	either	by	the	letters	U-R-L	or	as	a	single	word,
url,	which	rhymes	with	“girl”).	Even	if	you’ve	never	heard	a	web	address
referred	to	as	a	URL,	you’ve	probably	seen	one—URLs	start	with	http://,	and
they	usually	end	with	.com,	.org,	.edu,	or	.net.	(Other	possibilities	include	.tv,
.biz,	and	.info.	For	more	information,	see	www.networksolutions.com.)

Every	web	site	has	a	URL—for	instance,	Google’s	is	www.google.com.	The
following	illustration	shows	another	example	of	a	URL	as	it	appears	in	a
common	web	browser	(Firefox)	on	the	Mac.

The	first	part	of	the	URL	is	commonly	referred	to	as	a	protocol	or	scheme.	In
the	previous	illustration,	HTTP	was	the	scheme	used.	HTTP	stands	for	Hypertext
Transfer	Protocol,	and	tells	the	browser	how	to	access	the	rest	of	the	URL.	In
this	case,	HTTP	specifies	the	browser	should	display	the	file	using	hypertext.

HTTPS	is	another	common	scheme,	and	indicates	the	browser	should
connect	securely	to	the	server	before	displaying	the	content.

The	next	significant	part	of	a	URL	is	the	domain,	which	helps	identify	and
locate	computers	on	the	Internet.	To	avoid	confusion,	each	domain	name	is
unique.	You	can	think	of	the	domain	name	as	a	label	or	shortcut.	Behind	that

http://www.networksolutions.com
http://www.google.com

shortcut	is	a	series	of	numbers,	called	an	IP	address,	that	gives	the	specific
address	of	where	the	site	you’re	looking	for	is	located	on	the	Internet.	To	draw
an	analogy,	if	the	domain	name	is	the	word	“Emergency”	written	next	to	the
first-aid	symbol	on	your	speed	dial,	the	IP	address	is	9-1-1.

NOTE
Although	many	URLs	begin	with	“www,”	this	is	not	a	necessity	(depending	on	how	the	server	is
set	up).	Originally	used	to	denote	“World	Wide	Web”	in	the	URL,	using	www	caught	on	as
common	practice.	The	characters	before	the	first	period	in	the	URL	are	not	part	of	the	registered
domain	and	can	be	almost	anything.	In	fact,	many	businesses	use	this	part	of	the	URL	to
differentiate	between	various	departments	within	the	company.	For	example,	the	GO	Network
includes	ABC,	ESPN,	and	Disney,	to	name	a	few.	Each	of	these	is	a	department	of	go.com:
abc.go.com,	espn.go.com,	and	disney.go.com.	Type	www.abc.com	in	the	address	bar	of	your
favorite	web	browser,	and	you’ll	notice	the	URL	changes	to	abc.go.com.	That’s	because
www.abc.com	is	an	alias—or	a	shortcut—for	abc.go.com.

Businesses	typically	register	domain	names	ending	in	a	.com	(which
signifies	a	commercial	venture)	that	are	similar	to	their	business	or	product
name.	Domain	registration	is	like	renting	office	space	on	the	Internet.	Once	you
register	a	domain	name,	you	have	the	right	to	publish	a	web	site	under	that	name
on	the	Internet	for	as	long	as	you	pay	the	rental	fees.

TIP
Wondering	whether	yourname.com	is	already	being	used?	You	can	check	to	see	which	domain
names	are	still	available	for	registration	by	visiting	a	registration	service	like	www.godaddy.com
or	www.networksolutions.com.

The	rest	of	the	address	contains	the	exact	path	to	the	specific	file	on	the
server	being	displayed.	For	example,	when	I	visit
http://www.fox.com/glee/recaps,	I	am	viewing	the	content	from	Fox	housed	in
the	“recaps”	folder,	which	is	then	housed	in	the	“glee”	folder	on	the	web	server.
Here,	the	slashes	separate	the	domain	from	each	folder	name.

Web	Servers
Every	web	site	and	web	page	also	needs	a	web	server.	Quite	simply,	a	web	server
is	a	computer,	running	special	software,	that	is	always	connected	to	the	Internet.

NOTE
Some	people	talk	about	the	computer	as	the	server,	as	in	“We	need	to	buy	a	new	server.”	Others
call	the	software	the	server,	saying	“We	need	to	install	a	new	web	server.”	Both	uses	of	the	word
essentially	refer	to	the	same	thing—web	servers	make	information	available	to	those	requesting	it.

http://www.abc.com
http://abc.go.com
http://www.abc.com
http://www.godaddy.com
http://www.networksolutions.com
http://www.fox.com/glee/recaps

When	you	type	a	URL	into	your	web	browser	or	click	a	link	in	a	web	page,
you	send	a	request	to	the	server	housing	that	information.	It’s	similar	to	the
process	that	occurs	when	you	dial	a	phone	number	with	your	telephone.	Your
request	“calls”	the	computer	that	contains	all	the	files	necessary	to	show	you	the
web	page	you	requested.	The	computer	then	“serves”	and	displays	all	the	pages
to	you,	usually	in	your	web	browser.

Ask	the	Expert
Q:	I’ve	heard	the	phrase	“the	World	Wide	Web”	used	so	many	times,

but	I’m	a	little	confused	about	what	it	actually	means	and	how	it
relates	to	the	Internet.

A:	The	World	Wide	Web	(WWW	or	the	Web)	is	often	confused	with	the
Internet.	The	actual	term	“Internet”	was	first	used	in	the	early	1970s,
when	academic	research	institutions	developed	a	way	to	connect
computers	to	create	better	communication	and	to	share	resources.	Later,
universities	and	research	facilities	throughout	the	world	began	using	the
Internet.	In	the	early	1990s,	Tim	Berners-Lee	created	a	set	of
technologies	that	allowed	information	on	the	Internet	to	be	connected
through	the	use	of	links	in	documents.	The	language	component	of	these
technologies	is	Hypertext	Markup	Language	(HTML).	If	you	want	to
find	out	more,	a	good	resource	on	the	history	of	the	Internet	is	available
at	http://www.internetsociety.org//internet/internet-51/history-
internet.

The	Web	was	mostly	text-based	until	a	division	at	the	National	Center
for	Supercomputing	Applications	(NCSA)	created	the	first	graphical
web	browser	in	1993.	Called	Mosaic,	this	paved	the	way	for	the	use	of
video,	sound,	and	photos,	and	many	other	aspects	of	the	modern	web
browser.	As	a	large	group	of	interconnected	computers	all	over	the
world,	the	Internet	comprises	not	only	the	Web,	but	also	things	like
newsgroups	(online	bulletin	boards)	and	e-mail.	Many	people	think	of
the	Web	as	the	graphical	or	illustrated	part	of	the	Internet.

Sites
A	URL	is	commonly	associated	with	a	web	site.	You’ve	doubtless	seen	plenty	of

http://www.internetsociety.org//internet/internet-51/history-internet

examples	of	such	addresses	on	billboards	and	in	television	advertising.	For
instance,	www.amazon.com	is	the	URL	for	Amazon’s	web	site,	while
www.cbs.com	is	the	URL	for	CBS.

Most	commonly,	these	sites	are	located	in	directories	or	folders	on	the
server,	just	as	you	might	have	your	C:	drive	on	your	personal	computer.	Then,
within	this	main	site,	there	may	be	several	folders	that	house	other	sections	of
the	web	site.

For	example,	Chop	Point	is	a	summer	camp	and	K–12	school	in	Maine.	If
you	look	at	the	URL	for	Chop	Point	Camp’s	“about	us”	section,	you	can	see	the
name	of	the	folder	after	the	site	name:

www.choppointcamp.com/about
If	you	access	the	main	page	for	the	enrollment	section,	the	URL	changes	to:

www.choppointcamp.com/enroll

Pages
When	you	visit	a	web	site,	you	look	at	pages	on	the	site	that	contain	all	its	text,
graphics,	sound,	and	video	content.	Even	though	a	web	page	is	not	the	same	size
or	format	as	a	printed	page,	the	word	“page”	is	used	to	help	us	differentiate
among	pages,	folders,	and	sites.	The	same	way	that	many	pages	and	chapters	can
be	contained	within	a	single	book,	many	pages	and	folders	(or	sections)	can	also
be	kept	within	a	web	site.

Most	web	servers	are	set	up	to	look	automatically	for	a	page	called	“index”
as	the	main	page	in	any	folder.	So	if	you	were	to	type	in	the	URL	used	in	the
previous	example,	the	server	would	look	for	the	index	page	in	the	“about”	folder,
which	might	look	like	the	following:

www.choppointcamp.com/about/index.html
If	you	want	to	look	for	a	different	page	in	the	about	folder,	you	could	type

the	name	of	that	page	after	the	site	and	folder	names,	keeping	in	mind	that
HTML	pages	usually	end	with	.html	or	.htm,	such	as	in:

www.choppointcamp.com/about/donate.html

NOTE
Sites	built	on	content	management	systems	like	Wordpress	typically	use	a	different	type	of	file
naming	convention	than	the	traditional	structure	I’ve	outlined	here.	The	latest	version	of	Chop
Point	Camp’s	site	uses	Wordpress,	and	therefore	doesn’t	default	to	index.html	pages	like	those
mentioned	here.	We’ll	talk	about	Wordpress	later,	but	at	this	point	just	keep	in	mind	there	are	a
variety	of	file	naming	conventions	currently	in	use.

Web	Browsers

http://www.amazon.com
http://www.cbs.com
http://www.choppointcamp.com/about
http://www.choppointcamp.com/enroll
http://www.choppointcamp.com/about/index.html
http://www.choppointcamp.com/about/donate.html

A	web	browser	is	a	piece	of	software	that	runs	on	your	personal	computer	and
enables	you	to	view	web	pages.	Web	browsers,	often	simply	called	“browsers,”
interpret	the	HTML	code	and	provide	a	visual	layout	displayed	on	the	screen.
Browsers	typically	can	also	be	used	to	check	web-based	e-mail	and	access
newsgroups.

The	most	popular	browsers	are	Microsoft	Internet	Explorer	(also	called	IE),
Google	Chrome,	and	Firefox.	In	previous	years,	IE	garnered	as	much	as	65
percent	of	the	market	share.	But	as	of	this	writing,	the	three	browsers	I
mentioned	each	enjoy	roughly	25	percent	of	the	market.	The	remaining	quarter
is	divided	among	Safari	(Apple’s	default	browser),	Opera,	Android,	and	other
miscellaneous	browsers.

TIP
To	keep	current	on	statistics	about	browser	use,	visit
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers.

Browsers	are	updated	regularly,	changing	to	address	new	aspects	of	HTML
or	emerging	technologies.	Some	people	continue	to	use	older	versions	of	their
browsers,	however.	This	means	that	at	any	given	time	there	may	be	two	or	three
active	versions	of	one	browser	and	several	different	versions	of	other	browsers
being	employed	by	the	general	public.

What	if	there	were	several	versions	of	televisions	that	all	displayed	TV
programs	differently?	If	this	were	true,	then	your	favorite	television	show	might
look	different	every	time	you	watched	it	on	someone	else’s	television.	This
would	not	only	be	frustrating	to	you	as	a	viewer,	it	would	also	be	frustrating	for
the	show’s	creator.

Web	developers	must	deal	with	this	frustration	every	day.	Because	of	the
differences	among	various	browsers	and	the	large	number	of	computer	types,	the
look	and	feel	of	a	web	page	can	vary	greatly.	This	means	web	developers	must
keep	up-to-date	on	the	latest	features	of	the	new	browser	versions,	but	we	must
also	know	how	to	create	web	pages	that	are	backward-compatible	for	the	older
browsers	many	people	may	still	be	using.

TIP
Most	browsers	can	be	easily	customized,	meaning	you	can	change	the	text	sizes,	styles,	and
colors,	as	well	as	the	first	page	that	appears	when	you	start	your	browser.	This	is	usually	called
your	“home”	page	or	your	“start”	page,	and	it’s	the	page	displayed	when	you	click	the	“home”
button	in	your	browser.	For	easier	access,	many	people	change	their	home	page	to	a	search	engine
or	a	news	site	customized	according	to	their	needs.	These	personalized	sites	are	often	called
portals	and	also	offer	free	e-mail	to	users.	A	few	examples	are	Yahoo!,	Google,	and	MSN.

http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

Internet	Service	Providers
You	use	an	Internet	service	provider	(ISP)	to	gain	access	to	the	Internet.
Traditionally,	this	connection	is	made	through	your	wired	phone	line	with	a
company	like	Verizon	or	AT&T,	or	you	can	connect	through	a	cable	line	with	a
company	like	Comcast	or	Time	Warner.

With	the	rise	of	high-speed	wireless	options,	many	users	access	the	Internet
via	wireless	broadband	connections,	either	on	their	phone	or	through	a	small
device	that	plugs	into	a	Universal	Serial	Bus	(USB)	port,	called	a	dongle.
Verizon,	Clearwire,	Xanadoo,	and	CLEAR	are	just	a	few	of	the	many	companies
offering	high-speed	wireless	service	in	the	United	States.

Regardless	of	which	connection	method	you	choose,	the	company	providing
that	service	is	called	your	ISP.	Many	ISPs	offer	you	a	choice	of	browsers,	and
may	even	provide	a	particular	web	browser	customized	with	quick	links	for
things	like	checking	your	e-mail	and	reading	local	news.

Be	Aware	of	the	Current	Version	of	HTML
In	its	earliest	years,	HTML	quickly	went	through	much	iteration,	which	led	to	a
lack	of	standardization	across	the	Internet.	The	World	Wide	Web	Consortium
(W3C—www.w3.org)	stepped	in	and	began	publishing	a	list	of
recommendations,	called	standards,	for	HTML	and	other	web	languages.	The
last	official	standard	for	HTML	was	HTML	4.01	in	1999.

In	an	attempt	to	move	the	standards	away	from	the	old-style	HTML	and
closer	to	a	more	flexible	language,	Extensible	Markup	Language	(XML),	the
W3C	rewrote	the	standard	in	2000.	The	resulting	set	of	standards,	called
Extensible	Hypertext	Markup	Language	(XHTML),	provided	a	way	for	HTML	to
handle	alternative	devices,	such	as	cell	phones	and	handheld	computers.

XHTML	1.0	offered	many	new	features	to	make	the	lives	of	web	developers
easier,	but	it	was	poorly	supported	by	web	browsers	at	its	launch	in	2001.	It	was
much	stricter	and	had	little	tolerance	for	sloppy	HTML.	In	the	years	immediately
following,	the	W3C	updated	its	recommendation	to	XHTML	2.0.	However,	the
world	didn’t	adopt	XML	as	quickly	or	as	warmly	as	the	W3C	had	anticipated,
and	the	organization	ended	up	switching	gears.

In	2008,	the	W3C	released	a	working	draft	of	the	future	of	hypertext	markup:
HTML5.	Since	then,	even	though	HTML5	has	been	a	consistent	“work	in
progress,”	the	modern	browser	creators	have	worked	to	incorporate	as	many
features	as	possible.	(You	can	check	the	status	of	HTML5	on	the	W3C’s	web
site:	www.w3c.org/TR/html5.)

http://www.w3.org
http://www.w3c.org/TR/html5

Unlike	XHTML,	HTML5	is	intended	to	allow	the	best	of	HTML	and	XML
simultaneously.	The	development	team	has	been	studying	the	modern	use	of
HTML	and	its	content	in	an	effort	to	create	code	standards	that	will	carry	us
easily	into	the	next	generation	of	the	Web.

Previously	we	needed	plug-ins	like	Flash	and	QuickTime—which	essentially
are	stopgaps—to	do	the	things	HTML	wasn’t	able	to	accomplish.	Now	the
combination	of	HTML,	cascading	style	sheets	(CSS),	and	JavaScript,	working
together	as	HTML5,	is	capable	of	just	about	anything	web	designers	and
developers	need.

Although	the	standard	is	technically	still	in	development	(as	of	this	writing),
plenty	of	the	new	features	are	now	supported	by	the	major	browsers.	I	will	call
attention	to	those	as	needed	throughout	the	course	of	this	book,	but	here	are	a
few	highlights:

•	More	intuitive	structure	The	latest	revision	offers	new	HTML	elements	that
make	it	easier	to	group	related	content	and	structure	pages,	among	other
things.

•	Better	portability	It	is	easier	to	port	your	pages	from	one	device	to	another,
whether	the	content	consists	of	text,	images,	animation,	and	interactivity,	or	a
combination	of	each.

•	Next-generation	forms	HTML5	enables	us	to	create	much	more	interactive
and	user-friendly	forms,	both	in	desktop	browsers	as	well	as	mobile	versions.

•	Rich	media	Speaking	of	animation	and	interactivity,	HTML	removes	the	need
for	plug-ins	to	handle	dynamic	images.	(And	yes,	this	means	HTML5	is	now
a	competitor	of	Flash.)

•	Audio	and	video	Embedding	audio	and	video	in	HTML	pages	used	to	be	quite
a	chore.	Thankfully	the	new	spec	adds	elements	to	easily	embed—and	style!
—both.

You	can	read	more	about	the	specific	differences	at
www.w3.org/TR/2008/WD-html5-diff-20080610.

Plan	for	the	Audience,	Goals,	Structure,	Content,
and	Navigation	of	Your	Site

http://www.w3.org/TR/2008/WD-html5-diff-20080610

In	addition	to	learning	about	the	medium,	you	need	to	do	the	following:

•	Identify	your	target	audience.
•	Set	goals	for	your	site.
•	Create	your	web	site’s	structure.
•	Organize	your	web	site’s	content.
•	Develop	your	web	site’s	navigation.

Identify	the	Target	Audience
If	you	are	creating	a	web	site	for	a	business,	a	group,	or	an	organization,	you	are
most	likely	targeting	people	who	might	buy	or	use	the	company’s	products	or
services.	Even	if	your	site	is	set	up	purely	for	the	purpose	of	disseminating
information,	you	must	target	a	certain	audience.	Consider	whether	you	have
existing	research	regarding	your	client	or	user	base.	This	might	include
demographics,	statistics,	or	other	marketing	information,	such	as	age,	gender,
and	web	experience.

TIP
If	your	site	represents	a	new	company	or	one	that	doesn’t	already	have	information	about	its
clients’	demographics,	you	might	check	out	the	competition.	Chances	are	good	that	if	your
competition	has	a	successful	web	site,	you	can	learn	from	them	about	your	target	audience.

Knowing	your	target	audience	will	influence	how	you	design	and	develop
your	web	site.	For	example,	if	you	are	developing	a	site	for	beginners	to	learn
about	the	Internet,	you	want	to	create	a	site	that	is	extremely	easy	to	use	and
does	not	stray	from	standard	computer	conventions.	If	your	site	targets	teens	and
young	adults,	you	can	expect	lots	of	visits	from	mobile	phone	and	tablet	devices.

Once	you	identify	your	target	audience,	you	need	to	think	about	what
functions	each	part	of	that	audience	can	perform	at	your	site.	Try	drawing	up	a
chart	like	Table	1-1	to	make	your	plans.	The	example	in	the	table	is	designed	for
a	bank,	but	you	can	use	it	as	a	starting	point	for	any	site	you	create.

Table	1-1	Functions	Performed	by	a	Target	Audience

You	can	use	this	information	to	determine	the	appropriate	direction	for	the
site.	For	new	sites,	consider	taking	it	a	step	further	to	identify	a	few	sample
customers	in	each	category.	To	do	so,	give	your	pretend	customer	a	name,	age,
job,	and	location,	and	then	specify	his	or	her	brand	preferences,	Internet	usage,
and	what	influences	and	inhibits	him.

You	might	also	specify	whether	he	is	an	“accidental	tourist”	or	a	“navy	seal”
type	of	visitor.	Most	sites	have	a	little	of	both.	Have	you	ever	surfed	a	certain
site	and	then	wondered	how	you	got	there	from	here?	This	is	the	“accidental
tourist,”	aka	the	serendipitous	visitor.	At	the	other	end	of	the	spectrum	is	the
student	on	a	mission—looking	for	a	specific	piece	of	information	for	a
homework	assignment.	I	call	these	the	“navy	seals.”

TIP
Does	your	site	target	mostly	“navy	seal”	visitors?	These	individuals	prefer	search	engines,
especially	when	trying	to	locate	information	quickly.	Providing	a	good	search	engine	or	site	map
on	your	site	can	greatly	increase	your	repeat	visitors.

This	type	of	detailed	user	information	can	give	extremely	beneficial	insights
to	any	developer	working	on	the	project.

Set	Goals
Since	the	Web’s	inception,	millions	of	new	web	sites	have	been	created.	To
compete	in	such	a	large	market,	you	need	to	set	clear	goals	for	the	site	that	meet
the	needs	of	the	target	audience.	For	instance,	the	site	might

•	Sell	products/services
•	Recruit	potential	employees
•	Entertain
•	Educate
•	Communicate	with	customers

Always	remember	the	goals	when	developing	the	site	to	avoid	unnecessary
content.	If	a	page	or	section	of	content	on	your	site	doesn’t	meet	one	of	the
goals,	it	may	confuse	or	turn	away	visitors.

Create	the	Structure
Once	you	align	your	site’s	goals	with	the	functions	performed	by	the	target
audience,	you	will	see	a	structure	forming.	Consider	a	site	whose	primary	goal	is
to	sell	office	supplies	to	businesses	and	whose	secondary	goal	is	to	recruit
potential	employees.	This	site	would	most	likely	contain	two	main	topic	areas:
shop	for	office	supplies	and	browse	available	jobs.

Many	people	use	tree	diagrams,	such	as	the	one	shown	in	Figure	1-1,	to	help
define	the	structure	of	the	site.	Others	use	flow	charts,	wire	frames,	or	simple
outlines.

Figure	1-1	A	tree	diagram	showing	the	structure	for	a	sample	school	web	site

Organize	Content
All	the	content	for	the	site	should	fit	under	each	of	the	topic	areas	in	the	site
structure,	and	you	might	have	several	subcategories	in	each	topic	area.	So,	the
“Enrichment”	section	from	the	preceding	example	might	be	broken	down	into
several	subcategories,	according	to	the	different	types	of	programs	available.
Table	1-2	shows	how	the	category	names	might	relate	to	the	folder	names.

Table	1-2	Content	Organization

Develop	Navigation
After	the	site	structure	has	been	defined	and	the	content	has	been	placed	into	the
structure	accordingly,	you	will	want	to	plan	out	how	a	visitor	to	this	site
navigates	between	each	of	the	pages	and	sections.	A	good	practice	is	to	include	a
standard	navigation	bar	on	all	pages	for	consistency	and	ease	of	use.	This
navigation	bar	probably	should	include	links	to	your	home	page	and	any	major
topic	areas.	It	should	probably	also	contain	the	name	of	your	business	or	a	logo
so	that	a	simple	visual	clue	lets	the	user	know	she	has	not	moved	beyond	your
site	by	accident.

Many	sites	also	offer	an	additional	level	of	navigation,	usually	to	content
related	to	the	currently	active	section.	Highlighting	the	current	section	on	the
navigation	bar	is	important	so	visitors	can	more	easily	distinguish	where	they	are
in	your	site’s	structure.	This	means	if	your	site	has	two	sections—jobs	and
résumés—the	jobs	button	would	look	different	when	you	were	inside	that	section
and,	in	some	way,	should	identify	it	as	the	current	section.

In	addition,	consider	giving	your	visitors	as	many	visual	clues	as	possible	to
aid	in	the	navigation	of	your	site	(see	Figure	1-2).	This	might	be	accomplished
by	repeating	the	page	name	in:

Figure	1-2	Apple’s	site	gives	the	user	plenty	of	visual	clues	to	aid	in	navigation.

•	The	page’s	title	(the	text	that	appears	at	the	top	of	the	browser	window,	as	well
as	in	search	engines)

•	The	page’s	filename
•	A	headline
•	Buttons	and	links	to	the	page	(highlighted	if	you	are	viewing	that	page)

Identify	the	Best	HTML	Editor	for	You
At	some	point,	you	may	wonder:	“Why	go	to	the	trouble	of	learning	HTML	if	I

can	use	a	program	that	does	it	for	me?”	With	so	many	new	software	packages
available	to	help	you	develop	HTML,	that’s	a	valid	question.	We’ll	discuss	the
pros	and	cons	of	each	type	after	reviewing	the	features	of	some	of	the	most
common	editors	in	Table	1-3.	This	is	by	no	means	an	exhaustive	list	of	valid
HTML	editors.	It	is	merely	meant	to	help	get	you	started	by	pointing	out	the	key
benefits	of	each.

Table	1-3	Common	Tools	Used	to	Edit	HTML

After	reviewing	Table	1-3,	you	likely	noticed	that	most	tools	fall	into	one	of
two	categories.	First,	text-based	editors	require	you	to	know	some	HTML	to	use
them.	They	can	be	customized	to	help	speed	your	coding	process,	and	often	have
sophisticated	checks	and	balances	in	place	to	check	for	errors	in	coding.
Hundreds,	if	not	thousands,	of	editors	exist.	I’ve	listed	a	few	of	the	most	popular
text-based	HTML	editors	here,	and	I	encourage	you	to	try	out	a	few	before
settling	on	one.

Second,	WYSIWYG	editors	don’t	require	knowledge	of	HTML.	Instead	of
looking	only	at	the	HTML	code	of	your	pages,	you	have	the	option	to	view	a
“preview”	of	how	the	page	will	look	in	a	browser.	This	way,	you	can	simply	drag
and	drop	pieces	of	your	layout	as	you	see	fit.	These	types	of	programs	can	have
some	drawbacks,	but	they	can	also	be	quite	useful	for	the	purposes	of	learning
different	aspects	of	HTML	or	for	quickly	publishing	a	basic	web	page.

Which	Is	Best?
Some	web	developers	prefer	to	use	the	text-based	HTML	editors	rather	than
have	a	WYSIWYG	editor	do	it	for	them,	for	the	following	reasons:

•	Better	control	WYSIWYG	editors	may	write	HTML	in	a	variety	of	ways—
although	not	all	of	them	will	have	the	same	outcome.	This	means	your	pages
can	look	different	in	each	browser.	Unfortunately,	this	has	caused	some	older
WYSIWYG	programs	to	be	labeled	“WYSINWYG”	or	What-You-See-Is-

Not-What-You-Get.

•	Faster	pages	WYSIWYG	editors	sometimes	overcompensate	for	the	amount
of	code	needed	to	render	a	page	properly,	and	so	they	end	up	repeating	code
more	times	than	necessary.	This	leads	to	large	file	sizes	and	longer
downloads.

•	Speedier	editing	The	large-scale	WYSIWYG	editors	can	take	a	lot	of	memory
and	system	resources,	slowing	both	the	computer	and	the	development
process.

•	More	flexibility	Some	older	WYSIWYG	editors	are	programmed	to	“fix”
code	they	think	is	faulty.	This	may	make	you	unable	to	insert	code	or	edit	the
existing	code	as	you	wish.

That	said,	modern	WYSIWYG	editors	have	come	a	long	way	in	terms	of
control	and	flexibility.	Those	developers	who	sing	their	praises	typically	make
the	following	comments:

•	Preview	WYSIWYG	editors	allow	you	to	preview	your	pages	within	the
HTML	editor,	which	means	you	get	an	idea	of	how	the	page	is	shaping	up
even	before	switching	to	the	browser	view.

•	Drag-and-drop	editing	Because	WYSIWYG	editors	have	previewing	tools,
you	can	actually	edit	your	HTML	by	dragging	and	dropping	elements
throughout	the	page.

•	Advanced	inline	edition	Tools	like	Dreamweaver	offer	the	capability	to	code
extras	beyond	static	HTML,	like	CSS,	Dynamic	HTML	(DHTML),	and
JavaScript,	all	within	the	same	visual	editor	used	to	code	basic	HTML.

•	Best	of	both	worlds	With	the	ability	to	dig	right	into	the	code	and	still	see	a
visual	representation	of	the	output,	it’s	no	surprise	that	editors	like
Dreamweaver	have	become	so	popular.

Quick	confession	time:	If	I	sound	a	bit	biased	toward	Dreamweaver,	that’s
because	I	am.	I	find	it	does	everything	I	need	an	HTML	editor	to	do,	while	still
giving	me	ultimate	control	over	my	code.	In	addition,	its	companion	tool—
Contribute—allows	me	to	give	access	to	certain	aspects	of	the	web	pages	to
clients,	so	they	can	maintain	their	own	pages	without	altering	the	underlying

structure	or	format	of	the	site.
In	the	end,	both	text-based	HTML	editors	and	WYSIWYG	editors	have	their

benefits.	My	recommendation	is	to	download	free	trials	of	the	various	programs
and	decide	for	yourself	which	one	works	best	for	your	needs.

To	achieve	the	goals	of	this	book,	you	are	free	to	use	any	editor	or	software
package	you	like,	provided	it	gives	you	access	to	the	source	code.	To	begin,	I
recommend	you	use	the	basic	text	editor	that	came	with	your	computer	system,
such	as	SimpleText	or	TextEdit	(Mac)	or	Notepad	(Windows).	Once	you	have
the	basics	of	HTML	down,	you	can	move	on	and	experiment	with	other	available
programs.

Learn	from	the	Pros	Using	the	View	Source
Command	of	Popular	Web	Browsers
One	of	the	best	ways	to	learn	HTML	is	to	surf	the	Web	and	look	at	the	HTML
for	sites	you	like	(as	well	as	those	you	don’t	like).	Most	web	browsers	enable
you	to	view	the	HTML	source	code	of	web	pages	(as	shown	in	Figure	1-3),
using	the	following	commands:

Figure	1-3	Viewing	the	source	of	a	web	page	allows	you	to	see	the	HTML	code
used	to	create	it.

•	In	your	favorite	web	browser,	bring	up	the	page	whose	source	you	would	like
to	view.

•	In	Chrome,	choose	View	|	Developer	|	View	Source.	In	Firefox	or	Mozilla,
right-click	and	select	View	Page	Source.	In	IE,	choose	View	|	Source	or	Page
|	Source.

•	In	Safari,	you	must	first	choose	Safari	|	Preferences	|	Advanced	and	check	the
option	to	Show	Develop	menu	in	menu	bar.	Then,	choose	Develop	|	Show
Page	Source.

You’ll	notice	there	are	often	additional	types	of	code	visible.	For	example,
aside	from	standard	HTML	code,	you	might	also	find	references	to	other	files	on
the	server,	or	even	other	types	of	scripts	or	code	altogether.	Furthermore,	what
you’re	seeing	in	the	View	Source	display	is	only	what	has	been	sent	by	the

server	for	the	browser	to	display.	This	means	there	may	have	been	other	code
used	to	actually	tell	the	server	where	to	get	this	code,	when	to	send	it,	or	even
how	to	send	it.

If	you’d	like,	you	can	print	or	save	these	pages	to	review	at	a	later	time	or	to
keep	in	a	reference	library.	Because	the	Web	is	open	source,	meaning	your	code
is	free	for	anyone	to	see,	copying	other	developers’	code	is	tempting.	But
remember,	you	should	give	credit	where	credit	is	due	and	never	copy	anything
protected	by	a	copyright,	such	as	graphics	and	text	content.

NOTE
A	few	browsers	don’t	let	you	use	View	Source.	If	you	find	you	cannot	view	the	HTML	source	of
a	web	page,	try	saving	the	page	to	your	local	hard	drive,	and	then	opening	it	in	a	text	editor
instead.

Try	This	1-1 Develop	a	Web	Site
The	best	way	to	practice	HTML	is	to	develop	web	sites.	While	developing	a
personal	site	might	be	fun,	I	think	you	can	sometimes	learn	more	about	the
whole	development	process	by	working	on	a	site	for	a	business	or	organization.
In	fact,	volunteering	your	time	to	develop	a	web	site	for	a	nonprofit	organization
or	a	start-up	business	is	a	wonderful	way	to	start.

Throughout	the	course	of	this	book,	I’ll	give	you	projects	that	relate	to	the
development	of	such	a	web	site.	If	you	already	have	an	organization	or	business
in	mind	for	which	you	want	to	develop	a	site,	then	use	that	one.	If	not,	you	can
follow	along	while	I	start	a	site	for	a	friend’s	online	tutoring	business,	and
customize	it	as	you	see	fit.

This	specific	project	takes	you	through	the	planning	phase	of	the	web
development	project.	Goals	for	this	project	include

•	Identifying	your	target	audience
•	Setting	goals	for	your	site
•	Creating	your	web	site’s	structure
•	Organizing	your	web	site’s	content
•	Developing	your	web	site’s	navigation
1.	Spend	some	time	researching	your	organization.	Try	to	learn	as	much	about

its	business	as	possible.	If	you	know	people	within	the	company,	do	some
interviews	to	help	you	identify	your	target	audience,	as	well	as	the	site
goals.	If	you	can’t	speak	with	them,	visit	other	similar	sites	to	determine
what	type	of	people	the	competition	is	targeting.	Some	questions	to	ask	and
things	to	consider	include

•	What	business	issues	or	problem(s)	will	the	web	site	address?	What	do
you	want	to	accomplish?	What	are	your	goals	for	the	web	site?

•	Who	are	the	targeted	users/visitors	of	the	site?	Do	you	have	any	existing
research	regarding	your	client	or	user	base,	such	as	demographics,
statistics,	or	other	marketing	information?

•	To	determine	the	appropriate	direction	for	the	site,	you	must	match	the
targeted	users	and	the	functions	they	will	perform	when	visiting	the	site.
For	example,	will	the	targeted	users	be	“accidental	tourists”	directed	to
the	site	by	an	advertisement,	or	potential	investors	looking	for	the
financials?	How	do	the	audience	demographics	affect	this?	(You	can	use
a	table	like	the	following	to	help	you	plan	the	targeted	users	and	the
functions	they	might	perform	at	the	site.)

2.	Pull	out	one	or	two	key	user	groups	and	create	a	sample	user	scenario	for
fictional	members	of	each	group.	Use	the	following	table	to	get	started.

3.	After	you	decide	on	the	target	audience	and	goals	for	the	site,	it’s	time	to
evaluate	your	content.	This	is	best	accomplished	through	conversations	with
the	people	you’re	developing	the	site	for.	If	this	isn’t	possible,	be	creative
and	come	up	with	a	list	of	content	you	think	could	be	appropriate.

4.	Use	the	answers	to	the	following	questions	as	a	springboard	for	building	the
structure	of	your	site.	Then	develop	a	tree	diagram,	similar	to	the	one	shown
in	Figure	1-1,	to	identify	all	the	pieces	of	your	site	and	where	they	fit	within
the	overall	structure.

•	Does	an	official	logo	have	to	be	used	on	the	web	site?
•	Is	all	the	content	written	and	available	in	digital	format?
•	What	are	the	main	sections	of	the	site?	Does	all	the	content	fit	within

those	sections?

•	List	all	the	content	for	the	site.	Assign	each	piece	of	content	to	a	section
(as	necessary)	and	define	the	filenames.

Chapter	1	Self	Test

1.	What	is	a	web	browser?

2.	What	does	HTML	stand	for?

3.	Identify	the	various	parts	of	the	following	URL:
http://www.mcgrawhill.com/books/webdesign/favorites.html
__________://________________/__________/___________/__________

4.	What	is	WYSIWYG?

5.	Fill	in	the	blank:	The	latest	version	of	HTML	currently	under	development	is
_____________.

6.	What	is	the	Adobe	Dreamweaver	program	used	for?

7.	What	is	one	of	the	three	most	popular	web	browsers?

8.	Fill	in	the	blank:	When	you	type	a	URL	into	your	web	browser,	you	send	a
request	to	the	________________	that	houses	that	information.

9.	What	does	the	acronym	“URL”	stand	for?

10.	What	organization	maintains	the	standards	for	HTML?

11.	How	can	you	give	your	site’s	visitors	visual	clues	as	to	where	they	are	in
your	site’s	structure?

12.	Fill	in	the	blank:	A	good	practice	is	to	include	a	standard
_________________	on	all	pages	for	consistency	and	ease	of	use.

13.	Fill	in	the	blank:	Selling	products	and	recruiting	potential	employees	are
examples	of	web	site	_______________.

14.	Fill	in	the	blank:	Before	you	can	begin	developing	your	web	site,	you	must
know	a	little	about	the	site’s	target	_________________.

15.	If	your	site	represents	a	new	company	or	one	that	doesn’t	already	have
information	about	its	client	demographics,	where	might	you	look	for
information?

N

Chapter	2
Document	Setup

Key	Skills	&	Concepts

•	Create	an	HTML	File	•	Preview	an	HTML	File	in	a	Browser	•	Describe	and
Apply	the	Basic	HTML	Document	Format	•	Use	Character	Entities	to
Display	Special	Characters	•	Add	Comments	to	an	HTML	File	
ow	that	you	know	a	little	about	the	Web	and	what	to	think	about	before
creating	a	web	page,	let’s	talk	about	the	basic	setup	of	an	HTML	page.

Create	an	HTML	File	At	their	very	core,	HTML
files	are	simply	text	files	with	two	additional
features:	•	HTML	files	have	an	.html	or	.htm	file
extension.	A	file	extension	is	an	abbreviation	that
associates	the	file	with	the	appropriate	program
or	tool	needed	to	access	it.	In	most	cases,	this
abbreviation	follows	a	period	and	is	three	or	four
letters	long.
•	HTML	files	have	tags.	Tags	are	commands	or	code	used	to	tell	the	computer

how	to	display	the	page	content.

NOTE
You	might	also	see	other	types	of	pages	on	the	Internet,	such	as	files	ending	with	.php,	.asp,	or
.xml.	For	the	most	part,	these	are	beyond	the	scope	of	the	traditional	HTML	page,	and	therefore
not	covered	in	this	book.

Naming	Conventions
Remember	the	following	few	points	when	naming	your	HTML	files:	•	Although
in	most	cases	it	doesn’t	matter	whether	you	use	.html	or	.htm,	you	should	be
consistent	to	avoid	confusing	yourself,	the	browser,	and	your	users.

NOTE
Wondering	why	some	people	use	.html	and	some	use	.htm?	Older	systems	such	as	Windows	3.1
and	DOS	could	not	understand	four-letter	file	extensions,	so	anyone	creating	web	pages	on	those
systems	used	.htm	as	the	extension.	In	any	case,	because	the	first	three	letters	of	.html	and	.htm
are	the	same,	those	systems	simply	ignored	the	“I”	and	recognized	the	file	type	without	any
problems.

•	Some	web	servers	are	case-sensitive,	so	remember	this	when	naming	and
referencing	filenames	and	try	to	be	consistent.	If	you	name	your	file
MyPage.html,	and	then	reference	it	later	using	mypage.html,	you	may	end	up
with	a	broken	link.	One	good	technique	is	to	use	only	uppercase	or	lowercase
to	name	your	files.	This	way,	if	you	see	a	file	with	a	letter	in	it	that	doesn’t
match,	you	know	instantly	that	file	is	probably	the	problem.	Even	the	pros
run	into	case-sensitivity	problems	on	an	almost	daily	basis.

•	Use	simple	filenames	with	only	letters	and	numbers.	Don’t	use	spaces,
punctuation,	or	special	characters	other	than	hyphens	(-)	and	underscores	(_).
Good	examples	might	be	home.html,	my-story.html,	and	contactme.html.

TIP
While	it’s	perfectly	acceptable	to	use	an	underscore	(_)	in	a	file	or	folder	name,	I	suggest	using	a
hyphen	instead.	Underscores	can	easily	become	confused	with	an	underline,	especially	when
displayed	as	a	link	on	a	web	page	(because	links	are	usually	underlined).

These	same	recommendations	hold	true	for	any	folder	names	you	use.	If	you
were	creating	a	web	site	that	had	your	favorite	links,	family	photos,	and	résumé,
you	might	find	it	useful	to	put	each	of	those	things	in	a	separate	folder.

TIP
If	you	decide	to	use	Microsoft	Word	or	WordPad	to	type	your	HTML,	you	need	to	choose	the	file
type	“Text	Document”	or	“Text	Only”	and	give	the	file	an	.html	extension	the	first	time	you	save
it.	This	is	because	both	of	those	programs	default	to	saving	“Word	for	Windows”	or	“Microsoft
Word”	documents	with	a	.doc	or	.docx	extension.

Preview	an	HTML	File	in	a	Browser
You	can	view	HTML	files	located	on	your	personal	computer	within	your	own
web	browser.	It	isn’t	necessary	for	your	files	to	be	stored	on	a	web	server	until
you	are	ready	to	make	them	visible	on	the	Internet.

When	you	want	to	preview	a	page,	open	your	web	browser	and	choose	File	|
Open	File	(or	Open	Page	or	simply	Open,	depending	on	your	browser),	and	then
browse	through	your	hard	drive	until	you	locate	the	HTML	file	you	want	to
open.	(Note:	If	you	don’t	see	any	File	menus	in	IE,	try	pressing	the	alt	key	to
reveal	those	menus.	Also,	Windows	users	can	right-click	the	file	and	choose
Open	With	and	then	choose	the	browser	name.)	If	you’re	going	to	make	frequent
changes	to	the	HTML	file	in	an	editor	without	a	preview	tool	and	then	switch
back	to	a	web	browser	to	preview	the	page,	keeping	both	programs	(a	text	editor
and	a	web	browser)	open	at	the	same	time	makes	sense.	When	using	a	basic	text
editor,	the	steps	to	edit	and	preview	HTML	files	are	as	follows:	1.	Open/return	to
your	HTML	file	in	an	editor.

2.	Edit	your	HTML	file	in	an	editor.

3.	Save	your	HTML	file	in	an	editor.

4.	Open/return	to	your	HTML	file	in	a	web	browser.

5.	Click	the	Refresh	or	Reload	button	in	your	web	browser	to	update	the	HTML
page	to	reflect	the	changes	you	just	made	to	it.

By	keeping	your	HTML	file	open	in	both	an	editor	and	a	browser,	you	can
easily	make	and	preview	changes.	I’ll	have	you	give	this	a	try	shortly.

If	you’re	using	a	graphical	or	WYSIWYG	editor,	the	ideal	steps	are	slightly
different	because	these	types	of	programs	include	a	browser	preview	option.	For
example,	Adobe	Dreamweaver	offers	three	ways	to	work	with	an	HTML	file.
One	option	is	to	view	only	the	code,	as	you	would	in	a	basic	text	editor.	Another
option	is	to	work	in	the	preview	mode,	moving	page	elements	around	on	the
page	by	clicking	and	dragging.	Finally,	you	can	use	a	combination,	where	the
code	is	visible	on	part	of	the	screen	and	the	browser	preview	is	visible	on	the	rest
(as	shown	in	Figure	2-1).

Figure	2-1	Accessing	both	the	code	and	browser	preview	at	once	with	Adobe
Dreamweaver

Describe	and	Apply	the	Basic	HTML	Document
Format	An	HTML	element	is	used	to	tell	the
browser	how	to	display	content	on	a	page.
HTML	elements	have	opening	and	closing	tags
to	tell	the	browser	when	to	start	and	stop
applying	commands.	These	commands	are
similar	to	what	happens	behind	the	scenes	when
you	highlight	some	text	in	a	word	processor	and
click	the	Italic	button	to	make	the	text	italicized.

With	HTML,	instead	of	clicking	a	button	to	make	text	italicized,	you	can
type	a	tag	before	and	after	the	text	you	want	to	emphasize,	as	in	the	following:	

You	can	easily	recognize	tags	because	they	are	placed	within	brackets	(<	>),	or
less-than	and	greater-than	symbols.

Did	you	notice	that	the	tag	to	emphasize	text	and	make	it	italic	is	em?	Given
that	piece	of	information,	can	you	guess	the	tags	to	add	a	paragraph	or	create
items	in	a	list?

Now	do	you	believe	me	when	I	say	HTML	is	not	rocket	science?	Don’t	worry—
most	of	the	elements	are	pretty	intuitive	and	easy	to	remember.	We	will	work
through	each	of	these	tags,	and	plenty	more,	throughout	the	course	of	the	book.

Types	of	Elements
Most	HTML	tags	fall	into	one	of	several	main	categories.	While	the	actual
category	names	vary	according	to	who	you	ask,	for	the	purposes	of	this	book	I
group	them	like	this:	•	Document	Setup	Elements	in	this	category	include	those
necessary	to	set	up	a	basic	HTML	page.	For	example,	html,	head,	and	title	might
all	be	included	in	this	category.	We’ll	talk	about	these	types	of	elements	in	this
chapter.

•	Text-Level	Semantics	These	elements	help	the	browser	understand	the
meaning	behind	bits	of	text	content.	We’ll	cover	this	category	in	Chapters	4
and	6.

•	Sectioning	Elements	used	to	section	large	chunks	of	content	and	divide	up	the
page	belong	in	this	category.	Examples	include	section,	div,	and	header,	all
of	which	are	covered	in	Chapter	5.

•	Grouping	Elements	used	to	section	smaller	chunks	of	content,	like	lists	and
paragraphs,	fall	into	this	category.	Lists	are	explained	in	Chapter	10,	while
paragraphs	are	covered	in	Chapter	3.

•	Embedding	Often	times,	we	need	to	embed	content	from	other	sources	into	a

web	page.	Examples	include	images	(discussed	in	Chapter	8),	audio	and
video	(explained	in	Chapter	9),	and	other	interactive	elements	(some	of
which	are	discussed	in	Chapter	14).

•	Tables	Those	elements	useful	for	managing	tabular	data	can	easily	be	grouped
together.	We’ll	go	over	those	in	Chapter	11.

•	Forms	Any	element	used	in	the	development	of	a	web	form	falls	into	this
category.	I’ll	discuss	these	in	Chapters	12	and	13.

Josh	Duck	has	a	great	interactive	example	on	his	web	site	that	can	really	help
us	visualize	the	various	types	of	elements	and	how	they	work	together	to	create
web	pages.	Figure	2-2	shows	a	screen	shot,	but	be	sure	to	visit
www.joshduck.com/periodic-table.html	to	see	it	live.

Figure	2-2	This	interactive	“Periodic	Table	of	Elements”	helps	us	visualize	all
the	HTML5	elements	together.

http://www.joshduck.com/periodic-table.html

Block-Level	vs.	Inline
Beyond	those	basic	categories,	there	are	two	other	types	of	elements	I	want	to
touch	on	before	we	go	any	further.	Of	those	HTML	elements	that	are	added	to
the	body	of	a	web	page,	most	can	be	classified	as	either	a	block-level	or	inline,	or
text-level,	element	by	default.

Generally	speaking,	block-level	elements	have	the	following	key	differences
from	inline	elements:	•	They	can	contain	other	block-level	elements,	as	well	as
inline	elements.

•	They	are	formatted	to	start	on	blank	lines	by	default.
•	They	are	styled	as	“boxes”	on	the	page.

By	contrast,	inline	elements	cannot	contain	other	block-level	elements	and	do
not	begin	on	new	lines.	In	addition,	inline	elements	cannot	be	fully	styled	the
same	way	block-level	elements	are	formatted.	We’ll	discuss	more	about	those
differences	when	we	get	to	some	of	the	affected	elements.

The	following	list	identifies	all	the	elements	typically	considered	to	be
block-level	in	nature.	Even	though	you	may	not	recognize	many	of	these
elements	yet,	I’m	providing	this	list	as	a	reference	to	help	you	style	the	elements
appropriately	when	you	get	to	that	point.

Types	of	Tags
In	HTML,	many	elements	actually	have	two	types	of	tags:	one	used	for	opening
an	element	and	another	for	closing	it.	For	example,	if	you	use	<p>	as	an	opening
tag	to	signify	where	to	start	a	new	paragraph,	you	have	to	use	a	closing	tag	to
signify	where	that	paragraph	ends	(unless	you	want	your	entire	page	to	be
contained	within	one	paragraph).	To	do	so,	add	a	forward	slash	before	the
element	name:	</p>.

Having	said	that,	HTML5	does	not	require	all	elements	to	have	both	opening
and	closing	options.	This	means	some	elements	have	only	one	type	of	tag.	Such
elements	are	referred	to	as	being	empty	because	they	stand	alone	and	do	not
contain	any	other	content.

Attributes
Many	tags	have	additional	aspects	that	you	can	customize.	These	options	are
called	attributes	and	are	placed	after	the	element	name,	but	before	the	final
bracket.	Specific	attributes	for	each	element	are	discussed	as	we	move	through
the	book.	But	to	give	you	an	idea	of	how	attributes	work,	let’s	look	at	an
example	using	the	img	element:	

In	this	example,	the	base	element	is	img,	which	tells	the	browser	I	want	to
insert	an	image	at	this	spot.	The	attributes	are	src,	width,	height,	and	alt.
Each	attribute	has	a	value,	which	comes	after	an	equal	sign	(=)	and	is	placed
within	quotation	marks.	The	whole	thing—from	the	left	angle	bracket	to	the
right	angle	bracket—is	referred	to	as	the	tag.

There’s	no	need	to	repeat	the	img	tag,	because	multiple	attributes	can	be
included	in	a	single	tag.	When	you	add	attributes	to	a	tag,	you	only	put	them	in
the	opening	tag.	Then,	you	only	need	to	close	the	tag	(not	the	attributes),	if
necessary.	(Note	that	this	tag	is	one	that	doesn’t	have	a	separate	closing	tag	in
HTML5.)	Required	Tags
All	HTML	pages	need	to	have	the	html,	head,	title,	and	body	tags,	along
with	the	doctype	identifier.	This	means,	at	the	very	least,	your	pages	should
include	the	following	(which	are	also	outlined	in	Table	2-1):

Table	2-1	Required	HTML	Page	Elements

Here	is	the	result	of	this	page	when	displayed	in	a	browser.

To	test	this	basic	HTML	page	for	yourself,	try	the	following:	1.	Open	a	basic
HTML	editor,	such	as	the	free	versions	of	TextWrangler	(Mac)	or	CoffeeCup
(PC).

2.	Copy	the	preceding	code	into	a	new	document.

3.	Save	it	and	name	it	test.html.

4.	Launch	your	browser	and	choose	File	|	Open	File	or	File	|	Open.

5.	Browse	your	hard	drive	to	locate	the	test.html	file,	and	you’re	off	and
running!

NOTE
If	you’re	using	IE7+	and	don’t	see	the	File	menus,	press	alt	to	reveal	those	menus.

Doctype
The	doctype	element	is	used	to	tell	the	browser	which	type	of	coding	or
scripting	language	is	used	in	the	document.	In	versions	prior	to	HTML5,	this
element	specified	which	variation	of	HTML/XHTML	should	be	used	by	the
browser	to	interpret	the	page.

Thankfully	the	W3C	greatly	simplified	this	element	in	HTML5,	which	also
makes	it	somewhat	obsolete.	At	this	point,	all	you	need	to	do	is	to	include	the
following	brief	tag	at	the	top	of	each	page	to	prevent	the	browser	from	using	an
older	interpretation	method:	

HTML
The	html	element	contains	all	of	the	remaining	HTML	elements.	That	means	all
the	HTML	of	your	page—except	for	the	html	and	doctype	elements—should	be
placed	in	between	the	opening	and	closing	html	tags.

Head
The	head	element	is	used	to	tell	the	browser	about	the	page,	as	opposed	to
including	the	content	that	will	display	on	the	page.	There	are	a	few	other
elements	that	belong	in	between	the	opening	and	closing	head	tags	to	help	tell
about	the	page.	Those	elements	include	•	title	Specifies	the	page	title.
•	meta	Specifies	additional	information	about	the	page,	such	as	which	character

set	is	used	in	the	page.

•	style	Defines	internal	style	information.

•	link	Defines	a	link	to	an	external	file	needed	to	process	the	content	of	this
page.

•	script	Specifies	non-HTML	script	content.

Note	that	of	those	five	elements,	only	the	title	element	is	required.	We’ll
discuss	these	elements	further	in	later	sections.

Body
The	body	element	contains	all	of	the	HTML	elements	that	define	the	content
displayed	on	the	page,	including	the	tags	necessary	to	format	text,	links,	images,
and	so	on.	The	bulk	of	the	next	few	sections	and	chapters	will	outline	exactly
what	to	do	in	the	body	section	of	your	pages.

Capitalization
Original	versions	of	HTML	were	case-insensitive	and,	in	fact,	very	forgiving.
This	means	all	of	the	following	examples	would	be	considered	the	same	by	the
browser:	•	<html>
•	<HTML>
•	<HTml>

But	then	HTML4	and	XHTML	came	along,	with	all	its	restrictions,	requiring	all
tags	to	be	lowercase.	This	means	of	the	three	preceding	examples,	the	browser
might	properly	interpret	only	the	first.

Thankfully,	HTML5	returns	to	being	case-insensitive,	where	pretty	much
anything	goes	in	terms	of	capitalization.	But	given	the	differences	between	the
various	versions	of	HTML	currently	in	use,	I	still	recommend	using	all-
lowercase	tags.

Ask	the	Expert
Q:	I	typed	the	preceding	HTML	into	a	text	file,	but	when	I	tried	to

preview	the	page	in	my	browser,	nothing	happened.	Why?

A:	There	are	several	possible	reasons	why	your	page	might	appear	blank.

First,	review	the	code	in	the	preceding	example	and	compare	it	line	by
line	with	the	code	you	typed.	Forgetting	a	closing	tag	or	maybe	just	a
forward	slash	(/)	is	easy.	Sometimes	it’s	helpful	to	take	a	quick	break
before	returning	to	scrutinize	your	page.	If	you	do	make	a	change,	be
sure	to	save	the	file	in	your	text	editor	before	clicking	Refresh	or
Reload	in	your	web	browser.

If	you’re	certain	the	code	in	your	page	matches	the	example,	try
resaving	your	file	under	a	new	name.	Close	your	browser,	and	then
relaunch	your	web	browser	and	open	the	page	in	the	browser	again.

Additional	troubleshooting	techniques	are	located	in	Appendix	C.

Quotation	Marks
Earlier	versions	of	HTML	also	required	all	values	to	be	placed	within	straight
quotation	marks,	as	in	the	following	example:	

I	suggest	continuing	this	practice,	for	continuity	and	usability	reasons.

Nesting
The	term	nesting	appears	many	times	throughout	the	course	of	this	book	and
refers	to	the	process	of	containing	one	HTML	tag	inside	another:	

You	have	a	proper	way	and	an	improper	way	to	nest	tags.	All	tags	should
begin	and	end	starting	in	the	middle	and	moving	out.	Another	way	of	thinking
about	it	involves	the	“circle	rule.”	You	should	always	be	able	to	draw	semicircles
that	connect	the	opening	and	closing	versions	of	each	tag.	If	any	of	your
semicircles	intersect,	your	tags	are	not	nested	properly.

Using	the	following	example,	the	first	one	is	proper	because	the	strong	tags
are	both	on	the	outside	and	the	em	tags	are	both	on	the	inside:	

Even	though	both	may	work	in	some	browsers,	you	need	to	nest	tags	the	proper
way	to	ensure	that	your	pages	display	the	same	across	all	browsers.

Spacing	and	Breaks	Within	the	Code
Let’s	look	closely	at	some	example	HTML	to	identify	where	proper	spacing
should	occur.	(Note	that	the	a	tag	and	href	attribute	are	used	to	link	something
—in	this	case,	text.)	

Two	places	exist	within	an	HTML	file	where	you	might	like	to	add	breaks:	•
In	between	tags,	to	help	you	differentiate	between	sections	of	the	page	•	In
between	lines	of	text	within	the	body	of	the	page	Spacing	and	Breaks	Between
Tags
The	first	place	you	might	like	to	add	breaks	is	in	between	tags,	as	in	the

following	example:	
Although	this	is	not	required,	most	people	use	the	ENTER	or	RETURN	key	to

separate	tags	with	line	breaks.	Others	also	indent	tags	that	are	contained	within
other	tags,	as	in	the	preceding	example:	The	title	element	is	indented	to	show
it	is	contained	or	nested	within	the	head	element.	This	may	help	you	to	identify
the	tags	more	quickly	when	viewing	the	page	in	a	text	editor.

Spacing	Between	Lines	of	Text
The	second	place	you	add	breaks	is	between	the	lines	of	text	in	the	body	of	the
page.	If	you	use	the	RETURN	or	ENTER	key	on	your	keyboard	to	add	a	line	break
in	between	two	lines	of	text	on	your	page,	that	line	break	will	not	appear	when
the	browser	displays	the	page.

In	this	code,	I	pressed	the	return	key	twice	after	the	word	“Welcome.”	In	this
example,	you	can	see	that	the	browser	ignored	my	returns	and	ran	both	lines	of
text	together.

To	make	those	line	breaks	appear,	I’d	have	to	use	an	HTML	element	to	tell
the	browser	to	insert	a	line	break.	Two	tags	are	used	for	breaks	in	content:	

The	br	element	inserts	a	simple	line	break.	It	tells	the	browser	to	drop	down
to	the	next	line	before	continuing.	If	you	insert	multiple	br	tags,	the	browser	will
drop	down	several	lines	before	continuing.

The	p	element	signifies	a	paragraph	break.	The	difference	between	the	two	is
that	paragraph	breaks	cause	the	browser	to	skip	a	line,	while	line	breaks	do	not.
Also,	the	p	element	is	considered	a	container	element	because	its	opening	and
closing	tags	should	be	used	to	contain	paragraphs	of	content.	The	br	and	p	tags
are	discussed	in	more	detail	in	Chapter	5.

NOTE

Because	the	br	element	doesn’t	contain	any	text,	as	the	p	element	does,	it	doesn’t	have	opening
and	closing	versions.	In	previous	versions	of	HTML,	you	were	required	to	place	a	slash	before	the
closing	bracket	to	“terminate”	the	tag,	as	in:	
.	HTML5	does	not	require	us	to	close	empty
tags	like	this.

If	I	enclose	each	of	these	paragraphs	in	p	tags,	like	the	following:	

the	browser	will	know	to	separate	them	with	a	blank	line.	The	following
illustration	shows	how	the	browser	displays	the	text	now	that	I	have	contained
each	of	the	paragraphs	in	p	tags.

In	addition,	HTML	neither	recognizes	more	than	a	single	space	at	a	time	nor
interprets	a	tab	space	as	a	way	to	indent.	This	means	that	in	order	to	indent	a
paragraph	or	leave	more	than	one	space	between	words,	you	must	use	style
sheets	(see	Chapter	5)	or	special	characters.

Use	Character	Entities	to	Display	Special
Characters	As	crazy	as	this	sounds,	you
technically	shouldn’t	include	any	characters	in
your	HTML	files	that	you	can’t	type	with	only
one	finger.	This	means	if	you	have	to	hold	down
the	SHIFT	key	to	type	an	exclamation	mark	or	a
dollar	sign,	you	are	supposed	to	use	a	character

entity	to	include	that	special	character	in	your
HTML	file.

Even	though	you	might	be	able	to	type	a	certain	character	on	your	computer
system	without	any	problems,	some	characters	may	not	translate	properly	when
visitors	to	your	web	site	view	your	page.	So,	I	recommend	you	use	character
entities	to	maintain	consistency	across	computer	systems.

Character	entities	can	be	typed	as	either	a	numbered	entity	or	a	named	entity.
All	character	entities	begin	with	an	ampersand	(&)	and	end	with	a	semicolon	(;).
Although	every	character	entity	has	a	numbered	version,	not	every	one	has	a
named	version.	While	a	full	list	of	special	characters	is	included	in	Appendix	D,
a	few	are	listed	in	the	following	table	to	give	you	an	idea	of	what	they	look	like.

NOTE
A	few	characters	are	reserved	and	given	special	meaning	in	HTML.	For	example,	the	brackets	(<
and	>)	are	used	to	signify	HTML	tags,	while	the	ampersand	(&)	is	used	to	begin	these	entities.	If
you	need	to	use	a	bracket	within	the	content	of	your	HTML	page,	such	as	when	a	greater-than
symbol	is	needed,	in	the	case	of	3	>	2,	you	should	use	the	corresponding	character	entity	(>)	to
do	so.

Having	now	made	the	case	for	using	character	entities,	let	me	just	say	here
that	it’s	been	my	experience	that	certain	characters	can	actually	be	used	in	a	web
page	without	causing	any	problems.	These	include	straight—not	curly—
quotation	marks	(''),	exclamation	marks	(!),	question	marks	(?),	colons	(;),	and
parentheses	().	While	I	haven’t	noticed	any	of	these	to	cause	problems	in	the
majority	of	browsers,	you	should	still	test	your	pages	thoroughly	when	using	any

special	characters.
Here’s	an	example	of	how	the	most	commonly	used	character	entity—the

non-breaking	space—might	be	used	in	a	code	snippet:	

Add	Comments	to	an	HTML	File
Sometimes	you	might	not	want	your	web	site	visitors	to	see	personal	comments
or	notes	you’ve	added	to	your	web	pages.	These	notes	might	be	directions	to
another	person	or	reminders	to	yourself.

After	the	opening	bracket,	an	exclamation	mark	and	two	hyphens	signify	the
beginning	of	a	comment.	A	space	should	appear	after	the	opening	comment
code,	as	well	as	before	the	closing	comment	code.

Comments	are	not	restricted	in	size	but	can	cover	many	lines	at	a	time.	The
end	comment	code	(-->)	doesn’t	need	to	be	on	the	same	line	as	the	beginning
comment	code.	If	you	forget	to	close	your	comment	tag,	the	rest	of	the	page	will
not	appear	in	your	browser.	If	this	happens,	don’t	be	alarmed.	Simply	go	back	to
the	code	and	close	that	comment.	The	rest	of	the	page	will	become	visible	when
you	save	the	file	and	reload	it	in	the	browser.

NOTE
Comments	can	be	seen	by	anyone	who	views	the	source	code	of	your	page,	so	it	is	wise	to	avoid
placing	any	personal	or	secure	information	in	that	space.

Try	This	2-1 Create	the	First	Page	of	Your	Site
To	continue	with	the	site	you	began	planning	for	in	the	first	chapter,	we	now
begin	the	first	page	in	your	site.	These	are	the	main	goals	for	this	project:	•	Use
all	the	necessary	elements	to	create	a	basic	web	page.

•	Use	a	character	entity	to	add	a	copyright	symbol	to	the	page.
•	Save	the	page	as	an	HTML	file	that	can	be	read	by	a	web	browser.

•	Preview	the	page	in	a	web	browser.

1.	Open	an	HTML	editor	on	your	computer.	Copy	the	following	code	to	begin
your	web	page.	Feel	free	to	make	edits	wherever	necessary	to	personalize
your	site	for	your	organization.

2.	After	the	end	of	the	second	paragraph,	use	the	code	you	learned	in	this
chapter	to	add	two	breaks	and	a	copyright	symbol	(©),	followed	by	the
name	of	the	organization.	(Example:	©	Erinn	Izzo.)	3.	Create	a	new	folder
on	your	hard	drive,	called	mathtutor	(or	the	name	of	your	organization	or
web	site).	Save	this	file	as	index.html	in	the	folder	you	just	created.

4.	Open	your	web	browser	and	choose	File	|	Open	(or	Open	File,	depending	on
the	browser	you’re	using).	Locate	the	file	index.html	you	just	saved.

5.	Preview	the	page.	If	you	need	to	make	changes,	return	to	your	HTML	editor
to	do	so.	Once	you	have	made	those	changes,	save	the	file	and	switch	back
to	your	web	browser.	Click	the	Reload	or	Refresh	button	in	your	browser	to
update	your	page	according	to	the	changes	you	just	made.	The	complete
code	for	your	page	might	look	like	this.

TIP
Does	your	browser	window	appear	blank	when	you	try	to	preview	your	page?	If	so,	return	to	your
HTML	editor	and	make	sure	you	have	included	all	the	necessary	closing	tags	(such	as	</body>
and	</html>).	In	addition,	if	you	are	using	a	basic	text	editor	(as	opposed	to	an	HTML	editor),
don’t	forget	to	save	the	file	as	“text	only”	within	an	.html	file	extension.	For	more	tips,	see
Appendix	C.

Chapter	2	Self	Test

1.	What	file	extensions	do	HTML	files	use?

2.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to
write	this	line?

3.	At	the	very	least,	which	tags	should	be	included	in	a	basic	HTML	page?

4.	Identify	the	tag	name,	attribute,	and	value	in	the	following	line	of	HTML
code:	

5.	Fill	in	the	blank:	HTML5	is	case-__________.

6.	Which	option	is	not	acceptable	for	an	HTML	filename?
A.	myfile.html
B.	my-file.html
C.	my	file.html
D.	my1file.html

7.	What	is	the	named	character	entity	used	to	add	a	copyright	symbol	to	a	web
page?

8.	You	just	created	a	web	page,	and	you’re	previewing	it	in	a	web	browser
when	you	notice	an	error.	After	fixing	the	error	and	saving	the	web	page,
which	button	should	you	click	in	the	browser	to	view	the	changes	made?

9.	The	tags	in	the	following	line	of	code	aren’t	nested	properly.	Rewrite	the
code	so	that	the	tags	are	nested	properly.

10.	How	can	you	rewrite	the	following	text	so	that	it	doesn’t	display	when	the
page	is	viewed	in	a	browser?

11.	Which	two	options	will	the	browser	ignore	when	they	are	coded	in	a	web
page?

A.	<p>
B.	A	tab
C.	

D.	

E.	Single	space	with	the	SPACEBAR
F.	Double	space	with	the	SPACEBAR

12.	Fill	in	the	blank:	The	p	tag	is	an	example	of	a	__________	tag	because	it
contains	sections	of	text.

13.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to
write	the	code?

14.	What	symbols	must	start	and	end	all	HTML	tags?

B

Chapter	3
Style	Sheet	Setup

Key	Skills	&	Concepts

•	Set	Up	Style	Sheets	in	an	HTML	File	•	Identify	the	Ways	in	Which	Color	Is

Referenced	in	Web	Development	•	Specify	Document	Colors	
efore	we	go	any	further	with	document	setup,	we	need	to	cover	a	very
important	aspect	of	web	page	development	with	HTML5:	the	use	of	style

sheets.

Set	Up	Style	Sheets	in	an	HTML	File	I’ve
already	mentioned	the	phrase	“style	sheets”	a
few	times,	but	haven’t	really	given	them	a	full
explanation	yet.	Part	of	the	reason	is	that	style
sheets	weren’t	really	a	part	of	HTML	until	it	was
rewritten	a	few	times.	The	purpose	of	cascading
style	sheets	(abbreviated	CSS)	is	to	separate	the
style	of	a	web	page	from	its	content.

The	current	HTML	“rules”	dictate	that	we	only	use	HTML	to	identify	the
content	of	the	page,	and	then	use	a	style	sheet	to	specify	the	presentation	of	that
content.	This	not	only	makes	web	pages	more	accessible	and	usable	to	all	users
(regardless	of	their	browsers,	platforms,	operating	systems,	physical	limitations,
and	so	forth),	but	also	to	search	engines	and	other	types	of	software.

TIP
If	you’ve	ever	used	the	Style	drop-down	menu	in	Microsoft	Word,	you’ve	already	used	a	style
sheet	of	sorts.	The	most	basic	style	sheet	might	include	a	style	called	“Body	Text”	that	specifies
how	the	body	text	of	the	web	page	should	look—which	font	and	color	to	use,	how	much	space	to
leave	around	it,	and	so	on.

Define	the	Style
To	define	a	basic	formatting	style,	you	first	must	identify	which	HTML	element
you	want	to	affect.	This	tag	is	then	called	a	selector	in	CSS.	So,	if	you	wanted	to
specify	the	style	of	all	the	level-2	headlines	(which	is	accomplished	with	the
<h2>	tag)	on	a	page,	for	example,	you	would	use	h2	as	your	selector.

In	fact,	the	selector	is	essentially	the	tag	without	the	brackets.	With	that	in
mind,	can	you	guess	what	the	selector	for	<p>	would	be?

Once	you	have	a	selector,	you	can	define	its	properties.	Similar	to	how
attributes	work	in	HTML,	CSS	properties	alter	specific	attributes	of	a	selector.
Returning	to	the	preceding	example,	if	you	want	to	change	the	style	of	the	level-
2	headlines	on	your	page	to	a	14-point	Verdana	font,	italic,	and	blue,	you	can	use

the	following	properties:	
When	you	specify	values	for	properties,	you	are	creating	a	declaration	for

that	selector.	The	declaration	and	selector	together	are	then	referred	to	as	a	set	of
rules,	or	a	ruleset.	In	the	typical	ruleset,	the	declaration	is	enclosed	in	curly
brackets	after	the	selector.

So	here	are	the	first	few	pieces	of	our	ruleset:	

And	here	is	how	they	all	fit	together	to	tell	the	browser	to	display	all	level-2
headlines	in	the	Verdana	font:	

To	specify	the	font	size,	color,	and	style	(italic),	we	simply	add	on	a	few

more	of	those	properties:	
At	this	point,	you	can	probably	start	to	see	the	pattern—a	CSS	property	is

followed	by	a	colon,	and	then	its	value,	which	in	turn	is	followed	by	a
semicolon.

TIP
Appendix	B	includes	a	list	of	popular	CSS	properties.

Define	the	Values
As	with	attributes	in	HTML,	properties	have	values.	However,	contrary	to
HTML	values,	CSS	values	are	not	placed	in	between	quotation	marks.

Most	values	can	be	specified	in	terms	of	color,	keyword,	length,	percentage,
or	URL,	as	listed	in	Table	3-1.	Length	and	percentage	units	can	also	be	made
positive	or	negative	by	adding	a	plus	(+)	or	minus	(−)	sign	in	front	of	the	value.

Table	3-1	Types	of	CSS	Values

Create	the	Structure
After	you	know	a	little	about	the	individual	parts	of	CSS,	you	can	put	them

together	to	create	a	few	styles.	The	organization	of	these	pieces	depends	a	bit	on
which	type	of	style	sheet	you	are	creating.	There	are	three	key	places	where	we
can	style	web	pages:	•	Inline	Styles	are	embedded	right	within	the	HTML	code
they	affect.

•	Internal	Styles	are	placed	within	the	header	information	of	the	web	page,	and
then	affect	all	corresponding	tags	on	a	single	page.

•	External	Styles	are	coded	in	a	separate	document,	which	is	then	referenced
from	within	the	header	of	the	actual	web	page.	This	means	a	single	external
style	sheet	can	be	used	to	affect	the	presentation	on	a	whole	group	of	web
pages.

You	can	use	any	or	all	of	these	types	of	style	sheets	in	a	single	document.
However,	if	you	do	include	more	than	one	type,	the	rules	of	cascading	order
take	over:	These	rules	state	that	inline	rules	take	precedence	over	internal	styles,
which	take	precedence	over	external	styles.

In	a	nutshell,	CSS	styles	apply	from	general	to	specific.	This	means	a	ruleset
in	the	head	element	of	a	document	overrides	a	linked	style	sheet,	while	a	ruleset
in	the	body	of	a	document	overrides	one	in	the	head	element.	In	addition,	more
local	(or	inline)	styles	only	override	the	parent	attributes	where	overlap	occurs.

Inline
Inline	styles	are	created	right	within	the	HTML	of	the	page,	hence	the	name.	In
the	previous	examples,	a	declaration	was	surrounded	by	curly	quotes,	but	inline
declarations	are	enclosed	in	straight	quotes	using	the	style	attribute	of
whichever	tag	you	want	to	affect:	

You	can	separate	multiple	rules	by	semicolons,	but	the	entire	declaration
should	be	included	within	quotes:	

Inline	styles	are	best	for	making	quick	changes	to	a	page,	but	they	aren’t
suited	for	changes	to	an	entire	document	or	web	site.	The	reason	for	this	is	that
when	styles	are	added	to	a	tag,	they	occur	only	for	that	individual	tag	and	not	for
all	similar	elements	on	the	page.

TIP
Inline	styles	overrule	internal	and	external	styles	when	multiple	types	of	style	sheets	are	found	on
the	same	page.

Internal
When	you	want	to	change	the	style	of	all	the	h2	elements	on	a	single	page,	you
can	use	an	internal,	or	embedded,	style	sheet.	Instead	of	adding	the	style
attribute	to	a	tag,	use	the	style	element	itself	to	contain	all	the	instructions	for
the	page.	The	style	element	is	placed	in	the	header	of	the	page,	in	between	the
opening	and	closing	head	tags.	Here’s	an	example	of	what	an	internal	style	sheet

might	look	like:	
As	this	example	shows,	the	selector	is	placed	before	the	declaration,	which	is

enclosed	in	curly	brackets.	This	entire	ruleset	can	be	contained	on	a	single	line
or	broken	up	into	multiple	lines,	as	in	the	following	example:	

You	can	write	styles	in	several	ways.	The	following	example	is	just	as	valid
as	the	preceding	one	and	is	preferred	by	some	people	because	it	is	easier	to	read:	

In	addition,	you	can	use	certain	shorthand	properties	to	reduce	the	amount	of
coding	necessary.	For	example,	instead	of	specifying	both	font	family	(Verdana)
and	font	size	(12	point),	you	could	type	the	following	because	both	properties
begin	with	font:

TIP
Chapter	4	discusses	how	to	style	text	in	much	more	detail.

External
An	external	style	sheet	holds	essentially	the	same	information	as	an	internal	one,
except	an	external	style	sheet	is	contained	in	its	own	text	file	and	then	referenced
from	within	the	web	page.	Using	external	style	sheets	is	a	way	to	apply	the	same
styles	to	multiple	pages,	thereby	allowing	an	entire	web	site	to	share	the	same
look	and	feel.

Thus,	an	external	style	sheet	might	look	like	this:	

Notice	that	external	style	sheets	don’t	use	the	style	element	or	attribute,	but
simply	include	a	list	of	rulesets	as	instructions	for	the	browser.	Once	you	create
your	external	style	sheet,	save	it	as	a	text	file,	with	the	.css	file	extension.	Then,
return	to	your	HTML	file	and	add	the	link	element	to	the	page	header	to
reference	the	external	style	sheet,	as	in	the	following	example:	

In	this	case,	I	only	needed	to	write	styles.css	because	the	style	sheet	is	in	the
same	folder	as	my	HTML	page.	However,	if	your	style	sheet	is	in	a	different
folder	than	your	HTML	page,	be	sure	to	reference	that	path	appropriately.

NOTE
External	style	sheets	can	be	overruled	by	internal	and	inline	style	sheets.

Understand	the	Cascade
The	C	in	CSS	means	cascade,	but	rarely	is	this	term	discussed	with	beginning
web	developers.	While	this	is	understandable,	given	the	ability	for	this
discussion	to	become	very	complex,	we	can’t	avoid	the	topic	altogether.	So,	let’s
dive	right	in…

Officially,	you	know	the	C	stands	for	cascade,	but	what	exactly	does	that
word	mean?	You	might	swap	out	cascade	for	combine	to	help	clarify.	When	the
browser	comes	across	multiple	style	declarations	for	a	single	page	or	bit	of

content,	it	essentially	combines	them	together	into	a	single	style	sheet	and
assigns	levels	of	importance	to	each	declaration	to	determine	how	to	process.

The	most	basic	order	of	importance	is	one	I	just	mentioned:	External	style
sheets	are	overruled	by	internal	and	inline	style	sheets.	This	means	if	an	external
style	sheet	specifies	all	text	should	be	black,	but	an	internal	style	sheets	says	it
should	be	blue,	it	will	ultimately	be	blue.	Table	3-2	helps	further	explain	how	the
browser	determines	importance.

Table	3-2	Style	Importance

While	Table	3-2	doesn’t	delve	into	the	more	complex	aspects	of	cascading
rules,	it	gives	you	a	basic	understanding	of	what	sort	of	styles	can	override
others.	To	reiterate,	using	this	table,	can	you	determine	which	of	these	styles
would	actually	display	in	the	browser?

1.	p	{color:	black;}	in	an	external	style	sheet	2.	p	{color:	blue;}	in	an	internal
style	sheet	You	might	have	guessed	that	the	internal	style	sheet	(#2)	takes
precedence.	This	is	a	pretty	clear-cut	example,	but	what	happens	when
things	aren’t	so	cut	and	dry?	The	W3C	has	actually	set	up	some	pretty
sophisticated	rules	to	help	with	complex	situations.	These	rules	dictate	a
point	scale,	where	more	points	are	assigned,	depending	on	how	the	style	was
generated,	specified,	and	assigned.	The	higher	the	points	received,	the	more
important	a	particular	style	is	considered.	In	situations	where	styles	conflict,
the	most	important	are	used.	Take	a	look	at
www.w3.org/TR/CSS2/cascade.html	to	learn	more	about	cascading	rules.

NOTE
It’s	common	for	new	web	developers	to	become	frustrated	when	the	browser	seems	to	flat	out
ignore	certain	style	declarations.	Nine	times	out	of	ten,	this	is	caused	by	conflicting	declarations.
If	this	happens	to	you,	take	a	break	and	then	use	your	browser’s	troubleshooting	tools	to	help
identify	the	conflict.	(Refer	to	Chapter	14	for	more	on	testing	and	troubleshooting	tools.)
Declaring	Importance

http://www.w3.org/TR/CSS2/cascade.html

I	can’t	leave	a	discussion	on	cascading	without	mentioning	the	!important	rule.
CSS	allows	for	an	override,	so	to	speak,	to	be	used	when	conflicting	levels	of
importance	might	prevent	a	particularly	desirable	style	from	being	used.	To
declare	a	style	more	important,	you	can	add	the	important	keyword,	like	this:	

As	you	can	see,	the	keyword	must	be	prefaced	by	an	exclamation	mark	in
order	to	be	properly	interpreted	by	the	browser.	An	!important	declaration
ultimately	takes	precedence	over	a	normal	style	sheet	declaration.

Identify	the	Ways	in	Which	Color	Is	Referenced
in	Web	Development	At	the	beginning	of	time—
Web	time—the	only	way	to	reference	color	in	an
HTML	page	was	to	use	its	hexadecimal	color
value.	When	CSS	became	the	preferred	method
of	referencing	color	in	web	pages,	we	were
permitted	to	use	a	variety	of	other	units	to
measure	color,	including	RGB	(which	stands	for
Red	Green	Blue)	values,	RGB	percentages,
hexadecimal	shorthand,	and	color	names.

Hexadecimal	Color
The	“normal”	number	system	in	the	United	States	is	decimal—based	on	the
number	10.	This	means	we	have	10	units	(0–9)	to	use	before	we	have	to	repeat	a
unit	(as	with	the	number	10,	which	uses	the	0	and	the	1).

The	hexadecimal	system	(hex)	uses	the	same	concepts	as	the	decimal	system,
except	it’s	based	on	16	units	(see	Table	3-3).	Because	standard	HTML	cannot
handle	decimal	color	values,	the	hexadecimal	system	is	used	to	specify	color
values	on	web	pages.	Instead	of	making	up	new	characters	to	represent	the
remaining	units	after	9,	the	hexadecimal	system	uses	the	first	six	letters	of	the
English	alphabet	(A–F).

Table	3-3	Decimal	and	Hexadecimal	Units

Computer	monitors	display	color	in	RGB	mode,	where	R	=	Red,	G	=	Green,
and	B	=	Blue.	Each	letter	(R,	G,	and	B)	is	represented	by	a	value	between	0	and
255,	with	0	being	the	darkest	and	255	representing	the	lightest	in	the	spectrum.
In	RGB,	white	and	black	have	the	following	values:	

This	is	how	one	graphics	program—Adobe	Photoshop—displays	the	RGB
values	for	blue	(R:00	G:00	B:255).	Most	other	graphics	programs	have	similar
ways	of	helping	you	determine	the	RGB	values	of	your	colors.

In	Photoshop,	one	way	to	find	out	what	the	hexadecimal	values	are	for	that
shade	of	blue	is	to	click	the	triangle	in	the	upper-right	corner	of	that	color
window	and	choose	Web	Color	Sliders	from	the	menu.

The	resulting	window	shows	the	corresponding	hex	values	for	that	same	blue
are	R:00	G:00	B:FF.

When	using	hexadecimal	color	values	in	an	HTML	page,	you	translate	the
color	from	decimal	(RGB)	to	hex.	Each	red,	green,	and	blue	value	translates	into
a	two-digit	hex	value.	You	then	combine	all	three	of	those	two-digit	hex	values
into	a	single	string,	preceded	by	a	hash	mark.	The	following	is	an	example	where
a	hexadecimal	color	is	used	to	change	the	text	in	one	paragraph	to	blue:	

TIP
While	you	previously	needed	a	scientific	calculator	to	convert	between	decimal	and	hexadecimal
values,	many	charts,	software	programs,	converters,	and	even	web	pages	are	now	available	to	do

this	for	you.	Check	out	www.psyclops.com/tools/rgb/	to	see	an	example.

Hexadecimal	Shorthand
When	referencing	a	color	that	has	value	pairs,	you	can	use	a	bit	of	shorthand	to
reduce	the	amount	of	typing	necessary.	For	example,	a	color	with	a	hexadecimal
code	of	003366	can	be	shortened	to	036.	This	is	because	each	of	the	two	red
values	is	the	same,	as	are	each	of	the	blue	and	green	values.	That	wouldn’t	work
for	a	hexadecimal	code	of	003466,	because	the	green	values—34—aren’t	the
same.

The	following	shows	how	the	same	blue	used	in	the	preceding	code	example
could	be	referenced	using	hex	shorthand:	

RGB	Values	and	Percentages
If	hexadecimal	color	values	already	have	your	head	spinning,	I	have	good	news!
If	a	color’s	RGB	values	are	handy,	use	those	in	your	style	sheet	in	place	of	the
hexadecimal	code,	like	in	the	following:	

If	you	don’t	have	the	RGB	values	handy,	as	when	working	in	some	page
layout	or	design	programs	other	than	Photoshop,	you	can	also	use	the	RGB
percentages,	like	that	shown	in	the	following	example:	

Notice	that	a	comma	separates	each	RGB	value,	and	the	entire	set	of	values
is	placed	inside	parentheses.	A	lowercase	rgb	precedes	those	parentheses,	as	in
the	case	of	the	previous	code	example,	R	=	0,	G	=	0,	and	B	=	255.	As	was	the
case	with	hexadecimal	shorthand,	RGB	values	and	percentages	are	only	used	to
describe	color	in	style	sheets,	not	the	older	HTML	color	tags.

Color	Names
With	each	successive	version	of	HTML,	we	have	gained	additional	color	names
that	have	standard	values.	Table	3-4	lists	the	17	color	names	that	are	almost
uniformly	supported	by	browsers.	Over	100	more	exist,	so	check	out
http://www.w3schools.com/html/html_colornames.asp	to	see	visual	examples
of	each.

http://www.psyclops.com/tools/rgb/
http://www.w3schools.com/html/html_colornames.asp

Table	3-4	Popular	Standard	Color	Names

So	Which	Should	I	Use?
The	wonderful	thing	about	using	style	sheets	to	define	color	in	web	pages	is	that
we	are	free	to	use	any	of	the	previously	mentioned	methods.	This	means	you	can
tailor	your	color	presentation	method	to	your	particular	needs	and	use	whichever
makes	the	most	sense	to	you.

New	and	Notable	Color	Options	One	of	my
favorite	aspects	of	the	latest	HTML5/CSS3

updates	is	transparency.	The	W3C	has	defined
two	new	ways	to	create	transparency	in	web
pages.

RGBA
With	RGBA,	you	can	specify	the	“alpha	value,”	or	the	transparency	of	a	color.
The	transparency	is	defined	by	a	number	between	0.0	(completely	transparent)
and	1.0	(fully	opaque).	For	example,	you	might	use	the	following	code	to	tell	the
browser	to	display	a	headline	at	50	percent	of	the	defined	color:	

The	latest	versions	of	Safari,	Firefox,	and	Google	Chrome	have	all	supported
RGBA	color	specification	for	awhile.	Unfortunately,	Internet	Explorer	only
started	supporting	it	with	version	9.	So	if	your	target	audience	includes	many
users	with	older	versions	of	IE,	I	don’t	recommend	using	this.

TIP
The	closer	to	0.0,	the	more	the	background	will	show	through.

Opacity
Another	new	addition	to	the	CSS3	specification	is	the	opacity	property.	Similar
to	the	RGBA	values	just	described,	opacity	values	are	defined	between	0.0
(completely	transparent)	and	1.0	(fully	opaque).

Specify	Document	Colors
Now	that	you	know	a	little	about	how	colors	are	handled	in	web	development,
let’s	talk	about	the	way	in	which	we	go	about	actually	specifying	them.
Changing	document	colors,	such	as	the	background	and	the	text,	is	accomplished
via	your	style	sheet.

As	with	any	style	declaration,	you	can	specify	the	background,	text,	and	link

colors	in	an	inline,	internal,	or	external	style	sheet.	The	actual	properties	used	to
do	so	are	the	same,	however,	regardless	of	which	type	of	style	sheet	you	use.
Look	at	the	following	example	of	an	internal	style	sheet	used	to	change	the	main
background	color	as	well	as	the	link	colors	of	a	page:	

NOTE
Remember,	internal	style	sheets	are	those	placed	in	between	the	opening	and	closing	head	tags	in
the	HTML	code	of	your	web	page.

The	color	property	specifies	the	color	of	the	foreground,	whereas	the
background-color	property	identifies	the	background	color.	So	when	both	of
those	properties	are	specified,	the	foreground	color	becomes	the	color	of	the	text
content.

The	trick	here	is	to	consider	which	element	actually	creates	the	content
whose	color	you	want	to	change,	and	use	that	as	your	CSS	selector.	So,	in	the
preceding	internal	style	sheet	example,	I	first	tell	the	browser	to	change	the
background	color	of	the	entire	page	to	white	(the	body	element	determines	the
underlying	features	of	a	page,	such	as	background	color	and	default	text	color).
Adding	the	color	property	to	the	body	selector	also	specifies	that	all	text	on	the
page	should	be	gray	in	this	case.

