
www.allitebooks.com

http://www.allitebooks.org

<definitions>
 <process>
 <startEvent/>
 <sequenceFlow/>
 <endEvent/>
 </process>
</definitions>

Activiti Designer

Activiti Engine

Process implementation

Web forms

Tasks Jobs

Processes

WS

REST

DB

Activiti provides a complete BPM solution, starting with the Activiti Designer to draw your business processes using BPMN.
The XML output of the Activiti Designer is deployed to the Activiti Engine that runs the process definition. The Activiti Engine
executes automated steps, like calling a web service, as well as manual steps that involve people and web forms.

www.allitebooks.com

http://www.allitebooks.org

Activiti in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Activiti in Action
EXECUTABLE BUSINESS PROCESSES IN BPMN 2.0

TIJS RADEMAKERS

M A N N I N G
Shelter Island
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Sebastian Stirling
Manning Publications Co. Technical proofreader: Andy Verberne
20 Baldwin Road Copyeditor: June Eding
PO Box 261 Proofreader: Nermina Miller
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617290121
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

brief contents
PART 1 INTRODUCING BPMN 2.0 AND ACTIVITI..............................1

1 ■ Introducing the Activiti framework 3

2 ■ BPMN 2.0: what’s in it for developers? 19

3 ■ Introducing the Activiti tool stack 32

4 ■ Working with the Activiti process engine 49

PART 2 IMPLEMENTING BPMN 2.0 PROCESSES WITH ACTIVITI..........85

5 ■ Implementing a BPMN 2.0 process 87

6 ■ Applying advanced BPMN 2.0 and extensions 112

7 ■ Dealing with error handling 146

8 ■ Deploying and configuring the Activiti Engine 169

9 ■ Exploring additional Activiti modules 193

PART 3 ENHANCING BPMN 2.0 PROCESSES223

10 ■ Implementing advanced workflow 225

11 ■ Integrating services with a BPMN 2.0 process 260

12 ■ Ruling the business rule engine 286
v

BRIEF CONTENTSvi
13 ■ Document management using Alfresco 311

14 ■ Business monitoring and Activiti 340

PART 4 MANAGING BPMN 2.0 PROCESSES367

15 ■ Managing the Activiti Engine 369

contents
foreword by tom baeyens xv
foreword by joram barrez xvii
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxviii

PART 1 INTRODUCING BPMN 2.0 AND ACTIVITI1

1 Introducing the Activiti framework 3
1.1 The Activiti tool stack 4
1.2 Getting to know Activiti 5

A little bit of history 5 ■ The basics of the Activiti Engine 6
Knowing the competitors 7

1.3 Installing the Activiti framework 9
1.4 Implementing your first process in Activiti 11

Say hello to Activiti 12 ■ Implementing a simple book order
process 14

1.5 Summary 18
vii

CONTENTSviii
2 BPMN 2.0: what’s in it for developers? 19
2.1 Taking a closer look at BPM 20

Walking around the BPM life cycle 21

2.2 Evolution to BPMN 2.0 22
Wasn’t there a standard called WS-BPEL? 22 ■ And then there
was BPMN 2.0 23 ■ Getting your head around all the BPMN 2.0
constructs 24

2.3 Introducing BPMN 2.0 from a developer’s viewpoint 26
High-level modeling with BPMN 2.0 26 ■ Detailed process modeling 28

2.4 Summary 31

3 Introducing the Activiti tool stack 32
3.1 Working with the Activiti Modeler 33

Installing the Activiti Modeler 33 ■ Modeling processes with the
Activiti Modeler 34

3.2 Adding technical details with the Activiti Designer 36
Getting up and running with Activiti Designer 36 ■ Designing a
process from scratch 37 ■ Testing processes with the Activiti
Designer 39 ■ Importing a Modeler process into the Designer 42

3.3 Managing the Engine using the Activiti Explorer 45
3.4 Processes and tasks with the Activiti Explorer 46
3.5 Summary 48

4 Working with the Activiti process engine 49
4.1 Creating an Activiti development environment 50

Getting familiar with the Activiti libraries 50 ■ Mavenizing your
Activiti project 51 ■ Logging in the Activiti Engine 53
Developing and testing with the Activiti Engine 54

4.2 Using the Activiti Engine API 56
Starting process instances with the RuntimeService 57 ■ Working
with user tasks via the TaskService 59 ■ Deleting process
definitions with the RepositoryService 64 ■ Creating users, groups,
and memberships with the IdentityService 66 ■ A sneak peek into
the past with the HistoryService 67

4.3 Using plain Java to do BPM 72
Java service task with class definition 73 ■ Introducing asynchronous
behavior 75 ■ Java service task with class definition and field
extensions 76 ■ Java service task with method and value expressions 78

CONTENTS ix
4.4 Using Spring with Activiti 79
Creating a generic Spring configuration for Activiti 79
Implementing a Spring-enabled unit test for Activiti 81

4.5 Summary 84

PART 2 IMPLEMENTING BPMN 2.0 PROCESSES
WITH ACTIVITI ...85

5 Implementing a BPMN 2.0 process 87
5.1 Introducing a real business process 88

Analyzing the loan request process 88 ■ Taking a process model to
an XML process file 89

5.2 Developing script and service tasks 90
Scripting in the Activiti Engine 90 ■ Implementing a Java service
task 92 ■ Creating the BPMN 2.0 XML file 93 ■ Testing the
process with JUnit 94

5.3 Interacting with user tasks and Activiti forms 95
Creating forms in Activiti 95 ■ Adding a task form on a start
event 96 ■ Testing forms using the FormService 97 ■ Adding
user tasks with an escalation workflow 98

5.4 Handling decisions and sending email 101
Controlling flow with an exclusive gateway 101 ■ Implementing
an email service task 102

5.5 Deploying processes to the Activiti Engine 106
Understanding the Activiti BAR file 106 ■ Deploying processes to
the Activiti Engine 107

5.6 Testing the process with Activiti Explorer 109
5.7 Summary 111

6 Applying advanced BPMN 2.0 and extensions 112
6.1 Using BPMN 2.0 subprocesses 113

Background to BPMN subprocesses 113 ■ Implementing embedded
subprocesses 114 ■ Implementing standalone subprocesses 120

6.2 Working with BPMN 2.0 parallel gateways 126
Implementing a process with a parallel gateway 127 ■ Testing a
process with a parallel gateway 129

6.3 Adding a JPA extension to your process 130
Modeling a process with a database entity 131 ■ Implementing a process
with JPA extensions 132 ■ Testing a process with JPA extensions 136

CONTENTSx
6.4 Using execution and task listeners 137
Modeling a process with execution and task listeners 138
Implementing execution and task listeners 139 ■ Testing the event
stack list 142

6.5 Summary 144

7 Dealing with error handling 146
7.1 Choosing between error handling options 147

Using error end and boundary events 147 ■ Using Java logic for
error handling 149 ■ Using both error handling approaches
together 151

7.2 Implementing error handling with BPMN 2.0
constructs 152
Designing the sales opportunity process solution 152 ■ Modeling
the sales opportunity business process 154 ■ Implementing a
BPMN process with the Activiti Designer 155 ■ Implementing
service tasks that invoke a web service 160 ■ Testing the sales
opportunity process solution 163

7.3 Implementing error handling using Java logic 165
7.4 Summary 168

8 Deploying and configuring the Activiti Engine 169
8.1 Choosing between deployment options 170

Embedding the Activiti Engine in a Java application 170 ■ Using
a standalone Activiti Engine instance 172 ■ Choosing between the
deployment options 175

8.2 Using a Spring-managed Activiti Engine 176
Creating a process engine from a config file or Java 176 ■ Creating
a process engine from a Spring configuration 177

8.3 Configuring the Activiti Engine 181
Basic configuration overview of the Activiti
Engine 181 ■ Configuring the Activiti Engine database
options 182 ■ Exploring other configuration options 184

8.4 REST communication with the Activiti Engine 185
Introducing the Activiti REST API 185 ■ Implementing a new
Activiti REST service 187

8.5 Summary 192

CONTENTS xi
9 Exploring additional Activiti modules 193
9.1 Spring annotations 194
9.2 Building an Activiti JEE 6 application 196

Implementing EJB service tasks 197 ■ Implementing a JSF process
application using CDI 202

9.3 Deploying Activiti to an OSGi container 209
Introducing the OSGi standard 209 ■ Using Apache Karaf as an
OSGi container 210 ■ Installing the Activiti OSGi bundle 211
Getting a list of process definitions in Apache Karaf 215
Building a process and task OSGi bundle 217

9.4 Summary 221

PART 3 ENHANCING BPMN 2.0 PROCESSES223

10 Implementing advanced workflow 225
10.1 Going beyond a simple user task 226

Working with subtasks 226 ■ Delegating tasks 231
Implementing the four-eye principle 233

10.2 Managing the user identities in an LDAP server 236
Installing Apache Directory Server 237 ■ Writing LDAP query
logic for the Activiti Engine 241

10.3 Implementing the BPMN 2.0 multi-instance activity 246
Configuring a multi-instance activity 246 ■ Implementing a
multi-instance embedded process 247

10.4 Custom form types and external form rendering 253
Implementing a custom form type 253 ■ Using external form
rendering 257

10.5 Summary 259

11 Integrating services with a BPMN 2.0 process 260
11.1 Invoking services from a BPMN 2.0 process 261

Calling services via a service task 261 ■ Separating process logic
from integration logic 262

11.2 Using the BPMN 2.0 web service task 264
11.3 Integrating with Apache Camel 268

Introducing Apache Camel 268 ■ Sending and receiving process
messages with Apache Camel 272

CONTENTSxii
11.4 Integrating with Mule ESB 276
Introducing Mule ESB 276 ■ Sending and receiving process
messages with Mule ESB 280

11.5 Summary 285

12 Ruling the business rule engine 286
12.1 Introducing business rule management 287

What’s a business rule? 287 ■ Business rule management
systems 288 ■ Using different types of rules in business
processes 289 ■ Business rule management in BPMN 2.0 291

12.2 Entering the rule world of Drools 292
Drools, the business logic integration platform 292 ■ Introducing
Drools Expert 293 ■ Hands-on with Drools Expert 296 ■ Using
spreadsheets to create Drools decision tables 298

12.3 Integrating Drools with Activiti 301
Activiti and the business rule task 301 ■ Using business rules in a
process definition 303

12.4 Creating a web-based rule editor 307
Introducing flexibility with a custom rule authoring application 307

12.5 Summary 309

13 Document management using Alfresco 311
13.1 Introducing Alfresco Community 312

Installing Alfresco Community 312 ■ Introducing Activiti
integration in Alfresco 315

13.2 Using CMIS to store and retrieve documents 320
Retrieving folder content from Alfresco using CMIS 320 ■ Storing
a new document version 323

13.3 Adding documents to a BPMN 2.0 process definition 326
Working with task and process instance attachments 326
Implementing a document-aware process definition 328
Deploying and testing the document-aware process definition 336

13.4 Summary 338

14 Business monitoring and Activiti 340
14.1 Monitoring business processes 341

Introducing business activity monitoring (BAM) 341
Introducing complex event processing (CEP) 343
Download from Wow! eBook <www.wowebook.com>

CONTENTS xiii
14.2 Meeting the Esper framework 345
Kick-starting Esper 345 ■ Introducing event windows 347

14.3 Monitoring Activiti processes with Esper 355
Integrating Activiti and Esper 355 ■ Testing the Activiti and
Esper setup 356

14.4 Monitoring Activiti with a Vaadin dashboard 359
An Activiti BAM architecture 359 ■ Producing REST events with
Activiti 360 ■ Setting up the Vaadin application with the Esper
REST service 362 ■ Monitoring Activiti processes with a Vaadin
dashboard 364

14.5 Summary 366

PART 4 MANAGING BPMN 2.0 PROCESSES367

15 Managing the Activiti Engine 369
15.1 Working with the Activiti database 370

Understanding the Activiti runtime execution database model 370
Understanding the Activiti history database model 377 ■ Creating
the Activiti database 379 ■ Upgrading the Activiti database 380

15.2 Dealing with process versioning 381
15.3 Understanding the job executor 384
15.4 Building an administrator dashboard 386
15.5 Summary 392

appendix A Working with the source code 395
appendix B BPMN 2.0 supported elements in Activiti 398

index 418

foreword by tom baeyens
Business processes represent the core functions of an organization. If these core
functions are implemented inefficiently, a company gives its competitors an easy
advantage. Business Process Management (BPM) is nothing more than ensuring that
an organization is run well and remains in good shape. For small companies, a single
person might be able to oversee everything that is going on and deal with situations
as they occur. But when companies grow larger and processes expand, it’s harder to
maintain control. Work is delegated, people start optimizing their own responsibili-
ties, and an overview can quickly get lost. Over the long run, constant monitoring
and improving of business processes are what separates good organizations from
excellent ones.

 One aspect of managing business processes is automation. Despite big advance-
ments in software technology in the last decade, building custom software to support
business processes remains expensive for enterprises.

 Traditional BPM Systems (BPMSs) have attempted to simplify the creation of soft-
ware for monitoring business processes. The biggest advantage of BPMSs is that they’re
based on flowchart diagrams. Business managers and technical team members can
understand these diagrams, which helps bring communication of requirements to a
new level.

 The bottleneck of traditional BPMSs has been flexibility. BPMSs that focus on tech-
nical integration with backend systems over web services (for example, BPEL) are not
suited for business people. And BPMSs that focus on business diagrams are typically
limited in backend integration and scripting.
xv

FOREWORD BY TOM BAEYENSxvi
 This lack of flexibility is why I started building a home-brewed process engine back
in 2002. Initially, the goal was to build an interpreter for state machines. It was much
later that I heard from many developers that they had gone through the same initial
phase. Originally, my process engine was intended as an internal project for which I
was doing Java consulting.

 Without expectations and without really knowing what I was getting myself into, I
published the project on SourceForge as jBPM. My reaction to the first forum post was,
“Cool! Someone found my engine!”—and this motivated me to improve. Many more
forum posts kept me going until JBoss came along and asked me to develop it further.

 After the Business Process Model and Notation (BPMN) standard was introduced,
we realized that it would be crucial to have an Apache-licensed implementation of
BPMN. jBPM’s LGPL could pose a problem for mass adoption. At the same time,
Alfresco needed an Apache-based BPMN engine, so the company hired me, and that is
how Activiti was born. Because of the different licenses, we couldn’t use any of the
jBPM code, so we had to write it from scratch at Alfresco: but this became an opportu-
nity to revisit all the key architectural decisions that had been made before.

 During the evolution of jBPM, leading up to Activiti, I took a new approach to
the old problem. Initially, the focus was on state machines, but eventually we con-
structed an engine to match the way business people and developers collaborate. We
designed the engine in such a way that it would allow business people to define the
graphical flow of the process and, at the same time, give developers the opportunity
to bind program logic inside the process flows. In addition, the engine was light-
weight and integrated easily into any Java environment. The result was what we call
embeddable BPM.

BPMN is a recent standard that has emerged from a long list of predecessors in the
BPM space. It describes the shapes and connections for drawing business-process dia-
grams as well as their meanings and file formats. BPMN is different because of its clear
focus on the business side and process modeling, whereas earlier standards focused
more on the technical aspects.

 In this book, Tijs has included concrete instructions for developers, technical man-
agers, and business analysts to start building BPMN process solutions with Activiti. The
book includes a comprehensive overview of the Activiti framework, the Activiti
Engine, and BPMN. But Tijs goes beyond the basics and describes how to integrate
these with a rule engine and web-based services.

 The reader will get a thorough understanding of BPM technology as it is applied in
today’s enterprise environments. This is definitely the most practical guide to BPMN
using Activiti as the engine.

 TOM BAEYENS

 ACTIVITI AND JBPM FOUNDER

 CHIEF BPM ARCHITECT, ALFRESCO

foreword by joram barrez
A picture is worth a thousand words

I believe this is a saying that exists in every culture around the world. And, truly, our
minds are impressive image-processing machines, spotting structure and anomalies in
a fraction of a second. Yet we tend to base much of our daily communication, both
personal and professional, on the written word.

 As software developers, we live in the most interesting of times, with the World
Wide Web, the mobile (r)evolution, and the movement to the cloud with a clear focus
on consumers. Yet the building process of that software remains complex—we pro-
duce pages and pages of lengthy documents to describe what we would like to see
emerge from that ocean of zeroes and ones.

 What if there were a way to improve this situation? As it happens, improving this
situation is the main goal of those who are involved with BPM.

 I started my career as a typical Java developer, a generalist doing tids and tads of
everything involving Java. One day, out of the blue, I was assigned to a jBPM project. At
that point, I had never heard of BPM or anything close to it. Long story short: I fell in
love. I devoted my days, nights, and weekends to understanding the inner workings of
the engine. Open source is a powerful potion, and I drank it. The community was
hard to please (I got an “rtfm” on my first post) but responsive to those who were will-
ing to learn and to share their knowledge.

 It was, as the French would say, a coup de foudre (love at first sight). I worked on BPM
projects coding during the day, and I lurked on the forums at night. And then it hap-
pened. About a year after my first encounter with BPM, I met Tom Baeyens, the proj-
ect lead of jBPM at the time, at a seminar where we both were speakers. We connected
xvii

FOREWORD BY JORAM BARREZxviii
immediately as fellow geeks. A year later, I joined his team at JBoss and followed him
subsequently to help build Activiti at Alfresco.

 Why the switch? The answer is simple. There was no room for an Apache-licensed
engine at JBoss at that time, but we knew that an Apache license was crucial due to the
advent of the BPMN 2.0 standard. If we weren’t going to do it, someone else would.

 Putting all our experiences together—what worked, what didn’t work, and what
rocked—we started to build a BPMN 2.0 engine at the beginning of 2010, an engine that
would do exactly what I started my story with: improve communication between those
who need software solutions and those who build software by using flowchart-like dia-
grams. Expressing how your business works with diagrams is hard, but it is worth the
effort. Visualization is a powerful tool and, in the past, I often saw clients change their
way of working after seeing how the different steps connected. The BPMN 2.0 standard
is of great value here. It may seem simplistic, but by defining how certain shapes have
specific meanings, not only can you visualize your workflows, you can find others in the
industry who speak the same language. The fact that version 2.0 also includes execution
semantics adds the next level of power: not only do the diagrams become standardized,
but now you can switch the engine that’s executing the diagrams with any BPMN 2.0–
compliant engine—not that there is any reason to switch from Activiti, of course!

 As a Java developer, I used to loathe BPM suites—big black boxes that cost tons of
money to produce pictures. Every sane developer understands that pictures will never
make it into stable, performant software. That is why you will love Activiti: it is built
with benefits for business users in mind, without forgetting the developers. All the
code is open source—if something bothers you or isn’t clear, you can join our discus-
sions on the forum. Activiti in its simplest form is a library, a JAR, one among many,
embeddable in every Java project, be it EE, Spring, or OSGi. With Activiti, you write
unit tests just as you are used to doing. But instead of testing code, you are testing pro-
cesses—based on diagrams that you and the business people discussed and under-
stood—enriched with Java code to make them do exactly what you want them to do.
Then you integrate them with other components exactly as you envisioned.

 I touch only briefly here on the benefits of BPM and the power of Activiti. Tijs does
an outstanding job of covering every facet of Activiti in great detail, and I’m excited
and thankful that he put so much time into this book project. Software and open
source frameworks in general rise or fall with the available documentation, and it’s my
belief that this is a superb book that provides much-needed, detailed information.
There currently is no better source of knowledge on Activiti and BPMN 2.0. Period.

 Think about it: processes are all around us. Without processes, a company
wouldn’t exist or, at least, it wouldn’t make money for long. Every company needs pro-
cesses to fulfill its goals. And in this quickly changing world, opportunities exist every-
where, from mobile integration in the workflow to massive cloud services
orchestrations. It’s up to you to grab them.

 JORAM BARREZ

 COFOUNDER OF ACTIVITI

 CORE ACTIVITI DEVELOPER, ALFRESCO

preface
Writing this book was a life-changer for me. After I wrote Open Source ESBs in Action for
Manning a few years ago, I focused on my daily job for some time, working with open
source enterprise integration frameworks like Mule, Camel, ServiceMix, and Spring
Integration. My work, over time, drove me to designing and developing processes and
BPM, and I started using jBPM and WebSphere Process Server. Then I learned that the
founder of the jBPM project, Tom Baeyens, was leaving JBoss to work on a new open
source project, which was in stealth mode at that time (early 2010). When the first
alpha version of Activiti was released, I told myself I had to contribute to that project,
one way or another.

 A piece that was missing in the first stages of the Activiti project was an Eclipse
plug-in. I had some email conversations with Tom about contributing the plug-in to
Activiti. We met and he told me that his goal was to disrupt the process engine space
with the Activiti project. My enthusiasm grew even more and I offered my time to start
working on a first version of the Activiti Designer. Together with my former col-
leagues, Tiese Barrell, Yvo Swillens, and Ron van Liempd, we were able to deliver a
first version within a couple of months.

 As we became part of the Activiti developer community, my hands were itching to
start writing a book about Activiti. I felt that a great open source process engine would
need a detailed book to describe all the possibilities and potential it offers. Manning
was eager to publish a book about Activiti, and, together with Ron, we started writing
in the autumn of 2010. We had a hard time keeping up with the frequent releases and
the new functionality that kept on coming. But, it also was a lot of fun to be able to
write about a new functionality that was just (or about to be) released.
xix

PREFACExx
 After a few meet-ups with the Activiti developer community and a couple of nice
dinners with the Activiti team, we began discussing the possibility of my joining
Alfresco to work on Activiti. In May 2011, I accepted the offer and was able to begin
working on Activiti full-time.

 In the meantime, the writing of this book fell a little behind schedule. There was
so much interesting work to be done developing the Activiti Designer, working on
the Activiti Engine, and starting in a new job, that time caught up with me. After I
had settled in a bit, I took up the writing task again and began working on the
remaining chapters.

 So here I am, at the end of the process. I’ve switched from being a consultant to an
open source software engineer, and I’m close to completing my second book. And, just
like with my previous book, I have a new family addition coinciding with the book’s
release. I hope you will enjoy reading this book as much as I loved writing it!

acknowledgments
Many people deserve thanks for helping me with this book project. First of all, I want
to thank Ron for starting this adventure with me and for his contributions to the book.

 A big thank you to the guys on the Activiti team—Tom, Joram, and Frederik—for
starting this great open source project and for all the help they gave me during the writ-
ing of the book. Special thanks to Tom and Joram for kindly contributing the forewords.

 I’d also like to thank the guys at camunda (Bernd and Daniel, in particular) for
their contribution to the Activiti project and for their help when I was writing about
the camunda fox cycle and the Activiti CDI module.

 Thanks to Balsamiq Studios and Giacomo “Peldi” Guilizzoni for providing licenses
for their great Balsamiq tool. I really enjoyed creating the graphics for this book.

 Thanks to Tiese Barrell and Yvo Swillens for their enthusiasm and development
work on the Activiti Designer. Together we became part of the great Activiti devel-
oper community.

 A special thank-you to Andy Verberne for his work on the technical proofread of
the final manuscript (again).

 Without the patience of my lovely Ankie, the writing of this book would not have
been possible. She managed to love me, even after long working days and in spite of
my sometimes grumpy communication when examples were not working as expected.
Liv and Noah, thank you for all the joy you bring to my life. Thanks to my parents and
parents-in-law for their love and interest in my writing.

 Thanks also to the following reviewers of the manuscript who read it and provided
feedback during the various stages of its development: Gil Goldman, Michał Minicki,
xxi

ACKNOWLEDGMENTSxxii
Sven Vintges, Joram Barrez, Jeff Davis, Gordon Dickens, Roy Prins, Claus Ibsen, Feder-
ico Tomassetti, Greg Helton, Mykel Alvis, and Nicolas Leroux.

 Finally, my appreciation to everyone at Manning, starting with publisher Marjan
Bace, my editor Sebastian Stirling, and the production team of June Eding, Nermina
Miller, Mary Piergies, Gordan Salinovic, and Janet Vail.

about this book
Activiti is an open source Business Processing Model and Notation (BPMN) 2.0 process
engine framework that provides an environment for running your business and tech-
nical processes. It’s a project funded by Alfresco and established by jBPM founder Tom
Baeyens. Activiti provides much more functionality than simply running BPMN 2.0 pro-
cesses in a rock-solid way. It provides a web-based modeling tool for business analysts, an
Eclipse plug-in for developers, and a web application to work with and manage the pro-
cesses. In addition, Activiti community members, including SpringSource, FuseSource,
MuleSoft, and camunda, have implemented further functionality like full Spring inte-
gration, an OSGi bundle, Mule and Camel integration, and a CDI module.

 This book is written by one of the Activiti core developers and the lead developer
of the Activiti Designer component. It contains loads of examples to help you under-
stand the BPMN 2.0 language and how to work with all the extensions Activiti provides.
In the final chapters, the book goes beyond Activiti’s core functionality and shows how
to do CMIS communication from a process definition and how to implement a busi-
ness activity monitoring environment using the open source Esper framework.

 You should not expect to find examples of all the nitty-gritty details of the BPMN 2.0
specification. Instead, the focus is on Activiti-supported elements and the most common
use cases for developing process definitions.

 You also won’t find in-depth discussions of the business side of BPM. Many other
books focus on the business perspectives of BPM; this book focuses on the technical
aspects of BPM, mostly on BPMN 2.0 and Activiti.
xxiii

ABOUT THIS BOOKxxiv
Who should read this book?

This book is written for everyone who’s interested in learning about Activiti. In addi-
tion, it’s a great way to learn about BPMN 2.0 from a practical perspective. Every devel-
oper, process designer and analyst, or architect will benefit from the information and
examples provided to learn about the basics and details of the Activiti framework.
With the technical perspective offered in this book, you shouldn’t be afraid of the Java
and XML code listings.

Roadmap

The book has 14 chapters divided into 4 parts:

■ Part 1 Introducing BPMN 2.0 and Activiti
■ Part 2 Implementing BPMN 2.0 processes with Activiti
■ Part 3 Enhancing BPMN 2.0 processes
■ Part 4 Managing BPMN 2.0 processes

There are also two appendixes. Appendix A explains how to work with the source
code examples, and appendix B covers elements supported by Activiti BPMN 2.0.

 Part 1 shows you how to get started with the Activiti framework and explains the
background of the BPMN 2.0 standard. You are introduced to the different compo-
nents of the Activiti framework and developing with the Activiti API.

 Chapter 1 introduces the Activiti framework and shows you how to set up the Activ-
iti default environment. At the end of the chapter, you implement your first simple
BPMN 2.0 process definition and test it with a simple JUnit test.

 Chapter 2 provides a short introduction to Business Process Management. Here,
you’ll learn about the background of the BPMN 2.0 standard, compared with other
standards like WS-BPEL. Finally, you are introduced to core BPMN 2.0 elements.

 Chapter 3 provides an overview of all the components of the Activiti framework,
including the Activiti Modeler, Activiti Designer, Activiti Explorer, and the camunda
fox cycle. Using a simple process example, we walk through the components and
you’ll learn how to model, design, and deploy a BPMN 2.0 process definition.

 Chapter 4 gives an overview of the Activiti API, starting with short code examples
illustrating the main Activiti interfaces. Then, you’ll learn how to implement Java
logic in a BPMN 2.0 process definition and how to work with Spring beans.

 In part 2, we shift the focus from understanding the Activiti framework and
BPMN 2.0 to using them to develop process definitions. We discuss and use most of
the supported BPMN 2.0 elements and talk about important topics like error han-
dling and deploying process definitions to an Activiti Engine. In the final chapter, we
explore additional modules provided by the Activiti framework, such as CDI
and OSGi.

 Chapter 5 shows how to implement a full-blown process definition using Activiti.
We explore the workflow and form capabilities of the Activiti Engine and you’ll learn
how to use an email task to send emails during process execution.

ABOUT THIS BOOK xxv
 Chapter 6 introduces a number of advanced BPMN 2.0 constructs and Activiti
extensions. You’ll learn about multiple execution paths using the parallel gateway and
how to structure larger process definitions using standalone or embedded subpro-
cesses. You also are introduced to the JPA and listener Activiti extensions.

 Chapter 7 describes ways to deal with error handling in BPMN 2.0 processes. You
can use the standard error end event and boundary error event or implement an
approach using Java exceptions and multiple outgoing sequence flows.

 Chapter 8 talks about ways to deploy the Activiti Engine in your environment. You
can choose an embedded approach, using only Activiti JARs, or go for a standalone
approach using the Activiti REST API. At the end of chapter, you’ll also learn how to
implement an additional REST service when necessary.

 Chapter 9 shows how to make use of the Activiti OSGi bundle and the CDI module.
With the OSGi bundle, you can deploy Activiti on an OSGi container like Apache Karaf
and take advantage of the flexibility offered by that platform. The Activiti CDI module
provides integration with the Contexts and Dependency Injection JEE framework. You
can use handy annotations to quickly build a JSF process and workflow application.

 In part 3, we focus on more advanced features and extensions to the Activiti
framework. In the previous two parts, we looked at the basic functionality of Activiti
and BPMN 2.0, so now it’s time to step up and talk about advanced ways of using
Activiti. We integrate Activiti with the Drools rule engine, the Alfresco document
management system, Mule and Camel for external communication, and Esper for
business activity monitoring.

 Chapter 10 discusses advanced workflow features with subtasks, task delegation,
and the four-eye principle workflow pattern. We also show how to use an LDAP server
for identity management and how to use the BPMN 2.0 multi-instance construct. And,
finally, we look at how to implement additional form types and go for an external
form-rendering approach.

 Chapter 11 shows how you can communicate with external services and applica-
tions to execute business logic that is necessary during process execution. With the
Activiti Mule and Camel modules, it’s simple to use the powerful features these frame-
works provide to implement all kinds of communication logic.

 Chapter 12 provides a detailed overview of how to use the Drools rule engine with
Activiti business rule tasks. We start with an introduction to the Drools framework and
implement a couple of rule examples. After you implement a process definition con-
taining two business rule tasks, you’ll learn how to implement a Vaadin web applica-
tion where you can change deployed rules in real time.

 Chapter 13 shows how Activiti is used in the open source Alfresco product and how
you can use the CMIS standard (with Apache Chemistry) to communicate with
Alfresco from a process definition.

 Chapter 14 introduces business activity monitoring with Activiti using the open
source Esper framework. You’ll learn how to fire events to Esper using Activiti listen-
ers and how to implement eventing logic in Esper to combine events into useful

ABOUT THIS BOOKxxvi
management information. Finally, you’ll see how you can implement a simple Vaadin
dashboard to monitor business processes running on the Activiti Engine.

 In part 4, we leave behind the development of process definitions and focus on
running process definitions on the Activiti Engine in a production environment. This
part consists of one chapter.

 Chapter 15 discusses important topics that are needed to run processes on the Activ-
iti Engine successfully. First, we look at the database model of the Activiti Engine in
detail, and then we move on to dealing with process versioning. Then, you’ll see how
jobs are handled in the Activiti Engine using the asynchronous job executor implemen-
tation. And, finally, you’ll learn how you can extend the Activiti Explorer with additional
management functionality, like a report of all running and completed process instances.

 Appendix A provides an overview of all the projects you’ll find in the book’s source
code. Pointers are given on where each project is used in which chapter of the book.
Appendix B provides a detailed overview of the BPMN 2.0 elements supported by the
Activiti Engine.

Code conventions and downloads

Source code in listings or in text appears in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered cueballs link to additional explanations
that follow the listing.

 There are many code examples in this book. The process definitions are described
using XML code that shows the BPMN 2.0 XML elements. The process logic, like Java
service tasks and listeners, is implemented in Java.

 The source code for the book is divided into a number of projects. The bpmn-
examples project contains the most example code and the other projects are used to
implement special artifacts like web applications. For a full description of the source
code projects, please refer to appendix A.

 Source code for the examples in this book can be downloaded from the pub-
lisher’s website at www.manning.com/ActivitiinAction. There’s also a special website
devoted to this book at www.bpmnwithactiviti.org.

Author Online

Purchase of Activiti in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/ActivitiinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the

ABOUT THIS BOOK xxvii
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Tijs Rademakers is a senior software engineer at Alfresco, where he is a member of the
Activiti core development team. He is an Activiti committer to the Activiti Engine and
lead developer for the Activiti Eclipse Designer. Tijs is coauthor of Open Source ESBs in
Action (Manning, 2008) and has over 10 years of software engineering experience,
with a focus on open source BPM and enterprise integration frameworks. He lives in
Valkenswaard in the Netherlands with his girlfriend and two children.

about the cover illustration
The figure on the cover of Activiti in Action is captioned “Member of the Eastern
Goths,” also known as the Ostrogoths, an ancient Germanic tribe that in the late fifth
century AD established a large kingdom in Italy. Their descendants still live in north-
ern Italy today. This illustration is taken from a recent reprint of Balthasar Hacquet’s
Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published
by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an
Austrian physician and scientist who spent many years studying the botany, geology,
and ethnography of many parts of the Austrian Empire, as well as the Veneto, the
Julian Alps, and the western Balkans, inhabited in the past by peoples of many differ-
ent tribes and nationalities. Hand drawn illustrations accompany the many scientific
papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of Alpine and Balkan regions just 200 years ago. This was
a time when the dress codes of two villages separated by a few miles identified people
uniquely as belonging to one or the other, and when members of an ethnic tribe,
social class, or trade could be easily distinguished by what they were wearing. Dress
codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitant of one continent from another
and today’s inhabitants of the picturesque towns and villages in the Italian Alps are
not readily distinguishable from residents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.
xxviii

Part 1

Introducing
 BPMN 2.0 and Activiti

This first part of the book provides an introduction to the Activiti framework
and the background about the BPMN 2.0 standard. In chapter 1, we’ll cover how
to set up an Activiti environment, starting with the download of the Activiti
framework. In chapter 2, you’ll be introduced to the main elements of the BPMN
2.0 standard in order to create process definitions. Chapter 3 offers an overview
of the Activiti framework’s main components, including the Activiti Designer
and Explorer. Finally, in chapter 4, we’ll discuss the Activiti API with several short
code examples.

Introducing
 the Activiti framework
Every day, your actions are part of different processes. For example, when you
order a book in an online bookstore, a process is executed to get the book paid for,
packaged, and shipped to you. When you need to renew your driver’s license, the
renewal process often requires a new photograph as input. Activiti provides an
open source framework to design, implement, and run processes. Organizations
can use Activiti to implement their business processes without the need for expen-
sive software licenses.

 This chapter will get you up and running with Activiti in 30 minutes. First, we’ll
take a look at the different components of the Activiti tool stack, including a Mod-
eler, Designer, and a REST web application. Then, we’ll discuss the history of the
Activiti framework and compare its functionality with its main competitors, jBPM
and BonitaSoft.

This chapter covers
■ Introduction to Activiti
■ Installing the Activiti framework
■ Implementing a BPMN 2.0 process
3

4 CHAPTER 1 Introducing the Activiti framework
 Before we dive into code examples in section 1.4, we’ll first make sure the Activiti
framework is installed correctly. At the end of this chapter, you’ll have a running Activ-
iti environment and a deployable example.

 First, let’s look at Activiti’s tool stack and its different components, including the
modeling environment, the engine, and the runtime explorer application.

1.1 The Activiti tool stack
The core component of the Activiti framework is the process engine. The process
engine provides the core capabilities to execute Business Process Model and Notation
(BPMN) 2.0 processes and create new workflow tasks, among other things. You can
find the BPMN specification and lots of examples at www.bpmn.org, and we’ll go into
more detail about BPMN in chapter 2. The Activiti project contains a couple of tools
in addition to the Activiti Engine. Figure 1.1 shows an overview of the full Activiti
tool stack.

 Let’s quickly walk through the different components listed in figure 1.1. With the
Activiti Modeler, business and information analysts are capable of modeling a BPMN 2.0-
compliant business process in a web browser. This means that business processes can eas-
ily be shared—no client software is needed before you can start modeling. The Activiti
designer is an Eclipse-based plugin, which enables a developer to enhance the modeled
business process into a BPMN 2.0 process that can be executed on the Activiti process
engine. You can also run unit tests, add Java logic, and create deployment artifacts with
the Activiti Designer.

 In addition to the design tools, Activiti provides a number of supporting tools.
With Activiti Explorer, you can get an overview of deployed processes and even dive
into the database tables underneath the Activiti process engine. You can also use Activ-
iti Explorer to interact with the deployed business processes. For example, you can get
a list of tasks that are already assigned to you. You can also start a new process instance
and look at the status of that newly created process instance in a graphical diagram.

Design tools
Activiti Modeler

Non−technical modeling
(web−based)

Activiti Designer

Technical modeling
(Eclipse−plugin)

Import BPMN XML
file into the
Activiti Designer

Process engine
Activiti Engine

The core process
engine, which can be

embedded in your Java
(web) application or can

run standalone

Activiti REST
Web application that

starts the process
engine and provides a

REST API

Supporting tools
Activiti Explorer

Use processes and
tasks and process

engine management
(web−based)

Deploy simple
processes to the

engine

Deploy advanced
processes to the

engine

Start processes,
tasks and

manage engine

Figure 1.1 An overview of the Activiti tool stack: in the center, the Activiti process engine, and on
the right and left sides, the accompanying modeling, design, and management tools. The grayed-out
components are add-ons to the core Activiti framework.

5Getting to know Activiti
Finally, there’s the Activiti REST component, which provides a web application that
starts the Activiti process engine when the web application is started. In addition, it
offers a REST API that enables you to communicate remotely with the Activiti Engine.

 The different components are summarized in table 1.1.

You can’t start developing without a clear understanding of the Activiti framework and
the architecture that’s built around a state machine. Let’s take a closer look at the his-
tory of the Activiti framework and discuss the Activiti Engine in more detail.

1.2 Getting to know Activiti
When you start working with a new framework, it’s always good to know some project
background and have an understanding of the main components. In this section,
we’ll be looking at exactly that.

1.2.1 A little bit of history

The Activiti project was started in 2010 by Tom Baeyens and Joram Barrez, the former
founder and the core developer of jBPM (JBoss BPM), respectively. The goal of the
Activiti project is to build a rock-solid open source BPMN 2.0 process engine. In the
next chapter, we’ll talk in detail about the BPMN 2.0 specification, but in this chapter
we’ll focus on the Activiti framework itself and getting it installed and up and running
with simple examples.

 Activiti is funded by Alfresco (known for its open source document management
system of the same name; see www.alfresco.com and chapter 13 for more details), but
Activiti acts as an independent, open source project. Alfresco uses a process engine to

Table 1.1 An overview of the different components of the Activiti tool stack

Component name Short description

Activiti Engine The core component of the Activiti tool stack that performs the process engine func-
tions, such as executing BPMN 2.0 business processes and creating workflow tasks.

Activiti Modeler A web-based modeling environment for creating BPMN 2.0-compliant business pro-
cess diagrams. This component is donated by Signavio, which also provides a com-
mercial modeling tool, named the Signavio Process Editor.

Activiti Designer An Eclipse plugin that can be used to design BPMN 2.0-compliant business pro-
cesses with the addition of Activiti extensions, such as a Java service task and exe-
cution listeners. You can also unit test processes, import BPMN 2.0 processes,
and create deployment artifacts.

Activiti Explorer A web application that can be used for a wide range of functions in conjunction with
the Activiti Engine. You can, for example, start new process instances and get a list
of tasks assigned to you. In addition, you can perform simple process management
tasks, like deploying new processes and retrieving the process instance status.

Activiti REST A web application that provides a REST interface on top of the Activiti Engine. In the
default installation (see section 1.1.3), the Activiti REST application is the entry
point to the Activiti Engine.

6 CHAPTER 1 Introducing the Activiti framework
support features such as a review and approval process for documents, which means
that the document has to be approved by one user or a group of users. For this kind of
functionality, Activiti is integrated into the Alfresco system to provide the necessary
process and workflow engine capabilities.

NOTE jBPM was used in the past instead of Activiti to provide this process
and workflow functionality. jBPM is still included in Alfresco, but it may be
deprecated at some point in time.

Besides running the Activiti process engine in Alfresco, Activiti is built to run stand-
alone or embedded in any other system. In this book, we’ll focus on running Activiti
outside the Alfresco environment, but we’ll discuss the integration opportunities
between Activiti and Alfresco in detail in chapter 13.

 In 2010, the Activiti project started off quickly and succeeded in producing
monthly (!) releases of the framework. In December 2010, the first stable and produc-
tion-ready release (5.0) was made available. The Activiti developer community, includ-
ing companies like SpringSource, FuseSource, and Mulesoft, has since been able to
develop new functionality on a frequent basis. In this book, we’ll explore this contrib-
uted functionality, such as the Spring integration (chapter 4) and the Mule and
Apache Camel integration (chapter 11).

 But first things first. What can you do with a process engine? Why should you use
the Activiti framework? Let’s discuss the core component, the Activiti Engine.

1.2.2 The basics of the Activiti Engine

Activiti is a BPMN 2.0 process-engine framework that implements the BPMN 2.0 specifi-
cation. It’s able to deploy process definitions, start new process instances, execute user
tasks, and perform other BPMN 2.0 functions, which we’ll discuss throughout this book.

 But at its core, the Activiti Engine is a state machine. A BPMN 2.0 process definition
consists of elements like events, tasks, and gateways that are wired together via
sequence flows (think of arrows). When such a process definition is deployed on the
process engine and a new process instance is started, the BPMN 2.0 elements are exe-
cuted one by one. This process execution is similar to a state machine, where there’s
an active state and, based on conditions, the state execution progresses to another
state via transitions (think again of arrows). Let’s look at an abstract figure of a state
machine and see how it’s implemented in the Activiti Engine (figure 1.2).

 In the Activiti Engine, most BPMN 2.0 elements are implemented as a state.
They’re connected with leaving and arriving transitions, which are called sequence
flows in BPMN 2.0. Every state or corresponding BPMN 2.0 element can have attached
a piece of logic that will be executed when the process instance enters the state. In
figure 1.2, you can also look up the interface and implementing class that are used in
the Activiti Engine. As you can see, the logic interface ActivityBehavior is imple-
mented by a lot of classes. That’s because the logic of a BPMN 2.0 element is imple-
mented there.

7Getting to know Activiti
When you see a complex BPMN 2.0 example later on in the book, remember that, in
essence, it’s a rather simple state machine. Now let’s look at a couple other open
source process engines that offer functionality similar to Activiti, and also consider
the differences.

1.2.3 Knowing the competitors

When you’re interested in an open source process engine like Activiti, it’s always good
to know a little bit more about the competing open source frameworks. Because the
main developers of Activiti were previously involved with the JBoss BPM or jBPM frame-
work, there’s also some controversy surrounding this discussion. It’s obvious that jBPM
and Activiti share a lot of the same architectural principles, but there are also many
differences. We’ll only discuss the two main open source competitors of Activiti:

■ JBoss BPM or jBPM—An open source process engine that first supported the cus-
tom jPDL process language, but, because version 5.0 supports BPMN 2.0, the
jBPM project has merged with the JBoss Drools project (an open source busi-
ness-rule management framework) and replaced Drools Flow as the rule flow
language for the Drools framework.

■ BonitaSoft—An open source process engine that provides support for the
BPMN 2.0 process language. The main differentiators of BonitaSoft are the
large set of supported elements and the integrated development environment.

Let’s discuss the similarities and differences between Activiti and its two competitors
in a bit more detail.

ACTIVITI AND JBPM

Activiti and jBPM have a lot in common: they’re both developer-oriented process
engine frameworks built around the concept of a state machine (see section 1.2.2).

State
Interface: PvmActivity
Class: ActivityImpl

Transition
Interface: PvmTransition
Class: TransitionImpl

Logic
Interface: ActivityBehavior
Class: Lots of classes

Leaving transitions *

1
Behavior

Arriving transitions *

Parent

Nested states

1

*

Figure 1.2 An abstract overview of a state machine
and how it’s implemented in the Activiti Engine. States
have leaving and arriving transitions and can be nest-
ed. In addition, they contain logic implemented with
the ActivityBehavior interface.

8 CHAPTER 1 Introducing the Activiti framework
Because jBPM 5 also implements the BPMN 2.0 specification, a lot of similar function-
ality can be found. But there are a number of differences that are important to men-
tion; see table 1.2.

It’s always difficult to compare two open source frameworks objectively, and this book
is about Activiti. This book by no means presents the only perspective on the differ-
ences between the frameworks, but it identifies a number of differences that you can
consider when making a choice between them.

 Next up is the comparison between Activiti and BonitaSoft.

ACTIVITI AND BONITASOFT

BonitaSoft is the company behind Bonita Open Solution, an open source BPM prod-
uct. There are a number of differences between Activiti and BonitaSoft:

Table 1.2 Main differences between Activiti and jBPM

Description Activiti jBPM

Community
members

Activiti has a base team consisting of
Alfresco employees. In addition, companies
like SpringSource, FuseSource, and Mule-
Soft provide resources on specific compo-
nents. There are also individual open source
developers committing to the Activiti project.

jBPM has a base team of JBoss
employees. In addition, there are indi-
vidual committers.

Spring support Activiti has native Spring support, which
makes it easy to use Spring beans in your
processes and to use Spring for JPA and
transaction management.

jBPM has no native Spring support, but
you can use Spring with additional
development effort.

Business rules
support

Activiti provides a basic integration with the
Drools rule engine to support the BPMN 2.0
business rule task.

jBPM and Drools are integrated on a
project level, so there’s native integra-
tion with Drools on various levels.

Additional
tools

Activiti provides modeler (Oryx) and designer
(Eclipse) tools to model new process defini-
tions. The main differentiator is the Activiti
Explorer, which provides an easy-to-use web
interface to start new processes, work with
tasks and forms, and manage running pro-
cesses. In addition, it provides ad hoc task
support and collaboration functionality.

jBPM also provides a modeler based on
the Oryx project and a Eclipse designer.
With a web application, you can start
new process instances and work with
tasks. The form support is limited.

Project Activiti has a strong developer and user com-
munity with a solid release schedule of two
months. Its main components are the Engine,
Designer, Explorer, and REST application.

jBPM has a strong developer and user
community. The release schedule isn’t
crystal clear, and some releases have
been postponed a couple of times. The
Designer application is (at the moment
of writing) still based on Drools Flow,
and the promised new Eclipse plugin
keeps getting postponed.

9Installing the Activiti framework
■ Activiti is developer-focused and provides an easy-to-use Java API to communi-
cate with the Activiti Engine. BonitaSoft provides a tool-based solution where
you can click and drag your process definition and forms.

■ With Activiti, you’re in control of every bit of the code you write. With Bonita-
Soft, the code is often generated from the developer tool.

■ BonitaSoft provides a large set of connectivity options to a wide range of third-
party products. This means it’s easy to configure a task in the developer tool to
connect to SAP or query a particular database table. With Activiti, the connectiv-
ity options are also very broad (due to the integration with Mule and Camel),
but they’re more developer focused.

Although both frameworks focus on supporting the BPMN 2.0 specification and offer-
ing a process engine, they take different implementation angles. BonitaSoft provides a
development tool where you can draw your processes and configure and deploy them
without needing to write one line of code. This means that you aren’t in control of the
process solution you’re developing. Activiti provides an easy-to-use Java API that will
need some coding, but, in the end, you can easily embed it into an application or run
it on every platform you’d like.

 As you can see, Activiti is not the only open source process engine capable of run-
ning BPMN 2.0 process models, but it’s definitely a flexible and powerful option, and
one that we’ll discuss in detail in this book. Now that you know the different compo-
nents of Activiti, let’s get the framework installed on your development machine.

1.3 Installing the Activiti framework
The first thing you have to do is point your web browser to the Activiti website at
www.activiti.org. You’ll be guided to the latest release of Activiti via the download but-
ton. Download the latest version and unpack the distribution to a logical folder, such as

C:\activiti (Windows)
/usr/local/activiti (Linux or Mac OS)

This isn’t the beginning of a long and complex
installation procedure—with Activiti, there’s a
setup directory that contains an Ant build file
that installs the Activiti framework. The direc-
tory structure of the distribution is shown in
figure 1.3.

 Before you go further with the installation
procedure, make sure that you’ve installed a
Java 5 SDK or higher, pointed the JAVA_HOME
environment variable to the Java installation
directory, and installed a current version (1.8.x
or higher) of Ant (http://ant.apache.org).
Shortcuts to the Java SDK and the Ant framework
are also provided on the Activiti download page.

Figure 1.3 The directory structure of the
Activiti distribution with the setup directo-
ry and the Ant build.xml file as the main
parts for the installation procedure.

10 CHAPTER 1 Introducing the Activiti framework
 The last thing to confirm is that you have an internet connection available without
a proxy, because the Ant build file will download additional packages. If you’re behind
a proxy, make sure you’ve configured the Ant build to use that proxy (more info can
be found at http://ant.apache.org/manual/proxy.html).

 When you open a terminal or command prompt and go to the setup directory
shown in figure 1.3, you only have to run the ant command (or ant demo.start). This
will kick off the Activiti installation process, which will look for a build.xml file in the
setup directory. The installation performs the following steps:

1 An H2 database is installed to /apps/h2, and the H2 database is started on
port 9092.

2 The Activiti database is created in the running H2 database.
3 Apache Tomcat 6.0.x is downloaded and installed to /apps/apache-tomcat-6.0.x,

where x stands for the latest version.
4 Demo data, including users, groups, and business processes, are installed to the

H2 database.
5 The Activiti REST and Activiti Explorer WARs are copied to the webapps direc-

tory of Tomcat.
6 Tomcat is started, which means that the Activiti Explorer and REST applications

are running.
7 Depending on on your OS, a web browser is started by the installation script with

the Activiti Explorer URL. On Windows 7, no web browser is started; in other ver-
sions of Windows, the web browser is only started if you have Firefox installed.

When the Ant script has finished, you have the Activiti tool stack installed and run-
ning. That’s not bad for about a minute of installation time. The Ant build file isn’t
only handy for installing Activiti but also for doing common tasks, like stopping and
starting the H2 database (ant h2.stop, ant h2.start) and the Tomcat server (ant
tomcat.stop, ant tomcat.start) and for re-creating a vanilla database schema
(ant internal.db.drop, ant internal.db.create). It’s worth the time to look at the
Ant targets in the Ant build file.

 The installation of Activiti consists foremost of two web applications being
deployed to a Tomcat server and a ready-to-use H2 database being created with exam-
ple processes, groups, and users already loaded. Figure 1.4 shows the installation
result in a schematic overview.

 Notice that we haven’t yet installed the Activiti Modeler and Designer applications.
These components aren’t part of the installation script and have to be installed sepa-
rately. We’ll discuss how to do this in chapter 3.

 To verify whether the installation has succeeded, the Activiti Explorer, listed in
table 1.3, should be available via your favorite web browser. You can use the user
kermit with password kermit to log in. To work with the Activiti REST application, you
can use a REST client, such as the REST client Firefox plugin. You can read more about
the Activiti REST API in chapter 8.

11Implementing your first process in Activiti
By trying the Activiti Explorer application, you can verify whether the installation was
successful. After logging in and clicking on the Process tab, you should get a list of the
examples processes that are deployed on the Activiti Engine.

 Working with demo processes is fun, but it’s even better to try out your own devel-
oped business process.

1.4 Implementing your first process in Activiti
Let’s try to implement a simplified version of a book order process. We could use the
Activiti Modeler to first model the process, and the Activiti Designer to implement
and deploy the process, but it’s better to start off with a BPMN 2.0 XML document for
learning purposes. There won’t be any drag-and-drop development, but get ready for
some XML hacking.

Table 1.3 The URI of the Activiti Explorer and REST web applications available for you after the
 installation of Activiti

Application name URI Short description

Activiti Explorer http://localhost:8080/activiti-explorer The Explorer application can be used
to work with the deployed processes.
This is a good starting point from
which to try the example processes.

Activiti REST http://localhost:8080/activiti-rest/service The REST application can be used to
gain remote access to the Activiti
Engine via a REST interface. For all
available REST services, you can
look in the Activiti user guide that
can be found on the Activiti website.

Apache Tomcat

activiti−rest activiti−explorer

Example processes,
groups + usersH2

database

Figure 1.4 An overview of the installation
result of the Activiti tool stack, including a
running Tomcat server and H2 database
with the two Activiti web applications al-
ready deployed.

12 CHAPTER 1 Introducing the Activiti framework
1.4.1 Say hello to Activiti

We’ll keep things simple for now; if you don’t understand every construct already,
don’t be worried—we’ll discuss the BPMN 2.0 elements in more detail in chapter 2.

 In the following listing, a starter for the BPMN 2.0 XML definition of the book
order process is shown with only a start event, an end event, and a sequence flow to
connect the two.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 targetNamespace="http://www.bpmnwithactiviti.org">

 <process id="simplebookorder" name="Order book">
 <startEvent id="startevent1" name="Start"/>
 <sequenceFlow id="sequenceflow1"
 sourceRef="startevent1" targetRef="endevent1"/>
 <endEvent id="endevent1" name="End"/>
 </process>
</definitions>

A BPMN 2.0 XML definition always starts with a definitions element that is identified
with a namespace from the OMG BPMN specification. Each process definition must
also define a namespace; here, you define a targetNamespace with the book’s website
as its attribute value. Activiti also provides a namespace, which enables you to use
Activiti extensions to the BPMN 2.0 specification, as you’ll see in chapter 4. You can
now run this simple process to test if you’ve correctly defined the process definition
and the environment setup in the right manner.

 To test this process, you have to create a Java project in your favorite editor. In this
book, we’ll use Eclipse for the example description, because the Eclipse Designer is
only available as an Eclipse plugin. But it’s easier to download the source code from
the book’s website at Manning (or you can go directly to the Google code repository
at http://code.google.com/p/activitiinaction) and import the examples from there.

 When you import the bpmn-examples project (used in this chapter), the Activiti
libraries have to be added to the Java build path. The book’s source code uses Maven
to retrieve all the necessary dependencies. The sample project’s code structure is
explained in detail in chapter 4 and appendix A. But, starting from Eclipse Indigo
(version 3.7.x), there’s good built-in Maven support, so it’s easy to get it working. Acti-
vate the Maven project capabilities by choosing the Configure–Convert to Maven Proj-
ect option in the project menu when you right-click on the bpmn-examples project in
Eclipse. Eclipse will download all the necessary dependencies and configure the class-
path for you.

 With the dependencies in place, you can look for the SimpleProcessTest unit test
in the org.bpmnwithactiviti.chapter1 package of the bpmn-examples project. The
SimpleProcessTest class contains one test method, shown in the following listing.

Listing 1.1 bookorder.simple.bpmn20.xml document with only a start and end event

13Implementing your first process in Activiti
public class SimpleProcessTest {

 @Test
 public void startBookOrder() {
 ProcessEngine processEngine = ProcessEngineConfiguration
 .createStandaloneInMemProcessEngineConfiguration()
 .buildProcessEngine();

 RuntimeService runtimeService =
 processEngine.getRuntimeService();
 RepositoryService repositoryService =
 processEngine.getRepositoryService();
 repositoryService.createDeployment()
 .addClasspathResource(
 "bookorder.simple.bpmn20.xml")
 .deploy();

 ProcessInstance processInstance =
 runtimeService.startProcessInstanceByKey(
 "simplebookorder");
 assertNotNull(processInstance.getId());
 System.out.println("id " + processInstance.getId() + " " +
 processInstance.getProcessDefinitionId());
 }
}

In just a few lines of code, you’re able to start up the Activiti process engine, deploy
the book order process XML file from listing 1.1 to it, and start a process instance for
the deployed process definition.

 The process engine can be created with the ProcessEngineConfiguration B,
which can be used to start the Activiti engine and the H2 database. In this case, the
process engine is started with an in-memory H2 database. There are different ways to
start up an Activiti engine, and we’ll look at the options in detail in chapter 4.

NOTE Activiti can also run on database platforms other than H2, such as
Oracle or PostgreSQL.

The next important step in listing 1.2 is the deployment of the bookorder.sim-
ple.bpmn20.xml file from listing 1.1. To deploy a process from Java code, you need to
access the RepositoryService from the ProcessEngine instance. Via the Repository-
Service instance, you can add the book order XML file to the list of classpath resources
to deploy it to the process engine C. The process engine will validate the book order
process file and create a new process definition in the H2 database.

 It’s easy to start a process instance based on the newly deployed process definition
by invoking the startProcessInstanceByKey method D on the RuntimeService
instance, which is also retrieved from the ProcessEngine instance. The key
bookorder, which is passed as the process key parameter, should be equal to the pro-
cess id attribute from the book order process of listing 1.1. A process instance is

Listing 1.2 First example of a JUnit test for a Activiti process deployment

Creates
Activiti
engine

B

Deploys
simplebookorder
process definition

C

Starts bookorder
process instance

D

14 CHAPTER 1 Introducing the Activiti framework
stored to the H2 database, and a process instance ID that can be used as a reference to
this specific process instance is created. This identifier is very important.

 You can now run the unit test and the result should be green. In the console, you
should see a message like this:

id 4 simplebookorder:1:3

This message means that the process instance ID is 4 and the process definition that
was used to create the instance was the simplebookorder definition with version 1 and
the process definition database ID is 3.

 Now that we’ve covered the basics, let’s implement a bit more of the book order
process; then you can use the Activiti Explorer to claim and finish a user task for your
process.

1.4.2 Implementing a simple book order process

It would be a shame to finish chapter 1 with an example that only contains a start and
an end event. Let’s enhance your simple book order process with a script task and a
user task so you can see a bit of action on the Activiti engine. First, the script task will
print an ISBN number that will be provided as input to the book order process when
it’s started in a unit test (like this example) or in the Activiti Explorer. Then, a user
task will be used to manually handle the book ordering.

 Activiti allows you to use the scripting language you want, but Groovy is supported
by default. We’ll use a line of Groovy to print the ISBN process variable. The following
listing shows a revised version of the book order process.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 targetNamespace="http://www.bpmnwithactiviti.org">

 <process id="bookorder" name="Order book">
 <startEvent id="startevent1" name="Start"/>
 <sequenceFlow id="sequenceflow1" name="Validate order"
 sourceRef="startevent1" targetRef="scripttask1"/>
 <scriptTask id="scripttask1"
 name="Validate order"
 scriptFormat="groovy">
 <script>
 out:println "validating order for isbn " + isbn;
 </script>
 </scriptTask>
 <sequenceFlow id="sequenceflow2" name="Sending to sales"
 sourceRef="scripttask1" targetRef="usertask1"/>
 <userTask id="usertask1" name="Work on order">
 <documentation>book order user task</documentation>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>sales</formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>

Listing 1.3 A book order process with a script and user task

Defines
script task

Prints
ISBN

B

Defines
user task

C

Assigns task to
sales group

15Implementing your first process in Activiti
 </userTask>
 <sequenceFlow id="sequenceflow3" name="Ending process"
 sourceRef="usertask1" targetRef="endevent1"/>
 <endEvent id="endevent1" name="End"/>
 </process>
</definitions>

With the two additional tasks added to the process definition, the number of lines in
the XML file grows quite a bit. In chapter 3, we’ll look at the Activiti Designer, which
does the BPMN 2.0 XML generation for you and provides a drag-and-drop type of pro-
cess development.

 The script task contains a out:println variable B, which is a Groovy reserved
word within the Activiti script task for printing text to the system console. Also
notice that the isbn variable can be used directly in the script code without any addi-
tional programming.

 The user task C contains a potential owner definition, which means that the task
can be claimed and completed by users that are part of the group sales. When you run
this process in a minute, you’ll see in the Activiti Explorer that this user task is avail-
able in the task list for the user kermit, who is part of the sales group.

 Now that you’ve added more logic to the process, you also need to change your
unit test. One thing you need to add is an isbn process variable when starting the pro-
cess. To test whether the user task is created, you also need to query the Activiti engine
database for user tasks that can be claimed by the user kermit.

 Take a look at the changed unit test in the next code listing. You can again find this
unit test class in the bpmn-examples project in the org.bpmnwithactiviti.chapter1
package.

public class BookOrderTest {

 @Test
 public void startBookOrder() {
 ProcessEngine processEngine = ProcessEngineConfiguration
 .createStandaloneProcessEngineConfiguration()
 .buildProcessEngine();

 RepositoryService repositoryService =
 processEngine.getRepositoryService();
 RuntimeService runtimeService =
 processEngine.getRuntimeService();
 IdentityService identityService =
 processEngine.getIdentityService();
 TaskService taskService =
 processEngine.getTaskService();
 repositoryService.createDeployment()
 .addClasspathResource("bookorder.bpmn20.xml")
 .deploy();

 Map<String, Object> variableMap =
 new HashMap<String, Object>();

Listing 1.4 A unit test with a process variable and user task query

Gets TaskService
instance

B

16 CHAPTER 1 Introducing the Activiti framework
 variableMap.put("isbn", "123456");
 identityService.setAuthenticatedUserId("kermit");
 ProcessInstance processInstance =
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);
 assertNotNull(processInstance.getId());
 List<Task> taskList = taskService.createTaskQuery()
 .taskCandidateUser("kermit")
 .list()
 assertEquals(1, taskList.size());
 System.out.println("found task " +
 taskList.get(0).getName());

 taskService.complete(taskList.get(0).getId());
 }
}

The BookOrderTest unit test starts a process instance with a Map of variables C that
contains one variable with a name of isbn and a value of 123456. In addition, when
the process instance has been started, a TaskService instance B is used to retrieve
the tasks available to be claimed by the user kermit. Because there’s only one process
instance running with one user task, you test that the number of tasks retrieved is 1.

 Also note that you’re not using the in-memory database anymore but have
switched (createStandaloneProcessEngineConfiguration) to the default stand-
alone H2 database that’s installed as part of the Activiti installation procedure. This
means that, before running the unit test, the H2 database should be running (ant
h2.start or ant demo.start). Now you can run the unit test to see if your changes
work. In the console, you should see a similar output to

validating order for isbn 123456
found task Work on order

The first line is printed by the Groovy script task in the running process instance. The
last line confirms that one user task is available for claim for the user kermit. Because
a user task is created, you should be able to see this task in the Activiti Explorer. Con-
firm that Tomcat has been started (ant tomcat.start or ant demo.start).

 Now, point your browser to http://localhost:8080/activiti-explorer and log in with
the user kermit and the same password. When you click on the link Queued, you
should see one task in the group Sales. When you click on this Sales group, you
should see a screen with one user task with the name of Work on Order like the
screenshot shown in figure 1.5.

 For the sake of completeness, you can claim the user task and see that it becomes
available in the Inbox page. There you can complete the task, which triggers the pro-
cess instance to complete to the end state. But, before you do that, you can click on
the process link, Part of process: ‘Order Book’, to see details about the running pro-
cess instance, as shown in figure 1.6.

 In the process instance overview, you can get the details about the user tasks that
aren’t yet completed and the process variables of the running instance. The Activiti

Starts process
with variable

Sets
authenticated
user to kermit

C

Finds tasks
available for
kermit

17Implementing your first process in Activiti
Explorer contains a lot more functionality, which we’ll discuss throughout the book,
starting in chapter 3.

 This completes our first journey in the Activiti framework. In the coming chapters,
we’ll take a more detailed look at the Activiti tool stack and explore how to use Activiti’s
Java API to, for example, create processes or retrieve management information. But,
first, we’ll look more closely at BPMN 2.0.

Figure 1.5 A screenshot of the Activiti Explorer showing the user task of the book order process.

Figure 1.6 A screenshot of the Activiti Explorer application showing the details of a running process
instance with open user tasks and the process instance variables.

18 CHAPTER 1 Introducing the Activiti framework
1.5 Summary
In this chapter, we started with an introduction into Activiti, including its history and
its competitors. We also got acquainted with the Activiti tool stack and you were able
to implement a simple book order process using a script and user task. You also
started the Activiti process engine, deployed a book order process, started a process
instance, and did some unit testing on it with a couple lines of Java code.

 It’s obvious that Activiti provides you with a powerful API and tool stack to run your
processes. But how can you model and implement these processes? The BPMN 2.0
specification is the foundation for the Activiti Engine, and, to prepare for the exam-
ples in the rest of the book, we’ll discuss the details of BPMN 2.0 in the next chapter.

BPMN 2.0:
 what’s in it for developers?
This chapter stands out from the others in this book because it doesn’t contain a
single code example. To get your head around developing BPMN 2.0 processes, it’s
necessary to have a thorough understanding of BPM and the main elements of the
BPMN 2.0 palette. If you’re already familiar with BPM and BPMN 2.0, feel free to
skip this chapter and move on to exploring the Activiti framework in chapter 3.

 The definition of business process management (BPM) is broad, and BPM vendors
are broadening the term even further every day. Because I can’t (and don’t want) to
cover the full spectrum of what’s covered by BPM, this chapter defines the boundaries
that we’ll cover in this book. You’ll find that this book isn’t about, for example, the
theory behind business processes, business rules, business activity monitoring, and
straight-through processing. Rather, this book will show you how to develop and
deploy business processes with BPMN 2.0 and the Activiti process engine.

This chapter covers
■ Introducing the BPM discipline
■ Categorizing the BPMN 2.0 palette into three levels
■ Designing processes with BPMN 2.0
19

20 CHAPTER 2 BPMN 2.0: what’s in it for developers?
 But, before we start implementing code examples (in chapter 4), we’ll first take a
look at the topic of BPM. Once you have a good sense of this broad world, we’ll look at
the BPMN 2.0 specification and see why it’s such an important industry standard. Then,
the theoretical foundation for this book is presented, and we’ll look at BPMN 2.0 purely
from a developer’s perspective.

2.1 Taking a closer look at BPM
I’ve already mentioned that BPM covers a wide spectrum. That’s because BPM has an
ambitious goal: improving processes continuously and promoting efficiency and effec-
tiveness. You can imagine that achieving that goal involves a lot of different roles and
players, including management, end users, business analysts, information analysts,
architects, developers, and system controllers.

 Goals like promoting efficiency and effectiveness are typical targets that the man-
agement of an organization tries to achieve. BPM can be regarded as a management
discipline and, therefore, it’s obvious that these kinds of goals are part of the targets
set by implementing BPM. In this book, although we won’t focus on the management
side of BPM, I fully comprehend the importance of it. We’ll concentrate on the techni-
cal aspects of BPM with process engines and business process management suites.

 Our starting point and the central component within BPM is a business process.
Simple examples of business processes are a vacation request process or a book order
process. Such a process consists of several activities that eventually result in your
receiving a vacation request confirmation or the book you bought. Let’s look at a sam-
ple book order process in figure 2.1.

Receive book
order request

Payment has
been settled

Book not in stock

Book in stock

Process payment

Check stock Ship book

Order book from
publisher

Figure 2.1 A sample book order business process that processes book payment and eventually ships
the book to the customer

21Taking a closer look at BPM
The book order business process consists of six activities that may need to be exe-
cuted. Once the book order request is received, the payment is processed to make
sure the money is received, and the stock of the book is checked. When the book is in
stock, it’s shipped to the customer and a confirmation email is sent. But, when the
book isn’t in stock, it needs to be ordered from the publisher before it can be shipped.
So the “Order book from publisher” activity is optional; it’s only executed when the condi-
tion “Book not in stock” is met.

 As you can see, this business process is fairly simple—and incomplete. For exam-
ple, what happens when the process payment fails? Error handling is one of the chal-
lenging aspects of developing a business process. Dealing with error handling is
covered in chapter 7.

 Another element that the example doesn’t cover is how the shipping process will
be triggered when a book is ordered from a publisher and arrives at the bookstore.
Because there are a lot of additional activities involved, like sending the order to the
publisher and following up with the publisher when the book doesn’t arrive on time,
the “Order book from publisher” activity could be modeled as a subprocess. Subpro-
cesses are a good solution to abstract a main process flow from all the details and to
structure process logic for the purpose of reuse. In chapter 6, we’ll look into subpro-
cesses in more detail.

 To be able to implement even a simple business process like the example in fig-
ure 2.1, a number of steps have to be performed. We’ll now look at these important
steps in the BPM life cycle.

2.1.1 Walking around the BPM life cycle

Creating a fully functional business pro-
cess involves five steps, often referred to
collectively as the BPM life cycle, shown
in figure 2.2.

 Each of these five steps represents an
important development phase in imple-
menting a successful process solution:

■ Design—The first step consists of
activities that define the business
process: identifying high-level
activities, discussing possible
organizational changes, defining
service level agreements, and
specifying process details such as
actors, notifications, and escalations.

■ Modeling—In this step, the business process is fully specified and validated. The
process flow is formalized, for example, by using BPMN; additionally, process
variables are defined and candidate services that can be used to execute an

DesignOptimization

ModelingMonitoring

Execution

Business Process
Management

Life Cycle

Figure 2.2 The five steps of the business process
management discipline: design, modeling, execu-
tion, monitoring, and optimization

22 CHAPTER 2 BPMN 2.0: what’s in it for developers?
activity are identified. To validate the business process, “what-if” scenarios are
performed with process simulation.

■ Execution—The modeled business process is implemented in a business process
application, often using a business process management system (BPMS) such as
Activiti. You still need to add technical details to the business process before you
can execute it. The process is implemented with a process language like WS-
BPEL or BPMN 2.0.

■ Monitoring—The processes are monitored for business goals that are defined by
key performance indicators (KPIs). Examples of KPIs are “the average number
of orders received in a day should be at least 30” and “the time to send a pro-
posal to a customer based on a web inquiry shouldn’t exceed eight hours.”

■ Optimization—Based on new insights, changing business requirements, and
monitoring results, the implemented business processes will need to be opti-
mized. When the optimization phase is done, the business process goes into the
design phase again and the cycle is completed.

The BPM life cycle shows that implementing business processes is an ongoing process
due to the everchanging business environment and need for optimization. How long
it takes to walk through all five steps of the BPM life cycle depends greatly on the busi-
ness environment and the ability of a business to execute. In some businesses, it may
take years to complete the cycle; in others, it can be done in weeks or even days. In
this book, we’ll focus on the execution step of the BPM life cycle because this book is
aimed at running business processes on the Activiti process engine.

 To get processes implemented and deployed on the Activiti Engine, you need a
thorough understanding of the BPMN 2.0 language. Let’s see how the BPM industry
evolved to support the BPMN 2.0 specification as the dominant process language.

2.2 Evolution to BPMN 2.0
Now that you have a good grasp of BPM terminology, it’s time to look at a language that
implements a business process: Business Process Model and Notation (BPMN) 2.0.
Before we start looking at the BPMN 2.0 language constructs, though, it’s good to know
a bit about the history of the Object Management Group (OMG). OMG is a well-known
standardization organization that develops and maintains the Unified Modeling Lan-
guage (UML) standard, for example.

2.2.1 Wasn’t there a standard called WS-BPEL?

Right! From a developer’s perspective, the first industry standard for implementing
business processes was the Web Services Business Process Execution Language (WS-
BPEL) specification. Although BPMN 1.0 had been standardized and was widely used
by information and business analysts from 2004 on, WS-BPEL was the first BPM lan-
guage that was used by developers to run processes on a process engine. In figure 2.3,
the timeline of the WS-BPEL standard is shown.

23Evolution to BPMN 2.0
The timeline shows that we already had executable process languages before 2002 with
IBM’s web services flow language (WSFL) and Microsoft’s XLANG specification. But,
because other software vendors didn’t use these languages, there was a traditional ven-
dor lock-in scenario. It was 2002 before BEA, IBM, and Microsoft made the business pro-
cess execution language for web services (BPEL4WS) publicly available. The purpose of
this team of software vendors was to standardize version 1.1 of BPEL4WS at OASIS.
In 2007, OASIS finally standardized the specification and renamed it WS-BPEL 2.0.

 Although the WS-BPEL 2.0 standard was quite successful at defining an execution
model for business processes, important constructs were lacking. One important miss-
ing element is human task or workflow support, which is used to allocate work to a group
of people or an individual. In figure 2.3, the BPEL4People specification is included,
because this add-on specification to WS-BPEL 2.0 does provide this functionality. But
BPEL4People isn’t standardized and it isn’t fully embraced by BPM software vendors.

 Another construct that’s lacking in WS-BPEL is cyclic control flow. That sounds a bit
complex, but it’s nothing more than looping back to a previous activity in a process.
In WS-BPEL, this can’t be done (other than by using a while loop with all kinds of diffi-
cult conditional logic). But, let’s not stay too long in the past; let’s look at the new
standard for implementing business processes, BPMN 2.0.

2.2.2 And then there was BPMN 2.0

Although WS-BPEL was standardized in 2007, BPMN 1.0 was already standardized by the
Business Process Management Initiative (BPMI) in 2004. BPMN 1.x is widely used as a
modeling notation for business processes. As a process developer, you may have received
a BPMN 1.x model for requirements or documentation purposes from information or

IBM

WSFL

2002 2003 2004 2005 2006 2007 2008

2002 BEA, IBM,
Microsoft

BPEL4WS 1.0

2005 IBM, SAP

BPEL4People
white paper

2007 IBM, SAP and
others

BPEL4People
specification

Microsoft

XLANG

2003 BEA, IBM,
Microsoft, SAP, Siebel

BPEL4WS 1.1

2007 OASIS

WS−BPEL 2.0

Figure 2.3 The timeline of the WS-BPEL 2.0 standard, the successor to the BPEL4WS, WSFL, and XLANG
process languages

24 CHAPTER 2 BPMN 2.0: what’s in it for developers?
business analysts. But, then you had to convert those models into an execution lan-
guage, such as WS-BPEL.

 Now, as figure 2.4 shows, we have BPMN 2.0 “to the rescue.”
 Now we have a standard for modeling business processes and implementing a pro-

cess execution model. There’s a real opportunity for business-oriented individuals
and developers to speak with the same vocabulary and share business models without
the need for conversion.

 And, because the BPMN 2.0 standard provides an opportunity to bring business
and IT closer together, there’s a real need for collaboration tools. A business process
will be defined and implemented by a lot of people with different backgrounds, and
it’s a real challenge to provide a toolset that can enable everyone to do their jobs.

 Now that you know a bit about the history of BPMN 2.0, we can look at the ele-
ments of the language itself and start modeling.

2.2.3 Getting your head around all the BPMN 2.0 constructs

You only need to take a quick look at the BPMN 2.0 specification at the Object Manage-
ment Group (OMG) website (www.omg.org/spec/BPMN) and it becomes obvious that
it’s a rather substantial specification, filling around 550 pages and including over 100
BPMN 2.0 constructs. It can be overwhelming to get started with BPMN 2.0 and try to
comprehend the basics of the specification. Therefore, it’s important to start by struc-
turing the BPMN 2.0 into different groups of modeling detail.

 An important advocate of grouping the constructs is Bruce Silver, author of BPMN
Method & Style. The book is a good read and a great guide to getting started with
modeling BPMN 1.x and 2.0 processes. In addition, Silver groups the BPMN constructs
into three different levels:

2003 2004 2005 2006 2007 2008 2009 2010 2011

2004 BPMI

BPMN 1.0

2009 OMG

BPMN 1.2

2008 OMG

BPMN 1.1

2011 OMG

BPMN 2.0

Figure 2.4 The timeline of the BPMN 2.0 standard, which was the successor to the BPMN 1.x modeling
notations

25Evolution to BPMN 2.0
■ Level 1 is described as descriptive BPMN, which can be used for high-level mod-
eling with a restricted palette of BPMN constructs.

■ Level 2 can be used for detailed modeling, including event and exception han-
dling, and is described as analytical BPMN. It uses a wide range of BPMN constructs.

■ Level 3 is the execution model of BPMN (which is new in BPMN 2.0), which can
be deployed on a process engine.

With these different levels in mind, it’s easier to start with BPMN by using the level 1
group of BPMN constructs.

 Another important advocate of categorizing BPMN constructs is the Workflow Man-
agement Coalition (WfMC). The WfMC, and Robert Shapiro in particular, grouped the
BPMN 2.0 constructs into four different categories (see the PowerPoint presentation
at http://bit.ly/qYRHiQ for more details), shown in figure 2.5.

 The categorization of the WfMC, as shown in figure 2.5, is similar to the levels cre-
ated by Silver. The descriptive category can be compared to level 1, DODAF (an archi-
tecture framework of the United States Department of Defense) to level 2, and the
complete palette to level 3. The main difference is the simple category, which can be
used for high-level modeling of business processes. Even then, you can question
whether a vital construct of business process modeling, such as pool and lane,
shouldn’t belong to the simple category as well. But, it’s obvious that Silver’s level 1

Complete
Plus 50 elements

Dodaf
Plus 29 elements

Descriptive

Pool
Lane
UserTask
ServiceTask
Re-usable SubProcess
MessageFlow
DataObject
DataInput
DataOutput

TextAnnotation
Association
DataAssociation
DataStore
MessageStartEvent
MessageEndEvent
TimerStartEvent
TerminateEndEvent

Simple

StartEvent
EndEvent
SequenceFlow
Task
SubProcess
Exclusive gateway
Parallel gateway

Figure 2.5 A categorization of BPMN 2.0 constructs by the WfMC. The simple category can be used
for high-level business modeling without a lot of restrictions. The descriptive category can be used for
more detailed modeling by business and information analysts.

26 CHAPTER 2 BPMN 2.0: what’s in it for developers?
palette of and the descriptive category of WfMC are better starting points than the
complete palette of the BPMN 2.0 standard.

 Now that you understand the history of BPMN 2.0, it’s time to start looking at the
BPMN constructs and do some modeling!

2.3 Introducing BPMN 2.0 from a developer’s viewpoint
To become familiar with the important constructs of BPMN, we’ll first start with a high-
level business process model before we design a more detailed process model with
constructs like error events, similar to the different levels and categories of WfMC
(shown in figure 2.5) and Silver’s book. Level 3 of Silver’s categorization is the imple-
mentation of the process in BPMN 2.0 XML; we’ll skip that step for now and stick with
the modeling levels.

2.3.1 High-level modeling with BPMN 2.0

In section 2.1, we looked at a sample book order business process. In figure 2.1, the
book order process was modeled without a real model notation. With the simple or
level 1 palette in mind, we’ll take another look at the book order process and convert
it into a real BPMN 2.0 business process model.

 This means that we have to add a more formal notation to describe the book order
process. In the BPMN 2.0 book order process, we’ll use start and end events, parallel
gateways, pools, and tasks. Figure 2.6 shows the book order process, modeled with a
simple subset of the BPMN 2.0 palette.

Figure 2.6 A high-level BPMN 2.0 model describing the book order process with a simple subset of the
BPMN 2.0 construct palette

27Introducing BPMN 2.0 from a developer’s viewpoint
Before discussing the process in more detail, let’s first look at the individual BPMN 2.0
constructs in table 2.1.

Table 2.1 Overview of the BPMN 2.0 constructs used in figure 2.6

BPMN 2.0 icon BPMN 2.0 name Description

Start event A start event is the trigger to start a new process instance.

End event An end event is the last step before the process instance is
completed. Note that the end event has a thicker circular bor-
der than the start event.

Pool A pool represents the container for the activities of a
process. Best practice is to use the process name for the
pool name.

Lane A lane represents a role within a process model. In most
cases, this is an organizational unit or a role definition.

Task A task is a piece of work that has to be executed as part of
the process definition. A task can be an automated activity or
a manual activity.

Parallel gateway A parallel gateway is used to indicate that activities can be exe-
cuted simultaneously or that all incoming activities must be
completed before the process progresses to the next activity.

Exclusive gateway An exclusive gateway is used for conditional logic. Based on a
condition, only one of the outgoing sequence flows will be fol-
lowed.

Message flow A message flow is used to send a signal or message from
one pool to another. It may not be used to connect activities
within one pool.

Sequence flow A sequence flow connects activities, gateways, and events to
each other within one pool. Therefore, It represents the orches-
tration of the process definition.

28 CHAPTER 2 BPMN 2.0: what’s in it for developers?
Now that you know the meaning of the individual BPMN 2.0 constructs, let’s walk
through the full process model. One of the eye-catching differences between the
models in figures 2.1 and 2.6 is the use of pools and lanes. In figure 2.6, there are
three pools: Customer, New book order, and Publisher. The pools describe either
the business process itself or different external participants that interact with the
business process. In the New book order pool, there are two lanes that characterize
the different organizational units within the bookstore company. Because the book-
store in this example is a small company, there are only sales and inventory organiza-
tional units.

 In this business process model, we focus on the bookstore, but we could also
include the process activities that are necessary for the publisher to complete the
order process. The process begins with a customer order request, pictured here as a
message flow (the dashed line) initiating a start event (a circle).

 When the process is started, two tasks should be completed: the process payment
and the check stock tasks. Because these tasks can be executed in parallel, a parallel
gateway is modeled after the start event. After the stock is checked, an exclusive gate-
way is used for the conditional logic of the book being in stock or not. When the book
isn’t in stock, it’s ordered from the publisher by an additional task.

 When the book is in stock, either because it was already or because there was an
extra order sent to the publisher, the book is ready for shipment. But, before the book
can be shipped, we must be sure that the payment has been successfully completed. A
parallel gateway is used to join the tasks, meaning that the process won’t go further
until both these tasks have been completed.

 After the parallel gateway, two additional tasks are executed to inform the cus-
tomer about the arrival date and ship the book to the customer before the process is
completed by an end event. As you can see, the high-level model doesn’t contain stuff
like error handling or the definition of the type of a task; that’s what we’ll add in the
next section.

2.3.2 Detailed process modeling

Although a book ordering process may seem simple at first, when looking at it in more
detail, it’s clear that a lot of process logic is needed. In this section, we’ll focus on
detailing the process payment task by adding validation and error-handling logic. This
also means we’ll need BPMN 2.0 constructs that are part of the descriptive or level 2
palette. Figure 2.7 shows the subprocess payment, which is a more detailed model of
the process payment task from figure 2.6.

 As you can see, we’re using a number of additional BPMN 2.0 constructs in the pro-
cess model in figure 2.7. Let’s first look at these extra elements’ definitions in table 2.2.

 In figure 2.7, the tasks have been made more specific by adding type identifiers.
For example, the invoice credit card task is modeled as a service task, because the
validity of the credit card can be checked by invoking a web service. There’s also a user
task to indicate that the task has to be performed by a human. The contact customer

29Introducing BPMN 2.0 from a developer’s viewpoint
Table 2.2 Overview of the additional BPMN 2.0 constructs used in figure 2.7

BPMN 2.0 icon BPMN 2.0 name Description

End error event An error end event is a specific kind of end
event, which can be used to throw an error
inside the process model definition.

Start error event A start error event can be used to catch a
specific error thrown by an error end event,
such as one within a subprocess.

Intermediate error event An intermediate error event can be used to
catch a fault on a task or a subprocess
boundary.

Figure 2.7 The extracted process payment subprocess from the book order process model.
The subprocess shows the use of end error and start error events and a terminate end event.

30 CHAPTER 2 BPMN 2.0: what’s in it for developers?
activity is a user task because an employee of the bookstore has to get in contact with
the customer to solve the bad credit card problem.

 In the process payment subprocess shown in figure 2.7, you can see a couple of
other new BPMN 2.0 constructs. First, note that a subprocess always starts with a start
event. To begin, the credit card information is validated by invoking an automated
task. Then you check the outcome of this credit card validation with an exclusive gate-
way. If the credit card validation is successful, the payment is finished and the subpro-
cess is ended.

 If the credit card validation doesn’t succeed, an error end event throws an excep-
tion. This exception is caught within the subprocess by the error start event that’s han-
dling the bad credit card exception. In this case, the customer is contacted personally
by a bookstore employee to determine whether the credit card information was
entered incorrectly or if the customer can pay in another way. If the payment can be

Terminate end event A terminate end event is a special kind of
end event that causes the process to be ter-
minated. If a terminate end event is used in a
subprocess, it only causes the subprocess to
be terminated, not the parent process.

Service task A service task is a specific type of task that
represents an automated activity. For exam-
ple, a service task could be a web service
call or a Java class invocation.

User task A user task is a specific type of human task
that is performed via a computer interface. A
user task can be claimed and completed by a
configured individual or group of users.

Subprocess A subprocess is a compound activity that can
contain multiple other activities, including
tasks, gateways, and events. A subprocess
can be embedded in the parent process or be
a standalone process model that can be
invoked by the parent process via a call activity.

Text annotation A text annotation can be used to add docu-
mentation to specific elements of the pro-
cess model.

Table 2.2 Overview of the additional BPMN 2.0 constructs used in figure 2.7 (continued)

BPMN 2.0 icon BPMN 2.0 name Description

31Summary
settled with the customer, a normal end event in the exception handler is reached and
the subprocess is completed.

 But, if the payment can’t be settled, another error end event throws a reject
order exception. This exception isn’t handled within the subprocess, but with an
error boundary event. This error boundary event handles the exception by forward-
ing it to a terminate end event, which causes the whole book order process to be ter-
minated immediately.

 We covered many of the most important parts of the BPMN 2.0 palette in this sec-
tion, but we haven’t discussed the full palette, and by no means have we talked about
every BPMN 2.0 construct in detail. Nevertheless, this should provide you with a good
start in BPMN 2.0 modeling, and we’ll be discussing more details of BPMN 2.0 through-
out the rest of the book. Now it’s time to get more familiar with the different compo-
nents of the Activiti framework.

2.4 Summary
We started this chapter with a gentle introduction to business process management
and BPM vocabulary. You also saw a bit of history when we talked about WS-BPEL,
BPMN 1.x, and, eventually, BPMN 2.0. At that point, we took a closer look at the way
you can do modeling with BPMN 2.0, and we looked at the different categorization
strategies WfMC and Bruce Silver use to make BPMN 2.0 understandable and user
friendly for different users.

 Finally, we got acquainted with a large set of BPMN 2.0 elements with a high-level
process model and a detailed subprocess. You now have a good enough foundation in
BPMN 2.0 to work with the examples in the remainder of this book. But, before we
dive deeper into developing BPMN 2.0 processes, we’ll first look at the different com-
ponents of the Activiti tool stack in the next chapter.

Introducing
 the Activiti tool stack
Now that you know more about what BPMN 2.0 can do for you in terms of develop-
ing, it’s time to take a closer look at the Activiti tool stack. We’ll start by looking in
more detail at the Activiti tools that you saw in the first chapter, and you’ll learn a
bit about the background of where the tools come from. Then, one by one, we’ll
look at all the tools and see them in action!

 We’ll start with the Activiti Modeler. You’ll model a simple process definition as
a means to get started in modeling business processes with the Activiti Modeler.
Then, we’ll take a look at Activiti’s Eclipse-based development environment, the
Activiti Designer. You’ll implement a simple process and unit test it on a local Activ-
iti Engine distribution. You’ll also import the process model created in the Activiti
Modeler into the Activiti Designer.

This chapter covers
■ Installing and using the Activiti Modeler
■ Working with the Activiti Eclipse Designer
■ Guided tour of the Activiti Explorer
32

33Working with the Activiti Modeler
 With the Activiti Explorer, we’ll take a look at how to deploy process definitions,
start new process instances, and work with user tasks. The Activiti Explorer provides
an easy-to-use web interface that can work with the Activiti Engine—without the need
to write code.

 We’ve got lots of ground to cover—time to get started with the Activiti Modeler!

3.1 Working with the Activiti Modeler
To run processes on a runtime environment like the Activiti Engine, you first need to
define a business process. You could do this by using the Activiti Designer Eclipse tool
or by writing the BPMN 2.0 XML yourself. But, as you saw in the first chapter, BPMN 2.0
creates a real opportunity for business-oriented people and developers to use the
same vocabulary.

 Therefore, a typical workflow of defining a business process is started with busi-
ness-oriented people modeling their processes graphically, for example, with Activiti
Modeler. Let’s see how Modeler provides the means to do this.

3.1.1 Installing the Activiti Modeler

The Activiti Modeler is an add-on component to the core Activiti framework and has
to be deployed via a separate installation script. We’ll look at how to perform the
installation by building from the sources, but you can also download the WAR deploy-
able directly from the book’s website (www.bpmnwithactiviti.org).

 The Activiti Modeler sources are available from the Signavio Core Components
Google repository (http://code.google.com/p/signavio-core-components). First, you
have to check out the sources. In the root directory, you can find a build.properties
file that needs to be edited to get the Activiti Modeler application. The following code
snippet shows the values that need to be changed:

version=1.0.05.9
war = signaviocoreactiviti-modeler
configuration = defaultActiviti
fileSystemRootDirectory = c:/repo../../../workspace/

 ➥ activiti-modeler-examples

Once you’ve changed the Properties file, you can start the Ant build script with the
following command:

ant build-all-in-one-war

This will create a target/activiti-modeler.war file that can be deployed in the webapps
directory of the Tomcat application that’s part of the Activiti installation directory.
When you copy that WAR file and start up the Tomcat container, you’ll be able to start
the Activiti Modeler application by pointing your web browser (Firefox and Chrome
are supported; Internet Explorer isn’t supported) to http://localhost:8080/activiti-
modeler. You should see the startup screen as shown in figure 3.1.

 With the Activiti Modeler installed, we can now take a look at how you can start
modeling new processes.

34 CHAPTER 3 Introducing the Activiti tool stack
3.1.2 Modeling processes with the Activiti Modeler

Let’s take the simple bookstore process from chapter 2 and model it in the Activiti
Modeler to see how the tool works. Point your browser at http://localhost:8080/activ-
iti-modeler again. Browse a bit through the examples that you see in your workspace
and investigate how to create a folder structure in the Modeler to organize your mod-
els. You can find the folders you create with the Modeler on the filesystem in the Activ-
iti installation directory under workspace/activiti-modeler-examples. When you take a
look in this directory, you’ll see that the directories already contain sample BPMN 2.0
models created with the Activiti Modeler.

 Now let’s design a basic process with the Activiti Modeler, save it, and check out
how this process is stored in the model repository. Again, you’ll use the basic book
ordering process example from chapter 2 and implement the process model as shown
in figure 3.2.

 Start by choosing New > Business Process Diagram (BPMN 2.0) from the top left
corner of the Activiti Modeler startup screen. When your browser finishes loading the

Figure 3.1 The Activiti Modeler’s startup screen showing the example processes that are part of the
Activiti distribution

Figure 3.2 The sample book order process that you’ll model with the Activiti Modeler

35Working with the Activiti Modeler
modeling page, you’ll see all of the BPMN constructs that the Activiti Modeler sup-
ports in the shape repository in the left pane. You can now start dragging and drop-
ping the BPMN constructs onto the modeling pane.

NOTE The Activiti Engine doesn’t support all of these BPMN elements.
To find out which of the BPMN elements the Activiti Engine supports, you
can look at appendix B or the Activiti user guide (see www.activiti.org/
userguide).

Let’s begin with a start event, which you can find in the
Start Events folder of the palette. Drag and drop it onto
the modeling pane. When you hover over the start
event, a context menu appears, as shown in figure 3.3.
This menu can help you to quickly add a new BPMN ele-
ment to your process model. Let’s pick the exclusive
gateway construct.

 In the book order process, you have the “Process pay-
ment” and the “Prepare book for shipment” tasks, which
should be executed in parallel (see figure 3.2). You need
to change the exclusive gateway into a parallel gateway.
You can do that by clicking on the transform shape icon
when hovering over the Exclusive Gateway and then
choosing the Parallel Gateway from the pop-up menu, as shown in figure 3.4.

 Now you can add a new task, “Process payment,” and change its type by opening
the attributes view on the right side of the screen, selecting the task in the modeler
pane, and browsing in the Properties view to add a TaskType of type User (figure 3.5).

 You can now complete the book order process model (refer to figure 3.2). When
you’ve finished modeling the book order process, you can save the diagram to the
default file repository, located in the Activiti installation directory under workspace/
activiti-modeler-examples. Take a look
at the BPMN 2.0 file that’s saved in
your filesystem in the Activiti Modeler
repository and you’ll see that, next to
the process definition itself, the file
contains elements with the bpmndi pre-
fix. The BPMN DI schema contains ele-
ments that declare information
concerning the graphical representa-
tion of the process constructs. You can
use this diagram information to
import the process model into the
Activiti Designer and add technical
details to it.

Figure 3.3 A context menu
from the modeling pane in the
Activiti Modeler, which enables
you to quickly draw tasks, gate-
ways, events, and sequence
flows

Figure 3.4 A pop-up menu that allows you to trans-
form an exclusive gateway to another gateway type

36 CHAPTER 3 Introducing the Activiti tool stack
3.2 Adding technical details with the Activiti Designer
At some point, the business/process analyst will finish modeling the business process
in the Activiti Modeler. Then, you need to add technical details to the process before
it’s ready to run on a process engine. For example, you may need to include Java
classes to implement the service task logic.

 The Activiti Designer can be used to add technical details to an imported process
model. But, it can also be used to model new processes from scratch. In addition, the
Designer provides functionality to test processes and create deployment artifacts.

 First, let’s install the Activiti Designer and get it up and running.

3.2.1 Getting up and running with Activiti Designer

Installing the Eclipse-based Designer tool is a simple process that takes only a few
minutes:

1 Download and install an Eclipse Indigo distribution (the previous version,
Helios, is not supported).

2 Install the Activiti Designer plugin from the Activiti update site http://
activiti.org/designer/update. Note that you should keep the option “Contact
All Update Sites During Install to Find Required Software” checked.

3 Restart Eclipse.

You should now be able to create your first Activiti Designer Eclipse project by using
the Activiti Project option in the New Project Eclipse wizard, as shown in figure 3.6.

Figure 3.5 Adding detail to the modeled activities is possible using the Properties view on the right
side of the modeling canvas. In the Properties view, you can, for example, specify the type of task.

37Adding technical details with the Activiti Designer
When you look at the Java project the Activiti Designer has just created, you can see
the source folders adhering to the Apache Maven standards. The resources directories
in these folders will contain the models you create with the Designer tool later on.

 Now that the Activiti Designer is installed and up and running, you can start devel-
oping a simple process to get familiar with its functionality.

3.2.2 Designing a process from scratch

In this section, you’ll create a basic process with only a simple Groovy script task to
show the Activiti Designer functionality. Once you’re familiar with the Designer, we’ll
take a look at how to do more complicated stuff in later chapters.

 Right-click with the mouse on the newly created project to open the context menu
in Designer and then go to New > Other and choose Activiti Diagram. After you’ve
provided a filename for the new process, the editor pane will open and on the right
side you’ll see the palette with the supported BPMN 2.0 constructs. See figure 3.7.

 You can start dragging and dropping BPMN 2.0 constructs onto the pane. In addi-
tion, when you hover over a node in the diagram, you can see that a context menu
appears. You can use this context menu to quickly develop a new process model,
which is similar to using the Activiti Modeler. Let’s start with designing a simple
process model and creating a diagram that has a start event, a script task, and an
end event.

Figure 3.6 Creating
a new Activiti project
with the Activiti De-
signer via Eclipse’s
New Project wizard

38 CHAPTER 3 Introducing the Activiti tool stack
First, drag a start event to the diagram and then
hover over the start node and select the new ele-
ment icon, as shown in figure 3.8.

 Choose the Create Script Task item from the
pop-up menu. This action will create a new script
task next to the start event and automatically add a
sequence flow. Now, add an end event to complete
this simple process (figure 3.9).

 Now you need to test this process, and it’s cur-
rently not doing anything, so you have to add script-
ing logic to the script task. Open the Properties

Figure 3.7 The Activiti Designer editor’s pane with the BPMN 2.0 constructs in the palette

Figure 3.8 The hover capabilities of
the Activiti Designer allow you to
quickly add a new task, gateway, or
end event to the diagram.

Figure 3.9 A simple process with a script task
designed with the Activiti Designer

39Adding technical details with the Activiti Designer
view of the script task by selecting it (make sure the Properties view is open in your
Eclipse canvas). Then select Groovy from the drop-down menu next to Script Lan-
guage, and add the following line of Groovy code: out:println "Run process,
run!"; (figure 3.10).

 Now that you’ve designed the process model and implemented a line of scripting
code, you’re ready to test it. Let’s take a look at how to test processes with a generated
JUnit test.

3.2.3 Testing processes with the Activiti Designer

In order to test the newly created process, you need a BPMN 2.0 XML file. When you
save the diagram, the BPMN XML content is generated in the model file that is created
when you complete the create diagram wizard. You can view the XML content by open-
ing the model file in the Eclipse XML editor. The generated XML should look similar
to the XML content shown in the next code listing.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://www.omg.org/spec/BPMN/

 ➥ 20100524/MODEL"
 targetNamespace="http://www.activiti.org/test"
 xmlns:activiti="http://activiti.org/bpmn">

 <process id="MyProcess" name="MyProcess">
 <documentation>

Listing 3.1 BPMN 2.0 XML generated by the Activiti Designer

Figure 3.10 Adding a piece of Groovy scripting code in the script task Properties view

BPMN 2.0 root element with
namespace declarations

40 CHAPTER 3 Introducing the Activiti tool stack
 Place documentation for the 'MyProcess' process here.
 </documentation>
 <startEvent id="startevent1" name="Start"></startEvent>
 <scriptTask id="scripttask1" name="Script Task"
 scriptFormat="Groovy">
 <script>
 <![CDATA[out:println "Run process, run!";]]>
 </script>
 </scriptTask>
 <sequenceFlow id="flow1" name="" sourceRef="startevent1"
 targetRef="scripttask1">
 </sequenceFlow>
 <sequenceFlow id="flow2" name="" sourceRef="scripttask1"
 targetRef="endevent1">
 </sequenceFlow>
 <endEvent id="endevent1" name="End"></endEvent>
 </process>
</definitions>

Note that I didn’t include the BPMN DI XML containing the graphical information in
this listing because that isn’t relevant for now. To generate a unit test, you can select
the model file in the package explorer view. Right-click on the file and you’ll see a
context menu appear (figure 3.11).

Groovy
scripting code
definition

End event
definition

Figure 3.11 A pop-up menu that
contains the Generate unit test ac-
tion to create a JUnit test for a
XML process definition

41Adding technical details with the Activiti Designer
Click on the “Generate unit test” action and a JUnit test will be generated in the
org.activiti.designer.test package. To get the necessary project dependencies in
place, you can run the Maven mvn eclipse:eclipse command or use the M2Eclipse
plugin. Make sure you have configured in your Eclipse workspace a M2_REPO classpath
variable that points to the Maven repository (which, by default, is located in the .m2/
repository in your user home directory).

 Before running the test, take a look at the generated code in the following listing.

public class ProcessTestMyProcess {

 private String filename =
 "/Users/trademakers/workspace/Script/MyProcess.bpmn";

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule();

 @Test
 public void startProcess() {
 RepositoryService repositoryService =
 activitiRule.getRepositoryService();
 repositoryService.createDeployment()
 .addInputStream("process.bpmn20.xml",
 new FileInputStream(filename)).deploy();
 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("name", "Activiti");
 ProcessInstance processInstance = runtimeService
 .startProcessInstanceByKey("MyProcess",
 variableMap);
 assertNotNull(processInstance.getId());
 System.out.println("id " + processInstance.getId() + " "
 + processInstance.getProcessDefinitionId());
 }
}

As you can see, the code differs a bit from the unit test implemented in chapter 1.
Here, you make use of the ActivitiRule class, which is a utility class that sets up the
Activiti Engine in a unit test. (I’ll talk in more detail about this handy class in the next
chapter.) The BPMN 2.0 XML file is deployed via the RepositoryService that reads
the BPMN file from an InputStream B.

NOTE process.bpmn20.xml is used as the filename for the process defini-
tion input stream. Activiti 5.9 only accepts process definition files with an
extension of .bpmn20.xml. Starting from Activiti 5.10, .bpmn extensions are
also supported.

The RuntimeService is used to start a new process instance of the process C. When
you run this unit test, you can see Run process, run! appear in the Eclipse console,
and the process instance and process definition identifiers are printed out.

Listing 3.2 The JUnit test class generated by the Activiti Designer

Deploys process
definition

B

Starts a new
process instance

C

42 CHAPTER 3 Introducing the Activiti tool stack
 This simple example only shows the typical workflow in the Activiti Designer. Let’s
return to the process definition created with the Activiti Modeler in section 3.1 and
import it into the Activiti Designer.

3.2.4 Importing a Modeler process into the Designer

It’s easy to import a process definition
created with the Activiti Modeler into
the Designer. What you need is the
BPMN 2.0 XML file created by the Activiti
Modeler. When you implement the pro-
cess model in section 3.1, a BPMN 2.0
XML file is generated in the workspace/
activiti-modeler-examples folder of your
Activiti installation directory. Look for a
file starting with the name you chose
when saving the model and ending with
bpmn20.xml. The sample Modeler file
can also be found in the bpmn-examples
project under modeler/chapter3 (see
this book’s source code).

 Create a new Activiti project in the Activiti Designer and then copy the Activiti
Modeler bpmn20.xml file to the Activiti Designer project and rename the file exten-
sion to .bpmn (see figure 3.12).

 When you open the .bpmn file, the Activiti Designer will read the BPMN 2.0 ele-
ments and create and open a new diagram, as shown in figure 3.13.

Figure 3.13 A BPMN 2.0 XML file can be imported into the Activiti Designer and a new diagram will be
created and opened, as shown here.

Figure 3.12 A BPMN 2.0 file can be imported by
just copying the file to an Activiti Designer project.

43Adding technical details with the Activiti Designer
The newly created diagram looks similar to the Activiti Modeler diagram shown in fig-
ure 3.2.

NOTE The process identifier of the imported process can contain spaces.
Make sure that the spaces are removed, because the id attribute isn’t
allowed to contain spaces according to the BPMN 2.0 specification. You can
do this by clicking on a white space in the diagram and filling in the id field
in the Properties view.

You can now add new BPMN 2.0 elements and detailed information, such as the per-
son or group to which the four user tasks have to be assigned. You can also quickly
change a task type. Let’s take a look at how to do that with the “Process payment” user
task and change it into a simple script task. Hover over the “Process payment” element
and choose the icon with the small pencil. There, you can change the element into a
script task (figure 3.14).

When the “Process payment” user task is transformed to a script task, you can add
scripting logic to it. When you want to add Java logic, the service task would be the
task type of choice. But, for this example, you add a log line by filling in the script text
box in the Properties view of the script task, as shown in figure 3.15.

 What’s left is the assignee configuration for the three remaining user tasks. Fill in
a value of “kermit” in the assignee Property field of every user task (figure 3.16). This
will assign every user task directly to the kermit user.

Figure 3.14 Changing
the process payment
user task into a script
task

Figure 3.15 A piece of
scripting logic can be
configured for a script
task.

44 CHAPTER 3 Introducing the Activiti tool stack
When you save the diagram, you’ve
completed the book order process
implementation and you’re ready to
deploy it to the Activiti Engine. The
Activiti Designer can ease the deploy-
ment task with the generation of a BAR
file, which is nothing more than a
zipped file that contains the BPMN 2.0
XML process definition and Java class
files that are available in the project.
The BAR file will be generated when
you right-click on an Activiti project
and choose the “Create deployment
artifacts” option from the pop-up
menu. See figure 3.17.

 When you click to generate the
deployment artifacts, a deployment
folder is created in the root of the
corresponding Activiti project.
There, you can find the BAR file that
can be deployed on the Activiti
Engine. It’s time to see your book
order process in action using the
Activiti Explorer.

Figure 3.16 The user task Properties view contains a lot of configuration items, including the assignment
definition.

Figure 3.17 The BAR deployment artifact containing
the BPMN 2.0 XML process definition can be generated
by right-clicking on an Activiti project and choosing the
“Create deployment artifacts” option.

45Managing the Engine using the Activiti Explorer
3.3 Managing the Engine using the Activiti Explorer
The Activiti Explorer can be used to execute a wide variety of tasks. In this section,
we’ll explore the Activiti Engine management capabilities and, in the next section
(3.4), we’ll focus on the process and task functionality. Now that you’ve created a BAR
file in the Activiti Designer, you can use the Activiti Explorer to deploy the BAR file to
the Activiti Engine.

 Make sure the Tomcat server running the Activiti Explorer application is started.
Then, open a browser and go to http://localhost:8080/activiti-explorer. Log in as ker-
mit, with the password kermit. As you can see in the Users tab, Kermit is registered as
system administrator and, therefore, allowed to perform management tasks in the
Activiti Explorer. The other example users, Fozzie and Gonzo, aren’t allowed to do
this because they don’t have the system administrator security role. See figure 3.18 for
Kermit’s user details—this is the view in the Activiti Explorer where you’ll do user and
group administration.

 When you click on the Deployments tab, you can upload a new deployment arti-
fact. In the pop-up menu, you can choose to open a File dialog box to select the BAR
file or to drag and drop the BAR file onto the web page. Choose your preferred way of
uploading the BAR deployment artifact to the Activiti Explorer and you’ll see a new
view showing the details of the new deployment. When you click on the book order

Figure 3.18 The user administration page in the Activiti Explorer, showing the user details of Kermit

46 CHAPTER 3 Introducing the Activiti tool stack
process definition, you can see the graphical overview of the process model, as shown
in figure 3.19.

 In addition to the deployment and user and group management capabilities of
the Activiti Explorer, you can also get a view of every database table and look at the
jobs that are scheduled in the Activiti Engine. But we’ll leave this functionality for
later chapters, starting with chapter 5, where you’ll implement a more complex pro-
cess definition.

 Now let’s look at other capabilities of the Activiti Explorer. You’ll be starting a new
process instance and working with the different user tasks of the book order process
model.

3.4 Processes and tasks with the Activiti Explorer
With the book order process deployed on the Activiti Engine, you can now start new
process instances of this process definition. The process definition view shown in fig-
ure 3.19 already contains the Start process button in the top-right corner to start a
new process instance; let’s do that.

 The Activiti Explorer automatically checks if a user task is created for the logged-in
user. If that’s the case, the Activiti Explorer shows the task detail page right after you
start the new process instance. See figure 3.20.

 In the task details page, you can perform several actions on the user task. You can,
for example, add a document that’s part of the user task or reassign the user task to
somebody else. You can also create new subtasks to split up a large task into multiple
smaller tasks.

 The task page also includes a link to the process instance status overview: Part of
process: ‘Book Order Process’. The process instance overview provides a graphical
overview of the process status, the outstanding tasks, and the process variables. See fig-
ure 3.21.

Figure 3.19 Graphical overview of the deployed book order process definition

47Processes and tasks with the Activiti Explorer
Figure 3.20 The task details page of the first user task created in the book order process. The task is
assigned to Kermit.

Figure 3.21 The process instance overview page, showing the process instance status, the open user
tasks, and the process variables

48 CHAPTER 3 Introducing the Activiti tool stack
As you can see in figure 3.21, the current open task in the process instance is the “Pre-
pare book for shipment” user task. The “Process payment” script task has already been
executed and completed. But the “Process payment” task could also have been a user
task that hadn’t been completed yet. In that case, the process instance’s graphical
overview would have two user tasks highlighted with red rectangles.

 To complete the user task, you need to go back to the task details page. This is pos-
sible by clicking the Tasks tab and the Inbox link. On the task details page, you can
click on the Complete Task button to complete the user task. Then, the process
instance moves on to the next user task in the book order process. When you also
complete the next two user tasks, the process instance will be completed.

 There’s a lot more to explore in the Activiti Explorer, but we’ve already covered
the core functionality. In the next chapters, you’ll frequently be using Activiti
Explorer in the implementation and testing of example processes.

 This completes the introduction to the Activiti tool stack and the add-on compo-
nents that you can download and install separately.

3.5 Summary
We’ve covered a lot of ground in this chapter. If you worked your way through the
examples, you’ll now have a good idea of what Activiti is all about.

 You saw how the Activiti Modeler works and played a bit with it to get a feel for
modeling business processes. You discovered the Eclipse-based Designer environment
and learned how to test processes in a fast and convenient way without having to write
lots of code. You also imported an example process created in the Activiti Modeler
into the Activiti Designer and eventually created a deployable BAR file for it. With
Activiti Explorer, you saw how to deploy new process definitions and work with process
instances and user tasks.

 You have a good grasp of the Activiti stack now, and you’re ready to discover more
of the ins and outs of BPM with Activiti. In the next chapter, we’ll start implementing
processes on the Activiti Engine and start developing with its API.

Working with
 the Activiti process engine
It’s time to take a look at the core asset of the Activiti platform, the Activiti process
engine. We already looked at a simple example in chapter 1 and at the Activiti tool
stack in chapter 3, but, in this chapter, we’ll discuss how you can use the Activiti
Java API to interact with and use the process engine in a lot more detail.

 To develop business process applications, you first have to set up a decent devel-
opment environment, including a Maven configuration. We’ll cover this first.
Then, we’ll take a look at the Activiti API, which will provide the necessary inter-
faces to start new processes, claim user tasks, and query the process engine for spe-
cific process instances, for example. After that, we’ll explore the Java service tasks
of Activiti, which provide a way to implement BPMN 2.0 processes with plain Java
logic. When there’s no need for web service interfaces or other external interfaces,

This chapter covers
■ Setting up a development environment
■ Understanding the Activiti API
■ Implementing processes with plain Java
■ Using Spring with Activiti
49

50 CHAPTER 4 Working with the Activiti process engine
the Java service tasks provide an easy-to-use framework to build processes. We’ll also
discuss how to execute these Java service tasks asynchronously. Finally, we’ll look at
how to apply Spring beans inside the BPMN 2.0 processes and even run the whole
Activiti engine within a Spring container.

 Let’s get started by setting up a development environment so you can work with
Activiti and explore some examples.

4.1 Creating an Activiti development environment
In this chapter, you’ll be developing a lot of code snippets and unit tests. Instead of
using a simple text editor, you might like to use your favorite development tool to
develop processes, process logic, and unit tests. In this section, you’ll be introduced to
the different Activiti libraries you can use and how to set up a Maven project structure.

 Logging is an important tool for understanding what’s going on in a complex
framework, like a process engine. First you’ll learn how you can tune the log levels for
your needs. Then you’ll see a couple of options for running the Activiti engine.

 Let’s begin by taking a closer look at the Activiti library structure.

4.1.1 Getting familiar with the Activiti libraries

In chapter 3, you saw that the Activiti distribution consists of several modules, includ-
ing the Activiti Explorer and the add-on components Activiti Modeler and camunda
fox cycle. Each of these modules have their dependencies and project structure. In
this section, we’ll only focus on the Activiti Engine module, which provides the core
component of the project.

 But the Activiti engine also consists of several layers, as shown in figure 4.1. The
first layer is the engine itself, which provides the engine interfaces we’ll discuss in sec-
tion 4.2 and which implements the BPMN 2.0 specification. The engine component
also includes a process virtual machine abstraction, which translates the BPMN 2.0
engine logic into a state machine model, as discussed in chapter 1. This process virtual
machine, therefore, is capable of supporting other process languages and provides
the foundational layer of the Activiti Engine. The engine component is implemented
in the activiti-engine-version JAR file.

 An optional layer is the Spring container integration for the Activiti engine, which
we’ll discuss in detail in section 4.4. This layer makes the Activiti engine available for
use inside a Spring container and provides functionality to invoke Spring beans
directly from service tasks. This layer is provided with the activiti-spring-version JAR
file that’s available in the workspace/activiti-spring-examples/libs-runtime directory
of the Activiti distribution.

 As you can see in figure 4.1, each layer of the Activiti Engine adds a specific set of
functionality. Before you can use the Activiti Engine in the development environment,
the dependent libraries must also be available. In the next section, you’ll see a Maven-
based project structure that will provide you with the necessary dependencies. But you
can also reference the library dependencies from the Activiti workspace directory.
Notice that you then have to start by running the setup as described in chapter 1.

51Creating an Activiti development environment
After the Activiti installation script (see chapter 1) has been executed, you can find
the Activiti Engine libraries in the workspace/activiti-engine-examples directory. The
runtime libraries can be found in the libs-runtime directory, and the libraries neces-
sary to test the examples are provided in the libs-test directory of every example proj-
ect. If you don’t want to use Maven for your project, you can retrieve the necessary
libraries from the workspace/activiti-spring-examples directory, but, you’ll see in the
next section that a Maven project structure makes life a bit easier.

4.1.2 Mavenizing your Activiti project

Apache Maven can be considered the default choice for dependency management
and project build management in general, and Activiti makes it easy to set up your
project with Maven. In this section, you’ll learn about the Maven configuration that’s
used in the source code of this book’s examples. The examples in the Activiti distribu-
tion also have a Maven structure and a pom.xml file. To create a new Activiti project
with a Maven configuration from scratch, you can create a new Maven project in the
Eclipse IDE. In the presented wizard, you can fill in the necessary group and artifact
identifier and choose a project name.

 The pom.xml in the root of the new project needs some work; you have to add the
Activiti dependencies. The following listing shows a Maven pom.xml that contains the
minimal set of dependencies you need when starting an Activiti project. For a full list
of all the dependencies you’ll use throughout this book, you can look at the pom.xml
file in the root of the bpmn-examples project in the book’s source code.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.bpmnwithactiviti</groupId>

Listing 4.1 A standard Maven configuration for an Activiti project

Activiti Spring component

Spring container Expressions and beans

Activiti Engine component

BPMN 2.0 Core interfaces

Process virtual machine

State machine model Persistency

Figure 4.1 Overview
of the different layers
of the Activiti Engine,
including the process
virtual machine, the
engine, and the Spring
integration layers

52 CHAPTER 4 Working with the Activiti process engine
 <artifactId>your-project</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>your-project</name>

 <properties>
 <activiti-version>5.9</activiti-version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.activiti</groupId>
 <artifactId>activiti-engine</artifactId>
 <version>${activiti-version}</version>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.2.132</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>Activiti</id>
 <url>http://maven.alfresco.com/nexus/content/

 ➥ repositories/activiti</url>
 </repository>
 </repositories>
</project>

In the listing, the Maven namespace declarations are left out to make the configura-
tion more readable. To include the Activiti Engine dependencies, you only have to
include the activiti-engine dependency B. This dependency will also get all the
third-party libraries, which are necessary to run the Activiti Engine. Notice that, in this
Maven configuration, the Activiti Spring module isn’t included because you don’t
need it for your first examples, but the module is included in the book’s example
source code.

 To be able to test with an in-memory H2 database, you must also add the H2 data-
base dependency C. The H2 database dependency also provides the database driver
to connect to both the standalone H2 database provided with the Activiti distribution
as well as the in-memory H2 database.

 Because the Activiti Engine dependency isn’t yet available from a central Maven
repository, you also need to add the Alfresco Maven repository for the Activiti project D.
If you’re using the Eclipse development tool, you can now use the Maven Update Project
Configuration menu item to create the necessary Eclipse project and classpath files.

Activiti
Engine
dependencies

B

H2 database
driver

C

Alfresco Maven
repository for
Activiti

D

53Creating an Activiti development environment
NOTE Similar Maven archetypes are available for IntelliJ IDEA and other IDEs,
and you can still use the good old command line to execute Maven commands.

Now all the Java libraries needed to run the Activiti Engine are available inside the
IDE. This means that you can start implementing Activiti logic in your project. In the
bpmn-examples project available in the book’s source code, you can see that we also
used a Maven configuration and defined the Activiti Engine dependencies. Now let’s
discuss how to tune logging in the Activiti Engine.

4.1.3 Logging in the Activiti Engine

Logging statements can help a lot when you’re debugging, but they’re also essential
for getting good error descriptions from a production system. When you’re using mul-
tiple open source frameworks in one project—like you do in this chapter with Activiti
and Spring—you may run into different logging systems.

 Activiti uses the standard Java java.util.logging API, also known as JDK 1.4 logging,
and Spring uses Apache commons logging. This means that, by default, it’s not possi-
ble to have one logging configuration file. Luckily, there’s the Simple Logging Façade
for Java (SLF4J—http://www.slf4j.org) framework that can translate log messages
from different frameworks into the log message of your choice.

 In this book, we’ll use Log4J (http://logging.apache.org/log4j/1.2) as the log-
ging system of choice, but you can easily change this to Apache Commons Logging,
for example. SLF4J provides support for Log4J as well as Apache Commons Logging.
For JDK 1.4 logging statements to be translated by SLF4J to Log4J, you have to do
some coding.

 You’ll be using a lot of unit tests to work with the Activiti BPM platform, so the next
code snippet shows the AbstractTest class you’ll be extending from in every unit test
to initialize your logging framework:

import java.util.logging.Handler;
import java.util.logging.LogManager;
import java.util.logging.Logger;

import org.activiti.engine.impl.util.LogUtil;
import org.slf4j.bridge.SLF4JBridgeHandler;

public abstract class AbstractTest {

 @BeforeClass
 public static void routeLoggingToSlf4j() {
 LogUtil.readJavaUtilLoggingConfigFromClasspath();
 Logger rootLogger =
 LogManager.getLogManager().getLogger("");
 Handler[] handlers = rootLogger.getHandlers();
 for (int i = 0; i < handlers.length; i++) {
 rootLogger.removeHandler(handlers[i]);
 }
 SLF4JBridgeHandler.install();
 }
}

54 CHAPTER 4 Working with the Activiti process engine
This abstract unit test class first makes sure that the logging.properties for the JDK 1.4
logging of the Activiti Engine are read from the classpath. By default, the JDK 1.4 logging
reads the log configuration of your JAVA_HOME/lib/logging.properties—and that’s not
what you want. In the logging.properties file of the bpmn-examples project, the log level
is set to FINEST so you can get all the logging information out of the Activiti Engine when
you want to.

 Next in the code snippet, the log handlers are removed from the
java.util.logging.Logger class; otherwise, the JDK 1.4 logging framework still per-
forms the logging. At the end of the code snippet, the install method of the SLF4J
bridge is invoked, which will direct all JDK 1.4 logging output to SLF4J. Because you
have the SLF4J Log4J library on the classpath, you can now define the log level of the
Activiti Engine, the Spring framework, and other external frameworks in a default
log4j.xml file. With this configuration, all logging is redirected to Log4j and you can
define the desired logging level in the log4j.xml that’s available on the classpath.

 This means you can define a log level of DEBUG when you want to do some debug-
ging, and you can set the level to ERROR when you don’t want extra information logged
in your unit tests. In the source code examples implemented in the bpmn-examples
project, you extend the AbstractTest class in all unit test classes.

 Now that the logging configuration is in place, let’s discuss the options available
for running the Activiti Engine.

4.1.4 Developing and testing with the Activiti Engine

The primary component you have to deal with when designing and developing
BPMN 2.0 processes with Activiti is the Activiti Engine. The engine is your entry point
to deploying new process definitions, starting new process instances, querying for
user tasks, and so on. But what are the options for running the Activiti Engine during
development? In the following subsections, we’ll discuss the following three options:

■ Running the Activiti Engine in the JVM with an in-memory database (H2)
■ Running the Activiti Engine in the JVM with a standalone database (H2)
■ Running the Activiti Engine on an application server (Apache Tomcat) with a

standalone database (H2)

Let’s look at the first of these options now.

RUNNING THE ACTIVITI ENGINE WITH AN IN-MEMORY DATABASE

A good way to test a BPMN 2.0 process is to run the Activiti Engine inside the Java Vir-
tual Machine (JVM) with an in-memory database. In this deployment scenario, the
unit tests can also be run within a continuous build environment without the need for
external server components. The whole process engine environment runs from within
the JVM and the unit test. Figure 4.2 illustrates this method of deployment.

 In the source code examples we’ll discuss in the rest of this chapter, this deploy-
ment alternative is used because it’s the easiest to use from within an IDE. In the next
subsection, we’ll take a look at another option: using a standalone database.

55Creating an Activiti development environment
RUNNING THE ACTIVITI ENGINE WITH A STANDALONE DATABASE

If you want to work with process definitions or instances that are deployed and run-
ning on a standalone environment, you need another deployment alternative. You
must be able to run the Activiti Engine connected to a standalone database. This
enables possibilities, such as querying the standalone database for specific running
process instances. This type of deployment is shown in figure 4.3.

 In the first example of this book, shown in chapter 1, you used this deployment
option; an Activiti Engine is created from within a unit test and connected to a stand-
alone H2 database. The H2 database is already installed and started as part of the
Activiti installation setup. This type of setup isn’t suitable for unit testing because the
outcome of the unit test may vary with each run depending on what’s already present
in the database unless you clean the database before each run. But, it can be handy
for integration testing, where you also want to use the Activiti Explorer together with a
process you create from your local development environment.

RUNNING THE ACTIVITI ENGINE ON APACHE TOMCAT WITH A STANDALONE DATABASE

The previous deployment options are useful for unit and integration testing. But,
eventually, you’ll want to deploy your business processes on a production-like envi-
ronment and do some basic testing there, too. This means that you can’t start an
Activiti Engine from within a unit test, because it runs on a separate application
server environment.

 What you can do is use the REST API provided with the Activiti Engine to interact
with the process engine. The deployment of a new process definition must then be

Java Virtual Machine (JVM)

Unit test Activiti Engine

In−memory
H2 database

Figure 4.2 The de-
ployment scenario
where the Activiti En-
gine runs within the
JVM with an in-memo-
ry database

Java Virtual Machine (JVM)

Unit test Activiti Engine

Standalone database (H2)

Figure 4.3 The de-
ployment alternative
where the Activiti En-
gine runs within the
same JVM as the unit
test and connects to a
standalone database

56 CHAPTER 4 Working with the Activiti process engine
done via Activiti Explorer (like you did in chapter 3) or an Ant script by deploying a
Business Archive file. This alternative is shown in figure 4.4.

 In an environment like the one shown in figure 4.4, the need for unit tests is typi-
cally low because the deployment alternatives discussed earlier are more likely to be
used for unit and integration testing. But, you will still need to communicate with the
process engine when tools like the Activiti Explorer don’t provide all the information
you need or in cases where you want to communicate with the process engine from
other applications. An example would be when you want to build a custom user inter-
face for users to interact with the user tasks in a particular process. The REST API pro-
vides a great way to implement the necessary communication.

 In chapter 8, we’ll take close look at the possibilities of the REST API. But first, it’s
time to learn about the Java interfaces you can use to talk with the Activiti Engine.

4.2 Using the Activiti Engine API
The Activiti Engine API is divided into seven core interfaces, each targeted at interact-
ing with different functionality of the process engine. Table 4.1 summarizes the core
interfaces.

Table 4.1 Overview of the seven core interfaces of the Activiti API

Interface Description

FormService To work with the user task forms generated by the Activiti form engine, the
form service provides several methods.

HistoryService To retrieve information about completed process instances, you can use the
history service interface.

IdentityService The identity service provides an interface on the authentication component
of the Activiti process engine.

Java Virtual Machine
(JVM)

Java application Activiti Engine

Standalone database (H2)

Application server
(Apache Tomcat)

Activiti engineREST API

Figure 4.4 A typical Activiti Engine environment where the process engine runs on an ap-
plication server, such as Apache Tomcat, with a standalone database. The REST API provides
the necessary interface to interact with the process engine.

57Using the Activiti Engine API
In this section, we’ll discuss most of these interfaces with small and easy-to-use code
examples, starting with the RuntimeService. We won’t be covering the FormService
and the ManagementService here because they provide specific functionality. The
FormService can be used to interact with a user task or start event forms (we’ll discuss
this in chapter 5), and the ManagementService can be used to access jobs and query
the Activiti tables (the job architecture is discussed in chapter 15).

4.2.1 Starting process instances with the RuntimeService

The primary usage of the RuntimeService is to start new process instances based on a
specific process definition. But this isn’t the sole purpose of this interface; it also pro-
vides simple query functionality and methods to set and retrieve process variables,
among other operations.

 Let’s first look at how to use the RuntimeService to start a new process instance.

public class RuntimeServiceTest extends AbstractTest {

 private static RuntimeService runtimeService;

 @BeforeClass
 public static void init() {
 ProcessEngine processEngine =
 ProcessEngineConfiguration
 .createStandaloneInMemProcessEngineConfiguration()
 .buildProcessEngine();

 RepositoryService repositoryService =
 processEngine.getRepositoryService();
 repositoryService.createDeployment()
 .addClasspathResource(
 "chapter4/bookorder.bpmn20.xml")
 .deploy();
 runtimeService = processEngine.getRuntimeService();

ManagementService The management service can be used to query the Activiti tables and exe-
cute jobs.

RepositoryService The repository service provides functionality to deploy, query, delete, and
retrieve process definitions.

RuntimeService The runtime service provides an interface to start and query process
instances. In addition, process variables can be retrieved and set, and pro-
cesses can be signaled to leave a wait state.

TaskService With the task service you can do a lot of things with user tasks. For exam-
ple, you can create a new task and query Activiti for a list of tasks that a
specific user can claim.

Listing 4.2 Start a new process instance with the RuntimeService

Table 4.1 Overview of the seven core interfaces of the Activiti API (continued)

Interface Description

Creates Activiti
engine

B

Deploys
bookorder
process

C

58 CHAPTER 4 Working with the Activiti process engine
 }

 @Test
 public void startProcessInstance() {
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", "123456");
 ProcessInstance processInstance =
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);
 assertNotNull(processInstance.getId());
 System.out.println("id " + processInstance.getId() + " "
 + processInstance.getProcessDefinitionId());
}

 @Test
 public void queryProcessInstance() {
 List<ProcessInstance> instanceList = runtimeService
 .createProcessInstanceQuery()
 .processDefinitionKey("bookorder")
 .list();

 for (ProcessInstance queryProcessInstance : instanceList) {
 assertEquals(false, queryProcessInstance.isEnded());
 System.out.println("id " + queryProcessInstance.getId() +
 ", ended=" + queryProcessInstance.isEnded());
 }
 }
}

To implement a unit test class with multiple test methods, it’s a good practice to create
the Activiti engine B in an init method annotated with @BeforeClass. This makes the
Activiti engine available in every test method. Then the book order process used in chap-
ter 1 is deployed on the engine C. Figure 4.5 shows the simple book order process.

 To start a new process instance for the book order process shown in figure 4.5, you
can use the startProcessInstanceByKey method D of the RuntimeService inter-
face. With this method, the latest version of the specified process definition name is
started. You can optionally provide a map of process variables as in this example. The
other way to start a new process instance is to use the startProcessInstanceById
method, which starts a specific version of a process definition. The process definition
identifier is stored within the Activiti Engine database and is provided when you
deploy a process definition with the RepositoryService. But, most of the time, you’ll
want to use the startProcessInstanceByKey method because you want to use the lat-
est version of the process.

 In the last step of the unit test, you query the Activiti engine for running process
instances of the book order process E. Note that you use the processDefinitionKey

Starts new
process
instance

D

Queries for
running
bookorder
instances

E

Figure 4.5 The process diagram
of a simple book order process,
containing a “Validate order
script” task and a “Complete or-
der user” task.

59Using the Activiti Engine API
method here, which means all running process instances for all versions of the book
order process are returned. To retrieve only the running process instances of a spe-
cific version of the book order process definition, you have to use the processDefini-
tionId method and provide the process definition identifier value.

 When you run this unit test, you’ll see one running process instance with the pro-
cess instance query because you only started one new process instance. Let’s see what
happened inside the Activiti engine with the book order process instance after you
started the process instance (figure 4.6).

 The Activiti Engine executes the process instance immediately after the book
order process is started with the startProcessInstanceByKey method. Because this is
a synchronous execution in a single transaction and thread, the unit test will wait until
the process instance identifier is returned. Activiti executes the process until a wait
state is encountered. A user task is an example of such a wait state because somebody
has to claim and complete the task before the process instance will proceed to the
next activity. “Validate order” is a script task, which isn’t a wait state and, therefore, it
executes synchronously in the current thread. In section 4.3, you’ll see how to define
an automatic task, like a script or a Java service task, to run asynchronously.

 For the unit test example, the Activiti engine executes the “Validate order” script
task and initiates the “Complete order” user task. Then the wait state is activated and
the process instance identifier is returned to the unit test. When you query the Activiti
engine for running processes, you find exactly one instance, which has a current
activity of the type user task. Now let’s look at how to deal with this user task using
the TaskService.

4.2.2 Working with user tasks via the TaskService

The TaskService provides a lot of functionality surrounding user tasks for the Activiti
engine. You can, for example, use the TaskService to query the engine for specific
tasks or to create a new standalone task for a specific user. In this section, we’ll walk
through most of the functionality the TaskService interface provides, starting with
querying for running user tasks.

Validate order Complete orderUnit
test

1.
runtimeService.startProcess

InstanceByKey

3.
return process instance

ID, e.g. 3

2.
Run process instance up to the

wait state, here a user task

Figure 4.6 Overview of what happens with the process instance after you’ve started the process in-
stance in the unit test

60 CHAPTER 4 Working with the Activiti process engine
QUERYING FOR USER TASKS WITH THE TASKSERVICE

In the previous section, we looked at the usage of the RuntimeService with a rather
large unit test. From now on, you’ll use the unit testing functionality that the Activiti
framework provides, as you’ll see listing 4.3.

public class TaskServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem.xml");

 private void startProcessInstance() {
 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", "123456");
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);

Listing 4.3 Querying for user tasks with the TaskService interface

Unit testing with Activiti
When you want to test your process definition without a lot of plumbing code, you can
use the unit testing functionality of the Activiti framework. The unit testing functionality
of Activiti using JUnit 4 is centered on the use of the ActivitiRule class. The
ActivitiRule class is a subclass of the JUnit TestWatchman class, which intercepts
test method calls so it can provide the setup and teardown functionality. If you want
to use JUnit 3 to create your tests, you can use the AbstractActivitiTestCase
abstract base class.

But, first things first. At the creation of an ActivitiRule instance, an Activiti Engine
is created using the activiti.cfg.xml configuration file found on the classpath by de-
fault. This can be overwritten if you want to. The activiti.cfg.xml configuration file con-
tains, for example, the definition of the Activiti Engine and configures the database
(embedded or standalone) that’s used by the Activiti Engine. We’ll discuss all the con-
figuration options of the activiti.cfg.xml file in chapter 8.

The main usage of the ActivitiRule instance is that you can deploy a process def-
inition before a test method is executed. This can be done by including the @Deployment
annotation. By default, a process definition with the name testclassname.testmethod-
name.bpmn20.xml in the same package as the test class is deployed, but this can
be overridden by specifying one or more bpmn20.xml files with the resources element
of the @Deployment annotation. The @Deployment annotation also makes sure that
after the test method has executed, running process instances, user tasks, and jobs
are deleted. This is handy for keeping the database clean while running your unit tests.

In addition, the ActivitiRule instance can be used to retrieve the seven core inter-
faces we discuss in this section (section 4.2). You can also specify a specific
java.util.Date with the setCurrentTime method, which can be used to test tim-
ers and due dates.

Initiates
Activiti unit
testing

B

Starts new
process instance

C

61Using the Activiti Engine API
 }

 @Test
 @Deployment(resources={

 ➥ "chapter4/bookorder.bpmn20.xml"})
 public void queryTask() {
 startProcessInstance();
 TaskService taskService = activitiRule.getTaskService();
 Task task = taskService.createTaskQuery()
 .taskCandidateGroup("sales")
 .singleResult();
 assertEquals("Complete order", task.getName());
 System.out.println("task id " + task.getId() +
 ", name " + task.getName() +
 ", def key " + task.getTaskDefinitionKey());
 }
}

This unit test makes use of the powerful unit testing functionality Activiti provides
with the ActivitiRule class B. This reduces the plumbing code necessary to test a
process definition to a minimum. With the @Deployment annotation D, the book
order process definition is deployed to the Activiti engine. But, you still have to start a
new process instance C before you can proceed with the actual testing logic.

 Querying for user tasks is done via the TaskQuery interface where you can, for
example, specify candidate user or group criteria and define ordering instructions. In
this example, you query for user tasks that can be completed by users belonging to the
sales group E. The user task defined in the book order process definition has a group
definition that’s equal to the name sales:

<userTask id="usertask1"
 name="Complete order"
 activiti:candidateGroups="sales">
 <documentation>book order user task</documentation>
</userTask>

Because you know that only one user task is running inside the unit test, you can use
the singleResult method to return one Task instance.

 Now let’s move on to creating a new task and completing it.

CREATING AND COMPLETING USER TASKS VIA THE TASKSERVICE

The most common functionalities of the TaskService that you’ll be using are the
claim and complete methods. When a user task is created for a process instance, a
person has to claim and complete the user task before the process instance proceeds
to the next activity. Claiming a task means that the person who claims the task
becomes the owner (assignee) of the task. It also means that the claimed task isn’t
available anymore for the other potential task owners to claim or complete it.

NOTE The TaskService doesn’t prohibit you from completing a task before
it has been claimed. But, it’s a best practice to claim a task with a particular
user first and then complete it. This ensures that a full audit trail, including
the name of the user who completed the task, is available.

Deploys book
order processD

Queries
for user
tasks

E

62 CHAPTER 4 Working with the Activiti process engine
In the next example, you’re going to create a standalone user task and claim and com-
plete it. A standalone user task isn’t bound to a specific process instance and can be
created at any point in time in the Activiti Engine. The claim and complete function-
ality is no different for a process-bound user task. Figure 4.7 shows the different states
the user task will have in this example.

 The next listing implements the different states shown in figure 4.7 in a unit test
method. The createTask test method is implemented in the same unit test class as
the previous listing.

public class TaskServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem.xml");

 @Test
 public void createTask() {
 TaskService taskService = activitiRule.getTaskService();
 Task task = taskService.newTask();
 task.setName("Test task");
 task.setPriority(100);
 taskService.saveTask(task);
 assertNull(task.getAssignee());

 IdentityService identityService =
 activitiRule.getIdentityService();
 User user = identityService.newUser("JohnDoe");
 identityService.saveUser(user);

 taskService.addCandidateUser(task.getId(), "JohnDoe");
 task = taskService.createTaskQuery()
 .taskCandidateUser("JohnDoe")
 .singleResult();
 assertNotNull(task);
 assertEquals("Test task", task.getName());
 assertNull(task.getAssignee());

Listing 4.4 Implementation of the claim and complete functionality

Unassigned

1.
Test task created

3.
JohnDoe claims the task

2.
Candidate user JohnDoe is

added

Test taskTest task Test task Test task

Unassigned Assignee is
JohnDoe

Completed

4.
The task is completed

Figure 4.7 An overview of the different states a user task goes through when it’s created, claimed,
and completed

New user
task created

B

New user
added

C

User task
gets
candidate
userD

63Using the Activiti Engine API
 taskService.claim(task.getId(), "JohnDoe");
 task = taskService.createTaskQuery()
 .taskAssignee("JohnDoe")
 .singleResult();
 assertEquals("JohnDoe", task.getAssignee());

 taskService.complete(task.getId());
 task = taskService.createTaskQuery()
 .taskAssignee("JohnDoe")
 .singleResult();
 assertNull(task);
 }
}

To create a standalone user task, you can use the newTask method B of the TaskSer-
vice interface. In this example, the user task name and priority are set and the task is
saved with these new values.

TIP The priority attribute of a user task can be used to define the urgency of
the work to be done. By default, this value is 50, but you define any value
from 0 to 100 (where 100 is the highest priority level and 0 the lowest). The
Activiti Engine itself doesn’t use the priority attribute, but it can be used by
your workflow application.

When the new user task is created, the assignee attribute is empty, meaning that
there is no specific user allocated yet to do the work associated with the user task. To
be able to claim the user task with a specific user, you first add a new user to the Activ-
iti Engine. This is done via the IdentityService and the newUser method C. Note
that the user isn’t created before the saveUser method is invoked. Once the John Doe
user is created, you can add a candidate user to the user task D. This means that John
Doe is the candidate who’ll execute the work associated with the user task.

NOTE In Activiti, there’s no validation if the user who claims the user task is
also part of the candidate user or group. The Engine doesn’t even validate
whether the user is known. This makes it easy to plug in your own identity man-
agement solution, which can, for example, be an LDAP repository. We’ll take a
look at various options to implement identity management in chapter 10. It’s
a best practice to define a list of candidate users or groups and only claim the
user task with a user that’s on this list. The validation logic that checks if a user
exists in your identity management system and whether the user is part of a spe-
cific group must be implemented by you.

In the next step of the unit test, the user task is claimed with the John Doe user E.
Now the assignee attribute of the user task is filled with the user identifier of the
claimer, which in this example, is John Doe. To complete the user task, the complete
method is used F. When the user task is completed, it can’t be found with a task
query anymore. The only way to retrieve the user task at this point is via the Historic-
ActivityInstanceQuery, which we’ll discuss in section 4.2.5. First, let’s look at how to
delete a process definition via the RepositoryService.

User task
claimedE

User task
completedF

64 CHAPTER 4 Working with the Activiti process engine
4.2.3 Deleting process definitions with the RepositoryService

You already used the RepositoryService interface in section 4.2.1 to deploy a process
definition; it can also be used to query the Activiti engine for deployment artifacts and
process definitions. In this section, you’ll also use the delete functionality, which the
RepositoryService interface provides. Let’s work through an example where you
deploy a new process definition and delete it at the end (see the next listing).

public class RepositoryServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem.xml");

 @Test
 public void deleteDeployment() {
 RepositoryService repositoryService =
 activitiRule.getRepositoryService();
 String deploymentID = repositoryService.createDeployment()
 .addClasspathResource("chapter4/bookorder.bpmn20.xml")
 .deploy()
 .getId();

 Deployment deployment = repositoryService
 .createDeploymentQuery()
 .singleResult();
 assertNotNull(deployment);
 assertEquals(deploymentID, deployment.getId());
 System.out.println("Found deployment " + deployment.getId()
 + ", deployed at " + deployment.getDeploymentTime());

 ProcessDefinition processDefinition = repositoryService
 .createProcessDefinitionQuery()
 .latestVersion()
 .singleResult();
 assertNotNull(processDefinition);
 assertEquals("bookorder", processDefinition.getKey());
 System.out.println("Found process definition " +
 processDefinition.getId());

 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", "123456");
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);

 ProcessInstance processInstance = runtimeService
 .createProcessInstanceQuery()
 .singleResult();
 assertNotNull(processInstance);
 assertEquals(processDefinition.getId(),
 processInstance.getProcessDefinitionId());

Listing 4.5 Deleting a deployment with the RepositoryService

Deploys new
process

definition

B

Queries
engine for
deployments

C

Retrieves
the deployed
process
definition

d

Starts new
process
instance

E

65Using the Activiti Engine API
 repositoryService.deleteDeployment(deploymentID, true);

 deployment = repositoryService
 .createDeploymentQuery()
 .singleResult();
 assertNull(deployment);
 processDefinition = repositoryService
 .createProcessDefinitionQuery()
 .singleResult();
 assertNull(processDefinition);
 processInstance = runtimeService
 .createProcessInstanceQuery()
 .singleResult();
 assertNull(processInstance);
 }
}

This is quite a bit of coding, but, as you can see, you do a lot of querying to validate
the results of the deployment activities. First, you start with deploying the book order
process definition B like you did in section 4.2.1. The difference here is that you
keep track of the deployment identifier that’s generated by the Activiti Engine. This
deployment identifier will be needed later on.

 When the deployment has been executed, you can query the process engine for
deployment artifacts with the DeploymentQuery C. Because you’re using an in-mem-
ory database, you’ll expect to find only the deployment done in this unit test. In addi-
tion to the deployment artifact query, you can also query the engine for the latest
version of the deployed process definitions via the ProcessDefinitionQuery D.

NOTE A deployment can contain multiple resources, including a process
definition. But, it can also contain other resources, such as a business rule
and a process definition image.

Because you want to show the ability to delete the process definition, including possi-
ble running process instances and process history information, a new process instance
is started E in the unit test. The RepositoryService interface provides two types of
delete methods:

■ The deleteDeployment method with a deployment identifier and a false input
parameter, which only deletes the deployment and not the corresponding pro-
cess instance data. When there are still running process instances, you’ll get an
exception when running this method.

■ The deleteDeployment method with a deployment identifier and a true input
parameter, which deletes all information regarding the process definition, run-
ning instances, and history. If you want all process data, including running pro-
cess instances, to be deleted, you should use a Boolean value of true for the
second input parameter.

Because you’ve been running process instances in this unit test, you must use the
Boolean value of true F, or you’ll receive an exception. In the last part of the unit

Deletes
process
definition
and
instancesF

66 CHAPTER 4 Working with the Activiti process engine
test, you validate that the deployment, process definition, and instance are deleted.
You can execute this unit test to ensure it runs successfully. Let’s move on to the Iden-
tityService interface and see how to create new group memberships.

4.2.4 Creating users, groups, and memberships with the IdentityService

In section 4.2.2, we talked about assigning, claiming, and completing user tasks with
the TaskService interface. You’ve already seen how to create a new user within the
Activiti identity module by using the IdentityService. The IdentityService inter-
face does provide a lot more functionality, including query functions and group mem-
bership functions. This can be handy if you want to query the Activiti Engine for users
belonging to a specific group or assign users a new group membership.

 In the next listing, a new user, group, and group membership are created and the
newly created group membership is tested using the book order process example
you’ve seen before.

public class IdentityServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem.xml");

 @Deployment(resources = {"chapter4/bookorder.bpmn20.xml"})
 public void testMembership() {
 IdentityService identityService =
 activitiRule.getIdentityService();

 User newUser = identityService
 .newUser("John Doe");
 identityService.saveUser(newUser);
 User user = identityService
 .createUserQuery()
 .singleResult();
 assertEquals("John Doe", user.getId());

 Group newGroup = identityService
 .newGroup("sales");
 newGroup.setName("Sales");
 identityService.saveGroup(newGroup);
 Group group = identityService
 .createGroupQuery()
 .singleResult();
 assertEquals("Sales", group.getName());

 identityService.createMembership("John Doe", "sales");

 identityService.setAuthenticatedUserId("John Doe");

 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", "123456");

Listing 4.6 Creating and testing a group membership

Creates a
new user

B

Queries for all
registered users

C

Creates a
new group

D

Creates
a group
membership

E

Sets process
initiatorF

67Using the Activiti Engine API
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);
 TaskService taskService = activitiRule.getTaskService();
 Task task = taskService.createTaskQuery()
 .taskCandidateUser("John Doe")
 .singleResult();
 assertNotNull(task);
 assertEquals("Complete order", task.getName());
 }
}

You again create a new user B, but now you also query the Engine to see if the user
was created correctly C. Because you eventually want to test whether the newly cre-
ated John Doe user will be a candidate user for the user task in the book order pro-
cess, you also create a new group D, sales, which is used in the group assignment in
that process.

 Having created the user and group, you can now create a group membership of
John Doe for the sales group E. As you can see, this is all easy to do when using the
IdentityService interface. The IdentityService also enables you to set the authen-
ticated user F; in this example, it’s used to set the user who starts or initiates the pro-
cess instance. In the process definition, a process variable can be configured whereby
this user identifier will be available during process execution:

<startEvent id="startEvent" activiti:initiator="starter" />

When you start a book order process instance, you can now test whether your new
user is a candidate user for the Complete order user task. To test this, you use a task
query with a candidate user criterion, which is equal to John Doe G. When the group
membership has been created successfully, the retrieved user task name should be
equal to Complete order.

 It’s nice to be able to start new process instances and work with user tasks using the
Activiti API. But, what happens if a process instance is finished or terminated? Will you
still be able to retrieve information about these process instances, such as for reporting?
Yes; and that’s what the next section about the HistoryService interface is about.

4.2.5 A sneak peek into the past with the HistoryService

When information about ended process instances is needed, or previous activities from
a running execution must be retrieved, the HistoryService provides an interface to
query this kind of data. But before we dive into a code example of how to use the
HistoryService interface, let’s first look at how the historic data about process
instances and activities is stored inside the Activiti engine database. You’ll again use the
book order process for this and start a new process instance, as shown in figure 4.8.

 Note that a historic process instance is stored right away when a new process instance
is started. A query on historic process instances will also give results when all created pro-
cess instances are still running; they don’t have an end time yet. The database table in
which you can find the historic process instances is the ACT_HI_PROCINST table. When
the process instance enters its first activity state, such as Validate order, a record in the

Queries to
validate group
membership

G

68 CHAPTER 4 Working with the Activiti process engine
historic activity table (ACT_HI_ACTINST) is made. When the activity is finished, the
record is updated with the end time of the activity. Figure 4.9 finishes the book order
process example and shows what happens if the “Complete order” user task is completed.

 When the user task is completed, the end time of the corresponding history activity
instance is updated with the time at completion. Then the book order process instance
reaches its final end state and the end time of the historic process instance is filled in.
Because the process instance has finished its execution at this point, the Activiti Engine

Validate order Complete orderUnit
test

1.
runtimeService.startProcess

InstanceByKey

6.
Return process instance

ID, e.g. 3

ACT_HI_PROCINST
ACT_HI_ACTINST

2.
Store history

process
instance

3.
Store

history
activity

4.
Update
endtime
history
activity

5.
Store

history
activity

Figure 4.8 Overview of the historic data of process instances and activities, which is stored by the
Activiti engine in the database when starting the example book order process

Complete orderUnit
test

1.
taskService.complete

ACT_HI_PROCINST
ACT_HI_ACTINST

ACT_RU_EXECUTION
ACT_RU_VARIABLE

2.
Update
endtime
history
activity

3.
Update
endtime

history process
instance

4.
Remove

execution and
variables

Figure 4.9 The complete story of
what’s stored in the Activiti engine
database when the book order pro-
cess user task is completed

69Using the Activiti Engine API
will also delete the runtime execution information other than the history from the data-
base. The deleted data is the execution instance stored in the ACT_RU_EXECUTION
table and the process variables persisted in the ACT_RU_VARIABLE table.

 The execution data is deleted to reduce the number of rows in the running pro-
cess instance tables to improve performance. The historic tables don’t have any for-
eign keys so they can be backed up easily. Note that the process variables aren’t
automatically stored in the history tables. The updates to process variables are only
stored in a historic table, named ACT_HI_DETAIL, when you set the level of historic
information to keep to full. We’ll discuss how to configure the level of historic infor-
mation that’s logged shortly.

 First, let’s look at a unit test that uses the HistoryService interface to query the
Activiti Engine for history process instances and history activities.

public class HistoryServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem-fullhistory.xml");

 private String startAndComplete() {
 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", "123456");
 String processInstanceID = runtimeService
 .startProcessInstanceByKey(
 "bookorder", variableMap)
 .getId();

 TaskService taskService = activitiRule.getTaskService();
 Task task = taskService.createTaskQuery()
 .taskCandidateGroup("sales")
 .singleResult();
 variableMap = new HashMap<String, Object>();
 variableMap.put("extraInfo", "Extra information");
 variableMap.put("isbn", "654321");
 taskService.complete(task.getId(), variableMap);
 return processInstanceID;
 }

 @Test
 @Deployment(resources={"chapter4/bookorder.bpmn20.xml"})
 public void queryHistoricInstances() {
 String processInstanceID = startAndcomplete();
 HistoryService historyService =
 activitiRule.getHistoryService();
 HistoricProcessInstance historicProcessInstance =
 historyService
 .createHistoricProcessInstanceQuery()
 .processInstanceId(processInstanceID)
 .singleResult();

Listing 4.7 Querying for process instances and historic activities

Starts a
new process
instance

B

Completes a
user task with
variables

C

Queries for
historic
process
instances

D

70 CHAPTER 4 Working with the Activiti process engine
 assertNotNull(historicProcessInstance);
 assertEquals(processInstanceID, historicProcessInstance
 .getId());
 System.out.println("history process with definition id " +
 historicProcessInstance.getProcessDefinitionId() +
 ", started at " +
 historicProcessInstance.getStartTime() +
 ", ended at " + historicProcessInstance.getEndTime() +
 ", duration was " +
 historicProcessInstance.getDurationInMillis());
 }

 @Test
 @Deployment(resources={"chapter4/bookorder.bpmn20.xml"})
 public void queryHistoricActivities() {
 startAndcomplete();
 HistoryService historyService =
 activitiRule.getHistoryService();
 List<HistoricActivityInstance> activityList =
 historyService
 .createHistoricActivityInstanceQuery()
 .list();
 assertEquals(3, activityList.size());
 for (HistoricActivityInstance historicActivityInstance :
 activityList) {
 assertNotNull(historicActivityInstance.getActivityId());
 System.out.println("history activity " +
 historicActivityInstance.getActivityName() +
 ", type " +
 historicActivityInstance.getActivityType() +
 ", duration was " +
 historicActivityInstance.getDurationInMillis());
 }
 }
}

The startAndComplete method starts a new process instance B and completes the
user task with an update to the isbn process variable and the addition of a new process
variable extraInfo C. This corresponds to the execution logic in figures 4.8 and 4.9.
The variables that are passed onto the process instance at the user task completion will
be used later on, in listing 4.8.

 In the first unit test implemented using the HistoricProcessInstanceQuery, the
historic process instance started and completed in the startAndComplete method is
retrieved D. Note that HistoricProcessInstanceQuery would also have returned the
book order process instance if the user task wasn’t completed and the process
instance was still running, as illustrated in figure 4.4. The information that can be
retrieved from a HistoricProcessInstance is basic; for example, the start and end
times.

 More interesting is the information that can be retrieved via the HistoricActivity-
InstanceQuery E, which can provide a list of activities that have been executed by the
Activiti Engine. In this example, the query will return three activities: the start event plus

Queries
for historic
activities

E

71Using the Activiti Engine API
the “Validate order” and “Complete order” tasks from the book order process defini-
tion. This kind of information can be handy when you want to see the audit trail whose
route has been executed in a specific process instance.

 In this example, the default history settings of Activiti were used. But you can con-
figure four levels of history archiving:

■ None—No history information is archived.
■ Activity—All process and activity instance information is archived.
■ Audit (default)—All process, activity instance, and form properties information

is archived.
■ Full—The highest level of archiving; all audit information is archived and, addi-

tionally, the updates to process variables and user task form properties are
stored.

When you don’t want to use the default setting of audit for history archiving, you can
specify an alternative value in the Activiti configuration file, which by default is activ-
iti.cfg.xml. To do this, add the following property to the process engine configuration:

<property name="history" value="full" />

In this example, you’ve specified the highest level of history archiving, but this can be
any of the four levels mentioned previously. In the highest level, the updates to pro-
cess variables are logged in the history table ACT_HI_DETAIL. The next listing shows a
unit test method—the same HistoryServiceTest class used in listing 4.7—which
retrieves these process variable updates.

@Test
@Deployment(resources={"chapter4/bookorder.bpmn20.xml"})
public void queryHistoricVariableUpdates() {
 startAndComplete();
 HistoryService historyService =
 activitiRule.getHistoryService();
 List<HistoricDetail> historicVariableUpdateList =
 historyService
 .createHistoricDetailQuery()
 .variableUpdates()
 .list();
 assertNotNull(historicVariableUpdateList);
 assertEquals(3, historicVariableUpdateList.size());
 for (HistoricDetail historicDetail :
 historicVariableUpdateList) {
 assertTrue(historicDetail instanceof
 HistoricVariableUpdate);
 HistoricVariableUpdate historicVariableUpdate =
 (HistoricVariableUpdate) historicDetail;
 assertNotNull(historicVariableUpdate.getExecutionId());
 System.out.println("historic variable update,
 revision " +

Listing 4.8 Retrieving process variable updates with the HistoryService interface

Queries process
variable updates

B

HistoricVariableUpdate
for process variable
updates

C

72 CHAPTER 4 Working with the Activiti process engine
 historicVariableUpdate.getRevision() +
 ", variable type name " +
 historicVariableUpdate.getVariableTypeName() +
 ", variable name " +
 historicVariableUpdate.getVariableName() +
 ", Variable value '" +
 historicVariableUpdate.getValue()+"'");
 }
}

When the history level is set to full, the historic detail query can be used to retrieve
process variable updates B. This means that, when a new process variable is created,
an update row is created. But an update row also is created when the value of a pro-
cess variable is changed, as you saw with the isbn variable in listing 4.7.

 The process variable updates can be retrieved using HistoricVariableUpdate
instances C. In this unit test, you don’t do a lot of testing, but you print all the vari-
able update information for learning purposes, like the new process variable value D.
When you run this unit test, you should see the following console output:

historic variable update, revision 0, variable type name string, variable
name isbn, Variable value '123456'

historic variable update, revision 1, variable type name string, variable
name isbn, Variable value '654321'

historic variable update, revision 0, variable type name string, variable
name extraInfo, Variable value 'Extra information'

The first entry is created at the start of the process instance, when the isbn process
variable is set. The second entry shows a new revision of the isbn variable, created
when the user task is completed. And, the same goes for the last process variable
update entry. This completes our detailed discussion of the history service interface.

 We haven’t covered the ManagementService and FormService interfaces yet. In
the previous sections, you worked with the most frequently used interfaces of the
Activiti Engine. These two, less common interfaces will be discussed in chapter 5,
when you’ll use a task form and a boundary timer event.

 Now, though, let’s look at developing Java service tasks.

4.3 Using plain Java to do BPM
By now, you’re familiar with the Activiti Engine API, but we haven’t discussed the use
of Java inside a process definition yet. In addition to the script, web service, and user
tasks available to define a process, you can also use Java classes to implement the pro-
cess logic. When there’s no web service that can be executed to deal with business
logic, you can use a Java service task to do that work.

NOTE The use of Java to implement a service task isn’t standard BPMN 2.0
functionality but is provided as an add-on by the Activiti framework.

The Java service task can be used in four ways:

Gets new
process
variable value

D

73Using plain Java to do BPM
■ Java service task class
■ Java service task class with field extensions
■ Java service task with method or value expressions
■ A delegate expression that defines a variable that is resolved to a Java bean at

runtime

In the following sections, we’ll look at each of these four options with short code
examples.

4.3.1 Java service task with class definition

The simplest way of using a Java service task is to create a simple Java class that extends
the JavaDelegate convenience class and defines the fully qualified class name (pack-
age name and the class name) in the service task of the process definition.

 Let’s use the book order process example again and implement the validate order
functionality in a Java class.

public class ValidateService implements JavaDelegate {

 @Override
 public void execute(DelegateExecution execution) {
 System.out.println("execution id " + execution.getId());
 Long isbn = (Long) execution.getVariable("isbn");
 System.out.println("received isbn " + isbn);
 execution.setVariable("validatetime", new Date());
 }
}

A typical Java service task must implement the JavaDelegate class, which makes it easy
to implement a bit of process logic. This convenience class takes care of leaving the
Java service task when it has finished to all the outgoing transitions for which the
sequence flow condition, if present, doesn’t evaluate to false. When the Java service
task is executed in the process instance, the execute method will be invoked by the
Activiti Engine. The DelegateExecution instance provides an interface to retrieve
and set the process variables. In this simple listing, the isbn process variable is
retrieved and the validatetime variable is set with the current date and time.

 The only thing you have to change in the process definition is the service task for
the validate order step; but, in the following listing, the full process definition is
included to make it more comprehensible.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 targetNamespace="http://www.bpmnwithactiviti.org"
 xmlns:activiti="http://activiti.org/bpmn">

Listing 4.9 A validate order class that extends the JavaDelegate class

Listing 4.10 The book order process definition with a Java service task class

74 CHAPTER 4 Working with the Activiti process engine
 <process id="bookorder" name="bookorder">
 <startEvent id="startevent1" name="Start"/>
 <serviceTask id="serviceTask1"
 name="Validate order"
 activiti:class="org.bpmnwithactiviti.

 ➥ chapter4.java.ValidateService"/>
 <sequenceFlow id="sequenceflow1"
 name="Validate order"
 sourceRef="startevent1"
 targetRef="serviceTask1"/>
 <userTask id="usertask1" name="Complete order"
 activiti:candidateGroups="sales"/>
 <sequenceFlow id="sequenceflow2"
 name="Sending to management"
 sourceRef="serviceTask1"
 targetRef="usertask1"/>
 <endEvent id="endevent1" name="End"/>
 <sequenceFlow id="sequenceflow3"
 name="flow"
 sourceRef="usertask1"
 targetRef="endevent1"/>
 </process>
</definitions>

The service task B is configured with a class attribute C that’s part of the Activiti
BPMN extensions namespace. Note that you configured the ValidateService class
shown in listing 4.8. The user task is changed a bit because you use the shorthand
candidateGroups attribute here D. Activiti provides an easier way to define candidate
users and groups with extension attributes because the BPMN 2.0 specification is a lit-
tle bit verbose on this point. The same candidate group assignment would look like
the following code snippet with BPMN 2.0–compliant XML:

<userTask id="usertask1" name="Complete order">
 <documentation>book order user task</documentation>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>sales</formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>
</userTask>

To test your book order process with a Java service task, you can develop a simple unit
test like the one shown in the next listing.

public class JavaBpmnTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem.xml");

 private ProcessInstance startProcessInstance() {
 RuntimeService runtimeService =

Listing 4.11 Unit test that tests the book order process with Java service task

Definition of
service task

B

Configures a fully
qualified class name

C

Shorthand
to configure
candidate groups

D

75Using plain Java to do BPM
 activitiRule.getRuntimeService();
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", 123456L);
 return runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);
 }

 @Test
 @Deployment(resources={
 "chapter4/bookorder.java.bpmn20.xml"})
 public void executeJavaService() {
 ProcessInstance processInstance = startProcessInstance();
 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 Date validatetime = (Date) runtimeService.getVariable(
 processInstance.getId(), "validatetime");
 assertNotNull(validatetime);
 System.out.println("validatetime is " + validatetime);
 }
}

To test the execution of the Java service task, you first have to start a new process
instance B of the book order process in listing 4.10. To deploy the process definition
with only one line of coding, you use the @Deployment annotation C. Because the
ValidateService class invoked in the Java service task sets a process variable with the
name validatetime, you test if that variable is set D. This shows you don’t need a
large unit test to verify a successful execution of a process definition.

 Up to this point, you’ve been executing processes in a synchronous manner, until
you encounter non-automatic tasks, such as a user task. In the next section, you’ll see
how to use async continuations to execute a service task asynchronously.

4.3.2 Introducing asynchronous behavior

In figure 4.6, you saw that Activiti executes automatic tasks like a service task in the
same transaction and thread as the transaction and thread the process was started in.
This means that the Java class that starts a process instance will have to wait until all
automatic tasks have been executed in a process definition. When a service task con-
tains long-running logic, like the invocation of an external web service or the con-
struction of a large PDF document, this may not be the desired behavior.

 Activiti provides a solution for these cases in the form of async continuations. From
a BPMN 2.0 XML perspective, the definition of an asynchronous service task
(or another type of task) is easy. You only have to add an async attribute to the service
task configuration:

<serviceTask id="serviceTask1"
 name="Validate order"
 activiti:async="true"
 activiti:class="org.bpmnwithactiviti.chapter4.java.LongValidateService"/>

When we define a service task with the async attribute set to true, the execution of the
service task logic will be executed in a separate transaction and thread. The process

Starts new
process
instance

B

Deploys Java book
order process

C

Gets
validatetime
process variable

D

76 CHAPTER 4 Working with the Activiti process engine
state is persisted to the Activiti database and a job is created to handle the service task
execution. Figure 4.10 shows the book order process definition with the asynchronous
validate order service task.

 As you can see in figure 4.10, the unit test class (JavaBpmnTest) that starts the pro-
cess instance will get a response right after the Activiti Engine stores the process state
and creates a job to execute the “Validate order” service task. The Activiti job executor
component that executes these jobs will be discussed in detail in chapter 15. For now,
think of it as a standalone component that executes jobs in a separate transaction and
thread. In the executeAsyncService method of the JavaBpmnTest class, you can find
a unit test that executes the book order process as described in figure 4.10.

 Besides a service task, you can also configure async continuations on other auto-
matic tasks like a business rule task, call activity, or script task, and even on a subpro-
cess. Furthermore, you can configure an async continuation on a non-automatic task
like a user task or a receive task, which results in the execution listener being executed
in a separate thread. (Execution listeners are introduced in chapter 6.)

 You can also enhance the Java service task by injecting process variables or string
values. In the next section, the book order example is changed a bit to include field
extensions.

4.3.3 Java service task with class definition and field extensions

In section 4.4, you’ll learn how to use the Activiti Engine inside a Spring container,
which provides many ways to implement dependency injection. But the Activiti engine
also provides some simple functionality regarding dependency injection. To be able to
implement dependency injection, you’ll have to change the ValidateService a bit,
like the example in the following listing.

public class ValidateServiceWithFields
 implements JavaDelegate {

 private Expression validatetext;

Listing 4.12 Java service task class with dependency injection

Validate order Complete orderUnit
test

1.
runtimeService.startProcess

InstanceByKey

3.
Return process instance

ID, e.g. 3

2.
Start process instance until

async validate order
service task

4.
Execute script task when

job is executed

Figure 4.10 Asynchronous execution of the validate order service task using an Activiti async
continuation

77Using plain Java to do BPM
 private Expression isbn;

 @Override
 public void execute(DelegateExecution execution) {
 System.out.println("execution id " + execution.getId());
 System.out.println("received isbn " +
 (Long) isbn.getValue(execution));
 execution.setVariable("validatetime", new Date());
 System.out.println(
 validatetext.getValue(execution).toString() +
 execution.getVariable("validatetime"));
 }
}

The ValidateServiceWithFields class defines two attributes that can be injected by
the Activiti Engine: the isbn and validatetext attributes. Notice that the attributes
are of type org.activiti.engine.impl.el.Expression. The Expression class is used
by Activiti to support simple string attribute values as well as complex expressions.

NOTE You might have expected a String type attribute for the validate-
text parameter. But a service task has only one instance inside the Activiti
Engine, which is reused for every process instance. Therefore, multiple
threads can access a service task class at the same time, and class level attri-
butes aren’t thread safe. Activiti introduces an Expression class and the
attribute value is retrieved by passing a DelegateExecution instance to the
Expression instance, which can then evaluate the Expression value for that
specific process instance.

In this example, the isbn expression consists of some logic to give the isbn at least a
value that consists of more than six digits, as you’ll see in the next code snippet. To get
the value of the isbn number with the expression calculated, you can invoke the get-
Value method with the DelegateExecution instance as a parameter B.

 Now you only have to change the service task definition of the book order process,
shown in listing 4.10, according to the following code snippet:

<serviceTask id="serviceTask1" name="Validate order"
 activiti:class="org.bpmnwithactiviti.chapter4.

 ➥ java.ValidateServiceWithFields">
 <extensionElements>
 <activiti:field name="validatetext"
 stringValue="Validaton done at "/>
 <activiti:field name="isbn">
 <activiti:expression>
 ${isbn > 999999 ? isbn : 1000000 + isbn}
 </activiti:expression>
 </activiti:field>
 </extensionElements>
</serviceTask>

With this extensionElements XML element, fields to be injected into the Validate-
ServiceWithFields class can be specified. This can be a simple String value, like the
validatetext field, or an expression using, for example, process variables like the

Get isbn
expression
valueB

78 CHAPTER 4 Working with the Activiti process engine
isbn field. Note that you can directly use process variables in a process definition for
the Activiti engine. You don’t need additional coding. Because this new process defini-
tion can be tested with a unit test similar to the one shown in listing 4.11, we won’t
cover this in more detail.

 In addition to using classes inside a Java service task, you can also use method or
value expressions; this is what we’ll explore in the next section.

4.3.4 Java service task with method and value expressions

When you don’t want to be dependent on the JavaDelegate interface in your service
class, you can define a method or value expression for a Java service task. Let’s look at
two simple examples to get you introduced to this type of Java service task.

 When you have a BookOrder class with a validate method like the following code
snippet, you can use a method expression:

public class BookOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 public Date validate(Long isbn) {
 System.out.println("received isbn " + isbn);
 return new Date();
 }
}

The method expression will invoke the validate method and proceed to next transi-
tion. Note that you now have an isbn instance as a parameter in the validate
method. How the isbn instance is passed on is defined in the method expression of
the Java service task:

<serviceTask id="serviceTask1" name="Validate order"
 activiti:expression="#{bookOrder.validate(isbn)}"
 activiti:resultVariableName="validatetime"/>

If necessary, you can still pass a DelegateExecution instance as a parameter into the
method by using the implicit execution variable, as illustrated in section 4.4.2. The
attribute resultVariableName is used to make the return value of the method avail-
able as a process variable with the name validatetime. To be able to use the
BookOrder instance inside the process definition, you must make sure the class is
made available as a process variable with a name of bookOrder. This can be done when
the process is started, like you did in the unit test of listing 4.11.

NOTE When you use a Java bean as a process variable, make sure the bean
implements the Serializable interface because the process variable will be
persisted to the Activiti Engine database.

Another use of expressions inside a Java service task is a value expression. A value
expression defines an attribute inside a Java bean for which the corresponding getter
method will be invoked. This isn’t a common use of Java service tasks, but it looks like
the following XML snippet:

79Using Spring with Activiti
<serviceTask id="serviceTask1" name="Validate order"
 activiti:expression="#{bookOrder.isbn}"
 activiti:resultVariableName="isbn"/>

In this example, the getIsbn method will be invoked on the BookOrder process vari-
able and the resulting value is assigned to the isbn process variable.

 We haven’t discussed the delegateExpression attribute yet, which is the fourth
way to define a Java service task. With a delegate expression, you can configure a vari-
able that is evaluated at runtime to a Java class that must implement the JavaDelegate
interface. Here’s a simple example:

<serviceTask id="serviceTask1" name="Validate order"
 activiti:delegateExpression="#{orderValidator}"/>

The orderValidator variable should evaluate to a bean name that is defined in the
Spring configuration or to a fully qualified class name.

 In the next section, we’ll explore richer functionality and the use of the Spring
container with the Activiti Engine.

4.4 Using Spring with Activiti
Activiti is able to run on various platforms, including the plain Java approach we’ve
taken until now and on a servlet container or application server like Apache Tomcat.
But, it’s also easy to run the Activiti Engine within a Spring application context. By
using the Spring container to execute the Activiti Engine, you can, for example, use
the Spring dependency injection functionality and invoke a Spring bean from a ser-
vice task in the BPMN process. In the second subsection, you’ll see that it’s easy to
develop unit tests with Spring and Activiti; but, first, you must define the Spring con-
figuration to integrate with the Activiti Engine.

4.4.1 Creating a generic Spring configuration for Activiti

To set up the Spring container to start up the Activiti engine, you need a generic
application context configuration. You can use the Spring configuration shown in the
following listing every time you want to use a Spring container to start up the Activiti
Engine. For convenience reasons, the namespace declarations that are part of the
root element beans are left out of the listing, but they can be found in the source code
of the book.

<beans>
 <bean id="dataSource" class="org.springframework.jdbc.

 ➥ datasource.TransactionAwareDataSourceProxy">
 <property name="targetDataSource">
 <bean class="org.springframework.jdbc.

 ➥ datasource.SimpleDriverDataSource">
 <property name="driverClass" value="org.h2.Driver" />
 <property name="url"
 value="jdbc:h2:mem:activiti;DB_CLOSE_DELAY=1000" />

Listing 4.13 Generic Spring configuration to start up the Activiti Engine

Defines H2
datasource

B

80 CHAPTER 4 Working with the Activiti process engine

der
 <property name="username" value="sa" />
 <property name="password" value="" />
 </bean>
 </property>
 </bean>

 <bean id="transactionManager"
 class="org.springframework.jdbc.

 ➥ datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
 </bean>

 <bean id="processEngineConfiguration"
 class="org.activiti.spring.

 ➥ SpringProcessEngineConfiguration">
 <property name="databaseType" value="h2" />
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager"
 ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="deploymentResources"
 value="classpath*:chapter4/bookorder.spring.bpmn20.xml" />
 <property name="jobExecutorActivate" value="false" />
 </bean>

 <bean id="processEngine"
 class="org.activiti.spring.ProcessEngineFactoryBean">
 <property name="processEngineConfiguration"
 ref="processEngineConfiguration" />
 </bean>

 <bean id="repositoryService"
 factory-bean="processEngine"
 factory-method="getRepositoryService" />
 <bean id="runtimeService"
 factory-bean="processEngine"
 factory-method="getRuntimeService" />
 <bean id="taskService"
 factory-bean="processEngine"
 factory-method="getTaskService" />
 <bean id="historyService"
 factory-bean="processEngine"
 factory-method="getHistoryService" />
 <bean id="managementService"
 factory-bean="processEngine"
 factory-method="getManagementService" />
</beans>

In this listing, you can see that many things you developed programmatically in Java in
the previous examples are now defined in the Spring configuration file. For example,
you have to define a process engine configuration D, which will be used to define the
configuration options of the Activiti Engine.

 In this Spring configuration, you defined an in-memory H2 data source B in a so-
called transaction-aware data source definition. Because the data source is wrapped in
a transaction manager C, you can use the standard Spring JDBC transaction manager.

Wraps
transaction
manager

C

Creates Activiti
process engine
configuration

D

Deploys
book or
process

E

Creates a
RuntimeService
instance

F

81Using Spring with Activiti
 With the data source and the transaction manager defined, you can instantiate the
SpringProcessEngineConfiguration with these components D. This means the
Activiti Engine configuration is created with an in-memory data source when the
Spring container is started. You can also specify a number of processes or task forms
that have to be deployed to the Activiti Engine when it has started with the deploy-
mentResources property E. You’ll see how this makes unit testing even easier in a
moment. Note that this property definition is specific to the example you’ll imple-
ment in this section. The SpringProcessEngineConfiguration is used to instantiate
the ProcessEngineFactoryBean that starts the Activiti Engine with the configured
resources and settings.

 In addition to the instantiation of the Activiti Engine, the Spring container can
also create the core interface classes to the Activiti Engine for you. For example, the
RuntimeService is created via the getRuntimeService method of the processEngine
bean F. With this generic Spring configuration defined, you can now proceed to
define a unit test that uses this Spring configuration to test a specific process.

4.4.2 Implementing a Spring-enabled unit test for Activiti

Because you’ve already defined all the necessary configuration of the Activiti engine,
your unit test can be kept simple. The next listing shows a unit test that starts a new
process instance of the book order process definition and completes the user task.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter4/

 ➥ spring-test-application-context.xml")
public class SpringTest extends AbstractTest {

 @Autowired
 private RuntimeService runtimeService;

 @Autowired
 private TaskService taskService;

 @Test
 public void simpleSpringTest() {
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("isbn", 123456L);
 runtimeService.startProcessInstanceByKey(
 "bookorder", variableMap);
 Task task = taskService
 .createTaskQuery()
 .singleResult();
 assertEquals("Complete order", task.getName());
 taskService.complete(task.getId());
 assertEquals(0, runtimeService.
 createProcessInstanceQuery().count());
 }
}

Listing 4.14 A unit test that takes advantage of the Spring configuration

Loads Spring
configuration

B

Injects RuntimeService
instance

C

Starts a process
instance

D

82 CHAPTER 4 Working with the Activiti process engine
As you can see, the unit test is simple because you don’t have to create the Activiti
engine yourself. With the standard Spring annotations @RunWith and @Context-
Configuration B, the Spring configuration you defined in listing 4.13 is used as part
of this unit test.

 With the @Autowired annotation, you can let the Spring container inject an
instance of the RuntimeService in your unit test class C. This means you don’t have
to do any plumbing before you can start a new process instance of the book order pro-
cess definition D. Because the book order process is already deployed as part of the
Activiti Engine creation in the Spring configuration, you don’t have to deploy the pro-
cess first, either.

 To complete the unit test, you query the Activiti engine for any running user tasks.
Because you run this unit test with an in-memory database, you can be sure that no
user task is running other than the Complete Order user task defined in the book
order process. When this task is completed, you can make sure that there’s no run-
ning process instance anymore by running a process instance query.

 To make this unit test work, you have to implement the process definition of the
bookorder.spring.bpmn20.xml file. This process definition has some small differ-
ences when compared to the bookorder.bpmn20.xml file you’ve used before. In this
process definition, a Spring bean is used to implement the validation order activity
that was first implemented with a script task. Let’s take a quick look at the revised XML
definition of the service task:

<serviceTask id="serviceTask1"
 name="Validate order"
 activiti:expression="#{order.validate(execution)}"/>

Because you run the Activiti Engine within the Spring container, you can directly ref-
erence Spring beans from a service task.

NOTE A Spring service task isn’t standard BPMN 2.0 functionality, but is
implemented as an add-on by the Activiti framework.

The expression attribute can be used to define a Spring bean name with the method
that must be invoked, which, in this case, is the order Spring bean and the validate
method. As you saw in section 4.3, you can pass on a DelegateExecution instance with
the reserved keyword execution. Because you didn’t configure the Spring bean order
in section 4.3.1, the following code snippet must be added to the generic Spring con-
figuration from listing 4.13:

<bean id="order"
 class="org.bpmnwithactiviti.chapter4.spring.OrderService" />

The last step is to implement the Spring bean class OrderService before you can
finally run the unit test. This class is really simple and only prints a message to the sys-
tem console:

83Using Spring with Activiti

on
nt
public class OrderService {
 public void validate(DelegateExecution execution) {
 System.out.println("validating order for isbn " +
 execution.getVariable("isbn"));
 }
}

As you can see, this needs no explaining. Now you can run the unit test provided in
listing 4.14 and see that it runs successfully.

The unit test shown in the next listing can be rewritten to use the more flexible
deployment strategy by using the @Deployment annotation.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter4/

 ➥ spring-nodeployment-application-context.xml")
public class SpringWithDeploymentTest extends AbstractTest {

 @Autowired
 private RuntimeService runtimeService;

 @Autowired
 private TaskService taskService;

 @Autowired
 @Rule
 public ActivitiRule activitiSpringRule;

Listing 4.15 Use of the @Deployment annotation in an unit test

A more flexible deployment strategy
In addition to the definition of deployment resources in the Spring configuration used
in the previous example, you can also define a deployment per test method. To im-
plement this strategy, an ActivitiRule Spring bean must be added to the Spring
configuration:

<bean id="activitiRule" class="org.activiti.engine.test.ActivitiRule">
 <property name="processEngine" ref="processEngine" />
</bean>

The ActivitiRule Spring bean must also be injected into the Spring-enabled unit
test via the @Autowire annotation:

@Autowired
@Rule
public ActivitiRule activitiSpringRule;

Now you can add a @Deployment annotation to every test method where you want to
deploy a specific process definition to test the process logic. The advantage of this
deployment strategy is that it’s finer grained. You can define a specific process def-
inition to be deployed before a test method is executed, and it will be undeployed
afterwards. When you define the deployment resources as part of the Spring config-
uration, they will be available for every test method.

Spring configurati
without deployme
resources

B

ActivitiRule instance
for test convenience

C

84 CHAPTER 4 Working with the Activiti process engine
 @Test
 @Deployment(resources = {
 "chapter4/bookorder.spring.bpmn20.xml" })
 public void simpleProcessTest() {
 runtimeService.startProcessInstanceByKey("bookorder");
 Task task = taskService.createTaskQuery().singleResult();
 assertEquals("Complete order", task.getName());
 taskService.complete(task.getId());
 assertEquals(0, runtimeService
 .createProcessInstanceQuery()
 .count());
 }
}

In this unit test, you use a Spring configuration that has no deployment resources
defined B—unlike the Spring configuration you saw in section 4.4.1. To be able to
use the @Deployment annotation, you have to inject the ActivitiRule instance C,
which provides a hook into the Activiti Engine to deploy and undeploy process defini-
tions. As shown with the simpleProcessTest method D, you can now configure a
process definition file as part of the @Deployment annotation.

 There are plenty of possibilities for using the strength of the Spring framework
together with the Activiti process engine, such as using Spring’s transaction handling.
The information provided in this section should get you started. In chapter 6, you’ll
see how Spring can be used to retrieve and update entity objects from a database.

4.5 Summary
You now know a lot about the different ways you can develop and test with the Activiti
Engine. You can query the process engine with all kinds of criteria to retrieve process
definitions, instances, and user tasks. Because the Activiti Engine provides a service
task that invokes a Java class, we also took a look at how to use this BPMN construct
within a BPMN 2.0 process definition. This provides a powerful feature if you need
process logic inside your business process. You also saw that you can make a service
task asynchronous by adding an async continuation attribute to its definition.

 We also covered the Spring integration module, which provides functionality to
run the Activiti Engine within a Spring container. Running the Activiti Engine in a
Spring container makes it possible to use Spring beans from a service task or expres-
sions inside conditions or variable assignments. Because Spring provides functionality
like transaction and security management and easy hooks to implement data access
and messaging logic (among other things), the integration of Spring with Activiti pro-
vides lots of possibilities.

 In the next chapter, we’ll move away from the short code examples you’ve seen so
far, and we’ll look at a larger business process that you can implement using the Activ-
iti Designer and the Eclipse IDE.

Process definition
to be deployed

D

Part 2

Implementing BPMN 2.0
 processes with Activiti

Now that we’ve covered the basic functionality of Activiti and the most com-
mon BPMN 2.0 elements, it’s time to start implementing process definitions. We
start off in chapter 5 with a detailed guide on how to implement a process defini-
tion from scratch with workflow and email functionality. In chapter 6, you’ll be
introduced to more advanced BPMN 2.0 constructs, like the embedded subpro-
cess and the parallel gateway. Next, in chapter 7, we’ll cover the importance of a
good error handling approach using standard BPMN 2.0 constructs and some cus-
tom functionality. In chapter 8, we’ll discuss best practices for using the Activiti
Engine in your environment and how to use and extend the Activiti REST API.
Finally, we’ll explore the Activiti OSGi and CDI modules in chapter 9.

Implementing
 a BPMN 2.0 process
In the first chapter, I mentioned how big the BPMN 2.0 specification was. To be
honest, if you took a look at all the constructs that are available and the number
of pages the specification covers, you’ll probably feel hesitant to ever take another
look. But if you take a practical approach to BPMN, the specification suddenly
becomes a whole lot easier to handle; you don’t have to know all the nitty-gritty
details of BPMN 2.0 to do business process modeling in your enterprise. In this
chapter, we’ll examine a practical approach to implementing a BPMN 2.0 busi-
ness process.

This chapter covers
■ Implementing a full-blown BPMN 2.0 process
■ Adding logic to processes using a script and

service task
■ Using Activiti forms for starting a process and

user tasks
■ Conditional logic using the exclusive gateway
■ Sending emails with the Activiti email service task
87

88 CHAPTER 5 Implementing a BPMN 2.0 process
 We’ll start by looking at a loan request business process that we’ll use throughout
the chapter. After considering it from a functional point of view, we’ll get down to the
BPMN 2.0 XML step by step. First, we’ll add business logic to the process by implement-
ing a script task and a service task. Then we’ll add a start form to the process and cover
the workflow functionality with user tasks. In the fourth section, we’ll cover the exclu-
sive gateway and the email task with a mail server.

 Then, when the process is finished, we’ll check out deployment options to get the
process running on Activiti Engine. Finally, we’ll test the process with Activiti
Explorer.

 We’ve got a lot of things to do. Let’s start with modeling a loan request business
process.

5.1 Introducing a real business process
This section will introduce the loan request process that you’ll implement in the
upcoming sections. Throughout the chapter, tasks are enhanced or implemented in
alternative ways for illustration purposes, so you’ll get a complete picture of the possi-
bilities with BPMN 2.0 and Activiti. In the end, you’ll have the loan request process up
and running on the Activiti Engine.

 Let’s start by exploring the loan request process from a business perspective.

5.1.1 Analyzing the loan request process

The company that wants you to build a process with Activiti is the Loan Sharks organi-
zation, and the first process they’d like to see running is, of course, the loan request
process. Loan Sharks wants to handle loan requests efficiently from their newly cre-
ated website. The process contains automated steps for checking the credit amount in
relation to the income of the potential customer. Not all steps in the process will need
to be automated, though, because Loan Sharks management believes that each loan
request should be evaluated by one of the employees.

 The first step is to visualize the loan request business model so Loan Sharks man-
agement can approve the approach you want to take with the process implementa-
tion. The loan request process is modeled with Activiti Modeler, and the result is
shown in figure 5.1.

 A loan request process starts when Loan Sharks receive a request for a loan. This
request is accompanied by some basic information, like the customer’s name, email
address, current income, and the amount of money the customer wants to borrow.
Before the loan request is passed on to a Loan Sharks employee, a credit check is per-
formed. The credit check ensures that the requested loan amount isn’t higher than
half of the income of the applicant. The result of the credit check has no direct influ-
ence on the process flow but is stored as additional process information.

 When the credit check has been executed, an evaluation workflow of the loan
request is started. Fozzie, an employee of Loan Sharks (and one of the standard users
in the Activiti process engine), receives a task in his task list to perform a loan request
evaluation, and he has to hurry! As you can see in the process model of figure 5.1, a

89Introducing a real business process
timer symbol is attached to the “Evaluate loan request” task. In BPMN 2.0 this is called
a timer boundary event. If Fozzie isn’t fast enough at completing the “Evaluate loan
request” task, the task is escalated to a member of the management group. Consider-
ing the default users of the Activiti process engine, this means that Kermit will receive
a task in the management group.

 Either Fozzie or Kermit will need to evaluate the loan request, and, based on the
outcome of that evaluation, the request is either processed or denied. In cases where
the request isn’t approved, an email is sent to the customer with information about
why the loan request was denied. Otherwise, the request is approved, and another
employee of Loan Sharks will create a formal loan agreement and finalize the request
for the customer.

 Now that it’s clear what the process should do, let’s take it a step further and imple-
ment the process activities to get it running on Activiti Engine!

5.1.2 Taking a process model to an XML process file

In the previous chapters, you’ve seen that there are different ways to develop business
processes in Activiti.

 Your first option is to create the model in Activiti Modeler and import it into the
Activiti Designer Eclipse plugin to implement the technical parts, such as a Java ser-
vice task. For some processes, it’s even possible to skip the Activiti Designer because
no additional technical implementation is needed.

 A second option is to start in the Activiti Designer and implement the business
process with the technical parts right away. From the Designer, you eventually create
a Business Archive (BAR) file that can be deployed to the Activiti Engine using Activ-
iti Explorer.

 The last option is to use your favorite XML editor to develop the BPMN 2.0 XML.
For smaller processes, this is workable; for larger processes, this becomes quite
tedious, but it’s a good way to become more familiar with the BPMN 2.0 XML. That’s
why we’re going for the direct XML editing approach in this chapter.

Figure 5.1 An overview of the loan request process designed in the Activiti Modeler

90 CHAPTER 5 Implementing a BPMN 2.0 process
 When you’re more familiar with the BPMN 2.0 constructs, you’ll probably be better
off using the Modeler and the Designer. Also, when you take an XML editing approach,
the Designer provides a BPMN 2.0 XML editor that has XML code completion.

 In each of the upcoming sections, we’ll work out a part of the overall loan request
process. The first part we’ll be implementing is the credit check and the construction
of the loan application Java object. It’s time to start coding!

5.2 Developing script and service tasks
In this section, we’ll focus on the pro-
cess logic tasks that need to be imple-
mented for the loan request process.
Figure 5.2 shows the first activities of the
loan request process.

 First, we’ll take a look at the script
task. Then you’ll implement the Java
service task. (We’ll cover the Java service
tasks in less detail because the previous chapter already provided the necessary infor-
mation about Java service tasks.) At the end of this section, we’ll take a look at the
BPMN 2.0 XML you’ve created so far and test the first part of the process with a unit test.

5.2.1 Scripting in the Activiti Engine

The first task you encounter when you look at the loan request process is the credit
check activity. You’ll use a script task to implement the credit check, but you could
also have used a Java service task or a business rule task.

UNDERSTANDING SCRIPT TASKS IN BPMN 2.0

The script task is an official BPMN 2.0 construct. In figure 5.2, you can see the symbol
that BPMN 2.0 prescribes for the script task—it has the same rectangular shape as a
regular service task. The process engine will execute the script logic that’s defined in
the script task. An analyst will define the task in the model, and a developer has to
implement the script with a language the engine can interpret. When the script is exe-
cuted, the script task completes and the engine moves on toward the next activity.

 The configurable options of the script task BPMN 2.0 construct are the scriptFormat
attribute and the script child element. The scriptFormat attribute defines the format
of the script (JavaScript, Groovy, and so on) and is mandatory. The optional script
child element contains the actual script that needs to be executed. If no script is defined,
the task will complete without doing anything.

WORKING WITH SCRIPT TASKS IN ACTIVITI

For the Activiti Engine to execute the script task, the scriptFormat attribute must have
a value that’s compatible with JSR-223 (“Scripting for the Java Platform”). The supported
languages include Groovy, Clojure, JRuby, Jython, and JavaScript. For more information,
you can check out the JSR-223 specification at http://jcp.org/en/jsr/detail?id=223.

Figure 5.2 Fragment of the loan request process
from the Activiti Modeler containing a script and Java
service task and a start event to kick off the process

91Developing script and service tasks
 Because the Groovy jar is shipped by default with the Activiti distribution, we’ll
use Groovy as the script language in the “Check credit” task. If you want to use
another JSR-223 compatible scripting language, it’s sufficient to add the correspond-
ing jar file to the classpath and use the appropriate name in the script task configu-
ration. If you use Java 6, you get the JavaScript scripting engine for free because it’s
part of the Java 6 implementation.

 All the process variables are accessible in the script because the script has access to
the execution that arrives in the task. You can, for example, use the process variable
inputArray, an array of integers, as shown in the following code snippet:

<script>
 sum = 0;
 for (i in inputArray) {
 sum += i
 }
</script>

There’s no boilerplate code necessary to get hold of process variables. Besides reading
variables, it’s also possible to set process variables in a script by using an assignment
statement. In the previous example, the sum variable will be stored as a process vari-
able after the script has been executed. If you want to avoid this default behavior, you
can use script-local variables. In Groovy, you must use the keyword def: def sum = 0. In
that case, the sum variable isn’t stored as a process variable.

 An alternative way to set process variables is by explicitly using the execution vari-
able that’s available in the script task the same way you saw it used in the previous
chapter in the Java service task:

<script>
 def bookVar = "BPMN 2.0 with Activiti"
 execution.setVariable("bookName", bookVar);
</script>

Now let’s return to the process and the “Check credit” script task.

IMPLEMENTING THE CREDIT CHECK SCRIPT TASK

Loan Sharks agrees to let a customer pass the credit check when their income divided
by two is bigger than the requested loan amount. The following listing shows the
BPMN 2.0 XML fragment that defines the script task.

 <scriptTask id="checkCredit" scriptFormat="groovy">
 <script>
 out:println "Checking credit for " + name;
 creditCheckOk = false;
 if((income / 2) > loanAmount) {
 creditCheckOk = true;
 }
 out:println "Checked credit for " + name
 + " outcome is " + creditCheckOk;
 </script>
 </scriptTask>

Listing 5.1 The BPMN 2.0 XML fragment defining the credit check script task

92 CHAPTER 5 Implementing a BPMN 2.0 process
In the script, you use the name variable to print a logging statement on the console so
you can follow the process flow. Then you create a new process variable, creditCheckOk,
that will contain the credit check outcome. As long as your loan requestor has an income
that’s more than twice the requested loan amount, the credit check will pass.

 You now have your first script task in the process under control; let’s move on to
the Java service tasks.

5.2.2 Implementing a Java service task

In this section, we’ll implement the “Create application” task. The “Create applica-
tion” task gathers all the information produced so far into a LoanApplication Java
bean, and puts it in the process context as a process variable. This makes all the infor-
mation regarding the loan request available in one Java object that can be used in the
remaining activities of the process.

TIP If you need more background about the ins and outs of the Java ser-
vice task, go back to chapter 4, section 4.3. There you can find all the details
of the Java service task.

IMPLEMENTING THE CREATE APPLICATION JAVA SERVICE TASK

The CreateApplicationTask service task gathers all the data that was produced in the
previous steps into one container object and sets it as a process variable. In the later
tasks, you’ll see how you can access this object from the forms in the user tasks and in
the email task to retrieve customer information.

 The next listing displays the service task implementation.

public class CreateApplicationTask implements JavaDelegate {

 public void execute(DelegateExecution execution) {
 LoanApplication la = new LoanApplication();
 la.setCreditCheckOk((Boolean) execution
 .getVariable("creditCheckOk"));
 la.setCustomerName((String)
 execution.getVariable("name"));
 la.setIncome((Long) execution.getVariable("income"));
 la.setRequestedAmount((Long)
 execution.getVariable("loanAmount"));
 la.setEmailAddres((String)
 execution.getVariable("emailAddress"));
 execution.setVariable("loanApplication", la);
 }
}

In the execute method of the ApplicationCreator Java service task class, you
create the LoanApplication instance. Remember that this object has to implement
the Serializable interface; otherwise, the Activiti Engine won’t be able to store
it as a process variable in the process database. The values that are used to populate
the object are retrieved from the start form you’ll build in section 5.3.2 and from

Listing 5.2 The CreateApplicationTask service task implementation

Retrieves
process variable
to populate beanB

93Developing script and service tasks
the credit check script task B. At the end, don’t forget to store the variable in
the execution.

 Now that you have your business logic together, we’ll take a look at the first part of
the loan request BPMN 2.0 XML and then we’ll build a unit test.

5.2.3 Creating the BPMN 2.0 XML file

To be able to test the first part of the loan request process, we’ll implement a BPMN 2.0
XML file with the three activities we’ve covered so far. Listing 5.3 shows what the loan
request process looks like so far.

<process id="loanrequest"
 name="Process to handle a loan request">
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="checkCredit" />
 <scriptTask id="checkCredit" scriptFormat="groovy">
 <script>
 out:println "Checking credit for " + name;
 creditCheckOk = false;
 if((income / 2) > loanAmount) {
 creditCheckOk = true;
 }
 out:println "Checked credit for " + name
 + " outcome is " + creditCheckOK;
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="checkCredit"
 targetRef="createApplication" />
 <serviceTask id="createApplication"
 activiti:class="org.bpmnwithactiviti.

 ➥ chapter5.CreateApplicationTask"/>
 <sequenceFlow sourceRef="createApplication"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
</process>

After the process is started, the process execution is forwarded to the checkCredit
script task B. Then the process continues to the createApplication Java service
task C. (We already looked at the implementation details of these tasks in the previ-
ous sections.)

NOTE Listing 5.3 doesn’t use the definitions element. It was left out to be
brief, but remember that it’s needed when you want to execute the BPMN
2.0 XML. You can find the full code example in the book’s source code.

All the constructs used in the process can be easily tested in a JUnit test. It’s good prac-
tice to test as early as possible; you want to get rid of possible bugs in the BPMN process
before you deploy the process to a QA environment. Let’s give the process a spin!

Listing 5.3 BPMN 2.0 XML for the first part of the loan request process

Credit check
script task

B

Creates loan
application
service task

C

94 CHAPTER 5 Implementing a BPMN 2.0 process
5.2.4 Testing the process with JUnit

In the previous chapter, we looked at unit testing with Activiti. We’re now going to put
what you learned there into practice. We’ll use the ActivitiRule class to get the Run-
timeService and use the @Deployment annotation to deploy the process. Take a look
at the following listing to see how it’s done.

public class LoanRequestTest {

 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem-fullhistory.xml");

 @Test
 @Deployment(resources={"chapter5/

 ➥ loanrequest_firstpart.bpmn20.xml"})
 public void creditCheckTrue() {
 Map<String, Object> processVariables =
 new HashMap<String, Object>();
 processVariables.put("name", "Miss Piggy");
 processVariables.put("income", 100l);
 processVariables.put("loanAmount", 10l);
 processVariables.put("emailAddress",
 "miss.piggy@localhost");
 activitiRule.getRuntimeService()
 .startProcessInstanceByKey(
 "loanrequest", processVariables);

 List<HistoricDetail> historyVariables =
 activitiRule.getHistoryService()
 .createHistoricDetailQuery()
 .variableUpdates()
 .orderByVariableName()
 .asc()
 .list();

 assertNotNull(historyVariables);
 assertEquals(7, historyVariables.size());
 HistoricVariableUpdate loanAppUpdate =
 ((HistoricVariableUpdate) historyVariables.get(5));
 assertEquals("loanApplication",
 loanAppUpdate.getVariableName());
 LoanApplication la = (LoanApplication)
 loanAppUpdate.getValue();
 assertEquals(true, la.isCreditCheckOk());
 }
}

Because you haven’t implemented a start form for the process yet, you need to pass
the necessary process variables when you start a new process instance B. When the
startProcessInstanceByKey method has been executed, the process is already fin-
ished because there are no wait states in the loan request process. Because you want to

Listing 5.4 Testing the first part of the loan request process

Starts process with
variables map

B

Retrieves process
variable updates

C

Gets LoanApplication
variable updates

D

95Interacting with user tasks and Activiti forms
test whether the “Credit check” and the “Create loan application” tasks have been exe-
cuted as expected, you need a way to retrieve the process variables.

 In chapter 4, you learned that you can use the HistoryService to get all process
variable updates for a finished process instance. To store all process variable updates,
you have to configure the Activiti Engine with a history parameter value of full. You
do this in the activiti.cfg-mem-fullhistory.xml configuration file, as follows:

<bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.