Next,	I’m	telling	the	browser	to	select	all	content	affected	by	a	tags	(a:link)
and	make	them	blue.	When	those	links	have	been	visited,	I	want	the	browser	to
render	them	purple,	as	indicated	by	the	line	a:visited	{color:	purple;}.	And,
finally,	the	color	of	active	links—that	is,	the	color	visible	when	the	user	is
clicking	a	link—is	orange,	as	defined	by	the	line	beginning	with	a:active.

TIP
Although	we	used	the	same	property—color—to	change	the	default	text	color	and	the	various	link
colors,	remember	that	it	is	the	selector	(in	this	case,	body	and	a)	that	tells	the	browser	exactly
which	content’s	color	to	alter.

Try	This	3-1 Add	a	Style	Sheet	and	Change	the

Colors	of	Your	Page
Let’s	take	the	index.html	page	from	the	last	Try	This,	and	change	the
background	and	text	colors	of	that	page.	Goals	for	this	project	include	•	Add	an
internal	style	sheet	•	Choose	coordinating	colors	•	Specify	the	background	and
text	colors	of	the	web	page	•	Reference	the	colors	with	the	appropriate	color
codes	1.	Open	your	text	editor	and	load	the	index.html	page	saved	earlier	in	this
book.

2.	Use	the	style	element	to	create	space	for	an	internal	style	sheet	in	the	header
of	the	document.

3.	Add	the	background-color	and	color	properties	to	your	internal	style	sheet	as
the	following	shows.	(Feel	free	to	replace	these	color	values	with	any	you
deem	appropriate.)	Save	the	file.

You	can	find	a	color	in	several	different	ways:	•	Go	to
www.colorblender.com	and	use	the	sliders	to	select	your	favorite	colors.	As
a	bonus,	this	online	tool	will	then	suggest	matching	colors	to	create	a
harmonious	color	palette.

•	Use	a	color	from	Table	3-4.
•	Choose	one	from	the	color-picker	in	your	favorite	graphics	program	(such

as	Adobe	Photoshop).

4.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	index.html.

5.	Preview	the	page	to	determine	if	you	approve	of	your	color	choices.	If	you
don’t,	return	to	your	HTML	editor	to	make	changes.	After	making	any
changes,	save	the	file	and	switch	back	to	the	browser.	Choose	Refresh	or
Reload	to	preview	the	changes	you	just	made.

http://www.colorblender.com

Because	style	sheets	are	so	integral	to	web	development,	it’s	wise	to	review
this	chapter	again	after	you	learn	some	more	about	HTML	page	structure	in	the
next	few	chapters.

Chapter	3	Self	Test

1.	What	file	extension	is	used	for	external	CSS	files?

2.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to
write	this	line?

3.	font-family,	font-size,	and	color	are	all	examples	of	what	in	CSS?

4.	Update	the	following	code	to	reference	the	URL	of	the	background	image
images/	background.jpg:

5.	Fill	in	the	blank:	CSS	__________	alter(s)	specific	attributes	of	a	selector.

6.	The	second	two	numbers	in	a	six-digit	hexadecimal	code	refer	to	which
color?

7.	Which	element	is	used	as	a	CSS	selector	when	you	want	to	change	the	color
of	a	page’s	links?

8.	Which	element	is	used	as	a	CSS	selector	when	you	want	to	change	the
background	color	of	a	page?

9.	Which	takes	precedence	when	there	are	conflicting	style	declarations?
A.	A	style	applied	to	all	p	tags	B.	A	style	applied	with	an	ID	selector	C.	A

style	applied	to	the	body	element	D.	A	style	applied	with	a	class	selector
10.	Which	takes	precedence	when	there	are	conflicting	style
declarations?

A.	An	inline	style
B.	An	internal	style	sheet	C.	An	external	style	sheet	D.	A	browser	default

style	sheet

B

Chapter	4
Working	with	Text

Key	Skills	&	Concepts

•	Ensure	Onscreen	Readability	of	Text
•	Add	Logical	Emphasis	to	Sections	of	Text
•	Style	Sections	of	Text	by	Changing	Font	Characteristics
•	Offer	Printer-Friendly	Versions	of	Text	Content

efore	we	dive	into	the	nitty-gritty	of	structuring	and	laying	out	web	pages,
let’s	go	over	one	of	the	most	important	aspects	of	page	development:

working	with	text.
First,	we’ll	cover	ways	to	optimize	text	content	for	web	readability.	Then,

we’ll	identify	plenty	of	style	sheet	properties	to	help	customize	your	text
content.	Finally,	we’ll	take	a	look	at	ways	to	offer	printer-friendly	versions	of	the
text	content	to	ensure	your	pages	are	readable	both	online	and	off.

Ensure	Onscreen	Readability	of	Text
Reading	extensive	amounts	of	text	on	a	screen	is	not	only	difficult	on	the	eyes,
it’s	also	tiresome	and	inconvenient.	Even	so,	many	people	use	the	same	text
content	written	for	the	printed	page	on	their	web	sites.	This	repurposing	of
content	detracts	from	a	company’s	overall	identity	and	can	make	reading	the	web
site	content	quite	difficult.

TIP
In	the	“Writing	for	the	Web”	section	of	his	web	site,	usability	expert	Jakob	Nielsen	instructs,
“Write	no	more	than	50	percent	of	the	text	you	would	have	used	in	a	hardcopy	publication”
(www.useit.com/papers/webwriting/).	Even	though	some	of	the	articles	found	here	were	written
several	years	ago,	the	content	is	still	relevant.

To	make	things	easier	on	web	readers,	try	following	these	guidelines:

•	Keep	it	short	and	concise	Chances	are	good	that	most	web	readers	won’t	last
through	more	than	a	few	screens	of	text	on	a	web	page.	If	you	have	a	long
article	that	needs	to	be	made	available	to	web	surfers,	try	breaking	it	into
several	pages	to	avoid	the	super-long	page-scroll.	Remember,	you	only	have
a	few	seconds	to	grab	a	user’s	attention,	and	long-winded	“speeches”	(even	if
they	are	on	the	Web)	rarely	work.

•	Separate	paragraphs	with	blank	lines	On	the	printed	page,	paragraphs	are
designated	by	an	indent	of	the	first	sentence	in	each	paragraph.	On	the
screen,	such	paragraphs	seem	to	run	together.	For	easier	onscreen	reading,
surround	paragraphs	with	paragraph	elements	(<p>)	to	leave	a	blank	line
between	them.

•	Limit	column	widths	Ever	wonder	why	newspaper	columns	are	so	short?	One
reason	is	it	eases	and	speeds	reading	for	the	viewer.	The	same	is	true	online,
so	be	wary	of	500-pixel-wide	columns.	I	like	to	stay	between	200	and	400
pixels.

•	Avoid	underlining	On	the	Web,	underlined	text	signifies	a	link.	When	you
give	nonlinked	text	an	underline,	it’s	confusing	to	users.

•	When	centering	text,	use	moderation	Avoid	centering	a	whole	section	or
paragraph	of	text,	because	more	than	a	line	or	two	of	centered	text	is	difficult
to	follow.

•	Do	place	emphasis	on	important	text,	but	don’t	overemphasize	While	bold
and	italics	draw	attention	to	important	text,	you	can	easily	overdo	it	by
bolding	too	much.

•	Avoid	using	all	capital	letters	Consider	which	is	used	more	on	street	and
highway	signs:	all	caps	or	a	mix	of	lowercase	and	capital	letters.	You	rarely
see	all	caps	used	on	street	signs,	because	it’s	much	easier	to	read	words	with
a	mix	of	uppercase	and	lowercase	letters.	In	addition,	the	use	of	all	capital
letters	is	considered	“screaming”	in	online	communication.

http://www.useit.com/papers/webwriting/

•	Use	lists	and	group	related	information	Lists	improve	the	“scannability”	of
your	page,	making	them	easier	to	scan	quickly	in	search	of	particular
information.	Headlines	can	also	help	differentiate	between	sections	and	offer
users	quick	insight	on	the	section’s	content.

•	Place	the	most	important	information	at	the	top	of	the	page	If	users	have	to
scroll	for	it,	you	may	lose	them.	Avoid	pages	that	are	too	busy	by	limiting
paragraphs	to	one	main	idea	and	pages	to	no	more	than	seven	main	options
or	thoughts.

•	Use	descriptive	headlines	and	subheads	Eyetracking	software	in	conjunction
with	usability	tests	has	shown	just	how	little	web	users	actually	read	web
pages	and	e-mail	newsletters	(see
www.useit.com/alertbox/newsletters.html).	This	is	why	it’s	important	to
break	up	large	sections	of	text	with	informative	headlines	to	help	your
readers	decide	where	to	pause—and	hopefully	read—on	the	page.

•	Make	information	easy	to	find	Most	studies	show	users	don’t	click	more	than
three	times	on	a	web	site	to	try	to	find	the	information	they	want.	Avoid
burying	content	more	than	three	levels	deep	if	you	expect	anyone	to	find	it.
And,	if	you	have	a	search	engine	on	your	site	(which	you	should	if	your	site
contains	more	than	a	few	dozen	pages),	take	care	to	ensure	the	titles	of	each
page	are	descriptive.

Overall,	remember	most	people	scan	web	pages,	as	opposed	to	reading	them.
When	you	create	a	web	page,	put	it	away	for	a	day	or	two	and	then	look	at	it
from	a	user’s	standpoint.	If	you	had	no	idea	what	the	purpose	of	the	page	was
because	you	just	stumbled	on	it,	would	you	be	able	to	pick	out	the	main	point(s)
within	five	seconds?	If	not,	you	might	want	to	rework	the	content.

Or,	ask	a	friend	to	look	at	the	page	and	identify	the	first,	second,	and	third
things	that	pop	out.	If	those	three	things	aren’t	the	most	important	things	on	the
page,	perhaps	you	need	to	reevaluate	the	page.

Markup	Text
Now	that	we’ve	covered	some	key	points	for	optimizing	web	text	content,	let’s
talk	about	the	different	ways	we	can	mark	up	that	content.	HTML	includes
different	types	of	formatting	elements	to	identify	the	purpose	of	certain	bits	of
text.

http://www.useit.com/alertbox/newsletters.html

Text-level	semantics	define	how	the	affected	text	is	to	be	used	on	the	page,
not	how	it	will	be	displayed.	This	means	the	browser	ultimately	decides	how	to
display	the	text	(see	Table	4-1).	For	example,	if	you	were	writing	the	HTML	for
the	first	sentence	in	this	paragraph,	you	could	use	the	dfn	element	to	tell	the
browser	the	phrase	“text-level	semantics”	should	be	highlighted	as	a	defined
term.

Table	4-1	Text-Level	Semantics	in	HTML

Table	4-1	lists	the	most	common	elements	used	for	differentiating	bits	of	text
from	surrounding	content.	While	previous	versions	of	HTML	actually	dictated
how	text	marked	up	with	these	elements	should	be	displayed,	HTML5	merely
advises	us	to	use	them	to	help	describe	meaning	to	the	browser.

So	in	the	previous	example,	the	dfn	tag	would	tell	the	browser	to
differentiate	between	the	phrase	“text-level	semantics”	and	the	rest	of	the
sentence.	Exactly	how	it	does	so	depends	on	the	different	browsers,	but	many
browsers	display	it	as	italicized	text.	It	is	then	up	to	you	to	customize	the	display
of	the	marked-up	text	in	your	style	sheet.

All	of	these	elements	must	be	opened	and	closed	when	they	are	used	in	an
HTML	document.	Figure	4-1	shows	how	these	tags	are	typically	displayed
before	any	CSS	styles	are	applied.

Figure	4-1	Here’s	how	a	Mozilla	browser	(in	this	case,	Firefox)	displays	text-
level	semantics.

Style	Text
There	are	style	properties	to	affect	just	about	any	aspect	of	text	necessary.	Some,
like	those	that	alter	font	faces	and	sizes,	enjoy	wide	support	among	browsers	and
operating	systems.	Others,	like	those	that	allow	us	to	load	our	own	fonts	into	the
browser,	are	newer	and	perhaps	not	quite	ready	for	widespread	use.

By	far,	the	most	commonly	changed	text	characteristics	all	have	something
to	do	with	the	fonts	used	to	display	the	text.	For	that	reason,	we’ll	look	at	which
style	sheet	properties	affect	font	display	first.

But	before	you	begin	changing	the	font	characteristics	of	a	web	page,	you
should	note	that	visitors	to	your	web	site	have	the	ultimate	control	over	these
font	characteristics.	The	following	screen	shows	how	the	user	can	customize	the
way	text	displays	in	Firefox.	Users	can	even	choose	to	use	their	fonts,	overriding
page-specified	fonts,	so	you	should	consider	these	tags	as	recommendations	for
the	browser,	but	never	rely	on	them	for	your	page	display.	In	other	words,	there
is	little	you	can	do	to	absolutely	guarantee	your	pages	will	look	the	way	you
want	them	to	every	single	time.	Rather	than	become	frustrated	by	this	fact,	I
encourage	you	to	embrace	it.	Being	flexible	is	an	important	characteristic	of	a
web	designer,	just	as	the	flexibility	of	the	Web	is	one	of	its	greatest	assets.

Font	Faces
When	used	in	conjunction	with	the	term	font,	face	refers	to	the	name	of	the	font
you’d	like	to	use	on	your	page.	In	style	sheets,	we	specify	the	font	face	with	the
font-family	property.

You	can	use	the	font-family	property	to	specify	virtually	any	font	name	you
can	think	of,	but	the	person	viewing	your	web	page	will	be	unable	to	see	your
page	in	that	font	face	unless	he	already	has	it	loaded	on	his	computer,	or	you
provide	access	to	that	font.	So,	if	you	specify	your	page	should	be	displayed	in
the	Gill	Sans	font,	but	the	person	viewing	your	page	doesn’t	have	access	to	Gill
Sans,	he	will	see	your	page	in	his	browser’s	default	font	face	(usually	Times
New	Roman).

To	compensate	for	the	possibility	that	not	all	visitors	will	have	the	font	you

specify,	you	can	specify	backup	fonts	in	the	value	of	the	font-family	property.	If
the	browser	cannot	find	the	first	font	face	listed	on	the	viewer’s	computer,	it	then
looks	for	the	second	font	face,	and	the	third,	and	so	forth	until	it	comes	up	with	a
match.	Once	again,	if	the	browser	doesn’t	find	a	font	face	listed	in	your	HTML
file	that	is	actually	installed	on	the	viewer’s	system,	it	displays	the	page	in	the
default	font.

NOTE
This	process	of	providing	a	backup	font	name	is	also	referred	to	as	cascading.

In	the	previous	code,	the	browser	first	looks	for	Gill	Sans.	If	it	doesn’t	find	that
font	face,	it	looks	for	Verdana,	followed	by	Arial	and	Helvetica.	If	none	of	those
font	faces	is	available,	it	would	display	the	text	in	the	browser’s	default	font.

Several	font	faces	have	become	quite	popular	on	the	Web.	This	is	because
these	faces	offer	the	best	chance	of	being	installed	on	a	majority	of	viewers’
systems.	In	addition,	most	of	these	fonts	have	been	found	to	be	more	readable	on
the	Web	than	others.	Table	4-2	shows	many	readable	font	faces	for	your	pages
that	enjoy	default	support	from	at	least	80	percent	of	typical	users.

Table	4-2	Popular	and	Widely	Supported	Web	Fonts

The	more	products	a	font	ships	with,	the	more	likely	it	is	that	viewers	of	your
web	site	will	have	the	font	installed.	The	information	on	the	availability	of	fonts
was	drawn	from	Microsoft’s	discussion	on	web	typography	and	Visibone’s	font
survey.	To	learn	more,	visit	www.microsoft.com/typography/	and
www.visibone.com/font/FontResults.html.

TIP
Font	names	may	be	a	bit	different	across	computer	systems.	Therefore,	I	recommend	using
lowercase	names	and	sometimes	even	including	two	possible	names	for	the	same	font.	For
example,	the	font	Comic	Sans	can	sometimes	be	installed	as	Comic	Sans	or	Comic	Sans	MS.	You
can	code	your	page	to	allow	for	both	instances	by	using:	'comic	sans,	comic	sans	ms'.

Google	Web	Fonts
What	if	you	want	to	use	a	font	not	listed	in	Table	4-2?	Say,	for	example,	you’re
working	on	a	web	site	for	someone	whose	logo	contains	a	fairly	unique	font	not
normally	found	on	most	users’	systems.	You	should	definitely	include	the	logo
as	an	image	to	ensure	it	displays	consistently	across	the	widest	possible
audience.	But	you	would	never	want	to	include	all,	or	even	a	majority,	of	the	text
on	a	site	in	images	because	that	text	wouldn’t	be	searchable	or	accessible	by
nonimage-based	browsers	(such	as	those	used	by	vision-impaired	readers	or

http://www.microsoft.com/typography/
http://www.visibone.com/font/FontResults.html

some	mobile	phone	browsers).
Thankfully,	there	are	a	few	ways	around	being	limited	to	the	fonts	listed	in

Table	4-2.	The	first	I	want	to	discuss	is	Google	Web	Fonts
(www.google.com/webfonts).	Google	maintains	a	database	of	open-source	fonts
that	can	easily	be	made	accessible	to	web	users.	Simply	browse	through
hundreds	of	font	families	and	choose	those	you	want	to	use	on	your	pages.	Then,
copy	the	code	necessary	to	make	the	selected	font(s)	accessible	to	your	users.

Here’s	an	example.	Suppose	I	wanted	to	use	a	font	called	Skranji	for	the
navigation	on	my	page.	First,	I	need	to	make	the	font	available	to	my	users	in
one	of	three	ways:

•	HTML	link	element:	<link	href='http://fonts.googleapis.com/css?
family=Skranji"	rel="stylesheet"	type="text/css">

•	CSS	@import	rule:	@import	url(http://fonts.googleapis.com/css?
family=Skranji);

•	Javascript	(using	the	following	code	snippet)

After	you	make	the	font	available	to	users,	you	can	simply	reference	it	from
within	your	style	sheet,	like	this:

Pretty	cool,	huh?	Google	Web	Fonts	puts	hundreds	of	open-source	fonts	right	at
our	fingertips.	The	only	drawback—if	there	is	one—is	that	fonts	must	be	open
source	in	order	to	be	included	in	the	Google	database.	This	means	most	of	our
favorite	commercial	fonts	are	not	available	this	way.

http://www.google.com/webfonts

Other	Ways	to	Access	Fonts
Still	wondering	how	to	use	your	favorite	commercial	font	in	your	web	pages?
There	are	a	few	other	options,	but	nothing	that	has	a	huge	amount	of	browser
support	as	of	this	writing.	HTML5/CSS3	does	bring	us	a	new	font	tool	in	the
@font-face	rule.	With	this	new	style	sheet	feature,	we	can	actually	load	a	copy
of	a	font	onto	the	web	server	and	make	it	accessible	to	our	site	visitors.	Here’s	an
example	of	how	it’s	coded:

Then,	you	could	use	that	font	for	your	header	section,	for	instance:

Looks	pretty	straightforward,	right?	It	is,	for	the	most	part.	The	trick	is	that
not	all	the	browsers	support	the	different	font	formats	uniformly.	For	example,
TTF	(short	for	TrueType	Format)	fonts	are	supported	this	way	on	iOS	devices.
SVG	(short	for	Scalable	Vector	Graphic)	fonts	are	supported	on	iOS	devices,	but
not	in	IE	or	on	Android	devices.

TIP
Want	to	learn	more	about	the	different	font	formats,	like	TTF?	Check	out
http://computer.howstuffworks.com/question460.htm.

And	to	make	matters	worse,	most	commercial	font	companies	do	not	allow
you	to	load	their	fonts	on	your	web	server	without	purchasing	an	additional
license.	One	notable	exception	is	Fontspring	(www.fontspring.com),	which	sells
its	professional	fonts	with	licenses	for	both	online	and	offline	use.

My	advice	is	this:	Stick	to	fonts	that	are	either	already	loaded	on	most	users’
machines	or	those	that	can	be	freely	loaded	(without	breaking	any	licensing
rules).

Font	Sizes
You	can	also	use	style	sheets	to	change	the	size	of	the	text.	This	is	accomplished
with	the	font-size	property	and	any	of	the	following	possible	values,	as	in:
font-size:	12pt.

•	Keyword	xx-small,	x-small,	small,	medium,	large,	x-large,	or	xx-large

http://computer.howstuffworks.com/question460.htm
http://www.fontspring.com

•	Relative	size	Smaller	or	larger
•	Measured	size	Number	followed	by	the	unit,	as	in	12pt	(for	12	point)	or	8px

(for	8	pixels)

Keywords
A	keyword	doesn’t	identify	an	exact	size	measurement,	but	instead	suggests	a
basic	guideline	for	the	browser	to	follow.	Table	4-3	attempts	to	explain	how	the
font-size	keywords	correlate	to	other	default	sizing	measurements.	I	use	the
word	“attempts”	because	default	text	sizes	can	vary	given	the	operating	system
and	browser	used	to	display	text.	So,	based	on	Table	4-3,	you	can	see	that	font-
size:	x-small	roughly	translates	into	text	that	is	approximately	9pt.	Likewise,
font-size:	x-large	would	produce	text	approximately	16pt.

Table	4-3	Font	Sizes

NOTE
Although	these	sizes	loosely	correspond	to	the	point	sizes	you	use	in	a	word	processor,	most	text
in	a	web	page	tends	to	look	a	tad	bit	smaller	on	a	Mac	than	it	does	on	a	PC	because	the	two
systems	render	type	differently.

Figure	4-2	shows	how	these	keywords	translate	into	the	four	most	popular
browsers	on	the	Mac	OS	(Opera,	Safari,	Chrome,	and	Firefox,	from	left	to	right).
Thankfully,	the	sizes	are	fairly	consistent	when	viewed	in	different	browsers	on
the	same	platform.	To	be	sure	the	results	end	up	as	expected,	always	test	your
pages	on	a	variety	of	different	systems,	including	mobile	devices.

Figure	4-2	Here’s	how	font-size	keywords	are	displayed	in	four	browsers	on	the
Mac	OS.

Relative	Sizes
Relative	sizes	can	work	together	with	keywords	to	provide	additional
customization	of	font	sizes.	For	example,	if	you	specify	one	section	of	your	page
should	use	“medium”	text,	then	want	to	style	a	small	bit	of	content	inside	of	that
section	just	a	bit	smaller	than	medium,	you	could	use	“smaller.”	Note	the	er	at
the	end	of	the	keyword.	That	is	what	differentiates	it	from	the	small	and	x-small
keywords	previously	mentioned.	Adding	the	er	to	small	or	large	basically	gives
you	the	ability	to	refine	font	sizes.

Wondering	why	you	wouldn’t	just	use	“small”	for	the	text	inside	the
“medium”	section?	Suppose	you	later	decided	to	change	the	font	size	of	that
section	from	“medium”	to	“large.”	If	you	had	used	“small”	for	that	bit	of	text
you	wanted	to	make	just	a	tad	bit	smaller	than	the	rest,	you	would	have	to	go	edit
that	style	as	well.	But,	if	you	had	used	“smaller”	instead,	the	browser	would
automatically	understand	your	intent—that	the	text	should	be	one	step	smaller
than	the	rest—and	adjust	the	size	accordingly.	So,	in	essence,	the	relative
keywords	smaller	and	larger	help	you	get	your	point	across	to	the	browser	while
still	remaining	flexible	and	easily	updatable.

Measured	Sizes

With	measured	font	sizes,	you	are	telling	the	browser—using	a	length
measurement—what	size	you	want	the	text	to	be.	(It	should	be	noted,	however,
that	ultimately	the	size	of	the	text	will	also	be	impacted	by	the	screen
resolution.)	The	four	most	popular	categories	of	measured	sizes	are	pixels	(px),
percentages	(%),	ems	(em),	and	points	(pt).

Pixel	measurements	are	the	most	common	in	web	design,	because	they	are
the	most	specific	to	pages	being	displayed	on	the	screen.	When	you	specify	a
font	should	be	rendered	at	12px,	the	browser	knows	to	only	allot	12	pixels	of
vertical	space	for	each	letter.

Percentages	are	pretty	straightforward,	in	that	they	are	just	percentages	of	the
page’s	default	font	size.	For	example,	if	the	default	font	size	of	the	browser	were
16px	(which	is	true	for	a	lot	of	browsers),	then	text	set	to	display	at	50%	would
show	up	as	8pt	type.

Ems	also	relate	to	the	default	font	size.	In	fact,	1em	equals	whatever	the
default	font	size	is.	If	you	haven’t	specified	otherwise,	this	would	mean	1em	was
16px	(or	whatever	the	user’s	default	browser	font	size	is	set	to).	Using	1.5em
would	get	you	a	font	size	of	24px.

As	you	can	see,	percentages	and	ems	are	ultimately	less	absolute	in	nature,
because	they	are	affected	by	the	user’s	default	font	size.	This	means	the	trick	to
using	percentages	and	ems	successfully	is	to	set	your	preferred	default	font	size
at	the	start	of	your	style	sheet:

Then,	if	you	want	to	specify	a	section	of	text	should	be	larger	or	smaller,	you	can
use	something	like	50%	or	.8em.

TIP
When	you	start	mixing	pixels,	ems,	and	other	font	measurements,	things	can	get	pretty	confusing
quite	quickly.	The	best	summary	I’ve	read	regarding	how	to	wade	through	all	the	details	is	here:
www.css-tricks.com/css-font-size.

Point	sizes	are	specific	to	the	printed	page,	and	should	therefore	be	reserved
for	use	in	printer-friendly	style	sheets	(which	are	discussed	at	the	end	of	this
chapter).

http://www.css-tricks.com/css-font-size

Ask	the	Expert
Q:	If	I	can	reliably	use	an	absolute	font	size,	such	as	18pt,	with	the	font-

size	property,	why	would	I	ever	use	a	keyword	or	relative	font	size?

A:	The	answer	lies	in	the	Web’s	adaptability	to	different	user	scenarios.
Older	versions	of	some	browsers	(namely	IE6	and	earlier)	got	a	bit
funky	when	handling	absolute	font	sizes.	In	particular,	older	browsers
rendered	absolute	font	sizes	unadjustable	in	the	browser.	This	means	a
user	with	limited	eyesight	could	not	increase	the	font	size	in	her
browser	if	the	text	was	displayed	in	pixel	measurements.	That	translated
into	a	pretty	significant	failure	for	the	Web	in	general,	which	prides
itself	on	being	easily	adaptable	to	a	wide	audience.

So,	many	web	designers	got	comfortable	using	keywords	and
relative	font	sizes,	which	are	always	adjustable	by	the	user.	Thankfully,
the	modern	browsers	allow	just	about	all	text	(except	those	embedded	in
images	or	multimedia	files)	to	be	adjusted	in	size	by	the	user.	But	you
can	still	use	nonabsolute	font	sizes	as	needed.	In	fact,	many	designers
prefer	to	set	the	default	font	size	for	the	page	using	the	body	element	as
a	selector,	and	then	use	relative	keywords	to	change	the	size	throughout
the	design.	Here’s	an	example	of	that	type	of	styling	in	action:

I	In	this	case,	text	is	set	to	12	pixels	for	the	whole	page.	Then,	text
enclosed	in	level-1	headings	will	be	“larger”	than	12px,	while	text	with
the	.byline	class	attached	will	be	“smaller.”

Font	Colors
As	discussed	in	Chapter	3,	the	CSS	color	property	is	used	to	change	the	color	of
any	item	in	the	foreground	of	a	web	page,	including	text.	Alternatively,	the
background-color	property	is	used	to	change	the	color	of	anything	in	the
background	of	a	web	page.	This	means	you	can	attach	two	color	characteristics
to	a	single	paragraph,	for	instance.	The	following	code	shows	how	this	might	be
done	to	add	a	yellow	highlight	behind	some	purple	text	with	an	inline	style

sheet.

Other	Font	Style	Properties
We	just	covered	how	to	change	basic	font	characteristics,	like	the	font	face,	size,
and	color,	but	what	about	other	aspects	of	text	like	the	space	between	the	letters,
as	well	as	the	space	between	words,	the	thickness	of	the	font,	underlines,	and	so
on.	Thankfully,	there	are	style	sheet	properties	available	for	just	about	any	type
of	formatting	you	want	to	apply	to	text.	For	your	convenience,	the	most
commonly	used	properties—including	those	just	covered—are	outlined	in	Table
4-4.

Table	4-4	Common	CSS	Properties	for	Styling	Text

NOTE
There	are	many	other	new	CSS3	properties	for	styling	text.	To	learn	more	about	these	advanced
options,	visit	www.w3.org/TR/2012/WD-css3-fonts-20120823.

Offer	Printer-Friendly	Versions	of	Text	Content
Even	though	many	people	use	electronic	documents	to	avoid	having	reams	of
paper	on	their	desks,	plenty	of	us	still	print	lots	of	pages	from	the	Web.	The	fact
of	the	matter	is	we	are	more	likely	to	read	long	articles	of	text	when	they’re
printed.	The	problem	with	this	is	that	most	web	pages	were	not	created	to	be
printed	and,	as	such,	don’t	print	well.

PDFs
One	solution	to	this	problem	is	to	enable	users	to	download	PostScript	versions
of	the	documents.	A	PostScript	file,	in	contrast	to	an	HTML	file,	was	created
with	a	printer	in	mind	and	contains	specific	instructions	on	how	the	file	should
be	printed.	Different	types	of	PostScript	files	can	be	created	from	all	kinds	of
software	titles,	regardless	of	the	computer	platform.

For	example,	Adobe’s	Portable	Document	Format	(PDF)	enables	you	to
take	any	file	from	another	program	(such	as	Microsoft	Publisher	or	Adobe
InDesign)	and	save	it	in	a	universally	recognizable	file	format,	characterized	by
the	.pdf	file	extension.	Adobe	PDF	has	become	a	standard	in	electronic
document	delivery	because	of	its	ease	of	use,	reliability,	and	stability.

http://www.w3.org/TR/2012/WD-css3-fonts-20120823

Unlike	HTML	pages,	which	look	different	depending	on	the	browser	and
computer	system,	PDF	files	look	the	same	across	different	platforms,	even	when
printed.	This	makes	it	easy	to	distribute	documents,	such	as	your	company’s
annual	report	or	newsletter.

TIP
Some	programs,	such	as	Adobe	Photoshop,	Adobe	InDesign,	and	Microsoft	Office	2010,
automatically	allow	you	to	save	files	as	PDFs.	Check	with	your	page	layout	or	publishing
program’s	manual	before	purchasing	Adobe	Acrobat.	Also,	Mac	users	can	save	as	PDF	from	most
applications	by	default.	Microsoft	Office	2007	users	can	download	a	plug-in	from	Microsoft	that
allows	you	to	save	as	PDF	right	from	within	tools	like	Word	and	Excel	(see
http://www.microsoft.com/en-us/download/details.aspx?id=7).

To	save	text	files	in	the	PDF	format,	you	typically	must	have	the	Adobe
Acrobat	software	loaded	on	your	system.	Once	you	do,	it’s	only	a	matter	of
selecting	a	few	menu	items	before	the	file	is	converted	to	the	PDF	format.

To	view	PDF	files,	you	typically	must	have	the	Adobe	Acrobat	Reader
installed	on	your	system.	This	free	utility	is	available	from	Adobe’s	web	site.
Even	if	you’ve	never	downloaded	the	Reader,	you	may	already	have	it	because
it’s	included	with	many	other	software	titles	and	computer	systems.	If	you	do
include	a	link	to	a	PDF	file	on	your	web	page,	remember	also	to	tell	users	what
is	needed	to	view	the	file	and	where	to	download	the	Reader.

NOTE
Visit	www.adobe.com/products/acrobat/readermain.html	to	download	the	free	Acrobat
Reader.

Because	users	must	have	the	Reader	to	view	a	PDF,	avoid	using	PDFs	as	the
only	means	for	electronically	delivering	important	information.	Whenever
possible,	it’s	good	to	have	both	an	HTML	version—for	online	viewing—and	a
PDF	version—for	printing—of	important	documents.	(Visit
http://access.adobe.com	for	tips	on	creating	accessible	PDFs,	as	well	as	tools
for	converting	PDFs	to	HTML	documents	and	vice-versa.)

Printer-Specific	Style	Sheets
Ever	visited	a	web	page	and	seen	a	button	labeled	“click	for	printer	version”	or
something	similar?	While	that	link	may	have	led	to	a	PDF	version	of	the	page,	it
more	likely	led	to	another	HTML	version	of	the	page—this	one	using	a	printer-
specific	style	sheet.

http://www.microsoft.com/en-us/download/details.aspx?id=7
http://www.adobe.com/products/acrobat/readermain.html
http://access.adobe.com

When	using	external	style	sheets	it’s	possible	to	add	the	media	attribute	to
your	link	tag	to	tell	the	browser	when	to	use	a	particular	style	sheet.	For
example,	the	following	shows	some	code	that	loads	two	different	style	sheets:
one	if	the	page	is	printed,	and	one	if	the	page	is	displayed	on	the	screen:

Once	you’ve	linked	to	your	printer-specific	style	sheet,	you	just	need	to	edit
that	style	sheet	to	make	the	page	display	appropriately	when	printed.	I
recommend	starting	with	a	copy	of	your	normal	style	sheet,	and	then	editing	as
necessary.	So	what	should	you	change?	The	text	that	follows	presents	a	few
things	to	look	out	for.

Backgrounds
Always	set	your	background	color	to	white	and	remove	any	background	images
you	might	have	already	assigned	to	the	page.	This	will	ensure	the	user	doesn’t
waste	precious	ink	printing	a	black	background	with	white	text	for	no	real
reason.	What	may	have	looked	attractive	on	screen	might	only	be	a	big	bleed	of
ink	on	the	printed	page.

NOTE
Some	of	these	concepts—like	links	and	margins—will	be	covered	in	later	chapters,	but	I	mention
them	here	just	to	give	you	an	idea	as	to	what	needs	to	be	customized	for	printer-specific	style
sheets.

Links
If	you	turned	your	link	underlines	off,	be	sure	to	turn	them	back	on.	Likewise,
consider	making	them	bold	or	otherwise	emphasized	so	they’ll	stand	out	even
when	printed	in	black	and	white.	You	can	even	specify	that	links	should	display
the	actual	URL	after	the	link.	This	would	be	quite	useful	if	someone	prints	your
page	and	then	wants	to	access	its	links	at	a	later	date,	because	the	link	addresses
would	be	printed	on	the	page.

The	following	code	specifies	that	the	URL	should	be	printed	after	both
visited	and	unvisited	links.	(While	the	code	that	follows	doesn’t	look	like	the	rest
of	the	code	you’ve	learned	thus	far	in	this	book,	it	is	correct.	The	spaces,	in
particular,	are	important	to	the	code,	so	be	sure	to	type	this	CSS	exactly	as	you

see	it.)

If	you	have	a	lot	of	internal	links	on	your	pages,	you	may	need	to	add	your
domain	name	to	this	code.	Without	it,	users	might	see	only	a	portion	of	the
URLs	printed:	index.html	or	aboutus/address.html.	The	following	shows	how	the
code	should	look	in	order	to	make	those	links	display	completely:

Finally,	consider	turning	off	any	graphical	navigation	bars,	advertisements,
or	buttons	when	styling	a	printed	version	of	the	page.	Not	only	do	web
navigation	bars	typically	print	poorly,	but	they	are	frequently	of	no	use	to	the
reader	of	a	printed	page.

Fonts
The	standard	font	measurement	for	printed	pages	is	points.	Therefore,	if	you
used	another	measurement	for	your	screen	pages,	such	as	pixels,	be	sure	to
change	that	for	your	printer-specific	style	sheet.

Margins	and	Padding
If	you’ve	removed	all	margins	and	padding	on	your	page	to	make	things	snug
against	the	edges,	you	should	remove	those	style	declarations	in	your	printer
version.	I	like	to	leave	the	margins	and	padding	at	their	default	values	so	as	not
to	have	content	cut	off	when	printed.	However,	many	designers	prefer	to	add	a	5-
or	10-percent	margin	to	either	side	so	the	content	has	a	good	amount	of	buffer
space	when	printed.

Ultimately,	the	choice	is	yours.	As	with	all	web	pages,	it’s	important	to	test
your	printer-specific	pages	by	printing	them	on	at	least	two	different	printers
from	two	different	browsers	until	you	are	happy	with	the	results.

NOTE
If	you	styled	any	aspects	of	your	page	to	be	absolutely	positioned,	consider	removing	that
declaration	and	allowing	the	content	to	flow	freely	on	the	printed	page.

Final	Tips	for	Printer-Friendly	Pages
Whenever	you	create	pages	that	will	be	printed,	whether	PDF	files	or	printer-
specific	style	sheets,	remember	the	following	things:

•	Page	Size	Whereas	web	pages	are	designed	for	screen	format,	printed	pages
should	be	designed	for	the	paper	on	which	they	will	be	printed.	Most	users	in
the	United	States	will	probably	print	in	portrait	format	on	standard	letter-size
paper	(8.5"	by	11").	Be	sure	to	leave	at	least	a	1/2"	margin	on	all	sides.

•	Color	Avoid	dark	background	colors	on	printed	pages.	Many	browsers	don’t
print	background	colors	anyway,	so	someone	might	end	up	with	light-
colored	text	on	white	paper	and	have	trouble	reading	anything.	Remember,
many	people	have	black	and	white	printers	as	opposed	to	color,	so	printed
documents	should	be	readable	in	both	formats.

•	Reference	Always	include	the	web	page	address	(URL)	on	a	printed	page,	so
users	can	return	to	the	page	for	more	information	as	needed.

•	Image	Resolution	Images	created	for	the	Web	are	low	in	screen	resolution	(72
dpi)	because	that	makes	them	quicker	to	download.	It	does	not,	however,
make	them	pretty	when	printed.	In	fact,	printed	web	graphics	often	look
quite	bad.	Therefore,	when	creating	alternate	versions	of	web	pages	that	will
be	printed,	avoid	graphics	whenever	possible.

Try	This	4-1 Style	Text	in	Your	Web	Page
Returning	to	the	index.html	page,	let’s	vary	the	font	characteristics	of	the	text	on
that	page	and	add	some	style.	Goals	for	this	project	include

•	Adding	emphasis	to	the	page	where	necessary
•	Changing	the	face,	size,	and	color	of	the	text	on	a	page

1.	Open	your	text/HTML	editor	and	load	the	index.html	page	saved
previously.

2.	Add	a	level-1	heading.

3.	Add	a	level-2	heading	in	between	the	first	and	second	paragraphs.
Align	this	heading	to	the	center	of	the	page.

4.	Add	emphasis	to	the	name	of	the	business	or	organization	wherever	it
displays	in	the	body	copy.

5.	Change	the	font	face	of	the	body	copy	to	one	listed	in	Table	4-2.

6.	Change	the	size	of	the	level-1	headings	to	be	approximately	16pt.

7.	Change	the	size	of	the	level-2	headings	to	be	approximately	14pt.

8.	Change	the	color	of	the	footer	text	to	a	lighter	color	than	the	rest	of	the
text	on	the	page.

9.	Change	the	font	size	of	the	footer	section	to	be	approximately	10pt.

10.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you	are	using).	Locate	the	file	index.html	you
just	saved.

11.	Preview	the	page	to	check	your	work.	If	you	need	to	make	changes,	return	to
your	text	editor	to	do	so.	After	making	any	changes,	save	the	file	and	switch
back	to	the	browser.	Choose	Refresh	or	Reload	to	preview	the	changes	you
just	made.

TIP
Do	any	of	your	changes	continue	past	where	you	want	them	to	stop?	Make	sure	to	use	the
appropriate	closing	tag	to	tell	the	browser	where	to	stop.	For	more	tips,	see	Appendix	C.

Chapter	4	Self	Test

1.	Which	file	format	has	become	a	standard	in	electronic	document
delivery	because	of	its	ease	of	use,	reliability,	and	stability?

2.	Why	should	you	avoid	underlining	text	on	a	web	page?

3.	What	is	a	reasonable	range	for	column	widths	on	web	pages?

4.	What	are	three	key	things	to	consider	when	designing	a	printable
version	of	a	web	page?

5.	Name	four	possible	values	of	the	font-size	CSS	property.

6.	What	is	the	default	characteristic	of	text	marked	with	the	del	element?

7.	What	is	the	default	characteristic	of	text	marked	with	the	mark
element?

8.	Fill	in	the	blank:	You	use	the	________	property	in	CSS	when
specifying	the	font	name	in	which	the	text	should	be	rendered.

9.	When	you	specify	a	font	size	in	ems,	that	size	is	relative	to	what?

10.	Fill	in	the	blank:	The	process	of	providing	a	backup	font	name	in	the	font-
family	property	is	also	referred	to	as	_____________.

Chapter	5
Page	Structure
Key	Skills	&	Concepts
•	Organize	Sections	of	Content
•	Format	Paragraphs	and	Page	Elements
image

Now	that	you’ve	learned	the	basics	of	planning	for,	opening,	editing,	and	saving
a	web	page,	and	know	a	little	about	working	with	text,	you’re	ready	to	learn
about	structuring	the	content.
Organize	Sections	of	Content
As	we’ve	discussed,	planning	is	an	important	aspect	of	developing	a	web	page—

especially	when	it	comes	to	organizing	sections	of	content	on	that	page.	A	great
strength	of	style	sheets	is	the	ability	to	easily	apply	groups	of	formatting
characteristics	to	whole	sections	of	text.	For	example,	suppose	you	have	three
paragraphs	and	a	list	making	up	the	main	body	copy	of	a	page,	and	you	want	to
see	how	the	text	in	that	section	looks	with	a	different	font	face	and	size.	As	long
as	you’ve	organized	your	content	appropriately,	the	code	changes	will	be
minimal.
The	key	to	all	this	is	the	use	of	some	appropriately	placed	container	elements.
Prior	to	HTML5,	the	primary	container	element	was	the	div	element,	but	we
now	have	several	others	to	use	as	well.
So	at	this	point	in	the	process,	here’s	an	important	concept	to	understand:	When
structuring	web	pages,	we	first	group	content	into	sections	with	HTML;	then	we
apply	style	and	formatting	with	CSS	later.	Let’s	take	a	closer	look	at	the	HTML
used	to	create	those	content	sections.
Identifying	Natural	Divisions
When	developing	HTML5,	the	authors	took	a	look	at	how	web	designers	were
using	div	containers.	Over	and	over	again	they	saw	the	same	types	of	sections
being	contained	within	div	tags:	headers,	footers,	navigation	bars,	and	so	on.	The
code	used	to	separate	each	section	might	look	similar	to	the	following:

To	help	speed	up	the	development	process,	and	to	make	it	all	more	user-friendly,
HTML5	added	six	new	container	elements.	The	original	div	element	and	the	six
new	container	elements	are	briefly	described	in	Table	5-1.

Table	5-1	HTML	Container	Elements
Once	you’ve	set	up	basic	divisions	like	this—leaving	the	styling	and	formatting
to	CSS—the	possibilities	are	endless.	Need	to	move	the	navigation	from	the	top
of	your	page	to	the	bottom	...	on	ten	different	pages?	If	you	put	all	of	it	into	its
own	content	areas	...	piece	of	cake!	Not	only	is	it	easy	to	move	that	entire
navigation	bar,	you	only	have	to	edit	the	style	sheet—and	not	the	individual
HTML	pages—to	do	so.
To	help	you	understand	how	these	natural	divisions	work,	let’s	look	at	the
sample	web	page	shown	in	Figure	5-1.

image

Figure	5-1	Sample	web	page	for	a	school
Then,	let’s	take	that	page	and	reverse-engineer	it,	so	to	speak,	to	try	and	identify
the	natural	content	divisions.	Figure	5-2	shows	one	possible	way	this	page	might
be	coded	using	the	new	container	elements.	In	this	instance,	I	choose	to	put	the
logo,	navigation,	and	search	fields	into	a	header	section,	and	then	nest	the	nav
section	inside	of	it.	Next,	I	used	the	section	elements	to	contain	the	main	body
content,	plus	an	aside	element	for	the	related	content	in	the	sidebar.	Finally,	I
finished	the	structure	with	the	footer.

image

Figure	5-2	Sample	web	page	for	a	school	with	content	divisions	identified
Because	the	specific	use	of	these	elements	is	flexible,	there	are	plenty	of
additional	ways	this	page	could	be	coded	too.	Keep	that	in	mind	as	you	begin	to
structure	your	page	content.	As	long	as	you	follow	the	general	W3C	guidelines
for	container	elements,	you	have	some	leeway	in	regard	to	which	elements	are
used	where.
On	their	own,	the	container	elements	will	not	change	the	way	the	page	displays.
It	is	through	the	combination	of	this	structure,	and	the	style	information	added
later,	that	the	page	display	is	created.	You	might	think	of	it	this	way:	Before	you
can	paint	a	wall,	it	has	to	be	built	with	construction	materials	first.	At	this	point
in	the	process,	we	are	using	container	elements	in	HTML	to	“build”	the	wall,
which	will	then	be	“painted”	with	a	style	sheet.

Now	let’s	take	a	closer	look	at	those	six	new	container	elements.
The	Header	and	Footer	Elements
The	header	and	footer	elements	can	be	used	to	contain	the	primary	header	and
footer	areas	of	a	page,	as	well	as	other	minor	header	and	footer	sections.	This
means	you	can	actually	have	multiple	headers	and	footers	on	a	single	page.
Here’s	an	example	of	how	the	header	tags	are	used:

Both	opening	and	closing	tags	are	required	for	these	elements;	the	content	to	be
displayed	inside	the	header	or	footer	goes	in	between	the	opening	and	closing
tags.
NOTE

Even	though	the	names	are	similar,	the	header	element	has	nothing	to	do	with
the	head	element.	Headers	go	inside	the	body	content,	while	the	head	element	is
placed	outside	the	body	of	the	web	page.
The	Nav	Element
The	nav	element	can	be	placed	inside	of	another	section	or	can	stand	on	its	own.
However,	it	is	not	necessary	to	enclose	every	single	link	on	your	page	inside	of	a
nav	container.	On	the	contrary,	only	the	most	important	navigation	block(s)
should	go	inside	nav	tags.

The	Aside	Element
An	aside	in	HTML	is	a	chunk	of	content	related	to	the	main	article	or	section,
but	not	part	of	the	main	flow	of	the	page.	Most	commonly,	that	results	in	the
aside	element	being	used	for	pull	quotes,	biographical	information,	and	related
advertising	or	links.

Both	the	opening	and	closing	tags	are	required	for	the	aside	element.
The	Section	and	Article	Elements
I	left	these	two	last	because	they	are	most	easily	confused	with	each	other.	Both
primarily	contain	the	same	type	of	content,	but	only	one—the	article	element—is
ear-marked	for	syndicated	content.	Some	examples	of	syndicated	content	include
blog	posts	and	newspaper	or	magazine	articles.
TIP

On	the	Web,	syndication	refers	to	content	made	available	to	other	web
sites	for	reproduction.	Oftentimes	a	site	makes	it	known	that	its	content
is	available	for	syndication	by	displaying	a	small	orange	icon	like	this:

By	contrast,	the	section	element	works	better	for	chapters	in	a	story,	general
sections	of	a	web	site	(such	as	About	Us,	Contact	Information,	and	Company
History),	and	other	nonsyndicated	page	content.

Both	opening	and	closing	tags	are	required	for	these	elements.	You	can	have
multiple	sections	and	articles	on	a	single	web	page.	Also,	each	of	these	elements
can	be	nested	inside	one	another,	depending	on	the	use	case.
For	instance,	suppose	you	were	creating	an	online	book.	You	might	place	each
chapter	in	the	book	inside	section	elements,	and	then	put	the	entire	book	in	an
article	element	for	syndication.	Here’s	a	very	rudimentary	example	of	how	the
structure	of	such	a	book	might	be	created:

NOTE

According	to	the	W3C,	the	section	element	was	specifically	created	for	chunks
of	content	to	be	stored	in	a	database.	This	means	it	should	not	be	used	as	a
generic	container	for	content;	if	you’re	just	looking	for	a	generic	container
element	to	house	content	for	styling	purposes,	use	a	div	element	instead.
Element	+	ID
If	it	doesn’t	make	sense	to	use	any	of	those	six	container	elements,	you’ll	want
to	use	the	div	element,	which	essentially	is	the	most	generic	container	element.
It’s	important	to	note	that	you	needn’t	try	to	force	your	content	areas	into	one	of
the	new	elements.	It	is	perfectly	acceptable,	and	even	sometimes	preferable,	to
use	the	generic	div	element	for	most	or	even	all	of	your	page’s	content	areas.
But	whenever	you	use	any	of	these	container	elements	multiple	times	on	a	page,
you’ll	likely	want	to	add	an	id	attribute	to	give	each	content	area	a	name.

In	the	same	way	that	a	unique	Social	Security	number	is	assigned	as
identification—ID—for	each	person	living	in	the	United	States,	so,	too,	should	a
name	be	given	to	each	content	area	you	intend	to	style	uniquely.	Once	you’ve
named	your	divisions,	these	content	areas	can	then	easily	be	formatted	in	the
site’s	style	sheet,	which	might	look	something	like	the	following:

TIP

Avoid	spaces	in	ID	names.	Instead,	I	typically	use	capital	letters	to	help	make	the
name	more	readable	if	it	contains	several	words.
In	the	style	sheet,	the	#	before	each	content	area	name	is	necessary	because	this

isn’t	a	normal	tag	selector.	Instead	of	using	an	HTML	tag	as	my	selector,	like	p,
I’ve	essentially	made	up	my	own	selectors	and	given	them	names	like
introduction	and	summary.	And	because	I	used	the	id	attribute	to	do	so,	I
prefaced	my	selector	name	with	a	hash	mark	(#).
Element	+	Class
Wait—what	about	instances	where	you	want	to	style	multiple	sections	the	same,
or	with	only	minor	adjustments?	In	these	cases,	you	can	apply	a	class—instead
of	or	in	addition	to	an	ID,	depending	on	the	situation—to	the	opening	tag.	In	the
following	example,	I	set	up	two	different	classes	for	the	chapters	in	a	series	of
books.	First,	the	class	titled	“introChapter”	will	be	styled	one	way;	then	the	rest
of	the	chapters—“normalChapter”—will	follow	a	different	style.

The	corresponding	style	sheet	might	then	start	off	with	something	like	this:

(We’ll	cover	these	and	a	lot	of	other	styling	options	throughout	the	course	of	the
book,	but	for	now	I	just	want	you	to	understand	styles	as	they	relate	to	the
structure	of	the	web	page.)
You’ll	notice	I	added	a	hash	mark	(#)	before	“scienceBook”	and	a	period	before
the	two	chapter	styles.	The	difference	is	simple:	“scienceBook”	was	created	with
an	id	attribute,	whereas	the	other	two	were	created	with	class	attributes.	Even
though	I	named	them	all,	they	need	to	be	prefaced	by	specific	characters	to	let
the	browser	know	where	to	find	them	in	the	rest	of	the	code	(in	other	words,
whether	they	should	follow	id	or	class	attributes).	So,	when	you	use	the	class
attribute,	you	always	preface	the	class	name	with	a	period	in	your	style	sheet.
Likewise,	you	use	a	hash	mark	or	pound	sign	before	your	id	names.
We’ve	just	added	two	types	of	selectors	to	those	mentioned	in	previous	chapters.
So	to	help	solidify	your	knowledge,	refer	to	Table	5-2	for	an	overview	of	the
most	commonly	used	CSS	selectors.	There	are	tons	of	other	types	of	selectors
too.	Check	out	www.w3schools.com/cssref/css_selectors.asp	for	a	great	online
CSS	selector	reference.

Table	5-2	Commonly	Used	CSS	Selectors
TIP

While	there	are	many	people	in	a	class,	your	personal	identification	(ID)	is
unique	to	you.	This	holds	true	in	CSS—id	selectors	can	only	be	used	once	on	a

http://www.w3schools.com/cssref/css_selectors.asp

page,	whereas	classes	can	be	repeated	as	many	times,	and	in	as	many	tags,	as
necessary.
Set	the	Outline
One	of	the	intentions	of	HTML5	is	to	make	our	web	pages	more	structurally
sound	and	easily	interpreted	by	nonvisual	users.	This	is	achieved	largely	through
the	new	sectioning	elements	we	just	discussed,	but	also	through	well-placed
headings.
Heading	tags	are	similar	to	the	headings	you	might	use	in	a	word	processor	such
as	Microsoft	Word.	And	just	like	outlines	in	Microsoft	Word,	HTML	headings
are	intended	to	be	used	only	in	the	proper	order,	from	h1	down	to	h6.

For	example,	you	wouldn’t	create	an	outline	that	began	with	a	small	letter	a	and
was	followed	by	the	Roman	numeral	I.	Instead,	you	would	begin	with	the
Roman	numeral	I,	follow	that	with	a	capital	A,	and,	most	likely,	follow	it	with	a
number	1.	In	like	manner,	an	<h1>	should	be	followed	by	an	<h2>,	as	opposed	to
an	<h3>.
NOTE

Using	a	heading	tag	automatically	adds	breaks	before	and	after	the	heading
because	these	tags	are	block-level	container	tags.	You	can	refine	the	spacing
around	a	heading	in	your	style	sheet.
You	can	add	headings	to	each	of	your	content	areas,	as	dictated	by	the	content.
Here’s	a	quick	example	to	show	you	how	this	might	work	in	combination	with
the	section	containers:

Styling	Headings
You	use	the	heading	tags	to	tell	the	browser	which	pieces	of	text	function	as
headings,	and	then	specify	how	to	style	them	with	CSS.	So,	you	could	quickly
adjust	the	alignment	of	your	headings	with	an	inline	style	by	using	<h3
style="text-align:	right;">.	Likewise,	you	could	use	h3	as	a	selector	in	an
internal	style	sheet	(placed	in	between	the	opening	and	closing	head	tags	on	your
page)	to	specify	the	formatting	options	of	all	level-3	headings	on	the	page.

Get	Inspired
Now	that	we’ve	covered	the	basics	about	the	structural	elements,	let’s	pause	to
remind	ourselves	why	it	is	important	to	structure	well.	One	of	my	favorite
sources	of	inspiration	on	this	topic	is	the	CSS	Zen	Garden
(www.csszengarden.com).	This	web	site	shows	how	one	web	page	can	be

http://www.csszengarden.com

drastically	altered	simply	by	changing	the	style	sheet	attached	to	the	page.	Each
content	area	of	this	page	is	clearly	and	structurally	defined	in	the	HTML	code.
NOTE

This	site	was	created	before	the	development	of	HTML5,	and	therefore	uses
only	div	tags	for	structuring	the	page.	Even	so,	the	site	is	a	wonderful	example
of	how	structural	markup	and	styles	work	together	to	display	pages.
After	dividing	his	page	into	sections,	the	author	then	attached	a	style	sheet	with
directions	for	how	to	display	each	of	those	content	areas.	Style	sheets	are	so
powerful	that	a	few	simple	changes	to	them	can	cause	the	page	to	appear
completely	different,	as	you	can	see	in	Figures	5-3	and	5-4.

image

Figure	5-3	Creator	Dave	Shea’s	original	design	for	the	CSS	Zen	Garden	

image

Figure	5-4	One	of	the	additional	designs,	achieved	simply	by	altering	the	style
sheet	(and	not	the	HTML	code)
Organize	Text
After	you’ve	structured	your	page	into	the	key	content	areas	and	added	headings,
you	can	further	organize	the	text	in	those	content	areas.	As	discussed	briefly	in
Chapter	2,	HTML	is	different	from	traditional	word	processors	because	you
cannot	simply	press	the	RETURN	or	ENTER	key	to	end	a	paragraph,	and	then	the
tab	key	to	indent	a	new	one.	Instead,	you	have	to	use	tags	to	tell	the	browser
where	to	start	and	end	paragraphs,	as	well	as	any	other	types	of	breaks.

Paragraphs
The	p	element	functions	specifically	as	a	container	for	paragraphs.	This	means
you	use	an	opening	p	tag	at	the	beginning	of	your	paragraph	and	a	closing	p	tag
at	the	end.	If	each	line	in	this	nursery	rhyme	were	a	paragraph,	it	might	look	like
this:

Figure	5-5	shows	how	the	browser	would	render	this	code.	Notice	how	the	p	tag
forces	a	blank	line	between	each	of	the	paragraphs	or	sections	by	default.

image

Figure	5-5	The	paragraph	element	defines	sections	of	text.
Even	though	the	p	tag	is	most	often	used	to	contain	paragraphs	of	text,	it	doesn’t
automatically	indent	them.	There’s	no	regular	HTML	tag	to	indent	and,	as
discussed	in	Chapter	2,	the	browser	ignores	any	tabs	and	multiple	spaces	you
enter	using	the	keyboard.
Indenting
To	indent	the	first	line	of	a	paragraph,	you	can	use	the	text-indent	property	in
your	style	sheet.	In	the	following	example,	I	specify	that	the	first	line	should	be
indented	25	pixels	from	the	left	edge	of	the	paragraph:

While	the	preceding	example	uses	an	inline	style	to	affect	this	paragraph	only,
you	could	add	the	same	declaration	to	an	internal	or	external	style	sheet	to
achieve	this	effect	on	all	the	paragraphs	in	a	page	or	a	whole	site.	For	example,	if
I	wanted	all	of	the	paragraphs	in	the	normalChapter	sections	of	my	page	to	be
indented	25	pixels,	I	might	add	the	following	declaration	to	my	style	sheet:

Here’s	how	the	HTML	for	the	related	paragraph	might	look:

NOTE

On	the	printed	page,	such	as	in	books	and	newspapers,	paragraphs	are	indented
to	ease	readability.	But	on	the	Web,	the	p	tag	automatically	adds	blank	lines
between	paragraphs	to	ease	readability,	thus	removing	the	need	for	additional
indentations.
Line	Breaks
You	can	also	use	the	br	tag	to	add	a	line	break	in	your	HTML	page.	Typing	the
br	tag	in	HTML	is	the	same	as	clicking	the	RETURN	or	ENTER	key	on	your
keyboard	in	a	word	processor.	It	causes	the	browser	to	stop	printing	text	on	that
line	and	drop	down	to	the	next	line	on	the	page.	The	following	code	uses	the
same	nursery	rhyme	with	line	breaks	instead	of	paragraph	breaks	between	each
line.	Figure	5-6	shows	how	the	browser	would	display	this	code.

image

Figure	5-6	The	browser	understands	the	br	tag	as	a	signal	to	stop	and	begin
again	on	the	next	line.

In	most	cases,	it	doesn’t	matter	if	you	click	the	RETURN	or	ENTER	key	after	typing

	to	begin	again	on	the	next	line	(as	shown	in	the	preceding	code).	In	fact,
that	code	would	have	the	same	output	if	you	let	all	the	text	run	together,	as	in	the
following	example:

Unlike	when	using	the	p	tag,	which	cannot	be	repeated	to	add	multiple	paragraph

breaks	in	a	row,	you	can	use	the	br	tag	to	add	several	line	breaks.	To	do	so,
simply	repeat	the	tag	in	your	HTML	file.	Figure	5-7	shows	how	the	browser
renders	this	code.

image

Figure	5-7	You	can	use	multiple	br	tags	to	add	as	many	breaks	as	you	want	to
your	page.

Preformat
The	only	time	pressing	the	RETURN	or	ENTER	key	in	your	page	creates	line	breaks
in	the	browser	view	is	when	the	pre	tag	is	used.	Short	for	preformat,	the	pre	tag

renders	text	in	the	browser	exactly	as	you	type	it.	Why,	then,	wouldn’t	I	just	use
the	pre	tag	for	everything,	since	it	sounds	so	much	easier?	Two	reasons:
•	The	pre	tag	usually	displays	text	in	a	monospaced	font,	such	as	Courier,	that
looks	similar	to	what	a	typewriter	prints.	While	this	may	be	appropriate	for
examples	of	programming	code,	it	probably	isn’t	the	look	you	want	for	your
entire	web	site.
•	The	output	isn’t	guaranteed	to	remain	as	you	envisioned	it.	Even	though	you’re
able	to	use	the	TAB	key	to	format	text	in	the	pre	tag,	browsers	may	interpret	a	tab
as	a	greater	or	lesser	number	of	spaces	than	your	text	editor	did.	This	could
cause	any	tables	you	lay	out	to	render	incorrectly.
With	that	said,	the	pre	tag	can	be	quite	useful	for	displaying	code	examples	or
even	creative	illustrations.

Here’s	how	one	browser	displays	the	preceding	code:

Quotation	Blocks
The	blockquote	element	is	used	to	set	apart	content	quoted	from	another	source.
By	default,	this	element	indents	the	entire	selection	on	both	the	right	and	the	left,
and	also	adds	a	blank	line	above	and	below.	The	browser	determines	the	exact
amount	of	the	indentation,	so	it	may	vary	from	browser	to	browser.	The	result	of
the	following	code	is	shown	in	Figure	5-8.

image

Figure	5-8	Notice	how	the	blockquote	element	causes	the	text	to	be	indented	on
both	sides.

TIP

You	can	include	br	or	p	elements	within	the	content	of	your	blockquote.	In
addition,	you	can	nest	blockquote	elements	as	needed.
To	achieve	a	specific	amount	of	indentation,	as	well	as	control	the	blank	space
above	and	below,	you	can	use	CSS’s	margin	and	padding	properties	in	your	style

sheet.	But	wait,	you	say,	we	haven’t	even	learned	those	yet!	Here	we	go…
Box	Properties
Every	element	on	a	web	page	is	contained	within	a	box	of	sorts,	or	at	least	it’s
considered	a	box	in	coding	standards.	This	means	you	can	format	content	on	the
page	by	adjusting	its	box	dimensions,	for	example,	or	by	indicating	how	far
away	from	the	browser	edges	it	lies.
Unfortunately,	this	has	been	known	to	get	pretty	tricky	because	some	of	the
browsers	have	interpreted	the	box	properties	a	bit	differently.	Thankfully,
HTML5/CSS3	now	gives	us	the	ability	to	even	out	the	playing	field,	so	to	speak,
by	first	using	the	box-sizing	property	to	specify	exactly	which	interpretation
method	should	be	used.
•	box-sizing:	border-box;	Tells	the	browser	the	borders	and	padding	values
are	included	inside	the	height	and	width	values	(see	Figure	5-9)

image

Figure	5-9	The	border	and	padding	are	included	in	the	overall	box	height	and
width	when	the	box-sizing	property	is	set	to	border-box.
•	box-sizing:	content-box;	Tells	the	browser	the	borders	and	padding	values
are	not	included	inside	the	height	and	width	values	(see	Figure	5-10)

image

Figure	5-10	The	border	and	padding	are	not	included	in	the	overall	box	height
and	width	when	the	box-sizing	property	is	set	to	content-box.
In	Figure	5-9,	notice	how	the	padding	is	contained	within	the	borders	of	the	box.
By	contrast,	it	is	not	included	in	the	overall	content	box	height	and	width	in
Figure	5-10.	It	doesn’t	matter	which	of	these	methods	you	use,	as	long	as	you
first	tell	the	browser	how	to	interpret	your	measurements	and	plan	accordingly.
However,	if	you	want	to	use	content-box	as	your	sizing	method,	you’re	in	luck
because	that	is	now	the	default	option.	To	clarify,	you	only	need	to	specify	the
box-sizing	property	in	your	style	sheet	if	you	intend	to	change	it	from	the	default

(content-box)	to	border-box.
Height	and	Width
After	you	specify	which	type	of	box	properties	you’re	using,	you	may	want	to
also	identify	the	box’s	intended	height	and	width.	Note	it	is	not	required	to	do	so,
if	all	you’re	doing	is	adding	a	border	or	adjusting	the	buffer	space	around	the
content.	(If	you’re	trying	to	position	a	section	of	content	on	the	page,	the	height
and	width	values	become	more	critical.	We’ll	cover	that	in	the	following
chapter.)
Height	and	width	properties	are	referenced	with	a	unit	of	measurement:
•	px	(pixels)
•	cm	(centimeters)
•	%	(percentage	of	the	containing	box)
TIP

The	most	common	unit	of	measurement	is	pixels,	particularly	for	sections	of
content	that	need	to	always	be	displayed	in	a	certain	size	“box.”	However,	a
growing	number	of	designers	are	sticking	to	percentage	widths	because	they
allow	the	content	to	grow	and	shrink	according	to	the	available	space	in	the
browser	window.
So,	if	I	wanted	to	specify	that	my	nav	box	should	run	the	entire	width	of	the
page,	but	only	20	percent	of	the	page	height,	here’s	how	that	code	might	look:

Padding
You	can	use	the	padding	property	in	a	style	sheet	to	give	the	content	a	buffer
zone	of	white	space	on	one,	two,	three,	or	all	four	sides,	as	I	did	for	the
blockquote	tag	in	the	following	example:

If	you	do	specify	a	certain	amount	of	padding	using	this	box	method,	such	as
padding-right:	15px,	those	15	pixels	are	then	subtracted	from	the	total	width	of
the	content	box.	So	if	your	box	is	200	pixels	wide	by	200	pixels	tall,	and	you
code	a	25-pixel	padding	on	all	four	sides,	you	are	left	with	150	pixels	across	and
150	pixels	down	for	the	actual	content.
Speaking	of	using	the	same	padding	dimension	on	all	four	sides	…	we	can	use
shorthand	to	speed	up	that	process.	Instead	of	writing	out	padding-bottom:	25px;
padding-top:25px;	and	so	on,	we	can	simply	use:

TIP

A	faster	way	to	code	padding	that	is	different	for	each	side	is	this:	blockquote
{padding:	25px	15px	20px	35px;},	where	the	sides	are	specified	in	the	following
order:	top,	right,	bottom,	left	(clockwise,	starting	with	top).
Margins
The	margin	property	affects	the	buffer	space	outside	the	box	boundaries,	so	it
won’t	subtract	space	from	the	overall	size	of	the	content	box.	As	with	the
padding	property,	you	can	define	the	margins	for	one,	two,	three,	or	all	four	sides
of	the	box,	such	as	in	the	following:

TIP

You	might	think	of	margins	and	padding	in	terms	of	a	framed	painting.	The
padding	affects	how	far	the	paint	is	from	the	edge	of	the	canvas,	while	the
margin	corresponds	to	how	wide	the	matte	and/or	frame	is.
TIP

A	faster	way	to	code	margins	that	want	to	specify	one	value	for	the	horizontal
margin	and	another	for	the	vertical	margin	is	this:	p	{margin:	25px	15px;},
where	the	sides	are	specified	in	the	following	order:	top/bottom,	left/right.
Borders
Boxes	can	have	both	horizontal	and	vertical	borders.	You	can	easily	alter	the	size
and	style	of	borders,	which	can	be	placed	around	all	sorts	of	page	elements—
from	images	to	paragraphs	of	text.	Table	5-3	identifies	the	properties	used	to
control	borders	and	rules	for	web	pages.

Table	5-3	Style	Sheet	Properties	Used	to	Control	Borders	and	Rules
The	following	bit	of	code	shows	an	inline	example	of	using	the	border	property
to	add	a	single-pixel	black	line	below	a	paragraph:

NOTE

Did	you	see	all	those	border	style	declarations	and	wonder	if	there	was	a	simpler
way	to	write	them?	There	is.	Using	shorthand,	you	could	also	write	the
following	code	to	specify	a	single-pixel	black	border	below	a	paragraph.	While

older	web	browsers	had	trouble	with	shorthand,	all	modern	browsers	understand
such	code	without	any	trouble:

Alignment
The	normal	text	alignment	depends	on	how	text	is	read	across	the	page	in	the
browser’s	default	language.	If	text	is	read	from	left	to	right,	the	normal
alignment	is	left.	If	text	is	read	from	right	to	left,	however,	the	normal	alignment
is	right.	In	either	case,	when	text	is	aligned	to	one	side	or	the	other,	the	opposite
side	is	ragged,	in	that	it	doesn’t	continue	all	the	way	to	the	margin.	When	text
does	continue	to	both	margins,	it	is	called	justified.
The	text-align	style	sheet	property	allows	you	to	realign	text	on	your	page	in	any
of	the	following	ways:
•	left
•	right
•	center
•	justify
Styles	also	enable	you	to	align	text	vertically	with	the	vertical-align	property,	as
listed	in	Table	5-4.

Table	5-4	Style	Sheet	Text	Alignment	Properties
The	following	code	provides	an	example	of	how	embedded	style	sheets	can
change	the	text	alignment	of	three	different	paragraphs.	Figure	5-11	shows	how
the	browser	interprets	this	code.

image

Figure	5-11	The	example	code	is	illustrated	here,	showing	different	alignment
possibilities	for	the	text-align	property.

But	what	if	you	wanted	to	justify	all	three	of	those	paragraphs—would	you	have
to	add	the	same	style	sheet	information	to	each	p	tag?	Definitely	not!	For	one
thing,	if	you	planned	your	page	appropriately	and	separated	the	content	areas
with	the	appropriate	container	tags,	you	could	take	advantage	of	that	planning	by
adding	the	text-align	property	to	the	appropriate	selector	in	your	style	sheet,

instead	of	any	individual	tags	within	each	content	area.	For	example,	the
following	code	shows	how	I	named	one	division	with	the	three	paragraphs:

Then,	in	my	site’s	main	style	sheet,	I	use	that	name—aboutMe—when	assigning
the	formatting	of	that	section.	Remember,	the	#	before	aboutMe	is	necessary
because	this	isn’t	a	normal	style	sheet	selector.	Instead	of	using	a	tag	as	my
selector,	like	<p>,	I’ve	made	up	my	own	selector	and	given	it	the	name	of
aboutMe.	And	because	I	used	the	id	attribute	to	do	so	(instead	of	the	class
attribute),	I	prefaced	my	selector	name	with	a	hash	mark	or	pound	sign.

NOTE

Beyond	this	most	basic	style	of	alignment,	style	sheets	also	offer	advanced
alignment	and	positioning	options.	Refer	to	Chapter	6	for	more	details.
Try	This	5-1 Format	Paragraphs	and	Page	Elements
This	project	gives	you	practice	in	structuring	content	and	then	applying	basic
page	formatting.	Goals	for	this	project	include
•	Using	logical	container	elements	to	structure	a	page
•	Adding	a	header,	footer,	and	navigation
•	Adding	at	least	one	other	natural	division	to	house	the	main	page	content
•	Formatting	one	of	the	content	areas	with	some	of	the	style	properties	discussed
in	this	chapter
1.	Open	your	HTML	editor	and	load	the	index.html	page	saved	from	the
previous	activity.	Make	the	following	changes	and	save	the	file.
2.	Create	content	areas	for	the	header,	footer,	and	navigation	sections.
3.	Create	another	content	area	for	the	main	body	copy.
4.	Add	at	least	one	more	paragraph	of	text	in	between	the	existing	paragraph(s)
and	the	copyright	information.	Use	a	logical	container	tag	(such	as	article,
section,	or	div)	and	id	attribute	to	contain	all	these	paragraphs	in	a	section	called
home	Intro	(or	something	appropriate	to	your	particular	page	content).	If	you	are
using	my	sample	business,	you	can	use	the	text	shown	after	this	numbered	list.
5.	Add	a	quote	and	format	it	as	an	aside.	If	you	are	using	my	sample	business,
you	can	use	the	text	shown	after	this	numbered	list.
6.	Add	at	least	one	style	declaration	to	the	internal	style	sheet.	You	might	try
adding	a	top	border	above	the	footer	or	justifying	the	paragraphs.
7.	Open	your	web	browser	and	choose	File	I	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you	are	using).	Locate	the	file	index.html	you	just
saved.

8.	Preview	the	page	to	check	your	work.	If	you	need	to	make	changes,	return	to
your	HTML	editor	to	do	so.	After	making	any	changes,	save	the	file	and	switch
back	to	the	browser.	Choose	Refresh	or	Reload	to	preview	the	changes	you	just
made.
image

Added	Paragraphs
The	following	paragraphs	were	mentioned	previously	in	Step	4	and	can	be	added
to	your	web	page	if	you’re	using	my	sample	company.
My	family	moved	to	Nicaragua	to	volunteer	and	do	mission	work.	As	a	way	to
support	ourselves,	I	started	an	online	tutoring	business.	I	have	taught	math	at
the	middle	school,	high	school,	and	college	levels	for	over	12	years.

I	believe	everyone	has	the	potential	to	learn	math.	All	that	is	needed	is	the	right
motivation,	focus,	and	someone	who	can	explain	the	material	in	a	way	that
makes	sense	to	the	learner.
I	pride	myself	on	being	able	to	explain	difficult	material	in	different	ways	so	that
the	student	can	fully	understand	a	concept.	I	love	math	and	my	enthusiasm	in	the
subject	shows	in	my	teaching.	Ultimately,	my	goal	is	to	help	all	of	my	students	be
successful	in	learning	math.
Quotation
The	following	quote	is	the	new	text	(as	mentioned	previously	in	Step	4)	and	can
be	added	to	your	web	page.

“No	human	investigation	can	be	called	real	science	if	it	cannot	be	demonstrated
mathematically.”—Leonardo	da	Vinci

Chapter	5	Self	Test

1.	What	is	the	purpose	of	the	br	element?
2.	What	happens	when	you	code	three	p	elements	in	a	row?
3.	List	two	style	sheet	properties	used	for	text	alignment.
4.	How	is	the	div	element	different	from	the	article	element?
5.	Which	element—head	or	header—goes	inside	the	body	of	an	HTML
document?
6.	True/False:	The	blockquote	element	indents	text	on	both	the	left	and	right
sides	by	default.
7.	True/False:	You	can	only	use	one	header	element	in	each	page.
8.	Using	#introduction	indicates	the	style	named	introduction	was	applied	to	an
element	using	which	HTML	attribute?
<section	_______	=	“introduction”>
9.	What	is	the	primary	difference	between	the	article	and	section	elements?
10.	Which	CSS	property	is	used	to	specify	the	buffer	space	around	a	content
box,	inside	of	the	box’s	border?
11.	Which	CSS	property	is	used	to	specify	the	buffer	space	around	a	content	box,
outside	of	the	box’s	border?

S

Chapter	6
Positioning	Page	Elements

Key	Skills	&	Concepts

•	Understand	the	Concept	and	Uses	of	Style	Sheets	for	Page	Layout
•	Create	a	Single-Column,	Centered,	Fluid	Page	Layout
•	Create	a	Multicolumn	Fluid	Page	Layout

•	Layer	Content	Within	a	Layout

•	Use	External	Style	Sheets

o	far,	we’ve	talked	about	how	to	set	up	a	web	page	and	which	elements
create	the	page	structure.	You	learned	the	importance	of	organizing	content

according	to	natural	divisions,	and	using	the	appropriate	elements	to	do	so.	But
at	this	point	you	may	wonder	how	to	actually	get	those	sections	to	display	where
you	want	them	to	on	the	screen.	This	chapter	seeks	to	answer	that	question.

Understand	the	Concept	and	Uses	of	Style
Sheets	for	Page	Layout
To	summarize	my	earlier	discussions	on	CSS,	style	sheets	were	created	to
provide	a	way	to	separate	the	content	of	a	web	site	from	the	formatting,	or	style.
The	theory	is	that	content	is	king	(which	it	should	be,	in	most	cases),	and	so
anything	else	is	simply	icing	on	the	proverbial	cake.	So	we	keep	the	content	in
the	main	HTML	body	and	pull	the	design	aspects	into	the	style	sheet.

The	most	striking	benefit	to	this	arrangement	is	in	maintenance	of	the	web
site.	In	the	past,	if	you	wanted	to	change	the	color	of	the	links	on	all	the	pages	of
your	site,	for	example,	you	had	to	edit	the	body	element	on	every	page.	But	now,
if	that	information	is	contained	in	a	single	style	sheet,	which	is	then	linked	from
each	page	on	the	site,	you	need	only	make	a	single	change	to	alter	the	link	colors
for	the	entire	web	site.

This	also	holds	true	for	the	overall	page	layout.	It	used	to	be	an	expensive
and	exhaustive	process	for	businesses	to	redesign	their	web	sites	every	few
years.	If	the	content	is	separated	from	the	formatting	with	style	sheets,	the	site
can	be	redesigned	much	more	quickly,	at	a	mere	fraction	of	the	cost.	The	reason
is	simple—instead	of	recoding	every	page	on	the	site,	the	developer	only	has	to
recode	the	site	style	sheet.

TIP
Remember	the	CSS	Zen	Garden	mentioned	in	a	previous	chapter?	That	web	site	is	a	perfect
example	of	this	concept.	Refer	to	www.csszengarden.com	to	see	how	the	entire	look	and	feel	of
the	site	is	completely	altered	after	changing	only	a	single	style	sheet.

Create	a	Single-Column,	Centered,	Fluid	Page
Layout
So	now	that	you	understand	the	key	reasons	for	using	style	sheets	to	lay	out	your
web	pages,	let’s	get	to	it!	Before	the	modern	page	layout	options	became
available,	a	centered	“box”	was	the	standard	design.	Because	screen	sizes	varied
from	very	small	(640	×	480)	to	much	larger	(1024	×	768),	that	box	was	often	a
fixed	width	so	as	not	to	hide	any	of	the	content	from	those	using	small	monitors.

Thankfully,	times	have	changed	and	there	is	no	longer	a	need	to	design	for
640	×	480	monitors.	In	fact,	the	typical	screen	size	for	over	85	percent	of	users,
as	of	this	writing,	is	greater	than	1024	×	768,	with	more	and	more	people	getting
larger	monitors.	I	still	advocate	limiting	the	horizontal	size	of	graphics,	however,
so	you	don’t	end	up	forcing	the	user	to	scroll	horizontally	just	to	see	the	rest	of
the	content.	But	with	that	said,	I	see	no	reason	the	text	content	of	your	page	can’t
be	fluid	so	as	to	grow	and	shrink	according	to	the	size	of	the	browser	window.

TIP
Refer	to	www.w3schools.com/browsers	to	see	up-to-date	statistics	on	average	screen	resolution.

Many	other	designers	agree,	and	the	centered,	fluid	page	layout	is	quite

http://www.csszengarden.com
http://www.w3schools.com/browsers

popular,	whether	used	with	one	or	more	columns	of	content.	For	our	first	page
layout	with	style	sheets,	I	decided	to	keep	it	simple	and	create	a	single-column,
centered,	fluid	page	design.	Compare	Figures	6-1	and	6-2	to	see	how	this	layout
grows	according	to	the	size	of	the	browser	window.

Figure	6-1	The	centered,	fluid	layout	is	shown	in	a	relatively	narrow	browser
window.

Figure	6-2	The	centered,	fluid	layout	is	shown	in	a	wider	browser	window.

The	style	sheet	for	this	layout	is	quite	simple.	In	fact,	the	layout	portion
includes	only	the	following	declarations	to	style	the	body	element	and	the
content	division	labeled	content:

Break	Down	the	Code
Even	though	the	styles	used	for	positioning	this	layout	are	relatively	simple,	it
helps	to	break	each	section	down	to	really	understand	how	each	style	sheet
property	works.	So	let’s	look	at	the	properties	applied	to	the	body	element:

Whenever	you	set	out	to	use	style	sheets	to	position	elements	on	the	page,
it’s	best	to	get	off	to	a	good	start.	That	usually	means	letting	all	the	browsers
know	exactly	where	to	begin	displaying	your	content,	because	some	browsers
have	different	default	“starting	points”	than	others.	If	you	remember	to	think	of
the	available	space	within	the	browser	window	as	a	big	box,	the	“starting	point”
identifies	any	margins	outside	that	box	and	the	padding	inside	of	it.

For	the	purposes	of	this	layout,	we’re	essentially	turning	off	all	margins	and
padding.	This	means	we	can	place	content	all	the	way	up	to	the	edge	of	the
browser	window	if	we	choose,	and	it	gives	us	the	flexibility	to	design
accordingly.

#content
The	main	content	area	(outlined	with	a	dotted	line	in	Figures	6-1	and	6-2)	is
contained	within	a	division	called	content	using	code	like	this:

All	the	formatting	of	that	content	is	achieved	by	adding	properties	to	the
style	sheet	declaration	for	that	section:

The	margin	property	adds	a	50-pixel	margin	around	all	sides	of	the	content
box.	Because	div	tags	are	block-level	elements	in	HTML,	the	content	box	fills
the	remaining	available	space.	And,	because	there	is	an	equal	amount	of	space
around	all	four	sides,	the	content	box	becomes	centered	in	the	browser	window.
Voilà!

To	create	some	empty	space	between	the	edge	of	the	box	and	the	content
inside,	the	padding	property	is	added.	This	makes	a	20-pixel	buffer	zone	along

all	internal	edges	of	the	box.	The	background-color,	color,	and	border
properties	aren’t	used	for	positioning	but	to	add	character	to	the	box	itself.

Pull	It	All	Together
The	complete	code	used	to	create	this	layout,	as	shown	previously	in	Figures	6-1
and	6-2,	is	as	follows:

TIP
I	always	show	internal	style	sheets	in	my	examples,	because	it’s	easier	when	teaching.	However,
if	you’re	adding	these	layouts	to	multiple	pages,	it	makes	much	more	sense	to	save	the	style	sheet
as	an	external	style	sheet,	and	simply	reference	it	from	each	page.	The	final	section	in	this	chapter
discusses	several	ways	to	accomplish	this	task.

Browser	Support
This	style	sheet	layout	actually	enjoys	wide	support	among	the	popular
browsers.	It	is	simple	enough	in	concept	that	there	really	aren’t	any	offending
properties	or	values	used.	But	with	any	CSS	page	layout,	it’s	important	to	test
your	page	in	as	many	browsers	as	possible.	This	becomes	even	more	important	if
you	customize	this	layout	to	add	columns.

Create	a	Multicolumn	Fluid	Page	Layout
Probably	the	most	widely	used	web	page	layout	is	one	with	three	columns,	one
or	more	of	which	grows	according	to	the	size	of	the	browser	window.	Typically,
the	site’s	navigation	is	placed	in	the	left	column,	while	ads	or	other	supplemental
information	is	added	to	the	far-right	column.

This	leaves	the	center	column	for	the	real	meat	of	the	site—its	text	content.
In	situations	like	this,	the	left	and	right	columns	remain	static	in	size,	while	the
center	column	grows	or	shrinks	according	to	the	width	of	the	browser	window.
There	may	also	be	a	header	and	a	footer	area	to	complete	the	layout,	as	shown	in
the	following	example.

NOTE
The	code	provided	is	meant	as	a	starting	point	to	help	you	build	the	basic	page	structure.	You	will
likely	need	to	alter	your	style	sheet,	depending	on	the	length	of	content	used	in	each	of	the	content
areas.

Continuing	with	our	three-column,	fluid	page	layout,	the	following	shows	what

the	style	sheet	might	look	like:

And	the	corresponding	HTML	is	quite	simple	in	this	case:

TIP
Notice	how	the	content	section	is	placed	before	the	navigation	section	in	the	HTML	code,	but
appears	to	the	right	of	it	in	the	browser	view?	That’s	intentional,	and	very	important.	Search
engines	and	other	tools	that	“read”	the	code	need	to	“see”	the	real	meat	of	the	site	as	soon	as
possible.	CSS	enables	us	to	place	that	content	before	other,	less	important	aspects,	such	as	the
navigation,	because	the	actual	placement	of	the	content	is	done	in	the	style	sheet	instead	of	the
HTML	code.	This	means	Braille	readers,	for	example,	can	access	the	content	quicker.	In	fact,
many	search	engines	give	extra	weight	to	keywords	found	in	the	first	part	of	the	code.

Break	Down	the	Code
To	really	understand	what’s	happening	in	this	style	sheet	in	order	to	position	the
elements	appropriately	on	the	page,	let’s	break	it	down	a	bit.	First,	take	a	look	at
the	style	sheet	declaration	for	the	body	element:

This	particular	layout	allows	for	a	10-pixel	margin	around	the	top,	right,	and
left	edges,	but	no	margin	along	the	bottom	edge.	Internally,	the	style	sheet	turns
off	padding	on	all	four	sides.	The	following	is	a	graphical	representation	of	what
we’ve	created	thus	far:

#header
Next,	consider	the	division	called	header	by	looking	at	its	portion	of	the	style
sheet:

This	element’s	style	declaration	is	very	basic,	specifying	only	its	height,
background	color,	and	padding	size.	Even	so,	there	are	a	couple	of	important
aspects	to	this	element.	First,	even	though	the	header’s	height	is	50	pixels,	it	will
actually	cover	60	pixels	from	the	top	edge	of	the	available	window	space,	as
shown	graphically	in	the	following	illustration.

Why?	Because	we	must	remember	that	according	to	the	W3C	specifications
for	the	default	box-sizing	method,	padding	is	added	to	the	width	or	height.	This
means	our	header	takes	up	50	pixels	in	content	height,	plus	5	pixels	of	padding
along	the	top	edge	and	5	pixels	of	padding	along	the	bottom	edge,	for	a	total	of
60	pixels	in	height.	Keep	that	in	mind	as	we	move	on	to	the	navigation	box.

NOTE
Wondering	how	the	browser	knew	to	draw	the	header	box	all	the	way	across	the	width	of	the
screen	even	though	we	didn’t	specify	a	width?	The	answer	lies	in	the	fact	that	the	header	is
contained	within	a	block-level	element.	By	default,	the	browser	normally	displays	block-level
items	one	after	the	other,	from	top	to	bottom	on	the	page,	and	fills	the	available	space
horizontally.	Thus,	our	header	will	automatically	span	across	the	entire	width	of	the	browser
window.