 ➥ StandaloneInMemProcessEngineConfiguration">
 <property name="databaseSchemaUpdate" value="true"/>
 <property name="history" value="full" />
 <property name="jobExecutorActivate" value="false" />
</bean>

In the unit test, you query the Activiti Engine database for all process variable updates
sorted by variable name C. This means that the loanApplication variable set by the
CreateApplicationTask service task should be at the sixth place of the result list D.
If the creditCheckOk attribute of the LoanApplication object equals true, this means
that the script and the service task are executed as expected.

 Now you can give the unit test a spin to see if it’s working as expected. You’ve seen
how to implement business logic with scripts and Java service tasks and how to test it
with a simple unit test. Let’s add some workflow logic and a start form to the process
to get it ready to run with the Activiti Explorer.

5.3 Interacting with user tasks and Activiti forms
To implement a human workflow in a process, you need a way to interact with it. The
BPMN 2.0 specification doesn’t define how to implement this user interaction besides
the user task. But Activiti provides task forms to create a GUI application to work with
user tasks.

 In this section, you’ll learn all about these Activiti task forms and how to apply
them in the loan request process. First, we’ll take a look at forms in Activiti in general,
and then we’ll create a start form so you can submit a loan request that starts the pro-
cess. After the form is made, we’ll explore how to test the capabilities of forms using
the FormService. Finally, you’ll see some workflows in action with escalation and the
timer boundary event.

 First things first, though: how do you create forms with Activiti?

5.3.1 Creating forms in Activiti

Activiti supports two ways of rendering forms. You can use the Activiti Explorer’s form
rendering by defining form properties on a start event or a user task. Or, if you want to
render the forms yourself, you can use your own template technology and define the
template with the activiti:formKey attribute, which can be specified on a start event
or a user task. This is an example of using the formKey attribute on a start event:

<startEvent id="theStart" activiti:formKey="your.form" />

96 CHAPTER 5 Implementing a BPMN 2.0 process
In this chapter, we’ll be using the form rendering of the Activiti Explorer. The exter-
nal form rendering will be discussed further in chapter 10.

 Figure 5.3 gives you an idea how a form will be rendered with Activiti Explorer. It
shows the start form for the loan request that we’ll define in this section.

 To use the built-in rendering, the form properties have to be defined with the start
event or a user task. Let’s start with the initial start event form for the loan request
process.

5.3.2 Adding a task form on a start event

To start an instance of the loan request process, we’ll use a form on the start event.
Employees of Loan Sharks can use this form to fill out data about a customer who
wants to borrow money. The following listing shows the form properties of the start
event that will be rendered in the Activiti Explorer (as illustrated in figure 5.3).

<startEvent id="theStart">
 <extensionElements>
 <activiti:formProperty id="name"
 name="Name"
 required="true"
 type="string" />
 <activiti:formProperty id="emailAddress"
 name="Email address"
 required="true"
 type="string" />
 <activiti:formProperty id="income"
 name="Income"
 required="true"
 type="long" />
 <activiti:formProperty id="loanAmount"
 name="Loan amount"
 required="true"
 type="long" />
 </extensionElements>
</startEvent>

Listing 5.5 The loan request start form using only simple HTML elements

Figure 5.3 The user task form used
to start the loan request business pro-
cess within the Activiti Explorer

emailAddress will
become a process
variable

B

Income field
is of type longC

Label for
loanAmount fieldD

97Interacting with user tasks and Activiti forms
After the form is submitted, the fields in the form will be stored in the process context
as process variables. The emailAddress field will be accessible in the process context
with the process variable emailAddress B. You can define in the form whether a cer-
tain value is required and what type it is C. The default type is string; other sup-
ported types are long, Boolean, enum, and date. When you choose a date type field,
the Activiti Explorer will render a date picker object. The name attribute value D is
used by the Activiti Explorer to create a label for the form property.

 We can now test the form property definition functionality using the FormService.

5.3.3 Testing forms using the FormService

In chapter 4, we took a look at the main Activiti interfaces. One of them was the Form-
Service. You’ll use this interface now to test your newly created form from listing 5.5.
The FormService gives access to the form properties of a user task or start event and
can be used to submit the form fields to complete a specific user task.

 Let’s write a unit test that shows the FormService API for the form defined in list-
ing 5.5.

public class FormServiceTest {

 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem.xml");

 @Test
 @Deployment(resources={
 "chapter5/startform.bpmn20.xml"})
 public void startFormSubmit() {
 ProcessDefinition definition = activitiRule
 .getRepositoryService()
 .createProcessDefinitionQuery()
 .processDefinitionKey("startFormTest")
 .singleResult();
 assertNotNull(definition);

 FormService formService = activitiRule
 .getFormService();
 List<FormProperty> formList = formService
 .getStartFormData(definition.getId())
 .getFormProperties();
 assertEquals(4, formList.size());

 Map<String, String> formProperties =
 new HashMap<String, String>();
 formProperties.put("name", "Miss Piggy");
 formProperties.put("emailAddress", "piggy@localhost");
 formProperties.put("income", "400");
 formProperties.put("loanAmount", "100");

 formService.submitStartFormData(
 definition.getId(), formProperties);

Listing 5.6 Working with the FormService API

Deploys process with
form properties

B

Retrieves FormService
interface

C

Retrieves form
properties

D

Submits form
properties

E

98 CHAPTER 5 Implementing a BPMN 2.0 process
 List<HistoricDetail> historyVariables = activitiRule
 .getHistoryService()
 .createHistoricDetailQuery()
 .formProperties()
 .list();

 assertNotNull(historyVariables);
 assertEquals(4, historyVariables.size());

 HistoricFormProperty formProperty = (HistoricFormProperty)
 historyVariables.get(0);
 assertEquals("loanAmount", formProperty.getPropertyId());
 assertEquals("100",
 formProperty.getPropertyValue());

 formProperty = (HistoricFormProperty)
 historyVariables.get(1);
 assertEquals("income", formProperty.getPropertyId());
 assertEquals("400",
 formProperty.getPropertyValue());
 }
}

The form properties are configured on the start event of the startform.bpmn20.xml
process definition B. Through the ActivitiRule instance, you can retrieve the
FormService interface C. Then you can retrieve the form properties for the deployed
process definition using the getStartFormData method D. The Activiti Explorer uses
this method to render the task form component.

 To fill in the form properties, you need to store the form values in a map. Notice
that this map holds all the values of the form properties as strings, not as the type
defined in the start event (see listing 5.5). At the start of the process, these properties
are converted into process variables of the correct type. Then the FormService can be
used to submit the form with the form properties map E.

 When the submitStartFormData method execution is finished, your simple process
is completed as well. This is because there are no wait states in the process definition.
Therefore, you use the HistoryService again F to validate whether the form proper-
ties income and loanAmount are equal to the values you submitted. Form properties are
stored in the Activiti history database tables by default (the history level of audit). You
don’t need additional process engine configuration like you did in section 5.2.4.

 Now that you have a form to start the process, let’s move on to the user tasks that
are needed to perform the loan request evaluation. They need forms too!

5.3.4 Adding user tasks with an escalation workflow

Now you have the first part of your loan request process in place; next, you need to
add the workflow logic. Figure 5.4 shows the user task activities that we’ll implement
in this section.

 In the “Evaluate loan request” task that’s assigned to Fozzie, a form will be pre-
sented containing the information that’s kept in the LoanApplication process vari-
able you created in listing 5.2. This way, Fozzie will be able to see the result of the

View history query
for form properties

F

99Interacting with user tasks and Activiti forms
“Check credit” script task and can look into the
process variables that are passed on as form prop-
erties at the start of the process instance.

 The timer symbol attached to the “Evaluate loan
request” task is called a timer boundary event. A
timer boundary event acts as a stopwatch or alarm
clock. The timer starts when the execution arrives
in the activity with the timer boundary event. When
the timer fires after a specified interval, the activity
is interrupted and the sequence flow going out of
the timer boundary event is followed. When the
user task is assigned to Fozzie, the clock starts tick-
ing and, in this example, Fozzie will have no more
than one minute to complete the task (you’ll see
this soon, in the BPMN 2.0 XML of listing 5.8).

 If Fozzie doesn’t complete his work on time, the task will be escalated. The “Evalu-
ate loan request” task is cancelled and deleted, and the “Evaluate request by man-
ager” user task is created and added to the candidate management group. When a
manager claims the user task, the same task form will be shown as the “Evaluate loan
request” task.

 Now let’s start implementing the new task form and create the escalation workflow
logic, including the timer boundary event.

DEFINING AN APPROVAL TASK FORM

You already saw that it’s easy to use process variables in the credit check script task
implemented earlier on. When defining task forms, you can use a similar syntax to
include process variable values. Activiti uses the JUEL expression language (http://
juel.sourceforge.net) for this.

 The next listing shows how you can use the LoanAplication process variable in
your approval task form definition.

<userTask id="evaluateLoanRequest"
 name="Evaluate loan request"
 activiti:assignee="fozzie">
 <extensionElements>
 <activiti:formProperty id="customerName"
 name="Customer name"
 expression="${loanApplication.customerName}"
 writable="false"/>
 <activiti:formProperty id="income"
 name="Income of customer"
 expression="${loanApplication.income}"
 writable="false"/>
 <activiti:formProperty id="requestedAmount"
 name="Requested loan amount"

Listing 5.7 The user task form used to evaluate the loan request

Displays
customerName
process variable

B

Sets field as
read-only

C

Figure 5.4 The part of the loan re-
quest process that implements the
workflow and escalation logic with
user tasks and a timer boundary event

100 CHAPTER 5 Implementing a BPMN 2.0 process
 expression="${loanApplication.requestedAmount}"
 writable="false"/>
 <activiti:formProperty id="creditCheckOk"
 name="Outcome of credit check"
 expression="${loanApplication.creditCheckOk}"
 writable="false"/>
 <activiti:formProperty id="requestApproved"
 name="Do you approve the request?"
 required="true"
 type="enum">
 <activiti:value id="true" name="Yes"/>
 <activiti:value id="false" name="No"/>
 </activiti:formProperty>
 <activiti:formProperty id="explanation"
 name="Explanation"/>
 </extensionElements>
</userTask>

In the ${loanApplication.customerName} expression B, the loanApplication pro-
cess variable is used. At runtime, the variables in the expressions are resolved to their
values in the process instance. A form property can be defined as read-only by config-
uring the writable attribute with value false C.

 Based on the read-only information, Fozzie or a manager will have to make a deci-
sion concerning the loan request D and, in case of denial, an explanation should be
given. You’ll use this explanation in the email task implemented later on.

DEFINING AN ESCALATION WORKFLOW WITH A TIMER BOUNDARY EVENT

The “Evaluate loan request” user task must have a timer boundary event to cancel the
task after one minute. The next listing shows a fragment of the loan request process in
which the user tasks and the timer boundary event are declared. Note that the form
properties definition is left out because it was already defined in listing 5.7.

<sequenceFlow sourceRef="createApplication"
 targetRef="evaluateLoanRequest" />
<userTask id="evaluateLoanRequest"
 name="Evaluate loan request"
 activiti:assignee="fozzie" />
<sequenceFlow sourceRef="evaluateLoanRequest"
 targetRef="approvalGateway" />
<boundaryEvent id="escalationTimer"
 cancelActivity="true"
 attachedToRef="evaluateLoanRequest">
 <timerEventDefinition>
 <timeDuration>PT1M</timeDuration>
 </timerEventDefinition>
</boundaryEvent>
<sequenceFlow sourceRef="escalationTimer"
 targetRef="evaluateRequestByManager" />
<userTask id="evaluateRequestByManager"
 name="Loan evaluation by manager"

Listing 5.8 The loan request user tasks and timer boundary event definition

Defines new
requestApproved
process variable

D

Attaches a
boundary event
to user task

B

Declares time
durationC

101Handling decisions and sending email
 activiti:candidateGroups="management" />
<sequenceFlow sourceRef="evaluateRequestByManager"
 targetRef="approvalGateway" />

The boundary event is a standard BPMN 2.0 construct B that has a time duration def-
inition attached to the event. The value is set to PT1M C, and this notation conforms
to the ISO 8601 standard as required by the BPMN 2.0 specification. PT1M stands for
Period Time 1 Minute. You can find more about the notation on the ISO 8601 page of
Wikipedia: http://en.wikipedia.org/wiki/ISO_8601#Durations.

 When the timer goes off, the evaluateLoanRequest user task is canceled and the job
of evaluating the loan is escalated to the user task evaluateRequestByManager. This user
task is made available to the users of the management group, to be claimed D.

 After these two user tasks, the customer will either have approval for the loan
request or not. Let’s take a look at what we do with this decision and meet the exclu-
sive gateway.

5.4 Handling decisions and sending email
In this section, we’ll examine two new
constructs in the loan request process.
First, we’ll take a look at the exclusive
gateway BPMN 2.0 construct that helps
to control execution flow in the loan
request handling. We’ll then explore
how Activiti extends BPMN 2.0 function-
ality by implementing an Activiti-specific
construct, the email task. Figure 5.5
shows the remaining part of the loan
request process.

 Either Fozzie or Kermit (as sole
member of the management group) has
evaluated the loan request in the last
steps we covered. This evaluation will
trigger some actions. If the loan request
is approved, the request is processed
and the customer will receive the requested amount of money. If the employees of the
Loan Sharks decide not to approve the loan request, an email will be sent to inform
the customer that the request has been denied and explain why. First, we’ll take a look
at how to deal with the outcome of the evaluation, and then you’ll start sending an
email message.

5.4.1 Controlling flow with an exclusive gateway

Gateways are the BPMN 2.0 way of controlling the flow of execution. A gateway is
graphically visualized as a diamond shape, with an icon inside. In the parallel gateway,

Adds task to
management
groupD

Figure 5.5 An exclusive gateway is used to im-
plement conditional logic after the evaluation of
the loan request. Based on the evaluation out-
come, an execution path is chosen.

102 CHAPTER 5 Implementing a BPMN 2.0 process
this icon is a + symbol. When you need conditional logic, you can use an exclusive
gateway, also called the XOR gateway. The BPMN 2.0 icon for this type of gateway is an
X, as you can see in figure 5.5.

 When the process execution arrives at an exclusive gateway, the condition expres-
sions on the outgoing sequence flows are evaluated. The sequence flow correspond-
ing to the first condition expression that evaluates to true will be executed. When
more than one condition expression evaluates to true, only the first sequence flow
will be executed, and the other condition expressions aren’t even evaluated. If no con-
dition expression evaluates to true, the Activiti Engine will throw an exception. To
prevent this, you can define a default flow on the exclusive gateway in case no condi-
tion expression evaluates to true.

 In the following code snippet, you can see how the exclusive gateway used in the
loan request process is implemented in BPMN 2.0 XML:

<exclusiveGateway id="approvalGateway" />
<sequenceFlow sourceRef="approvalGateway"
 targetRef="informCustomer">
 <conditionExpression xsi:type="tFormalExpression">
 ${requestApproved == false}
 </conditionExpression>
</sequenceFlow>
<sequenceFlow sourceRef="approvalGateway"
 targetRef="processRequest">
 <conditionExpression xsi:type="tFormalExpression">
 ${requestApproved == true}
 </conditionExpression>
</sequenceFlow>

The conditionExpression element that’s nested in a sequenceFlow uses the same
type of expression you saw earlier in the forms. In these two condition expressions,
you use the requestApproved process variable that’s set by one of the two loan request
evaluation user tasks executed in the previous step of the process.

 Because the loan request evaluation leads either to approval or denial, there are
only two sequence flows leaving the exclusive gateway. This isn’t a restriction; you’re
allowed to define as many sequence flow paths as you want.

5.4.2 Implementing an email service task

When the employees of the Loan Sharks decide not to approve a loan request, the
customer receives an email. The email service task is the last step in the loan request
process in the case of denial.

NOTE The email task isn’t part of the BPMN 2.0 specification, so it doesn’t
have a dedicated icon and is shown as a regular service task. Activiti provides a
default email service task that can be used to send emails to one or more
recipients, including support for CC, BCC, and HTML content. It’s a bonus!

Before you can execute the email task in the loan request process, you need to set up
a mail server. We’ll use the Apache James project for that and we’ll look at how to get

103Handling decisions and sending email
the mail server up and running. Then we’ll implement a small process example to test
the email task and send Miss Piggy a message. This way you can see how the email task
works and make sure that the James environment is configured correctly.

GETTING UP AND RUNNING WITH APACHE JAMES MAIL SERVER

Download Apache James from http://james.apache.org and unzip the file in a direc-
tory of your choice. Because not all operating systems allow the use of ports like 25 for
SMTP and 110 for POP, we’ll configure James to use ports 1025 for SMTP and 1110 for
POP for these examples.

 You can configure this by editing the config.xml file in the apps/james/SAR-INF
directory of your Apache James installation. Notice that the config.xml file is created
only after James is started for the first time. You can start the server by executing the
run.sh or run.bat file in the james_install_dir/bin directory. Search in the config.xml
file for the following items and configure the ports as specified in the following con-
figuration snippet:

<pop3server enabled="true">
 <port>1110</port>
</pop3server>

<smtpserver enabled="true">
 <port>1025</port>
</smtpserver>

<nntpserver enabled="true">
 <port>1119</port>
</nntpserver>

Now you can restart the server.
 Once the server is up, you’ll need to add a user account so you have somebody to

send email to from the process. Start a telnet session with localhost on port 4555;
you can log in with the preconfigured root user, password root. Then add a user with
the following command:

adduser miss.piggy piggy

A user called miss.piggy is added with
the email address miss.piggy@local-
host and the password piggy. To check
if Miss Piggy’s account is added, you can
execute the listusers command to
verify it. The screenshot in figure 5.6
gives a view of the telnet session to sum-
marize things.

 That’s all there is to it. The James
mail server is configured correctly and
is waiting to receive mail on port 1025.
Back to Activiti!

Figure 5.6 Screenshot of a telnet session that
adds the Miss Piggy user to the Apache James mail
server

104 CHAPTER 5 Implementing a BPMN 2.0 process
IMPLEMENTING THE EMAIL TASK IN BPMN 2.0 XML

Now that your mail server is up, you’re ready to define an email task in a BPMN 2.0
XML process definition. Take a look at the BPMN 2.0 XML in the next listing.

<process id="simpleEmailProcess" >
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart" targetRef="sendMail" />
 <serviceTask id="sendMail" activiti:type="mail">
 <extensionElements>
 <activiti:field name="to"
 stringValue="miss.piggy@localhost"/>

 <activiti:field name="subject"
 expression="Hello ${name}"/>

 <activiti:field name="html">
 <activiti:expression>
 <![CDATA[
 <html>
 <body>
 Hello ${name},

 Your loan request has been denied.

 Kind regards,

 Loan Sharks
 </body>
 </html>
]]>
 </activiti:expression>
 </activiti:field>
 </extensionElements>
 </serviceTask>
 <sequenceFlow sourceRef="sendMail" targetRef="theEnd" />
 <endEvent id="theEnd" />
</process>

The mail service task is defined by adding an Activiti-specific attribute to a regular
service task B. The email address is defined in the to field and the subject with the
subject attribute C.

 The email address that you send in listing 5.9 is hardcoded in the BPMN 2.0 XML, but
in the loan request process you want this property to be flexible because it depends on
who is filing for a loan. To solve that problem, you can use the expression attribute to
define the address:

<activiti:field name="to" expression="${loanApplication.emailAddress}" />

The email you use has HTML content. You can see that in the email task you also have
access to process variables; in this case, you use the name process variable D.

 You can now run the process within Eclipse but you need a mail server to can test
the email service task. The following listing shows an elegant way to write a unit test
for this. Notice that you must first stop the James server.

Listing 5.9 Simple email task process to test the James configuration

Defines mail
service task

B

Declares recipient
and subject

C

Uses name
process variable

D

105Handling decisions and sending email
public class MailTaskTest {
 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem-mail.xml");

 @Test
 @Deployment(resources={"chapter5/testSimpleMail.bpmn20.xml"})
 public void sendMailLocalTest() throws Exception {
 Wiser wiser = new Wiser();
 wiser.setPort(1025);
 wiser.start();
 Map<String,Object> processVariables =
 new HashMap<String,Object>();
 processVariables.put("name", "Miss Piggy");
 activitiRule.getRuntimeService()
 .startProcessInstanceByKey("simpleEmailProcess",
 processVariables);
 List<WiserMessage> messages = wiser.getMessages();
 assertEquals(1, messages.size());
 WiserMessage message = messages.get(0);
 MimeMessage mimeMessage = message.getMimeMessage();
 assertEquals("Hello Miss Piggy",
 mimeMessage.getHeader("Subject", null));
 wiser.stop();
 }
}

Make sure that the mail server port in the activiti.cfg-mem-mail.xml file B is config-
ured for port 1025. By default, Activiti expects the mail server to run on SMTP port 25;
you have to override the port by defining the following mail server:

<mail server="localhost" port="1025" />

The Activiti project uses a mail server that’s great for unit testing and is called Sub-
Etha SMTP (http://code.google.com/p/subethasmtp/). This mail server project pro-
vides a class named Wiser, which can be used to start a mail server with a few lines of
code. And when you want to check if an email has been sent to the mail server, you
can use the getMessages method C. In this unit test, you validate whether the subject
of the email is the one you defined in the process definition of listing 5.9.

 In addition to writing a unit test using the SubEtha mail server project, you can
also use Apache James as you will do in the loan request business process. You can use
a unit test similar to the one in listing 5.10 but remove the Wiser mail test class and
start a new process instance. Also, make sure you’ve started Apache James. To view the
email, you can install an email client such as Mozilla Thunderbird. Remember that
Apache James is using port 1110 for SMTP. In Thunderbird, the email should look sim-
ilar to the one shown in figure 5.7.

 In the previous sections, you implemented a number of activities of the loan request
process definition. Because it would be a waste of paper to show the full BPMN 2.0 XML
definition, now is a good time to look at the loanrequest.bpmn20.xml file in the source

Listing 5.10 Testing a process definition with an email service task

Starts engine
with mail client

B

Checks that
one email
was received

C

106 CHAPTER 5 Implementing a BPMN 2.0 process
code of this book (bpmn-examples/src/main/resources/chapter5). Notice that we
skipped one activity in the process, which is the “Process request” user task that’s exe-
cuted when the loan request is approved. You already implemented two user tasks ear-
lier on, and this activity contains no new configuration items.

NOTE When you want to use the email task in a process definition deployed
on the Activiti Explorer, you need to set the mail server and SMTP port cor-
rectly in the applicationContext.xml file because, by default, the emails are
sent to port 25 on localhost. You can find the Spring configuration file that
the Activiti Explorer uses in the Tomcat webapps/activiti-explorer/WEB-INF
directory. In the processEngineConfiguration bean, add the element
<property name="mailServerPort" value="1025"/>.

In the next section, we’re going to package the loan request process definition in a
BAR file and deploy it to Activiti Explorer to see it running!

5.5 Deploying processes to the Activiti Engine
Before you can test the loan request process with the Activiti Explorer, you need to
deploy it. We’ll look into three options for deploying a process archive: using Java,
Ant, or Activiti Explorer. At the end of this section, we’ll take a quick look at using
Activiti Explorer to check the outcome of a deployment.

5.5.1 Understanding the Activiti BAR file

The unit of deployment on Activiti Engine is a business archive (BAR) file. A business
archive is equivalent to a standard Java JAR file and, therefore, a zip file. It can contain
BPMN 2.0 processes, custom task templates, rules, and any other type of file. A busi-
ness archive is a collection of resources.

Figure 5.7 Email received
after executing the simple
email task process

107Deploying processes to the Activiti Engine
 When a business archive file is deployed, it’s scanned for files with a bpmn20.xml
extension. Each file that has this extension will be parsed and can contain multiple
process definitions.

NOTE The Java classes that are added in the BAR file aren’t added to the
classpath. All the classes the process needs at runtime, such as the Java ser-
vice tasks or implementations of event listeners, should be present on the
Activiti Engine classpath for the processes in the business archive to run. In
the loan request example, running on the Activiti Explorer on the default
Tomcat instance, you need to put a JAR file containing the Java service task
in the webapps/activiti-explorer/WEB-INF/lib directory.

We’ve created an Ant build.xml file in the src/main/resources/chapter5 directory of
the book’s source code to generate a BAR file containing the process definition. When
you run this Ant target, a BAR file is created in the src/main/resources/chapter5/dist
directory that contains the loan request process definition. In the same directory, a
JAR file containing the Java service task class is created.

 To run the example, you have to copy the newly created loanrequest.jar file to the
webapps/activiti-explorer/WEB-INF/lib directory of the Tomcat distribution in Activiti
(inside the apps folder).

 Now that you have the Java classes on the Tomcat classpath and you’ve created a
BAR file with the loan request process definition, you can deploy the loan request
example to the Activiti Engine. Let’s take a look at two options for doing so.

5.5.2 Deploying processes to the Activiti Engine

To deploy business archives on the Activiti Engine, you have three options. Deploy-
ments can be done via Java using the RepositoryService, using an Ant target, or—
the easiest option—using Activiti Explorer. Let’s take a look at the Java and Activiti
Explorer options.

 We’ll skip the Ant target option, but you can find an example in the Ant build file
we used earlier to create the BAR and JAR files. Make sure the H2 database and the
Tomcat server are running. You can do this by running the ant demo.start command
from the setup directory of the Activiti distribution, as explained in chapter 1.

DEPLOYING PROCESSES PROGRAMMATICALLY

The first option we’ll explore is deploying the loan request process using the Activiti
API. Take a look at the next listing; it shows how you can use a standalone J2SE applica-
tion to deploy the archive.

public class BarDeployer {

 public static void main(String[] args) throws Exception {
 ProcessEngine processEngine =
 ProcessEngines.getDefaultProcessEngine();
 RepositoryService repositoryService =
 processEngine.getRepositoryService();

Listing 5.11 Deploying a BAR file programmatically with the Activiti API

Gets a handle on
RepositoryService

B

108 CHAPTER 5 Implementing a BPMN 2.0 process
 String barFileName =
 "src/main/resources/chapter5/dist/loanrequest.bar";
 ZipInputStream inputStream = new ZipInputStream(new
 FileInputStream(barFileName));
 String deploymentID = repositoryService.createDeployment()
 .name(barFileName)
 .addZipInputStream(inputStream)
 .deploy()
 .getId();
 List<String> deployedResources = repositoryService
 .getDeploymentResourceNames(deploymentID);
 for(String deployedResource : deployedResources){
 System.out.println("Deployed : " + deployedResource);
 }
 inputStream.close();
 }
}

First, you need to get a handle on a ProcessEngine instance. You use the getDefault-
ProcessEngine method to get this. Then you use the RepositoryService B, read the
BAR file C in a ZipInputStream, and deploy it D. With the deployment ID that you get
back after the deployment, you can query the RepositoryService to display the
deployed resources.

 If you try this and see the deployed resources displayed in the console, everything
is correctly deployed.

 Let’s take a look at the Activiti Explorer deployment option now.

DEPLOYING PROCESSES WITH THE ACTIVITI EXPLORER

To deploy the loanrequest.bar file with
Activiti Explorer, you only have to start a
web browser with http://localhost:8080/
activiti-explorer, log in, and choose the
Manage tab. There, you can deploy new
BAR files using the “Choose a file” button,
as shown in figure 5.8.

 When the loan request process
archive is uploaded to the Activiti engine,
it’s automatically deployed, versioned,
and available in the Activiti Explorer for
starting a new process instance. In the
same deployment screen of Activiti
Explorer, you can also delete a deploy-
ment archive.

 When you deploy multiple versions
of a process, you’ll find multiple deploy-
ments in the deployment view as well. Another place to look for deployment informa-
tion is the database link in the Activiti Explorer. You can, for example, find the loan
request process definition in the ACT_RE_PROCDEF table.

Reads in
bar file

C

Deploys
contents
of fileD

Figure 5.8 A pop-up menu showing the Activiti Ex-
plorer deployment function

109Testing the process with Activiti Explorer
But, enough about deployments and database tables; let’s see some action.

5.6 Testing the process with Activiti Explorer
Because you need to fill out a start form to get a loan request process instance run-
ning, go to the Activiti Explorer page at http://localhost:8080/activiti-explorer and
log in as fozzie (password is also fozzie). In the Process tab, the list of deployed process
definitions is shown, including the loan request process. The process definition name
corresponds to the name attribute in the BPMN 2.0 XML file.

 When you click the “Start process” button, the start form should automatically
appear. Let’s start a loan request for Miss Piggy and fill out the form, as shown in fig-
ure 5.9.

 Fill in all the fields—they’re all defined as mandatory in the form definition. Make
sure you fill in miss.piggy@localhost in the email address field. Then click the “Start
process” button.

 You can now see that the “Evaluate loan request” task appears in Fozzie’s task list.
Be fast now because, if you don’t click the “Complete task” button within one minute,
the task will be escalated to Kermit the manager—the timer is running from the
moment the task was assigned to Fozzie.

 Unfortunately, Fozzie isn’t the fastest worker on the planet, and the task disap-
peared from his task list. Let’s log out and log in as Kermit. The “Evaluate loan request
by manager” task was not assigned to Kermit explicitly in the process definition but to

Process versioning
BPMN itself doesn’t have a notion of versioning, but Activiti does. The version of a
process is defined during deployment. Before the ProcessDefinition is stored in
the Activiti database, a version will be assigned to it. The first time a process with a
certain process identifier, which is defined in the BPMN 2.0 XML, is deployed, the
version value is set to 1. For every subsequent deployment, the version number is
increased by 1. You can have instances of multiple versions of a process running at
the same time.

Figure 5.9 Start form for
a loan request by Miss
Piggy using the Activiti
Explorer

110 CHAPTER 5 Implementing a BPMN 2.0 process
the management group. Kermit has to open the Queued list and claim the task before
he can work on it; and after he does that, nobody else can work on it. When you’ve
claimed the task as Kermit, you can work on it and end it by clicking the “Complete
task” button, as shown in figure 5.10.

 Although Miss Piggy passed the credit check, Kermit denies her the loan. After you
click “Complete task,” an email will be sent to Miss Piggy’s email account to inform
her about the unfortunate event. You will see an email arrive in your email client.

 That concludes our trip to implement your first complete business process with
Activiti. Of course, you can play around a bit with the process to see, for example, how
the checks behave with different input or to grant Miss Piggy the loan and see how the
process finishes.

Figure 5.10 Denying Miss Piggy’s loan request with a user task form in the Activiti Explorer

111Summary
5.7 Summary
A complete business process has been implemented in this chapter. You’ve seen how
script tasks and Java service tasks can perform the logic that’s needed to handle a loan
request. We also covered the exclusive gateway, which controls the path of execution
in a process. You also saw how Activiti extends the BPMN 2.0 functionality with an
email service task.

 We also examined how to apply workflows in Activiti with user tasks and forms and,
by using a timer boundary event, to escalate a task to another employee. In addition,
we covered the deployment options for getting the process running on the Activiti
Engine and testing it with the Activiti Explorer application.

 You already know a lot about implementing BPMN 2.0 business processes, from the
abstract model to concrete code, and you’re ready to create your own processes. In
chapter 6, we’ll take a look at the more advanced BPMN 2.0 constructs like the parallel
gateway and subprocesses and Activiti extensions like event listeners. We’ll take it one
step further to a real-life business process!

Applying advanced
 BPMN 2.0 and extensions
In the previous chapter, we implemented a full business process from start to finish
using a subset of the BPMN 2.0 constructs. When you want to build your own busi-
ness process, you’ll likely find that you need more advanced functionality in your
processes. On the following pages, you’ll learn all about developing processes with
Activiti that use subprocesses, parallel execution, database integration and execu-
tion, and task listeners.

 In this chapter, we’ll approach each advanced construct separately so we can focus
on that piece of process logic and learn all the nitty-gritty details. First, you’ll see how
to structure business processes using subprocesses and learn about the differences
between embedded and standalone subprocesses. Then we’ll go on with parallel
gateways and discuss the consequences of parallel execution in a business process.

This chapter covers
■ Using subprocesses
■ Working with parallel gateways
■ Persistency with JPA
■ Learning about execution and task listeners
112

113Using BPMN 2.0 subprocesses
 In addition, we’ll explain the use of JPA to access various databases transparently in
Activiti. Together with execution and task listeners, the functionality of JPA is offered
via Activiti extensions on top of the BPMN 2.0 specification. These powerful parts of
the Activiti toolbox aren’t standardized by OMG, but they provide additional function-
ality to process developers.

 We’re going to take off on our Activiti trip and progress into the more advanced
features of the process engine. Fasten your seatbelts and enjoy the flight while you
read about subprocesses and work with the examples.

6.1 Using BPMN 2.0 subprocesses
Business processes that consist of dozens or even hundreds of activities aren’t rare in
large organizations. For example, a business process for ordering a complex product
like an airplane or even a car consists of several steps: order part A, test part B, and so
on. To make a large business process more readable and better structured, it can be a
good idea to divide parts of the business process into smaller subprocesses. Another
advantage of using subprocesses is that they can be reused by other business pro-
cesses, resulting in standardization.

6.1.1 Background to BPMN subprocesses

When an organization has multiple ordering business processes that each consist of a
number of common activities and a small number of process-specific activities, it
would be a nightmare to maintain each order process definition separately. It would
be better to define subprocesses that can be shared by each business process and then
add the process-specific activities.

 Subprocesses have a number of advantages from a business and modeling perspec-
tive, but what are your choices for implementing such subprocesses? The first choice
that has to be made is between embedded (inline) and standalone subprocesses.

 An embedded subprocess is part of the main process but defines its own scope in
the process. The embedded subprocess shown in figure 6.1 is collapsed so that the
activities in the subprocess aren’t shown. You can imagine that, for large processes, a
model with collapsed subprocesses can make the process definition more readable.
And, when you want to see the activities inside the subprocess, you can expand it.

 A standalone subprocess is a business process that can also be used as a main pro-
cess when this is applicable. This means that the subprocess has its own versioning life

Figure 6.1 An embedded sub-
process is an integral part of the
main process and introduces a
new scope for the whole subpro-
cess in the main process.

114 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
cycle in contrast to an embedded subprocess. A standalone subprocess can be invoked
from a main process by using a call activity. In the call activity, the unique identifier of
the subprocess is defined so a process engine can retrieve and start it. Figure 6.2 shows
an overview of a standalone subprocess.

 In the case of a standalone subprocess, the main process starts a new process
instance of the subprocess definition and waits until the subprocess completes. The
subprocess can just as easily be started by another main process or be started as a main
process itself.

 That’s enough about the theory of subprocesses; let’s implement the embedded
and standalone subprocess types in Activiti.

6.1.2 Implementing embedded subprocesses

Real-life process definitions often don’t consist of just a few activities—they can be so
enormous that they don’t fit on A3 pages. Embedded subprocesses can provide a
great help for these process definitions by structuring them into smaller parts. When
each embedded subprocess is collapsed, the process definition is readable as a series
of major activities. When you’re interested in the details of a specific activity, that one
can be expanded.

 As we already saw, this same kind of structuring can be achieved by using call activ-
ities and standalone subprocess definitions. As is often the case with design decisions,
neither standalone nor embedded subprocesses are the best choice all the time. But
let’s look at some situations where you could decide to go for an embedded subpro-
cess instead of a standalone subprocess:

Figure 6.2 A standalone sub-
process that is invoked by the
main process via a call activity.
A subprocess definition consists
of a start and end event, just like
the main process definition.

115Using BPMN 2.0 subprocesses
■ The embedded subprocess is an integral part of the main process and needs
process context, like the process variables of the main process, to be able to exe-
cute its process logic.

■ When it’s not likely that the subprocess will be reused by other main processes
or be used as a main process itself.

■ When there’s only a need for a separate scope inside the main process and
there’s no case of reusable logic.

We’ll look at reasons to choose standalone subprocesses in the next section. But first,
it’s time to look at an example featuring embedded subprocesses: the JIRA escalation
process.

DEFINING JIRA ESCALATION WITH AN EMBEDDED SUBPROCESS

A popular issue-tracking tool for Java development projects is JIRA from Atlassian. JIRA
is well suited for prioritizing issues, but a project manager may want to have additional
ways to follow up on specific issues. Let’s look at a process definition where a project
manager can add an item to the engineering team’s task list directing them to work
on a specific JIRA issue (see figure 6.3).

 In the escalation process definition in figure 6.3, we make use of an embedded pro-
cess to define a scope for the development and test user tasks. Because we want to define
a timer boundary event that fires when the issue isn’t resolved within a specific time
period, we need these two tasks to be within one scope. An embedded subprocess is the
BPMN 2.0 construct used to define such a scope within the main process definition.

Figure 6.3 An escalation process where a project manager can add a task item for the engineering team
to solve an unresolved issue

116 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
Because the timer boundary event is defined on the embedded subprocess, the timer
will fire when the embedded process hasn’t ended after the specified time duration.
As an added benefit, you can also look at the same escalation process with a collapsed
embedded subprocess, shown in figure 6.4.

 With the embedded subprocess collapsed, the process definition becomes easy to
comprehend. Note that embedded subprocesses can also be used hierarchically; sub-
processes can consist of other embedded subprocesses.

 With the escalation process defined, let’s transform it into an executable BPMN 2.0
process by translating it to XML.

IMPLEMENTING A BPMN 2.0 XML EMBEDDED SUBPROCESS FLOW

The JIRA issue escalation process definition consists of many BPMN 2.0 constructs, so
the XML will be verbose. To make it easier to comprehend, we’ll start the process
implementation with the embedded subprocess in the following listing. Then, in list-
ing 6.2, you’ll see the main process definition where the subprocess is embedded. The
whole XML process definition can be found in the source code package for this book.

<subProcess id="developerSubProcess">
 <startEvent id="theStartDeveloperSubProcess" />
 <sequenceFlow sourceRef="theStartDeveloperSubProcess"
 targetRef="DeveloperTask" />
 <userTask id="DeveloperTask" name="Complete JIRA issue"
 activiti:candidateGroups="engineering">
 <documentation>
 JIRA issue is ${issueNumber}
 </documentation>
 </userTask>
 <sequenceFlow sourceRef="DeveloperTask"
 targetRef="TestTask" />
 <userTask id="TestTask" name="Test solution"
 activiti:candidateGroups="engineering">
 <documentation>
 JIRA issue is ${issueNumber}

Listing 6.1 The embedded subprocess containing the user tasks

Figure 6.4 The escalation process definition with the embedded subprocess collapsed. This makes
the process definition easier to read and to comprehend.

Defines
embedded
subprocessB

Provides
documentation with
process variable

C

117Using BPMN 2.0 subprocesses
 </documentation>
 <extensionElements>
 <activiti:formProperty id="solutionApproved"
 name="Do you approve the solution?"
 required="true"
 type="enum">
 <activiti:value id="true" name="Yes"/>
 <activiti:value id="false" name="No"/>
 </activiti:formProperty>
 </extensionElements>
 </userTask>
 <sequenceFlow sourceRef="TestTask"
 targetRef="TestOK" />
 <exclusiveGateway id="TestOK"/>
 <sequenceFlow sourceRef="TestOK"
 targetRef="DeveloperReady">
 <conditionExpression>
 ${solutionApproved == true}
 </conditionExpression>
 </sequenceFlow>
 <sequenceFlow sourceRef="TestOK"
 targetRef="DeveloperTask">
 <conditionExpression>
 ${solutionApproved == false}
 </conditionExpression>
 </sequenceFlow>
 <scriptTask id="DeveloperReady"
 scriptFormat="groovy">
 <script>
 out:println "Developer is ready with JIRA issue "
 + issueNumber
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="DeveloperReady"
 targetRef="theEndDeveloperSubProcess" />
 <endEvent id="theEndDeveloperSubProcess" />
 </subProcess>

An embedded subprocess is defined with a subProcess element B containing the activ-
ities that are executed in the scope of the embedded subprocess. Because you’ll test the
escalation process with the Activiti Explorer, you add a meaningful documentation ele-
ment to the user tasks containing the value of the issueNumber process variable C.

 When the development task is completed, a test task is created to approve the solu-
tion. When a tester fills in an approval and completes the user task form, the process
continues with the last step in the subprocess D. If the tester doesn’t approve the solu-
tion, the developer task is created again E so a developer can come up with another
solution. The embedded subprocess is completed when the end event is reached F,
as happens in the main process. The difference is that, when the embedded subpro-
cess is completed, the process execution will continue with the next activity attached
to the subprocess with a sequence flow.

 Now let’s look at the main process definition to see how the subprocess from the
previous listing is embedded.

Checks if tester
approved solution

D

Returns to
development taskE

Leaves embedded
subprocess

F

118 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/subprocess">

 <process id="escalationProcess"
 name="Escalation process example">
 <startEvent id="theStart">
 <extensionElements>
 <activiti:formProperty id="issueNumber"
 name="Issue number"
 required="true"
 type="long" />
 </extensionElements>
 </startEvent>
 <sequenceFlow sourceRef="theStart"
 targetRef="LogIssue" />
 <scriptTask id="LogIssue" scriptFormat="groovy">
 <script>
 out:println "Project manager asks developer to

 ➥ complete JIRA issue " + issueNumber
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="LogIssue"
 targetRef="developerSubProcess" />
 <subProcess id="developerSubProcess">
 <!-- see code listing 6.1 -->
 </subProcess>
 <boundaryEvent id="escalationTimerDeveloper"
 cancelActivity="true"
 attachedToRef="developerSubProcess">
 <timerEventDefinition>
 <timeDuration>PT1M</timeDuration>
 </timerEventDefinition>
 </boundaryEvent>
 <sequenceFlow sourceRef="escalationTimerDeveloper"
 targetRef="ProjectManagerEscalationTask" />
 <userTask id="ProjectManagerEscalationTask"
 name="JIRA issue is not completed in time"
 activiti:candidateGroups="management">
 <documentation>
 JIRA issue is ${issueNumber}
 </documentation>
 </userTask>
 <sequenceFlow sourceRef="ProjectManagerEscalationTask"
 targetRef="theEnd" />
 <sequenceFlow sourceRef="developerSubProcess"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

The main process kicks off with a start event containing a task form defined with the
formProperty attribute B. In the start form, the project manager will specify the issue

Listing 6.2 The jiraIssue.bpmn20.xml file containing the escalation process

Starts form for
issue numberB

Start of embedded
subprocess

C

Boundary
event attached
to subprocessD

Escalation
taskE

119Using BPMN 2.0 subprocesses
number. When the issueNumber process variable is logged with the script task, the
embedded subprocess of listing 6.1 is executed C.

 The timer boundary event that’s attached to the embedded subprocess is also
defined in the main process definition D. In this example, the timer will fire when
the embedded subprocess hasn’t been completed within one minute. When the timer
boundary event is executed, a user task is created for the management group E.

 Before you can test this process in the Activiti Explorer, you’ll have to deploy the
process definition in a BAR file to the Activiti Engine. Then you can use the Activiti
Explorer to work through the various tasks in the issue tracking process.

TESTING THE ISSUE TRACKING PROCESS WITH THE ACTIVITI EXPLORER

First, we’ll create a BAR file that contains the BPMN 2.0 XML file for the escalation pro-
cess. In chapter 5, you created a BAR file with an Ant build file; we’ll repeat this to cre-
ate the BAR file for the escalation process.

 The BAR file is created when running the build.xml Ant build file. You can find
this build file in src/main/resources/chapter6/embedded_subprocess, and the jirais-
sue.bar file is created in a dist subdirectory there. You can now start up Activiti
Explorer to deploy the escalation deployment artifact. In the Deployments tab, you
can upload the jiraissue.bar file.

 Now that the escalation process definition is available in the Activiti Engine, it’s
time to start a new process instance in the Activiti Explorer. Figure 6.5 shows a screen-
shot of the Activiti Explorer as it starts the escalation process.

 When the issue tracking process has started, a new task should be available for the
engineering team. Remember that you assigned the first developer task to this candi-
date group (see listing 6.1). When you click on the Tasks tab in the Activiti Explorer, you
should see that a queued task with the name “Complete JIRA issue” has been created in
the engineering group. Now, claim and complete this task, and a new “Test solution”
task will be created for the same engineering candidate group (see figure 6.6).

 When you don’t approve the solution, a new developer task will be created.
Because you defined a timer boundary event on the embedded subprocess in listing
6.2, an escalation task will be created one minute after the start of the embedded sub-
process. Don’t approve the test solution and wait a few moments: a new task, “JIRA
issue is not completed in time,” will be created. When this task is created, you know
that the timer boundary event job was executed as you would expect.

Figure 6.5 The Activiti Explor-
er showing the start form of the
escalation process

120 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
TIP The timer boundary event only fires when the Activiti Engine’s job exec-
utor is activated. By default, the job executor is active in the Activiti Engine.
This can be overridden by defining a jobExecutorActivate property with a
value of false on the engine configuration. Disabling the job executor can
be useful when you have a cluster of Activiti Engines and you only want to exe-
cute jobs on specific instances.

As you saw in this issue tracking process example, an embedded subprocess is an inte-
gral part of the main process definition. Process variables are shared between the
main process and the embedded subprocesses, which introduces no additional com-
plexity to run the process on the Activiti Engine. Embedded subprocesses, first and
foremost, provide a way to define scopes in a process definition. And, with the intro-
duction of scopes, you can define boundary events such as timers and errors on a
group of activities as you did in the example.

 Now let’s see how this works with standalone subprocesses using call activities.

6.1.3 Implementing standalone subprocesses

An embedded process is always a subprocess by definition, but it’s more vague with
standalone subprocesses. In essence, a standalone subprocess is exactly the same as a
normal process definition. You can use every process as a standalone subprocess by
invoking it with a call activity.

Figure 6.6 The Test Solution task form in the Activiti Explorer, which is part of the
embedded subprocess in the issue tracking process definition

121Using BPMN 2.0 subprocesses
 We already talked about the benefits of using subprocesses in general, but when
would a standalone subprocess be a good choice? First of all, it’s a choice of design
and not of mathematics. But, you should think of using standalone subprocesses in
the following situations:

■ When a part of a process definition is reusable in other process definitions.
■ When process logic inside a subprocess is also used as a main process.
■ When a part of a process is expected to change a lot.

A standalone subprocess offers more flexibility than embedded subprocesses because
new versions of a subprocess can be deployed without the need to change the parent
process. Also, the standalone subprocess can be reused in every process that needs its
process logic. Another big difference with an embedded subprocess is that a stand-
alone subprocess can be started as a main process as well.

 The downsides of a standalone subprocess are the extra maintenance it requires
and the strict separation between the process contexts of a main process and subpro-
cess. While the process context in an embedded subprocess is shared between the
main process and the subprocess, it’s impossible to share the process context with a
standalone subprocess. The only communication that’s possible is to add input and
output parameters to a call activity configuration. Then the input parameters will be
available in the standalone subprocess and the output parameters will be made avail-
able to the main process context.

 But, enough theory. Let’s look at a standalone subprocess definition and see how
to implement a call activity to invoke it.

DEFINING A REUSABLE PROCESS

The main benefit of implementing a standalone subprocess is reusability. In the exam-
ple we’ll look at—a mobile telephone contracting process—the focus is on achieving
this goal. A mobile telephone company wants to standardize its contract process fur-
ther for the personal and business market. Although the process steps involved in
coming to a contract agreement are different between the personal and business con-
tract processes, the credit check activity is similar in both processes.

 Because the credit department handles individual as well as organizational credit
check requests, it seems obvious to make this step reusable for other processes. Fig-
ure 6.7 shows the credit check process.

 First, the customer’s credit history is validated. If there’s a reason to take a closer
look at the customer’s current situation, the request is initially disapproved. A credit
manager can then make the final decision to approve or disapprove the customer for
a new contract. In figure 6.8, this credit check process is used as a standalone subpro-
cess in the personal mobile contract process definition.

 The personal mobile contract is simple because a new or existing customer can
request a new contract via a website. The customer receives a confirmation or denial
via email within seconds based on the outcome of the credit check subprocess. In the
remaining part of this section, you’ll implement the personal mobile contract process,

122 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
but let’s take quick look at how the credit check process is also used in the business
mobile contract process (see figure 6.9).

 As you can see, the business mobile contract process contains more user tasks than
the personal process definition. A new business agreement always starts with one or
more face-to-face meetings. Then, a sales manager can create a new initial business
contract agreement. Before the contract is approved, a credit check is performed, just
like in the personal contract process. Eventually, the agreement is approved or disap-
proved, and this is communicated to the business customer in a meeting.

 Because we don’t want to repeat ourselves, we’ll focus on the personal mobile con-
tract process for the code implementation. Let’s see how we can kick off a standalone
subprocess with a call activity.

Figure 6.7 A simplified version of a credit check process that’s used by both the personal
and the business mobile contract processes

Figure 6.8 The personal mobile contract process definition containing a call activity that
invokes the credit check standalone subprocess

123Using BPMN 2.0 subprocesses
CALLING A STANDALONE SUBPROCESS USING A CALL ACTIVITY

To be able to reuse the credit check process, you must be able to provide that process
with the necessary customer information—at least a customer number—to perform
the credit check. And, when the credit check has been performed, it’s important that
the approval or disapproval outcome is communicated back to the main process. In
the next listing, the implementation of the call activity with input and output parame-
ters is shown.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/

 ➥ personalmobilecontract">

 <process id="personalMobileContract"
 name="Personal mobile contract">
 <startEvent id="theStart">
 <extensionElements>
 <activiti:formProperty id="customerNumber"
 name="Customer number"
 required="true"
 type="string" />
 <activiti:formProperty id="contractType"
 name="Contract type"
 required="true"
 type="enum">
 <activiti:value id="100min"
 name="100 minutes"/>
 <activiti:value id="200min"

Listing 6.3 The personalMobileContract.bpmn20.xml file that includes a call activity

Figure 6.9 The business mobile contract process containing the call activity to the credit check stand-
alone subprocess

Starts with
task form

124 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 name="200 minutes"/>
 <activiti:value id="500min"
 name="500 minutes"/>
 </activiti:formProperty>
 </extensionElements>
 </startEvent>
 <sequenceFlow sourceRef="theStart"
 targetRef="creditCheck" />
 <callActivity id="creditCheck"
 calledElement="creditCheckProcess">
 <extensionElements>
 <activiti:in source="customerNumber"
 target="customerID" />
 <activiti:in source="contractType"
 target="contractType" />
 <activiti:out source="creditCheckApproved"
 target="creditApproved" />
 </extensionElements>
 </callActivity>
 <sequenceFlow sourceRef="creditCheck"
 targetRef="creditApproved" />
 <exclusiveGateway id="creditApproved"/>
 <sequenceFlow sourceRef="creditApproved"
 targetRef="sendMobileAgreement">
 <conditionExpression>
 ${creditApproved == true}
 </conditionExpression>
 </sequenceFlow>
 <sequenceFlow sourceRef="creditApproved"
 targetRef="sendDenial">
 <conditionExpression>
 ${creditApproved == false}
 </conditionExpression>
 </sequenceFlow>
 <userTask id="sendMobileAgreement"
 name="Send mobile contract"
 activiti:candidateGroups="sales"/>
 <sequenceFlow sourceRef="sendMobileAgreement"
 targetRef="theEnd" />
 <userTask id="sendDenial"
 name="Send letter of denial"
 activiti:candidateGroups="sales"/>
 <sequenceFlow sourceRef="sendMobileAgreement"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

The implementation of a call activity is simple with BPMN 2.0 and Activiti. The identi-
fier of the standalone subprocess is configured in the calledElement attribute B.
The latest version of the invoked subprocess is always started when the call activity is
executed. The call activity waits until the execution of the subprocess is finished.

 To communicate with the subprocess, you can define input and output parame-
ters. In this example, a customer number and contract type C are provided as input

Invokes credit
check process

B

Defines input
parameter

C

Defines output
parameterD

Uses credit
check outcome

E

125Using BPMN 2.0 subprocesses
to the credit check subprocess. As you can see, a mapping defines which variable of
the parent process (the source attribute) is copied to which variable of the subprocess
(the target attribute).

NOTE The input and output parameter mapping functionality is included in
the BPMN 2.0 specification using an ioSpecification element that is very
verbose. Therefore, Activiti supports the much simpler to use in and out ele-
ments. The Activiti roadmap contains an item to support this BPMN 2.0 com-
pliant way of creating input and output parameters as well.

In addition to the input parameters, the (dis)approval outcome of the credit check pro-
cess is injected as a creditApproved process variable in the main process context D.
This process variable is used in the next steps of the personal mobile contract process
to decide between emailing a contract agreement or a denial message E.

 Because the logic of the credit check process is already clear from the definition
shown in figure 6.7, the BPMN 2.0 XML isn’t shown here. (You can look up the imple-
mentation of this subprocess in the book’s source code.)

NOTE The credit check process contains an extra script task after the user
task to copy the value of the variable that holds the outcome of the user task
(creditCheckApprovedForm) to the process variable (creditCheckApproved).
The Activiti Engine returns an exception if you use the creditCheckApproved
variable directly in the form property definition. This is because the variable
is also used in the out parameter definition of the call activity.

Now let’s test the process definitions and see if it will work as expected.

TESTING THE PERSONAL MOBILE CONTRACT PROCESS

To test the personal mobile contract process example, you have to deploy two process
definitions—the main and the standalone subprocess definition. This isn’t a problem
because you only have to make sure that both BPMN 2.0 XM files are present in the
BAR file you create.

 The contract process BAR file is created when running the build.xml Ant build
file. In the src/main/resources/chapter6/callactivity directory, you can find this Ant
build file and, when executed, the BAR file is created in a dist subdirectory there.
Now, deploy the newly created callactivity.bar file to the Activiti Engine using the
Activiti Explorer.

 Because the credit check process contains a Java service task, you have to perform
an additional step to deploy the CreditCheckService Java class to the Activiti Engine
classpath. In addition to the BAR file, the Ant build file also created a callactivity.jar
file that contains the compiled class file. You need to first stop the running Tomcat
instance, for example, by executing the ant tomcat.stop command in the setup
directory of your Activiti installation. Then, copy the callactivity.jar file to the
webapps/activiti-explorer/WEB-INF/lib directory of the Tomcat instance in the Activ-
iti installation directory. Now, you can start Tomcat again (ant tomcat.start) and the
CreditCheckService class will be available on the Activiti Engine classpath.

126 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 With the personal mobile contract
and credit check processes fully
deployed, you can now go to the Activiti
Explorer to start a new process instance.
Note that both processes are available
to start in the process instance list in the
Activiti Explorer. But, you want to start
the personal mobile contract process—
you can do that as shown in figure 6.10.

 When the process is started, a cus-
tomer number and a contract type
value have to be provided. Note that
the credit history service task in the credit check subprocess automatically approves
processes for customer numbers between 1,000 and 10,000. If you fill in a customer
number of 99, a new user task named “Personal credit check” will be created to per-
form an extra validation on the credit of the customer. When you complete that user
task, you can choose to approve or disapprove the request, and you should see a corre-
sponding user task created from the personal contract main process.

 We’ve talked about subprocesses in a lot of detail. A subprocess is an essential and
powerful construct in BPMN because it can provide a scope definition with an embed-
ded subprocess and reusability and flexibility with a standalone subprocesses and call
activity. Our next topic is the parallel gateway construct, which provides functionality
to perform activities simultaneously.

6.2 Working with BPMN 2.0 parallel gateways
You already used an exclusive gateway in a number of examples in the previous chap-
ters. An exclusive gateway is a simple but powerful construct for controlling the flow
throughout a process definition. A parallel gateway is part of the same gateway con-
struct family, but it can be considered a more advanced BPMN element.

 It’s a common requirement for parts of process logic to be executed at the same
time. If there are multiple tasks to perform, it would be inefficient to place the activ-
ities in a waiting line. A parallel gateway makes it possible to perform multiple activi-
ties simultaneously.

 In addition, when a parallel gateway is placed after multiple incoming sequence
flows, it will make sure that all activities are finished before the process execution goes
further. A parallel gateway executes all outgoing sequence flows leaving the gateway
and waits for all incoming sequence flows to complete.

 With a simplified example process, the functionality of a parallel gateway becomes
easier to comprehend. Let’s look at a fictional day in the life of a multitasking devel-
oper in figure 6.11. The first parallel gateway is called a fork because it makes the pro-
cess execution fork into two parallel executions. The second parallel gateway is a join
because it makes the process execution wait until all the activities between the fork
and join gateways are executed.

Figure 6.10 Screenshot of starting the personal
mobile contract process within the Activiti Explorer

127Working with BPMN 2.0 parallel gateways
In the following sections, we’ll implement the multitasking process in a BPMN 2.0
XML file.

6.2.1 Implementing a process with a parallel gateway

Parallel gateways aren’t hard to implement in a BPMN 2.0 process definition. But the
runtime behavior is more difficult to grasp. As you’ll discover, the different outgoing
sequence flows aren’t really executed in parallel but are still running one after another.

HINT Real parallel execution with multiple threads running at the same time
isn’t the result of using a parallel gateway. The activity sequences that are
modeled after the fork construct run after each other. The first sequence of
activities is executed until a wait state is encountered. This can be a receive or
user task or a parallel gateway join when there are no wait state activities in
the sequence. After the first sequence of activities has come into a wait state,
the second sequence of activities will be executed, and so on. There are good
reasons why the Activiti framework decided to implement the parallel gateway
this way. If there are multiple threads running at the same time, a need for
locking and concurrency checking would come up and that would introduce
a lot more complexity and lead to some performance loss.

Let’s first look at the implementation of the multitasking example process definition
in the next listing.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/

 ➥ parallelgateway">

 <process id="multitaskingProcess"
 name="Multitasking process">
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="fork" />
 <parallelGateway id="fork" />

Listing 6.4 The parallelGateway.bpmn20.xml process with a join and fork gateway

Figure 6.11 A multitasking process definition with a fork and join parallel gateway. All activities must
be executed before the process will end with the last activity after the join parallel gateway.

Fork parallel
gateway

B

128 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 <sequenceFlow sourceRef="fork"
 targetRef="twitterTask" />
 <sequenceFlow sourceRef="fork"
 targetRef="coffeebreak" />
 <manualTask id="twitterTask" />
 <sequenceFlow sourceRef="twitterTask"
 targetRef="facebookTask" />
 <manualTask id="facebookTask" />
 <sequenceFlow sourceRef="facebookTask"
 targetRef="backlogEmailTask" />
 <userTask id="backlogEmailTask"
 name="Read email backlog"
 activiti:assignee="kermit"/>
 <sequenceFlow sourceRef="backlogEmailTask"
 targetRef="join" />
 <intermediateCatchEvent id="coffeebreak">
 <timerEventDefinition>
 <timeDuration>PT30S</timeDuration>
 </timerEventDefinition>
 </intermediateCatchEvent>
 <sequenceFlow sourceRef="coffeebreak"
 targetRef="doWorkTask" />
 <userTask id="doWorkTask"
 name="Do work"
 activiti:assignee="kermit" />
 <sequenceFlow sourceRef="doWorkTask"
 targetRef="join" />
 <parallelGateway id="join" />
 <sequenceFlow sourceRef="join"
 targetRef="endOfWorkDayTask" />
 <userTask id="endOfWorkDayTask"
 name="Finish work day"
 activiti:assignee="kermit"/>
 <sequenceFlow sourceRef="endOfWorkDayTask"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

As you already saw, the BPMN 2.0 XML definition of a parallel gateway isn’t difficult.
The runtime behavior is another thing. For example, how does the Activiti Engine
know the first defined parallel gateway B is a fork? It doesn’t know that. The parallel
gateway acts as a join and fork. First, the Activiti Engine waits until all incoming
sequence flows have been executed; then, it will fork into all outgoing sequence flows.
For your fork parallel gateway, there’s only one incoming sequence flow, so the pro-
cess will immediately perform the fork behavior.

NOTE The parallel gateway won’t evaluate any condition expression on an
outgoing sequence flow; if a condition expression is present on one of the
sequence flows out of a fork parallel gateway, it’s ignored.

In this example process, the first sequence of activities that’s executed starts with a Twit-
ter task C. For the sake of showing the functionality of a parallel gateway, this is a manual

First activity of
first sequence

C

First activity of
second sequence

D

Join parallel
gateway

E

129Working with BPMN 2.0 parallel gateways
task. A manual task can be regarded as a kind of pass-through activity so the process
immediately continues. Because the first two tasks in the first sequence of activities are pass-
through activities, the first sequence doesn’t stop until it reaches the backlogEmailTask
user task, which is a wait state. Then execution continues in the second sequence where
the coffeebreak intermediate timer event D is executed. Be aware that the activities in
the second outgoing sequence flow of the fork parallel gateway aren’t executed before
the first sequence flow reaches the backlogEmailTask user task.

 Eventually, all the activities in both sequence flows will be executed and the join
parallel gateway E progresses the process execution to the endOfWorkDayTask user
task. Note that the join parallel gateway makes sure that both incoming sequence
flows have been completed before the process continues.

TIP If you had implemented the backlog email user task as an automatic task,
all the activities in the first outgoing sequence flow of the fork parallel gate-
way would be executed before the second outgoing sequence flow was exe-
cuted. In that case, the parallel gateways in the multitasking process
definition could be removed, the activities of the second outgoing sequence
flow could be added after the backlog email user task, and the process execu-
tion would be exactly the same.

With the parallel process implementation in place, you can test the multitasking pro-
cess with the Activiti Explorer to get a better understanding of the process execution
flow.

6.2.2 Testing a process with a parallel gateway

The challenge in testing the process definition with a parallel gateway is that some
parts of the process execution aren’t visible in the process instance and task details.
You’ll, therefore, need to switch to the database view in the Activiti Explorer a few
times. But first, you have to create the BAR file using the Ant build file build.xml in the
src/main/resources/chapter6/parallel directory. Then you can deploy the created
BAR file to the Activiti Engine using Activiti Explorer like you did before.

 When you’ve deployed the process definition and started a new process instance in
the Activiti Explorer, you should see one user task appearing (when logged in as ker-
mit), as shown in figure 6.12.

 Take a look back at the multitasking process definition in listing 6.4 and you’ll see
that the backlog email user task is the third activity in the first outgoing sequence flow
of the parallel gateway. The first two activities, Twitter and Facebook, have already
been executed because they’re implemented as manual tasks.

 In the Activiti Explorer, you can look in the database view to check whether the Twitter
and Facebook manual tasks really have been executed. Click on the ACT_HI_ACTINST
table, and you should see a similar overview to that shown in figure 6.13.

 As you can see in figure 6.13, these activities have been executed as expected. You
can now complete the email backlog user task. Notice that the “end workday” user
task isn’t yet created. Remember that you first have to complete the “do work” user

130 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
task before the second parallel gateway continues the process execution. And because
there’s first a “coffee break” intermediate timer of 30 seconds, you have to wait a bit.
When the 30 seconds have passed, the “do work” user task can be completed and the
“end workday” user task appears.

 With the multitasking process tested, you can now move on to a piece of functionality
that’s not part of the BPMN 2.0 specification but that can certainly provide great value:
the Java Persistence API (JPA) integration. This powerful feature helps to retrieve data-
base entities within a process instance without the need to write database logic.

6.3 Adding a JPA extension to your process
The Java Persistence API (JPA) is an important specification for implementing persis-
tency within Java. JPA is also widely adopted, not only by the JEE application server

Figure 6.12 The Activiti Explorer showing the user task that will be created when you
start a new instance of the multitasking process definition

Figure 6.13 The Activiti Explorer showing the activities that have been executed after starting a new
multitasking process instance

131Adding a JPA extension to your process
vendors but also by open source frameworks like Hibernate and Apache OpenJPA. If
you aren’t yet familiar with JPA, you can read about all of its details on the Hibernate
and Apache OpenJPA websites or in a book like Java Persistence with Hibernate by Chris-
tian Bauer and Gavin King (Manning, 2006).

 What’s the use case for using the JPA extension in your process definition? When
you have a business process that needs a database entity like “customer” or “address”
from a relational database, you can write the data access logic yourself in a Java service
task and add this to the process definition. But, with the JPA extension, this isn’t neces-
sary. You can create a process variable implemented with a JPA annotated JavaBean
and use the database entity in your process definition like a normal process variable.

 To really grasp the JPA extension functionality, we’ll take a look at a small example
so we can discuss in detail the use of JPA in Activiti and note some caveats.

6.3.1 Modeling a process with a database entity

When a publisher signs a book contract, one of the first tasks is to create a title and
ISBN for the book. More interestingly, with regard to the JPA extension, the book’s
information must be entered into the publisher’s database. In the process definition
of figure 6.14, the start of a new book project is modeled.

As you can see, the process definition is centered on the book object. You need to
make sure that the title, ISBN, author list, and optional subtitle are available in the
publisher’s book database—to do so, you can use the JPA extension. The book object is
simple because it contains the four already mentioned attributes. Let’s look at the
book entity object in the following code snippet:

@Entity
public class Book {

 @Id
 @GeneratedValue

Figure 6.14 When a new book project is started, the initial available book information is stored in the
publisher’s database. Then the publisher adds the necessary title and ISBN information and, optionally,
a subtitle.

132 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 private int id;
 private String title;
 private String subTitle;
 private String isbn;

 @ElementCollection(fetch=FetchType.EAGER)
 private List<String> authors;

 // getters and setters
}

Notice that Java’s Book object uses the ElementCollection annotation that’s part of
JPA 2.0. With this handy annotation, you can use collection attributes inside an entity
object without needing any additional coding. You’ll now use the Book object to cre-
ate, update, and retrieve a book entity object with the JPA extension in the implemen-
tation of the new book project process definition.

6.3.2 Implementing a process with JPA extensions

Starting with the process model in figure 6.14, you can define a BPMN 2.0 XML defini-
tion, including the database persistency logic. For this example, you’ll use Activiti
inside a Spring container because the Spring framework makes the transaction han-
dling and EntityManager injection easy. The BPMN 2.0 XML is shown in the next listing.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/jpa">

 <process id="jpaTest">
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="createBook" />
 <serviceTask id="createBook"
 activiti:expression="${bookService.createBook(

 ➥ authorList)}"
 activiti:resultVariableName="book"/>
 <sequenceFlow sourceRef="createBook"
 targetRef="fillBookInfo" />
 <userTask id="fillBookInfo"
 activiti:assignee="kermit">
 <extensionElements>
 <activiti:formProperty id="booktitle"
 name="Book title"
 expression="#{book.title}"
 required="true" />
 <activiti:formProperty id="isbn"
 name="Isbn"
 expression="#{book.isbn}"
 required="true" />
 </extensionElements>
 </userTask>
 <sequenceFlow sourceRef="fillBookInfo"

Listing 6.5 Implementation of processWithJPA.bpmn2.0.xml using JPA extension

Creates and
persist book
object

B

Updates
book title

C

133Adding a JPA extension to your process
 targetRef="makeSubtitle" />
 <exclusiveGateway id="makeSubtitle"/>
 <sequenceFlow id="makeSubtitleYes"
 sourceRef="makeSubtitle"
 targetRef="createSubtitle">
 <conditionExpression>
 ${book.title == 'Activiti in Action'}
 </conditionExpression>
 </sequenceFlow>
 <sequenceFlow id="makeSubtitleNo"
 sourceRef="makeSubtitle"
 targetRef="makeSubtitleReady">
 <conditionExpression>
 ${book.title != 'Activiti in Action'}
 </conditionExpression>
 </sequenceFlow>
 <scriptTask id="createSubtitle"
 scriptFormat="groovy">
 <script>
 book.subTitle = "Executable business

 ➥ processes in BPMN 2.0";
 out:println "book subTitle is set to " +
 book.subTitle;
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="createSubtitle"
 targetRef="makeSubtitleReady" />
 <exclusiveGateway id="makeSubtitleReady"/>
 <sequenceFlow id="toEnd"
 sourceRef="makeSubtitleReady"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

Notice that you can’t tell from the BPMN 2.0 XML that the JPA extension is being used
for this process definition. The XML definition only mentions the book process vari-
able, and this could just as well be implemented with a normal JavaBean.

 In the first step of the process, you use a Java service task to create and persist a
Book entity object B. As you can see in the Java service task definition, the result of
the createBook method will be set as a new process variable, book. The book service
itself is a Spring bean, which we’ll discuss in the listing 6.7.

 After the Book object is persisted, you use a user task to let the publisher fill in the
title and ISBN for the book. With the form properties and JPA functionality of Activiti,
you can use the task form to update the book process variable, which is also automati-
cally saved into the database. The booktitle form property will, for example, update
the title attribute of the Book entity object C.

 Because the Book entity object is available through the book process variable, it can
be used in other parts of the process like a conditional expression on a sequence
flow D. If the book title is equal to this book’s title, the subTitle attribute is set in a
script task E. In JPA terms, the persisted Book object is updated with a subTitle value.

Checks
book title

D

Updates
book subtitle

E

134 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 With the BPMN 2.0 XML definition in place, you can now glue things together
with the Spring configuration. Because it would be repetitious to include the whole
Spring configuration, the following listing only shows the JPA-specific differences. In
chapter 4 and in the source code of the book, you can find the details about the rest
of the Spring configuration.

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory"
 ref="entityManagerFactory"/>
</bean>

<bean id="persistenceUnitManager"
 class="org.springframework.orm.jpa.persistenceunit.

 ➥ DefaultPersistenceUnitManager">
 <property name="persistenceXmlLocation">
 <value>
 classpath:chapter6/jpa/jpa-persistence.xml
 </value>
 </property>
</bean>

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.

 ➥ LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitManager"
 ref="persistenceUnitManager"/>
</bean>

<bean id="processEngineConfiguration"
 class="org.activiti.spring.SpringProcessEngineConfiguration">
 <property name="databaseType" value="h2" />
 <property name="dataSource" ref="activitiDataSource" />
 <property name="transactionManager"
 ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="jpaEntityManagerFactory"
 ref="entityManagerFactory" />
 <property name="jpaHandleTransaction" value="true" />
 <property name="jpaCloseEntityManager" value="true" />
 <property name="deploymentResources"
 value="classpath*:chapter6/jpa/processWithJPA.bpmn20.xml" />
 <property name="jobExecutorActivate" value="false" />
</bean>

<bean id="bookService"
 class="org.bpmnwithactiviti.chapter6.jpa.BookService"/>

The nice thing about using Spring in combination with JPA is that you can use the
Spring transaction manager B. The transaction manager takes care of creating and
committing the transaction necessary to persist the Book entity object, as you’ll see in
the BookService implementation.

Listing 6.6 JPA-specific parts of the jpa-application-context.xml Spring configuration

JPA transaction
manager B

JPA persistence
unit configuration

C

Defines an
EntityManagerFactoryD

Injects the entity
manager factory

E

Spring bean
with JPA logic

F

135Adding a JPA extension to your process
 To use JPA, you need an EntityManagerFactory definition D that references the per-
sistence unit configuration defined in jpa-persistence.xml C. The jpa-persistence.xml
JPA configuration file defines a bookStore persistence unit with Hibernate as a JPA pro-
vider. Note that you could also use another JPA provider like Apache OpenJPA. The jpa-
persistence.xml JPA configuration file contains the standard JPA attributes, as you can see
in the next code snippet:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="bookStore" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <class>org.bpmnwithactiviti.chapter6.jpa.Book</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.connection.url"
 value="jdbc:h2:mem:bookstore;DB_CLOSE_ON_EXIT=FALSE"/>
 <property name="hibernate.connection.driver_class"
 value="org.h2.Driver"/>
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.connection.password" value=""/>
 </properties>
 </persistence-unit>
</persistence>

The Book object shown in the previous section is configured here as a JPA entity. In
addition, the H2 connection and driver definition are configured and the persistence
unit name is set to bookStore.

 Now back to the Spring configuration from listing 6.6. With the EntityManager-
Factory defined, you can inject it into the Activiti process engine configuration E.
This activates the JPA extension in the Activiti Engine, and JPA-annotated classes will
be matched against a JPA entity manager. The BPMN 2.0 process definition shown in
listing 6.5 is deployed to the engine as well.

 The last piece is the Spring bean bookService F. The Java implementation of this
class has to create and persist the JPA book object and return it to the process instance
as a new process variable. That sounds like quite a bit of coding to do, but as you can
see in the next listing, it’s short and easy.

public class BookService {

 @PersistenceContext
 private EntityManager entityManager;

 public Book createBook(List<String> authorList) {

Listing 6.7 Implementation of the Spring bean bookService

136 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 Book book = new Book();
 for (String author : authorList) {
 book.getAuthors().add(author);
 }
 entityManager.persist(book);
 return book;
 }
}

To persist the Java book object, you need a JPA entity manager. With Spring’s depen-
dency injection, it’s a simple matter of adding the @PersistenceContext annotation
to the class to have the Spring container inject it. Note that you don’t have to define a
Transactional annotation, because the Activiti Engine takes care of starting and
committing the JPA transaction.

 At the start of the process, a list of authors should be provided as a process vari-
able. When you create a new Book instance, that list of authors is added and the JPA
entity manager persists it to the H2 database defined in the jpa-persistence.xml file.

 Now that we’ve covered all elements of the new book project process implementa-
tion, let’s move on to validate your implementation with a unit test.

6.3.3 Testing a process with JPA extensions

Because you’ve used the Spring container to glue the Activiti Engine together with
the JPA EntityManagerFactory, writing a unit test for this process isn’t that hard. You
just need to start a new process instance, complete the user form, and validate after-
ward that the book object is stored in the H2 database with the right values (see the
next listing).

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter6/

 ➥ jpa/jpa-application-context.xml")
public class JPABookTest extends AbstractTest {

 @PersistenceContext
 private EntityManager entityManager;

 @Autowired
 private RuntimeService runtimeService;

 @Autowired
 private TaskService taskService;

 @Autowired
 private FormService formService;

 @Test
 public void executeJavaService() {
 Map<String, Object> processVariables =
 new HashMap<String, Object>();
 List<String> authorList = new ArrayList<String>();
 authorList.add("Tijs Rademakers");

Listing 6.8 Test to validate the book object in the H2 database

Injects entity
manager for
database access

B

137Using execution and task listeners
 authorList.add("Ron van Liempd");
 processVariables.put("authorList", authorList);

 runtimeService.startProcessInstanceByKey(
 "jpaTest", processVariables);
 Task task = taskService
 .createTaskQuery()
 .singleResult();
 Map<String, String> formProperties =
 new HashMap<String, String>();
 formProperties.put("booktitle", "Activiti in Action");
 formProperties.put("isbn", "123456");
 formService.submitTaskFormData(task.getId(),
 formProperties);

 Book book = (Book) entityManager.createQuery(
 "from Book b where b.title = ?")
 .setParameter(1, "Activiti in Action")
 .getSingleResult();
 assertNotNull(book);
 assertEquals("Activiti in Action", book.getTitle());
 assertEquals("Executable business " +
 "processes in BPMN 2.0", book.getSubTitle());
 assertEquals(2, book.getAuthors().size());
 assertEquals("Tijs Rademakers",
 book.getAuthors().get(0));
 }
}

To be able to validate the Book entity object after the process instance has ended, you
need an EntityManager to access the database via JPA B. After the process instance is
started with a list of authors, the user task is retrieved and the book title and ISBN user
form values are submitted using the FormService C. The FormService is a handy
interface to simulate a user filling in a user task form.

 After the process instance has ended, you can check whether the Book entity object
was created and persisted in the H2 database. Because you’re testing with this book’s
name, the subTitle attribute should be filled D.

NOTE There is an important requirement to using the Activiti JPA extension.
All JPA entity objects should have an @Id-annotated primary key. @EmbeddedId
and @IdClass aren’t supported. This is something to be aware of when using
the JPA extension.

This simplified new book project process definition example gave a good overview of
the possibilities of the JPA extension. With a checkbox at the JPA extension, there’s
another interesting and powerful Activiti extension to explore: the event listener.

6.4 Using execution and task listeners
When the process engine executes a process, several things happen in the back-
ground that you won’t necessarily be aware of. Automatic activities are executed, tran-
sitions are performed, and user tasks are created and assigned to the configured users

Submits
user form

C

Validates
book’s
subtitle

D

138 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
and groups. When you want to get more information out of the process execution,
Activiti provides an extension on top of the BPMN 2.0 specification, referred to as exe-
cution and task listeners.

 Execution listeners can be configured on the process itself, on activities, and on
transitions. Task listeners can only be configured on user tasks. These listeners pro-
vide great hooks into the process execution, and they can be used for things like busi-
ness process monitoring and simpler things like flexibly assigning a group of
candidate users to a user task. Table 6.1 provides an overview of the BPMN 2.0 con-
structs and event types that can be monitored using the Activiti execution and task lis-
teners extension.

As you can see in table 6.1, it’s possible to configure execution and task listeners on
most elements of the BPMN process definition. But how does this work in practice?
Let’s start by looking at a short example and then dive into the code to figure it out.

6.4.1 Modeling a process with execution and task listeners

In chapter 14, we’ll be discussing business events in-depth with real-life examples. In
this section, we’ll focus on learning about the implementation of execution and task
listeners in Activiti with a simplified and imaginary process. Because execution and
task listeners watch and react on the process execution, it works a bit like gossip maga-
zines that follow everything that happens with celebrities and gossip about it. You can
make a simple process definition of this, where celebrity Brad goes out for a drink
(see figure 6.15).

 Because execution and task listeners are an extension provided by the Activiti
Engine, you can’t make use of standard BPMN 2.0 elements to model the catching of
events in figure 6.15. In this model, you use text annotations to point out all the
events that will be caught during the execution of the process instance.

 This fictitious process definition doesn’t need a lot of explaining, so let’s start
implementing this process definition with BPMN 2.0 XML.

Table 6.1 An overview of the event types that can be configured in a BPMN 2.0 XML process definition
 using the Activiti execution and task listeners extension

BPMN 2.0 construct Event types Description

Process start, end A start and end event of a process instance can be captured
with a process execution listener

Activity start, end A start and end execution listener of an activity can be
implemented

Transition take A transition execution listener can catch a take transition event

User task create,
assignment,
complete

A user task throws events when it’s created, when the task
assignment has been performed, and when the user task has
been completed

139Using execution and task listeners
6.4.2 Implementing execution and task listeners

Activiti supports two types of listeners, the ExecutionListener and the TaskListener.
The ExecutionListener can be used to implement a listener for the process, activity,
and transition event types. The TaskListener is solely dedicated to the listener imple-
mentation of a user task.

 Execution and task listeners can be implemented as Java classes but can also be
configured with expressions that call JavaBeans. In the gossip process implementa-
tion, you’ll use all the supported types of listeners, so let’s first walk through that
BPMN 2.0 XML definition.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/

 ➥ processeventlistener">

 <process id="gossipProcess">
 <extensionElements>
 <activiti:executionListener
 class="org.bpmnwithactiviti.chapter6.

 ➥ listener.GossipAboutProcess"
 event="start" />
 <activiti:executionListener
 class="org.bpmnwithactiviti.chapter6.

 ➥ listener.GossipAboutProcess"
 event="end" />
 </extensionElements>
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="bradLeavesHouseTask">
 <extensionElements>
 <activiti:executionListener
 expression="${gossipTransition.gossip(execution)}"/>
 </extensionElements>
 </sequenceFlow>

Listing 6.9 The processEventListener.bpmn20.xml process with event listeners

Figure 6.15 An imaginary process definition of gossiping about Brad going out for a drink

Process start
execution listener

B

Takes transition
execution listener

C

140 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 <scriptTask id="bradLeavesHouseTask" scriptFormat="groovy">
 <extensionElements>
 <activiti:executionListener
 expression="${gossipActivity.gossipStart(

 ➥ execution)}"
 event="start" />
 <activiti:executionListener
 expression="${gossipActivity.gossipEnd(

 ➥ execution)}"
 event="end" />
 </extensionElements>
 <script>
 out:println "Brad leaves the house";
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="bradLeavesHouseTask"
 targetRef="bradHasADrinkTask" />
 <userTask id="bradHasADrinkTask"
 activiti:assignee="Brad">
 <extensionElements>
 <activiti:taskListener
 expression="${gossipUserTask.gossipTask(

 ➥ task, task.eventName)}"
 event="assignment" />
 <activiti:taskListener
 expression="${gossipUserTask.gossipTask(

 ➥ task, task.eventName)}"
 event="create" />
 <activiti:taskListener
 expression="${execution.setVariable(

 ➥ 'readyDrinking', true)}"
 event="complete"/>
 </extensionElements>
 </userTask>
 <sequenceFlow sourceRef="bradHasADrinkTask"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

Because you implement all the available Activiti listeners in this example, it’s a long
BPMN 2.0 XML definition. In this listing, you use two types of listener implementations:
classes and expressions. To show how you can leverage the Spring framework to imple-
ment a listener, you run the Activiti Engine inside a Spring container in this example.

 The first listener defined in the listing is the start process execution listener B.
When the process is started, the GossipAboutProcess class is invoked with an execu-
tion context as input parameter. An execution listener that’s configured with the
class attribute is obliged to implement the ExecutionListener interface, as in the
following code snippet of the process listener implementation:

public class GossipAboutProcess implements ExecutionListener {
 @Override
 public void notify(DelegateExecution execution)
 throws Exception {

Activity start
execution listenerD

User task
assignment
task listener

E

Creates
readyDrinking
variable on
complete taskF

141Using execution and task listeners
 System.out.println(
 "Did you know the following process event occurred = "
 + execution.getEventName());
 EventUtil.addEvent(execution, "process");
 }
}

The ExecutionListener interface has one method, notify, which must be imple-
mented. The DelegateExecution input parameter can be used to retrieve the neces-
sary information about the event and to get information from the process, like process
variables. In this case, you print the name of the event that has been fired, which can be
start or end for a process event listener. In addition, you call an EventUtil class to add
this event to an event stack list that can later be used to test if the events were fired as
expected. Let’s quickly look at the EventUtil class:

public class EventUtil {
 @SuppressWarnings("unchecked")
 public static void addEvent(DelegateExecution execution,
 String source) {
 List<String> eventList = (List<String>)
 execution.getVariable("eventList");
 if(eventList == null) {
 eventList = new ArrayList<String>();
 }
 eventList.add(source + ":" + execution.getEventName());
 execution.setVariable("eventList", eventList);
 }
}

The addEvent method retrieves the eventList variable from the process context and
adds the event to the event stack list. The EventUtil class contains another addEvent
method to add the task listener event you’ll see in a bit because that listener has a pro-
cess context parameter different from DelegateExecution, namely DelegateTask.

 Back to the BPMN 2.0 XML from listing 6.9. Another execution listener that’s
implemented for the gossip process is the take transition listener C. When the transi-
tion is executed, this execution listener is fired. The gossipTransition part of the
expression refers to a Spring bean. On this Spring bean, the gossip method is invoked
with the DelegateExecution instance as an input parameter. The implementation
class is similar to the GossipAboutProcess class but without the need to implement
the ExecutionListener interface. It can be found in the source code of this book.

 Another example of an execution listener is the start event listener D, which is
also configured as a Spring bean. This activity execution listener is similar to the pro-
cess and transition execution listeners.

 The task listeners configured on the user task are a different beast. When the user
task is started, the Spring bean corresponding to the GossipAboutUserTask class is
invoked E. To implement a listener on a user task using the class attribute, the
TaskListener interface must be implemented. But, in this example, you use the
expression attribute instead and pass the task and eventName variables into the
Spring bean yourself. Let’s look at the implementation in the next short listing.

142 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
public class GossipAboutUserTask

 public void gossipTask(DelegateTask task,
 String eventName) {

 if(TaskListener.EVENTNAME_CREATE.equals(eventName)) {
 System.out.println(
 "Drink user task is created and assigned to John");
 task.setAssignee("John");
 } else if(TaskListener.EVENTNAME_ASSIGNMENT
 .equals(eventName)) {
 System.out.println(
 "Drink user task is assigned to " +
 task.getAssignee());
 }
 EventUtil.addEvent(task, eventName);
 }
}

While an execution listener can be used to retrieve information from the process con-
text and set process variables, a task listener can change the assignment of a user task.
This gives you great flexibility to implement custom assignment logic when a simple
assignment doesn’t suit your functional requirements.

 First, you need to know which task event type has been fired. In this example, the
assignee of the user task is changed to John when the task event type is create B. In
the task listener implementation, the assignee configuration of the BPMN 2.0 XML
definition, Brad, is overridden.

TIP The order of events for a user task is maybe not what you would expect.
The first event that’s thrown is the assignment event. After the assignment is
handled, the user task create event is fired. When the user task assignment is
changed in the task listener, a new assignment event will be thrown. Only
change the assignment of the user task in a create event. When it’s done
inside an assignment event, a StackOverflowError exception is thrown in
the Activiti Engine, because the assignment event is then called in a loop.

Enough said about the task listener implementation; let’s return for a last comment to
the BPMN 2.0 XML definition from listing 6.9. An execution or task listener can also be
implemented with an expression that doesn’t involve an additional Java class or bean.
In the gossip process definition, a new process variable will be created when the user
task is completed F and no additional Java class definition is needed to implement
this. Now let’s see how to test the event stack list to validate the execution of the vari-
ous listeners.

6.4.3 Testing the event stack list

In other examples in this book, we used the HistoryService to get information about
the process flow execution after a process instance was ended. Execution and task lis-
teners aren’t part of that history information because they aren’t process activities.

Listing 6.10 TaskListener interface implementation to listen for user task events

Sets a new
assigneeB

143Using execution and task listeners
Therefore, we need another way to validate whether the listeners were executed and if
the order of execution was what we expected it to be. In the implementation, we
therefore build up an event stack list.

 But, as you may recall from the history configuration discussion of chapter 3, pro-
cess variable information is only stored in the history tables if the history configura-
tion is set to full. In the event listener example, this is done with the history
property of the SpringProcessEngineConfiguration in the Spring application con-
text file (gossip-application-context.xml). The Spring configuration file can be found
in chapter 6’s resources folder in the book’s source code.

 The test class you have to implement must use the Spring testing functionality to
make sure the Spring application context is built up in the right way (see the follow-
ing listing).

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter6/listener

 ➥ gossip-application-context.xml")
public class ProcessListenerTest extends AbstractTest {

 @Autowired
 private RuntimeService runtimeService;

 @Autowired
 private TaskService taskService;

 @Autowired
 private HistoryService historyService;

 @SuppressWarnings("unchecked")
 @Test
 public void gossip() {
 ProcessInstance processInstance = runtimeService
 .startProcessInstanceByKey("gossipProcess");
 assertNotNull(processInstance);
 Task task = taskService
 .createTaskQuery()
 .taskAssignee("John")
 .singleResult();
 taskService.complete(task.getId());
 List<HistoricDetail> historyList = historyService
 .createHistoricDetailQuery()
 .variableUpdates()
 .list();

 assertEquals(9, historyList.size());
 HistoricVariableUpdate variableUpdate =
 (HistoricVariableUpdate)
 historyList.get(historyList.size() - 1);
 assertEquals("eventList",
 variableUpdate.getVariableName());
 List<String> variableList =
 (List<String>) variableUpdate.getValue();

Listing 6.11 Test class to validate the execution of the various listeners

Task is reassigned
to John

B

Queries only
variable updatesC

Variable must be
a list of Strings

D

144 CHAPTER 6 Applying advanced BPMN 2.0 and extensions
 assertEquals("process:start", variableList.get(0));
 assertEquals("transition:take", variableList.get(1));
 assertEquals("activity:start", variableList.get(2));
 assertEquals("process:end",
 variableList.get(variableList.size() - 1));

 }
}

When a gossip process instance is started, the first wait state is the user task. In the pro-
cess definition, the user task is assigned to Brad, but in the task listener of listing 6.10
it’s reassigned to John. Therefore, you need to query on assignee John B to find the
waiting user task.

 After the user task is completed, thereby finishing the process instance, you can
query the historic information of the ended process instance C. Because you want to
validate the event stack list, the Activiti Engine should only return the variable
updates. Note that in this example you have no form properties and, therefore, the
variableUpdates method could also be removed to get the same query result.

 The event stack list is implemented with the eventList process variable, which is a
collection of Strings D.

 As you’ve seen in this example, the use of execution and task listeners can help you
to listen for certain events during the process execution. This can provide input to
applications, such as business application monitoring applications, which we’ll discuss
in chapter 14. The task listener provides another layer of flexibility because it provides
a way to assign a user task at runtime with custom logic.

6.5 Summary
In the previous chapters, we gradually built up the pace to get familiar with the Activiti
platform and the BPMN 2.0 specification. But, in this chapter, we stepped it up a bit to
introduce you to several more advanced features of Activiti.

 Subprocesses can help a lot to increase the readability, flexibility, and reusability of
your business processes and, therefore, are first-class citizens of the BPMN 2.0 specifi-
cation. To run activities in parallel during process execution, the parallel gateway was
introduced. The main thing to remember about parallel gateways is that process exe-
cution isn’t split into multiple threads, but the execution paths are completed until a
wait state is reached.

 In addition to the subprocess and parallel gateway BPMN 2.0 constructs, two Activ-
iti extensions were highlighted. First, the Activiti Engine provides integration with the
JPA persistency standard to make it easy to access database entities from the process
instance. Without any additional coding, a customer can be retrieved from a database
table based on a customer identifier. Second, execution and task listeners are part of
the Activiti Engine implementation. Start and end events can be captured from pro-
cess, transition, and activity elements of a process definition. And to make it possible
to use custom logic at runtime to deal with user tasks, the create, assignment, and
complete events can be caught.

Transition
take event
should be
secondE

145Summary
 With the introduction in the previous chapters and the advanced features intro-
duced in this chapter, you can already implement complex business process can
already be implemented. But to be able to implement real-life processes, you need to
deal with error handling. That’s what we’ll talk about in the next chapter.

Dealing with
 error handling
Having read the first six chapters, you now know a lot about BPMN 2.0 and Activiti.
You’ve been introduced to the tools, taken a good look at the Activiti Engine ser-
vices API, implemented a real-world business process, and deployed that process on
Activiti Engine. In the examples in the previous chapters, we focused on happy flow
processes. Now, it’s time to start thinking about error handling.

 In chapter 5, we implemented a simplified credit check script task, but, if the
credit check logic is implemented with a service call to an external component, a
lot of errors could occur. Think about “Customer not found” or connection errors;
how could they be handled in a BPMN process definition?

This chapter covers
■ Choosing between error handling options
■ Implementing processes with error end and

boundary events
■ Implementing error handling with Java logic
■ Using the Activiti Designer
146

147Choosing between error handling options
 There generally are two ways of dealing with errors in a BPMN process definition
running on Activiti. The first option is to use the standard BPMN error handling con-
structs. The second option is to use Java logic and Java service tasks to implement
error handling. In section 7.1, we’ll discuss the general idea behind both approaches.
In section 7.2, we’ll look at how you can implement a full business process with the
BPMN error handling elements. In the implementation of this example, we’ll use the
Activiti Designer to speed up the development process. Then, in section 7.3, we’ll
implement the business process again but, this time, using Java logic to implement the
error handling.

 To get a good overview of the two approaches to error handling, we’ll start by look-
ing at the different ways in which BPMN and Activiti can help you implement error
handling logic.

7.1 Choosing between error handling options
Drawing a process model without thinking about possible exceptions or errors is usu-
ally not difficult. But, at some point, error handling strategies must be implemented
in the process model to make it enterprise ready. What must happen to the process
execution when an order fails to be persisted in a database? Must it be handled by a
process administrator, or can somebody solve the error using a user task? These kinds
of questions need to be answered before the process definition can be regarded
as complete.

 Implementing error handling in a process model isn’t an easy task, but the BPMN
standard and the Activiti Engine provide flexible ways to deal with error logic. Sec-
tion 7.1.1 provides an introduction to error end events and error boundary events as
part of the BPMN standard, and, in section 7.1.2, we’ll look at using Java logic to
implement error handling.

7.1.1 Using error end and boundary events

The first option to think about when implementing error handling is the use of error
end events and error boundary events. These constructs are part of the BPMN 2.0 stan-
dard and make it possible to design error handling strategies as part of the process
model. We already used boundary events in chapters 5 and 6 with the time boundary
event. You learned there that you can define a boundary event on a task (often a ser-
vice task or a user task) and an embedded subprocess.

 Error boundary events provide a way to catch errors that occur during process exe-
cution; if an error occurs within a subprocess, the error boundary event can be used
to catch that error and handle it the way you want it to be handled. To be able to catch
an error, you must also be able to throw an error. The need to explicitly throw an
error with an error end event is the main difference with the Java exception style of
handling errors. Java exceptions occur during Java execution, and they can be caught
using standard Java code. Therefore, they can be regarded as technical errors. With
error boundary events, the errors need to be explicitly thrown in the process model by
using error end events; this type of error is a logical error.

148 CHAPTER 7 Dealing with error handling
NOTE Using error boundary events can be regarded as logical error handling
because it always requires an error end event for such an error to be fired.
Java logic in a service task can be used to implement technical error handling
to deal with problems like database connection and web service communica-
tion failures.

Because you need an error end event in order to fire an error, an error boundary
event must be defined on an embedded subprocess or a call activity. When an error
end event is executed in an embedded subprocess or a standalone subprocess, an
error boundary event will catch that error. In section 7.2, we’ll work through a full
example using error end events and error boundary events. For now, let’s focus on the
basic explanation with a simple process model, shown in figure 7.1.

 The symbol for an error end event is the same as a normal end event, but it con-
tains a Z-like icon. The error boundary event contains a similar icon. In the review
user task, it’s determined whether there are order details lacking. If the necessary
order details aren’t provided, the error end event is reached. This will throw an error,
which is caught by the error boundary event. The error boundary event triggers
another user task to complete the order details and executes the embedded subpro-
cess again.

 Note that this example only explains the use of the error end event and error
boundary event. For this example, you could also leave out the error events and move
the “additional order details” user task to the position of the error end event. Then,
you could draw the outgoing sequence flow out of the “additional order details” task
directly to the “Review order details” user task. But, using the error end event may add

Figure 7.1 Example process showing the use of an error end event and an error boundary event. When
there are order details missing, an error end event is thrown and then caught by the error boundary event
defined on the embedded subprocess.

149Choosing between error handling options
more semantics to the process definition to indicate that missing order details should
be regarded as a logical error.

 How are the error end event and the error boundary event correlated? You can
imagine process definitions where there are multiple error end events and error
boundary events. The error events contain an error code attribute, which should
uniquely define that specific error event. If the error end event and error boundary
event each define an error definition with the same error code, they’re correlated.
You can also define an error boundary event without a reference to an error code to
catch all errors that occur within the scope on which the boundary event is defined.

 Now that you’ve been introduced to logical error handling using error end events
and error boundary events, let’s look at how to deal with technical errors. Using Java
logic, you can implement routing logic to choose between outgoing sequence flows to
direct the process execution based on the occurrence of an exception.

7.1.2 Using Java logic for error handling

It’s always good to have a choice in how you implement something like error han-
dling. The Activiti Engine provides this flexibility by supporting both the standard
BPMN error handling constructs as well as error handling via Java exceptions. For each
error handling implementation, you could choose either one of the two solutions, but
there are semantic differences.

 With the error end event and error boundary event constructs, you explicitly
design the error handling as part of the process model. Choosing the Java logic
approach means that the error handling is implemented inside a service task and,
therefore, is not part of the process model. Figure 7.2 shows a simplified process
model with the Java exception approach.

 In figure 7.1, you saw the error handling logic as part of the process model, but,
with the Java logic approach, it’s not explicitly modeled. Figure 7.2 shows a simplified
order-entry process, where the order is persisted in the database via a service task. If
you don’t implement any error handling logic in the process implementation, the

Figure 7.2 Example process model containing error handling with the Java logic approach. In the process
model, only multiple outgoing sequence flows are designed out of the service task.

150 CHAPTER 7 Dealing with error handling
process transaction will roll back when an exception occurs in the persistence logic of
the service task. At runtime, this means that the user who fills in the order in a task
entry application (like Activiti Explorer) would get an error message when the user
task is completed. The transaction of the process is rolled back, and the current state
again is the “Fill in order” user task.

 This might be good enough for the requirements of the process model, and, in that
case, you don’t have to implement error handling logic. But, in some cases, you may
want to catch the database persistence exception and direct it to a specific administra-
tor user task. With requirements like those, the Java logic approach would fit nicely.