#navigation
Now	that	we	have	our	header	positioned,	let’s	consider	the	first	column	in	our
multicolumn	layout—the	navigation:

Right	off	the	bat	we	have	a	new	style	sheet	property	to	consider:	position.
Possible	values	for	the	position	property	include

•	static	This	is	the	default	normal	flow	of	a	document	that	results	with	standard
HTML.	In	many	ways,	you	might	consider	this	to	be	no	positioning	at	all,
because	a	declaration	of	position:	static	ultimately	leaves	the	browser	to
determine	where	an	element	is	placed.

•	relative	This	is	actually	a	way	to	adjust	an	element’s	position	on	the	page,
relative	to	itself.	So,	for	example,	to	move	an	image	50	pixels	up	from	where
it	normally	sits	on	the	page,	you’d	use	position:	relative	and	bottom:
50px	(thus	adding	50	pixels	to	the	bottom	edge	of	the	image,	pushing	it	up
that	much).

•	absolute	Absolute	positioning	is	used	to	precisely	place	elements	on	the	page,
thereby	taking	them	out	of	the	normal	flow.	This	means	an	absolute
positioning	element	could,	in	fact,	be	placed	on	top	of	another	element.	One
additional	note	about	absolute	positioning	is	this:	Items	are	positioned
absolutely	in	relation	to	their	parent	element,	or	rather	the	object	in	which
they	are	contained.

So	in	the	case	of	our	navigation	column,	we’re	absolutely	positioning	it	in	a
specific	spot	on	the	page.	Because	it	is	not	contained	within	any	other	HTML
element,	the	browser	window	is	the	parent	object	relative	to	which	our	first
column	is	being	positioned.	Let’s	look	at	the	code	again	to	see	exactly	where	it’s
being	positioned:

The	left	property	specifies	where	the	left	edge	of	the	column	will	be	placed
in	relation	to	the	browser	window.	What	can	be	confusing	is	even	though	we
specified	that	the	column	should	be	10	pixels	from	the	edge	of	the	browser
window,	we	must	also	consider	any	style	sheet	properties	already	attached	to	the
browser	window.	With	that	in	mind,	can	you	figure	out	where	the	left	edge	of	the
navigation	column	will	actually	be	placed?

Ask	the	Expert
Q:	Wait,	I’m	confused.	You	said	absolute	positioning	places	items

precisely	on	the	page,	but	then	you	said	those	items	are	placed	in
relation	to	something	else?	How	is	that	absolute?

A:	To	absolutely	position	an	element,	you	specify	its	exact	location	with	the
top,	bottom,	left,	and	right	properties.	The	potentially	tricky	part
is	this:	The	element	is	then	placed	relative	to	its	container	block.	So,
yes,	even	though	you’re	specifying	an	item’s	location,	you	must	do	so	in
relation	to	the	positioned	block	that	contains	the	object.	In	many	cases,
where	there	isn’t	any	such	positioned	“ancestor,”	this	ends	up	being	the
actual	body	of	your	I	page,	so	the	element	is	positioned	in	relation	to	the
browser	window.

However,	suppose	you	want	to	absolutely	position	an	image
contained	within	a	news	story	on	your	page.	Here’s	where	the	mix	of
relative	and	absolute	positioning	comes	into	play.	By	placing	the	news
story	in	an	article	element	whose	positioning	is	set	to	relative	I	but	not
further	altered,	you’ve	achieved	your	goal:	You	can	absolutely	position
the	image	within	the	context	of	the	news	article,	since	the	news	article
now	functions	as	the	image’s	positioned	container.

The	left	edge	of	the	navigation	column	will	begin	10	pixels	from	the	edge	of
the	browser	window,	so	it	sits	just	below	the	header	area.

Here’s	another	brainteaser	for	you:	Can	you	determine	how	I	even	came	up
with	the	value	of	70	for	the	top	property?	To	answer	this	question,	you	might
need	to	refer	back	to	the	header	code:

The	navigation	column	needed	to	be	positioned	below	the	header.	We
already	determined	that	the	header	takes	up	60	pixels	of	vertical	space	(50px	+
5px	padding	on	top	+	5px	padding	on	bottom).	So,	to	place	our	navigation
column	right	below	the	header,	I	added	60	to	the	10-pixel	top	margin	and	used	a
value	of	70	for	the	top	property.

The	remaining	pieces	of	the	style	sheet	declaration	for	the	navigation	column
determine	the	column’s	width	(150px),	border	style,	and	padding	(5px	around	all
internal	sides).	The	following	graphic	helps	visualize	what	we’ve	achieved	thus
far.

TIP

Want	to	see	an	example	of	someone	experimenting	with	this	type	of	page	layout?	Style	sheet	guru
Eric	Meyer	has	created	CSS/edge	for	that	very	purpose.	Check	it	out	at
www.meyerweb.com/eric/css/edge.

#extras
The	column	to	the	far	right	in	the	layout	is	very	similar	to	the	navigation	column.
I’ve	used	a	generic	div	container	and	labeled	this	column	extras	because	it	is
typically	used	to	house	bonus	elements	not	integral	to	the	content	of	the	page.
For	example,	you	might	include	advertisements	or	links	to	related	information	in
that	area.

A	review	of	the	style	declaration	for	the	extras	column	shows	just	how
similar	it	is	to	the	navigation	column.	In	fact,	the	only	difference	is	this	column
is	placed	10	pixels	from	the	right	edge	of	the	browser,	while	the	navigation
column	was	placed	10	pixels	from	the	left	edge:

This	means	our	graphical	representation	now	includes	two	of	the	three
columns	we’re	trying	to	create,	and	I’ve	updated	the	graphical	representation
accordingly.

http://www.meyerweb.com/eric/css/edge

section
While	the	navigation	and	extras	sections	were	absolutely	positioned,	the	middle
content	column	is	designed	to	fit	within	the	normal	(static)	flow	of	the
document.	However,	that	doesn’t	mean	we	can’t	specify	where	the	element
should	sit	on	the	page.	Refer	to	the	style	declaration	to	see	what	I	mean.

First,	we	don’t	need	to	specify	how	far	down	on	the	page	the	column	will
display,	because	it	will	sit	below	the	header	by	default.	(If	we	wanted	to	allow
for	space	between	the	header	and	this	section,	we	would	have	to	use	the	margin-
top	property	to	push	the	element	down	a	bit.)	But	if	we	leave	all	four	edges	of
the	center	column	to	chance,	it	will	end	up	overlapping	the	navigation	column.
By	adding	margins	to	either	side	of	the	column,	I	am	essentially	telling	the
browser	how	much	space	to	leave	on	those	two	sides,	which	means	the	element
will	fill	the	space	left	over	in	the	middle	of	the	two	absolutely	positioned
columns.

The	trick	is	figuring	out	just	how	much	space	to	allow	on	either	side	of	the

element	so	that	it	sits	perfectly	in	the	middle.	In	this	particular	example,	I	first
needed	to	consider	the	total	horizontal	space	covered	by	the	navigation	column,
because	it	lies	to	the	left	of	the	main	content	area	I’m	currently	positioning.	The
result	was	162	pixels	(150px	width	+	5px	left	padding	+	5px	right	padding	+	1px
left	border	+	1px	right	border).

TIP
Specifying	a	left	margin	of	162	pixels	places	the	center	content	exactly	next	to	the	navigation
column.	If	you	want	to	leave	some	blank	space	between	the	two,	simply	increase	the	size	of	the
left	margin.The	right	margin	needs	to	be	the	same	size	as	the	horizontal	space	used	by	the	extras
column.	Just	like	the	navigation	column,	the	result	is	162	pixels	(150px	width	+	5px	left	padding
+	5px	right	padding	+	1px	left	border	+	1px	right	border).

Finally,	a	five-pixel	padding	ensures	the	text	in	this	column	doesn’t	smash
right	up	against	the	borders	of	the	other	columns.	The	following	shows	how	the
center	column	fits	in	our	graphical	representation:

footer
The	final	piece	in	our	multicolumn	fluid	layout	is	the	bottom	footer.	This	could
hold	something	as	simple	as	a	copyright	notice,	or	additional	content	such	as	text
links	and	supplemental	graphics.	The	style	sheet	declaration	reflects	the
simplicity	of	this	content	area.

As	with	the	header,	this	section	will	automatically	fill	the	horizontal	space	in
the	browser	window.	Unless	we	specify	otherwise,	the	height	will	be	determined
by	the	amount	of	content	placed	within	the	footer.	In	fact,	in	my	style	sheet,	I
only	added	a	five-pixel	border	to	allow	some	buffer	space	around	the	content,
and	a	two-pixel	border	along	the	top	edge	to	help	separate	the	footer	from	the
content	above.	The	following	illustration	finalizes	our	graphical	representation
of	this	layout.

Pull	It	Back	Together
Viewing	this	very	layout	in	a	browser	gives	us	a	real	glimpse	as	to	just	how	fluid
and	flexible	it	is.	Check	out	Figure	6-3	to	see	the	layout	with	some	generic
content.

Figure	6-3	The	multicolumn	fluid	layout	is	shown	using	some	sample	content.

NOTE
Sometimes,	with	layouts	like	this,	there	is	an	unequal	amount	of	content	in	the	various	columns,
causing	the	borders	to	be	different	heights.	One	way	around	this,	if	it	bothers	you,	is	to	only	add
the	borders	on	the	tallest	column.	In	other	words,	instead	of	adding	a	full	border	around	both	the
left	and	right	columns,	you	could	add	left	and	right	borders	just	to	the	center	column	to	serve	as
dividers.

Browser	Support
What	would	a	layout	example	be	without	a	few	caveats?	Anytime	style	sheets
are	involved,	there	are	questions	about	compatibility	(whether	the	style	sheet
properties	are	supported	the	same	in	the	popular	browsers)	and	degradation
(what	happens	to	the	elements	when	certain	properties	are	not	supported).	So	on
that	note,	I	have	good	news	and	bad.

The	good	news	is	that	style	sheet	support	among	browsers	has	come	a	long

way	over	the	past	few	years,	and	layouts	like	this	are	widely	supported.
The	only	real	bad	news	has	more	to	do	with	platforms	than	the	browsers.

Why?	Well,	this	layout	“breaks”	if	you	shrink	the	browser	window	below	about
400	pixels	in	width.	This	is	important	because	it	means	you	should	offer	a
different	style	sheet	for	users	of	handheld,	web-enabled	devices,	if	those	types	of
users	are	a	large	part	of	your	target	audience.

The	moral	of	this	story	is	to	test,	test,	and	test	some	more,	until	you’re
satisfied	with	the	results	in	the	browsers	and	platforms	used	by	your	target
audience.

Other	CSS	Page	Layouts
The	preceding	two	sections	listed	two	sample	CSS	page	layouts:	a	very	basic
one	and	another	one	that’s	a	bit	more	complex.	These	are	really	just	the	tip	of	the
iceberg	when	it	comes	to	CSS	page	layout,	and	are	meant	to	simply	show	you
examples	of	what’s	possible.

One	of	the	wonderful	aspects	of	the	Web	itself	is	its	open-source	nature.	If
you	see	a	page	layout	that	inspires	you,	choose	View	|	Source	(or	something
similar	depending	on	your	browser)	to	learn	from	the	site’s	author.	(Of	course,
I’m	not	advocating	plagiarizing	at	all—please	contact	the	author	to	request
permission	if	you	want	to	copy	the	code	explicitly.)

The	following	list	provides	additional	online	resources	and	inspiration	for
CSS	page	layout:

•	www.meyerweb.com/eric/css/edge
•	www.alistapart.com
•	www.mezzoblue.com
•	www.onextrapixel.com/2012/01/05/23-interesting-html5-and-css3-websites/
•	http://tympanus.net/Development/FlipboardPageLayout/
•	www.cssportal.com

Layer	Content	Within	a	Layout
If	you’ve	ever	played	with	a	graphics	program	like	Adobe	Photoshop,	you	know
the	power	of	layers.	I	like	to	explain	layers	like	this:	Imagine	if	you	had	two

http://www.meyerweb.com/eric/css/edge
http://www.alistapart.com
http://www.mezzoblue.com
http://www.onextrapixel.com/2012/01/05/23-interesting-html5-and-css3-websites/
http://tympanus.net/Development/FlipboardPageLayout/
http://www.cssportal.com

transparencies	(you	know,	like	the	ones	your	teachers	used	with	overhead
projectors	in	school),	each	of	which	had	different	pictures	on	them.	If	you	put
one	transparency	behind	the	other,	the	front	image	would	block	portions	of	the
back	image.	If	you	reversed	them,	the	back	image	would	now	block	part	of	the
front	image.

Using	layers	on	a	web	page	is	quite	similar.	In	the	last	section,	I	discussed
how	the	center	content	area	of	the	layout	would	overlap	the	navigation	if	the
correct	left	margin	weren’t	specified.	That	is	true,	but	what	I	haven’t	yet
mentioned	is	that	you	can	actually	control	which	content	area	is	“on	top”
whenever	multiple	sections	do	overlap.	In	fact,	you	can	control	the	entire
stacking	order	with	the	z-index	property.

NOTE
The	z-index	property	only	works	on	elements	that	are	positioned	(in	other	words,	those	that	have
the	position	property	set	to	either	relative	or	absolute).

To	help	explain	this	concept,	let’s	compare	apples	to	oranges.	The	following
code	creates	two	boxes	on	the	screen.	The	first	one,	labeled	“Apples,”	is
absolutely	positioned	20	pixels	from	the	top	and	left	edges	of	the	browser
window.	The	second	box,	labeled	“Oranges,”	is	relatively	positioned.	This
means	it	is	allowed	to	flow	relative	to	any	other	elements	on	the	page.	However,
because	absolutely	positioned	elements	are	removed	from	the	normal	page	flow,
there	are	no	other	elements	for	the	Oranges	box	to	flow	around!	So	the	Oranges
box	is	simply	placed	in	the	upper-left	corner	of	the	screen,	as	shown	in	Figure	6-
4.

Figure	6-4	By	default,	the	relatively	positioned	element	(Oranges)	is	placed
above	the	absolutely	positioned	element	(Apples)	in	this	layout.

What	if	you	didn’t	mind	the	fact	that	these	were	overlapping,	but	just	wanted
the	Apples	layer	to	be	in	front	of	the	Oranges	layer?	One	way	to	accomplish	this
is	to	use	the	z-index	property.	Compare	Figures	6-4	and	6-5	to	see	the	effects.	In
Figure	6-5,	the	content	area	labeled	“Apples”	is	given	a	z-index	property	of	2,
while	“Oranges”	has	a	z-index	property	of	1.	With	this	property,	the	element
with	the	highest	z-index	value	is	the	one	“on	top.”	The	code	used	to	create
Figure	6-5	is	shown	next.

Figure	6-5	After	the	Apples	layer	is	given	a	z-index	higher	than	the	Oranges
layer,	it	becomes	visible.

TIP
You	can	also	use	negative	z-index	values	to	force	a	layer	to	drop	behind	others.

Realistic	Uses	of	Layers	in	Web	Pages
While	the	apples	and	oranges	comparison	may	not	have	been	the	most	realistic
web	page	layout	scenario,	it	did	help	explain	the	concept	of	layers	in	web	pages.
So	what	are	some	more	realistic	uses	for	this	powerful	tool?	The	following	are
just	a	few:

•	Advertising	Ever	clicked	a	link	in	a	banner	ad,	only	to	have	that	ad	appear	to
grow	larger	without	the	actual	web	page	changing?	Very	likely,	the	larger
version	of	the	ad	was	a	hidden	layer	set	to	appear	when	you	clicked	that	link.

•	Games	While	many	online	games	use	Flash	for	interactivity,	some	use	a
combination	of	HTML,	JavaScript,	and	CSS.	These	games	often	place
different	elements	on	layers	so	that	they	can	be	easily	moved	around	on	the
page,	independent	of	the	other	page	content.

•	Navigation	You’ve	likely	visited	a	web	site	and	used	navigation	that	had
submenus	or	drop-down	menus.	These	types	of	navigation	systems	can	be
accomplished	by	placing	the	drop-down	menu	content	into	a	layer	that	is
“brought	forward”	or	“made	visible”	with	the	click	of	a	particular	link.

TIP

The	display	and	visibility	properties	are	used	to	determine	whether	an	element	is	visible.
We’ll	cover	those	more	in	Chapter	14,	but	in	the	meantime,	check	out
www.w3schools.com/css/css_display_visibility.asp	for	an	online	reference.

You	probably	noticed	that	most	realistic	examples	of	layers	within	web	pages
involved	some	sort	of	interaction	on	the	user’s	part,	whether	that’s	to	make	a
layer	visible	or	move	a	player	in	a	game.	Unfortunately,	this	interaction	is	not
achieved	through	HTML	or	CSS	alone,	but	involves	the	use	of	some	sort	of
scripting,	like	JavaScript.	While	this	is	technically	beyond	the	scope	of	this
book,	I	wanted	to	give	you	an	idea	as	to	what	was	possible.	Refer	to	Chapter	13
for	a	bit	more	information,	as	well	as	links	to	online	references	and	other	ways	to
learn	more.

Use	External	Style	Sheets
The	vast	majority	of	style	sheet	examples	in	this	book	have	been	shown	as
internal	or	embedded	styles,	meaning	they	were	placed	within	the	actual	web
page	they	affected.	But	when	you	use	style	sheets	for	layout	purposes,	you’re
typically	planning	to	use	the	same	(or	very	similar)	layout	with	other	pages	on
your	site.	In	such	cases,	using	an	internal	style	sheet	would	almost	defeat	the
purpose	of	using	style	sheets	altogether,	because	you’d	have	to	edit	each	and
every	page	to	make	a	change	to	the	layout.

A	better	solution	is	to	create	an	external	style	sheet	with	the	page	layout
information,	and	then	reference	that	style	sheet	from	each	page	it	should	affect.
There	are	essentially	two	ways	to	reference	an	external	style	sheet—linking	or
importing.

TIP
When	developing	my	site’s	style	sheet,	I	usually	create	it	as	an	internal	style	sheet	within	my	test
page.	Then,	after	I’m	satisfied	with	the	results,	I	copy	and	paste	it	into	an	external	style	sheet	and
add	a	reference	to	it	from	all	of	the	pages	it	should	affect.

Link	to	an	External	Style	Sheet
The	concept	of	linking	to	an	external	style	sheet	was	introduced	in	an	earlier
chapter,	but	I	want	to	reiterate	it	here	where	it’s	most	appropriate.	It’s
accomplished	by	using	the	link	element,	as	shown	next:

This	code	simply	tells	the	browser	to	use	the	content	of	styles.css	when

http://www.w3schools.com/css/css_display_visibility.asp

displaying	the	current	page.
To	take	it	one	step	further,	you	can	add	the	media	attribute	to	your	link	tag

to	specify	to	which	medium	the	style	sheet	applies.	This	means	you	could	link	to
multiple	style	sheets	for	multiple	media.	The	following	shows	an	example	that
specifies	one	style	sheet	to	use	when	the	page	is	displayed	on	the	screen,	and
another	when	the	page	is	sent	to	a	printer:

Other	possible	values	for	the	media	attribute	are	as	follows:

•	projection	(for	projected	presentations)
•	aural	(for	speech	synthesizers)
•	braille	(for	presentation	on	Braille	tactile	feedback	devices)
•	tty	(for	display	using	a	fixed-pitch	font)
•	tv	(for	televisions)
•	all

TIP
If	a	particular	linked	style	sheet	applies	to	multiple	media,	separate	them	with	a	comma,	as	in
media="screen,projection".

Import	an	External	Style	Sheet
Another	way	to	reference	an	external	style	sheet	is	to	import	its	styles	into	the
current	document.	Instead	of	a	separate	HTML	tag,	this	is	accomplished	with	the
@import	statement	between	the	opening	and	closing	style	tags:

Because	the	@import	statement	is	placed	between	the	opening	and	closing
style	tags,	you	can	actually	mix	internal	and	external	style	sheets	with	this
method.	This	can	be	particularly	useful	if,	perhaps,	you	want	to	use	the	same
general	layout	on	all	the	pages	of	your	site	(with	an	imported	style	sheet),	but

also	want	to	include	a	few	custom	internal	styles	on	certain	pages.
Another	important	aspect	of	this	method	is	the	ability	to	import	multiple

style	sheets.	Say,	for	example,	you	had	one	style	sheet	for	the	layout	of	your
pages,	and	another	one	for	different	design	aspects	(colors,	fonts,	and	so	on).
This	might	be	accomplished	with	code	like	the	following:

NOTE
Whenever	you	combine	different	style	sheets,	it’s	good	to	remember	the	rules	of	precedence
discussed	in	Chapter	3.	These	state	that	styles	are	applied	with	the	following	order	of	importance:
Embedded	styles	take	precedence	over	internal	styles,	which	take	precedence	over	external	styles.

Try	This	6-1 Use	CSS	for	Page	Layout
In	this	project,	select	a	file	you	already	created	and	apply	a	CSS	page	layout.
The	goals	for	this	project	include

•	Using	CSS	for	page	layout
•	Creating	a	style	sheet	that	works	in	most	modern	browsers
•	Using	an	external	style	sheet
1.	Open	your	HTML	editor	and	load	the	index	page,	or	any	other	pages	you’ve

developed	thus	far.

2.	Determine	the	type	of	layout	that	will	work	best	on	the	page	you	selected.	To
get	started,	consider	the	following	questions:	Will	the	page	have	content	that
easily	fits	into	two	or	more	columns?	Or	is	it	a	page	whose	content	flows
best	as	a	single	column	with	perhaps	a	top	header	and	a	bottom	footer	for
navigation,	and	so	on?

3.	After	selecting	your	layout,	return	to	your	code	and	add	the	necessary
container	elements	to	divide	the	content	into	manageable	sections.

TIP
Remember	to	use	ID	names	that	describe	the	content	itself,	as	opposed	to	how	you	plan	to	style	it.

For	example,	if	you	plan	to	put	a	calendar	of	events	in	column	three,	and	also	want	to	give	that
column	a	yellow	background,	naming	your	ID	“events”	would	be	much	better	than	“column3”	or
“yellowcolumn.”	Why?	At	some	point,	you	may	move	the	events	to	another	column,	or	you	may
change	the	background	color,	but	they	will	always	be	events.

4.	Work	with	your	internal	style	sheet	to	add	the	appropriate	CSS	properties	to
lay	out	the	page.	Refer	to	the	samples	provided	in	this	chapter,	as	well	as	the
online	resources	I	suggested.

5.	Save	the	file	and	test	it	often	in	your	favorite	browser,	as	well	as	any	others
you	can	get	your	hands	on.

TIP
Some	web	sites	offer	the	ability	to	display	your	site	on	multiple	web	browsers	so	you	can	see	how
it	looks	without	having	to	actually	install	those	browsers	on	your	machine.	Adobe’s	BrowserLab
(browserlab.adobe.com)	offers	a	free	online	tool	to	preview	your	page	in	a	variety	of	viewing
conditions	(i.e.,	different	browsers	and	operating	systems).

6.	When	you’re	satisfied	with	the	layout,	copy	and	paste	your	internal	style
sheet	(without	the	style	tags)	into	a	blank	text	document.	Then	save	it	as
style.css.

7.	Return	to	your	HTML	file	and	use	the	link	element	or	the	@import
statement	to	reference	the	external	style	sheet	you	just	created.	Save	the	file
and	switch	back	to	the	browser.	Choose	Refresh	or	Reload	to	preview	the
changes	you	just	made	and	make	sure	your	external	style	sheet	works.

TIP
If	your	style	sheet	no	longer	works	after	you	switched	from	internal	to	external,	check	the	location
of	the	external	style	sheet.	Is	it	in	the	same	folder	as	your	HTML	file?	If	not,	be	sure	to	add	the
folder	path	to	your	link	element	or	@import	reference.	For	more	tips,	see	Appendix	C.

Cascading	style	sheets	have	come	a	long	way,	and	now	provide	excellent
page	layout	options	for	web	designers.	This	project	gave	you	practice	developing
your	own	layout	using	style	sheets.

For	added	practice,	perform	this	project	again	on	other	pages	you	developed
while	working	through	this	book.

http://browserlab.adobe.com

Chapter	6	Self	Test

1.	Fill	in	the	blank:	__________________	positioning	takes	an	element
out	of	the	normal	page	flow	and	positions	it	in	a	particular	place	on	the
page.

2.	Which	property	determines	whether	a	layer	is	hidden	or	visible?

3.	Which	two	properties	are	set	in	the	body	element	to	ensure	all
browsers	use	the	same	“starting	point”	for	page	layout?

4.	According	to	the	W3C	default	specifications,	if	you	had	a	box	that	was
150	pixels	wide,	with	10	pixels	of	padding	on	all	four	sides,	and	a	2-pixel
border	all	the	way	around,	what	would	be	the	total	horizontal	space	used	by
the	box?

5.	Which	HTML	element	is	used	to	create	generic	sections	of	content	to
be	formatted	with	style	sheets?

6.	Fill	in	the	blank:	The	_______________	attribute	identifies	the
medium	for	which	a	particular	external	style	sheet	should	be	used.

7.	Add	the	appropriate	code	so	the	content	area	has	a	20-pixel	margin
around	the	top,	right,	and	left	sides,	but	a	5-pixel	margin	around	the	bottom.

8.	Which	HTML	element	can	be	used	to	reference	an	external	style
sheet?

9.	Add	the	appropriate	code	to	import	a	style	sheet	called	design.css.

10.	Fill	in	the	blank:	______________	positioning	is	the	default	type	of
positioning.

11.	True/False:	Relative	positioning	adjusts	an	element’s	location	on	the	page
relative	to	itself.

12.	Add	the	appropriate	code	to	place	the	content	area	50	pixels	from	the	left

edge	of	the	browser	and	150	pixels	from	the	top	edge.

13.	Which	property	is	used	to	specify	an	element’s	stacking	order	on	the	page?

14.	True/False:	When	adjusting	an	element’s	stacking	order	on	the	page,	lower
values	take	precedence	over	higher	values.

Part	II
Adding	the	Content

T

Chapter	7
Working	with	Links

Key	Skills	&	Concepts

•	Add	Links	to	Other	Web	Pages

•	Add	Links	to	Sections	Within	the	Same	Web	Page

•	Add	Links	to	Email	Addresses	and	Downloadable	Files
•	Recognize	Effective	Links
•	Style	Links
•	Customize	Links	by	Setting	the	Tab	Order,	Keyboard	Shortcut,	and	Target

Window

he	crux	of	HTML	is	its	capability	to	reference	countless	other	pieces	of
information	easily	on	the	Internet.	This	is	evident	because	the	first	two

letters	in	the	acronym	HTML	stand	for	hypertext,	or	text	that	is	linked	to	other
information.

HTML	enables	us	to	link	to	other	web	pages,	as	well	as	graphics,
multimedia,	email	addresses,	newsgroups,	and	downloadable	files.	Anything	you
can	access	through	your	browser	can	be	linked	to	from	within	an	HTML
document.	In	fact,	one	of	the	easiest	ways	to	identify	the	URL	of	a	page	you
want	to	link	to	is	to	copy	it	from	the	location	or	address	toolbar	in	your	web
browser.	You	can	then	paste	it	directly	into	your	HTML	file.

Add	Links	to	Other	Web	Pages
You	can	add	links	to	other	web	pages,	whether	they	are	part	of	your	web	site	or
someone	else’s.	To	do	so	requires	using	the	a	element:

TIP
While	adding	a	link	to	your	favorite	web	site	on	your	page	is	usually	considered	acceptable,	it	is
never	acceptable	to	copy	someone	else’s	content	without	their	permission.	If	you	have	any	doubts,
check	with	the	site’s	administrator	whenever	you’re	linking	to	a	site	that	isn’t	your	own.

The	a	element	itself	doesn’t	serve	much	purpose	without	its	attributes.	The
most	common	attribute	is	href,	which	is	short	for	hypertext	reference:	It	tells	the
browser	where	to	find	the	information	to	which	you	are	linking.	Other	attributes
are	name,	title,	accesskey,	tabindex,	and	target,	all	of	which	are
discussed	in	this	chapter.

The	text	included	in	between	the	opening	and	closing	a	tags	is	what	the
person	viewing	your	web	page	can	click.	In	most	cases,	this	text	is	highlighted	as
a	different	color	from	the	surrounding	text	and	is	underlined,	as	shown	in	Figure
7-1.

Figure	7-1	This	screen	shows	the	browser	view	of	the	previous	example	code.

In	deciding	what	to	use	as	the	value	of	your	href	attribute,	consider	what
type	of	link	you	want	to	use.	The	following	are	the	two	basic	types	of	links:

•	Absolute

•	Relative

Absolute	Links
Absolute	links	are	those	that	include	the	entire	pathname.	In	most	cases,	you	use
absolute	links	when	linking	to	pages	or	sites	that	are	not	part	of	your	own	web
site.	Absolute	links	must	include	the	protocol	(such	as	http://)	at	the	beginning	of
the	link.	For	example,	if	you	are	linking	from	your	web	site	to	Yahoo!,	you	type
http://www.yahoo.com	as	your	link.

Relative	Links
Relative	links	are	so	called	because	you	don’t	include	the	entire	pathname	of	the
page	to	which	you	are	linking.	Instead,	the	pathname	you	use	is	relative	to	the
current	page.	This	is	similar	to	saying,	“I	live	in	Summershade	Court,	about
three	miles	from	here,”	which	is	relative	to	wherever	“here”	is.	A	more	absolute
way	to	say	this	might	be	“I	live	at	410	Summershade	Court	in	Anytown,	USA
55104.”

Relative	links	are	most	commonly	used	when	you	want	to	link	from	one
page	in	your	site	to	another.	The	following	is	an	example	of	what	a	relative	link
might	look	like:

This	link	looks	for	the	contactme.html	file	in	the	same	folder	that	contains
this	page.	If	you	were	linking	to	a	file	in	another	folder	below	the	current	one,
the	value	of	your	href	might	look	like	the	following:

If	you	need	to	link	to	a	file	in	a	folder	above	the	folder	your	page	is	in,	you
can	add	“../”	for	each	directory	up	the	tree.	So,	if	the	file	you	are	linking	to	is
two	folders	higher	than	the	one	you	are	in,	you	might	use

Suppose	you	were	building	a	web	site	for	yourself	and	your	family,	using	the
following	directory	structure.	You	might	remember	something	similar	from
Chapter	1,	where	we	talked	about	file	naming	and	the	anatomy	of	a	URL.

Folders	and	files	are	indented	to	indicate	that	they	are	located	on	a	different
level.

You	are	working	on	the	highlighted	file:	july4.html.	This	file	is	located	two
folders	below	the	home	page	(index.html)	in	a	folder	called	holidays.	If	you
want	to	link	back	to	that	home	page	from	the	july4.html	page,	you	would	include
a	relative	link	similar	to	this	one:

Another	way	to	tell	the	browser	to	return	back	to	the	root—or	base—level	is
to	simply	use	a	single	slash,	like	this:

The	vast	majority	of	servers	are	set	up	to	recognize	a	single	slash	as	a
shortcut,	so	to	speak,	back	to	the	home	directory.	This	makes	it	easy	to	assign	a
single	link	“home,”	for	example,	that	works	from	any	page	on	the	web	site.

NOTE
Remember	that	most	servers	consider	index.html	to	be	the	index	of	a	folder.	This	means	a	link	to
	would	be	the	same	as	.	If	you	don’t	specify
a	filename,	but	only	a	folder	name,	the	index	page	will	be	shown	(provided	it	exists).

Now,	suppose	you	are	working	on	the	birthday.html	file	and	you	want	to	link
to	the	july4	.html	page.	Can	you	imagine	how	you	would	do	that?

To	link	from	birthday.html	to	july4.html,	use	the	following	code:

Because	the	july4.html	file	is	one	folder	below	the	birthday.html	file	you	are
currently	working	on,	you	simply	list	the	folder	name	followed	by	a	forward
slash	and	the	filename	(as	shown	in	the	preceding	example).

Add	Links	to	Sections	Within	the	Same	Web

Page
When	you	link	to	a	page,	the	browser	knows	what	to	look	for	because	each	page
has	a	name.	But	sometimes	you	may	want	to	link	to	a	section	of	text	within	a
page	on	your	web	site	(see	Figure	7-2	for	an	example).	To	link	to	a	section	of	a
web	page,	you	must	first	give	that	section	a	name.

Figure	7-2	When	you	have	multiple	sections	on	a	single	page	that	you	want	to
link	to,	you	can	use	an	anchor	to	name	them.

Create	an	Anchor
An	anchor	is	a	place	within	a	page	that	is	given	a	special	name,	enabling	you	to
link	to	it	later.	Without	first	naming	a	section,	you	cannot	link	to	it.	The

following	is	an	example	of	an	anchor:

In	this	example,	the	phrase	in	between	the	opening	and	closing	a	tags	is
displayed	in	the	web	page	and	labels	the	anchor	as	“Section	1.”	If	you	prefer	not
to	include	a	label	for	your	anchor,	you	can	leave	that	space	blank,	as	in	the
following	example:

Here,	you	could	use	this	invisible	anchor	at	the	top	of	your	page,	and	then	link	to
it	from	the	bottom	of	your	page.	This	would	enable	visitors	to	return	to	the	top	of
a	long	page	easily,	with	only	one	click	and	no	scrolling	(see	Figure	7-3	for	an
example).

Figure	7-3	This	browser	view	shows	how	an	invisible	anchor	can	be	used	to	give
visitors	an	easy	link	back	to	the	top	of	the	page.

Ask	the	Expert
Q:	How	do	I	know	when	to	use	relative	or	absolute	pathnames?

A:	Whenever	you	are	linking	to	a	page	that	is	not	contained	within	your
web	site,	you	will	use	an	absolute	pathname.	For	example,	if	you	are
working	on	a	summer	camp’s	web	site	and	you	want	to	link	to	a
national	summer	camp	association,	you	need	to	use	the	full	(absolute)
pathname	to	do	so.

However,	if	you	are	linking	to	a	page	on	your	own	web	site	that
contains	information	about	that	association,	you	could	use	a	relative
pathname.

Remember,	if	you	do	decide	to	use	absolute	pathnames	to	link	to	a
page	located	in	the	same	folder	on	your	web	site,	this	may	cause
problems	for	maintenance	in	the	long	run.	If,	at	a	later	date,	you	decide
to	change	the	name	of	the	folder	these	files	are	located	in,	you	need	to
go	back	and	change	all	the	absolute	links.	If	you	used	a	relative	link,
though,	you	wouldn’t	have	to	change	anything.

Link	to	an	Anchor
To	create	the	link	to	an	anchor,	you	also	use	the	a	element	and	the	href	attribute,
as	you	would	when	creating	any	other	type	of	link.	To	finish	the	link,	you	need
to	include	a	hash	symbol	(#)	and	the	anchor	name	as	the	value	of	the	href
attribute.

The	following	shows	how	it	all	might	look	when	you	code	it	in	an	HTML
document:

As	suggested,	a	good	case	for	using	anchors	involves	a	long	page	with	many
small	sections,	such	as	the	example	shown	in	Figure	7-2.	Whenever	you	do	have
long	pages	with	an	index	and	several	sections,	it’s	nice	to	offer	your	visitors	a
“Back	to	Top”	link	to	bring	them	back	to	the	index	easily.	The	following	shows
the	HTML	code	used	to	create	this	page:

NOTE
If	the	anchor	you	are	linking	to	is	already	visible	on	the	screen	(such	as	how	the	first	section	is
already	visible	in	Figure	7-2),	then	the	browser	may	not	jump	to	that	anchor.	Similarly,	if	the
anchor	being	linked	to	is	at	the	very	bottom	of	the	visible	screen	(such	as	the	second	section	is	in
Figure	7-2),	then	the	browser	also	may	not	jump	to	that	anchor,	according	to	your	screen	size.

If	you	need	to	create	a	link	to	a	specific	section	with	another	page	(not	the
one	you	are	currently	working	on),	then	you	use	that	page’s	filename	and	the
anchor	name	separated	by	a	hash	mark	(#),	as	in	the	following	example:

In	this	case,	the	browser	will	first	look	for	genealogy.html	and	then	locate	an
anchor	named	“intro”	on	that	page.

Add	Links	to	Email	Addresses	and
Downloadable	Files
Although	links	to	and	within	web	pages	are	the	most	common	types	of	links
you’ll	create,	you	can	also	link	to	other	types	of	content	on	the	Internet.

Email	Addresses
When	you	want	to	give	someone	easy	access	to	your	email	address,	you	can
include	it	on	your	page	as	a	mailto	link.	This	means	instead	of	using	http://	in
front	of	your	link,	you	use	the	email	protocol	mailto:	to	preface	your	email
address.

Clicking	this	link	in	a	browser	causes	the	visitor’s	email	program	to	launch.
Then	it	opens	a	new	email	message	and	places	your	email	address	in	the	To:	box
of	that	message.

NOTE
For	a	mailto	link	to	work,	visitors	to	your	web	site	must	have	an	email	program	(such	as	Outlook
or	Mac	Mail)	set	up	on	their	computers.	Email	links	like	these	may	not	work	if	the	visitor	uses
only	a	web-based	email	service	such	as	Gmail	or	Hotmail.

Customize	the	Email	Message
Some	browsers	will	even	let	you	add	content	to	the	subject	and	cc	fields	in	the
email	by	entering	additional	text	into	the	href	value.	To	do	so,	you	add	a
question	mark	after	the	end	of	your	email	address,	and	type	the	word	Subject
followed	by	an	equal	sign	(=),	along	with	the	word	or	phrase	you’d	like	to	use	as
your	subject.	This	can	be	particularly	useful	in	helping	you	distinguish	mail	sent
through	your	web	site	from	your	other	email.

Remember,	no	spaces	should	be	in	the	value	of	the	href	attribute,	unless	they	are
part	of	the	subject	line.

Spam-Proofing	Your	Email	Links
Many	people	who	send	spam	use	programs	called	mail	harvesters	to	search	the
Web	looking	for	email	addresses.	This	means	any	time	your	email	address	is
listed,	displayed,	or	otherwise	included	on	a	web	page,	you	open	yourself	to
potential	spam.

What	tips	these	harvesting	programs	off	is	the	at	symbol	(@)	in	your	email
address,	because	we	all	know	an	email	address	can’t	exist	without	one	of	those
symbols.	So	the	key	to	spam-proofing	your	email	address	is	not	to	display	it	with
an	@	symbol.

Using	[at]	Instead	of	the	@	Symbol	A	quick,	pure-text	way	to	avoid	displaying
your	complete	email	address	on	a	web	page	is	to	replace	the	@	symbol	with
something	like	[at]	so	that	savvy	visitors	can	still	get	your	email	address,	but	the
harvesting	programs	miss	it.	This	might	make	your	email	address	look
something	like	this:

me[at]mail.com

This	only	works	if	you	merely	display	the	email	address	and	don’t	link	to	it.
For	more	on	that,	keep	reading.

Using	an	Image	to	Replace	the	@	Symbol	The	second	easiest	way	to	spam-
proof	displayed	email	addresses	is	to	replace	the	text	@	symbol	with	a	graphic
@	symbol.	This	causes	your	site’s	visitors	to	see	the	email	address	in	its	entirety,
but	fools	email	harvesters	because	they	don’t	read	images.

However,	this	and	the	previous	technique	only	work	to	hide	email	addresses
that	are	merely	displayed	in	the	browser.	If	you’re	linking	your	email	address	so
people	can	click	it	to	send	an	email,	you	must	also	hide	the	version	of	the	email
address	embedded	in	the	a	tag.	To	do	so,	try	one	of	the	following	two	tricks.

Using	Code	to	Replace	the	@	Symbol	The	problem	with	the	first	two	ways	to
spam-proof	your	email	address	is	that	they	only	work	if	the	email	address	is
displayed	and	not	linked.	For	example,	consider	the	following:

While	the	email	address	is	not	displayed	in	the	browser	view,	it’s	still
embedded	in	the	code.	When	you	include	your	actual	email	address	in	the	code

of	a	mailto	link,	harvesting	programs	reading	the	actual	HTML	will	still	find	it!
One	way	to	hide	the	email	address	in	the	mailto	link	is	to	replace	the	@

symbol	and	period	with	their	decimal	equivalents.	This	means	me@home.com
might	look	like:

Here,	@	is	the	decimal	equivalent	of	the	@	symbol	and	.	is	the	equivalent	of
a	period.	The	complete	a	tag	using	this	technique	looks	like	this:

The	vast	majority	of	email	programs	recognize	these	decimal	characters	and
will	replace	them	with	the	appropriate	equivalents	when	preparing	the	actual
email.

Using	JavaScript	to	Hide	the	Email	Address	Arguably	the	most	effective	way
to	avoid	spammers	and	still	include	a	mailto	link	is	to	hide	the	email	address
with	some	sort	of	scripting	language	or	other	type	outside	of	HTML,	such	as
JavaScript.	The	following	sample	script	would	be	placed	within	your	HTML
code	exactly	where	your		should	have	been:

When	displayed	in	a	browser,	this	script	prints	“Email	Me”	and	links	it	to
me@mail.com,	all	the	while	never	displaying	the	complete	email	address	in	a
way	spammers	can	interpret.

TIP
One	of	the	best	ways	to	avoid	posting	your	email	address	for	all	to	see	(and	harvest)	is	to	create	a
web	form	for	visitors	to	send	you	email.	Refer	to	Chapters	12	and	13	for	more	information.

Ask	the	Expert

mailto:me@home.com
mailto:me@mail.com

Q:	What	about	linking	to	an	RSS	feed?

A:	RSS—Really	Simple	Syndication—has	grown	so	quickly	in	recent	years
that	even	though	you	might	not	have	known	what	it	meant,	you’ve
likely	seen	it	referenced	at	one	web	site	or	another.	Many	news	sites	and
web	blogs	include	little	orange	or	blue	rectangular	buttons	near	a	story
that	is	available	for	syndication	by	the	general	public.	For	example,	visit
www.foxnews.com/rss	to	see	a	list	of	the	Fox	News	content	available
for	syndication.

To	“read”	such	syndicated	content,	you	need	to	open	the	RSS	feed	in
a	news	reader	(also	called	an	aggregator).	Most	email	apps	include	news
readers.	Google	RSS	news	reader	if	you’d	like	to	find	a	stand-alone
option.

Anyone	can	create	his	or	her	own	RSS	feeds.	Refer	to
www.mnot.net/rss/tutorial	for	a	great	tutorial	on	doing	just	that.	Once
you’ve	created	your	own	syndicated	content,	you’ll	need	to	put	a	link
on	your	page	to	advertise	that	content	(similar	to	those	little	orange
buttons	you’ve	probably	seen	at	other	sites).	Links	to	RSS	feeds	look
very	similar	to	other	HTML	links,	with	a	few	minor	variations:	RSS	feed	for	this

page.

FTP	and	Downloadable	Files
The	Internet	provides	many	companies	with	an	easy	way	to	transmit	files	to
customers.	For	example,	suppose	you	purchased	a	piece	of	software	to	protect
your	computer	against	viruses.	Eventually,	your	software	must	be	updated	so	that
it	can	recognize	new	viruses.	The	quickest	and	easiest	way	to	obtain	such	an
update	is	to	download	it	from	the	company’s	web	site.

When	you	download	files	from	the	Internet	that	cannot	be	displayed	in	your
web	browser	(such	as	software	applications	and	add-ons),	you	usually	do	so	by
accessing	the	company’s	FTP	site.

FTP,	which	stands	for	File	Transfer	Protocol,	is	a	way	in	which	you	send
and	receive	files	over	the	Internet.	Many	companies	have	both	HTTP	servers,
which	house	their	web	site,	and	FTP	servers,	which	house	their	downloadable
files.

To	reference	a	file	on	an	FTP	site,	you	use	an	a	tag	and	href	attribute	with
the	FTP	protocol,	as	in	the	following	example:

http://www.foxnews.com/rss
http://www.mnot.net/rss/tutorial

Although	some	FTP	sites	are	anonymous	and	don’t	require	a	password	for
access,	most	are	private.	Secure	content	is	typically	made	available	to	a	limited
audience,	which	is	given	specific	credentials	for	accessing	the	content.	You
won’t	be	able	to	access	a	private	FTP	site	without	a	qualified	username	and
password.	If	you	are	linking	to	a	private	FTP	site,	you	should	also	consider
providing	a	way	for	visitors	to	register	or	sign	up	to	receive	a	username	and
password.

Of	course,	in	some	cases,	you	could	have	downloadable	files	located	right	on
your	web	server	with	your	web	page.	These	might	be	movies,	sounds,	programs,
or	other	documents	you	want	to	make	available	to	your	visitors.	Or,	they	might
be	located	on	a	file	server	like	Dropbox.	In	either	case,	you	can	link	to	these	just
as	you	would	any	other	web	page,	keeping	the	proper	file	extension	in	mind.

Recognize	Effective	Links
The	Web	is	all	about	links.	If	users	cannot	find	the	links	on	your	page	and
successfully	use	them,	that	linked	content	might	as	well	be	deleted.	One	of	the
problems	with	so	many	web	pages	is	what’s	commonly	referred	to	as	the	“click
here	syndrome.”

NOTE
Even	more	than	a	decade	after	the	first	edition	of	this	book	was	published,	I	continue	to	see	web
designers	fall	victim	to	the	“click	here	syndrome.”	For	this	reason,	I	feel	compelled	to	add	this
note	to	further	emphasize	just	how	bad	the	phrase	“click	here”	is!	Please,	please	don’t	ever
underline	(link)	the	words	“click	here”	in	your	web	pages.	Instead,	link	words	that	describe	what
the	user	will	actually	find	when	they	click	the	link!

Discussed	briefly	earlier,	this	occurs	when	the	phrase	click	here	is	used	as	a
link’s	label	text.	Consider	the	following	example:

Woolwich	is	a	rural	community	on	the	east	shore	of	the	Kennebec	River,
opposite	the	historic	city	of	Bath	and	approximately	12	miles	from	the
Atlantic	Ocean.	First	settled	in	the	1600s	and	incorporated	in	1759,	the	town
is	named	for	Woolwich,	England,	which	in	like	manner	is	situated	on	a	large,
navigable	river.	(Click	here	for	information	about	Woolwich,	England.)

The	words	click	here	that	were	underlined	in	the	preceding	example	don’t
shed	any	light	on	exactly	what	you	would	find	if	you	clicked	that	link.	A	better
example	might	be	the	following:

Woolwich	is	a	rural	community	on	the	eastern	shore	of	the	Kennebec	River,
opposite	the	historic	city	of	Bath	and	approximately	12	miles	from	the
Atlantic	Ocean.	First	settled	in	the	1600s	and	incorporated	in	1759,	the	town
is	named	for	Woolwich,	England,	which	in	like	manner	is	situated	on	a	large,
navigable	river.

Now,	when	you	scan	the	paragraph,	the	words	Woolwich,	England	jump	out
and	you	know	more	information	about	that	place	can	be	found	by	clicking	the
linked	words.

Another	common	pitfall	is	using	entire	sentences	as	link	labels.	Compare	the
two	links	in	the	next	paragraph.	The	shorter	link	at	the	end	is	easier	to	spot
because	you	have	to	read	the	entire	first	sentence	to	understand	the	content	of	the
link.

Woolwich	is	a	rural	community	on	the	east	shore	of	the	Kennebec	River,
opposite	the	historic	city	of	Bath	and	approximately	12	miles	from	the
Atlantic	Ocean.	First	settled	in	the	1600s	and	incorporated	in	1759,	the	town
is	named	for	Woolwich,	England,	which	in	like	manner	is	situated	on	a	large,
navigable	river.

If	you	needed	to	place	multiple	links	within	a	paragraph	of	text,	it	might	be
better	to	convert	the	paragraph	into	a	list,	where	each	link	is	at	the	beginning	of
the	list	item.

Woolwich	is	a	rural	Maine	community	on	the	east	shore	of	the	Kennebec
River.

Historic	Bath	is	located	opposite	Woolwich

Atlantic	Ocean	is	approximately	12	miles	down	river

First	settled	in	the	1600s

Incorporated	in	1759

Woolwich,	England,	gives	the	town	its	name

To	summarize,	it’s	important	to	scan	over	your	web	pages	from	the	user’s
perspective	to	determine	if	your	links	are	easy	to	spot	and	use.	Short,	meaningful
words	and	phrases	work	better	than	lengthy	marketing	jargon.

Try	This	7-1 Add	Links
Returning	to	the	pages	we’ve	been	completing	for	our	practice	site,	let’s	add
some	links.	You	can	tailor	the	project	to	your	particular	needs.	Goals	for	this
project	include

•	Adding	links	to	web	pages
•	Adding	links	to	sections	within	a	web	page
•	Adding	links	to	email	addresses
1.	Open	your	text/HTML	editor	and	load	one	of	the	pages	saved	from	a

previous	chapter.

2.	Add	a	link	to	a	page	describing	the	company/person’s	services
(services.html).	Title	the	link	something	appropriate	for	the	link’s	content.

3.	Save	the	file.

4.	Create	a	new	file	using	the	name	you	just	linked	to:	services.html.	Include
the	basic	elements	of	all	web	pages,	and	add	a	few	paragraphs	of	content.

5.	Add	the	phrase	“email	us”	to	the	page.	Specify	an	email	address	to	which	the
messages	should	be	sent,	and	specify	a	subject	of	Services.

6.	Save	this	file.

7.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	first	file	you	just	saved.

8.	Click	the	link	you	added	to	ensure	it	works.	The	link	should	bring	up	the
services.html	page.

9.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

10.	Return	to	the	services.html	file	in	your	text	editor.

11.	Add	sections	for	each	of	the	services	offered.	Add	anchors	to	each	of	the

section	headings,	using	the	section	name	(without	any	spaces)	as	the	anchor
name.

12.	Add	links	to	each	of	the	anchors	you	just	created	so	that	the	category	names
near	the	top	of	the	page	become	links	to	the	actual	category	content	below.

13.	Add	an	anchor	to	the	top	of	the	page	named	top.

14.	Add	Back	to	Top	links	at	the	end	of	each	section	to	enable	a	visitor	to	have
easy	access	back	to	the	category	listing	at	the	top	of	the	page.

15.	Save	the	file.

16.	Return	to	your	web	browser	and	choose	Refresh	or	Reload	to	confirm	your
changes.

TIP
Does	your	link	work?	If	not,	make	sure	the	pathname	is	correct.	Both	the	index.html	and
services.html	pages	should	be	located	in	the	same	folder.	If	they	aren’t,	you	need	to	change	the
pathname	to	reflect	the	proper	folder	name.	In	addition,	be	sure	to	check	your	capitalization	(or
lack	thereof).	Remember,	links	like	this	are	case-sensitive,	so	if	you	named	a	section	“Intro”	with
a	capital	I,	but	linked	to	“intro”	with	a	lowercase	i,	then	your	link	won’t	work.	For	more	tips,	see
Appendix	C.

The	a	element	enables	you	to	add	links	to	many	types	of	information	on	the
Internet.	This	project	gives	you	practice	using	that	element	to	link	to	another
web	page,	an	email	address,	and	sections	within	the	same	web	page.

TIP
Do	each	of	your	target	links	work?	If	not,	make	sure	the	anchor	name	is	correct.	Remember,	in
most	cases	links	are	case-sensitive,	so	if	you	capitalized	the	anchor	name,	you	need	to	capitalize	it
again	when	you	link	to	it.	In	addition,	check	to	see	you	have	included	a	hash	mark	(#)	before	each
anchor	name	when	you	link	to	it	(that	is,	href="#a").	For	more	tips,	see	Appendix	C.

Extra	Credit

1.	To	prepare	for	the	next	project,	switch	from	using	an	internal	style	sheet	to
an	external	style	sheet.	(Use	the	internal	style	sheet	from	index.html	as	the
basis	for	your	external	style	sheet.)

2.	Name	it	styles.css	and	save	it	in	the	same	folder	as	the	other	two	files.

3.	Add	a	link	to	your	external	style	sheet	from	both	index.html	and
services.html.

Style	Links
We	previously	discussed	changing	the	text	and	background	colors	for	pages.	As
with	other	attributes	that	change	color	in	HTML	pages,	you	need	to	specify	the
color,	whether	by	hexadecimal	code,	RGB	values,	or	a	predefined	color	name.
(More	information	about	how	to	find	color	values	is	listed	in	Chapter	3.)

You	specify	these	colors	with	style	sheets.	As	with	any	style	declaration,	you
can	specify	the	background,	text,	and	link	colors	in	an	inline,	internal,	or
external	style	sheet.	The	actual	properties	used	to	do	so	are	the	same,	however,
regardless	of	the	type	of	style	sheet	you	use.

You	actually	use	the	a	element	to	change	link	colors	with	style	sheets,	as	in
the	following	example:

While	this	specific	style	declaration	changes	the	links	on	the	entire	page,	you
could	also	use	classes	to	adjust	only	certain	link	colors.	This	is	particularly
handy	if,	for	example,	most	of	the	links	on	your	page	are	the	default	blue	but	the
background	of	your	navigation	bar	is	also	a	deep	blue.	One	way	to	take	care	of
this	is	to	create	a	class	with	a	different	color	link,	as	I	did	in	the	following	style
sheet:

After	you	create	these	classes	in	your	internal	or	external	style	sheet,	you	just
need	to	apply	it	to	the	links	you	want	affected.	This	is	achieved	by	adding	the

class	attribute	to	the	appropriate	a	elements,	as	in:

If	you	placed	all	of	your	navigation	links	inside	of	a	nav	element,	then
there’s	another	way	to	easily	change	the	colors	of	only	those	links.	This	is	a
perfect	chance	to	use	what	is	referred	to	as	a	descendant	selector.	In	the
following	code	example,	we	first	tell	the	browser	to	look	for	the	nav	section,	and
then	to	adjust	only	the	a	elements	that	fall	inside	that	section:

Default	Link	Colors
In	most	cases,	the	default	link	color	for	browsers	is	blue.	The	default	visited	link
color	is	purple,	and	the	active	link	color	is	red.	Remember,	as	with	many	other
features	of	web	browsers,	the	user	ultimately	controls	these	default	colors.

TIP
Although	not	required,	and	certainly	not	always	possible,	staying	with	a	blue/purple/	red	color
scheme	for	your	link/visited	link/active	link	colors	is	nice.	Visitors	to	your	site	may	adjust	to	the
navigation	more	quickly	if	the	color	scheme	is	similar	to	that	of	other	web	sites.

I	recommend	using	the	same	link	colors	on	all	the	pages	in	your	web	site	to
give	a	consistent	look	and	feel	across	the	pages.	In	addition,	it’s	wise	to	pick
visited	link	colors	that	don’t	stand	out	as	much	as	your	unvisited	links.	Both	of
these	recommendations	enable	visitors	to	scan	your	page	easily	and	identify
which	pages	they’ve	been	to	and	which	ones	they	haven’t	visited.

Finally,	remember	to	test	your	colors	on	a	number	of	different	computer
systems	to	ensure	they	appear	as	you	intend.	I	also	recommend	changing	your
monitor	settings	to	black	and	white	for	a	minute,	just	to	make	sure	your	links	are
visible	in	a	grayscale	environment.

Beyond	Colors
If	you	ever	changed	link	colors	with	older	HTML	tags,	you	know	that	there
wasn’t	much	else	you	could	do	to	links	beyond	changing	their	colors.	With	CSS,
you	can	style	your	links	to	really	stand	out	from	the	rest	of	the	text	on	your	page.

In	fact,	you	can	format	links	in	much	the	same	way	you	learned	to	style	regular
text	content	in	the	previous	chapter.	This	means	you	can	substitute	link	colors,
make	links	bold	or	italic,	or	even	change	the	perpetual	underline	that	comes	with
text	links	by	default.	Table	7-1	contains	code	to	give	you	a	few	ideas.

Table	7-1	Explanation	on	Sample	Code	Used	to	Style	Links

The	only	one	of	these	properties	we	haven’t	covered	thus	far	is	text-
decoration.	This	is	the	CSS	property	used	to	specify	whether	your	link
underlines	are	visible.	By	default,	all	linked	text	is	underlined	with	a	single	line
beneath	it,	the	same	color	as	the	linked	text.	With	this	property,	you	can	switch
to	an	overline,	a	line-through,	or	no	line	at	all	(none).

The	possibilities	are	endless,	so	I	encourage	you	to	experiment	with	ways	to
creatively	style	your	links.	Having	said	that,	I	do	have	a	few	words	of	caution:

•	Avoid	using	different	size	fonts	in	each	link	state,	unless	the	size	change	in	no
way	affects	the	surrounding	content.	(It	can	be	very	annoying	to	move	your
mouse	across	a	web	page	and	then	not	be	able	to	read	the	page	content
because	the	links	become	large	enough	to	block	the	text	around	them.)

•	Avoid	making	any	changes	that	cause	text	to	move	or	jump	around	on	the	page
when	a	link	is	activated.

•	Make	sure	to	pick	colors	that	complement	the	rest	of	the	page.	While	you	want
your	links	to	be	visible,	you	don’t	want	them	to	distract	the	reader.

Customize	Links	by	Setting	the	Tab	Order,

Keyboard	Shortcut,	and	Target	Window
You	can	further	customize	the	links	on	your	page	by	setting	the	title,	tab	order,
keyboard	shortcuts,	and	target	windows.	Although	many	of	these	options	have
little	effect	on	the	outward	display	of	the	page,	they	provide	added	benefit	to
users,	particularly	those	with	disabilities	(such	as	the	hearing-	or	vision-
impaired)	and	those	viewing	the	site	from	web-enabled	mobile	devices.

Title
The	title	attribute	is	actually	pretty	easy	to	use	and	understand,	and	goes	a	long
way	toward	helping	users	navigate	a	web	site.	When	you	add	it	to	a	link	(or	any
other	page	element),	you’re	giving	the	browser	and	user	a	little	bit	more	detail
regarding	the	content—in	this	case,	of	the	linked	file.	What	the	browser	does
with	the	contents	of	your	title	attribute	varies,	but	in	most	situations	the	text
appears	as	a	“tool	tip”	when	the	cursor	is	placed	over	the	link.

For	example,	in	the	following	code	snippet	and	illustration,	the	title
attribute	serves	to	alert	users	to	the	fact	that	clicking	the	link	will	take	them	to
another	web	site:

TIP
The	W3C	encourages	you	to	add	the	title	attribute	to	as	many	page	elements	as	you	can—
everything	from	images	and	links	to	paragraphs	and	sections	of	text—because	the	title	attribute
can	also	aid	in	style	sheet	development	and	general	page	usability.

Tab	Order
Frequent	users	of	screen-based	forms	understand	that	pressing	the	TAB	key
advances	your	mouse	pointer	to	the	next	available	form	field.	Usually,	the	tab
order	of	those	fields	is	specified	by	the	programmer	who	created	the	form.

In	like	manner,	you	can	customize	the	tab	order	of	links	and	form	field
elements	on	your	web	page	by	using	the	tabindex	attribute:

When	a	visitor	uses	the	TAB	key	to	navigate	your	web	page,	each	link	or
clickable	element	on	the	page	is,	in	turn,	highlighted.	If	no	order	has	been
specified	by	the	tabindex	attribute,	the	browser	will	make	its	best	effort	to	use	a
reasonable	tab	order,	usually	from	top	to	bottom	of	the	code.

After	successfully	using	the	TAB	key	to	highlight	the	link	the	person	wants	to
visit,	he	or	she	can	press	the	RETURN	or	ENTER	key	to	visit	that	link.

NOTE
You	can	use	any	number	between	0	and	32,767	for	the	value	of	the	tabindex	attribute,	or	use	a
negative	number	to	exclude	an	element	entirely	from	the	tab	order.

Keyboard	Shortcuts
Many	computer	users	are	familiar	with	some	common	keyboard	shortcuts,	such
as	copy	(CTRL-C/Windows	or	COMMAND-C/Mac)	and	paste	(CTRL-V/Windows	or
COMMAND-V/Mac).	Similarly,	you	can	assign	keyboard	shortcuts	to	links	in	your
web	page.	To	do	so	requires	adding	the	accesskey	attribute	to	the	a	element:

A	good	idea	is	to	include	the	keyboard	shortcut	next	to	your	link;	otherwise,
visitors	to	your	web	page	wouldn’t	know	it	exists.	Note	that	in	some	versions	of
IE	on	Windows,	users	must	press	ENTER	after	typing	the	accesskey	to	actually
visit	the	web	page.

TIP
Try	to	remember	any	universal	keyboard	shortcuts	when	you	come	up	with	your	own.	You
wouldn’t	want	to	disable	someone’s	ability	to	print,	for	example,	in	favor	of	a	link	in	your	web
page.

Target	Windows
Have	you	ever	visited	a	web	site	and	noticed	that	a	second	instance—either	a
new	window	or	tab—of	the	web	browser	opened	when	you	clicked	a	link?	This
happens	when	web	developers	use	the	target	attribute	to	load	links	in	a	browser
window	other	than	the	one	you’re	currently	using.

For	example,	you	may	want	to	offer	visitors	to	your	site	a	link	to	search
Yahoo!,	but	you	don’t	want	to	encourage	them	to	leave	your	site.	If	you	use
_blank	as	the	value	of	the	target	attribute	in	your	link	to	Yahoo!,	the	browser
will	launch	a	new	browser	window	or	tab	(depending	on	the	browser	settings)	to
load	http://www.yahoo.com.

Aside	from	targeting	new	windows,	you	can	also	target	specific	windows
you	have	named.	For	instance,	instead	of	using	_blank	to	launch	a	new	window,
you	might	use	“cars”	to	launch	a	window	that	is	named	“cars.”	Then,	any	time
you	have	a	link	related	to	cars,	you	can	add	target="cars"	to	your	link	and	all
those	links	will	load	into	the	“cars”	window.	Table	7-2	lists	three	of	the	possible
options	for	the	target	attribute.

Table	7-2	Commonly	Used	Values	for	the	target	Attribute

Try	This	7-2 Customize	Links
This	final	project	in	Chapter	7	gives	you	practice	customizing	links	by	changing
the	default	colors,	tab	order,	keyboard	shortcuts,	and	target	windows.	Goals	for
this	project	include

•	Changing	the	link	colors	for	a	page

•	Targeting	a	link	to	open	in	a	new	browser	window
•	Adding	titles	for	all	links	on	a	page
1.	Open	your	HTML	editor	and	open	both	the	index.html	page	and	the

services.html	page	saved	from	Try	This	7-1.

2.	Change	the	link	colors	on	both	pages	to	the	color	scheme	of	your	choice.
Save	all	files.	(If	you	created	styles.css	in	the	Extra	Credit	for	the	previous
project,	you	only	need	to	change	the	link	colors	in	that	one	file	to	alter	them
on	both	pages!	Refer	back	to	the	end	of	Try	This	7-1	if	you	missed	it.)

3.	Close	index.html.

4.	Switch	to	services.html	and	add	a	link	to	a	related	external	web	site
somewhere	on	the	page.	Target	a	new	browser	window	with	this	link.

5.	Add	titles	to	each	link	with	the	title	attribute.

6.	Save	the	file.

7.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	services.html	you
just	saved.

Preview	the	page	to	check	your	work.	If	you	need	to	make	changes,	return	to
your	text	editor	to	do	so.	After	making	any	changes,	save	the	file	and	switch
back	to	the	browser.	Choose	Refresh	or	Reload	to	preview	the	changes	you	just
made.

Although	users	and	browsers	ultimately	control	the	link	colors	on	your
pages,	you	can	make	recommendations	in	your	style	sheets.	This	project	gives
you	practice	changing	those	colors,	as	well	as	customizing	the	target	windows
for	your	links.

Chapter	7	Self	Test

1.	What	does	the	href	attribute	do?

2.	Which	of	these	can	be	classified	as	a	relative	link?
A.	
B.	
C.	
D.	

3.	What	must	be	installed	and	activated	on	a	user’s	machine	to	take	advantage
of	an	email	link	in	a	web	site?

4.	How	do	you	tell	the	browser	to	launch	a	link	in	a	new	window?

5.	Which	style	sheet	selector	enables	you	to	change	the	color	of	the	links	on
your	page	after	someone	has	clicked	them?

6.	In	Windows,	what	must	users	type	to	highlight	the	following	link?

7.	Fill	in	the	blank:	After	successfully	using	the	TAB	key	to	highlight	a	link,	you
must	press	the	__________	key	to	actually	visit	that	link.

8.	Fix	the	following	code:

9.	Add	the	appropriate	code	so	that	this	link	enables	users	to	email	you	at	your
personal	email	address.

10.	Which	tag	links	to	a	section	within	the	current	page?
A.	
B.	
C.	
D.	

11.	Which	common	phrase	should	always	be	avoided	when	naming	links?

12.	Fill	in	the	blank:	By	default,	all	linked	text	is	____________.

13.	True/False:	A	dot-dot-slash	tells	the	browser	to	go	up	a	level	in	the	directory
structure	before	looking	for	a	file.

14.	Which	links	to	a	section	named	Intro	within	the	web	page	named
genealogy.html?
A.	
B.	
C.	
D.	
E.	

15.	What	does	_blank	do	when	used	as	the	value	of	the	target	attribute?

Chapter	8

A

Working	with	Images

Key	Skills	&	Concepts

•	Become	Familiar	with	Graphics	Software
•	Recognize	Appropriate	Web	Image	File	Formats

•	Use	Images	as	Elements	in	the	Foreground	of	a	Web	Page

•	Specify	the	Height	and	Width	of	Images

•	Provide	Alternative	Text	and	Titles	for	Images
•	Link	Images	to	Other	Content	on	a	Web	Site

•	Add	Figure	Captions
•	Style	Foreground	Images
•	Use	Images	as	Elements	in	the	Background	of	a	Web	Page

t	its	beginning,	information	pages	on	the	Internet	were	text	only	and	didn’t
contain	any	images.	We’ve	come	a	long	way	since	then,	with	some	web

sites	now	consisting	solely	of	images.	While,	in	most	cases,	I	wouldn’t	advocate
using	only	images,	I	do	advocate	employing	images	to	spice	up	your	web	pages
wherever	they	make	sense.	The	saying	“a	picture	is	worth	a	thousand	words”
definitely	holds	true	for	the	Internet.

Locating	Web	Image	Sources
Whenever	you	create	a	web	site,	you	will	undoubtedly	want	to	include	images.	It
isn’t	always	necessary	to	create	your	own	images.	In	fact,	thousands	of	stock
images	are	available,	both	online	and	off.	Some	require	minimal	fees,	while
others	are	free.	Let’s	run	through	a	few	different	types	to	help	you	decide	what	to
use.

Use	Stock	Images
The	use	of	high-quality	photography	and	illustration	can	often	add	a	sense	of
professionalism	to	a	business	web	site,	but	many	businesses	don’t	have	the
budget	to	hire	photographers	to	do	private	photo	shoots	for	them.	If	you’re	in
this	predicament,	have	no	fear.	Plenty	of	stock	imagery	houses	offer	royalty-free
photography	and	illustrations	to	be	used	for	almost	any	purpose,	except	for
resale.

You	can	purchase	entire	CDs	of	images	with	a	particular	theme	at	your	local
computer	or	office	supply	store.	These	CDs	range	in	cost	from	$40	to	$500,
depending	on	the	quality	of	the	work	and	the	type	of	license	you’re	given.

You	can	also	search	online	and	purchase	the	right	to	use	an	individual
photograph	or	graphic.	The	costs	vary	according	to	how	you	plan	to	use	it.	For
example,	if	you	want	to	purchase	the	right	to	use	a	photo	only	on	your	web	site,
you	can	expect	to	pay	a	minimal	fee	as	low	as	a	few	dollars	(especially	on	sites
like	istockphoto.com).	If,	however,	you	want	to	use	the	same	image	in	all	your
printed	publications,	as	well	as	in	any	digital	presentations,	the	fees	typically
start	around	$100	and	go	up	from	there.

You	might	also	check	the	software	licenses	that	came	with	your	favorite
graphics	or	presentation	program.	For	instance,	registered	owners	of	Microsoft
Office	have	access	to	Microsoft’s	free	image	gallery	at
http://office.microsoft.com/clipart.

NOTE
Just	because	you	find	an	image	online	doesn’t	mean	it’s	available	for	you	to	use!	Always	check
the	license—if	available—and	ask	for	permission	before	using	personal	or	business	photos	that
belong	to	someone	else.

When	using	any	stock	images,	be	sure	to	read	the	terms	of	use	and	license
carefully.	While	you	may	find	free	stock	images,	they	are	often	restricted	only	to
noncommercial	use.	Here	are	a	few	other	resources	to	consider:	•	www.sxc.hu
•	www.stockvault.net
•	www.kozzi.com
•	www.morguefile.com
•	www.public-domain-photos.com

http://istockphoto.com
http://office.microsoft.com/clipart
http://www.sxc.hu
http://www.stockvault.net
http://www.kozzi.com
http://www.morguefile.com
http://www.public-domain-photos.com

•	www.flickr.com/creativecommons
•	www.highresolutiontextures.com
•	www.istockphoto.com
•	www.shutterstock.com
•	www.gettyimages.com

http://www.flickr.com/creativecommons
http://www.highresolutiontextures.com
http://www.istockphoto.com
http://www.shutterstock.com
http://www.gettyimages.com

Creating	Your	Own	Graphics
If	you	do	not	use	existing	graphics	on	your	pages,	you	may	need	to	create	some
of	your	own	or	hire	a	web	designer	to	do	so.	The	best	web	designers	typically
have	a	background	in	graphic	design	and	know	how	to	make	fast-loading,	good-
looking	graphics	for	the	Web.	You	can	locate	web	designers	either	by	word	of
mouth	or	by	searching	an	online	directory	such	as	The	Firm	List:
www.firmlist.com.

The	next	few	sections	provide	an	overview	of	the	process	of	creating	and
saving	web	graphics.

http://www.firmlist.com

Become	Familiar	with	Graphics	Software
If	you	check	out	the	software	section	(virtually	or	otherwise)	of	your	favorite
computer	store,	you	might	be	surprised	by	the	sheer	volume	of	graphics-related
software	available.	You	can	buy	clip	art	and	photography,	fonts,	scanning
utilities,	animation	titles,	photo	editing	programs,	desktop	publishing
applications,	drawing	tools,	and	so	forth.

NOTE
You’ll	hear	the	term	layers	used	a	lot	when	discussing	graphics	software.	Using	layers	in	a
graphics	program	is	similar	to	making	a	bed.	You	place	sheets,	blankets,	and	pillows	over	the
mattress,	but	you	can	change	any	of	those	items	freely	if	you	decide	you	dislike	one.	The	same	is
true	with	layers—you	can	paint	on	a	layer,	and	then	delete	it	later	if	you	don’t	like	it.	Layers	offer
much	flexibility	in	graphics	programs.	However,	once	you	export	a	file	for	use	in	a	web	page,
those	layers	are	merged,	or	flattened,	to	save	file	size	and	make	it	easily	portable.	So	if	you	want
to	make	changes	to	that	file,	you’ll	need	the	original—layered—source	file.

For	the	purposes	of	this	chapter,	I	focus	on	those	software	titles	that	offer
you	the	best	tools	for	creating	web	graphics.	Two	main	categories	of	graphics
software	titles	exist:	vector	and	bitmap.

Bitmap	applications,	also	called	raster	applications,	create	graphics	using
tiny	dots	known	as	bits.	These	types	of	images	are	more	difficult	to	resize
because	you	must	change	each	individual	dot,	but	they	have	been	around	longer
and	enjoy	more	support	from	file	formats.	GIFs	and	JPEGs	are	bitmap	images.

Vector	applications,	also	called	object-oriented	applications,	are	based	on
mathematically	calculated	lines	and	curves	that	are	easily	changed	and	updated.
Images	created	with	vectors	tend	to	be	smaller	in	file	size	and,	for	that	reason,
are	increasing	in	popularity	on	the	Internet.

TIP
Can’t	decide	which	graphics	program	to	purchase?	Most	options	have	trial	or	demo	versions
available	for	free.	Visit	each	company’s	web	site	for	details.

The	programs	discussed	here	are	by	no	means	the	only	products	available	for
creating	web	graphics.	Given	the	scope	of	this	book,	though,	I	thought	it	best	to
limit	the	discussion	to	the	most	popular	programs.	If	none	of	these	tools	suits
your	needs,	try	searching	in	Yahoo!	(www.yahoo.com)	or	CNET’s	download
center	(www.downloads.com)	for	“web	graphics,”	and	perhaps	you’ll	find	one
more	suitable	for	your	purposes.

http://www.yahoo.com
http://www.downloads.com

Adobe	Photoshop	and	Illustrator
Adobe	is	the	world	leader	in	graphics	and	imaging	software.	It	offers	such
renowned	titles	as	Photoshop	and	Illustrator,	which	have	been	used	in	the
printing	and	design	industry	for	years.

TIP
Adobe’s	products	are	available	for	Windows	and	Macintosh	systems.	For	more	information,	visit
www.adobe.com.

Photoshop	is	a	bitmap	program,	best	known	for	image	manipulation,	using
layers	to	allow	for	virtually	limitless	flexibility	in	design.	In	fact,	if	you’ve
recently	bought	a	new	scanner	or	printer,	you	might	have	acquired	a	scaled-back
version	of	Photoshop	with	it.	Illustrator,	on	the	other	hand,	is	a	vector	tool,	more
suited	for	freehand	drawing	and	illustration.	However,	both	products	can	save
and	open	web	file	formats.

In	many	design	circles,	Adobe’s	Photoshop	is	the	product	to	use.	For	the
typical	home	user,	however,	the	price	for	the	full	version	is	a	bit	steep	(over
$650).	If	you’re	familiar	with	Adobe’s	products	and	enjoy	them,	I	recommend
sticking	with	Photoshop.	Likewise,	if	you’re	interested	in	creating	web	graphics
as	well	as	editing	images	for	printed	publications,	Photoshop	is	your	best	bet.
But	if	your	particular	interest	is	more	in	the	graphical	or	illustrative	realm,	I
suggest	you	download	a	trial	of	Adobe	Illustrator	to	see	if	that	better	serves	your
needs.

If	you	don’t	fall	into	either	of	those	categories,	you	might	be	interested	in
Photoshop	Elements	(the	scaled-back,	but	still	fabulous,	version),	which	costs
around	$100.	While	this	version	doesn’t	have	all	the	high-powered	image	editing
tools	used	by	the	professionals,	it’s	more	than	capable	of	handling	the	needs	of
someone	just	starting,	and	it	even	has	a	few	bells	and	whistles	that	the	full
version	doesn’t.	Photoshop	Elements,	available	for	both	the	Mac	and	the	PC,	is	a
superb	gateway	graphics	program	for	the	typical	home	user.

TIP
If	you	are	a	student	or	are	employed	by	an	academic	institution,	remember	to	check	into	academic
pricing	for	software	like	this,	since	Adobe	offers	significant	academic	discounts.	Also,	their
subscription	options	can	make	software	quite	affordable.	For	example,	you	can	use	Photoshop	for
as	little	as	$19.99/month	if	you	pay	for	a	year	at	a	time.

http://www.adobe.com

Other	Options
While	the	Adobe	tools	are	by	far	the	most	popular	web	graphics	applications,
there	are	several	other	options	available	that	might	be	more	appropriate	for	you.
Corel	fans	particularly	enjoy	Draw	and	Photo-Paint	(www.corel.com),	which	are
Corel’s	competitors	to	Illustrator	and	Photoshop.	Features	include	animation,
direct	digital	camera	support,	layers,	filters,	watermarks,	special	effects,	and
advanced	text	tools,	such	as	text	typed	along	a	curve	or	custom	path.

Xara	(www.xara.com)	is	another	company	that	offers	a	few	competing	tools
for	cost-conscious	users	who	are	relatively	new	to	web	design.	Photo	&	Graphic
Designer	FX	is	less	than	$100,	and	touts	all	of	the	basic	features	you’ll	likely
need.	But	if	you’re	looking	for	a	few	advanced	options,	like	Pantone	color
libraries	or	built-in	PayPal	integration,	consider	the	Designer	Pro	X	version	for
under	$300.	(Xara’s	software	packages	are	Windows-only.)	Everyone	always
wants	to	know	if	you	can	get	some	software	for	free.	Normally,	I’d	say,	“not
legally,”	but	in	this	case	there	actually	is	an	option	for	you:	GIMP,	which	is	an
acronym	for	GNU	Image	Manipulation	Program.	GIMP	is	freely	distributed
from	www.gimp.org	for	the	Mac,	Windows,	and	UNIX	platforms.	Its	features
include	photo	retouching,	image	composition,	and	image	authoring.	If	you’re
just	getting	started	with	creating	your	own	web	graphics	and	aren’t	interested	in
spending	a	lot	of	money	until	you	know	if	this	is	something	to	which	you	want
to	commit,	GIMP	might	be	the	perfect	way	to	start.	And	who	knows,	you	may
even	decide	you	don’t	need	anything	else.

Recognize	Appropriate	Web	Image	File	Formats
Now	that	you	have	some	ideas	about	software	to	use,	let’s	talk	about	the	file
formats	necessary.	If	you	try	to	load	a	TIFF	or	PICT	into	your	web	page,	users
will	see	a	broken	image	symbol.	This	occurs	because	graphics	in	web	pages
must	be	in	a	format	understood	by	the	web	browser.	The	most	popular	graphics
file	formats	recognized	by	web	browsers	are	GIF,	JPEG,	and	PNG.

http://www.corel.com
http://www.xara.com
http://www.gimp.org

Terminology
Before	you	dive	into	the	nuts	and	bolts	about	those	file	types,	you	need	to	learn	a
few	terms	that	relate	to	web	file	formats.

Compression	Methods
Web	graphic	file	formats	take	your	original	image	and	compress	it	to	make	it
smaller	for	web	and	email	delivery.	Two	types	of	compression	methods	are	used
for	web	graphics:	•	Lossy
•	Lossless

Lossy	compression	requires	data	to	be	removed—permanently—from	the
image	to	compress	the	file	and	make	it	smaller.	Typically,	areas	with	small
details	are	lost	as	the	level	of	lossy	compression	is	increased.	Lossless
compression	is	the	opposite	of	lossy,	in	that	no	data	is	lost	when	the	file	is
compressed.	In	these	cases,	the	actual	data	looks	the	same	whether	it’s
compressed	or	uncompressed.

Resolution
You	might	have	considered	your	monitor’s	resolution	previously,	but	in	this	case
I’m	referring	specifically	to	file	resolution.	Whenever	you	create	or	edit	a	file	in
a	graphics	editor,	you	need	to	specify	a	file	resolution	(see	Figure	8-1).	The
standard	file	resolution	for	web	graphics	is	72	pixels	per	inch	(ppi).

Figure	8-1	When	working	with	web	graphics,	use	a	file	resolution	of	72	ppi.

NOTE
Don’t	be	confused	if	you	see	dpi	(dots	per	inch)	used	interchangeably	with	ppi.	Technically
speaking,	dpi	is	more	often	linked	to	a	printer’s	“dots	per	inch,”	while	monitors	are	considered	to
have	“pixels	per	inch.”

Transparency
When	you	view	an	image	and	are	able	to	see	through	parts	of	it,	that	image	is
said	to	have	transparency.	Some	graphics	editors	show	this	transparency	by
displaying	a	gray	and	white	checkerboard	behind	the	image.	Figure	8-2	shows	an
example	of	this	in	Photoshop.

Figure	8-2	When	a	file	with	transparency	is	displayed	in	a	graphics	program,
you	typically	see	a	gray	and	white	checkerboard	in	the	transparent
areas	of	the	image.

When	a	web	graphic	contains	transparency,	the	page’s	background	color	or
background	tile	shows	through	in	the	transparent	areas.

File	types	that	support	transparency	fall	into	two	categories:	binary	and
variable.	Binary	transparency	means	any	given	pixel	is	either	transparent	or
opaque.	Variable	transparency,	also	known	as	alpha	channel,	allows	pixels	to	be
partially	transparent	or	partially	opaque;	therefore,	it	is	capable	of	creating	subtle
gradations.

Certain	file	types	don’t	support	transparency.	If	the	image	shown	in	Figure	8-
2	were	to	be	saved	in	a	file	format	not	supporting	transparency,	the	areas	shown
in	a	checkerboard	would	be	filled	in	with	a	solid	color.

Animation
Some	web	file	formats	support	animation	as	well	as	still	images.	These
animation	files	contain	two	or	more	individual	files	called	animation	frames.
The	following	illustration	shows	three	frames	of	an	animation.	Notice	that	the
position	of	the	rattle	changes	slightly	from	frame	to	frame.

When	the	file	is	played	back	through	the	browser,	viewers	watch	the	various
frames	of	the	animation	appear,	one	after	the	other.	The	rate	at	which	the	frames
change	can	vary	between	a	speedy	filmstrip	and	a	slowly	blinking	button.	In	the
preceding	example,	the	rattle	appears	to	shake.

The	most	common	example	of	this	type	of	animation—bitmap	animation—is
GIF	animation.	More	robust	animation	tools	are	those	that	use	vectors	instead	of
bitmaps.	This	means	the	animation	is	sent	as	a	series	of	instructions	instead	of
actual	pixel	renderings.	The	result	is	much	more	fluid	animation	that	downloads
in	a	fraction	of	the	time	a	similar	bitmap	animation	would.	Flash	is	the	most
common	type	of	vector	animation.	In	addition,	HTML5	introduces	animation
right	within	the	page,	using	the	canvas	element	and	JavaScript.	I’ll	discuss	that	a
bit	more	in	Chapter	14.

GIF
GIF	is	the	acronym	for	graphic	interchange	format.	Originally	designed	for
online	use	in	the	1980s,	GIF	uses	a	compression	method	that	is	well	suited	to
certain	types	of	web	graphics.	This	method,	called	LZW	compression,	is	lossless
and	doesn’t	cause	a	loss	of	file	data.	However,	several	characteristics	of	GIFs
restrict	the	type	of	files	capable	of	being	saved	as	GIFs.	Table	8-1	lists	these	and
other	characteristics	of	the	GIF	file	type.

Table	8-1	GIF	File	Format	Characteristics

NOTE
According	to	its	creator,	GIF	is	officially	pronounced	with	a	soft	g.	Because	the	word	is	an
acronym,	though,	many	people	pronounce	it	with	a	hard	g.

Because	of	these	characteristics,	the	following	types	of	images	lend
themselves	to	being	saved	as	GIFs.	Notice	all	of	these	are	limited	in	colors.

•	Text
•	Line	drawings
•	Cartoons
•	Flat-color	graphics

Ask	the	Expert
Q:	I	noticed	photographs	aren’t	on	this	list.	I’ve	seen	plenty	of

photographs	used	on	web	pages—can’t	they	be	saved	as	GIFs?

A:	Images	with	photographic	content	shouldn’t	usually	be	saved	as	GIFs,
unless	they’re	part	of	an	animation	or	require	transparency.	Other	file
types	are	more	capable	of	compressing	photographs.	In	fact,	the	JPEG
file	format	was	created	specifically	for	photographs	and	shouldn’t	be
used	for	other	types	of	images	such	as	flat-color	graphics	and	text.

Save	a	GIF
When	you	save	a	file	as	a	GIF	in	a	graphics	program,	you	have	the	option	of
saving	your	image	with	or	without	dithering.	GIF	color	palettes	only	have	a
limited	number	of	colors,	and	the	fewer	colors	present,	the	smaller	the	file	size.
When	you	want	to	reduce	the	number	of	colors	in	the	palette,	the	program	must
know	what	to	do	with	the	areas	in	your	image	that	contain	the	colors	you’re
removing.

TIP
The	g	in	GIF	gives	you	a	hint	about	what	types	of	images	are	best	saved	as	GIFs:	graphics	(as
opposed	to	photographs).

If	you	tell	the	program	to	use	dithering	(you	can	specify	any	amount	of
dithering	between	0	and	100	percent),	it	may	use	multiple	colors	in	a
checkerboard	pattern	in	those	areas	to	give	the	appearance	of	the	color	you
removed.	If	no	dithering	is	used,	the	removed	colors	are	replaced	with	another
solid	color	(see	Figure	8-3).	Dithering	can	be	useful	in	giving	the	appearance	of
gradations	or	subtle	color	shifts,	but	be	forewarned—it	adds	to	the	file	size.

Figure	8-3	In	this	example,	the	photograph	on	the	bottom	is	dithered,	while	the
photograph	on	the	top	is	not.

TIP
Few	images	actually	need	all	256	colors	available	in	a	GIF	color	palette.	Try	reducing	the	number
of	colors	all	the	way	down	to	8	or	16,	and	work	your	way	back	up	as	high	as	you	need	to	go	to
make	the	image	look	acceptable.	This	assures	that	you	reach	the	minimum	colors	more	easily	than
if	you	try	to	work	from	the	most	colors	on	down.	Remember,	the	fewer	colors	in	the	palette,	the
smaller	the	file	size.

JPEG
The	JPEG	file	format	(pronounced	jay-peg)	was	created	by	the	Joint
Photographic	Experts	Group,	who	sought	to	create	a	format	more	suitable	for
compressing	photographic	imagery.	After	reading	Table	8-2,	review	Table	8-1	to
compare	JPEG’s	characteristics	with	those	of	GIF.

One	major	difference	between	GIFs	and	JPEGs	is	that	JPEGs	don’t	contain
an	exact	set	of	colors.	When	you	save	a	photograph	as	a	JPEG,	you	might
consider	all	the	colors	in	the	file	to	be	recommended,	because	the	lossy
compression	might	require	some	colors	to	be	altered.	In	addition,	all	web	JPEG
files	must	be	in	the	RGB	(Red,	Green,	Blue)	color	mode,	as	opposed	to	the	print
standard—CMYK	(Cyan,	Magenta,	Yellow,	Black).

Table	8-2	JPEG	File	Format	Characteristics

Save	a	JPEG
When	you	save	an	image	as	a	JPEG,	you	choose	between	several	different
quality	levels.	The	highest-quality	JPEG	has	the	least	amount	of	compression
and,	therefore,	the	least	amount	of	data	removed.	The	lowest-quality	JPEG	has
the	most	amount	of	data	removed	and	often	looks	blotchy,	blurry,	and	rough.	I
usually	save	JPEG	images	with	a	medium	quality.	The	decision	is	made	based	on
how	low	in	quality	you	can	go	without	compromising	the	integrity	of	the	file:
The	lower	the	quality	level,	the	lower	the	file	size.

PNG
PNG,	which	stands	for	Portable	Network	Graphics	and	is	pronounced	ping,	is
the	newest	and	most	flexible	of	these	three	graphics	file	formats.	After	looking	at
the	list	of	characteristics	for	PNG	in	Table	8-3,	you	might	think	of	PNG	as	being
the	best	of	both	the	GIF	and	JPEG	formats.

Table	8-3	PNG	File	Format	Characteristics

TIP
The	32-bit	color	format	is	similar	to	24-bit	color	because	it	also	has	millions	of	colors.	However,
32-bit	color	also	has	a	masking	channel,	which	can	be	used	for	alpha	transparency.

An	additional	benefit	of	PNG	is	its	gamma	correction.	The	PNG	file	format
has	the	capability	to	correct	for	differences	in	how	computers	and	monitors
interpret	color	values.

Save	a	PNG
When	saving	a	file	as	a	PNG,	you	must	first	choose	how	many	colors	to	include
in	its	palette.	Saving	as	PNG-8	uses	an	exact	palette	of	256	colors	or	less.
Transparency	and	dithering	are	available	in	the	PNG-8	setting.	PNG-24	and
PNG-32	offer	24-bit	(millions)	and	32-bit	(millions,	plus	an	alpha	channel)	color
modes,	respectively.

Choose	the	Best	File	Format	for	the	Job
Now	that	you	know	a	little	about	the	different	web	graphics	file	formats,	you’re
probably	wondering	how	you	might	select	the	best	format	for	the	job.	While	I
wish	I	could	give	you	a	foolproof	method,	the	answer,	ultimately,	lies	in	your
own	testing.

Luckily,	many	of	the	popular	graphics	programs	make	this	testing	easy.	For
example,	Photoshop	enables	you	to	compare	how	a	single	image	might	look
when	saved	in	any	of	these	file	formats.

TIP
If	the	graphics	program	you’re	using	doesn’t	allow	you	to	compare	and	preview	file	types,	save
several	different	versions	of	the	same	file	and	preview	each	one	in	a	browser.	Compare	their	file
size	(with	regard	to	download	speed)	and	appearance	to	determine	which	file	type	and	settings	are
the	best.

In	the	preceding	example,	I	used	Photoshop’s	Save	For	Web	feature	to
compare	three	different	quality	levels	for	the	JPEG	file	format.	The	settings	and
file	sizes	are	printed	below	each	example	to	help	decide	which	would	work	the
best.

Choosing	the	best	file	format	is	like	shopping—you	are	looking	for	the	file
format	that	looks	the	best,	but	costs	the	least.	In	this	case,	the	cost	comes	in
download	time	for	web	page	visitors.

Try	This	8-1

Save	Web	Graphics
Designers	often	receive	images	for	web	pages	on	disc,	via	email,	or	even	in
printed	format.	On	receipt	of	these	files,	you	need	to	put	them	in	a	web-ready
format	by	saving	them	as	GIFs,	JPEGs,	or	PNGs.

If	you	have	a	graphics	program,	this	project	gives	you	a	chance	to	practice
saving	different	types	of	images	in	the	appropriate	web	file	format.	If	you	don’t
already	have	a	graphics	program,	you	might	visit	the	web	sites	listed	in	the
beginning	of	this	chapter	to	download	trial	copies	or	demo	versions.	Goals	for
this	project	include	the	following:	•	Saving	a	photograph	in	an	appropriate	web
file	format

•	Saving	an	illustration	in	an	appropriate	web	file	format

NOTE
You	will	need	a	few	image	files	to	use	for	this	project.	Search	your	computer’s	hard	drive	and/or
Google	Images	to	find	a	few	practice	files.	At	this	point,	we	are	less	concerned	about	the	actual
image	content	as	much	as	the	process	by	which	web	graphics	are	saved.

1.	Open	your	graphics	editor	and	load	a	logo	file,	an	illustration,	or	another
graphical	image	(something	other	than	a	photograph).

2.	Adjust	the	dpi	and	pixel	dimensions	to	be	more	suited	toward	placement	of
this	image	in	a	web	page.

3.	Determine	which	file	format	is	the	most	appropriate	for	this	image,	using	any
of	the	following	techniques.	If	necessary,	keep	track	of	your	progress	by
entering	each	file’s	setting	in	the	following	table.	The	first	two	rows	give
examples	of	how	the	table	might	be	used.

•	Review	the	guidelines	in	this	chapter.

•	If	available,	use	the	program’s	preview	and	compare	features.

•	Save	multiple	versions	of	the	file,	using	different	settings	in	each	one,	and
view	them	in	a	web	browser.

4.	Repeat	this	process	for	a	photographic	image.

5.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,

depending	on	the	browser	you’re	using).	Locate	the	graphics	you	just	saved.
Make	sure	the	image	appears	as	you	intended.

6.	If	you	need	to	make	changes,	return	to	your	graphics	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

TIP
Do	you	see	broken	image	symbols	instead	of	your	images?	Make	sure	the	filenames	end	in	a
three-letter	extension	(such	as	.gif	or	.jpg).	If	they	don’t,	go	back	to	your	graphics	editor	and
resave	or	re-export	the	file	as	a	GIF,	JPEG,	or	PNG.	For	more	tips,	see	Appendix	C.

Creating	your	own	web	graphics	can	be	a	great	way	to	add	your	own
personal	style	to	your	web	pages.	This	project	gave	you	a	chance	to	practice
saving	files	in	formats	viewable	on	the	Web.

Use	Images	as	Elements	in	the	Foreground	of	a
Web	Page
Now	that	you	have	a	basic	understanding	of	how	to	save	web	images,	let’s
discuss	how	to	insert	them	into	your	site.	You	can	easily	add	images	anywhere
on	your	web	page	by	using	the	img	element,	where	img	is	short	for	image.	Add
the	src	attribute	(short	for	source),	supply	the	appropriate	value,	and	you’re	off
and	running.

When	you	use	the	img	element,	you’re	telling	the	browser	to	display	the
image	right	within	the	web	page.	In	doing	so,	remember	the	following	few
things:	•	Your	image	should	be	in	a	web-friendly	file	format,	such	as	GIF,	JPEG,
or	PNG.

•	The	value	of	your	src	attribute	should	include	the	correct	pathname	and
location	of	your	file.	So,	if	the	image	you	want	to	use	is	not	located	in	the
same	folder	as	the	HTML	page	you’re	working	on,	you	need	to	tell	the
browser	in	which	folder	that	image	is	located.	For	example,	if	you	want	to
include	an	image	located	one	directory	higher	than	the	current	directory,	you
would	use	src="../photo.jpg",	where	the	../	tells	the	browser	to	go	up	one
directory	before	looking	for	the	image	file.	If	you	want	to	reference	an	image
from	another	web	site,	first	you	must	obtain	permission	from	the	image’s
owner.	Then,	you	could	use
src="http://www.websitename.com/images/photo.jpg",	where	the	URL
is	the	full	name	of	the	image	location	on	the	other	site.

•	In	general,	each	image	should	serve	a	unique	purpose	and	add	something	to
your	web	page.	Because	visitors	have	to	wait	while	images	download	to	their
computers,	it’s	wise	not	to	bog	down	your	page	with	gratuitous	graphics	that
serve	little	or	no	purpose.

Specify	the	Height	and	Width	of	Images
After	you	start	adding	several	images	to	your	web	pages,	you	may	notice	they
sometimes	cause	the	browser	to	wait	a	few	seconds	before	displaying	the	page.
Because	they	don’t	know	the	size	of	the	image,	some	browsers	actually	wait
until	the	images	are	all	loaded	before	displaying	the	web	page.

Therefore,	you	can	help	speed	the	display	of	your	web	pages	by	telling	the
browser	the	sizes	of	your	images	right	within	the	img	tag.	You	do	so	with	the
height	and	width	attributes.

If	you	don’t	know	the	size	of	your	image,	you	can	open	it	in	a	graphics	editor
to	find	out.	Or	you	can	use	the	browser	to	determine	the	size	of	your	images.

•	In	Firefox/Mozilla	for	the	Mac	and	PC,	as	well	as	in	Safari	for	the	Mac
First,	load	the	image	by	itself	into	the	browser	window	(choose	File	|	Open
or	File	|	Open	Page	and	locate	the	image	file	on	your	computer).	Then,	look
at	the	top	of	the	browser	window	where	the	title	is	usually	displayed.	When
you	view	an	image	file,	these	browsers	print	the	width	and	height	of	the
image	(in	that	order)	in	the	title.

•	In	Internet	Explorer	Load	the	image	into	the	browser	window	(choose	File	|
Open	and	locate	the	image	file	on	your	computer,	or	drag	it	from	the	desktop
into	an	open	browser	window).	Then,	right-click	the	image	and	choose
Properties.	The	size	is	displayed	as	dimensions	(width	×	height).

TIP
If	a	magnifying	glass	is	displayed	when	you	hover	over	the	image	in	the	browser,	you	are	not
viewing	the	full-size	image.	Click	the	magnifying	glass	to	enlarge	the	image	to	its	full	size,	and
then	view	the	dimensions.

You	can	also	use	the	height	and	width	attributes	to	change	the	size	of	an

image.	For	example,	if	you	were	given	an	image	that	was	50	pixels	high	by	60
pixels	wide,	you	could	change	that	size	by	specifying	a	different	size	in	the
HTML	(such	as	50	pixels	wide	by	50	pixels	high).	This	causes	the	browser	to
attempt	to	redraw	the	image	at	the	newly	specified	size.	I	don’t	recommend
doing	this—and	neither	does	the	W3C—because	it	may	not	only	slow	down	the
display	of	your	pages,	it	may	also	cause	the	image	to	lose	proper	proportions.
Creating	the	image	at	whatever	size	you	need	it	to	be	within	your	page	is	best.

Provide	Alternative	Text	and	Titles	for	Images
Some	people	visiting	your	site	won’t	be	able	to	see	the	images	on	your	pages.
This	might	be	the	case	for	a	variety	of	reasons,	but	here	are	a	few	of	the	most
common	ones:	•	They	have	turned	images	off	in	their	browsers	Most
browsers	have	a	setting	in	the	preferences	that	enables	you	to	disable	images	on
pages.	By	turning	off	images,	visitors	are	able	to	view	web	pages	more	quickly,
and	then	choose	which	(if	any)	images	they	want	to	see.

•	They	are	using	text-only	browsers	Although	a	small	minority	of	people	using
desktop	computers	have	text-only	browsers,	some	of	those	with	handheld
devices	do	use	text-only	browsers	on	a	daily	basis.	These	handheld	devices
might	include	Internet-ready	telephones,	pagers,	and	palm-size	computers.	In
addition,	those	who	are	vision-impaired	often	use	text-only	browsers	with
additional	pieces	of	software	that	read	the	pages	to	them.	In	these	cases,	your
alternate	text	may	be	the	only	way	vision-impaired	people	can	understand
the	purpose	of	your	images.

•	The	image	doesn’t	appear	Sometimes,	even	though	you	coded	the	page
properly,	the	visitor	to	your	site	doesn’t	see	every	single	image	on	the	page.
This	could	happen	if	too	much	traffic	occurs,	or	when	visitors	click	the	Stop
button	in	their	browser	before	the	page	has	fully	loaded.

The	good	news	is	you	can	do	something	to	help	visitors	to	your	site
understand	the	content	of	your	images,	even	if	they	can’t	see	them.	You	can	use
the	alt	attribute	in	the	img	tag	to	provide	alternative	text	for	an	image.

The	text	value	of	the	alt	attribute	displays	in	the	box	where	the	image
should	be	located	if	the	browser	cannot	find	the	image	or	if	it	isn’t	set	to	display
images	(see	Figure	8-4).

Figure	8-4	This	screen	shows	how	Safari	displays	the	alternative	text	if	it	cannot
find	the	image.	Without	that	alternative	text,	viewers	wouldn’t	have
any	idea	what	they	were	supposed	to	see.

In	addition	to	the	alt	attribute,	it’s	a	good	idea	to	add	the	title	attribute	to
your	img	tag.	While	the	alt	attribute	specifies	alternative	text	for	images	in	case
the	images	don’t	load,	the	title	attribute	is	displayed	in	a	box	near	your	pointer
arrow	when	the	arrow	is	positioned	over	the	image.	In	addition,	the	title
attribute	can	be	added	to	images	as	well	as	links	and	other	page	elements.	It
serves	as	a	quick	tip	for	users	to	briefly	explain	the	contents	of	the	page	element
or,	in	this	case,	the	image.

TIP
This	process	of	showing	informative	text	when	the	mouse	moves	over	an	image	is	also	called	a
tool	tip	in	other	software	programs.

Link	Images	to	Other	Content	on	a	Web	Site
In	the	preceding	chapter,	you	learned	how	to	create	links	to	other	pieces	of
information	on	the	Internet.	Text	phrases	were	used	to	mark	links	and	give
visitors	something	to	click.	You	could	also	use	an	image	to	label	a	link,	with	or
without	an	additional	text	marker.	Figure	8-5	shows	an	example	of	an	image
used	as	a	link	without	an	additional	text	label,	while	Figure	8-6’s	linked	image
does	have	a	text	label.

Figure	8-5	Here,	an	image—in	this	case,	an	animated	banner	ad—is	used	as	a
link	to	another	web	page.

Figure	8-6	As	an	alternative,	a	text	label	has	been	added	in	this	example	to	help
users	understand	where	the	link	will	take	them.

Link	the	Entire	Image
To	link	an	entire	image,	as	in	Figures	8-5	and	8-6,	you	need	only	to	add	an	a	tag
and	the	href	attribute	around	the	image.	Both	figures	show	a	linked	banner	ad.
The	associated	code	looks	like	this:	

As	with	any	other	linked	elements	in	a	web	page,	the	visitor’s	pointer	turns
to	a	hand	when	she	moves	her	mouse	over	the	linked	image	(refer	to	Figures	8-5
and	8-6	for	examples).

TIP
When	I	link	an	image,	I	like	to	add	“LINK:”	to	the	beginning	of	my	alternative	text.	This
immediately	lets	users	who	can’t	see	the	image	know	it	is	also	a	link.

Link	Sections	of	an	Image
You	can	also	link	sections	of	an	image,	creating	what	are	called	image	maps.
When	only	sections	of	an	image	are	linked	(as	opposed	to	the	entire	image),	the
visitor’s	pointer	only	changes	to	the	hand	when	he	moves	his	mouse	over	one	of
the	predefined	hot	spots	on	the	image.	Each	hot	spot	within	an	image	map	can
link	to	its	own	web	page,	if	wanted.

So,	looking	back	at	the	drawing	of	a	turtle,	an	image	map	could	be	used	to
link	the	eyes	to	one	web	page	and	the	shell	to	a	different	one.	Another	example
of	an	image	map	is	a	picture	of	the	United	States,	where	each	state	could	be
designated	as	a	hot	spot,	with	its	own	link.

In	this	example,	when	you	move	your	mouse	over	the	state	of	Texas,	for
example,	the	pointer	changes	to	a	hand	telling	you	Texas	is	a	link.	You	can	see	in
the	status	bar	at	the	bottom	that	the	Texas	hot	spot	links	to	a	page	called
texas.html.	If	you	moved	your	mouse	over	another	state,	such	as	New	Mexico,
you	would	see	it’s	linked	to	newmexico.html.

The	technical	term	for	the	type	of	image	map	discussed	here	is	“client-side
image	map.”	Client-side	image	maps	are	so	called	because	all	the	work	is	done
on	the	client’s	(or	visitor’s)	computer.	The	“work”	I	refer	to	is	the	computation
of	where	the	hot	spot	is	located	and	to	which	link	it	corresponds.	All	the
information	about	which	hot	spot	is	where	and	what	it	links	to	is	included	within
the	original	HTML	file.	This	makes	for	easy	access	by	your	visitor’s	web
browser	because	it	doesn’t	have	to	look	for	the	information	elsewhere.	The
following	example	shows	what	that	code	looks	like.	First,	we	have	to	tell	the
browser	this	image	will	be	used	as	an	image	map.	Use	the	usemap	attribute	to	do
that	and	tell	the	browser	where	to	look	for	the	map	file:	

Then	we	name	the	map:

…and	define	each	hot	spot:

After	defining	all	the	hot	spots	in	the	image,	don’t	forget	to	close	the	map	tag:

You	use	the	usemap	attribute	of	the	img	tag	to	specify	the	image	as	a	client-
side	image	map.	This	attribute	works	similarly	to	something	you	learned	in	the
preceding	chapter:	links	within	a	page.	The	reason	for	this	is	that	the	map	tag
contains	a	name	attribute	that	enables	you	to	link	to	it.

When	you	use	the	usemap	attribute,	you	reference	whatever	name	you	gave
to	your	map	in	the	map	tag.	So,	in	the	previous	example,	the	image	references	an
image	map	called	“usa”	(usemap="#usa"),	which	is	defined	further	down	the
page	by	<map	name="usa">.

NOTE
Remember,	whenever	you	reference	a	client-side	image	map,	you	need	to	use	the	hash	mark	(#)
before	the	name	of	the	map	to	tell	the	browser	you’re	referencing	something	contained	within	a
named	section	of	the	page.

Let’s	look	at	the	code	a	little	more	closely.

Here’s	your	basic	img	tag,	with	the	addition	of	the	usemap	attribute.	The
value	of	the	usemap	attribute	(in	this	case,	usa)	should	be	enclosed	in	quotes	and
preceded	by	a	hash	mark	(#).

The	map	element	surrounds	all	the	other	information	defining	hot	spots	in
your	image.	The	opening	and	closing	tags	are	both	required.	The	map	element
and	its	enclosed	information	can	actually	be	located	anywhere	within	your
HTML	page	and	needn’t	be	immediately	below	the	corresponding	img	tag.	The
name	attribute	is	used	with	the	map	tag	to	enable	you	to	reference	it	from
anywhere	else	on	the	page	(or	any	other	page,	for	that	matter).

In	between	the	opening	and	closing	map	tags	are	area	tags	for	each	hot	spot.
The	area	element	has	four	basic	attributes	(see	Table	8-4).

Table	8-4	Attributes	for	the	area	Element

Finally,	you	end	this	section	by	closing	the	map	tag.

Finding	Hot-Spot	Coordinates

If	you	need	to,	you	can	likely	use	your	favorite	graphics	program	or	HTML
editor	to	find	the	coordinates	of	your	hot	spots.	Alternatively,	there	are	plenty	of
online	tools	that	can	help	you	find	the	hot	spots	and	code	the	image	map	for	you.
Check	out	www.kolchose.org/simon/ajaximagemapcreator	to	see	one	in
action.

http://www.kolchose.org/simon/ajaximagemapcreator

Add	Figure	Captions
Prior	to	HTML5,	there	was	no	easy	way	to	semantically	connect	a	figure	caption
to	the	actual	image.	Thankfully,	we	can	use	the	figure	and	figcaption	elements
to	do	just	that.	The	following	code	snippet	and	illustration	show	the	code	and
resulting	browser	display	for	a	single	photo	and	caption:	

When	you	use	the	figcaption	element,	it	must	be	placed	inside	the	figure
element,	and	must	contain	both	opening	and	closing	tags.	You	can	then	use	the
figcaption	tag	as	a	selector	in	your	style	sheet	to	format	the	caption	to	match
your	site’s	look	and	feel.	(We’ll	look	at	an	example	of	this	shortly.)	NOTE
It’s	not	necessary,	or	even	recommended,	to	put	all	of	your	images	inside	figure	elements.	Logo
and	navigational	items,	for	instance,	are	not	part	of	the	actual	informational	content	of	a
document,	and	therefore	should	not	be	placed	inside	figure	elements.

You	can	also	use	the	figure	and	figcaption	elements	to	connect	more	than

just	images	with	their	captions.	Suppose	you	created	a	table	of	reference
information	and	wanted	to	place	it	within	a	large	text	block.	You	could	place	the
table	or	other	diagram	within	a	figure	element,	and	then	add	a	caption	to	explain
the	purpose	of	the	figure.

Style	Foreground	Images
While	the	basic	img	element	provides	an	easy	way	to	add	images	to	your	web
pages,	you	likely	want	to	do	a	whole	lot	more	than	just	plop	those	images	down
on	the	page.	Style	sheets	enable	you	to	customize	the	borders,	align	images	with
text,	and	a	whole	lot	more.

Borders
You	might	have	noticed	that	many	linked	images	have	borders	around	them.
This	happens	because	all	linked	images	automatically	have	borders,	just	as	all
linked	text	automatically	has	underlines.	The	earlier	HTML	specifications
allowed	for	a	border	attribute,	which	was	used	to	specify	the	size	of	an	image’s
border,	as	in	the	following	example:	

NOTE
Some	versions	of	Internet	Explorer	turn	off	borders	for	images	by	default.	However,	because	this
is	not	true	for	all	browsers,	you	should	turn	it	off	yourself	if	you	indeed	want	it	to	be	off.

The	value	of	the	border	attribute	is	expressed	in	pixels,	where	the	default	is
1	for	linked	images	and	0	for	nonlinked	images.	If	you	wanted	to	make	it	thicker,
you	would	use	a	larger	number,	such	as	4.	In	this	example,	the	value	is	0.	This
turns	the	border	off	completely,	making	it	invisible.

NOTE
You	could	also	use	the	border	attribute	to	add	a	border	to	an	image	that	is	not	linked	by
specifying	the	value	as	any	number	greater	than	0.

With	that	said,	the	W3C	retired	the	border	attribute	and	now	prefers	that	you
adjust	the	display	of	borders	with	style	sheets,	just	as	you	learned	in	a	previous
chapter.	One	reason	for	this	is	that	style	sheets	offer	significantly	more	control
over	your	borders.	For	example,	if	you	have	multiple	images	on	your	page	and
wish	to	turn	the	borders	off	for	all	of	them,	instead	of	adding	“border=0”	to	each
of	the	img	tags	on	the	page,	you	can	add	the	following	code	to	the	page’s	style
sheet:	

Actually,	you	could	use	border-style:	none;	instead	of	border-width:	0;
and	it	would	also	make	the	border	invisible.	Additional	style	sheet	properties
related	to	borders	are	as	follows:	•	border-width	Controls	the	size	of	the
borders,	individually	(border-left-width,	border-right-width,	and	so	on)	or	as	a
whole	(border-width).	Values	can	be	specified	in	length	units	(0	or	1,	for
example)	or	keywords	(thin,	thick,	or	medium).

•	border-color	Controls	the	border’s	color	by	specifying	between	one	and	four

values.	When	you	specify	one	value,	that	color	is	set	for	all	four	border
edges.	When	two	values	are	specified,	the	top	and	bottom	edges	take	on	the
color	in	the	first	value	and	the	left	and	right	edges	take	on	the	second.	When
three	values	are	specified,	the	top	is	set	to	the	first,	the	right	and	left	are	set
to	the	second,	and	the	bottom	is	set	to	the	third.	When	four	values	are	set,	the
top,	right,	bottom,	and	left	edges	are	set,	respectively,	as	in	the	following
example:	img	{border-color:	#ccc	#666	#333	#999;}.	To	specify	a	value
for	only	one	side,	add	the	side’s	name	(top,	bottom,	right,	or	left)	to	the
property,	as	in	“border-top-color.”

•	border-radius	Allows	you	to	round	the	corners	of	the	border	by	specifying
between	one	and	four	values	(just	like	the	border-color	property).	To	round
an	image’s	border,	use	any	pixel	dimension	greater	than	zero	for	the	value,
such	as	border-radius:	25px.

•	border-style	Changes	the	style	of	the	border.	Options	include

•	none

•	dotted

•	dashed

•	double

•	solid

•	groove

•	ridge

•	inset

•	outset

As	you	can	see,	another	powerful	aspect	of	the	border	properties	is	that	they
can	be	altered	either	as	a	whole	(so	that	all	four	edges	look	the	same)	or
individually.	To	alter	the	characteristics	individually,	you	simply	add	the	side
specification	(top,	bottom,	right,	or	left)	to	the	border	property,	after	border	and
before	any	final	characteristic.	To	give	you	an	idea	how	this	is	done,	consider	the
following	example	and	Figure	8-7.	Here,	I’ve	created	a	class	called	headshot	and

then	set	the	border	properties	in	my	style	sheet.

Figure	8-7	The	headshot	class	tells	the	browser	to	add	double,	10-pixel	borders
to	the	top	and	bottom	edges	of	the	photo,	but	leave	the	left	and	right
edges	blank.

After	adding	that	style	declaration	to	my	style	sheet,	I	can	add	the	class	reference
to	my	img	tag	to	complete	the	task:	

TIP
As	discussed	previously,	with	style	sheets	these	types	of	borders	can	be	added	not	just	to	images
but	to	any	other	element	on	the	page!	This	means	you	can	quickly	add	border	styles	to	things	like
table	cells	or	pull-out	quotes,	or	virtually	any	other	piece	of	content.

Floats
Whenever	images	appear	within	a	section	of	text,	you	may	want	to	alter	the
alignment	so	that	the	image	floats	within	the	text	flow	instead	of	above	or	below
it.	(By	default,	the	text	starts	wherever	the	image	ends	and	flows	below	it,	as
shown	previously	in	Figure	8-7.)	While	the	text-align	property	discussed
previously	works	for	basic	alignment	of	text,	it	does	not	align	images.	Chapter	6
introduced	the	process	of	more	complex	alignment	and	positioning,	but
sometimes	that	is	not	necessary	for	quick	image	alignments.	So,	I	want	to
mention	a	very	quick	and	easy	way	to	“float”	an	image	on	the	page—the	CSS
float	property	and	a	value	of	either	left	or	right.

Floating	an	Image	Within	Text
The	float	property	essentially	tells	the	browser	to	place	the	floated	element
nearest	whichever	browser	edge	is	specified,	and	then	flow	the	rest	of	the	page’s
content	around	it.	To	say	it	another	way,	content	automatically	flows	along	the
right	side	of	a	left-floated	image,	and	to	the	left	side	of	a	right-floated	image.	For
example,	if	you	had	a	lengthy	paragraph	of	text	and	wanted	to	place	an	image	in
the	upper-right	corner	of	that	paragraph,	like	this:	

you	could	use	the	float	property	on	that	image,	and	set	the	value	to	right	to	tell
the	browser	to	keep	the	image	on	the	right	side	of	the	text.	Possible	values	for
the	float	property	are	left,	right,	or	none.

NOTE
When	coding	floats,	your	floated	content	must	be	placed	before	any	other	content	to	wrap	around
it.

Clearing	Floats
From	time	to	time	you’ll	encounter	an	instance	in	which	you	actually	need	to
stop	or	clear	a	float.	One	example	might	involve	the	same	situation	I	just	used—
an	image	floated	to	the	right	of	a	long	paragraph	of	text.	Suppose	you	wanted	to
break	the	long	paragraph	up	into	two	paragraphs,	and	then	you	only	wanted	the
first	paragraph	to	wrap	around	the	image.	The	remaining	paragraph	would	then
take	up	the	entire	width	of	the	page.	To	accomplish	this,	you	have	to	“clear	the
float”	by	adding	the	clear	property	to	the	section	in	question,	such	as:	

This	causes	the	paragraph	to	be	“pushed	down”	until	it	is	below	the	bottom
edge	of	the	floated	image,	like	this:	

NOTE

Possible	values	for	the	clear	property	are	left,	right,	both,	or	none.

Floating	Groups	of	Images
Suppose	you	had	a	page	with	lots	of	images,	maybe	one	with	several	photos	of
products	for	sale.	If	all	of	the	images	were	the	same	size,	it	would	be	very	easy
to	use	the	float	property	and	let	the	browser	automatically	place	them	in	lines
across	the	page.	The	following	code	shows	one	way	to	accomplish	this	task	by
placing	each	of	the	images	(and	their	accompanying	captions)	into	separate
figure	elements:	

Then	you	would	add	the	declaration	for	that	element	to	your	style	sheet:

The	float:	left	code	tells	the	browser	to	put	the	first	image	next	to	the	left
margin	of	the	page.	Then,	each	subsequent	image	with	the	float:	left	style
follows	suit	and	sits	in	a	row	next	to	the	first	image	until	it	reaches	the	right	edge
of	the	browser.	If	the	browser	is	open	wide	enough	for	all	the	floated	images	to
fit	in	a	single	row,	they	will	do	so.	If	the	user	has	the	browser	window	open	only
enough	for	two	images	to	fit	in	a	row,	then	the	remaining	images	will	begin	a
new	row	beneath	the	first	row	(starting	again	near	the	left	margin).

This	is	the	true	meaning	of	a	“liquid	layout”	in	web	design,	because	the	page
is	able	to	grow	or	shrink	according	to	the	browser	window	size.	Figure	8-8
shows	how	the	images	line	up	next	to	each	other	when	the	browser	window	is
open	wide	enough.

Figure	8-8	A	very	simple	style	sheet	declaration	allows	these	three	photos	to
float	next	to	each	other	on	the	page.

Padding	and	Margins
In	Chapter	5,	we	discussed	how	to	use	the	padding	and	margin	properties	to	add
blank	space	within	and	around	an	element’s	borders.	Those	same	properties	can
also	be	applied	to	images	to	specify	the	space	around	an	image	on	one,	two,
three,	or	all	four	sides.

For	example,	suppose	you	wanted	to	add	a	small	block	of	space	on	the	left
side	of	an	image,	but	you	didn’t	want	to	add	any	space	on	the	right	side	because
that	side	fits	perfectly	with	another	image.	If	you	added	the	margin-left	property
to	your	style	sheet	or	within	your	img	tag,	you	could	add	space	only	on	the	left

side:	

NOTE
The	figure	element	has	a	default	margin	of	15	pixels	on	all	four	sides,	as	of	this	writing,	So	if	you
place	an	image	inside	figure	tags,	be	sure	to	set	the	margin	to	whatever	size	you	want	it	to	be	if
you	don’t	want	it	to	be	15	pixels.

Centering
By	this	point,	there’s	probably	a	big	question	still	remaining	about	images	and
alignment	…	how	to	center?!	While	there	isn’t	a	“center”	property	for	images,
there	is	a	trick	you	can	use	to	center	an	image	on	the	page	or	within	a	section.
The	key	lies	in	changing	the	way	we	refer	to	“centering”	an	element—in	reality,
what	we’re	doing	is	making	its	left	and	right	margins	exactly	equal.

First,	we	must	tell	the	browser	to	display	the	image	as	a	block	element.	In
CSS,	block	elements	will	automatically	fill	the	entire	available	space.	So	if	an
image	becomes	a	block	element,	its	margins	will	grow	until	they	reach	the	edges
of	the	browser	window.

Next,	if	you	tell	the	browser	to	make	both	the	left	and	right	margins	the
same,	you	will,	in	effect,	center	the	image.	The	following	is	an	example	of	the
code	you	might	use	to	center	an	image.	First,	the	style	sheet:	

Then,	add	the	name	of	the	class	(in	this	case,	it’s	“centered”)	to	the	img	tag.	No
matter	how	wide	(or	narrow)	the	browser	window	is	opened,	the	image	remains
centered	horizontally.

Pulling	It	All	Together
Now	that	we’ve	looked	at	a	few	of	the	most	commonly	used	style	properties
affecting	images,	let’s	pull	it	all	together	by	reviewing	a	more	complete	style
sheet	for	one	of	the	examples	used	previously	from	Figure	8-8.

In	this	instance,	the	border-radius	property	is	used	to	round	the	corners	of	the
images,	while	the	margin	property	is	added	to	the	figure	element	to	control	the
amount	of	space	between	the	floated	images.	Finally,	the	figure	caption’s	text	is
made	smaller	and	centered	below	the	image.	Figure	8-9	shows	how	the
following	code	translates	into	a	typical	browser	view.

Figure	8-9	The	images	in	this	example	are	arranged	and	styled	through	a	few
key	style	sheet	declarations.

Try	This	8-2 Add	an	Image	and	Customize	Image
Characteristics

Returning	to	one	of	the	web	pages	you’ve	created,	let’s	first	add	an	image	file,

and	then	vary	the	characteristics	of	that	image.	Goals	for	this	project	include	•
Specifying	the	height	and	width	for	an	image

•	Providing	alternative	text	and	a	title	for	an	image
•	Linking	an	image	to	another	web	page
•	Turning	off	the	border	for	a	linked	image	Aligning	an	image	with	the	text

around	it	•	Adding	some	buffer	space	around	an	image

1.	Open	your	HTML	editor	and	load	one	of	the	pages	saved	from	a
previous	Try	This.

2.	Add	the	appropriate	code	to	insert	an	appropriate	image	into	the	file.

3.	Add	the	height	and	width	attributes	to	the	image	code.

4.	Add	alternative	text	and	a	title	to	the	image.

5.	Add	10	pixels	of	buffer	space	around	the	image.

6.	Link	the	image	to	another	page	and	turn	off	the	image’s	border.

7.	Add	another	image	to	the	page,	making	sure	to	specify	the	height,
width,	and	alternative	text.

8.	Align	the	first	image	to	the	right	of	the	text	in	that	section.

9.	Align	the	second	image	to	the	left	of	the	text	in	that	section.

10.	Save	the	file.

11.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	that	you	just	saved.

12.	Verify	that	all	your	changes	were	made	as	you	expected.	If	you	need	to	make
additional	changes,	return	to	your	text	editor	to	do	so.	When	you	finish,
save	the	file	and	switch	back	to	the	browser.	Choose	Refresh	or	Reload	to
preview	the	changes	you	just	made.

You	can	customize	the	look	and	style	of	the	images	displayed	in	the
foreground	of	your	web	pages	in	many	ways.	This	project	gives	you	practice
with	many	image	properties,	including	links,	alignment,	borders,	and	alternative
text.

Use	Images	as	Elements	in	the	Background	of	a
Web	Page
Images	have	another	role	in	a	web	page,	which	is	in	the	background.	Just	as	in	a
theatrical	play,	where	actors	may	be	moving	in	the	foreground	while	scenery
moves	in	the	background,	two	levels	of	design	also	exist	in	a	web	page.

The	old	HTML	specifications	enabled	you	to	add	a	single	image	to	be	used
as	the	“scenery”	in	the	background	of	your	web	page.	This	was	accomplished
using	the	background	attribute	of	the	body	element,	as	in	<body
background="picture.	jpg">.	However,	the	W3C	retired	the	background
attribute	in	favor	of	using	style	sheets	to	specify	backgrounds.	The	latter	is	done
by	adding	the	background-image	property	to	a	style	declaration	for	the	body
element:	

One	great	advantage	of	the	background	property	in	style	sheets	is	that	it	can
be	added	to	all	sorts	of	page	elements,	from	paragraphs	to	lists	and	table	cells,
using	the	same	format	shown	for	the	body	tag:	

Several	benefits	arise	from	using	an	image	in	the	background	as	opposed	to	the
foreground:

•	You	can	achieve	a	layered	look	in	your	designs	this	way,	because	an	image	in
the	foreground	can	actually	be	placed	on	top	of	the	image	in	the	background.

•	Background	images	begin	at	the	top	of	the	page	and	run	all	the	way	to	each	of
the	four	sides.	By	contrast,	elements	in	the	foreground	are	subject	to	borders
on	the	top	and	left,	similar	to	those	that	occur	when	you	print	something.

•	Adding	backgrounds	to	page	elements	(like	navigation	bars	or	footers)	can	be	a
great	way	to	set	that	content	apart	from	the	rest	of	the	page.

When	you	insert	a	background	image	with	HTML,	you	need	to	remember	a
few	other	things:

•	All	background	images	tile	by	default	Tiling	means	background	images
repeat	in	the	browser	window	as	many	times	as	needed	to	cover	the	whole
screen.

•	You	can	only	include	one	image	in	the	background	So,	if	you	want	to	use
two	different	patterns	in	your	background,	they	need	to	be	included	in	a

single	image	file.

•	Text	in	the	foreground	must	be	readable	on	top	of	the	background	If
you’re	using	dark	colors	in	your	background,	make	sure	the	text	on	your
page	is	much	lighter.	Likewise,	try	to	avoid	high-contrast	backgrounds
because	they	make	it	extremely	difficult	to	read	any	text	placed	on	top	of
them.

•	Background	images	should	be	small	in	file	size	This	avoids	a	long	download
time.	Take	advantage	of	the	fact	that	the	browser	repeats	a	background	image
and	cut	your	image	down	as	much	as	possible.

To	help	clarify	these	points,	look	at	Figure	8-10.	If	I	told	you	the	darker	bar
on	the	left,	as	well	as	the	word	“Corinna”	and	the	stars,	are	all	in	the
background,	could	you	imagine	what	the	background	image	itself	looks	like
when	it	isn’t	tiled?	Figure	8-11	gives	the	answer.

Figure	8-10	Here,	a	background	image	enables	me	to	achieve	a	layered	look
because	the	photo	in	the	foreground	lies	over	the	top	of	the	image
in	the	background.

Figure	8-11	Before	the	image	was	tiled	by	the	browser	in	Figure	8-10,	it	looked
like	this.

Because	the	original	image	was	only	1000	pixels	wide	but	only	100	pixels
tall,	it	appears	to	repeat	more	vertically	than	horizontally.	Testing	your	pages	on
different	screen	sizes	is	important	to	ensure	your	background	images	are
repeating	as	you	expect.

You	can	force	the	background	image	to	remain	stationary	by	adding	the
background-attachment	property	to	the	page’s	style	sheet.	This	property	allows
the	background	to	stay	in	place	(when	set	to	fixed)	or	to	move	when	the	page	is
scrolled	(when	set	to	scroll).	Similarly,	you	can	even	tell	the	browser	whether	or
not	to	repeat	your	background	image	at	all	using	the	background-repeat
property.

Possible	values	of	the	background-repeat	property	are

•	repeat	Specifies	the	file	should	repeat	both	horizontally	and	vertically	(which
is	the	default)	•	repeat-x	Specifies	the	file	should	repeat	horizontally	only

•	repeat-y	Specifies	the	file	should	repeat	vertically	only
•	no-repeat	Specifies	the	file	should	not	repeat

TIP
You	can	find	many	images	suitable	for	background	tiles	in	the	same	clipart	catalogs	mentioned
earlier	in	the	chapter.

Try	This	8-3

Add	a	Background	Image
This	final	project	in	Chapter	8	gives	you	a	chance	to	add	a	background	image	to
your	page.

1.	Open	your	HTML	editor	and	load	the	page	saved	from	Try	This	8-2.

2.	Add	a	patterned	image	into	the	background	of	the	page.	(Refer	to	the	stock
image	resources	listed	previously	for	help	locating	a	background	image.)	3.
Make	any	changes	necessary	to	the	colors	of	the	text	on	your	page	in	order
to	ensure	it	remains	readable	against	the	new	background.

4.	Save	the	file.

5.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you	are	using).	Locate	the	file	you	just	saved.

6.	Preview	the	page	to	check	your	work.	If	you	need	to	make	changes,	return	to
your	text	editor	to	do	so.	After	making	any	changes,	save	the	file	and	switch
back	to	the	browser.	Choose	Refresh	or	Reload	to	preview	the	changes	you
just	made.

Adding	an	image	in	the	background	can	add	depth	and	appeal	to	your	web
pages	when	used	wisely.	This	activity	gives	you	practice	using	the	background-
image	property	with	the	body	tag	to	add	a	background	image.

TIP
Having	trouble	getting	your	background	to	display?	If	so,	make	sure	the	image	file	is	located	in
the	same	directory	as	your	HTML	file.	If	it	isn’t,	you	need	to	specify	the	correct	file	location	in
the	background-image	property.	For	more	tips,	see	Appendix	C.

Extra	Credit
Try	reformatting	the	page	you	just	completed	using	an	internal	style	sheet.	Some
formatting	possibilities	might	be	to	•	Specify	that	the	background	image	should
only	repeat	along	the	horizontal	axis.	You	could	also	try	repeating	it	only	along
the	vertical	axis.

•	Specify	that	the	background	image	should	remain	fixed	at	the	top	of	the	page
and	should	not	scroll	with	the	page.	Alternatively,	you	could	specify	that	the
background	image	should	always	be	displayed	at	the	top	of	the	screen,	even
if	the	user	has	scrolled.

Chapter	8	Self	Test

1.	What	does	the	src	attribute	do?

2.	Why	is	it	important	to	specify	the	height	and	width	of	images	in	web
pages?

3.	Which	style	sheet	properties	enable	you	to	add	blank	space	around
images?

4.	Which	attribute	must	be	added	to	an	img	tag	to	designate	the	image	as
a	client-side	image	map?

5.	Which	two	elements	are	used	when	defining	a	client-side	image	map’s
name	and	hot	spots?

6.	You	are	creating	the	code	for	a	client-side	image	map,	and	one	of	the
rectangular	hot	spots	has	the	following	coordinates:	0,0	(upper	left);	50,0
(upper	right);	50,50	(lower	right);	and	0,50	(lower	left).	Which	are	used	in
the	following	coords	attribute?

7.	Fill	in	the	blank:	The	value	of	the	height	and	width	attributes	is
measured	in	______________.

8.	Fix	the	following	code:

9.	Add	the	appropriate	style	declaration	to	use	wallpaper.gif	as	a
background	for	the	web	page	code	shown	next.	Note	that	the	graphic	is	in
the	same	folder	as	the	HTML	file.

10.	What	are	the	four	possible	values	of	the	clear	property	(used	to	clear
floats)?

11.	Fill	in	the	blank:	The	default	value	of	the	border	property	is	___________
pixels	for	linked	images	and	_________	pixels	for	nonlinked	images.

12.	True/False:	You	can	achieve	a	layered	look	in	your	designs	when	an	image

in	the	foreground	is	placed	on	top	of	an	image	in	the	background.

13.	What	value	must	be	used	with	the	display	property	before	you	can	center	an
image	using	the	method	discussed	in	this	chapter?

14.	Which	attribute	is	used	to	add	alternative	text	to	an	image?

15.	Which	statement	is	not	true	about	background	images?
A.	All	background	images	tile	by	default.
B.	You	can	only	include	one	image	in	the	background.
C.	Background	images	are	added	to	web	pages	with	the	background	tag.
D.	Background	images	begin	at	the	top	of	the	page	and	run	all	the	way	to

each	of	the	four	sides.

O

Chapter	9
Working	with	Multimedia

Key	Skills	&	Concepts

•	Understand	How	Plug-ins	Are	Used	with	Web	Browsers	•	Link	to	Different
Types	of	Media	from	a	Web	Page	•	Embed	Different	Types	of	Media	into	a

Web	Page	•	Style	Multimedia	Content

n	the	Internet,	the	term	multimedia	is	used	to	refer	to	presentations	of
various	types	of	media,	such	as	audio,	video,	text,	graphics,	or	animation,

which	are	integrated	into	a	single	file	format.	You	may	have	seen	multimedia
presentations	on	news	or	weather	sites,	where	they	are	used	to	display	audio,
video,	and	text	to	viewers.	Other	sites	use	multimedia	to	entertain	viewers,	often
in	the	form	of	a	cartoon	or	an	animated	story.

Many	forms	of	multimedia	enable	visitors	to	interact	with	the	presentations.
For	example,	a	visitor	might	be	watching	an	animated	story	and	then	click	the
individual	characters	to	learn	more	about	them	before	continuing.

The	Web	itself	is	often	considered	multimedia	because	any	web	page	can
contain	several	different	types	of	media	files	in	it.	By	default,	however,	for	many
years	web	browsers	were	only	capable	of	understanding	HTML	files,	graphics
files	such	as	GIF	and	JPEG,	and	plain	text	documents	(.txt).	Any	other	file	types
needed	to	be	handled	through	a	plug-in,	or	helper	application.	Sometimes	these
types	of	controls	came	preinstalled	in	the	browser,	but	other	times	they	had	to	be
downloaded	by	the	user.

Thankfully,	HTML5—and	modern	browsers	that	support	it—gives	us	a	built-
in	way	to	handle	audio	and	video	files	without	requiring	the	user	to	install
anything.	The	caveat	is	that,	as	of	this	writing,	the	browsers	have	not	yet	caught

up	to	this	part	of	the	standard	and	don’t	uniformly	support	the	same	file	format.
So	while	we	still	need	to	use	helper	applications	for	certain	multimedia	files,	as
well	as	for	audio	and	video	to	be	displayed	in	older	browsers,	things	have	gotten
much	easier	in	this	realm.	We’ll	go	over	the	details	of	those	new	elements	later
in	this	chapter.

Understand	How	Plug-ins	Are	Used	with	Web
Browsers
Until	modern	browsers	uniformly	support	the	popular	multimedia	formats,
plenty	of	folks	will	still	need	help	displaying	audio	and	video	files	in	certain
browsers	and	on	certain	devices.	A	helper	application	is	an	additional	piece	of
software	or	code	that	attempts	to	do	something	the	browser	cannot,	whereas	a
plug-in	(or	an	ActiveX	control,	as	Microsoft	calls	theirs)	extends	the	browser
capabilities.	If	you	thought	of	yourself	as	the	browser,	then	a	helper	might	be
someone	who	mows	your	lawn	for	you,	while	a	plug-in	is	a	ride-on	mower	that
helps	you	do	it	yourself.	A	plug-in	enables	the	browser	to	do	something	itself,	as
opposed	to	the	helper	application	performing	the	operation	for	the	browser.

NOTE
ActiveX	is	a	brand	name	used	by	Microsoft	to	reference	its	various	technologies	that	offer	added
functionality	to	web	browsers.

For	example,	if	your	web	browser	doesn’t	know	how	to	display	a	certain
type	of	video	file,	it	first	looks	for	a	plug-in	capable	of	doing	so.	If	your	web
browser	doesn’t	find	a	plug-in,	it	might	prompt	you	to	download	one	or	look	for
a	helper	application	loaded	on	the	computer	that	could	display	the	video.	If	the
browser	cannot	find	a	suitable	plug-in	or	helper	application,	and	one	isn’t
downloaded,	then	it	won’t	be	able	to	display	the	file.	For	this	reason,	I	do	not
recommend	including	essential	information	in	files	requiring	plug-ins	or	helper
applications,	unless	you	also	provide	an	alternative	text-only	version.

Helpers	are	stand-alone	programs,	separate	from	your	browser,	that	you	can
purchase	for	your	computer.	By	contrast,	plug-ins	are	usually	free	and	can	be
easily	downloaded	from	the	Internet.	In	some	cases,	web	browsers	even	come
with	certain	plug-ins.	When	you	download	a	plug-in,	you	should	receive
instructions	on	how	to	install	it,	if	necessary.

Many	times,	the	plug-in	installs	itself	and	you	only	need	to	close	and	reopen
your	web	browser.	Other	times,	you’re	asked	to	place	the	plug-in	in	the

appropriate	folder	on	your	computer	and	then	restart	your	browser.	Once	you
agree	to	download	a	plug-in	or	ActiveX	control,	the	browser	downloads	and
installs	the	control,	usually	without	relaunching	the	browser.

Identify	the	Installed	Components
You	can	find	out	which	plug-ins	are	installed	under	your	browser	in	a	few
different	ways.	For	example,	the	most	rudimentary	way	to	check	for	installed
components	is	to	look	in	the	“plug-ins”	directory	in	your	browser’s	application
folder.	Firefox	users	can	choose	Tools	|	Add-Ons	and	then	click	the	Plugins	tab.

If	you’re	using	Internet	Explorer,	choose	Internet	Options	from	the	Tools
menu	in	your	browser.	Next,	click	the	Programs	tab,	and	then	click	the	Manage
Add-ons	button	to	view	a	list	of	all	add-ons	(including	ActiveX	controls	and
plug-ins)	used	by	Internet	Explorer.

Recognize	File	Types,	Extensions,	and	Appropriate	Plug-
ins	You	may	want	to	link	or	embed	many	different	file
types	in	your	web	pages,	but	Appendix	E	lists	some	of
the	more	popular	ones.	Most	file	types	can	be	“played”
with	at	least	one	plug-in	or	helper	application	and,	quite
often,	with	more	than	one.	If	you	want	to	be	helpful	to
your	visitors,	list	the	plug-in	or	helper	application	they
might	use	to	open	your	files.	You	could	also	provide	a
link	to	download	the	appropriate	plug-in.

For	example,	Flash,	a	file	type	requiring	a	plug-in,	is	popular	enough	that	it
ships	with	most	browsers.	Even	so,	you	might	have	visited	a	web	site	and
noticed	a	window	pop-up	saying	something	about	“downloading	the	Flash
player.”	Flash	files	enjoy	widespread	use	because	they’re	small	(which	translates
as	“quick	to	download!”)	and	can	include	sound,	video,	interactivity,	and
animation.	Another	reason	Flash	is	so	popular	is	that	the	plug-in	used	to	display
Flash	files	is	widely	available	on	a	large	variety	of	platforms	and	browsers.

NOTE
Some	plug-ins	and	helper	applications	aren’t	available	for	multiple	computer	systems	and
browsers.	Refer	to	Appendix	E	at	the	back	of	the	book	for	a	list	of	file	types,	extensions,	and

descriptions.

When	you’re	ready	to	include	multimedia	files	in	your	HTML	pages,
consider	how	you	want	to	include	them.	Do	you	want	to	link	to	them	so	that	your
visitors	can	choose	whether	to	download	them	or	view	them	now?	Or	do	you
want	to	embed	them	within	your	page,	so	they	appear	right	within	the	web
browser	window?	The	rest	of	this	chapter	focuses	on	linking	to	and	embedding
several	different	types	of	multimedia.

Link	to	Different	Types	of	Media	from	a	Web
Page
A	link	to	a	multimedia	file	is	essentially	the	same	as	any	other	link.	While
embedding	a	file	can	sometimes	be	problematic	(as	discussed	in	the	next
section),	a	link	to	a	file	can	be	especially	useful	because	links	are	understood	by
all	web	browsers.	Figure	9-1	shows	how	the	following	code	is	displayed	in	a
browser,	while	Figure	9-3	shows	the	result	of	clicking	the	video	link.

Figure	9-1	A	link	to	a	multimedia	file	is	the	same	as	any	other	link	because	it
also	uses	the	a	tag	and	the	href	attribute.

TIP
Including	the	proper	file	extension	for	your	media	file	is	important	so	that	the	browser	and
operating	system	can	understand	and	display	it.	If	you’re	unsure	as	to	which	file	extension	to	use,
check	Appendix	E	in	this	book.

Clicking	the	link	shown	in	Figure	9-1	would	cause	one	of	three	things	to
happen,	depending	on	how	the	system	was	set	up:	•	It	may	prompt	the	user	to

download	the	file	and	either	view	it	now	or	save	it	for	later	(see	Figure	9-2).

Figure	9-2	When	the	browser	doesn’t	recognize	a	file	type	as	one	it	should
“play”	within	the	browser,	it	may	prompt	the	user	to	download	the
file.

•	If	the	browser	recognizes	the	file	as	one	it	is	set	up	to	display	automatically,	it
may	take	over	and	do	just	that	(see	Figure	9-3).

Figure	9-3	When	the	link	is	clicked,	the	browser	may	be	able	to	play	the	video
itself	if	the	appropriate	plug-in	or	ActiveX	control	is	installed.

Knowing	that	many	systems	may	handle	your	multimedia	files	differently,
try	to	offer	your	visitors	as	much	guidance	and	instruction	as	possible.	For
example,	list	the	size	of	the	file	you’re	asking	them	to	download,	so	they	can
consider	whether	they	want	to	wait	for	it	to	load	to	their	system.	In	addition,
provide	alternative	ways	of	getting	the	information,	and	include	it	within	the
multimedia	files	wherever	possible.

Embed	Different	Types	of	Media	onto	a	Web
Page

When	you	embed	multimedia	files	instead	of	linking	to	them,	they	appear	right
within	the	context	of	your	page.	As	long	as	the	appropriate	plug-in	or	ActiveX
control	is	installed	on	the	user’s	computer,	or	the	media	file	is	supported
natively,	the	file	will	load	and	play	along	with	anything	else	that	might	be	on	that
page.

The	original	method	for	embedding	multimedia	was	to	use	the	embed
element.	However,	that	was	a	proprietary	tag	created	by	Netscape.	As	a	result,
the	W3C	created	its	own	object	element	as	a	method	for	embedding	various
types	of	media,	from	images	to	Flash	movies	and	more.	It	was	supported	by
version	3	(and	later)	of	Internet	Explorer,	as	well	as	all	current	versions	of
Mozilla-based	browsers	(such	as	Safari	and	Firefox).

Even	though	the	object	element	finally	brought	some	unity	to	the	method	by
which	media	files	were	embedded,	there	lacked	a	built-in	format	for	adding
multimedia	files	to	a	web	page.	Now,	with	HTML5,	we	have	the	addition	of
several	new	elements	designed	to	natively	handle	the	process	of	embedding
audio	and	video:	•	<audio>	Embeds	audio	content	•	<video>	Embeds	video
content	•	<source>	Specifies	multiple	sources	for	audio	and	video	content	•
<track>	Specifies	text	explanations	for	audio	and	video	content	•	<embed>
Specifies	content	to	be	played	in	older	browsers	Start	with	the	audio	and	video
Elements
The	development	of	these	new	elements	means	you	can	insert	audio	and	video
files	almost	as	simply	as	image	files.	It	all	begins	with	the	audio	and	video
elements.	Here,	let’s	look	at	a	basic	example:	

In	this	case,	each	element	includes	just	three	supportive	attributes.	First,	the	src
attribute	works	the	same	as	it	does	with	the	img	element	in	that	it	identifies	the
source	file	to	be	displayed.	The	controls	attribute,	when	present,	tells	the
browser	to	make	the	audio	or	video	controls	visible	to	the	user	by	default.	The
preload	attribute,	when	included,	requests	the	browser	to	preload	the	media	file
in	an	effort	to	reduce	the	chance	users	might	have	to	wait	for	it	to	start	even	after
pressing	play.

Customize	with	Attributes
As	with	the	majority	of	HTML	elements,	the	customization	happens	with	the
attributes.	The	three	from	the	previous	example,	as	well	as	other	commonly	used
attributes,	are	listed	in	Tables	9-1	and	9-2.	The	following	code	example	shows

how	a	few	more	of	these	attributes	can	be	used	to	customize	an	embedded	video:

Table	9-1	Attributes	for	the	audio	Element

Table	9-2	Attributes	for	the	video	Element

NOTE
Most	mobile	browsers	ignore	the	autoplay	and	preload	attributes	to	avoid	unsolicited	downloads
over	cellular	networks	at	the	user’s	expense.

Specify	Sources
The	final	step	in	the	audio	and	video	embed	process	is	to	specify	a	variety	of	file
format	options.	But	wait,	you	might	say,	I	thought	the	audio	and	video	elements
were	introduced	to	make	things	easier?	That	is	certainly	the	plan,	but	as	with	any
new	feature,	everyone	has	to	get	up	to	speed	first.

Audio	and	video	file	formats	are	the	big	sticking	point	here.	The	current
HTML5	draft	does	not	specify	exactly	which	file	formats	should	be	included,
but	leaves	that	up	to	browser	developers.	As	luck	would	have	it,	the	browser
developers	are	not	in	agreement	regarding	which	formats	should	be	standard.	So
that	brings	us	to	codecs	and	containers.

Codecs	and	Containers
In	Chapter	8,	you	learned	that	JPEG	offers	file	compression	for	still	images.	The
method	by	which	a	file	is	compressed	to	lower	file	size	is	referred	to	as	its
codec.	For	many	years,	the	most	common	video	codec	has	been	MPEG.	Over	the
past	decade	and	a	half,	the	MPEG	codec	has	been	revised	and	refined,	and
additional	codecs	have	been	developed.	Generally	speaking,	the	newer	codecs
offer	better	compression	and	image	quality,	but	are	not	as	widely	supported	as
the	older	codecs.

In	addition	to	the	codec,	or	compression	method,	we	must	deal	with	the
container	format.	You	might	consider	the	container	to	be	the	wrapper,	or
packaging,	of	the	audio	or	video	content,	as	well	as	its	codec.	Sometimes,	the
codec	and	container	have	a	particularly	close	relationship,	but	other	times	not.

To	make	things	a	bit	more	confusing,	either	the	codec	or	the	container	name
can	be	used	as	the	file	suffix.	For	instance,	a	file	called	movieFile.mov	is	simply
a	packaged	file	that	happens	to	be	in	the	QuickTime	container	format.	But	it
could	contain	any	number	of	different	audio	or	video	codecs	with	the	content
inside.	Likewise,	moviefile.mp4	uses	the	MPEG-4	codec,	but	could	be	packaged
in	a	variety	of	different	file	containers.

So	why	haven’t	we	standardized	on	a	set	of	codecs	and	containers?	The
primary	reason	mostly	has	to	do	with	money.	(Doesn’t	it	always?)	More
specifically,	some	codecs—such	as	H.264/MPEG4—are	patent-protected	and
require	licenses	(and	fees)	to	be	used	by	developers.	Other	codecs—like	the	Ogg
and	WebM	formats—do	not	require	licenses	to	use.	Because	of	that,	many
browser	developers	are	pushing	for	the	open	formats	to	be	adopted	as	standard.
However,	as	of	this	writing,	no	official	determination	has	been	made	by	the

W3C.
What	that	means	to	us,	as	web	developers,	is	this:	We	typically	must	save	our

audio	and	video	content	in	at	least	two	different	file	formats	(and	sometimes
more)	in	order	to	reach	the	widest	possible	audience.	Table	9-3	outlines	the	most
common	codecs	and	containers	(listed	under	the	File	Format	column)	and	the
corresponding	browser	support.

*	Google	indicated	it	would	remove	support	of	these	file	formats	from	Chrome,	but	as	of	this	writing	they
are	still	supporting	them.

**	Does	not	include	iOS	Safari	support.

Table	9-3	Audio	and	Video	File	Format	Support

The	big	black	hole,	so	to	speak,	of	native	audio	support	is	in	the	Android
browser.	Because	there	are	so	many	variants	of	that	browser,	it	is	almost
impossible	to	specify	exactly	how	many	Android	users	will	be	able	to	hear	these
audio	files.	Because	the	market	is	so	splintered,	and	the	different	options	offer	so
little	audio	support,	it	is	wise	to	offer	alternative	methods	for	these	users	to
access	your	content.	Flash	is	currently	supported	in	Android	browsers,	although
that	support	is	expected	to	go	away	in	favor	of	HTML5	codecs.	Hopefully,	the
HTML5	support	will	be	uniform	by	that	time.

List	Multiple	Sources
To	include	multiple	sources,	we	actually	pull	the	source	out	of	the	audio	or	video
element,	instead	listing	it	through	its	own	source	element.	The	following

example	shows	three	possible	sources	for	a	single	instance	of	audio	in	a	page.
First,	the	browser	is	told	to	look	for	an	.aac	file.	If	the	browser	cannot	play	that
first	file,	then	it	looks	at	the	second	source,	and	the	third	source,	in	that	order.	As
soon	as	the	browser	finds	a	file	it	can	play,	it	stops	searching	and	will	not	load
any	of	the	other	source	files.

TIP
Notice	in	Table	9-3	that	if	you	provide	media	in	both	MPEG-4	and	Ogg	formats,	you	will	reach	a
pretty	wide	audience	among	HTML5-supporting	browsers.

Because	files	can	be	referenced	by	either	their	codec	or	container	file
extension,	it’s	important	to	include	the	type	attribute	with	the	source	element.
This	helps	the	browser	decide	whether	it	can	play	the	media,	without	having	to
actually	load	the	content.

If	necessary,	you	can	even	include	the	codecs	parameter	inside	of	the	type
attribute	to	identify	the	exact	version	of	the	codec	needed	to	play	the	file:	

Provide	Fallback	Options
If	the	browser	is	incapable	of	playing	any	of	the	specified	formats,	there	are	two
more	bits	of	code	to	add	to	help	those	users.	First,	you	can	include	the	object
element,	which	was	the	preferred	method	of	embedding	audio	and	video	prior	to
HTML5.	This	means	any	browser	not	supporting	HTML5’s	video	element	can
likely	display	the	content	using	the	object	element.	Then,	for	anyone	else,	a
simple	link	to	a	text	transcript	can	be	included	before	the	closing	video	tag.

More	About	the	object	Tag
As	mentioned,	prior	to	HTML5	the	object	element	was	the	preferred	method	of
embedding	audio	and	video.	I’m	including	a	brief	review	of	that	element	here
because	it	is	still	in	use	for	non-HTML5–supporting	browsers.

When	you	use	the	object	tag,	the	type	and	data	attributes	are	used	to	tell
the	browser	what	type	of	file	you	are	embedding	and	where	to	locate	that	file:	

Then,	after	the	opening	object	tag,	you	add	any	properties	you	want	to
specify	using	the	param	tag	(short	for	parameters).	(Note	that	the	object
element	enables	you	to	specify	the	height	and	width	attributes	either	in	the
object	tag	or	in	param	tags,	depending	on	the	plug-in	employed.)	

Finally,	you	close	the	object	tag.

Table	9-4	lists	some	commonly	used	attributes	for	the	object	element.	Note
that	some	of	these	attributes	work	only	with	certain	file	formats.	When	using	the
object	element	to	embed	multimedia,	I	recommend	checking	the	developer
documentation	for	the	particular	media	type.

Table	9-4	Commonly	Used	Attributes	for	the	object	Element

TIP
Whenever	you	embed	audio	within	a	web	page,	it’s	always	considered	good	practice	to	display	at
least	some	portion	of	the	controls.	This	lets	visitors	turn	off	the	sound	or	adjust	the	volume	as	they
see	fit.

Java	Applets
You	can	also	use	the	object	tag	to	embed	Java	applets	in	your	web	page.	Java
applets	are	mini-applications	(which	is	where	we	get	the	term	applet)	written	in
the	Java	programming	language	that	can	run	within	your	browser	window.	Web
developers	use	these	mini-applications	to	do	things	that	aren’t	easily
accomplished	through	HTML	or	other	means.

TIP
You	can	learn	much	more	about	embedding	Flash	files	by	visiting	an	online	tutorial,	such	as
www.w3schools.com/flash.

http://www.w3schools.com/flash

Java	applets	can	be	used	to	add	functionality	to	your	web	pages,	whether
through	a	realtime	clock,	a	mortgage	calculator,	a	stock	ticker,	or	an	interactive
game.

TIP
Visit	http://docs.oracle.com/javase/tutorial/deployment/applet/	to	learn	more	about	developing
Java	applets.

The	following	is	an	example	of	how	to	embed	these	applets	using	the	object
element:	

Add	Text	Tracks
In	recent	years,	there	has	been	an	increased	initiative	to	ensuring	all	multimedia
content	is	made	accessible	to	nontraditional	users.	One	example	of	this	might	be
including	captions	for	audio	and	video	content.	HTML5	has	introduced	the	track
element	for	just	that	purpose.

NOTE
As	of	this	writing,	the	track	element	is	only	supported	by	IE	10+	and	Chrome	18+.	However,	it
only	works	in	Chrome	18	if	the	track	element	is	enabled	by	the	user	from	the	chrome://flags
options	page.	(Type	chrome://flags	in	the	browser’s	address	bar	and	scroll	to	find	the	“Enable
<track>	element”	section.)	When	placed	inside	an	audio	or	video	element,	track	tags	provide
links	to	text-based	files	in	one	or	more	languages.	Those	files	can	contain	any	of	the	following
five	kinds	of	tracks,	which	are	specified	inside	the	kind	attribute.	Table	9-5	lists	possible	values	of
the	kind	attribute,	as	well	as	the	other	attributes	for	the	track	element.

http://docs.oracle.com/javase/tutorial/deployment/applet/

Table	9-5	Attributes	for	the	track	Element

Here’s	a	code	example	showing	tracks	for	subtitles	in	two	different
languages:	

WebVTT	Tracks
Web	Video	Text	Tracks,	or	WebVTT	for	short,	are	the	new	standard	for
multimedia	track	files.	Essentially,	a	track	file	is	a	series	of	cues,	which	are	each
composed	of	a	time	stamp	and	the	text	to	be	displayed	onscreen.	Here’s	an
example	of	what	a	small	portion	of	a	WebVTT	file	might	look	like:	

Figure	9-4	shows	how	the	first	bit	of	text	translates	when	displayed	in
Chrome.	Note	it	is	not	possible	to	test	tracks	like	this	locally	on	your	computer.
In	other	words,	you	must	upload	them	to	a	live	web	server	in	order	to	test	the
captions.	Eventually,	when	this	element	garners	wider	browser	support,	users
will	be	able	to	select	between	the	available	language	tracks.

Figure	9-4	Contents	of	this	English	subtitles	track	when	displayed	in	Chrome

In	the	meantime,	the	formatting	of	the	time	stamp	is	extremely	important	and
must	follow	this	format:	hours:minutes:seconds.milliseconds,	where	hours,
minutes,	and	seconds	each	have	two	digits	and	milliseconds	has	three.

TIP
Here’s	a	site	where	you	can	validate	your	WebVTT	file	to	make	sure	it	is	formatting	correctly:
http://quuz.org/webvtt.	And	for	more	on	writing	WebVTT	files,	visit
http://dev.w3.org/html5/webvtt.

Use	embed	for	Non-native	Multimedia	Content
The	expectation	is	that	most	of	your	multimedia	content	can	be	handled	through
the	audio	and	video	elements	in	HTML5.	But	for	those	instances	where	you
must	include	content	not	supported	in	that	way,	we	have	the	embed	element.
This	new	element	works	well	for	content	requiring	an	external	helper	application

http://quuz.org/webvtt
http://dev.w3.org/html5/webvtt

or	plug-in,	such	as	Adobe	Flash.

In	this	example,	the	embed	tag	includes	all	four	of	the	attributes	listed	in
Table	9-6	to	help	the	browser	appropriately	display	the	media	file.	Because	the
embed	element	is	empty,	there	is	no	need	to	include	a	closing	tag.

Table	9-6	Attributes	for	the	embed	Element

Style	Multimedia	Content
Because	the	new	methods	for	adding	multimedia	content	are	native	HTML5
elements,	they	can	be	styled	with	CSS	the	same	way	other	page	elements	can.
For	example,	we	can	use	styles	to	change	the	opacity	of	a	video,	add	borders,	or
even	change	the	look	and	feel	of	the	controls.

Figure	9-5	shows	a	sample	custom	controller	from	the	Safari	Developer
Library.	To	see	what	it	might	look	like	to	pull	something	like	this	off,	check	out
http://developer.apple.com/library/safari/#samplecode/HTML5VideoPlayer
/Introduction/Intro.html#//apple_ref/doc/uid/DTS40008930.

http://developer.apple.com/library/safari/

Figure	9-5	This	video	controller	has	been	styled	with	CSS	to	match	the	look	and
feel	of	the	rest	of	the	web	site.

Even	if	you’re	not	quite	ready	to	tackle	a	full-scale	player	overhaul,	there	are
plenty	of	quick	and	easy	style	changes	you	can	make	to	help	your	media	files
integrate	into	your	site’s	design.	For	example,	you	could	add	some	padding	and
margin	space	and	then	enclose	the	video	inside	a	border,	as	I	did	in	the	following
illustration.

You	can	also	play	around	with	some	new	CSS	styles	not	yet	fully	functional,
but	nevertheless	exciting.	In	August	2012,	the	W3C	released	a	new	draft	for
applying	filters	to	HTML	elements.	(Read	more	here:
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.)	This	means	you
could	change	the	hue	and	saturation	of	a	video,	for	instance,	through	the	browser
without	having	to	go	back	and	re-render	the	actual	video	footage.	Figure	9-6
shows	an	example	of	the	result	of	using	the	following	code	to	do	just	that:

http://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html

Figure	9-6	The	hue	and	saturation	of	this	video	have	been	altered	through	the
use	of	a	CSS	filter	style.	(The	image	on	the	right	is	mostly	yellow	in
blue,	while	the	one	on	the	left	is	normal.)

Even	though	this	screen	capture	makes	it	look	like	CSS	filters	are	ready	to
use,	I’m	afraid	we	still	have	a	little	way	to	go	yet	in	terms	of	browser	support.
During	testing,	I	found	the	video	controller	disappeared	when	a	filter	was
applied	to	the	video,	even	with	the	controls	set	to	display.	So	if	you	decide	to
experiment	with	CSS	filters—which	I	certainly	suggest	doing—just	be	sure	to
thoroughly	test	your	files	in	a	variety	of	end-user	situations	before	making	them
live	for	the	general	population.

Try	This	9-1 Add	Multimedia	to	a	Web	Page

Now	you’re	going	to	create	a	link	to	a	video	file.	You	can	use	any	video	file	just
for	practice.	Try	searching	your	computer	for	video	files	to	see	what	you	have
available.	If	you	cannot	find	anything	on	your	personal	computer,	find	your
favorite	YouTube	video	and	click	the	link	to	embed	the	video.	Then,	follow	the
directions	to	use	YouTube’s	code	to	embed	the	video	in	your	page.	For	extra
credit,	try	to	adjust	their	code	to	use	the	HTML5	elements	discussed	in	this
chapter.

1.	Open	your	text	or	HTML	editor	and	then	one	of	the	pages	saved	from	a
previous	Try	This	exercise.

2.	Add	a	video	file	to	the	page	in	the	most	appropriate	location.

3.	Float	the	video	to	the	left	of	the	text	content	around	it.

4.	Add	ten	pixels	of	margin	space	to	the	right	of	the	video.

5.	Save	the	file.

6.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	you	just	saved.
Make	sure	the	link	works	and	the	movie	plays.

7.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

Multimedia	can	add	a	lot	of	interest	to	a	web	page.	This	project	gave	you
practice	embedding	a	multimedia	file.	Because	multimedia	support	varies	so
widely,	be	sure	to	test	your	page	in	a	variety	of	browsers	and	situations	before
making	it	live	for	the	general	public.

Chapter	9	Self	Test

1.	What’s	the	difference	between	a	plug-in	and	a	helper	application?

2.	Which	element	does	the	W3C	recommend	for	embedding	video	in	a	web
page?

3.	How	can	users	determine	which	plug-ins	are	installed	on	their	computers,
and	how	they	can	download	new	plug-ins?

4.	What	are	two	ways	to	include	multimedia	files	in	a	web	site?

5.	True/False:	Clicking	a	link	to	a	sound	file	automatically	downloads	the	file
and	saves	it	for	later	listening.

6.	What	are	two	ways	to	specify	the	height	and	width	of	multimedia	files
embedded	with	the	object	tag?

7.	Fix	the	following	code:

8.	Add	the	appropriate	code	here	to	link	to	wendy.mov.	Note	that	the	movie	is
in	the	same	folder	as	the	HTML	file.

9.	Which	attribute	can	cause	a	video	to	play	even	before	the	user	clicks	the	play
button?

10.	Which	element	can	be	used	to	provide	subtitles	for	a	video?

11.	True/False:	A	link	to	a	multimedia	file	is	the	same	as	any	other	link	because
it	also	uses	the	a	element.

12.	What	is	the	purpose	of	the	poster	attribute?

13.	Which	element	tells	the	browser	where	to	find	the	actual	audio	or	video
content?

14.	Which	element	is	used	to	add	Flash	files	to	a	web	page	coded	with	HTML5?

L

Chapter	10
Creating	Lists

Key	Skills	&	Concepts

•	Use	Ordered	Lists	in	a	Web	Page	•	Use	Unordered	Lists	in	a	Web	Page	•	Use
Definition	Lists	in	a	Web	Page	•	Combine	and	Nest	Two	or	More	Types	of

Lists	in	a	Web	Page	•	Style	Lists	
ists	are	everywhere—on	your	refrigerator,	in	schoolbooks,	next	to	the
telephone,	on	bills,	and	in	all	sorts	of	other	documents.	That’s	why	there’s	a

special	set	of	tags	just	for	creating	lists.	This	chapter	focuses	on	the	three
different	types	of	lists	possible	in	HTML:	•	Ordered	lists	•	Unordered	lists	•
Definition	lists	Lists	are	especially	useful	in	web	pages	to	draw	attention	to	short
pieces	of	information.	Keep	that	in	mind	when	you	create	your	lists,	and	try	to
include	short	phrases,	instead	of	long	sentences,	in	each	list	item.

Use	Ordered	Lists	in	a	Web	Page
An	ordered	list	is	one	in	which	each	item	is	preceded	by	a	number	or	letter.	For
example:	My	favorite	fruits	are:

1.	raspberries

2.	strawberries

3.	apples

If	you	want	to	create	the	previous	list	on	a	web	page,	you	should	use	an
ordered	list.	Here’s	what	the	HTML	code	would	look	like:	

NOTE
While	it’s	not	required,	I	indent	the	list	items	to	make	seeing	the	structure	of	the	list	easier.

Notice	I	didn’t	include	any	numbers	in	my	list.	This	is	because	I	used	the	ol
element	to	tell	the	browser	this	is	an	ordered	list.	When	browsers	see	ordered
lists,	they	know	to	place	a	number	in	front	of	each	list	item.

The	default	type	of	ordered	list	uses	Arabic	numbers,	but	you	can	use	the
type	attribute	to	change	that.	Table	10-1	identifies	the	different	types	of	ordered
lists	you	can	create	with	the	type	attribute.

Table	10-1	Ordered	List	Types

To	change	the	type	of	ordered	list,	add	the	type	attribute	and	its	value	to	the

opening	ol	tag:	
Here,	I	changed	the	type	to	“I,”	which	tells	the	browser	to	place	uppercase

Roman	numerals	in	front	of	each	list	item.	So	the	previous	code	would	create	a
list	like	the	following:	I.	Introduction	II.	Understanding	the	Medium

III.	Basic	Page	Structure

You	can	also	specify	the	starting	number	or	letter	for	an	ordered	list	with	the
start	attribute.	The	default	for	the	starting	number	is	1.	To	change	this,	add	the

start	attribute	to	your	ol	tag:	
Even	though	the	value	of	the	type	attribute	may	be	something	other	than

Arabic	numerals,	the	value	of	the	start	attribute	is	always	an	integer.	So,	in	the
previous	example,	start="3"	actually	tells	the	browser	to	start	the	list	with	the
third	letter	because	type="a".

If	you	want	to	change	an	individual	value—for	example,	if	you	want	to	make
the	third	item	in	the	list	use	the	letter	g—you	can	add	the	value	attribute	to	the

specific	li	tag:	
As	with	the	start	attribute,	the	value	attribute	is	always	an	integer.	The

browser	looks	at	the	value	of	the	third	list	item	and	changes	it	to	g	because	the
type	is	a.

You	can	also	reverse	the	order	completely	by	adding	the	reversed	attribute	to
your	opening	ol	tag.	In	this	case,	the	list	would	be	ordered	3,	2,	1	instead	of	the
default	1,	2,	3.

Use	Unordered	Lists	in	a	Web	Page
The	second	type	of	list	is	similar	to	the	first,	except	unordered	lists	don’t	use
numbers	or	letters.	As	the	name	suggests,	unordered	lists	don’t	rely	on	order	for
importance.	These	lists	use	bullets	to	precede	each	list	item.	The	following	is	an
example	of	an	unordered	list:	•	Red
•	Green
•	Blue

You	still	use	the	li	element	to	identify	each	item	in	the	list,	but	instead	of
beginning	with	the	ol	element,	unordered	lists	are	contained	within	the	ul

element:	
Aside	from	that,	the	code	used	to	create	the	first	two	types	of	lists	is	the	same.

Use	Definition	Lists	in	a	Web	Page
The	third	type	of	list	you	can	create	in	HTML	is	called	a	definition	list.	As	its
name	suggests,	you	might	use	a	definition	list	to	show	terms	and	their
definitions.	For	example,	in	the	following	list,	the	term	is	listed	on	the	first	line
and	then	the	definition	is	on	the	line	below	the	term:	W3C

The	World	Wide	Web	Consortium	was	created	in	1994	to	develop	standards
and	protocols	for	the	World	Wide	Web.

HTML

Hypertext	Markup	Language	is	the	authoring	language	used	to	create
documents	for	the	World	Wide	Web.

A	definition	list	works	just	like	this	one,	where	you	use	HTML	tags	to
identify	the	terms	and	definitions	for	each	of	the	list	items.	The	dl	element	sets
up	the	definition	list,	while	the	dt	element	contains	the	definition	term,	and	the
dd	element	is	used	for	the	actual	definition	data.

The	code	to	create	the	page	shown	in	the	preceding	illustration	looks	like

this:	
You	can	use	more	than	one	dd	for	each	dt	if	you	need	to;	the	browser	will	just
simply	indent	each	line	below	the	dt.

Combine	and	Nest	Two	or	More	Types	of	Lists
in	a	Web	Page	You	can	also	use	another	list
inside	itself	or	even	one	type	of	list	inside
another	type	of	list.	Each	time	you	use	a	list
inside	another	list,	you	are	nesting	lists.	Perhaps
the	best	example	for	nested	lists	is	an	outline	like
those	created	for	a	term	paper.

I.	Introduction

II.	Part	1
A.	Description
B.	Examples

1.	Reference	One	2.	Reference	Two	III.	Part	2

IV.	Summary

Can	you	imagine	what	the	HTML	code	would	look	like	for	the	preceding
outline?	The	best	solution	would	be	to	use	a	series	of	nested	ordered	lists	as
shown	in	the	following	illustration	and	code:	

As	I	mentioned	before,	you	can	also	nest	one	type	of	list	inside	another	type.
For	example,	you	could	include	a	bulleted	list	inside	a	definition	list	to	give
further	clarification	to	a	definition	description.	Look	at	the	following	illustration
and	code	to	see	what	I	mean:	

TIP
The	most	important	thing	to	remember	when	nesting	lists	is	always	to	confirm	that	you	have
closed	each	list.	If	you	notice	a	section	of	your	nested	list	is	indented	more	than	it	should	be	or
continues	within	the	list	above	it,	try	drawing	semicircles	from	each	of	the	list’s	opening	and
closing	tags.	If	any	of	the	circles	cross	or	don’t	have	an	ending	spot,	you	may	need	to	recheck
your	work	for	errors.

Try	This	10-1 Use	Lists	on	Your	Web	Page
In	this	project,	you	create	a	web	page	listing	your	company’s	products	and/or
services.	Goals	for	this	project	include	•	Using	an	ordered	list	in	a	web	page	•
Using	an	unordered	list	in	a	web	page	1.	Open	your	text/HTML	editor	and	create
a	new	file	entitled	services.html.

2.	Type	all	the	HTML	tags	needed	for	a	basic	web	page.

3.	Specify	a	white	background	color	and	that	the	entire	page	should	use	the
Verdana	font.

4.	Add	the	necessary	content	to	describe	your	site’s	services,	making	sure	to
include	at	least	one	ordered	and	unordered	list	for	practice.

5.	Format	the	top	headline	as	a	Level	1	header.

6.	Add	any	other	formatting	you	think	is	appropriate.

7.	Save	the	file.

8.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	sessions.html	that
you	just	saved.	Make	sure	the	file	appears	as	you	intended.

9.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

Ordered	and	unordered	lists	can	be	great	ways	to	draw	attention	to	important
information	on	your	page.	This	project	gave	you	practice	using	each	type	of	list
in	preparation	for	using	them	on	your	own	web	pages.

TIP
Is	the	text	after	your	list	indented?	If	so,	check	to	make	sure	you	closed	your	lists	with	the	proper
ending	tag	(or).	For	more	tips,	see	Appendix	C.

Style	Lists
While	there	is	no	style	sheet	property	for	actually	creating	lists—that’s	done
with	HTML,	as	you	just	learned—there	are	three	properties	that	can	be
particularly	useful	in	formatting	lists.	Table	10-2	provides	details.	Note	that	all
three	properties	can	only	be	used	to	format	lists	and	no	other	HTML	elements.

Table	10-2	Style	Sheet	Properties	for	Formatting	Lists

Customize	the	Bullets
For	example,	suppose	you	wanted	to	create	a	list	on	a	web	page	in	which	each
item	was	preceded	by	an	image	of	a	star.	You	could	add	an	image	tag	to	the
beginning	of	each	item	in	a	definition	list	to	achieve	this	sort	of	thing,	such	as
with	the	following	code:	

But	what	if	you	had	20	items	in	your	list?	Adding	that	long	img	tag	to	every
list	item	would	be	tedious.	A	more	efficient	alternative	is	to	switch	to	an
unordered	list	(one	with	bullets,	by	default)	and	use	a	style	sheet	in	the	header	of
your	page	to	change	the	regular	bullet	to	the	image	of	your	choice.	The
following	code	and	illustration	show	how	this	might	work:	

TIP
For	the	best	results,	choose	images	that	are	about	the	same	height	as	the	text	in	each	list	item.

Customize	the	Spacing
As	you	know,	the	HTML	list	tags	indent	each	list	item	by	default.	Unfortunately,
the	exact	amount	of	that	indentation	does	vary	a	bit	according	to	the	browser.
Thankfully,	there	are	CSS	properties	for	adjusting	the	indent.	Two	properties—
margin	and	padding—in	particular	affect	the	spacing	around	each	item	in	your

list,	and	around	the	list	in	general.
When	attached	to	the	ul	or	ol	tag,	the	margin	property	affects	the	space

around	the	entire	list.	But	when	it	is	used	with	the	li	tag	instead,	the	margin
property	alters	the	space	around	each	individual	list	item.

The	padding	property	dictates	the	amount	of	buffer	space	around	the	text	in
the	list	item,	before	the	edge	of	the	list	item	is	reached.	Take	a	look	at	the
following	illustrations	to	help	visualize	how	this	works	(first,	I’ll	show	you	a
visual	representation	of	a	list	with	some	extra	spacing,	then	the	code	used	to
create	that	example).

It	is	important	to	note	that	whenever	you	alter	the	spacing	around	your	lists
and	list	items,	you	must	test	your	pages	in	a	variety	of	browsers	just	to	make
sure	everything	displays	as	intended.	Some	older	versions	in	particular	have
trouble	properly	displaying	lists	with	altered	spacing.

Customize	the	Entire	Layout
What	if	you	wanted	to	completely	change	the	layout	of	your	list	so	that	it	no
longer	looked	like	the	typical	list	with	bullets	and	indentations?	In	the	past,	web
page	authors	have	used	tables	(such	as	those	created	in	word	processing
programs	or	spreadsheets)	to	hold	each	“item”	in	an	irregular	list.	But	style
sheets	provide	a	method	of	easily	changing	the	layout	of	a	list,	whether	that
means	simply	removing	the	bullets	and	indents	or	going	so	far	as	to	switch	the
whole	thing	from	vertical	to	horizontal.

Vertical	Navigation
Probably	the	most	common	reason	for	playing	with	the	layout	of	a	list	is	to	use	it
as	a	navigation	bar.	Consider	the	navigation	bar	shown	in	Figure	10-1.	It
certainly	doesn’t	look	like	a	list;	in	fact,	it	looks	more	like	a	bunch	of	graphical

buttons.	There	are	borders	separating	the	links,	and	the	colors	even	change	when
you	move	your	mouse	over	the	links.

Figure	10-1	CSS	made	it	easy	to	turn	a	boring	list	into	a	stylish	navigation	bar.

The	actual	HTML	code	used	to	create	that	list	is	shown	next:	

Notice	how	the	HTML	for	the	list	looks	the	same	as	the	lists	previously
created	in	the	beginning	of	this	chapter.	In	fact,	every	bit	of	the	formatting	is
achieved	through	the	style	sheet,	which	looks	like	this:	

Horizontal	Navigation
What	if	you	wanted	to	display	the	navigation	bar	horizontally	across	the	page
instead	of	vertically	down	the	page?	The	reason	lists	run	down	the	page	by

default	is	that	they	are	block-level	elements	in	HTML.	As	mentioned	previously,
block-level	elements	automatically	fill	the	available	space.

With	that	in	mind,	we	can	easily	make	a	list	display	horizontally	by
specifying	it	should	be	displayed	as	an	inline	element	instead	of	a	block-level
element	with	display:	inline.	Figure	10-2	shows	a	very	basic	unordered	list,
with	a	style	sheet	applied	to	turn	it	into	a	horizontal	navigation	bar.	The	list	code
looks	like	the	following:

Figure	10-2	Changing	the	list	from	block-level	to	inline	allows	the	items	to	run
horizontally	across	the	page.

And	the	style	sheet	looks	like	this:

Try	This	10-2 Style	Lists	Within	Your	Web	Page
In	this	project,	we’ll	use	style	sheets	to	customize	the	lists	created	in	Try	This
10-1.	Goals	for	this	project	include	•	Stylizing	the	bullet	in	an	unordered	list	•
Creating	an	inline	list	for	navigational	purposes	1.	Open	your	text	or	HTML
editor	and	return	to	the	file	saved	from	the	previous	project.

2.	Replace	the	Roman	numerals	in	the	ordered	list	with	a	graphical	button,	such
as	those	included	at	http://www.prodraw.net/button.	(HINT:	Try	using

http://www.prodraw.net/button

ol>li	as	your	selector	to	tell	the	browser	only	to	use	the	star	for	list	items
within	the	ordered	list	on	your	page,	not	all	the	list	items	on	the	page.)	3.	If
you	don’t	already	have	one,	add	a	new	content	division	for	the	navigation.