 As you can see in figure 7.2, there are two sequence flows going out of the database
persistence service task. This means that you can implement decision logic in the ser-
vice task to choose which sequence flow it should take next. You can implement logic
to take sequence flow A if the order is persisted, and to take sequence flow B if a data-
base exception occurred and the order isn’t persisted. Let’s see how this is imple-
mented in a Java service task.

public class OrderPersistTask implements ActivityBehavior {

 @PersistenceContext
 EntityManager entityManager;

 @Override
 public void execute(ActivityExecution execution)
 throws Exception {
 PvmTransition transition = null;
 try {
 Order order = (Order) execution.getVariable("order");
 entityManager.persist(order);
 transition = execution
 .getActivity()
 .findOutgoingTransition("orderPersisted");
 } catch(Throwable e) {
 transition = execution
 .getActivity()
 .findOutgoingTransition("orderNotPersisted");
 }
 execution.take(transition);
 }
}

When you want to implement decision logic in a Java service task, the ActivityBehavior
interface must be implemented instead of the JavaDelegate interface. The Activity-
Behavior interface provides more functionality to control the execution of the process.
But, be aware that using the ActivityBehavior interface also means that you must
explicitly implement logic to leave the service task, as you can see in the last line of the
listing with the take method invocation C. When you use the JavaDelegate interface,
this isn’t necessary because it will take care of leaving the service task when the execute
method is completed.

Listing 7.1 Java service task using Java error handling logic

Get the right
sequence flow

B

Take the retrieved
sequence flow

C

151Choosing between error handling options
 Note that you try to persist an Order instance via the JPA EntityManager. When the
database transaction is committed, the sequence flow with an identifier of order-
Persisted is retrieved B. A sequence flow is represented inside the Activiti Engine as
a PvmTransition instance. When an exception occurs, another sequence flow (with
the orderNotPersisted identifier) is retrieved.

 This approach shows an alternative way of handling errors inside a BPMN process
model. Note that this approach is limited to Java service tasks. To complete our over-
view of error handling patterns in process models running on the Activiti Engine,
we’ll now take a look at how to use both error handling approaches together in the
next section.

7.1.3 Using both error handling approaches together

To show that the BPMN error event and Java logic error handling approaches can be
used in a flexible manner in the Activiti Engine, we’ll use both mechanisms together.
This isn’t an uncommon way of implementing error handling. With the Java logic
approach, you can elegantly handle technical errors in a Java service task. And, by
using BPMN error end events and error boundary events, you can make sure that the
error handling logic is explicitly designed as part of the process model. That isn’t the
case when using only the Java logic approach, as you saw in the previous section.

 To be able to compare the two options—one using the Java error handling
approach and the other combining BPMN error event constructs and Java excep-
tions—we’ll use the same order-entry process example as in figure 7.2. In figure 7.3,
there’s also a BPMN error end event and an error boundary event.

Figure 7.3 Example order process that makes use of both
BPMN 2.0 error handling constructs and the Java logic er-
ror handling approach

152 CHAPTER 7 Dealing with error handling
Because we’re using the BPMN 2.0 error handling constructs in this sample order pro-
cess, we must also define a scope with an embedded subprocess to be able to use the
error boundary event. When you compare the order processes of figures 7.2 and 7.3,
the main difference is that the error handling strategy is explicitly defined in figure 7.3
and implicitly in figure 7.2. The execution flow of both processes is similar, so the dif-
ferences are more on a semantic level.

 In general, it can be said that, if you want to explicitly model the error handling
strategies in a process definition, you should use BPMN 2.0 error handling constructs.
This approach makes sure that error handling is clearly defined and provides insight
to every reader of the process model. If the error handling is technical and it would
only clutter the process definition, you could choose the Java logic approach. Remem-
ber that this is only possible for Java service tasks.

 A third approach is shown in figure 7.3 and combines both error handling
approaches. In the combined approach, a technical Java exception is transformed
into a logical error with an error end event. This approach is handy if a technical
exception is of importance in the process execution flow and therefore should be
made explicit with an error end event.

 Enough said about the approaches to error handling. Let’s get our hands dirty with
the implementation of a sales opportunity business processes with error handling.

7.2 Implementing error handling with BPMN 2.0 constructs
To show the usage of the error end event and the error boundary event in a BPMN 2.0
process, we’ll implement a sales opportunity process. And, to make the process imple-
mentation similar to a real-world project, the service tasks invoke an external ser-
vice—in this example, a web service—to execute the necessary logic. We have a lot of
good stuff coming up, starting with the sample implementation overview.

7.2.1 Designing the sales opportunity process solution

To implement a full sales opportunity process solution, you have to deal with quite a
few components. Therefore, we’ll start this section off with a high-level design of the
solution to give you a good picture of what you’ll be implementing in the remainder
of this section. Figure 7.4 shows the design of the sales opportunity process implemen-
tation and the web service application you’ll be invoking.

 The book-sales-app application shown in figure 7.4 contains a web service that
uses a CustomerDAO class to retrieve customers and store sales opportunities to an H2
opportunity database instance. It uses Spring to manage the dependencies, Hibernate
JPA for persistence, and Apache CXF for the web service implementation. In the
book’s source code, you can find the full web application.

 For the sales opportunity process implementation, you only need to concern your-
self with the customer web service because that will be the interface you’ll be commu-
nicating with from the service tasks. Let’s look at the web service operations in a
screenshot of the WSDL Design view in Eclipse (see figure 7.5).

153Implementing error handling with BPMN 2.0 constructs
Tomcat (port 8080): activiti−explorer application Jetty (port 8081): book−sales−app application

Process definition

Sales
opportunity

process

Service task

RetrieveCustomerTask

StoreOpportunityTask

C
us

to
m

er
S

er
vi

ce
 w

eb
 s

er
vi

ce

CustomerDAO

H2 opportunity
database

WS HTTP

WS HTTP

Figure 7.4 High-level design of the sales opportunity
process solution, containing a BPMN 2.0 process def-
inition with two service tasks that will invoke
an external customer web service

Figure 7.5 The WSDL Design view in Eclipse showing the customer web service interface. The input
parameters of the storeSalesOpportunity operation are highlighted.

154 CHAPTER 7 Dealing with error handling
The customer web service interface shown in figure 7.5 consists of three operations.
There are two operations to find a customer, one by identifier and one by customer
name or contact person. The third operation accepts input parameters as product
and customerId and stores them as a new sales opportunity in the H2 database using
the CustomerDAO class from figure 7.4.

 Now that you have a good overview of the full sales opportunity process solution,
it’s time to look at the details of the process definition itself.

7.2.2 Modeling the sales opportunity business process

In the sales opportunity process, a new sales opportunity is created for an existing cus-
tomer. An added complication is that, when a customer isn’t yet available in the Cus-
tomer Relationship Management application, it has to be created. Figure 7.6 shows
the process model, created with the Activiti Modeler.

 To start a new process instance of the sales opportunity process definition, you
have to provide information about the sales opportunity. The input parameters are
the product name, expected quantity, a description, and the customer identifier, if
known. When the customer identifier isn’t known, the first step in the sales opportu-
nity process is to provide additional information about the customer, including the
customer name and a contact person.

 In the embedded subprocess scope, a service task is executed to find the customer,
based on the information provided. This can be the customer identifier or the pro-
vided additional customer information. This service task will invoke the customer web
service discussed in the previous section. When the customer isn’t found, an error end
event is thrown and then caught by the error boundary event. Then, the customer
must be created manually in the CRM application (in our example, the H2 database)
and the newly created customer identifier must be provided.

 When the customer is created or the customer is found by the service task, the
sales opportunity is stored in the database, again, via the customer web service. The

Figure 7.6 A sales opportunity process model that makes use of BPMN error handling constructs. When
a customer isn’t found, it has to be created, and the customer identifier must be provided via a user task.

155Implementing error handling with BPMN 2.0 constructs
process instance is then completed. Now that you have the process model defined,
you can implement the process in an executable BPMN 2.0 XML process definition.

7.2.3 Implementing a BPMN process with the Activiti Designer

To implement the sales opportunity process definition, you could write the raw
BPMN 2.0 XML like you did in the previous chapters and examples. But, when you have
already modeled the process definition in the Activiti Modeler (or another BPMN 2.0
compliant process modeler), it’s very easy to kick-start the implementation using the
Activiti Designer’s import functionality. As we look at using the Activiti Designer, we’ll
also focus on the implementation of the error handling constructs in the sales oppor-
tunity process definition.

 In chapter 3, we covered how to
install the Activiti Designer, so let’s start
it up. To import the sales opportunity
process, you first need to create an Activ-
iti project using Activiti’s new project
wizard in Eclipse. For this example,
name the project SalesOpportunity.
When the project is created, you can
right-click on the project and choose
Import BPMN 2.0 file (see figure 7.7).

 When you click on the Import
BPMN 2.0 file action, a file browser
opens so that you can select an XML file for import. When you model a process with the
Activiti Modeler and save the diagram, two XML files are created: a signavio.xml file that
contains meta-information about the diagram, such as the name of the author and a
description, and a bpmn20.xml file that contains the BPMN 2.0 XML and the BPMN Dia-
gram Interchange (DI) information.

BPMN Diagram Interchange (DI)
The Object Management Group (OMG) standardization organization released
BPMN 2.0 in January 2011. The main difference from BPMN 1.x was the addition
of an executable process definition language using XML. But, in addition to the
step forward of being an executable as well as modeling language, the BPMN 2.0
specification added a diagram interchange language.

This diagram interchange language ensures that process diagrams created with one
process modeling tool can also be read and maintained by another. They then both
have to support the diagram interchange format. The diagram interchange information
is also specified in XML and contains the graphical data of the process model; it con-
tains width, height, and x and y position information about the shapes representing
the BPMN events, tasks, gateways, and so on. In addition, it contains the graphical
information about the sequence flows connecting the different BPMN elements.

Figure 7.7 The BPMN import command in the Ac-
tiviti Designer Eclipse plugin

156 CHAPTER 7 Dealing with error handling
By default, the signavio.xml and bpmn20.xml files created by the Activiti Modeler can
be found in the workspace/activiti-modeler-examples directory in your Activiti instal-
lation directory. This directory is a simple file repository, so you can browse it with any
file explorer and you can add and delete process models by copying and deleting the
files. If you created the process model shown in figure 7.6 with the Activiti Modeler,
you can select the bpmn20.xml file in the activiti-modeler-examples directory with the
Eclipse file browser. You can also find the process model files in the book’s source
code examples in the modeler/chapter7 directory of the bpmn-examples project.
There you can select the Add sales opportunity.bpmn20.xml file.

 After selecting the bpmn20.xml file, the Activiti Designer will read the XML file and
create a graphical representation of it. Although the process model may not look
exactly the same as shown in the Activiti Modeler, after some manual restructuring, the
sales opportunity process model should look similar to the screenshot in figure 7.8.

 Now you can fill in the missing information in the sales opportunity process defini-
tion. First, you need to add conditional logic to the outgoing sequence flows of the
first exclusive gateway. When no customer number (identifier) has been provided in
the start form, the Provide Additional Customer Information user task must be exe-
cuted. Click on the incoming sequence flow of this user task and select the Main Con-
fig tab in the Properties view. There, you can fill in the conditional logic, as shown in
figure 7.9.

 When the customerNumber process variable is equal to 0, the “Provide additional
customer information” user task will be executed. To complete the conditional logic,

(continued)
The Activiti Modeler adds DI information to the bpmn20.xml file of any process model
created with this tool. The Activiti Designer reads BPMN 2.0 process models (both
with and without BPMN DI information) and it creates DI information in the
bpmn20.xml file.

Figure 7.8 The imported sales opportunity process model in the Activiti Designer’s canvas

157Implementing error handling with BPMN 2.0 constructs
you need to add a condition to the other outgoing sequence flow of the first exclusive
gateway as well. There, the conditional logic should be as follows:

${customerNumber > 0}

The customer number is implemented as a form property that needs to be configured
on the start event of the process definition. You can configure the form properties of a
start event in its Properties view (see figure 7.10).

When you save the process diagram at this point, you’ll notice that the BPMN 2.0 XML
hasn’t yet been generated due to errors in the process definition. You need to solve
these errors (shown in figure 7.11) before the BPMN 2.0 XML will be generated.

Figure 7.9 The Main
Config tab in the Prop-
erties view of the in-
coming sequence flow
of the “Provide addi-
tional customer infor-
mation” user task

Figure 7.10 The Properties view where the form properties of the start event can be configured

Figure 7.11 The Problems view in the Activiti Designer, showing the errors of the sales opportunity
process definition

158 CHAPTER 7 Dealing with error handling
The service tasks will be implemented in the next section, so we’ll focus for now on the
user tasks and then the error handling elements. First, you can configure the additional
customer information user task to use a sales candidate group (see figure 7.12).

 You can also configure the form properties for the additional customer information
user task with three properties: customerName, contactPerson, and customerAddress.

 A similar configuration can be set up for the “Create a new customer entry” user
task, which has only one form property, customerNumber. In this task form, you must
provide a customer number, which is used to store the sales opportunity in the next
service task. This customer number should be copied to the customer process vari-
able, which is created in the “Find customer” service task we’ll discuss in the next sec-
tion. The form properties can be used to automatically copy a form field value to a
process variable using the expression attribute, as shown in figure 7.13.

 With the user task configuration in place, we can now focus on the error handling
logic. When the “Find customer” service task is unable to retrieve the customer from the
CRM application (in our case a web service), the customerFound attribute of the
customer process variable object is set to false. We need to add conditional logic to the
outgoing sequence flows of the exclusive gateway next to the “Find customer” service
task. The sequence flow with the error end event as its target should have the conditional

Figure 7.12 The configuration of the additional customer information user task

Figure 7.13 The Properties tab of the “Create a new customer entry” user task, showing the form prop-
erty configuration

159Implementing error handling with BPMN 2.0 constructs
logic configured as shown in figure 7.14. The other sequence flow should have a similar
conditional logic configuration with a customerFound validation set to true.

 That brings us to the configuration of the error end event and the error boundary
error event. These events should be
correlated with an error code. The
error end event should always have an
error definition, so let’s configure a
customerNotFound error code for this
event, as shown in figure 7.15.

 For the error boundary event, you
can choose not to define an error
code at all or to define the same error
code as the error end event. If you leave the error code blank, every error that occurs
inside the subprocess will be caught by the error boundary event. In this example,
only one error end event is defined, so that would work. To make the process defini-
tion clearer for another developer, it would be better to define the same error code
for the error boundary event.

 Although you’re not yet able to generate the BPMN 2.0 XML because of the missing
implementation configuration of the two service tasks, you can already have a sneak
preview of the XML configuration of the error end event and the error boundary
event. It’s not groundbreaking but it’s good to understand the underlying details. The
error end event configuration looks like this:

<endEvent id="errorendevent1">
 <errorEventDefinition errorRef="customerNotFound" />
</endEvent>

The errorRef attribute can be used in two ways. In this example, it’s used to define an
error code value of customerNotFound. But, you can also use it as a reference to an
error definition in the process definition. Such an error definition would look like the
following:

<error id="customerNotFound" errorCode="123" />

The Activiti Designer always generates the errorRef attribute as a plain error code
definition without an additional error definition. But, there’s no reason to not use the

Figure 7.14 The condi-
tional logic of the incom-
ing sequence flow of the
error end event

Figure 7.15 The error code configuration of the error
end event

160 CHAPTER 7 Dealing with error handling
error definition way of configuration. The boundary error event uses similar error
definition syntax:

<boundaryEvent id="boundaryerror1"
 attachedToRef="subprocess1">
 <errorEventDefinition errorRef="customerNotFound" />
</boundaryEvent>

As you saw in previous examples using a timer boundary event, a boundary event is
attached to another BPMN element. In the preceding example, the error boundary
event is attached to the subprocess. In addition, the error boundary event uses the
exact same error event definition element to configure the error that it will handle.

 Now we have filled in most of the missing process logic. There are two important
pieces missing, namely the two service task implementations.

7.2.4 Implementing service tasks that invoke a web service

For the sales opportunity process implementation, we’re in need of a CRM applica-
tion. As you saw in section 7.2.1, we created a web application with a customer web ser-
vice that can be invoked from the sales opportunity process. Let’s use this simple web
application as our CRM application for now.

 We could use a web service task that’s part of the BPMN 2.0 specification to invoke
the customer web service, but we’ll discuss that option in chapter 11. In this chapter,
we’ll be using a Java service task with a generated web service client using the Apache
CXF framework to invoke the customer web service. The generated web service client
code is also part of the bpmn-examples project in the book’s source code, but we now
need to add it to the Activiti Designer project.

 The following plugin configuration should be added to the Maven pom.xml file of
the SalesOpportunity project:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>2.3.4</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>generated/cxf</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>src/main/resources/chapter7/errorevent/

 ➥ wsdl/customerService.wsdl</wsdl>
 <wsdlLocation>http://localhost:8081/book-sales-app/

 ➥ services/customer?wsdl</wsdlLocation>
 </wsdlOption>
 </wsdlOptions>
 </configuration>

161Implementing error handling with BPMN 2.0 constructs
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

As you can see, the plugin expects a WSDL file in the src/main/resources/chapter7/
errorevent/wsdl folder. The WSDL can be copied from the same location in the bpmn-
examples project to your Designer project.

 Make sure that the web service client code is generated when executing the
mvn eclipse:eclipse command. The web service client code is generated into the
generated/cxf folder inside the Designer project. The CustomerServiceService class
(the additional Service postfix is generated by the CXF framework) is the main web
service client interface for communicating with the customer web service.

 Now let’s create the RetrieveCustomerTask class (see the following listing) that
you’ll use for the “Find customer” service task in the Activiti Designer. The class needs
to be created in the org.bpmnwithactiviti.chapter7.errorevent package.

public class RetrieveCustomerTask implements JavaDelegate {

 private CustomerServiceService customerService =
 new CustomerServiceService();

 @Override
 public void execute(DelegateExecution execution)
 throws Exception {
 Long customerId = (Long) execution.getVariable(
 "customerNumber");
 Customer customer = null;
 if(customerId > 0) {
 customer = customerService
 .getCustomerServicePort()
 .findCustomerById(customerId);
 } else {
 String customerName = (String) execution.getVariable(
 "customerName");
 String contactPerson = (String) execution.getVariable(
 "contactPerson");
 customer = customerService
 .getCustomerServicePort()
 .findCustomer(customerName, contactPerson);
 }
 CustomerVariable variable = new CustomerVariable();
 if(customer != null) {
 variable.setCustomerFound(true);
 variable.setCustomerId(customer.getCustomerId());
 variable.setCustomerName(customer.getCustomerName());
 variable.setContactPerson(customer.getContactPerson());

Listing 7.2 The RetrieveCustomerTask class that invokes the customer web service

Instantiates web
service clientB

Gets customer number
process variable

C

Invokes
findCustomer
operation

D

162 CHAPTER 7 Dealing with error handling
 variable.setCustomerAddress(
 customer.getCustomerAddress());
 } else {
 variable.setCustomerFound(false);
 }
 execution.setVariable("customer", variable);
 }
}

To be able to invoke the customer web service, you need an instance of the Custom-
erServiceService web service client class that you generated with the Apache CXF
code generation plugin B. And, because you can find customers both on customer
identifier as well as customer name and contact person name, you first need to deter-
mine if the customerNumber process variable C is greater than 0. Then, you can
invoke the web service via the web service client class with the findCustomerById or
the findCustomer D operations.

 When the response is received from the customer web service, the CustomerVari-
able process variable object is filled with the response parameters when a customer is
found. When no customer is found, there’s still a CustomerVariable instance set as a
process variable E but the customerFound attribute is set to false.

 As you can see in the implementation of this service task, it’s quite simple to invoke
a web service with a generated web service client. We’ll discuss the standard BPMN 2.0
web service task in chapter 11, but this way of dealing with web services remains an
interesting option.

 The RetrieveCustomerTask class uses the CustomerVariable class, which you
haven’t created yet. But, this class can be copied from the bpmn-examples project (see
the org.bpmnwithactiviti.chapter7.errorevent package). Now that you’ve cre-
ated the RetrieveCustomerTask class, you can configure it to be used on the “Find
customer” service task, as shown in figure 7.16.

Sets customer
process variable

E

Figure 7.16 The configuration of the find customer service task, which uses the
RetrieveCustomerTask

163Implementing error handling with BPMN 2.0 constructs
Now, there’s one Java service task configuration missing, which is the “Add sales
opportunity” service task. You need an additional service task class implementation
for this: StoreOpportunityTask.

public class StoreOpportunityTask implements JavaDelegate {

 private CustomerServiceService customerService =
 new CustomerServiceService();

 @Override
 public void execute(DelegateExecution execution)
 throws Exception {
 CustomerVariable customer = (CustomerVariable)
 execution.getVariable("customer");
 String product = (String)
 execution.getVariable("product");
 Long expectedQuantity = (Long)
 execution.getVariable("quantity");
 String description = (String)
 execution.getVariable("description");
 customerService.getCustomerServicePort()
 .storeSalesOpportunity(product, expectedQuantity,
 description, customer.getCustomerId());
 }
}

In the StoreOpportunityTask class, you store the opportunity information like prod-
uct and quantity with a reference to the customer. You retrieve the necessary cus-
tomer B and opportunity information from the process variables. Then, you use the
generated web service client to store the sales opportunity in the CRM application C.

 The last bit of work left is to configure this JavaDelegate class on the “new cus-
tomer entry” Java service task, like you did in figure 7.15.

 This completes our design work for the sales opportunity process definition, so
let’s take it to the next level and start deploying and testing the solution.

7.2.5 Testing the sales opportunity process solution

To be able to test the sales opportunity example, you need to start the customer web
service application and deploy the sales opportunity process artifacts.

 First, start the web service with the book-sales-app application, which is part of the
book’s source code. The web application uses an H2 database running on localhost,
so make sure the Activiti H2 database is running (with the ant h2.start command).

 To build and run the web application in Jetty, go to the project’s root directory and
run the mvn clean install jetty:run command. The web application should now be
running inside the Jetty web container on port 8081.

 The customer web service is now running and ready to be invoked from the sales
opportunity process. To test whether the web service is running, you can open a web
browser on http://localhost:8081/book-sales-app/services/customer?wsdl.

Listing 7.3 The StoreOpportunityTask class that stores an sales opportunity

Gets customer
process variable

B

Stores sales
opportunity

C

164 CHAPTER 7 Dealing with error handling
 In the Activiti Designer, it’s easy to create
the deployment artifacts for your process defi-
nition. From within the Activiti perspective,
right-click on the Activiti project and choose
Create Deployment Artifacts from the menu
(see figure 7.17).

 When the Create Deployment Artifacts
menu option is selected, a deployment direc-
tory is created with a BAR file and a JAR file
inside it. The BAR file contains the BPMN 2.0
XML file of the sales opportunity process and
the three user task forms that you’ve imple-
mented. The JAR file contains the class files of
the service tasks (RetrieveCustomerTask,
StoreOpportunityTask) and the web service
client classes.

 To be able to execute the sales opportunity process using the Activiti Explorer, you
must make sure that the JAR file is published to the classpath of the Activiti Explorer
web application. Copy the JAR file to the WEB-INF/lib directory of the Activiti Explorer
web application. The Tomcat instance should then be stopped (ant tomcat.stop) if
it’s already running and started again (ant tomcat.start).

 You’re almost ready with the deployment steps; only the BAR deployment remains.
This can be done using the Deployment tab in the Activiti Explorer. Select the BAR
file, which was created by the Activiti Designer in the deployment directory of the
Activiti Eclipse project.

 When the sales opportunity BAR file is deployed on the Activiti Engine via the
Activiti Explorer, you can start a new process instance like before. The start form of
the sales opportunity process definition is shown in figure 7.18.

 In order to use the unit test we’ll discuss later on, you should fill the Product field
exactly as shown in figure 7.18. When the customer number isn’t known, a value of 0

Figure 7.18 Activiti Explorer
showing the start form of the sales
opportunity process

Figure 7.17 The pop-up menu that’s
shown when you right-click on an Activiti
project. The option to create the deploy-
ment artifacts, like the BAR and JAR files,
is highlighted.

165Implementing error handling using Java logic
must be filled in. In this case, a new user task is created for the sales group to fill in
additional information about the customer. If you fill in a customer number in the
start form, this step is skipped. Find out if a user task has been created by logging in to
the Activiti Explorer with the Kermit user. Then, fill in some values for the customer
name, contact person, and customer address.

 Next, the service task that retrieves the customer by invoking the customer web ser-
vice is executed. In this case, the customer can’t be found, because the H2 database
doesn’t contain any customers yet. Then, the error event is executed, and the bound-
ary error event should catch this error and create a new user task to add a new cus-
tomer entry. Make sure that this user task is created for the sales candidate group.

 In this new customer entry user task form, a valid customer identifier must be pro-
vided because, in the next service task, the sales opportunity will be stored in the H2
database with a reference to the customer table. In the book-sales-app project,
you’ve provided a TestData class in the main source tree. By executing this class, a
new customer entry is created in the H2 database and the customer identifier is
printed in the Eclipse console. Fill in the printed customer identifier and complete
the user task.

 Then, you can perform the final test and validate whether the sales opportunity
indeed is created in the H2 database for the provided customer identifier. This test is
implemented in the OpportunityTest unit test, which can also be found in the main
source tree of the book-sales-app project.

 We’ve now covered in detail how to implement a process definition using an error
end event and an error boundary event. In the next section, we’ll spend some more
time on error handling in process definitions using Activiti as we discuss the use of
Java exceptions.

7.3 Implementing error handling using Java logic
In section 7.1, you saw that implementing error handling without error end events
and error boundary events is possible using Java service tasks with logic to choose
between different outgoing sequence flows. To be able to compare the use of this type
of error handling to the BPMN 2.0 style using error end and boundary events, we’ll
implement the sales opportunity process from section 7.2 again in this section.

 We already went through all the activities of the sales opportunity process in the
previous section, so we’ll focus on the differences related to the Java logic error han-
dling here. To get a good picture of the differences, let’s start with the process model
shown in figure 7.19.

 As you can see in figure 7.19, the process model is easy to comprehend because
you don’t need a subprocess scope for the error handling constructs. The error han-
dling logic isn’t expressed in the process diagram but instead is implemented inside
the “Find customer” service task.

 Let’s look at the revised implementation of the RetrieveCustomerTask class,
which still is the implementation of the “Find customer” service task.

166 CHAPTER 7 Dealing with error handling
public class RetrieveCustomerTask
 implements ActivityBehavior {

 private CustomerServiceService customerService =
 new CustomerServiceService();

 @Override
 public void execute(ActivityExecution execution)
 throws Exception {
 Long customerId = (Long)
 execution.getVariable("customerNumber");
 Customer customer = null;
 if(customerId > 0) {
 customer = customerService
 .getCustomerServicePort()
 .findCustomerById(customerId);
 } else {
 String customerName = (String)
 execution.getVariable("customerName");
 String contactPerson = (String)
 execution.getVariable("contactPerson");
 customer = customerService
 .getCustomerServicePort()
 .findCustomer(customerName, contactPerson);
 }
 CustomerVariable variable = new CustomerVariable();
 if(customer != null && customer.getCustomerId() > 0) {
 variable.setCustomerFound(true);
 variable.setCustomerId(customer.getCustomerId());
 variable.setCustomerName(
 customer.getCustomerName());
 variable.setContactPerson(
 customer.getContactPerson());
 variable.setCustomerAddress(
 customer.getCustomerAddress());
 } else {

Listing 7.4 Revised version of RetrieveCustomerTask that implements error handling

Figure 7.19 Process model of the sales opportunity process using Java service logic to implement
error handling

Implements
ActivityBehavior
interfaceB

Defines input
parameter as
ActivityExecution
instanceC

167Implementing error handling using Java logic
 variable.setCustomerFound(false);
 }
 execution.setVariable("customer", variable);
 PvmTransition transition = null;
 if(variable.isCustomerFound() == true) {
 transition = execution
 .getActivity()
 .findOutgoingTransition("customerFound");
 } else {
 transition = execution
 .getActivity()
 .findOutgoingTransition("customerNotFound");
 }
 execution.take(transition);
 }
}

When you want to implement a Java service task with logic that chooses between dif-
ferent outgoing sequence flows, make sure you implement the ActivityBehavior
interface B instead of the JavaDelegate interface you’d normally use. The Activ-
itiBehavior interface provides an ActivityExecution instance parameter C, which
can be used to choose a specific outgoing sequence flow.

 With the findOutgoingTransition method, you can retrieve an outgoing
sequence flow by identifier D. If the customer can be found by the customer web ser-
vice, the customerFound sequence flow is retrieved.

 Look at the BPMN 2.0 XML snippet of the revised sales opportunity process with a
focus on the outgoing sequence flows of the Java service task:

<serviceTask id="RetrieveCustomerTask"
 activiti:class="org.bpmnwithactiviti.chapter7.

 ➥ errorjava.RetrieveCustomerTask" />
<sequenceFlow id="customerNotFound"
 sourceRef="RetrieveCustomerTask"
 targetRef="HandleCustomerNotFoundTask" />
<sequenceFlow id="customerFound"
 sourceRef="RetrieveCustomerTask"
 targetRef="StoreOpportunityTask" />

Here, you can see that there are two outgoing sequence flows defined for the “Find
customer” Java service task. When the right outgoing sequence flow is retrieved, the
take method is invoked E to execute this sequence flow. Be aware that, if you don’t
take an outgoing sequence flow in the execute method implementation, the process
instance execution will stop at the current Java service task. The JavaDelegate inter-
face makes sure that a default outgoing sequence flow is executed when the execute
method is completed.

 The rest of the BPMN 2.0 XML remains the same as the process implementation
from the previous section. To test the revised solution using the Java logic for error
handling, run the Ant build file build.xml that you can find in the src/main/
resources/chaper7/errorjava folder. This creates a dist folder containing a BAR and a
JAR file, which you can deploy in the same manner as in the previous section. The JAR

Finds outgoing
sequence flow
by ID

D

Takes right
transitionE

168 CHAPTER 7 Dealing with error handling
file must be copied to the WEB-INF/lib directory of the activiti-explorer applica-
tion, and the BAR file can de deployed using Activiti Explorer.

 The tests here are exactly the same as the one performed in section 7.2.5. This
completes our discussion about ways to implement error handling in process defini-
tions for the Activiti Engine.

7.4 Summary
Although most people think about process definitions in a happy flow manner (that
is, without error and transaction handling and other detailed process modeling), the
exceptions and errors that can occur during process execution are equally impor-
tant. Thinking about all paths that handle possible errors during process execution
is difficult, so it’s important to understand the different ways you can implement
error handling.

 Luckily, the BPMN 2.0 specification provides specific constructs for dealing with
errors, with the error end event and the error boundary event as the best examples.
Using the BPMN error handling constructs enhances the process definition because it
clearly shows the way errors are handled during process execution. But, when you
think of all the errors that could occur during process execution, a lot of them are
related to connectivity problems, database connections, and other technical errors.
When you model these error paths in a process definition using the BPMN error con-
structs, the diagram becomes unreadable.

 For both technical and other types of errors, you have the option of using Java
logic in Java service tasks to deal with the errors. With multiple sequence flows going
out of a service task, you can choose the right process path based on Java logic. This
approach can be used to terminate a process if a web service call fails and to proceed
with the normal process execution if the call succeeds. In this case, the error handling
logic is implemented in the Java service task and, therefore, is not readable in the pro-
cess model.

 When dealing with error handling, it’s important to choose between explicitly
modeling the error paths and implicitly implementing it in a Java service task. You can
also mix both ways of handling errors in a process definition when needed.

 We’ve talked a lot about the API for the Activiti Engine and implementing BPMN 2.0
processes to run on it. But, to run the Activiti Engine in your enterprise, you’ll have
to understand the different ways you can install and deploy the Activiti tool stack,
and mainly the Activiti Engine, in your environment. That’s what we’ll cover in the
next chapter.

Deploying
 and configuring

 the Activiti Engine
In the last two chapters, you were introduced to advanced BPMN constructs, includ-
ing error boundary events and embedded subprocesses. That’s all great—but how
can you install and deploy these advanced BPMN process definitions in your envi-
ronment? Now, it’s time to take a step back and see how Activiti fits into the big pic-
ture of your application landscape.

This chapter covers
■ Choosing between deployment options with the

Activiti Engine
■ Exploring transaction management with Activiti

and Spring
■ Configuring the Activiti Engine
■ Communicating with the Activiti Engine using

the Activiti REST API
169

170 CHAPTER 8 Deploying and configuring the Activiti Engine
 First, we’ll discuss the two common deployment scenarios for the Activiti Engine:
the embedded and the standalone options. In addition, we’ll take a look at how you
can use the Spring container for transaction management. With the standalone
option, I’ll show how you can use the Activiti REST web application as a foundation for
implementing the Activiti Engine in your organization. Then, I’ll show you how to
configure the Activiti Engine. Finally, you’ll see how to communicate with the Activiti
Engine using the REST API and learn how to add a new Activiti REST service.

 First things first: let’s take a look at the deployment options you have with the
Activiti Engine and discuss why you would choose one configuration over the other.

8.1 Choosing between deployment options
There are two common ways to set up your application environment with an Activiti
Engine.

■ Embedded—Embed the Activiti Engine instance in your application and use the
Activiti Java API to communicate with the Activiti Engine. This involves copying
the necessary Activiti JARs into your project and starting up the Activiti Engine
from within your application using a default Activiti configuration file.

■ Standalone—Set up a standalone Activiti Engine instance and have multiple appli-
cations access the Activiti Engine via the REST API. This option is created when
you run the Activiti installation script. The Activiti Engine runs on the provided
Apache Tomcat instance in the Activiti Explorer and the REST web application.

As you can see, the main options are embedded and standalone deployments. In addi-
tion, you’ll have to choose whether you want to use a Spring container.

 In this section, we’ll examine these two deployment options from an architectural
point of view. We’ll also look at options to think about when setting up your Activiti
Engine application, such as required library dependencies.

 First, let’s talk about the details of the embedded deployment option.

8.1.1 Embedding the Activiti Engine in a Java application

One way to use the Activiti Engine is to embed it in your application. This application
can be a web application deployed on an application server or even a Java client appli-
cation. To embed the Activiti Engine in your application, you only have to include the
Activiti Engine and its dependent JARs. Then you can start the process engine and
you’re good to go from the application’s perspective.

 You also need a database server to host the Activiti Engine database. In the previ-
ous chapters, we used the H2 database a lot, but you can use other database servers
like MySQL, PostgreSQL, and Oracle.

 Before we explore things a bit further, take a look at figure 8.1, which outlines the
embedded deployment option.

 The main idea of the embedded deployment option is that the Activiti Engine
runs in the same JVM as your own application code. This can be a good choice if

171Choosing between deployment options
there’s an application that needs workflow or process logic and there’s no central pro-
cess engine available.

 The first thing to consider is how to handle the process engine startup and shutdown.

STARTING AND STOPPING THE ACTIVITI ENGINE

The easiest way to build a new ProcessEngine instance is to use the org.activiti
.engine.ProcessEngines management class. The following snippet starts the process
engine and returns the default process engine instance:

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine();

The getDefaultProcessEngine method will first invoke the init method of the
ProcessEngines class, which will scan the classpath and look for an activiti.cfg.xml or
an activiti-context.xml Spring configuration file. Based on the configuration files found,
the process engine is configured. We used a number of different configuration files in
the previous chapters, so you have at least a basic understanding of the contents of such
a configuration file. We’ll discuss configuration files in more detail in section 8.2.

 When you’re developing a web application, a good place for the ProcessEngines
getDefaultProcessEngine method call is a standard JEE ServletContextListener;
this ensures the Activiti Engine is started when the web application is started. A sam-
ple implementation of such a listener class is shown in the next listing.

public class ActivitiServletContextListener implements
 ServletContextListener {

 private static final Logger logger =

Listing 8.1 Initializing the Activiti Engine with a ServletContextListener

(Web) application

Application logic Activiti Engine

Activiti Engine
database

The Activiti Engine is
started via a
ServletContextListener,
for example

Figure 8.1 Deployment diagram
showing Activiti Engine embedded in
a Java application using the standard
JEE ServletContextListener

172 CHAPTER 8 Deploying and configuring the Activiti Engine
 Logger.getLogger(ActivitiServletContextListener.class);

 @Override
 public void contextInitialized(ServletContextEvent
 servletContextEvent){
 ProcessEngine processEngine =
 ProcessEngines.getDefaultProcessEngine();
 if (processEngine == null) {
 logger.error("Could not start the Activiti Engine");
 }
 }

 @Override
 public void contextDestroyed(ServletContextEvent
 servletContextEvent){
 ProcessEngines.destroy();
 }
}

That’s not hard, is it? The ProcessEngines management class provides a getDefault-
ProcessEngine B and a destroy convenience method C to take care of starting and
destroying the Activiti Engine. The ProcessEngine class provides an easy access to the
Activiti Engine from within your Java (web) application. You can, for example, start
new process instances via the ProcessEngine getRuntimeService method.

 Another option is to use the Activiti Engine as a standalone application and com-
municate via the Activiti REST API or the Activiti Explorer. Let’s explore that option in
more detail.

8.1.2 Using a standalone Activiti Engine instance

In the previous section, you saw how you can embed the Activiti Engine in an applica-
tion. The communication between the application and the Activiti Engine is imple-
mented using the Java API. In this section, we’ll look at how to set up a so-called
standalone Activiti Engine. The main difference is the use of the Activiti REST API in
the standalone deployment setup of the Activiti Engine.

Initializes,
configures, and
builds engine

B

Destroys
process engine

C

What is REST?
REST is an acronym for Representational State Transfer, a popular style of software
architecture for distributed systems. Applications providing a REST interface, such as
Activiti, are often referred to as Restful applications. REST is based on the standard
HTTP operations, like GET, PUT, and POST, and makes use of those operations to pro-
vide CRUD (create, read, update, and delete) functionality.

For Activiti, this means you can retrieve process instances using a GET operation or
deploy a new process definition using a PUT operation. For more information about
REST in general and how to work with a REST framework called Restlet, you can read
the book Restlet in Action by Jerome Louvel, Thierry Templier, and Thierry Boileau
(Manning, 2009). In addition, we’ll talk about the Activiti REST API in more detail in
section 8.4.

173Choosing between deployment options
Activiti provides an out-of-the-box REST component, which can be used to communi-
cate with the Activiti Engine from any remote location. Mobile, Groovy, and other
applications leverage this communication layer because of REST’s simple communica-
tion protocol. Figure 8.2 provides an overview of the standalone Activiti Engine
deployment setup.

 Notice that the Activiti REST API is implemented in a separate web application
named activiti-rest. In the previous section about the embedded deployment
option, you saw that you can use a ServletContextListener to manage starting and
destroying the Activiti Engine. In the Activiti REST web application, starting the Activ-
iti Engine is implemented in exactly the same way.

 In figure 8.2, three applications (A, B, and C) have been included to show how you
can communicate with the Activiti Engine from another application. As you can see, it
doesn’t matter whether an application is deployed on the same application server or
even on a mobile phone; all communication is via the Activiti REST API.

 The activiti-rest web application is an important component if you want to use
the Activiti Engine in a standalone deployment option, so let’s look at one of the REST
service implementations to get a better idea of its functionality.

Application server

Application A

activiti−rest web
application

Activiti Engine

Activiti Engine
database

REST HTTP

REST HTTP

activiti−explorer
web application

Activiti Engine

REST HTTP

Application server

Application B

Mobile phone

Application C

Figure 8.2 Deployment diagram showing the Activiti Engine in a standalone setup

174 CHAPTER 8 Deploying and configuring the Activiti Engine
INTRODUCING THE ACTIVITI REST WEB APPLICATION

When you download the Activiti distribution and run the Ant demo.start task, the
Activiti REST application is installed together with all the other Activiti applications.
Activiti uses the Restlet framework (www.restlet.org) for the implementation of the
REST services.

NOTE All the Activiti REST services are described in the Activiti user guide.
It’s a good source if you’re looking for a service overview.

Let’s look at one of the REST service implementations to get an idea of the implemen-
tation logic. The REST service class that’s invoked when you need to collect details
about a certain task instance is the TaskResource class. The next listing shows the
implementation of this class.

public class TaskResource extends SecuredResource {

 @Get
 public TaskResponse getTasks() {
 if(authenticate() == false) return null;
 String taskId = (String) getRequest()
 .getAttributes()
 .get("taskId");
 Task task = ActivitiUtil.getTaskService()
 .createTaskQuery()
 .taskId(taskId)
 .singleResult();
 TaskResponse response = new TaskResponse(task);

 TaskFormData taskFormData =
 ActivitiUtil.getFormService()
 .getTaskFormData(taskId);
 if(taskFormData != null) {
 response.setFormResourceKey(taskFormData.getFormKey());
 }
 return response;
 }
}

Most of the Activiti REST services are secured and need authentication. Therefore,
most REST service classes extend the SecuredResource base class B, which provides
an authenticate method to validate the provided username and password. When
no group parameter is provided to the authenticate method, all registered users
are allowed to access the REST service. Otherwise, only members of the group can
access the REST service, in which case the admin or system administrators group is
typically used.

 In the REST service, the taskId parameter can be easily retrieved C. Then, the
task query is executed, and a response object that will be transformed to JSON auto-
matically by Restlet framework’s Jackson plugin is created.

Listing 8.2 Implementation of the Activiti REST service class TaskGet

Extends base
class with
authentication
checkB

Retrieves taskId
from the requestC

175Choosing between deployment options
 Now that you understand the purpose of the activiti-rest application, let’s take
a step back and discuss the standalone deployment option shown in figure 8.2 in a bit
more detail.

GO FOR THE STANDALONE DEPLOYMENT OPTION

In the default Tomcat setup created when you install Activiti, there are two web appli-
cations deployed (the Activiti Explorer and Activiti REST). An important thing to be
aware of is that each web application contains its own process engine instance but they
share the same H2 database (see figure 8.2).

 If you want to run your processes with Java service tasks or listeners on both the
Activiti Explorer and the Activiti REST web application, you’ll have to make sure that
the Java service task and listener classes are available on both classpaths. It’s perfectly
fine to run more than one Activiti Engine on the same database. Activiti is designed to
run well in this kind of deployment scenario, and there are no specific issues that you
have to take into account.

 Another solution could be to merge the Activiti Explorer and Activiti REST web
applications into a single web application. That would eliminate the need to deploy
the service task and listener classes to more than one web application. The Activiti
REST web application can be easily merged with any web application that supports the
use of the Restlet framework. In section 8.4, we’ll discuss how to create a new web
application out of the Activiti REST subproject.

 Now let’s recap the two deployment options.

8.1.3 Choosing between the deployment options

Your choice of deployment option will generally depend on the application you are
working with. Table 8.1 identifies some application characteristics that can help you
choose between the embedded and standalone deployment options.

 Now that we’ve taken a look at the different ways you can deploy the Activiti
Engine, let’s dive a bit deeper and consider the choice of whether to run the Activiti
Engine within a Spring container or not.

Table 8.1 Choosing a deployment option based on application characteristics

Application characteristics
Deployment

option
Explanation

More than one application needs to
access the Activiti Engine instance

Standalone To communicate with the Activiti Engine from
multiple applications, you need the REST API, so
your choice should be the standalone setup.

You need specific workflow or process
capabilities in a single web application

Embedded Because you only need the Activiti Engine for one
application, the embedded setup will work well.

You need to communicate with the
Activiti Engine from a non-Java platform

Standalone The Activiti REST API is the obvious communi-
cation layer for non-Java applications.

You want to use Activiti Explorer Standalone When you want to use the Activiti Explorer to
manage the process engine, the standalone
deployment is the obvious choice.

176 CHAPTER 8 Deploying and configuring the Activiti Engine
8.2 Using a Spring-managed Activiti Engine
In chapter 4, we discussed the use of Spring beans with the Activiti Engine. As you
know, the Activiti Engine uses a Spring-based configuration file. But, in addition to
the configuration, you can also choose to run the Activiti Engine inside a Spring-man-
aged container. In this section, we’ll first look at running the Activiti Engine with only
a Spring-based configuration, and then we’ll look at additional benefits of using a
Spring-managed container.

8.2.1 Creating a process engine from a config file or Java

An Activiti Engine can be configured in multiple ways. In this section, we’ll look at two
options, starting with the XML configuration in an activiti.cfg.xml configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.

 ➥ StandaloneProcessEngineConfiguration" />
</beans>

This configuration starts an Activiti Engine that connects by default to a H2 database.
The Activiti Engine will manage the database transactions in isolation, so there’s no
way to integrate your own service task implementation logic with the Activiti Engine
transaction manager.

 If you don’t want to use a Spring configuration at all, that’s also possible. But, then,
the ProcessEngines init method will not start the Activiti Engine because no activ-
iti.cxf.xml or activiti-context.xml file will be present. Let’s change the example from
listing 8.1 and refactor it to remove the need for a (Spring) configuration file.

public class ActivitiJavaServletContextListener implements
 ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent event) {
 ProcessEngines.init();
 ProcessEngine processEngine = ProcessEngineConfiguration
 .createStandaloneProcessEngineConfiguration()
 .setJdbcUrl("jdbc:mysql://localhost:3306/

 ➥ activiti?autoReconnect=true")
 .setJdbcDriver("com.mysql.jdbc.Driver")
 .setJdbcUsername("activiti")
 .setJdbcPassword("test")
 .setJobExecutorActivate(true)
 .buildProcessEngine();

 ProcessEngines.registerProcessEngine(processEngine);
 }

Listing 8.3 Servlet context listener managing the Activiti Engine without Spring

Creates
Activiti Engine
configurationB

Registers
engine

C

177Using a Spring-managed Activiti Engine
 @Override
 public void contextDestroyed(ServletContextEvent event) {
 ProcessEngines.destroy();
 }
}

As you can see, the init method is invoked in the ProcessEngines class to initialize it.
Because no activiti.cfg.xml or activiti-context.xml file is implemented in this case, no
process engine is yet created. But you still need to run the init method to make sure
some internal class attributes are initialized correctly.

 No problem; you can create a new ProcessEngine instance by using the Process-
EngineConfiguration class. In the first method, you create a default process engine B
that uses the default H2 database configuration. As you can see, it’s easy to choose your
own database—in this case, a MySQL database. When the buildProcessEngine method
is invoked, the Activiti process engine is created and started.

 Because you still want to use the ProcessEngines class to manage the available pro-
cess engine instances, you register the newly created engine in that class C. Considering
the engine is registered, you can still use the destroy method of the ProcessEngines
class to stop the Activiti Engine.

 Now, let’s look at how you can run the Activiti Engine in a Spring-managed
container.

8.2.2 Creating a process engine from a Spring configuration

When you do want to make use of a Spring container’s transaction management,
Activiti also makes that easy. You can define an activiti-context.xml file containing the
Activiti Spring configuration. Then, you can reuse the ServletContextListener from
listing 8.1.

 Another way would be to use a context listener provided by the Spring framework,
as shown in the following web.xml code snippet:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/activiti-context.xml</param-value>
</context-param>

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

When this snippet is included in the web.xml file of your web application, the activiti-
context.xml Spring configuration file will be loaded. In that file, you can define an
Activiti Engine. This means that the Activiti Engine is started within the Spring con-
tainer. Now, you can use Spring beans in a BPMN 2.0 XML process implementation but
also use the Spring transaction manager to manage both the Activiti data source and
Java service task implementations with a @Transaction annotation.

178 CHAPTER 8 Deploying and configuring the Activiti Engine
 Let’s finish this section with a recap of how such a Spring configuration file can be
implemented.

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.

 ➥ SimpleDriverDataSource">
 <property name="driverClass"
 value="org.h2.Driver" />
 <property name="url"
 value="jdbc:h2:tcp://localhost/activiti" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.

 ➥ DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
</bean>

<bean id="processEngineConfiguration"
 class="org.activiti.spring.

 ➥ SpringProcessEngineConfiguration">
 <property name="databaseType" value="h2" />
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager"
 ref="transactionManager" />
</bean>

<bean id="processEngine"
 class="org.activiti.spring.ProcessEngineFactoryBean">
 <property name="processEngineConfiguration"
 ref="processEngineConfiguration" />
</bean>

<tx:annotation-driven
 transaction-manager="transactionManager" />

<bean id="historyService"
 factory-bean="processEngine"
 factory-method="getHistoryService" />

<bean id="runtimeService"
 factory-bean="processEngine"
 factory-method="getRuntimeService" />

In the Spring configuration, you do the same sorts of things that you did in listing 8.3.
You define the Activiti data source B, create an Activiti Engine configuration D, and
build a new ProcessEngine instance E. The difference is that you define a Spring
transaction manager C, which will manage the Activiti database transactions. In addi-
tion, you can use the transaction manager to coordinate multiple Activiti API invoca-
tions in the same transaction using the @Transactional annotation F.

 Let’s look at an example where you start two process instances in the same transaction.

Listing 8.4 A Spring configuration file defining an Activiti Engine

Identifies Activiti
database
configurationB

Defines transaction
manager

C

Defines Activiti
engine config

D

Creates
process engine

E

Defines manager
for @Transactional
annotationF

179Using a Spring-managed Activiti Engine
public class TransactionalBean {

 @Autowired
 private RuntimeService runtimeService;

 @Transactional
 public void execute(boolean throwError)
 throws Exception {

 runtimeService.startProcessInstanceByKey(
 "transactionTest");

 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("throwError", throwError);

 runtimeService.startProcessInstanceByKey(
 "transactionTest", variableMap);
 }
}

In this transactional example, a RuntimeService is used to start two new process
instances of a simple process definition with only start and end events and in
between a service task. The execute method is annotated with the @Transactional
annotation B, which means that a transaction is started before the execution of the
method, and the transaction is committed when the method is completed, unless a
RuntimeException is thrown. The Activiti Engine will use the transaction to start the
process instance. If the process execution throws an error, the whole transaction will
be rolled back and no process instance will run or be stored in the Activiti database.

 And, that’s exactly what you do if the input parameter throwError is equal to true.
When a process instance is started with a throwError variable set to true, the service
task within the process definition will throw an IllegalArgumentException, as you
can see here:

public class ErrorServiceTask implements JavaDelegate {

 @Override
 public void execute(DelegateExecution execution) throws Exception {
 if(execution.hasVariable("throwError") &&
 Boolean.valueOf(execution.getVariable("throwError").toString())) {

 throw new IllegalArgumentException("Rollback!!");
 }
 }
}

This shows how easy it is to wrap two Activiti transactions in one Spring transaction to
prevent the first process instance from being persisted when the second process
instance fails.

 Let’s complete this example with a unit test, as shown in the next listing.

Listing 8.5 Example Spring bean that uses the @Transactional annotation

Execute method
in a transactionB

180 CHAPTER 8 Deploying and configuring the Activiti Engine
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter8/

 ➥ spring-transaction-context.xml")
public class TransactionTest extends AbstractTest {

 @Autowired
 private TransactionalBean transactionalBean;

 @Autowired
 private HistoryService historyService;

 @Autowired
 @Rule
 public ActivitiRule activitiSpringRule;

 @Test
 @Deployment(resources={"chapter8/transaction/

 ➥ transaction.test.bpmn20.xml"})
 public void doTransactionWithCommit() throws Exception {
 transactionalBean.execute(false);
 assertEquals(2, historyService
 .createHistoricProcessInstanceQuery()
 .list()
 .size());
 }

 @Test
 @Deployment(resources={"chapter8/transaction/

 ➥ transaction.test.bpmn20.xml"})
 public void doTransactionWithRollback() throws Exception {
 try {
 transactionalBean.execute(true);
 fail("Expected an exception");
 } catch(Exception e) {
 // exception expected
 }
 assertEquals(0, historyService
 .createHistoricProcessInstanceQuery()
 .list()
 .size());
 }
}

To test the example, you need a TransactionalBean instance injected in the test
class B. In the first method, you test whether the transaction is committed when you
don’t throw an error C. To test this, you query the Activiti Engine to see if you can
find two committed process instances D.

 In the second method, you let the second process instance throw an Illegal-
ArgumentException E. In that case, the transaction should be rolled back, so no com-
mitted process instance should be found F.

 To be thorough, you can remove the @Transactional annotation from the execute
method of TransactionalBean and make sure that the second test method fails in that
case. The first process instance should be committed to the database, in this case, but
not the second.

Listing 8.6 Unit test for testing the Spring transaction example

Injects Transactional-
Bean instance

B

Executes
transaction
with commit

C

Commits
two process
instancesD

Rolls back
transaction

E

Finds no committed
process instanceF

181Configuring the Activiti Engine
 Now that we’ve explored the options for running the Activiti Engine inside a
Spring container, we can look in more detail at the different configuration options for
the Activiti Engine. These configuration options are independent of whether you use
a Spring container or not.

8.3 Configuring the Activiti Engine
We looked at the differences between using the embedded and standalone deploy-
ment options and the choices for using a Spring container, but configuring the Activ-
iti Engine is necessary regardless of how you deploy it. To fully optimize the process
engine for your needs, it’s good to have an overview of the configuration options. And
that overview is what you’ll get in this section.

8.3.1 Basic configuration overview of the Activiti Engine

Remember that, when the Activiti Engine is started, the ProcessEngines singleton
class scans the classpath for an activiti.cfg.xml or activiti-context.xml configuration
file. Let’s start with a simple configuration example of the activiti.cfg.xml file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.

 ➥ StandaloneProcessEngineConfiguration">
 </bean>
</beans>

The configuration must contain a bean with ID processEngineConfiguration. This
bean is used to construct the ProcessEngine class instance that’s equivalent to an
Activiti Engine instance.

 There are multiple convenience classes that can be used to define the process-
EngineConfiguration; in this code snippet, the StandaloneProcessEngineConfigu-
ration is used. Each of these convenience classes represents a different environment
and sets default configuration options accordingly. The following classes extend the
ProcessEngineConfiguration class:

■ org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration

This is the implementation you need in a regular Activiti environment when
you aren’t using Spring. With this class, the process engine is started by
default with a standalone H2 database, and Activiti will take care of the data-
base transactions.

■ org.activiti.spring.SpringProcessEngineConfiguration

This class is used in a Spring environment. This enables the use of Spring beans
in the Activiti Engine and BPMN 2.0 XML process definitions. By default, this
configuration class also uses a standalone H2 database.

182 CHAPTER 8 Deploying and configuring the Activiti Engine
■ org.activiti.engine.impl.cfg.StandaloneInMemProcessEngineConfiguration

This is a convenience class used for unit testing purposes. An in-memory H2
database is used by default and will be created and dropped when the engine
boots and shuts down.

■ org.activiti.engine.impl.cfg.JtaProcessEngineConfiguration

This class is to be used when the Activiti Engine runs on an application server
and there’s a need for participating in JTA transactions.

For illustration purposes, let’s look at how you can create a complete ProcessEngine-
Configuration object programmatically, instead of configuring Activiti with a config-
uration file. In this way, you can choose not to use a configuration file at all. Take a
look at the following code line:

ProcessEngineConfiguration.createStandaloneProcessEngineConfiguration();

After the createStandaloneProcessEngineConfiguration method returns, you have
a ProcessEngineConfiguration that can be further configured if the defaults don’t
fit your needs.

 To give you an idea about what you can do to configure your engine instance,
check out this snippet:

ProcessEngine processEngine = ProcessEngineConfiguration
 .createStandaloneProcessEngineConfiguration()
 .setJdbcUrl("jdbc:h2:tcp://localhost/activiti")
 .setJobExecutorActivate(true)
 .buildProcessEngine();

You can also set all the options that are available in the configuration file
programmatically.

 Now, let’s explore the different configuration options in more detail, starting with
the database configuration options.

8.3.2 Configuring the Activiti Engine database options

Because the Activiti Engine is implemented with the MyBatis database framework (for
more information, see www.mybatis.org), the process engine data model can be
deployed on several databases. The MyBatis framework abstracts the database logic
from the specific database implementation, like other popular object-relational map-
ping (ORM) frameworks, such as Hibernate and OpenJPA. Activiti supports the data-
bases listed in table 8.2.

Database Version tested

H2 1.2.132

MySQL 5.1.11

Oracle 10.2.0

PostgreSQL 8.4

DB2 9.7

Microsoft SQL Server 2008
Table 8.2 Databases
supported by Activiti

183Configuring the Activiti Engine
You can configure the database in the Activiti configuration file in three different ways:

■ Define JDBC properties, such as the database driver and the JDBC URL location.
■ Use a javax.sql.DataSource implementation and refer to the defined data

source in the ProcessEngineConfiguration bean.
■ Use a JNDI reference to a database resource, so you can leverage the application

server configuration capabilities.

In order to configure a database to be used by the Activiti Engine, you need to define
the database location URL and driver; also, to be able to login, you need to define the
jdbcUsername and jdbcPassword properties:

<property name="jdbcUrl"
 value="jdbc:postgresql://localhost:5432/activiti" />
<property name="jdbcDriver" value="org.postgresql.Driver" />
<property name="jdbcUsername" value="activiti" />
<property name="jdbcPassword" value="activiti" />

A data source is constructed by interpreting the defined properties and a default
MyBatis connection pool is created. Optionally, the values of the following proper-
ties can be changed:

■ jdbcMaxActiveConnections—The number of active connections that the con-
nection pool can hold at any given moment. The default value is 10.

■ jdbcMaxIdleConnections—The number of idle connections that the connec-
tion pool can hold at any given moment. The default value is 5.

■ jdbcMaxCheckoutTime—The amount of time in milliseconds that a connection
can be “checked out” from the connection pool before it’s forcefully returned.
The default is 20,000 milliseconds (20 seconds).

■ jdbcMaxWaitTime—A low-level setting that gives the pool a chance to print a log
status and re-attempt to acquire a connection if it’s taking unusually long. The
default value is 20,000 milliseconds (20 seconds).

There’s one last database property that deserves some special attention: the database-
SchemaUpdate property. It defines the strategy for handling the update to a new Activiti
database schema when the process engine boots up. It can have one of the following
three values:

■ false—This is the default value. It checks the version of the database schema
against the Activiti Engine library when the process engine is being created
and throws an exception if the database version doesn’t match the version of
the engine.

■ true—When the process engine is being built, a check is done. When an
update of the schema is necessary, it will be performed, and, if the schema
doesn’t exist yet, it will be created.

■ create-drop—This option creates the database schema when the process
engine is being created and drops it when the engine shuts down.

184 CHAPTER 8 Deploying and configuring the Activiti Engine
With these database configuration options in mind, let’s look at other options you can
use to configure the Activiti Engine, such as options to configure a mail server or
define history settings.

8.3.3 Exploring other configuration options

Let’s start with the jobExecutorActivate
property. The job executor is a compo-
nent that manages threads that fire tim-
ers and asynchronous tasks. You saw its
use in the loan request example in chap-
ter 5, where the timer boundary event
was introduced to escalate a user task.
Figure 8.3 shows an example with a timer
boundary event.

 When the Activiti Engine encounters
a BPMN element with a boundary timer, a
new job is created in the job executor to
handle the timer event; so, the job execu-
tor can be regarded as a management component that handles all of the scheduled
events. By default, the job executor is turned on when the process engine boots, but
you can define its activation in the Activiti Engine configuration like this:

<property name="jobExecutorActivate" value="false" />

When you need timer support, such as a timer boundary event in your process defini-
tions, keep in mind that you don’t switch off the job executor.

 It’s also possible to override the default job executor settings, like the number of
jobs to retrieve and execute in one batch and the wait time in milliseconds that’s used
when a job has failed during execution. The following code snippet shows how you
can override the default job executor settings in an Activiti Engine configuration:

<bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration">

 <property name="jobExecutor" ref="jobExecutorBean" />
</bean>

<bean id="jobExecutorBean"
 class="org.activiti.engine.impl.jobexecutor.JobExecutor">

 <property name="maxJobsPerAcquisition" value="10" />
 <property name="waitTimeInMillis" value="10000" />
</bean>

Another set of configuration options defines the mail server settings. Next to the
mailServerPort and mailServerHost attributes, you can set the mail server user-
name (mailServerUsername), the password (mailServerPassword), and the default

Timer fires after 1 hour

Process moves to
escalation task

Figure 8.3 A simple example of a timer boundary
event, showing the result of the job execution of a
timer boundary event.

185REST communication with the Activiti Engine
from address (mailServerDefaultFrom). If you don’t set the default from address,
noreply@activiti.org will be used instead.

 The last configuration parameter concerns the amount of history information the
Activiti Engine will write to the history tables of the Activiti database. It’s configured
with the history property:

<property name="history" value="audit" />

Using the history property gives you options in configuring how much history you
want to store in the history tables. There are four options, listed in ascending order of
information that’s written:

1 none—After a process instance is finished, there’s no historical information
available.

2 activity—This option archives all process and activity instances; no additional
details will be persisted.

3 audit—This is the default history parameter. It archives all process and activity
instances and all form properties that are submitted so that all user interaction
through forms is auditable.

4 full—This is the highest and, therefore, the slowest archiving configuration.
This option archives the audit level data as well as all process variable updates.

That concludes our trip through the configuration options. You’re now ready to use
the Activiti Engine in your projects. In the next section, we’ll check out more details
about the Activiti Engine REST API and take a look at how you can use and extend it.

8.4 REST communication with the Activiti Engine
In this section, we’ll take a look at how you can communicate with the Activiti Engine
in a distributed manner using the Activiti REST API. Because the amount of REST lan-
guage and framework support is enormous, you can use the REST API from all kinds
of devices, implemented with the language of your choice. Let’s meet the Activiti
REST API.

8.4.1 Introducing the Activiti REST API

The Activiti REST web application activiti-rest is installed by default, so you can
use the REST API right away. The REST services are organized around similar names,
like the TaskService and RepositoryService core interface classes you saw in chap-
ter 4. For example, the TaskService logic is available at activiti-rest/service/task.

 Let’s take a closer look at one of the REST services. In order to list all of the
installed process definitions, you can call the API using the following URI:

http://localhost:8080/activiti-rest/service/process-definitions

This REST service is equivalent to the following Java code snippet:

repositoryService.createProcessDefinitionQuery().list();

186 CHAPTER 8 Deploying and configuring the Activiti Engine
You can also use the process query options that are available in the Java API. If, for
example, you want to limit the result set of the call to two definitions and receive the
list in descending order, you would use this call:

http://localhost:8080/activiti-rest/service/process-definitions?
 size=2&order=desc

The same functionality can be implemented with the following code snippet:

repositoryService.createProcessDefinitionQuery()
 .desc()
 .listPage(0, 2);

Starting process instances using the REST API is also possible. You can do this, for
example, with a REST client plugin available for Firefox, RESTClient.

 In the previous query for all process definitions, we retrieved a list of all of the
deployed process definitions, including a key and a unique identifier. You have two ways
to start a new process instance via the REST API. The first option is to use the key param-
eter, which corresponds to the id attribute of the process element in the BPMN 2.0
XML file. For the ad hoc expense process that’s part of the Activiti out-of-the-box exam-
ples, the following POST request can be used to start a new process instance:

URI: http://localhost:8080/activiti-rest/service/process-instance
Request body: { "processDefinitionKey":"fixSystemFailure" }

You can do the same with a POST request using the process definition identifier you
can look up in the process definition query:

URI: http://localhost:8080/activiti-rest/service/process-instance
Request body: { "processDefinitionId":"fixSystemFailure:1:24" }

With the RESTClient Firefox plugin, you can make this POST request as shown in fig-
ure 8.4. Don’t forget to log in first using the Login button for the RESTClient Fire-
fox plugin.

Figure 8.4 The RESTClient Firefox plugin after having invoked a REST POST request to start a new ad
hoc expense process instance

187REST communication with the Activiti Engine
Regardless of which way you start a new process instance, you should receive the same
response from the Activiti Engine. As you can see in figure 8.4, the response should be
something like this:

{
 "id": "918",
 "processInstanceId": "918",
 "processDefinitionId": "fixSystemFailure:1:24",
 "businessKey": null
}

You now have an id value that corresponds to the unique identifier of the newly cre-
ated process instance. This process instance identifier can be used to communicate
with the running process instance on the Activiti Engine.

 In the next section, you’ll see how you can enhance the REST API to do just that!

8.4.2 Implementing a new Activiti REST service

Although the Activiti REST API already contains a range of services, you may have a
reason to create an additional REST service, for example, a REST service that returns
details of a specific process instance regardless of whether it’s still running or already
archived. Such a REST service is not available by default, so it would provide a nice
addition to the set of available REST services.

 Before you begin the task of adding a new REST service, you need to create a copy
of the activiti-rest project so you have a project environment to work in. In the
source code accompanying this book, you can find a project named book-rest-app,
which contains a copy of the activiti-rest project.

 With the source code of the Activiti REST application in place, you can start adding
the new detailed process instance REST service. Before we go through the different
steps that are needed to get your custom history service up and running, take a look at
an overview of the steps involved:

1 Implement a REST service class with the desired history logic.
2 Configure that service class and URI in the Activiti REST root class Activiti-

RestApplication.
3 Fire up the revised Activiti REST application.

Let’s get started with the first step. The REST service you implement will return all the
details about a process instance, including the open user tasks and process variables.
Let’s look at the main part of the REST service implementation.

public class HistoryInstanceDetailsResource
 extends SecuredResource {

 @Get
 public ObjectNode getProcessInfo() {
 ObjectNode responseJSON = new ObjectMapper()

Listing 8.7 Implementation of the HistoryInstanceDetailsResource REST service

Creates JSON
response

B

188 CHAPTER 8 Deploying and configuring the Activiti Engine
 .createObjectNode();
 String processInstanceId = null;
 try {
 if(authenticate() == false) return null;

 processInstanceId = (String) getRequest()
 .getAttributes()
 .get("processInstanceId");

 HistoricProcessInstance instance =
 ActivitiUtil.getHistoryService()
 .createHistoricProcessInstanceQuery()
 .processInstanceId(processInstanceId)
 .singleResult();

 if(instance == null) return null;

 responseJSON.put("processInstanceId",
 instance.getId());
 responseJSON.put("businessKey",
 instance.getBusinessKey() != null ?
 instance.getBusinessKey() : "null");
 responseJSON.put("processDefinitionId",
 instance.getProcessDefinitionId());
 responseJSON.put("startTime",
 RequestUtil.dateToString(instance.getStartTime()));
 if(instance.getEndTime() == null) {
 responseJSON.put("completed", false);
 } else {
 responseJSON.put("completed", true);
 responseJSON.put("endTime",
 RequestUtil.dateToString(instance.getEndTime()));
 responseJSON.put("duration",
 instance.getDurationInMillis());
 }

 addTaskList(processInstanceId, responseJSON);
 addActivityList(processInstanceId, responseJSON);
 addVariableList(processInstanceId, responseJSON);

 } catch (Exception e) {
 throw new ActivitiException(
 "Failed to retrieve the process instance" +
 " details for id " + processInstanceId, e);
 }
 return responseJSON;
 }
}

All Activiti REST services work with JSON messages, so first you create a JSON response
object B that you can fill with the process instance detail information. To be able to
query the Activiti Engine, you need to retrieve the process instance ID from the REST
service call C. There are two common ways to provide variables to a REST service. In
this case, we expect the process instance ID to be part of the URL, like this:

http://localhost:8080/activiti-rest/service/process-instance/562

Gets process
instance ID

C

Queries for
requested
processD

Determines if
process has
completedE

Adds all
open user
tasksF

189REST communication with the Activiti Engine

ee
Another way to pass variables to a REST service is to use request parameters like this:

http://localhost:8080/activiti-rest/service/process-instance?id=562

The id request parameter can be easily retrieved using the API provided by the Restlet
framework getQuery().getValues("id"). With the process instance ID retrieved, you
can query the process engine for its details D. As you can see, you use the History-
Service to get both running and completed process instances.

 You can now fill the JSON response object with the basic information about the
retrieved process instance. You check whether the end time is filled to see if the pro-
cess instance is already completed E. But only returning the basic information about
the process instance wouldn’t give a full overview of the state of the instance, so you
also retrieve the user tasks F, executed activities, and process variables related to the
process instance.

 In the source code (the book-rest-app project), you can find the full implementa-
tion of the REST service, but here we’ll focus on retrieving the user task information
because the other parts are similar to the history REST service we saw in listing 8.7.
Let’s look at the addTaskList method in the next listing.

private void addTaskList(String processInstanceId,
 ObjectNode responseJSON) {

 List<HistoricTaskInstance> taskList =
 ActivitiUtil.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .processInstanceId(processInstanceId)
 .orderByHistoricActivityInstanceStartTime()
 .asc()
 .list();

 if(taskList != null && taskList.size() > 0) {
 ArrayNode tasksJSON = new ObjectMapper()
 .createArrayNode();
 responseJSON.put("tasks", tasksJSON);

 for (HistoricTaskInstance historicTaskInstance : taskList) {
 ObjectNode taskJSON = new ObjectMapper()
 .createObjectNode();
 taskJSON.put("taskId", historicTaskInstance.getId());
 taskJSON.put("taskName", historicTaskInstance.getName()
 != null ? historicTaskInstance.getName() : "null");
 taskJSON.put("owner", historicTaskInstance.getOwner()
 != null ? historicTaskInstance.getOwner() : "null");
 taskJSON.put("assignee",
 historicTaskInstance.getAssignee()!= null ?
 historicTaskInstance.getAssignee() : "null");
 taskJSON.put("startTime", RequestUtil.dateToString(
 historicTaskInstance.getStartTime()));

 if(historicTaskInstance.getEndTime() == null) {
 taskJSON.put("completed", false);

Listing 8.8 Retrieving user tasks related to a specific process instance

Gets tasks
in ascending
start time

B

Creates JSON
array for tasks

C

Sets assign
if available

D

190 CHAPTER 8 Deploying and configuring the Activiti Engine
 } else {
 taskJSON.put("completed", true);
 taskJSON.put("endTime", RequestUtil.dateToString(
 historicTaskInstance.getEndTime()));
 taskJSON.put("duration", historicTaskInstance
 .getDurationInMillis());
 }
 tasksJSON.add(taskJSON);
 }
 }
}

With the same HistoryService you used in the previous listing, you can retrieve all
user tasks, open or completed, related to a specific process instance. To produce a
nicely ordered list, the user tasks are retrieved in the order of start time B. If there
are user tasks available, you create a JSON array C that you’ll fill with the retrieved list
of tasks.

 For every task instance, you can now get the details, such as the assignee allocated
to the user task D. Note that you can’t add null values to a JSON object (otherwise,
you’ll get a NullPointerException); therefore, you need the additional if/else logic.

 With the REST service class in place, the only implementation step needed to start
the REST web application is to add a URI configuration to specify where the REST ser-
vice can be invoked. You can do this in the ActivitiRestApplication class, as shown
in the following code snippet:

router.attach("/history/processInstance/{processInstanceId}",
 HistoryInstanceDetailsResource.class);

The preceding code snippet shows the line you need to add to make the REST service
class from listing 8.7 available on http://localhost:8081/history/processInstance/562
for a process instance with an ID of 562. This line is added to the createInboundRoot
method of the ActivitiRestApplication class.

 Now that you’ve finished the new process instance details REST service, you’re
ready to deploy and test it. When you run the mvn clean install jetty:run com-
mand on the book-rest-app project, a Jetty servlet container is started on port 8081
with the Activiti REST application deployed.

 With the RESTClient Firefox plugin you used earlier on in this chapter, you can
now easily test your new REST service. First, you need to get hold of a process instance
ID that you can use for the REST service call. Let’s send the following URI request (see
also figure 8.5):

http://localhost:8081/book-rest-app/service/process-instances

This should return a list of process instances that are stored on your Activiti Engine.
Now you can select one of these process instances and use the process instance ID to
invoke the newly developed REST service. For example, if you select the expense pro-
cess shown in figure 8.5, you’ll send a request to the following URI (see also figure 8.6):

http://localhost:8081/book-rest-app/service/history/processInstance/441

191REST communication with the Activiti Engine
Figure 8.5 The REST service call for getting all
running process instances

Figure 8.6 Part of the JSON response
when invoking the newly developed pro-
cess instance details REST service

192 CHAPTER 8 Deploying and configuring the Activiti Engine
As figure 8.6 shows, the REST service returns basic information about the process
instance along with a list of tasks, activities, and process variables associated with that
specific process.

 With this detailed example of implementing a new Activiti REST service, we’ve
completed this chapter. You now certainly know your way around the Activiti configu-
ration and setup. You should now able to set up Activiti any way that you want.

8.5 Summary
Before this chapter, we looked into the details of the BPMN 2.0 specification and the
Activiti Engine. In this chapter, we took a step back and saw how you can position the
Activiti Engine and the other applications in your application landscape.

 There are two different ways of deploying Activiti in your environment. With the
embedded approach, the Java API is used, as in all of the examples we’ve discussed
since the beginning of the book. In contrast, deploying Activiti in a standalone fash-
ion, such as on Tomcat, implies using the Activiti REST API. You saw how to use the
REST services, and we even took a shot at extending the available services by introduc-
ing a new process instance details service.

 In addition, you saw how transaction management can be done with Activiti’s
Spring integration features. This provides powerful integration options between your
application logic transaction and the Activiti Engine transactions.

 In the chapters to come, we’ll explore more advanced options, like hooking up
Activiti to an ESB and integrating Activiti with a business rule and document manage-
ment system. But, first, we’ll take a deep dive into a number of powerful Activiti mod-
ules: Activiti Spring, CDI, and OSGi.

Exploring additional
 Activiti modules
We’ve already covered a lot of the core Activiti functionality and become familiar
with the BPMN 2.0 industry standard. You’re already able to design and implement
complex business processes using advanced BPMN 2.0 constructs, like the parallel
gateway and error boundary events. We also covered how to set up a production
environment for Activiti Engine using the embedded and standalone approaches.

 We haven’t yet discussed the full range of possibilities for the Activiti Spring
module. In this chapter, I’ll introduce you to a method annotation that starts new
processes and to the use of process-scoped variables. This provides a good warm-up
for the Activiti CDI and OSGi module sections because they also provide this func-
tionality, among a lot of additional possibilities.

 You can do a lot more with Activiti than just embedding it or deploying it to a
servlet container. In this chapter, you’ll see how you can develop full-fledged JEE 6

This chapter covers
■ Introducing new Spring features
■ Developing a JEE 6 application with Activiti CDI
■ Learning about Activiti OSGi
193

194 CHAPTER 9 Exploring additional Activiti modules
applications using the Contexts and Dependency Injection (CDI) specification
(JSR 299). You’ll make use of the Activiti CDI module and see how to deploy this
application on JBoss and GlassFish application servers.

 Another interesting approach to using the Activiti Engine is by deploying it to an
OSGi container so you can make use of all the OSGi versioning and dependency
management capabilities. The Activiti OSGi module enables you to deploy the Activ-
iti Engine to an OSGi container, like the Apache Karaf framework that we’ll use in
the examples.

 We’ll begin with an overview of the additional Spring annotations available when
using the Spring container approach. You already saw how to make use of Spring
beans in the process definition, but there’s more to see. Let’s get started!

9.1 Spring annotations
We’ll start this chapter with a short introduction to a number of Spring annotations
that can ease the development of an Activiti Spring application. In addition to the use
of Spring beans for service tasks, there are a couple of additional Spring annotations
that you can use.

 First, the @StartProcess annotation can be used to start a new process instance
when the method is invoked. The following listing shows the implementation of a
ProcessInitiator class that uses this annotation.

public class ProcessInitiator {

 @StartProcess(processKey="bookorder",
 returnProcessInstanceId=true)
 public String startBookOrder(@ProcessVariable("isbn")
 String isbn, @ProcessVariable("amount") int amount) {

 return null;
 }
}

When you use the @StartProcess annotation, it’s required to define a processKey
that matches a deployed process definition. In addition, you can specify whether you
want the process instance identifier to be returned by the method (the default is no).
For the method attributes, you can implement @ProcessVariable annotations to
expose these values as new process variables in the newly created process instance.

 Because a Spring interceptor will enhance this method, you don’t have to return any-
thing, and, if you do return a value, it will be ignored. As I said before, a process instance
identifier can be returned, but that’s specified with the returnProcessInstanceId attri-
bute. When you invoke the startBookOrder method, a new process instance of the
bookorder process definition will be created, and the isbn and amount values will be
available as process variables.

 Another feature that you can use is a process-scoped object instance. You can
define a Spring bean as process scoped, which means that it will be automatically tied

Listing 9.1 A class that uses the @StartProcess annotation

195Spring annotations
to the execution lifetime of a process instance. Defining a Spring bean as a process-
scoped object is easy to do in a Spring configuration, as you can see in this snippet:

<bean id="bookOrder"
 class="org.bpmnwithactiviti.chapter9.BookOrder"
 scope="process"/>

You can autowire such a process-scoped object in a service task, as you can see in the
ValidateOrderTask implementation in the next listing.

public class ValidateOrderTask {

 @Autowired
 private BookOrder bookOrder;

 public void validate(String isbn, int amount) {
 bookOrder.setIsbn(isbn);
 bookOrder.setAmount(amount);
 if(bookOrder.getAmount() > 10) {
 bookOrder.setApproved(false);
 } else {
 bookOrder.setApproved(true);
 }
 }
}

A process-scoped object can be injected using the @Autowired annotation B. This
makes the BookOrder instance available for use without additional coding. When you
pass along the isbn and amount process variables exposed in listing 9.1, you can use
the BookOrder object as a process instance object.

 In the following snippet, you can see how the process variables are passed to the
ValidateOrderTask:

<process id="bookorder" name="bookorder">
 <startEvent id="startEvent" name="Start" />
 <sequenceFlow sourceRef="startEvent"
 targetRef="validateOrder"/>
 <serviceTask id="validateOrder"
 activiti:expression="#{validateTask.validate(isbn, amount)}" />
 <sequenceFlow sourceRef="validateOrder"
 targetRef="scriptOutput"/>
 <scriptTask id="scriptOutput" scriptFormat="groovy">
 <script>
 out:println "order for isbn " + bookOrder.isbn + " and amount " +
 bookOrder.amount + " is approved? " + bookOrder.approved + "\n";
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="scriptOutput"
 targetRef="endEvent"/>
 <endEvent id="endEvent" name="End"/>
</process>

Listing 9.2 A service task class using a process-scoped object

Injects a
process-scoped
object instanceB

196 CHAPTER 9 Exploring additional Activiti modules
The process-scoped BookOrder variable can also be used in a script task by using the
bookOrder process variable name. Using these additional Activiti Spring capabilities
makes the code even cleaner, as you can see in the following unit test:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:chapter9/spring-application-context.xml")
public class SpringAnnotationTest extends AbstractTest {

 @Autowired
 ProcessInitiator initiator;

 @Test
 public void simpleProcessTest() {
 String instanceID = initiator.startBookOrder("123456", 3);
 assertNotNull(instanceID);
 }
}

You don’t need any more Activiti API classes because the @StartProcess abstracts that
for you.

 Now that you’re warmed up, let’s explore the possibilities of deploying the Activiti
Engine on a JEE application server, leveraging technologies such as CDI and EJB.

9.2 Building an Activiti JEE 6 application
The Activiti Engine can be easily embedded into a web or enterprise application and,
therefore, is also easily embeddable in a JEE (Java Enterprise Edition) application.
But, it would also be cool to use EJBs or CDI beans for Java service task implementa-
tions and make use of the hot deployment features of an application server. In this
section, we’ll cover how to deploy the Activiti Engine in a JBoss Application Server 7
(JBoss AS 7) and make use of CDI and EJB beans. Figure 9.1 illustrates the JBoss AS 7
infrastructure we’ll be using.

 In this section, we’ll be using the Activiti CDI module that’s part of the Activiti project
and that implements the logic needed to use the Activiti Engine with CDI. In addition,

activiti−engine

activiti−cdi

Camunda fox modules

JB
os

s
A

pp
lic

at
io

n
S

er
ve

r 7

The Activiti CDI module
provides the logic to use
the Activit Engine within a
CDI context

Camunda fox provides
additional modules for
JBoss AS7 integration Figure 9.1 An overview

of the JBOSS AS 7 environ-
ment we’ll be using in this
section. We’ll make use of
the Activiti CDI module
and the open source ca-
munda fox product.

197Building an Activiti JEE 6 application
we’ll be using the camunda fox distribution of JBoss AS 7 with the Activiti Engine
installed by default. Camunda (www.camunda.com) is a German company that’s part of
the Activiti community and employs committers of the Activiti Engine. They provide an
open source product called camunda fox (www.camunda.com/fox) that provides a ver-
sion of Activiti with support and additional functionality. An example of this additional
functionality is the JBoss AS 7 integration that we’ll use to implement a process definition
that uses an EJB service task to implement the process logic.

9.2.1 Implementing EJB service tasks

Although we use camunda fox in this example, the source code isn’t dependent on this
product and solely makes use of the Activiti framework. What camunda fox provides us
with is a JBoss AS 7 environment with the Activiti Engine installed by default; when you
start the JBoss AS 7 server, the Activiti Engine is also started and is available via JNDI. In
addition, when you deploy a new module to the JBoss AS 7 container (a JAR, WAR, or
EAR file), this module is scanned for process definitions that will be deployed automat-
ically on the Activiti Engine. (If you’re interested in the source code of the deployer,
you can look at https://bitbucket.org/camunda.) This means that you don’t have to
worry about installing Activiti anymore; it’s already available out of the box.

 In this section, we’ll develop three modules. The first module contains the process
definition and a Java delegate class that’s called from a service task inside the process.
The second module contains an EJB that will be called by the Java delegate class. This
EJB holds the service task logic. The third module contains the EJB interface that’s
injected in the Java delegate class and is implemented by the EJB. Figure 9.2 provides a
quick overview of this example.

 We’ll split the process definition from the service task logic to make it possible to
deploy new versions of the service task logic (the EJB) without needing to deploy a new
process definition. You could also deploy the process definition with the service task
logic in one deployment artifact. If you were to redeploy a new version of the service
task logic together with an unchanged process definition in one deployment artifact,

book−jee6−process book−jee6−interface

C
am

un
da

 fo
x

A WAR file containing the
process definition and CDI
Java delegate class

book−jee6−ejb

A JAR file containing the
EJB implementation

A JAR file containing the
EJB interface

Figure 9.2 An overview of the EJB example we’ll implement in this section. Note that we’re also making
use of a CDI-enabled Java delegate class.

198 CHAPTER 9 Exploring additional Activiti modules
the process definition wouldn’t be redeployed because it remained the same. There’s
logic in the camunda fox deployer module that takes care of this.

 We’re going to implement the service task logic in an EJB. In addition to EJB good-
ies such as transactions and security, there’s an additional benefit of deploying the EJB
on another server than the Activiti Engine. It opens up new possibilities for scaling.

 But, because we can’t invoke an EJB directly from a service task in a process defini-
tion, we need an additional Java delegate to inject the EJB. This Java delegate needs to
be implemented in the same module as the process definition (the book-jee6-pro-
cess module that you can find in the book’s source code). Let’s look at the implemen-
tation of this Java delegate.

@Named
public class HelloDelegate implements JavaDelegate {

 @EJB(lookup="java:global/book-jee6-ejb/HelloBean")
 private Hello helloBean;

 @Override
 public void execute(DelegateExecution execution)
 throws Exception {

 helloBean.sayHello((String)
 execution.getVariable("name"));
 }
}

Although the HelloDelegate implementation contains just a few lines, a lot is hap-
pening. First, you annotate the delegate class with the @Named annotation. This is a
CDI annotation that you can use in the process definition you’ll see in listing 9.4.
The @Named annotation makes the helloDelegate name available to be used in
a delegateExpression.

 This example uses the Java delegate only as a gateway to the HelloBean EJB, which
is injected using the @EJB annotation. The lookup value is constructed in the follow-
ing way:

java:global/module-name/EJB-class-name

In the execute method, you can now invoke the EJB sayHello method. As you can
see, the Hello interface is used here to communicate with the HelloBean. This
removes the dependency from the Java delegate to the EJB and thereby removes the
dependency from the book-jee6-process module to the book-jee6-ejb module.

 But both modules need a dependency to the Hello interface. Because you don’t
want a dependency from the book-jee6-process module to the book-jee6-ejb mod-
ule, you have two options:

■ Add a third module that only includes the Hello interface and add a depen-
dency from the two other modules to it.

■ Include the Hello interface in the book-jee6-process module and add a
dependency to it from the book-jee6-ejb module.

Listing 9.3 Java delegate implementation using CDI and showing an EJB injection

199Building an Activiti JEE 6 application
In this example, we’ll go for the first option because that’s a lot cleaner implementa-
tion and really separates the EJB logic from the process definition.

 Now let’s look at the process definition for this example. We’re implementing a
simple process here because we want to focus on the CDI Java delegate and the EJB ser-
vice task approach. In the next listing, you can see how you can invoke the CDI Java
delegate from the process definition.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://ejbexample">

 <process id="jee6" name="JEE6 example process">
 <startEvent id="startevent1" name="Start">
 <extensionElements>
 <activiti:formProperty id="name"
 name="Name" type="string"
 required="true" />
 </extensionElements>
 </startEvent>
 <sequenceFlow sourceRef="startevent1"
 targetRef="servicetask1" />
 <serviceTask id="servicetask1"
 activiti:delegateExpression="#{helloDelegate}" />
 <sequenceFlow sourceRef="servicetask1"
 targetRef="endevent1" />
 <endEvent id="endevent1" name="End" />
 </process>
</definitions>

The simple process definition starts with the configuration of a start event task form
containing one form property, name B. You’ll be passing this form value along to the
EJB bean from the service task. The Java delegate can be invoked using the delegate-
Expression C. Because the @Named annotation is added to the HelloDelegate (see
listing 9.3), you can invoke it with the helloDelegate value.

 You now have the process definition and the Java delegate class in place in the
book-jee6-process module. There are still two files that you need to add to the
book-jee6-process project to make it complete: an empty WEB-INF/beans.xml file to
enable CDI and the META-INF/processes.xml file to configure the process engine
deployment of the process definition. This second file is specific to the camunda fox
implementation and looks like this:

<processArchive>
 <configuration>
 <undeployment delete="false" />
 </configuration>
</processArchive>

Listing 9.4 A process definition that invokes a CDI Java delegate

Defines a simple
start formB

Invokes CDI
Java delegateC

200 CHAPTER 9 Exploring additional Activiti modules
You can configure whether you want to delete the process definition when the WAR
file is undeployed.

 You can also use an empty META-INF/processes.xml file if you want to accept the
defaults. The default value when undeploying the WAR file is false—so, by default,
the process definition remains installed.

 When we deploy the WAR file later on in this section, the process definition from
listing 9.4 should be deployed on the Activiti process engine running on the camunda
fox JBoss server. At the time of this writing, the process definition is always deployed to
the default Activiti process engine that’s installed with camunda fox. In the near
future, this will be made configurable via the META-INF/processes.xml file.

 The process definition is deployed to the Activiti Engine using a camunda fox cli-
ent library. When the WAR file is deployed and started, this client library is activated.
The camunda fox client library looks for process definition files in the WAR file and
deploys them to the default Activiti engine. All you have to do is include the client
library dependency in your pom.xml file, as shown in the following code snippet:

<properties>
 <fox.version>1.18.4.CR</fox.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.bpmnwithactiviti</groupId>
 <artifactId>book-jee6-interface</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.camunda.fox</groupId>
 <artifactId>fox-platform-client</artifactId>
 <version>${fox.version}</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 </dependency>
</dependencies>

<repositories>
 <repository>
 <id>camunda-fox</id>
 <name>camunda fox Maven Repository</name>
 <url>http://fox.camunda.com/mvn/</url>
 </repository>
</repositories>

The book-jee6-process module is now complete. The implementation of the book-
jee6-ejb module is simple. First, you have the HelloBean EJB implementation:

@Stateless
public class HelloBean implements Hello {

 public void sayHello(String name) {
 System.out.println("hello " + name);
 }
}

201Building an Activiti JEE 6 application
You define a standard stateless EJB bean here.
 There’s only one thing left before you can deploy both modules to the JBoss AS 7

container. You need to define a dependency from the book-jee6-ejb module to the
book-jee6-interface module so you can resolve the Hello interface. The depen-
dency needs to be added to the MANIFEST.MF file in the JAR file. With the Maven JAR
plugin, you can configure this in the pom.xml file of the book-jee6-ejb project:

<build>
 <finalName>book-jee6-ejb</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>deployment.book-jee6-interface.jar</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>
</build>

The Dependencies entry in the manifest file adds a direct dependency to the JAR file
with deployment. as a prefix. You can now build the three modules by running the
mvn clean install command from the book-jee6-parent project.

 But before you can deploy the WAR and two JAR files, you need to get the camunda
fox distribution of the JBoss AS 7 server. You can download the server from the follow-
ing website: www.camunda.com/fox/community/download. Unzip the download to a
directory of your choice and run it by executing the appropriate command from the
root directory:

■ For Linux or Mac OS X:
./server/jboss-as-7.1.0.Final/bin/standalone.sh

■ For Windows:
server\jboss-as-7.1.0.Final\bin\standalone.bat

You can check that the Activiti Engine is running by opening the Activiti Explorer on
http://localhost:8080/explorer. Note that this URI is different from the Activiti
Explorer installed on the default Tomcat server. This Activiti Explorer is connected to
the default Activiti Engine started within the JBoss AS 7 server. The Activiti Engine uses
an in-memory H2 database by default.

 Now let’s deploy the three modules you developed in this section. First, copy the
book-jee6-interface.jar module you can find in the book-jee6-interface/target direc-
tory to the standalone/deployments directory in the JBoss AS 7 server. Then deploy
the book-jee6-process.war file to deploy the process definition from listing 9.4. Next,
copy the book-jee6-ejb.jar file to the same directory.

 You can now start a new instance of the example process using the Activiti
Explorer deployed on the JBoss AS 7 server. Figure 9.3 shows the start form you’ll need

202 CHAPTER 9 Exploring additional Activiti modules
to fill in when starting a new process instance. You can now start a new process
instance, and you should see a hello message in the JBoss console.

 It’s also easy to test the flexibility of introducing a new implementation of the Hello-
Bean EJB. Change the System.out message and run the mvn clean install command
again. Then, delete the book-jee6-ejb.jar file from the standalone/deployments direc-
tory in the JBoss AS 7 server and the newly generated book-jee6-ejb.jar.undeployed file.
Now, copy the newly built book-jee6-ejb.jar file to the standalone/deployments direc-
tory, start a new process instance via the Activiti Explorer, and watch the JBoss console
for the changed hello message.

 Now that you’re familiar with CDI and using EJB service tasks, we can go ahead and
extend our use of the Activiti CDI module when developing a JSF process application
using CDI.

9.2.2 Implementing a JSF process application using CDI

One of the uses of CDI is to provide easy integration of bean logic and JSF pages. The
Activiti CDI module enables you to use the Activiti API and process variables directly
from a JSF page. This makes it easy to develop custom task list applications and even
full process applications yourself.

 In this section, we’re going to implement a simple JSF book order application (see
book-cdi-app in the book’s source code) using several CDI beans and an Activiti pro-
cess definition. Figure 9.4 gives a general overview of the book order process.

 Let’s start with the process model at the center of figure 9.4. First, we’ll validate an
ISBN number that’s provided via a JSF start form page. The validation is implemented
in a CDI bean named BookOrderTask. Next, a user task is created to complete the
order, which means that somebody has to approve the order. Finally, the outcome of
the approval step is processed via the CDI bean. We’ll add the order to an approved or
disapproved list of book orders in this step.

Figure 9.3 Activiti Explorer showing the start form of the EJB example process

203Building an Activiti JEE 6 application
We’re also going to create a BookOrder bean that has a @BusinessProcessScoped
annotation. This annotation is also part of the Activiti CDI module and tells the appli-
cation server to bind that bean to a process instance for its whole execution.

 Let’s first look at the implementation of the BookOrderTask to understand the
main functionality of the book order process.

@Named
public class BookOrderTask {

 @Inject
 private BookOrder book;

 @Inject
 private BookFeed bookFeed;

 public void validate() {
 long numberIsbn = Long.valueOf(
 book.getIsbn().toString());
 if(numberIsbn < 100000 || numberIsbn > 999999) {
 System.out.println(">>> Invalid ISBN: " + numberIsbn);
 }
 }

 public void approve() {
 if(book.isApproved()) {
 bookFeed.addApprovedIsbn(book.getIsbn());
 } else {
 bookFeed.addNotApprovedIsbn(book.getIsbn());

Listing 9.5 The BookOrderTask implementation with bean injection

Figure 9.4 The book order process we’re going to implement, showing the JSF pages and the
BookOrderTask CDI bean

Makes bean available
in CDI contextB

Injects @BusinessProcessScoped
variableC

Injects
@ApplicationScoped
variableD

204 CHAPTER 9 Exploring additional Activiti modules
 }
 }
}

First, you need to make the BookOrderTask available in the CDI context using the
@Named annotation B. Once that’s done, you can invoke the class from a process defi-
nition using the following expression, which comes from the validate task of the book
order process definition:

<serviceTask id="validateTask"
 activiti:expression="#{bookOrderTask.validate()}" />

In addition, you can inject beans that are available in the CDI context into the service
task class. First, you inject the BookOrder instance attached to the current process
instance C. You use this object to retrieve the ISBN number and the approval out-
come variables in the validate and approve methods.

 The second bean you inject is the BookFeed instance, which is an @Application-
Scoped bean D. This means that there’s exactly one instance of this object during the
lifetime of the CDI application; when the server is stopped or the application is
restarted, the bean will be initialized again. You use this bean to store approved and
disapproved book orders so that you can display them via a JSF page. Let’s take a look
the bean implementation.

@ApplicationScoped
public class BookFeed {

 private List<String> approvedOrders =
 new ArrayList<String>();
 private List<String> notApprovedOrders =
 new ArrayList<String>();

 public void addApprovedIsbn(String isbn) {
 approvedOrders.add(isbn);
 }

 public void addNotApprovedIsbn(String isbn) {
 notApprovedOrders.add(isbn);
 }

 @Produces
 @Named("approvedOrders")
 public List<String> getApprovedOrders() {
 return approvedOrders;
 }

 @Produces
 @Named("notApprovedOrders")
 public List<String> getNotApprovedOrders() {
 return notApprovedOrders;
 }
}

Listing 9.6 Implementation of the application scoped BookFeed bean

Defines bean as
application scopedB

Exposes approved
orders to CDI context

C

Exposes disapproved
orders to CDI context

D

205Building an Activiti JEE 6 application
A bean can be defined as application scoped using the @ApplicationScoped annota-
tion B. The BookFeed class is used as a convenience class to expose the approved
order C and disapproved order D lists to the CDI context for use in a JSF page. You
use these exposed entries in the template.xhtml page, which you can find in the src/
main/webapp/WEB-INF/templates directory of the book-cdi-app project. The follow-
ing code snippet shows the definition of a JSF table listing the approved orders:

<h1>Approved orders:</h1>
<h:dataTable value="#{approvedOrders}" var="v_isbn">
 <h:column>#{v_isbn}</h:column>
</h:dataTable>

Now that you’re familiar with the logic of the book order process definition, let’s go
back to the beginning of the process and look at the start form defined in the start
event. The start event contains the following configuration of the form key:

<startEvent id="startEvent" name="Start"
 activiti:formKey="taskForm_newOrder.jsf" />

You can retrieve the form key definition
directly from JSF. In the main screen of the
JSF book order application, you’re pre-
sented with a list of deployed process defi-
nitions (see figure 9.5).

 In the example shown in figure 9.5,
there are two versions of the book order
process definition deployed. To generate
the HTML link (see the Action column in
figure 9.5) that leads to the JSF start form,
you need a bit of logic. The following code snippet generates the data table and the
link from the processList.xhtml page:

<h:dataTable value="#{processDefinitionList}" var="v_process"
 <h:column>
 <f:facet name="header">Key</f:facet>
 #{v_process.key}
 </h:column>
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{v_process.name}
 </h:column>
 <h:column>
 <f:facet name="header">Version</f:facet>
 #{v_process.version}
 </h:column>
 <h:column>
 <f:facet name="header">Action</f:facet>
 <h:outputLink
 value="#{formService.getStartFormData(v_process.id).formKey}">
 Start
 <f:param name="processDefinitionKey"

Figure 9.5 The JSF book order application
showing a list of deployed process definitions

206 CHAPTER 9 Exploring additional Activiti modules
 value="#{v_process.key}" />
 </h:outputLink>
 </h:column>
</h:dataTable>

In the table, you list all the items found in the processDefinitionList variable. This
variable is produced by the ProcessList class, which abstracts the JSF page from the
process definition query, as you can see in the next snippet:

 public class ProcessList {

 @Inject
 private RepositoryService repositoryService;

 @Produces
 @Named("processDefinitionList")
 public List<ProcessDefinition> getProcessDefinitionList() {
 return repositoryService.createProcessDefinitionQuery()
 .list();
 }
}

The key, name, and version attributes of the process definition are shown in the first
three columns of the JSF table. In the fourth column, the form key is retrieved via the
FormService and the process definition identifier. As you can see, the Activiti CDI
module enables the use of Activiti API interfaces directly in the JSF page. The link will
send you to the form key value (taskForm_newOrder.jsf) with the process definition
key as a request parameter.