4.	Create	an	unordered	list	in	that	division,	with	at	least	three	list	items	that
make	sense	for	your	site.	Here	are	some	suggestions:	•	Home
•	About	Us
•	Our	Services	5.	Link	“Home”	to	the	index.html	page	you’ve	created.

6.	Link	the	others	to	their	corresponding	pages.	(If	they	haven’t	yet	been
created,	simply	create	a	placeholder	link.)	7.	Specify	that	“Our	Services”
should	use	the	“active”	class	in	your	style	sheet.

8.	Add	the	appropriate	style	declarations	to	your	style	sheet	to	make	the	list	in
the	navigation	division	display	as	a	horizontal	navigation	bar.

9.	Turn	off	the	underlines	for	the	links	in	the	navigation	bar.

10.	Continue	adding	style	sheet	properties	to	format	the	list	items	with	a	one-
pixel,	solid,	black	border.

11.	Create	a	class	called	“active”	and	give	that	class	a	gray	background	color.

12.	Save	the	file.

13.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	you	just	saved.
Make	sure	the	file	appears	as	you	intended.

14.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

Style	sheets	make	it	very	easy	to	turn	simple	lists	into	elegant	navigation
bars.	This	project	gave	you	practice	working	the	various	style	sheet	properties
used	to	do	just	that.

Chapter	10	Self	Test

1.	What’s	the	difference	between	an	unordered	list	and	an	ordered	list?

2.	Which	element	is	used	to	enclose	list	items	in	both	ordered	and	unordered
lists?

3.	You	created	an	unordered	list	with	four	list	items.	All	the	content	following
the	fourth	list	item	that	should	be	normal	text	is	indented	under	the	list.
What	is	the	most	likely	cause	of	this	problem?

4.	Which	HTML	attribute	changes	the	numbering	style	of	a	list?

5.	True/False:	You	can	use	more	than	one	dd	element	for	each	dt	element.

6.	Which	HTML	attribute	changes	the	starting	letter	or	number	for	a	list?

7.	Fill	in	the	blank:	When	displayed	in	a	browser,	each	item	in	an	unordered	list
is	preceded	by	a(n)	_____________	by	default.

8.	Fix	the	following	code:

9.	Add	the	appropriate	code	to	turn	the	following	text	into	an	ordered	list:	

10.	Fill	in	the	blank:	The	dl	element	stands	for	________________________.

11.	True/False:	When	you	nest	unordered	lists,	the	bullet	style	remains

unchanged.

12.	What	value	is	used	with	the	display	property	to	change	a	list	from	vertical
to	horizontal?

13.	How	can	you	change	a	list	from	using	Arabic	numbers	to	lowercase	letters?

14.	Which	CSS	property	is	used	to	replace	the	standard	bullet	in	a	list	with	an
image?

A

Chapter	11
Using	Tables

Key	Skills	&	Concepts

•	Understand	the	Concept	and	Uses	of	Tables	in	Web	Pages

•	Create	a	Basic	Table	Structure
•	Format	Tables	Within	Web	Pages

•	Format	Content	Within	Table	Cells

t	this	point	in	the	book,	you’ve	made	it	through	the	majority	of	the	basic
tags	used	to	create	web	pages.	The	next	few	chapters	deal	with	content	that

can	sometimes	seem	a	bit	more	complicated	than	tags	for	lists	and	links.	Don’t
worry,	though,	because	even	the	pros	struggled	with	these	concepts	when	they
first	start	(myself	included).

Understand	the	Concept	and	Uses	of	Tables	in
Web	Pages
Although	you	might	not	recognize	the	terminology,	you	have	undoubtedly	seen
tables	in	other	printed	or	electronic	documents.	In	fact,	throughout	the	course	of
this	book,	I’ve	used	tables	to	give	order	to	certain	sections	that	might	otherwise
be	confusing.	Quite	simply,	a	table	is	a	section	of	information,	broken	up	into
columns	and/or	rows	of	blocks,	called	cells.

Those	of	you	who	use	Microsoft	Word	may	be	familiar	with	a	menu	item	in
that	program	called	Table	that	enables	you	to	create	tables	just	like	those	used	in

web	pages.	Microsoft’s	word	processor	isn’t	the	only	one	with	tables.	Most	word
processors	are	capable	of	letting	you	format	content	in	tables.

TIP
When	considering	whether	or	not	to	use	a	table	in	a	web	page,	first	think	of	how	you’d	present
that	same	information	in	a	standard	word	processing	program.	If	you’d	use	a	table	in	the	word
processor,	you	likely	should	use	one	in	your	web	page	as	well.	If	not,	consider	another	method	of
presenting	that	information	in	your	web	page.

Another	form	of	a	table,	either	printed	or	electronic,	is	the	spreadsheet.
Along	these	lines,	you	might	think	about	a	table	as	a	large	piece	of	grid	paper,
where	you	get	to	decide	the	size	of	the	cells	that	will	hold	the	information.

To	make	decisions	about	how	large	or	small	your	cells	and	table	should	be,
you	need	to	do	a	little	planning.	Even	though	HTML	tables	are	created	in	digital
documents,	the	best	way	to	plan	out	tables	is	to	use	a	pencil	and	paper	when
you’re	first	learning.	As	you	become	more	familiar	with	the	structure	of	a	table,
you	may	be	able	to	plan	it	in	your	head	without	first	drawing	it.

Let’s	first	consider	what	a	table	would	look	like	for	a	simple	tic-tac-toe
game.

1.	Draw	a	large	box	on	your	piece	of	paper.

2.	Divide	that	box	into	three	columns	and	three	rows.

3.	Place	an	X	or	an	O	in	each	of	the	boxes,	leaving	no	boxes	empty.

Following	these	steps	will	probably	get	you	a	piece	of	paper	with	a	drawing
similar	to	mine.

Now,	imagine	you	want	to	translate	this	tic-tac-toe	game	into	a	web	page.
How	would	you	do	that?	You’ve	already	learned	that	in	HTML,	you	cannot

simply	tab	over	to	the	next	column	and	type	an	X	as	you	might	in	a	spreadsheet
application.	You	can,	however,	use	a	table	to	lay	out	the	tic-tac-toe	game’s
structure.

Create	a	Basic	Table	Structure
First,	decide	how	large	you	want	your	table,	or	in	this	case,	how	large	you	want
your	tic-tac-toe	game.	Remember,	pixels	are	the	units	of	measure	on	the	screen;
inches	or	centimeters	won’t	get	you	far	in	HTML.	In	the	beginning,	it’ll
probably	be	useful	for	you	to	write	out	your	measurements	on	your	drawings.
Don’t	worry,	though.	Nothing	you’re	doing	now	is	set	in	stone.	You’ll	be	able	to
make	changes	later	as	needed.

After	planning	out	the	dimensions	of	the	table,	it’s	time	to	get	started
working	on	the	table	structure	in	HTML.

Table	Structure
You	need	to	know	about	four	basic	table	tags,	as	described	next:

With	these	tags	in	mind,	you	can	create	both	basic	and	complex	table
structures	according	to	your	needs.	Say	you	want	to	create	a	basic	table
structure,	such	as	the	following:

Your	code	might	look	like	that	shown	next:

NOTE
While	you’re	not	required	to	indent	your	td	or	th	tags,	I	did	so	here	to	help	you	differentiate
between	table	rows	and	cells.

Opening	and	closing	table	tags	surround	the	entire	section	of	code.	This
tells	the	browser	that	everything	inside	these	tags	belongs	in	the	table.	And	there

are	opening	and	closing	tr	tags	for	each	row	in	the	table.	These	surround	td	or
th	tags,	which,	in	turn,	contain	the	actual	content	to	be	displayed	by	the	browser.

NOTE
Some	browsers	show	a	border	around	each	cell	by	default.	I	discuss	more	about	borders	in	the
section	titled	“Borders	and	Margins.”

Cell	Content
You	can	include	nearly	any	type	of	content	in	a	table	cell	that	you	might	include
elsewhere	on	a	web	page.	This	content	should	be	typed	in	between	the	opening
and	closing	td	tags	for	the	appropriate	cell.	All	tags	used	to	format	that	content
should	also	be	included	between	the	td	tags.

TIP
Want	to	include	a	blank	cell	with	no	content?	Type	the	code	for	a	nonbreaking	space	()
between	the	opening	and	closing	td	tags,	and	your	cell	will	appear	blank.	If	you	have	a	lot	of
blank	cells,	you	could	add	empty-cells:	show;	to	the	style	declaration	for	your	table	tag.

If	we	return	to	our	tic-tac-toe	game,	the	following	is	the	markup	for	that
table:

If	you	were	to	create	a	basic	HTML	page	with	this	code,	save	it,	and	preview

it	in	your	browser,	you’d	see	something	like	the	following:

By	default,	the	size	of	each	cell	is	only	as	large	or	as	small	as	the	content	of
the	cell.	(We’ll	talk	about	changing	the	size	of	the	cell	shortly.)	If	you	typed
three	Xs	or	Os	in	each	cell	and	added	a	sentence	in	the	center	cell,	the	table
would	change	to	look	like	that	shown	next:

After	a	certain	number	of	characters,	the	browser	may	wrap	the	content.	This
means	it	stops	printing	on	that	line	and	continues	on	the	next	line.	This	usually
doesn’t	occur	until	the	table	runs	up	against	another	element	within	the	page	or
hits	the	edge	of	the	window.	The	default	point	at	which	the	content	wraps	varies
according	to	the	browser.

Text
You	can	customize	the	text	within	each	cell	using	the	elements	you	learned	in
previous	chapters.	For	example,	you	can	use	the	strong	element	to	add	emphasis
and	make	the	text	within	a	cell	bold:

Enclosing	the	words	“tic-tac-toe	board”	in	the	center	cell	with	the	opening
and	closing	versions	of	the	strong	element	tells	the	browser	to	add	emphasis	to
the	text	and	make	it	bold.

If	you	want	to	make	all	the	text	in	every	cell	take	on	the	same	characteristics,
the	best	solution	is	to	use	a	style	sheet	with	the	td	tag	as	the	selector.	For
example,	the	style	sheet	in	the	following	example	can	be	placed	between	the
opening	and	closing	head	tags	to	change	the	face	and	size	of	text	within	all	the
cells	created	by	td	tags	throughout	the	entire	page:

Images
You	can	also	add	images	to	any	of	the	cells	in	your	HTML	tables.	To	do	so,	add
the	image	reference	(using	the	img	element)	inside	the	cell	in	which	you	want	it
to	appear.	In	the	following	example,	I	used	a	graphic	of	an	O	instead	of	text
wherever	the	O	appeared	in	the	game	board:

When	viewed	in	the	browser,	the	image	Os	appear	where	the	text	Os	used	to
appear,	as	shown	next:

You	can	also	combine	text,	images,	and	other	types	of	media	(such	as

animation,	sound,	and	video)	within	table	cells	by	drawing	on	many	of	the
elements	discussed	in	previous	chapters.	The	key	is	determining	which	pieces	go
in	which	cells.

Format	Tables	Within	Web	Pages
You	may	have	noticed	by	now	that	all	the	text	in	a	table	appears	aligned	to	the
left	side	of	each	cell.	This,	and	many	other	features	of	a	table,	can	be	easily
customized	with	your	style	sheet.

Borders	and	Margins
Tables,	by	nature	of	their	design,	have	internal	and	external	borders.	By	default,
most	browsers	set	the	border	size	to	zero,	making	them	invisible.	However,
borders	can	be	quite	useful	for	tables	of	statistical	information,	for	example,
where	it’s	necessary	to	see	the	columns	to	understand	the	data	better.	The	key	is
understanding	the	three	attributes	related	to	the	use	of	these	borders.

TIP
When	a	table	with	borders	is	viewed	in	a	text-based	browser	(i.e.,	a	browser	set	to	display	plain
text	only,	with	no	extra	formatting	or	images),	the	borders	are	represented	as	dashes	for	the
horizontal	borders	and	as	pipes	(|)	for	the	vertical	borders.

The	border	Attribute
Even	if	you	ultimately	want	your	table	borders	to	be	invisible,	a	great	way	to	see
how	your	table	is	shaping	up	while	you’re	building	it	is	to	turn	on	all	the	table
borders	temporarily.	You	can	do	so	by	adding	the	border	attribute	to	the	opening
table	tag	and	specifying	a	value	of	1:

Changing	the	border	size	to	1	for	my	tic-tac-toe	table	lets	you	see	more
clearly	where	each	cell	begins	and	ends	because	it	turns	on	all	the	internal	and
external	borders.	The	border	attribute	accepts	values	of	0	and	1	to	turn	the
borders	off	or	on,	respectively.

Border	Properties
You	can	also	use	the	border	properties	in	a	style	sheet	to	format	the	borders	of
your	tables,	specifically	the	border-width,	border-style,	and	border-color
properties.	See	Chapter	3	for	details.

The	latest	version	of	the	CSS	specification	also	provides	an	additional	style
sheet	property	to	alter	table	spacing	in	web	pages.	Specifically,	the	border-
collapse	and	border-spacing	properties	are	useful	when	you	need	to	eliminate
or	customize	the	space	between	the	cells.	The	border-collapse	property	might
be	used	in	either	of	the	following	two	ways:

•	border-collapse:	collapse	Turns	off	all	the	space	between	the	cell	borders.
•	border-collapse:	separate	Maintains	the	space	between	the	cell	borders.

When	the	border-collapse	property	is	set	to	separate,	you	then	use	the	border-
spacing	property	to	specify	exactly	how	much	space	should	be	included:

In	this	code	example,	I’ve	told	the	browser	to	maintain	space	between	the	cell
borders,	and	then	specified	exact	dimensions	for	that	space.	If	two	units	are
included—as	they	were	here—then	the	first	identifies	the	horizontal	space	and
the	second	identifies	the	vertical	space.	When	only	one	unit	is	listed,	it	is	used
for	both	the	horizontal	and	vertical	space	measurements.

Spacing	Properties
You	can	also	use	the	padding	and	margin	properties	with	style	sheets	to	format

the	spacing	in	and	around	table	cells.	Note	that	entire	tables	can	be	styled	with
both	the	padding	and	margin	properties,	while	individual	cells	can	include
padding,	but	no	margins.	Refer	to	Chapter	3	for	details.

Width	and	Height
When	I	first	introduced	tables,	I	mentioned	planning	out	the	size	of	your	tables
ahead	of	time.	This	is	particularly	important	if	the	table	you	are	creating	needs	to
fit	within	a	predetermined	amount	of	space	on	your	page.	When	adding	tables	to
your	pages,	it	is	considered	good	practice	to	specify	the	size	of	the	table	with	the
height	and	width	style	sheet	properties.	If	you	don’t	specify	them	in	your	code,
the	browser	chooses	the	size	based	on	the	amount	of	content	within	each	cell	and
the	amount	of	available	space	in	the	window,	which	means	it	may	or	may	not
display	the	table	as	you	expect.

Let’s	say	I	want	to	include	that	tic-tac-toe	game	in	my	web	page,	but	I	only
had	an	available	space	on	my	page	that	measured	200	pixels	wide	by	200	pixels
high.	Because	tables	have	a	tendency	to	“grow”	according	to	the	amount	of
content	in	them,	I	might	want	to	restrict	the	height	and	width	of	my	table	to
avoid	it	growing	out	of	that	200	×	200–pixel	area	I	designated	for	it.	I	could	do
so	by	specifying	the	dimensions	in	my	style	sheet.	Provided	there	was	only	one
table	element	on	my	page,	I	could	even	use	table	as	my	selector:

NOTE
If	there	were	multiple	tables	on	my	page,	I	could	style	each	one	independently	by	adding	the
class	attribute	to	each	opening	table	tag	and	then	styling	the	classes	uniquely	in	my	style	sheet.

In	this	case,	I	would	specify	an	absolute	size	for	my	table,	one	that	shouldn’t
change	if	the	browser	window	were	larger	or	smaller.

On	the	other	hand,	if	I	didn’t	care	about	the	exact	measurements	of	my	table,
but	I	only	wanted	it	to	take	up	50	percent	of	the	window	and	no	more,	I	could
use	a	percentage	in	the	value	of	those	attributes:

This	is	called	relative	sizing	because	I’m	not	specifying	absolute	pixel
dimensions	but,	instead,	sizes	that	are	relative	to	the	browser	window	opening.
Compare	the	next	two	illustrations	to	see	how,	with	relative	sizing,	the	table	size
varies	according	to	the	window	size.

Ask	the	Expert
Q:	Wait!	When	I	try	that,	my	table	doesn’t	fill	50	percent	of	the	screen

vertically,	only	horizontally!

A:	If	you’re	following	along	by	typing	these	code	examples	into	your	own
HTML	editor	and	then	viewing	the	pages	in	your	own	browser,	you	may
have	hit	a	snag	when	trying	to	duplicate	my	example	of	a	table	set	to	50

percent	of	the	browser	window’s	height.	Never	fear—there	is	an
explanation	for	this	problem,	and	it	lies	in	how	your	browser	actually
defines	what	100	percent	of	the	height	is.

You	see,	when	you	specify	that	the	table	should	be	50	percent,	most
browsers	read	that	as	“50	percent	of	the	parent	object.”	In	this	case,	the
parent	object	is	the	HTML	page	itself.	Because	HTML	pages	aren’t
block-level	elements,	they	don’t	automatically	fill	all	the	available
space.	This	causes	a	dilemma	if	you	want	your	table	to	fill	half	the
screen,	especially	when	the	browser	thinks	the	“screen”	stops	as	soon	as
your	page	content	does.

The	solution	is	to	add	a	simple	bit	of	code	to	your	style	sheet	to	force
the	browser	to	behave	like	a	block-level	element,	or	rather	to	fill	the
entire	browser	window,	regardless	of	the	amount	of	content	visible:

Once	you’ve	done	that,	the	height:50%	declaration	will	actually
work	on	your	table	tag!

Basic	Alignment
As	discussed	in	Chapter	8,	you	can	use	the	float	property	to	cause	an	image,	or
in	this	case	a	table,	to	be	aligned	to	the	right	or	left	of	any	surrounding	text.	If
only	one	table	exists	on	the	page,	you	can	even	use	the	table	element	as	your
selector,	like	this:

The	following	illustration	shows	our	tic-tac-toe	table	aligned	to	the	right	of
the	window,	with	text	flowing	around	it	on	the	left.	The	complete	source	of	the
page	is	also	listed	here	to	give	you	a	better	idea	how	the	style	sheet	affects	the
table	formatting.

Colors
To	change	the	background	color	of	an	entire	table,	you	can	add	the	background-
color	property	to	your	style	sheet,	using	the	table	tag	as	the	selector.	The
following	example	shows	how	this	might	look	in	an	internal	style	sheet,
supposing	the	table	you’re	formatting	is	the	only	table	on	the	page:

But	what	if	you	did	have	several	tables	on	your	page?	Be	aware	that	using
the	preceding	code	would	cause	all	tables	on	the	page	to	be	rendered	with	the
same	background	color.	To	create	specific	styles	for	each	table	on	a	page	that
included	multiple	tables,	you	might	use	classes:

Then,	you’d	reference	the	class	name	(without	the	period)	from	the	opening
table	tag,	as	in

Depending	on	which	browser	renders	the	table,	the	background	color	you
specify	may	or	may	not	appear	within	the	borders.	Test	your	pages	in	multiple
browsers	to	be	sure.

Background	Images

The	background-image	property	can	be	added	to	your	style	sheet	to	apply	an
image	to	the	entire	table	background.	The	background-image	property	works	the
same	when	applied	to	a	table	as	it	does	applied	to	other	web	page	objects.	This
means	it	automatically	repeats	from	left	to	right,	top	to	bottom.	However,	you
can	use	the	other	background	properties	discussed	in	Chapter	8	(such	as
background-repeat	and	background-attachment)	to	change	the	repeating
options	if	desired.

Adding	a	background	image	is	one	way	you	could	achieve	a	textured	or
patterned	table	background,	as	shown	in	Figure	11-1.	This	only	requires	a	small
repeating	image,	such	as	the	following:

Figure	11-1	The	background-image	property	can	be	applied	to	the	table	to
produce	a	patterned	effect.

and	a	bit	of	code	added	to	your	style	sheet:

Captions
The	caption	element	enables	you	to	specify	captions	for	your	tables.	This	isn’t
an	attribute	of	the	table	element;	it’s	a	stand-alone	element	used	after	the
opening	table	tag	but	before	the	first	table	row.	Here	is	the	first	portion	of	the
table	markup:

Opening	and	closing	caption	tags	surround	the	actual	text	you	want	to
display	as	a	caption	for	the	table.	By	default,	the	caption	is	aligned	at	the	top-
center	of	the	table.	Two	CSS	properties	are	useful	in	changing	the	caption
alignment:

•	text-align	Use	this	to	adjust	whether	the	text	is	aligned	left,	right,	or	center	on
whichever	side	it	is	placed.

•	caption-side	Use	this	to	specify	on	which	side	the	caption	should	be	placed
(top,	right,	bottom,	or	left).

With	those	properties	in	mind,	can	you	figure	out	how	to	align	a	caption
along	the	bottom	edge	of	a	table	and	then	set	the	text	to	be	right-aligned	along
that	edge?	Figure	11-2	shows	a	visual	example,	and	the	following	code	provides

the	answer:

Figure	11-2	The	caption	element	is	styled	to	specify	the	exact	alignment	of	the
text	in	the	caption.

TIP
You	can	also	use	additional	formatting	properties	to	draw	more	attention	to	a	caption,	such	as
making	it	bold	or	different	colors.

Try	This	11-1 Create	a	Basic	Table
Tables	are	particularly	useful	for	allowing	customers	to	compare	products	and/or
services.	You’ll	use	the	skills	you	just	learned	to	add	such	a	table	to	a	web	page.
Goals	for	this	project	include

•	Creating	a	basic	table	structure

•	Adding	text	content	to	the	table	structure
•	Formatting	the	table

1.	Open	your	text	or	HTML	editor	and	locate	a	page	where	it	would	be
appropriate	to	add	a	table	of	services	or	products.

2.	Create	the	table	on	the	page,	using	the	following	table	as	a	guideline.	Note
the	first	row	is	a	table	header	row.

3.	Specify	a	border	size	of	1.

4.	Add	a	Level	1	headline	above	the	table,	as	well	as	a	brief	paragraph
explaining	its	purpose.

5.	Save	the	file.

6.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	you	just	saved.
Make	sure	it	appears	as	you	want.

7.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

NOTE
Is	your	table	missing	when	you	try	to	view	the	page?	If	so,	check	to	make	sure	you	have	closed
your	table	tag	(</table>).	For	more	tips,	see	Appendix	C.

Tables	are	used	in	a	wide	variety	of	ways	throughout	the	digital	and	print
industries.	This	project	gave	you	practice	creating	a	basic	table	structure,	using	a
product/service	comparison	chart	as	the	basis	for	your	table.

Format	Content	Within	Table	Cells
Just	as	you	can	format	the	entire	table,	you	can	format	each	of	the	individual
cells	within	the	table.	This	means	changing	the	alignment,	width,	height,	and
background	colors,	as	well	as	restricting	line	breaks	and	spanning	content	across
multiple	columns	or	rows.

Alignment
If	you	refer	to	the	table	you	created	in	Try	This	11-1,	you	may	notice	the
alignment	appears	different	for	some	of	the	cells,	depending	on	how	much
content	is	in	each	cell	and	how	wide	the	browser	window	is	open.	For	example,
the	cells	in	the	first	row	might	contain	text	that	is	centered,	while	the	remaining
cells	in	the	other	rows	might	be	left-aligned.

To	change	vertical	and	horizontal	alignment,	you	can	add	the	text-align
property	for	horizontal	alignment	or	the	vertical-align	property	for	vertical
alignment	to	the	tr,	th,	or	td	tags.

•	tr	Adding	the	text-align	or	vertical-align	properties	to	the	opening	tr	tag
causes	the	alignment	you	specify	to	take	effect	for	all	the	cells	in	that	row.

•	td,	th	Adding	the	text-align	or	vertical-align	properties	to	an	opening	td
or	th	tag	causes	the	alignment	you	specify	to	take	effect	for	only	that	cell.

Table	11-1	lists	the	possible	values	for	these	two	properties	when	used	in
tables.

Table	11-1	Text	Alignment	Options	for	Tables

NOTE
The	default	values	for	the	text-align	and	vertical-align	properties	are	left	and	middle,
respectively.	For	header	cells	(using	the	th	tag),	however,	the	horizontal	alignment	defaults	to
center	instead	of	left.

If	you	want	to	align	all	the	cells	in	your	table	in	a	similar	manner,	it’s	easy	to
use	the	td	tag	as	the	selector	in	your	style	sheet	in	the	following	manner:

But	what	if	you	wanted	each	column	of	cells	to	be	aligned	differently?	You
could	create	three	classes:

and	then	reference	each	class	from	within	the	appropriate	td	tag.	Figure	11-3
shows	the	result	of	this	type	of	style	sheet	when	applied	to	our	tic-tac-toe	board.

Figure	11-3	Three	different	classes	were	created	to	align	the	cells	of	this	table	in
three	different	ways.

Width	and	Height
Earlier	in	the	chapter,	you	used	the	width	and	height	properties	to	identify	the
size	of	the	entire	table.	You	can	also	specify	the	size	of	individual	cells	by
adding	those	properties	to	your	td	or	th	tags.

TIP
This	can	be	particularly	useful	if	you	want	to	have	columns	that	are	the	same	size,	because	most
browsers	won’t	make	columns	the	same	size	when	the	width	is	left	unspecified.

You	may	remember	that	the	value	of	these	two	attributes	can	be	dictated	by

either	a	pixel	length	or	a	percentage.	This	is	the	same	regardless	of	what	element
is	being	sized.	However,	use	caution	when	mixing	pixel	values	with	percentages
because	you	might	get	unpredictable	results	in	different	browsers.

Look	at	the	table	in	the	following	example.	Although	the	table	itself	has	a
width	set	to	100	percent	of	the	window	opening,	none	of	the	cells	have	width
dimensions.	This	leaves	the	decision	about	how	wide	each	cell	should	be	up	to
the	browser.

If	I	want	to	make	all	three	of	the	columns	the	same	width,	regardless	of	what
size	the	browser	window	is,	I	could	specify	in	my	style	sheet	that	each	th	tag
should	be	one-third	of	the	overall	table	width:

Then,	each	of	the	following	cells	in	that	column	will	have	the	same	width
(and/or	height).	An	exception	to	this	rule	might	be	when	one	cell	contains	an
extremely	long	string	of	text	without	spaces,	such	as
“abcdefghijklmnopqrstuvwxyz.”	In	this	case,	the	browser	may	have	to	make	that
cell	larger,	as	necessary,	to	accommodate	the	long	string	of	text.

It	isn’t	necessary	to	place	width	properties	in	every	cell	in	a	column—only
the	first	one.	Also,	if	you	set	the	width	two	columns,	the	third	will	simply	use	the
remaining	available	space.	In	the	end,	I	recommend	testing	your	pages	in
multiple	browsers	to	verify	that	the	table	appears	as	you	intended.

Cell	Padding
While	table	cells	don’t	have	margins	(at	least	not	by	CSS	standards),	they	do
have	padding.	This	means	if	you	want	to	have	some	buffer	space	around	the
content	of	your	cells	(padding),	you	can	add	the	padding	property	to	your	style
sheet	declaration.

Using	the	padding	property	for	tables	is	the	same	as	using	it	for	other	HTML
elements,	as	was	discussed	in	previous	chapters.	So,	if	you	wanted	to	add	10
pixels	of	padding	around	each	cell,	the	style	sheet	might	look	like	this:

Can	you	imagine	how	you	might	achieve	10	pixels	of	padding	only	on	the
top	and	bottom	edges	of	each	cell?	There	are	a	couple	of	ways	to	do	it,	but	I	like
to	simply	specify	the	padding	in	pairs,	where	the	first	number	lists	the	top	and

bottom	padding,	and	the	second	number	lists	the	left	and	right	padding.	Check	it
out:

Colors
While	adding	the	background-color	property	to	a	table	style	declaration	lets
you	change	the	color	for	the	entire	table,	using	this	property	with	the	tr,	td,	or
th	tag	lets	you	specify	the	color	of	a	single	row	or	cell:

Coloring	rows	or	columns	in	a	table	with	different	hues	can	be	a	great	way	to
make	the	table	more	readable,	particularly	if	it’s	a	long	table.	Style	sheets	make
it	easy	to	create	such	patterns	through	the	use	of	classes.	Consider	the	table
shown	in	Figure	11-4.	If	you	had	to	add	the	style	declarations	to	each	row	in	the
table,	it	could	become	quite	cumbersome	as	the	table	grew	to	include	more	rows.
Instead,	create	the	two	classes	in	your	internal	or	external	style	sheet:

Figure	11-4	Style	sheets	and	classes	make	it	easy	to	create	rows	of	alternating
colors	like	these.

and	then	reference	each	one	in	alternating	rows	of	your	table.

TIP
When	naming	classes,	stick	with	names	that	reference	the	purpose	of	the	class,	as	opposed	to	the
style	of	the	class.	For	example,	avoid	a	name	like	“bluerow”	and	“orangerow”	because	these
would	become	confusing	if	you	ended	up	changing	the	colors	of	the	rows.	Instead,	try	“hilight”
and	“lolite”	for	alternating	color	rows	like	these.

NOTE
When	you	include	background	colors	for	both	individual	cells	and	the	entire	table,	the
background	color	of	the	table	may	also	show	through	in	between	the	cells	(in	the	border).
However,	this	does	vary	somewhat	from	browser	to	browser.	My	advice	to	you	on	this	topic	is	to
test	your	pages	in	a	wide	number	of	settings	to	make	sure	you’re	happy	with	how	they	look	under
each	different	browser.

Prohibit	Line	Breaks
At	times,	you	might	have	content	in	a	cell	that	needs	to	be	kept	on	a	single	line.
In	cases	like	this,	you	can	use	the	white-space	property	with	a	value	of
“nowrap”	to	tell	the	browser	to	try	and	keep	all	the	content	in	that	cell	on	a
single	line	if	possible.	(This	might	not	be	possible	if	the	browser	window	is	so
small	that	the	content	cannot	be	rendered	across	a	single	line.)	The	style	sheet
might	look	like	the	following:

while	the	only	change	to	the	HTML	table	is	the	addition	of	the	class	reference:

Spanning	Columns

So	far	in	this	chapter,	you	have	only	worked	with	tables	in	a	grid-like	fashion
where	an	equal	number	of	cells	is	in	each	row	and	column.	While	this	is	the
default,	you	can	add	an	attribute	to	an	opening	td	or	th	tag	to	cause	it	to	merge
with	another	cell	below	it,	as	shown	here:

To	accomplish	this,	use	the	colspan	attribute.	By	default,	each	cell	is	set	to
span,	or	to	go	across,	only	one	column.	Using	the	colspan	attribute	enables	you
to	change	that,	so	that	a	cell	spans	two	or	more	columns.	The	following	HTML
shows	how	you	might	code	the	preceding	table:

Span	Rows
Just	as	you	can	merge	cells	across	two	or	more	columns,	you	can	merge	cells
across	two	or	more	rows.	The	attribute	used	to	do	so	is	rowspan.

If	you	take	the	table	used	in	the	preceding	section	and	merge	the	two	cells	on
the	right	(#3	and	#6)	into	one,	the	table	might	look	like	that	shown	next.

Here	you	have	two	cells	in	the	first	row	merged,	while	the	third	cell	from	the
first	row	is	merged	with	the	third	cell	from	the	second	row.	Here	is	the	HTML
used	to	create	this	table:

The	rowspan	attribute	can	be	used	by	itself	in	a	td	tag	to	cause	a	cell	to
merge	with	the	cell	below	it,	or	it	can	be	combined	with	the	colspan	attribute	to
cause	a	cell	to	merge	with	both	the	cell	below	it	and	the	one	next	to	it.

Although	the	colspan	and	rowspan	attributes	give	web	developers	a	lot	of
power	to	build	creative	table	structures,	they	add	a	degree	of	complexity	to
tables	that’s	often	difficult	to	grasp.	Don’t	worry—everyone	struggles	with	these
concepts	at	first.	If	you	have	trouble,	go	back	to	using	your	pencil	and	paper	to
plan	out	your	table	structure	before	you	type	a	single	key.

TIP
If	you	have	a	picture	in	your	mind	of	the	final	output	of	your	table,	draw	that	first.	Then,	go	back
and	add	the	table	or	grid	structure	around	the	picture,	placing	each	piece	into	a	cell	or	a	group	of
cells.	This	is	also	one	of	the	places	where	a	visual	HTML	editor	may	come	in	handy	because	it
enables	you	to	see	the	table	while	you’re	creating	it.

Additional	Formatting	Techniques	for	Tables
HTML	has	additional	tags	geared	toward	helping	web	developers	build	more
user-friendly	tables.	These	tags	and	attributes	enable	you	to	group	rows	and/or
columns	so	that	the	browser	more	clearly	understands	the	purposes	of	each
element.

Group	Rows
Three	tags	in	particular	are	used	to	group	rows	within	tables:

•	thead	table	header
•	tfoot	table	footer

•	tbody	table	body

When	you	use	these	tags,	the	browser	is	able	to	differentiate	between	the
header	and	footer	information	and	the	main	content	of	the	page.	The	benefit	here
is	that	when	a	user	views	a	page	containing	a	long	table,	the	header	information
is	repeated	at	the	top	of	each	page	or	screen	view	of	the	table,	even	if	the	table	is
printed.	This	helps	users	avoid	wondering	what	column	three	was	supposed	to
hold,	when	they	are	looking	at	page	four,	and	the	title	of	column	three	was	only
listed	on	page	one.

While	these	three	tags	are	never	required,	when	they	are	used,	each	must
contain	at	least	one	table	row,	as	defined	by	the	tr	tag.	In	addition,	if	you
include	a	thead	and/or	a	tfoot,	you	must	also	include	at	least	one	tbody.	So,	a
table	layout	using	these	three	tags	might	look	like	this:

An	additional	benefit	of	using	these	tags	is	that	it	helps	make	styling	the
table	easier.	For	example,	suppose	you	wanted	to	format	the	data	rows	of	your
table	in	one	way,	the	header	in	a	different	way,	and	the	footer	in	yet	another
fashion.	As	long	as	the	thead,	tbody,	and	tfoot	tags	are	in	place,	you	only
need	to	reference	those	tags	in	your	style	sheet	to	do	so.	Figure	11-5	shows	how
the	preceding	code	would	be	viewed	in	a	browser	when	the	following	style	sheet
is	also	included:

Figure	11-5	When	you	use	the	thead,	tbody,	and	tfoot	tags,	styling	table
rows	becomes	a	snap.

Group	Columns
Along	the	same	lines,	you	can	group	columns	together	with	the	col	and
colgroup	elements.	Browsers	that	understand	these	tags	can	then	render	the
table	incrementally,	instead	of	all	at	once.	This	causes	long	tables	to	load	more
quickly	than	they	might	otherwise.	In	addition,	using	colgroups	enables	you	to
apply	styles	and	characteristics	to	entire	sections	of	columns,	as	opposed	to
doing	so	individually.

TIP
Simply	stated,	the	colgroup	and	col	elements	are	ways	to	pass	information	about	structure	and
style	on	to	the	browser	in	the	beginning	of	the	table	in	order	to	help	render	it.

The	opening	and	closing	colgroup	tags	enclose	one	or	more	columns	in	the
group	and	can	dictate	how	those	columns	should	be	rendered.	This	means	you
can	use	the	colgroup	tag	as	a	selector	in	your	style	sheet	to	format	all	the
columns	in	that	group	the	same	way.	You	can	also	add	the	span	attribute	to	this
tag	to	tell	the	browser	how	many	columns	should	be	included	in	the	group.

NOTE
If	you	had	both	colgroups	and	theads,	the	colgroups	would	be	placed	before	the	theads	in	your
table	structure.

In	this	example,	the	first	colgroup	contains	five	columns,	while	the	second
colgroup	contains	two	columns.	You	can	see	the	colgroup	tags	are	placed	at	the
top	of	the	table,	before	all	the	table	rows	and	table	cells.

Each	colgroup	in	this	example	also	has	an	ID	assigned:	group1	and	group2.
If	you	make	formatting	specifications	in	the	corresponding	ID	style	declaration,
they	take	effect	for	all	the	columns	in	that	group.	If	you	need	to	alter	the	width	or
alignment	of	specific	columns	in	the	group,	you	then	only	have	to	make	the
change	once	in	the	style	sheet.	The	following	shows	what	a	style	sheet	might
look	like	to	make	all	the	columns	in	group1	50	pixels	in	width,	while	those	in
group2	are	25	pixels	wide:

In	this	next	example,	there	are	two	groups	of	columns	in	a	table	about
adventure	trips	at	a	summer	camp.	In	this	case,	the	colgroups	aren’t	set	up	to
handle	width	as	much	as	background	colors.	The	first	group	contains	two
columns,	one	for	each	of	the	camp	sessions	available.	The	second	group	contains

three	columns	for	the	information	about	trips	offered	during	each	session.	The
session	columns	are	styled	with	different	background	colors.	In	addition,	two
classes	are	created	to	handle	capitalization	and	text	alignment	styling.

The	table	then	continues	with	the	rest	of	the	cell	data.	You	can	see	how	it	all
turned	out	visually	in	the	following	illustration.

NOTE
As	of	this	writing,	the	only	aspects	of	cols	or	colgroups	that	can	be	styled	are	borders,
background,	width,	and	visibility.	Unfortunately,	this	means	you	can’t	use	a	colgroup	to	adjust
the	alignment	of	all	the	cells	in	that	column	(wouldn’t	that	be	nice!).	The	only	way	to	do	that	is	to

add	a	class	to	each	cell	you	want	to	style,	and	then	use	the	text-align	property	with	that	class	in
your	style	sheet.

Whether	used	in	the	colgroup	or	col	tag,	column	width	can	be	specified	as
demonstrated	in	Table	11-2.

Table	11-2	Setting	the	Column	Width

Try	This	11-2 Format	Cell	Content
Returning	to	the	services	page	you	began	in	Try	This	11-1,	let’s	format	some	of
the	individual	cells	and	add	a	horizontal	rule	that	spans	the	entire	width	of	the
table.	Goals	for	this	project	include

•	Changing	the	alignment	of	content	within	table	cells
•	Causing	a	cell	to	span	across	multiple	columns

1.	Open	your	text	or	HTML	editor	and	open	the	file	used	in	Try	This	11-
1.

2.	Create	two	column	groups—one	for	the	feature	column,	and	one	for
the	product	columns.

3.	Assign	IDs	to	each	column	so	that	you	can	reference	them	from	your
style	sheet.

4.	Style	the	first	column	to	have	a	colored	background.

5.	Style	the	second	column	group	to	have	a	different	colored	background.

6.	Style	the	table	header	rows	to	have	a	very	dark	background	color	with
white	(or	very	light)	text.

7.	Add	a	four-pixel	padding	to	the	table	cells	for	a	bit	of	buffer	space
around	the	content.

8.	Adjust	the	border	to	display	only	the	outside	box	around	the	table	and
the	horizontal	lines	between	each	row	(but	not	the	vertical	lines	between	the
columns).

9.	Save	the	file.

10.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	you	just	saved.
Make	sure	the	file	appears	as	you	intended	it.

11.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

NOTE
Feel	free	to	experiment	with	other	types	of	formatting	as	you	see	fit	for	your	particular	table
design.

Although	somewhat	complex	in	nature,	these	formatting	techniques	help	you
build	more	creative	tables	than	might	otherwise	have	been	possible.	In	addition,
formatting	techniques	such	as	adjusting	alignment,	colors,	and	sizes	are	ways	to
draw	attention	to	cell	content.	This	project	gave	you	practice	working	with	many
of	these	features.

Chapter	11	Self	Test

1.	What	is	the	difference	between	the	td	and	th	elements?

2.	The	td	and	th	elements	are	contained	within	which	other	table	tag
(aside	from	the	table	tag	itself)?

3.	How	do	you	force	a	cell’s	contents	to	display	along	a	single	line?

4.	What	should	be	the	value	of	the	border	attribute	to	turn	on	a	table’s
borders?

5.	True/False:	You	cannot	use	other	HTML	tags	between	opening	and
closing	td	tags.

6.	Fill	in	the	blank:	The	______________	property	affects	the	space
around	the	content	of	each	individual	table	cell.

7.	Fix	the	following	code:

8.	What	are	two	types	of	measurements	you	can	use	to	identify	a	table’s
width?

9.	Add	the	appropriate	code	to	cause	this	table	to	fill	the	entire	browser
window,	regardless	of	the	user’s	screen	size.

10.	Fill	in	the	blank:	You	can	add	the	____________	property	to	your	style	sheet
to	change	the	background	color	of	the	whole	table.

11.	True/False:	To	add	a	caption	to	a	table,	you	use	the	caption	attribute	in	the
opening	table	tag.

12.	If	you	include	a	thead	or	a	tfoot	group	in	your	table,	you	must	also	include
which	other	group?

13.	Which	CSS	property	(and	value)	is	used	to	align	all	the	text	in	a	cell	to	the
right?

14.	True/False:	If	you	had	both	colgroups	and	theads	in	a	single	table,	the
colgroups	would	be	placed	before	the	theads	in	your	table	structure.

O

Chapter	12
Creating	Forms

Key	Skills	&	Concepts

•	Understand	the	Concept	and	Uses	of	Forms	in	Web	Pages	•	Create	a	Basic
Form

•	Validate	the	Form	Content
•	Provide	a	Way	for	Your	Form	to	Be	Processed

ne	of	the	best	features	of	the	Web	is	its	capability	to	enable	new	forms	of
communication	and	have	them	connect	with	other	methods	already	in

existence.	Online	forms	are	popular	ways	of	facilitating	such	communications.
For	example,	forms	allow	web	site	visitors	to	comment	on	a	site,	order	a
product,	communicate	with	friends	via	social	media,	and	register	for	a	service.
This	chapter	discusses	how	to	create	forms	such	as	these	and	use	them
effectively	on	your	web	site.

Understand	the	Concept	and	Uses	of	Forms	in
Web	Pages
The	most	basic	purpose	of	any	form	is	to	collect	information.	When	you	register
to	vote,	you	fill	out	a	form	specifying	your	name,	address,	birth	date,	and
political	party	affiliation.	The	form	is	collected	and	processed.	The	same	concept
holds	true	with	online	forms—they	are	filled	out,	collected,	and	processed.	For
example,	Figure	12-1	shows	a	page	with	a	form	for	people	to	post	an	item	for
sale	on	Craigslist.

Figure	12-1	Online	forms	have	a	variety	of	uses,	from	sending	messages	to
searching	for	keywords.

Just	as	paper	forms	must	have	once	been	written,	typed,	or	otherwise	created,
online	forms	need	to	be	coded.	This	can	be	accomplished	with	HTML	alone	or
by	combining	HTML	with	other	technologies.	For	the	purposes	of	this	chapter,
we	will	use	HTML	to	create	our	forms.

Create	a	Basic	Form
Even	the	most	basic	forms	have	the	same	structure.	This	includes	opening	and
closing	form	tags,	input	controls,	and	processing	methods.	The	form	element
surrounds	the	entire	form,	just	as	the	html	element	surrounds	the	entire	HTML
document.

First,	let’s	discuss	input	controls,	or	ways	for	users	to	enter	data.	For

example,	for	you	to	enter	your	name	on	a	form,	there	must	be	a	space	for	you	to
do	so.	This	space	is	what	I’m	referring	to	when	I	use	the	phrase	input	control	or
simply	“control.”	Figure	12-1	contains	some	of	the	following	input	controls:	•
Text	inputs

•	Check	boxes
•	Radio	buttons
•	Select	menus
•	File	selects
•	Buttons	(submit	buttons,	reset	buttons,	and	push	buttons)	•	Hidden	controls

Because	most	controls	are	created	with	an	input	element,	the	actual
description	of	which	control	you	want	to	include	is	made	through	the	type

attribute,	as	in	the	following	example:	

NOTE
The	input	element	is	empty,	which	means	it	doesn’t	require	a	closing	tag.

The	complete	list	of	input	types	is	included	in	Table	12-1.	The	most	popular	of
these	are	then	discussed	in	the	next	few	sections,	as	well	as	a	few	other	controls
not	created	with	the	input	element.	Those	new	to	HTML5	are	marked	with	an
asterisk.

Table	12-1	Types	of	Controls	Added	with	the	input	Element

Text	Input
The	most	basic	text-input	controls	are	single-line	text	boxes	(called	text	fields)
and	multiple-line	text	areas.

Single-Line	Text	Fields
The	single-line	text	field	is	actually	the	default	type	for	input	controls,	which
means	you	don’t	even	have	to	specify	the	type	attribute	because	without	it	the
input	element	defaults	to	a	plain	text	field.	This	control	is	a	space,	resembling	a
box,	that	can	contain	a	single	line	of	text.	Usually,	text	fields	are	preceded	by
descriptive	text	telling	the	user	what	to	enter	in	the	box.	For	example:	

As	the	following	illustration	shows,	text	fields	are	single-line	white	spaces
that	appear	slightly	indented	into	the	page.	Unless	you	specify	otherwise	with
the	size	attribute,	text	fields	are	usually	20	characters	in	length.

NOTE
The	sizes	of	text	fields	are	specified	in	characters.	However,	it	ultimately	depends	on	the	default
font	size	in	the	viewer’s	browser.	This	means	even	though	you	might	specify	a	text	field	to	be	25
characters	in	length,	it	may	appear	larger	or	smaller	on	someone	else’s	system,	depending	on	how
that	person’s	browser	is	set	up.

Any	of	the	attributes	listed	in	Table	12-2	can	be	added	to	this	and	other
input	elements	to	customize	the	control.	We’ll	cover	more	of	these	attributes	in
the	next	few	sections,	but	first	we	need	to	talk	about	the	most	important	one—
and	the	one	every	input	control	needs—name.	To	process	all	the	controls	in	your
form,	each	one	must	be	identified	with	a	name.	For	example,	when	the	form	is
processed,	you	could	tell	it	to	take	whatever	the	user	entered	in	the	control	you
named	“FirstName”	and	print	that	text	at	the	top	of	an	email	message.

Table	12-2	Attributes	for	Text	Fields

TIP
Blank	spaces	between	words	in	the	values	of	some	attributes	can	cause	problems	in	HTML	and
other	coding	methods.	To	avoid	such	problems	when	using	the	name	attribute,	many	developers
like	to	run	any	phrases	together,	capitalizing	the	first	letter	in	each	word.	For	example,	instead	of
using	“Middle	Initial”	as	the	value	of	your	name	attribute,	use	“MiddleInitial.”	Just	remember,
these	values	are	case-sensitive,	which	means	whenever	you	reference	that	control	later,	you	must
also	capitalize	the	first	letter	of	each	word.	In	addition,	be	sure	to	use	unique	names	to	avoid
confusion	when	the	form	is	processed.

The	other	attributes	are	optional.	For	example,	you	can	use	the	size	attribute
to	specify	the	length	of	the	text	field	in	characters,	while	the	maxlength	attribute
enables	you	to	limit	the	number	of	characters	that	can	be	entered	in	that	box.	For
example,	if	you	created	a	text	field	where	users	can	enter	their	ZIP	code	in	the
following	format:	xxxxx-xxxx,	you	could	specify	a	maxlength	of	ten	characters.

Every	control	has	an	initial	value	and	a	current	value.	An	initial	value	is	an
optional	value	you	specify	for	a	control	when	you	code	the	form,	while	a	current
value	is	whatever	the	user	entered	that	is	then	processed	with	the	form.	For
example,	if	most	users	will	enter	a	certain	value	for	a	field,	you	might	use	the
value	attribute	to	prepopulate	that	field	with	the	default	answer.	You	may	be
tempted	to	use	the	value	attribute	to	send	instructions	to	the	user,	but	if	you	do
and	the	user	doesn’t	enter	any	data,	then	the	initial	value	you	entered	is	sent
along	when	the	form	is	processed.

When	the	page	is	viewed,	however,	users	who	need	to	change	the	value	will
have	to	erase	it	before	entering	their	information.	So,	if	you’re	intending	to	give
users	a	hint	but	let	them	enter	a	unique	value,	the	placeholder	attribute	is	a	better
option.

In	this	case,	as	soon	as	the	user	puts	the	cursor	in	the	text	box,	the
placeholder	text	disappears,	allowing	a	new	value	to	be	easily	entered.

Text	Fields	for	Passwords
HTML	also	enables	you	to	create	single-line	text	fields	for	passwords.	The	main
difference	is	that	password	text	fields	show	text	that’s	entered	as	bullets	instead
of	straight	text.

You	use	password	as	the	value	of	the	type	attribute	in	your	input	element	to
create	this	type	of	control.	The	following	is	an	example	of	the	code	for	the
preceding	illustration:	

Although	this	may	seem	as	if	it	adds	a	level	of	security	to	your	page,	it’s
merely	a	way	to	prevent	those	looking	over	the	user’s	shoulder	from	seeing	a
password.	The	actual	password	is	not	encrypted	in	any	way	when	the	form	is
processed,	and	therefore,	this	control	shouldn’t	be	implemented	as	the	only
means	of	security	for	pages	with	passwords.

Text	Fields	for	Search	Boxes
Using	the	search	input	type	identifies	an	otherwise	normal	text	field	as	one	that
contains	search	terms.

Supporting	browsers	round	the	corners	of	the	box	to	set	it	apart	from	regular
text	boxes.

In	addition,	after	the	user	starts	typing,	a	small	cancel	icon	(usually	in	the	shape
of	an	x)	appears	to	the	right	side	of	the	search	field.	This	allows	the	user	to
quickly	clear	the	box	and	start	over	as	needed.

Multiple-Line	Text	Areas
When	it’s	necessary	to	allow	your	web	site	visitors	to	enter	more	than	a	single
line	of	text,	use	a	text	area	instead	of	a	text	field.	Unlike	most	other	form	input
controls,	a	text	area	uses	the	textarea	tag	instead	of	the	input	element.

To	specify	the	size	of	the	text	area,	use	the	cols	and	rows	attributes:	•	The
cols	attribute	identifies	the	visible	width	of	the	text	area,	based	on	an	average
character	width.

•	The	rows	attribute	identifies	the	visible	height	of	the	text	area,	based	on	the
number	of	text	lines.

Because	the	sizes	of	the	rows	and	cols	attributes	relate	to	the	character	width
in	the	browser,	the	actual	size	of	the	text	area	may	differ,	depending	on	the	user’s
settings.	Scroll	bars	may	appear	when	users	attempt	to	enter	more	data	than	can
be	displayed	in	the	visible	text	area.

While	you	can	use	the	placeholder	attribute	to	specify	hints	to	users,	you
don’t	use	the	value	attribute	in	this	tag	to	create	an	initial	value	that	prints	within
the	text	area.	Instead,	include	any	text	you	want	to	print	within	the	text	area
between	the	opening	and	closing	textarea	tags.	Figure	12-2	shows	how	the
following	code	might	be	displayed	in	a	browser:	

Figure	12-2	Text	areas	enable	users	to	enter	more	than	a	single	line	of	text.	Any
text	you	enter	between	the	opening	and	closing	textarea	tags	is
used	as	the	initial	value	of	the	text	area.

TIP
You	can	control	whether	scroll	bars	appear	on	your	text	area	with	the	CSS	overflow	property.	For
example,	setting	overflow:	scroll	forces	scroll	bars	to	appear,	while	overflow:	auto	leaves	it
up	to	the	browser	to	decide	based	on	the	amount	of	text	entered.

Radio	Buttons
Radio	buttons	are	small,	round	buttons	that	enable	users	to	select	a	single	option
from	a	list	of	choices.	This	is	accomplished	with	the	input	element	and	a	value
of	radio	in	the	type	attribute.	You	might	use	radio	buttons	to	allow	those
interested	in	receiving	more	information	the	option	of	choosing	to	do	so	via
email,	phone,	fax,	or	regular	mail.	When	the	user	selects	one	of	the	options	by
selecting	the	radio	button,	the	circle	is	filled	in	with	a	black	dot.

TIP

Radio	buttons	are	particularly	useful	for	questions	requiring	a	yes	or	no	answer.

The	name	and	value	attributes	are	especially	important	to	radio	buttons
because	they	help	to	make	sure	the	data	is	processed	correctly.	Consider	the
following	HTML	code	used	to	create	the	illustration	shown	next:	

Notice	the	name	attributes	contain	the	same	value	for	all	four	options.	This
ensures	these	four	controls	are	linked	together	when	the	form	is	processed.
Because	the	type	of	control	is	radio,	the	browser	knows	only	one	option	can	be
selected.	If	you	make	a	mistake	and	use	different	names	for	each	of	the	options,
the	user	will	be	able	to	select	multiple	buttons.

When	the	form	is	processed,	it	locates	the	selected	option	(meaning	it	looks
for	whichever	radio	button	the	user	selected)	and	transmits	that	option’s	value
along	with	its	name.	If	I	selected	the	radio	button	next	to	the	word	fax,	the
appropriate	name	and	value	would	be	transmitted:	ContactMe	–	fax.	You	can	see
how	using	words	and	phrases	that	actually	mean	something	can	be	important.

If	you	want	to	set	one	of	the	radio	buttons	to	be	selected	by	default	when	the

page	is	initially	loaded,	use	the	checked	attribute	in	the	input	tag.	Users	can
select	a	different	option	if	they	want.

Check	Boxes
Check	boxes	are	similar	to	radio	buttons	in	that	they	don’t	let	users	enter	any
data;	they	can	only	be	clicked	on	or	off.	However,	check	boxes	let	the	user	select
more	than	one	choice	from	a	list	of	options.	For	example,	you	might	use	check
boxes	to	give	users	the	option	to	select	which	services	they	would	like	to	receive
more	information	about.	When	a	check	box	is	selected,	a	small	x	or	a	check
mark	typically	appears	in	the	box,	depending	on	the	browser.

To	include	a	check	box	in	your	online	form,	use	the	input	tag	and	type
attribute	with	a	value	of	checkbox	(note	that	check	box	is	one	word	when	used
as	an	HTML	value).	Just	as	with	radio	buttons,	the	values	of	the	name	attributes
for	all	the	options	should	be	the	same.	Use	the	value	attribute	to	identify	what	is
different	about	each	option,	as	in	the	following	example:	

When	the	form	is	processed,	the	values	of	any	check	boxes	selected	by	the
user	will	be	transmitted	to	the	server	along	with	the	value	of	the	name	attribute.
So,	in	the	preceding	example,	if	I	selected	the	check	boxes	next	to	“graphic

design”	and	“illustration,”	the	appropriate	name	and	values	would	be
transmitted:	Services	–	graphic	design,	illustration.

Use	the	checked	attribute	any	time	you	want	a	check	box	to	be	selected	by
default	when	the	page	is	loaded.	Users	can	uncheck	that	box	if	they	want.

Date	and	Time	Inputs
HTML5	brings	us	several	new	input	controls,	including	six	from	Table	12-1	that
help	with	date	and	time	fields:	•	date
•	datetime
•	datetime-local
•	month
•	time
•	week

As	of	this	writing,	Google	Chrome,	Opera,	and	Safari	on	an	iOS	device	are
the	only	browsers	that	support	any	of	these	new	controls,	and	Opera	is	the	only
one	that	supports	all	six.	Take	a	look	at	Figure	12-3	to	see	how	Opera	displays
these	controls,	coded	like	this:	

Figure	12-3	Opera	is	able	to	show	user-friendly	date	and	time	pickers	for	these
types	of	input	controls.

Thankfully,	the	good	news	is	these	new	input	controls	degrade	quite
gracefully.	In	other	words,	in	browsers	without	support	for	the	new	HTML5
input	controls,	the	fields	simply	display	as	default	single-line	text	fields.	So	even
if	your	users	cannot	use	a	handy	month	or	date	picker,	they	can	still	enter	the
month	or	date	by	typing	it	in	the	text	field	(as	they	likely	would	have	prior	to
HTML5),	as	shown	in	Figure	12-4.

Figure	12-4	Safari	6	on	a	desktop	system	simply	displays	these	controls	as
default	text	fields.

Other	Number	Inputs
Prior	to	HTML5,	there	was	no	way	in	HTML	to	differentiate	between	text	fields
and	number	fields.	Developers	often	had	to	resort	to	using	something	like
JavaScript	to	achieve	similar	results.	The	number	and	range	input	types	change
all	that.

The	number	input	type	can	be	used	to	simply	designate	a	text	box	as	a
number	field,	or	you	can	customize	it	a	bit	with	the	addition	of	a	few	other
attributes,	like	this:	

In	this	example,	the	min	attribute	designates	the	minimum	possible	value,	while
the	max	attribute	identifies	the	maximum	possible	value.	Then,	because	the	step
value	is	set	to	2,	only	even-numbered	options	between	0	and	12	are	possible.	The
starting	value	is	8.

The	range	control	type	is	similar,	in	that	it	accepts	the	min,	max,	and	step
attributes,	but	different	because	it	displays	the	input	field	as	a	slider.	The
following	illustration	shows	how	this	code	displays	in	Opera.

NOTE
As	with	the	date	and	time	inputs,	those	using	browsers	that	don’t	support	these	number	inputs	will
simply	see	standard	text	fields.	So	make	sure	your	explanations	are	thorough	enough	for	all	users
to	know	how	to	answer	the	question	or	request,	even	with	older	browsers.

Contact	Methods
Three	other	input	controls	have	been	added	in	HTML5	to	help	identify	certain
types	of	contact	methods.	While	the	email,	url,	and	tel	input	types	don’t	change
the	way	the	form	fields	display	in	desktop	browsers,	they	do	offer	great	help	to
mobile	users	with	supporting	operating	systems	(as	of	this	writing,	only	Apple
mobile	devices	support	these	features).	For	example,	the	following	code	displays
what	appears	to	be	three	basic	text	boxes	in	most	browsers:	

But	when	those	same	form	fields	are	encountered	in	Safari	on	the	iPhone,	the
keyboard	changes	to	help	the	user	enter	the	desired	content.	Compare	Figures
12-5,	12-6,	and	12-7	to	see	how	the	keyboard	updates	according	to	the	input
type.

Figure	12-5	Keyboard	adjusted	to	help	user	input	email	addresses 	

Figure	12-6	Keyboard	adjusted	to	help	user	input	web	addresses 	

Figure	12-7	Keyboard	adjusted	to	help	user	input	phone	numbers

Color	Selectors
The	final	new	type	of	input	type	I	want	to	discuss	in	this	section	gives	us	the
ability	to	add	color	pickers	to	our	forms.	Suppose	you	were	creating	a	site	for	a
t-shirt	designer.	You	might	use	these	color	input	fields	to	allow	customers	to
select	the	shirt	and	ink	colors	for	their	designs,	like	this:	

NOTE
Browsers	that	don’t	yet	support	the	color	input	type	simply	display	the	default	text	box.

As	of	this	writing,	many	modern	browsers	don’t	yet	support	the	color	input
type.	The	previous	illustration	shows	how	Opera	supports	color	pickers.	Chrome
also	supports	color	inputs,	but	relies	on	the	operating	system	to	actually	select
the	color.	As	you	can	see	in	the	next	illustration,	clicking	the	color	box	in
Chrome	on	the	Mac	reveals	the	Apple	color	picker.

Select	Menus
Whenever	you	want	to	let	users	select	from	a	long	list	of	options,	you	might

consider	using	a	select	menu	instead	of	check	boxes	or	radio	buttons.	Select
menus	are	lists	that	have	been	compressed	into	one	or	more	visible	options,
similar	to	those	menus	you	find	at	the	top	of	other	software	applications.

NOTE
Menus	may	appear	differently	depending	on	which	browser	or	computer	system	is	used.

Also	called	drop-down	menus,	this	type	of	menu	enables	users	to	click	an
option	initially	visible,	and	then	pull	down	to	reveal	additional	options.	Unless	a
number	greater	than	1	is	specified	in	the	size	attribute,	only	a	single	option	is
visible	when	the	page	loads.	This	option	is	accompanied	by	a	small	arrow,
signifying	that	the	menu	expands.	When	the	size	attribute	is	2	or	more,	that
number	of	choices	is	visible	in	a	scrollable	list.	Figure	12-8	shows	two	select
menus.	The	first	one	uses	the	default	size	of	1,	while	the	second	is	set	to	size=3.

Figure	12-8	The	size	attribute	enables	you	to	specify	how	many	options	in	your
select	menu	are	visible	at	once.

The	select	element	is	used	to	create	the	menu	initially,	while	option	tags
surround	each	item	in	the	menu.	A	menu	asking	users	to	choose	their	favorite
color	might	be	coded	like	the	following:	

NOTE
If	you	don’t	use	the	value	attribute	with	each	option	tag,	the	text	displayed	in	the	menu	will	be
transmitted	as	the	option’s	value	when	the	form	is	processed.	Based	on	my	experience,	I
recommend	using	the	value	attribute	whenever	possible	to	avoid	confusion	when	the	form	is
processed.

By	default,	users	can	select	one	item	from	the	list.	If	you’d	like	them	to	be
able	to	choose	more	than	one	option,	add	the	multiple	attribute	to	your	opening
select	tag.	The	way	users	select	more	than	one	menu	item	depends	on	their
computer	system.	For	example,	Macintosh	users	hold	down	the	COMMAND	key
when	clicking,	while	Windows	users	hold	down	the	SHIFT	key	(or	the	CONTROL
key	to	select	noncontiguous	choices	in	the	list)	and	click.

In	addition,	you	can	specify	any	item	to	be	already	selected	when	the	page	is
loaded	by	adding	the	selected	attribute	to	that	item’s	opening	option	tag.	Users
can	select	a	different	menu	item	if	they	choose.

NOTE
Don’t	specify	more	than	one	item	as	selected,	unless	you	also	let	users	choose	more	than	one
option	by	adding	the	multiple	attribute	to	the	select	tag.

Submenus
The	optgroup	element	is	used	to	divide	long	menus	into	categories	of	submenus.
The	label	attribute	is	employed	along	with	the	optgroup	element	to	give	the
submenu	a	name.	The	following	is	an	example	of	how	to	create	submenus	with
optgroup	tags,	followed	by	a	visual	representation	of	how	one	browser	displays
them:	

Disable	Form	Elements
When	you	want	to	restrict	a	user’s	input	for	a	specific	element,	you	might	use

one	of	two	attributes:	
The	readonly	attribute	can	be	added	to	input	controls	so	that	users	cannot

change	the	values.	For	example,	in	the	following	code,	the	phrase	ww1234	is
displayed	in	the	text	field	but	cannot	be	changed	by	the	user.	If	you	try	to	type	in
a	text	field	that	has	been	set	to	readonly,	an	alert	is	displayed	or	heard,	but
otherwise,	no	change	exists	in	the	appearance	of	the	box.

The	disabled	attribute	works	essentially	the	same	way,	except	input	controls
that	are	disabled	also	appear	in	gray	or	faded	text	to	reduce	their	importance	in
the	form.	You	cannot	click	in	a	text	field	that	has	been	set	to	disabled.

While	these	attributes	can	be	useful	for	sending	data	the	user	can’t	edit,

there’s	actually	a	better	way	to	do	that.	Keep	reading	to	see	what	I	mean.

Hidden	Fields
Depending	on	the	type	of	form	you	are	creating,	you	may	need	to	include	a
hidden	field.	For	example,	many	teachers	create	several	versions	of	a	test	to
avoid	having	students	look	over	their	classmate’s	shoulder	and	cheat.	In	cases
like	this,	you	might	make	a	special	mark	on	the	test	identifying	to	which	answer
key	it	belongs.	On	web	forms,	these	special	marks	are	called	hidden	fields.

A	hidden	field	is	data	attached	to,	and	processed	with,	a	form	that	cannot	be
seen	or	changed	by	the	user.	You	can	use	as	many	hidden	fields	in	your	form	as
you’d	like,	using	input	tags	with	type	attributes	set	to	hidden.

TIP
This	is	also	how	you	pass	information	from	one	form	to	the	next	when	you	start	to	build
multipage	forms.

File	Uploads
Some	online	forms	might	require	that	a	file	be	transmitted	along	with	any	data
from	the	form.	For	example,	you	might	provide	the	option	for	potential
employees	to	submit	a	photo	along	with	a	job	application	being	filled	out	online.
This	can	be	accomplished	by	using	type="file"	with	the	input	element.

NOTE
Check	with	your	site’s	system	administrator	before	adding	file	uploads	to	your	web	form	because
some	hosts	do	not	permit	users	to	upload	files	through	the	web	browser	for	security	reasons.	In
addition,	even	if	file	uploads	are	permitted	on	your	site’s	system,	some	adjustments	to	the	host
computer	may	need	to	be	made.

For	document	uploads,	most	browsers	display	a	text	field	followed	by	a
button	typically	labeled	Browse.	By	clicking	the	button,	users	can	locate	the	file

they	want	to	send	with	the	form	on	their	computers.	After	they	do	so,	the
browser	prints	the	location	and	name	of	the	file	in	the	text	field	provided.

You	can	increase	the	size	of	the	text	field	by	adding	the	size	attribute	to	the
input	tag.	Because	many	file	locations	may	be	long,	you	might	want	to	specify	a
size	of	30	to	40	characters.

In	addition,	HTML5	added	the	multiple	attribute	to	file	uploads.	Using	this
attribute	lets	the	browser	know	it’s	okay	for	the	user	to	select	multiple	files	to
upload:	

Buttons
Buttons	enable	users	to	interact	with	a	form.	For	example,	to	tell	the	browser
you’re	finished	filling	out	a	form	and	are	ready	to	process	it,	you	might	click	a
button	labeled	Submit.	You	can	create	three	types	of	buttons	with	HTML:	•
Submit	buttons	Used	to	process	a	form

•	Reset	buttons	Used	to	reset	a	form
•	Other	buttons	Serve	any	alternative	needs	for	buttons	in	a	form	You	can	use

the	input	or	button	tag	to	create	any	of	these	buttons.	Because	the	input
element	is	the	preferred	method	for	adding	buttons	to	forms,	I	suggest	you
use	that.	In	either	case,	add	the	type	attribute	and	appropriate	value	to
identify	which	button	you	are	creating	(see	Table	12-3).

Table	12-3	Types	of	Buttons

TIP
On	the	PC,	these	buttons	are	displayed	as	rectangles	with	squared-off	edges	by	default.	On	the
Mac,	these	buttons	have	rounded	edges.

Formatting	with	the	button	Element
You	may	be	wondering	why	I’d	even	mention	the	button	element	when	the
input	element	is	more	popular.	Well	…	while	the	input	and	button	elements
both	create	a	basic	gray	button	with	text	inside,	the	button	element	has
additional	formatting	possibilities.	You	may	have	noticed	in	Table	12-3	that,
unlike	the	input	element,	which	doesn’t	have	a	closing	tag,	the	button	element
has	both	opening	and	closing	tags.	This	enables	you	to	enter	text,	images,	and
other	HTML	that	will	be	placed	on	the	button	when	viewed	in	the	browser.

For	example,	if	I	include	an	img	element	between	the	opening	and	closing
button	tags,	that	image	would	be	displayed	in	the	center	of	the	button	when
viewed	in	the	browser.

By	default,	most	browsers	display	a	gray	background	with	a	black	border
around	buttons	created	in	this	fashion.	This	means	by	default,	using	the

preceding	code,	that	button	might	look	like	this	in	the	browser:	
If	you	want	your	images	to	appear	seamlessly	on	the	button,	use	that	same

gray	as	your	image’s	background	color	or	make	the	image’s	background
transparent.	Or,	change	the	background	color	and	turn	off	the	border	in	your
style	sheet.

Graphical	Buttons	with	the	input	Element
You	can	also	use	an	image	as	a	button	with	the	input	tag	by	changing	the	type	to
image,	as	in	the	following	example.	The	src	attribute	is	then	required	to	specify
where	to	find	the	image.	Likewise,	you	also	should	add	the	alt	attribute	to	allow
for	a	text	description	to	display	when	the	image	does	not.

Graphical	buttons	created	with	the	input	tag	are	different	from	those	created
with	the	button	tag	because	they	aren’t	naturally	placed	on	a	button	in	the
browser.	Instead,	they’re	surrounded	by	a	border,	just	like	what’s	around	any
other	linked	image	by	default.	You	can	use	style	sheets,	as	needed,	to	turn	off
that	border.

Try	This	12-1 Create	a	Basic	Form
All	web	sites	should	contain	some	way	for	visitors	to	contact	the	business	or
organization.	Otherwise,	it’s	like	having	an	advertisement	in	the	phone	book	that
doesn’t	list	your	phone	number!	This	could	be	accomplished	through	a	simple
email	link,	a	listed	phone	number,	or	even	a	Contact	Us	form.	In	this	project,
you	create	a	Contact	Us	form	for	your	practice	site.	The	goals	for	this	project
include	•	Creating	a	basic	form
•	Using	several	different	input	controls	in	the	form
•	Creating	submit	and	reset	buttons

1.	Open	your	text	or	HTML	editor	and	create	a	new	file	entitled
contactus.html.

2.	Type	all	the	HTML	tags	needed	for	a	basic	HTML	page.

3.	Type	opening	and	closing	form	tags.

4.	Create	input	controls	that	allow	visitors	to	request	information	about
products	and	services	for	this	company.	Be	sure	to	include	ways	for	the
company	representative	to	reach	the	user,	such	as	through	a	phone	number
and/or	email	address.

5.	Save	the	file.

6.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	contactus.html,
which	you	just	saved.	Make	sure	the	file	appears	as	you	intended	it.	Note:
Nothing	will	happen	when	you	try	to	“submit”	your	form,	but	don’t	worry—
we	address	processing	forms	in	the	next	section.	For	now,	we’re	focusing	on
creating	the	form	itself.

7.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

TIP
Do	your	text	fields,	select	menus,	and	other	controls	appear?	If	not,	check	to	make	sure	you
closed	your	form	tag	(</form>).	For	more	tips,	see	Appendix	C.

Online	forms	are	a	great	way	to	get	customer	feedback.	In	addition,	forms
make	it	easy	for	your	visitors	to	ask	questions	about	products	and	services.	This
project	gave	you	practice	working	on	a	basic	form.

Validate	the	Form	Content
Prior	to	HTML5,	the	only	way	to	validate	form	content	involved	scripting	or
programming	beyond	basic	HTML.	This	pushed	it	beyond	the	realm	of	many
new	or	novice	developers.	Thankfully,	HTML5	brings	us	the	required	and
pattern	attributes.

This	eight-letter	word—required—may	seem	inconsequential	at	first	glance,

but	is	actually	quite	powerful	in	supported	browsers.	Simply	adding	it	to	an	input
control	will	prevent	the	form	from	being	submitted	if	that	particular	field	is	left
empty.

As	an	added	bonus,	when	used	in	conjunction	with	a	specialized	text	field
like	email,	supporting	browsers	will	prompt	the	user	to	enter	the	appropriate
content	before	proceeding.

If	you’re	practicing	these	elements	and	attributes	alongside	me,	you	may
have	noticed	the	browser	indicated	the	field	was	invalid	in	some	way,	to	identify
the	problem	area	to	the	user.	You	can	adjust	the	color,	shape,	or	other
characteristic	of	the	input	control—both	when	it	is	valid	and	when	it	is	invalid—
with	a	few	special	selectors.	For	instance,	in	the	following	code	snippet,	all	input
controls	will	carry	a	two-pixel,	solid	gray	border.	When	the	cursor	is	present
inside	the	form	field—with	the	:focus	pseudo-selector—the	border	changes	to
green.	When	the	form	is	submitted	within	the	required	fields—with	the	:invalid
pseudo-selector—the	border	changes	to	red.

We’ll	look	at	this	a	bit	more	in	the	next	chapter.

Using	Patterns

One	of	the	most	frustrating	aspects	of	forms	can	be	the	incomplete	data	received
when	the	form	is	submitted.	We’ll	talk	a	little	later	about	validating	that	content
to	help	prevent	the	submission	of	incomplete	data,	but	first	let’s	consider	one	of
the	new	HTML5	attributes	that	is	applicable	to	this	conversation.

NOTE
The	pattern	attribute	works	with	the	following	types	of	input	controls:	text,	search,	url,	tel,
email,	and	password.

The	pattern	attribute	allows	us	to	specify	those	characters	deemed
acceptable	for	a	particular	text	input	field.	For	instance,	suppose	you	coded	a
form	with	credit	card	fields.	How	useless	is	it	to	receive	a	completed	form	that	is
missing	one	of	the	numbers	in	the	credit	card	field?	We	can	use	the	pattern
attribute	to	indicate	exactly	how	many	numbers	are	required,	like	this:	

The	accepted	value	of	the	pattern	attribute	is	a	valid	regular	expression.	In
the	preceding	example,	the	first	part	of	the	pattern,	[0-9],	tells	the	browser	to
only	accept	numbers	between	zero	and	nine.	The	second	part,	{16},	specifies	the
total	length	of	the	required	characters.	Regular	expressions—or	regexp	in
JavaScript	terminology—are	somewhat	cryptic-looking	character	strings	that
specify	an	expected	pattern.	There	are	tons	of	different	options	available,
depending	on	exactly	what	you’re	looking	to	describe.	For	an	excellent	resource
on	writing	regular	expressions	for	your	patterns,	check	out
www.html5pattern.com.

The	following	illustration	shows	how	Chrome	handles	a	situation	when	the
user	input	doesn’t	match	the	requested	pattern.

It’s	important	to	note	that	the	tool	tip	only	displays	when	the	user	enters
incorrect	data	and	attempts	to	submit	the	form.	If	the	field	is	left	blank,	the
pattern	is	not	checked.	So	to	prevent	users	from	submitting	a	form	with	a	blank
field,	add	the	required	attribute	to	the	input	tag,	like	this:	

http://www.html5pattern.com

With	both	the	pattern	and	required	attributes,	the	browser	will	prevent	the
form	from	being	submitted	unless	a	valid	text	string	is	entered	in	the
corresponding	field.

Provide	a	Way	for	Your	Form	to	Be	Processed
The	phrase	processing	method	refers	to	what	happens	to	the	form	after	the	user
enters	all	the	data	and	clicks	the	Submit	button.	Is	it	emailed	to	the	site’s
administrator	or	stored	in	a	database?	Or	perhaps	it’s	written	to	another	web
page	on	the	site,	such	as	what	occurs	with	a	guest	book	or	bulletin	board.	Many
possibilities	exist,	which	ultimately	depend	on	the	purpose	of	the	form.

Inside	the	opening	form	tag,	you	need	to	tell	the	browser	how	to	process	your
form.	This	is	accomplished	through	the	action	attribute	(which	is	required),	as
well	as	the	method	and	enctype	attributes	(which	are	optional).

The	action	Attribute
The	action	attribute	gives	the	location	where	the	form’s	information	should	be
sent.	This	can	be	in	the	form	of	either	an	email	address:	

or	the	URL	of	a	CGI	script:

While	the	easier	way	to	process	a	form	is	to	have	the	data	sent	to	an	email
address,	I	don’t	recommend	this	method.	Because	no	official	specification	exists
for	using	email	to	process	forms	in	HTML,	the	results	achieved	with	this	method
vary	according	to	the	browser.	In	fact,	many	browsers	don’t	support	this	method
at	all.	Perhaps	the	best	use	of	this	might	be	testing	your	forms	before
implementing	a	CGI	script.

TIP
You	might	think	of	a	CGI	program	as	being	similar	to	the	mail	carrier	for	your	post	office.	This
person	picks	up	your	mail	and	transports	it	to	and	from	the	post	office.	Some	mail	carriers	drive
trucks,	while	others	drive	cars	or	walk.	Regardless	of	how	they	get	there,	they	all	take	mail	to	the
post	office	and	bring	mail	back	to	you.	In	like	manner,	CGI	scripts,	regardless	of	which	language
they	are	written	in,	transfer	information	to	and	from	the	server.

CGI	stands	for	Common	Gateway	Interface	and	refers	to	a	program	that

sends	information	to	and	from	the	server.	This	program,	also	called	a	script,	can
be	written	in	several	different	scripting	languages	such	as	ASP,	PHP,	or	CFM.
The	oldest	and	most	common	of	these	languages	is	Perl,	because	of	its	ease	of
use	and	the	large	number	of	people	who	are	able	to	write	it.

CGI	scripts	must	reside	on	your	server	(the	computer	hosting	your	web	pages
for	everyone	on	the	Web	to	access)	in	directories	with	special	settings	that	allow
them	to	be	executed,	or	run.	For	this	reason,	using	a	CGI	script	requires	you	to
talk	to	the	company	that	hosts	your	web	site	about	whether	it	supports	CGI
scripts	and,	if	it	does,	how	to	implement	them.	Most	hosting	companies	receive
questions	about	CGI	scripts	quite	often	and	have	pages	of	information	on	their
web	sites	dedicated	to	the	subject.	When	in	doubt,	visit	your	host	company’s
web	site	or	call	to	see	what	your	next	step	should	be.

NOTE
One	reason	some	hosting	providers	don’t	allow	CGI	scripts	on	their	servers	is	that	they	can
infringe	on	the	site’s	security.	If	your	hosting	provider	doesn’t	let	you	use	a	CGI	script,	don’t
worry.	Several	services	are	set	up	to	host	these	scripts	and	process	your	forms	for	you.	Check	with
your	own	hosting	provider	for	referrals,	or	search	Google	for	a	list	of	companies	providing	these
types	of	services.

What	Does	a	CGI	Script	Look	Like?
Just	because	a	CGI	script	cannot	be	written	in	HTML,	that	doesn’t	mean	you
can’t	learn	how	to	write	one.	As	I	mentioned	before,	I	don’t	consider	myself	a
computer	programmer	and	I	didn’t	study	computer	science	in	school.	I	can
understand	and	write	basic	Perl	scripts	to	process	my	HTML	forms,	though.

While	creating	CGI	scripts	(whether	in	Perl	or	another	language)	is	beyond
the	scope	of	this	book,	Figure	12-9	shows	what	a	CGI	script	written	in	Perl	looks
like.	By	showing	this,	I	hope	to	give	you	an	idea	of	what	happens	to	the	form
data	after	a	user	clicks	the	Submit	button.

Figure	12-9	This	CGI	script,	written	in	Perl,	was	used	to	process	a	form	that	lets
parents	and	friends	email	kids	at	camp.

Where	Can	I	Get	a	CGI	Script?
Literally	thousands	of	free	CGI	scripts	are	available	on	the	Web,	and	thousands
of	others	are	available	for	small	fees.	First,	check	with	your	hosting	provider	for
referrals.	Your	provider	might	even	have	some	scripts	on	hand	for	you	to	use	that
are	already	set	up	to	work	on	their	systems.

If	you	need	to	find	your	own	scripts,	try	searching	Google	or	looking	at	some
of	these	sites:	•	www.javascriptsource.com/forms
•	www.tectite.com
•	www.hotscripts.com

Pay	attention	to	the	documentation	offered	with	each	script	because	it	should
tell	you	how	to	customize	the	script	for	your	needs	and	how	to	install	it	on	your

http://www.javascriptsource.com/forms
http://www.tectite.com
http://www.hotscripts.com

server.

The	method	and	enctype	Attributes
The	two	other	attributes	you’ll	probably	use	in	the	opening	form	tag	are	method
and	enctype.	The	method	attribute	tells	the	browser	how	to	send	the	data	to	the
server.	There	are	two	common	values	for	this	attribute:	get	and	post.

TIP
For	help	deciding	which	method	or	enctype	to	use,	consult	your	hosting	provider	or	the	creator	of
your	CGI	script.

The	get	method	takes	all	the	data	submitted	with	the	form	and	sends	it	to
the	server	attached	to	the	end	of	the	URL.	For	example,	say	the	script	location	is
http://www.yoursite.com/cgi-bin/form.cgi,	and	the	only	data	from	the	form	is
the	user’s	name	(in	this	case,	we’ll	use	wendy).	If	the	method	was	set	to	get,
here’s	what	would	be	sent	to	the	server	when	the	user	clicked	the	Submit	button:	

This	method	works	best	for	searches	where	a	small	amount	of	information
must	be	transferred	to	the	server,	such	as	the	keywords	you	are	searching	for.	For
more	comprehensive	forms,	the	post	method	can	be	used.	Instead	of	attaching
the	information	to	the	URL	of	the	script,	the	information	is	sent	directly	to	the
location	of	the	script	file.	(However,	there	are	limitations	on	file	size,	depending
on	where	the	data	is	going	and	how	the	server	is	set	up.	Check	with	your	system
administrator	for	more	information	if	file	size	becomes	an	issue.)	The	enctype
attribute,	short	for	encoding	type,	tells	the	browser	how	to	format	the	data	when
the	method	attribute	is	set	to	post.	The	default	value	is	application/x-www-
form-urlencoded.	Because	this	should	work	for	most	of	your	forms,	you
needn’t	include	the	enctype	attribute	in	your	form	tag	unless	you	want	to	change
the	value.

For	example,	if	you	are	allowing	users	to	upload	files	with	your	form,	you
need	to	change	the	enctype	to	multipart/form-data,	as	in	the	following
example:	

http://www.yoursite.com/cgi-bin/form.cgi

Chapter	12	Self	Test

1.	Fill	in	the	blank:	_______________	tags	must	surround	all	web	forms.

2.	Name	four	types	of	text	input	controls	in	HTML	web	forms.

3.	Which	attribute	names	an	input	control	so	that	it’s	correctly	handled	when
the	form	is	processed?

4.	Which	input	control	is	most	useful	for	questions	requiring	a	simple	yes	or	no
answer?

5.	True/False:	Radio	buttons	are	small,	round	buttons	that	enable	users	to	select
a	single	option	from	a	list	of	choices.

6.	Fill	in	the	blank:	The	___________	attribute	identifies	the	visible	width	of	a
text	area	based	on	an	average	character	width.

7.	Fix	the	following	code	so	that	users	can	enter	multiple	lines	of	data	into	the
comment	box,	which	should	measure	30	characters	wide	by	5	lines	tall:	

8.	How	do	you	cause	three	options	in	a	select	menu	to	be	visible	at	once?

9.	Add	the	appropriate	code	to	create	a	single-line	text	field	in	which,	upon
entry	of	data,	all	contents	are	displayed	as	bullets	or	asterisks	in	the	browser.
Name	the	field	“secret.”

10.	Fill	in	the	blank:	____________	tags	surround	each	item	in	a	select	menu.

11.	Add	the	appropriate	code	to	create	a	place	where	users	can	upload	a	graphic
file	from	their	personal	computers	to	the	web	server.	Name	the	field
“upload.”

12.	Which	attribute	is	added	to	the	form	tag	to	give	the	location	where	the	form’s
information	should	be	sent?

13.	Which	attribute	and	value	are	added	to	the	form	tag	to	tell	the	browser	to
take	all	the	data	submitted	with	the	form	and	send	it	to	the	server	attached
to	the	end	of	the	file’s	URL?

I

Chapter	13
Formatting	and	Styling	Forms

Key	Skills	&	Concepts

•	Apply	Tables	to	Forms
•	Make	Forms	More	User-Friendly

•	Style	Forms	for	Layout
•	Style	Forms	for	Client-Side	Validation

n	the	previous	chapter,	you	learned	the	basics	of	setting	up	a	form	on	a	web
page.	As	you	might	have	guessed,	you	can	use	many	of	the	formatting

techniques	discussed	in	other	chapters	to	format	and	style	those	forms.	For
example,	to	add	a	line	break	in	between	a	text	input	field	and	its	label,	you	could
simply	add	the	br	element:	

But	what	if	you	wanted	to	add	line	breaks	in	between	all	of	a	form’s	input
controls	and	labels?	Sure,	it’s	possible	to	add	br	elements	like	this	throughout
the	whole	form,	but	what	if	you	change	your	mind	later	and	then	need	to	remove
them	all?	Thankfully,	there	are	much	better	ways	to	format	and	style	forms.	Let’s
take	a	look	at	some	of	the	options.

Apply	Tables	to	Forms
If	you	refer	to	the	form	you	created	in	the	last	chapter’s	Try	This,	you	may
notice	the	text	fields	are	scattered	through	the	page.	If,	instead,	you	want	to	have
all	the	text	fields	lined	up	in	a	column,	you	could	use	a	table	to	format	your
form.

When	using	a	table	to	lay	out	a	form,	you	will	probably	place	each	individual
element	in	its	own	table	cell.	Perhaps	the	labels	for	the	form	(telling	people	what
information	to	enter)	might	be	placed	in	cells	in	the	first	column,	while	the	input
controls	(text	fields,	and	so	forth)	might	be	placed	in	the	second	column.

Using	a	table	like	this	enables	you	to	achieve	a	more	uniform	look	in	your
forms.	Notice	in	the	following	illustration	how	all	of	the	text	fields	line	up
vertically,	regardless	of	how	long	or	short	the	preceding	text	is.

While	a	table	can	definitely	help	give	structure	to	your	forms,	it	is	not	always
the	most	user-friendly	way	to	do	so.	First,	let’s	look	at	a	few	ways	to	make	forms
more	user-friendly	in	general.	Then,	we’ll	review	a	few	other	ways	to	structure
forms	that	don’t	require	the	use	of	tables.

TIP
Because	determining	where	each	text	label	and	input	control	should	be	placed	can	initially	be
confusing,	I	recommend	you	first	create	the	form	itself	before	placing	it	into	a	table.	As	with	any
table,	it	may	help	to	plan	the	form	on	paper	before	coding.

Make	Forms	More	User-Friendly
One	of	the	goals	in	formatting	and	styling	forms	is	to	make	them	easier	to
understand	and	complete.	Forms	have	become	such	an	integral	part	of	the	Web;
we	cannot	ignore	opportunities	to	make	them	better.	Whether	you’re	creating	a
simple	contact	form,	a	search	tool,	or	a	complex	job	application,	it’s	important	to
spend	adequate	time	and	energy	to	make	your	form	as	user-friendly	as	possible.

Set	Tab	Order	and	Keyboard	Shortcuts
Chapter	7	discussed	changing	the	tab	order	and	adding	keyboard	shortcuts	for
links	using	the	tabindex	and	accesskey	attributes.	You	can	also	use	these
attributes	to	format	input	controls	in	a	form.	Remember,	the	tab	index	begins	at
0,	not	1.

Refer	to	Chapter	7	for	details	on	using	either	of	these	two	attributes.

Ask	the	Expert
Q:	I	used	a	table	to	lay	out	my	web	page	and	placed	a	form	for

searching	in	one	cell.	When	I	did	so,	however,	I	noticed	a	lot	of
extra	space	in	that	cell,	which	I	can’t	seem	to	delete	by	adjusting	the
padding	or	margins.	What’s	going	on?

A:	Unfortunately,	this	is	a	common	problem.	The	root	of	the	problem	lies	in
understanding	what	kind	of	tag	the	form	tag	is.	As	outlined	in	Chapter
2,	tags	in	HTML	usually	fall	into	one	of	two	categories:	block	elements
or	inline	elements.	Block	elements,	like	form	and	table,	are	used	for
structure	and	layout	on	a	page,	while	inline	elements	are	employed	to
alter	the	appearance	of	text.	For	example,	strong,	an	inline	element,	is
used	to	make	text	bold,	but	it	doesn’t	alter	the	location	of	the	text.	Block
elements	do	alter	the	location	of	text	I	or	other	items	on	a	page,	and	by
default,	many	of	them	force	a	line	break	within	the	page.	This	means
that	wherever	you	place	the	form	element,	a	blank	line	is	also	inserted.

Q:	Yes,	but	isn’t	there	any	way	around	that?

A:	The	easiest	way	to	fix	this	is	to	turn	off	the	margins	of	your	form	with
CSS.	Using	the	form	tag	as	your	selector,	add	margin:0	and	padding:0
to	the	style	declaration	to	reset	both	values	and	remove	any	extra	space.
If	this	is	a	big	problem	on	your	page,	a	better	option	is	to	use	style
sheets	instead	of	tables	to	lay	out	your	form.	This	is	discussed	more	in
the	latter	part	of	this	chapter,	in	the	section	titled	“Use	Styles	and
Fieldsets	to	Eliminate	the	Table	Layout.”

Include	Labels
Whenever	you	include	descriptive	text	before	an	input	control,	you	are	labeling
it	for	users,	helping	them	to	understand	what	type	of	information	they	should
enter.	To	link	the	label	and	the	associating	control	formally,	you	can	use	the
label	element	and	the	id	attribute.	Each	label	can	only	be	attached	to	one
control.	Also,	it’s	worth	mentioning	that	when	labels	are	used	with	check	box
and	radio	button	fields,	clicking	the	label	actually	checks	or	unchecks	the
selected	box	or	button.

NOTE
As	of	this	writing,	the	use	of	either	the	label	element	or	the	id	attribute	doesn’t	change	the	way
the	page	appears	in	a	graphical	browser.

This	formal	labeling	process	was	new	to	HTML	in	version	4.01.	Since	then,
it’s	become	an	important	technique	for	linking	labels	and	controls,	particularly	to
ensure	your	page	is	accessible	to	all	users.	The	reason	for	this	is	that	when	tables
are	used,	controls	and	their	labels	are	often	separated	across	table	cells.	This	can
be	especially	troublesome	for	nonvisual	browsers	when	they	try	to	link	controls
with	the	appropriate	label.

There	are	a	lot	of	different	opinions	regarding	the	best	place	for	form	field
labels.	The	most	common	three	options	are	•	Top-aligned	Where	the	form	field

item	is	placed	just	below	its	text	label	•	Left-aligned	Where	the	form	field	is

placed	to	the	right	of	the	text	label,	but	left-aligned	on	the	page	•	Right-aligned
Where	the	form	field	is	placed	to	the	right	of	the	text	label,	but	then	right-aligned

on	the	page	
Of	these,	studies	have	shown	that	top-aligned	form	labels	offer	the	best
readability	for	users,	so	much	so	that	they	increase	the	likelihood	users	will

actually	complete	the	form.	However,	this	type	of	vertical	layout	does	increase
the	overall	height	of	the	form,	which	can	sometimes	cause	other	usability
concerns.	So	in	situations	where	height	is	an	issue,	right-aligned	labels	are	the
next	best	choice.	In	the	end,	you	must	balance	all	of	the	various	usability	factors
to	determine	the	best	course	of	action	for	your	particular	forms.

Group-Related	Controls
While	the	label	element	is	used	to	attach	names	to	controls	formally,	the
fieldset	element	enables	you	to	group	sets	of	labels	and	controls.	Grouping
input	controls	with	these	elements	can	be	a	great	alternative	to	using	tables	for
form	layouts.	For	example,	if	you	had	an	employee	application	form	with	three
distinct	sections,	such	as	Schooling,	Work	Experience,	and	Skills,	you	could	use
fieldset	tags	to	group	all	the	labels	and	controls	under	these	headings.	The
legend	tags	then	give	a	caption	to	the	group,	if	you	want	to	include	one.

Most	browsers	supporting	the	fieldset	element	add	boxes	around	each	group
and	place	the	caption	from	the	legend	tag	in	the	outline	of	the	box	as	a	headline.

Add	Data	Lists
What	if	you	want	to	provide	a	list	of	options	for	the	user,	but	also	want	to	allow
custom	options	to	be	entered?	Or	suppose	you	asked	users	to	enter	the	name	of
their	city,	but	couldn’t	include	options	for	every	single	city	out	there.	You	might
include	the	most	popular	city	names	in	a	data	list	for	a	text	field,	like	this:	

Then,	when	the	user	starts	typing	a	city	name,	matching	values	from	your	data
list	will	display	as	selectable	options.	Browser	support	for	data	lists	is	not
widespread	as	of	this	writing.	But,	the	following	illustration	shows	how	this	is
supported	in	Chrome	on	the	Mac.

Data	lists	like	this	are	great	for	making	forms	more	user-friendly,	because
they	reduce	the	amount	of	typing	that	is	necessary	to	complete	the	form.	In
addition,	they	help	the	data	entry	to	be	more	uniform,	such	as	without	spelling
errors	or	capitalization	issues.

The	key	to	matching	up	your	data	list	with	the	corresponding	input	control	is
this:	Make	sure	your	input	tag’s	list	attribute	matches	the	value	of	the	id	attribute
assigned	to	the	datalist	element.

Show	Progress
HTML5	introduces	two	new	elements	to	handle	the	measurement	of	various
aspects	of	your	forms:	progress	and	meter.	Let’s	take	a	look	at	how	these	work.

The	key	difference	between	these	two	elements	has	to	do	with	the	type	of
measurements	described.	While	the	progress	element	marks	a	measurement	that

is	changing,	such	as	one	that	is	on	a	path	or	part	of	a	process,	the	meter	element
simply	identifies	measurements,	regardless	of	whether	they	are	changing	or	part
of	a	process.

There	are	six	attributes	for	the	meter	element,	the	first	three	of	which	are
also	used	for	progress:

•	value	Marks	the	starting	or	default	measurement	•	min	Identifies	the	minimum
allowed	measurement	(default	is	0)	•	max	Identifies	the	maximum	allowed
measurement	(default	is	1,	or	100%,	depending	on	the	content)	•	low
Specifies	the	low	end	of	the	measurement	range	(cannot	be	lower	than	the
min	value)	•	high	Specifies	the	high	end	of	the	measurement	range	(cannot
be	higher	than	the	max	value)	•	optimum	Identifies	the	optimal	value,
somewhere	between	the	min	and	max	values	With	this	information	in	mind,
let’s	consider	a	few	real-world	examples.	Suppose	you	wanted	to	show	the
progress	of	a	file	upload	inside	of	a	form.	The	progress	element	is	perfect	for
this	situation.	The	basic	HTML	for	this	example	is	super	easy,	and	could	be
something	as	simple	as	this:	

What’s	much	trickier	is	getting	the	progress	bar	to	actually	update	as	the	file	is
being	uploaded.	That	bit	of	interactivity	requires	some	scripting	beyond	HTML,

typically	with	JavaScript.	Read	over	Chapter	14,	and	then	when	you’re	ready	to
tackle	some	JavaScript,	check	out	the	following	online	tutorials	about	scripting
progress	bars:	•	Using	the	HTML5	Progress	Tag
www.htmlatoms.com/basic/using-the-html5-progress-tag

•	Mozilla	Demos	the	New	'Progress'	HTML5	Element
news.softpedia.com/news/Mozilla-Demos-the-New-HTML5-Element-in-
Firefox-6-204713.shtml

•	HTML5	Progress	Bar	–	jsFiddle	www.jsfiddle.net/wmichaelgreen/Gj6Pv/

Other	examples	of	uses	for	the	progress	element	include	showing	the	strength	of
a	password	and	indicating	progress	in	a	multistep	or	multipage	form.

NOTE
While	these	two	elements	are	often	used	within	forms,	you	can	actually	use	them	to	show
progress	and	measurements	in	other	parts	of	your	pages	as	well.	This	means	it’s	safe	to	include
them	even	if	you	don’t	have	a	form	on	your	page.

The	meter	element	is	used	not	so	much	to	show	progress,	but	to	show	a
measurement	in	relationship	to	a	defined	range.	For	example,	you	might	use	it	to
show	the	percentage	of	responders	who	selected	a	particular	option	on	a	form.

http://www.htmlatoms.com/basic/using-the-html5-progress-tag
http://news.softpedia.com/news/Mozilla-Demos-the-New-HTML5-Element-in-Firefox-6-204713.shtml
http://www.jsfiddle.net/wmichaelgreen/Gj6Pv/

In	addition	to	the	min,	max,	and	value	attributes,	the	high,	low,	and
optimum	attributes	can	help	provide	visual	clues	about	the	measurement.	For
instance,	consider	a	thermometer	to	gauge	a	child’s	fever.	While	the	official	min
and	max	might	be	90°	and	106°,	adding	a	high	of	104°	and	a	low	of	96°	might
help	parents	see	when	there	is	perhaps	cause	for	concern.	In	this	situation,	an
optimum	value	would	be	98.6°.	If	we	used	all	these	numbers	within	a	meter
element	and	added	an	initial	value	of	104.1,	supporting	browsers	would	color	the
bar	yellow,	so	as	to	indicate	it	is	above	the	target	high.

Here’s	what	the	corresponding	code	might	look	like:

With	both	the	progress	and	meter	elements,	any	text	included	between	the
opening	and	closing	tags	will	only	display	in	browsers	that	do	not	support	meters
and	progress	bars.	As	of	this	writing,	there	are	still	some	modern	browsers	that
don’t	offer	support,	so	be	sure	to	thoroughly	test	your	pages	when	using	these
elements.

TIP
The	progress	and	meter	elements	each	require	some	level	of	scripting	to	truly	be	functional	and
interactive	in	web	pages.	Check	out	www.basewebmaster.com/html/html5-form-elements.php
for	a	very	basic	set	of	examples	and	then	read	Chapter	14	for	more	on	JavaScript.

Other	examples	of	uses	for	the	meter	element	include	showing	user	ratings,
indicating	relevance	in	search	results,	and	giving	a	total	score	on	a	test	or	quiz.

http://www.basewebmaster.com/html/html5-form-elements.php

Assist	Your	Users
There	are	a	few	final	comments	I’d	like	to	make	about	making	forms	more	user-
friendly	before	we	close	this	section:	•	Mark	required	fields	When	you	specify
form	fields	as	required	in	the	code,	don’t	forget	to	let	the	user	know.	Clearly
indicate	those	fields	are,	well,	required	so	a	user	doesn’t	waste	time	trying	to
submit	a	form	before	it’s	complete.	Note	if	8	out	of	10	fields	are	required,	it
makes	more	sense	to	mark	the	optional	fields	and	then	specify—in	the
instructions	for	the	form—that	all	other	fields	are	required.

•	Explain	yourself	Make	it	clear	why	the	form	itself	is	necessary	to	help	the	user
understand	why	he	is	being	asked	to	provide	his	information.

•	Make	text	labels	readable	Web	designers	are	known	for	preferring	smaller
font	sizes	and	faces,	but	web	forms	are	not	appropriate	places	to	test	out	our
latest	favorites.	Stick	with	standard	web	fonts	of	at	least	11	pixels	in	colors
that	stand	out	well	against	the	background.

•	Avoid	adding	links	to	external	content	within	the	form	No	one	likes	having
to	re-enter	content.	If	you	provide	distracting	links	within	a	form	that	then
take	the	user	somewhere	else	without	first	finishing	the	form,	he	risks	having
to	re-enter	the	content	later.	If	you	absolutely	must	include	a	link	inside	the
form,	force	that	content	to	display	in	another	browser	window	or	tab,	so	as
not	to	lose	the	user’s	current	place	in	the	form.

•	Don’t	ask	for	information	you	don’t	need	Many	business	owners	want	to
capture	as	much	information	as	possible	from	their	user	base.	This	is
understandable,	but	maintaining	said	information	can	get	risky.	You	don’t
want	to	be	responsible	for	storing,	and	safeguarding,	your	users’	personal
information	if	you	don’t	need	it.	This	means,	for	example,	if	you	don’t	plan
to	call	your	users,	you	don’t	need	their	phone	numbers.	In	addition,	many
users	stop	filling	out	long	forms	when	they	get	to	information	they	either
don’t	find	relevant	or	simply	don’t	want	to	give.

•	Likewise,	safeguard	the	information	you	do	request	If	you	gather	personal
information	about	users	through	web	forms,	you	better	have	a	safe	way	to
store	it.	Here’s	what	is	not	safe:	simply	having	the	form	data	emailed	to	you
and	then	stored	in	your	inbox.	Using	Secure	Sockets	Layer	(SSL)	encryption
is	a	good	option,	but	does	require	some	additional	setup.	Check	out
www.sslshopper.com/article-how-to-make-a-secure-loginform-with-

http://www.sslshopper.com/article-how-to-make-a-secure-loginform-with-ssl.html

ssl.html	for	some	tips.

•	Match	the	button’s	importance	level	to	its	weight	Have	you	ever
accidentally	clicked	the	Reset	or	Cancel	button	in	a	form,	only	to	lose	all	of
your	work?	This	occurs	when	a	form	designer	gives	equal	visual	importance
to	all	the	buttons,	so	much	so	that	the	user	can’t	quickly	distinguish	between
them.	To	solve	this	problem,	change	the	style	of	less	important	buttons	(or
lose	them	altogether	if	possible)	to	clearly	indicate	the	primary	actions	on	the
form.

TIP
For	more	tips	on	making	forms	usable,	check	out	this	great	resource:
http://uxdesign.smashingmagazine.com/2011/11/08/extensive-guide-web-form-usability.

Style	Forms
Most	of	the	form	tags	you	learned	can	also	be	altered	with	style	sheets.	This
means	you	could	quite	easily	turn	all	of	your	text	boxes	green	if	you	wanted	to.
It	also	means	you	can	finally	do	away	with	those	boring	white	and	gray	form
elements!	And	because	the	form	tag	is	a	block-level	element	(just	like	the	p	tag),
you	can	even	style	your	entire	form	to	have	a	particular	background	color	or
border.

To	further	illustrate	this	point,	consider	Figures	13-1	and	13-2.	The	first
figure	shows	a	basic	HTML	form,	created	with	the	tags	discussed	in	this	chapter
and	the	previous	one,	that	has	been	placed	in	a	table.	The	HTML	used	to	create
this	form	is	shown	next.

http://uxdesign.smashingmagazine.com/2011/11/08/extensive-guide-web-form-usability

Figure	13-1	This	is	our	very	basic	HTML	form	(inside	a	table)	before	CSS. 	

Figure	13-2	This	is	the	same	HTML	code	with	a	style	sheet	applied.

Figure	13-2,	however,	adds	a	style	sheet	to	customize	the	design	of	both	the
form	elements	and	the	table.	Here,	the	HTML	code	has	not	changed	at	all—the
only	addition	is	the	following	internal	style	sheet:	

TIP
The	key	to	styling	forms	(or	any	other	page	element	for	that	matter)	is	in	properly	preparing	the
HTML	code	before	you	even	begin	the	style	sheet.	Depending	on	your	needs,	this	may	mean
adding	id	attributes	to	each	form	element	so	that	they	can	be	referenced	later.	Or	perhaps	using
the	colgroup	tag	to	enable	easy	access	to	each	column	(for	styling	purposes).

Use	Styles	and	Fieldsets	to	Eliminate	the	Table	Layout
What	if	you	wanted	to	take	your	style	sheet	one	step	further	and	use	it	to	lay	out
the	entire	form,	and	even	eliminate	the	need	to	use	a	table	for	layout?	Not	only	is
this	a	great	option,	it	actually	can	make	the	design	and	maintenance	of	forms
much	easier.	Consider	the	same	form	used	in	the	previous	section,	this	time
coded	without	any	table	tags:	

Figure	13-3	shows	the	preceding	table	as	coded,	without	any	styling.	While
there	is	a	little	bit	of	structure,	just	from	the	fieldset	tags,	much	of	the	content
runs	together	across	the	screen.	To	prevent	this,	you	could	specify	that	the	labels
for	each	form	element	be	displayed	as	block	elements.	You	might	remember	this
causes	the	browser	to	fill	the	screen	horizontally	with	the	element	in	question.	So
in	the	case	of	our	form	field	labels,	it	forces	the	form	field	after	each	label	to
drop	down	to	the	line	below.	Compare	Figures	13-3	and	13-4	to	see	what	I	mean.
The	following	is	the	complete	style	sheet	used	to	display	the	styled	form.

Figure	13-3	This	form	was	created	with	fieldsets	instead	of	tables.	Even	though
it’s	a	bit	jumbled	now,	a	style	sheet	will	make	this	form	shine.

Figure	13-4	After	the	style	sheet	is	added	to	this	form,	the	content	becomes
more	legible	and	organized.

As	you	can	see,	by	comparing	the	table-based	form	with	the	fieldset/style-
based	form,	you	can	achieve	somewhat	similar	results	with	the	two	different
types	of	coding	methods.	However,	the	latter—when	combined	with	style	sheets
—is	easy	to	code	and	maintain,	and	offers	significantly	more	customization
options.	For	more	help	with	creating	functional	and	stylish	web	forms,	check	out
http://wufoo.com/gallery.	This	online	sample	gallery	has	tons	of	downloadable
forms	and	style	sheets	to	help	get	you	started.

Use	Styles	for	Client-Side	Validation
In	the	previous	chapter,	I	outlined	a	few	ways	to	help	ensure	your	forms	are
completed	properly	before	being	submitted	by	the	user.	In	this	section,	I	want	to
take	that	one	step	further	to	show	how	you	can	use	CSS	to	clarify	any	errors	or
missing	data	so	the	user	understands	why	the	form	isn’t	complete.

As	I	mentioned	previously,	we	use	the	new	required	attribute	to	let	the
browser	know	a	form	field	must	be	completed	before	the	form	can	be	submitted.
I	also	told	you	it’s	possible	to	use	the	pattern	attribute	to	further	ensure	the
right	kind	of	content	is	entered	into	the	form	field.	But	how	is	the	user	to	know
exactly	which	fields	are	missing	or	incorrect?	This	is	where	client-side	(meaning
in	the	browser)	validation	comes	into	play.

Consider	the	following	bit	of	code	used	to	create	a	basic	“contact	us”	form:

http://wufoo.com/gallery

As	you	can	see	by	the	code,	all	three	fields	are	required.	Next,	let’s	add	some
style	declarations	to	help	the	user	understand	what	is	required.	Let’s	tackle	the
rules	for	the	invalid	fields	first.

The	input:required:invalid	selector	tells	the	browser	to	look	for	input
controls	that	are	required,	but	currently	invalid.	By	default,	all	required	fields	are
considered	invalid	by	the	browser	until	the	user	enters	at	least	one	character.	In
this	case,	I’m	telling	the	browser	to	add	a	small	red	icon	inside	the	field’s
background	to	indicate	the	field	is	invalid.	I	also	add	a	red	box	shadow.

Now,	let’s	use	the	input:required:valid	selector	to	identify	a	CSS	rule	for
all	required	fields	after	they	are	valid.	We’ll	change	the	icon	to	a	green	check
mark	to	indicate	the	data	is	valid.	And	because	the	browser	understands	what
constitutes	a	valid	email	address,	it	will	not	turn	the	icon	green	for	the	email
field	until	data	in	the	proper	email	format	has	been	entered
(email@domain.com).

mailto:email@domain.com

Take	a	look	at	Figure	13-5	to	see	this	client-side	form	validation	in	action.	If
you	want	to	try	it	yourself,	here’s	the	complete	code	I	used:	

Figure	13-5	The	browser	recognizes	the	email	field	has	not	been	properly
completed	in	this	example.

This	is	just	the	tip	of	the	iceberg	in	regard	to	form	validation.	Check	out
these	resources	to	learn	more:	•	A	List	Apart’s	Forward	Thinking	Form
Validation	www.alistapart.com/articles/forward-thinking-form-validation

•	Form	Field	Validation	Styles	From	CSS
http://blog.ngopal.com.np/2012/04/09/formfield-validation-styles-from-
css

•	IBM	Developer	Works’	Example	Form	Field	Validation	https://www.ibm.com
/developerworks/mydeveloperworks/blogs/bobleah/entry/
html5_example_form_validation_and_form_elements141?lang=en

•	HTML5	Form	Field	Validation	with	CSS3	from	GirlieMac!	Blog
http://girliemac.com/blog/2011/11/28/html5-form-field-validation-with-
css3

Try	This	13-1 Format	the	Form
Returning	to	the	Contact	Us	page	created	in	Try	This	12-1,	use	additional
formatting	techniques	to	achieve	a	more	uniform	appearance	of	the	labels	and
controls.	Goals	for	this	project	include	•	Grouping	form	elements	with	the
fieldset	and	legend	tags	•	Styling	the	form
•	Adding	the	method	and	action	attribute	to	the	form	tag	1.	Open	your	text	or

HTML	editor	and	open	the	file	entitled	contactus.html	from	Try	This	12-1.

http://www.alistapart.com/articles/forward-thinking-form-validation
http://blog.ngopal.com.np/2012/04/09/formfield-validation-styles-from-css
http://www.ibm.com/developerworks/mydeveloperworks/blogs/bobleah/entry/html5_example_form_validation_and_form_elements141?lang=en
http://girliemac.com/blog/2011/11/28/html5-form-field-validation-with-css3

2.	Group	related	controls	into	fieldsets.

3.	Use	label	elements	to	associate	each	form	control	with	its	text	description.

4.	Add	a	style	sheet	to	format	the	page	in	a	similar	fashion	as	was	discussed
previously	in	the	final	section	of	the	chapter.	(Feel	free	to	adjust	the	colors,
fonts,	and	so	on,	according	to	your	tastes.)	5.	Add	the	action	and	method
attributes	to	the	opening	form	tag.	For	testing	purposes,	you	can	have	the
results	mailed	to	your	e-mail	address,	or	simply	use	a	fake	address	for	a	CGI
script.	Set	the	method	to	post.

6.	Save	the	file.

7.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	contactus.html	you
just	saved.	Make	sure	the	file	appears	as	you	intended	it.

8.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

Many	of	the	additional	formatting	techniques	used	with	forms	help	to	make
them	more	efficient	and	accessible.	This	project	gave	you	practice	using	some	of
those	techniques	to	make	an	existing	form	more	user-friendly.

Chapter	13	Self	Test

1.	True/False:	The	fieldset	element	is	used	to	divide	long	select	menus
into	categories	of	submenus.

2.	Add	the	appropriate	attribute	and	value	to	allow	users	to	press	the	F
key	to	access	this	input	control:	

3.	Add	the	appropriate	attribute	and	value	to	set	this	input	control	as	the
first	in	the	tab	order:	

4.	Which	tags	and	attribute	should	be	placed	around	the	following
descriptive	text	to	indicate	that	the	text	belongs	to	the	birthday	input
control?

5.	What	CSS	selector	would	you	use	to	create	a	style	sheet	rule	for	all
invalid	required	form	fields	created	with	the	input	element?

6.	What	CSS	selector	would	you	use	to	create	a	style	sheet	rule	for	all
valid	required	form	fields	created	with	the	textarea	element?

7.	Which	attribute	is	used	to	specify	the	ideal	value	in	a	meter	element?

8.	Which	element	is	used	to	indicate	progression	in	a	multistep	process?

9.	Which	element	is	used	to	signify	a	relationship	between	a
measurement	and	its	range?

10.	Which	element	is	used	to	add	suggested	data	to	input	fields	to	help	a	user
complete	a	form?

W

Chapter	14
Beyond	Static	HTML

Key	Skills	&	Concepts

•	Understand	the	Concept	and	Uses	of	JavaScript	and	HTML5	APIs	in	Web

Pages	•	Understand	the	Purpose	of	the	Following	New	HTML5	Features:
Multitasking,	Storage,	Offline,	Geolocation,	Canvas	

hile	HTML	enables	you	to	create	static,	or	unchanging,	web	pages,	tools
like	JavaScript	extend	the	capabilities	of	HTML,	enabling	you	to	create

dynamic	pages,	which	either	change	or	react	to	users’	input.	The	combination	of
JavaScript	and	cascading	style	sheets	(CSS)	gives	us	what’s	commonly	called
Dynamic	HTML,	or	DHTML.

Taking	it	one	step	further,	the	W3C	has	added	one	key	element	and	several
specifications	for	application	programming	interfaces—or	APIs—that	allow
HTML	to	work	in	conjunction	with	other	tools	like	JavaScript.	The
understanding	and	use	of	the	canvas	element	and	those	APIs	can	get	pretty
complex	pretty	quickly.	So	this	section	is	not	intended	to	teach	you	everything
about	the	canvas,	JavaScript,	or	the	HTML5	APIs.

Moreover,	this	chapter	gives	a	brief	introduction	into	the	how	and	why	of	the
HTML5	canvas,	as	well	as	how	JavaScript	works	with	HTML,	and	then	focuses
on	the	presentation	of	a	few	typical	examples	of	using	dynamic	content	in	a	web
page.	If	this	whets	your	appetite	for	basic	web	scripting	and	you	want	to	learn
more,	don’t	miss	the	great	additional	resources	listed	at	the	end	of	the	chapter.

Understand	the	Concept	and	Uses	of	JavaScript
and	HTML5	APIs	in	Web	Pages	Contrary	to
what	its	name	implies,	JavaScript	is	not	the	same

as	Java.	Sun	Microsystems	created	the	Java
programming	language,	while	Netscape
developed	JavaScript.	Unlike	Java,	which	can
run	on	its	own	as	a	mini-application,	JavaScript
is	built	into	web	browsers	and	cannot	stand	on
its	own.	Essentially,	it’s	just	a	set	of	statements,
or	scripts,	that	are	instructions	for	the	browser.
As	such,	JavaScript	is	built	into	all	modern	web
browsers.	However,	users	can	turn	off	support
for	JavaScript	from	within	their	personal
browser.	This	means	you	should	use	caution
when	relying	on	JavaScript	to	transfer	important
information	to	users.

NOTE
In	2012,	Google	released	a	stand-alone,	high-performance	JavaScript	engine,	called	V8,	with	its
Chrome	browser.	Check	out	http://code.google.com/p/v8	if	you’re	interested	in	learning	more.

When	you	write	JavaScript,	it’s	actually	placed	right	within	the	HTML	on
your	page.	This	means	you	can	learn	JavaScript	from	your	favorite	web	sites,
just	as	you	can	with	HTML,	by	viewing	the	HTML	source	from	within	the
browser.

But,	before	you	can	do	that,	you	have	to	know	what	JavaScript	looks	like	and
where	to	look	for	it.	The	following	is	a	basic	example:	

http://code.google.com/p/v8

The	opening	and	closing	script	tags	are	HTML,	while	everything	in
between	them	is	written	in	JavaScript.	This	is	an	important	distinction	because
JavaScript	is	quite	different	from	HTML	in	several	ways:	•	JavaScript	is	case-
sensitive;	some	forms	of	HTML	are	not.

•	In	JavaScript,	quotes	are	required;	in	some	forms	of	HTML,	quotes	are
optional.

•	JavaScript	has	a	distinct	format	that	must	be	adhered	to;	most	forms	of	HTML
are	forgiving	about	spacing	and	formatting.

•	JavaScript	is	considered	to	be	a	programming	language,	whereas	HTML	is
called	a	markup	language.

Given	those	restrictions,	troubleshooting	JavaScript	can	be	a	bit	tricky.
Whenever	you	copy	a	script	from	a	web	site	or	a	book,	be	sure	to	copy	it	exactly
as	written,	unless	otherwise	specified.	For	example,	placing	a	line	break	in	the
middle	of	the	previous	example	could	produce	an	error	when	the	page	is	viewed
in	a	browser.

Troubleshoot	JavaScript
If	you	are	using	a	modern	browser,	you	likely	have	a	great	way	to	troubleshoot
your	JavaScript	right	within	the	browser.	For	example,	in	Firefox	you	can	choose
Tools	|	Web	Developer	|	Error	Console	to	display	any	error	information

associated	with	recent	web	browsing.	(If	you’ve	visited	any	web	sites	recently,
chances	are	good	you’ll	see	plenty	of	errors,	as	I	did	when	I	took	this	screen
capture!)	

You	can	use	this	console	to	view	errors	on	your	pages,	or	even	to	test	strings
of	code,	by	typing	them	into	the	console	and	clicking	Evaluate.

In	Google	Chrome,	choose	View	|	Developer	|	JavaScript	Console.	Safari
users	can	choose	Develop	|	Show	Error	Console.	In	Opera,	choose	View	|
Developer	Tools	|	Error	Console.

If	you’re	using	Internet	Explorer,	you’ve	probably	seen	a	small	warning	icon
displayed	in	the	bottom-left	corner	of	the	browser	at	one	time	or	another.	This
occurs	when	a	page	displays	with	errors.	(You	may	even	see	a	statement	such	as
“Done,	but	with	errors	on	page”	along	the	bottom	edge	of	the	browser	window.)
Click	the	icon	to	the	left	of	the	statement	to	reveal	information	about	the	error(s).

TIP
Firefox	users	can	download	a	great	add-on	called	Firebug	from	https://addons.mozilla.org/en-
US/firefox/addon/1843.	This	popular	tool	allows	you	to	edit,	view,	and	troubleshoot	not	only
JavaScript,	but	also	CSS	and	HTML	in	live	web	pages.

http://addons.mozilla.org/en-US/firefox/addon/1843

Terminology
You	should	learn	several	new	terms	before	you	use	any	JavaScript.	The
following	examines	the	most	common.

NOTE
Many	web	sites	and	other	books	contain	the	official	JavaScript	specifications.	Refer	to	the	section
“Learn	More”	at	the	end	of	this	chapter	for	details.

Objects	and	Methods
To	understand	these	terms,	let’s	first	look	back	at	the	preceding	example	and
identify	the	pieces.

NOTE
Semicolons	can	be	omitted	on	single-statement	lines	like	this,	but	must	be	included	on	all	lines
with	multiple	statements.	I	made	it	a	habit	to	always	include	them	when	I	was	first	learning	to
avoid	forgetting	them	when	they	were	required.

In	this	example,	document	is	a	JavaScript	object.	Quite	simply,	an	object	is
anything	that	can	be	manipulated	or	changed	by	the	script.	In	this	case,	the
object	document	tells	the	browser	the	code	directly	following	it	refers	to	the
HTML	document	itself.

Objects	can	have	methods,	which	are	actual	things	that	happen	to	the	objects
(in	this	case,	a	document	is	written	to).	For	example,	the	object	“car”	might	have
a	method	called	“drive.”	Along	those	lines,	what	other	methods	might	you
imagine	for	the	car	object?	(How	about	“clean”	or	“park”?)	Methods	are
followed	by	a	set	of	parentheses	containing	any	specific	instructions	on	how	to
accomplish	the	method.	In	the	previous	example,	the	text	inside	the	parentheses
is	written	within	the	current	document.

Certain	JavaScript	methods	can	work	together	with	HTML5	to	extend	the
capabilities	of	your	web	pages.	For	example,	the	getCurrentPosition()	method
finds	the	geographic	location	of	the	user.	This	can	be	particularly	useful	when
performing	actions	like	showing	restaurants	near	the	user	or	displaying	a	custom
weather	forecast.	We’ll	look	more	specifically	at	these	types	of	methods	later	in
the	chapter.

Properties
Just	as	an	object,	such	as	a	car,	has	features	(tires,	brakes,	and	so	forth)	in	the
real	world,	JavaScript	objects	can	have	properties.	This	is	useful	if,	for	example,
you	want	to	manipulate	a	specific	section	of	a	document.	Objects	and	properties
are	separated	by	periods.	When	you	want	to	specify	the	value	of	a	property,	such
as	the	color	of	the	background,	you	add	the	value	after	the	property,	as	in	the
following	example:	

NOTE
An	object	can	even	have	a	property	that	is,	in	itself,	another	object.	For	example,
document.location.href	includes	a	document	object,	its	location	(an	object	itself	and	a
property	of	document),	and	an	href	(a	property	of	location).

Variables,	Operators,	and	Functions
In	JavaScript,	a	variable	is	something	you	specify	for	your	own	needs.	You
might	think	of	variables	as	labels	for	changeable	values	used	within	a	single
script.	To	define	a	variable,	type	var,	followed	by	the	one-word	name	of	the
variable:	

TIP
Remember,	JavaScript	is	case-sensitive.	If	you	capitalize	a	letter	when	you	first	define	a	variable,
you	must	also	capitalize	that	letter	every	time	you	refer	to	it.

An	operator	does	something,	such	as	a	calculation	or	a	comparison	between
two	or	more	variables.	The	symbols	used	to	do	this	(listed	in	Table	14-1)	should
look	familiar	because	they	are	also	used	in	simple	mathematics.	One	place	you
can	use	operators	is	in	defining	values	of	variables,	as	in	the	following	example.

Table	14-1	JavaScript	Operators

Likewise,	a	function	is	a	group	of	commands	to	which	you	give	a	name	so
that	you	can	refer	to	the	group	later	in	the	page.	To	create	a	function,	type
function,	followed	by	the	function	name	and	a	set	of	parentheses.	Then,	type	the
commands	that	are	part	of	the	function	below	the	name	and	enclosed	in	curly

brackets.	This	is	shown	in	the	following	example:	
You	can’t	use	just	any	name	for	a	variable	or	a	function,	because	there’s	a	list

of	reserved	words	that	have	a	special	meaning	in	either	JavaScript	or	Java.	If	you
use	one	of	these	words	(shown	in	Table	14-2)	as	a	function	or	a	variable,	users
may	encounter	errors	when	viewing	your	pages.

Table	14-2	Common	Reserved	JavaScript	Words

Event	Handlers
By	contrast	with	the	other	terms	discussed	here,	event	handlers	needn’t	be
placed	within	the	opening	and	closing	script	tags.	These	pieces	of	JavaScript
can	actually	be	embedded	within	HTML	to	respond	to	a	user’s	interaction	and
make	a	page	dynamic.	For	example,	placing	the	event	handler	onclick	within	an
a	tag	(<a>)	causes	the	event	to	occur	when	the	user	clicks	the	link.	So,	if	I
wanted	to	change	the	page’s	background	color	when	a	link	was	clicked,	I	could
use	the	following	code:	

Table	14-3	lists	popular	event	handlers,	but	is	just	a	few	of	the	many
possible.	Check	out
www.w3schools.com/html5/html5_ref_eventattributes.asp	for	a	list	of	all
event	handlers	in	HTML5.

http://www.w3schools.com/html5/html5_ref_eventattributes.asp

Table	14-3	Common	Event	Handlers	in	JavaScript

Ask	the	Expert
Q:	What	is	AJAX	and	how	does	it	relate	to	JavaScript?

A:	AJAX	officially	stands	for	asynchronous	JavaScript	and	XML.
However,	since	the	term	was	first	coined,	its	explanation	has	evolved
somewhat	so	that	XML	is	no	longer	required.	In	essence,	AJAX	is
JavaScript	that	accomplishes	tasks	by	working	with	the	server	behind
the	scenes,	so	as	to	not	interfere	with	the	rest	of	the	page.	In	addition,
because	it	works	in	the	background,	it	doesn’t	require	the	page	to	be
reloaded	when	something	changes.	AJAX	is	not	a	new	programming
language,	but	rather	a	different	way	to	use	existing	technologies.	I	To
learn	more,	check	out	the	Mozilla	Developer	Network’s	AJAX	section:
https://developer.mozilla.org/en-US/docs/AJAX.

JavaScript	Logic
Given	that	scripts	are	essentially	a	set	of	instructions	to	the	browser,	you	can
often	read	them	logically	as	a	series	of	commands.	For	example,	in	the	following
script,	I	am	telling	the	browser	to	write	one	thing	if	the	user	has	Internet
Explorer	and	something	else	if	the	user	doesn’t	have	IE:	

http://developer.mozilla.org/en-US/docs/AJAX

These	types	of	if	…	then	statements	are	called	conditionals	and	tell	the
browser	to	do	one	thing	if	x	is	true,	and	to	do	something	else	if	x	is	false.	Notice
the	actual	instructions	on	what	to	do	are	included	within	curly	brackets:	{}.	The
spacing	here	is	important	because	it	should	be	consistent.	As	with	HTML	and
CSS	coding,	there	are	several	different	spacing	methods	a	developer	can	use.	I
recommend	you	pick	one	and	stick	with	it	to	avoid	confusing	yourself,	or	others
who	might	need	to	maintain	the	code.	I	prefer	to	keep	the	opening	curly	bracket
on	the	same	line	as	the	if	or	else.	The	closing	curly	bracket	is	then	on	a	line	by
itself,	after	the	instructions	end.	In	addition,	all	statements	(instructions)	end
with	semicolons.	The	following	is	a	simple	example	of	the	layout:	

It	could	also	appear	in	the	following	form,	which,	although	less	common,

easily	splits	the	conditions	from	each	other:	
We’ve	just	scratched	the	surface	of	a	very	complex	topic.	For	more

information,	refer	to	the	resources	listed	at	the	end	of	this	chapter.

New	and	Notable
HTML5	introduces	several	new	features	that	allow	it	to	work	more	seamlessly

with	JavaScript.	In	this	section,	we’ll	take	a	quick	look	at	those	features	and	the
benefits	they	offer.

Multitasking
JavaScript	was	intended	to	work	on	a	single	task	at	a	time.	Given	the	extensive
opportunities	JavaScript	affords	web	developers,	it	is	now	being	pushed	to	do
more.	HTML5	brings	us	something	to	help	JavaScript	handle	multiple	tasks	at
once.

Appropriately	named,	these	Web	Workers	can	handle	several	different
JavaScript	activities	without	slowing	down	the	page	display	or	causing	errors.
Here’s	a	brief	example	of	how	a	Web	Worker	is	invoked:	

In	this	instance,	a	new	Worker	is	created	to	handle	the	contents	of	an	external
JavaScript	file	named	script.js.	You	can	learn	much	more	about	Web	Workers
here:	www.html5rocks.com/en/tutorials/workers/basics.

Storage
For	many	years,	the	only	way	to	store	information	about	a	user’s	experience	on
your	web	site	was	through	the	use	of	cookies.	Even	aside	from	some	concerns
over	privacy,	cookies	continue	to	cause	headaches	for	many	web	developers,	due
to	their	tendency	to	slow	down	traffic,	their	inability	to	transmit	data	securely,
and	their	limited	storage	capabilities.

Thankfully,	HTML5	introduces	two	new	storage	mechanisms:	local	storage
and	session	storage.	Local	storage	has	no	official	size	limit,	although	the	W3C
has	made	some	recommendations	regarding	the	limitation	of	disc	space.	(As	of
this	writing,	the	topic	was	still	being	discussed.	Refer	to
http://dev.w3.org/html5/webstorage/#disk-space	for	more	information.)	It	is
conceivable,	however,	that	local	storage	could	be	used	to	store	the	contents	of	a
user’s	webmail	inbox,	for	example.	And,	because	it	is	not	limited	to	a	single
session	or	site	visit,	the	data	doesn’t	have	to	be	transmitted	each	time	the	user
accesses	it.	This	saves	both	download	time	and	speeds	up	general	access	to	the
content.

By	contrast,	session	storage	is	intended	to	provide	a	temporary	place	for	the
browser	to	store	critical	information	for	a	page’s	script.	And	because	the	session
storage	is	tied	to	a	particular	instance	of	the	browser	window,	web	developers
can	actually	allow	users	to	run	a	script	in	multiple	browser	windows	at	the	same
time,	which	wasn’t	possible	with	cookies.	This	can	be	quite	helpful	if	you	want

http://www.html5rocks.com/en/tutorials/workers/basics
http://dev.w3.org/html5/webstorage/#disk-space

to	make	two	different	transactions	at	the	same	web	site	in	two	different	browser
windows,	such	as	might	be	the	case	if	you’re	searching	for	airfare	to	different
airports	at	the	same	time.	Check	out	the	HTML5Rocks	resources	for	additional
information:	www.html5rocks.com/en/features/storage.

Offline
In	conjunction	with	the	storage	capabilities	I	just	discussed,	the	ability	to	cache
applications	in	HTML5	means	we	could	effectively	take	the	Web	offline.	Lest
you	think	this	sounds	counter-intuitive,	consider	the	following	scenarios:	•
Gaming	Instead	of	having	to	download	games	that	are	then	stored	on	one
particular	desktop	computer,	users	can	download	an	instance	of	the	game	to	play
online	(if	connected)	as	well	as	offline	(when	the	Internet	connection	is	not
accessible)	on	whatever	device	is	readily	available.	Because	session	information
can	also	be	stored	locally,	the	user	can	pick	up	where	he	left	off	in	mere	seconds.

•	Calendaring	Users	could	track	tasks	or	make	other	changes	to	an	“offline”
calendar	that	are	then	queued	to	“publish”	all	at	once	when	reconnected.

•	Image	editing	When	users	want	to	upload	images,	either	to	a	social	media	site
like	Facebook	or	an	online	photo	storage	tool	like	Flikr,	they	often	need	to
perform	a	certain	amount	of	basic	editing—like	rotating,	cropping,	adding	a
frame,	adding	titles,	and	so	on—to	the	images	first.	An	offline	app	could
handle	all	of	those	features	and	then	queue	the	images	for	publishing	when
back	online.

These	are	just	a	few	very	brief	examples	where	HTML5’s	offline	features
can	really	benefit	both	the	developer	and	the	user.	For	much	more	on	these
concepts	check	out	www.html5rocks.com/en/features/offline.

Ask	the	Expert
Q:	I’ve	heard	it	said	that	HTML5	is	a	Flash-killer.	Why?

A:	As	you’ve	learned,	HTML5	has	built-in	methods	for	handling	audio	and
video.	In	a	few	minutes,	you’ll	also	read	about	the	canvas	element,
which	enables	us	to	add	illustration,	animation,	and	interactivity	right
within	the	HTML	page.	All	of	these	features	remove	the	need	for	an

http://www.html5rocks.com/en/features/storage
http://www.html5rocks.com/en/features/offline

external	application,	like	Flash,	to	display	them	to	site	users.	And
because	HTML5	can	be	uniformly	supported	across	a	variety	of
browsers	without	the	need	for	a	helper	application,	it	is	better	suited	to
reaching	desktop	and	mobile	users	alike.	In	other	words,	sites	built	with
HTML5	and	its	related	technologies	are	more	likely	to	be	supported	by
a	larger	audience,	regardless	of	what	type	of	device	is	used.	So	while
many	developers	have	created	Flash	and	non-Flash	versions	of	their
apps,	they	can	now	create	an	HTML5	version	to	serve	both	audiences.

Geolocation
One	of	the	most	popular	new	APIs	of	HTML5	is	its	built-in	capacity	to	handle
geolocation.	Or,	to	say	it	more	plainly,	developers	love	that	they	can	access	a
user’s	geographical	location	and	use	it	in	their	pages.	How	is	this	information
used?	You’ve	probably	already	encountered	plenty	of	instances	but	perhaps
didn’t	realize	exactly	what	was	happening.

Figure	14-1	shows	how	the	browser	requests	permission	before	retrieving	the
user’s	location.	If	you’ve	ever	been	prompted	by	a	similar	alert,	either	in	your
desktop	browser	or	on	a	mobile	device,	you’ve	seen	geolocation	in	use.

Figure	14-1	Before	retrieving	a	user’s	location,	the	browser	requests	permission.

The	browser	typically	seeks	to	identify	your	location	through	one	of	several
possible	avenues.	Mobile	users	are	found	either	by	pulling	the	longitude	and
latitude	coordinates	from	your	device’s	GPS,	or	triangulating	based	on	Wi-Fi	or
cell	IDs.	Desktop	user	locations	are	typically	identified	by	interpreting
geographical	data	from	IP	addresses	or	Wi-Fi	signals.	Although	none	of	these
methods	are	foolproof,	they	are	usually	pretty	close.

After	the	user’s	location	has	been	identified,	we	can	perform	a	variety	of
tasks,	everything	from	simply	displaying	the	location	on	the	screen	to	retrieving
job	listings	within	a	ten-mile	radius	and	displaying	each	one’s	typical	commute.
Check	out	a	few	more	ideas	here:
https://developers.google.com/maps/location-based-apps.	We’ll	take	a	look	at
a	sample	script	in	the	following	section.

Canvas
Prior	to	HTML5,	there	was	no	built-in	method	for	adding	stuff	like	animation
and	interactivity	to	your	web	pages.	Sure,	you	could	create	all	sorts	of	scripts
and	multimedia	with	external	applications	and	then	link	to	them,	but	developers

http://developers.google.com/maps/location-based-apps

craved	a	way	to	create	such	interactivity	right	from	within	the	HTML	page	so
they	could	manipulate	that	data	on	the	fly	and	in	response	to	a	user’s	interaction.
This	is	where	the	new	canvas	element	comes	in.

By	adding	one	simple	line	of	code	to	your	pages,	you	open	them	up	to	a
whole	new	world	of	coding.	Let	me	show	you	what	I	mean:	

This	tells	the	browser	to	open	a	blank	canvas,	named	myCanvas,	with	a	width	of
600	pixels	and	a	height	of	400	pixels.	That	is	the	easy	part.	It’s	what	comes	next
that	means	you’ll	need	a	bit	more	training	to	fully	take	advantage	of	this
powerful	new	element.

NOTE
When	you	don’t	specify	otherwise,	the	canvas	size	defaults	to	300	pixels	in	width	and	150	pixels
in	height.

Suppose	you	wanted	to	do	something	really	simple,	like	draw	a	rectangle	and
then	fill	it	with	a	solid	color.	In	HTML5,	you	can	create	your	blank	canvas	and
then	use	JavaScript	to	dictate	how	to	display	that	shape.	After	the	canvas
element	is	created,	here’s	what	the	script	might	look	like	to	draw	a	blue	rectangle
in	the	upper-left	quarter	of	the	canvas:	

In	essence,	this	little	script	tells	the	browser	to	locate	the	myCanvas	element,
switch	to	the	2d	context,	and	then	draw	a	blue	rectangle.	With	canvas,	the	word
context	refers	to	whether	we’re	working	with	a	two-	or	three-dimensional
drawing	space.	Because	there	is	no	fully	functioning	and	fully	supported	three-
dimensional	context	yet,	as	of	this	writing,	2d	is	the	context	in	use	by	the
majority	of	canvas	users.

The	size	of	the	rectangle	is	dictated	by	the	dimensions	listed	in	the
context.fillRect()	statement.	In	this	case,	I	told	the	browser	to	start	the	shape	at
the	top-left	corner	of	the	canvas	(as	indicated	by	the	0	and	0	starting	dimensions)

and	then	finish	300	pixels	across	and	200	pixels	down.	The	result	is	shown	in
Figure	14-2.

Figure	14-2	JavaScript	is	used	to	draw	this	blue	rectangle	on	the	page.

After	the	shape	has	been	created,	there	are	tons	and	tons	of	things	we	can	do
to	it.	For	example,	JavaScript	includes	an	API	for	adding	shadows	to	shapes.	In
the	following	example,	I’ve	changed	the	box	color	to	yellow	and	added	a	gray
drop	shadow	behind	it:	

You	may	have	noticed	the	various	descriptions	of	the	shape	are	actually
listed	before	the	shape’s	dimensions.	If	we	were	to	translate	this	into	plain
English,	it	would	be	like	saying	the	adjectives	before	the	noun.	In	other	words,

you	provide	the	shape’s	characteristics	prior	to	declaring	the	shape	itself.
The	Shadow	API	has	four	possible	properties:

•	shadowOffsetX	Sets	the	horizontal	offset	•	shadowOffsetY	Sets	the	vertical
offset	of	the	shadow	•	shadowBlur	Assigns	the	amount	of	blur	on	the
shadow	in	pixels	•	shadowColor	Specifies	the	shadow	color	(in	the	same
way	CSS	colors	are	specified)	In	this	case,	the	shadow	color	is	black	(0,	0,	0
in	RGB),	and	50	percent	transparent	(listed	as	0.5	for	the	RGB’s	alpha
channel),	as	shown	in	Figure	14-3.

Figure	14-3	The	Shadow	API	enables	us	to	add	drop	shadows	like	this	to	canvas
elements.

This	is	just	one	of	many,	many	JavaScript	APIs	you	can	use	to	draw	on	your
new	HTML5	canvas.	After	drawing	a	variety	of	lines	and	shapes,	you	can	then
use	other	APIs	to	manipulate	those	pieces,	either	as	a	result	of	the	user’s

interaction,	or	simply	based	on	a	time	sequence.	If	JavaScript	and	the	canvas
element	interest	you,	I	encourage	you	to	pursue	the	additional	resources	listed	at
the	end	of	the	chapter	to	learn	more.	In	the	meantime,	check	out	these	great
examples	of	what	developers	are	doing	right	now	with	the	new	canvas	element:
•	True	8-bit	Color	Cycling	with	HTML5
www.effectgames.com/demos/canvascycle

•	The	Cloth	Simulation	www.andrew-
hoyer.com/andrewhoyer/experiments/cloth

•	The	Wilderness	Downtown	(an	Interactive	Film)
www.thewildernessdowntown.com

•	The	Fish	Bowl
http://ie.microsoft.com/testdrive/Performance/FishBowl/Default.html

Sample	Scripts
The	next	few	sections	include	sample	scripts	for	you	to	try	in	your	web	pages.
Remember,	these	are	provided	as	examples	only	purely	to	get	you	started	with
JavaScript.	They	might	not	work	in	every	situation.	Because	it’s	beyond	the
scope	of	this	book	to	teach	you	JavaScript	at	the	same	level	you’ve	learned
HTML,	please	refer	to	the	additional	resources	at	the	end	of	this	chapter	for
more	help.

Add	the	Current	Date	and	Time
The	most	basic	way	to	add	the	current	date	and	time	to	a	web	page	is	shown	in
the	following	script.	Once	you	learn	more	about	JavaScript,	you	can	customize
this	script.	For	example,	you	might	tell	the	browser	to	print	only	the	month	and
day,	or	to	print	the	month,	day,	and	year	in	00/00/00	format.

Place	this	script	within	the	body	of	your	web	page	wherever	you	want	the

date	to	appear:	

Format	a	New	Window
While	you	learned	in	previous	chapters	that	you	could	use	the	target	attribute	to
load	links	into	another	browser	window,	you	cannot	control	the	size	and	style	of

http://www.effectgames.com/demos/canvascycle
http://www.andrew-hoyer.com/andrewhoyer/experiments/cloth
http://www.thewildernessdowntown.com
http://ie.microsoft.com/testdrive/Performance/FishBowl/Default.html

that	browser	window	with	standard	HTML.	Instead,	you	can	use	JavaScript	to
open	the	window	and	then	specify	settings	such	as	how	large	or	small	that
window	should	be	and	whether	the	scroll	bars	are	present.

Some	of	the	characteristics	you	can	specify	include

•	toolbar=yes	or	no	Turns	the	browser	toolbar—Back,	Stop,	Reload,	and	so
on—on	or	off	in	the	new	window.

•	location=yes	or	no	Turns	the	browser	location	bar	on	or	off	in	the	new
window.

•	status=yes	or	no	Turns	the	browser	status	bar	on	or	off	in	the	new	window.
•	menubar=yes	or	no	Turns	the	browser	menus—File,	Edit,	View,	and	so	on—

on	or	off	in	the	new	window.

•	resizeable=yes	or	no	Specifies	whether	users	can	resize	the	new	window.
•	scrolling=yes,	no	or	auto	Allows	or	prevents	scrolling,	or	leaves	it	up	to

the	browser	to	decide	as	needed.

•	width=#	Specifies	the	width	of	the	new	window	in	pixels.
•	height=#	Specifies	the	height	of	the	new	window	in	pixels.

Instructions	and	Script
Place	this	script	in	the	header	of	your	page	(between	the	opening	and	closing
head	tags).	The	bolded	text	highlights	pieces	of	the	script	you	should	customize.

In	the	beginning	of	the	script,	we	see	function	NewWindow(link).	This	part
identifies	the	function	we	use	to	open	the	new	window	so	we	can	reference	it
later.	The	end	of	the	script—MonthWindow.focus()—brings	the	window	named
MonthWindow	to	the	front	of	the	screen.

Then,	in	the	body	of	your	page,	reference	the	function	created	in	the	previous
script	from	within	the	appropriate	link.	You	can	use	the	following	code	to	load
other	links	in	NewWindow,	simply	by	changing	the	URL	listed	in	the	parentheses:	

If	you	want	to	give	users	the	option	of	closing	the	window	easily,	you	can
add	the	following	code	to	the	bottom	of	the	page	that’s	loaded	into	the	new
window:	

NOTE
If	you	try	this	script	and	run	into	trouble,	check	the	security	settings	in	your	browser.	Some
browsers	block	new	windows	from	being	opened	by	default.

Create	a	Dynamic	Navigation	Bar
In	Chapter	6,	I	mentioned	how	you	can	actually	have	hidden	layers	of	content
within	your	web	page.	While	the	layers	can	be	created	and	hidden	with	CSS,	you
use	JavaScript	to	make	them	visible	when	a	user	interacts	with	the	web	page.
The	most	common	use	of	this	in	web	pages	is	for	dynamic	navigation	bars,
where	a	submenu	or	drop-down	menu	appears	after	you	click	a	link,	providing
additional	link	choices	without	refreshing	the	HTML	page	itself.

These	dynamic	navigation	bars	can	become	extremely	complex,	but	the	core
concept	is	relatively	simple,	and	that’s	what	this	section	discusses—a	bare-bones
method	for	invoking	submenus.	For	more	on	how	to	make	your	navigation	bar
“bigger	and	better,”	refer	to	the	resources	section	at	the	end	of	this	chapter.
Figures	14-4	and	14-5	show	this	nav	bar	in	action,	and	the	code	used	to
accomplish	this	task	is	included	in	the	following	section.

Figure	14-4	This	shows	the	navigation	button	before	it’s	been	clicked. 	

Figure	14-5	This	shows	how	the	hidden	layer	is	made	visible	after	I	clicked	the
About	Us	button.

Instructions	and	Script
Place	this	JavaScript	in	the	header	of	your	page	between	the	opening	and	closing

head	tags.	The	bolded	text	highlights	pieces	of	the	script	you	should	customize.

Next,	adjust	your	style	sheet	to	format	the	visible	navigation	button/link	and
the	hidden	submenu.	Be	sure	to	set	the	positioning	so	that	the	submenu	displays
below	the	top	menu.	What	follows	is	the	style	sheet	I	used	to	create	the	menus
shown	in	Figures	14-4	and	14-5.

The	final	piece	to	this	code	is	the	actual	HTML	for	the	content,	which	is
placed	between	the	opening	and	closing	body	tags:	

Display	a	User’s	Location	on	a	Map
In	this	practice	script,	we’ll	display	the	user’s	location	within	Google	Maps.
There	are	three	main	components	to	finding	a	user’s	location	on	a	map.	First,	we
must	check	for	browser	support.	Second,	we	read	the	user’s	location.	Last,	we
access	a	mapping	tool	like	Google	Maps	to	display	the	location.

Instructions	and	Script
Before	we	can	get	to	any	of	the	embedded	JavaScript,	we	need	to	link	to	the
external	Google	Maps	API,	like	this:	

In	this	case,	we	are	telling	the	browser	to	use	sensing	techniques	(such	as	a	GPS
locator)	for	determining	the	user’s	location.	If	you	did	not	want	to	use	a	sensor,
simply	change	the	end	part	of	the	URL	to	sensor=false.

NOTE
This	basic	API	is	free	for	personal	use.	If	you	end	up	wanting	something	a	bit	more	customized	or
complex,	or	if	you	need	to	use	the	API	for	a	business,	check	Google’s	guidelines	for	licensing
details:	https://developers.google.com/maps/documentation/business/guide.	You	likely	just
need	to	register	your	business	and	receive	a	custom	application	key	to	use	it	legally.

After	that,	we	need	to	add	some	internal	scripting	to	determine	whether	the
user’s	browser	supports	geolocation.	If	browser	support	exists,	we	start	laying
the	groundwork	for	what’s	to	come.

http://developers.google.com/maps/documentation/business/guide

For	browsers	that	don’t	support	geolocation,	we	let	them	know:

Now,	we	get	to	the	real	meat	of	the	JavaScript.	While	we	told	the	browser	to	run
the	displayPosition	function	if	it	supported	geolocation,	here	is	where	we
identify	what	should	happen	when	the	displayPosition	function	is	run.	This	is
where	we	identify	the	user’s	location	and	display	it	on	the	map.	After	that,	the
map	options	are	set,	such	as	the	zoom	level	and	how	it	is	centered.

Then,	we	need	to	also	explain	the	displayError	function	for	some	basic	error

handling:	

After	that,	we	can	add	a	tiny	bit	of	CSS	to	make	the	map	fill	the	screen	and	a
single	line	of	text	to	tell	the	user,	“I	found	you!”	Here’s	how	the	code	looks	all
together.	(See	Figure	14-6	for	a	screen	shot	of	the	final	product.)

Figure	14-6	Our	sample	script	causes	the	browser	to	display	the	user’s	location
in	a	Google	Map.

As	mentioned	previously,	this	really	is	just	the	tip	of	the	iceberg	regarding
what	is	possible.	If	it’s	inspired	you	to	want	to	do	more	with	JavaScript,	HTML,
and	CSS,	don’t	miss	the	section	“Learn	More”	at	the	end	of	this	chapter.

Try	This	14-1 Use	JavaScript	to	Launch	a	New
Browser	Window

JavaScript	can	add	much	to	a	web	site	that	wouldn’t	otherwise	be	possible	with
HTML.	Many	of	the	popular	JavaScript	techniques	used	on	the	Web	make	a	site
seem	more	dynamic.	In	this	project,	we	use	JavaScript	to	launch	a	new	browser
window	from	a	link	on	one	of	your	site’s	pages.	The	goal	for	this	project	is	to
use	JavaScript	to	launch	and	control	a	new	browser	window.

1.	First,	locate	your	business	or	organization	on	Google	Maps
(maps.google.com).	Copy	the	address	of	the	page	from	the	top	of	the
browser	window	so	you	can	link	to	it.

2.	Then,	open	one	of	the	pages	already	completed	in	your	text	or	HTML	editor.

3.	Add	the	necessary	JavaScript	to	the	header	of	the	page	to	set	up	a	function
for	launching	a	new	browser	window.

4.	Name	the	window	MapWindow.

5.	Title	it	‘Map’.

6.	Turn	the	menu	bar,	the	status	bar,	the	toolbar,	and	the	location	off	in	the	new
window.

7.	Set	the	scrolling	to	auto.

8.	Format	the	new	window	to	be	500	×	500	pixels	in	size.

9.	Create	a	link	to	the	Google	Maps	page	you	identified	in	Step	1	somewhere
within	the	text.	Using	JavaScript,	specify	that	the	link	should	open	in	the
MapWindow.

10.	Save	the	file.

11.	Open	your	web	browser	and	choose	File	|	Open	Page	(or	Open	File	or	Open,
depending	on	the	browser	you’re	using).	Locate	the	file	you	just	saved.
Click	the	link	to	verify	that	the	linked	page	opens	in	a	new	browser	window
with	the	appropriate	customizations.

12.	If	you	need	to	make	changes,	return	to	your	text	editor	to	do	so.	After
making	any	changes,	save	the	file	and	switch	back	to	the	browser.	Choose
Refresh	or	Reload	to	preview	the	changes	you	just	made.

TIP
Do	you	get	an	error	or	see	nothing	in	the	new	browser	window?	Make	sure	the	link	to	Google
Maps	is	correct.	If	you	receive	other	errors,	try	comparing	your	code	against	the	following
example,	or	using	your	browser’s	JavaScript	console	for	troubleshooting.

http://maps.google.com

Here’s	an	example	of	what	the	code	for	your	Google	Maps	link	might	look
like:	

Although	JavaScript	isn’t	the	same	as	HTML,	the	two	can	be	used	together
to	make	web	pages	more	dynamic	in	nature.	This	project	gave	you	a	chance	to
practice	one	JavaScript	technique—controlling	browser	windows.

Learn	More
While	I	didn’t	expect	this	chapter	would	teach	you	everything	you	need	to	know
about	JavaScript	or	the	new	HTML5	APIs,	I	hope	it	gave	you	a	basic
understanding	of	what	types	of	things	these	scripts	can	do.	If	you’d	like	to	learn
more,	many	sources	of	additional	information	are	available	on	this	topic.	The
following	section	lists	some	of	the	most	popular.

Also,	the	sites	listed	here	offer	many	free	scripts	that	you	may	borrow	and
use	on	your	own	site.	This	is	considered	perfectly	normal,	so	long	as	you	give
credit	to	the	original	author(s)	in	your	code.

Online	References	and	Scripts

•	HTML5Studio	Access	demos	of	the	latest	and	greatest	of	HTML5,
JavaScript,	and	CSS3	(http://studio.html5rocks.com).

•	HTML5	Canvas	Element	Guide	Learn	the	history	of	this	exciting	new
element	and	the	basics	of	how	to	use	it	in	your	pages

http://studio.html5rocks.com

(http://sixrevisions.com/html/canvas-element/).

•	Canvas	Tutorial	This	tutorial,	from	the	Mozilla	Developers	Network,	covers
all	you	need	to	know	to	get	started	with	the	canvas	element
(https://developer.mozilla.org/en-US/docs/Canvas_tutorial).	It	also
includes	links	to	some	helpful	examples.

•	SitePoint.com	This	site	contains	DHTML	and	JavaScript	articles
(www.sitepoint.com/subcat/javascript),	as	well	as	a	whole	blog	about	this
stuff	(www.sitepoint.com/tag/html5-dev-center).

•	Web	Reference	JavaScript	Articles	This	web	site
(www.webreference.com/programming/javascript)	includes	tutorials,	tips,
and	reviews	of	tools.

•	Mozilla	Developer	Center	This	section	of	the	Mozilla	Developer	Center
(https://developer.mozilla.org/en-US/docs/HTML/HTML5)	is	specifically
geared	toward	anyone	developing	with	HTML5	and	includes	helpful
documentation	and	support	communities.

•	javascripts.com	You	can	find	thousands	of	free	scripts	and	information	about
how	to	use	them.

•	The	Code	Player	Prefer	to	learn	visually?	Check	out	these	video	tutorials	for
all	things	related	to	HTML5,	JavaScript,	and	CSS3
(http://thecodeplayer.com).

NOTE
Always	look	for	the	most	recent	references	you	can	find	when	working	with	JavaScript	and
HTML.	The	reason	is	this:	Older	scripts	were	written	for	older	browsers	and	may	or	may	not	be
valid	today.	Often,	those	older	browsers	required	web	developers	to	use	special	workarounds,
called	hacks,	in	their	JavaScripts	and	HTML.	Many	of	those	hacks	are	no	longer	necessary,	and	in
some	cases	they	can	even	“break”	in	modern	browsers.

http://sixrevisions.com/html/canvas-element/
https://developer.mozilla.org/en-US/docs/Canvas_tutorial
http://www.sitepoint.com/subcat/javascript
http://www.sitepoint.com/tag/html5-dev-center
http://www.webreference.com/programming/javascript
https://developer.mozilla.org/en-US/docs/HTML/HTML5
http://thecodeplayer.com

Chapter	14	Self	Test

1.	Fill	in	the	blank:	JavaScript	is	case-	____________.

2.	Name	two	ways	JavaScript	differs	from	standard	HTML.

3.	What	is	an	API?

4.	Fill	in	the	blank:	In	the	following	code,	__________	is	the	JavaScript	object.
document.write("This	is	a	text!");

5.	True/False:	A	plus	sign	(+)	is	an	example	of	a	JavaScript	variable.

6.	When	placed	within	the	header	of	an	HTML	file,	which	opening	and	closing
tags	surround	all	JavaScripts?

7.	Fill	in	the	blank:	Objects	can	have	___________,	which	are	actual	things	that
happen	to	the	objects,	such	as	“write”	in	the	following	statement:
document.write("I	can	write	JavaScript");.

8.	What	term	is	given	to	an	aspect	of	JavaScript	that	you	specify	for	your	own
needs,	which	is	used	as	a	label	for	a	changeable	value?

9.	Fill	in	the	blank:	A(n)	_________________	is	a	group	of	commands	to
which	you	give	a	name	so	that	you	can	refer	to	it	later	in	the	script.

10.	Which	aspect	of	JavaScript	is	embedded	within	the	page’s	HTML	and
responds	to	a	user’s	interaction?

11.	How	are	conditionals	used	in	JavaScript?

12.	What	does	the	following	JavaScript	do	when	added	to	an	a	tag	on	a	web
page?	

13.	How	do	you	specify	that	a	new	browser	window	should	not	have	any	scroll
bars?

14.	What	punctuation	ends	all	JavaScript	statements?

15.	What	does	onFocus	do	when	used	in	JavaScript?

Part		III
Going	Live

T

Chapter	15
Publishing	Pages

Key	Skills	&	Concepts

•	Select	Possible	Domain	Names	for	Your	Site
•	Determine	the	Most	Appropriate	Type	of	Hosting	for	Your	Site	•	Prepare	Your

Site	for	Its	Public	Debut

•	Upload	Your	Site	to	a	Host	Computer
•	Test	Your	Site
•	Publicize	Your	Web	Site

hroughout	the	course	of	this	book,	you’ve	created	and	viewed	web	pages	on
your	personal	computer.	At	some	point	you’ll	undoubtedly	want	to	show

your	web	pages	to	other	people.	To	do	that,	your	site	must	be	transferred,	or
uploaded,	to	a	host	computer	with	24-hour	access	to	the	Internet,	where	it	has	a
suitable	URL.	Then,	to	drive	traffic	to	that	site,	you	need	to	consider	submitting
your	site	to	search	engines	and	using	other	marketing	techniques.

Select	Possible	Domain	Names	for	Your	Site
Before	diving	into	the	actual	meat	of	this	chapter,	I	want	to	mention	domain
names	briefly.	Many	people	underestimate	the	power	of	a	guessable	and
memorable	domain	name.	While	it	may	seem	logical	to	its	business	owners	to
purchase	a	domain	name	using	a	shortened	version	of	the	business	name,	this	is
probably	not	the	first	thing	a	potential	customer	would	guess.

TIP
There	are	probably	thousands	of	places	online	where	you	could	research	and	register	a	domain.	A
couple	of	options	include	www.networksolutions.com	and	www.godaddy.com.

Consider	my	friend’s	online	tutoring	business.	The	name
onlinemathtutor.com	would	be	my	first	guess,	but	because	that	is	already	taken,	I
might	try	onlinemathinstructor.com,	onlinemathmaster.com,	or	even	something
like	skypememath.com.	If	more	than	one	of	those	were	available,	you	might
even	register	both.	Purchasing	multiple	domain	names	is	an	inexpensive	way	to
bring	in	some	additional	customers	and	build	your	brand	identity	online.
Whenever	appropriate,	you	might	also	purchase	the	same	domain	name	ending
with	different	extensions,	such	as	onlinemathmaster.com	and
onlinemathmaster.net.

Determine	the	Most	Appropriate	Type	of
Hosting	for	Your	Site
Many	different	options	are	available	for	those	who	want	to	publish	a	site	on	the
Internet.	For	the	purposes	of	this	chapter,	I	group	these	options	into	two
categories:	personal	site	hosting	and	business	site	hosting.

Personal	Site	Hosting
When	you	want	to	publish	a	personal	web	site	but	you	aren’t	concerned	about
having	your	own	domain	name	(such	as	wendywillard.com),	you	have	a	wide
range	of	free	options	available.	For	example,	all	the	following	sites	offer	free
web	space	for	personal	sites	to	anyone	who	asks	for	it.	Your	site’s	address	might
be	something	like	this:	www.hostcompany.com/wendywillard.	If	you	currently
have	an	email	account	with	any	of	these,	you’re	already	halfway	there.

•	Webs	(www.webs.com)	•	Google	Sites	(sites.google.com)	•	Weebly

(www.weebly.com)	•	Yola	(www.yola.com)	Because	these	sites	are	largely
targeting	beginners,	they	make	uploading	and	maintaining	your	web	pages	a
breeze.	Most	use	web-based	tools	to	do	so,	meaning	you	don’t	even	need	any
additional	software.

Blogs
The	previous	list	of	suggestions	for	personal	web	sites	includes	companies	that

http://www.networksolutions.com
http://www.godaddy.com
http://www.hostcompany.com/wendywillard
http://www.webs.com
http://sites.google.com
http://www.weebly.com
http://www.yola.com

provide	space	on	their	servers	for	anyone	wishing	to	upload	web	pages	(although
some	do	offer	the	option	to	install	additional	features,	like	blogs).	But	what
about	those	who	are	looking	to	“journal”	online	and	don’t	want	to	bother
creating	custom	web	pages	for	that	purpose?	There	are	many	sites	offering	free
blogs,	where	you	can	journal,	vent,	gossip,	or	simply	share	to	your	heart’s
content—with	little	to	no	HTML	knowledge	required.

Ask	the	Expert
Q:	What	are	the	valid	characters	for	a	domain	name,	and	how	long	can

a	domain	name	be?

A:	According	to	Network	Solutions	(www.networksolutions.com),	you
can	use	letters	and	numbers.	You	can	also	use	hyphens,	although	they
may	not	appear	at	the	beginning	or	end	of	your	web	address.	Spaces	or
other	characters	like	question	marks	and	exclamation	marks	are	never
allowed.

Your	complete	domain	name	(including	the	extension—such	as
.com,	.edu,	.net,	.org,	.biz,	.tv,	or	.info)	can	be	up	to	67	characters	long.
Remember,	“www”	isn’t	included	in	the	domain	name	you	register,	so
you	needn’t	count	those	characters.	Having	said	that,	shorter	is	better	…
most	of	us	have	trouble	remembering	ten-digit	phone	numbers	(555-
555-5555)!

As	a	bonus,	if	you	can	handle	coding	some	HTML	(which	of	course	you	can,
since	you’re	reading	this),	you’ll	be	able	to	tailor	your	blog	to	your	specific
needs.	The	following	two	sites	are	the	most	popular	free	blogging	tools	online.
Both	offer	tutorials	to	help	you	get	started,	as	well	as	tons	of	templates	for
customizing	the	look	of	your	blog.

•	Google’s	Blogger	(www.blogger.com)	•	Wordpress	(www.wordpress.com)
While	all	of	these	sites	offer	free	hosting	to	anyone	who	requests	it,
remember	to	check	first	with	your	current	Internet	service	provider	(ISP).
ISPs	frequently	throw	in	some	free	web	space	with	Internet	access.	If	none	of
these	free	options	suits	your	purposes,	or	if	you	need	to	register	your	own
domain,	move	on	to	the	next	section	about	business	site	hosting.

http://www.networksolutions.com
http://www.blogger.com
http://www.wordpress.com

Even	if	you	don’t	want	to	use	your	site	for	journaling	or	more	traditional
blogging,	you	should	still	consider	using	a	tool	like	Wordpress.	To	understand
why,	consider	just	a	few	of	the	key	benefits	of	building	a	site	with	blogging
software:	•	Easy	to	build	There	are	thousands	of	Wordpress	themes,	as	well	as
add-on	features,	available	for	free	or	minimal	cost.	The	basic	process	looks	like
this:	arrange	for	hosting,	install	Wordpress,	select	a	theme,	customize	theme,	add
content,	install	add-ons,	customize	add-ons,	publish	site.	Using	a	tool	like
Wordpress	actually	minimizes	the	amount	of	hand-coding	a	developer	has	to	do.

•	Easy	to	maintain	Tools	like	Wordpress	store	your	site’s	content	separately
from	its	design,	which	is	referred	to	as	its	theme.	This	makes	maintenance	of
both	the	content	and	design	simple	and	straightforward.	In	fact,	I	often	build
sites	in	Wordpress	and	then	transfer	them	to	clients—which	typically
includes	someone	who	doesn’t	know	HTML—to	maintain.

If	you	are	at	all	interested	in	using	a	blogging	tool	as	the	basis	for	your	next
web	development	project,	I	highly	suggest	checking	out	these	online	resources	to
learn	more:	•	http://codex.wordpress.org/New_To_WordPress_-
_Where_to_Start

•	http://learn.wordpress.com/get-started/
•	http://wordpress.tv/

NOTE
Before	you	sign	up	with	any	ISP,	be	sure	to	check	the	terms	of	service	to	verify	your	site	fits
within	the	confines	of	the	ISP’s	requirements.	For	example,	the	majority	of	ISPs	prohibit	sites
distributing	pornography	or	illegal	copies	of	computer	software.	In	addition,	free	ISPs	usually
limit	the	amount	of	space	and/or	bandwidth	you	can	use.	Finally,	if	you	change	ISPs,	you’ll	need
to	locate	a	new	host.	I	mention	these	only	to	point	out	that	restrictions	do	exist	and	you’d	be	wise
to	review	all	terms	and	details	carefully	to	avoid	incurring	unexpected	fees.

Business	Site	Hosting
On	the	business	side,	your	options	vary	from	onsite	to	dedicated	offsite	to
shared.	In	the	case	of	onsite	hosting,	your	business	purchases	a	server,	its
software,	and	a	dedicated	Internet	connection	capable	of	serving	your	site	to	web
users	24	hours	a	day,	365	days	a	year.	For	small	businesses,	this	isn’t	a	viable
option	because	it	requires	expensive	start-up	costs	and	on-staff	information
technology	(IT)	talent.

http://codex.wordpress.org/New_To_WordPress_-_Where_to_Start
http://learn.wordpress.com/get-started/
http://wordpress.tv/

For	the	majority	of	small	to	mid-size	businesses,	offsite	hosting	is	the	most
cost-effective	and	popular	solution.	This	can	be	on	either	a	shared	or	a	dedicated
server.	While	a	shared	server	can	be	significantly	less	expensive	than	one
dedicated	to	your	needs,	it	may	not	be	possible	in	all	situations.	For	example,	if
your	site	runs	custom	web	applications,	requires	a	high	level	of	security,	or	needs
a	large	amount	of	space,	a	dedicated	server	is	preferred.

Many	service	levels,	and	therefore,	many	price	levels,	exist	within	shared
offsite	hosting.	For	this	reason,	be	wary	of	comparing	apples	to	oranges.	When
you	are	considering	two	or	more	hosting	providers,	look	closely	at	the	fine	print
to	be	sure	they	offer	similar	services	before	making	a	final	decision	solely	on
price.

The	following	are	some	questions	to	ask	when	you	look	for	business	hosting:

•	How	much	space	on	the	server	will	I	receive?	How	much	extra	do	I	have	to
pay	if	I	go	over	that	space?

•	How	much	traffic	can	my	site	generate	over	a	month?	What	are	some	average
traffic	rates	for	some	similar	sites	you	host?	How	much	extra	will	I	pay	if	the
site	generates	more	traffic	than	allowed?

•	Is	multimedia	streaming	supported?	If	so,	how	much	traffic	is	supported	for
any	given	event,	and	at	what	point	will	the	system	overload?	What	are
procedures	for	dealing	with	excess	traffic?

•	How	many	email	accounts	will	I	receive	with	this	account?
•	Can	I	use	my	own	domain	name(s)	(as	opposed	to

www.hostcompany.com/mybusiness)?	Will	you	help	me	register	my	domain
(if	you	haven’t	already	registered	one)?	Will	you	charge	extra	if	I	have
multiple	domain	names	for	a	web	site?	If	so,	how	much	more?

•	What	kind	of	access	will	I	have	to	my	web	site?	For	example,	is	FTP	(File
Transfer	Protocol)	access	available	for	uploading	files?

•	What	kind	of	support	do	you	offer?	(For	example,	if	I	need	help	adding
password	protection	to	my	site,	will	you	help	me?)	What	hours	is	your
support	staff	available?

•	Can	I	load	additional	applications	(blogging	software,	database	tools,	e-
commerce	tools,	and	so	forth)	onto	the	server?	What	requirements	or

http://www.hostcompany.com/mybusiness

restrictions	do	you	have	regarding	those?	Are	additional	costs	involved?

•	What	additional	services	do	you	offer?	(For	example,	can	you	also	host	my
online	store	and,	if	so,	how	much	would	it	cost	me	in	addition	to	my	current
fees?)	•	How	many	Internet	connections	do	you	have?	(The	more
connections	a	host	has,	the	better	chance	your	site	has	of	staying	“live”	if	one
connection	goes	down.)	•	How	often	do	you	perform	backups?	How	easy	is
it	for	me	to	gain	access	to	a	backup	if	I	need	one?

•	What	are	the	start-up	costs?	What	are	the	monthly	costs?	Are	there	any
guarantees?

•	Do	you	offer	a	service	to	measure	statistics	for	my	site,	such	as	how	many
people	have	visited?	If	so,	can	I	see	an	example?

•	Can	you	provide	references?

Here	are	a	few	of	my	favorite	business	hosting	options:

•	Site5	(www.site5.com)	•	Yahoo!	(http://smallbusiness.yahoo.com)	•
HostMonster	(www.hostmonster.com)	•	Dream	Host
(www.dreamhost.com)	•	BlueHost	(www.bluehost.com)	•	Weebly

(www.weebly.com)	•	Webs	(www.webs.com)	In	the	end,	you’ll	probably	get
the	best	ideas	about	which	hosting	provider	to	use	by	asking	friends	or
business	associates.

Prepare	Your	Site	for	Its	Public	Debut
Before	you	upload	your	site	to	a	host	computer	and	submit	it	to	search	engines,
tidying	it	up	a	little	is	best.	Consider	the	following	dos	and	don’ts.

Do

•	Make	sure	all	your	images	have	alternative	text	Directories	and	engines
can’t	see	the	images—they	only	“look”	at	the	alternative	text	for
descriptions.

•	Give	your	pages	descriptive	5-	to	13-word	titles,	using	keywords	from	the

http://www.site5.com
http://smallbusiness.yahoo.com
http://www.hostmonster.com
http://www.dreamhost.com
http://www.bluehost.com
http://www.weebly.com
http://www.webs.com

page	Search	engines	look	at	the	titles	of	your	pages	and	often	use	them	to	list
your	site.	So	“Page	2”	would	definitely	not	entice	as	many	visitors	as,	say,
“Lawn	Care	Products	for	Sale.”

•	Repeat	keywords	throughout	the	page	On	a	page	entitled	“Lawn	Care
Products	for	Sale,”	you	should	include	those	same	words	in	the	headlines,
body	text,	and	alternative	text	for	images	on	the	page.	This	increases	the
relevancy	of	the	page	when	someone	searches	for	those	words.

Don’t

•	Stray	from	the	topic	If	a	page	is	about	lawn	care	products,	don’t	include
information	about	your	favorite	links	or	television	shows	on	that	same	page.
Extraneous	information	only	weakens	the	relevancy	of	your	pages	because
search	engines	typically	show	pages	with	the	most	relevant	information	at
the	top	of	the	results	list.

•	Repeat	keywords	too	many	times	Search	engines	are	known	for	dropping
sites	from	their	listings	because	of	suspected	spamming—a	word	repeated
too	many	times	on	a	page	is	a	big	red	flag	for	spamming.	Be	realistic	and
honest.	Use	the	words	whenever	they	seem	appropriate	and	you’ll	be	fine.

•	Use	irrelevant	keywords	just	to	draw	in	people	Don’t	include	keywords	that
aren’t	appropriate	for	your	site.	Users	will	get	annoyed	and	complain,
causing	your	site	to	be	dropped	from	the	search	engine	altogether.

Update	Meta	Content
There	are	a	variety	of	HTML	elements	used	in	the	head	section	of	a	page	to	pass
along	information	to	the	browser.	For	example,	you	can	use	meta	tags	to	aid
search	engines	in	identifying	your	content.	meta	tags	are	hidden	instructions
about	your	page,	such	as	a	description	and	keywords.

NOTE
Be	aware	that	some	search	engines	ignore	meta	tags	altogether.	For	this	reason,	they	shouldn’t	be
relied	on	as	the	“be	all	and	end	all”	of	preparing	your	site.

These	tags	should	be	added	to	each	page	on	your	site	between	the	opening
and	closing	head	tags.	The	following	is	an	example	of	how	meta	tags	might	be
used	first	to	specify	the	character	set,	then	to	list	the	description	and	keywords

for	a	page	selling	handmade	children’s	clothing:	

Customize	the	content	of	the	latter	two	tags	to	identify	a	description	that
properly	explains	the	purpose	of	your	site	in	a	sentence	or	two	(20	to	40	words	is
a	good	place	to	start)	and	keywords	that	parallel	what	users	will	probably	search
for.	Because	most	users	search	for	words	in	lowercase,	you	can	avoid	using
capital	letters	in	your	keywords.	The	number	of	keywords	you	can	use	varies
somewhat	according	to	the	search	engine	or	directory;	make	sure	your	most
important	keywords	are	listed	first	because	many	limit	the	contents	of	your
keywords	to	900	characters.

TIP
There	are	many	other	types	of	meta	tags	you	can	use.	Check	out	www.html-5.com/metatags	for	a
more	detailed	list	of	the	options	available.

Troubleshoot	the	Code
Testing	pages	on	a	variety	of	different	computer	environments	is	a	whole	lot
easier	with	the	addition	of	validation	and	inspection	tools	built	into	all	the
modern	browsers.	For	example,	to	find	them	in	Firefox,	select	Tools	|	Web
Developer.

http://www.html-5.com/metatags

NOTE
In	IE9+,	press	F12	to	reveal	the	developer	tools.	In	all	other	modern	browsers,	you	can	simply
right-click	(or	control-click	on	the	Mac)	any	page	element	and	choose	Inspect	Element.

There	you	will	find	everything	from	a	console	for	identifying	page	errors	and
a	tool	for	editing	page	styles,	to	a	code	inspector	and	a	preview	of	how	different
browser	window	sizes	affect	your	designs.	The	latter	—called	Responsive
Design	View	in	the	Web	Developer	menu	and	shown	in	Figure	15-1—helps	you
get	an	idea	how	your	pages	might	be	visible	on	small	mobile	devices,	medium
tablets,	and	large-screen	desktop	monitors.

Figure	15-1	Firefox’s	Responsive	Design	View	helps	you	preview	pages	in
different	window	sizes.

Firefox’s	Inspector	tool	is	accessible	either	from	the	Tools	|	Web	Developer
menu,	or	simply	by	right-clicking	a	particular	page	element	and	choosing	Inspect
Element.	The	result	will	look	something	like	Figure	15-2,	where	everything
except	that	element	is	dimmed,	with	the	related	HTML	code	shown	at	the	bottom
and	the	corresponding	styles	to	the	right.	(Note:	Either	of	those	can	be	toggled
on	or	off	as	needed.)

Figure	15-2	Firefox’s	Inspector	puts	robust	testing	tools	right	at	your	fingertips.

The	reason	these	tools	are	so	robust	is	this:	You	can	actually	turn	various
styles	on	and	off	to	see	how	they	affect	the	page	display.	In	Figure	15-3,	I
toggled	off	the	text-transform:	uppercase	declaration	for	the	top	menu,	and	the
browser	immediately	updated	the	display	to	change	the	case	of	the	letters.	This
can	make	sure	work	of	troubleshooting	a	nasty	bug	you	just	can’t	figure	out.

Figure	15-3	Here,	the	text-transform	option	has	been	toggled	off,	causing	the
links	to	switch	to	lowercase.

TIP
Want	to	learn	more	about	Firefox’s	Web	Developer	tools?	Check	out
www.howtogeek.com/105320/how-to-use-firefoxs-web-developer-tools.

Figure	15-4	shows	how	Chrome	arranges	its	inspection	tools.	Even	though
they	display	a	tad	bit	differently	than	Firefox’s,	they	function	the	same.

http://www.howtogeek.com/105320/how-to-use-firefoxs-web-developer-tools

Figure	15-4	Chrome’s	Inspector	makes	it	super	easy	to	troubleshoot	your	page
elements.