 Let’s look at the form definition in the taskForm_newOrder.xhtml page:

<h:form>
 <table>
 <tr>
 <td>ISBN:</td>
 <td><h:inputText value="#{bookOrder.isbn}" /></td>
 </tr>
 <tr>
 <td></td>
 <td><h:commandButton value="Submit"
 action="#{businessProcess.startProcessByKey(

 ➥ processDefinitionKey)}" />
 </td>
 </tr>
 </table>
</h:form>

In addition to using the Activiti API interfaces in a JSF page, the Activiti CDI module also
offers a businessProcess context variable that corresponds to the BusinessProcess
bean. This bean provides a lot of convenience methods to start new process instances,
complete tasks, and get process variables, for example. In this snippet, you use it to start
a new process instance for a specific process definition key.

 In addition, you use the BookOrder @BusinessProcessScoped bean to couple the
ISBN form field to the isbn attribute of that bean. When the process instance is

207Building an Activiti JEE 6 application
started, the value entered in the ISBN form field will be available in the BookOrder
bean instance in listing 9.5.

 You now have a good overview of the possibilities provided by the Activiti CDI mod-
ule when it’s used in a JSF application like the book-cdi-app project. But, before you
deploy that application to a JBoss AS 7 server, there’s an additional interesting func-
tion to discuss; you can listen to process events without defining process event listen-
ers in a process definition. The next listing gives an idea of how this works.

public class EventBean {

 public void onProcessEvent(@Observes
 BusinessProcessEvent businessProcessEvent) {

 System.out.println("----- event type " +
 businessProcessEvent.getType().getTypeName() +
 " ------");
 System.out.println("Process instance id " +
 businessProcessEvent.getProcessInstanceId());
 if(businessProcessEvent.getType() ==
 BusinessProcessEventType.TAKE) {

 System.out.println("Transition name " +
 businessProcessEvent.getTransitionName());
 } else {
 System.out.println("Activity id " +
 businessProcessEvent.getActivityId());
 }
 System.out.println("Timestamp " +
 businessProcessEvent.getTimeStamp());
 }
}

To enable a bean method to start observing process events, you only have to add the
@Observes annotation to a method parameter with a type of BusinessProcessEvent B.
Once you’ve added this annotation, you get every start and end event of an activity and
the take event when a sequence flow is executed. In this example, you only print the var-
ious attributes of a BusinessProcessEvent to the console. When the event type is a
sequence flow take event C, you print the transition name; otherwise, you print the
activity identifier.

 To enable the process event listening capabilities of the Activiti CDI module, you
have to add an additional bean in the Activiti process engine configuration. The fol-
lowing snippet shows the engine configuration as you can find it in the src/main/
resources/activiti.cfg.xml file:

<bean id="processEngineConfiguration"
 class="org.activiti.cdi.CdiJtaProcessEngineConfiguration">
 <property name="dataSourceJndiName"
 value="java:jboss/datasources/ExampleDS" />
 <property name="databaseType" value="h2" />
 <property name="transactionManager" ref="transactionManager" />

Listing 9.7 An example implementation of a process event listener

Starts with
observing
process eventsB

Checks
event typeC

208 CHAPTER 9 Exploring additional Activiti modules
 <property name="transactionsExternallyManaged" value="true" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="customPostBPMNParseListeners">
 <list>
 <bean
 class="org.activiti.cdi.impl.event.CdiEventSupportBpmnParseListener"/>
 </list>
 </property>
</bean>

You need to add a custom BPMN parse listener to enable the process event listener.
With this in place, you only have to add a couple of boilerplate configurations. First,
you need to enable the start process instance and complete task capabilities of the
Apache CDI module by defining the following beans.xml file in the src/main/
webapp/WEB-INF directory:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <interceptors>
 <class>org.activiti.cdi.impl.annotation.StartProcessInterceptor</class>
 <class>org.activiti.cdi.impl.annotation.CompleteTaskInterceptor</class>
 </interceptors>
</beans>

Next, you have to deploy the diagrams/bookorder.bpmn20.xml process definition
when the JSF application is installed and started. You can define the process files you
want to deploy in the processes.xml file in the src/main/resources folder:

<processes>
 <process resource="diagrams/bookorder.bpmn20.xml" />
</processes>

There’s only one piece remaining now: the Activiti CDI module needs a way to get a
reference to the Activiti Engine. In this example, you extend the LocalProcess-
EngineLookup class, which means that the process engine is configured locally in the
application using an activiti.cfg.xml file or an activiti-context.xml file. You implement
the following simple class:

public class ProcessEngineConfiguration extends LocalProcessEngineLookup {
}

This makes this application deployable on every JEE application server with support
for JSF 2.0. You could also make use of the process engine installed in the camunda
fox server by making a JNDI reference:

public class ProcessEngineConfiguration extends JndiProcessEngineLookup {
 @Override
 protected void initJndiName() {
 jndiName = "java:global/processEngine/default";
 }
}

209Deploying Activiti to an OSGi container
If you use this JNDI-based configuration, you don’t need an additional activiti.cfg.xml
file anymore.

 But, let’s focus on the first version with the local process engine configuration. You
can build the WAR file by running a mvn clean package command from the book-
cdi-app project directory. This generates a WAR file in the target directory, which you
can copy to the standalone/deployments folder of a JBoss application server. But, you
could also deploy this WAR on any other application server like GlassFish.

 The application can be tested by opening a web browser with the following loca-
tion: http://localhost:8080/book-cdi-app-1.0. You can now start a new process
instance by clicking on the list of processes link and filling in the start form.

 Take your time to look through the full source code of the book-cdi-app applica-
tion because we haven’t discussed all the files in detail.

 Now that you understand how to use the Activiti Engine on a JEE application server
using CDI and EJBs, it’s time to look at another deployment option. With the Activiti
OSGi module you’re able to work with Activiti using OSGi bundles. This opens up new
opportunities for hot deployment and modular process applications.

9.3 Deploying Activiti to an OSGi container
You’re already able to use the Activiti Engine on a JEE 6 application server like JBoss or
GlassFish. But, there’s another interesting deployment approach available with the
Activiti OSGi module. In this section, we’ll start with a short introduction to OSGi, and
then we’ll quickly move on and use the Activiti Engine on the Apache Karaf OSGi con-
tainer.

9.3.1 Introducing the OSGi standard

The OSGi standard has been available for quite some time now. It was founded by the
OSGi Alliance (www.osgi.org) in 1999. It provides a framework for a modular and
dynamic component model, mainly to overcome the classloading and versioning
issues on the Java platform. OSGi is a standard solely available for the Java platform.

 The deployment environment for the OSGi framework is often referred to as an
OSGi container. Probably the most famous OSGi container is the Eclipse platform,
where the full platform and all plugins are implemented with OSGi bundles. As a devel-
oper, you’ll be developing these OSGi bundles to implement logic in an OSGi container.

 That may sound a bit complex, but an OSGi bundle is often no more than a JAR file
produced by a Java project. The great thing about OSGi is that you divide an applica-
tion, or even multiple applications, into multiple bundles. When you want to change a
specific part of an application, you only have to change one or two bundles and rede-
ploy them, and the application will automatically (without restarting) make use of
these new bundles.

 An OSGi bundle typically provides a component implementation that exposes cer-
tain classes to other OSGi bundles. It can also import interfaces that are implemented
by other OSGi bundles, which are required to be available in the OSGi container.

210 CHAPTER 9 Exploring additional Activiti modules
 A bundle follows a defined life cycle, as
shown in figure 9.6. This life cycle is imple-
mented by the OSGi container to handle
an OSGi bundle. First, the bundle has the
state installed, which means the bundle is
deployed on the OSGi container but is not
yet available to be used by other bundles.
Then, the OSGi container looks to find out
if the required dependencies specified by
the bundle meta information can be
resolved. If the required dependencies
can be found, the life cycle will move to the
resolved state. From there, the states are
pretty self-explanatory. When the bundle
is active, it needs to be in the started state.

 I know this is a short introduction to OSGi, but there’s a lot of material about it
available on the internet, and you can read a lot more in the book OSGi in Action, by
Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage (Manning, 2011).

 Later on in this section, we’ll be deploying the Activiti Engine as an OSGi bundle to
an OSGi container. In addition, we’ll deploy a process definition and a Java service task
class in separate bundles to the OSGi Activiti Engine. But first, we need an OSGi con-
tainer to work with. Let’s introduce Apache Karaf.

9.3.2 Using Apache Karaf as an OSGi container

Apache Karaf is an OSGi runtime environment and it uses Apache Felix as its default
OSGi container. It’s also possible to run the Activiti Engine on Apache Felix, but
Apache Karaf provides a nice administration console, integration with Maven, and an
OSGi Blueprint implementation. These additions make the development and deploy-
ment of OSGi bundles a lot easier, so that’s why we’ll use Apache Karaf here.

 Take a look at the simplified architectural overview of the Apache Karaf framework
in figure 9.7.

 All of the Apache Karaf components are built on an OSGi container foundation. By
default, Karaf uses the Apache Felix implementation, but you can also use the Equinox

Console

A
pa

ch
e

K
ar

af Logging Deployer Provisioning Admin Blueprint

OSGi

Figure 9.7 An architectural overview of Apache Karaf showing its main components,
which are built on an OSGi container like Apache Felix or Equinox

Installed

Resolved

Uninstalled

Starting

Started

Stopping

Figure 9.6 An overview of an OSGi bundle life cy-
cle, starting with installed state and ending with
the uninstalled state

211Deploying Activiti to an OSGi container
OSGi container (the Eclipse implementation) by changing one property file. We’ll be
using the console component quite a lot in the remainder of this section. By using the
console, we can deploy new OSGi bundles, for example, from a Maven repository.

 Another component that’s important for the Activiti Engine implementation is the
Blueprint component. The OSGi Enterprise Specification contains the definition of a
blueprint container. The goal of the Blueprint container is to integrate the OSGi spec-
ification with JEE technologies like JTA and JNDI. Another benefit is that it’s easy to
define exposed and referenced services to and from other bundles using an XML defi-
nition or annotations. We’ll be using the Blueprint XML definition in some examples
here shortly.

 First, let’s get the Apache Karaf framework installed and started. Installing is easy:
Download the latest version from the http://karaf.apache.org website. (Note that ver-
sion 2.2.3 is used in the examples in this chapter.) Unpack the distribution to your
location of choice, and open a command console or terminal. Then, go to the
unpacked directory and start the Karaf container:

■ Linux, Mac OS X:
./bin/karaf

■ Windows:
bin\karaf.bat

When the Karaf container is started,
you should see a console similar to
what’s shown in figure 9.8.

 The Karaf console has a lot of avail-
able commands when you press Tab,
as shown in the welcome text in fig-
ure 9.8. One of the commands shows
which bundles are installed and run-
ning on the Apache Karaf container:
the osgi:list command. If you run
this command, you’ll notice that by
default you have an empty container. Let’s change that and install the Activiti Engine.

9.3.3 Installing the Activiti OSGi bundle

To make the Activiti Engine available in an OSGi container, you need additional logic
that’s provided by the Activiti OSGi module. The Activiti OSGi module will scan every
OSGi bundle in the OSGI-INF/activiti folder for process definitions. When a new pro-
cess definition is found, it will deploy the definition on the Activiti Engine that’s
exposed via the org.activiti.engine.ProcessEngine interface. Figure 9.9 shows the
bundles that we’ll be deploying to the Apache Karaf container.

 The Activiti Engine and Activiti OSGI modules are provided out of the box by the
Activiti framework. The book-osgi-engine module is provided with the book-osgi-app
project that you can find in the book’s source code.

Figure 9.8 The Apache Karaf console, shown when
you start the Karaf container with default settings

212 CHAPTER 9 Exploring additional Activiti modules
The book-osgi-engine project contains a context.xml file in the src/main/
resources/OSGI-INF/blueprint folder that will create a new instance of the Activiti
Engine in the Apache Karaf container. The context.xml file is the OSGi Blueprint XML
definition introduced in section 9.3.2. As you can see in the next listing, it contains a
lot of XML elements, but you’re already familiar with most of them because the config-
uration is similar to the Activiti Engine Spring configuration. Note that I left out some
bits that we’ll discuss in section 9.3.4.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <ext:property-placeholder />

 <bean id="dataSource" class="org.h2.jdbcx.JdbcDataSource">
 <property name="URL"
 value="jdbc:h2:tcp://localhost/activiti" />
 <property name="user" value="sa" />
 <property name="password" value="" />
 </bean>

 <bean id="configurationFactory"
 class="org.activiti.osgi.blueprint.ConfigurationFactory">
 <property name="dataSource" ref="dataSource" />
 <property name="databaseSchemaUpdate" value="true" />
 </bean>

 <bean id="configuration"
 factory-ref="configurationFactory"
 factory-method="getConfiguration" />

 <bean id="processEngineFactory"
 class="org.activiti.osgi.blueprint.

 ➥ ProcessEngineFactoryWithELResolver"

Listing 9.8 Blueprint configuration of the Activiti Engine

activiti−engine

activiti−osgi

book−osgi−engine

A
pa

ch
e

K
ar

af
Modules to make the Activiti
Engine libraries available in
an OSGi environment. Every
new bundle is scanned for
process definitions and OSGi
Java delegates.

Configures and starts the
Activiti process engine.

Figure 9.9 The OSGi bundles
we’ll be deploying on the Apache
Karaf container to get the Activ-
iti Engine available and started

Defines Activiti
data sourceB

Defines
 Activiti OSGi
configuration

wrapper C

Defines OSGi process
engine factory

D

213Deploying Activiti to an OSGi container
 init-method="init"
 destroy-method="destroy">

 <property name="processEngineConfiguration"
 ref="configuration" />
 <property name="bundle" ref="blueprintBundle" />
 <property name="blueprintELResolver"
 ref="blueprintELResolver" />
 </bean>

 <bean id="processEngine" factory-ref="processEngineFactory"
 factory-method="getObject" />

 <bean id="runtimeService" factory-ref="processEngine"
 factory-method="getRuntimeService" />
 <bean id="repositoryService" factory-ref="processEngine"
 factory-method="getRepositoryService" />

 <bean id="blueprintELResolver"
 class="org.activiti.osgi.blueprint.BlueprintELResolver" />

 <service ref="processEngine"
 interface="org.activiti.engine.ProcessEngine" />
 <service ref="runtimeService"
 interface="org.activiti.engine.RuntimeService" />
 <service ref="repositoryService"
 interface="org.activiti.engine.RepositoryService" />
</blueprint>

You start the Activiti Engine configuration with the definition of the data source B.
Then you need a new ProcessEngineConfiguration definition C because the Blue-
print container can’t work with the default ones. The ConfigurationFactory class is
just a wrapper around a StandaloneProcessEngineConfiguration, and you can
inject a data source into it.

 Then you arrive at the main part of the process engine configuration, which is
the ProcessEngineFactory subclass ProcessEngineFactoryWithELResolver defini-
tion D. Because you can’t use the default bean classloading logic implemented in
the standard Activiti Engine process engine factories, an OSGi-specific subclass is
needed. The Activiti OSGi module provides this subclass with the ProcessEngine-
FactoryWithELResolver class to deal with the OSGi classloading.

 You inject the OSGi bundle context by referring to the blueprintBundle E. What
the Activiti OSGi module adds in the ProcessEngineFactoryELResolver class is the
resolving of expressions used in a process definition.

 For example, consider an Activiti service task configuration with an attribute like
activiti:delegateExpression="${myBean}". By default, this expression is resolved
with Java classloading logic, but that doesn’t work in an OSGi container like Apache
Karaf. Therefore, you can use the Activiti OSGi-specific process engine factory to
search in the OSGi service registry, create a new process engine instance, and expose it
as an OSGi service F. The process engine OSGi service can now be resolved by the
Activiti OSGi bundle to deploy new process definitions.

Injects Blueprint
bundle context

E

Defines
process engine
OSGi serviceF

214 CHAPTER 9 Exploring additional Activiti modules
 Now let’s get this package ready to be deployed on Apache Karaf. To make the
installation easy, you’ve created a features project named book-osgi-features. This
project contains a features.xml file in the src/main/resources folder that contains all
the dependencies necessary to get the Activiti Engine and OSGi modules installed.
You’ve also added the book-osgi-engine module so that the process engine will get
created. The following code snippet shows the part in the features.xml file where you
need to add the book-osgi-engine module:

<features name="book-osgi-${project.version}">
 <feature name="book-osgi" version="${project.version}">
 <feature version="${activiti.version}">activiti</feature>
 <bundle>
 mvn:org.bpmnwithactiviti/book-osgi-engine/${project.version}
 </bundle>
 </feature>
</features>

As you can see, this defines a new feature named book-osgi, consisting of an
OSGi bundle book-osgi-engine and a nested activiti feature, which contains the
Activiti Engine and OSGi modules and dependencies. Now you can build the OSGi
bundle and feature projects by running mvn clean install from the book-osgi-app
root directory.

 Now that you have the OSGi bundles and the feature definitions available in your
Maven repository, it’s time to go back to the Apache Karaf console started in the previ-
ous section. Apache Karaf can install new bundles and features directly from a Maven
repository. To use your bundles, you first have to make the Maven repository location
of the book-osgi-features project available to Apache Karaf by executing the follow-
ing command in the Apache Karaf console:

features:addurl mvn:org.bpmnwithactiviti/book-osgi-features/

 ➥ 1.0.0/xml/features

The features are now read by the Apache Karaf container, and you can view them by
executing the features:list command in the Karaf console.

 Next, you can install and start the Activiti Engine in the Karaf container by execut-
ing the following command, but first make sure the H2 database in the Activiti distri-
bution is running (ant h2.start from the setup folder):

features:install book-osgi

The Activiti Engine and OSGi modules and their dependencies are now installed, and
the book-osgi-engine module will create a new process engine instance and make it
available in the OSGi registry. In figure 9.10, you can see that these modules are
installed by running the features:list command.

 To check that the Activiti Engine is started, you can run the log:tail command in
the Karaf console. You should see a log statement like this:

ProcessEngine default created

215Deploying Activiti to an OSGi container
That’s great, but how can you use this running OSGi process engine? Let’s begin by
adding a new custom command to the Apache Karaf console that lists all deployed
process definitions on the Activiti Engine. That will give you a first view of this OSGi
process engine.

9.3.4 Getting a list of process definitions in Apache Karaf

When we use Apache Karaf as our OSGi container and manager, it would be nice to be
able to communicate with the Activiti Engine from the Karaf console. It turns out that
this is quite easy to do by using the Karaf console extensibility points and plugging
new commands into the container.

 First, you need to define a new OsgiCommandSupport subclass that implements the
logic you want to use in the Karaf console. The following listing shows a command
implementation that will list all deployed process definitions (you can find it in the
book-osgi-karaf module of the book-osgi-app project).

@Command(scope="activiti", name="list-definitions",
 description="List all process definitions")
public class ListDefinitionsCommand
 extends OsgiCommandSupport {

 private RepositoryService repositoryService;

 @Override
 protected Object doExecute() throws Exception {
 List<ProcessDefinition> definitionList =
 repositoryService
 .createProcessDefinitionQuery()
 .list();
 if(definitionList != null && definitionList.size() > 0) {
 System.out.println("--------------------------------");
 System.out.println("--Activiti process definitions--");
 System.out.println("--------------------------------");
 for (ProcessDefinition processDefinition : definitionList) {
 System.out.println("");
 System.out.println("--------------------------------");
 System.out.println("Name\t\t\t\t" +
 processDefinition.getName());
 System.out.println("Key\t\t\t\t" +
 processDefinition.getKey());
 System.out.println("Id\t\t\t\t" +

Listing 9.9 A Karaf console command class showing all deployed process definitions

Figure 9.10 The Apache Karaf console showing that the Activiti Engine and the book-osgi features
have been installed

Defines console
command textB

Injects RepositoryService
instanceC

Queries
Activiti
Engine

D

216 CHAPTER 9 Exploring additional Activiti modules
 processDefinition.getId());
 System.out.println("--------------------------------");
 System.out.println("");
 }
 }
 return null;
 }

 public void setRepositoryService(RepositoryService
 repositoryService) {
 this.repositoryService = repositoryService;
 }
}

As you can see, defining a new Karaf console command is quite easy. You start by
defining the command text, which in this case, is activiti:list-definitions B. To
be able to query the Activiti Engine for deployed process definitions, you need an
instance of the RepositoryService interface C. In listing 9.10, you’ll see that the
Karaf container will inject this instance. Finally, in the doExecute method, you can
query the Activiti Engine using the RepositoryService interface D as you’ve done
before (for example, in chapter 4).

 To get this new command installed on the Karaf container, you need to define a
Blueprint XML definition like you did in the previous section. In the next listing, the
OSGi-INF/blueprint/context.xml file of the book-osgi-karaf project is shown.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <command-bundle
 xmlns="http://karaf.apache.org/xmlns/shell/v1.0.0">
 <command name="activiti/list-definitions">
 <action class="org.bpmnwithactiviti.karaf.

 ➥ ListDefinitionsCommand">
 <property name="repositoryService"
 ref="repositoryService"/>
 </action>
 </command>
 </command-bundle>

 <reference id="repositoryService"
 interface="org.activiti.engine.RepositoryService" />

</blueprint>

This context.xml file is read by the Karaf container when you deploy the book-osgi-
karaf OSGi module. You first need to define the name of the command, which often cor-
responds to the scope and name annotations in the command class B. To inject an
instance of the RepositoryService, you need to reference the OSGi service published
in the OSGi registry with the org.activiti.engine.RepositoryService interface C.

 Remember that you defined this OSGi service in listing 9.8. This shows the power
of the OSGi container’s modular architecture. You can register services in the OSGi
registry that you can use from other OSGi modules. Without the Blueprint container,

Listing 9.10 Blueprint definition of the newly created process definition list command

Defines Karaf
console commandB

References
RepositoryService
OSGi service

C

217Deploying Activiti to an OSGi container
you’d need a lot of additional configuration to export and import packages to and
from the OSGi modules. But, with the Blueprint container, it’s as easy as defining a
service and a reference element in a context.xml configuration.

 Now that you have the configuration in place, you can install the new command on
the Karaf container. If you haven’t already executed an mvn clean install in the
book-osgi-app directory, you should do this now to get the book-osgi-karaf bundle
installed in the Maven repository. Next, you can run the following command in the
Karaf console to make the new command class available:

osgi:install -s mvn:org.bpmnwithactiviti/book-osgi-karaf/1.0.0

It’s as simple as that. Now you can execute the activiti:list-definitions com-
mand and you’ll see an output similar to what’s shown in figure 9.11.

 Now that you can communicate with the Activiti Engine from the Karaf console,
it’s time to get your first process running and to deploy it in an OSGi bundle.

9.3.5 Building a process and task OSGi bundle

Developing process and service task OSGi bundles is quite easy. First, look at figure 9.12
to get an idea of the bundles you will have deployed at the end of this section.

 As you can see in figure 9.12, you’ll deploy two additional OSGi bundles in this sub-
section: the book-osgi-process and the book-osgi-task bundle.

 First, you’ll implement the process bundle. This means you have to create a pom.xml
file (at least if you take the Maven approach) with contents similar to the following:

<groupId>org.bpmnwithactiviti</groupId>
<artifactId>book-osgi-process</artifactId>
<name>Activiti in Action OSGi process</name>
<packaging>bundle</packaging>
<version>1.0.0</version>

Figure 9.11 The Karaf console output when running the activiti:list-definitions command

218 CHAPTER 9 Exploring additional Activiti modules
The only element that’s different from normal Maven build files is the packaging type
of bundle.

 The only thing left to do is define a process definition XML file in the OSGi-INF/
activiti folder, because this folder is scanned by the Activiti OSGi module for new pro-
cess definitions. Let’s take a quick look at the example.bpmn20.xml file you need to
create there.

<definitions id="definitions"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="Examples"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL
 http://www.omg.org/spec/BPMN/2.0/20100501/BPMN20.xsd">

 <process id="osgiProcess" name="Osgi process">
 <startEvent id="start" />
 <sequenceFlow sourceRef="start"
 targetRef="serviceTask"/>
 <serviceTask id="serviceTask"
 activiti:delegateExpression="${testBean}" />
 <sequenceFlow sourceRef="serviceTask"
 targetRef="scripttask1"/>
 <scriptTask id="scripttask1"
 scriptFormat="groovy">
 <script>
 out:println "script task name " + customer.name;

Listing 9.11 Process definition using an OSGi service task

activiti−engine

activiti−osgi

book−osgi−engine

A
pa

ch
e

K
ar

af

Configures and starts the
Activiti process engine.

Modules to make the Activiti
Engine libraries available in
an OSGi environment. Every
new bundle is scanned for
process definitions and OSGi
Java delegates.

book−osgi−process

book−osgi−task

book−osgi−karaf

Makes the activiti:start
and activiti:list−definitions
console commands
available.

Deploys a service task
class.

Deploys a process
definition.

Figure 9.12 An overview of all the OSGi bundles that will have been deployed at the end of the Activiti
OSGi examples

Process key is
osgiProcessB

testBean is an
OSGi serviceC

219Deploying Activiti to an OSGi container
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="scripttask1"
 targetRef="end"/>
 <endEvent id="end"/>
 </process>
</definitions>

There’s nothing special about this process definition. You can start a new process
instance using the key osgiProcess B, like you’ll do in a few moments. But the inter-
esting part is the service task definition C. You’re using a delegateExpression defini-
tion of testBean, which references an OSGi service. And, finally, you print the name
of a customer process variable object to the console using a script task.

 You define the testBean OSGi service in a separate OSGi bundle in the book-osgi-
task project. In this project, you need to implement a service task class and define a
Blueprint configuration in the OSGi-INF/blueprint folder (see the following listing).

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="testBean"
 class="org.bpmnwithactiviti.osgi.TestBean" />

 <service ref="testBean"
 interface="org.activiti.engine.delegate.

 ➥ JavaDelegate" />

</blueprint>

The service task implementation TestBean is simple. What’s important is that the ser-
vice task implements the JavaDelegate interface because this interface will be used to
reference the service task from the BlueprintELResolver, as you’ll see in listing 9.13.
For the sake of completeness, here’s the TestBean implementation:

public class TestBean implements JavaDelegate {

 @Override
 public void execute(DelegateExecution execution) throws Exception {
 System.out.println("invoked TestBean !!!!!!!!!!!!!!!!!!!!");
 Customer customer = new Customer();
 customer.setName("test");
 execution.setVariable("customer", customer);
 }
}

Because you implement the JavaDelegate interface you’ve been using a lot in the
previous chapters, you don’t have to do anything special in the service task class
implementation.

 Let’s take a quick look back at figure 9.12 and see what’s left to develop. As you can
see, you’ve implemented all OSGi bundles, so what’s missing? We haven’t discussed the
BlueprintELResolver configuration yet. This configuration makes sure that the test-
Bean OSGi service is available to be used in a process instance in the Activiti Engine.

Listing 9.12 Blueprint definition of a service task class

220 CHAPTER 9 Exploring additional Activiti modules
 You already saw that a BlueprintELResolver instance was injected into the process
engine configuration (see listing 9.8). But you need to add a few lines to the same pro-
cess engine configuration file of the book-osgi-engine project to make your service
task bean available in the Activiti Engine (see the next listing).

<reference-list id="activityProviders"
 availability="optional"
 interface="org.activiti.engine.delegate.JavaDelegate"
 activation="eager">

 <reference-listener ref="blueprintELResolver"
 bind-method="bindService"
 unbind-method="unbindService"/>
</reference-list>

You already saw that you can define a reference to an OSGi service from another bundle.
Here, you see that you can also define a reference list of all OSGi services implementing
the ActivityBehavior interface. With the optional value in the availability attri-
bute, you tell the Blueprint container that the list can be empty.

 Then you make use of a neat feature of the Blueprint container. When something
changes in the reference list, the blueprintELResolver bean will be invoked. The
bindService method will be invoked when a new reference is found, and the unbind-
Service will be invoked only if a reference is removed.

 Now you’re all set. You can deploy the book-osgi-task and book-osgi-process
bundles to the Karaf container. Run the following two commands:

osgi:install -s mvn:org.bpmnwithactiviti/book-osgi-task/1.0.0
osgi:install -s mvn:org.bpmnwithactiviti/book-osgi-process/1.0.0

After the first command is executed, you should see the following message appear in
the Apache Karaf logging (log:tail):

added Activiti service to delegate cache testBean

This tells you that the service task class has been added to the cache discussed in list-
ing 9.13. When you run the log:tail command, you should see a message saying that
the example process definition has been processed:

Processing resource OSGI-INF/activiti/example.bpmn20.xml

Now you know the service task has been added to the cache and the process definition
has been parsed. Try running the activiti:list-definitions command now. You
should see the new process definition in the list with the key osgiProcess.

 But now you need a way to start a new process instance. You already installed the
activiti:start command as part of the book-osgi-karaf module. If you want to
look at the implementation code for this command, you can look for the StartIn-
stanceCommand class in this project. You can now run the following command to start
a new process instance:

activiti:start osgiProcess

Listing 9.13 Additional lines added to the context.xml file of the Blueprint project

221Summary
You should now see output that matches
the screenshot in figure 9.13.

 The invoked message is produced by
the service task class TestBean in the
book-osgi-task bundle. The rest of the
console output shows the output of the
script task: the process instance ID and a
Boolean value of the process end status.
That’s great, but wouldn’t it be cool if we
could redeploy the book-osgi-task bundle without changing the process definition?

 First, change the TestBean class in the book-osgi-task project and edit the
System.out call to invoked2. Next, build the module by running mvn clean install
in the project directory. Now, look up the bundle ID of the old book-osgi-task bun-
dle by running the osgi:list command.

 In the following lines, which should execute to redeploy the new book-osgi-task
bundle, we assume a bundle ID of 68:

osgi:uninstall 68
osgi:refresh mvn:org.bpmnwithactiviti/book-osgi-task/1.0.0
osgi:install mvn:org.bpmnwithactiviti/book-osgi-task/1.0.0
activiti:start osgiProcess

You can see that the invoked message has changed to invoked2.
 This example shows no production-like code, but it does show the possibilities

available when using the Karaf container to deploy the Activiti Engine and how you
can make the service task classes hot deployable.

 We’ve covered a lot of interesting stuff in this chapter; if you want more, take a
moment to rethink the possibilities shown in the examples. You can take this one step
further and do some experimenting with the chapter’s source code.

9.4 Summary
In the previous chapter, you learned how to run the process engine either embedded
in the application or on its own in the out-of-the-box Tomcat installation. But, for
enterprise deployments, the possibilities don’t stop there.

 First, you saw that the Activiti Spring module provides some useful additional func-
tionality. You can use a simple annotation to start a new process instance, and you can
use process-scoped variables.

 Then, we moved to a more complicated topic and installed the Activiti Engine as a
service in a JBoss application server to use it in a JEE 6 application. We also looked at
combining Activiti with CDI and at how you can develop web applications that can
communicate with processes via simple expressions and beans.

 Then, you saw how to run the Activiti Engine in an OSGi container with Apache
Karaf. By developing OSGi bundles, you can separate the process definitions from the
service task implementations. You also learned how to communicate with the Activiti
Engine from the Karaf console by implementing custom command classes.

Figure 9.13 The Karaf console output after start-
ing a new process instance

222 CHAPTER 9 Exploring additional Activiti modules
 In the next chapter, we’ll approach the Activiti Engine from another angle as we
focus on the workflow, or human task functionality. You’re already familiar with the
Activiti Explorer’s default workflow and task management capabilities, but, in the next
chapter, you’ll discover the possibilities of integrating an LDAP server with Activiti and
implementing custom forms.

Part 3

Enhancing
 BPMN 2.0 processes

We’ve covered how to implement complex business or technical processes
with Activiti. But, how can you leverage additional components like a rule
engine, a document management system, and an ESB? In this part of the book,
we’ll be exploring possibilities for extending the Activiti process engine with
other great open source components. Note that, if you already want to create
your first process in a real-life project and learn about important Activiti Engine
administration knowledge, you can jump ahead to part 4.

 First up in chapter 10, we’ll discuss how to enhance the standard workflow
functionality with the four-eye principle, LDAP integration, and the BPMN 2.0
multi-instance construct. Then, in chapter 11, we’ll move on to communicat-
ing with external services and applications using Mule and Apache Camel.
Chapter 12 covers the usage of the Drools rule engine via the BPMN 2.0 busi-
ness rule task element. In chapter 13, we’ll discuss the functionality Activiti pro-
vides to the Alfresco document and records management system and explore
how to use CMIS to communicate with the Alfresco repository from a process
definition. Finally, in chapter 14, we’ll cover the integration with Activiti listen-
ers and Esper to produce a business activity monitoring dashboard.

Implementing
 advanced workflow
In the previous chapters, we implemented a lot of user tasks to deal with manual or
workflow functionality in a business process. By now, you’re also already familiar
with the technique of defining form properties to create forms in the Activiti
Explorer web application. But there’s a lot more to explore.

 When you’re dealing with tasks like “Organize a developer conference,” you
want to be able to structure tasks into subtasks. Imagine that you have that exact
task. You could break the work up into multiple subtasks like “Book venue,” “Invite
speakers,” and “Organize catering.” Activiti provides an API to create such subtasks.

 In addition, you’ll want to be able to assign a task or subtask to another person
and be informed when the task is completed. Activiti provides task delegation

This chapter covers
■ Learning about new workflow features, including

delegation and subtasks
■ Integrating Activiti with an LDAP server
■ Using the multi-instance BPMN construct for workflow
■ Advanced usage of Activiti forms
225

226 CHAPTER 10 Implementing advanced workflow
functionality that allows you to delegate a task to another person, and when this per-
son completes the task, the task will be placed in your inbox again.

 Activiti also provides support for more complex workflow functionality like the
four-eye principle. Think of a process where there are two user tasks, “Develop” and
“Test,” that should be executed by the same group of people, like the engineers
group. The four-eye principle ensures that the person who performs the “Develop”
task isn’t allowed to perform the “Test” task. There should be at least four eyes (two
people) involved in the execution of the two user tasks.

 In this chapter, we’ll go beyond the definition of a simple user task and make your
processes ready for more complex workflow requirements. First, we’ll look at several
additional workflow features around user tasks that are supported by the Activiti
Engine out of the box. We’ll introduce you to creating subtasks, delegating tasks to a
colleague, and implementing the four-eye principle.

 Then we’ll move on to managing the user identities outside of the Activiti Engine
database. In a lot of organizations, identity management is implemented in an LDAP
server. We’ll take a look at integrating the Activiti identity management functionality
with the Apache Directory Server (an LDAP server).

 In the third section, we’ll take a look at a new BPMN 2.0 construct called multi-
instance. By defining a user task with a multi-instance configuration, you can assign
multiple related user tasks to users or groups. This can be handy for review or
approval tasks where more than one person has to perform the user task.

 Finally, we’ll look at ways to enhance the task form handling for a user task in the
Activiti Explorer or a custom web application. In the previous chapters, we were
restricted in the simple form field types like string, date, and long. In this chapter,
you’ll see how to extend the form types for more complex form field requirements.

 That’s a lot of ground to cover. Let’s start with a number of workflow features
implemented in the Activiti user task element that are waiting to be used in the pro-
cess applications.

10.1 Going beyond a simple user task
The workflow functionality surrounding a user task doesn’t stop with claiming and
completing tasks in the Activiti Engine. In this section, we’ll be looking at more
advanced workflow patterns to support use cases where, for example, we need hierar-
chical tasks or want to delegate a specific task to another person. First, we’ll discuss
the concept of creating subtasks. Then, we’ll introduce a common management skill
called delegation. Finally, we’ll look at an implementation of the four-eye workflow
pattern using a task listener.

10.1.1 Working with subtasks

In a process definition, we can define a flat user task. BPMN 2.0 doesn’t talk about group-
ing user tasks into a parent task with multiple subtasks, but there are a lot of cases where
there’s a need for hierarchies in tasks. For example, when you’re planning a wedding,

227Going beyond a simple user task
there are a lot of subtasks related to this large parent task, such as inviting the guests,
hiring a wedding location, choosing the dinner menu, and so on.

 The Activiti Engine provides functionality to create a subtask for a specific user
task. The next listing presents a unit test that uses the TaskService interface to create
subtasks.

public class SubTaskTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem.xml");

 @Test
 public void completeSubTasks() {
 TaskService taskService = activitiRule.getTaskService();
 Task parentTask = taskService.newTask();
 parentTask.setAssignee("kermit");
 taskService.saveTask(parentTask);
 createSubTask("fozzie", parentTask.getId());
 createSubTask("gonzo", parentTask.getId());
 List<Task> taskList = taskService.getSubTasks(
 parentTask.getId());
 assertEquals(2, taskList.size());
 taskService.complete(taskList.get(0).getId());
 taskService.complete(taskList.get(1).getId());
 taskList = taskService.getSubTasks(parentTask.getId());
 assertEquals(0, taskList.size());

 List<HistoricTaskInstance> historicTaskList =
 activitiRule.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .finished()
 .list();
 assertEquals(2, historicTaskList.size());

 taskService.complete(parentTask.getId());

 historicTaskList = activitiRule.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .finished()
 .list();
 assertEquals(3, historicTaskList.size());

 cleanUpTaskHistory();
 }

 private void cleanUpTaskHistory() {
 List<HistoricTaskInstance> historicTaskList =
 activitiRule.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .finished()
 .list();

 List<String> taskIds = new ArrayList<String>();
 for (HistoricTaskInstance historicTaskInstance :
 historicTaskList) {

Listing 10.1 A unit test showing the functionality to create subtasks

Creates
parent

user task

B

Creates
subtask

C

Gets all
subtasksD

Completes
second
subtaskE

Completes
parent task

F

All tasks are
completed
nowG

228 CHAPTER 10 Implementing advanced workflow
 assertNotNull(historicTaskInstance.getEndTime());
 taskIds.add(historicTaskInstance.getId());
 }

 for(String taskId : taskIds) {
 activitiRule.getHistoryService()
 .deleteHistoricTaskInstance(taskId);
 }
 }

 private void createSubTask(String assignee,
 String parentTaskId) {

 TaskService taskService = activitiRule.getTaskService();
 Task subTask = taskService.newTask();
 subTask.setAssignee(assignee);
 subTask.setParentTaskId(parentTaskId);
 taskService.saveTask(subTask);
 }
}

In this example, you don’t use a process definition. You can easily create user tasks
without the need for a process definition, and doing so makes it easier to show the use
of subtasks.

 The first step in the unit test is to create a parent user task B. The Activiti Engine
has created a user task assigned to Kermit.

 Then, you can use the identifier of this parent task to create a subtask C. Two sub-
tasks are created and assigned to Fozzie and Gonzo. To retrieve the subtasks of a spe-
cific user task, you can now use the getSubTasks method on the TaskService with the
parent task identifier as an input parameter D.

 The subtasks are created like normal user tasks, but they have a parent task identi-
fier pointing to the parent user task. Despite this difference, you can complete the
individual subtasks just like you do with a standard user task E.

NOTE When the subtasks of a parent user task are all completed, the parent
user task will not be automatically completed. You’ll have to explicitly com-
plete the parent user task as well.

With the subtasks completed, you now need to complete the parent user task F.
When you query the history tables of the Activiti Engine for finished user tasks, you
should see that all three user tasks (the parent task and the two subtasks) have been
completed G.

 The unit test in listing 10.1 showed the default way of dealing with subtasks. First, the
subtasks are completed, and then the parent user task. In the next listing, you’ll see that
you can also complete a parent user task without the subtasks being completed.

@Test
public void completeSubTasksViaParentTask() {
 TaskService taskService = activitiRule.getTaskService();

Listing 10.2 Completing a parent user task before the subtasks have been completed

Cleans up created
user tasks

Sets parent
task identifier

229Going beyond a simple user task
 Task parentTask = taskService.newTask();
 parentTask.setAssignee("kermit");
 taskService.saveTask(parentTask);
 createSubTask("fozzie", parentTask.getId());
 createSubTask("gonzo", parentTask.getId());
 List<Task> taskList = taskService.getSubTasks(
 parentTask.getId());
 assertEquals(2, taskList.size());
 taskService.complete(parentTask.getId());
 taskList = taskService.getSubTasks(parentTask.getId());
 assertEquals(0, taskList.size());
 List<HistoricTaskInstance> historicTaskList =
 activitiRule.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .finished()
 .list();
 assertEquals(3, historicTaskList.size());
 cleanUpTaskHistory();
}

This unit test method is implemented in the same SubTaskTest unit test class dis-
cussed in listing 10.1. The first part of the unit test is very similar to that listing. You
start with creating a parent user task and two subtasks B. But, here, you complete the
parent user task C before the subtasks.

 In this listing, when you query the Activiti Engine for subtasks of the completed
parent user task, you get zero tasks back D. This is the result of completing the parent
user task. When a parent user task is completed, the subtasks are automatically com-
pleted as well, so when you query the Activiti Engine for finished task instances, you
get three results: the parent user task and the two subtasks.

 As you saw in the previous examples, it’s easy to create subtasks on a parent user
task. For a user task in a process definition, you could automate creating subtasks by
implementing a task listener on the user task. This task listener could create a speci-
fied number of subtasks when the user task is created. The following code snippet
shows how you can implement this:

public class SubTaskListener implements TaskListener {

 private Expression subTaskList;

 @Override
 public void notify(DelegateTask delegateTask) {
 ProcessEngine processEngine = ProcessEngines.getProcessEngines()
 .get(ProcessEngines.NAME_DEFAULT);
 TaskService taskService = processEngine.getTaskService();
 @SuppressWarnings("unchecked")
 List<String> subTaskNames = (List<String>)
 subTaskList.getValue(delegateTask.getExecution());
 for(String subTaskName : subTaskNames) {

 Task subTask = taskService.newTask();
 subTask.setName(subTaskName);
 subTask.setAssignee("kermit");

Creates
subtask

B

Completes
parent task

C

Retrieves all
subtasksD

230 CHAPTER 10 Implementing advanced workflow
 subTask.setParentTaskId(delegateTask.getId());
 taskService.saveTask(subTask);
 }
 }

 public void setSubTaskList(Expression subTaskList) {
 this.subTaskList = subTaskList;
 }
}

When a user task is created in a process definition that has a task listener configura-
tion on a create task event, this TaskListener will be invoked. Then, the Activiti
Engine retrieves a process variable containing a list of subtask names from the process
context and create a subtask for every name in that list. This example needs some pol-
ishing before you could use it in an enterprise context, but it shows that you can cre-
ate subtasks in a process instance without lots of coding.

 Another way to create subtasks in a parent user task is by using the Activiti
Explorer. For example, when a process instance has created a user task, you can use
the Activiti Explorer to create a number of subtasks on the fly. Figure 10.1 shows an
example of a user task where a subtask called “Expense analysis” has been created.

Figure 10.1 The Activiti Explorer, highlighting the functionality that creates subtasks

231Going beyond a simple user task
By defining a name for the subtask, a new subtask is created and you can click through
to that subtask to assign it to a user or group.

 Let’s move on to the next workflow feature we want to discuss—delegation.

10.1.2 Delegating tasks

Delegating a task means transferring the task
to another person; then, once it’s done, the
user task will be assigned back to the person
who delegated the task so it can be reviewed
and completed. Figure 10.2 outlines the
default sequence of steps that are involved
when delegating a user task.

 When a user task is created in a process
instance or as an ad hoc user task, it first only
has a name and a unique identifier. In the
example shown in figure 10.2, there’s a user
task named Process Sales Order. When you
want to delegate a user task in Activiti, it’s
important that the user task has an owner. In
this example, the owner is set to Kermit.
Then Kermit can delegate the task to another
user, such as Fozzie. At that point, the user
task has an assignee named Fozzie and an
owner named Kermit. This means that when
you query the Activiti Engine for user tasks
assigned to Kermit, you won’t retrieve this
task anymore. Only Fozzie can work on it.

 Then, the most interesting step of delegat-
ing a user task is executed. When Fozzie com-
pletes the task, the assignee of the user task
will be set to Kermit because he’s the one
who delegated the task and is the owner. So the user task will not be completed; the
assignee value is just changed to the value of the user task owner.

NOTE Resolving a user task is something other than completing a user task, and it’s
implemented via another TaskService method, as you’ll soon see in listing 10.3.

Let’s look at a unit test example in the next listing, which shows how you can use the
task delegation features of the Activiti Engine using the TaskService interface.

public class DelegateTaskTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(

Listing 10.3 Unit test example showing the task delegation functionality

Task: process sales order

Task: process sales order
Owner: Kermit

Task: process sales order
Owner: Kermit
Assignee: Kermit

Task: process sales order
Owner: Kermit
Assignee: Fozzie

Set owner to Kermit

Delegate task to Fozzie

Fozzie resolves task

Figure 10.2 The default flow of steps when
delegating a user task. In this example, Ker-
mit delegates a task to Fozzie.

232 CHAPTER 10 Implementing advanced workflow
 "activiti.cfg-mem.xml");

 @Test
 public void delegateTask() {
 TaskService taskService = activitiRule.getTaskService();
 Task delegateTask = taskService.newTask();
 delegateTask.setOwner("kermit");
 taskService.saveTask(delegateTask);
 Task queryTask = taskService.createTaskQuery()
 .singleResult();
 assertEquals("kermit", queryTask.getOwner());
 assertNull(queryTask.getAssignee());
 taskService.delegateTask(
 delegateTask.getId(), "fonzie");
 queryTask = taskService.createTaskQuery().singleResult();
 assertEquals("fonzie", queryTask.getAssignee());
 assertEquals(DelegationState.PENDING,
 queryTask.getDelegationState());
 taskService.resolveTask(delegateTask.getId());
 queryTask = taskService.createTaskQuery().singleResult();
 assertEquals("kermit", queryTask.getAssignee());
 assertEquals(DelegationState.RESOLVED,
 queryTask.getDelegationState());
 taskService.complete(delegateTask.getId());
 List<HistoricTaskInstance> historicTaskList =
 activitiRule.getHistoryService()
 .createHistoricTaskInstanceQuery()
 .list();
 assertEquals(1, historicTaskList.size());
 for (HistoricTaskInstance historicTaskInstance :
 historicTaskList) {

 assertNotNull(historicTaskInstance.getEndTime());
 }
 }
}

In this example, you first create a user task and set the task owner to Kermit B. Then
you delegate the user task to Fozzie using the delegateTask method C. Now the user
task has an assignee value of Fozzie and the Activiti Engine also maintains a Delega-
tionState value, which is PENDING at first. PENDING means that the person to whom
the task is delegated to still has to complete the work.

 When Fozzie has finished his work, the user task is resolved using the resolveTask
method D. When this method is invoked, the Activiti Engine processes the delegation
logic and sets the assignee to the task owner, which is Kermit in this example E. The
DelegationState is also changed to RESOLVED at that point.

 Kermit can now complete the user task when he chooses to.
 Task delegation is an interesting workflow feature that you can use for ad hoc tasks,

but also for user tasks in process definitions. In the previous subsection about sub-
tasks, you saw that you can use a task listener to implement additional workflow fea-
tures in a process definition; that would also work well for task delegation.

Kermit is
task owner

B

Kermit delegates
task to Fozzie

C

Fozzie
resolves task

D

Kermit
becomes
assigneeE

233Going beyond a simple user task
 Because task delegation isn’t implemented in the Activiti Explorer, this completes
our delegation discussion. We’ll now move on to implementing the four-eye principle,
which isn’t supported by the Activiti Engine out of the box.

10.1.3 Implementing the four-eye principle

A commonly used workflow pattern is the four-eye principle. Imagine you have two
user tasks, “Develop solution” and “Review solution” in a process, and both tasks are
assigned to the same engineering group. Kermit claims and completes the first user
task, and then Kermit also wants to claim the review user task. The four-eye principle
prohibits Kermit from claiming the “Review solution” user task because he also com-
pleted the first user task. According to the four-eye principle, the Review Solution user
task must be performed by a second pair of eyes, which explains the name of the prin-
ciple.

 The Activiti Engine doesn’t support the four-eye principle pattern by default, but
you can implement this functionality without a lot of coding. What you need is a piece
of logic that checks that the person who claims the second user task isn’t the person
who claimed and completed the first user task.

 You can implement a task listener that’s executed when someone claims the user
task. Let’s look at the task listener implementation in the following listing.

public class FourEyesListener implements TaskListener {

 private FixedValue otherTaskId;
 private FixedValue processEngineName;

 @Override
 public void notify(DelegateTask delegateTask) {
 String name = null;
 if(processEngineName != null) {

 name = processEngineName.getExpressionText();
 } else {
 name = ProcessEngines.NAME_DEFAULT;
 }
 ProcessEngine processEngine =
 ProcessEngines.getProcessEngines().get(name);
 HistoryService historyService =
 processEngine.getHistoryService();
 HistoricTaskInstance historicTask = historyService
 .createHistoricTaskInstanceQuery()
 .processInstanceId(delegateTask.getProcessInstanceId())
 .taskDefinitionKey(
 otherTaskId.getExpressionText())
 .singleResult();

 if(historicTask == null) {
 throw new ActivitiException("The previous task " +
 otherTaskId.getExpressionText() +
 " could not be found");

Listing 10.4 Task listener that implements the four-eye principle

Sets the default
process engine
name

B

Retrieves
process engineC

Retrieves other
task instanceD

234 CHAPTER 10 Implementing advanced workflow
 }

 String claimer = delegateTask.getAssignee();
 String previousAssigneee = historicTask.getAssignee();

 if(claimer.equalsIgnoreCase(previousAssigneee)) {
 throw new ActivitiException("Assignee of task " +
 otherTaskId.getExpressionText() +
 " is not allowed to claim this task");
 }
 }

 public void setOtherTaskId(FixedValue otherTaskId) {
 this.otherTaskId = otherTaskId;
 }

 public void setProcessEngineName(
 FixedValue processEngineName) {
 this.processEngineName = processEngineName;
 }
}

This task listener implementation is designed to be reusable in your process defini-
tions, so the process engine name can be overridden in the task listener configuration
in the process definition. If you don’t override the name, the default value is used B
to retrieve the process engine from the cache C. When a process engine is created in
the Activiti Explorer or by using the Java API, it’s registered in the cache of the
ProcessEngines singleton.

 With the process engine instance available, you can implement the four-eye princi-
ple logic. First, you have to retrieve the previous user task completed by some user.
The task identifier of the previous user task needs to be set as a field property in the
Activiti listener configuration, as you’ll see in listing 10.5. Then this task identifier is
used to retrieve the user task via the HistoryService D.

 Then, you can check whether the person who tries to claim the second user task
is the same as the assignee of the first user task E. If the values are the same, an
ActivitiException is thrown and the user task will not be claimed.

 The next listing shows how you can use this newly created task listener. This small
process definition example configures this task listener on the second user task.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/foureyes">

 <process id="fourEyesProcess">
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="firstTask" />
 <userTask id="firstTask"
 activiti:candidateGroups="sales" />
 <sequenceFlow sourceRef="firstTask"
 targetRef="secondTask" />

Listing 10.5 Example process definition using the four-eye task listener

Checks if
assignee isn’t
the same

E

Assigns to candidate
group sales

B

235Going beyond a simple user task
 <userTask id="secondTask"
 activiti:candidateGroups="sales">
 <extensionElements>
 <activiti:taskListener
 class="org.bpmnwithactiviti.chapter10.

 ➥ foureyes.FourEyesListener"
 event="assignment">
 <activiti:field name="otherTaskId"
 stringValue="firstTask" />
 </activiti:taskListener>
 </extensionElements>
 </userTask>
 <sequenceFlow sourceRef="secondTask"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

The process definition consists of two user tasks directly connected via a sequence
flow. Both user tasks have the sales group defined as their candidate group B. The
second user task, to which you want to apply the four-eye principle, has a task listener
configured C so that it corresponds to the implementation in listing 10.4. The
otherTaskId field property is set to reference the first user task D.

 With the task listener implementation and process definition in place, you can
now easily create a unit test to test the solution. Because you want to use the default
process engine configuration, you need to initialize the process engine without the
help of the Activiti test classes. The ActivitiRule test class initializes the process
engine without registering it in the ProcessEngines cache. The following listing
shows the unit test implementation.

public class FourEyesTest extends AbstractTest {

 @Test
 public void validateFourEyes() {
 ProcessEngine processEngine = ProcessEngineConfiguration
 .createProcessEngineConfigurationFromResource(
 "activiti.cfg-mem.xml")
 .setProcessEngineName(
 ProcessEngines.NAME_DEFAULT)
 .buildProcessEngine();

 processEngine.getRepositoryService().createDeployment()
 .addClasspathResource(
 "chapter10/foureyes/fourEyes.bpmn20.xml")
 .name("fourEyes")
 .deploy();

 processEngine.getRuntimeService()
 .startProcessInstanceByKey("fourEyesProcess");

 TaskService taskService = processEngine.getTaskService();
 Task firstTask = taskService

Listing 10.6 Testing the four-eye task listener implementation

Configures four-eye
task listener

C

References first
user taskD

Creates default
process engine

B

Deploys four-
eye process
definitionC

236 CHAPTER 10 Implementing advanced workflow
 .createTaskQuery()
 .singleResult();
 taskService.claim(firstTask.getId(), "kermit");
 taskService.complete(firstTask.getId());

 Task secondTask = taskService
 .createTaskQuery()
 .singleResult();

 try {
 taskService.claim(secondTask.getId(), "kermit");
 fail("Expected claim error");
 } catch(ActivitiException e) {
 // claim error expected
 }

 secondTask = taskService
 .createTaskQuery()
 .taskId(secondTask.getId())
 .singleResult();
 assertNull(secondTask.getAssignee());

 taskService.claim(secondTask.getId(), "gonzo");
 taskService.complete(secondTask.getId());
 }
}

As you’ve learned, you can’t use the ActivitiRule test support class because the pro-
cess engine is registered in the cache being used in the listener implementation (see
listing 10.4), so you must build the process engine with a default process name your-
self B. Then you deploy the process definition discussed in listing 10.5 to the process
engine C.

 When the process instance is started, the first user task is created and claimed and
completed by Kermit D. The process instance then creates the second user task. First,
you try to claim the user task with the Kermit user. But, because Kermit also has
claimed and completed the first user task, the four-eye task listener throws an Activi-
tiException E. Then, you claim and complete the user task using the user Gonzo F
because he’s allowed to claim the user task.

 Task listeners provide nice integration points in the Activiti Engine and user tasks
in particular, which helps to implement workflow patterns without a lot of additional
coding. The four-eye principle is just one example that demonstrates this. Now let’s
move on to the topic of managing user and group identities. In the next section, we’ll
take a look at how to integrate an LDAP server with the Activiti Engine.

10.2 Managing the user identities in an LDAP server
By default, the Activiti Engine uses a couple of database tables to manage the user and
group identities. We’ve worked with the demo users Kermit and Fozzie in the previous
examples. But a typical organization has a centralized solution for managing the user
and group identities for all the applications in the organization. In many cases, an
LDAP server is chosen as the identity management solution.

Completes first
user taskD

Doesn’t allow
Kermit to claim
user taskE

Allows Gonzo to
claim user task

F

237Managing the user identities in an LDAP server
 In this section, you’ll learn how to use an LDAP server for managing the user and
group identities available to the Activiti Engine. You’ll use the open source Apache
Directory Server to implement the examples. Let’s first install the Apache Directory
Server before we dive into Activiti’s user and group management classes.

10.2.1 Installing Apache Directory Server

The Apache Directory Server project provides you with an LDAP server, an Eclipse
plugin to manage the LDAP server, and an LDAP client API framework. We’ll use all
these products in this section.

 First, you can install the LDAP server by selecting the latest ApacheDS release from
http://directory.apache.org. In the examples in this book, I’ve used ApacheDS 1.5.7.
Go through the installation screens and accept the default options. Once it’s installed,
you’ll have an LDAP server running on port 10389.

 Next, you can install the latest version of the Apache Directory Studio from the
same website. This will install an Eclipse product with the Apache Directory Studio
plugins preinstalled. The studio eases the administration of the LDAP server a lot, so
let’s start it up.

 First you need to add a new connection in the Apache Directory Studio to the
ApacheDS LDAP server. Choose File > New from the toolbar, go to LDAP Browser >
LDAP Connection, and click Next. There, you can fill in the connection settings for
the ApacheDS LDAP server you installed (see figure 10.3).

Figure 10.3 The wizard that creates a new LDAP connection in the Apache Directory Studio,
showing the connection settings

238 CHAPTER 10 Implementing advanced workflow
When you’ve filled in the connection settings, you need to enter the authentication
parameters before you can connect with the LDAP server. Figure 10.4 shows the
default authentication settings for the ApacheDS LDAP server.

 This is the default administrator user that’s created by the ApacheDS LDAP server
installation script you ran at the beginning of this section:

Bind DN or user: uid=admin,ou=system
Bind password: secret

Now you can click Finish, and the LDAP browser will show the entries in the ApacheDS
LDAP server. When you collapse the ou=system entry, you’ll see that there’s a
uid=admin entry.

 Now you need to create a couple of users and groups that you’ll later use to test the
integration between the Activiti Engine and the ApacheDS LDAP server. Right-click
the ou=users entry and choose New > New Entry. In the wizard’s pop-up menu,
choose the “Create Entry from Scratch” option. In the list of object classes, choose the
inetOrgPerson class, which represents a user entry in the LDAP server. Then, choose
the user identifier to complete the creation of the new user.

 In figure 10.5, you add a user with a unique identifier, uid, of Kermit. When you click
Next, you’ll see the last page of the wizard, where you have to fill in the sn (surname)

Figure 10.4 The authentication parameters needed to make a connection to the ApacheDS
LDAP server using the default administrator user

239Managing the user identities in an LDAP server
and cn (complete name) attributes. When you click Finish, the user entry is created in
the ApacheDS LDAP server.

 If you also want to store the password value for the Kermit user in the LDAP server,
you need to add an additional attribute to the uid=kermit entry. When you click the
newly created user entry in the LDAP browser, you get an overview of the attributes in
the main panel of the Apache Directory Studio. When you right-click in the Attributes
view, you can choose New Attribute. Then you can select the userPassword attribute
from the list, as shown in figure 10.6.

Figure 10.5 The New Entry wizard showing a new user entry for the user Kermit

Figure 10.6 Adding a new userPassword attribute to complete the credentials
for the newly created user entry

240 CHAPTER 10 Implementing advanced workflow
Then you can click Finish and enter a password of your choice. (In the examples, I’ve
used kermit as the password.) This completes the steps needed to create a new user
entry in the ApacheDS LDAP server. You can add additional users using the same steps.

 Now you need to add two group entries so you can test the group functionality of
the Activiti Engine’s IdentityService interface. Right-click the ou=groups entry in
the LDAP browser and choose New > New Entry again. Also choose “Create Entry from
Scratch” again, like you did when adding a new user entry. Next, you have to choose
the object class groupOfUniqueNames, which means that you define a group entry
where you can add unique user entries; no duplicate user entries are allowed. Then
you need to define the name of the group entry by setting the cn attribute, as shown
in figure 10.7.

 When you have defined the group name manager, you can add a unique member
in the next screen of the wizard. Here, you can add the Kermit user entry you created
a few moments ago. To reference Kermit, you have to use the following value in the
unique member field:

uid=kermit,ou=users,ou=system

If there are more users available, you can add them by creating a new uniqueMember
attribute in the group entry.

 To complete the group setup, create a group named sales by following the same
steps you did for the manager group entry. You’re all set up now to implement the
logic needed to integrate the Activiti Engine with the ApacheDS LDAP server. You’ve

Figure 10.7 Defining the group name by setting the cn attribute in the New Entry wizard

241Managing the user identities in an LDAP server
created a Kermit user and two groups, manager and sales, where you added the Ker-
mit user entry. Let’s implement the LDAP query logic and configure the Activiti
Engine to use the new user and group manager classes.

10.2.2 Writing LDAP query logic for the Activiti Engine

Implementing a different identity management solution for the Activiti Engine isn’t
hard. The Activiti Engine provides integration points that you can implement to
access an identity management solution of your choice. The integration points are
separated in a user manager and a group manager class. We’ll start with the user man-
ager, which provides capabilities to query the Activiti Engine for users and validates
the user’s credentials.

 First, you have to implement the Activiti Engine SessionFactory interface to cre-
ate a factory class for the user manager.

public class LDAPUserManagerFactory
 implements SessionFactory {

 private LDAPConnectionParams connectionParams;

 public LDAPUserManagerFactory(
 LDAPConnectionParams params) {
 this.connectionParams = params;
 }

 @Override
 public Class<?> getSessionType() {
 return UserManager.class;
 }

 @Override
 public Session openSession() {
 return new LDAPUserManager(connectionParams);
 }
}

When you create a new instance of the LDAPUserManagerFactory, the connection
parameters needed to communicate with the ApacheDS LDAP server are provided.
You’ll see the definition of these parameters in the Spring configuration later on, in
listing 10.10. The LDAPConnectionParams class is simple and is just a container for the
connection parameters:

public class LDAPConnectionParams {

 private String ldapServer;
 private int ldapPort;
 private String ldapUser;
 private String ldapPassword;

 // getters and setters
}

Listing 10.7 Implement the SessionFactory interface to create a new user manager

Implements
user manager

B

Creates LDAP
user manager

C

242 CHAPTER 10 Implementing advanced workflow
The Activiti Engine needs to know what kind of manager will be created with this fac-
tory class, so you have to implement the getSessionType method and specify that
you’ll implement a UserManager type B. And, finally, you have to implement the
openSession method to create a new instance of the LDAPUserManager C that con-
tains the LDAP query logic needed for the user manager.

 That brings us immediately to the user manager class that contains the communi-
cation and query logic for the ApacheDS LDAP server: the LDAPUserManager. We’ll look
at this class in two parts because it’s a larger class as a result of the LDAP query logic.

public class LDAPUserManager extends UserManager {

 private static final String USER_GROUP =
 "ou=users,ou=system";

 private LDAPConnectionParams connectionParams;

 public LDAPUserManager(LDAPConnectionParams params) {
 this.connectionParams = params;
 }

 @Override
 public User createNewUser(String userId) {
 throw new ActivitiException(
 "LDAP user manager doesn't support creating a new user");
 }

 @Override
 public Boolean checkPassword(String userId,
 String password) {

 boolean credentialsValid = false;
 LdapConnection connection = new LdapConnection(
 connectionParams.getLdapServer(),
 connectionParams.getLdapPort());
 try {
 BindResponse response = connection.bind(
 "uid=" + userId + "," + USER_GROUP, password);
 if(response.getLdapResult().getResultCode() ==
 ResultCodeEnum.SUCCESS) {

 credentialsValid = true;
 }
 } catch (Exception e) {
 throw new ActivitiException(
 "LDAP connection bind failure", e);
 }
 LDAPConnectionUtil.closeConnection(connection);
 return credentialsValid;
 }
}

In this first part of the LDAPUserManager implementation, you can see that it’s imple-
mented as a subclass of the Activiti UserManager class B. The UserManager class is the

Listing 10.8 Part 1 of the LDAP user manager implementation

Subclass of Activiti
UserManagerB

Overrides
default methods

C

Opens connection
to LDAP server

D

Authenticates
to LDAP serverE

243Managing the user identities in an LDAP server
default implementation used to query for users in the Activiti database. That’s also why
you have to override several methods that deal with creating, deleting, and updating a
user entry, as you see here with the createNewUser method C. Because you’re manag-
ing the user identities in an LDAP server, you don’t want the Activiti Engine to modify
it; that’s only allowed by LDAP administrators who manage the identities using, for exam-
ple, the Apache Directory Studio. Therefore, you throw an ActivitiException when
these methods are invoked. This listing only includes the createNewUser method, but,
in the book’s source code you can see that more of these methods are overridden.

 The checkPassword method is invoked when the Activiti Engine wants to validate
the user credentials. This is done when a user logs in to the Activiti Explorer and the
Activiti REST API. To be able to validate the credentials, you need to open a connec-
tion to the ApacheDS LDAP server D. Then you can authenticate with the user identi-
fier and the provided password E. The outcome of the authentication request is the
result of the checkPassword method.

 But you don’t only want to check a user’s credentials. You also want to be able to
query the Activiti Engine for users. That’s done via the findUserByQueryCriteria
method, which is shown in part 2 of the LDAPUserManager class.

@Override
public List<User> findUserByQueryCriteria(
 Object query, Page page) {
 List<User> userList = new ArrayList<User>();
 UserQueryImpl userQuery = (UserQueryImpl) query;
 StringBuilder searchQuery = new StringBuilder();
 if(StringUtils.isNotEmpty(userQuery.getId())) {
 searchQuery.append("(uid=").append(
 userQuery.getId()).append(")");

 } else if(StringUtils.isNotEmpty(
 userQuery.getLastName())) {

 searchQuery.append("(sn=").append(
 userQuery.getLastName()).append(")");
 } else {
 searchQuery.append("(uid=*)");
 }
 LdapConnection connection = LDAPConnectionUtil
 .openConnection(connectionParams);
 try {
 Cursor<SearchResponse> cursor = connection.search(
 USER_GROUP, searchQuery.toString(),
 SearchScope.ONELEVEL, "*");
 while (cursor.next()) {
 User user = new UserEntity();
 SearchResultEntry response =
 (SearchResultEntry) cursor.get();
 Iterator<EntryAttribute> itEntry =
 response.getEntry().iterator();
 while(itEntry.hasNext()) {

Listing 10.9 Part 2 of the LDAP user manager implementation

Adds user
ID to query

B

Searches with
surname (sn)

C

Gets all
usersD

Queries
LDAP serverE

Maps LDAP user
to Activiti userF

244 CHAPTER 10 Implementing advanced workflow
 EntryAttribute attribute = itEntry.next();
 String key = attribute.getId();
 if("uid".equalsIgnoreCase(key)) {
 user.setId(attribute.getString());
 } else if("sn".equalsIgnoreCase(key)) {
 user.setLastName(attribute.getString());
 } else if("cn".equalsIgnoreCase(key)) {
 user.setFirstName(attribute.getString().substring(
 0, attribute.getString().indexOf(" ")));
 }
 }
 userList.add(user);
 }
 cursor.close();
 } catch (Exception e) {
 throw new ActivitiException(
 "LDAP connection search failure", e);
 }
 LDAPConnectionUtil.closeConnection(connection);
 return userList;
}

This second part of the LDAPUserManager class contains a bit more logic related to
the implementation of the LDAP user query. You have to be able to define an LDAP
query matching the values provided by the UserQueryImpl input parameter. In this
example, you can use the user identifier B and the last name C set in the query
parameter instance. There are also other query parameters that you can set when
using the createUserQuery method of the Activiti Engine IdentityService. You
may want to support all of these query parameters, and that’s possible by adding
more attributes to the user entry attributes in the LDAP server. But, for this exam-
ple, you stop with supporting the user identifier and last name parameters. In addi-
tion, when no query parameter is set in the UserQueryImpl instance, you query the
LDAP server for all users D.

 When the query is defined, you can connect to the ApacheDS LDAP server and
query it using the query string E. Note that you also use the USER_GROUP class attri-
bute that tells the LDAP server to only look in the ou=users,ou=system entry. When
you get a response from the LDAP server, you map every retrieved user entry to an
Activiti Engine User instance F.

 In the book’s source code, you can find an implementation similar to listings 10.7
to 10.9 for the LDAP group manager: one queries for users belonging to a specific
group and the other gets all available groups. In the book’s source code, you can look
at the LDAPGroupManagerFactory and LDAPGroupManager classes for the implementa-
tion details.

 Now that you have the implementation classes, you still need to register them in
the Activiti Engine configuration. The following listing shows a sample Activiti Engine
configuration using an in-memory database and the LDAP user and group manager.

245Managing the user identities in an LDAP server
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.

 ➥ StandaloneInMemProcessEngineConfiguration">

 <property name="databaseSchemaUpdate" value="true" />
 <property name="customSessionFactories">
 <list>
 <bean class="org.bpmnwithactiviti.chapter10.ldap.

 ➥ LDAPUserManagerFactory">
 <constructor-arg ref="ldapConnectionParams" />
 </bean>
 <bean class="org.bpmnwithactiviti.chapter10.ldap.

 ➥ LDAPGroupManagerFactory">
 <constructor-arg ref="ldapConnectionParams" />
 </bean>
 </list>
 </property>
 </bean>

 <bean id="ldapConnectionParams"
 class="org.bpmnwithactiviti.chapter10.ldap.

 ➥ LDAPConnectionParams">
 <property name="ldapServer" value="localhost" />
 <property name="ldapPort" value="10389" />
 <property name="ldapUser"
 value="uid=admin,ou=system" />
 <property name="ldapPassword" value="secret" />
 </bean>
</beans>

The difference between this Activiti Engine with LDAP configuration and a default
Activiti Engine configuration is the use of the customSessionFactories property.
This property allows you to override the default user and group managers by defining
the factory classes B C. As you can see, you can use Spring bean injection to pass
along the LDAP connection parameters D to the constructor of the factory classes.

 In the book’s source code, you can find two unit tests, LDAPUserTest and LDAP-
GroupTest, that use this example Activiti Engine configuration and fire a couple of
tests using the IdentityService interface.

 You now have a good overview of what needs to be done to integrate Activiti with an
LDAP server or another identity management solution. It’s time to move on to another
workflow feature of the Activiti Engine. We’ll be looking at a whole new BPMN 2.0 ele-
ment that we haven’t used before: the multi-instance construct.

Listing 10.10 Example Activiti Engine configuration with LDAP integration

Registers user
manager factory

B

Registers group
manager factory

C

Specifies LDAP
connection settings

D

246 CHAPTER 10 Implementing advanced workflow
10.3 Implementing the BPMN 2.0 multi-instance activity
When you want to implement a review process with Activiti, you need a way to add a
user task for every reviewer. And, suppose you want at least 75 percent of the reviewers
to complete the user task before the review can be considered finished. This kind of
functionality is what the multi-instance construct adds to the BPMN 2.0 palette.

 A multi-instance activity is used to create multiple instances of an activity like in a
for-each construct. You can configure all task activities (like service and user task),
embedded subprocesses, and call activities to be a multi-instance activity. For example,
if you define a service task as a multi-instance activity, the same service task will be exe-
cuted multiple times.

 You can define a multi-instance activity to run
sequentially or in parallel. Furthermore, you can
define how many instances must be created. Fig-
ure 10.8 shows a parallel multi-instance user task
and a sequential multi-instance service task.

 You can see that a parallel multi-instance
activity (user task) has a different icon than the
sequential multi-instance activity (service task).
Also note that, for a service task, there’s techni-
cally no difference between a parallel and sequential multi-instance definition
because the instances are always executed after each other. But, for a user task and
also for an embedded subprocess, there’s a big difference. For a parallel user task, the
user task instances are created all at once, whereas, for a sequential user task, they are
created after each other .

 Before you implement a workflow example using a multi-instance definition, let’s
take a look at the different configuration options.

10.3.1 Configuring a multi-instance activity

Let’s start with a simple multi-instance definition for a user task that creates three par-
allel instances of the review user task:

<userTask id="reviewTask">
 <multiInstanceLoopCharacteristics isSequential="false">
 <loopCardinality>3</loopCardinality>
 </ multiInstanceLoopCharacteristics>
</userTask>

The multi-instance definition is a child element of a task activity, embedded subpro-
cess, or call activity. You have to set the attribute isSequential to true or false for
sequential or parallel multi-instance activities. The number of instances can be
defined using the loopCardinality element. In this example, you set a static value
of 3, but you can also use process variables to define the number of instances:

<loopCardinality>${nrOfReviewers}</loopCardinality>

Figure 10.8 Multi-instance examples
showing a parallel multi-instance user
task and a sequential multi-instance ser-
vice task

247Implementing the BPMN 2.0 multi-instance activity
NOTE The loop cardinality value is processed only once, when the multi-
instance activity is created. When the process variable value changes during
the multi-instance activity execution, this doesn’t result in another number of
instances.

This is nice, but it gets more interesting if you pass a process variable containing a col-
lection and use the values of the collection for the user task assignment:

<userTask id="reviewTask"
 name="Review task ${loopCounter}"
 activiti:assignee="${reviewer}">
 <multiInstanceLoopCharacteristics isSequential="false">
 <loopDataInputRef>reviewersList</loopDataInputRef>
 <inputDataItem name="reviewer"/>
 </ multiInstanceLoopCharacteristics>
</userTask>

In this example, you have a process variable named reviewersList, which consists of
an array of string values. For every string value in the reviewers list, a new process vari-
able named reviewer is created in the context of the multi-instance user task. You can
use this reviewer process variable in the assignment definition (as you can see in the
code snippet). Implicit process variables are also created. For every instance of the
user task, a unique loopCounter value corresponding to an instance number is avail-
able. The loopCounter value ranges from 1 to the number of instances.

 The review task example has a list of reviewers that consists of an array of string val-
ues. But more often, you would have a piece of Java logic to retrieve the reviewers
from a database, for example. This can be implemented with the following Activiti
extension attributes:

 <userTask id="reviewTask"
 name="Review task ${loopCounter}"
 activiti:assignee="${reviewer}">
 <multiInstanceLoopCharacteristics isSequential="false"
 activiti:collection="${userService.getReviewers()}"
 activiti:elementVariable="reviewer"/>
 </userTask>

In this example, you have a userService process variable or Spring bean on which
you can invoke the getReviewers method.

 Another use of the multi-instance definition is a decision-making process. Because
you need multiple persons to vote for a decision, a multi-instance definition can help
to create a user task for every voter. In the next section, we’ll discuss an example show-
ing a simple decision process.

10.3.2 Implementing a multi-instance embedded process

A typical workflow requirement is to have review or decision functionality in a process
definition. And when multiple people are involved in the review or decision process, a
multi-instance definition can help to ease the complexity of the process definition. In
this section, we’ll implement a decision process where multiple people can vote for a

248 CHAPTER 10 Implementing advanced workflow
preliminary decision to be made final. Figure 10.9 shows the decision process defini-
tion, as modeled with the Activiti Modeler.

 In the first user task of the process, you have to provide information about the pre-
liminary decision and the participants. Then, multiple instances of the embedded
subprocess are created to allow each of the participants to vote for the final decision.
To make it easy to gather all votes, you add the vote to a process variable containing all
the votes. Finally, the outcome of the decision process is published.

 To implement this process definition in the Activiti Engine, you need a BPMN 2.0
XML definition, but also a number of Java service tasks. Let’s start with the BPMN 2.0
XML definition in the next listing. Don’t be distracted by the length of the listing; it
contains a lot of familiar constructs.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org/multiinstance">

 <process id="decisionProcess" name="Decision making process">
 <startEvent id="theStart">
 <extensionElements>
 <activiti:formProperty id="decisionInfo"
 name="Decision info"
 required="true"
 type="string" />
 <activiti:formProperty id="participants"
 name="Participants (comma separated)"
 required="true"
 type="string" />

Listing 10.11 BPMN 2.0 XML definition of the decision process

Figure 10.9 A decision process definition containing a multi-instance embedded sub-
process to allow multiple people to vote for the final decision

Provides comma-
separated participants

B

249Implementing the BPMN 2.0 multi-instance activity
 </extensionElements>
 </startEvent>
 <sequenceFlow sourceRef="theStart"
 targetRef="createAssigneeList" />
 <serviceTask id="createAssigneeList"
 activiti:class="org.bpmnwithactiviti.chapter10.

 ➥ multiinstance.CreateAssigneeList" />
 <sequenceFlow sourceRef="createAssigneeList"
 targetRef="decisionSubProcess"/>
 <subProcess id="decisionSubProcess">
 <multiInstanceLoopCharacteristics
 isSequential="false">
 <loopDataInputRef>assigneeList</loopDataInputRef>
 <inputDataItem name="assignee"/>
 <completionCondition>
 ${nrOfCompletedInstances/nrOfInstances > 0.5 }
 </completionCondition>
 </multiInstanceLoopCharacteristics>
 <startEvent id="theStartSubProcess" />
 <sequenceFlow sourceRef="theStartSubProcess"
 targetRef="decisionTask" />
 <userTask id="decisionTask" name="Decision task"
 activiti:assignee="${assignee}">
 <extensionElements>
 <activiti:formProperty id="decisionInfo"
 name="Decision info"
 expression="${decisionInfo}"
 writable="false"/>
 <activiti:formProperty id="vote"
 name="Do you approve the preliminary decision"
 required="true"
 type="enum">
 <activiti:value id="true" name="Yes"/>
 <activiti:value id="false" name="No"/>
 </activiti:formProperty>
 </extensionElements>
 </userTask>
 <sequenceFlow sourceRef="decisionTask"
 targetRef="gatherDecisionVote" />
 <serviceTask id="gatherDecisionVote"
 activiti:class="org.bpmnwithactiviti.chapter10.

 ➥ multiinstance.AddDecisionVote" />
 <sequenceFlow sourceRef="gatherDecisionVote"
 targetRef="theEndSubProcess" />
 <endEvent id="theEndSubProcess" />
 </subProcess>
 <sequenceFlow sourceRef="decisionSubProcess"
 targetRef="outcomeTask" />
 <serviceTask id="outcomeTask"
 activiti:class="org.bpmnwithactiviti.chapter10.

 ➥ multiinstance.PublishVotePoll" />
 <sequenceFlow sourceRef="outcomeTask"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

Creates list of
participants

C

Creates a multi-
instance subprocess

D

Defines
completion
conditionE

Provides
participant vote

F

Publishes
result of votes

G

250 CHAPTER 10 Implementing advanced workflow
As you can see, BPMN 2.0 XML gets quite verbose when implementing a decision pro-
cess. You can also use the Activiti Designer to abstract you from the XML, because the
multi-instance definition is supported there also. But to learn about all the details, it’s
good to start with the XML definition as in this process example.

 When the process instance is started, a form property containing the participants
as a comma-separated string must be provided B. Because the multi-instance con-
struct doesn’t support a comma-separated string, you first must transform it to a
java.util.List and add it as an assigneeList process variable C.

 Then you define multi-instance characteristics on the embedded subprocess
using the assigneeList D. You add a new configuration option to the multi-
instance definition by defining a completion condition E. In a completion condi-
tion, you can define an expression that completes the multi-instance activity before
all instances have completed. In this example, you use the implicit process variables
nrOfCompletedInstances (the number of instances of the multi-instance activity that
have already been completed) and nrOfInstances (the total number of instances
calculated when creating the multi-instance activity). When more than half of the
instances have been completed, the multi-instance embedded subprocess will com-
plete and progress to the next activity; in this example, outcomeTask.

 As part of the multi-instance embedded subprocess, you define a vote user task
where a participant can enter a vote for the preliminary decision F. After the vote is
entered, the vote is added to a global list of votes in the gatherDecisionVote service
task. At the end of the process definition, the outcomeTask service task G prints the
vote outcome to the console.

 The implementation logic of the Java service task classes isn’t hard to understand.
The CreateAssigneeList transforms the comma-separated string into a list. The
AddDecisionVote class is quite simple, too, but it contains an important piece of logic
concerning the process context, as you can see in the next listing.

public class AddDecisionVote implements JavaDelegate {

 public void execute(DelegateExecution execution) {
 String assignee = (String)
 execution.getVariableLocal("assignee");
 String voteOutcome = (String)
 execution.getVariable("vote");
 Vote vote = new Vote();
 vote.setName(assignee);
 vote.setApproved(Boolean.valueOf(voteOutcome));
 DecisionVoting voting = (DecisionVoting)
 execution.getVariable("voteOutcome");
 voting.addVote(vote);
 execution.setVariable("voteOutcome", voting);
 }
}

Listing 10.12 Implementation of the AddDecisionVote service task class

Gets assignee
from local contextB

251Implementing the BPMN 2.0 multi-instance activity
The AddDecisionVote class is executed after the participant enters the vote. You can
retrieve the assignee of the previous user task from the local context B. Because the
assignee is different for every instance of the multi-instance embedded subprocess, it’s
important that you can retrieve it from the local process context because the local
process context is unique for every instance. The assignee variable is available in the
local context of the Java service task.

 Note that the vote outcome of the previous user task isn’t available in the local con-
text of the Java service task. This means you have to retrieve it from the global process
context using the getVariable method.

NOTE In a multi-instance subprocess, the form properties of a user task are
set to the global process context and not to the multi-instance local context.
This means that when you have multiple user tasks in a multi-instance subpro-
cess, the values of the form properties mapped to process variables are over-
written by the last user task. In this example, you use one user task, and then
it’s no problem because the service task is executed in the same transaction as
the complete action of the user task.

At the end of the execute method of the AddDecisionVote class, you explicitly set the
DecisionVoting instance as a variable again after adding the vote outcome. You do
this so the new value of the voteOutcome process variable is added to the historic vari-
able update list.

 In the last service task class of the decision process definition, PublishVotePoll,
the outcome of the voting is printed to the console. You can look at the details in the
book’s source code.

 Now, let’s execute the decision process definition using a unit test.

public class MultiInstanceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem-fullhistory.xml");

 @Test
 @Deployment(resources={"chapter10/multiinstance/" +
 "multiinstance.bpmn20.xml"})
 public void doMultiTasking() {
 String processDefinitionId = activitiRule
 .getRepositoryService()
 .createProcessDefinitionQuery()
 .singleResult()
 .getId();
 Map<String, String> variableMap =
 new HashMap<String, String>();
 variableMap.put("decisionInfo", "test");
 variableMap.put("participants",
 "kermit,fonzie,gonzo");
 ProcessInstance processInstance = activitiRule

Listing 10.13 A unit test that runs the decision process definition

Enters three
participants for
decision process

B

252 CHAPTER 10 Implementing advanced workflow
 .getFormService()
 .submitStartFormData(
 processDefinitionId, variableMap);
 assertNotNull(processInstance);
 List<Task> taskList = activitiRule
 .getTaskService()
 .createTaskQuery()
 .list();
 assertEquals(3, taskList.size());
 for (Task task : taskList) {
 if (activitiRule.getTaskService()
 .createTaskQuery().taskId(task.getId()).count() > 0) {
 Map<String, String> taskMap =
 new HashMap<String, String>();
 taskMap.put("vote", "true");
 activitiRule.getFormService()
 .submitTaskFormData(task.getId(), taskMap);
 }
 }

 boolean voteOutcomeTested = false;
 List<HistoricDetail> historicVariableUpdateList =
 activitiRule
 .getHistoryService()
 .createHistoricDetailQuery()
 .variableUpdates()
 .orderByTime()
 .desc()
 .list();
 for (HistoricDetail historicDetail :
 historicVariableUpdateList) {

 HistoricVariableUpdate historicVariableUpdate =
 (HistoricVariableUpdate) historicDetail;
 if("voteOutcome".equals(
 historicVariableUpdate.getVariableName())) {

 voteOutcomeTested = true;
 DecisionVoting voting = (DecisionVoting)
 historicVariableUpdate.getValue();
 assertTrue(voting.isDecisionVotingOutcome());
 assertEquals(2, voting.getVotes().size());
 for (Vote vote : voting.getVotes()) {
 assertTrue(vote.isApproved());
 }
 break;
 }
 }
 assertTrue(voteOutcomeTested);
 }
}

To test the decision process definition, you start a new process instance with three par-
ticipants B. When the process instance is started, three instances of the embedded
subprocess should be created, so three user tasks should be found when retrieving all
the user tasks C. Then you complete the user tasks with a vote equal to true D.

Creates three
user tasks

C

Completes
two of three
user tasksD

Gets all process
variables

E

Makes sure there
are two votes

F

253Custom form types and external form rendering
 When the second user task is completed, the completion condition that more than
half of the instances should be completed is true, and, therefore, the multi-instance
embedded subprocess will finish. This also implies that the third task is deleted before
it can be completed, and, therefore, the unit test implementation validates whether a
task still exists before it is completed. Then the vote results are published via the
PublishVotePoll service task class.

 To validate the process variables, you use the HistoryService interface to retrieve
all process variable updates ordered by update time in descending order E; you’ll get
the latest process variable updates at the top of the list. You’re interested in the vote-
Outcome process variable to test whether the decision outcome equals true, as
expected. In addition, you test whether there are two votes in the list F that also have
a value of true.

 As you’ve seen in this example, the multi-instance definition can be handy when
you want to implement review, approval, or decision-like logic in your process defini-
tion. In this decision process example, we used form properties again to define the
user forms that interact with the process. But we’re restricted to the form types sup-
ported by the Activiti Engine. In the next section, we’ll explore defining new form
types and using another type of form rendering.

10.4 Custom form types and external form rendering
We’ve been defining user task forms using the start event and user task form proper-
ties in this chapter’s examples as well as in previous chapters. But the number of
default form types supported by the Activiti Engine and Activiti Explorer is pretty lim-
ited when you want to implement complex user forms.

10.4.1 Implementing a custom form type

One example of a more complex form type is the UserFormType that you can find in the
Activiti Explorer classes. The UserFormType can be used to select a user from the list of
users in the Activiti Engine IdentityService. Figure 10.10 shows a screenshot of a sam-
ple process definition that requires selecting an approver using the UserFormType.

Figure 10.10 An example
approval process using the
UserFormType to select
an approver for the approval
process

254 CHAPTER 10 Implementing advanced workflow
As you can see, the UserFormType contains a lot more logic than the simple String or
Date form types. It’s implemented with a pop-up menu that searches in the user list
while you are typing the search characters. It’s possible to implement more complex
form types of this sort using the Vaadin framework (the web framework that is used to
implement the Activiti Explorer). In this section, we’ll take a look at how to imple-
ment a simple custom form type.

 The first step in implementing a custom form type is to check out the source code
of the Activiti Explorer. This has been done for you, as you can see in the book-
explorer-form project in the book’s source code. There, you can start defining a new
form type by extending the AbstractFormType class, as shown in the next listing.

public class TextAreaFormType extends AbstractFormType {

 public static final String TYPE_NAME = "textarea";

 public String getName() {
 return TYPE_NAME;
 }

 @Override
 public Object convertFormValueToModelValue(
 String propertyValue) {
 return propertyValue;
 }

 @Override
 public String convertModelValueToFormValue(
 Object modelValue) {
 return (String) modelValue;
 }
}

Because the text area contains text, you don’t have to do a lot to implement the new
form type. You have to define a name that can be used to uniquely reference the form
type in the form properties definition. Then you need to implement logic to convert
the String value of the form field into a process variable B, in this case, also a String
value. You also need to convert the process variable object into a form field String C.

 In addition to the form type definition, you also need to implement the form field
user interface. Because the Activiti Explorer is implemented in Vaadin, the form field
UI logic also has to be implemented using Vaadin. Let’s see how we can implement a
text area in Vaadin in the following listing.

public class TextAreaFormPropertyRenderer extends
 AbstractFormPropertyRenderer {

 public TextAreaFormPropertyRenderer() {
 super(TextAreaFormType.class);
 }

 @Override

Listing 10.14 Implementing a custom text area form type

Listing 10.15 Implementing a custom text area form field UI using Vaadin

Converts form value
to process variable

B

Converts process
variable to form value

C

Sets form
type class

B

255Custom form types and external form rendering
 public Field getPropertyField(FormProperty formProperty) {
 TextArea textArea = new TextArea(
 getPropertyLabel(formProperty));
 textArea.setRequired(formProperty.isRequired());
 textArea.setEnabled(formProperty.isWritable());
 textArea.setRows(10);
 textArea.setColumns(50);
 textArea.setRequiredError(getMessage(
 Messages.FORM_FIELD_REQUIRED,
 getPropertyLabel(formProperty)));

 if (formProperty.getValue() != null) {
 textArea.setValue(formProperty.getValue());
 }
 return textArea;
 }
}

When you want to implement the UI for a new custom form field, it’s best to start with
extending the AbstractFormPropertyRenderer class. The UI implementation is cou-
pled to the form type definition class by calling the superclass with the TextAreaForm-
Type class B. The form renderer of the Activiti Explorer expects a Field instance to
display on the screen. A TextArea is also a subclass of Field, so you can return a Tex-
tArea as the result of the getPropertyField method. The AbstractFormProperty-
Renderer provides a number of convenience class already, like the getPropertyLabel
method to retrieve the label text from a form property C. Eventually, the value
defined in the form property is set to fill the text area D.

 With the form type definition and the form field UI classes implemented, you have
to configure the new form type in two Spring configuration files in the Activiti
Explorer source code (or book-explorer-form, for this example). First, you have to
add a custom form type to the process engine configuration in the src/main/
webapp/WEB-INF/applicationContext.xml file:

<bean id="processEngineConfiguration"
 class="org.activiti.spring.SpringProcessEngineConfiguration">
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager" ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="jobExecutorActivate" value="true" />
 <property name="customFormTypes">
 <list>
 <ref bean="userFormType"/>
 <ref bean="textAreaFormType"/>
 </list>
 </property>
</bean>

<bean id="textAreaFormType"
 class="org.bpmnwithactiviti.explorer.form.TextAreaFormType"/>

The second configuration file is the src/main/webapp/WEB-INF/activiti-ui-context.xml
definition of UI-related classes. There you need to register the form property renderer
class, TextAreaFormPropertyRenderer:

Defines
field labelC

Sets text
area value

D

256 CHAPTER 10 Implementing advanced workflow
<property name="propertyRenderers">
 <list>
 <bean
 class="org.activiti.explorer.ui.form.StringFormPropertyRenderer" />
 <bean class="org.activiti.explorer.ui.form.EnumFormPropertyRenderer" />
 <bean class="org.activiti.explorer.ui.form.LongFormPropertyRenderer" />
 <bean class="org.activiti.explorer.ui.form.DateFormPropertyRenderer" />
 <bean class="org.activiti.explorer.ui.form.UserFormPropertyRenderer" />
 <bean
 class="org.activiti.explorer.ui.form.BooleanFormPropertyRenderer" />
 <bean
 class="org.bpmnwithactiviti.explorer.form.

 ➥ TextAreaFormPropertyRenderer" />
 </list>
</property>

Now you can start using the text area form type in the form property definition of a
BPMN 2.0 XML file. In the book-explorer-form project, the approval process contains
a start event form with a text area for the instructions form property. Start the book-
explorer-form application by running mvn clean install jetty:run in the root
directory of the project. Next, open a web browser to http://localhost:8080/book-
explorer and start a new approval process. The instructions form field should now
contain the text area form field you defined in the custom form type classes (see fig-
ure 10.11).

 You can implement a lot of different form types to support all kinds of form fields.
But, you may not want to invest in a Vaadin-based web application because your orga-
nization may have standardized on another UI technology. In the next section, we’ll
look into the external form rendering support in the Activiti Engine so that you can
use other UI technologies.

Figure 10.11 A sample process using the new text area custom form type

257Custom form types and external form rendering
10.4.2 Using external form rendering

When you don’t want to use the already existing form rendering infrastructure of the
Activiti Explorer written in Vaadin, there’s the option of external form rendering.
With external form rendering, you’re writing the user forms with your technology of
choice, but that also means you’re pretty much on your own when writing the logic.

 There are two ways to go ahead with external form rendering:

■ Use the form properties infrastructure and build a form-rendering engine in
the UI technology of your choice.

■ Only use the form key attribute in the start event or user task definition and
develop a web application pretty much the way you’re used to. The main differ-
ence is that the navigation will be partially dominated by the process definition.

When you go for the first option, your best reference is the Activiti Explorer code—
look at how the form rendering is implemented there. We looked at how the form
types and the field form rendering is implemented and configured in section 10.4.1.

 But it may be better to go for the second option because you can then leverage the
UI technology in a more default way. In chapter 9, we looked at how you can use JSF 2
in combination with CDI to build a custom workflow and process application. In the
remainder of this section, we’ll focus on the form rendering implementation of the
book-cdi-app project you built in chapter 9.

 Let’s go back to the book order process definition implemented in the book-cdi-
app project. You start the process definition with a start event for which you config-
ured a form key attribute:

<startEvent id="startEvent" name="Start"
 activiti:formKey="taskForm_newOrder.jsf" />

The form key corresponds directly to a JSF page that you want to use to present the
start form of the book order process. You could also use a logical name for the form
key and add a navigation rule in the faces-config.xml file.

 When you want to open the start form of a process definition, you can use the
default JSF output link component. In the processList.xhtml file of the book-cdi-app
project, you list all the process definitions deployed on the Activiti Engine and, for
every process, you can go to the start form page using the following output link con-
figuration:

<h:outputLink
 value="#{formService.getStartFormData(v_process.id).formKey}">
 Start
 <f:param name="processDefinitionKey" value="#{v_process.key}"></f:param>
</h:outputLink>

In this example, you use the Activiti CDI module to get the form service interface.
Then you retrieve the start form data using the process definition identifier, and you
can access the form key attribute. You also pass along the process definition key as a
request parameter to be used in the taskForm_newOrder.jsf page.

258 CHAPTER 10 Implementing advanced workflow
 In this start form page, you can now implement a user form using standard JSF
tags. Let’s look at the main part of the taskForm_newOrder.xhtml page to see how this
is done:

<ui:define name="content">
 <f:metadata>
 <!-- bind the key of the process to be started -->
 <f:viewParam id="processDefinitionKey" name="processDefinitionKey" />
 </f:metadata>

 <h1>New book order</h1>
 <h:form>
 <table>
 <tr>
 <td>ISBN:</td>
 <td><h:inputText value="#{bookOrder.isbn}" /></td>
 </tr>
 <tr>
 <td></td>
 <td><h:commandButton value="Submit"
 action="#{businessProcess.startProcessByKey(processDefinitionKey)}"/>
 </td>
 </tr>
 </table>
 </h:form>
</ui:define>

As you can see, this page contains only standard JSF tags. But, you also leverage the
Activiti CDI module for convenience. First, the process-scoped bookOrder variable is
available in the JSF page context, so you can inject the value of the ISBN form field
directly into the isbn attribute of the bookOrder process variable. You don’t use any
form property definition because you define the user form directly using JSF tags. But
you can directly set a form field value in a process variable by using the process-scoped
beans functionality of the Activiti CDI module.

 In addition, you need a way to start a new process instance when you click Submit
in the user form. The Activiti CDI module helps here by offering a businessProcess
bean that you can invoke directly from a command button. But when you can’t or
don’t want to use the Activiti CDI module, you can still implement this logic easily in a
JSF managed bean.

 As you can see, it’s not hard to implement your own form rendering logic. You can
utilize your UI technology of choice and Activiti can help with the form key attribute
to do basic page navigation for the user forms.

 We’ve come to the end of a long chapter. We took a look at a good number of
workflow features you can implement on the Activiti Engine by utilizing the out-of-
the-box functionality or by developing small pieces of logic and configuring them in
the process engine configuration. You’re now ready to develop your own work-
flow application!

259Summary
10.5 Summary
Workflow is an important part of developing business process applications. In many
cases, not all tasks in a process can be executed automatically by invoking web services
or other external resources. For example, people must provide information in the
process, and they’re needed to review and approve specific parts of the process execu-
tion. In this chapter, you saw that Activiti supports a wide range of workflow features.

 We started with an introduction to subtasks and task delegation features that are sup-
ported via the Activiti API and, in part, via the Activiti Explorer. Then we saw that it’s not
hard to implement a workflow pattern like the four-eye principle using a task listener.

 Then we moved on to integrating an LDAP server with the Activiti Engine for iden-
tity management. In a lot of organizations, you don’t want to add a separate store of
identities like the default Activiti Engine database, but you want to leverage the exist-
ing identity management solution. Activiti is pluggable and can integrate with another
identity management solution using custom user and group managers.

 We also looked at the configuration options of the new BPMN 2.0 multi-instance con-
struct and implemented an example process definition using a multi-instance embed-
ded subprocess. Multi-instance activities like user tasks and embedded subprocesses can
be handy when implementing review and approval logic involving multiple people.