Validate	the	Code
Along	with	troubleshooting	your	pages,	it’s	a	good	idea	to	run	them	through	a
validator.	Tools	like	the	one	located	at	validator.w3.org	compare	your	code
against	the	official	HTML	specification	to	look	for	errors	or	missteps.	Because
those	errors	can	lead	to	pages	being	misinterpreted—and	poorly	displayed—by
browsers,	it’s	important	to	fix	anything	that	doesn’t	validate.

When	you	validate	your	pages,	the	tool	actually	compares	it	to	whichever
HTML	spec	you’ve	specified	as	being	used	in	your	page.	How	does	it	know?
That’s	where	the	doctype	identifier	comes	into	play.	Remember	this	little	line	of
code?

Including	that	at	the	top	of	every	HTML	file	you	create	tells	the	browser	to
compare	your	code	against	the	HTML5	spec.	Leaving	that	out	is	not	only	illegal

http://validator.w3.org

in	HTML	terms,	but	will	ultimately	prevent	your	page	from	being	validated.

Preview	on	Mobile	Devices
As	the	statistics	on	mobile	web	use	rise	almost	daily,	it’s	important	for	us	to	plan
for	and	test	our	sites	in	various	mobile	environments.	But	what	if	you	don’t	own
all	those	different	mobile	devices	your	site	visitors	might	use?	In	addition	to	the
resources	listed	in	the	previous	section,	there	are	a	variety	of	other	mobile-
specific	options	available	to	help:	•	iPadPeek	(www.ipadpeek.com)	gives	you	a
preview	of	how	your	page	might	display	on	an	iPad,	iPod,	or	iPhone	simply	by
changing	the	viewing	space	and	using	an	appropriate	frame	around	your	page
display.

•	Mobilizer	(www.springbox.com/mobilizer)	is	a	downloadable	tool	that	shows
a	preview	of	your	web	site	when	viewed	on	several	different	mobile	phones.
Figure	15-5	shows	the	White	House	web	site	previewed	through	Mobilizer
on	the	iPhone	4	and	a	Blackberry.

http://www.ipadpeek.com
http://www.springbox.com/mobilizer

Figure	15-5	Mobilizer	enables	you	to	preview	a	web	site	on	several	different
mobile	phones.

•	Opera’s	Mobile	Emulator	(www.opera.com/developer/tools/mobile)	is
another	downloadable	tool	for	emulating	mobile	web	browsing	on	a	desktop
computer.	The	difference	is	Opera	also	offers	additional	testing	and
troubleshooting	tools	that	can	be	paired	with	its	Mobile	Emulator.	This
makes	Opera	an	ideal	environment	for	developing	mobile-friendly	web	sites.
Figure	15-6	shows	the	White	House	web	site	previewed	through	this
emulator	on	Samsung	Galaxy	X	and	Kindle	Fire	tablets.

http://www.opera.com/developer/tools/mobile

Figure	15-6	Opera’s	Mobile	Emulator	offers	previews	of	many	tablet	and	phone
environments.

•	Finally,	Adobe’s	entry	into	the	mobile	site	development	arena	is	called	Shadow
(www.adobe.com/shadow).	It	is	both	a	downloadable	tool	and	a	Chrome
extension.	It’s	worth	noting	that	Shadow	does	require	you	to	actually	have
the	mobile	device	on	which	you	want	to	test.	Instead	of	showing	you	what	a
live	site	might	look	like	on	a	mobile	device,	Shadow	syncs	your	browsing	on
a	desktop	computer	and	all	mobile	devices	on	the	same	network	that	have	the
Shadow	app	installed.	In	fact,	you	can	make	edits	in	Chrome’s	inspection
tool	and	check	out	the	results	of	those	edits	immediately	in	any	paired
mobile	device.

TIP
For	more	on	making	sites	mobile-friendly,	check	out
www.html5rocks.com/en/mobile/mobifying.

http://www.adobe.com/shadow
http://www.html5rocks.com/en/mobile/mobifying

Preview	in	Other	Browsers
Just	as	it’s	important	to	know	what	your	site	looks	like	on	mobile	devices,	it’s
also	worthwhile	to	check	it	on	other	desktop	computers.	(Remember:	Alternative
browsers,	operating	systems,	and	monitors	can	all	cause	a	page	to	display
differently.)	But	it’s	not	necessary	to	own	a	bunch	of	different	computers	to	do
so,	thanks	to	a	few	pieces	of	software.

Here	are	a	few	of	my	favorite	tools	for	previewing	sites	in	other	browsers:

•	Browsercam	(www.browsercam.com)	•	Browsershots
(www.browsershots.com)	•	Adobe	Browser	Lab	(browserlab.adobe.com)
Of	those	three,	Adobe’s	Browser	Lab	is	the	only	one	accessible	from	both
inside	Dreamweaver	as	well	as	from	within	the	browser.	In	Figure	15-7,	you
can	see	an	example	of	the	onion	skin	feature,	which	lets	you	preview	how	a
page	looks	in	two	different	browser	scenarios—in	this	case,	Safari	5.1	on
Mac	OS	X	is	shown	beneath	IE	9.0	in	Windows—at	the	same	time.	Here,
you	can	see	how	the	dimensions	of	the	layout	are	slightly	off	from	one	user
scenario	to	the	other.	However,	because	the	alignment	issues	from	one
browser	to	the	other	do	not	prevent	the	page	content	from	being	read	and
understood,	it	doesn’t	concern	me.

http://www.browsercam.com
http://www.browsershots.com
http://browserlab.adobe.com

Figure	15-7	Opera’s	Mobile	Emulator	offers	previews	of	many	tablet	and	phone
environments.

Upload	Your	Site	to	a	Host	Computer
After	your	site	is	finished	and	you’re	ready	to	make	it	“live,”	or	accessible	by
visitors	on	the	Web,	it’s	time	to	transfer	the	pages	to	the	host	computer.	You	can
use	File	Transfer	Protocol	(FTP)	programs	to	do	so.

The	concept	of	using	an	FTP	program	is	similar	to	moving	things	around	on
your	own	personal	computer.	The	key	difference	is	instead	of	moving	files	from
one	folder	to	another	on	your	computer,	you’re	actually	moving	them	from	one
folder	on	your	computer	to	another	folder	on	a	different	computer.

Just	as	you	can	change	settings	and	information	about	who	has	access	to
view	or	edit	a	file	on	your	own	computer,	you	can	also	make	these	changes	on	a
host	computer.	For	information	about	how	these	settings	might	work,	checking
with	your	ISP	or	host	company	is	best.

Depending	on	what	type	of	computer	you	have	and	who’s	hosting	your	site,
you	may	use	one	of	many	different	types	of	desktop	FTP	programs.	Or	you
might	use	an	FTP	tool	that	comes	with	your	HTML	editor,	such	as	the	built-in

FTP	capabilities	with	Adobe	Dreamweaver.	The	next	sections	outline	a	few
popular	options.

Desktop	FTP	Programs
Just	about	all	of	the	HTML	editors	discussed	previously	include	some	method	of
FTP.	But	if	you’d	prefer	a	stand-alone	tool,	there	are	tons	and	tons	of	desktop
FTP	programs	(just	Google	FTP	program	to	see	what	I	mean).	Some	are	free;
many	are	not.	One	of	the	most	popular	cross-platform	free	FTP	programs	is
FileZilla.	It	is	available	for	download	from	www.filezilla-project.org.	The
following	overview	outlines	how	to	use	this	particular	tool,	but	the	basic	steps
are	the	same,	regardless	of	which	FTP	program	you	select.

After	the	program	is	downloaded	and	installed,	double-click	the	app’s	icon	to
get	started.	To	begin,	you	must	choose	which	computer	you	want	to	access.	If
you	want	to	upload	your	files	to	your	web	server,	enter	that	computer’s
information	in	the	spaces	provided	at	the	top	of	the	screen	(Host,	Username,
Password)	before	clicking	Quickconnect.

NOTE
You	should	receive	all	the	necessary	information	when	you	sign	up	for	hosting	service.	If	you’re
unsure,	check	your	host	company’s	web	site	or	call	its	customer	support	line	for	assistance.

If	your	connection	is	successful,	FileZilla	displays	the	company	you’re
accessing,	referred	to	as	the	Remote	Site,	in	the	right	window.	The	files	on	your
local	computer	are	visible	in	the	left	window.

You	can	transfer	files	between	these	two	computers	in	a	couple	of	different
ways.	The	simplest	transfer	method	is	to	double-click	the	file	you	want	to
transfer.	To	be	more	specific	with	your	actions,	you	can	right-click	(CTRL-click
on	the	Mac)	the	file	and	select	from	one	of	the	available	options	(Figure	15-8).

http://www.filezilla-project.org

Figure	15-8	Right-clicking	a	file	in	FileZilla	displays	this	context	menu,
providing	access	to	download	the	file	or	perform	other	necessary
actions.

You	can	also	navigate	through	the	directory	structure	of	either	computer	by
clicking	the	folder	names	to	expand	or	condense	them.	Right-click	(CTRL-click
on	the	Mac)	to	quickly	add	a	new	folder	or	to	delete	an	existing	one.

TIP

You	can	transfer	files	in	two	different	ways:	ASCII	or	binary.	HTML	and	text	files	should	be
transferred	in	ASCII	mode,	while	graphic,	multimedia,	and	most	other	file	types	should	be
transferred	in	binary	mode.	FileZilla	(and	most	FTP	programs)	uses	the	“auto”	mode	by	default,
whereby	the	program	tries	to	determine	the	best	transfer	method	for	each	file	type.

That	covers	the	most	basic	method	of	FTP—the	transfer	of	files	from	one
computer	to	another.	If	you	have	an	FTP	site	you	plan	to	visit	often,	you	can
store	that	server’s	login	information	in	FileZilla’s	Site	Manager	to	save	you	time
(see	Figure	15-9).	To	access	the	Site	Manager,	click	the	first	button	in	the	upper-
left	corner	of	the	main	FileZilla	window.	When	the	Site	Manager	displays,
choose	New	Site	and	add	the	necessary	login	information	before	clicking	OK	to
save	the	information	or	Connect	to	save	and	also	connect	to	the	remote	site
immediately.

Figure	15-9	Use	FileZilla’s	Site	Manager	to	store	usernames	and	passwords	for
frequently	accessed	FTP	sites.

For	more	information	about	using	FileZilla,	visit	www.filezilla-project.org.
Or,	if	you	prefer,	try	one	of	these	other	great	FTP	programs:	•	CoffeeCup	Free
FTP	(www.coffeecup.com/free-ftp)—Windows	•	SmartFTP

http://www.filezilla-project.org
http://www.coffeecup.com/free-ftp

(www.smartftp.com)—Windows	•	FTP	Voyager	(www.ftpvoyager.com)—
Windows	•	WS-FTP	(www.ipswitch.com)—Windows	•	YummyFTP
(www.yummyftp.com)—Mac	•	Fetch	(www.fetchsoftworks.com)—Mac	•
VicomsoftFTP	(www.vicomsoft.com)—Mac	•	Transmit	(www.panic.com)—
Mac	Web-Based	FTP
If	you	are	using	a	free	service	to	host	your	web	page,	you	probably	have	FTP
capabilities	through	that	company’s	web	site.	This	is	called	web-based	FTP
because	you	don’t	need	any	additional	software	to	transmit	the	files—in	fact,
you	transmit	the	files	right	from	within	your	web	browser.

Even	if	your	host	company	doesn’t	offer	web-based	FTP,	if	you	use	the
Firefox	web	browser,	you	have	an	even	better	option.	While	I	typically	use	the
built-in	FTP	capabilities	in	Dreamweaver,	since	that’s	my	preferred	HTML
development	tool,	I	sometimes	have	a	need	for	file	transfer	outside	of
Dreamweaver.	If	so,	I	use	a	powerful	Firefox	add-on	called	FireFTP.

To	install	FireFTP	(or	another	web-based	FTP	tool	for	Firefox),	open	Firefox
and	visit	https://addons.mozilla.org.	Search	for	FTP.	Locate	the	FTP	app	you
want	to	add,	and	click	the	corresponding	Add	To	Firefox	button.

After	the	FTP	app	is	installed,	you	can	locate	it	under	the	Tools	menu	in
Firefox.	Similarly	to	how	the	previously	discussed	FTP	programs	function,
FireFTP	displays	your	local	files	on	the	left	and	the	remote	files	on	the	right.
Take	a	look	at	Figure	15-10	to	see	what	I	mean.

http://www.smartftp.com
http://www.ftpvoyager.com
http://www.ipswitch.com
http://www.yummyftp.com
http://www.fetchsoftworks.com
http://www.vicomsoft.com
http://www.panic.com
http://addons.mozilla.org

Figure	15-10	Web-based	FTP	is	a	super	easy	way	to	upload	your	files	to	a	web
server.

Test	Your	Published	Site
After	your	site	is	uploaded	to	the	server,	you’ll	want	to	run	through	each	page
once	more	in	order	to	verify	everything	transferred	as	expected.	In	addition,	test
to	make	sure	all	the	links	work	and	images	appear.

Once	you’ve	made	a	cursory	check,	it’s	time	to	check	for	cross-browser	and
cross-platform	consistency.	Throughout	the	book,	I	have	mentioned	the
importance	of	checking	your	pages	in	multiple	browsers	and	on	multiple
computer	systems	to	make	sure	they	appear	as	you	intended.	Earlier	in	this
chapter,	I	mentioned	a	few	tools	to	help	you	test	in	a	variety	of	potential	user

situations.	However,	if	you	weren’t	able	to	do	so	before	for	whatever	reason,
now’s	your	last	chance.

After	your	site	is	uploaded	to	the	host	computer,	you	should	run	through
each	page	once	more	to	verify	that	everything	transferred	as	expected.	Then,
consider	the	following	notes:	•	Do	all	the	page	titles	accurately	reflect	the
content?	If	you	bookmark	them,	do	the	titles	work	to	help	the	user	remember	the
page	and	its	content?

•	Does	the	text	content	display	in	an	easily	readable	fashion?
•	Do	all	the	images	display	as	intended?
•	Do	all	the	other	media	elements	display	and	function	as	intended?
•	Do	all	the	links	function	as	expected?
•	Turn	off	the	image	display	in	your	browser.	Do	all	images	contain	alternate

text	explanations	that	accurately	reflect	their	content?

•	Does	the	layout	flow	as	expected	no	matter	the	size	of	the	browser	window?

TIP
Finding	errors?	Remember	to	check	out	Appendix	C	in	regard	to	troubleshooting.

Even	if	you	don’t	have	more	than	one	type	of	computer	or	browser,	now	that
your	pages	are	live,	you	can	ask	friends	or	family	to	test	them	for	you.	Have
them	record	what	type	of	browser	they’re	using,	what	size	monitor	they	have,
what	size	screen	resolution	they’re	using,	and	what	computer	operating	system
they’re	running.	That	way,	when	they	report	bugs	or	errors	on	your	pages,	you’ll
have	help	in	determining	the	problem.

Publicize	Your	Web	Site
After	your	site	is	live,	you	can	begin	submitting	its	URL	to	search	engines.	The
process	typically	involves	entering	the	URL	of	your	web	site	and,	perhaps,	a
contact	e-mail	address.	You	should	look	for	a	link	labeled	“Add	URL”	or	“Add	a
Site.”	Your	listing	typically	appears	within	a	few	days,	but	it	may	take	as	long	as
a	week	or	so.

The	different	types	of	search	engines	vary	greatly	according	to	how	they
index	your	site.	Because	most	give	results	based	on	how	relevant	pages	are	to

search	terms,	you	might	rank	10th	on	one	day	or	1,000th	on	another.	Another
key	aspect	to	keeping	your	site	in	the	top	of	the	search	engines	is	to	make	it
popular.	Unfortunately,	this	may	seem	a	bit	like	the	chicken-and-egg	syndrome.

TIP
A	great	way	to	find	out	where	you	should	list	your	site	to	increase	its	popularity	is	to	check	your
competition.	If	you	enter	link:competitor.com	into	Google	(where	competitor.com	is	replaced
with	the	URL	of	your	competitor’s	web	site),	you	can	see	all	the	sites	that	link	to	your	competitor.
Chances	are	good	that	if	you	want	to	acquire	some	of	those	customers	from	the	competition,	you
could	benefit	by	having	links	from	those	same	sites.

Your	site	needs	to	be	clicked	in	the	search	results	to	become	“popular”	by
search	engine	standards,	but	if	your	site	is	at	the	bottom	of	the	search	list
because	it’s	new,	few	people	may	ever	find	it	to	click	it!	This	is	why	paid	ads	on
search	engines	are	such	a	big	deal	these	days.	Ever	searched	on	Google	and	seen
little	ads	appear	on	the	right	side	that	seem	to	be	selling	exactly	what	you
searched	for?	These	businesses	are	doing	just	that—they	pay	to	“sponsor”
certain	search	terms.	So	a	summer	camp	might	pay	to	appear	each	time	a	user
searches	for	“summer	camp”	in	Google.	Theoretically,	you’ll	only	need	to	pay
for	these	ads	for	a	short	time,	provided	they	work	and	get	people	to	click	your
web	site	link.	Ideally,	once	your	site	becomes	popular	in	Google,	it	will	naturally
rise	to	the	top	of	the	search	results.	Check	out	adwords.google.com	to	learn
more.

NOTE
Unfortunately,	you	can’t	just	click	your	own	site’s	link	a	thousand	times	to	increase	its	popularity
in	Google.	The	search	engine	not	only	records	the	number	of	times	a	link	is	clicked,	but	also	the
computer’s	address	from	which	it	was	clicked.	It	will	ignore	any	links	clicked	from	your
computer	if	it	identifies	potential	fraud.	Sorry!

One	of	the	most	common	questions	I	receive	from	web	site	owners	is	this:
How	can	I	increase	my	page’s	ranking	in	the	search	engines?	The	answers	to
that	question	vary	widely	according	to	who’s	being	asked.	Search	engine
optimization	(SEO)	has	become	a	niche	market,	and	companies	and	consultants
who	specialize	in	SEO	are	hired	to	assist	throughout	the	development	of	a	web
site.

As	I	mentioned	previously,	on	the	Web,	content	is	king.	So	when	trying	to
increase	your	site’s	ranking	in	a	search	engine,	first	and	foremost	you	must
review	your	content.	Next,	when	you	have	intriguing,	meaningful,	quality
content,	it’s	time	to	advertise	and	promote	your	content	to	encourage	others	to

http://www.google.com/adwords/

link	to	it.	Earning	links	from	other	web	sites	not	only	increases	your	traffic,	but
also	betters	your	search	engine	ranking.

TIP
Always	remember	that	search	engine	optimization	doesn’t	happen	overnight!	It	requires	patience
and	diligent	work	to	be	successful.

Because	the	ins	and	outs	of	SEO	can	be	difficult	to	navigate,	I	typically
recommend	businesses	hire	an	SEO	expert.	When	looking	for	an	SEO
consultant,	consider	the	following:	•	Be	skeptical	of	firms	that	send	you	emails
stating	they	visited	your	site	and	noticed	you’re	“not	listed	in	the	top	search
engines.”	These	are	usually	scams.

•	Avoid	agencies	that	claim	they	can	make	your	site	#1	on	any	particular	search
engine.	This	is	simply	not	possible.

•	Thoroughly	research	the	companies	being	considered.	Using	a	search	engine	is
a	great	place	to	start.

•	You’re	paying	for	their	time,	not	placement	costs.	Reputable	search	engines	do
not	accept	money	to	increase	your	listing.	Having	said	that,	it	is	acceptable	to
incur	temporary	advertising	fees	if	you	choose	to	advertise	on	a	search
engine	(such	as	with	Google	AdWords).
Finally,	a	few	links	to	help	you	get	started	with	SEO:

•	Search	Engine	Land	(www.searchengineland.com)	•	The	Official	Google
Analytics	Blog	(analytics.blogspot.com)	•	Web	Analytics	Demystified
(www.webanalyticsdemystified.com)	NOTE

Because	many	search	engines	have	their	own	sets	of	rules	and	guidelines,	reading	through	any
tips	or	help	files	they	provide	before	submitting	your	site	is	important.	For	example,	on	some
sites,	if	you	submit	your	site	too	often,	they	actually	remove	it	from	their	listings	altogether.

Marketing	Tips
In	addition	to	submitting	your	site	to	search	engines	and	search	directories,	you
can	do	many	other	things	to	promote	your	web	site	on-	and	offline:	•	Exchange
links	with	related	sites	Consider	asking	sites	with	related	content	for	links	in
exchange	for	a	link	to	their	site	from	yours.	Don’t	forget	about	organizations	you
belong	to,	like	your	local	chamber	of	commerce	or	an	industry	association.
These	are	great	places	to	exchange	links.	Another	place	you	can	exchange	links

http://www.searchengineland.com
http://analytics.blogspot.com
http://www.webanalyticsdemystified.com

is	with	a	group	of	related	sites,	called	a	web	ring.	Visit	www.webring.com	for
some	examples.

•	Create	newsworthy	content	Everyone	loves	free	publicity,	and	with	the
thousands	of	media	outlets	both	on-	and	offline,	you	should	be	able	to	get	a
little	publicity	yourself.	If	you	have	an	interesting	product	or	a	new	twist	on
an	old	idea,	tell	someone!	Email	news	agencies,	send	out	a	press	release,
write	to	your	local	paper,	contribute	to	an	association’s	newsletter	…	and
don’t	forget	to	plug	your	web	site.

•	Use	your	customers	and	tell	everyone	you	know	Give	out	free	pins,	bumper
stickers,	pens,	or	anything	with	your	web	site	address	to	your	existing
customers.	If	your	services	and	products	are	good,	they’ll	have	no	problem
telling	others	about	them.	In	addition,	spread	the	word	through	industry
events	where	you	can	network	and	sell	your	business.

•	Don’t	forget	traditional	advertising	If	you	have	stationery,	add	your	web	site
address.	If	you	already	run	radio	or	print	ads,	include	your	web	site	address.
Consider	running	a	special	ad	promoting	your	new	or	revamped	web	site.

•	If	you	have	the	budget,	consider	paid	online	advertising	Banner	ads	and
paid	listings	in	directories	can	be	beneficial	if	targeted	toward	the	right
audience.	Sometimes	a	less-expensive	alternative	might	be	to	sponsor	a
related	nonprofit	web	site.	For	example,	if	you	sell	school	supplies,	consider
sponsoring	a	nonprofit	homework	help	site.	Another	alternative	is	to	sponsor
free	email	or	Internet	service	providers.	But	by	and	large,	the	best	bang	for
your	buck	these	days	is	likely	either	Google	ads	(adwords.google.com)	or
Facebook	ads	(ads.facebook.com).	And	because	users	provide	demographic
information	when	they	sign	up	for	a	Facebook	account,	you	can	target
specific	users	with	your	advertising.

•	Most	important,	create	useful	content	If	your	site	is	boring	or	otherwise
useless,	people	won’t	come	and	they	won’t	help	you	promote	it.	While	the
best	marketer	for	your	business	is	a	satisfied	customer,	the	best	marketer	for
your	competition	is	a	dissatisfied	one.

Make	the	Site	Live!
As	a	final	step	in	creating	your	web	site,	research	possible	hosting	solutions.
Refer	to	the	beginning	of	the	chapter	for	links	and	tips	on	finding	personal	and

http://www.webring.com
http://adwords.google.com
http://ads.facebook.com

business	hosting.

TIP
If	you	simply	want	to	test	the	pages	you	created	to	learn	HTML	in	this	book,	I	suggest	signing	up
for	a	free	site	with	one	of	the	hosts	mentioned	at	the	beginning	of	this	chapter.

After	selecting	a	hosting	provider,	use	an	FTP	program	to	transfer	your	web
site	to	the	server.	Test	the	pages	in	several	browsers	and	on	different	computer
systems	to	confirm	you	successfully	created	and	uploaded	your	web	site.	For
practice,	try	making	a	change	to	one	of	the	pages	after	viewing	it	live.	Then,
reupload	the	page	and	choose	Refresh	or	Reload	in	your	browser	to	review	the
change.

If	appropriate,	add	your	site	to	search	engines	and	search	directories,	and
continue	with	other	marketing	techniques.	Remember,	promoting	your	web	site
is	an	ongoing	task	and	requires	frequent	maintenance.

Congratulations!	If	you’ve	successfully	uploaded	your	pages	to	a	server	and
made	them	live,	you	certainly	should	be	proud.	Keep	practicing	what	you’ve
learned,	and	you’ll	surely	be	on	your	way	to	creating	some	stellar	web	sites.

Chapter	15	Self	Test

1.	Fill	in	the	blank:	ISP	stands	for
_______________________________________.

2.	Including	the	extension,	what	is	the	limit	for	characters	in	a	domain
name?

3.	Which	type	of	business	hosting	is	used	when	your	business	purchases
its	own	server,	software,	and	a	dedicated	Internet	connection	capable	of
serving	your	site	to	web	users	24	hours	a	day,	365	days	a	year?

4.	Mobilizer	is	a	tool	that	allows	you	to	preview	your	pages	in	what	type
of	user	situation?

5.	True/False:	Some	search	engines	ignore	meta	tags.

6.	Why	is	it	important	to	include	the	following	line	of	code	at	the	start	of
all	your	HTML	pages?

7.	Where	are	meta	tags	placed	within	a	web	page?

8.	True/False:	All	search	engines	use	the	same	set	of	standards	for
indexing	web	pages.

9.	Fill	in	the	blanks:	When	testing	a	web	site,	you	should	test	for	cross-
______________	and	cross-________________	consistency.

10.	What	does	FTP	stand	for?

T

Chapter	16
HTML	for	Email

Key	Skills	&	Concepts

•	Determine	Whether	HTML	Email	Is	Appropriate	for	Your	Needs	•	Don’t	Send
Spam

•	Identify	the	Necessary	Tools	for	the	Task	•	Code	for	Email	Readers,	Not	Web

Browsers	•	Test,	Test,	Test

he	year	2013	marks	14	years	since	the	first	edition	of	HTML:	A	Beginner’s
Guide	was	written.	Throughout	the	bulk	of	those	years,	the	rise	of	CSS	has

had	the	biggest	impact	on	web	designers	and	developers	(and	ultimately	on	web
users).	Perhaps	the	second	most	important	change	for	web	designers	is	the
widespread	support	of	HTML	and	CSS	by	email	readers.

Indeed,	at	the	end	of	the	twentieth	century	your	email	inbox	was	a	lot	less
colorful	(and	most	likely	a	lot	less	full).	HTML	emails	bring	color,	images,
formatting,	and	much	more	interactivity	than	their	plain-text	counterparts.	While
most	companies	still	provide	plain-text	emails	to	customers	who	request	them,
the	vast	bulk	of	business	marketing	and	advertising	email	now	sent	is	HTML-
based.

NOTE
Because	the	bulk	of	HTML	email	is	sent	from	businesses,	this	chapter	focuses	on	creating	HTML
emails	for	marketing	and	advertising	purposes.

For	the	web	designer,	this	brings	a	whole	new	avenue	of	work	opportunities,
as	well	as	new	headaches.	Why?	Because	an	HTML	email	is	essentially	just	a

web	page.	So	if	you	can	design	and	code	web	pages,	you	can	design	and	code
HTML	email.

The	reason	for	the	headaches	is	this:	Support	for	HTML	and	CSS	is	growing
among	email	readers,	but	it	still	lags	behind	on	many	fronts.	In	fact,	coding
HTML	for	email	in	2013	is	a	bit	like	coding	HTML	for	web	browsers	was	a
decade	ago—which	means	you’ll	spend	a	lot	of	time	testing,	and	testing,	and
testing,	and	revising	and	testing	some	more.

Email	Standards	Project
At	the	beginning	of	this	book,	I	discussed	the	W3C	and	its	role	in	creating	web
standards.	In	November	2007,	a	group	of	people	got	together	to	form	the	Email
Standards	Project.	This	organization	works	with	email	client	developers	and	the
design	community	to	improve	web	standards	support	and	accessibility	in	email.

Over	the	past	five	years,	the	folks	behind	the	Email	Standards	Project	have
talked	with	Yahoo!,	Google	(Gmail),	and	IBM	(Lotus	Notes)	about	improving
their	respective	email	clients.	While	this	is	undoubtedly	a	slow	process,	there	is
great	hope	among	the	design	community	that	this	organization	will	help	bring
the	same	level	of	consensus	that	the	W3C	brought	on	the	web	browser	front.

You	can	download	the	Email	Standards	Project’s	“Acid	Test”	to	see	exactly
how	they	tested	each	email	client.	You	can	also	view	the	results	of	their	tests,
and	learn	more	about	the	movement,	at	www.email-standards.org.

Determine	Whether	HTML	Email	Is	Appropriate
for	Your	Needs	Before	we	jump	into	the	details
of	coding	HTML	emails,	we	need	to	have	a	brief
conversation	about	whether	it	is	appropriate	for
you	or	your	project.	To	make	that	determination,
consider	the	following	pros	and	cons.

The	Purpose	of	Email	Is	to	Communicate
At	the	end	of	the	day,	we	use	email	to	communicate	with	each	other.	While	there
certainly	are	many	forms	of	communication,	email	has	traditionally	used	written

http://www.email-standards.org

language	to	communicate.	All	email	readers	allow	users	to	read	written	text.
This	is	the	most	basic	requirement	of	any	email	reader.

When	you	start	styling	that	text	with	color	and	other	formatting,	you	stop
relying	on	the	written	word	to	communicate	your	message.	Suppose,	for
example,	you	received	an	email	from	a	friend.	In	that	email	your	friend	listed	the
menu	for	a	bridal	shower	you	were	helping	to	throw	next	weekend,	and	then
included	the	following	line	at	the	bottom:	“Thanks	for	helping	with	the	party!	I
highlighted	the	items	I	still	need.	Can	you	help	with	any	of	them?”

If	your	email	program	is	set	to	read	email	as	text-only,	there	won’t	be	any
highlighted	text	in	that	email.	In	instances	like	this,	the	communication	method
moves	from	the	written	language	only	to	include	visual	clues	like	highlighting.
Before	you	make	the	decision	to	send	HTML	emails,	you	need	to	determine	the
specific	message	of	the	emails	being	sent	and	whether	or	how	any	extra
formatting	will	affect	that	message.

The	End-User	Display	Is	Unknown
Unlike	web	browsers,	which	have	become	much	more	uniform	in	their	display
and	support	of	HTML,	email	readers	are	plentiful	and	vastly	different	from	one
another.	Consider	all	the	ways	you	read	email.	If	you	have	a	Yahoo!,
Hotmail/Live	Mail,	or	Gmail	account,	you	probably	read	your	email	in	a	web
browser.

But,	you	still	have	the	option	to	read	your	email	in	a	stand-alone	email
program	like	Outlook	or	MacMail.	And	if	you	are	like	a	growing	number	of
people,	you	might	also	check	your	email	on	a	mobile	phone	like	a	Blackberry	or
iPhone.	I	just	named	off	seven	different	ways	to	read	an	email,	and	I’m	only
getting	started!

It	is	virtually	impossible	to	know	how	your	HTML	emails	will	display	when
read	by	the	end	user.	Testing	in	as	many	of	the	popular	email	readers	as	possible
is	certainly	important,	but	ultimately	you	must	make	smart	design	decisions	that
ensure	the	widest	possible	audience	can	still	glean	the	message	being
communicated.	Keep	this	in	mind	when	deciding	whether	HTML	is	the	best
delivery	method	for	a	particular	email.

Plain-Text	Email	Is	Safer	and	Smaller
Due	to	the	proliferation	of	HTML	email	spam,	the	simple	truth	is	that	plain-text
email	is	more	likely	to	actually	get	to	the	reader.	This	may	mean	that	the	most
important	email	communication	with	a	customer—such	as	receipts—should	be

kept	in	plain	text.
For	example,	many	email	readers	block	images	and	attachments	from

unknown	senders	or	suspected	spammers.	One	reason	this	happens	is	that
anything	attached	to	an	email	is	capable	of	harboring	viruses	and	other	malicious
code.	Also,	when	you	send	HTML	email	with	images	stored	on	a	web	server,
you	can	tell	whether	an	email	was	opened	by	simply	reviewing	the	site’s	access
logs	to	see	if	the	images	were	displayed.	This	allows	spammers	to	differentiate
between	active	email	addresses	and	bad	email	addresses.

In	fact,	HTML	emails	are	more	likely	to	be	tagged	as	spam	simply	for	having
embedded	images.	That	means	your	beautifully	designed	HTML	email	may	end
up	in	a	customer’s	spam	bucket	and	eventually	in	the	trash	without	the	customer
even	knowing	it.

Another	reason	HTML	email	might	not	make	it	to	the	target	destination	is
size.	If	you	get	a	little	crazy	with	large	images	and	hefty	attachments,	you	can
cause	someone’s	email	system	to	slow	down	drastically	or	even	crash.

But	…	HTML	Email	Marketing	Works
Now	that	I’ve	given	you	several	reasons	HTML	email	might	not	be	appropriate,
I	must	state	the	obvious:	HTML	email	can	definitely	be	more	appealing.	Let’s
face	it,	most	of	us	react	more	quickly	to	an	image	of	a	double-dip	chocolate	ice
cream	cone	on	a	hot	summer	day	than	we	might	to	those	words	mixed	in	with
other	text	in	a	crowded	paragraph.	As	the	saying	goes,	“a	picture	is	worth	a
thousand	words.”

The	simple	truth	is	that	when	done	right,	HTML	email	marketing	works.
Here	are	a	few	of	the	reasons:	•	Cost	effective	Advertisers	who	used	to	rely	on
expensive	print-mail	campaigns	are	largely	embracing	HTML	email	as	an
efficient	way	to	get	their	message	in	front	of	customers	more	quickly	and	less
expensively.	While	design	costs	might	be	similar,	the	cost	of	sending	a	thousand
emails	is	significantly	less	than	the	cost	to	print	and	snail-mail	a	thousand
postcards	to	customers.

•	Targeted	While	most	companies	do	target	certain	ZIP	codes	when	sending
snail-mail	ads,	email	advertising	allows	you	to	target	very	specific
demographics	and	behaviors.	For	example,	suppose	you	are	a	customer	of	a
certain	grocery	store	who	has	recently	started	offering	delivery.	Being
interested	in	the	service,	you	viewed	a	page	on	a	company’s	web	site
describing	this	new	service,	but	you	never	actually	purchased	it.	Because	you
were	logged	in	to	your	account	with	this	company	at	the	time	you	viewed	the

delivery	page,	they	decide	to	send	you	a	targeted	email	ad	offering	free
delivery	on	your	next	order.	Such	targeted	emails	tend	to	be	highly
successful.

•	Timely	Email	advertisements	can	be	sent	within	seconds	of	certain	events.
Wake	up	to	a	snow	day?	Why	not	send	a	special	“snow	day	savings”	email	to
parents	of	elementary	school	students?	Customers	could	be	reading	your
HTML	email	(and	making	purchasing	decisions)	before	a	snail-mail
equivalent	even	reaches	the	printer.

•	Fosters	relationships	Companies	have	long	known	that	loyal	customers	are
often	the	best	ones.	If	you	can	keep	a	customer	happy,	you	stand	a	good
chance	at	keeping	her	a	customer.	Email—particularly	HTML	email	with
some	interactivity—provides	an	effective	tool	for	building	and	maintaining
customer	relationships.

At	the	end	of	the	day,	you	can	measure	the	success	of	any	email	marketing
campaign	with	the	right	software.	Businesses	can	tell	how	many	people	opened
the	messages,	what	links	were	clicked,	who	saw	which	versions	(HTML	or	plain
text),	and	even	the	revenue	each	generated.	So	it	is	relatively	easy	to	stop
sending	out	campaigns	that	aren’t	working,	and	to	try	something	new.

Don’t	Send	Spam
Before	you	start	writing	your	HTML	emails,	you	must	know	about	the	audience.
From	a	legal	standpoint,	the	most	important	thing	to	know	about	your	audience
is	whether	you	have	permission	to	contact	them	in	this	manner	and	for	this
purpose.	In	addition,	you	must	always	provide	a	reliable	method	for	users	to	opt-
out,	or	stop	receiving	your	mail.	In	short,	spam	is	any	mail	sent	without	the
permission	of	the	recipient.

Email	the	Right	People
So	how	do	you	gain	permission	from	recipients?	Here	are	a	few	guidelines	in
that	regard:	•	You	can	send	email	to	current	customers.	Most	people	consider
anyone	who	has	purchased	from	you	within	the	last	two	years	to	be	a	“current”
customer.

•	You	can	send	email	to	people	who	request	information	from	you,	either	in

person	or	online.	Keep	in	mind	that	you	can	only	send	them	email	about
relevant	topics.	In	other	words,	if	someone	responds	to	a	job	posting	on	a
company’s	web	site	but	isn’t	hired,	you	can’t	start	sending	him	marketing
email	about	your	products.

This	means	you	can’t	harvest	email	addresses	off	email	forwards	or	those
found	on	the	Internet.	Just	because	I	post	my	email	address	on	my	personal	web
site,	that	doesn’t	mean	I	want	to	receive	marketing	email	from	any	business	who
visits	my	web	site.

While	it	might	be	very	tempting	to	send	mass	emails	to	strangers	in	the
hopes	that	one	might	become	a	new	customer,	it	is	much	more	effective	to	target
people	who	have	already	expressed	an	interest	in	your	business	or	product.

TIP
If	you’re	working	with	a	business	that	is	unsure	whether	their	marketing	list	is	legal,	consider
checking	the	guidelines	presented	by	email	marketing	giant	Campaign	Monitor:
www.campaignmonitor.com/guides/permission.

Always	Provide	a	Way	to	Opt	Out
Federal	guidelines	require	you	to	always	provide	a	way	for	someone	to	tell	you
he	no	longer	wishes	to	receive	your	emails.	At	a	bare	minimum,	this	means	you
must	provide	a	valid	return	address	to	which	users	can	send	a	“please	remove
me”	email.	Most	reputable	email	systems	offer	efficient	unsubscribe	mechanisms
that	allow	recipients	to	opt	out	through	an	online	form	linked	from	all	emails.

Federal	guidelines	further	require	you	to	keep	such	unsubscribe	methods
available	for	at	least	30	days	after	emails	are	sent.	After	receiving	an	unsubscribe
request,	companies	have	10	days	to	stop	sending	the	recipient	email.

Adhere	to	Other	FTC	Rules
To	avoid	your	email	being	considered	spam,	you	also	must	use	legitimate
headers	and	subject	lines.	In	other	words,	you	can’t	send	an	email	with	a	subject
of	“FREE	delivery	on	your	next	order”	unless	the	offer	is	valid	and	indeed
available	to	recipients.	The	from	and	reply-to	email	addresses	must	also	be
active.

Your	company’s	business	name	and	physical	mailing	address	must	also	be
visible	in	the	email.

http://www.campaignmonitor.com/guides/permission

TIP
Check	out	business.ftc.gov/documents/bus61-can-spam-act-compliance-guide-business	for
more	information	about	the	Federal	Trade	Commission’s	CAN-SPAM	laws.

Identify	the	Necessary	Tools	for	the	Task
Now	that	we’ve	discussed	why	you	might	send	HTML	email,	let’s	move	on	to
how.	You’ve	already	learned	that	you	can	type	HTML	code	in	just	about	any	text
editor,	but	in	order	to	be	viewed	by	a	web	browser,	it	must	be	saved	with	a
certain	file	extension	(such	as	.html).	Similarly,	you	can	type	HTML	code	into	an
email,	but	it	will	just	look	like	a	bunch	of	code	unless	you	send	it	through	the
proper	channel.

Send	Live	Web	Pages	with	a	Personal	Email	Account	As
I	mentioned,	an	HTML	email	is	really	just	a	web	page.
Have	you	ever	wanted	to	email	a	web	page	to	someone?
The	method	depends	on	your	email	software.	If	you	have
Apple’s	Safari	browser,	you	simply	navigate	to	the	page
you	want	to	send	and	choose	File	|	Mail	Contents	Of	This
Page.	Next,	the	page	will	display	in	an	email	in	MacMail.
Simply	address	it	and	send	it	off!

http://business.ftc.gov/documents/bus61-can-spam-act-compliance-guide-business

You	can	also	use	Internet	Explorer	7+	to	send	a	web	page	via	email.	If	you
use	the	web-based	Hotmail/Live	Mail,	choose	Page	|	Email	With	Windows	Live.
If	you	don’t	use	web-based	email,	but	have	Outlook	or	some	other	email
software	installed	and	set	up	on	your	system,	choose	Page	|	Send	By	Email.
(This	option	is	grayed	out	if	you	don’t	have	an	email	account	currently	set	up	on
your	system.)	These	methods	are	useful	when	you	want	to	share	a	web	page	with
family	or	friends.	However,	you	wouldn’t	use	these	methods	to	send	out	mass
business	email	for	several	reasons.	First,	most	Internet	service	providers	(ISPs)
limit	the	amount	of	bandwidth	you	can	use	on	a	daily	or	monthly	basis.	Sending
lots	and	lots	of	HTML	email	will	likely	have	your	ISP	hounding	you	pretty
quickly.	In	addition,	sending	bulk	email	through	your	business	or	personal	server
runs	you	the	risk	of	having	all	your	email	blocked	as	spam.

Using	an	Email	Service	Provider
The	best	method	for	sending	bulk	HTML	email	is	to	use	an	email	service
provider	(ESP).	Similar	to	an	Internet	service	provider,	an	ESP	handles	all
aspects	of	bulk	email	delivery,	from	managing	the	recipient	lists	(both	subscribe
and	unsubscribe	features)	to	tracking	the	number	of	times	each	email	is	opened
and	clicked.

Just	as	there	are	hundreds	of	ISPs	out	there,	you	also	have	your	choice	from
quite	a	few	ESPs.	As	a	freelancer,	I	have	used	a	fair	number	of	ESPs	for

different	businesses.	Each	has	its	pros	and	cons,	depending	on	the	business	and
its	audience.

When	researching	ESPs,	here	are	a	few	things	to	look	for:	•	Contact
management	tools	to	handle	your	subscriber	list	•	Email	creation	tools	to	help
format	and	lay	out	the	content	•	Email	sending	tools	to	help	you	test	your	emails
•	Design	services	to	help	with	graphic	design	and	creative	support	•	Email
reporting	tools	to	help	you	track	things	like	click-throughs,	opens,	and
conversions	•	Ease	of	use
•	Support

As	with	any	software,	I	encourage	you	to	try	before	you	buy.	ESPs	typically
charge	either	a	monthly	fee	or	per-email/per-recipient	fees	(or	a	combination	of
both).	Many	also	offer	rebranding	tools	to	allow	designers	to	create	their	clients’
emails,	and	then	give	the	clients	the	tools	to	send	and	manage	them.	A	few	of	the
most	popular	ESPs	include	•	Blue	Hornet	(www.bluehornet.com)	•	Campaign
Monitor	(www.campaignmonitor.com)	•	Constant	Contact
(www.constantcontact.com)	•	Emma	(www.myemma.com)	•	iContact
(www.icontact.com)	•	Lyris	(www.lyris.com)	•	MailChimp
(www.mailchimp.com)	NOTE
If	you	are	considering	sending	bulk	mail,	run	(don’t	walk)	toward	these	ESPs	as	fast	as	you	can.	I
strongly	discourage	you	from	using	your	personal	email	account	and	email	software	to	send	any
amount	of	bulk	mail.	The	risks	are	just	too	great,	and	the	benefits	too	small	to	justify	it.

Code	for	Email	Readers,	Not	Web	Browsers
I’m	now	going	to	tell	you	a	few	things	about	HTML	that	apply	only	when	you’re
coding	HTML	for	email.	For	instance,	because	of	the	inconsistency	of	support
for	HTML5	and	CSS3	among	email	readers,	I’m	actually	going	to	suggest	you
use	HTML	tables	for	reliable	layout!	Gasp!	While	I	would	never	suggest	you	use
HTML	tables	to	lay	out	an	entire	web	page	(as	we	used	to	before	the	rise	of
CSS),	I	am	suggesting	you	use	tables	to	lay	out	complex	designs	for	email.	I
know	it’s	a	bit	backward	and	awkward,	but	bear	with	me	for	a	few	minutes.

The	most	important	differences	in	coding	for	email	readers	instead	of	web
browsers	are	outlined	in	the	following	sections.	But	before	we	delve	into	those,
we	first	need	to	determine	exactly	which	email	readers	we’re	talking	about.

http://www.bluehornet.com
http://www.campaignmonitor.com
http://www.constantcontact.com
http://www.myemma.com
http://www.icontact.com
http://www.lyris.com
http://www.mailchimp.com

According	to	Campaign	Monitor	(www.campaignmonitor.com),	the	top
three	email	clients	used	in	2011	were	Outlook,	iOS	devices,	and	Hotmail,	with
Apple	Mail	and	Yahoo!	Mail	quite	close	behind.	When	we	look	at	consumer
recipients,	the	top	three	clients	remain	the	same,	but	change	in	market	share.
Refer	to	Tables	16-1	and	16-2	for	the	complete	lists.

Table	16-1	The	Top	Ten	Email	Clients	Used	by	Business	Recipients	(Source:
fingerprintapp.com/email-client-stats)

Table	16-2	The	Top	Ten	Email	Clients	Used	by	Consumer	Recipients	(Source:
fingerprintapp.com/email-client-stats)

http://www.campaignmonitor.com

Ultimately,	you	must	determine	which	email	clients	to	target	in	terms	of	your
project’s	desired	audience.	And	just	as	with	traditional	web	pages,	you	must	test
as	much	as	possible	within	your	target	email	clients.	As	a	designer	who
frequently	creates	HTML	email	for	clients,	I	have	email	accounts	set	up	in	all	the
top	five	email	clients	specifically	to	use	for	testing	HTML	email.

Now,	on	to	the	recommendations.

Absolute	Paths
You	must	use	absolute	paths	for	all	links	and	images.	Remember	Chapter	7,
where	I	gave	you	the	option	of	using	either	absolute	or	relative	pathnames	for
links?	Because	your	email	is	downloaded	and	displayed	on	the	reader’s	system,
you	need	to	make	sure	all	images	are	stored	on	a	web	server	and	referenced	with
complete,	absolute	URLs	(i.e.,	those	that	start	with	http://).	Likewise,	all	links	to
other	web	pages	or	content	need	to	include	the	http://.

Images
There	are	three	key	points	I’d	like	to	make	about	using	images	in	HTML	email.

You	Can’t	Rely	on	Images	to	Transfer	Your	Message
Image	blocking	is	much	more	common	in	email	readers	than	web	browsers,	so
you	need	to	provide	text-only	methods	for	readers	to	access	your	information.
This	doesn’t	just	occur	when	images	are	placed	in	the	trash	or	spam	bucket.	In
fact,	some	email	programs	(such	as	Outlook,	AOL,	and	Gmail)	have	default
settings	blocking	images	in	email	from	unapproved	senders.

Figure	16-1	shows	how	an	email	from	an	unknown	sender	shows	up	in	my
Gmail	inbox	by	default.	After	receiving	emails	like	this,	the	user	can	tell	Gmail
to	display	the	images	in	a	single	email	or	always	display	images	in	emails	sent
by	this	sender	(making	Sears	a	“trusted	sender”).	Tables	16-3,	16-4,	and	16-5
cover	the	default	settings	in	popular	email	clients,	courtesy	of	Campaign
Monitor,	as	of	this	writing.	Refer	to	www.campaignmonitor.com	for	up-to-date
resources	of	this	nature.

http://www.campaignmonitor.com

Figure	16-1	Gmail	blocks	images	by	default	in	email	from	unapproved	senders.

Table	16-3	Image	Blocking	in	Web-Based	Email	Clients

Table	16-4	Image	Blocking	in	Desktop	Email	Clients

Table	16-5	Image	Blocking	in	Mobile	Email	Clients

Now	that	you	know	what	you’re	up	against,	here	are	a	few	steps	you	can	take
to	help	ensure	your	emails	still	work	if	the	images	are	blocked:	•	Always	include
alternative	text	so	that	those	email	readers	that	do	recognize	it	still	show
something	in	place	of	any	blocked	images.

•	Always	provide	an	alternative	way	of	viewing	the	information.	This	may	be
plain-text	content	or	a	link	to	view	the	email	in	a	web	browser	instead.

•	Always	include	every	image’s	height	and	width	values	in	the	img	tag.	This
allows	the	email	reader	to	leave	the	appropriate	amount	of	space	as	a
placeholder	so	that	your	entire	layout	isn’t	compromised.

•	Always	test	your	emails	with	images	turned	off	so	that	you	know	what	to
expect.

All	Images	Must	Be	Stored	on	a	Live	Web	Server
I	know	I	already	mentioned	this	a	few	pages	back,	but	I	can’t	stress	how
important	this	is.	In	order	for	images	referenced	in	an	HTML	email	to	display
once	they	are	downloaded	by	the	recipient,	they	must	be	stored	on	a	live	web
server	and	referenced	with	an	absolute	URL.	So,	your	images	will	not	work	if
your	code	looks	like	this:	

Where	should	you	store	your	images?	These	are	the	two	most	common
scenarios:	•	Create	a	folder	on	your	company’s	web	server	to	house	all	email
files.	In	this	case,	your	image	references	might	look	like:	

.

•	Store	the	images	on	your	ESP’s	web	server.	Many	ESPs	offer	space	to	their
clients	to	house	all	email-related	files.	If	you	go	this	route,	your	image
references	might	look	like:	

Images	Should	Be	Small	in	File	Size
While	many	people	have	significantly	increased	the	speed	at	which	they	connect
to	the	Internet,	email	bandwidth	is	a	whole	different	ball	game.	Most	people	do
not	have	an	unlimited	amount	of	email	storage	space.	If	you	send	large	HTML
email,	you	risk	bogging	down	your	recipient’s	email,	or,	worse	yet,	filling	up	her
inbox.

Tables	for	Layout
You	should	use	tables	for	structuring	content.	If	you	need	to	create	columns	in
your	email	(such	as	are	common	with	email	newsletters),	the	only	widely
supported	method	of	doing	so	is	HTML	tables.

TIP
When	it	comes	to	HTML	for	email,	simple	layouts	are	best.	Complex	page	designs	are	not	only
more	difficult	to	achieve	successfully	in	HTML	for	email,	but	they	are	also	less	likely	to	be
appreciated	by	users.	Always	remember	how	quick	you	typically	check	your	inbox,	and	recognize
your	customers	are	devoting	the	same	amount	of	time—not	much—to	reading	their	email.

I	know,	I	know	…	anyone	who	has	been	around	the	web	industry	for	any
number	of	years	likely	thought	table-based	layout	was	a	thing	of	the	past.

Indeed,	so	did	I!	Up	until	the	advent	of	Outlook	2007,	things	actually	looked
promising,	and	most	designers	expected	to	be	using	CSS	for	email	layout	by	that
time.

But	unfortunately,	Microsoft	built	Outlook	2007	to	use	the	Microsoft	Word
rendering	engine	for	displaying	HTML	emails	instead	of	Internet	Explorer.
When	this	news	was	announced,	there	was	a	ton	of	uproar	among	those	who
code	HTML	email.	If	you’ve	ever	actually	viewed	a	web	page	inside	of
Microsoft	Word,	you	probably	are	already	groaning.

Here	are	the	major	issues	with	Outlook	2007:

•	No	background	images	in	divs	or	table	cells	•	No	background	colors	in	nested
tables	or	divs	•	No	support	for	the	float	or	position	properties	in	CSS

•	Very	poor	support	for	padding	and	margins

The	third	bullet	point—no	support	for	the	float	or	position	properties—is
what	causes	us	to	need	tables	for	layout	again.	Those	two	CSS	properties	free	us
from	using	tables	for	pages	viewed	in	web	browsers.	Without	either	of	them,	we
must	resort	to	the	“old-fashioned”	method	of	putting	all	the	page	content	within
table	cells.

TIP
Refer	to	Chapter	11	for	a	refresher	on	using	tables.	For	specific	tips	related	to	using	tables	for
email	design,	check	out	www.campaignmonitor.com/resources/will-it-work/guidelines.

Compare	Figures	16-2	and	16-3	to	see	an	example	of	how	a	table-based
layout	might	work	for	an	HTML	email.	Figure	16-2	shows	the	layout	in
“Expanded	Tables	mode”	in	Dreamweaver,	which	allows	you	to	see	which
pieces	of	the	design	are	in	which	cells.	Figure	16-3	shows	the	final,	completed
layout	with	the	table	border	hidden.

http://www.campaignmonitor.com/resources/will-it-work/guidelines

Figure	16-2	With	Dreamweaver’s	Expanded	Tables	mode,	you	can	easily	see
which	pieces	of	the	design	go	where.

Figure	16-3	After	the	table	borders	are	hidden	and	the	view	is	returned	to
normal,	the	layout	is	seamless.

NOTE
Always	define	the	width	of	your	table	cells	when	using	them	for	layout	in	HTML	email	to	ensure
your	layout	stays	as	you	intend	it	to.

Inline	CSS
All	CSS	should	be	inline.	This	essentially	means	when	you	are	coding	HTML	for
email,	you	can	ignore	what	I	told	you	in	the	first	few	chapters	about	internal	and
external	style	sheets,	because	many	email	readers	ignore	those.	As	a	refresher,
here’s	an	example	of	an	inline	style:	

Check	out	Tables	16-6,	16-7,	and	16-8	to	see	how	the	popular	email	clients

stack	up	when	it	comes	to	internal,	external,	and	inline	style	sheet	support.

Table	16-6	CSS	Support	Among	Desktop	Email	Clients

Table	16-7	CSS	Support	Among	Web-Based	Email	Clients

Table	16-8	CSS	Support	Among	Mobile	Email	Clients

Ask	the	Expert
Q:	In	previous	chapters,	you	discussed	creating	fixed-width	vs.	liquid

pages.	How	does	that	argument	apply	to	HTML	email?

A:	While	I	encourage	you	to	use	flexible	(liquid)	page	layouts	whenever
possible	on	the	Web,	HTML	emails	are	a	bit	different.	In	fact,	if	you
receive	any	amount	of	business	email,	you’ve	probably	already

determined	that	most	are	fixed-width	instead	of	liquid.	This	is	due	in
part	to	the	reliance	on	tables	for	layout	(CSS	more	easily	adapts	to
varying	page	sizes).	But	also,	HTML	emails	are	displayed	within	email
readers,	with	lots	of	other	elements	fighting	for	screen	space.	Most
people	have	a	list	of	mailboxes,	then	mail	within	those	boxes,	plus	other
navigation,	all	surrounding	the	actual	email.	Therefore,	it	is
recommended	that	you	not	design	HTML	emails	wider	than	about	600
pixels.

When	it	comes	to	height,	you	must	consider	how	much	of	your	email
needs	to	be	visible	in	the	“preview	pane.”	This	is	the	part	of	the	email
that	is	visible	by	default	before	the	recipient	decides	to	click	and	read
more.	Some	research	shows	the	average	preview	pane	to	be	around	300
to	500	pixels	tall.	Keeping	in	mind	how	quickly	people	scan	their
inboxes,	it	is	wise	to	place	the	most	appealing	and	compelling	aspects
of	your	email	in	the	top	portion	that	is	viewable	in	the	preview	pane.

In	addition,	consider	including	a	brief	line	of	text	at	the	very	top	of
your	email	that	gives	an	overview	of	what’s	included.	This	is
particularly	important	for	Gmail	users,	who	only	see	the	first	line	of	text
in	their	preview	pane.	A	reasonable	example	might	be:	IN	THIS	ISSUE:
Upcoming	Car	Shows,	How	to	Save	on	Insurance,	Car	Seat	Safety,	and
more.…

As	you	probably	noticed,	Gmail	is	the	real	reason	I	suggest	using	only	inline
styles.	No	currently	available	version	of	this	popular	web	client	supports	internal
or	external	styles.

No	Shorthand
While	you’re	steering	clear	of	internal	and	external	style	sheets	to	reach	the
widest	possible	audience,	you	should	also	avoid	all	CSS	shorthand.	Instead,
write	out	every	complete	style	declaration.	For	example,	while	it	is	perfectly
acceptable	to	write:	
this	type	of	shorthand	is	not	very	well	supported	by	email	clients.	So,	you’ll	need
to	write	each	individual	property	and	value,	as	in:	

Reference	Guide	to	CSS	Support	in	Email

Clients	Campaign	Monitor,	a	fabulous	ESP	and
wonderful	resource	for	all	things	HTML	email,
is	part	of	the	Email	Standards	Project.	As	such,
they	have	a	ton	of	information	about	CSS
support	among	the	most	popular	email	readers.
I’ve	included	(with	permission)	some	of	their
most	recent	research,	as	of	this	writing.	For
updates,	refer	to
www.campaignmonitor.com/css/	and
www.email-standards.org/clients/.

First,	Table	16-9	lists	the	most	common	CSS	properties	and	how	they	are
supported	by	common	desktop	email	clients.	Next,	Table	16-10	compares	the
support	of	those	same	CSS	properties,	but	this	time	among	popular	web-based
email	clients.	Then,	Table	16-11	runs	through	mobile	email	client	support.	I
encourage	you	to	consult	these	tables	(and	their	online	counterparts)	when
deciding	how	to	best	code	your	HTML	emails	for	your	target	audience.

http://www.campaignmonitor.com/css/
http://www.email-standards.org/clients/

Table	16-9	CSS	Property	Support	Among	Desktop	Email	Clients

Table	16-10	CSS	Property	Support	Among	Web-Based	Email	Clients

Table	16-11	CSS	Property	Support	Among	Mobile	Email	Clients

Interactivity	and	Multimedia	in	HTML	Email
After	you’ve	designed	a	few	HTML	emails	for	someone,	they’ll	likely	start	to
ask	about	adding	more	“pizzazz”	to	those	emails.	Thus,	the	question	always
comes	up	about	including	video,	Flash,	and	forms	in	HTML	email.

Video	in	Email
Video	is	not	common	in	email,	largely	due	to	security	concerns	and	lack	of
widespread	support.	As	with	all	multimedia,	you	must	first	consider	whether	it’s
warranted	and	accepted	by	your	target	audience	before	even	worrying	about	how
to	add	it.

Thankfully,	some	testing	has	been	done	to	determine	exactly	what	support
does	exist.	(Refer	to	www.campaignmonitor.com/videoinemail	for	the
complete	test	results.)	But	unfortunately,	the	results	aren’t	pretty:	The	only	email
tool	that	supports	any	sort	of	video	in	email	is	Apple	Mail.	As	of	this	writing,	the
only	reliable	way	to	include	any	sort	of	motion	graphics	in	an	email	is	with	an

http://www.campaignmonitor.com/videoinemail

animated	GIF.	And,	there	is	no	support	for	sound	at	all	in	any	email	reader.	So	in
short,	you	cannot	realistically	add	video	to	your	HTML	emails.

Flash
I’m	afraid	the	results	aren’t	any	better	for	Flash	lovers.	In	fact,	Apple’s	MacMail
is	the	only	email	client	to	offer	native	support	for	Flash	files.	While	you	can
include	a	“fallback”	image	when	embedding	Flash	files	in	normal	web	pages,	for
browsers	to	display	when	the	Flash	player	isn’t	available,	most	email	clients
won’t	even	let	you	do	that.

So	again,	you	cannot	realistically	add	Flash	to	your	HTML	emails.

Forms
Imagine	sending	out	an	invitation	via	email.	Wouldn’t	it	be	nice	to	embed	a	form
inside	that	email	so	guests	could	simply	click	“yes”	or	“no”	and	then	hit	the
Submit	button	to	reply?	While	the	concept	sounds	great,	email	clients	haven’t
quite	caught	up	yet.

Although	most	of	the	email	clients	tested	by	Campaign	Monitor	do	display
forms	correctly	(all	except	Outlook	2007),	only	about	half	allow	the	form	to	be
functional.	Those	email	clients	that	do	allow	functioning	forms	include	Yahoo!
Mail	(the	new	version	only),	Gmail,	MacMail,	Thunderbird,	Penelope	(aka
Eudora	8),	Outlook	Express,	Windows	Live	Mail,	Lotus	Notes	8,	and	Entourage.
Among	the	notables	left	off	that	list	are	AOL,	Hotmail,	and	Outlook	(both	2003
and	2007).

Given	this	information,	your	best	bet	is	to	link	to	a	form	displayed	in	a	web
browser	until	email	clients	offer	more	widespread	support.

Test,	Test,	Test
After	you’ve	coded	your	HTML	email,	the	fun	really	begins.	While	we’ve	come
to	the	point	where	web	pages	that	work	in	Firefox	and	Internet	Explorer	are
considered	“safe”	for	the	Web	at	large,	HTML	email	still	requires	extensive
testing	in	multiple	clients.

Thankfully,	many	ESPs	offer	services	to	make	this	process	easier.	For
example,	Campaign	Monitor	provides	screenshots	to	show	how	your	email	will
look	in	more	than	15	of	the	most	popular	email	clients,	including	the	potential
problem	areas	like	Outlook	2007	and	Lotus	Notes,	plus	mobile	clients	too.	Visit
www.campaignmonitor.com/testing	to	learn	more.	Figures	16-4,	16-5,	and	16-

http://www.campaignmonitor.com/testing

6	show	how	the	same	test	email	displays	differently	depending	on	the	email
client.	These	screenshots	are	samples	taken	using	Campaign	Monitor’s	testing
tool.

Figure	16-4	The	sample	email	as	it	displays	in	Outlook	XP 	

Figure	16-5	The	sample	email	as	it	displays	on	a	Blackberry 	

Figure	16-6	The	sample	email	as	it	displays	through	web	mail	in	Gmail

Another	great	option	is	a	stand-alone	testing	tool	like	Litmus.	Billing	itself	as
the	“advanced	testing	tool	for	web	professionals,”	Litmus	offers	testing	for	both
standard	web	pages	and	HTML	email.	Litmus’	basic	account	offers	unlimited
email	and	page	tests	per	month.	Additional	fee-based	options	allow	spam	filter
tests	and	email	analytics.	Visit	http://litmusapp.com	for	details.

Spam	Test
One	of	the	unique	aspects	you	can	test	is	the	likelihood	of	your	email	being
flagged	as	spam.	Many	of	the	popular	ESPs	offer	this	testing	with	their	email
messaging	services.	(If	yours	does	not,	there	are	other	tools	you	can	use.	For
example,	the	Email	Spam	Test	at	www.emailspamtest.com	is	a	free	service
from	Blink	Campaign.)	SpamAssassin	is	the	most	widely	used	spam	filter	to
process	email	received	by	ISPs.	If	your	email	gets	blacklisted	by	SpamAssassin,
you’ll	have	a	hard	time	getting	your	content	in	front	of	any	of	your	subscribers.
Refer	to	spamassassin.apache.org	to	learn	more.

Wondering	what	might	cause	an	email	to	be	flagged	as	spam?	Here	are	just	a
few	of	the	many	reasons	SpamAssassin	might	give	you	a	higher	“spam	score.”
(And	in	this	case,	higher	is	not	better.)	•	HTML	link	text	says	“click	here”	(I

warned	you	in	Chapter	6	not	to	do	this!)	•	A	WHOLE	LINE	OF	YELLING
DETECTED

•	Messages	that	include	“Dear	Friend”	or	“Dear	(Name)”

•	Message	that	contains	“call”	or	“dial”	or	“toll	free”	followed	by	800,	888,	877,
866,	855,	844,	833,	or	822	(for	example,	“Call	1-877-555-5555	for	your	offer
now!”)	•	Messages	with	the	phrase	“risk	free”	and	other	spam	keywords	•
HTML	title	contains	“Untitled”	(always	title	your	web	pages,	even	if	they’re
being	emailed!)	TIP

Want	to	know	more	about	how	spam	filters	work?	Check	out
www.mailchimp.com/resources/guides/how-to-avoid-spam-filters.

Try	This	16-1 Design	an	HTML	Email
Why	not	give	your	HTML	skills	a	real	test	by	putting	them	in	front	of	some
good	old-fashioned	email	readers?	This	project	asks	you	to	create	an	HTML
email	advertising	the	new	web	site	you’ve	created.	The	goals	for	this	project	are
•	Coding	an	HTML	page	for	email	readers,	not	web	browsers	•	Testing	an

http://litmusapp.com
http://www.emailspamtest.com
http://spamassassin.apache.org
http://www.mailchimp.com/resources/guides/how-to-avoid-spam-filters

HTML	page	in	an	email	reader	NOTE
This	project	requires	you	to	upload	your	test	email	to	a	live	web	server.	If	you	don’t	currently
have	access	to	a	web	server,	check	with	your	ISP	(which	may	provide	space	on	its	site	free	to
customers),	school,	or	business.	You	will	be	unable	to	test	an	HTML	email	without	access	to	a
live	web	server	because	all	images	in	HTML	email	must	be	stored	on	the	Internet	in	order	to	be
accessed	by	email	readers.	Alternatively,	you	could	sign	up	for	an	account	with	one	of	the	ESPs
listed	previously	in	this	chapter.

1.	Open	your	text	or	HTML	editor	and	create	a	new	HTML	page.

2.	Add	graphics	and	text	created	throughout	the	course	of	this	book	to	advertise
the	new	web	site	you	set	up.	Be	sure	to	use	full,	absolute	paths	when
referencing	images	and	other	links.

TIP
In	the	case	of	HTML	email,	less	is	more.	So	I	suggest	using	a	few	key	images,	and	perhaps	a
screenshot	of	the	new	web	site,	mixed	with	a	brief	paragraph	explaining	the	new	features	of	the
site.

3.	Format	the	content	to	display	in	the	most	popular	email	readers,	as	discussed
previously	in	this	chapter.

4.	Make	sure	all	the	images	and	some	highlighted	text	link	to	the	new	site.

5.	Save	the	file.

6.	Upload	your	saved	file	to	a	live	web	server.

7.	Open	Safari	on	the	Mac	or	IE	on	the	PC.

8.	Enter	the	address	of	the	file	you	just	uploaded	in	the	address	box	in	the
browser.

9.	In	Safari,	choose	File	|	Mail	Contents	Of	This	Page.	In	IE,	choose	Page	|
Send	By	Email	if	you	have	an	email	account	set	up	in	Outlook,	or	choose
Page	|	Email	With	Windows	Live	if	you	use	a	web-based	email	tool.	Enter	a
few	different	email	addresses	to	send	test	messages	of	your	HTML	email.

10.	If	you	need	to	make	changes,	return	to	your	text	or	HTML	editor	to	do	so.
After	making	changes,	save	the	file,	reupload	it,	and	switch	back	to	the
browser.	Choose	Refresh	or	Reload	to	preview	the	changes,	and	then	repeat
Step	9.

HTML	email	is	a	whole	different	breed.	While	web	browsers	are	fairly
uniform	in	their	display	of	HTML	pages,	email	readers	still	have	a	long	way	to

go	to	reach	this	point.	Designing	HTML	email	involves	lots	of	patience	as	you
design,	test,	and	redesign.	This	project	gave	you	a	glimpse	into	that	process
using	a	sample	marketing	email	for	the	company	or	organization	of	your	choice.

Ready	for	more	practice?	I	encourage	you	to	sign	up	for	a	free	test	account
with	one	of	the	ESPs	mentioned	in	this	chapter.	Then,	try	re-creating	your
sample	marketing	email	using	their	web-based	creation	tools.	Each	ESP	offers
different	options,	but	all	provide	the	messaging	services	necessary	to	send	bulk
HTML	email	safely	and	securely.

Chapter	16	Self	Test

1.	True/False:	The	W3C	maintains	a	special	specification	for	HTML	email.

2.	Fill	in	the	blank:	_____________	is	any	email	sent	without	the	permission	of
the	recipient.

3.	What	is	the	difference	between	an	ISP	and	an	ESP?

4.	Fill	in	the	blank:	You	must	use	_____________	paths	for	all	images	and
links	in	HTML	email.

5.	Why	should	you	avoid	relying	on	images	to	translate	key	messages	in	HTML
email?

6.	Which	type	of	style	sheets	should	be	used	for	all	HTML	email?
A.	Inline
B.	Internal
C.	External
D.	Linked

7.	Why	must	we	rely	on	tables	for	column-based	layout	in	HTML	email?

8.	Which	methods	of	adding	interactivity	to	HTML	email	are	widely	supported
by	email	readers?	(Select	all	that	apply.)	A.	Flash
B.	Video
C.	Forms
D.	None	of	the	above

9.	True/False:	It	is	acceptable	to	use	CSS	shorthand	in	HTML	email.

10.	Why	should	you	avoid	using	background	images	in	tables	in	HTML	email?

Part			IV
Appendixes

Appendix	A
Answers	to	Self	Tests

Chapter	1:	Getting	Started
1.	What	is	a	web	browser?

A	web	browser	is	a	software	program	that	runs	on	your	computer	and	enables	you	to	view	web
pages.

2.	What	does	HTML	stand	for?

HTML	stands	for	Hypertext	Markup	Language.

3.	Identify	the	various	parts	of	the	following	URL:
http://www.mcgrawhill.com/books/webdesign/favorites.html
______________://______________/______________/______________/

The	various	parts	of	the	URL	are	as	follows:	protocol://domain/folder/folder/file	4.	What	is
WYSIWYG?
WYSIWYG	is	the	acronym	for	what-you-see-is-what-you-get.	It	refers	to	the	idea	that,	for	example,
instead	of	typing	code	to	cause	a	certain	bit	of	text	to	be	bold,	you	simply	click	a	button	that	makes	it
bold.

5.	Fill	in	the	blank:	The	version	of	HTML	currently	under	development	is	______________.

The	version	of	HTML	currently	under	development	is	HTML5.

6.	What	is	the	program	Adobe	Dreamweaver	used	for?

Dreamweaver	is	a	WYSIWYG	web	page	development	and	editing	tool.

7.	What	is	one	of	the	three	most	popular	web	browsers?

Internet	Explorer,	Google	Chrome,	and	Firefox	are	the	most	popular	web	browsers,	as	of	early	2013.

8.	Fill	in	the	blank:	When	you	type	a	URL	into	your	web	browser,	you	send	a	request	to	the
______________	that	houses	that	information.

When	you	type	a	URL	into	your	web	browser,	you	send	a	request	to	the	web	server	that	houses	that
information.

9.	What	does	the	acronym	“URL”	stand	for?

URL	stands	for	uniform	resource	locator.

10.	What	organization	maintains	the	standards	for	HTML?

The	World	Wide	Web	Consortium	(W3C)	maintains	the	standards	for	HTML.

11.	How	can	you	give	your	site’s	visitors	visual	clues	as	to	where	they	are	in	your	site’s	structure?

The	following	list	is	not	exhaustive;	you	may	come	up	with	plenty	of	other	good	ideas.
A.	Highlight	the	current	section	on	the	navigation	bar.
B.	Repeat	the	page	name	in	the	page	title	at	the	top	of	the	browser	window.
C.	Include	the	page	name	in	the	filename.
D.	Include	an	appropriate	headline	on	the	page.

12.	Fill	in	the	blank:	Good	practice	is	to	include	a	standard	_______________	on	all	pages	for

consistency	and	ease	of	use.

Good	practice	is	to	include	a	standard	navigation	bar	on	all	pages	for	consistency	and	ease	of	use.

13.	Fill	in	the	blank:	Selling	products	and	recruiting	potential	employees	are	examples	of	web	site
_______________.

Selling	products	and	recruiting	potential	employees	are	examples	of	web	site	goals.

14.	Fill	in	the	blank:	Before	you	can	begin	developing	your	web	site,	you	must	know	a	little	about	the
site’s	target	_______________.

Before	you	can	begin	developing	your	web	site,	you	must	know	a	little	about	the	site’s	target
audience.

15.	If	your	site	represents	a	new	company	or	one	that	doesn’t	already	have	information	about	its
client	demographics,	where	might	you	look	for	information?

Look	to	the	competition.	Chances	are	good	that	if	your	competition	has	a	successful	web	site,	you
can	learn	from	them	about	your	target	audience.

Chapter	2:	Page	Setup
1.	What	file	extensions	do	HTML	files	use?

HTML	uses	the	.htm	or	.html	file	extension.

2.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to	write	this	line:

3.	At	the	very	least,	which	tags	should	be	included	in	a	basic	HTML	page?

A	basic	HTML	page	should	include	the	following	tags:	!	doctype,	html,	head,	title,	and	body.

4.	Identify	the	tag	name,	attribute,	and	value	in	the	following	line	of	HTML	code:	

Here,	a	is	the	tag	name,	href	is	the	attribute,	and	page.html	is	the	value.

5.	Fill	in	the	blank:	HTML5	is	case-_________.

HTML5	is	case-insensitive.

6.	Which	option	is	not	acceptable	for	an	HTML	filename?
A.	myfile.html
B.	my-file.html
C.	my	file.html
D.	my1file.html

C.	The	name	my	file.html	is	not	an	acceptable	HTML	filename.

7.	What	is	the	named	character	entity	used	to	add	a	copyright	symbol	to	a	web	page?

The	sequence	©	is	the	named	character	entity	used	to	add	a	copyright	symbol	to	a	web	page.

8.	You	just	created	a	web	page,	and	you’re	previewing	it	in	a	web	browser	when	you	notice	an
error.	After	fixing	the	error	and	saving	the	web	page,	which	button	should	you	click	in	the
browser	to	view	the	changes	made?

Use	the	Refresh	or	Reload	button	to	view	the	changes	you	have	made.

9.	The	tags	in	the	following	line	of	code	aren’t	nested	properly.	Rewrite	the	code	so	the	tags	are
nested	properly:	<p>Hello	World!</p>

10.	How	can	you	rewrite	the	following	text	so	that	it	doesn’t	display	when	the	page	is	viewed	in	a
browser?

11.	Which	two	options	will	the	browser	ignore	when	they	are	coded	in	a	web	page?

A.	<p>
B.	A	tab
C.	

D.	

E.	Single	space	with	the	SPACEBAR
F.	Double	space	with	the	SPACEBAR

Answers	B	and	F	are	correct.	The	browser	will	ignore	the	intent	of	both	a	tab	and	a	double	space
made	with	the	SPACEBAR	and	turn	them	each	into	a	single	space	when	they	are	coded	in	a	web	page.

12.	Fill	in	the	blank:	The	p	tag	is	an	example	of	a	__________	tag	because	it	contains	sections	of	text.

The	p	tag	is	an	example	of	a	container	(or	block-level)	tag	because	it	contains	sections	of	text.

13.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to	write	the	code:	<	img
src	=	"	photo.jpg	"	>?

14.	What	symbols	must	start	and	end	all	HTML	tags?

Left	and	right	angle	brackets	(<	>)	must	start	and	end	all	HTML	tags.

Chapter	3:	Style	Sheet	Setup
1.	What	file	extension	is	used	for	external	CSS	files?

.CSS

2.	The	following	line	of	HTML	code	contains	errors.	What	is	the	correct	way	to	write	this	line?

3.	font-family,	font-size,	and	color	are	all	examples	of	what	in	CSS?

They	are	all	examples	of	CSS	properties.

4.	Update	the	following	code	to	reference	the	URL	of	the	following	background	image:
images/background.jpg.

body	{background-image:	url(images/background.jpg);}

5.	Fill	in	the	blank:	CSS	properties	alter	specific	attributes	of	a	selector.

6.	The	second	two	numbers	in	a	six-digit	hexadecimal	code	refer	to	which	color?

The	second	two	numbers	in	a	six-digit	hexadecimal	code	refer	to	green.

7.	Which	element	is	used	as	a	CSS	selector	when	you	want	to	change	the	color	of	a	page’s
links?

The	a	element	is	used	as	a	CSS	selector	when	you	want	to	change	the	color	of	a	page’s	links.

8.	Which	element	is	used	as	a	CSS	selector	when	you	want	to	change	the	background	color	of	a
page?

The	body	element	is	used	as	a	CSS	selector	when	you	want	to	change	the	color	of	a	page
background.

9.	Which	takes	precedence	when	there	are	conflicting	style	declarations?

A.	A	style	applied	to	all	p	tags
B.	A	style	applied	with	an	ID	selector
C.	A	style	applied	to	the	body	element
D.	A	style	applied	with	a	class	selector

Answer	B	is	correct.

10.	Which	takes	precedence	when	there	are	conflicting	style	declarations?

A.	An	inline	style
B.	An	internal	style	sheet
C.	An	external	style	sheet
D.	A	browser	default	style	sheet

Answer	A	is	correct.

Chapter	4:	Working	with	Text
1.	Which	file	format	has	become	a	standard	in	electronic	document	delivery	because	of	its	ease

of	use,	reliability,	and	stability?

PDF	(Portable	Document	Format)	has	become	a	standard	in	electronic	document	delivery.

2.	Why	should	you	avoid	underlining	text	on	a	web	page?

Linked	text	is	underlined	by	default,	so	it	might	be	confusing	to	see	linked	and	nonlinked	text	both
underlined	on	a	page.

3.	What	is	a	reasonable	range	for	column	widths	on	web	pages?

Two	hundred	to	400	pixels	is	a	reasonable	range	for	web	page	column	widths.

4.	What	are	three	key	things	to	consider	when	designing	a	printable	version	of	a	web	page?

When	designing	a	printable	version	of	a	web	page,	consider	size,	color,	and	reference.

5.	Name	four	possible	values	of	the	font-size	CSS	property.

Possible	values	of	the	font-size	CSS	property	include	point	sizes	(12pt,	14pt,	and	so	on),	pixel
sizes	(10px,	12px,	and	so	on),	em	sizes	(24em,	36em,	and	so	on),	and	keywords	(such	as	xx-small,
x-small,	small,	medium,	and	so	on).

6.	What	is	the	default	characteristic	of	text	marked	with	the	del	element?

It	is	rendered	in	the	strikethrough	style.

7.	What	is	the	default	characteristic	of	text	marked	with	the	mark	element?

It	is	rendered	in	the	strikethrough	style.

8.	Fill	in	the	blank:	You	use	the	_________	property	in	CSS	when	specifying	the	font	name	in
which	the	text	should	be	rendered.

You	use	the	font-family	property	in	CSS	to	specify	the	font	name	in	which	the	text	should	be
rendered.

9.	When	you	specify	a	font	size	in	ems,	that	size	is	relative	to	what?

The	size	is	relative	to	the	height	of	the	font	in	general.

10.	Fill	in	the	blank:	The	process	of	providing	a	backup	font	name	in	the	font-family	property	is	also
referred	to	as	___________.

The	process	of	providing	a	backup	font	name	when	specifying	fonts	is	also	referred	to	as	cascading.

Chapter	5:	Page	Structure
1.	What	is	the	purpose	of	the	br	element?

The	
	element	is	used	to	add	a	line	break.

2.	What	happens	when	you	code	three	p	elements	in	a	row?

The	browser	uses	only	the	first	element	and	ignores	the	others.

3.	List	two	style	sheet	properties	used	for	text	alignment.

The	CSS	properties	text-align	and	vertical-align	are	used	for	text	alignment.

4.	How	is	the	div	element	different	from	the	article	element?

The	div	element	is	a	generic	container	for	page	content,	whereas	the	article	element	is	designated
for	content	available	for	syndication.

5.	Which	element—head	or	header—goes	inside	the	body	of	an	HTML	document?

The	header	element	goes	inside	the	body	of	an	HTML	document.

6.	True/False:	The	blockquote	tag	indents	text	on	both	the	left	and	right	sides.

True.

7.	True/False:	You	can	only	use	one	header	element	in	each	page.

False.

8.	Using	#introduction	indicates	the	style	named	introduction	was	applied	to	an	element	using
which	HTML	attribute?

9.	What	is	the	primary	difference	between	the	article	and	section	elements?

Both	are	container	elements,	but	the	section	element	is	used	for	thematically	related	content,
whereas	the	article	element	is	used	for	syndicated	content.

10.	Which	CSS	property	is	used	to	specify	the	buffer	space	around	a	content	box	inside	of	the	box’s
border?

The	padding	property	adds	buffer	space	around	the	content	box,	but	inside	the	box	border.

11.	Which	CSS	property	is	used	to	specify	the	buffer	space	around	a	content	box	outside	of	the	box’s
border?

The	margin	property	adds	buffer	space	around	the	content	box,	but	outside	the	box	border.

Chapter	6:	Positioning	Page	Elements
1.	Fill	in	the	blank:	_________________	positioning	takes	an	element	out	of	the	normal	page

flow	and	positions	it	in	a	particular	place	on	the	page.

Absolute	positioning	takes	an	element	out	of	the	normal	page	flow	and	positions	it	in	a	particular
place	on	the	page.

2.	Which	property	determines	whether	a	layer	is	hidden	or	visible?

The	visibility	property	determines	whether	a	layer	is	hidden	or	visible.

3.	Which	two	properties	are	set	in	the	body	element	to	ensure	all	browsers	use	the	same
“starting	point”	for	page	layout?

The	padding	and	margin	properties	can	be	set	in	the	body	element	to	ensure	all	browsers	use	the
same	“starting	point”	for	page	layout.

4.	According	to	the	default	W3C	specifications,	if	you	had	a	box	that	was	150	pixels	wide	with
10	pixels	of	padding	on	all	four	sides	and	a	2-pixel	border	all	the	way	around,	what	would	be	the
total	horizontal	space	used	by	the	box?

174	pixels	(150	pixels	wide	+10	pixels	left	padding	+	10	pixels	right	padding	+	2	pixels	left	border	+
2	pixels	right	border)	5.	Which	HTML	element	is	used	to	create	generic	sections	of	content	to	be
formatted	with	style	sheets?
The	div	element	is	used	to	separate	content	into	formatting	areas.

6.	Fill	in	the	blank:	The	_____________	attribute	identifies	the	medium	for	which	a	particular
external	style	sheet	should	be	used.

The	media	attribute	identifies	the	medium	for	which	a	particular	external	style	sheet	should	be	used.

7.	Add	the	appropriate	code	so	the	content	area	has	a	20-pixel	margin	around	the	top,	right,
and	left	sides	but	a	5-pixel	margin	around	the	bottom.

The	correct	code:

8.	Which	HTML	element	can	be	used	to	reference	an	external	style	sheet?

The	link	element	can	be	used	to	reference	an	external	style	sheet.

9.	Add	the	appropriate	code	to	import	a	style	sheet	called	design.css.

The	correct	code:

10.	Fill	in	the	blank:	___________	positioning	is	the	default	type	of	positioning.

Static	positioning	is	the	default	type	of	positioning.

11.	True/False:	Relative	positioning	adjusts	an	element’s	location	on	the	page	relative	to	itself.

True.

12.	Add	the	appropriate	code	to	place	the	content	area	50	pixels	from	the	left	edge	of	the	browser	and
150	pixels	from	the	top	edge.

The	correct	code:

13.	Which	property	is	used	to	specify	an	element’s	stacking	order	on	the	page?

The	z-index	property	is	used	to	specify	an	element’s	stacking	order	on	the	page.

14.	True/False:	When	adjusting	an	element’s	stacking	order	on	the	page,	lower	values	take
precedence	over	higher	values.

False.	The	element	with	the	highest	value	is	placed	on	“top.”

Chapter	7:	Working	with	Links
1.	What	does	the	href	attribute	do?

The	href	attribute	gives	the	location	of	the	content	to	which	you	are	linking.

2.	Which	of	these	can	be	classified	as	a	relative	link?

Answers	A	and	C	are	relative.

3.	What	must	be	installed	and	activated	on	a	user’s	machine	to	take	advantage	of	an	email	link
in	a	web	site?

To	take	advantage	of	an	email	link	in	a	web	site,	the	user	must	have	an	email	program,	such	as
Microsoft	Outlook	or	Apple	Mail,	installed	and	active.	Email	links	like	these	may	not	work	if	the
visitor	uses	only	a	web-based	email	service	such	as	Gmail	or	Hotmail.

4.	How	do	you	tell	the	browser	to	launch	a	link	in	a	new	window?

Add	the	target	attribute	to	the	a	tag.

5.	Which	style	sheet	selector	enables	you	to	change	the	color	of	the	links	on	your	page	after
someone	has	clicked	them?

The	a:visited	selector	enables	you	to	change	the	color	of	the	links	on	your	page	after	someone	has
clicked	them.

6.	In	Windows,	what	must	users	type	to	highlight	the	following	link?	

Windows	users	must	type	ALT-T	to	highlight	the	link	shown.

7.	Fill	in	the	blank:	After	successfully	using	the	TAB	key	to	highlight	a	link,	you	must	press	the
______________	key	to	actually	visit	that	link.

After	successfully	using	the	TAB	key	to	highlight	a	link,	you	must	press	the	RETURN	or	ENTER	key	to
actually	visit	that	link.

8.	Fix	the	following	code:	<	ahref="contact.html"	>Contact	Me

The	correct	code	is	Contact	Me.

9.	Add	the	appropriate	code	so	that	this	link	enables	users	to	email	you	at	your	personal	email
address:	<	>	Email	Me	</	>

The	answer	should	be	similar	to	this	(with	your	email	address):	

10.	Which	tag	links	to	a	section	within	the	current	page?

Answer	B	links	to	a	section	within	the	current	page.

11.	Which	common	phrase	should	always	be	avoided	when	naming	links?

The	phrase	Click	here	should	always	be	avoided	when	naming	links.

12.	Fill	in	the	blank:	By	default,	all	linked	text	is	___________.

By	default,	all	linked	text	is	underlined.

13.	True/False:	A	dot-dot-slash	tells	the	browser	to	go	up	a	level	in	the	directory	structure	before
looking	for	a	file.

True.

14.	Which	links	to	a	section	named	Intro	within	the	web	page	named	genealogy.html?

Answer	C	links	to	a	section	named	Intro	within	the	web	page	named	genealogy.html.

15.	What	does	_blank	do	when	used	as	the	value	of	the	target	attribute?

It	causes	the	browser	to	open	the	link	in	a	new	unnamed	browser	window.