 Finally, we looked at how to extend and customize the form rendering capabilities
of the Activiti Engine. You can extend the set of supported form types by implement-
ing a new form type using the Vaadin UI framework. But, it’s also possible to use a UI
technology of your choice, like JSF (see chapter 9).

 In the next chapter, we’ll start looking outside the Activiti Engine. Often, you need
to communicate with external resources such as ERP, CRM, and billing applications
from a business process. We’ll look at how you can leverage integration frameworks
like Mule and Camel to communicate with applications outside the Activiti Engine.

Integrating services
 with a BPMN 2.0 process
Up to now, we’ve been focusing on the Activiti process engine running BPMN 2.0
process definitions. But let’s think about a use case where we’d want an order pro-
cess accessing an order or enterprise resource planning (ERP) application, like SAP.
Using what we’ve covered so far, we could implement a service task with a Java class
or a Spring bean. In chapter 7, we saw that we can invoke a web service using a Java
service task, so that could be a good approach.

 But, if we want to send a message to a queue or communicate with a legacy sys-
tem that only supports COBOL copybooks, this gets harder and harder. Wouldn’t it
be nice to leverage an integration platform like an enterprise service bus (ESB) or
something similar to implement this integration functionality? The Activiti project

This chapter covers
■ Providing a clean separation between processes

and integration logic
■ Explaining the BPMN 2.0 web services support
■ Using Apache Camel to implement integration logic
■ Using Mule ESB to implement integration logic
260

261Invoking services from a BPMN 2.0 process
contains integration with Mule ESB (from MuleSoft) and Apache Camel without the
need for glue coding.

 This chapter will show you how to communicate with external services and applica-
tions, starting with the BPMN 2.0 web service support in section 11.2. Then, we’ll dis-
cuss the Camel integration of the Activiti framework in section 11.3 and use the Mule
ESB from a BPMN process in section 11.4. Because Camel and Mule provide similar
capabilities, we’ll implement comparable code examples, so you can decide which
coding style you like most.

 But, first, let’s start with an introduction to communicating with external services
and applications from a process instance.

11.1 Invoking services from a BPMN 2.0 process
Activiti provides a flexible and extendable API to implement custom logic in BPMN
processes, for example, by implementing a Java service task or an event listener. You
can use plain Java to code your logic, or you can leverage the wide set of functionality
offered by the Spring framework and use expressions or delegate expressions in a ser-
vice task. This paves the way to also implement integration logic to invoke external
services or applications from a BPMN process.

 But is the process engine the right place to implement this integration logic? If you
want to invoke a simple web service, it could be the right place. In section 11.2, you’ll
see that the BPMN palette includes a web service task to invoke web services. But, what
if the web service interface contains a data model that’s very different from the pro-
cess data model? Then you would need to implement transformation logic to be able
to invoke this web service.

 Let’s look at two ways to communicate with services from a process, starting with
communicating via the service tasks.

11.1.1 Calling services via a service task

With the Java service task and the web service task (implementing a web service task is
explained in section 11.2), all the options are open to implement integration logic in
the BPMN process definition itself. Let’s imagine a use case where an order process
needs to communicate with a customer relationship management (CRM) application
to retrieve credit rating details about a specific customer and communicate with the
ERP application to store order information.

 To be able to communicate with these applications, you’ll have to implement quite
a bit of integration logic. First, you’ll need to transform the process variables into a
format that the CRM application and the ERP application can understand. If the ERP
application only communicates via, for example, a COBOL copybook format, this can
be quite cumbersome.

 In addition, you’ll have to interface with the communication protocol of these
applications, whether message queuing, FTP, file, or something else. You’d have to
implement this kind of interfacing logic as well. You could use a framework to provide

262 CHAPTER 11 Integrating services with a BPMN 2.0 process
message queuing capabilities, like Apache ActiveMQ, but this would still mean addi-
tional coding. Figure 11.1 provides an overview of this use case.

 As figure 11.1 shows, you’ll have to enhance the service tasks with transformation
and interface logic. Why not use a framework that provides tools to create integration
logic? That would clearly separate the process logic from the integration logic and
keep the Activiti process engine dedicated to managing processes. Activiti provides
out-of-the-box integration with Apache Camel and Mule ESB to let these frameworks
(or ESBs, if you prefer) handle the integration logic details.

 Let’s look at an architecture that clearly separates process logic (BPM) from inte-
gration logic (ESB).

11.1.2 Separating process logic from integration logic

Although the Activiti Engine has a flexible and extendable foundation, it’s important
to keep in mind that it’s a process engine. Everything that closely relates to process
logic, like workflow people assignment, handling process events, or working with pro-
cess variables, has its place on the Activiti Engine. Even simple database logic with the
JPA extension and straightforward web service invocations using the web service task
or a Java service task with CXF client code (like we used in chapter 7) is fine.

Figure 11.1 Overview of an order process example that communicates with the CRM and ERP ap-
plications. Because these applications use a different data model, transformation logic is needed in
addition to the interfacing logic to communicate via web services and a message queue.

263Invoking services from a BPMN 2.0 process
 But, when you run into requirements where you have to communicate with a ser-
vice or application, and you need to apply data transformation or implement logic to
communicate via message queuing or a file interface, you may want to consider using
an additional integration framework (like Apache Camel or Mule ESB) to implement
the integration logic. Let’s look at the same order process example as in the previous
section, but now with an integration framework or ESB added to the architecture (see
figure 11.2).

 The addition of an ESB or integration framework to the architecture provides a
clear separation between the process definition and instances on the one side and the
logic to communicate with the CRM and ERP applications on the other side. Adding
an integration framework causes an additional learning curve and maintenance
requirements, but, as you’ll see in sections 11.3 and 11.4, it’s easy to leverage Apache
Camel and Mule ESB functionality without a lot of additional knowledge.

NOTE If you do want to know more about Camel and Mule, you can learn all about
them in Camel in Action by Claus Ibsen and Jonathan Anstey (Manning, 2010) and
Mule in Action by David Dossot and John D’Emic (Manning, 2009).

Figure 11.2 The same order process example as figure 11.1, but now with the ESB or integration frame-
work added as an additional layer in the architecture

264 CHAPTER 11 Integrating services with a BPMN 2.0 process
But, before we dive into the integration frameworks, we’ll first look at the BPMN web
service task. For simple web service invocations, this BPMN 2.0 task element provides
you with all the functionality you need.

11.2 Using the BPMN 2.0 web service task
SOAP web service communication between applications is common in a lot of organi-
zations. In the BPMN 2.0 specification, a special task element to support web service
communication was added to facilitate this common way of communicating. In chap-
ter 7, we saw that it’s quite easy to implement a web service client in a Java service task
using a web service framework like Apache CXF. In this section, we’ll explore how you
can implement a web service invocation in a BPMN 2.0 process definition without the
need for additional Java coding.

 As you’ll see in a moment, the configuration of the web service task is far from
easy. Remember that there’s an alternative: implementing a web service client using a
Java service task (see chapter 7). In the example implemented in this section, you’ll
invoke a simple web service, which will look up the address of a customer based on its
name. We’ll reuse some of the code we used in chapter 7 in the book-sales-app web
application. The address web service looks like this:

@WebService
public class AddressService {

 private CustomerDAO customerDAO;

 @WebResult(name="address")
 public String findCustomerAddress(
 @WebParam(name="customerName") String customerName) {

 Customer customer = customerDAO.getCustomerByNameOrContactPerson(
 customerName, null);
 if (customer != null) {
 return customer.getCustomerAddress();
 } else {
 throw new RuntimeException("Customer not found!");
 }
 }

 @WebMethod(exclude=true)
 public void setCustomerDAO(CustomerDAO customerDAO) {
 this.customerDAO = customerDAO;
 }
}

From the BPMN 2.0 process definition, you’ll invoke the findCustomerAddress web
service method and provide a customer name as input. The web service will respond
with a customer address when the provided customer name can be found in the data-
base. To start the web service application, execute mvn jetty:run in the root of the
book-sales-app web application project.

 Now let’s move on to the BPMN 2.0 process definition. Because we want to focus on
the web service invocation, we’ll keep the rest of the process definition simple. The

265Using the BPMN 2.0 web service task
process definition contains quite a lot of XML elements, so the BPMN 2.0 XML is
divided into two sections, starting with the web service definition in the next listing.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 targetNamespace="http://www.bpmnwithactiviti.org"
 xmlns:tns="http://www.bpmnwithactiviti.org"
 xmlns:activiti="http://activiti.org/bpmn"
 xmlns:sales="http://ws.chapter11.bpmnwithactiviti.org/">

 <import importType="http://schemas.xmlsoap.org/wsdl/"
 location="http://localhost:8081/book-sales-app/

 ➥ services/address?wsdl"
 namespace="http://ws.chapter11.bpmnwithactiviti.org/" />

 <message id="findCustomerAddressRequestMessage"
 itemRef="tns:findCustomerAddressRequestItem" />
 <message id="findCustomerAddressResponseMessage"
 itemRef="tns:findCustomerAddressResponseItem" />

 <itemDefinition id="findCustomerAddressRequestItem"
 structureRef="sales:findCustomerAddress" />
 <itemDefinition id="findCustomerAddressResponseItem"
 structureRef="sales:findCustomerAddressResponse" />

 <interface name="Find customer address"
 implementationRef="sales:AddressService">
 <operation id="findCustomerAddressOperation"
 name="Find customer address operation"
 implementationRef="sales:findCustomerAddress">
 <inMessageRef>
 tns:findCustomerAddressRequestMessage
 </inMessageRef>
 <outMessageRef>
 tns:findCustomerAddressResponseMessage
 </outMessageRef>
 </operation>
 </interface>

 <itemDefinition id="name"
 structureRef="string" />
 <itemDefinition id="customerName"
 structureRef="string" />
 <itemDefinition id="address"
 structureRef="string" />
 <itemDefinition id="webserviceResponse"
 structureRef="string" />

 <!-- remaining, see code listing 11.2 -->

</definitions>

To be able to invoke a web service from a web service task, you first have to import the
web service definition B. The location of the WSDL file must be defined and the tar-
get namespace of the imported WSDL must be configured. Then the input and output
messages for the web service invocation must be defined C. These messages use an

Listing 11.1 BPMN 2.0 process definition part 1 with the web service import

Imports
web
service

B

Defines
request
message

C

References
WSDL input
message

D

References
WSDL port
type

E

References
WSDL
operationF

Input element
as defined in
WSDLG

266 CHAPTER 11 Integrating services with a BPMN 2.0 process
item definition with a reference to the input and output messages defined in the
WSDL D. This makes the structure of the input and output message of the web service
operation available in the BPMN 2.0 process definition.

 With the message structure defined, you can define the interface of the web service
invocation with a reference to the WSDL port type AddressService E. In the interface,
the web service operation you want to invoke, findCustomerAddress, is defined F. In
the web service operation, the input and output message definitions are referenced.

 Finally, the input and output element variables are defined. The customerName
item definition G references the XSD element name of the input message defined in
the WSDL of the address web service. The name item definition will be used in the next
listing to fill the customerName item definition from the name process variable. The
same goes for the address item definition, which matches the output XSD element in
the WSDL, and the webserviceResponse item definition that will be used as the new
process variable containing the web service result.

 With the web service definition imported, you can now implement the web service
task and the rest of the process definition.

<process id="customer">
 <startEvent id="startevent" name="Start"/>
 <sequenceFlow sourceRef="startevent"
 targetRef="webService"/>
 <serviceTask id="webService"
 name="Find customer address web service"
 implementation="##WebService"
 operationRef="tns:findCustomerAddressOperation">

 <ioSpecification>
 <dataInput
 itemSubjectRef="tns:findCustomerAddressRequestItem"
 id="dataInput" />
 <dataOutput
 itemSubjectRef="tns:

 ➥ findCustomerAddressResponseItem"
 id="dataOutput" />
 <inputSet>
 <dataInputRefs>dataInput</dataInputRefs>
 </inputSet>
 <outputSet>
 <dataOutputRefs>dataOutput</dataOutputRefs>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>name</sourceRef>
 <targetRef>customerName</targetRef>
 </dataInputAssociation>
 <dataOutputAssociation>
 <sourceRef>address</sourceRef>
 <targetRef>webserviceResponse</targetRef>
 </dataOutputAssociation>

Listing 11.2 BPMN 2.0 process definition part 2 with the web service task

Implements
web service
task

B

References
defined
operationC

References
item definition

D

References
dataOutput
definition

E

Maps process
variable to WSDL
input element

F

Maps WSDL
output element to
process variable

G

267Using the BPMN 2.0 web service task
 </serviceTask>
 <sequenceFlow sourceRef="webService"
 targetRef="waitState"/>
 <receiveTask id="waitState" />
 <sequenceFlow sourceRef="waitState"
 targetRef="endevent" />
 <endEvent id="endevent" name="End"/>
</process>

A web service task can be defined by using the implementation attribute value of
##WebService B. In addition, the web service operation that should be invoked must
be defined C. This is a reference to the operation definition you implemented in the
first part of this process definition, in listing 11.1.

 To fill in the customer name as an input variable for the web service and handle the
web service result, an ioSpecification and an input and output dataAssociation
must be defined. The ioSpecification references the item definitions of the input and
output D messages defined in listing 11.1. This is completed with inputSet and
outputSet E definitions.

 Next, the input and output element values must be defined. The dataInput-
Association contains a sourceRef value with the process variable that will be used as
input and a targetRef value that matches the XSD element of the input message F.
The dataOutputAssociation contains a sourceRef value that matches the XSD ele-
ment of the output message and a targetRef value with the name of the new process
variable that will contain the web service result G.

 This example has only one input XSD element and one output XSD element, but
you can add as many input and output elements as needed. But, as you can see, the
number of XML elements needed to implement a web service invocation is quite
large. To test this web service example, you can run the WebServiceTest unit test
available in the bpmn-examples project:

public class WebServiceTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem.xml");

 @Test
 @Deployment(resources={"chapter11/webservice/customer.bpmn20.xml"})
 public void queryTask() {
 Map<String, Object> variableMap = new HashMap<String, Object>();
 variableMap.put("name", "Alfresco");
 variableMap.put("contactperson", "Tom Baeyens");
 ProcessInstance processInstance = activitiRule
 .getRuntimeService()
 .startProcessInstanceByKey("customer", variableMap);
 Object responseValue = activitiRule
 .getRuntimeService()
 .getVariable(processInstance.getProcessInstanceId(),
 "webserviceResponse");
 assertEquals("Highlands 343", responseValue);
 }
}

268 CHAPTER 11 Integrating services with a BPMN 2.0 process
This unit test should run green when the web service is available and the TestData class
in the book-sales-app is executed to fill the database with test data. Combined with the
web service client example from chapter 7, this example gives a good picture of the pos-
sibilities for communicating with web services from a BPMN 2.0 process in Activiti.

But, there are usually far more connectivity options needed, like JMS, file, and FTP
communication. In the next section, we’ll start exploring possibilities for more con-
nectivity options by using Apache Camel.

11.3 Integrating with Apache Camel
Big books have been written about the Apache Camel framework (such as Camel in
Action), but to get a clear understanding of the possibilities of integrating the Activiti
Engine with Apache Camel, you’ll need no more than this section. That’s because the
Camel integration is simple but powerful, and the Camel framework is quite easy
to learn.

 Let’s start with an introduction into the Apache Camel framework and then look
into the Activiti integration.

11.3.1 Introducing Apache Camel

Apache Camel is a powerful open source Java integration framework that can be used
by adding some JAR files to your project. There’s no need to run Apache Camel in a
separate container, although you could do that with Apache ServiceMix. The three
main functionalities of Apache Camel are listed below:

■ Provides concrete implementations for the enterprise integrations patterns of
Hohpe’s eponymous book. For example, Apache Camel provides a content-
based router, a message filter, and a message transformer.

■ Provides a lot of transport and API connectivity options like JMS, file, FTP, and
web services.

■ Provides a domain-specific language (DSL) for configuring and implementing
the integration logic. This makes Apache Camel easy to use.

Using a web service task
Activiti’s web service task is implemented in a separate module named Activiti CXF.
Make sure that the dependency is on the classpath when using the web service task
functionality. The Activiti CXF module isn’t, for example, installed in the WEB-INF/lib
directory of the Activiti Explorer. We’ve added the following dependency to the
pom.xml file of the bpmn-examples project:

<dependency>
 <groupId>org.activiti</groupId>
 <artifactId>activiti-cxf</artifactId>
 <version>${activiti-version}</version>
</dependency>

269Integrating with Apache Camel
The Apache Camel framework consists of three basic elements: endpoints, processors,
and components, as you can see in figure 11.3.

 An endpoint and a component are closely related. An endpoint specifies a location
URI from which Camel can send or receive messages. In this URI, a component is used
to specify the URI scheme name and thereby tell the Camel engine which connector
should be used, as shown in this example of a file endpoint:

file://test

In this case, the URI scheme is file, so the Camel file component will be used. The
test addition states that it’s about the test directory.

 Here’s another endpoint example, in this case a JMS endpoint:

jms:queue:testQueue

Figure 11.3 The architecture of Apache Camel showing the use of its three basic elements: endpoints,
processors, and components

270 CHAPTER 11 Integrating services with a BPMN 2.0 process
For this endpoint, the URI scheme is jms, so the Camel JMS component will be used.
For the JMS component, we have to define whether it’s a queue or a topic and also the
name of the queue, which is testQueue in this example.

 Now let’s look at a bigger example that does some integration logic:

<route>
 <from uri="jms:queue:orderQueue" />
 <choice>
 <when>
 <xpath>$priority = 'high'</xpath>
 <to uri="jms:queue:processOrder" />
 </when>
 <otherwise>
 <to uri="file://order" />
 </otherwise>
 </choice>
</route>

This example already contains quite a bit of logic. When a new message arrives at the
orderQueue, it’s picked up by Camel and passed on to a content-based router. When the
header parameter priority is equal to high, the order message is quickly passed on to
another JMS queue named processOrder. When the header parameter priority has
another value, the message is written to the order directory and manually processed.

 In the previous code snippet, the integration logic is defined using the Spring XML
language. But, we can define this logic just as easily using the Java DSL:

RouteBuilder routeBuilder = new RouteBuilder() {
 public void configure() {
 from("jms:queue:orderQueue")
 .choice()
 .when(header("priority").isEqualTo("high"))
 .to("jms:queue:processOrder")
 .otherwise()
 .to("file://order");
 }
};

As you can see, there’s not much difference between the elements in the Spring XML
and the Java DSL implementations. The nice thing about the Java DSL is that you have
Java code completion, although you can have similar code completion by specifying
the XSD schema locations with a decent XML editor.

 Before we move on to using Camel with the Activiti Engine, let’s first look at a
standalone Camel example.

public class CamelIntroRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {

 from("direct:start")

Listing 11.3 Camel RouteBuilder example showing content-based routing

Creates
new Camel
route classB

271Integrating with Apache Camel

ile

 .log(LoggingLevel.INFO,
 "Received message ${in.body}")
 .choice()
 .when(xpath("/introduction/text()

 ➥ ='Camel'"))
 .to("file://introduction?fileName=camel-intro-

 ➥ ${in.header.name}-
 ➥ $simple{date:now:yyyyMMdd_HHmmss}.txt")
 .otherwise()
 .to("file://introduction?

 ➥ fileName=other-intro-${in.header.name}-
 ➥ $simple{date:now:yyyyMMdd_HHmmss}.txt");
 }
}

Implementing integrating logic means creating a route in Camel B. Think of a route
as defining the flow of a message from arrival in the Camel engine until it’s passed on
to a connector outside the Camel engine. In this example, you use the Camel direct
component to make it easy to test this route. The Camel direct component can be
used to send a synchronous message to an endpoint in the same Camel context. If you
want it to be asynchronous, you can use the Camel SEDA component.

 When a message arrives at the start endpoint of the direct component, the mes-
sage is first logged with Jakarta Commons Logging. As you can see, you can specify the
log level and you can use expressions like in.body to select which part of the message
you want to log.

 After the message is logged, the message is passed on to an endpoint based on the
content using an XPath expression C. The incoming message is expected to be XML,
and the introduction root element should contain a text value that’s equal to Camel.
Otherwise, the message is passed on to another file endpoint D. As you can see, the
file component can be instructed to create a file with a specific filename. In this exam-
ple, the value of the name header parameter is included, and the current date and
time are added.

 It’s quite easy to test this piece of integration logic, as the following listing shows.

public class CamelIntroTest extends AbstractTest {

 @Test
 public void sendMessages() throws Exception {
 CamelContext camelContext = new DefaultCamelContext();
 camelContext.addRoutes(new CamelIntroRoute());
 camelContext.start();
 ProducerTemplate tpl = camelContext.createProducerTemplate();
 tpl.sendBodyAndHeader("direct:start",
 "<introduction>Camel</introduction>",
 "name", "Rademakers");
 tpl.sendBodyAndHeader("direct:start",
 "<introduction>Mule</introduction>",
 "name", "Rademakers");

Listing 11.4 Testing a Camel route with a simple JUnit class

Tests for
intro equals
Camel

C

Creates text f
with specific
filename

D

Adds Camel
route to
context

B

Sends test
messageC

272 CHAPTER 11 Integrating services with a BPMN 2.0 process
 camelContext.stop();
 }
}

To test the Camel route in listing 11.3, you have to create a new CamelContext and
add the CamelIntroRoute route class to that context instance B. When the context is
created, you can start it by invoking the start method on the context instance. Then
you can start sending messages to endpoints in the Camel engine. In this example,
you create an incoming endpoint of direct:start, so you can send a simple XML
introduction message with a name header parameter C.

 When you run this unit test in the book-camel project of the book’s source code,
you can see that an introduction directory is created and two files are created. You
could enhance this test a bit using the Camel test framework to make it standalone
testable. But, for now, this should provide you with enough information about the
execution of the CamelIntroRoute logic.

 Now that you’ve been introduced to Apache Camel, it’s time to get back to the
topic of this chapter. How can you leverage the Apache Camel framework to commu-
nicate with services from a BPMN process? Let’s start with an overview of how the Activ-
iti Engine can communicate with Apache Camel.

11.3.2 Sending and receiving process messages with Apache Camel

To get a good overview of how Camel and Activiti can be used together, let’s look at a
hello world example. In the Activiti distribution, you can find a module named
activiti-camel, which implements the integration between Activiti and Camel. If
you add the following dependency to your POM file, you’ll have this integration avail-
able in your project:

<dependency>
 <groupId>org.activiti</groupId>
 <artifactId>activiti-camel</artifactId>
</dependency>

The Activiti Camel module uses Spring as a container to bind the Activiti Engine
beans with the Camel context beans. You have to set up the Activiti Engine in a Spring
configuration like you did several times in the previous chapters. I won’t explain it
again here, but you can find it in the camel-book source code in the src/main/
resources/helloworld folder with the filename activiti-application-context.xml.

 Let’s see how you can set up the Camel context in a Spring configuration in the
following listing (camel-application-context.xml).

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

Listing 11.5 Set up the Camel context with Activiti integration in Spring

273Integrating with Apache Camel
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camelProcess"
 xmlns="http://camel.apache.org/schema/spring">
 <packageScan>
 <package>org.bpmnwithactiviti.chapter11.

 ➥ camel.helloworld</package>
 </packageScan>
 </camelContext>

 <bean id="camel"
 class="org.activiti.camel.CamelBehaviour">
 <constructor-arg index="0">
 <list>
 <bean class="org.activiti.camel.

 ➥ SimpleContextProvider">
 <constructor-arg index="0"
 value="helloCamelProcess" />
 <constructor-arg index="1"
 ref="camelProcess" />
 </bean>
 </list>
 </constructor-arg>
 </bean>
</beans>

In the Camel configuration, you first define a Camel context where you can add
routes B. Instead of writing down the route for this example using the Spring language
(like you saw in section 11.3.1), you instruct the Camel context to scan the classpath in
the helloworld package C. In listing 11.6, we’ll take a look at the RouteBuilder class
that’s made available in the Camel context with this package scanning.

 This is still plain Camel configuration, but now you have to make this Camel con-
text available to be used in the BPMN process instances of the Activiti Engine. The
CamelBehaviour class D, which is defined as a Spring bean with an identifier of
camel, implements the ActivityBehavior interface, and can, therefore, be used in a
Java service task in a BPMN process.

 This is a good time to look at the process definition of our hello world process
(helloworld.bpmn20.xml):

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 targetNamespace="http://www.bpmnwithactiviti.org"
 xmlns:activiti="http://activiti.org/bpmn">

 <process id="helloCamelProcess">
 <startEvent id="start" />
 <sequenceFlow sourceRef="start"
 targetRef="serviceTask1" />
 <serviceTask id="serviceTask1"
 activiti:delegateExpression="${camel}" />
 <sequenceFlow sourceRef="serviceTask1"
 targetRef="userTask1" />
 <userTask id="userTask1" name="HelloTask"
 activiti:assignee="kermit"/>

Defines Camel
contextB

Scans for
RouteBuilders
in packageC

Defines the Camel
ActivityBehaviour classD

Couples BPMN process
with Camel context

E

274 CHAPTER 11 Integrating services with a BPMN 2.0 process
 <sequenceFlow sourceRef="userTask1"
 targetRef="end" />
 <endEvent id="end" />
 </process>
</definitions>

This simple process contains one new piece of functionality: the delegateExpression
in the Java service task. The camel identifier refers back to the Spring bean definition
shown in listing 11.5. When the service task is executed by the Activiti Engine, the exe-
cution is delegated to the CamelBehaviour class, which will send a message containing
all process variables to an Activiti endpoint defined in the Camel context. We’ll look at
the RouteBuilder class that defines this Activiti endpoint in a moment, in listing 11.6.

 Now you know how to access the Camel context from the Activiti Engine, but how
can you access the Activiti Engine from a Camel route? The SimpleContextProvider
defined in listing 11.5 couples a BPMN process identifier (helloCamelProcess) to the
Camel context identifier (camelProcess) E. As you can see, it’s possible to define a list
of context providers, so each BPMN process can be coupled to a Camel context. This
enables you to send messages from the Camel engine to a BPMN process. And, this makes
it possible to create a new process instance from the Camel context or to send messages
to a process instance that’s in a wait state (like the receive BPMN element).

 Now let’s define a Camel route that creates a new process instance of the hello
world process that was shown in the previous code snippet and that can handle the
implementation of the service task defined in that process definition.

public class CamelHelloRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {

 from("activiti:helloCamelProcess:serviceTask1")
 .log(LoggingLevel.INFO,
 "Received message on service task ${property.var1}")
 .setProperty("var2").constant("world")
 .setBody().properties();

 from("direct:start").to("activiti:helloCamelProcess");
 }
}

There are two Camel routes defined by this RouteBuilder class. Let’s start with the
simple, second one. When a message is sent to the synchronous endpoint
direct:start, a new process instance of the helloCamelProcess definition is cre-
ated. You can see that the new Activiti Camel component is used here because of the
activiti: prefix in the endpoint definition.

 The other route implements the Java service task logic of serviceTask1. Remem-
ber that this service task is defined with a delegate expression to the CamelBehaviour
class. When the service task is executed, all process variables are passed on to the
Camel route as properties. This way, you can easily log a process variable with the

Listing 11.6 Camel RouteBuilder that implements Activiti logic

275Integrating with Apache Camel
name var1 using the Camel log component. In addition, you can define a new prop-
erty (var2) in the Camel route, and this will be made available in the process instance
as a new process variable.

 Now let’s get this Activiti Camel integration rolling with a unit test implementation.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(
 "classpath:helloworld/application-context.xml")
public class CamelHelloTest extends AbstractTest {

 @Autowired
 private CamelContext camelContext;

 @Autowired
 private RuntimeService runtimeService;

 @Autowired
 private TaskService taskService;

 @Autowired
 @Rule
 public ActivitiRule activitiSpringRule;

 @Test
 public void simpleProcessTest() {
 ProducerTemplate tpl =
 camelContext.createProducerTemplate();
 String instanceId = (String)
 tpl.requestBody("direct:start",
 Collections.singletonMap("var1", "hello"));

 assertEquals("world", runtimeService.getVariable(
 instanceId, "var2"));
 Task task = taskService
 .createTaskQuery()
 .singleResult();
 assertEquals("HelloTask", task.getName());
 taskService.complete(task.getId());
 }
}

To run the Activiti Engine and the Camel context together, you have to define a
Spring parent configuration file, which imports both Spring configurations B:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <import resource="activiti-application-context.xml" />
 <import resource="camel-application-context.xml" />
</beans>

This clearly separates the Activiti Engine configuration from the Camel context con-
figuration and makes them separately maintainable. You can now also use the Spring

Listing 11.7 Unit test to start the Activiti Engine and the Camel context

Uses Activiti and
Camel Spring
configurationsB

Injects Camel
context
instanceC

Starts new
process
instance

D

Validates
var2 process
variable valueE

276 CHAPTER 11 Integrating services with a BPMN 2.0 process
autowiring mechanism to inject a Camel context in the unit test C. Note that you
don’t have to start and stop it now; that’s done for you.

 Because there’s a Camel route listing on the direct:start endpoint, you can send
a message that will start a new process instance of the helloCamelProcess D. Because
the message contains a Map with a var1 entry, the Activiti Camel module transforms
this into a process variable. Note that Camel returns the process instance ID when the
first wait state in the process instance is encountered (in this case, a user task).

 The service task in the process instance should have been executed by then, so you
can test whether the Camel route that implemented the service task was successful in
setting a new process variable var2 with the value world E. You also test whether the
process instance state is with the HelloTask user task and complete it to make sure
that the process instance ends.

 This completes our introduction to the Activiti Camel integration. Now that you
have a good overview of the main capabilities, you can explore more complex capabil-
ities and dive further into Apache Camel by reading the Camel in Action book or look-
ing at the documentation on the Apache Camel website (camel.apache.org). In this
chapter, though, we’ll move on to explore Mule ESB’s integration with the Activiti
Engine. Note that Apache Camel and Mule ESB provide similar functionality, so we’ll
show similar examples for Mule ESB to make it easier to compare both options.

11.4 Integrating with Mule ESB
Mule ESB is a widely used and popular open source ESB product that provides a wide
range of connectivity options, support for enterprise integration patterns, and an easy
to learn flow language. MuleSoft, the company behind Mule ESB, is one the partners
of the Activiti project and delivers the web service task implementation we discussed
in section 11.2. In this section, we’ll focus on how to leverage the Mule ESB functional-
ity from the Activiti Engine, starting with a solid introduction to Mule ESB.

11.4.1 Introducing Mule ESB

Mule ESB is an open source ESB developed by MuleSoft and created by Ross Mason, one
of the founders of MuleSoft. Mule ESB was one of the first open source ESBs out there,
together with Apache ServiceMix, and it already has far more than a million downloads.
Its main difference from Apache Camel, which we discussed in section 11.3, is that Mule
ESB typically runs in its own container. This means that Mule ESB runs in a separate JVM
and is started with a startup script.

 In the next section about the Activiti Mule ESB integration, we’ll show that it’s pos-
sible to run Mule ESB and the Activiti Engine in a shared Spring container. But the
easiest way of using Mule ESB is to download the whole package and run it in its own
container. Like Apache Camel, Mule ESB provides support for a wide range of connec-
tivity options, like JMS, file, FTP, and web services. Mule ESB also offers support for a
wide range of enterprise integration patterns, like content-based routing and a mes-
sage filter. Figure 11.4 provides an overview of Mule ESB available in its documenta-
tion material as well.

277Integrating with Mule ESB
With Mule ESB, you’re able to communicate
with all kinds of sources, including data-
bases, business applications, and web ser-
vices. Mule provides services to deal with
routing, transformation, message security,
and transaction management, and can be
run standalone, embedded, and in an appli-
cation server like Apache Tomcat or JBoss.

 But how can we use Mule ESB to imple-
ment integration logic? In Mule ESB
version 3, everything is centered on the con-
cept of flows. A flow uses Mule building
blocks to build a piece of integration logic,
starting with the message arrival and con-
tinuing until the message is sent to another
destination. Figure 11.5 shows the structure
of a flow, which consists of a message source
and one or more message processors.

Figure 11.4 A high-level overview of the capabilities of Mule ESB, including connectors to communicate
with data sources and business applications

Message
Source

Flow

Message
Processor

Message
Processor

Message
Processor

Figure 11.5 The structure of a Mule flow, which
is the core concept when using Mule ESB

278 CHAPTER 11 Integrating services with a BPMN 2.0 process
 A message source is an endpoint that Mule ESB will monitor for new messages
arriving. The message source can, for example, be a file endpoint, a JMS endpoint, or
a web service endpoint. A message source listening for new messages arriving at a JMS
endpoint can be defined this way:

<jms:inbound-endpoint queue="test" />

This message source definition will listen for new messages arriving at the test queue.
But just as easily, you can define a message source that listens for new files in a specific
directory location:

<file:inbound-endpoint path="testDir" />

A message processor is a component that processes incoming messages and makes
them available to another message processor or an endpoint. A message processor
can, for example, be a piece of routing logic or implement transformation functional-
ity. Let’s look at an example of a transformation message processor:

<xml:xslt-transformer xsl-file="transformation.xsl"/>

This message processor will transform a message using the transformation stylesheet
and make the outcome available for the next message processor. In addition to a mes-
sage source and message processors, a flow can also have an exception strategy defined.
You can, for example, configure an exception strategy that will be executed when no
routing rule matches the message content when using a content-based router.

 A flow can also be nested, so a main flow can invoke several subflows. In this way,
reusable flow components can be defined, which are reused in a number of main flow
definitions.

 Enough said about the foundational components of Mule ESB; let’s implement a
simple piece of integration logic and execute it with a unit test. In the following list-
ing, a Mule flow configuration with content-based routing is shown.

<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:vm="http://www.mulesoft.org/schema/mule/vm"
 xmlns:file="http://www.mulesoft.org/schema/mule/file"
 xsi:schemaLocation="http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/3.1/mule.xsd
 http://www.mulesoft.org/schema/mule/file
 http://www.mulesoft.org/schema/mule/file/3.1/mule-file.xsd
 http://www.mulesoft.org/schema/mule/vm
 http://www.mulesoft.org/schema/mule/vm/3.1/mule-vm.xsd">

 <flow name="MuleIntro">
 <vm:inbound-endpoint path="in"
 exchange-pattern="one-way" />
 <logger message="Received message #[payload]"
 level="INFO" />
 <choice>

Listing 11.8 Flow configuration using a content-based router and VM and File transports

Defines all
Mule transport
namespacesB

Listens for
messages on
vm queue

C

Logs incoming
messageD

279Integrating with Mule ESB
 <when expression="/introduction/text()='Mule'"
 evaluator="xpath">
 <file:outbound-endpoint
 path="introduction"
 outputPattern="mule-intro-

 ➥ #[function:datestamp:ddMMyyyy_HHmmss].txt" />
 </when>
 <otherwise>
 <file:outbound-endpoint
 path="introduction"
 outputPattern="other-intro-

 ➥ #[function:datestamp:ddMMyyyy_HHmmss].txt" />
 </otherwise>
 </choice>
 </flow>
</mule>

A Mule configuration starts with the root element definition <mule> containing the
namespace definitions of the Mule transports that are used in the flow configuration B.
In this case, the flow configuration uses the Virtual Machine (VM) and File Mule trans-
ports, in addition to the Mule Core component.

 In this example, Mule ESB listens for new messages arriving at the in VM queue C.
The Mule VM component is capable of defining queues within a JVM and even of mak-
ing them persistent using a file database. In the VM message source definition, you
defined that this flow will be one-way. This means that no response will be provided by
this flow.

 After the message is consumed by the VM message source, you log the message pay-
load (content) to the Mule logging file using the logger component D; #[payload]
is an expression that is processed by Mule ESB to log the message payload. Mule ESB
offers all kinds of expressions to retrieve content from a message, such as header val-
ues, message properties, and message payload details.

 Once the message is logged, a content-based router makes sure the message is sent
to the right outbound endpoint E. In this content-based routing rule, you use an
XPath expression that checks whether the message payload contains an introduction
XML element with the value of Mule. If this is the case, a mule-intro file is created; oth-
erwise, an other-intro file is created using the Mule File component F. The Mule File
component offers all kinds of expressions to dynamically add text to the filename. In
this case, you use the current date and time value.

 Now that you’ve created a simple flow configuration, how can you test it? Mule pro-
vides lots of functionality to write good unit tests. In the unit test shown in the next
listing, you start the Mule container in the JVM and send a couple of test messages.

public class MuleIntroTest extends AbstractTest {

 @Test
 public void testSend() throws Exception {
 MuleContext muleContext = new DefaultMuleContextFactory()

Listing 11.9 A unit test starting the example flow and creating test messages

Routes the
message based on
message contentE

Sends message
to fileF

280 CHAPTER 11 Integrating services with a BPMN 2.0 process
 .createMuleContext("intro/mule-context.xml");
 muleContext.start();
 MuleClient muleClient = new DefaultLocalMuleClient(
 muleContext);
 muleClient.send("vm://in", new DefaultMuleMessage(
 "<introduction>Mule</introduction>", muleContext));
 muleClient.send("vm://in", new DefaultMuleMessage(
 "<introduction>Camel</introduction>", muleContext));
 muleContext.stop();
 muleContext.dispose();
 }
}

It’s not hard to load a Mule configuration. First, the DefaultMuleContextFactory can
be used to read the XML file and create a MuleContext instance. Then the Mule con-
tainer can be started by invoking the start method on the newly created MuleContext
instance. The Mule ESB runs within the JVM of the unit test with the flow configuration
loaded into it.

 To send test messages to the Mule ESB container, you can use all kinds of imple-
mentations, depending on the message sources configured in the flow definition. In
this case, you’ve defined a VM queue message source. Mule provides an easy way to
send messages to an endpoint with the MuleClient class B. A Mule client can be local
(for Mule ESB running in the same JVM) or remote (when Mule runs standalone or in
another JVM). In this unit test, the Mule ESB container runs in the same JVM as the
unit test so you can use the local variant with the DefaultLocalMuleClient class.

 With the Mule client instance available, you can start sending test messages to the
Mule container C. In this example, you send two messages, one containing a Mule
introduction and one with a Camel introduction. Mule provides functionality to vali-
date in a unit test whether a message arrived at a specific endpoint, but to keep it sim-
ple, listing 11.9 just looks at the files created in the introduction directory to see if the
unit test outcome was successful.

 You can run the MuleIntroTest unit test in the book-mule project that you’ll find
in the book’s source code. After the unit test has executed, you should have two newly
created files in the introduction folder, one with mule-intro and another with other-
intro as the prefix of the filename.

 Now let’s move on to integrating Mule ESB with the Activiti Engine.

11.4.2 Sending and receiving process messages with Mule ESB

When you want to integrate the Activiti Engine with Mule ESB, you can choose
between two configurations. The first is to run them embedded in one Spring config-
uration, similar to the Apache Camel integration. The other option is to run the Mule
ESB container standalone and communicate with the Activiti Engine through the
REST API. Both configuration options use the same message processor definition to
create a new process, set a process variable, or signal a process instance. The differ-
ence between the two options is the Activiti connector configuration that’s part of the
Mule configuration.

Creates client
instance

B

Sends test
message

C

281Integrating with Mule ESB
 When you use Activiti and Mule in an embedded setup, both engines run in the
same Java Virtual Machine (JVM) and they can access each other directly. This means
that Mule can access the Activiti process engine beans, and Activiti can send messages
to Mule flows using VM queues. In the standalone setup, Mule can access Activiti via
the Activiti REST API, and Activiti can send messages to Mule flows via web services.

 To make it easier to test the example, we’ll implement the embedded integration
between the Activiti Engine and Mule ESB, but I’ll explain where the standalone con-
figuration would differ.

 To add the Mule integration functionality to the Activiti Engine, you’ll have to add
the following dependency to the project POM file:

<dependency>
 <groupId>org.activiti</groupId>
 <artifactId>activiti-mule</artifactId>
</dependency>

With this dependency enabled, you can implement the Mule configuration for the
example flow definition. This example is similar to the Apache Camel implementa-
tion, so it’s easy to compare both options. You’ll define two flows, one to create a new
process instance when a message arrives at a specific VM queue and another that will
be invoked from the BPMN process, log the incoming message, and return a simple
message back. Let’s take a look at the Mule configuration.

<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:vm="http://www.mulesoft.org/schema/mule/vm"
 xmlns:script="http://www.mulesoft.org/schema/mule/scripting"
 xmlns:activiti="http://www.mulesoft.org/schema/mule/activiti-embedded">

 <spring:beans>
 <spring:import
 resource="activiti-application-context.xml" />
 </spring:beans>

 <activiti:connector name="actServer"
 repositoryService-ref="repositoryService"
 runtimeService-ref="runtimeService"
 taskService-ref="taskService"
 historyService-ref="historyService" />

 <flow name="MuleCreateProcess">
 <vm:inbound-endpoint path="create"
 exchange-pattern="request-response" />
 <activiti:create-process parametersExpression="

 ➥ #[header:INBOUND:createProcessParameters]" />
 </flow>

 <flow name="MuleHello">
 <vm:inbound-endpoint path="in"
 exchange-pattern="request-response" />
 <logger message="Received message #[payload]"

Listing 11.10 Mule configuration with an Activiti connector

Imports
Activiti
Engine configB

Defines
embedded Activiti
connectorC

Creates new
process instance

D

Logs message
payload

E

282 CHAPTER 11 Integrating services with a BPMN 2.0 process
 level="INFO" />
 <script:transformer>
 <script:script engine="groovy">
 return 'world'
 </script:script>
 </script:transformer>
 </flow>
</mule>

Because you want to run the Mule ESB embedded, together with the Activiti Engine,
you import the Spring beans that configure the Activiti Engine B. The Spring config-
uration to define the Activiti Engine was already shown a couple of times in the previous
chapters, mostly in chapter 4. But to make the Mule ESB context also available in the
Activiti Engine, you have to adapt the activiti-application-context.xml file a little bit:

<bean id="processEngineConfiguration"
 class="org.activiti.spring.SpringProcessEngineConfiguration">
 <property name="databaseType" value="h2" />
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager" ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="deploymentResources"
 value="classpath*:helloworld/helloworld.bpmn20.xml" />
 <property name="beans">
 <map>
 <entry key="muleContext" value-ref="_muleContext" />
 </map>
 </property>
</bean>

The only difference between this and a normal Spring Activiti Engine configuration is
the beans property definition. The Mule context is coupled to the muleContext
parameter.

 Next up in listing 11.10, the Activiti embedded connector is defined C. The
Spring Activiti service beans defined in the activiti-application-context.xml are cou-
pled to the Activiti connector. Now the Mule Activiti connector can start a new process
instance by using the RuntimeService Spring bean.

 When the Mule ESB runs in a JVM separate from the Activiti Engine, this connector
definition would change, like this:

<activiti:connector name="actServer"
 activitiServerURL="http://localhost:8080/activiti-rest/service/"
 username="kermit"
 password="kermit" />

With the remote Activiti connector definition, every call from Mule ESB to the Activiti
Engine is performed against the REST service layer, so you have to configure the REST
base URL and the username and password.

 In the first flow definition of listing 11.10, a new process instance can be started by
sending a message to the create VM queue D. The parameters needed to start a new
process instance, like the process definition key and the process variables, are

Sends
response with
‘world’ stringF

283Integrating with Mule ESB
retrieved from the message header property named createProcessParameters. The
created process instance is returned as a response of the flow definition.

 In the second message flow definition, the incoming message on the in queue is
logged to the Mule logging component E. Then a simple Groovy script is executed
and a string with the value of world is returned as a response of the flow F.

 Now let’s look how you can send a message to this in queue from a BPMN 2.0 process.

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="http://www.bpmnwithactiviti.org">

 <process id="helloWorldMule">
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart"
 targetRef="sendMule" />
 <sendTask id="sendMule" activiti:type="mule">
 <extensionElements>
 <activiti:field name="endpointUrl">
 <activiti:string>vm://in</activiti:string>
 </activiti:field>
 <activiti:field name="language">
 <activiti:string>juel</activiti:string>
 </activiti:field>
 <activiti:field name="payloadExpression">
 <activiti:expression>${var1}</activiti:expression>
 </activiti:field>
 <activiti:field name="resultVariable">
 <activiti:string>var2</activiti:string>
 </activiti:field>
 </extensionElements>
 </sendTask>
 <sequenceFlow sourceRef="sendMule"
 targetRef="waitState" />
 <receiveTask id="waitState" />
 <sequenceFlow sourceRef="waitState"
 targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

This process definition contains only a few steps. After the process instance has
started, a BPMN send task with an Activiti-specific type of mule is used to send a mes-
sage to the Mule ESB container B. In the extension fields of the send task, the config-
uration items needed to send the message are defined. First, the endpoint URI is
defined; in this example, the in VM queue C. Remember that the in VM queue was
defined as a message source for the second Mule flow definition in listing 11.10.

 In addition, the message payload is defined with the var1 process variable D. This
means that the value of the var1 process variable is sent as a message to the in VM
queue. Finally, the response of the Mule flow execution is set as a new process variable
named var2 E.

Listing 11.11 BPMN process definition with a Mule Send task

BPMN Send
task

B

Targets Mule
endpoint

C

Value of the
message
payload

D

Processes
variable name
for the responseE

284 CHAPTER 11 Integrating services with a BPMN 2.0 process
 After the Mule Send task has been completed, the process instance enters a Wait
state with the Receive task. This makes it easy to get a hold of the var2 process variable
in the unit test, shown in the following listing.

public class MuleHelloTest extends AbstractTest {

 @Test
 public void testSend() throws Exception {
 MuleContext muleContext = new DefaultMuleContextFactory()
 .createMuleContext("helloworld/application-context.xml");
 muleContext.start();
 MuleClient muleClient = new DefaultLocalMuleClient(
 muleContext);
 DefaultMuleMessage message = new DefaultMuleMessage(
 "", muleContext);
 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("var1", "hello");
 variableMap.put("processDefinitionKey",
 "helloWorldMule");
 message.setProperty("createProcessParameters",
 variableMap, PropertyScope.OUTBOUND);
 MuleMessage responseMessage = muleClient.send(
 "vm://create", message);
 ProcessInstance processInstance = (ProcessInstance)
 responseMessage.getPayload();
 assertFalse(processInstance.isEnded());
 RuntimeService runtimeService = (RuntimeService)
 muleContext.getRegistry().get("runtimeService");
 Object result = runtimeService.getVariable(
 processInstance.getId(), "var2");
 assertEquals("world", result);
 muleContext.stop();
 muleContext.dispose();
 }
}

This unit test contains quite a bit of logic in just a few lines of code. First, a new Mule
context is created for the Mule configuration discussed in listing 11.10. After the Mule
ESB instance is started, together with the Activiti Engine, a message is created to start a
new process instance. The var1 process variable B and the process definition key C
are set in a Map.

 The Map instance is then used to create a message header property named
createProcessParameters D. Remember that this message header is processed by
the Mule Activiti transport (see listing 11.10). Then the Mule message is sent to the
create VM queue, and a new process instance of the BPMN process definition shown
in listing 11.11 is created in the Activiti Engine. The process instance object is sent
back as a response message E. Note that this process instance object isn’t an Activiti
API object, but a Mule Activiti connector API object. The Mule Activiti connector
transforms the Activiti process instance to a Mule process instance object.

Listing 11.12 Unit test for the Activiti Engine and Mule ESB integration example

Sets var1
process
variable

B

Sets process definition keyC

Sets message
header
propertyD

Gets
process
instanceE

Retrieves
var2 process
variableF

285Summary
 Finally, the unit test validates whether the var2 process variable was set and contains
the value of world F. The RuntimeService instance is retrieved from the Mule registry,
because the Activiti Engine Spring beans are created as part of the Mule configuration.

 The Mule ESB website (www.mulesoft.org) and books like Mule in Action by David
Dossot and John D’Emic (Manning, 2009) and Open Source ESBs in Action by Tijs Rade-
makers and Jos Dirksen (Manning, 2008) contain much more additional information
about the functionality of Mule ESB. You now have a good foundation for working on
more complex integration logic.

11.5 Summary
Business and application logic is typically scattered across many different applications
in an organization. When you’re implementing process definitions, there’s often a
need to communicate with business and application logic, so there’s a need to inte-
grate with these applications. And, because these applications are typically not all able
to communicate via web services using the same data model, there’s generally a need
for integration logic like JMS and file connectivity, routing, and transformation.

 In this chapter, you saw that the Activiti Engine provides many ways to solve these
issues. First, there’s a web service task you can leverage to communicate directly with
SOAP web services. You saw that you don’t need additional Java coding to implement a
web service task. But, the amount of XML configuration needed to implement even a
simple web service task is quite large, so you can pick your own favorite way of imple-
menting a web service client.

 When there’s a need for more connectivity options and integration capabilities,
you can leverage the Apache Camel and Mule ESB integrations with the Activiti
Engine. Both frameworks provide similar functionality, with lots of connectivity
options, support for enterprise integration patterns, and an easy to learn flow lan-
guage or DSL. The main difference between them is that Apache Camel typically runs
embedded in your application by adding a couple of Apache Camel JAR files. Mule
ESB typically runs standalone in its own container. Again, you can choose your favorite
framework here because both options provide similar capabilities. It depends on
which coding style you prefer (Camel DSL or Mule flow language) and whether you
need a separate container like Mule ESB. In addition, you should know that Apache
ServiceMix 4 also provides a separate container and uses Apache Camel to implement
the integration logic.

 In the next chapter, we’ll move on to another interesting topic—adding a business
rule engine to the Activiti Engine. By separating business rules from the process defi-
nition, the need for new versions of the process definition can be kept to a minimum.
And, as you’ll see, a business rule engine has great capabilities for implementing busi-
ness rules using a powerful DSL.

Ruling
 the business rule engine
Many paths can be taken in the execution of a business process. Often, the path that
should be taken in a certain case is determined by specific business decisions. For
example, if a customer has spent a certain amount of money in previous purchases,
the customer becomes a VIP customer and is routed through the process via an alter-
native path and rewarded and treated differently. These kinds of flexible decision
points in processes are places where business rules can come into play. This chapter
is all about how these rules can be applied and integrated with Activiti.

 First, we’ll take a look at business rule management and see in more detail what
kinds of rules you can encounter in a business process. We’ll also cover some termi-
nology from the business rule world and link the topic with BPMN 2.0. In section 12.2,

This chapter covers
■ Introduction to rules and business rule management
■ The BPMN 2.0 business rule task construct
■ Introduction to Drools and Drools Expert
■ Integrating Drools with Activiti
■ Web-based rule editing
286

287Introducing business rule management
you’ll learn about an open source business rule management system called Drools and
work out a simple example and a more business-friendly one to get familiar with it. In
section 12.3, we’ll take Drools into Activiti, and you’ll see how Drools can be used to
bring rules into your processes. We’ll look at the integration of Activiti and Drools from
an architectural point of view and cover the deployment of rules in the Activiti environ-
ment. We’ll also pick up the loan request case we covered in chapter 5 and enhance it
with business rules to implement business logic. Finally, in section 12.4, we’ll take a look
at changing rules with a web-based application.

 Let’s get started. It’s time to add some dynamicity and flexibility to our processes.
We’ll extract the business knowledge from them and take our Activiti processes to the
next level!

12.1 Introducing business rule management
Before we dive deep into integrating Activiti with Drools, it’s a good idea to get some
background on business rule management so we can get our vocabulary aligned.
Therefore, this section starts with an introduction to business rules. Then, we’ll take a
look at a couple of business rule examples and see how the whole environment
around business rules becomes a business rule management system. After that, we’ll
take a look at what type of rules can exist in a business process and see how BPMN 2.0
helps you define rules in business processes.

12.1.1 What’s a business rule?

Business rule management is a big topic and many books have been written to cover it.
The few terms presented here will introduce you to the field and get you through the
chapter. If you want to learn more, a good place to get started is www.businessrules-
group.org. You can also search for Ronald Ross online or start at www.ronross.info; he’s
known as “the father of business rules.” Now, back to business; what’s a rule, anyway?

 Before getting all theoretical with definitions, it’s better to look at an example of a
business rule:

No credit check is to be performed on returning customers

This statement tells us something about how that business decided to deal with their
customers. It can be written down in some specification to be eventually translated
into code, but it can also be a policy that a business applies while communicating with
a customer on the phone.

DEFINITION Business rules describe initially in plain words how operations, def-
initions, and constraints are applied by an organization. They can apply to
many different things like people, processes, or overall corporate behavior.

While a business rule may be informal or even unwritten and exist only in the heads of
people, clarifying, managing, and applying those rules is very valuable. Having a grip
on rules like the previous one helps organizations to achieve their goals and avoid mis-
takes. Take a look at another example:

A gold customer gets a 10 percent discount on all book items

288 CHAPTER 12 Ruling the business rule engine
This rule is a little bit more complex than the first one and illustrates why a company
would want their rules to be documented and managed. Customers might belong to a
category like regular or silver, indicating their loyalty to the company’s products. You
see that discounts are given as well. A company might want to give different rates of
discount to different categories. Or it may give discounts depending on the type of
item a customer wants to purchase—books or DVDs or other product types.

 You can see the need for flexibility coming up already! Our fictive company might
want to add more categories of customers as sales grow or change their discount rates
when time moves on. The need to implement these kinds of rules in a timely fashion
can also arise. If the company wants to stay ahead of the competition, it might need to
have this rule active right away, preferably to be automated and implemented in a
computer system.

 Let’s say a new book, Activiti in Action, is out in the stores and we want to provide
Java developers with a discount in the first week:

Java developers get a 30 percent discount on Activiti in Action in the
first week

In order to achieve this kind of flexibility and short time to market, business rules
need to be documented and managed. We need a business rule management system
to do that well.

12.1.2 Business rule management systems

Instead of just having a set of policies, rules, or constraints in the heads of employees,
hidden in company books, or hardcoded in mainframe systems, we’re going to move
on to the management of this type of knowledge. Business rule management systems
(BRMSs) exist to do just that.

 Take a look at figure 12.1 to get an overview of the environment of a typical BRMS.

Business rule

Business applications

BRMS

Rule testing
tools Rule engine

Rule engine
monitoring

Configuration
management

Rule authoring
tools

business objects rule execution results

Rule repository

Figure 12.1 Overview
of a typical BRMS

289Introducing business rule management
To be able to use the full capabilities of a BRMS, you’ll need all of the functions shown
in figure 12.1. Let’s go through them briefly:

■ Rules—There may be just a few rules concerning a small dynamic part of your
organization, or there may be thousands of rules concerning everything a com-
pany does, from the maximum amount of money an online customer is
allowed to spend to the roles people need to play in order to be allowed to
evaluate loan requests.

■ Rule repository—This is where the rules are stored. This repository is the founda-
tion of a BRMS and contains all the rules available. In the case of IT systems, the
repository will contain automated rules, and the repository is typically imple-
mented by a database system with versioning capabilities.

■ Rule engine—This is another core component of a BRMS. This component loads
certain versions of the rules from the repository and runs business objects
against those rules, evaluating conditions and executing actions when condi-
tions are met. (For example, If the customer is a gold customer, then the
customer gets 10 percent discount.) Rule engines use optimized algorithms
to perform this type of logic efficiently and can give quick feedback.

■ Rule authoring tools—Rule authoring tools are often part of a BRMS as well. These
tools help in creating the rules and allow you to manipulate the repository by
storing new rules and deleting or changing existing ones. Rule authoring tools
come in different types for different users. Some focus on allowing developers to
add logic that changes the behavior of the rule engine, others are more business-
centric and guide business analysts or users to manipulate rules themselves.

■ Monitor—Common, but optional, tools can help you monitor rule execution to
see what the state of the rule engine is at any given moment or help you deter-
mine which rules have fired for a certain input.

■ Configuration management—This is a vital part of a BRMS. It should be easy to
change business rules, and you should be able to find out which rules are cur-
rently deployed in production.

■ Test tools—A good BRMS has test tools for testing rules and promoting rules
from development to production.

Now that you have seen what business rules are and how a related system of tools can
help to manage those rules, it’s time to take a look at how business rule management
and business process management fit together.

12.1.3 Using different types of rules in business processes

Now, you may be thinking, “This isn’t a book about business rule management but
business process management!”—and you’re right. But one doesn’t exclude the other.
Business rule management and business process management can easily go hand in
hand; they’re complementary. Where business process management tells us a lot
about how a company does its business, business rules tells us about the what. Let’s
look at an example and come back to this in a bit.

290 CHAPTER 12 Ruling the business rule engine
Let’s say that, around Christmas time, a company wants to treat the customers that
spent over a thousand dollars to a Christmas gift. Customers that haven’t s spent as
much—somewhere between two hundred and a thousand dollars—receive a Christ-
mas card. A third type of customer, who spent less than two hundred dollars, receives
an email Christmas greeting that also informs them that new stuff is available now. Fig-
ure 12.2 shows a process model for this simple process.

 The business process model in figure 12.2 expresses how our fictive company wants
to handle different types of customers when Christmas draws near. Some get a present
and others get an email message, depending on their spending behavior. In this model,
you can also see what a “good” customer is, according to our fictive company. This
knowledge, which determines the outcome of the process, is business rule knowledge.

 In this case, the type of logic that the rules consist of is decision logic (similar to rout-
ing logic). We check how much a customer has spent and then decide which path in the
business process to take. You can find another type of logic in a task. Take a look at fig-
ure 12.3, which shows a snippet from a process for purchasing a phone subscription.

 You can’t directly see any business rules in the figure. But, take a closer look at the
“Determine contract price” task. If the price were fixed, we wouldn’t need that task. It’s
there because the price that the phone company will charge the customers is deter-
mined by some algorithm, such as one based on the customer’s loyalty to the firm. The
longer the customer does business with the phone company, the lower the price of the
contract. This type of logic also consists of business rules, and, again, the rules might be
stored in a rule repository and be executed at runtime by a rule engine.

> 200 $ =< 1000$

> 1000$

< 200$

Order Christmas
present internally

Send best wishes
postcard

Send Christmas
present

Send best wishes
email

Figure 12.2 The Christmas wishes business process showing the handling of different customer types

Receive customer
data

Determine contract
price

Send
confirmation

Figure 12.3 Illustrating business rule logic hidden in tasks

291Introducing business rule management
As you’ve seen, there are different types of rules in business processes:

■ Decision logic rules—These determine process execution paths.
■ Business logic rules—These are executed within a certain step of a process

execution.

We’ve seen that the how of a business process and the what of the rules are a natural
fit. Let’s take a look at how we can express this connection with a specific BPMN 2.0
construct.

12.1.4 Business rule management in BPMN 2.0

Business logic rules and decision logic rules can be modeled in different ways in a
BPMN 2.0 process, depending on how the logic is implemented.

 Think, for example, about making decisions based on knowledge only available in
the heads of company employees. This kind of decision logic is performed by a person
and can be modeled in a BPMN 2.0 process as a user task, as you’ve seen before. Another
kind of rule can be based upon knowledge somewhere outside of the system or even
outside the company running that system. In this case, the rule logic can be modeled
as a send and receive task pair and will rely on messaging to get the job done.

 The kinds of rules we’re covering in this chapter are automated rules that are exe-
cuted by a business rule engine. The task construct that the BPMN 2.0 specification
defines to model business logic is called the business rule task.

 A business rule task provides a mechanism for a business process to provide input
to a business rule engine and to get the output of calculations or checks that the busi-
ness rule engine might provide. Because this construct is part of the task family, it has
the same familiar shape as the other task types: the rounded rectangle. It has a little
graphical marker indicating that the task is a business rule task, which you can see in
the process depicted in figure 12.4.

 In this small process, the two types of rules we covered before (business logic and
decision logic) are implemented with the help of the business rule task construct. In
this loan request process, there’s first the “Calculate credit score” task, a task containing

Figure 12.4 A small BPMN 2.0 process model containing multiple business rule task constructs

292 CHAPTER 12 Ruling the business rule engine
business logic in the form of rules needed to calculate a credit score. This task is exe-
cuted in parallel with a user task in which there’s personal contact with the loan
requester. Both these tasks will produce values for process variables needed for the sec-
ond business rule task, which determines the status of the loan request. “Determine
loan approval status” is a rule task that contains the decision logic that will guide the
process execution over either the approved or rejected path.

 The BPMN 2.0 specification doesn’t define how rule logic should be implemented
in business processes. The Activiti project decided not to build their own rule engine
and, instead, to integrate with one of the most widely used open source business rule
engines available: Drools. Now that you have the rule background and an understand-
ing of the relationship between business rules and process management, it’s time to
check out Drools and play with it a little to get some rules going!

12.2 Entering the rule world of Drools
To enter the rule world of Drools, we’ll first discuss the Drools framework. After a
brief introduction to the project itself, we’ll look at Drools Expert, the Drools rule
engine. Then, we’ll dive in and get our hands dirty while we work out some rule logic!

12.2.1 Drools, the business logic integration platform

Drools is an Apache licensed JBoss project that contains a lot more than just plain
business rule functionality. The origin of the project, though, is Drools rules. After a
few years, the Drools project became a part of JBoss and grew to the project it is today.

 The project is split up into several subprojects. Our focus in this chapter is on the
Drools Expert project. Drools Expert contains the business rule engine itself and
comes with an Eclipse-based rule authoring environment. There’s support for rule
testing, rule debugging, and synchronization with the Drools Guvnor rule repository.
With domain specific languages (DSLs), Drools Expert supports ways to define human-
friendly business rules. Guided editors can help you define those DSL rules, and deci-
sion tables are supported as well. We’ll see more of this later in the chapter.

 You can work with Drools Expert without having to use or install any of the other
parts of the Drools project. We won’t cover the rest of the Drools project in this book,
but here’s a brief outline of the components, to give you an idea of what they’re
all about:

■ Drools Guvnor—A centralized repository for Drools rules and decision tables. It
has a web-based user interface, editors, and tools to aid in the management of
large numbers of rules. Guvnor also supports rule versioning, deployments,
rule authoring, and testing and has the means to synchronize with the Drools
rule authoring Eclipse environment.

■ Drools Fusion—The Drools module responsible for enabling complex event pro-
cessing capabilities. Complex event processing (CEP), deals with processing and
analyzing multiple events to be able to detect patterns to take real-time actions.
CEP is used in fraud detection and high volume trade applications, among

293Entering the rule world of Drools
others. We’ll discuss it in detail in chapter 14, where we’ll take a look at the inte-
gration of Activiti with the Esper CEP open source framework.

■ Drools Planner—A module that focuses on optimizing automated planning solu-
tions. Picture use cases such as packing shipping containers: you need to pack
goods of different sizes and weights into a minimum number of containers
while also spreading that weight evenly and not packing more than the maxi-
mum allowed weight in each container.

Because this chapter is all about business rule management and its integration with
Activiti, we’ll leave the other modules behind us now and focus on the rules part of
the Drools project. On to Drools Expert!

12.2.2 Introducing Drools Expert

The underlying idea of a rule engine is to externalize the business logic from your
application. Get that rule knowledge clear, remove it from your application, and
implement it with a business rule engine that your application calls when needed.

 How a business rule engine achieves the goal of executing the defined rules is
another topic. From a standardization point of view, the Java Community Process came
up with JSR-94, the Java Rule Engine API, about six years ago. That JSR gives rule engine
providers a standardized API for executing rules, registering rules, and parsing rules,
but it didn’t standardize the rule engine itself or the language used to describe rules.

Drools, Drools Flow, and jBPM 5
Until recently, Drools included a workflow and process component called Drools Flow.
Because JBoss already included the jBPM project for workflow and process capabili-
ties, the two projects were merged; jBPM 5 is now a component of the Drools project
and supersedes Drools Flow.

As you may know, jBPM 5 offers capabilities similar to the Activiti project. Both imple-
ment the BPMN 2.0 specification, offer a web-based modeling and management ap-
plication, and provide an Eclipse-based Designer plugin. To make it even juicier, the
founders of the Activiti project (Tom Baeyens and Joram Barrez) led the jBPM project
before they left JBoss to join Alfresco.

jBPM 5 uses an API similar to the one used by Drools Expert, which we’ll be discuss-
ing in the next section. Therefore, the process and workflow management and rule
management capabilities are tightly integrated. Activiti takes another approach. The
Activiti platform is solely dedicated to process and workflow management, and it pro-
vides integration points to include things like rule capabilities (Drools Expert) and en-
terprise integration capabilities (Apache Camel and Mule ESB modules).

In summary, Activiti uses Drools Expert to implement the business rule task because
it provides a good rule management platform. Drools and jBPM 5 provide a platform
for both rule management and process and workflow management, but they use a
JBoss-only approach instead of the best-of-breed approach that Activiti adheres to.

294 CHAPTER 12 Ruling the business rule engine
 Drools Expert, being JSR-94 compliant, implements a rule engine as a forward-
chaining rule engine with a native language, the Drools rule language.

Take a look at figure 12.5 to see how the Drools Expert rule engine works and to get
familiar with some additional rule engine terminology.

Forward-chaining versus backward-chaining engines
When you hear people talk about rule engines, they often use terms like forward-
chaining engines and backward-chaining engines. What do these terms mean?

Take a look at this example set of rules:

If X croaks and eats flies - Then X is a frog
If X chirps and sings - Then X is a canary
If X is a frog - Then X is green
If X is a canary - Then X is yellow

Let’s say the goal is to determine the color of our Activiti friend Kermit, only knowing
that our friend croaks and eats flies. A forward-chaining rule engine is data driven and
will select the first rule to fire. The first rule concludes that Kermit is a frog, and the
second rule isn’t applicable to Kermit. The third rule condition evaluates to true and
we get our answer; Kermit is green.

A backward-chaining rule engine tackles the problem differently. It’s goal driven and,
because the goal is to determine the color of Kermit, it will select the third and fourth
rules because those rules match the final goal. The rule engine doesn’t know yet if
Kermit is a frog or a canary, so it adds the third and fourth rules to the goal list it
maintains. Now, the engine processes the first and second rules to determine wheth-
er Kermit is a frog or a canary, because the outcome is needed for the final goal to
determine the color of Kermit. Because the first rule says that Kermit is a frog, we
can now execute the third rule and produce the final result that Kermit is green.

In conclusion, the main difference between forward- and backward-chaining rule engines
is that they take different approaches—data versus goal driven—to get to the solution.

5.

Rule repository

Business application

Rule engine

Pattern matcher

Agenda

3.

1. Rules

Production
memory

2. Facts
4.

Working
memory

Figure 12.5 The rule
engine architecture
and its communication
partners in the outside
world

295Entering the rule world of Drools
This layout is pretty much standard in all forward-chaining rule engines. Let’s walk
through what happens to get the idea behind this architecture:

1 On the left side of the figure, the business rules are loaded from the rule repos-
itory into production memory.

2 On the right, business objects (that are often called facts) are loaded into work-
ing memory from your application when it calls the engine. These are the busi-
ness objects you want to apply your rules to. In the sidebar about forward versus
backward chaining, rules were written against something called X. In that case,
instances of X need to be inserted in the working memory to evaluate against
the rules.

3 Now that everything is in place, the engine can do its work and the inserted
facts are evaluated against the rule conditions by the pattern matcher.

4 Every time the pattern matcher evaluates a rule condition to true, it puts that
rule on the agenda to be fired. This means that it lists the rules in an order,
based on priorities attached to the rules or other criteria.

5 Finally, the actions of the rules listed in the agenda are fired, meaning that the
then clauses in the eligible rules are executed. This completes the circle, leading
to updates, inserts, or removals of facts or objects in the working memory. Think,
for example, about an update of a result object containing the verdict about a
loan application. Updating that object could set a value to approved or denied.

Now that you know how a rule engine works, let’s take a quick look at some Drools
specifics before we see things in action. Drools has a native rule format, called the
Drools rule language. The rules written in the Drools rule language are saved in a file
with a .drl extension. Multiple rules can be written in one file, and the format is pretty
straightforward. Take a look at the next snippet to get the idea:

rule "name"
 attributes
 when
 X
 then
 Y
end

A rule has a name and, optionally, a set of attributes that state its priority, indicate
when the rule should become effective or when it should expire, or provide other
information. The rule definition uses the keyword when to start a condition descrip-
tion (X, in this case) and uses then to declare the consequence (Y, in this case). The
end keyword marks the end of the description.

 There are many other options available when writing rules with the Drools rule
language, and if you’re interested in learning more, you can check out the Drools
Expert documentation; it’s extensive and well written.

 Now that you know how the Drools rule engine works and how to write rules, it’s
time to see some action. Let’s get some hands-on experience with Drools Expert!

296 CHAPTER 12 Ruling the business rule engine
12.2.3 Hands-on with Drools Expert

We’re going to work out some rule examples that we’ll later integrate with Activiti in a
business process. To get started with Drools Expert and see some of its possibilities up
close, you can choose to install the Drools Expert Eclipse environment. In the exam-
ples we implement in this chapter, this isn’t necessary.

DEFINING RULES

In the loan request process implemented in chapter 5, you used a credit check to
determine whether the loan amount requested was too high in relation to the salary
of the applicant. Loan Sharks agreed to let a customer pass the credit check when the
applicant’s income divided by two was bigger than the requested loan amount. Take a
look at the following code from listing 5.1 to see the script task used to implement the
credit check behavior:

<scriptTask id="checkCredit" scriptFormat="groovy">
 <script>
 creditCheckOk = false;
 if((income / 2) > loanAmount) {
 creditCheckOk = true;
 }
 </script>
 </scriptTask>

The logic in this task was hardcoded in the BPMN 2.0 XML and, therefore, not very flex-
ible. If you wanted to change the behavior of the script task, you’d have to edit the
BPMN 2.0 XML directly. Because you’d have changed the process definition itself, there
would be a need for a new deployment and version of the loan request process. As
you’ve probably guessed by now, that isn’t the way to go if flexibility is a requirement!

 Let’s extract that logic now and implement the credit check with a business rule.

RUNNING RULES

As mentioned before, Drools rules are written in the Drools rule language format and
saved in a .drl file. You can create a .drl file using the wizard in Eclipse or using a sim-
ple text file. The next listing shows the contents of the rule file.

package org.bpmnwithactiviti.chapter12.rules

import org.bpmnwithactiviti.chapter12.model.LoanApplicant;

rule "CreditCheckRule"
 when
 la: LoanApplicant(income > (2 * loanAmount))
 then
 la.setCheckCreditOk(true);
end

Like Java classes, rules can be organized in packages. As you’ve seen before, facts or
objects are pushed into the rule engine’s working memory at execution time, and the

Listing 12.1 An example Drools .drl file with the credit check business rule

297Entering the rule world of Drools
idea is that rules are written against those objects. The fully qualified class names of
the facts are declared in the import statement so you can use the classes while execut-
ing rules. You can write multiple rules in one .drl file, and rule definitions start with
the rule keyword and a rule name. Because we’re starting with an easy example, only
one rule is defined in this file. Finally, don’t forget to use the end keyword to specify
that the rule definition is finished.

 With the Drools rule language, you have a lot of options for writing your rules. You
can define functions that can be called by rules or introspect the working memory
from within rules. This book isn’t the place to explain the language, but it’s worth
checking out the language’s syntax in the documentation to get a feel for the possibil-
ities it offers.

 Now let’s define a CreditCheckRuleRunner class that contains all the code you
need to read the rule files and run them with Drools.

public class CreditCheckRuleRunner {

 public static boolean runRules(LoanApplicant
 loanApplicant) throws Exception {

 KnowledgeBase kbase = readKnowledgeBase();
 StatelessKnowledgeSession ksession =
 kbase.newStatelessKnowledgeSession();
 ksession.execute(loanApplicant);
 return loanApplicant.isCheckCreditOk();
 }

First, you need a KnowledgeBase. This is a repository containing all the rules you want
to execute. We’ll take a detailed look at how to get this repository in the next listing.
For now, remember that the KnowledgeBase itself doesn’t contain any facts or objects;
those are inserted at execution time into the working memory.

 Second, you create a StatelessKnowledgeSession that you’ll use to communicate
with the rule engine. Executing the business rules happens with one simple call.

 Finally, after having run the rules, the result of the call to the engine is returned to
the application.

Listing 12.2 CreditCheckRuleRunner class needed to run the CreditCheckRule

Stateless versus stateful knowledge sessions
There are two ways to communicate with Drools to execute rules. You can use the
StatelessKnowledgeSession or the StatefulKnowledgeSession. In listing 12.2,
you used the StatelessKnowledgeSession to interact with the Drools rule engine.

The two types of sessions are appropriate for different use cases. The Stateless-
KnowledgeSession is commonly used in simple use cases. A stateless session can
be regarded as a function passing in some data and receiving results back. No ses-
sion context is created.

298 CHAPTER 12 Ruling the business rule engine
Before we get to the next listing, a little warning about KnowledgeBases. As a reposi-
tory, KnowledgeBases contain the rules and other typical Drools artifacts your applica-
tion needs. Because the number of rules an application needs can become very large,
creating the KnowledgeBase can be a heavy task from a performance perspective. Cre-
ating sessions with the engine itself is very light, though, and that’s why it’s recom-
mended that KnowledgeBases be cached when possible for repeated session creation.

 The following listing shows how to create a knowledge base and how to store the rules
in it. This listing is part of the same CreditCheckRuleRunner class shown in listing 12.2.

private static KnowledgeBase readKnowledgeBase()
 throws Exception {

 KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource
 ("chapter12" + File.separator + "rules" + File.separator +
 "CreditCheck.drl"), ResourceType.DRL);

 KnowledgeBase kbase =
 KnowledgeBaseFactory.newKnowledgeBase();
 kbase.addKnowledgePackages(
 kbuilder.getKnowledgePackages());
 return kbase;
}

Creating a KnowledgeBase isn’t a complicated task. You start off by creating a Knowl-
edgeBuilder and feed it the rule resources B. You can also add other types of
resources, such as .dsl files. These domain specific language files allow you to write
rules in a human-friendly fashion. After the resources are read, a KnowledgeBase is
instantiated and the knowledge packages are added to the base.

 That’s it. You’re now all set to execute the credit check rule on the Drools rule engine
from a unit test. In the source code, you can find the unit test (CreditCheckTest) and
associated classes in the bpmn-examples project.

12.2.4 Using spreadsheets to create Drools decision tables

The example we used in the previous section was a simple check credit rule. To see
how Drools supports more complicated rules and different ways to express them, we’ll
take a brief look at decision tables.

Listing 12.3 Reading rules and creating a KnowledgeBase

(continued)
With the StatefulKnowledgeSession, a session context is created, so objects can
be cached in memory. This means you can create intermediate results that can be
retrieved from the session context by other rules when needed. While handling the
StatefulKnowledgeSession, you must not forget to call the dispose() method to
get rid of the session and avoid memory leaks.

Adds rule
resources and
resource type

B

299Entering the rule world of Drools
Decision tables are a bunch of rules bundled together. Drools supports decision tables
written in a spreadsheet format with spreadsheet programs like Microsoft Excel or
OpenOffice Calc (formats XLS and CSV). Drools uses the spreadsheets to generate rules
while building the KnowledgeBase. Under the hood, it interprets the spreadsheet file
and creates DRL rules for the rows in the sheet that express conditions and actions. Take
a look at figure 12.6 to see an example Excel spreadsheet that can be read by Drools.

 To give you an idea about what goes on in the spreadsheet, let’s look at a few
highlights.

 When creating the spreadsheet, you can start at any column or row in the sheet
you want; the starting point Drools looks for is a cell that uses the RuleSet keyword—
that row needs to contain the rule package definition. Directly underneath it, you can
add some rule set specific stuff—in this case, the imports you need.

 With the RuleTable keyword, the rule definitions part starts. You have to define
the RuleTable keyword in the same column that contained the RuleSet keyword.

 The keywords Condition and Action follow in the row immediately after the
RuleTable row, and the row below that one is where you define optional object types
or variables that you can use in the rules, like the definition of the la : LoanApplicant
type variable in the figure. If you don’t use the row for defining variables, you have to
leave it empty.

 The next row contains the rule templates. You can use the $param placeholder to
indicate where data from the data or rule cells below should be interpolated; for mul-
tiple insertions, use $1, $2, and so on, to indicate parameters from a comma-separated
list in the cells below. The next row, just before the data, is ignored; it may contain tex-
tual descriptions of the column’s purpose, and it’s there to make the table easier to
read. The remaining rows contain the data that forms the rules, one per row.

 The conditions and actions themselves are easy to read. They use the attributes of
the LoanApplicant class, and both conditions and actions are written to be parame-
terized. You see, for example, the first condition:

income >= $1, income < $2

When the engine evaluates this rule, the income attribute of the LoanApplicant class
is checked to make sure it’s in a certain range defined by the comma-separated values

Figure 12.6 Drools spreadsheet decision table representing a more complex credit check

300 CHAPTER 12 Ruling the business rule engine
in the columns below. When an applicant’s income is in a certain range, a maximum
amount can be requested to get approval from the company.

 The code needed to invoke this decision table is the same as in listing 12.2. But
what’s different is the way the KnowledgeBase is created, so let’s take a look at how it’s
created using the spreadsheet. The basic idea is the same as what we’ve seen with the
.drl files.

private static KnowledgeBase readKnowledgeBase()
 throws Exception {

 DecisionTableConfiguration dtconf =
 KnowledgeBuilderFactory
 .newDecisionTableConfiguration();
 dtconf.setInputType(DecisionTableInputType.XLS);

 String worksheet = "chapter12"
 + File.separator + "decisiontable"
 + File.separator + "CreditCheck.xls";

 KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory
 .newClassPathResource(worksheet),
 ResourceType.DTABLE, dtconf);

 KnowledgeBase kbase = kbuilder.newKnowledgeBase();
 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
 return kbase;
}

In the .drl example of listing 12.3, the KnowledgeBuilder used the default configura-
tion. In listing 12.4, which uses spreadsheets, you need to define a decision table con-
figuration as an Excel spreadsheet B. Then, the decision table is added to the
repository, and the rules are parsed by Drools and transformed to the structure of the
.drl rules C.

 Besides a package’s declaration and the imports, four rules are created. To differ-
entiate the different rules, a rule name containing the location in the sheet is generated:

...
#From row number: 10
rule "Credit Check_10"
 when
 la : LoanApplicant
 (income >= 100, income < 200, loanAmount < 30)
 then
 la.setCheckCreditOk(true);
end
...

You now have a basic idea of the Drools rule engine environment. Besides writing a
rule and running it using the Drools API, we’ve looked at how decision tables can be

Listing 12.4 Creating the KnowledgeBase using Excel and decision tables

Defines
decision table
configurationB

Adds decision
table

C

301Integrating Drools with Activiti
used with Excel sheets. Now let’s move back to the real topic of this book: Activiti.
Time to meet the features Activiti developed to extract rule logic from the business
process and execute it with Drools!

12.3 Integrating Drools with Activiti
This section will cover the integration of Activiti’s features and the Drools Expert rule
engine. We’ll start off by implementing the credit check task in a small test process.
Then we’ll look at how rules can be deployed together with the process definition on
Activiti Engine, using our loan request process as an example.

12.3.1 Activiti and the business rule task

To execute rules deployed with a BPMN 2.0 process on Activiti, you have to define a
few things in the BPMN 2.0 XML. As input for the rules, a comma-separated list of pro-
cess variables has to be declared. Let’s dive in (see the next listing).

<definitions>
 <process id="creditCheckRuleProcess">
 <startEvent id="start"/>
 <sequenceFlow sourceRef="start"
 targetRef="ruleTask" />
 <businessRuleTask id="ruleTask"
 activiti:ruleVariablesInput="${missPiggy}"
 activiti:resultVariable="rulesOutput"/>
 <sequenceFlow sourceRef="ruleTask"
 targetRef="receiveTask" />
 <receiveTask id="receiveTask" />
 <sequenceFlow sourceRef="receiveTask"
 targetRef="end" />
 <endEvent id="end" />
 </process>
</definitions>

First, the businessRuleTask element belonging to the BPMN namespace is declared B.
It contains two Activiti-specific attributes: ruleVariablesInput C and resultVariable.

 This little example, which you’re about to run in a unit test, only performs the
“Credit check” task. You feed the business rule task a process variable of the LoanAp-
plicant type. As mentioned, multiple process variables can also be used, as follows:

activiti:ruleVariablesInput="${missPiggy}, ${kermit}, ..."

After the rule has executed, the results are stored in a single result variable, named
rulesOutput in this example process. Declaring the name of the result variable in the
BPMN 2.0 XML is optional. When it isn’t defined, Activiti uses org.activiti.
engine.rules.OUTPUT as its name. There’s only one output variable declared in a
business rule task. Therefore, the result variable of the business rule task is always a list
of objects.

Listing 12.5 A simple process containing the business rule task

Declares BPMN
businessRuleTask
element

B

Defines
Activiti-specific
rule inputC

302 CHAPTER 12 Ruling the business rule engine
 You’ll see in the unit test in listing 12.6 how easy it is to run the creditCheck-
RuleProcess. It uses the rule definition implemented earlier:

rule "CreditCheckRule"
when
 la: LoanApplicant(income > (2 * loanAmount))
 then
 la.setCheckCreditOk(true);
end

All the Drools code needed to execute the credit check rule is encapsulated in the
Activiti implementation of the business rule task behavior. The business rule task starts
by looking for rules deployed together with the process definition, and it creates a
StatefulKnowledgeSession that contains the rules it finds. It then looks for the pro-
cess variables defined as the input of the rules in the BPMN 2.0 XML, executes the
rules, and wraps the results in the output variable. After adding the result variable as a
process variable on the execution, the business rule task has done its work.

 Take a look at the next listing to see what you have to do to start the process
instance.

public class SimpleCreditCheckTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule =
 new ActivitiRule("activiti.cfg-mem-rules.xml");

 @Test
 @Deployment(resources = {
 "chapter12/creditCheckRules.bpmn20.xml",
 "chapter12/CreditCheckTest.drl" })
 public void testCreditCheckSucceeded() {

 LoanApplicant piggy = new LoanApplicant();
 piggy.setName("Miss Piggy");
 piggy.setIncome(100);
 piggy.setLoanAmount(30);

 Map<String, Object> variableMap =
 new HashMap<String, Object>();
 variableMap.put("missPiggy", piggy);

 ProcessInstance processInstance =
 activitiRule.getRuntimeService()
 .startProcessInstanceByKey
 ("creditCheckRuleProcess", variableMap);

 Collection<Object> ruleOutputList = (Collection<Object>)
 activitiRule.getRuntimeService()
 .getVariable(processInstance.getId(),
 "rulesOutput");

 for(Object obj : ruleOutputList){
 if(obj instanceof LoanApplicant){

Listing 12.6 Executing the process containing the business rule task

Uses a
rule-specific
configuration

B

Deploys rules
together with
processes

C

Defines process
variable for rule
input

D

Starts
process
instance

E

Retrieves rule
output from
process

F

303Integrating Drools with Activiti
 assertTrue(((LoanApplicant) obj).isCheckCreditOk());
 }
 }
 }
}

As before, you use the ActivitiRule to configure Activiti Engine B. The Activiti
Engine configuration is changed to enable the rules functionality as we’ll see in the
next code snippet. Then, the process is deployed on the engine, together with the
rule file C.

 You then define a LoanApplicant object with the loan request information for
Miss Piggy D. Then, a new process instance is started E and the business rule task is
executed. Finally, the process variable that contains the rule output is retrieved from
the execution using the variable name defined in the process definition F.

 Now that you’ve defined the unit test, we’ll take a look at the Activiti configuration.
In order to configure the Activiti Engine, you need to configure something we haven’t
seen before in the Activiti configuration file: the RulesDeployer. The following code
snippet shows how this is done:

<beans>
 <bean id="processEngineConfiguration"
 class="org.activiti.engine.impl.cfg.

 ➥ StandaloneInMemProcessEngineConfiguration">
 <property name="databaseSchemaUpdate" value="true" />
 <property name="customPostDeployers">
 <list>
 <bean class="org.activiti.engine.impl.rules.RulesDeployer" />
 </list>
 </property>
 </bean>
</beans>

Activiti defines a Deployer interface with a deploy() method to be implemented.
Implementers of that interface can be configured in the Activiti configuration, and, in
this case, because you’re deploying rules, you need the RulesDeployer.

 What the RulesDeployer does is build and cache the KnowledgeBase at deploy-
ment time. When a business rule task is executed, the Activiti implementation will
start looking in the cache to look up the KnowledgeBase and execute the rules.

 Now that you’ve implemented a simple example process with a business rule task,
let’s go ahead with a full-blown process example.

12.3.2 Using business rules in a process definition

Let’s go back to the loan request process definition from chapter 5 and replace the
simple script logic with a couple of business rules. Figure 12.7 shows the loan request
process definition, enhanced with two business rule tasks.

 You can see the Check Credit task in the modeled process. We saw in section 12.1
that there are two types of business logic you can implement with rules. The “Check
credit” task is a business rule task that implements a piece of business logic with

304 CHAPTER 12 Ruling the business rule engine
rules. The second type of rule functionality is decision logic that’s used for rout-
ing purposes.

 A decision rule is implemented with the “Evaluate loan request” business rule task,
which replaces the previous user task. Previously, this task was performed by an
employee of Loan Sharks. In your new process, on the other hand, this task is auto-
mated with help of the business rule task construct. The task will evaluate the loan
application with a couple of business rules, and the outcome of the rule logic will
determine which path the process execution will follow.

 Based on the business rule outcome, the request will be approved, denied, or
marked as in need of management approval when the requested loan amount is above
a certain limit. For brevity, the steps that need to be performed by the process after
choosing an execution path have been left out; we’ll focus on the business rule part of
the process.

 Before we move on to the changed BPMN 2.0 XML code, let’s first take a look at the
business rules concerning the loan request evaluation:

rule "LoanApplicationEvaluationRule_1"
 when
 la: LoanApplication((applicant.isCheckCreditOk == true)
 && (applicant.getLoanAmount < 100000))
 then
 la.setStatus("approved");
end

rule "LoanApplicationEvaluationRule_2"
 when
 la: LoanApplication((applicant.isCheckCreditOk == true)
 && (applicant.getLoanAmount >= 100000))
 then
 la.setStatus("needs manager approval");
end

rule "LoanApplicationEvaluationRule_3"
 when
 la: LoanApplication(applicant.isCheckCreditOk == false)
 then
 la.setStatus("denied");
end

Figure 12.7 Enhanced version of
the loan request process including
two business rule tasks

305Integrating Drools with Activiti
These three rules are stored in the same file as the credit check rule defined earlier.
This isn’t necessary; you can deploy multiple .drl files within the same BAR file. The
rules act on a LoanApplication object that’s created and set as a process variable in
the “Create loan application” process variable service task after the credit check has
been performed. They also use a LoanApplicant object which is created in the “Cre-
ate loan request application” task.

 Now that the rules are defined, let’s take a look at the process definition. Quite a
few things have changed since you automated some behavior and got rid of the
Groovy script task that implemented the check credit logic. The next listing shows the
important parts of the BPMN 2.0 XML (the whole process definition is available in the
source code examples accompanying this book).

<definitions>
 <process id="loanrequestWithRules">
 <startEvent id="theStart">
 ...
 </startEvent>
 <sequenceFlow sourceRef="theStart"
 targetRef="createApplication" />
 <serviceTask id="createApplication"
 activiti:class="org.bpmnwithactiviti.chapter12.

 ➥ ruletask.ApplicationCreator" />
 <sequenceFlow sourceRef="createApplication"
 targetRef="checkCredit" />
 <businessRuleTask id="checkCredit"
 activiti:ruleVariablesInput="${loanApplicant}"
 activiti:resultVariable="rulesOutput"
 activiti:rules="CreditCheckRule" />
 <sequenceFlow sourceRef="checkCredit"
 targetRef="evaluateLoanRequest" />
 <businessRuleTask id="evaluateLoanRequest"
 activiti:ruleVariablesInput="${loanApplication}"
 activiti:resultVariable="rulesOutput"
 activiti:rules="CreditCheckRule"
 exclude="true" />
 <sequenceFlow sourceRef="evaluateLoanRequest"
 targetRef="approvalGateway" />
 <exclusiveGateway id="approvalGateway" />
 <sequenceFlow sourceRef="approvalGateway"
 targetRef="displayResult">
 <conditionExpression xsi:type="tFormalExpression">
 ${loanApplication.status == 'denied'}
 </conditionExpression>
 </sequenceFlow>
 <sequenceFlow sourceRef="approvalGateway"
 targetRef="evaluateRequestByManager">
 <conditionExpression xsi:type="tFormalExpression">
 ${loanApplication.status == 'needs manager approval'}
 </conditionExpression>
 </sequenceFlow>

Listing 12.7 Enhanced loan request process with the two business rule tasks

Defines checkCredit
business rule task

B

Only executes
CreditCheckRule

C

Defines
evaluateLoan-
Request taskD

Executes all
rules except
CreditCheckRuleE

Uses results
to determine
execution pathF

306 CHAPTER 12 Ruling the business rule engine
 <sequenceFlow sourceRef="approvalGateway"
 targetRef="displayResult">
 <conditionExpression xsi:type="tFormalExpression">
 ${loanApplication.status == 'approved'}
 </conditionExpression>
 </sequenceFlow>
 ...
 </process>
</definitions>

First, you define the checkCredit rule task B. The task definition contains an Activiti-
specific attribute that explicitly states which rules need to be executed in that task C.
The input of the checkCredit rule task is a LoanApplicant instance, which is created
by the createApplication service task based on the values entered in the start form
(which aren’t shown in listing 12.7).

 In the evaluateLoanRequest business rule task D, you can again see the
activiti:rules attribute. It contains the same rule name and indicates with the
exclude="true" statement that all of the rules but that one need to be executed E.
Finally, the rule result of the evaluateLoanRequest business rule task is used to deter-
mine which path in the execution to take F.

 Now let’s go ahead and deploy the loan request process to the Activiti Engine. This
takes a few steps.

1 Make sure the Activiti H2 database is running. Remember that you can start the
H2 database by running ant h2.start from the setup directory of your Activiti
installation.

2 Make sure the Activiti Tomcat instance is stopped. Run the ant tomcat.stop
command to do this.

3 Run the build.xml Ant script available in the bpmn-examples project in the src/
main/resources/chapter12/ruletask directory. This will create a dist/enginelibs
directory containing the JARs to be copied to the Activiti Engine and a dist/deploy
directory containing the BAR file.

4 Copy the JARs in the dist/enginelibs directory to the webapps/activiti-explorer/
WEB-INF/lib directory of the Activiti Tomcat instance.

5 Change the Activiti engine configuration in webapps/activiti-explorer/WEB-
INF/applicationContext.xml with the RulesDeployer enabled, like you saw in
section 12.3.1. This means adding the following property configuration to the
processEngineConfiguration bean:

<property name="customPostDeployers">
 <list>
 <bean class="org.activiti.engine.impl.rules.RulesDeployer" />
 </list>
</property>

6 Start the Activiti Tomcat instance. Run the ant tomcat.start command.

307Creating a web-based rule editor
7 Go to http://localhost:8080/activiti-explorer and deploy the BAR file from the
dist/deploy directory to the Activiti Engine.

8 Go ahead and start a new process instance from the Activiti Explorer and vali-
date that the business rules are executed as expected.

You’ve seen how rules can be written in a .drl file and how they can be deployed on
Activiti Engine. The way you’ve implemented the rules in this section is fine when
you’re still in development. You’ll gain real advantage with business rules when you
can put the business in the driver’s seat and allow them to change the business rules in
production in real time. We’ll see an example of that in the next section!

12.4 Creating a web-based rule editor
In the previous chapter, you implemented a couple of rules, but how can you make
them rapidly changeable, without too much hassle? You want to be able to change the
content of a rule so you can directly influence the behavior of your business processes.

 In this section, we’ll introduce a small application that enables you to edit the rules
deployed on the Activiti Engine from a web application and directly deploy the
changed rules without the need to redeploy the process. No hassle at all!

12.4.1 Introducing flexibility with a custom rule authoring application

In this book’s source code, you can find a small Vaadin web application in the book-
rules-app project that you can run on a Jetty web container with Maven. Vaadin is a
web framework with a server-driven programming model that enables you to create
fancy web applications with Java code. To get started with Vaadin, you can download
the Book of Vaadin at http://vaadin.com/book.

 The idea of the book-rules-app web application is to have a view on the deployed
Drools rule files and have a way to open them in the web application, edit the rules,
and deploy the edited rules right away. This way, no coding in an IDE is necessary, and
rules can be directly viewed and deployed to speed up the process of change.

NOTE We won’t be discussing the details of the web application here,
because it uses the Activiti API you’ve been using throughout this chapter.
But, to get more details of the structure, you can browse the source code of
the web application.

You can start the application from the command line with Maven using the mvn clean
install jetty:run command. Maven will start compiling the code, package the WAR
file, start a Jetty server instance, and deploy the WAR file to it.

 To learn what’s going on in the Vaadin application, the Book of Vaadin is a great
start, but what’s interesting to know now is that Vaadin applications have a base class
that extends from the Vaadin Application class. That class is declared in the web.xml
file and forms the starting point of a Vaadin application; from there, the user inter-
face starts to build up.

308 CHAPTER 12 Ruling the business rule engine
The book-rules-app rules editor application uses the Activiti REST application to
deploy updated rules. Therefore, before you can use the book-rules-app application,
you must execute the steps at the end of section 12.3 again, but this time for the
activiti-rest application. This ensures the Drools and loan request JARs are
deployed to the Activiti REST application and that you can deploy rules in that applica-
tion. When the Activiti Tomcat instance is started again, you can start the rules web
application and go to the http://localhost:8081/book-rules-app URL. Click Drools
Rules and you’ll see a new panel on the right side of the screen. In the panel, a table is
populated with the installed BAR files on the Activiti instance running on Tomcat. In
this case, we’re interested in the installed loan request process example from the pre-
vious section. Take a look at figure 12.8 to see where we are.

 You can click the “show rules” links in the table. It looks for .drl files in the
installed archives and will either display a message saying that there are no rules
installed or display a second table containing the names of the Drools rule files.

 Clicking the Show Rules link for the ruletask.bar file, and you’ll find yourself look-
ing at the screen in figure 12.9.

 In the text field below Edit DRL in figure 12.9, you can directly edit the rule. You
can, for example, change the CreditCheckRule by making it harder for applicants to
get a loan by stating that the applicant’s income should be higher than three times the
requested amount. After you’re done, you can click Deploy Edited Rule and the
edited rule will be deployed to the Activiti Engine!

 Notice that this results in a new deployment showing in the list of deployments in
figure 12.9. You can sort this list by clicking on the column headers: Deployment ID or
Deployment Name. You can check that the modified rule is effective immediately by
running another instance of the loan request process.

Figure 12.8 Showing Activiti deployments in the Activiti rule editing panel with the help of Vaadin

309Summary
Using a simple application like this simplifies the process of changing the business
rules quite a bit. Activiti and Drools integrate nicely together to achieve this flexibility
with only a few lines of code.

 This concludes our journey into the business rule world. There are many more
things that could be covered in the vast field of business rule management, but I’m
sure that, after this chapter, you’re ready to explore that field on your own!

12.5 Summary
In this chapter, you got a thorough introduction to business rule management. We
took a look at what relationship between business rule management and business pro-
cess management, and examined in more detail what kinds of rules you can encoun-
ter in business processes. You should now have a good feel for how business rules can
make your processes more flexible and dynamic.

Figure 12.9 Web-based rule authoring and direct deployment of the edited rules on Activiti Engine

310 CHAPTER 12 Ruling the business rule engine
 We explored an open source BRMS, Drools, and worked through some examples to
get you up to speed with business rules development. When working with Drools, you
became familiar with rule engine concepts like working memory and saw the execu-
tion of rules in practice. You also saw how Drools and Activiti are integrated. We
picked up the loan request example from chapter 5 and enhanced it with business
rules to implement decision logic and business logic with rules. We also implemented
a simple web application to change deployed rules on the Activiti Engine on the fly.

 Having done all this, you now know the basics of business rule management and
how to implement rule logic with Activiti and Drools. In the next chapter, we’ll be
looking at how to integrate Activiti with Alfresco using the CMIS protocol. We’ll be
adding document management to Activiti processes.

Document management
 using Alfresco
In chapter 1, we talked about the history of the Activiti project and its relation to
Alfresco. Alfresco offers a document, web content, and record management solu-
tion. Alfresco provides an open source version called Alfresco Community, which
we’ll be using in this chapter, and a version with enterprise-level support called
Alfresco Enterprise. Activiti is used as a workflow engine to provide review and
approval processes for items in the Alfresco repository, including documents.

 Document management is a natural fit with BPM and BPMN 2.0 processes
because a lot of processes create documents or at least access documents in work-
flow tasks to provide context. A good example is an order process that results in
creating an order document and sharing it with the client who placed the order. In
an order process, we want to create a document based on process variables like a

This chapter covers
■ Learning about Alfresco and how Activiti is integrated
■ Introduction into CMIS using Apache Chemistry
■ Creating a PDF document from a process and store it

in Alfresco
311

312 CHAPTER 13 Document management using Alfresco
list of products with amounts and prices. We also want to store this document for
future reference in a document management system like Alfresco, so that it can be
found easily.

 In this chapter, we’ll look at how Activiti is used in the open source Alfresco Com-
munity product. We’ll create new ad hoc and review and approval processes and look
at how these processes are implemented with BPMN 2.0 and Activiti.

 Then, we’ll discuss how you can communicate with a document management
product like Alfresco Community using the Content Management Interoperability
Services (CMIS) open standard. We’ll use the open source Apache Chemistry project,
which implements the CMIS standard, to communicate with Alfresco Community in
order to retrieve the folder content and store a PDF document.

 In the last section, we’ll combine what we’ve seen about how we can communicate
with Alfresco using CMIS with running processes in the Activiti Engine. We’ll imple-
ment a process that accesses an Excel sheet in the Alfresco repository and creates a
PDF document that the process will automatically archive in a specific folder in
Alfresco. In addition, we’ll make sure that we can access the Excel sheet and the PDF
document in the Activiti Explorer.

 To get an overview of Alfresco document management and how the Activiti Engine
is integrated, we’ll start with an introduction to Alfresco.

13.1 Introducing Alfresco Community
Alfresco provides an open source product that offers a lot of functionality, including
document, web content, and record management. With millions of downloads,
Alfresco is used in a lot of enterprises. To accommodate enterprise use, Alfresco pro-
vides an Alfresco Enterprise version of the open source Alfresco Community product,
which offers more administration tools, a wide range of supported databases, detailed
documentation, and 24/7 support.

 But in this chapter, we’ll be using the Alfresco Community version, because it
includes all the document management capabilities we need for this chapter, includ-
ing CMIS support. We’ll start with installing and starting Alfresco Community before
looking into the Activiti integration.

13.1.1 Installing Alfresco Community

Alfresco Community can be installed using an easy installer wizard that you can down-
load from www.alfresco.org. The examples in this chapter use Alfresco Community 4.0.a
(the latest version available at the time of writing), but go ahead and download the latest
available 4.0.x version. Then, start the wizard and choose the advanced installation type
so that you can change the port settings of the built-in Tomcat server.

 In the next wizard screen, you can select the components you want to install. Fig-
ure 13.1 shows the wizard for a Mac OS X system; the Java option is grayed out in this
screenshot because it was already installed on the system. If you install Alfresco and
have Java 7 installed, it’s advisable to keep the Java option selected.

313Introducing Alfresco Community
You only need to select the PostgreSQL option so that a ready-to-use database with
Alfresco schema is installed. If you don’t have OpenOffice installed, you can also
select that component in the wizard, so that you can use the document preview func-
tionality available in Alfresco.

 In the next screen, you can leave the default database port as is. Then, you need to
configure the Tomcat settings of the Alfresco server. To prevent these ports from con-
flicting with the Activiti Tomcat server, change them as shown in figure 13.2.

Figure 13.1 The Alfresco
installation wizard on Mac
OS X showing the installable
components

Figure 13.2 The Alfresco instal-
lation wizard showing the port
settings of the built-in Tomcat
server with the HTTP port config-
ured on 9090

314 CHAPTER 13 Document management using Alfresco
For the rest of the wizard screens, except for the last one, you can accept the default
settings. In the last wizard screen, you have to configure an administrator password.
This password is important because you’ll need it in the examples later on; it’s a good
idea to write it down.

 When you’ve finished the last wizard screen, the Alfresco installation will start with
the configuration settings you’ve defined in the wizard screens. When the installation
is complete, enable the check box to start the Alfresco server because you need it run-
ning to explore the Activiti integration in the next section. If you want to stop or start
the Alfresco PostgreSQL or Tomcat server, you can find a simple management tool in
the installation directory. Look for an executable with a name something like man-
ager-osname. On Mac OS X it has the name manager-osx.

 To test whether the Alfresco installation has succeeded, go to http://local-
host:9090/share and log in with admin and the administrator password you’ve chosen
in the installation wizard. When you’re logged in, you should see a web page similar to
the screenshot shown in figure 13.3.

 When you log in for the first time, you’ll get an additional welcome dashlet or port-
let that can help you get started with Alfresco. In figure 13.3, this welcome dashlet has
already been removed from the dashboard page.

 Let’s explore some of the functionality provided by Alfresco Share with a focus on
its Activiti integration.

Figure 13.3 The landing page of the Alfresco Share web application, which is the default web appli-
cation to access the Alfresco repository

315Introducing Alfresco Community
13.1.2 Introducing Activiti integration in Alfresco

A document management and record management system like Alfresco needs a work-
flow component to deal with the review and approval processes, but also for simpler
ad hoc tasks.

 Imagine that you want a document you’ve written to be reviewed by a group of
colleagues. You’d like a document management system to support this need by creat-
ing review tasks in Alfresco for your colleagues with pointers to the document. When
each of your colleagues has reviewed the document, you’d like the review feedback
to be reported back to you. That’s exactly the functionality that Activiti provides
within Alfresco.

 On the dashboard page of Alfresco Share, you can see a dashlet named My Tasks.
This dashlet contains the tasks that are assigned to you, and it retrieves these tasks from
the Activiti Engine. In the My Tasks dashlet, you can start a new workflow process imme-
diately, but you can also start a process from a document in the My Documents dashlet.

 Let’s start a process from the Project Contract.pdf document that you can see in
the My Documents dashlet. Click on the document, and the Alfresco Share applica-
tion will show the document detail page (see figure 13.4), including a document
viewer, a set of document actions, and document properties.

Figure 13.4 The document details page in the Alfresco Share application, showing the Project Con-
tract.pdf document that’s available as demo document

316 CHAPTER 13 Document management using Alfresco
In the document details screen, you can scroll through the full document using a
PDF reader. But, for now, we’re interested in the workflow capabilities as shown in
figure 13.4. When you click on the Start Workflow action, you can choose the work-
flow process you want to start (see figure 13.5).

 The five workflow processes shown in figure 13.5 are available by default
in Alfresco. You can change these process definitions or create new ones from
scratch, just like you’re used to with Activiti. These five default processes can also be
found in the Activiti Designer in the New Diagram wizard. Figure 13.6 shows the
Group Review and Approve process created in the Activiti Designer based on the
default template.

 As you can see, the Group Review and Approve process consists of standard
BPMN 2.0 constructs, like a start event, a user task, and an exclusive gateway. But
there’s some important additional logic implemented in the process definition. In
the next listing, a part of the Group Review and Approve process definition is shown.

Figure 13.5 The workflow wizard where you can select the workflow process
you want to work with, such as Review and Approve (a specific document)

Figure 13.6 The Group Review and Approve process in the Activiti Designer

317Introducing Alfresco Community
<startEvent id="start" name="Start"
 activiti:formKey="wf:submitGroupReviewTask" />
<userTask id="reviewTask" name="Review Task"
 activiti:assignee="${reviewAssignee}"
 activiti:formKey="wf:activitiReviewTask">
 <extensionElements>
 <activiti:taskListener event="create"
 class="org.alfresco.repo.workflow.activiti.tasklistener.

 ➥ ScriptTaskListener">
 <activiti:field name="script">
 <activiti:string>
 if (typeof bpm_workflowDueDate != 'undefined')
 task.setVariableLocal('bpm_dueDate',
 bpm_workflowDueDate);
 if (typeof bpm_workflowPriority != 'undefined')
 task.priority = bpm_workflowPriority;
 </activiti:string>
 </activiti:field>
 </activiti:taskListener>
 <activiti:taskListener event="complete"
 class="org.alfresco.repo.workflow.activiti.tasklistener.

 ➥ ScriptTaskListener">
 <activiti:field name="script">
 <activiti:string>
 if(task.getVariableLocal('wf_reviewOutcome')
 == 'Approve') {

 var newApprovedCount = wf_approveCount + 1;
 var newApprovedPercentage =
 (newApprovedCount / wf_reviewerCount)
 * 100;
 execution.setVariable('wf_approveCount',
 newApprovedCount);
 execution.setVariable('wf_actualPercent',
 newApprovedPercentage);
 }
 </activiti:string>
 </activiti:field>
 </activiti:taskListener>
 </extensionElements>
 <multiInstanceLoopCharacteristics isSequential="false">
 <loopDataInputRef>wf_groupMembers</loopDataInputRef>
 <inputDataItem name="reviewAssignee" />
 <completionCondition>
 ${wf_actualPercent >= wf_requiredApprovePercent}
 </completionCondition>
 </multiInstanceLoopCharacteristics>
</userTask>

The Alfresco process definitions use the form key to render a specific task form imple-
mented in the Alfresco server. In this process definition, the start event B and the
first user task C contain such form key definitions. Besides using the out-of-the-box

Listing 13.1 Part of the Alfresco Group Review and Approve process definition

Defines Alfresco
start formB

Uses Alfresco
review task formC

Implements
task listener
with a scriptD

Calculates
approved
percentage

E

Completes
review if
condition
is true

F

318 CHAPTER 13 Document management using Alfresco
form definitions, you can also develop your own task form in Alfresco. You can read
more about that in the Alfresco documentation at http://docs.alfresco.com.

 The task forms produce process variables like you’re used to when using Activiti
standalone. In the first task listener D, the process variables bpm_workflowDueDate
and bpm_workflowPriority are used to set the due date and priority task properties.
This is done in a script that’s executed by the ScriptTaskListener class implemented
in Alfresco.

 The Review user task is a multi-instance activity, so multiple review tasks are created
based on the input provided by the start event form. When a review task is completed,
a second script task listener is executed, and the number of approvers and the per-
centage of approvers E is calculated. In the multi-instance completion condition F,
the percentage is compared to the required approvers percentage provided in the
start event form.

 Now let’s go back to the Start Workflow wizard in the Alfresco Share web application
(from figure 13.4) and start the Group Review and Approve process. Figure 13.7 shows
the start form corresponding to the start event form key definition of listing 13.1.

Figure 13.7 The start form of the Group Review and Approve process

319Introducing Alfresco Community
You need to select a review group that corresponds to the group of people you want to
review the document. Figure 13.7 shows the administrators group selected, but that’s
just for demo purposes because it only consists of the administrator user you used to
log in. You can fill in a required percentage of approvers to complete the multi-
instance “Review user” task that you saw in listing 13.1. You can also see the Project
Contract.pdf document from which you started the workflow process. When you click
the Start Workflow button shown in figure 13.7, the Activiti Engine kicks off the pro-
cess definition to create a new process instance.

 Because you’re logged in as the administrator user, a new task appears in the My
Tasks dashlet on the dashboard page. When you click this task, a new user task form is
shown (see figure 13.8) corresponding to the form key definition of the Review user
task of listing 13.1.

 In the task form, some details about the user task are shown, including the priority
and the due date. In addition, you can look at the contents of the PDF document by
clicking on it. With the Approve and Reject buttons you can choose to approve or
reject the PDF document. If you reject it, you’ll see a new task in the My Tasks dashlet
named The Document Was Reviewed and Rejected. When you click on that task,
another task form page is shown that provides details about the review process, such as
the number of reviewers and the percentage of approvers (0 in this case).

 You now know the basics about how Activiti is integrated and used within Alfresco.
It’s possible to develop your own user task forms and process definitions, but that’s

Figure 13.8 The multi-instance “Review user” task form

320 CHAPTER 13 Document management using Alfresco
beyond the scope of this book. The Alfresco documentation website (http://
docs.alfresco.com) provides a lot more detail about this.

 Using Activiti inside Alfresco is nice, but we’d also like to store and retrieve docu-
ments from Alfresco when we’re executing a process instance with Activiti. In the next
section, we’ll discuss the CMIS standard and how to use it to communicate with the
Alfresco repository.

13.2 Using CMIS to store and retrieve documents
Content Management Interoperability Services (CMIS) is an open standard maintained
by OASIS with the goal of standardizing an API to communicate with a content manage-
ment system like Alfresco or SharePoint. There are two benefits associated with this.

 The first benefit is that you can access content management applications via an API
from another application to retrieve and store content. A content management appli-
cation can then be a central hub for content in an organization.

 A second benefit is that the API you use to implement the communication logic isn’t
proprietary for that one content management application; it’s an open standard that
can be used to communicate with a number of content management applications.

 In this section, I’ll show you how to use CMIS to retrieve information from Alfresco
and how to store a new document version. We’ll use the Apache Chemistry framework
for the client CMIS implementation.

13.2.1 Retrieving folder content from Alfresco using CMIS

The Apache Chemistry project provides a Java library that implements the CMIS logic
needed to communicate with Alfresco. The Apache Chemistry libraries are listed as
dependencies in the pom.xml file of the bpmn-examples project.

 One of the first steps is to establish an authenticated connection with the Alfresco
CMIS repository before you can perform additional actions, like retrieving folders and
documents. Because this functionality is needed in all the CMIS examples, best practice
is to create a utility class that you can reuse. The next listing shows the first methods of
this utility class that create a connection and retrieve a folder based on a folder name.

public class CmisUtil {

 public static Session createCmisSession(String user,
 String password, String url) {

 SessionFactory sessionFactory =
 SessionFactoryImpl.newInstance();
 Map<String, String> parameter =
 new HashMap<String, String>();
 parameter.put(SessionParameter.USER, user);
 parameter.put(SessionParameter.PASSWORD, password);
 parameter.put(SessionParameter.ATOMPUB_URL, url);
 parameter.put(SessionParameter.BINDING_TYPE,
 BindingType.ATOMPUB.value());

Listing 13.2 A utility class that uses Apache Chemistry to communicate over CMIS

Uses AtomPub,
no web service
binding

B

321Using CMIS to store and retrieve documents
 Repository repository = sessionFactory
 .getRepositories(parameter).get(0);
 return repository.createSession();
 }

 public static Folder getFolder(
 Session session, String folderName) {

 ObjectType type = session.getTypeDefinition(
 "cmis:folder");
 PropertyDefinition<?> objectIdPropDef = type
 .getPropertyDefinitions()
 .get(PropertyIds.OBJECT_ID);
 String objectIdQueryName =
 objectIdPropDef.getQueryName();

 ItemIterable<QueryResult> results =
 session.query(
 "SELECT * FROM cmis:folder WHERE cmis:name='" +
 folderName + "'", false);
 for (QueryResult qResult : results) {
 String objectId = qResult
 .getPropertyValueByQueryName(objectIdQueryName);
 return (Folder) session.getObject(
 session.createObjectId(objectId));
 }
 return null;
 }
}

In the first method, a CMIS session is created, which is an authenticated connection to
the Alfresco repository. Once you have a CMIS session, you can perform actions like
creating a document or querying the repository like you do in the second method.
The AtomPub binding type is used to communicate with the Alfresco repository B.
CMIS and Apache Chemistry also support a web service binding type.

 With a user ID that’s allowed to access Alfresco, you can get a list of Alfresco repos-
itories. By default, you only get one repository here, so you can get the first repository
and create a CMIS session C. This CMIS session is needed to communicate with the
Alfresco repository and retrieve folder and document information from it.

 The second method shows how you can perform a query against the Alfresco
repository using a CMIS session. In this method, you want to retrieve a folder object
based on a folder name, so you can set the query type definition to cmis:folder D.
Because you want to retrieve the full folder object, the query result type is set to object
identifier (OBJECT_ID) E. This object identifier is then used to retrieve the full folder
object via the CMIS session F.

 Now let’s test both methods with a simple unit test. First, in the Alfresco repository,
you have to set up a folder that you can use in your unit test. Follow these steps:

1 Create a new site named Activiti. In the Alfresco Share web application, click
Sites > Create Site in the top menu bar. Then, fill in the name Activiti and leave
the other fields as is. Then click OK to create the site.

Creates session to
Alfresco repository

C

Looks for
folders

D

Seeks unique
object IDsE

Gets folder
objectF

322 CHAPTER 13 Document management using Alfresco
2 Create a folder named myExpenses. In the newly created site, click the Docu-
ment Library link and choose Create a New Folder. Fill in the name field with
myExpenses and click Save. The myExpenses folder is created.

3 Open the myExpenses folder and upload a document from your hard drive.
Confirm that the document is uploaded to the myExpenses folder.

Now you can implement a simple unit test to validate the CMIS session and folder
query functionality shown in listing 13.2. The next listing shows a test method that
retrieves the myExpenses folder from the Alfresco repository and then downloads the
uploaded document from the folder to a local directory.

public class CmisTest {

 private static final String ALFRESCO_CMIS_URL =
 "http://localhost:9090/alfresco/service/cmis";

 @Test
 public void retrieveFolder() throws Exception {
 Session session = CmisUtil.createCmisSession(
 "admin", "secret", ALFRESCO_CMIS_URL);
 Folder folder = CmisUtil.getFolder(
 session, "myExpenses");
 assertNotNull(folder);
 assertEquals(1, folder.getChildren()
 .getTotalNumItems());
 CmisObject cmisObject = folder.getChildren()
 .iterator().next();
 assertTrue(cmisObject instanceof Document);
 Document document = (Document) cmisObject;
 System.out.println("document name " +
 document.getName());
 System.out.println("document type " +
 document.getType().getDisplayName());
 System.out.println("created by " +
 document.getCreatedBy());
 System.out.println("created date " +
 document.getCreationDate().getTime());
 FileOutputStream output = new FileOutputStream(
 document.getName());
 InputStream repoDocument = document
 .getContentStream().getStream();
 byte[] buffer = new byte[1024];
 while(repoDocument.read(buffer) != -1) {
 output.write(buffer);
 }
 output.close();
 repoDocument.close();
 }
}

To communicate with the CMIS server in the Alfresco repository, you need to define
the URI at /alfresco/service/cmis B. Then you can log in to the Alfresco CMIS

Listing 13.3 Unit test to retrieve a folder and document from the Alfresco repository

The Alfresco
CMIS server URI

B

Logs in to Alfresco
repository

C

Gets myExpenses
folderD

Gets document
in myExpenses
folder

E

Gets document
content

F

323Using CMIS to store and retrieve documents
repository using the admin user and the password you configured in the Alfresco
Community installation wizard (I used secret in this listing) C.

 Once you’re logged in to the CMIS repository, you can query the repository for the
myExpenses folder D. You’ve uploaded one document to the folder, so you’ll expect
only one document in the child list of the folder object E. Then you print some
information about the document to the console, such as the document name and the
create date.

 At the end of the unit test method, the contents of the document are downloaded
using the getContentStream method on the document object F. The document is
downloaded to the root directory of the bpmn-examples project and can be opened
when you run this unit test.

 Try running the unit test to make sure you can retrieve the uploaded document as
expected.

 The CMIS API offers a wide range of functionality that goes far beyond querying
capabilities. Next, we’ll take a look at a more complex capability to upload a new doc-
ument version to the Alfresco repository.

13.2.2 Storing a new document version

Versioning is an important feature of a document management system like Alfresco,
and it can allow you to perform complex operations with CMIS.

 For an important document there can be a lot of different versions. After each
round of review, the document is revised based on the reviewer’s comments, and a
new document version is created. For auditing and traceability purposes, it’s nice to
have the latest and the previous version available to see exactly what has changed.
There are also cases where version 1.0 is the latest public version and version 1.2 is
being worked on by a group of people. A document management system should pro-
vide support to make these two versions available to the right people.

 You can upload a new version of a document via the Alfresco Share web applica-
tion and then find out if there are multiple versions available of that document avail-
able, and which is the latest version. But you can also do this via a number of CMIS
operations. In the next listing, a unit test is shown with the CMIS operations to upload
a new version of a document.

public void versionDocument() {
 Session session = CmisUtil.createCmisSession(
 "admin", "secret", ALFRESCO_CMIS_URL);
 Document doc = (Document) session.getObject(
 "workspace://SpacesStore/" +
 "007df67f-28a8-4973-a39b-459c835c0712");
 Document pwc = (Document) session.getObject(
 doc.checkOut());
 try {
 pwc.checkIn(true, null, pwc.getContentStream(),
 "New version after group review");

Listing 13.4 Unit test with CMIS operations to upload a new document version

Gets specific
document
with ID

B

Checks out
document

C

Checks in
document

D

324 CHAPTER 13 Document management using Alfresco
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("checkin failed, cancel checkout");
 pwc.cancelCheckOut();
 }
 System.out.println("Document version history");
 List<Document> versions = doc.getAllVersions();
 for (Document version : versions) {
 System.out.println("\tname: " + version.getName());
 System.out.println("\tversion label: " +
 version.getVersionLabel());
 System.out.println("\tlast modified by: " +
 version.getLastModifiedBy());
 System.out.println("\tlatest version: " +
 version.isLatestVersion());
 System.out.println("\tcheckin comment: " +
 version.getCheckinComment() + "\n");
 }
}

This unit test method is part of the same CmisTest class as the one shown in listing 13.3.
When you’ve created a session to the Alfresco repository, you can retrieve a specific doc-
ument directly using a unique identifier B. The unique identifier shown here is the
identifier of the document uploaded in the previous section.

 You can find the unique identifier for a document in the Alfresco Share applica-
tion as shown in figure 13.9.

Gets all
document
versions

E

Figure 13.9 The document details page of the Alfresco Share application, showing the unique identifier
of the document (in the rectangle at the bottom right of the figure)

325Using CMIS to store and retrieve documents
The unique identifier can be found on the document details page in the Share sec-
tion, as shown in figure 13.9. You can also find the unique identifier at the end of the
URL shown in your web browser. An alternative way of getting a document using CMIS
is to use a query like you did in listing 13.3.

 When you’ve found the document, you can perform a check out operation C,
which will lock the document so it can’t be edited by someone else. In this example,
you perform the check-in operation D immediately after the check out, but, when
there’s more time between these operations, the Alfresco Share application will show
a locked message (see figure 13.10).

 When the check-in operation is executed, a new version of the document is created
in the Alfresco repository. In this unit test, you upload the exact same document as the
previous version, but you could alternatively upload another document. You can also
provide a check-in message; in listing 13.4, it’s "New version after group review".

 In the last part of the unit test, you print information about all the versions of the
document to the console E. This shows that you can access each version of the docu-
ment individually and even download them. When you execute the unit test a couple
of times, you can see that the same number of new document versions is created. In
the document details of the Alfresco Share application, you can also see the version
history, as shown in figure 13.11.

 In the screenshot shown in figure 13.11, three document versions are created. In
the unit test in listing 13.4, you created major versions of the document. But you can
also create minor versions, like version 2.1 or 3.2, by setting the first input parameter
of the checkIn method invocation to false.

 Now that you’re familiar with the document management features of Alfresco and
have experimented with the CMIS standard, it’s time to look at integrating documents
in a BPMN 2.0 process flow using the Activiti Engine and Explorer.

Figure 13.10 The Alfresco Share application showing a locked message when you perform a check-out
CMIS operation on the document

326 CHAPTER 13 Document management using Alfresco
13.3 Adding documents to a BPMN 2.0 process definition
A lot of business processes deal with documents for a lot of different reasons, including
auditing and traceability, informing customers, and formal communication with busi-
ness partners. It can be useful for service tasks in these processes to communicate with
a document management system like Alfresco. Later on in this section, we’ll use Apache
POI to retrieve an Excel document stored in the Alfresco repository and look up the
right result value in a decision table, and we’ll use the iText framework to store a PDF
document sent to the loan request applicant for auditing and traceability purposes.

 But first, we’ll look at how you can attach documents to user tasks and process
instances so you can easily view them in the Activiti Explorer or another process
application.

13.3.1 Working with task and process instance attachments

When you want to implement a document review and approval process like the one in
section 13.1, it’s important that you can also automatically attach the to-be-reviewed
document to the reviewers’ user tasks.

 The Activiti task service interface provides service methods to upload attachments
and to couple them to user tasks or process instances. Let’s implement a unit test that
uses the task service interface to upload a PDF document and attach it to a user task.

Figure 13.11 The Alfresco Share application with the document version history at the lower right

327Adding documents to a BPMN 2.0 process definition
public class AttachmentTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg.xml");

 @Test
 public void addAttachment() throws Exception {
 activitiRule.getIdentityService()
 .setAuthenticatedUserId("kermit");
 TaskService taskService = activitiRule
 .getTaskService();
 Task task = taskService.newTask();
 task.setName("Task with CMIS attachments");
 task.setAssignee("kermit");
 taskService.saveTask(task);

 InputStream pdfStream = new FileInputStream(
 "src/main/resources/chapter13/cmis-cheatsheet.pdf");
 taskService.createAttachment("application/pdf",
 task.getId(), null, "CMISCheatSheet",
 "CMIS cheat sheet", pdfStream);

 taskService.createAttachment("url", task.getId(),
 null, "Alfresco site", "A Alfresco site for Activiti",
 "http://localhost:9090/share/page/site/activiti/" +
 "document-details?nodeRef=workspace://SpacesStore/" +
 "007df67f-28a8-4973-a39b-459c835c0712");

 List<Attachment> attachmentList = taskService
 .getTaskAttachments(task.getId());
 assertEquals(2, attachmentList.size());
 }
}

Because you want to view the task that’s created in this unit test in the Activiti
Explorer, the unit test uses the activiti.cfg.xml configuration, which points to the
H2 database running at localhost B (not the in-memory H2 database). You set the
authenticated user C because an authenticated user is needed to invoke the create-
Attachment methods to show the name of the attachment uploader in the event
stream (see the right column in figure 13.12).

 Then you create a task and assign it to Kermit. With the task identifier, you can
invoke the createAttachment method on the task service interface to upload a PDF
document D to the Activiti Engine database and add it as related content to the newly
created task. You also create another attachment that points to a URL E. In this exam-
ple, you point it to the uploaded document created in section 13.2.

 When you run this unit test, a task is created in the Activiti Engine database with
two attachments. You can view this task in Kermit’s inbox in the Activiti Explorer, as
shown in figure 13.12.

 In the Activiti Explorer, you can see that two related content items are shown in
the task details page. When you click on the CMISCheatSheet PDF document, you can

Listing 13.5 Adding attachments to a user task with the task service interface

Connects
to H2 at
localhost

B

Sets user for creating
attachments

C

Creates PDF
document
attachment

D

Creates URL
attachment E

328 CHAPTER 13 Document management using Alfresco
download and view it directly. In addition, you can click the Alfresco site link to point
your web browser to the uploaded document in Alfresco Share.

 There are also two events added in the event stream on the right side of the task
page shown in figure 13.12. This is why you needed to set the authenticated user in
listing 13.5—the event needs a valid user identifier to render the user picture. If you
hadn’t set the authenticated user, an exception would’ve been thrown in the Activiti
Explorer and the task detail page wouldn’t have been shown.

 Now let’s go ahead and use what you’ve learned in previous sections. In the next
section, you’ll implement a process definition that uses CMIS to communicate with the
Alfresco Community repository, and you’ll add an attachment to the process instance
that can be viewed in the Activiti Explorer.

13.3.2 Implementing a document-aware process definition

A typical business process in a financial organization involves retrieving, creating, or stor-
ing a document. In this section, we’ll use the same loan request example we used in pre-
vious chapters, but here we’ll add logic to retrieve and store Excel and PDF documents.

 Figure 13.13 presents an overview of the process definition and the interaction
with the Alfresco repository. The loan request process definition hasn’t changed
much on a BPMN level. The main difference is that, in the last service task, you create
a PDF document that can be sent as a letter to the customer to provide information
about the outcome of the loan request approval process. Under the hood, though,
there are quite a lot of changes.

 In the previous chapter, you implemented the credit check task with a business
rule task and a Drools rule file. In this chapter, you’ll replace this with a service task

Figure 13.12 The Activiti Explorer showing the newly created task with two attachments

329Adding documents to a BPMN 2.0 process definition
that will retrieve an Excel document from the Alfresco repository; the Excel docu-
ment contains formulas used in the credit check. In addition, a new Excel sheet that
contains the loan request details and the outcome of the credit check for that specific
loan request is created.

 In the second service task, you’ll also retrieve an Excel document, but this time it
contains a decision table. The “Evaluate loan request” service task will read the deci-
sion table and determine the right evaluation value based on the values found. Based
on the evaluation value, the “Evaluate request by manager” user task will either be
executed or not.

 Let’s start with implementing the “Credit check” service task that reads an Excel
template and then, based on this template, stores a new Excel document containing
the loan request details. But, before we do that, let’s take a look at the Excel template
you’ll be using (see figure 13.14).

Figure 13.13 An overview of the loan request process definition we’ll be implementing in this section.
It shows the interaction with the Alfresco repository to retrieve and store Excel and PDF documents.

Figure 13.14 The Credit Check Excel template showing the simple formula
for the credit check calculation

330 CHAPTER 13 Document management using Alfresco
The Credit Check Excel template shown in figure 13.14 is simple. In cell C5, the value
of the loan amount entered in B5 is doubled. Then, in the credit check formula in
cell B7, a check is implemented to see if the income is higher than double the loan
amount. The great thing about using Excel templates and a document repository like
Alfresco for this kind of logic is that business users can create the formulas themselves
without the need for coding. Note that there is a tradeoff when the Excel sheets
become large and complex.

 In the “Credit check” service task implementation, you’ll retrieve the Excel sheet
from the Alfresco repository and read it using the Apache POI library, a well-known
Apache framework to read and write Microsoft Office documents from Java. In list-
ing 13.6, the service task implementation of CreditCheckCMISTask is shown.

public class CreditCheckCMISTask implements JavaDelegate {
 private static final String EXCEL_MIMETYPE =
 "application/vnd.openxmlformats-" +
 "officedocument.spreadsheetml.sheet";

 @Override
 public void execute(DelegateExecution execution)
 throws Exception {

 LoanApplication loanApplication = (LoanApplication)
 execution.getVariable("loanApplication");
 POICMISHelper helper = new POICMISHelper();
 helper.openWorkbook("workspace://SpacesStore/" +
 "a5715b04-7422-4e8c-bb8f-def83031103a");

 helper.setCellValue(loanApplication
 .getApplicant().getName(), 0, 1, true);
 helper.setCellValue(loanApplication
 .getApplicant().getEmailAddress(), 1, 1, true);
 helper.setCellValue(loanApplication
 .getApplicant().getIncome(), 4, 0, false);
 helper.setCellValue(loanApplication
 .getApplicant().getLoanAmount(), 4, 1, false);

 helper.evaluateFormulaCell(4, 2);
 helper.evaluateFormulaCell(6, 1);
 loanApplication.getApplicant().setCheckCreditOk(
 helper.getBooleanCellValue(6, 1));

 helper.recalculateSheetAfterOpening();

 Document document = helper.saveWorkbookToFolder(
 loanApplication.getApplicant().getName(),
 ".xls", EXCEL_MIMETYPE);

 helper.attachDocumentToProcess(
 execution.getProcessInstanceId(), document, "xls",
 "Credit check sheet for " +
 loanApplication.getApplicant().getName());

Listing 13.6 Credit check service task implementation using CMIS and POI

Gets credit
check Excel
template

B

Sets loan
application nameC

Sets loan
amount value

D

Executes
Excel formula

E

Recalculates
formula fields
when openingF

Attaches
Excel sheet to
process contextG

331Adding documents to a BPMN 2.0 process definition
 execution.setVariable("loanApplication",
 loanApplication);
 execution.setVariable("documentFolderId",
 helper.documentFolder.getId());
 }
}

The service task contains quite a bit of logic, but the core CMIS and POI logic is imple-
mented in the POICMISHelper class that you can find in the bpmn-examples project of
the book’s source code. This class has a variable (ALFRESCO_ADMIN_PASSWORD) that
holds the password of the Alfresco admin user. You should change this password to
the password you specified while installing Alfresco.

 The first step in the service task retrieves the Excel template shown in figure 13.14
from the Alfresco repository using the unique identifier B. To be able to retrieve the
Excel template from the Alfresco repository, you first have to upload it to the Activiti
site you created in section 13.2. Create a folder named loanapplication and upload
the creditcheck.xlsx file from the src/main/resources/chapter13/cmis directory (see
the bpmn-examples project of the book’s source code) to that folder. Then, retrieve
the object identifier for that object by looking at the document details page or its URI.
Finally, replace the object identifier mentioned in CreditCheckCMISTask with the
object identifier of the uploaded document in your Alfresco environment.

 When you retrieve the credit check Excel template from the Alfresco repository,
it’s parsed by the Apache POI framework in the POICMISHelper class. You can now set
values like the loan applicant name C and the loan amount D by referencing a cell
in the template with a row and column number. For the loan applicant name, you
have to create the cell first because the template doesn’t yet contain a value. To do
this, you set the last parameter of the setCellValue method to true. For the loan
amount, you don’t have to create the cell; you can just set the value because there’s
already a value of 0 in the template. In addition to setting values, you can also execute
a formula in the Excel sheet E and get the result value afterwards.

 At this point, you have used the credit check logic in the Excel template to get a
value of true or false for the credit check attribute in the loan application process
variable. To make sure the formula cells in the Excel sheet contain the right values,
you tell the Excel sheet to recalculate all formula cells when the sheet is reopened F.

 In the last steps of the service task, the Excel document with the loan request infor-
mation filled in is stored in the Alfresco repository in a subfolder of the loanapplica-
tion folder with the subfolder name that’s equal to the value of the name of the loan
applicant. Then the new document is coupled to the process instance as a new attach-
ment G. You also set the subfolder with the applicant name as a process variable
because you need it in the last service task where you’ll create the PDF letter.

 The credit check service task definition in the loanrequest.cmis.bpmn20.xml
process definition, which you can find in the src/main/resources/chapter13/cmis
folder of the bpmn-examples project, contains the class attribute configuration point-
ing to the CreditCheckCMISTask, as you’d expect. But there’s also an asynchronous
attribute, shown in the following code snippet:

332 CHAPTER 13 Document management using Alfresco
<serviceTask id="checkCredit"
 activiti:async="true"
 activiti:class="org.bpmnwithactiviti.chapter13.process.task.

 ➥ CreditCheckCMISTask" />

By adding the asynchronous attribute, you make sure that the user doesn’t have to
wait for the whole process instance to finish after completing the first user task. Start-
ing from the credit check service task, the process instance is executed asynchro-
nously, so the user can go on with their work. In this example, the asynchronous
execution fits perfectly because the communication with the Alfresco repository, the
Excel reading and writing, and the PDF document generation all take some time to
complete.

 Now that you’ve got the first service task communicating with the Alfresco reposi-
tory and reading and writing an Excel document, you can go on with a similar second
service task. The loan request evaluation service task differs a bit because it only reads
an Excel document containing a decision table. The service task looks up the evalua-
tion outcome in the decision table (see figure 13.15) and adds this value to the loan
application process variable.

The decision table contains the credit check and loan amount columns for the if con-
ditions and the status column for the evaluation result. Let’s look at the implementa-
tion of the EvaluationCMISTask using this decision table. Note that it’s a long listing
due to the logic needed to process the decision table.

public class EvaluationCMISTask implements JavaDelegate {

 @Override
 public void execute(DelegateExecution execution)
 throws Exception {

 LoanApplication loanApplication = (LoanApplication)
 execution.getVariable("loanApplication");
 POICMISHelper helper = new POICMISHelper();
 helper.openWorkbook("workspace://SpacesStore/" +
 "c70bab92-ce68-444d-8a6c-2f0c43859e0c");

 boolean creditCheck = loanApplication

Listing 13.7 Implementing a service task using an Excel-based decision table

Figure 13.15 The Excel decision table you’ll use in the loan request evalu-
ation service task

Gets Excel
decision
table

B

333Adding documents to a BPMN 2.0 process definition
 .getApplicant().isCheckCreditOk();
 long loanAmount = loanApplication
 .getApplicant().getLoanAmount();
 boolean foundMatch = false;
 boolean reachedEndOfRules = false;
 int rowCounter = 1;
 while(foundMatch == false && reachedEndOfRules == false) {
 Cell cell = helper.getCell(rowCounter, 0);
 if(cell == null) {
 reachedEndOfRules = true;
 } else if(creditCheck == helper.getBooleanCellValue(
 rowCounter, 0)) {

 String loanAmountRule = helper.getStringCellValue(
 rowCounter, 1);
 if("N/A".equalsIgnoreCase(loanAmountRule)) {
 foundMatch = true;
 } else {
 int spaceIndex = loanAmountRule.indexOf(" ");
 String loanAmountRuleCompare =
 loanAmountRule.substring(0, spaceIndex);
 String loanAmountRuleValue = loanAmountRule
 .substring(spaceIndex + 1,
 loanAmountRule.length());
 if("<".equals(loanAmountRuleCompare)) {
 if(loanAmount < Long.valueOf(
 loanAmountRuleValue)) {
 foundMatch = true;
 }
 } else if("<=".equals(loanAmountRuleCompare)) {
 if(loanAmount <= Long.valueOf(
 loanAmountRuleValue)) {
 foundMatch = true;
 }
 } else if("=".equals(loanAmountRuleCompare)) {
 if(loanAmount == Long.valueOf(
 loanAmountRuleValue).longValue()) {
 foundMatch = true;
 }
 } else if(">".equals(loanAmountRuleCompare)) {
 if(loanAmount > Long.valueOf(
 loanAmountRuleValue)) {
 foundMatch = true;
 }
 } else if(">=".equals(loanAmountRuleCompare)) {
 if(loanAmount > Long.valueOf(
 loanAmountRuleValue)) {
 foundMatch = true;
 }
 }
 }
 }
 if(foundMatch == false) {
 rowCounter++;

Starts at
decision table
first row

C

Gets rule
value

D

Gets rule
comparator

E

Gets rule
number valueF

Compares
loan amount
to rule value

G

334 CHAPTER 13 Document management using Alfresco
 }
 }
 if(foundMatch == false) {
 throw new ActivitiException(
 "No match found in decision table");
 }
 loanApplication.setStatus(
 helper.getStringCellValue(rowCounter, 2));
 execution.setVariable("loanApplication",
 loanApplication);
 }
}

Note that you start with retrieving the Excel decision table document B using the
unique document identifier. As in the previous service task, you have to replace the
document identifier with the value of your local Alfresco repository after uploading
the evaluation.xlsx Excel sheet, which can be found in the src/main/resources/
chapter13/cmis directory.

 To process the decision table, you loop through the contents starting with row 1 C,
which corresponds to row 2 in the Excel sheet shown in figure 13.15 (remember that
Java often starts with 0 instead of 1). You then check if the Excel credit check Boolean
value is equal to the process variable value. If it is, you retrieve the loan amount condi-
tion from the Excel sheet D.

 When the value is “N/A”, you’ve found your match in the decision table. For the
other cases, you implement logic to validate the comparator E and the loan amount
value F used in the condition. For example, when the comparator is >, you check
whether the loan amount value in the process variable is larger than the one defined
in the condition G. As you can see, the service task contains this kind of conditional
logic for the common comparators.

 If a match is found in the decision table, the while loop is ended and the value
in the status column is retrieved on the same row number as the match H. With the
loan request evaluation status found, you can update the loan application process
variable.

 In the exclusive gateway that’s connected to the “Evaluate loan request” service
task (you can look back at figure 13.13 for the process definition), the status value is
used to determine which sequence flow should be followed. When there’s a need for
manager approval, a new user task is created. In the other cases, the PDF letter service
task is executed. In this service task, you’ll generate a PDF document using the process
variables to inform the customer about the loan request outcome. An example of this
PDF document is shown in figure 13.16.

 To implement the logic needed to generate the PDF document, the iText frame-
work (www.itextpdf.com) is used. The iText libraries are listed as Maven dependencies
in the pom.xml file of the bpmn-examples project, available in the book’s source code.

Gets status
value

H

335Adding documents to a BPMN 2.0 process definition
In the following code snippet, a part of the service task implementation is included.
You can find the full source code in the bpmn-examples project:

public class PDFLetterTask implements JavaDelegate {

 public void execute(DelegateExecution execution) throws Exception {
 LoanApplication loanApplication = (LoanApplication)
 execution.getVariable("loanApplication");
 com.itextpdf.text.Document pdf = new com.itextpdf.text.Document();
 pdf.add(new Paragraph("Dear Mr/Mrs " +
 loanApplication.getApplicant().getName() + ","));
 pdf.add(new Paragraph(" "));

 if("approved".equalsIgnoreCase(loanApplication.getStatus()) ||
 "approved by manager".equalsIgnoreCase(
 loanApplication.getStatus())) {
 pdf.add(new Paragraph("After analysis regarding your loan request" +
 " we are happy to inform you that your loan request for $" +
 loanApplication.getApplicant().getLoanAmount() +
 " is approved. Enclosed, you’ll find all the details regarding" +
 " the next steps in the process of your loan request."));
 } else {
 pdf.add(new Paragraph("After analysis regarding your loan request" +
 " we regret to inform you that your loan request for $" +

Figure 13.16 A sample PDF letter generated by the last service task of the loan request process defi-
nition. Process variables are used to fill in the values in the PDF document.

336 CHAPTER 13 Document management using Alfresco
 loanApplication.getApplicant().getLoanAmount() + " is denied."));
 }
 }
}

The PDFLetterTask service task contains more code than is shown here (to include
the header and the shark image), but this code snippet shows how you can use iText
to create a new PDF document without a lot of boilerplate code. To personalize the let-
ter, you make use of the process variables to fill in the customer name and the loan
request evaluation outcome. At the end of the service task implementation, the newly
created PDF document is uploaded to the same folder in the Alfresco repository where
you store the credit check Excel document:

POICMISHelper helper = new POICMISHelper();
helper.createCmisSession();
helper.saveDocumentToFolder(outputStream,
 (String) execution.getVariable("documentFolderId"),
 loanApplication.getApplicant().getName(), ".pdf", "application/pdf");

The POICMISHelper is used to create a new CMIS session, and the PDF document is
uploaded to the folder corresponding to the documentFolderId process variable.

 It’s good to take some time to read through the full process definition implemen-
tation at this point, starting with the loanrequest.cmis.bpmn20.xml file in the src/
main/resources/chapter13/cmis folder. In the next section, we’ll deploy the solution
to the Activiti Explorer and start a couple of process instances.

13.3.3 Deploying and testing the document-aware process definition

To test the loan request process definition with the Activiti Explorer, you must deploy
the solution to that web application first. Because you’re using external libraries like
Apache POI and iText, you have to copy additional JAR files to the WEB-INF/lib direc-
tory of the Activiti Explorer web application.

 Execute the following steps to get the process definition deployed:

1 Execute the build.xml Ant build file in the src/main/resources/chapter13/
cmis directory by running its default target, create.cmis.

2 In the dist/enginelibs subdirectory, the cmis.jar file is created in step 1 contain-
ing the service task and listener classes. In addition, the libraries needed for
Apache POI and iText are copied there (also by the Ant script of step 1). Copy
all of these JAR files to the WEB-INF/lib directory of the Activiti Explorer web
application in Tomcat.

3 If the Activiti Tomcat server is still running, stop it by executing the command
tomcat.stop in the setup directory of your Activiti installation. Then, start it up
again by running the tomcat.start command from that same setup directory.

4 Open the Activiti Explorer in a web browser and log in with Kermit.
5 In the dist/deploy subdirectory, a cmis.bar file containing the BPMN 2.0 XML

process definition is generated. In the deployments tab, upload this BAR file to
the Activiti Explorer.

337Adding documents to a BPMN 2.0 process definition
After executing these steps, you’re good to go and can start a new process instance.
Fill in the required fields of the user task form using an income value of 50,000 and a
loan amount value of 20,000. This should lead to creating a new user task with man-
agement as the candidate group.

 At this point, the credit check and loan request evaluation service tasks are exe-
cuted, and the credit check Excel document should be attached to the process
instance. Figure 13.17 shows a screenshot of the claimed manager approval user task
that contains the credit check Excel document as related content. You can open the
Excel document by clicking on it to see if the right values are filled in.

 Now approve the request and complete the user task. When you do, the PDF letter
will be generated and stored in the Alfresco repository.

Figure 13.17 The Activiti Explorer showing the claimed manager approval user task with the credit check
Excel document as related content

338 CHAPTER 13 Document management using Alfresco
Once the process instance has been completed, you can check that the credit check
Excel and PDF letter documents are available in the Alfresco repository in the loanap-
plication folder and the subfolder based on the applicant’s name (see figure 13.18).

 You can again look at the contents of these files to make sure they are generated
correctly. And you can start a couple more process instances to test all cases of the
loan request process definition, including, for example, a denial.

 This brings us to the end of the chapter.

13.4 Summary
As mentioned in the first chapter, Activiti is created and funded by Alfresco. But, until
this chapter, we hadn’t looked into the wide range of capabilities the Activiti Engine
brings to Alfresco or how you can leverage the Alfresco repository from a BPMN 2.0 pro-
cess definition. In the first section, we started with looking at Alfresco’s process and
workflow functionality that makes use of the Activiti Engine. We saw how a BPMN 2.0
review process definition is implemented in Alfresco and that we can make use of the
Activiti Designer to modify Alfresco template process definitions or create new ones
from scratch.

 Then, we looked into the details of the CMIS standard and its implementation in
the Apache Chemistry framework. The CMIS specification was defined to standardize

Figure 13.18 The Alfresco repository showing the Excel and PDF documents generated by the loan
request process instance

339Summary
the interfaces and data formats amongst different vendor implementations of content
and document management systems like Alfresco. Alfresco is one of the supporters of
this standard, maintained by OASIS, so we can use CMIS to communicate with the
Alfresco repository to retrieve document contents, store new document versions,
and so on.

 In the last section, you implemented a process definition making heavy use of doc-
uments and the Alfresco repository. You saw how to utilize Excel documents and their
powerful formulas to implement conditional logic. The logic implemented with
Drools in the previous chapter can easily be implemented using Excel formulas. In
addition, you saw that a framework like iText can be used to generate a PDF document
with a few lines of code.

 In the next chapter, we’ll take a look at how you can leverage the Activiti Engine
to create real-time dashboards. We’ll be using the Esper framework to handle busi-
ness events created by Activiti process instances and using Vaadin to create graphi-
cal dashboards.

Business
 monitoring and Activiti
When many different business processes are running in an organization, it’s diffi-
cult to get a good sense of the status of all of these processes. You can imagine that
decision-making becomes a whole lot easier when there’s a dashboard that can give
you real-time insight into all of these running processes: What is currently being
ordered? Are stock levels dropping? To provide this real-time information about
what’s happening in an organization, business monitoring or business activity mon-
itoring (BAM) comes to the rescue. This chapter will cover what business monitor-
ing is and show how you can extend Activiti to implement it.

This chapter covers
■ Business activity monitoring (BAM)
■ Introducing complex event processing (CEP)
■ Open source CEP with Esper
■ Monitoring Activiti processes with Esper
■ Implementing a Vaadin BAM dashboard application
340

341Monitoring business processes
 We’ll start off by explaining what business monitoring is and we’ll introduce a
number of monitoring concepts that will be used throughout the rest of the chapter.
We’ll take a good look at what complex event processing (CEP) is because this tech-
nique is often used while implementing business monitoring.

 After you’ve seen how business monitoring works, we’ll take Esper, an open source
CEP engine, for a spin. When we’re fully up to speed with Esper, we’ll integrate the
Esper engine with Activiti in section 14.3. Finally, in section 14.4, we’ll introduce a
Vaadin application that visualizes the state of the loan request process instances to
give you an idea of the real-time business monitoring capabilities of Esper and Activiti.

 We have quite a bit of ground to cover, but we’ll take it one step at a time!

14.1 Monitoring business processes
This first section will provide you with an introduction to business monitoring. We’ll
take a look at what business monitoring is and discuss the differences between it and
business intelligence. To conclude the section, we’ll introduce complex event process-
ing. This technique is often used in business monitoring environments and plays an
important role in the code examples of this chapter.

14.1.1 Introducing business activity monitoring (BAM)

Business monitoring, or business activity monitoring (BAM), is all about knowing
what’s going on in an organization at any given moment in time. Knowing what
goes on in real time can help managers quickly identify problem areas and risks,
guide businesses to make better decisions, and lets companies adapt faster to exter-
nal changes.

 An example of the practical use of business activity monitoring is the monitoring
of credit card transactions to prevent possible fraud. If large cash withdrawals are sud-
denly charged on a credit card, business activity monitoring can help in signaling this
situation and, possibly, even alert a bank security officer to call the cardholder to ver-
ify that the monitored transactions were intended.

 Business activity monitoring is also often used in spotting trends or forecasting
events. An increase in a department’s workload can quickly be detected using business
monitoring, alerting management to add extra employees to handle peaks.

 A work field that’s closely related to BAM is business intelligence (BI). The main
difference is that BAM is about real-time monitoring, and BI is about analyzing historic
data (see the sidebar). We’re only focusing on BAM in this chapter, but the Activiti
database can also be used for BI analysis.

BAM versus BI
Business activity monitoring (BAM) is often used in the same context as business
intelligence (BI). Although both have the shared goal of providing a business with vital
information concerning the business state, there are differences between the two.

342 CHAPTER 14 Business monitoring and Activiti
Monitoring itself is nothing new. For example, your thermostat, which shows the cur-
rent temperature and which is ready to alert the heater when temperature drops
below a predefined value, performs simple at-home monitoring. Business activity
monitoring is no different from these examples.

 A business monitoring solution uses a common pattern to deal with business
events, and this pattern consists of three main components, as shown in figure 14.1.

These are the three main steps when implementing a BAM solution:

1 Gather events—This involves inputting data by receiving events from as many
sources as needed. Events are typically sent from other applications and contain
short messages of information, such as, “customer A bought 10 items of product
B for $300.”

2 Analyze the gathered data—An example of analysis in this step is filtering. When
a certain product has recently been heavily advertised, a company might be

(continued)
The biggest difference concerns the kind of data used to provide the business with
its information. In BAM, monitoring takes place on live events; it’s real time. In the
remainder of this chapter, we’ll be monitoring running business processes, focusing
on BAM.

BI, on the other hand, is a discipline that focuses mainly on historic data to perform
its analyses. Information is gathered from different systems and stored in data ware-
houses, where it can be analyzed and processed to produce reports and possibly
forecasts. In the context of Activiti, the source of BI data analysis would be the history
tables in the Activiti database.

Although BI and BAM serve similar goals of improving businesses in the future, BI
focuses mainly on the past to achieve those goals, whereas BAM focuses on the
present.

BAM engine

Filter on
product A

Aggregate
(total + average

amount)

1. Gather events 2. Analyze 3. Report

D
A
E
C
A
F
B
A
E
C
A
D

A
A
A
A

Total +
average
amount

Euro avg

Figure 14.1 A typical business monitoring solution consisting of three main stages: gathering
events, analyzing, and reporting

343Monitoring business processes
interested in how many people are in the process of buying it; filtering takes
place on the shopping baskets to retrieve only the information that’s needed
for a specific measurement.

3 Report the results of the analysis—After the information has been analyzed, the
results need to be communicated. Dashboards, like the one illustrated in fig-
ure 14.1, can help to quickly display trends and spot exceptional situations.
This step also covers the signaling function we talked about in the thermostat
example a couple of paragraphs back. When values reach certain limits,
actions can be taken, such as sending an email.

NOTE The signaling function in the reporting step can also trigger the start
of a new business process execution. For example, when stock values drop
below a certain level, a new order process can be started to get the stock level
back to normal. This is a typical example that shows how business monitoring
can fulfill a thermostat-like function and help to regulate the business.

To conclude this introduction to BAM, we need to take a look at an important concept
in the business monitoring world: the key performance indicator (KPI). Before you
start monitoring, you need to know why you want to monitor something. After the
business has defined the goals it wants to reach, measurement is needed to check if
the business is on track to reach the goals or not. KPIs are defined to enable that mea-
surement; they form the building blocks of the dashboards you need to monitor.

 A KPI is a value, usually numeric, that represents performance. Suppose the busi-
ness defined a goal of doubling the number of visitors to the company’s web shop.
The visitor count metric would be the KPI that would indicate whether the goal has
been reached. As another example, suppose the goal was to reduce employee turn-
over in a company. To measure whether the goal has been reached, one of the KPIs
could be the total number of employees that terminated their jobs or were fired
divided by the number of employees at the beginning of the year. In the loan request
example further in this chapter, you’ll see some KPIs and get a good grasp of what
kind of stuff you can show and how.

 Now that you know what BAM is, let’s discuss the technique of complex event pro-
cessing and look at how it can be used to implement a BAM solution.

14.1.2 Introducing complex event processing (CEP)

Before we can dive into code examples with the Esper open source CEP engine in the
next section, you need to know a little bit more about complex event processing
(CEP) in general and why it’s of importance in BAM.

 What is CEP? Let’s look at an example and consider the following three events
coming from the same event source:

■ Church bells ring.
■ A man wearing a tuxedo appears, with a woman in a white gown at his side.
■ Rice flies through the air.

344 CHAPTER 14 Business monitoring and Activiti
From these basic events, an event processing system may infer a complex event; in this
case, a wedding. CEP is the technology that performs filtering, correlation, aggrega-
tion, and computing on volumes of real-time event data. It does all this to take subse-
quent action, mostly by creating new events and passing those on to listeners.

 A CEP engine looks like an inverted database. Where you first store data in a
database and then start querying, a CEP system lets you define the queries first and
then starts running data through those queries. Take a look at figure 14.2 to get a
better idea.

 In figure 14.2, you see a stream of different event types entering the CEP engine.
The engine performs different types of operations on the events, like filtering the
events worth watching, aggregating similar events, and joining different types of
events together. While these operations are performed on the events, a pattern match-
ing mechanism runs on the results to search for combinations of data the engine
needs to put out. Finally, the output is sent to possible listeners to act upon.

 The events that enter the CEP engine are processed immediately, so there’s no
database underneath this mechanism. What does exist, though, is the concept of win-
dows. In figure 14.2, the timeline suggests there’s some sort of life of the event in the
engine during which processing takes place.

 Let’s return to the wedding example. If you hear bells ringing one day, see a guy
in a tuxedo with a woman in a white gown the next day, and some other time rice is
thrown on the ground, there could be three weddings going on or none. The win-
dow during which these events are analyzed is set to a certain period of time in order
to deduce that a wedding must be going on. We’ll talk more about windows in the
next section.

 Now that you have some background information on both BAM and CEP, it’s time
to move on to what we like most: coding!

CEP engine

Filter

Input Output

Aggregate

Join Pattern match

Time

Figure 14.2 Basic overview of a CEP engine in action

345Meeting the Esper framework
14.2 Meeting the Esper framework
We’ll start with a Hello World Esper example to get you up and running. In the
remainder of this section, we’ll take events from the loan request process and start
working our way into more advanced Esper examples. Those examples will be used
again in section 14.3 when we integrate Esper and Activiti.

14.2.1 Kick-starting Esper

The Esper project was started some six years ago with the goal of creating a light-
weight and easy-to-integrate open source Java CEP engine, and it’s available under the
LGPL license. Esper provides an Event Processing Language (EPL) that looks a lot
like SQL.

 Let’s start with a Hello World Esper example.

public class HelloWorldEsperTest {

 public class HelloWorldEvent {
 private String value;

 public HelloWorldEvent(String value){
 this.value = value;
 }

 public String getValue(){
 return value;
 }
 }

 @Test
 public void helloEsper() {
 Configuration configuration = new Configuration();
 configuration.addEventType(HelloWorldEvent.class);
 EPServiceProvider epService =
 EPServiceProviderManager
 .getDefaultProvider(configuration);

 EPStatement epStatement = epService.getEPAdministrator()
 .createEPL("select value as eventValue" +
 " from HelloWorldEvent");

 epStatement.addListener(new UpdateListener(){
 public void update(EventBean[] newEvents,
 EventBean[] oldEvents){
 Assert.assertEquals("Hello!",
 (String) newEvents[0].get("eventValue"));
 }
 });

 HelloWorldEvent helloworld =
 new HelloWorldEvent("Hello!");
 epService.getEPRuntime().sendEvent(helloworld);
 }
}

Listing 14.1 Hello World with Esper

Defines
event
classB

Creates
Esper engine
instance

C

Creates
basic EPL
statement

D

Adds
event
listenerE

Sends
event

F

346 CHAPTER 14 Business monitoring and Activiti
Events can be map based, represented with XML, or, as you can see in this example,
represented by a Java POJO class like the HelloWorldEvent class B. You configure the
Esper CEP engine to handle the event class HelloWorldEvent and then obtain an
engine instance C.

 The next line of code defines an EPL query and registers it to be executed continu-
ously when new events arrive in the Esper engine D. This simple query doesn’t per-
form any filtering; it returns every HelloWorldEvent it comes across.

 Then, a listener is created and attached to the EPL statement E. Listeners are
invoked by the Esper engine when the EPL query returns new values. An Esper listener
implements the UpdateListener interface and acts upon EventBean instances.

 Finally, a HelloWorldEvent instance is instantiated and sent to the Esper engine F
to run the test in the listener.

EPL, the event processing language
EPL follows an SQL-like syntax. It has SELECT, FROM, WHERE, GROUP BY, HAVING, and
ORDER BY clauses, just like SQL.

The SELECT clause in an EPL query specifies the event or the event properties to re-
trieve. The FROM clause refers to the event type, and WHERE, just like in SQL, specifies
filter conditions in the statement. For example, the following statement returns the
loan amount for a LoanRequestEvent that Kermit has applied for:

SELECT loanAmount AS amount FROM LoanRequestEvent WHERE name="Kermit"

Besides filtering using the WHERE clause, EPL supports the concept of windows. With
this concept, you’re looking at a stream of events. We’ll look at examples of this later
in the chapter, but let’s take a quick peek now. Suppose you’re looking for LoanRe-
questEvents that were sent in the last 30 seconds. The EPL would look like this:

SELECT * FROM LoanRequestEvent.win:time(30 seconds)

EPL supports some standard functions as well, such as sum:

SELECT sum(loanAmount)
FROM LoanRequestEvent.win:time(30 seconds)

With the sum function, the sum of all loan requests over the last 30 seconds is re-
turned. Other functions calculate, for example, the median or average of a stream.

The last feature, which we’ll cover in more depth later on, is the joining of different
event types:

SELECT * FROM LoanRequestEvent.win:time(30 seconds) as lr,
OrderEvent.win:time(30 seconds) as oe WHERE lr.Id = oe.Id

Two different event types occurring in a window of 30 seconds are joined by their IDs
here. We’ll come back to examples of these more advanced uses of EPL later in the
chapter.

You’ll see that the EPL syntax is straightforward to read, so I won’t provide a very de-
tailed explanation of the grammar and keywords of the language. If you want to know
more, check out the Esper documentation; EPL is well covered in there.

347Meeting the Esper framework
From now on, we’ll start diving deeper. We’ll create some more interesting events,
perform many of the Esper operations on them, and explore some serious business
monitoring possibilities.

14.2.2 Introducing event windows

In the introduction to CEP (section 14.1.2), we briefly touched on the subject of event
windows. Most of the time when you’re monitoring applications or processes, you won’t
be interested in single events because they don’t often mean much by themselves.

 Take, for example, the fraud detection problem. When somebody tries to log in
and uses a wrong username/password combination, this doesn’t mean a lot by itself.
In fact, it’s something that happens to most of us. It starts to be different, though,
when dozens or even thousands of login attempts fail from one certain location within
a couple of minutes. That series of events is interesting!

 In Esper, event windows define how many events the CEP engine is going to
“remember” when performing its pattern matching. There are two different types of
windows:

■ Length windows—A length window instructs the CEP engine to keep the last N
events. When the length window is full and a new event arrives, the oldest
events are pushed out of the window.

■ Time windows—A time window instructs the CEP engine to keep events for the
specified amount of time. If the age of an event exceeds the time interval, it’s
pushed out of the window.

 Both types of event windows work basically the same way. To show how Esper deals
with event windows, we’ll first try out an example with the length window.

LENGTH EVENT WINDOWS

Before we start coding, take a look at figure 14.3 to see how the length event window
mechanism handles events.

 On the left side, events start entering the engine one by one. The length window
in the engine is set to 3, as you can see in the middle of the figure. When the fourth
event enters the window, event 1 is pushed out.

 The UpdateListener is the interface you saw in the Hello World example. It gets
notified when events enter the CEP engine. Its only method has the following signature:

public void update(EventBean[] newEvents, EventBean[] oldEvents);

On the right side of figure 14.3, you can see when and with which values the lis-
tener is called. After the first event is moved out of the window, it will be available in
the oldEvents array when the update method is called.

 Let’s put the length event window to work; it’s time to pick up our loan request busi-
ness process again! Business has been going pretty well since Loan Sharks made the
move to BPM. They now get so many loan requests that sometimes the company is in dan-
ger of running out of money to lend. One simple metric that would help the employees
figure out how much money they need to have available is the total amount lent.

348 CHAPTER 14 Business monitoring and Activiti
Obviously, the total amount lent since the company was founded isn’t very informa-
tive. Management needs to be able to act upon situations that are happening right
now, so, in calculating the total amount lent, we’re only interested in the last loan
requests that have been made. To keep this code easy to read, we’ll only focus on the
last two loan requests, which means a length window of two events.

public class EventLenghtWindowTest {

 private int sumAmount = 0;

 @Test
 public void testEventLengthWindow() {
 Configuration configuration = new Configuration();
 configuration.addEventType(LoanRequestEvent.class);
 EPServiceProvider epService =
 EPServiceProviderManager
 .getDefaultProvider(configuration);

 EPStatement epStatement = epService
 .getEPAdministrator()
 .createEPL("select sum(amount) as sumAmount from" +
 " LoanRequestEvent.win:length(2)");

 epStatement.addListener(new UpdateListener () {
 public void update(EventBean[] newEvents,

Listing 14.2 Calculating the loan amount sum with Esper’s length event windows

Incoming events Length window: 3 events New events

E1

E2

E3

E4

Old events

E1

E1E2

E1E2E3

E2E3E4

E1

E2

E3

E4 E1

UpdateListener

Figure 14.3 An Esper length event window with a defined length of three events

Configures
event type

B

Defines event
window EPLC

349Meeting the Esper framework
 EventBean[] oldEvents) {
 sumAmount = (Integer) newEvents[0]
 .get("sumAmount");
 }
 });

 Assert.assertEquals(0, sumAmount);
 epService.getEPRuntime().sendEvent(
 new LoanRequestEvent(100));
 Assert.assertEquals(100, sumAmount);
 epService.getEPRuntime().sendEvent(
 new LoanRequestEvent(200));
 Assert.assertEquals(300, sumAmount);
 epService.getEPRuntime().sendEvent(
 new LoanRequestEvent(300));
 Assert.assertEquals(500, sumAmount);
 }
}

First, you need to configure Esper by telling it which event type it’s going to receive B.
In this case, the LoanRequestEvent class is a simple POJO with just one attribute named
amount of type int. Then you define the EPL statement where you set a length window
of 2, meaning that you’re only going to be interested in the last two events that arrive
in the Esper engine C. The sum of the amounts of the last two events is calculated in
the update method of the UpdateListener instance D. To see if all works well, you kick
in a few loan request events E and test the sum amounts.

TIME EVENT WINDOWS

Often, it’s not enough to know what happened with a specific number of events; you
also want to know what happened in a certain period of time. To support this kind of
functionality, Esper introduced the concept of time windows, which we’ll use in the
next example.

 Take a look at the following code snippet. It shows a newly defined LoanRequest-
ProcessedEvent:

public class LoanRequestProcessedEvent {

 private final String processInstanceId;
 private final long processedTime;
 private final int requestedAmount;
 private final boolean requestApproved;

 public LoanRequestProcessedEvent(String processInstanceId, long
 processedTime, int requestedAmount, boolean requestApproved) {
 this.processInstanceId = processInstanceId;
 this.processedTime = processedTime;
 this.requestedAmount = requestedAmount;
 this.requestApproved = requestApproved;
 }
 ...
}

This LoanRequestProcessedEvent has four attributes, which will be populated when
the event is instantiated via the constructor. It contains values for a process instance

Adds new amount
to total sum

D

Sends loan
request event

E

350 CHAPTER 14 Business monitoring and Activiti
ID, a requested loan amount, a boolean indicating whether the loan request has been
approved or not, and a processedTime field. The value of this field is of type long and
defines the time (the well-known number of milliseconds since the Unix epoch) in
which the loan request is processed.

 The next listing shows the first part of the test class, including the setup method
that’s called before the test is run, to configure Esper.

public class TimeWindowTest {

 private EPRuntime epRuntime;
 private EPAdministrator epAdmin;

 @Before
 public void startEsper() {
 Configuration configuration = new Configuration();
 configuration.addEventTypeAutoName
 ("org.bpmnwithactiviti.chapter14.bam.event");
 EPServiceProvider epService =
 EPServiceProviderManager.getDefaultProvider(
 configuration);
 epRuntime = epService.getEPRuntime();
 epAdmin = epService.getEPAdministrator();
 }
 ...
}

You can see in the TimeWindowTest class that you can easily configure Esper to handle
multiple events by stating the name of the package in which the events are defined B.

 Now let’s get the test case implemented and up and running. You’ll filter out loan
requests that haven’t been approved and validate the events in Esper’s time window.

private Queue<Long> numLoansQueue =
 new LinkedList<Long>();
private Queue<Integer> sumLoanedAmountQueue =
 new LinkedList<Integer>();

@Test
public void monitorLoanedAmount() {
 epRuntime.sendEvent(new TimerControlEvent(
 ClockType.CLOCK_EXTERNAL));

 EPStatement epStatement = epAdmin.createEPL(
 "select count(*) as numLoans, " +
 "sum(requestedAmount) as sumLoanedAmount " +
 "from LoanRequestProcessedEvent " +
 "(requestApproved=true).win:time(1 sec)");

 epStatement.addListener(new UpdateListener (){
 public void update(EventBean[] newEvents,
 EventBean[] oldEvents) {

Listing 14.3 Configuring Esper before testing the time window example

Listing 14.4 Testing Esper time windows while firing LoanRequestEvents

Configures
event types
for Esper
to handle

B

Sets time
in Esper to
external

B

Defines a 1
second time
windowC

351Meeting the Esper framework
 Assert.assertEquals(1, newEvents.length);
 Assert.assertNull(oldEvents);
 Long numLoans = (Long) newEvents[0].get("numLoans");
 Integer sumLoanedAmount = (Integer)
 newEvents[0].get("sumLoanedAmount");
 numLoansQueue.add(numLoans);
 sumLoanedAmountQueue.add(sumLoanedAmount);
 }
 });

 sendLoanRequestProcessedEvent(1000, "1", true, 100);
 assertMonitoredLoans(1L, 100);
 sendLoanRequestProcessedEvent(1300, "2", true, 200);
 assertMonitoredLoans(2L, 300);
 sendLoanRequestProcessedEvent(1600, "3", false, 1000);
 assertMonitoredLoans(null, null);
 sendLoanRequestProcessedEvent(1900, "4", true, 300);
 assertMonitoredLoans(3L, 600);
 sendLoanRequestProcessedEvent(2200, "5", true, 400);
 assertMonitoredLoans(2L, 500);
 assertMonitoredLoans(3L, 900);
 sendLoanRequestProcessedEvent(2400, "6", false, 900);
 assertMonitoredLoans(2L, 700);
 assertMonitoredLoans(null, null);

 epStatement.destroy();
}

To test the time window of 1 second, you need to be able to time travel in the Esper
engine. The easiest way to do this in Esper is to send a CurrentTimeEvent to the Esper
engine, which sets the time. But before you can send a CurrentTimeEvent you need to
tell Esper that the time will be externally managed by sending a TimerControlEvent B.

 To set the time window to 1 second, you implement an EPL statement C. In the
EPL statement, you select the number of loan request events and the total loan
amount of the available events in the window. As you can see, you also apply a filter.
The (requestApproved=true) part of the EPL ensures that you’ll only handle
approved loan requests.

 The UpdateListener will be invoked when a new event arrives in the Esper engine,
as you saw in listing 14.2. When you use a time window, the UpdateListener will also
be invoked after a cycle in the time window has passed. In the unit test, you can see
this when a new event is sent to the Esper engine after 2,200 milliseconds. After 2,000
milliseconds, a cycle of the time window has passed and the UpdateListener is
invoked F. Then, you can expect two messages on the queue: the time cycle message
and the new event message. To be able to test this properly, you use a Queue imple-
mentation D.

 To fill the Esper engine with loan request events, you start firing a couple of events
and test the results. If the loan request isn’t approved, you have no new message on
the queue E because the EPL statement ignores those types of events.

 Let’s take a closer look at the firing of the events:

Sends loan’s
quantity
variable to
queue

D

Expects no
new number
on the
queue

E

Fires update
after 2
secondsF

352 CHAPTER 14 Business monitoring and Activiti
private void sendLoanRequestProcessedEvent(long time,
 String processInstanceId, boolean requestApproved, int loanedAmount) {

 sendEvent(time, new LoanRequestProcessedEvent(processInstanceId,
 time, requestApproved, loanedAmount));
}

private void sendEvent(long time, Object event) {
 epRuntime.sendEvent(new CurrentTimeEvent(time));
 epRuntime.sendEvent(event);
}

Before a loan request event is sent to the Esper engine, you need to test the time win-
dow of 1 second. You use the Esper CurrentTimeEvent class to inform Esper about the
current time to use in the engine.

 Now that you’ve implemented the CEP logic, you need a few lines of code to vali-
date the number of loan requests and the total value of loan amounts:

private void assertMonitoredLoans(Long numLoans,
 Integer sumLoanedAmount) {
 Assert.assertEquals(numLoans, numLoansQueue.poll());
 Assert.assertEquals(sumLoanedAmount, sumLoanedAmountQueue.poll());
}

As previously mentioned, you use a Queue to test the UpdateListener events. This
makes it possible to test multiple events fired by the Esper engine in the right order
when a new loan request event is sent.

 Because this unit test covers quite a bit of logic, it’s good to look at figure 14.4,
which provides a graphical overview of the Esper execution in the unit test.

In
co

m
in

g
ev

en
ts

Time window 1000 milliseconds

at t + 1000 at t + 1300

E1 E1 E1 E1

E2 E2 E2 E2

E4E4 E4

E5E5

at t + 1600 at t + 1900 at t + 2200 at t + 2400t

t + 1000

t + 2000

E2

E1

E3

E4

E5

E6

Figure 14.4 An overview of the state of the Esper 1 second time event window used in
the unit test. Events 3 and 6 are ignored because these loan requests were not approved.

353Meeting the Esper framework
Here’s what happens in figure 14.4:

■ At time t—Nothing has happened and the window is empty.
■ At time t + 1000 milliseconds—Event 1 arrives and enters the time window. The

engine reports the event to the UpdateListener.
■ At time t + 1,300 milliseconds—Event 2 arrives and enters the time window. The

engine reports the event again to the UpdateListener, and now two events
reside in the window.

■ At time t + 1,600 milliseconds—Event 3 arrives. It’s filtered out and doesn’t enter
the time window because the loan request isn’t approved. The UpdateListener
isn’t invoked.

■ At time t + 1,900 milliseconds—Event 4 arrives. The engine reports the event to
the UpdateListener, and now three events reside in the window.

■ At time t + 2200 milliseconds—Event 5 arrives. The engine reports two events to
the UpdateListener, because event 1 is first pushed out of the time window and
then event 5 is added. There are still three events residing in the window.

■ At time t + 2,400 milliseconds—Event 6 arrives. Because the request isn’t
approved, it will not enter the window. But the engine isn’t done; it pushes
event 2 out of the window because it has now been in longer than a second. Two
events remain in the window when the test is finished.

In this example, we used a very short time window to make it easy to understand the
concept. But you can imagine that using a longer time window can be useful for BAM,
perhaps showing the amount of products sold in the last 24 hours.

 You now have a good understanding of the basic use of Esper so let’s move on to a
more advanced example, where we combine multiple events.

JOINING DIFFERENT EVENT TYPES

We’ve seen the Esper window concept in action in the last two sections. Now we’ll take
a look at another powerful concept that will help you monitor important business pro-
cess information: the joining of different event types. In the earlier wedding example,
to infer a complex event, you need to be able to handle different types of simple
events and join them into one complex event: the wedding.

 Later in the chapter, we’ll monitor information related to process duration with
Activiti. For now, though, let’s focus on two KPIs. We’ll look at the average process
duration and the maximum process duration. Again, we aren’t interested in these
metrics from the beginning of time; we’ll focus instead on specific intervals. In order
to retrieve this kind of information, you need to be informed when a process starts
and when a process instance is finished. These are two different event types, and the
Esper engine will have to provide a signal when the start and end events for a specific
process instance come in.

 You need to define a join and a pattern construct in the EPL to handle this. Take a
look at the next EPL statement, which shows how to calculate the average process
duration:

354 CHAPTER 14 Business monitoring and Activiti
select avg(endEvent.processedTime - beginEvent.receiveTime)
 as avgProcessDuration
from pattern [every beginEvent=LoanRequestReceivedEvent ->
 endEvent=LoanRequestProcessedEvent
 (processInstanceId=beginEvent.processInstanceId)]

This advanced EPL statement is selecting the average process duration. To get the pro-
cess duration of a specific instance, the Esper engine takes the processedTime value,
which is an attribute of the LoanRequestProcessedEvent, and subtracts the receive-
Time, an attribute of the LoanRequestReceivedEvent. It correlates receive and pro-
cessed events using a so-called pattern. The EPL statement correlates two event types
when the processInstanceId attributes of both events are equal.

 Check out the next listing to see how you can use the joining of different event
types to get valuable information out of Esper. The test method is implemented in the
same TimeWindowTest unit test class as the example in listing 14.4.

private Queue<Double> avgProcessDurationQueue =
 new LinkedList<Double>();
private Queue<Long> maxProcessDurationQueue =
 new LinkedList<Long>();

@Test
public void monitorProcessDuration() {
 epRuntime.sendEvent(new TimerControlEvent(
 ClockType.CLOCK_EXTERNAL));

 EPStatement epStatement = epAdmin.createEPL(
 new StringBuffer()
 .append("select avg(endEvent.processedTime - ")
 .append("beginEvent.receiveTime) as avgProcessDuration, ")
 .append("max(endEvent.processedTime - ")
 .append("beginEvent.receiveTime) as maxProcessDuration ")
 .append("from pattern [")
 .append("every beginEvent = LoanRequestReceivedEvent ")
 .append("-> endEvent = LoanRequestProcessedEvent(")
 .append("processInstanceId=beginEvent.processInstanceId)")
 .append("].win:time(5 sec)").toString()); #1

 epStatement.addListener (new UpdateListener () {
 public void update(EventBean[] newEvents,
 EventBean[] oldEvents) {

 Double avgProcessDuration = (Double)
 newEvents[0].get("avgProcessDuration");
 Long maxProcessDuration = (Long)
 newEvents[0].get("maxProcessDuration");
 avgProcessDurationQueue.add(avgProcessDuration);
 maxProcessDurationQueue.add(maxProcessDuration);
 }
 });

 sendLoanRequestReceivedEvent(0, "1", 100);
 assertMonitoredProcessDuration(null, null);

Listing 14.5 Joining different event types and correlating with an Esper pattern

Selects
average
process
duration

B

Gets new
average
duration

C

Sends
LoanRequestReceivedEvent

D

355Monitoring Activiti processes with Esper
 sendLoanRequestReceivedEvent(300, "2", 200);
 assertMonitoredProcessDuration(null, null);

 sendLoanRequestProcessedEvent(400, "2", true, 200);
 assertMonitoredProcessDuration(100.0, 100L);

 sendLoanRequestProcessedEvent(600, "1", true, 100);
 assertMonitoredProcessDuration(350.0, 600L);

 sendLoanRequestReceivedEvent(1100, "3", 300);
 assertMonitoredProcessDuration(null, null);

 sendLoanRequestProcessedEvent(1600, "3", true, 300);
 assertMonitoredProcessDuration(400.0, 600L);

 epStatement.destroy();
}

In the test method, you define an EPL statement with the average and maximum pro-
cess durations within a five second time window B. When the Esper engine invokes
the UpdateListener, the new average and maximum duration variables are added to
a Queue C.

 In each event, you send the time, process instance ID, and requested loan amount
values to the Esper engine; see, for example, the first LoanRequestReceivedEvent D.
After you send a couple of process start events, you start sending a couple of process
end events like those shown with the sendLoanRequestProcessedEvent method E.
When this first end event is sent for process instance ID 2, this event is correlated with
the process start event for the same process instance ID. The expected process dura-
tion can now be calculated as 400 – 300 = 100 milliseconds.

 This concludes our introduction to Esper. It’s time to see what we can do when we
combine the power of Esper and Activiti. Time to do some business activity monitoring!

14.3 Monitoring Activiti processes with Esper
In this section, we’ll use all your new knowledge of Esper and start monitoring the
loan request process on Activiti. First, we’ll discuss the position of the CEP engine in
relation to Activiti, and then we’ll work out an integrated example to run the two side
by side in a test environment.

14.3.1 Integrating Activiti and Esper

Take a look at figure 14.5 to see how we’ll combine Activiti and Esper to get monitor-
ing information from the processes running on Activiti.

 In section 6.4, we covered the Activiti execution listeners. You learned that they
can be configured on the process itself, on activities, and on transitions. As you can
see in figure 14.5, you can use the execution listeners to create and throw events to
the Esper engine. The execution listeners have access to the process variables, and
they can create Esper events filled with these process variables and send those events
to Esper. This basic setup will be enhanced in section 14.4, where you’ll use a Vaadin
dashboard to display what’s going on in the processes.

Send
LoanRequest-
ProcessedEventE

356 CHAPTER 14 Business monitoring and Activiti
But, first, let’s look into the basics of integrating Activiti and Esper in a unit test envi-
ronment. In such an environment, we can keep the setup of the Activiti and Esper
integration simple so we can focus on the implementation logic needed to combine
Activiti listeners with Esper events.

14.3.2 Testing the Activiti and Esper setup

To run Activiti with Esper in a test environment, you need to follow a few steps. Let’s
walk briefly through them:

1 Define a BPMN process including execution listeners.
2 Implement the execution listeners to make them send events to Esper.
3 Set up Esper in a unit test, including the creation of the EPL statement.
4 Run the test.

The following code displays a simple business process with one user task and a simple
form:

<definitions>
 <process id="loanrequest_withespertest">
 <extensionElements>
 <activiti:executionListener
 class="org.bpmnwithactiviti.

 ➥ chapter14.test.ProcessStartExecutionListener"
 event="start" />
 <activiti:executionListener
 class="org.bpmnwithactiviti.

 ➥ chapter14.test.ProcessEndExecutionListener"
 event="end" />
 </extensionElements>
 <startEvent id="theStart" />
 <sequenceFlow sourceRef="theStart" targetRef="evaluateLoanRequest" />
 <userTask id="evaluateLoanRequest" name="Evaluate loan request"
 activiti:assignee="fozzie" />
 <sequenceFlow sourceRef="evaluateLoanRequest" targetRef="theEnd" />
 <endEvent id="theEnd" />
 </process>
</definitions>

Esper engine

Filter

Aggregate

Join

Listener
Listener

Activiti engine

Process

Listener
Execution
Listener

Event

Figure 14.5 Activiti Engine using process execution listeners to feed Esper events

357Monitoring Activiti processes with Esper
You can see that this process definition defines two execution listeners. The first will be
called when the process is started, and the other when the process finishes. Listing 14.6
shows the code of one of the execution listeners. The other one is included in the
source code accompanying the book.

public class ProcessStartExecutionListener
 implements ExecutionListener {

 public void notify(DelegateExecution execution)
 throws Exception {
 LoanRequestReceivedEvent event =
 new LoanRequestReceivedEvent(
 execution.getId(), new Date().getTime(),
 (Integer) execution.getVariable("loanAmount"));
 EPServiceProviderManager.getDefaultProvider()
 .getEPRuntime()
 .getEventSender("LoanRequestReceivedEvent")
 .sendEvent(event);
 }
}

First, a LoanRequestReceivedEvent is created and filled with the process instance ID,
current time in milliseconds, and loanAmount process variable. The time attribute will
be used in Esper to calculate the process duration. When the event is created, it’s sent
to the Esper engine B. This way of sending events to Esper will work fine in a unit test
environment because Activiti and Esper are running in the same JVM. In section 14.4,
we’ll go a bit further and look at how to invoke Esper when it isn’t running in the
same JVM as Activiti.

 There are still two things left to do to run the example. The first is to implement a
unit test to run the Activiti and Esper setup. The Esper engine will be started before
you deploy the process definition and start a new process instance, as shown in the fol-
lowing code snippet:

public class LoanRequestProcessWithEsperTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem-fullhistory.xml");

 private EPAdministrator epAdmin;

 @Before
 public void startEsper() {
 Configuration configuration = new Configuration();
 configuration.addEventTypeAutoName(
 "org.bpmnwithactiviti.chapter14.bam.event");
 EPServiceProvider epService = EPServiceProviderManager
 .getDefaultProvider(configuration);
 epAdmin = epService.getEPAdministrator();
 epAdmin.createEPL(new StringBuffer()
 .append("select avg(endEvent.processedTime ")

Listing 14.6 Using a process start execution listener to send an event to Esper

Sends event
to Esper

C

358 CHAPTER 14 Business monitoring and Activiti
 .append("- beginEvent.receiveTime)")
 .append(" as avgProcessDuration, from pattern [")
 .append("every beginEvent = LoanRequestReceivedEvent ->")
 .append("endEvent = LoanRequestProcessedEvent")
 .append("(processInstanceId = beginEvent.processInstanceId)]")
 .append(".win:length(20)");
 .toString(), "processDuration");
 }
}

The EPL statement is named ProcessDuration. With that name, the statement can be
accessed later in the test itself when you want to attach the Esper listener to it.

 In listing 14.7, the average process duration is validated by comparing start and
end times of the process.

private Double avgProcessDuration = null;

@Test
@Deployment(resources={"chapter14/

 ➥ loanrequest_withespertest.bpmn20.xml"})
public void testEsperActivitiSetup() {
 RuntimeService runtimeService =
 activitiRule.getRuntimeService();
 TaskService taskService =
 activitiRule.getTaskService();

 EPStatement epStatement = epAdmin.getStatement(
 "processDuration");
 epStatement.addListener(new UpdateListener () {
 public void update(EventBean[] newEvents,
 EventBean[] oldEvents) {
 avgProcessDuration = (Double)
 newEvents[0].get("avgProcessDuration");
 }
 });

 Map<String, Object> processVariables =
 new HashMap<String, Object>();
 processVariables.put("loanAmount", 10);
 runtimeService.startProcessInstanceByKey(
 "loanrequest_withespertest", processVariables);

 Thread.sleep(1000);

 processVariables = new HashMap<String, Object>();
 processVariables.put("requestApproved", true);
 taskService.complete(taskService.createTaskQuery()
 .singleResult().getId(), processVariables);

 assertTrue(avgProcessDuration >= 1000);

 processVariables = new HashMap<String, Object>();
 processVariables.put("loanAmount", 20);
 runtimeService.startProcessInstanceByKey(
 "loanrequest_withespertest", processVariables);

 Thread.sleep(2000);

Listing 14.7 Testing Activiti Esper integration using process execution listeners

Retrieves EPL
statement

B

Starts
process

C

Finishes
process

D

Validates
that variable
is setE

359Monitoring Activiti with a Vaadin dashboard
 processVariables = new HashMap<String, Object>();
 processVariables.put("requestApproved", true);
 taskService.complete(taskService.createTaskQuery()
 .singleResult().getId(), processVariables);

 assertTrue(avgProcessDuration >= 1500);
}

After the process deployment is configured and the necessary services are acquired,
you need to add an Esper update listener to the processDuration EPL statement B
created in the startEsper method (see the previous code snippet). Then, you’re
ready to start your process with the loan amount as the initial process variable C.

 Note that, when you start a new process instance, the Activiti Engine invokes the pro-
cess execution start listener. By completing the user task and approving the loan request,
you implicitly finish the process D, and the Activiti Engine will invoke the process exe-
cution end listener. Then, you can validate whether the Esper UpdateListener has set
the avgProcessDuration variable E. Because you included a sleep in the test execu-
tion, the average process duration should be at least 1 second (or 1,000 milliseconds).

 Now that you’ve seen how to send events to Esper from the Activiti Engine, it’s
time to go one step further; let’s implement a monitoring dashboard.

14.4 Monitoring Activiti with a Vaadin dashboard
In this section, we’ll use all the material covered so far to build a complete business
monitor dashboard application. First, we’ll see what the application will look like and
talk about the steps needed to build it. Then, we’ll look at the process implementation
and see how the Esper events are generated. Finally, we’ll develop the dashboard web
application using Esper and Vaadin.

14.4.1 An Activiti BAM architecture

In the example in the previous section, Activiti and Esper were both running in a sin-
gle JVM and everything was coordinated from within a unit test. This doesn’t represent
a production-like situation.

 Check out figure 14.6 to get an idea about the setup of Esper and Activiti we’re
going to use.

Esper engine

Listener
Listener

Activiti engine

Process

Listener
Execution
Listener

Event

Unit test Vaadin web application

Euro avg

Figure 14.6 Setup of Activiti and a Vaadin-Esper BAM application running in a separate JVM

360 CHAPTER 14 Business monitoring and Activiti
The idea is to start process instances on the Activiti Engine from within a unit test.
The process definition contains the declaration of process execution listeners that will
be informed by the Activiti Engine when process events occur. The listeners will then
connect with a Jetty server that manages a Vaadin web application and a REST service.
One by one, the events will be delivered to a REST service implemented by the dash-
board web application, which will then deliver the events to the Esper engine. Esper is
also running within the dashboard web application.

 After the Esper engine is done filtering, aggregating, and joining events, it will
push updates to the Vaadin user interface. That user interface contains some gauges
and a table displaying the business monitoring information from the Activiti process.

 We’ll put this all together in the remainder of this section. It will involve three
steps:

1 We’ll take a look at the event producer side, the Activiti Engine. We’ll discuss
the process, the listeners, and how the connection with the REST service is
established.

2 We’ll move on to the receiving end. We’ll look at the REST service itself, fol-
lowed by the Esper code, and we’ll talk a bit about the Vaadin application.

3 We’ll start the Jetty server, cover the unit test that starts off process instances,
and run it.

To keep the listings interesting, only new pieces of logic are listed. The complete
application can be found in the book’s source code.

14.4.2 Producing REST events with Activiti

To communicate events with the Esper engine, you need to perform two steps:

1 Define the BPMN 2.0 XML, including the process execution listener declara-
tions for the events you’re interested in.

2 Implement the listeners to create the Esper events and connect with the REST
service.

To keep things focused on the BAM functionality, we’ll use the same loan request pro-
cess definition we used in the previous section. The implementation of the listener is
different, though. In the previous section, we could directly communicate with Esper
and send the LoanRequestReceivedEvent and LoanRequestProcessedEvent straight
to the Esper engine. This will work differently now, because Esper runs behind the REST
service. Take a look at the implementation of the ProcessStartExecutionListener
that can be found in the package ending with chapter14.listener:

public void notify(DelegateExecution execution) throws Exception {
 LoanRequestReceivedEvent event = new LoanRequestReceivedEvent(
 execution.getId(), new Date().getTime(),
 (Integer) execution.getVariable("loanAmount"));
 EventSender.send(event);
}

361Monitoring Activiti with a Vaadin dashboard
When the notify method is called upon by Activiti Engine, the LoanRequestReceived
event is created as before, using the execution to obtain the process variables. It now uses
the EventSender class to send the event to Esper. Here’s how this is implemented.

public class EventSender {

 private static String HOST =
 "http://localhost:8081/book-bam-app/events/";

 public static void send(Object event) {
 HttpURLConnection connection = null;
 try {
 URL url = new URL(HOST +
 event.getClass().getSimpleName());
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("POST");
 connection.setDoOutput(true);
 connection.setAllowUserInteraction(false);
 connection.setRequestProperty(
 "Content-type", "application/xml; charset=UTF-8");
 OutputStream out = connection.getOutputStream();
 JAXBContext.newInstance(event.getClass())
 .createMarshaller().marshal(event, out);
 out.close();
 } catch (Exception e) {
 log.warn("Event could not be send to BAM application", e);
 } finally {
 if (connection != null) {
 connection.disconnect();
 }
 }
 }
}

In the Vaadin web application, which we’ll discuss in section 14.4.3 (implemented in
the book-bam-app project), you run a Jetty server locally on port 8081 and the REST
resource resides at the declared URL B. The REST service handles post requests that
are named after the event type C. Finally, the event is converted to XML and sent to
the service D.

 Events can’t be converted to XML messages automatically. You first need to add the
necessary JAXB annotations as shown in the following code snippet:

@XmlRootElement(name = "loanRequestReceivedEvent")
@XmlAccessorType(XmlAccessType.FIELD)
public class LoanRequestReceivedEvent {

 @XmlElement
 private final String processInstanceId;
 @XmlElement
 private final long receiveTime;
 @XmlElement
 private final int requestedAmount;
 ...
}

Listing 14.8 Sending Esper events to a REST service

Defines REST
API location

B

Finds right
REST service
for the event

C

Sends event by
transforming it
into XML

D

362 CHAPTER 14 Business monitoring and Activiti
The LoanRequestReceivedEvent will be converted to an XML message with the root
tag loanRequestReceivedEvent. All three attributes will be converted to XML child
elements of this root tag.

 Now you can send events to a REST service, so let’s see how you can implement this
REST service and connect it to an Esper engine.

14.4.3 Setting up the Vaadin application with the Esper REST service

Setting up the REST service is a little more work. Let’s break it down into a few steps as
we did before:

1 Configure the web application to run Esper and the REST provider.
2 Implement the REST resource to handle the different event types and forward

them to the Esper engine.
3 Build the Vaadin monitor application containing the Esper update listeners

that will update the BAM dashboard.

When the REST service running in the web application (see the book-bam-app project
in the book’s source code) starts receiving events, the Esper engine needs to be up
and running. To start the Esper engine, we’ll configure and build a ServletContext-
Listener. It’s declared in the web.xml like this:

<listener>
 <listener-class>
 org.bpmnwithactiviti.chapter14.bam.EsperStatementsCreator
 </listener-class>
</listener>

The EsperStatementsCreator class will be called by the web container when the appli-
cation is started, and it is responsible for configuring the EPL statements you want to use
in the example. The class also contains the EPL statement definitions. The following code
shows the most important parts of the EsperStatementsCreator implementation:

public class EsperStatementsCreator implements ServletContextListener {
 ...
 public void contextInitialized(ServletContextEvent context) {
 Configuration configuration = new Configuration();
 configuration.addEventTypeAutoName(
 "org.bpmnwithactiviti.chapter14.bam.event");
 EPServiceProvider epService = EPServiceProviderManager
 .getDefaultProvider(configuration);
 epAdmin = epService.getEPAdministrator();

 epAdmin.createEPL(new StringBuffer()
 .append("select avg(requestedAmount) as avgRequestedAmount, ")
 .append("max(requestedAmount) as maxRequestedAmount, ")
 .append("sum(requestedAmount) as sumRequestedAmount ")
 .append("from LoanRequestReceivedEvent.win:length(10)")
 .toString(), REQUESTED_AMOUNT_STATEMENT_NAME);
 ...
 }
}

363Monitoring Activiti with a Vaadin dashboard
When the application is started, the contextInitialized method will be invoked on
the EsperStatementsCreator. Then Esper is configured and started and the EPL
statements are defined.

 Because we’re using the Apache CXF framework to implement the REST service,
you also need to define a CXF REST servlet in the web.xml (see the next code snippet).
Note that the EventResource class that’s mentioned here will be implemented in list-
ing 14.9:

<servlet>
 <servlet-name>CXFJAX-RSServlet</servlet-name>
 <servlet-class>org.apache.cxf.jaxrs.servlet.

 ➥ CXFNonSpringJaxrsServlet</servlet-class>
 <init-param>
 <param-name>jaxrs.serviceClasses</param-name>
 <param-value>org.bpmnwithactiviti.EventResource</param-value>
 </init-param>
</servlet>

The responsibility of the EventResource class is to receive the REST service calls from
the Activiti process execution listeners and send them through to the Esper engine.
You can see that class in the following listing.

@Path("/events")
@Consumes("application/xml")
public class EventResource {

 @POST
 @Path("LoanRequestReceivedEvent")
 public Response postEvent(LoanRequestReceivedEvent event) {
 try {
 EPServiceProviderManager.getDefaultProvider()
 .getEPRuntime()
 .getEventSender("LoanRequestReceivedEvent")
 .sendEvent(event);
 return Response.status(Status.OK).build();
 } catch (RuntimeException e) {
 throw new WebApplicationException(e);
 }
 }

 @POST
 @Path("LoanRequestProcessedEvent")
 public Response postEvent(LoanRequestProcessedEvent event) {
 ...
 }
}

The URI path for invoking this REST service is defined by the @Path annotation B.
You saw this URI path used in listing 14.8, where the EventSender class invokes this
REST service.

Listing 14.9 Definition of the REST resource that handles the Esper events

Defines
resource’s URLB

Handles
POST
requestC

Forwards
event to EsperD

364 CHAPTER 14 Business monitoring and Activiti
 Then, the LoanRequestReceivedEvent POST method is defined with an additional
URI path for this specific type of event C. In the postEvent method, you forward the
event to the Esper engine D.

 We saw in the EventSender implementation in listing 14.8 that the class name was
used to call the right service. The EventResource can handle LoanRequest-
ProcessedEvent types as well.

 In the final step, you need to implement the Vaadin application logic to visualize
the Esper events. We won’t dive deep into the Vaadin application because it’s a bit
out of scope, and also not important for the business monitoring functionality itself.
But, to give you an idea of the Vaadin logic, here’s a small snippet from the Vaadin
BAMApplication class:

...
requestedAmountListener = new UpdateListener() {
 public void update(EventBean[] newEvents, EventBean[] oldEvents) {
 Double avgRequestedAmount = (Double)
 newEvents[0].get("avgRequestedAmount");
 Integer maxRequestedAmount =
 (Integer)newEvents[0].get("maxRequestedAmount");
 Integer sumRequestedAmount =
 (Integer)newEvents[0].get("sumRequestedAmount");

avgRequestedAmountLabel.setValue(avgRequestedAmount);
 maxRequestedAmountLabel.setValue(maxRequestedAmount);
 sumRequestedAmountLabel.setValue(sumRequestedAmount);
 }
};
...

Every time the UpdateListener is invoked, the event will be processed, leading to
updates on the Vaadin labels on the dashboard. Other listener logic updates the Vaa-
din gauges as well. As you can see, the great thing about Vaadin is that you can directly
change the values of labels and gauges using only a few lines of Java code.

 Time to check out the dashboard now and start some processes!

14.4.4 Monitoring Activiti processes with a Vaadin dashboard

In this last subsection, we’ll kick things off with the Vaadin BAM web application and
use a unit test to simulate a couple of Activiti processes, so that you have some action
going on in your business monitor application.

 The Vaadin BAM dashboard is implemented in the book-bam-app project. You can
run the internal Jetty server with the dashboard application by issuing the mvn clean
install jetty:run Maven command. After you see the Jetty started message, you can
open the application at http://localhost:8081/book-bam-app/ui. You’ll see a few
gauges that aren’t moving yet and an empty table ready to list different kinds of loan
request process information. Because there are no processes running, there’s nothing
more to see yet.

 Now, to get a couple of processes up and running, let’s walk through the unit test
in the following listing, which you can find in the bpmn-examples project.