Chapter	8:	Working	with	Images
1.	What	does	the	src	attribute	do?

The	src	attribute	gives	the	location	of	the	image	you’re	adding	to	the	page	with	the	img	tag.

2.	Why	is	it	important	to	specify	the	height	and	width	of	images	in	web	pages?

It	is	important	to	specify	the	height	and	width	of	images	in	web	pages	because	this	information
enables	the	browser	to	continue	displaying	the	rest	of	the	page	without	having	to	wait	and	calculate
the	size	of	its	images.

3.	Which	style	sheet	properties	enable	you	to	add	blank	space	around	images?

The	CSS	properties	margin	and	padding	enable	you	to	add	blank	space	around	an	image.

4.	Which	attribute	must	be	added	to	the	img	tag	to	designate	the	image	as	a	client-side	image
map?

The	usemap	attribute	must	be	added	to	the	img	tag	to	designate	the	image	as	a	client-side	image	map.

5.	Which	two	elements	are	used	when	defining	a	client-side	image	map’s	name	and	hot	spots?

The	map	and	area	elements	are	used	when	defining	a	client-side	image	map’s	name	and	hot	spots.

6.	You	are	creating	the	code	for	a	client-side	image	map,	and	one	of	the	rectangular	hot	spots
has	the	following	coordinates:	0,0	(upper	left);	50,0	(upper	right);	50,50	(lower	right);	and	0,50
(lower	left).	Which	are	used	in	the	coords	attribute:	<area	shape="rect"	coords="	__________	"
href="maryland.html">?

The	correct	code,	using	the	upper-left	and	lower-right	coordinates,	is	<area	shape="rect"
coords="0,0,50,50"	href="maryland.html">.

7.	Fill	in	the	blank:	The	value	of	the	height	and	width	attributes	is	measured	in	.

The	value	of	the	height	and	width	attributes	is	measured	in	pixels.

8.	Fix	the	following	code:	

The	correct	code	is	shown	here:	

9.	Add	the	appropriate	style	declaration	to	use	wallpaper.gif	as	a	background	for	the	web	page
code	shown	next.	Note	that	the	graphic	is	in	the	same	folder	as	the	HTML	file.

body	{background-image:	url("wallpaper.gif");}

10.	What	are	the	four	possible	values	of	the	clear	property	(used	to	clear	floats)?

Left,	right,	all,	and	none	are	the	possible	values	of	the	clear	property.

11.	Fill	in	the	blank:	The	default	value	of	the	border	property	is	___	pixels	for	linked	images	and
________	pixels	for	nonlinked	images.

The	default	value	of	the	border	property	is	1	pixel	for	linked	images	and	0	pixels	for	nonlinked
images.

12.	True/False:	You	can	achieve	a	layered	look	in	your	designs	when	an	image	in	the	foreground	is
placed	on	top	of	an	image	in	the	background.

True.

13.	What	value	must	be	used	with	the	display	property	before	you	can	center	an	image	using	the
method	discussed	in	this	chapter?

The	correct	code	is	img.centered	{display:block;	margin-left:	auto;	margin-right:	auto;}

14.	Which	attribute	is	used	to	add	alternative	text	to	an	image?

alt	is	used	to	add	alternative	text	to	an	image.

15.	Which	statement	is	not	true	about	background	images?

A.	All	background	images	tile	by	default.
B.	You	can	only	include	one	image	in	the	background.
C.	Background	images	are	added	to	web	pages	with	the	background	tag.
D.	Background	images	begin	at	the	top	of	the	page	and	run	all	the	way	to	each	of	the	four
sides.

Answer	C	is	correct,	or	in	this	case,	Answer	C	is	the	only	statement	that	isn’t	true	about
backgrounds.	Background	images	are	added	to	a	web	page	with	the	body	tag	and	background
attribute,	not	the	background	tag.

Chapter	9:	Working	with	Multimedia
1.	What’s	the	difference	between	a	plug-in	and	a	helper	application?

A	plug-in	helps	the	browser	display	a	file,	whereas	the	helper	application	does	it	for	the	browser.

2.	Which	element	does	the	W3C	recommend	for	embedding	video	in	a	web	page?

The	video	element	is	recommended	by	the	W3C	for	embedding	video	in	a	web	page.

3.	How	can	users	determine	which	plug-ins	are	installed	on	their	computers	and/or	download
new	plug-ins?

Most	users	can	look	in	the	plug-ins	directory	within	their	browser’s	application	or	program	folder.
For	example,	Firefox	users	can	choose	Tools	|	Add-Ons	and	then	click	the	Plugins	tab.	Internet
Explorer	users	choose	Internet	Options	from	the	Tools	menu	in	the	browser,	and	then	click	the
Programs	tab	and	the	Manage	Add-Ons	button	to	view	a	list	of	all	add-ons.

4.	What	are	two	ways	you	can	include	multimedia	files	in	a	web	site?

You	can	include	multimedia	files	in	a	web	site	by	linking	to	them	or	embedding	them.

5.	True/False:	Clicking	a	link	to	a	sound	file	automatically	downloads	the	file	and	saves	it	for
later	listening.

False.

6.	What	are	two	ways	to	specify	the	height	and	width	of	multimedia	files	embedded	with	the
object	tag?

You	can	specify	the	height	and	width	either	in	the	object	tag	itself	or	in	param	tags	nested	between
the	opening	and	closing	object	tags.

7.	Fix	the	following	code:	<embed	href="sillyme.mov"	height="100"	width="50">

The	correct	code	is	<embed	src="sillyme.mov"	height="100"	width="50">.

8.	Add	the	appropriate	code	here	to	link	to	wendy.mov.	Note	that	the	movie	is	in	the	same
folder	as	the	HTML	file.

9.	Which	attribute	can	cause	a	video	to	play	even	before	the	user	clicks	the	play	button?

autostart

10.	Which	element	can	be	used	to	provide	subtitles	for	a	video?

track

11.	True/False:	A	link	to	a	multimedia	file	is	the	same	as	any	other	link	because	it	also	uses	the	a
element.

True.

12.	What	is	the	purpose	of	the	poster	attribute?

The	poster	attribute	is	used	to	indicate	the	static	image	to	display	while	a	video	is	loading.

13.	Which	element	tells	the	browser	where	to	find	the	actual	audio	or	video	content?

source

14.	Which	element	is	used	to	add	Flash	files	to	a	web	page	coded	with	HTML5?

The	W3C	recommends	using	the	embed	element	to	add	Flash	files	in	HTML5.

Chapter	10:	Creating	Lists
1.	What’s	the	difference	between	an	unordered	list	and	an	ordered	list?

An	unordered	list’s	items	are	not	listed	in	a	particular	order,	whereas	an	ordered	list’s	items	are.	In
addition,	an	unordered	list’s	items	are	preceded	by	bullets,	whereas	an	ordered	list’s	items	are
preceded	by	numbers	or	letters.

2.	Which	element	is	used	to	enclose	list	items	in	both	ordered	and	unordered	lists?

The	li	element	is	used	to	enclose	list	items	in	both	ordered	and	unordered	lists.

3.	You	created	an	unordered	list	with	four	list	items.	All	the	content	following	the	fourth	list
item	that	should	be	normal	text	is	indented	under	the	list.	What	is	the	most	likely	cause	of	this
problem?

A	missing	closing	tag,	such	as	,	is	most	likely	the	cause	of	the	problem.

4.	Which	HTML	attribute	changes	the	numbering	style	of	a	list?

The	type	attribute	changes	the	numbering	style	of	a	list.

5.	True/False:	You	can	use	more	than	one	dd	element	for	each	dt	element.

True.

6.	Which	HTML	attribute	changes	the	starting	letter	or	number	for	a	list?

The	start	attribute	changes	the	starting	letter	or	number	for	a	list.

7.	Fill	in	the	blank:	When	displayed	in	a	browser,	each	item	in	an	unordered	list	is	preceded	by
a(n)	________	by	default.

When	displayed	in	a	browser,	each	item	in	an	unordered	list	is	preceded	by	a	bullet,	by	default.

8.	Fix	the	following	code:

9.	Add	the	appropriate	code	to	turn	the	following	text	into	an	ordered	list:

10.	Fill	in	the	blank:	The	dl	element	stands	for	__________________.

The	dl	element	stands	for	definition	list.

11.	True/False:	When	you	nest	unordered	lists,	the	bullet	style	remains	unchanged.

False.

12.	What	value	is	used	with	the	display	property	to	change	a	list	from	vertical	to	horizontal?

Use	display:	inline	to	change	a	list	from	vertical	to	horizontal.

13.	How	can	you	change	a	list	from	using	Arabic	numbers	to	lowercase	letters?

To	change	a	list	from	using	Arabic	numbers	to	lowercase	letters,	you	can	use	type="a".

14.	Which	CSS	property	is	used	to	replace	the	standard	bullet	in	a	list	with	an	image?

The	list-style-image	property	is	used	to	replace	the	standard	bullet	in	a	list	with	an	image.

Chapter	11:	Using	Tables
1.	What	is	the	difference	between	the	td	and	th	elements?

The	td	element	is	used	for	standard	table	cells,	whereas	the	th	element	is	used	for	cells	containing
header	information.	By	default,	the	contents	of	th	elements	are	made	bold	and	centered.

2.	The	td	and	th	elements	are	contained	within	which	other	table	tag	(aside	from	the	table	tag
itself)?

The	td	and	th	elements	are	contained	within	the	tr	tag.

3.	How	do	you	force	a	cell’s	contents	to	display	along	a	single	line?

Use	the	white-space	property	in	your	style	sheet,	with	a	value	of	nowrap,	to	force	a	cell’s	contents
to	display	along	a	single	line.

4.	What	should	be	the	value	of	the	border	attribute	to	turn	on	a	table’s	borders?

Add	border="1"	to	the	opening	table	tag.

5.	True/False:	You	cannot	use	other	HTML	tags	between	opening	and	closing	td	tags.

False.

6.	Fill	in	the	blank:	The	_________	property	affects	the	space	around	the	content	of	each
individual	table	cell.

The	padding	attribute	affects	the	space	around	the	content	of	each	individual	table	cell.

7.	Fix	the	following	code:

8.	What	are	two	types	of	measurements	you	can	use	to	identify	a	table’s	width?

Pixels	and	percentages	identify	a	table’s	width.

9.	Add	the	appropriate	code	to	cause	this	table	to	fill	the	entire	browser	window,	regardless	of
the	user’s	screen	size.

10.	Fill	in	the	blank:	You	can	add	the	_________	property	to	your	style	sheet	to	change	the
background	color	of	the	whole	table.

You	can	add	the	background-color	property	to	your	style	sheet	to	change	the	background	color	of
the	whole	table.

11.	True/False:	To	add	a	caption	to	a	table,	you	use	the	caption	attribute	in	the	opening	table	tag.

False.	You	use	the	caption	element,	which	stands	on	its	own,	in	between	the	opening	and	closing
table	tags.

12.	If	you	include	a	thead	or	a	tfoot	group	in	your	table,	you	must	also	include	which	other	group?

If	you	include	a	thead	or	tfoot	group	in	your	table,	you	must	also	include	tbody.

13.	Which	CSS	property	(and	value)	is	used	to	align	all	the	text	in	a	cell	to	the	right?

Use	text-align:	right	to	align	all	text	in	a	cell	to	the	right.

14.	True/False:	If	you	had	both	colgroups	and	theads	in	a	single	table,	the	colgroups	would	be	placed
before	the	theads	in	your	table	structure.

True.

Chapter	12:	Creating	Forms
1.	Fill	in	the	blank:	________	tags	must	surround	all	web	forms.

form	tags	must	surround	all	web	forms.

2.	Name	four	types	of	text	input	controls	in	HTML	web	forms?

Single-line	text	boxes	(text	fields)	and	multiple-line	text	areas	are	two	types	of	text	input	in	HTML
web	forms.	Additional	types	include	those	for	email	addresses,	URLs,	dates,	time,	passwords,
telephone	numbers,	and	searches.

3.	Which	attribute	identifies	an	input	control	so	that	it’s	correctly	handled	when	the	form	is
processed?

The	name	attribute	identifies	an	input	control	so	that	it’s	correctly	handled	when	the	form	is
processed.

4.	Which	input	control	is	most	useful	for	questions	requiring	a	simple	yes	or	no	answer?

The	radio	button	is	most	useful	for	questions	requiring	a	simple	yes	or	no	answer.

5.	True/False:	Radio	buttons	are	small,	round	buttons	that	enable	users	to	select	a	single
option	from	a	list	of	choices.

True.

6.	Fill	in	the	blank:	The	attribute	identifies	the	visible	width	of	a	text	area	based	on	an	average
character	width.

The	cols	attribute	identifies	the	visible	width	of	a	text	area	based	on	an	average	character	width.

7.	Fix	the	following	code	so	that	users	can	enter	multiple	lines	of	data	into	the	comment	box,
which	should	measure	30	characters	wide	by	5	lines	tall.

The	correct	code	is

8.	How	do	you	cause	three	options	in	a	select	menu	to	be	visible	at	once?

Use	<select	size="3">.

9.	Add	the	appropriate	code	to	create	a	single-line	text	field	in	which,	upon	entry	of	data,	all
contents	are	displayed	as	bullets	or	asterisks	in	the	browser.	Name	the	field	“secret”.

The	correct	code	is

10.	Fill	in	the	blank:	___________	tags	surround	each	item	in	a	select	menu.

option	tags	surround	each	item	in	a	select	menu.

11.	Add	the	appropriate	code	to	create	a	place	where	users	can	upload	a	graphic	file	from	their
personal	computers	to	the	web	server.	Name	the	field	“upload.”

The	correct	code	is

12.	Which	attribute	is	added	to	the	form	tag	to	give	the	location	where	the	form’s	information	should
be	sent?

The	action	attribute	gives	the	location	where	the	form’s	information	should	be	sent.

13.	Which	attribute	and	value	are	added	to	the	form	tag	to	tell	the	browser	to	take	all	the	data
submitted	with	the	form	and	send	it	to	the	server	attached	to	the	end	of	the	file’s	URL?

The	method="get"	attribute	and	value	tell	the	browser	to	take	all	the	data	submitted	with	the	form
and	send	it	to	the	server	attached	to	the	end	of	the	file’s	URL.

Chapter	13:	Formatting	and	Styling	Forms
1.	True/False:	The	fieldset	element	is	used	to	divide	long	select	menus	into	categories	of

submenus.

False.	The	optgroup	element	is	used	to	divide	long	select	menus	into	categories	of	submenus.

2.	Add	the	appropriate	attribute	and	value	to	allow	users	to	press	the	F	key	to	access	this	input
control:

3.	Add	the	appropriate	attribute	and	value	to	set	this	input	control	as	the	first	in	the	tab	order.

4.	Which	tags	and	attribute	should	be	placed	around	the	following	descriptive	text	to	indicate
that	text	belongs	to	the	birthday	input	control?

5.	What	CSS	selector	would	you	use	to	create	a	style	sheet	rule	for	all	invalid	form	fields
created	with	the	input	element?

input:required:invalid

6.	What	CSS	selector	would	you	use	to	create	a	style	sheet	rule	for	all	valid	form	fields	created
with	the	textarea	element?

textarea:required:valid

7.	Which	attribute	is	used	to	specify	the	ideal	value	in	a	meter	element?

optimum

8.	Which	element	is	used	to	indicate	progression	in	a	multistep	process?

progress

9.	Which	element	is	used	to	signify	a	relationship	between	a	measurement	and	its	range?

meter

10.	Which	element	is	used	to	add	suggested	data	to	input	fields	to	help	a	user	complete	a	form?

datalist

Chapter	14:	Beyond	Static	HTML
1.	Fill	in	the	blank:	JavaScript	is	case-____________.

JavaScript	is	case-sensitive.

2.	Name	two	ways	JavaScript	differs	from	standard	HTML.

JavaScript	is	case-sensitive;	standard	HTML	is	not.	In	JavaScript,	quotes	are	required;	in	standard
HTML,	quotes	are	optional.	JavaScript	has	a	distinct	format	that	should	be	adhered	to;	standard
HTML	is	more	forgiving	about	spacing	and	formatting.

3.	What	is	an	API?

An	API,	or	application	programming	interface,	allows	HTML	to	work	in	conjunction	with	other
tools	like	JavaScript.

4.	Fill	in	the	blank:	In	the	following	code,	__________	is	the	JavaScript	object.
document.write("This	is	a	text!");

In	the	following	code,	document	is	the	JavaScript	object.

5.	True/False:	A	plus	sign	(+)	is	an	example	of	a	JavaScript	variable.

False.

6.	When	placed	within	the	header	of	a	web	page,	which	opening	and	closing	tags	surround	all
JavaScripts?

Use	script	tags	around	all	JavaScripts	when	placed	within	the	header	of	a	web	page.

7.	Fill	in	the	blank:	Objects	can	have	__________,	which	are	actual	things	that	happen	to	the
objects,	such	as	write	in	the	following	statement:	document.write("I	can	write	JavaScript");.

Objects	can	have	methods,	which	are	actual	things	that	happen	to	the	objects.

8.	What	term	is	given	to	an	aspect	of	a	JavaScript	you	specify	for	your	own	needs	as	a	label	for
a	changeable	value?

Variable	is	a	term	given	to	an	aspect	of	a	JavaScript	you	specify	for	your	own	needs	as	a	label	for	a
changeable	value.

9.	Fill	in	the	blank:	A(n)	_________	is	a	group	of	commands	to	which	you	give	a	name	so	that
you	can	refer	to	it	later	in	the	script.

A	function	is	a	group	of	commands	to	which	you	give	a	name	so	you	can	refer	to	it	later	in	the	script.

10.	Which	aspect	of	JavaScript	is	embedded	within	the	page’s	HTML	and	responds	to	a	user’s
interaction?

Event	handlers	are	embedded	within	the	page’s	HTML	and	respond	to	a	user’s	interaction.

11.	How	are	conditionals	used	in	JavaScript?

JavaScript	uses	if	…	then	statements	called	conditionals	to	tell	the	browser	to	do	one	thing	if	x	is	true
and	something	else	if	x	is	false.

12.	What	does	the	following	JavaScript	do	when	added	to	an	a	tag	on	a	web	page?
onClick="document.body.style.backgroundColor='green'"

It	changes	the	background	color	of	the	document	when	the	user	clicks	the	link.

13.	How	do	you	specify	that	a	new	browser	window	should	not	have	any	scroll	bars?

Add	scrolling=no	to	the	JavaScript.

14.	What	punctuation	ends	all	JavaScript	statements?

A	semicolon	(;)	ends	all	JavaScript	statements.

15.	What	does	onFocus	do	when	used	in	a	JavaScript?

It	specifies	that	an	action	should	occur	when	the	user	brings	an	object	(such	as	a	browser	window)	to
the	foreground.

Chapter	15:	Publishing	Pages
1.	Fill	in	the	blank:	ISP	stands	for	_______________________.

ISP	stands	for	Internet	service	provider.

2.	Including	the	extension,	what	is	the	limit	for	characters	in	a	domain	name?

The	character	limit	in	a	domain	name	is	67,	not	including	“www.”

3.	Which	type	of	business	hosting	is	used	when	your	business	purchases	its	own	server,
software,	and	a	dedicated	Internet	connection	capable	of	serving	your	site	to	web	users	24	hours	a
day,	365	days	a	year?

Onsite	hosting	requires	your	business	to	purchase	a	server,	software,	and	a	dedicated	Internet
connection	capable	of	serving	your	site	to	web	users	24/7.

4.	Mobilizer	is	a	tool	that	allows	you	to	preview	your	pages	in	what	type	of	user	situation?

Mobilizer	allows	you	to	preview	your	pages	on	web-enabled	mobile	phones.

5.	True/False:	Some	search	engines	ignore	meta	tags.

True.

6.	Why	is	it	important	to	include	the	following	line	of	code	at	the	start	of	all	your	HTML
pages?

<!doctype	html>

It’s	important	to	include	this	line	of	code	so	the	browser	knows	which	version	of	HTML	your	page
uses.

7.	Where	are	meta	tags	placed	within	a	web	page?

All	meta	tags	are	placed	between	the	opening	and	closing	head	tags.

8.	True/False:	All	search	engines	use	the	same	set	of	standards	for	indexing	web	pages.

False.

9.	Fill	in	the	blanks:	When	testing	a	web	site,	you	should	test	for	cross-________	and	cross-
___________consistency.

When	testing	a	web	site,	you	should	test	for	cross-browser	and	cross-platform	consistency.

10.	What	does	FTP	stand	for?

FTP	stands	for	File	Transfer	Protocol.

Chapter	16:	HTML	for	Email
1.	True/False:	The	W3C	maintains	a	special	specification	for	HTML	email.

False.	The	Email	Standards	Project	maintains	those	recommendations.

2.	Fill	in	the	blank:	___________	is	any	email	sent	without	the	permission	of	the	recipient.

Spam	is	any	email	sent	without	the	permission	of	the	recipient.

3.	What	is	the	difference	between	an	ISP	and	an	ESP?

An	ISP	provides	Internet	access	to	customers,	while	an	ESP	provides	bulk	messaging	services.

4.	Fill	in	the	blank:	You	must	use	________	paths	for	all	images	and	links	in	HTML	email.

You	must	use	absolute	paths	for	all	images	and	links	in	HTML	email.

5.	Why	should	you	avoid	relying	on	images	to	translate	key	messages	in	HTML	email?

You	should	avoid	relying	on	images	to	translate	key	messages	in	HTML	email	because	so	many
email	readers	block	images	by	default.

6.	Which	type	of	style	sheets	should	be	used	for	all	HTML	email?

A.	Inline
B.	Internal
C.	External
D.	Linked

A.	Inline	is	the	correct	answer.

7.	Why	must	we	rely	on	tables	for	column-based	layout	in	HTML	e-mail?

We	must	rely	on	tables	for	column-based	layout	in	HTML	email	because	of	the	lack	of	widespread
support	of	CSS	for	layout	among	email	readers.

8.	Which	methods	of	adding	interactivity	to	HTML	email	are	widely	supported	by	email
readers?	(Select	all	that	apply.)

A.	Flash
B.	Video
C.	Forms
D.	None	of	the	above

D.	None	of	the	above	is	the	correct	answer.

9.	True/False:	It	is	acceptable	to	use	CSS	shorthand	in	HTML	email.

False.

10.	Why	should	you	avoid	using	background	images	in	tables	in	HTML	email?

You	should	avoid	using	background	images	in	tables	in	HTML	email	because	Outlook	2007	does	not
support	them.

T
Appendix	B

HTML/CSS	Reference	Table	his
resource	serves	as	a	reference	table

for	the	tags	and	properties	learned	in
this	book.	It	is	organized	alphabetically,
with	HTML	tags	and	CSS	properties
included	together	for	easy	comparison.
Because	the	scope	of	this	book	is	at	a
beginner’s	level,	I	decided	not	to
discuss	a	few	elements	and	properties.	If
you	come	across	something	not	listed
here	or	in	the	index,	try	visiting	an
online	reference	library	such	as	the
following:	•
webdesign.about.com/od/html5tags/l/blhtml5reference.htm

•	html5doctor.com/element-index/

http://webdesign.about.com/od/html5tags/l/blhtml5reference.htm
http://html5doctor.com/element-index/

•	www.w3schools.com/tags/default.asp

NOTE

The	latest	version	of	the	HTML	specifications	can	be	found	on	W3C’s	web	site	at	www.w3.org.

Generic	Attributes	The	following	groups	of
attributes	can	be	used	by	a	large	number	of	tags
in	HTML.	In	the	rest	of	the	tables	in	this
appendix,	a	code	is	listed	in	the	attribute	column
on	a	particular	tag	if	it	accepts	any	of	the
following	groups	of	generic	attributes:	•	Core
attributes	(*core)	provide	rendering	and
accessibility	information	to	elements.
•	Event	handlers	(*events)	provide	a	way	of	triggering	an	action	when	an	event

occurs	on	a	page.	Note:	Not	all	event	handlers	are	listed.

•	International	attributes	(*intl)	provide	a	way	of	rendering	documents	using
multiple	language	or	character	sets.

Group	Type:	Core	

http://www.w3schools.com/tags/default.asp
http://www.w3.org

*New	in	HTML5

Group	Type:	Events	

*	New	in	HTML5

Group	Type:	Intl	

HTML	Tags	The	following	table	provides	a
reference	for	the	HTML	elements	discussed	in
this	book.	Although	I	have	removed	most	of	the
deprecated	(outdated)	elements	from	this	table,
there	are	some	deprecated	attributes	that	remain.
Those	are	marked	with	a	(D)	to	help	make	them
easily	recognizable.	These	deprecated	tags
and/or	attributes	are	not	supported	in	HTML5.
Tags	and	attributes	new	to	HTML5	are	marked
with	an	asterisk.

One	additional	note—some	attributes	are	only	deprecated	in	certain	cases.
For	example,	while	it	is	not	acceptable	to	use	the	align	attribute	with	the	p	tag,
it	is	okay	to	use	it	within	a	table	(such	as	in	the	colgroup	or	tr	tags).

*New	in	HTML5

CSS	Properties	This	table	acts	as	a	reference	for
the	style	sheet	properties	used	throughout	this

book.	Because	this	is	a	beginner’s	guide,	this
table	does	not	include	every	possible	CSS
property.

When	listing	values,	those	within	brackets,	such	as	<length>,	indicate	value
concepts	as	opposed	to	actual	values.	For	example,	when	a	value	is	listed	as
<length>,	you	might	use	a	pixel	dimension,	as	in	10px.	By	contrast,	a	value	of
“left”	is	an	actual	value	term,	as	in	float:left.	Here	are	a	few	more	tips
regarding	value	concepts:	•	Length	units	take	two-letter	abbreviations,	with	no
space	between	number	and	unit,	as	in	width:	100px	or	padding-top:	2cm.

•	Percentage	units	are	calculated	with	regard	to	their	default	size.
•	Color	units	can	be	specified	by	hexadecimal	code:	color:	#ffffff;	RGB

value:	color:	rgb(255,	255,	255);	or	name:	color:	white.

•	Transparency	can	be	added	to	color	units	using	RGBA,	where	color:
rgba(0,0,0,0.5)	creates	a	black	that	is	semitransparent,	or	HSLA,	where
color:	hsla(120%,	100%,	50%,	.08)	creates	an	80%	opaque	green.

•	URLs	are	relative	to	the	style	sheet,	not	the	HTML	document,	and	are	defined
like	this:	list-style-image:	url(star.gif).

Those	properties	new	in	CSS3	are	marked	with	an	asterisk.	Remember	that	these
properties	may	or	may	not	be	supported	by	all	the	browsers	in	your	target
audience,	which	means	testing	is	of	significant	importance	when	they	are	used.

NOTE

All	these	properties	can	also	have	a	value	of	inherit,	which	tells	the	browser	to	use	whichever
value	has	already	been	assigned	to	the	element’s	parent/container	object.

*New	in	HTML5

T

Appendix	C
Troubleshooting	(FAQs)

his	resource	lists	some	of	the	most	common	problems	encountered	when
writing	HTML.	If	none	of	these	answers	solves	the	trouble	you’re

experiencing,	try	running	your	page	through	an	online	validator,	such	as	the	one
offered	by	the	W3C	at	validator.w3.org.	A	service	like	this	tests	your	page
against	the	HTML	specifications	and	displays	a	list	of	errors	that	makes	it	easy
to	locate	problems.

Or,	you	could	use	Dave	Raggett’s	HTML	Tidy	program	(available	for
download	at	http://sourceforge.net/projects/tidy/).	This	handy	program
actually	attempts	to	fix	any	problems	on	your	page,	if	possible.	It	can	also
display	a	list	of	errors	to	alert	you	to	things	you	can	look	for	in	the	future.

Also,	consider	downloading	a	few	very	helpful	free	add-ons	for	your	Firefox
browser.	(Don’t	have	Firefox?	Download	it	here:	www.firefox.com.)	The
following	two	add-ons	are	those	I	find	most	helpful	when	coding	HTML,
especially	for	pesky	details	like	aligning	CSS	boxes	or	tweaking	CSS	styles.
These	and	plenty	of	others	are	available	by	searching	addons.mozilla.org.

•	Web	Developer	gives	you	a	special	toolbar	filled	with	features	that	help	you
debug	and	test	your	pages	right	within	the	browser.	For	more	information
from	the	add-on’s	creator,	visit	http://chrispederick.com/work/web-
developer/.

•	Firebug	is	different	from	Web	Developer	in	that	it	actually	lets	you	edit
HTML	and	CSS	live	while	it	is	viewed	in	the	browser.	For	more	information
from	Firebug’s	creator,	visit	http://getfirebug.com/.

Finally,	don’t	overlook	the	basic	troubleshooting	tools	built	into	modern
browsers.	In	most	cases,	you	can	access	them	simply	by	right-clicking	(or
control-clicking	on	the	Mac)	a	page	element	and	choosing	Inspect	Element.

http://validator.w3.org
http://sourceforge.net/projects/tidy/
http://www.firefox.com
http://addons.mozilla.org
http://chrispederick.com/work/web-developer/
http://getfirebug.com/

My	Page	Is	Blank	in	the	Browser!
Yikes!	You	lost	everything?	Don’t	worry—it’s	probably	all	there,	but	an
unclosed	tag	or	quote	somewhere	may	be	causing	the	browser	to	ignore
everything	else	on	the	page.

In	my	experience,	the	number-one	cause	for	a	page	displaying	blank	or
empty	in	a	browser	is	an	unclosed	container	tag,	such	as	the	table	tag.	So,	if	your
page	uses	tables,	go	back	through	the	code	and	identify	each	opening	and	closing
table	tag	to	make	sure	you	didn’t	leave	one	off	accidentally.	Also,	be	sure	to
check	you’ve	closed	your	title	tag.

The	number-two	cause	of	a	missing	section	of	a	page	is	an	unclosed
quotation	mark.	For	example,	in	the	following	code,	the	lack	of	closing	quotes	in
the	first	a	tag	causes	all	the	text	after	it	to	be	considered	part	of	the	link	URL.	No
text	is	displayed	in	the	browser	until	another	set	of	quotes	is	encountered	that
can	be	considered	the	closing	quotes	for	the	first	link.

All	I	See	Is	Code	in	the	Browser!
This	occurs	when	the	page	doesn’t	have	an	HTML	extension	(such	as	.	htm	or	.
html)	or	when	the	page	is	saved	in	a	format	other	than	text-only.	If	you
encounter	this	problem,	return	to	your	text	editor	and	save	the	file	again,	making
sure	to	choose	Text	Only	or	ASCII	Text	from	any	list	of	format	types.	When
naming	the	file,	be	sure	the	text	editor	doesn’t	add	a	.	txt	extension,	because	only
.	htm	or	.	html	extensions	are	recognized	as	HTML	by	a	browser.	Finally,	make
sure	your	page	includes	opening	and	closing	html	tags.

My	Images	Don’t	Appear!
When	images	don’t	appear	in	a	page,	they	are	often	replaced	with	a	question
mark	graphic	or	a	broken	image	symbol.	Here’s	a	quick	checklist	to	run	through
if	you	encounter	this	problem:	•	Check	filenames	Perhaps	you	named	a	file
image.jpg,	but	in	the	HTML,	you	referenced	it	as	IMAGE.JPG.	Any	difference
at	all	causes	the	image	to	appear	“broken”	in	the	browser.	In	addition,	be	sure
your	filename	doesn’t	include	spaces,	because	those	also	cause	problems.

•	Check	file	locations	If	you	tell	the	browser	your	image	is	in	the	photos	folder
when	you	write	your	HTML,	make	sure	to	upload	the	image	to	that	folder.	If
the	image	is	in	a	different	folder,	the	browser	won’t	be	able	to	find	it.

•	Check	file	types	Remember,	most	graphical	editors	can	view	only	GIF,	JPEG,
and	PNG	files.	Other	file	types,	such	as	BMP	or	TIFF,	may	be	displayed	as	a
broken	image	if	the	browser	doesn’t	understand	them.

•	Check	img	tags	It’s	common	for	beginners	to	write	out	“image”	instead	of	img
when	referencing	an	image.	The	tag	is	img,	however,	not	image,	and
therefore,	you	must	write	it	as	such.

I	Tried	to	Change	the	Font,	But	Nothing
Happened!
First,	make	sure	the	font	name	is	spelled	correctly.	If	it	is	spelled	correctly,	make
sure	you	actually	have	that	font	running	on	your	system.	Try	launching	your
word	processor	to	see	if	the	font	is	available	in	that	program.	If	it	isn’t,	chances
are	you	don’t	have	that	font	loaded	on	your	system.	You	might	try	a	different
font	or	download	the	font	in	question.	And,	remember,	your	users	may	not	have
that	font,	either.

When	I	Use	a	Special	Character,	It	Doesn’t
Appear!
This	happens	for	one	of	two	reasons:

•	Missing	ampersand	and/or	semicolon	Don’t	forget,	all	entities—whether
named	or	numbered—must	begin	with	an	ampersand	and	end	with	a
semicolon.

•	Lack	of	browser	support	Certain	browsers	don’t	support	some	entities.	If	you
double-checked	that	you’re	typing	the	entity	correctly	and	it	still	doesn’t
appear,	it	might	not	be	supported	by	your	browser.

In	something	like	a	trademark	symbol,	which	is	not	supported	by	all
browsers,	try	using	the	superscript	tag	(<sup>)	instead,	as	in	the	following

example:	

My	Links	Don’t	Work!
If	your	links	don’t	work,	check	to	make	sure	you	typed	them	correctly.	For
example,	a	link	to	another	web	site	should	look	something	like	this:	

while	a	link	to	another	page	in	your	site	might	look	like	this:

Be	sure	to	surround	the	link	name	with	quotes	and,	if	you	are	linking	to
another	web	site,	don’t	forget	the	http://.

Unfortunately,	if	you	are	linking	to	another	person’s	web	site,	it	may	be
beyond	your	control	to	ensure	the	link	works	all	the	time.	If	a	user	clicks	a	link
to	another	site	from	one	of	your	pages	and	that	site	is	unavailable,	the	link	won’t
work.	For	this	reason,	it’s	important	to	check	your	links	often,	making	sure	they
haven’t	become	extinct.	You	might	also	contact	the	owner	of	the	page	you’re
linking	to,	as	the	owner	might	be	able	to	provide	a	specific	link	address	he	or	she
can	guarantee	won’t	change.

My	Page	Looks	Great	in	One	Browser,	But
Terrible	in	Another!
Unfortunately,	I	must	say	this	is	not	an	uncommon	problem.	In	most	cases,
though,	the	page’s	developer	never	takes	the	time	to	look	at	the	site	in	another
browser	and,	therefore,	never	knows	how	bad	the	page	looks.	Take	heart—
you’re	halfway	to	making	your	page	look	great	in	both	browsers	just	because
you	know	there’s	a	problem!	The	following	are	a	few	things	to	consider	when
you	have	this	problem:	•	Did	you	use	Microsoft	Word	to	create	your	page?
This	program	sometimes	adds	proprietary	code	that	works	great	in	Internet
Explorer,	but	looks	terrible	in	any	other	browser.	You	can	use	a	validation
service	(such	as	validator.w3.org)	to	identify	any	code	that	isn’t	part	of	the
official	W3C	spec.	In	addition,	some	HTML	editors,	like	Dreamweaver,	have	a
function	to	delete	all	the	Microsoft	HTML	code	from	a	Microsoft	Word
document.	If	that	doesn’t	work,	keep	reading….

•	Did	you	use	emerging	technologies	in	HTML5	or	CSS3?	Certain	aspects	of

http://validator.w3.org

these	emerging	technologies	are	supported	differently	by	some	browsers.
This	means	you	may	have	to	create	multiple	versions	of	your	pages	if	the
formatting	is	important	to	the	page	display,	or	just	know	your	pages	will	look
different	according	to	the	browser	used.	But	before	you	set	out	creating
multiple	versions	of	your	pages,	run	your	page	through	a	validator	to	look	for
hidden	code	errors.	The	most	common	reason	for	pages	to	display	differently
in	multiple	browsers	is	simply	that	some	browsers	are	more	forgiving	than
others	when	it	comes	to	code	errors.

Finally,	remember	some	HTML	elements	are	just	rendered	differently	by
some	browsers.	Even	though	you	may	have	coded	your	page	perfectly,	there’s	a
good	chance	it	still	might	look	different	when	viewed	in	certain	browsers.	The
best	advice	I	can	offer	you	on	this	topic	is	to	test,	ask	your	friends	to	help	you
test,	and	test	some	more.	Previewing	your	page	in	as	many	different	browsers
and	computer	systems	as	possible	can	help	to	ensure	you	know	how	it	will	look
to	the	largest	number	of	users.

When	I	Link	My	Images,	They	Have	Little
Colored	Dashes	Next	to	Them!
This	happens	sometimes	when	the	browser	finds	a	carriage	return	before	it	finds
the	closing	a	tag	for	a	link,	as	in	the	following	example:	

To	eliminate	those	little	dashes	next	to	your	images,	run	all	the	code	on	a
single	link,	like	this:	

I	Saved	My	Image	as	a	JPEG,	But	the	Browser
Says	It’s	Not	a	Valid	File	Format!
Open	your	image	in	a	graphics	program	like	Photoshop	and	check	the	color
mode	(in	Photoshop,	choose	Image	|	Mode).	JPEG	files	must	be	in	the	RGB
color	mode	for	the	browser	to	be	able	to	display	them.	It’s	not	uncommon	for
JPEG	images	to	mistakenly	be	saved	in	the	CMYK	color	mode.

When	this	happens,	the	browser	can’t	display	the	image,	even	though	it’s

saved	in	the	JPEG	file	format.	To	fix	this,	change	the	file	format	to	RGB	and
resave	the	image	as	a	JPEG.

Strange	Characters	Are	at	the	Top	of	My	Page!
If	you	used	a	word	processor	to	write	your	HTML—or	even	if	you	just	copied
and	pasted	some	text	from	Word—you	may	end	up	with	some	characters	you
didn’t	type	at	the	top	of	your	page	when	you	view	it	in	a	browser.	This	occurs
when	the	page	contains	hidden	formatting	instructions.	To	avoid	this,	return	to
your	file	in	the	editor	and	save	it	in	Text	Only	or	ASCII	Text	format,	with	an	.
html	or	.	htm	extension.	Or,	if	you	only	copied	text	from	Word,	remove	all	Word
formatting	to	get	rid	of	things	like	curly	quotes	or	fancy	ellipses	(or	save	the	file
as	Text	Only),	and	then	try	copying	and	pasting	again.

I	Added	Internal	Links	to	Sections	of	a	Web
Page,	But	When	I	Click	Them,	the	Browser
Launches	a	Brand	New	Window!
This	occurs	when	the	internal	links	within	the	page	aren’t	defined	properly.	For
instance,	suppose	you	were	trying	to	create	a	link	at	the	bottom	of	your	web	page
that	took	users	back	to	the	top	of	the	page.	You	might	use	the	following	code:	

However,	unless	you	actually	add	the	code	to	tell	the	browser	where	the	top
of	your	page	is,	the	browser	won’t	know	what	to	do	and	will	just	launch	a	new
window.	In	this	instance,	you’d	need	to	add	the	following	code	near	the	top	of
your	page:	

If	you’re	saying,	“Wait,	I	already	had	that	code	at	the	top	of	my	page	and	it
still	doesn’t	work!”	then	make	sure	both	the	<a	name>	reference	and	the	<a
href>	reference	match	exactly.	So	if	you	used	“TOP”	in	the	<a	name>	reference,
make	sure	to	use	“TOP”	and	not	“top”	in	the	<a	href>	reference.

I	Specified	One	Color,	But	Got	a	Totally
Different	One!
This	has	happened	to	me	several	times,	and	it’s	caused	by	something	that’s	easy

to	fix	but	hard	to	spot.	Consider	the	following	code:	

Did	you	spot	the	missing	quotation	mark	after	the	background	color	value?
That	simple	omission	can	cause	the	background	color	to	be	rendered	as	some
odd	concoction	of	the	#336699	and	#ffffff	colors.	So	if	your	colors	start
behaving	oddly,	first	check	your	quotation	marks.	Then	make	sure	you	haven’t
forgotten	a	hash	mark	(#),	because	missing	hash	marks	can	also	cause	colors	to
display	incorrectly,	or	not	to	display	at	all!	Finally,	confirm	you’ve	included	all
of	the	necessary	digits	or	characters	for	the	color	value.

I	Need	to	Protect	Some	of	My	Pages	from
Unwanted	Visitors!
Suppose	you	uploaded	some	photos	of	your	children	to	a	web	site	and	now	want
to	restrict	the	pages	so	that	only	your	friends	and	family	can	gain	access.	You
can	add	simple	password	protection	to	your	site	to	do	just	that,	but	keep	in	mind
most	simple	password	protection	scripts	won’t	keep	the	pros	out.	(If	someone	is
really	determined	to	get	in,	they’ll	be	able	to	unless	you	add	more	secure
features	to	the	computer	your	site	is	hosted	on.)	In	any	case,	if	you’re	interested
in	adding	password	protection	to	your	site,	check	out	some	of	the	following	sites
for	some	scripts	that’ll	help:	•	JavaScript
www.javascriptsource.com/passwords/

•	HTAccess	webdesign.about.eom/od/security/a/password_protec.htm

I	Need	to	Prevent	People	from	Stealing	My
Images!
Along	with	the	question	about	password	protection,	this	is	another	one	I	am
asked	quite	frequently:	“How	can	I	protect	my	photography	from	the	casual
Internet	thief?”	Quite	honestly,	you	can’t.	And	most	likely,	you	don’t	need	to.
Consider	what	we’re	talking	about	here—in	the	vast	majority	of	cases,	any
photos	you	put	on	your	web	site	are	only	72	dpi	(screen	resolution).

This	means	when	someone	goes	to	print	your	72	dpi	photo,	they	will	see	a
pretty	poor	representation	of	the	image	because	it’s	so	low	in	file	resolution.	To
really	get	a	nice	print	of	an	image,	you	need	at	least	300	dpi	in	file	resolution.

http://www.javascriptsource.com/passwords/
http://webdesign.about.eom/od/security/a/password_protec.htm

My	guess	is	that	no	one	can	get	that	high	a	resolution	file	from	you	without
asking	for	it	(or	breaking	into	your	house	and	stealing	it	off	your	hard	drive),	so
there’s	little	need	to	worry.	Hey,	if	the	Louvre	Museum	(www.louvre.fr)	is	okay
with	putting	photos	of	their	artwork	on	a	web	site,	you	can	be	okay	with	it,	too.

With	that	said,	there	are	scripts	available	that	can	attempt	to	prevent	users
from	right-clicking	your	images	and	saving	them	to	your	hard	drives.	One
example	can	be	found	at	www.javascriptsource.com/page-details/no-right-
click.html.	However,	users	who	know	what	they	are	doing	can	disable
JavaScript	in	their	browsers	or	otherwise	find	ways	around	this.

If	you	are	a	photographer	or	artist,	I	suggest	you	use	Photoshop	or	another
graphics	program	to	add	a	copyright	and	watermark	to	your	images.

I	Tried	to	Send	My	Web	Page	in	an	Email,	But
the	Page	Looked	Terrible!
Several	things	could	be	happening	here.	First,	you	need	to	make	sure	the	person
you’re	sending	the	email	to	has	an	HTML-compatible	email	program.	Not	all
email	programs	are	capable	of	displaying	HTML,	and	those	that	do	sometimes
support	only	certain	aspects	of	HTML.	For	example,	many	email	programs	don’t
support	tables	or	frames,	even	though	they	do	support	images,	links,	and	text
formatting.	Furthermore,	those	that	are	capable	of	doing	so	often	give	the	user	an
option	to	turn	off	the	display	of	HTML	in	emails.	Refer	to	Chapter	16	for	tips	on
how	to	write	pages	that	do	look	good	in	most	email	readers.

I	Updated	My	Web	Page,	But	I	Don’t	See	the
Changes	in	the	Browser!
First,	double-check	that	you	saved	the	file.	If	you	did,	indeed,	save	your	changes,
and	clicking	the	Refresh	or	Reload	button	doesn’t	help,	try	forcing	a	reload	by
choosing	File	|	Open	Page	or	File	|	Open	Location	and	then	selecting	the	file	in
question.	This	ensures	the	browser	is	looking	at	the	latest	version	of	the	file.

In	some	cases,	you	may	also	need	to	clear	the	browser’s	cache	on	disk.	The
cache	is	a	place	where	browsers	store	temporary	copies	of	web	page	files	to
avoid	having	to	go	back	to	the	server	to	retrieve	them	multiple	times.	For
example,	you	can	access	your	browser’s	cache	by	choosing	Firefox	|	Preferences
|	Privacy,	and	then	clicking	the	link	to	clear	your	recent	history.

http://www.louvre.fr
http://www.javascriptsource.com/page-details/no-right-click.html

My	Whole	Page	Is	____________!	(Fill	in	the
Blank)
For	example,	your	whole	page	could	be	bold	or	linked	or	orange,	and	so	forth.
Even	though	this	may	look	like	a	terrible	error,	it’s	relatively	easy	to	fix.	Most
likely	you’re	just	missing	a	closing	tag	somewhere.	For	example,	if	your	whole
page	is	a	giant	link,	look	in	your	code	for	the	place	you	actually	wanted	to	create
a	link	to	be	sure	you	included	the	closing	a	tag.	Or,	if	all	the	text	on	your	page	is
bold,	look	to	make	sure	you	included	a	closing	b	tag.	Typing	something	like	the
following	is	actually	quite	common:	

At	first	glance	it	looks	great,	but	a	second	look	shows	the	closing	tag	is	actually
missing	a	slash.	It	should	look	like	the	following	instead:	

My	Page	Has	a	White	Background	in	One
Browser,	But	Not	in	Others!
Some	browsers	set	the	default	background	color	of	web	pages	to	white,	while
some	other	browsers	use	a	default	color	of	gray.	If	you	only	test	your	pages	in
one	browser	and	forget	to	specify	a	background	color,	other	users	may	complain
that	your	pages	look	drastically	different.	To	avoid	this	problem,	always	specify
a	background	color	in	your	style	sheet,	even	if	you	only	want	that	color	to	be
white.

TIP

When	you	do	specify	a	background	color,	be	sure	to	set	the	text	color	to	something	readable.	This
is	a	common	reason	for	“blank”	pages:	the	text	and	background	are	the	same	color!

I	Shrank	My	Images,	But	They	Still	Take
Forever	to	Download!
How	did	you	shrink	your	images?	Did	you	use	HTML	to	do	so,	within	the	height
and	width	attributes	of	the	img	tag?	If	so,	then	you	didn’t	really	shrink	your

images.	You	just	specified	that	they	should	be	displayed	smaller	within	the
browser.	To	really	shrink	your	images	and	reduce	their	file	sizes,	you	need	to
open	them	in	a	graphics	editor	and	cut	down	the	physical	height	and	width	of	the
images.

I	Embedded	a	Flash	File	That	Works	Fine	on	My
Computer,	But	Doesn’t	Work	Properly	on	Other
Computers!
I	suspect	the	other	computer	doesn’t	have	the	latest	version	of	Flash	Player	and
you	haven’t	included	code	to	catch	that	incompatibility.	If	this	is	the	case,	you
can	notify	and	give	manual	instructions	for	an	updated	Flash	Player	on	your	web
page.	Or,	if	you’re	up	for	something	a	bit	more	advanced,	try	implementing	the
deployment	kit,	at
www.adobe.com/products/flashplayer/download/detection_kit/,	which	can
detect	cases	in	which	users	do	not	have	the	appropriate	version	of	the	Flash
Player	and	automatically	reroute	them.	(Most	plug-ins	automatically	detect	older
players,	but	Flash	Player	does	not	in	every	case.)	My	Tables	Look	Fine	in	One
Browser,	But	Terrible	in	Another!
First,	make	sure	you	have	closed	your	table	tags,	and	all	tr	and	td	tags	have

opening	and	closing	versions.	Consider	the	following	example:	

While	some	browsers	can	be	forgiving	when	they	encounter	sloppy	HTML
that	doesn’t	include	closing	tags,	others	refuse	to	display	the	content	at	all.	The
key	to	making	tables	that	look	good	across	multiple	platforms	is	to	use	proper
HTML	and	to	test	it	in	several	browsers	ahead	of	time.

http://www.adobe.com/products/flashplayer/download/detection_kit/

If	you	continue	to	have	table	problems,	try	turning	on	the	border	(adding
border=1	to	the	opening	table	tag	will	do	the	trick)	just	to	help	you	see	the
outlines	of	your	table	cells.	Sometimes	simply	making	those	borders	visible	will
shed	light	on	the	problem.	After	you’ve	fixed	the	problem,	the	border	can	be
removed	with	border=0.

I	Still	Have	Questions!
If	the	previous	sections	haven’t	answered	your	questions,	the	following	are	a	few
more	things	to	try:	•	Take	a	break	Looking	at	HTML	code	for	hours	on	end	can
be	quite	straining,	regardless	of	how	experienced	you	are.	If	you’re	having
trouble,	take	a	break	and	don’t	come	back	to	the	problem	page	until	you	feel
rested	enough	to	look	at	the	issue	with	fresh	eyes.

•	Check	for	typos	This	may	sound	easy,	but	with	HTML	it’s	not.	I	can’t	tell	you
how	many	times	I	struggled	with	a	certain	page,	only	to	find	out	three	days
later	that	it	was	all	because	I	misspelled	a	tag	or	left	out	a	quote.	Printing	the
page	and	highlighting	anything	that	seems	like	a	potential	problem	area	helps
me.	Also,	reading	the	code	on	paper	as	opposed	to	on	the	screen	can
sometimes	help	you	look	at	it	differently.	As	much	as	90	percent	of	HTML
problems	brought	to	my	attention	by	students	or	coworkers	involve	typos!

•	Remove	the	styles	If	the	page	structure	is	causing	headaches,	try	temporarily
removing	your	style	sheet.	Viewing	the	bare-bones	page	elements	can
sometimes	help	structural	code	problems	become	more	visible.	Or,	it	could
help	identify	the	style	sheet	as	the	problem.	If	that’s	the	case,	try	rebuilding
your	style	sheet	one	declaration	at	a	time	until	you	identify	the	culprit.

•	Debug	Refer	back	to	the	beginning	of	this	chapter	where	I	mentioned	the

various	debugging	and	troubleshooting	tools	in	the	browsers.	These	can	be
invaluable	for	all	HTML	coders,	especially	when	you	feel	like	you’re	hitting
your	head	against	a	brick	wall	with	a	certain	bit	of	code.

•	Start	fresh	Begin	a	new	HTML	page	and	add	to	it	from	the	problem	page,
piece	by	piece.	For	example,	first	add	the	head	and	title	tags.	Then	save	the
page	and	try	it	in	the	browser.	If	that	works,	add	something	else.	While	this
may	take	a	while,	it	certainly	can	help	you	identify	exactly	where	the
problem	lies	if	you	didn’t	already	know.

•	Reread	the	chapter	If	you’re	having	trouble	with	tables,	try	returning	to	that
chapter	and,	perhaps,	even	re-creating	some	of	the	examples.	After	all,
practice	makes	perfect,	right?	Well,	at	least	it	helps….

•	Ask	someone	else	If	you	don’t	have	fellow	students	or	coworkers	to	ask,	you
could	try	posting	your	problem	HTML	on	a	troubleshooting	bulletin	board
online	to	see	if	anyone	else	has	had	the	same	problem.

I
Appendix	D
Special	Characters	n	HTML,
nonalphabetical	characters	that	use

the	SHIFT	key	should	be	rendered	by
entities	instead	of	being	typed	out.
Entities	can	be	in	the	form	of	numbers
or	names,	but	all	begin	with	an
ampersand	and	end	with	a	semicolon.
Some	entities	aren’t	supported	by	all
browsers,	so	be	sure	to	test	your	pages
in	several	browsers	to	ensure	they
appear	as	you	intend.	For	more
information,	visit
www.htmlhelp.com/reference/charset.

NOTE

The	following	table	lists	the	most	popular	entities,	listed	in	alphabetical	order	by	description.
Most	nonstandard	or	minimally	supported	entities	aren’t	included	here.

http://www.htmlhelp.com/reference/charset

Standard	HTML	Entities	

M
Appendix	E

File	Types	ultipurpose	Internet
Mail	Extension	(MIME)	is	an

accepted	system	of	extensions	used	on
computer	systems.	Such	a
standardization	makes	it	easy	to	specify
a	file	type	and	feel	confident	other
computers	will	understand	it.	This	table
includes	some	of	the	popular	file	types
you	might	encounter	when	creating	web
pages.

Index

Special	Characters
;	(semicolon)
-	(hyphen)
-	(minus	sign)
_	(underscore)
'	(quotes)
"	(quotation	marks)
{	}	(curly	brackets)
@	(at	symbol)
&	(ampersand)
#	(hash	mark)
+	(plus	sign)
<	>	(brackets)

A
a	tag
absolute	fonts
absolute	links
absolute	pathnames
absolute	paths
absolute	positioning
absolute	sizing
absolute	URLs
accesskey	attribute
ACSII	mode
action	attribute
ActiveX
ActiveX	control.	See	also	plug-ins
Adobe	BrowserLab
Adobe	Illustrator
Adobe	Photoshop
aggregator
AJAX	(asynchronous	JavaScript	and	XML)
alignment

table	cell	content
tables
text

alpha	channel

alt	attribute
Amaya
ampersand	(&)
anchors
Android	browser
animation
animation	frames
answers,	self-test
APIs	(application	programming	interfaces)
Apple	Safari
applets
application	programming	interfaces	(APIs)
area	element
article	element
aside	element
.asp	extension
asynchronous	JavaScript	and	XML	(AJAX)
at	symbol	(@)
attributes.	See	also	specific	attributes

core
generic
international
overview
placeholder
text	fields

audio
adding	to	web	pages
file	formats
sources

audio	element
autobuffer	attribute
autoplay	attribute

B
background	attribute
background	images.	See	also	foreground	images

adding
color
considerations
tables
using	images	as	elements	in

background-image	property
BBEdit
Berners-Lee,	Tim
binary	mode
binary	transparency
bitmap	animation
bitmap	applications
bitmap	images
block-level	elements

blockquote	element
Blogger
blogs
Blue	Hornet
BlueHost	web	hosting
body	element
bolded	text
border	attribute
borders

box	model
foreground	images
images
tables

box	properties
box-sizing	property
br	element
brackets	<	>
breaks

within	code
line.	See	line	breaks
between	tags

Browsercam
BrowserLab
browsers.	See	web	browsers
Browsershots
bullets,	lists
button	element
buttons

forms
graphical
radio
types	of

C
calendaring
Campaign	Monitor
canvas
Canvas	Tutorial
capitalization
captions

audio/video	content
figures
tables

cascade	concept
cascading
cascading	order
cascading	style	sheets.	See	CSS
case	sensitivity
cells.	See	table	cells
CGI	(Common	Gateway	Interface)

CGI	scripts
character	entities
characters.	See	also	text

domain	names
maximum	number	of
special.	See	special	characters
unusual

check	boxes
checked	attribute
Chrome
Chrome	inspection	tools
class	attribute
class	selectors
classes
client-side	validation
closing	tags
CMYK	mode
code.	See	also	HTML	code

open	source
spacing	in

The	Code	Player
codecs.	See	also	compression
CoffeeCup	Free	FTP
CoffeeCup	Pro
col	element
colgroup	element
color

background
CMYK
fonts
forms
GIFs	and
hexidecimal
JPEG	and
links
names
PNG	and
problems	with
RGB
RGBA
specifying
table	cells
table	rows
tables

color	pickers
color	values
colorblender.com
cols	attribute
colspan	attribute
columns.	See	table	columns
comments,	adding	to	HTML	files
Common	Gateway	Interface.	See	CGI

compression
codecs
GIF
images
JPEG
lossless
lossy
LZW
video

conditional	statements
Constant	Contact
Contact	Us	form
container	elements
container	format
containers
content

forms
ID	names
importance	of
layering	within	layouts
linking	images	to
links	to	other	sites
meta
multimedia
natural	divisions
newsworthy
organizing
organizing	sections	of
page	layout	example
related
syndicated
tables.	See	table	cells
tips	for

context
controller	attribute
controls	attribute
cookies
CorelDraw
Corel	Photo-Paint
CSS	(cascading	style	sheets).	See	also	style	sheets

client-side	validation
creating	structure
email	clients
layouts.	See	page	layouts
properties	reference
purpose	of
reference	libraries

.css	extension
CSS	selectors
CSS	values
CSS	Zen	Garden
CSS3	properties

CSS/HTML	Reference	Table
curly	brackets	{	}
current	values

D
data	lists
date/time	inputs
date/time	script
decimal	units
declaration
dedicated	servers
default	attribute
definition	lists
descendent	selectors
desktop	FTP	programs
DHTML	(Dynamic	HTML)
disabled	attribute
dithering
div	element
.doc	extension
doctype	element
Document	Setup	tags
.docx	extension
domains

described
names
registering
researching

dongles
dots	per	inch	(dpi)
download	times
downloadable	files
dpi	(dots	per	inch)
drag-and-drop	editing
Draw	program
Dream	Host	web	hosting
Dreamweaver
drop-down	menus
Dynamic	HTML	(DHTML)
dynamic	navigation	bar

E
editing.	See	also	HTML	editors

drag-and-drop
images
text-based
WYSIWYG

editors.	See	HTML	editors

elements.	See	also	specific	elements
block-level
capitalization
container
described
empty
inline
quotations
text-level
types	of

email
@	symbol
attachments
bulk	mail
customizing
Flash	in
forms	in
FTC	rules
hiding	address
HTML.	See	HTML	email
image	blocking
images	in
links	in
links	to
most	popular	clients
“opt	out”	options
overview
plain-text	vs.	HTML
purpose	of
RSS	feeds
sending	form	data	via
sending	web	pages	with
spam.	See	spam
standards
unsubscribing
video	in

email	clients
email	programs
email	service	provider	(ESP)
embed	element
embedded	items

HTML	tags
multimedia	content
style	sheets

Emma	program
ems
encryption
enctype	attribute
ESP	(email	service	provider)
event	handlers
Expression	Studio	4	Web	Professional
Extensible	Hypertext	Markup	Language	(XHTML)

Extensible	Markup	Language.	See	XML
extensions,	file
external	style	sheets

F
Facebook	ads
FAQs	(frequently	asked	questions)
Fetch
fieldset	element
fieldset	tags
fieldsets
figcaption	element
figure	captions
figure	element
file	extensions
file	formats

audio
GIF
images.	See	image	formats
JPEG
PDF
PNG
terminology
video

File	Transfer	Protocol.	See	FTP
file	types
files

downloadable
Flash
HTML.	See	HTML	files
multimedia
PDF
PostScript
resolution
uploading

FileZilla
Firebug
Firefox
Firefox	Web	Developer	tools
FireFTP
firmlist.com
Flash

HTML5	and
Flash	files
Flash	player
float	property
floats
folder	names
folders
font	faces

font	formats
font-family	property
fonts.	See	also	text

accessing
colors
Google	Web	Fonts
licenses
links
names
printed	pages
sizes
style	properties
unable	to	change
Web
web	browsers	and

footer	element
footers
foreground	images.	See	also	background	images

borders
centering
floats
margins
padding
styling
using	images	as	elements	in

form	element
Form	tags
formats.	See	file	formats
formatting.	See	also	style	sheets;	styles

forms
HTML	basics
links
lists
multimedia	content
page	elements
paragraphs
preformatting
table	cell	content
tables

forms
buttons
check	boxes
color	selectors
contact	methods
creating	basic
data	lists
date/time	inputs
disabling	input	elements
in	email
file	uploads
formatting
grouping	related	controls

hidden	fields
improving	usability
input	controls
keyboard	shortcuts
labels
links	in
menus/submenus
number	inputs
overview
passwords
patterns
processing	methods
progress	bar
purpose	of
radio	buttons
read-only
required	fields
scroll	bars
search	boxes
select	menus
spacing
style	sheets
tab	order
tables	in
text	areas
text	fields
text	input	controls
validating	content

frequently	asked	questions	(FAQs)
FTP	(File	Transfer	Protocol)
FTP	programs

desktop
uploading	web	sites	via
web-based

FTP	servers
FTP	sites
FTP	Voyager

G
gaming
gamma	correction
geolocation
get	method
GIF	format
GIMP	(GNU	Image	Manipulation	Program)
GNU	Image	Manipulation	Program	(GIMP)
Google
Google	ads
Google	Analytics
Google	Blogger

Google	Chrome.	See	Chrome
Google	Maps
Google	search	engine
Google	Sites
Google	Web	Fonts
graphics.	See	also	images

creating	your	own
software	for

grouping
content
form	controls
table	columns
table	rows

H
“hacks,”
hash	mark	(#)
head	element
header	element
headers
heading	tags
headings
headlines
height	attribute
height	property
helper	applications
hexidecimal	color
hexidecimal	units
hidden	fields
HostMonster	web	hosting
hot	spots
href	attribute
.htm	extension
HTML.	See	also	code;	HTML5

considerations
current	version	of
FAQs
getting	started	with
“hacks,”
vs.	JavaScript
learning
reference	libraries
“shorthand,”
troubleshooting
validating
viewing

HTML	editors.	See	also	editing
choosing	best
previewing	files	in
WYSIWYG

WYSIWYG	vs.	text-based
html	element
HTML	email.	See	also	email

absolute	paths
bulk	mail
considerations
designing
email	clients
email	service	provider
end-user	display
fixed-width	vs.	liquid	pages
Flash	and
hiding	address
image	blocking
images	in
inline	CSS
links	in
marketing	with
“opt	out”	options
vs.	plain-text	email
pros/cons
RSS	feeds
sending	web	pages
spam.	See	spam
tables	for	layout
testing
unsubscribing
video	in

HTML	entities
.html	extension
HTML	files.	See	also	web	pages

adding	comments
creating
displays	blank	in	browser
formatting	basics
naming	conventions
previewing	in	browser
previewing	in	HTML	editor
setting	up

HTML	standards
HTML	tags.	See	also	specific	tags

attributes.	See	attributes
closing	tags
considerations
deprecated
described
document	setup
embedding
event	handlers
forms
grouping
international

nesting
opening/closing
reference
required
Sectioning
spacing	between
tables
text-level	semantics
types	of

HTML5.	See	also	HTML
caching	applications
canvas
described
Flash	and
free	scripts
geolocation
multitasking	and
new	features
offline	capabilities
references
storage

HTML5	Canvas	Element	Guide
HTML5Rocks	resources
HTML5Studio
HTML/CSS	Reference	Table
HTTP	(Hypertext	Transfer	Protocol)
HTTP	servers
HTTPS	(Hypertext	Transfer	Protocol	Secure)
hyperlinks.	See	links
Hypertext	Markup	Language.	See	HTML
Hypertext	Transfer	Protocol.	See	HTTP
Hypertext	Transfer	Protocol	Secure	(HTTPS)
hyphen	(-)

I
iContact
id	attribute
ID	attribute
ID	names
ID	selectors
Illustrator
image	formats

choosing	between
GIF
JPEG
PNG
saving	images	in	different	formats

image	maps
images

adding	to	pages

alternative	text/titles
animated
in	background.	See	background	images
bitmap
borders
centering
compression
creating	your	own	graphics
customizing
download	time
editing
in	email
figure	captions
file	formats	for.	See	image	formats
floats
in	foreground.	See	foreground	images
GIF
graphics	software
height/width
hot	spots
JPEG
licensed
linking	to	site	content
links	to
locating	sources	for
margins
not	appearing	in	pages
overview
padding
problems	displaying
resolution
Save	for	Web	feature
size
stock
in	table	cells
transparency
vector

img	element
!important	declaration
indenting

paragraphs
quotation	blocks

index	page
initial	values
inline	elements
inline	style	sheets
input	controls
input	element
interactivity.	See	multimedia
internal	style	sheets
international	attributes
Internet.	See	also	web	entries

disseminating	information	on
history	of
publishing	web	sites	on

Internet	Explorer
Internet	service	providers	(ISPs)
IP	addresses
iPadPeek
ISPs	(Internet	service	providers)
italics

J
Java	applets
Java	language
JavaScript.	See	also	scripts

AJAX
basic	example
case	sensitivity
event	handlers
free	scripts
functions
geolocation
“hacks,”
hiding	email	address
vs.	HTML
vs.	Java
launching	new	browser	window
logic
methods
multitasking	and
objects
operators
overview
properties
references
reserved	words
terminology
troubleshooting
variables
Web	Workers

javascripts.com
joshdock.com
JPEG	format

K
keyboard	shortcuts
keywords
kind	attribute

L
label	attribute
label	element
labels

forms
tracks

layers,	in	web	pages
layouts.	See	page	layouts
legend	tag
li	element
line	breaks

table	cells
text
web	pages

link	element
links.	See	also	URLs

absolute
anchors
colors
considerations
to	content
customizing
described
to	downloadable	files
effective
to	email	addresses
to	external	style	sheets
in	forms
to	FTP	sites
Google	Maps
to	images
internal
keyboard	shortcuts
mailto
multimedia	files
navigation	bar
not	working
to	other	web	pages
problems	with
relative
to	RSS	feeds
within	same	web	page
to	site	content
spam-proofing
styles
tab	order
target	windows
titles
video

lists
bullets

changing	layout	of
combining
data
definition
formatting
navigation	bar
nesting
numbered
ordered
overview
padding
spacing
style	sheets
unordered
using

Litmus	tool
local	storage
location,	displaying	on	map
loop	attribute
lossless	compression
lossy	compression
Lyris	program
LZW	compression

M
MailChimp
mailto	links
map,	displaying	user	location	on
map	element
margin	property
margins

alignment
box	model
foreground	images
printed	pages
tables

markup	text
measurement	units
media.	See	multimedia
menus/submenus
meta	content
meta	element
meta	tags
meter	element
method	attribute
Meyer,	Eric
Microsoft	Internet	Explorer.	See	Internet	Explorer
Microsoft	Word
MIME	(Multipurpose	Internet	Mail	Extension)
MIME	types

minus	sign	(-)
mobile	devices

contact	input	controls
geolocation
previewing	web	sites	on

Mobile	Emulator
Mobilizer
monitor	size
Mosaic	browser
Mozilla
Mozilla	Developer	Center
MPEG	codec
MPEG-4	format
MSN	search	engine
multimedia

audio.	See	audio
embedding	in	web	pages
file	extensions
file	types
formatting	content
links	to
overview
plug-ins
sources
video.	See	video

multiple	selectors
Multipurpose	Internet	Mail	Extension.	See	MIME
multitasking

N
name	attribute
named	entities
naming	conventions
National	Center	for	Supercomputing	Applications	(NCSA)
nav	element
navigation
navigation	bar
NCSA	(National	Center	for	Supercomputing	Applications)
nesting

lists
tags

Netscape
Network	Solutions
newsgroups
Nielsen,	Jakob
nonbreaking	space
Notepad
NoteTab
number	inputs
numbered	entities

numbered	lists

O
object	element
object-oriented	applications
objects
Official	Google	Analytics	Blog
Ogg	format
online	reference	libraries
opacity	values
open	source	code
Opera	Mobile	Emulator
optgroup	element
ordered	lists

P
p	element
padding

box	model
content
described
foreground	images
lists
printed	pages
table	cells

padding	property
page	layouts.	See	also	style	sheets

browser	support
considerations
fluid,	multicolumn
fluid,	single-column
header	example
layering	content	within
navigation	example
references
screen	size	and

pages.	See	HTML	files;	web	pages
paragraphs

formatting
indenting
overview

param	tag
password	protection
passwords
pathnames
pattern	attribute
patterns
PDF	(Portable	Document	Format)

PDF	files
percentage	widths
Periodic	Table	of	Elements
Photo-Paint	program
Photoshop
.php	extension
pixels
pixels	per	inch	(ppi)
placeholder	attribute
plug-ins
plus	sign	(+)
PNG	format
point	sizes
Portable	Document	Format.	See	PDF
poster	attribute
PostScript	files
ppi	(pixels	per	inch)
pre	tag
preformatting
preload	attribute
previewing

files	in	HTML	editors
HTML	files	in	browser
web	pages	in	browser
web	sites	on	mobile	devices

printer-friendly	text
printer-specific	style	sheets
progress	bar
progress	element
publishing	web	sites

Q
QuickTime
quotation	blocks
quotation	marks	(")
quotes	(')

R
radio	buttons
raster	applications
readonly	attribute
Really	Simple	Syndication.	See	RSS
reference	libraries
regular	expressions
relative	links
relative	pathnames
relative	percentages
relative	positioning

relative	sizing
relative	URLs
resolution

files
images
screen

RGB	mode
RGB	percentages
RGB	values
RGBA	color
rows.	See	table	rows
rows	attribute
rowspan	attribute
RSS	feeds
RSS	news	readers
rules
ruleset

S
Safari
screen	resolution
screen	size
script	element
scripts.	See	also	JavaScript

adding	current	date/time
creating	dynamic	navigation	bar
formatting	new	window
free
launching	new	windows
online	references
sample

scroll	bars
search	boxes,	forms
Search	Engine	Land
search	engine	optimization	(SEO)
search	engines

considerations
page	rankings
paid	ads	on
submitting	URLs	to

section	element
Sectioning	tags
Secure	Sockets	Layer	(SSL)
security

CGI	scripts	and
encryption
passwords

select	element
selected	attribute
selector

selectors
self-test	answers
semicolon	(;)
SEO	(search	engine	optimization)
SEO	Fast	Start
servers

CGI	scripts	and
dedicated
described
FTP
home	directory
HTTP
index	page
shared
web

session	storage
shared	servers
SimpleText
Site5	web	hosting
SitePoint.com
sites.	See	web	sites
SmartFTP
source	code.	See	code;	HTML
source	element
spacing

blank	spaces
within	code
forms
between	lines	of	text
lists
table	cells
between	tags

spam,	email
spam-proofing	email	links
special	characters

considerations
display	problems
displaying	with	character	entities
overview
references
standard	HTML	entities

spreadsheets.	See	also	tables
src	attribute
srclang	attribute
SSL	(Secure	Sockets	Layer)
standby	attribute
start	attribute
static	positioning
stock	images
style	element
style	sheets.	See	also	CSS;	formatting;	styles

advantages	of

applying	to	files
basics
color	changes	with
combining
defining
embedded
external
fluid,	multicolumn
fluid,	single-column
forms
importing
inline
internal
links	to
lists
page	layout	and.	See	page	layout
precedence
printer-specific
problems	with
setting	up

styled	text
styles.	See	also	formatting;	style	sheets

foreground	images
headings
links
lists
precedence

subheads
subtitles
Sun	Microsystems
syndicated	content

T
tabindex	attribute
table	cells

adding	content
adding	images
aligning	content
color
customizing	text	in
empty
formatting	content
line	breaks
padding
size
spacing
wrapping	content

table	columns.	See	also	table	cells
grouping
spanning

width
table	element
table	rows.	See	also	table	cells

color
grouping
spanning

Table	tags
tables

alignment
background	images
borders
captions
cells.	See	table	cells
color
columns.	See	table	columns
creating
formatting
in	forms
HTML	email	and
margins
missing
overview
problems	displaying
rows.	See	table	rows
size
structure

tag	selectors
tags.	See	HTML	tags
target	attribute
target	windows
td	element
test	answers
testing

HTML	email
web	sites

text.	See	also	characters;	fonts
alignment
bolded
borders
capitalized
centering
code	examples
column	width
emphasis
figure	captions
in	forms
images
indenting
italics
line	breaks
lists
margins

markup
monospaced
onscreen	readability
organizing	on	page
padding
paragraphs.	See	paragraphs
preformat	function
printer-friendly
quotation	blocks
spacing	between	lines
styled
in	table	cells
underlined

text	fields
text	tracks
text-align	property
text-based	editors
text-level	elements
text-level	semantics
Text-Level	Semantics	tags
TextWrangler
th	element
time/date	inputs
title	attribute
title	element
titles

images
links
web	pages

tool	tips
tr	element
track	element
Transmit
transparency
tree	diagrams
troubleshooting

browser	issues
color	problems
common	problems
in	different	environments
displaying	special	characters
HTML	code
image	display
JavaScript
link	problems
style	sheet	problems
table	problems
web	pages

type	attribute

U
underlining
underscore	(_)
uniform	resource	locators.	See	URLs
units	of	measurement
Universal	Serial	Bus.	See	USB
unordered	lists
updating	web	pages
uploading	files
URLs	(uniform	resource	locators).	See	also	links

absolute
considerations
not	working
overview
relative
submitting	to	search	engines

USB	ports
usemap	attribute
user	location

V
validation

client-side
forms
HTML	code

value	attribute
variable	transparency
vector	applications
vector	images
vertical-align	property
VicomsoftFTP
video.	See	also	multimedia

adding	to	web	pages
compression
considerations
in	email
file	formats
links	to
sources

video	element
View	Source	command
Visual	Web	Developer

volume	attribute

W

W3C	(World	Wide	Web	Consortium)
Web	Analytics	Demystified
web	browsers.	See	also	specific	browsers

Adobe	BrowserLab
color	input	and
considerations
date/time	inputs	and
different	versions
features	supported
fonts	and
formatting	new	window
geolocation	feature
images	in.	See	images
launching	new	windows
number	input	and
overview
page	displaying	blank
page	layouts
plug-ins
previewing	HTML	files	in
previewing	web	sites	in
table	display
testing	web	sites	in
text-only
troubleshooting	JavaScript	in
updated	pages	and
validation
versions
viewing	source	code

web	designers
Web	fonts
web	pages.	See	also	HTML	files;	web	sites

background	color
comments
creating	first	page	of	site
displays	blank	in	browser
filename
foregrounds.	See	foreground	images
headers/footers
headline
images	in.	See	images
keywords
line	breaks
links	in.	See	links
multimedia	in.	See	multimedia
organizing	sections	of	content
organizing	text	on
overview
password	protection
previewing
printer-friendly
problems	with	different	browsers

ranking
sending	in	email
setting	outline
structure
text	in.	See	text
titles
troubleshooting
updating
using	layers	in

Web	Reference	JavaScript	Articles
web	rings
web	servers
web	sites.	See	also	Internet;	web	pages

anatomy	of
blogs
competitors
content	management	systems
cookies
creating	first	page
described
developing
domain	names
domain	registration
goals
going	live
hosting	(business)
hosting	(personal)
marketing	tips
navigation
organizing	content
planning	tasks
preparing	for	public	debut
previewing	in	browsers
previewing	on	mobile	devices
publicizing
structure
target	audience
testing
uploading	to	host	computer
URLs	for.	See	URLs
viewing	source	code

Web	Workers
web-based	FTP
Webs	site
Web	Video	Text	Tracks	(WebVTT)
WebVTT	(WebVideo	Text	Tracks)
Weebly
white-space	property
width	attribute
WordPad
Wordpress
World	Wide	Web	(WWW)

World	Wide	Web	Consortium	(W3C)
WS-FTP
WWW	(World	Wide	Web)
www.w3schools.com
WYSIWYG	editors

X
Xara	tools
XHTML	(Extensible	Hypertext	Markup	Language)
XML	(Extensible	Markup	Language)
.xml	extension

Y
Yahoo!	search	engine
Yahoo!	web	hosting
Yola
YummyFTP

http://www.w3schools.com

	Cover
	Title Page
	Copyright Page
	About the Author
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Part I: Laying the Foundation
	Chapter 1: Getting Started
	Understand the Internet as a Medium for Disseminating Information
	The Anatomy of a Web Site
	Web Browsers
	Internet Service Providers

	Be Aware of the Current Version of HTML
	Plan for the Audience, Goals, Structure, Content, and Navigation of Your Site
	Identify the Target Audience
	Set Goals
	Create the Structure
	Organize Content
	Develop Navigation

	Identify the Best HTML Editor for You
	Which Is Best?

	Learn from the Pros Using the View Source Command of Popular Web Browsers

	Chapter 2: Document Setup
	Create an HTML File
	Naming Conventions

	Preview an HTML File in a Browser
	Describe and Apply the Basic HTML Document Format
	Types of Elements
	Types of Tags
	Attributes
	Required Tags
	Capitalization
	Quotation Marks
	Nesting
	Spacing and Breaks Within the Code
	Spacing and Breaks Between Tags
	Spacing Between Lines of Text

	Use Character Entities to Display Special Characters
	Add Comments to an HTML File

	Chapter 3: Style Sheet Setup
	Set Up Style Sheets in an HTML File
	Define the Style
	Define the Values
	Create the Structure
	Understand the Cascade

	Identify the Ways in Which Color Is Referenced in Web Development
	Hexadecimal Color
	RGB Values and Percentages
	Color Names
	So Which Should I Use?

	New and Notable Color Options
	RGBA
	Opacity

	Specify Document Colors

	Chapter 4: Working with Text
	Ensure Onscreen Readability of Text
	Markup Text
	Style Text
	Font Faces
	Font Sizes
	Font Colors
	Other Font Style Properties

	Offer Printer-Friendly Versions of Text Content
	PDFs
	Printer-Specific Style Sheets
	Final Tips for Printer-Friendly Pages

	Chapter 5: Page Structure
	Organize Sections of Content
	Identifying Natural Divisions
	Set the Outline
	Get Inspired

	Organize Text
	Paragraphs
	Line Breaks
	Quotation Blocks
	Box Properties
	Alignment

	Chapter 6: Positioning Page Elements
	Understand the Concept and Uses of Style Sheets for Page Layout
	Create a Single-Column, Centered, Fluid Page Layout
	Break Down the Code
	Pull It All Together
	Browser Support

	Create a Multicolumn Fluid Page Layout
	Break Down the Code
	Pull It Back Together
	Browser Support

	Other CSS Page Layouts
	Layer Content Within a Layout
	Realistic Uses of Layers in Web Pages

	Use External Style Sheets
	Link to an External Style Sheet
	Import an External Style Sheet

	Part II: Adding the Content
	Chapter 7: Working with Links
	Add Links to Other Web Pages
	Absolute Links
	Relative Links

	Add Links to Sections Within the Same Web Page
	Create an Anchor
	Link to an Anchor

	Add Links to Email Addresses and Downloadable Files
	Email Addresses
	FTP and Downloadable Files

	Recognize Effective Links
	Extra Credit

	Style Links
	Default Link Colors
	Beyond Colors

	Customize Links by Setting the Tab Order, Keyboard Shortcut, and Target Window
	Title
	Tab Order
	Keyboard Shortcuts
	Target Windows

	Chapter 8: Working with Images
	Locating Web Image Sources
	Use Stock Images
	Creating Your Own Graphics

	Become Familiar with Graphics Software
	Adobe Photoshop and Illustrator
	Other Options

	Recognize Appropriate Web Image File Formats
	Terminology
	GIF
	JPEG
	PNG
	Choose the Best File Format for the Job

	Use Images as Elements in the Foreground of a Web Page
	Specify the Height and Width of Images
	Provide Alternative Text and Titles for Images
	Link Images to Other Content on a Web Site
	Link the Entire Image
	Link Sections of an Image

	Add Figure Captions
	Style Foreground Images
	Borders
	Floats
	Padding and Margins
	Centering
	Pulling It All Together

	Use Images as Elements in the Background of a Web Page
	Extra Credit

	Chapter 9: Working with Multimedia
	Understand How Plug-ins Are Used with Web Browsers
	Identify the Installed Components
	Recognize File Types, Extensions, and Appropriate Plug-ins

	Link to Different Types of Media from a Web Page
	Embed Different Types of Media onto a Web Page
	Start with the audio and video Elements
	Customize with Attributes
	Specify Sources
	Provide Fallback Options
	Add Text Tracks
	Use embed for Non-native Multimedia Content

	Style Multimedia Content

	Chapter 10: Creating Lists
	Use Ordered Lists in a Web Page
	Use Unordered Lists in a Web Page
	Use Definition Lists in a Web Page
	Combine and Nest Two or More Types of Lists in a Web Page
	Style Lists
	Customize the Bullets
	Customize the Spacing
	Customize the Entire Layout

	Chapter 11: Using Tables
	Understand the Concept and Uses of Tables in Web Pages
	Create a Basic Table Structure
	Table Structure
	Cell Content

	Format Tables Within Web Pages
	Borders and Margins
	Width and Height
	Basic Alignment
	Colors
	Background Images
	Captions

	Format Content Within Table Cells
	Alignment
	Width and Height
	Cell Padding
	Colors
	Prohibit Line Breaks
	Spanning Columns
	Span Rows

	Additional Formatting Techniques for Tables
	Group Rows
	Group Columns

	Chapter 12: Creating Forms
	Understand the Concept and Uses of Forms in Web Pages
	Create a Basic Form
	Text Input
	Radio Buttons
	Check Boxes
	Date and Time Inputs
	Other Number Inputs
	Contact Methods
	Color Selectors
	Select Menus
	Disable Form Elements
	Hidden Fields
	File Uploads
	Buttons

	Validate the Form Content
	Using Patterns

	Provide a Way for Your Form to Be Processed
	The action Attribute
	The method and enctype Attributes

	Chapter 13: Formatting and Styling Forms
	Apply Tables to Forms
	Make Forms More User-Friendly
	Set Tab Order and Keyboard Shortcuts
	Include Labels
	Group-Related Controls
	Add Data Lists
	Show Progress
	Assist Your Users

	Style Forms
	Use Styles and Fieldsets to Eliminate the Table Layout
	Use Styles for Client-Side Validation

	Chapter 14: Beyond Static HTML
	Understand the Concept and Uses of JavaScript and HTML5 APIs in Web Pages
	Troubleshoot JavaScript
	Terminology
	JavaScript Logic

	New and Notable
	Multitasking
	Storage
	Offline
	Geolocation
	Canvas

	Sample Scripts
	Add the Current Date and Time
	Format a New Window
	Create a Dynamic Navigation Bar
	Display a User’s Location on a Map

	Learn More
	Online References and Scripts

	Part III: Going Live
	Chapter 15: Publishing Pages
	Select Possible Domain Names for Your Site
	Determine the Most Appropriate Type of Hosting for Your Site
	Personal Site Hosting
	Business Site Hosting

	Prepare Your Site for Its Public Debut
	Update Meta Content
	Troubleshoot the Code
	Validate the Code
	Preview on Mobile Devices
	Preview in Other Browsers

	Upload Your Site to a Host Computer
	Desktop FTP Programs
	Web-Based FTP

	Test Your Published Site
	Publicize Your Web Site
	Marketing Tips

	Make the Site Live!

	Chapter 16: HTML for Email
	Email Standards Project
	Determine Whether HTML Email Is Appropriate for Your Needs
	The Purpose of Email Is to Communicate
	The End-User Display Is Unknown
	Plain-Text Email Is Safer and Smaller
	But … HTML Email Marketing Works

	Don’t Send Spam
	Email the Right People
	Always Provide a Way to Opt Out
	Adhere to Other FTC Rules

	Identify the Necessary Tools for the Task
	Send Live Web Pages with a Personal Email Account
	Using an Email Service Provider

	Code for Email Readers, Not Web Browsers
	Absolute Paths
	Images
	Tables for Layout
	Inline CSS

	Reference Guide to CSS Support in Email Clients
	Interactivity and Multimedia in HTML Email
	Video in Email
	Flash
	Forms

	Test, Test, Test
	Spam Test

	Part IV: Appendixes
	Appendixes A: Answers to Self Tests
	Chapter 1: Getting Started
	Chapter 2: Page Setup
	Chapter 3: Style Sheet Setup408
	Chapter 4: Working with Text
	Chapter 5: Page Structure
	Chapter 6: Positioning Page Elements
	Chapter 7: Working with Links
	Chapter 8: Working with Images
	Chapter 9: Working with Multimedia
	Chapter 10: Creating Lists
	Chapter 11: Using Tables
	Chapter 12: Creating Forms
	Chapter 13: Formatting and Styling Forms
	Chapter 14: Beyond Static HTML
	Chapter 15: Making Pages Available to Others
	Chapter 16: HTML for Email

	Appendixes B: HTML/CSS Reference Table
	Generic Attributes
	Group Type: Core
	Group Type: Events
	Group Type: Intl

	HTML Tags
	CSS Properties

	Appendixes C: Troubleshooting (FAQs)
	My Page Is Blank in the Browser!
	All I See Is Code in the Browser!
	My Images Don’t Appear!
	I Tried to Change the Font, But Nothing Happened!
	When I Use a Special Character, It Doesn’t Appear!
	My Links Don’t Work!
	My Page Looks Great in One Browser, But Terrible in Another!
	When I Link My Images, They Have Little Colored Dashes Next to Them!
	I Saved My Image as a JPEG, But the Browser Says It’s Not a Valid File Format!
	Strange Characters Are at the Top of My Page!
	I Added Internal Links to Sections of a Web Page, But When I Click Them, the Browser Launches a Brand New Window!
	I Specified One Color, But Got a Totally Different One!
	I Need to Protect Some of My Pages from Unwanted Visitors!
	I Need to Prevent People from Stealing My Images!
	I Tried to Send My Web Page in an Email, But the Page Looked Terrible!
	I Updated My Web Page, But I Don’t See the Changes in the Browser!
	My Whole Page Is _____________! (Fill in the Blank)
	My Page Has a White Background in One Browser, But Not in Others!
	I Shrank My Images, But They Still Take Forever to Download!
	I Embedded a Flash File That Works Fine on My Computer, But Doesn’t Work Properly on Other Computers!
	My Tables Look Fine in One Browser, But Terrible in Another!
	I Still Have Questions!

	Appendixes D: Special Characters
	Standard HTML Entities

	Appendixes E: FileTypes

	Index