365Monitoring Activiti with a Vaadin dashboard
public class LoanRequestProcessWithBAMTest extends AbstractTest {

 @Rule
 public ActivitiRule activitiRule = new ActivitiRule(
 "activiti.cfg-mem-fullhistory.xml");

 private RuntimeService runtimeService;
 private TaskService taskService;
 private Random random;

 @Test
 @Deployment(resources={"chapter14/loanrequest_withbam.bpmn20.xml"})
 public void testBAM() throws InterruptedException {
 runtimeService = activitiRule.getRuntimeService();
 taskService = activitiRule.getTaskService();
 random = new Random();
 for (int i = 0; i < 20; i++) {
 startRandomLoanRequestProcess("Person "
 + Integer.toString(i));
 }
 }

 private void startRandomLoanRequestProcess(String name)
 throws InterruptedException {
 Map<String, Object> processVariables =
 new HashMap<String, Object>();
 processVariables.put("name", name);
 processVariables.put("income", 1000);
 processVariables.put("loanAmount", random.nextInt(100));
 runtimeService.startProcessInstanceByKey(
 "loanrequest_withbam", processVariables);

 Thread.sleep(500 + random.nextInt(1000));
 processVariables = new HashMap<String, Object>();
 processVariables.put("requestApproved", true);
 taskService.complete(taskService.createTaskQuery()
 .singleResult().getId(), processVariables);
 }
}

After you have the TaskService and RuntimeService available, you start process
instances with a random loan amount B. You then simulate the time it takes to com-
plete the user task with a Thread.sleep call C and then complete the loan request
process instance D.

 You’re all set to monitor these processes now, so start the unit test and watch the
Vaadin BAM dashboard in action. If all goes well, you’ll see something that looks like
figure 14.7.

 With this small application, we conclude our business-monitoring trip with Esper
and Activiti. You can play around a bit with the test to kick off more processes or wait
longer to complete the tasks. Check out the Esper statements in the Vaadin applica-
tion as well; tweaking them is a bit more tricky, but Esper is well documented and
worth checking out!

Listing 14.10 Starting multiple loan requests to provide input to the monitoring dashboard

Starts
processes
with random
amount

B

Waits a
little timeC

Completes task
and processD

366 CHAPTER 14 Business monitoring and Activiti
14.5 Summary
In this chapter, we covered a lot of new material. First, we took a look at what business
monitoring is. We saw that CEP can help you analyze large volumes of data, and we
checked out the open source CEP engine implementation called Esper.

 We worked out some examples with Esper, starting with simple stuff but moving on
to some more advanced processes, including length and time windows and the joining
of different event types. Integrating your newly acquired Esper knowledge with Activiti
was then rather easy.

 Finally, we saw the power of business monitoring in action with a simple but quite
powerful Vaadin application. By running Activiti processes in a unit test, we used the
process execution listeners to shoot process events via a REST service to Esper. Then,
with some Vaadin user interface components, we used the Esper listeners to update
the UI and saw how all this stuff comes together.

 In the next chapter, we’ll take a step back from implementing business processes
and look in more detail at how to manage the Activiti environment.

Figure 14.7 Gauges and a table showing Activiti business activity monitoring in action

Part 4

Managing
 BPMN 2.0 processes

In this last, brief part, we step back from developing new process definitions
and focus on the remaining components that are important to understand when
you want to run the Activiti Engine in a production environment. In chapter 15,
we’ll talk about the Activiti database model in order to understand the founda-
tion of the Activiti Engine. We’ll also discuss process versioning and the asyn-
chronous functionality provided by the job executor. Finally, we’ll explore how
to extend the Activiti Explorer with additional management functionality.

Managing
 the Activiti Engine
We’ve been developing process solutions with the Activiti Engine and additional
frameworks like Drools, Esper, and Alfresco, and you’ve familiarized yourself with
the Activiti API and what’s happening under the hood. We’re almost ready to take
our process solutions to production, but we haven’t touched on managing the
Activiti Engine in a production environment, which is vital to using Activiti within
an organization. In this final chapter, we’ll look at several topics that are required
knowledge when you’re working toward a production stage. In this chapter, we’ll
take the final steps to making you an Activiti expert.

This chapter covers
■ Understanding the Activiti database model and its

scripts
■ Versioning process definitions
■ Executing asynchronous jobs with the job executor
■ Enhancing the Activiti Explorer with additional

administration functionality
369

370 CHAPTER 15 Managing the Activiti Engine
 The Activiti framework relies heavily on the database for persisting the process
state, the deployment artifacts, and the process history. Therefore, you need to under-
stand the underlying database model and the database scripts provided with the Activ-
iti framework to be able to manage an Activiti Engine environment. We’ll also be
looking at how to create an Activiti database from scratch and how to upgrade the
database when a new version of Activiti that contains database changes is released.

 We’ll also be looking at two maintenance tasks, the first of which is process version-
ing. When you use the Activiti Engine, there will come a time when you’ll want to
deploy a new version of an already existing process definition. We’ll look at best prac-
tices for dealing with process versioning. The second maintenance task is the job
infrastructure. For asynchronous behavior, like timer events and async continuations,
the job executor is used by the Activiti Engine to process these jobs. We’ll look at how
the job executor works and how it can be used when you want to add more servers
with the Activiti Engine running on them.

 In the last section, we’ll implement an administration enhancement to the Activiti
Explorer. We’ll add functionality to get an overview of all running and completed pro-
cess instances, including full details. In addition, we’ll implement views on the process
engine configuration like the database and history configuration.

 But let’s start with the foundation of the Activiti Engine: the database.

15.1 Working with the Activiti database
The Activiti Engine relies heavily on the underlying database to manage running
process instances, deployed process definitions, and the job scheduler, among other
things. When you’re not using another transaction manager, the Activiti Engine also
uses the database for transaction management, committing or rolling back transac-
tions of BPMN 2.0 elements that are executed after each other. Therefore, in order
to manage the Activiti Engine in a production environment, it’s important to
understand the database model that’s used to store running process instances and
user tasks.

 In this section, we’ll start by looking at the database model. Then we’ll discuss how
a database administrator can create an Activiti database. Finally, we’ll talk about ways
to upgrade the Activiti database when a new Activiti version that contains database
updates is released.

15.1.1 Understanding the Activiti runtime execution database model

The Activiti database can be roughly divided into three separate models:

■ Tables that are used for the deployment artifacts and the runtime execution of
process instances and user tasks.

■ Tables that are used for history purposes, meaning completed process instances
and user tasks.

■ User and group management tables used for the built-in user and group
repository.

371Working with the Activiti database
In this section, we’ll take a look at the first model, which is the runtime execution and
deployment data model.

A RUNTIME EXECUTION AND DEPLOYMENT MODEL OVERVIEW

We’ll start off by looking at the tables that are used to store deployment information
and the data needed for the runtime execution of the process instances. Figure 15.1
shows the tables with their columns, primary keys, and relationships.

 As you can see in figure 15.1, the database model of the runtime execution and
deployment tables is quite big. Furthermore, in tables like ACT_RU_EXECUTION and
ACT_RU_TASK, a lot of additional structure is implemented. In the next sections, we’ll
therefore walk through the database model with the vacation request example process
that’s installed with the Activiti Explorer.

TAKING A DETAILED LOOK AT THE DEPLOYMENT TABLES

To start off, imagine that you deploy a new BAR file or BPMN 2.0 XML file to the Activ-
iti Engine. Then, the deployed artifacts are inserted into the ACT_RE_DEPLOYMENT
and ACT_GE_BYTEARRAY tables. Out of the box, the Activiti Engine already contains

Figure 15.1 Database model of the runtime execution and deployment tables used by the Activiti Engine

372 CHAPTER 15 Managing the Activiti Engine
the deployment of examples, including the vacation request process definition. The
ACT_RE_DEPLOYMENT table contains the following entries:

ID_ 10
NAME_ activiti-engine-examples.bar
DEPLOY_TIME 2011-10-27 20:18:34.212

Only the name column is the same on every environment. It contains the name of the
deployment file if no other name has been specified during deployment. As you can
see, this table contains almost no information.

 The ACT_GE_BYTEARRAY table contains the deployment artifacts:

ID_ 11
REV_ 1
NAME_ org/activiti/examples/taskforms/VacationRequest.bpmn20.xml
DEPLOYMENT_ID_ 10
BYTES_ Byte array

ID_ 12
REV_ 1
NAME_ org/activiti/examples/taskforms/VacationRequest.png
DEPLOYMENT_ID_ 10
BYTES_ Byte array

Here, the deployment artifacts of one of the example processes are shown. The first
entry contains the vacation request BPMN 2.0 XML file, with the artifact stored as a
byte array in the BYTES_ column. The second artifact contains the picture of the vaca-
tion request process definition in the same manner. If the vacation request had con-
tained more deployment artifacts, like a DRL file for the rules definition, they
would’ve been stored here as well.

 Another table that contains rows when the Activiti Engine stores a deployment arti-
fact is the ACT_RE_PROCDEF table. The Activiti Engine parses the BPMN 2.0 XML file
and stores information about this process definition in the ACT_RE_PROCDEF table:

ID_ vacationrequest:1:21
CATEGORY_ http://activiti.org/bpmn20
NAME_ Vacation request
KEY_ vacationRequest
VERSION_ 1
DEPLOYMENT_ID_ 10
RESOURCE_NAME_ org/activiti/examples/taskforms/VacationRequest.bpmn20.xml
DGRM_RESOURCE_NAME_ org/activiti/examples/taskforms/VacationRequest.png
HAS_START_FORM_KEY_ false

The ID_ column corresponds to the process identifier of the process definition. The
KEY_ column holds the value for the business key of the process definition. Next to
these unique process identifiers, the process definition table contains the name of the
process, a reference to the deployment artifact, and references to the BPMN 2.0 XML
file and to a picture of the process definition, if present.

 This is all the information the Activiti Engine stores about a deployment and a pro-
cess definition. The parsed activities of a process definition aren’t stored in the database

373Working with the Activiti database
but are held in memory inside the Activiti Engine, so when a new process instance is
started, all the activities of the corresponding process definition are available.

 Let’s move on to the tables that are used to hold information about a running pro-
cess instance.

TAKING A DETAILED LOOK AT THE PROCESS EXECUTION TABLES

First, there’s the ACT_RU_EXECUTION table, which contains information about the
process instance itself. Let’s look at the contents of the ACT_RU_EXECUTION table
after you have started a new instance of the vacation request process definition:

ID_ 717
REV_ 1
PROC_INST_ID_ 717
BUSINESS_KEY_
PARENT_ID_
PROC_DEF_ID_ vacationRequest:1:21
SUPER_EXEC_
ACT_ID_ handleRequest
IS_ACTIVE_ true
IS_CONCURRENT_ false
IS_SCOPE_ true

The execution table contains information about the process instance and process def-
inition identifiers. It also holds the state of the process instance with the current activ-
ity identifier in the ACT_ID_ column. When a process definition doesn’t contain
asynchronous continuations, the process instance executes all automatic activities in
the same transaction without storing its state to the database. Only when the Activiti
Engine encounters a wait state like a user task or a receive task will the process
instance state be persisted to the ACT_RU_EXECUTION table. In this vacation request
example, the current activity is the Handle Request user task.

 When a process instance contains concurrent flow logic like a parallel gateway or
an inclusive gateway, there will be more than one entry in the execution table for the
same process instance. For example, with the multitasking process example imple-
mented in chapter 6, the ACT_RU_EXECUTION table contains four rows of the multi-
tasking process instance when a new one is started (see figure 15.2).

 The first entry shown in figure 15.2 is the parallel gateway fork, which corresponds
to the first parallel gateway of the process definition. This entry will be persisted in the
table until a joining parallel gateway is executed. The second entry contains the back-
log email user task of the first outgoing path of the parallel gateway. The third entry
contains the execution of the job that’s attached to the intermediate timer event. The
fourth entry contains the intermediate timer event that’s being executed in the sec-
ond outgoing path of the parallel gateway. When the job is executed after 30 seconds,
the execution table will only contain three entries, with the timer and job executions
having been deleted and a new entry added for the “Do work” user task.

 Also, in the case of subprocesses, the execution table will contain more than one
entry: one for the main process execution and one for the subprocess execution.

374 CHAPTER 15 Managing the Activiti Engine
The execution table is the most complex table in the Activiti Engine database model.
It can contain a lot of hierarchical relationships concerning parallel execution or sub-
processes. In the chapter 6 example, it contains four rows, but, for the vacation
request example we used earlier, it only contains one entry or row, so let’s stick with
that example and not make it overly complex.

TAKING A DETAILED LOOK AT THE USER TASK TABLES

In the execution table of the vacation request process instance, you saw that the cur-
rent activity identifier was the “Handle request” user task. The details about this user
task are stored in the ACT_RU_TASK table:

ID_ 726
REV_ 1
EXECUTION_ID_ 717
PROC_INST_ID_ 717
PROC_DEF_ID_ vacationRequest:1:21
NAME_ Handle vacation request
PARENT_TASK_ID_
DESCRIPTION_
 kermit would like to take 10 day(s) of vacation (Motivation: Holiday).
TASK_DEF_KEY_ handleRequest
OWNER_
ASSIGNEE_
DELEGATION_
PRIORITY_ 50
CREATE_TIME_ 2011-10-27 20:56:18.332
DUE_DATE_

Figure 15.2 Recap of the parallel gateway example from chapter 6, with the database rows that are
created in the ACT_RU_EXECUTION table when a new process instance is started

375Working with the Activiti database
The task table contains two references to the execution table.

■ A reference (PROC_INST_ID) to the process instance for which the user task was
created

■ A reference (EXECUTION_ID_) to the activity execution corresponding to the
user task

For a simple process like the vacation request example, these references point to the
same row in the execution table. But when there is a concurrent execution, like there
was for the multitasking process definition in chapter 6, these values can be different.

 A lot of the columns in the task table hold information details about the user task,
like the name, the priority, and the creation time. The task table also contains the
owner, assignee, and delegation values for the task assignment state. The task table
further contains a parent task identifier column for defining a task hierarchy. When
you create a subtask, the corresponding row in the task table points to the parent task.

 As you can see, the task table doesn’t contain the candidate user or group defini-
tion. This information is stored in the ACT_RU_IDENTITYLINK table. For the “Handle
vacation request” user task, this table holds the following information:

ID_ 727
REV_ 1
GROUP_ID_ management
TYPE_ candidate
USER_ID_
TASK_ID_ 726

This user task is available to be claimed by a person of the management group. If you
claim the user task with the Kermit user, the assignee column in the task table will be
filled.

 Now let’s look at how process variables are stored in the Activiti database.

INTRODUCING THE VARIABLE TABLE

Another important table for the runtime execution of process instances is the
ACT_RU_VARIABLE table. This table contains all of the process variables related to a
specific execution. For simple processes, this means that the variable table contains
the process variables related to a specific process instance. But, when a process defini-
tion contains embedded subprocesses, the variable table will contain process variables
for the main process as well as for the embedded process execution.

 Let’s look at an example row of the variable table for the motivation process vari-
able of the vacation request process:

ID_ 724
REV_ 1
TYPE_ string
NAME_ motivation
EXECUTION_ID_ 717
PROC_INST_ID_ 717
TASK_ID_
BYTEARRAY_ID_

376 CHAPTER 15 Managing the Activiti Engine
DOUBLE_
LONG_
TEXT_ Holiday
TEXT2_

A variable can be coupled to a process instance (PROC_INST_ID_) or a user task
(TASK_ID_). In this example, the variable is coupled to the vacation request process
instance. When the variable contains a complex object like a Java bean, the value is
stored as a byte array. The byte array itself is stored in the ACT_GE_BYTEARRAY table,
which we’ve discussed already.

STORING ASYNCHRONOUS JOBS IN ACTIVITI

When a process instance contains asynchronous behavior like a timer event or an
async continuation, a job is created in the ACT_RU_JOB table. The job executor will
process the jobs in this table when it’s activated in the process configuration.

 The multitasking example in chapter 6 contains an intermediate timer event in
the second flow of the parallel gateway. When the intermediate timer event is pro-
cessed, the following job entry is created in the job table:

ID_ 762
REV_ 1
TYPE_ timer
LOCK_EXP_TIME_
LOCK_OWNER_
EXCLUSIVE_ false
EXECUTION_ID_ 761
PROCESS_INSTANCE_ID_ 754
RETRIES_ 3
EXCEPTION_STACK_ID_
EXCEPTION_MSG
DUEDATE_ 2011-10-27 23:31:33.453
REPEAT_
HANDLER_TYPE_ timer-intermediate-transition
HANDLER_CFG_ coffeebreak

The job scheduler we’ll be discussing in section 15.3 reads the entries in the job table
and tries to execute them. The references to the corresponding process execution
(EXECUTION_ID_) and process instance (PROCESS_INSTANCE_ID_) is available, and a
job handler type is defined so the scheduler knows which command class should pro-
cess the job. When the job is completed without errors, the job is deleted from the job
table. Otherwise, an exception message is stored and the job is retried three times by
default.

STORING HISTORY LEVEL AND ENGINE VERSION INFORMATION

There’s one table remaining from figure 15.1, and that’s the ACT_GE_PROPERTY
table. This table contains property values needed by the Activiti Engine. By default,
the history level and the Activiti Engine version can be found here:

NAME_ historyLevel
VALUE_ 2
REV_ 1

377Working with the Activiti database
NAME_ schema.version
VALUE_ 5.9
REV_ 1

The value in the history level corresponds to one of the four possible history configu-
ration levels you can find in the ProcessEngineConfigurationImpl class of Activiti.
The default value is audit, which corresponds to the value of 2:

public static final int HISTORYLEVEL_NONE = 0;
public static final int HISTORYLEVEL_ACTIVITY = 1;
public static final int HISTORYLEVEL_AUDIT = 2;
public static final int HISTORYLEVEL_FULL = 3;

As you know, you can also configure a history level in the process engine configura-
tion in an activiti.cfg.xml file or in another Spring configuration file. When you set
the databaseSchemaUpdate property to false in the Activiti Engine configuration,
the history value configuration should be the same as the history configuration level
in the database; otherwise, an error is thrown when the Activiti Engine is initialized.
This means that, if you set the databaseSchemaUpdate property to false, you must
change the history value in two places: the database and the Activiti Engine configura-
tion file.

WARNING The history level stored in the ACT_GE_PROPERTY database table
should be the same as the history level in your Activiti Engine configuration.
If they aren’t the same and the databaseSchemaUpdate property is set to
false, an error is thrown when the Activiti Engine is started. When you want
to change the default history level from audit to another level, you should
change the value in the database and the configuration file. When you
change the database history level value, it’s important that no process
instances are running.

Let’s move on to the history tables, where you can find process instance and user task
information even after the process instance has ended or the user task is completed.
Note that the amount of information stored depends on the history configuration level.

15.1.2 Understanding the Activiti history database model

The database model of the history tables is a lot smaller and easier to understand than
the deployment and runtime execution database model. The history tables can be
used for reporting and managing information related to all process instances and user
tasks that are running or have been completed.

 You can choose to store data in the history tables only for a specific lifetime and
delete all rows that are older than a specific time period; for example, older than six
months. The tables don’t have foreign key references, which makes this easy.

 Take a look at the database model overview in figure 15.3.
 You’ve already seen the runtime execution database model, so most of the history

database tables should almost speak for themselves. When a process instance like the
vacation request example is started, the ACT_HI_PROCINST and ACT_HI_ACTINST

378 CHAPTER 15 Managing the Activiti Engine
tables are filled (at the same time that the process instance is stored in the
ACT_RU_EXECUTION table). The history tables aren’t only filled when a process
instance is completed but also when the process instance state is stored in the runtime
execution tables.

 For a process instance, a number of interesting metrics are stored in the
ACT_HI_PROCINST table, including the start and end times and the duration. These
values can be used for reporting purposes, for example, to calculate the minimum,
maximum, and average duration times of a specific process definition. The
ACT_HI_TASKINST table holds similar information about a user task. For every user
task that’s started or completed in the Activiti Engine, you can find an entry in this
table with information like the assignee, the duration, and the due date.

 The ACT_HI_ACTINST table contains information about every activity that’s being
executed as part of a process instance. This table contains quite detailed informa-
tion about the start time, end time, and duration of every activity executed by the
Activiti Engine.

 When you set the history level to audit or full, a lot more detailed information is stored
in the ACT_HI_DETAIL table. For the audit level, all form property values submitted via
the FormService interface are stored in this table. And, for the full history level, all the

Figure 15.3 The database model of the history tables used by the Activiti Engine

379Working with the Activiti database
process variables, including the updates, are stored in this table. Remember that you can
retrieve these values using the HistoryService createHistoricDetailQuery.

 The last table, ACT_HI_ATTACHMENT, isn’t really related to the other tables. It
contains the process instance or user task attachments discussed in chapter 13. You
can add attachments to a process instance and a user task using the TaskService
createAttachment method, and then these attachments will be stored in the
ACT_HI_ATTACHMENT table.

 As you can see, we don’t need to spend a lot of time explaining the history tables.
In section 15.4, we’ll use the history tables for the management dashboard to show all
process instances that are being executed or are already completed.

 Now that you understand the database model, let’s discuss the best practices for
creating the Activiti database that contains the tables of the database model.

15.1.3 Creating the Activiti database

In this book’s examples, we took the avail-
ability of an Activiti Engine database con-
taining the tables described in the
previous section for granted. You used an
in-memory H2 database for the unit test
examples and the default H2 database for
the examples where you made use of the
Activiti Explorer. Under the hood, the in-
memory database is created every time
you start a unit test using the in-memory
database configuration.

 This is great when you’re developing
process solutions, but, when you have to
set up a test or production environment,
a DBA will not allow you to run a Java
program to create a new database.
Therefore, you need another solution
for these kinds of environments. First,
you have to get a hold of the database
scripts that create tables for your specific
database type. When you open the Activ-
iti Engine JAR file, activiti-engine-<ver-
sion>.jar, you can find the SQL scripts in
the org.activiti.db.create package
(figure 15.4).

 You can look at the contents of the
JAR file by opening it in a ZIP applica-
tion or by opening the referenced

Figure 15.4 The database scripts in the Activiti
Engine JAR in Eclipse

380 CHAPTER 15 Managing the Activiti Engine
libraries in Eclipse, as shown in figure 15.4. For every supported database, you can
find the create scripts. When you want to run the Activiti Engine on a MySQL data-
base, the engine, history, and identity scripts are needed by default. If you won’t be
using the user and group management tables because you’re using an LDAP reposi-
tory, for example, you can even skip the identity script. The cycle script is legacy and
isn’t needed anymore. This script will probably be removed in future versions of the
Activiti Engine.

 When you unzip the appropriate create scripts from the Activiti Engine JAR file, it’s
time to hand them over to the DBA. By default, the engine database script already con-
tains the primary key, foreign key, and index definitions. But, the index definitions
can certainly be improved based on your specific query needs. The following indexes
are created by default:

create index ACT_IDX_EXEC_BUSKEY on ACT_RU_EXECUTION(BUSINESS_KEY_);
create index ACT_IDX_TASK_CREATE on ACT_RU_TASK(CREATE_TIME_);
create index ACT_IDX_IDENT_LNK_USER on ACT_RU_IDENTITYLINK(USER_ID_);
create index ACT_IDX_IDENT_LNK_GROUP on ACT_RU_IDENTITYLINK(GROUP_ID_);
create unique index ACT_UNIQ_RU_BUS_KEY on ACT_RU_EXECUTION
 (PROC_DEF_ID_, BUSINESS_KEY_) where BUSINESS_KEY_ is not null;

If you want to do a lot of querying based on process variable names, it would be good
to add an index to the ACT_RU_VARIABLE table. But, with the engine, history, and
optional identity database scripts available, your DBA will know how to create a new
database for your test or production environment.

 Now, let’s see what you need to do when you want to upgrade the Activiti database
to a new version.

15.1.4 Upgrading the Activiti database

In the past, there have been database
changes with almost every release of
the Activiti framework, but, since ver-
sion 5.7, the database model may be
considered stable. Nevertheless, a new
version of the Activiti framework may
require database changes. You don’t
want to clean your database out and
start all over again with the new data-
base scripts. Fortunately, the
org.activiti.db.upgrade package in
the Activiti Engine JAR contains the
database scripts necessary to upgrade
your database (see figure 15.5).

 The upgrade scripts are catego-
rized by database type and version
upgrade. As you can see in figure 15.5,

Figure 15.5 Some of the upgrade scripts available
in the Activiti Engine JAR

381Dealing with process versioning
the last database update was from version 5.6 to 5.7 and only contained the follow-
ing update:

alter table ACT_HI_PROCINST
add SUPER_PROCESS_INSTANCE_ID_ varchar(64);

This example is for the H2 database, and all it did was add a new column to the
ACT_HI_PROCINST table.

 When you want to upgrade to a new version of Activiti that contains database
upgrades, look in the org.activiti.db.upgrade package of the Activiti Engine JAR.
Then, take some time to see the database changes and whether you can expect prob-
lems with your running process instances. Always make a database backup before you
execute the upgrade script and make sure that there are no running process instances.

 Also, be aware that if you want to execute the upgrade database scripts manually,
you have to configure the Activiti Engine not to update automatically. Otherwise,
when you start the Activiti Engine with the JARs of a new version, the Activiti database
will automatically be upgraded at startup. Here’s the relevant process engine configu-
ration setting:

<property name="databaseSchemaUpdate" value="true" />

By default, the databaseSchemaUpdate property is set to false, but you can override
this as shown in the preceding code snippet.

 To summarize the upgrade process, you can consider an upgrade of the Activiti
database model to be much like the upgrade of any other application database model.
You have to be careful and make backups, but it’s certainly not rocket science.

 By now, you’ve read through a lot of information regarding the Activiti database.
Knowing the internal details of the Activiti framework should help when you’re devel-
oping process solutions. In addition, it’s always nice to be able to look up values in the
database when you’re testing and debugging. In the next section, we’ll be talking
about process versioning, which is also supported by the Activiti database model. You
can look back at figure 15.1 to see that the process definition table contains a version
(VERSION_) column, which represents the process definition version.

 But, there are more challenges to cover before we can fully discuss process version-
ing. When you’re running a process solution in production, it’s important to under-
stand what to do when you want to change the existing process solution and deploy a
new version. In the next section, we’ll discuss a number of best practices for dealing
with process versioning.

15.2 Dealing with process versioning
Process versioning is an important topic in the rapidly changing environments of
most organizations these days. New products have to be delivered to the market today,
not tomorrow. And, the ever-increasing importance of the internet requires organiza-
tions to provide real-time information to customers about the status of their orders
and keep a real-time inventory of products. All of these requirements lead to changes

382 CHAPTER 15 Managing the Activiti Engine
in business processes, so process definitions are mostly dynamic and changing instead
of being static artifacts with only one version.

 When the first version of a process definition is deployed to the Activiti Engine, the
business needs may have already changed and the process definition may need to be
adapted. A typical process definition makes use of services for the execution of busi-
ness logic, so a change in the business logic might not lead to changes in the process
definition itself. But, when you’re working with process definitions on the Activiti
Engine for a longer period of time, there will come a time when you need to deploy a
new version of an existing process definition. What then?

 Well, the versioning model of the Activiti Engine is quite simple. When a new ver-
sion of a process definition is deployed, all newly started process instances will run
against this new process definition, and all process instances that are already running
will keep running against the older process definition version.

 That’s the default behavior, but the Activiti Engine is also capable of starting new
process instances with older process definition versions. In the RuntimeService API,
there’s a method named startProcessInstanceById that requires a specific process
definition identifier as an input parameter. You can call this method with the process
definition identifier of an older process definition to start a new process instance with
that specific version.

 The versioning of process definitions, therefore, is relatively simple. It gets a lot
harder with the Java service task and listener classes that are used in the process defini-
tion. When you use a Tomcat server with the Activiti Engine running embedded in a
web application like the Activiti Explorer, there can only be one version of a specific
Java class on the class path (see figure 15.6).

BPMN 2.0 XML

Order process v2

To
m

ca
t

BPMN 2.0 XML

Order process v1

A BAR file containing the
process definition

A BAR file containing the
process definition

Order process
Java classes

JAR with Java classes

A JAR file containing the
service tasks and listener
classes deployed in the
WEB−INF/lib directory

Figure 15.6 Two versions
of the order process are de-
ployed on a Tomcat server
but there’s only one version
of the JAR file containing
the Java classes of the
order process .

383Dealing with process versioning
In the order process example in figure 15.6, two versions of the process definition
have been deployed. But, there can be only one version of a specific Java class on the
classpath of the web application. This means that, when you change the implementa-
tion of a service task class and deploy a new version of the order process definition to
the Tomcat server with a JAR containing the service task classes, this change will have a
direct impact on any running process instances of the previous version of the order
process definition.

 If you want to prevent these issues, a good solution could be to change the class
names or, better, the package names of the service task classes you want to update.
This overcomes potential issues for the already-running process instances but it also
introduces a new challenge for the version management of your process solutions. If
you have a lot of process definitions that are changing, it can become a nightmare to
keep track of all these different versions of service task classes and listeners. But, for a
more static environment, changing the class names can be valid approach.

 A more elegant solution is to use more flexible classloading environments like
OSGi or JBoss with camunda fox, which we discussed in chapter 9. With camunda fox,
for example, you can deploy new versions of a process definition in a single deploy-
ment archive, including the service task and listener classes (see figure 15.7).

 When you have two versions of the order process running on camunda fox as
shown in figure 15.7, the process instances running version 1 of the order process def-
inition use a different classpath than the process instances running version 2. The
JBoss server and JEE provide the functionality to run applications with different class-
paths on one instance. You can use the same class name for a service task in both pro-
cess archives, but each process definition will make use of their self-contained version
of that Java class.

 As you can see, process versioning is quite easy using the Activiti Engine. You have
to be aware of its versioning capabilities and limitations, but, with the environment
offered by camunda fox, there are no real barriers. Still, you have to keep in mind that
the already-running process instances will keep running against the existing version of
the process definition.

BPMN 2.0 XML

Order process v2

Java classesC
am

un
da

 fo
x

BPMN 2.0 XML

Order process v1

Java classes

A JAR file containing the
process definition and
Java classes

A JAR file containing the
process definition and
Java classes

Figure 15.7 Overview
of the process defini-
tion versioning solu-
tion provided by
camunda fox. You can
deploy two versions of
a process definition, in-
cluding its Java class-
es, in a single archive.

384 CHAPTER 15 Managing the Activiti Engine
With that process versioning knowledge in your pocket, it’s time to take a look at
another important component of the Activiti Engine: the job executor. In a produc-
tion environment, it’s important to understand the functionality of the job executor
and know how to deal with failed jobs.

15.3 Understanding the job executor
We’ve used the job executor in a number of process examples in the previous chap-
ters. The job executor is used by the Activiti Engine to execute the asynchronous logic
that’s mainly needed for the timer and async continuation support.

 In chapter 4, you were introduced to the default synchronous behavior of the pro-
cess execution inside the Activiti Engine. You saw that, by default, the activities of a pro-
cess instance are executed in a single transaction and Java thread. Only when the
Activiti Engine encounters wait states like a user task or a receive task will the current
transaction be committed to the Activiti Engine database and the Java thread be ended.

 For process definitions consisting of only service tasks, the whole process instance
is executed in a single transaction and Java thread. A Java class invoking the start-
ProcessInstanceByKey method of the RuntimeService for this process definition
won’t get a response until the process instance is ended. In these kinds of process def-
initions, there’s no need for asynchronous behavior, so the job executor isn’t used.

 But, when you add an async attribute with a value of true to a service task, you def-
initely do need asynchronous behavior. Figure 15.8 shows the flow of execution of a pro-
cess definition with three service tasks, where one has been configured as asynchronous.

 When a Java class starts a new process instance for the process definition as shown
in figure 15.8, the Activiti Engine will execute the first service task and, then, the pro-
cess state will be persisted to the Activiti database. When the process state is persisted,
the Java class that started the process instance will receive a response containing the
process instance object. But, the Activiti Engine has also created a new job in the job
table discussed in section 15.1. And, this table is the starting point for the job executor.

Service task 1 Service task 2 Service task 3

Activiti database

Job executor

async="true"

3. Signal the start of
the service task

2. Query for jobs
and lock them

1. Persist
process state and
create async
continuation job

4. End process and
store history

Figure 15.8 Overview of the workings of the job executor for async continuations

385Understanding the job executor
The org.activiti.engine.impl.jobexecutor.JobExecutor class starts a thread
when the Activiti Engine is initialized to search for open jobs. By default, a maximum
of three jobs per search are retrieved from the jobs table, and the jobs are locked
before this job executor executes them. Locking jobs is important for environments
where multiple Activiti Engines are running on the same database, as we’ll discuss in a
bit. When the job executor locks the jobs successfully, the jobs are executed individu-
ally in a thread pool.

 For the async continuation example in figure 15.8, the running process instance is
signaled, and service task 2 is executed, including the remaining synchronous activi-
ties. In this example, the whole process instance is completed, and eventually the
Activiti database is updated and the history information is persisted.

 It’s important to be aware of possible exceptions thrown when the job executor
executes the jobs. When you only use synchronous activities like Java service tasks, the
Java class starting the process instance will receive exceptions thrown while executing
the process logic. But, when the job executor encounters an exception, the Java class
that started the process instance won’t receive any feedback. The job scheduler will
write the exception and its message to the job table in the Activiti database and will
retry the job three times by default. After each retry, the job executor will wait for ten
seconds by default, but you can change these parameters in the job executor configu-
ration as shown in chapter 8. Therefore, in a production environment, it’s important
to keep an eye on the job table.

 For timers like the timer start event or the intermediate timer event, the Activiti
Engine also uses the job infrastructure and the job executor. This is done in a similar
manner as described in figure 15.8 for the async continuations. When the Activiti
Engine encounters a timer, the process state is persisted in the Activiti database and a
new timer job is created in the job table. Because timers can have a complex timer
configuration, the job executor contains intelligence to deal with reoccurring timers
as well as timers that should be executed at a specific time.

 When you’re using the job executor with only one instance of the Activiti Engine,
the previous information covers Activiti’s asynchronous capability. But, in a lot of pro-
duction environments, there will be more than one Activiti Engine running. This is
needed for fail-over purposes but also for horizontal scaling of the environment when
you’re executing lots of process instances. In these cases, you’ll have more than one
job executor running on the Activiti database, and there can be potential conflicts
with job executors retrieving and executing the same jobs. Figure 15.9 shows the lock-
ing implementation that the job executor uses to prevent these kinds of conflicts.

 To be sure that only one job executor executes a job, the Activiti engine relies on
the underlying database. When there are two job executors querying for open jobs on
an Activiti database, the first job executor that’s able to lock a job will execute it.
When the job executor retrieves a job, it will try to lock that row by setting a lock
owner value. The first job executor will be able to do this successfully, but the second
job executor that tries to lock the same job will receive a locking exception; only the
first job executor will execute the job.

386 CHAPTER 15 Managing the Activiti Engine
NOTE When a job executor receives a locking exception from the database, it
will also log this exception, with a level of severe. This may be misleading
because, in essence, there’s no real error that you should worry about. In
future versions of Activiti (at the time of writing, the latest version is 5.9) this
may be solved by decreasing the logging level.

The job executor is an important component in the Activiti Engine because it pro-
vides an implementation for asynchronous capabilities like timer events and async
continuations. It’s no problem to run multiple job executors in one Activiti environ-
ment because there’s built-in locking of jobs.

 The Activiti Explorer provides a good interface for the current jobs in the Manage
section available in the top level menu. This is a handy means to look for possible
issues with failing jobs. In the next section, we’ll build on the Activiti Explorer’s man-
agement functionality and extend it with a functionality to be used by an administra-
tor who needs the view of a running Activiti Engine.

15.4 Building an administrator dashboard
In order for administrators to maintain the Activiti Engine environment, you need an
administration tool that doesn’t require deep Activiti knowledge. The Activiti
Explorer already provides a number of administration capabilities out of the box, pro-
viding deployment features, views on database tables, and lists of waiting jobs. But, this
might not be enough to get a good grip on the Activiti environment if we don’t dive
into the XML configuration.

 For example, the database configuration details are only available in the Activiti
process engine configuration file. It’s also not possible to get an overview of all run-
ning and completed process instances with just the Activiti Explorer. You can get a
view of the running process instances that are started by the logged-in user, but this
isn’t usable for an administrator.

 In this section, you’ll see that it’s not hard to enhance the Activiti Explorer and
add missing capabilities to it.

 The first step in enhancing the Activiti Explorer is to check out the source code from
the Activiti SVN repository. This has already been done for you in the book-manager proj-
ect in the book’s source code.

Job executor

Activiti Engine

Job executor

Activiti Engine

Activiti database

1. Query for jobs 3. Lock jobs 2. Query for jobs 4. Lock jobs
Figure 15.9 An overview
of the environment where
multiple Activiti Engines
and job executors are run-
ning on one Activiti data-
base

387Building an administrator dashboard
 Next, it’s good to have some knowledge about the Vaadin framework (www.vaa-
din.com) and the internal workings of the Activiti Explorer. Vaadin is one of the most
popular web frameworks today, and you can find a lot of information online, starting
with the very good (and free) Vaadin book available on the Vaadin website.

 To learn more about the Activiti Explorer architecture, a good way to start is to
look at one of the management page implementations like the UserPage class that
you’ll find in the org.activiti.explorer.ui.management.identity package of the
Activiti Explorer source code or the book-manager project. Let’s take a look at the
administration page you’ll be adding to the Manage section of the Activiti Explorer
(see figure 15.10).

 As you can see in figure 15.10, you’ll be adding a new administration menu item to
the Manage section of the Activiti Explorer, and you’ll offer a number of maintenance
capabilities in that menu. First, you’ll provide detailed overviews of all running and
completed instances. You’ll group these instances by process definition so you can
also get a nice overview of the number of instances running for a specific process defi-
nition. In addition, you’ll display information about the database and the history set-
tings of the running Activiti Engine.

Figure 15.10 The additional administration panel that you’ll be adding to the Activiti Explorer

388 CHAPTER 15 Managing the Activiti Engine
Let’s start at the beginning and add a new menu item to the Manage section. You can
do this by making some changes to the ManagementMenuBar class in the book-manager
project.

public class ManagementMenuBar extends ToolBar {

 public static final String ENTRY_BOOK_MANAGEMENT =
 "administration";

 protected I18nManager i18nManager;
 protected ViewManager viewManager;

 public ManagementMenuBar() {
 this.i18nManager = ExplorerApp.get().getI18nManager();
 this.viewManager = ExplorerApp.get().getViewManager();
 setWidth("100%");
 initToolbarEntries();
 }

 protected void initToolbarEntries() {
 addDatabaseToolbarEntry();
 addDeploymentsToolbarEntry();
 addJobsToolbarEntry();
 addUsersToolbarEntry();
 addGroupToolbarEntry();
 addAdministrationToolbarEntry();
 }

 protected void addAdministrationToolbarEntry() {
 addToolbarEntry(ENTRY_BOOK_MANAGEMENT,
 i18nManager.getMessage(
 Messages.MGMT_MENU_ADMINISTRATION),
 new ToolbarCommand() {
 public void toolBarItemSelected() {
 viewManager.showBookManagementPage();
 }
 }
);
 }
}

Changes to the ManagementMenuBar class are bold in the listing, and parts of the rest
of the class implementation have been omitted so we can focus on these changes.
First, you need to add a new toolbar entry B. The ToolBar provides an addTool-
barEntry convenience method for adding a new menu item. You can provide a screen
name C, which is loaded from the internationalization files in the src/main/
resources folder of the book-manager project (look, for example, at the mes-
sages.properties file). Finally, you can define the page class for the administration
screen D shown in figure 15.10.

 The navigation logic for the views is implemented in the DefaultViewManager class
on which you invoke the showBookManagementPage (via its interface ViewManager). In
the DefaultViewManager class, you need to add the following method:

Listing 15.1 Changes to the ManagementMenuBar class for the new menu item

Adds a new
menu item

B

Sets menu item
screen name

C

Opens
administration pageD

389Building an administrator dashboard
public void showBookManagementPage() {
 switchView(new BookManagementPage(),
 ViewManager.MAIN_NAVIGATION_MANAGE,
 ManagementMenuBar.ENTRY_BOOK_MANAGEMENT);
}

 That’s all the plumbing code you need to define a new menu item in the Manage section.
 We can now start with the implementation of the BookManagementPage, which

defines the navigation menu on the left side (see figure 15.10), where you can choose
the administration functionality you want to see. To understand a bit better how the
navigation logic is implemented, the main part of the createList method is shown in
the next listing.

managementTable.addContainerProperty(
 "name", String.class, null);
managementTable.setColumnHeaderMode(
 Table.COLUMN_HEADER_MODE_HIDDEN);

managementTable.addItem(new String[] {
 "Running process instances"}, 0);
managementTable.addItem(new String[] {
 "Completed process instances"}, 1);
managementTable.addItem(new String[] {
 "Database settings"}, 2);
managementTable.addItem(new String[] {
 "History settings"}, 3);

managementTable.addListener(
 new Property.ValueChangeListener() {

 private static final long serialVersionUID = 1L;
 public void valueChange(ValueChangeEvent event) {
 Item item = managementTable.getItem(
 event.getProperty().getValue());

 if(item != null) {
 if("0".equals(event.getProperty()
 .getValue().toString())) {
 setDetailComponent(new RunningInstancesPanel());
 } else if("1".equals(event.getProperty()
 .getValue().toString())) {
 setDetailComponent(new CompletedInstancesPanel());
 } else if("2".equals(event.getProperty()
 .getValue().toString())) {
 setDetailComponent(new DatabaseSettingsPanel());
 } else if("3".equals(event.getProperty()
 .getValue().toString())) {
 setDetailComponent(new HistorySettingsPanel());
 }
 } else {
 // Nothing is selected
 setDetailComponent(null);
 }
 }
});

Listing 15.2 Implementation of the administration menu navigation logic

Adds one column
propertyB

Adds menu
itemC

Defines menu
click listenerD

Sets right
detail panelE

390 CHAPTER 15 Managing the Activiti Engine
The left-side menu you want to add to the administration page contains only the
name of the maintenance functionality, so you only need one row in the menu table
B. You then add all the administration links to the menu list, including the com-
pleted process instances C. To be able to respond to a menu item selection, you add a
listener to the menu table D. In the listener implementation, you can validate which
item has been selected and open the right detail panel E. As you can see, this is quite
easy to implement in the Activiti Explorer, and that’s because of its convenience
classes, which provide ready-to-use building blocks.

 The implementation of the four detail panels contains quite a lot of Vaadin-
specific code, but it’s very readable; you can relate it directly to the screens. Let’s have
a quick look at the complete process instances overview. Because the screen is large,
we’ll split it up, starting with the process definition and corresponding process
instances in figure 15.11.

 In the first table of the completed process instances detail panel, the process defi-
nitions corresponding to the completed process instances found in the Activiti Engine
are shown. The table also shows the number of process instances that have been com-
pleted for a specific process definition. When you click a process definition, the corre-
sponding process instances are shown in the second table.

 The following code snippet, which is part of the CompletedInstancesPage class,
uses the HistoryService and RepositoryService to retrieve the process definition
and instance information:

historyService.createHistoricProcessInstanceQuery().finished().list();
completedDefinitions = new HashMap<String, ManagementProcessDefinition>();
for (HistoricProcessInstance instance : instanceList) {

Figure 15.11 First part of the completed process instances screen, showing the process instances
grouped by process definition

391Building an administrator dashboard
 String processDefinitionId = instance.getProcessDefinitionId();
 ManagementProcessDefinition managementDefinition = null;
 if(completedDefinitions.containsKey(processDefinitionId)) {
 managementDefinition = completedDefinitions.get(processDefinitionId);

 } else {
 ProcessDefinition definition = repositoryService
 .createProcessDefinitionQuery()
 .processDefinitionId(processDefinitionId)
 .singleResult();
 managementDefinition = new ManagementProcessDefinition();
 managementDefinition.processDefinition = definition;
 managementDefinition.runningInstances =
 new ArrayList<HistoricProcessInstance>();
 completedDefinitions.put(definition.getId(), managementDefinition);
 }
 managementDefinition.runningInstances.add(instance);
}

For every completed process instance found in the Activiti database, the correspond-
ing process definition is matched. Then, a map of process definitions with the corre-
sponding completed process instances is constructed.

 When you click a process instance in the second table, most of the details about
that instance are retrieved and displayed on the screen, as shown in figure 15.12.

 In the second part of the completed process instances screen, you retrieve the
image of the process definition from the Activiti database and get all of the completed

Figure 15.12 Second part of the completed process instances screen, showing the graphical diagram,
the completed user tasks, and the form properties, along with other variables

392 CHAPTER 15 Managing the Activiti Engine
user tasks and variable information, again using the history service. Note that, by
default, the Activiti Explorer and the Activiti database are configured with a history
level of audit. This means that no process variable updates are logged in the history
tables but only the form properties of the user task forms (like the variables shown in
figure 15.12).

 If you want to change the history level of the Activiti database and the Activiti
Explorer, there are two ways of configuring it. First, when the database schema update
value is set to true in the process engine configuration, like this,

<property name="databaseSchemaUpdate" value="true" />

you only have to make changes to the history level configuration for the process
engine. You can do this by changing the value in the applicationContext.xml file in
the src/main/webapp/WEB-INF directory:

<property name="history" value="full" />

But, when the database schema update value is false, you have to make changes in
two places. First, you have to change the historyLevel property in the Activiti data-
base table ACT_GE_PROPERTY. You can do this by using a SQL GUI client like the open
source SQuirrel SQL tool (www.squirrelsql.org). Just change the value of 2 to 3, which
corresponds to the highest history level of full. Then, you also have to configure the
same value in the applicationContext.xml file.

 The book-manager project shows that it’s not hard to make changes to the Activiti
Explorer and add some additional functionality. The Activiti Explorer is built with
reusability in mind and contains a lot of convenience classes and building blocks. To
run the enhanced version of the Activiti Explorer, you can run the Maven command
mvn clean package jetty:run like you did in the earlier chapters. Then, open a web
browser to the http://localhost:8080/book-explorer location and go to the adminis-
tration panel to test the web application.

 This wraps up our discussion about creating an administration dashboard. One
last recommendation: take a closer look at the source code of the book-manager proj-
ect. It’s a good start if you want to implement your own customized dashboard.

15.5 Summary
In this chapter, we looked at the parts of the Activiti framework that are important
for maintaining and administrating a running Activiti Engine in a production envi-
ronment. We started with a thorough discussion of the Activiti database model, and
you learned about the database scripts that DBAs can use to create and upgrade an
Activiti database.

 Then, we talked about best practices for process versioning, and you learned that
the Activiti Engine provides a simple yet powerful way of versioning process defini-
tions. But, the versioning of the Java classes used by a process definition is more chal-
lenging. With some best practices and the optional use of more flexible classloading
environments, like camunda fox, these challenges aren’t hard to solve.

393Summary
 We also looked at the Activiti implementation of asynchronous behavior with the
job executor. The job executor queries the Activiti database for open jobs in a sepa-
rate ongoing thread and executes these jobs when they become available. The job
executor implementation is developed with clustering and horizontal scaling in mind
and uses a locking mechanism to make sure a job is executed only once.

 Finally, we looked at ways to enhance the Activiti Explorer with additional adminis-
tration capabilities. We built nice overview screens that display all running and com-
pleted process instances with their full details, like attached user tasks and process
variables. With some knowledge of Vaadin, you can build great extensions in the Activ-
iti Explorer yourself using the built-in building blocks and rich convenience classes.

 This brings us to the end of this book. We’ve explored the full range of possibilities
that the Activiti framework offers. We didn’t only focus on the Activiti framework
itself; we also explored ways of integrating with other frameworks like Alfresco, Esper,
Drools, Mule, and Camel. This book provides a rich set of source code examples for
you to use in your own projects.

 I hope this book provides you with a good foundation for some great process solu-
tions. I’m always interested to hear about your endeavors. The Activiti forum and the
Manning book forum are good places to get in touch!

appendix A
Working with the source code

The source code accompanying this book is an important asset for getting up to
speed with Activiti. You can either download the source code package from the
Manning book website (www.manning.com/rademakers2) or you can check out
the latest source code from the Google SVN repository (http://code.google.com/
p/activitiinaction). Note that the Google SVN repository will be more up to date,
and will be revised for new versions of the Activiti framework.

 In this appendix, I’ll provide an overview of the different projects that you’ll
find in this book’s source code. We’ll also take a closer look at the bpmn-examples
project, which contains most of the code examples.

A.1 Overview of the source code projects
Because the source code contains a lot of different projects, it’s good to get an over-
view of which project relates to which chapter in the book. In table A.1, you’ll find
all of the projects, with short descriptions and the respective chapters.

Table A.1 Overview of the projects that you can find in the book’s source code

Project Chapter Short description

book-bam-app 14 The Vaadin web application that implements a BAM
dashboard

book-camel 11 The Camel examples that are described in chapter 11

book-cdi-app 9 A web application that uses JSF 2.0 and CDI to imple-
ment a custom process and task application

book-explorer-form 10 A customized version of the Activiti Explorer that imple-
ments an additional form field type for a text area

book-jee6 9 An example of a JEE6 process and EJB application that
can be deployed on a camunda fox server
395

396 APPENDIX A Working with the source code
As you can see in table A.1, most of the source code examples can be found in the
bpmn-examples project. In later chapters, the examples are implemented in separate
projects because they result in different deployment artifacts, like a web application or
OSGi bundles. We’ll look in more detail at using the bpmn-examples project in the
next section.

A.2 Using the bpmn-examples project
All the source code projects have Maven pom.xml files to resolve the dependencies
and, when mentioned in the example implementation, descriptions to build the
deployment artifacts. If you’re not familiar with Maven, you can learn about it in a
five-minute tutorial on the Maven website (http://maven.apache.org).

 Although you can use the example projects in every code editor, the preferred way
is to use Eclipse. That’s because you’ll also use the Activiti Designer Eclipse plugin
now and then in this book. Note that, to get the projects installed with the right
dependencies in Eclipse, you need to generate the classpath and project files. There
are two main ways to do this.

 The first and fully supported method is to use the command line to run mvn
eclipse:eclipse in every root folder of the different source code projects. If you
haven’t already imported the projects via the Eclipse Subversion plugin, you can
import the projects you want in Eclipse, and the dependencies will point to your
Maven repository. To get the bpmn-examples project in Eclipse, you’ll have to run mvn
eclipse:eclipse (make sure you have installed Maven—the latest available version

book-manager 15 A customized version of the Activiti Explorer that imple-
ments an additional administration page in the Manage
section

book-mule 11 The Mule examples described in chapter 11

book-osgi-app 9 A number of OSGI bundle subprojects that can be
deployed on Apache Karaf to implement an OSGi-based
process solution

book-rest-app 8 A customized version of the Activiti REST web application
that implements an additional REST service

book-rules-app 12 A web application that provides functionality to manage
rules deployed on the Activiti Engine

book-sales-app 7 and 11 A web application that implements web services used in
the error handling examples of chapter 7 and the web
service task example of chapter 11

bpmn-examples Most of the
chapters

Contains most of the code examples of the book (there’s
more about this project in the next section)

Table A.1 Overview of the projects that you can find in the book’s source code (continued)

Project Chapter Short description

397Using the bpmn-examples project
of 2.x or 3.x—and made the Maven bin directory available on the command line).
Then you can import the project in Eclipse via the menu: File > Import > Existing
Projects into Workspace.

 You can alternatively use the Eclipse Maven plugin, which may not be installed by
default but can easily be downloaded via the Eclipse Marketplace (Maven Integration
for Eclipse). Following this path, you first have to import the source projects from the
source code distribution or check out the sources from the Google Subversion reposi-
tory. When the source code projects are imported, you can define them as Maven
projects by right-clicking on a project and choosing Configure > Convert to Maven
Project. When the project is configured as a Maven project, you can right-click on the
project and choose Maven > Update Project Configuration, and the dependencies
and source folders will be set up for you. For some projects, like the book-bam-app,
the Maven Eclipse plugin doesn’t recognize the plugin lifecycle. Solutions for this
error are described on the Maven Eclipse plugin wiki page (http://wiki.eclipse.org/
M2E_plugin_execution_not_covered). But the easiest way to deal with this is to use the
quick fix suggested by Eclipse.

 The bpmn-examples project contains a Maven project structure with the unit tests
in the src/test/java folder and the implementation classes in the src/main/java
folder. As you may have noticed already while working with the examples in the book,
I’ve used a lot of unit tests to easily start up the examples and test them. In the pack-
age names of the bpmn-examples project, you can find the chapter where the example
is described. For example, the RuntimeServiceTest from chapter 4 has a package of
org.bpmnwithactiviti.chapter4.api in the src/test/java folder.

 For other examples, I’ve used Activiti Explorer to test the process definition. Because
you need to create a BAR and often also a number of JAR files, I’ve developed Ant build
scripts. One of the Ant build scripts is used for the loan request example described in
chapter 5. In the src/main/resources/chapter5 folder, you can find an Ant build.xml
script, which will generate a BAR file containing the loan request BPMN 2.0 XML file and
a JAR file that contains the Java classes used in the loan request process definition. The
BAR and JAR files are generated in a new dist directory that’s created in the directory that
contains the Ant build script.

 If you run into issues using the source code, I’m happy to help you solve them. Just
post a message on the Manning book forum or create an issue in the Google code
repository. I hope you enjoy working with the examples!

appendix B
BPMN 2.0 supported

 elements in Activiti

As described in chapter 2, the full BPMN 2.0 specification consists of a large range
of elements. Activiti provides support for the common BPMN 2.0 elements, so it’s
important to know which BPMN 2.0 elements are supported and which Activiti
extensions are implemented for these elements. The Activiti user guide already
provides a good overview of the supported elements, but this appendix is available
offline and provides a slightly different angle on the BPMN 2.0 elements, focusing
on the usage options.

 The BPMN 2.0 elements can be categorized in some basic groups:

In the following subsections, the supported BPMN 2.0 elements are discussed in
these element groupings.

B.1 Start and end events
The following start and end events will be described in this section:

■ None start event
■ Timer start event
■ None end event
■ Error end event

■ Start and end events ■ Sequence flows
■ Tasks ■ Gateways
■ Other activities ■ Boundary events
■ Intermediate events
398

399Start and end events
B.1.1 None start event

The none start event is the simplest start event element that can be
started using the Activiti API, such as with the startProcess-
InstanceByKey method of the RuntimeService interface. The
graphical representation is shown in figure B.1.

 The XML representation of the none start event is

<startEvent id="startEvent" name="Start event" />

The attributes shown in table B.1 can be configured on a none start event.

You can also define form properties on a start event. This is described in the User task
description later on.

B.1.2 Timer start event

The timer start event can be used to start a new process instance at
a specific time interval or at a specific date. It can be used to start
more than one process instance after every time interval, or it can
be used to start a process instance only once at a specific date and
time. The graphical representation is shown in figure B.2.

 The XML representation of the timer start event is

<startEvent id="timerStartEvent" name="Timer start event">
 <timerEventDefinition>
 <timeCycle>R10/2012-12-12T00:00/PT24H</timeCycle>
 </timerEventDefinition>
</startEvent>

This XML configuration example shows the use of a time cycle defined with a recur-
ring time duration according to ISO 8601. It says that a new process instance will be
started 10 times, starting at 2012-12-12 midnight with a time interval of 24 hours.
Table B.2 shows the different timer event definitions that can be used for a timer
start event.

Table B.1 Attributes of a none start event

Attribute name Short description Example

activiti:formKey The Activiti form key extension attri-
bute can be used to add an external
form definition to a start event.

<startEvent
 id="startEvent"
 formKey="test.form" />

activiti:initiator An initiator is an Activiti extension
attribute to create a process vari-
able that will hold the name of the
initiator user—the user who started
the process instance.

<startEvent
 id="startEvent"
initiator="initiator" />

Figure B.1 None
start event

Figure B.2 Timer
start event

400 APPENDIX B BPMN 2.0 supported elements in Activiti
B.1.3 None end event

The none end event is the simplest end event element. When a
none end event is reached, the process instance will be completed.
The graphical representation is shown in figure B.3.

 The XML representation of the none end event is

<endEvent id="endEvent" name="End event" />

There are no additional attributes or elements that can be defined on a none end event.

B.1.4 Error end event

The error end event can be used to end a process instance by
throwing an error. This can be useful in combination with an
error boundary event. An error boundary event can be config-
ured on a call activity or an embedded subprocess to catch a
potential error and handle it in a different flow. The graphical
representation of the error end event is shown in figure B.4.

 The XML representation of the error end event is

<endEvent id="errorEndEvent" name="Error end event">
 <errorEventDefinition errorRef="anError" />
</endEvent>

This XML configuration example shows the use of an error event definition that
throws an error with the name anError. You can choose to let the error reference
attribute point to an error definition or, if none is specified, to let it use the actual
error name.

 An error definition looks like the following code snippet:

<error id="anErrorId" errorCode="aNewErrorCode" />
<endEvent id="errorEndEvent">
 <errorEventDefinition errorRef="anErrorId" />
</endEvent>

Table B.2 Timer event definition elements for a timer start event

Element name Short description Example

timeDate A specific date and time when a new process instance
should be started. You can use static ISO 8601 time def-
initions with an ISO 8601 string.

<timeDate>
 ${startTime}
</timeDate>

timeDuration A timer interval for which the Activiti Engine waits to start
a new process instance. You can use static ISO 8601
duration definitions with an ISO 8601 string.

<timeDuration>
 PT5M
<timeDuration/>

timeCycle A time cycle that’s used to start a specific number of pro-
cess instances after every time interval. You can use static
ISO 8601 cycle definitions with an ISO 8601 string.

<timeCycle>
 R20/2012-01-
01T00:00:00/PT1M
</timeCycle>

Figure B.3 None
end event

Figure B.4 Error
end event

401Sequence flows
Table B.3 shows the error reference attribute with a short description and example.

B.2 Sequence flows
The following sequence flows will be described in this section:

■ Sequence flow
■ Conditional sequence flow

B.2.1 Sequence flow

A sequence flow is used to define the process
flow. The standard sequence flow does nothing
more than connect two elements, a source and a
target element. The graphical representation of
a sequence flow is shown in figure B.5.

 The XML representation of the sequence flow is

<sequenceFlow id="flow" sourceRef="startEvent" targetRef="userTask" />

In addition, you can also configure an Activiti-specific extension for a sequence flow,
named an execution listener. This execution listener class is executed when the
sequence flow is executed (see table B.4 for a short description and an example).

B.2.2 Conditional sequence flow

A conditional sequence flow is like a standard sequence flow, but it has a conditional
expression attached to it. Only when the conditional expression validates to true will

Table B.3 Error event definition attribute for an error end event

Attribute name Short description Example

errorRef An error code pointing to an error definition ele-
ment or a textual error indicator that can be
directly used as the error code that’s thrown.

<errorEventDefinition
 errorRef="notFound" />

Table B.4 Extension elements definition of a sequence flow

Element name Short description Example

activiti:
executionListener

An execution listener defined on a
sequence flow will be executed
when the sequence flow is taken by
the Activiti Engine. The configuration
is very similar to a Java service task,
so you can use a class or a
delegateExpression attri-
bute. In addition, you can use
field extensions when using the
class attribute.

<sequenceFlow
 id="flow"
 sourceRef="startEvent"
 targetRef="userTask">
 <extensionElements>
<activiti:executionListener
 class="com.TestListener"/>
 </extensionElements>
</sequenceFlow>

Figure B.5 Sequence flow

402 APPENDIX B BPMN 2.0 supported elements in Activiti
the Activiti Engine execute the sequence flow path. Usu-
ally the conditional sequence flow is used together with an
exclusive or inclusive gateway but it’s not limited to that.
The graphical representation is shown in figure B.6.

 The XML representation of the conditional sequence flow is

<sequenceFlow id="invalidOrderFlow"
 sourceRef="startEvent"
 targetRef="userTask">
 <conditionExpression xsi:type="tFormalExpression">
 <![CDATA[${orderValid == false}]]>
 </conditionExpression>
</sequenceFlow>

A condition expression typically consists of a combination of process variables with
conditional operators. In addition, you can also configure an execution listener as
shown in the description of the standard sequence flow.

B.3 Tasks
The following sequence flows will be described in this section:

B.3.1 Generic task configuration

Some process functionality is supported for every task type when using the Activiti
Engine. In this first subsection, we’ll look at these generic task configuration items
before we dive into the details of the different task types.

ASYNCHRONOUS CONTINUATIONS

The first generic configuration item is the asynchronous continuation support. You
can define the async attribute for every task type as follows:

<serviceTask id="serviceTask" class="com.TestTask" async="true" />

When a task is defined to be executed asynchronously, the Activiti Engine will store
the process state and create a job when the task is encountered. The job executor, as
described in chapter 15, will execute the job and, therefore, the task instance.

EXECUTION LISTENERS

Another generic task configuration item is the execution listener. The execution lis-
tener configuration has already been shown in the standard sequence flow descrip-
tion. For task types, you can define a start or end event to instruct the Activiti Engine
to execute the execution listener when the task is started or ended.

 The following code example shows a start event execution listener implemented
with a Java class:

■ Business rule task ■ Camel task
■ Email task ■ Java service task
■ Manual Task ■ Mule task
■ Receive task ■ Script task
■ User task ■ Web service task

Figure B.6 Conditional
sequence flow

403Tasks
<serviceTask id="task" activiti:class="org.bpmnwithactiviti.TestTask">
 <extensionElements>
 <activiti:executionListener
 class="org.bpmnwithactiviti.TestListener"
 event="start"/>
 </extensionElements>
</serviceTask>

You can also define execution listeners using an expression or a delegate expression
configuration instead of a class. The following short code snippet shows an execution
listener with an expression and an end event definition:

<activiti:executionListener
 expression="${testListener.processEvent(execution.eventName)}"
 event="end"/>

This example will invoke the processEvent method on the object that’s registered in
the Activiti context with the name testListener (for example, a Spring bean or a
process variable). For an execution listener with a class definition, you can also use
field extensions like those we’ll see with a Java service task (see B.3.5).

MULTI-INSTANCE

By default, every activity (every task, call activity, and embedded subprocess) is exe-
cuted only once when the process token reaches the activity. But, sometimes, you’ll
want to execute an activity multiple times.

 In chapter 10, we described a use case of the multi-instance construct with the user
task. When you want to let a group of colleagues review a specific document, you need
to create a user task for every member of the group. That’s exactly the functionality
that a multi-instance construct can provide for a process definition. You can configure
every activity (every task, call activity, and embedded subprocess) to be a multi-
instance construct.

 In the following example, a user task is configured to be multi-instance:

<userTask id="userTask" activiti:assignee="${assignee}">
 <multiInstanceLoopCharacteristics isSequential="false">
 <loopDataInputRef>userList</loopDataInputRef>
 <inputDataItem name="assignee" />
 </multiInstanceLoopCharacteristics>
</userTask>

In this example, you create a user task for every item in the userList collection,
which refers to a process variable. Every item in the collection is set as a local process
variable assignee for every user task. Then you can use this assignee local variable as
the assignee of the user task.

 This example also defines the multi-instance user task to be non-sequential (with
the isSequential attribute). This means that all user tasks are created in parallel—all
at once. When the isSequential attribute is set to true, the next user task is created
after the previous user task is completed.

 Another way to get a collection that represents the number of multi-instance items
is shown in the next code snippet:

404 APPENDIX B BPMN 2.0 supported elements in Activiti
<userTask id="userTask" activiti:assignee="${assignee}">
 <multiInstanceLoopCharacteristics isSequential="false"
 activiti:collection="${identityBean.resolveAssignees()}"
 activiti:elementVariable="assignee" />
</serviceTask>

In this example, the multi-instance items are retrieved via an expression that points to
the resolveAssignees method of the identityBean, which is registered within the
Activiti context as a Spring bean.

 It’s also possible to define a different completion condition. By default, all
instances should be completed before the process execution will continue, but you
can also define a formula so that only 75 percent of the instances need to be com-
pleted before the process execution continues:

<userTask id="userTask" activiti:assignee="${assignee}">
 <multiInstanceLoopCharacteristics isSequential="false"
 activiti:collection="userList"
 activiti:elementVariable="assignee">
 <completionCondition>
 ${nrOfCompletedInstances/nrOfInstances >= 0.75 }
 </completionCondition>
 </multiInstanceLoopCharacteristics>
</serviceTask>

You can also keep the multi-instance configuration far simpler. When, for example,
you want to execute a service task three times, you can do it like this:

<serviceTask id="serviceTask" activiti:class="org.ServiceTask">
 <multiInstanceLoopCharacteristics isSequential="true">
 <loopCardinality>3</loopCardinality>
 </multiInstanceLoopCharacteristics>
</serviceTask>

You can also use expressions in the loopCardinality definition to define a more com-
plex loop instruction.

B.3.2 Business rule task

A business rule task can be used to execute business rules with
the values of process variables as input. Activiti uses the Drools
framework to execute business rules that are deployed with a
.drl file together with the process definition. The graphical rep-
resentation is shown in figure B.7.

 The XML representation of the business rule task is

<businessRuleTask id="ruleTask" name="Rule task"
 activiti:ruleVariablesInput="${ruleInputVariable}"
 activiti:resultVariable="ruleOutputVariable"
/>

In this example, all rules that are deployed together with the process definition will be
executed. The value of the ruleInputVariable process variable will be placed on the

Figure B.7 Business
rule task

405Tasks
Drools rules context and can therefore be used in the rule execution. When the
Drools rule execution results in return values, these will be placed in the ruleOutput-
Variable process variable. This process variable is always a collection of objects that
contains all the Drools output variables.

 The attributes shown in table B.5 can be configured on a business rule task.

B.3.3 Camel task

The Camel task isn’t part of the BPMN 2.0 specification
because it implements the Activiti Camel integration. You
can invoke a Camel route from a process definition by defin-
ing a service task with a delegate expression pointing to the
Camel context. The graphical representation, therefore, is a
service task, as shown in figure B.8.

 The XML representation of the Camel task is

<serviceTask id="camelTask" delegateExpression="${camel}" />

Chapter 11 discusses how the delegate expression is coupled to the Camel context via
the CamelBehaviour class provided by the Activiti Camel module.

Table B.5 Attributes of the business rule task

Attribute name Short description Example

activiti:
ruleVariablesInput

The Activiti Engine passes these
input variables on to the Drools rule
context. You can provide more than
one variable, using a comma as
the separator.

<businessRuleTask
 id="ruleTask"
 activiti:

 ➥ ruleVariablesInput=

 ➥ "${var1}, ${var2}"
/>

activiti:
resultVariable

All output variables of the Drools con-
text will be placed in a collection
object with the process variable
name defined by this attribute.

<businessRuleTask
 id="ruleTask"
activiti:resultVariable=

 ➥ "resultVar"
/>

activiti:rules When you don’t want to execute all
rules that are deployed, you can use the
rules attribute to define the rules you
want to execute or exclude (when the
exclude attribute is set to true).

<businessRuleTask
 id="ruleTask"
 activiti:rules=

 ➥ "ruleA, ruleB"
/>

activiti:exclude The exclude attribute can be used
in combination with the rules attri-
bute to exclude certain rules. By
default, exclude is false.

<businessRuleTask
 id="ruleTask"
 activiti:exclude="true"
 activiti:rules="ruleA"
/>

Figure B.8 Camel task

406 APPENDIX B BPMN 2.0 supported elements in Activiti
B.3.4 Email task

An email task can be used to send an email based on the pro-
cess variables available in the process instance. This task isn’t
part of the BPMN 2.0 specification but is implemented as a ser-
vice task with an Activiti-specific type definition. The graphical
representation shown in figure B.9, therefore, is the same as
for a service task.

 The XML representation of an email task is

<serviceTask id="emailTask" name="Email task" activiti:type="mail">
 <extensionElements>
 <activiti:field name="from"
 stringValue="info@bpmnwithactiviti.org" />
 <activiti:field name="to"
 expression="${recipientVariable}" />
 <activiti:field name="subject"
 expression="Your order request ${orderId} has been received" />
 <activiti:field name="text"
 expression="Thanks for the order" />
 </extensionElements>
</serviceTask>

The email task contains all the element definitions that you expect when sending an
email, so you can define the from and to recipients, a subject, and an email body.
You can use static text values, but also expressions like those shown in the to and sub-
ject field definitions. All the supported field names are shown in table B.6.

Table B.6 Field names for the email task

Field name Short description Example

To The to recipients (comma
separated)

<activiti:field
 name="to"
 expression="${to}"
/>

From The from recipient <activiti:field
 name="from"
 expression="${from}"
/>

Subject The subject of the email <activiti:field
 name="subject"
 expression="${subject}"
/>

Cc The cc recipients (comma
separated)

<activiti:field
 name="cc"
 expression="${cc1}, ${cc2}"
/>

Figure B.9 Email task

407Tasks
B.3.5 Java service task

The Java service task isn’t a standard BPMN 2.0 element
because it’s focused on supporting custom Java logic,
which isn’t defined in the BPMN 2.0 specification. The
BPMN 2.0 element used for the definition of a Java ser-
vice task is the service task element (see figure B.10).

 The XML representation of the Java service task is

<serviceTask id="serviceTask" name="Service task"
 activiti:class="org.bpmnwithactiviti.ServiceDelegate" />

This is a simple example of a Java service task that points to a Java class, which imple-
ments a JavaDelegate or ActivityBehavior interface. You can configure a number
of attributes in the service task element, and you can add field extensions when using
a Java service task class configuration.

 The attributes shown in table B.7 can be configured on a Java service task.

Bcc The bcc recipients (comma
separated)

<activiti:field
 name="bcc"
 expression="${bcc}"
/>

Charset The charset for the email <activiti:field
 name="charset"
 expression="${charset}"
/>

Text The mail body defined with
a simple string

<activiti:field
 name="text"
 expression="${email}"
/>

html The mail body defined with
a HTML string

<activiti:field
 name="html">
 <activiti:expression>
 <![CDATA[
 <html>
 <body>
 Hello ${male ? 'Mr.' : 'Mrs.'}
 ${recipientName},

 </body>
 </html>
]]>
 </activiti:expression>
</activiti:field>

Table B.6 Field names for the email task (continued)

Field name Short description Example

Figure B.10 Java service task

408 APPENDIX B BPMN 2.0 supported elements in Activiti
For Java service task elements with a class attribute, you can specify field extensions to
inject static values or process variables in the Java class. Here’s an example of a field
expression:

<serviceTask id="serviceTask" activiti:class="org.ServiceDelegate">
 <extensionElements>
 <activiti:field name="introText"
 expression="Hello ${gender == 'male' ? 'Mr.' : 'Mrs.'} ${name}" />
 </extensionElements>
</serviceTask>

It’s also possible to use static string values by using the stringValue attribute instead
of the expression attribute.

B.3.6 Manual task

The manual task is the simplest task type available in BPMN 2.0.
The Activiti Engine will just process the task as an empty node
and proceed to the next sequence flow. The graphical repre-
sentation is shown in figure B.11.

Table B.7 Attributes of the Java service task

Attribute name Short description Example

activiti:class The logic of the service task class
is implemented in a Java class
that implements the Java-
Delegate or Activit-
Behavior interface.

<serviceTask
 id="serviceTask"
 activiti:class=

 ➥ "org.ServiceDelegate"
/>

activiti:
expression

The expression points to a UEL
method or attribute value. You
can, for example, point to a
Spring bean and invoke a spe-
cific method. You can also pass
process variables and the exe-
cution instance as input parame-
ters for the method invocation.

<serviceTask
 id="serviceTask"
 activiti:expression=

 ➥ "#{orderBean.order()"
/>

activiti:
delegateExpression

A delegate expression provides a
flexible way to invoke a
JavaDelegate or
ActivityBehavior class
with an expression pointing to the
Activiti registry like a Spring bean.

<serviceTask
 id="serviceTask"
activiti:delegateExpression=

 ➥ "#{delegateBean}"
/>

activiti:
resultVariable

The result variable attribute
defines the process variable
name for the result value of
the class or the expression
invocation.

<serviceTask
 id="serviceTask"
 activiti:class=

 ➥ "org.ServiceDelegate"
 activiti:resultVariable=

 ➥ "result"
/>

Figure B.11 Manual task

409Tasks
 The XML representation of the manual task is

<manualTask id="manualTask" name="Manual task" />

B.3.7 Mule task

The Mule task isn’t a standard BPMN 2.0 element because it
implements the Activiti Mule integration. While the Camel
task uses a service task type, the Mule task is implemented as
a send task (see figure B.12).

 The XML representation of the Mule task is

<sendTask id="muleTask" activiti:type="mule">
 <extensionElements>
 <activiti:field name="endpointUrl">
 <activiti:string>vm://in</activiti:string>
 </activiti:field>
 <activiti:field name="language">
 <activiti:string>juel</activiti:string>
 </activiti:field>
 <activiti:field name="payloadExpression">
 <activiti:expression>${payload}</activiti:expression>
 </activiti:field>
 <activiti:field name="resultVariable">
 <activiti:string>resultVar</activiti:string>
 </activiti:field>
 </extensionElements>
</sendTask>

This example uses an embedded Mule instance because you’re sending a message to
the VM queue in the same Java virtual machine as the Activiti instance. You can also
use JMS or another remote protocol and invoke a Mule instance that runs standalone.

 The language field defines the language used to evaluate the payload expression,
which is usually JUEL. Then you can define the payload with an expression and send a
process variable to a Mule instance. You can also define a process variable name to
specify where you want to store the return message.

 These are all the supported fields for the Mule task.

B.3.8 Receive task

The receive task is actually a Java receive task, as it can
only be signaled via the Activiti API. The process instance
will wait until the signal method is invoked. The graphical
representation is shown in figure B.13.

 The XML representation of the receive task is

<receiveTask id="receiveTask" name="Receive task" />

With the RuntimeService signal method, you can trigger the process instance to go
to the next element in the process definition.

Figure B.12 Mule task

Figure B.13 Receive task

410 APPENDIX B BPMN 2.0 supported elements in Activiti
B.3.9 Script task

The script task is a handy BPMN 2.0 element that imple-
ments a short piece of logic without your needing to write
Java. Common scripting languages that can be used are
Groovy and JavaScript, but you can use any JSR-223 compli-
ant scripting language as long as the scripting engine is avail-
able on the classpath. The graphical representation is shown
in figure B.14.

 The XML representation of the script task is

<scriptTask id="scriptTask" scriptFormat="groovy">
 <script>
 def name = "Activiti"
 execution.setVariable("name", name);
 </script>
</scriptTask>

This example defines a script task with the Groovy language. A local variable name is cre-
ated in the script, and its value is set as a new process variable. The Activiti Engine injects
the execution variable, so you can use the execution instance in the script logic.

 Table B.8 shows the attributes of the script task that you can use.

B.3.10 User task

The user task is a standard BPMN 2.0 element that can be used
to implement workflow logic in a process definition. You can
set several configuration items on a user task, such as the due
date, the priority, and the assignee. The graphical representa-
tion of a user task is shown in figure B.15.

 The XML representation of the user task is

<userTask id="userTask" activiti:assignee="kermit"
 activiti:dueDate="${deadline}" />

Table B.8 Attributes of the script task

Attribute name Short description Example

scriptFormat The scripting language that’s used to
implement the script logic. Languages that
are available in Activiti by default are
JavaScript, Groovy, and JUEL, but you can
use any JSR-223 compatible script engine
as long as it’s available on the classpath.

<scriptTask
 id="scriptTask"
 scriptFormat="juel"
/>

activiti:
resultVariable

The process variable name to set the
result value of the script logic.

<scriptTask
 id="scriptTask"
 scriptFormat="juel"
activiti:resultVariable=

 ➥ "result"
/>

Figure B.14 Script task

Figure B.15 User task

411Tasks
This user task will be assigned to Kermit with a due date that’s equal to the deadline
process variable.

 The user or group assignment is an important part of a user task configuration.
You can use the BPMN 2.0 standard elements or use the Activiti shorthand extensions.
Both definitions will result in the same behavior. Let’s walk through the different
methods of configuration, starting with assigning one user:

<userTask id="userTask">
 <humanPerformer>
 <resourceAssignmentExpression>
 <formalExpression>kermit</formalExpression>
 </resourceAssignmentExpression>
 </humanPerformer>
</userTask>

The Activiti shorthand equivalent is the following user task definition:

<userTask id="userTask" activiti:assignee="kermit" />

To define a candidate user or group, you can use the following standard BPMN 2.0
configuration:

<userTask id="userTask">
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>
 user(fozzie), group(sales), management
 </formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>
</userTask>

As you can see, you actually define a potential owner of a user task. You can combine
user and group definitions, as shown in the example, or use only one type of candi-
date definition. When you don’t define the type user or group, like was done with
management in the previous example, the default type is group. The shorthand defi-
nition of this example is

<userTask id="userTask"
 activiti:candidateUsers="kermit"
 activiti:candidateGroups="sales, management" />

In addition to the assignment of a user task, you can also use the attributes described
in table B.9.

Table B.9 Attributes of the user task

Attribute name Short description Example

activiti:dueDate Defines the due date of
the user task

<userTask
 id="userTask"
 activiti:dueDate="${deadline}"
/>

412 APPENDIX B BPMN 2.0 supported elements in Activiti
On a user task, you can also define a special type of listener, named the task listener.
You can use assignment, create, and complete events. In the following example, you
define a task listener with the complete event:

<userTask id="userTask">
 <extensionElements>
 <activiti:taskListener
 class="org.bpmnwithactiviti.TestTaskListener"
 event="complete" />
 </extensionElements>
</userTask>

You can use the same method of configuration for a task listener as for an execution
listener. You can use an expression and a delegateExpression, and you can define
field extensions when you use the class attribute.

B.3.11 Web service task

The web service task is a standard BPMN 2.0 element that can be
used to invoke an external web service. As you’ll see, the web ser-
vice task configuration contains quite a lot of XML elements. As an
alternative, you can use a Java service task to invoke a web or REST
service. The graphical representation of a web service task is shown
in figure B.16.

 The XML representation of the web service task is

<serviceTask id="webServiceTask" implementation="##WebService"
 operationRef="tns:hello">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:findCustomerAddressRequestItem"
 id="dataInput" />
 <dataOutput itemSubjectRef="tns:findCustomerAddressResponseItem"
 id="dataOutput" />
 <inputSet>
 <dataInputRefs>dataInput</dataInputRefs>
 </inputSet>
 <outputSet>
 <dataOutputRefs>dataOutput</dataOutputRefs>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>name</sourceRef>

activiti:priority Defines the priority of the
user task

<userTask
 id="userTask"
 activiti:priority=

 ➥ "${priority}"
/>

Table B.9 Attributes of the user task (continued)

Attribute name Short description Example

Figure B.16 Web
service task

413Gateways
 <targetRef>customerName</targetRef>
 </dataInputAssociation>
 <dataOutputAssociation>
 <sourceRef>address</sourceRef>
 <targetRef>webserviceResponse</targetRef>
 </dataOutputAssociation>
</serviceTask>

This web service task XML example comes from chapter 11, and only the service task
definition is included here. For the full example, including the WSDL import and the
item definition, see chapter 11, listings 11.1 and 11.2.

 In the XML configuration, you can see that you have to define the input and out-
put definitions. You correlate the WSDL input and output message to process vari-
ables. In this example, the process variable name is mapped to the WSDL input
message part customerName, and the WSDL output message part address is mapped to
a process variable webserviceResponse.

B.4 Gateways
The following gateways will be described in this section:

■ Exclusive gateway
■ Inclusive gateway
■ Parallel gateway

B.4.1 Exclusive gateway

An exclusive gateway offers conditional logic to be used in a process definition. Only
one of the outgoing sequence flows connected to an exclusive gateway will be exe-
cuted. The first sequence flow whose condition equals true will be taken, and the rest
of the sequence flows will be ignored. If no outgoing sequence
flow can be taken, an exception will be thrown. To prevent
this, you can set a default flow that will be executed when no
condition is met. The graphical representation of an exclusive
gateway is shown in figure B.17.

 The XML representation of the exclusive gateway is

<exclusiveGateway id="exclusiveGateway"/>

The conditional logic is implemented in the sequence flows connected as outgoing
flows to the exclusive gateway.

 For more information about conditional sequence flows, you can look in the
sequence flow section of this appendix. You can specify a default sequence flow like
the one shown in the following example:

<exclusiveGateway id="exclusiveGateway" default="defaultFlow" />

B.4.2 Inclusive gateway

An inclusive gateway is like a parallel gateway but with conditional logic on the
sequence flows. Every outgoing sequence flow connected to an inclusive gateway will

Figure B.17 Exclusive
gateway

414 APPENDIX B BPMN 2.0 supported elements in Activiti
be taken when the condition equals true. This is the main difference with the exclu-
sive gateway, where only one sequence flow will be taken. When multiple incoming
sequence flows are connected to an inclusive gateway, the gate-
way will wait until all sequence flows with a process token are
completed, so an inclusive gateway has fork behavior with mul-
tiple outgoing sequence flows and join behavior with multiple
incoming sequence flows. The graphical representation of an
inclusive gateway is shown in figure B.18.

 The XML representation of the inclusive gateway is

<inclusiveGateway id="inclusiveGateway" />

Like the exclusive gateway, you can also define a default flow in case no condition is
met for an outgoing sequence flow.

B.4.3 Parallel gateway

A parallel gateway can be used to run multiple sequence flows.
Every outgoing sequence flow connected to a parallel gateway
will be executed; a defined condition will be ignored. You can
also use a parallel gateway to join multiple incoming sequence
flows. The graphical representation of a parallel gateway is
shown in figure B.19.

 The XML representation of the parallel gateway is

<parallelGateway id="parallelGateway" />

B.5 Other activities
Besides the tasks already discussed, there are some other BPMN activities that are sup-
ported by the Activiti Engine. The following two activities will be described in this section:

■ Call activity
■ Embedded subprocess

B.5.1 Call activity

A call activity can be used to invoke another process defini-
tion as a subprocess. This is primarily interesting for reus-
ability purposes. A process definition can be reused as a
subprocess by multiple other process definitions. Every pro-
cess definition can be used as a subprocess invoked by a call
activity. The graphical representation of the call activity is
shown in figure B.20.

 The XML representation of the call activity is

<callActivity id="callActivity" name="Call activity"
 calledElement="subProcess" />

Figure B.18 Inclusive
gateway

Figure B.19 Parallel
gateway

Figure B.20 Call activity

415Other activities
In this example, the called element will result in the invocation of another process
definition with an id attribute that’s equal to subProcess.

 The process variables of the parent process instance aren’t shared with the subpro-
cess instance by default. When you want to pass variables to and from the subprocess,
you can use the following Activiti extensions:

<callActivity id="callActivity" name="Call activity"
 calledElement="subProcess">
 <extensionElements>
 <activiti:in source="parentProcessVar" target="subProcessVar" />
 <activiti:in sourceExpression="${order.hasForeignAddress}"
 target="anotherSubProcessVar" />
 <activiti:out source="resultSubProcessVar"
 target="anotherParentProcessVar" />
 </extensionElements>
</callActivity>

As you can see, you can pass along process variables from the main process to the sub-
process using the in element. With the source attribute, you can specify the process vari-
able name of the parent process instance. The target attribute contains the process
variable name that will be set in the subprocess instance. With the sourceExpression
attribute, you can specify a more complex expression to get a value from the parent pro-
cess instance context.

 The out element can be used to specify the variable values that will be passed back
from the subprocess instance to the parent process instance. Once you’ve done that,
the source attribute refers to the subprocess variable and the target attribute is used
for the name of the process variable that will be set in the parent process. You can also
use a sourceExpression here.

B.5.2 Embedded subprocess

An embedded subprocess can be used as a child scope in a process definition. This is
most useful when you want to set a boundary error or timer event on a group of task
elements. The process instance context, including the process variables, is shared
between the parent process and the embedded subprocess. Embedded subprocesses
can’t be reused across multiple process definitions. The graphical representation of
an embedded subprocess is shown in figure B.21.

 The XML representation of an embedded subprocess without any tasks is

Figure B.21 Embedded
subprocess

416 APPENDIX B BPMN 2.0 supported elements in Activiti
<subProcess id="subProcess">
 <startEvent id="startEvent" />
 <sequenceFlow id="flow" sourceRef="startEvent" targetRef="endEvent" />
 <endEvent id="endEvent" />
</subProcess>

An embedded subprocess must have a none start event and at least one end event.
This can be an error end event or a none end event. The sequence flows inside the
embedded subprocess can’t cross the boundaries of the embedded subprocess itself,
so you can only connect outgoing sequence flows to the embedded subprocess or to a
boundary event that’s attached to the embedded subprocess.

B.6 Boundary events
The following boundary events will be described in this section:

■ Error boundary event
■ Timer boundary event

B.6.1 Error boundary event

An error boundary event can be attached to a BPMN activity, which
means every task, a call activity, or an embedded subprocess. But it
only makes sense on a call activity or an embedded subprocess in
Activiti. That’s because a subprocess can define an error end
event, which can be caught by this error boundary event. The
graphical representation of an error boundary event is shown in
figure B.22.

 The XML representation of the error boundary event is

<boundaryEvent id="boundaryEvent" attachedToRef="subProcess">
 <errorEventDefinition errorRef="logicalError" />
</boundaryEvent>

A boundary event is always attached to a specific activity, and often this is a call activity
or an embedded subprocess. This is configured using the attachedToRef attribute.
The logical error code that’s caught with this boundary event is defined with the
errorRef attribute. The value of this attribute can be used directly as the error code
definition, but you can also make a reference to an error definition like this:

<error id="myError" errorCode="logicalError" />

If you want to catch every logical error with the error boundary event, you can even
omit the errorRef attribute.

B.6.2 Timer boundary event

A timer boundary event can be attached to a BPMN activity, which means every task, a
call activity, or an embedded subprocess. But it makes the most sense on non-auto-
mated tasks, like a user task or a grouping of BPMN elements when using a call activity

Figure B.22 Error
boundary event

417Intermediate events
or an embedded subprocess. The graphical representation of a
timer boundary event is shown in figure B.23.

 The XML representation of the timer boundary event is

<boundaryEvent id="boundaryEvent"
 cancelActivity="false"
 attachedToRef="userTask">
 <timerEventDefinition>
 <timeDuration>PT2H</timeDuration>
 </timerEventDefinition>
</boundaryEvent>

A boundary event is always attached to a specific activity, like the user task activity in
this example. This is configured using the attachedToRef attribute. You can also spec-
ify whether the activity to which you attach the boundary event should be cancelled
when the timer is due. In this example, the user task will not be cancelled.

 With the timer event definition, you can define the time configuration for the
timer boundary event. In table B.2 with the timer start event, you already saw the pos-
sible timer configurations. The difference with the timer start event is that you can
also use process variables to define the timer.

B.7 Intermediate events
The following intermediate event will be described in this section:

■ Timer intermediate catching event

B.7.1 Timer intermediate catching event

The timer intermediate catching event is very similar to the timer
boundary event. The only difference is that the timer intermedi-
ate catching event is used in the process flow itself and isn’t
attached to another activity. This means you can define an incom-
ing sequence flow to a timer intermediate catching event, and this
will trigger a timer to be executed. The process execution will
continue when the timer is due. The graphical representation is
shown in figure B.24.

 The XML representation of the timer intermediate catching event is

<intermediateCatchEvent id="timerCatchEvent">
 <timerEventDefinition>
 <timeDuration>PT2H</timeDuration>
 </timerEventDefinition>
</intermediateCatchEvent>

The timer event definition has already been described in table B.2 with the timer start
event. The difference between these two events is that with the timer start event, you
can also use process variables to define the timer.

Figure B.23 Timer
boundary event

Figure B.24 Timer
intermediate
catching event

index
Symbols

@Deployment annotation 94

A

AbstractFormPropertyRenderer
class 255

AbstractFormType class 254
AbstractTest class 53–54
ACT_GE_BYTEARRAY

table 371–372, 376
ACT_GE_PROPERTY

database 377
ACT_GE_PROPERTY table 376
ACT_HI_ACTINST table

129, 378
ACT_HI_ATTACHMENT

table 379
ACT_HI_DETAIL table 378
ACT_HI_PROCINST table

67, 378, 381
ACT_HI_TASKINST table 378
ACT_ID_ column 373
ACT_RE_DEPLOYMENT

table 372
ACT_RE_PROCDEF table

108, 372
ACT_RU_EXECUTION

table 69, 373–374, 378
ACT_RU_IDENTITYLINK

table 375
ACT_RU_JOB table 376
ACT_RU_TASK table 374

ACT_RU_VARIABLE table
69, 375, 380

Action column 205
Activiti

BPMN 2.0 elements in
business rule task 404–405
call activity 414–415
camel task 405
conditional sequence

flow 401–402
email task 406
embedded subprocess

415–416
error boundary event 416
error end event 400
exclusive gateway 413
generic task

configuration 402–404
inclusive gateway 413–414
Java service task 407–408
manual task 408–409
Mule task 409
none end event 400
none start event 399
parallel gateway 414
receive task 409
script task 410
sequence flow 401
timer boundary event

416–417
timer intermediate catching

event 417
timer start event 399
user task 410–412
web service task 412–413

in Alfresco 315–320

Activiti API 56–72
HistoryService 67–72
IdentityService 66–67
RepositoryService 64–66
RuntimeService 57–59
TaskService 59–63

creating and completing
tasks via 61–63

querying for tasks with
60–61

Activiti BAR file 106–107
Activiti database 369–370,

379–381
creating 379–380
history database model

377–379
runtime execution database

model 370–377
deployment tables 371–373
process execution

tables 373–374
property values tables
376–377
storing asynchronous jobs

in 376
user task tables 374–375
variable table 375–376

upgrading 380–381
Activiti Designer 36–44

designing process with 37–39
importing Modeler process

into 42–44
installing 36–37
testing processes with 39–42
418

INDEX 419
Activiti Engine 169–192,
369–393

administrator
dashboard 386–392

and Activiti database 370–381
creating 379–380
history database

model 377–379
runtime execution data-

base model 370–377
upgrading 380–381

configuring 181–185
database options 182–184
overview 181–182

deploying BPMN 2.0 process
to 106–109
and Activiti BAR file

106–107
programmatically 107–108
with Activiti Explorer

108–109
deployment options for 170

choosing between 175
embedding in Java

application 170–172
standalone instance

172–175
job executor 384–386
process versioning 381–384
query logic for, user identities

in LDAP server 241–245
REST communication

with 185–192
Activiti REST API 185–187
Activiti REST service

187–192
script task in 90–91
Spring-managed 176–181

from config file or
Java 176–177

from Spring
configuration 177–181

Activiti Explorer
deploying BPMN 2.0 process

to Activiti Engine with
108–109
managing tasks in 45–46
processes and tasks with

46–48
testing BPMN 2.0 process

with 109–110
testing embedded subpro-

cesses with 119–120
Activiti forms 95–101

adding start event 96–97

adding user tasks with escala-
tion workflow 98–101
approval task form 99–100
timer boundary event 100–

101
creating 95–96
testing using FormService

97–98
Activiti JEE 6 applications

196–209
EJB service tasks 197–202
JSF process applications using

CDI 202–209
Activiti libraries, and develop-

ment environment 50–51
Activiti Modeler 33–35

installing 33
modeling processes with

34–35
Activiti modules 193–222

Activiti JEE 6
applications 196–209
EJB service tasks 197–202
JSF process applications

using CDI 202–209
deploying to OSGi

container 209–221
and OSGi standard

209–210
building process and task

OSGi bundle 217–221
installing Activiti OSGi

bundle 211–215
using Apache Karaf as OSGi

container 210–211
using Karaf console

215–217
Spring annotations 194–196

Activiti OSGi bundle,
installing 211–215

Activiti process engine 49–84
Activiti API 56–72

HistoryService 67–72
IdentityService 66–67
RepositoryService 64–66
RuntimeService 57–59
TaskService 59–63

development environment
for 50–56
and Activiti libraries 50–51
Apache Tomcat with stand-

alone database 55–56
logging in 53–54
Maven configuration for

project 51–53

with in-memory
database 54

with standalone
database 55

Java service tasks in 72–79
asynchronous behavior

of 75–76
with class definition 73–75
with field extensions 76–78
with method and value

expressions 78–79
Spring in 79–84

generic Spring configura-
tion for 79–81

Spring-enabled unit test for
Activiti 81–84

Activiti processes
monitoring with Vaadin web

application 364–365
versioning for 381–384
with Esper framework 355

Activiti project, history of 5–6
Activiti REST

API 185–187
service 187–192
web application 174–175

Activiti-specific type 283, 406
activiti:formKey attribute 95
activiti.cfg-mem-fullhistory.xml

file 95
activiti.cfg.xml 327
ActivitiBehavior interface 167
activities, multi-instance

246–253
configuring 246–247
implementing multi-instance

embedded process 247–253
ActivitiRestApplication class 190
ActivitiRule class 41, 60–61, 94,

97–98, 105
activitiRule.getFormService()

252
activitiRule.getHistoryService()

69–71, 94, 227–229, 232
activitiRule.getIdentityService()

62, 66, 327
activitiRule.getRepositoryService

() 41, 64
activitiRule.getRuntimeService

() 41, 60, 64, 75, 105, 302,
358, 365

activitiRule.getTaskService()
61–62, 67, 69, 227–228,
358, 365

ActivitiRule() 41

INDEX420
ActivitiUtil.getFormService()
174

ActivitiUtil.getHistoryService()
188–189

ActivitiUtil.getTaskService()
174

ActivityBehavior class 408
ActivityBehavior interface

7, 150, 166–167, 220, 273,
407–408

addAttachment() 327
administrator dashboard, for

Activiti Engine 386–392
Alfresco 311–339

Activiti integration in
315–320

adding documents to BPMN
2.0 process definition
326–338
attaching to task 326–328
loan request example

328–336
testing 336–338

installing 312–314
using CMIS 320–325

retrieving folder
content 320–323

storing new document
version 323–325

Alfresco installation wizard 313
Apache Camel, in BPMN 2.0

processes 268–276
overview 268–272
sending and receiving process

messages with 272–276
Apache Directory Server,

installing 237–241
Apache James mail server, email

service task 103
Apache Karaf

as OSGi container 210–211
console for 215–217

Apache Tomcat, Activiti engine
on 55–56

API object 284
Application class 307
applicationContext.xml

file 106, 255
approval task form, user tasks

with escalation
workflow 99–100

Archive file 56
asynchronous behavior, of Java

service tasks 75–76

asynchronous jobs, in Activiti
database 376

attachmentList.size() 327
attribute.getId() 244
attribute.getString() 244
authenticate() 174, 188
avgProcessDuration

354, 358–359

B

BAM (business activity
monitoring) 340–366

and CEP 343–344
Esper framework 345–355

event windows in 347–355
hello world example

345–347
with Activiti processes 355

overview 341–343
Vaadin web application

359–365
Activiti architecture

359–360
monitoring Activiti pro-

cesses with 364–365
producing REST events

with Activiti 360–362
setting up Esper REST

service 362–364
BAMApplication class 364
BAR file 44–45, 106–108,

305–308, 336
benefits, of BPMN 2.0 23–24
BindingType.ATOMPUB.value()

320
BonitaSoft open source

framework 8–9
book-bam-app project

361–362, 364
BPEL4WS (business process exe-

cution language for web
services) 23

BPM (business process
management) 19–22

bpm_workflowDueDate
317–318

bpm_workflowPriority 317–318
BPMI (Business Process Manage-

ment Initiative) 23
BPMN 2.0

and WS-BPEL 22–23
benefits of 23–24
business rules in 291–292

constructs for, categories
for 24–26

high-level modeling 26–28
in Activiti

business rule task 404–405
call activity 414–415
camel task 405
conditional sequence

flow 401–402
email task 406
embedded subprocess

415–416
error boundary event 416
error end event 400
exclusive gateway 413
generic task

configuration 402–404
inclusive gateway 413–414
Java service task 407–408
manual task 408–409
Mule task 409
none end event 400
none start event 399
parallel gateway 414
receive task 409
script task 410
sequence flow 401
timer boundary event

416–417
timer intermediate catching

event 417
timer start event 399
user task 410–412
web service task 412–413

process modeling 28–31
BPMN 2.0 models 34
BPMN 2.0 processes 87–111

Activiti forms for 95–101
adding start event 96–97
adding user tasks with

escalation workflow
98–101

creating 95–96
testing using

FormService 97–98
adding documents to

326–338
attaching to task 326–328
loan request example

328–336
testing 336–338

controlling flow, with exclu-
sive gateway 101–102

deploying to Activiti
Engine 106–109

INDEX 421
BPMN 2.0 processes (continued)
and Activiti BAR file

106–107
programmatically 107–108
with Activiti Explorer

108–109
email service task 102–106

in XML file 104–106
using Apache James mail

server 103
loan request process 88–90
script task for 90–92

implementing 91–92
in Activiti Engine 90–91
overview 90

service task for 92–93
services in 260–285

Apache Camel 268–276
calling via service task

261–262
Mule ESB 276–285
separating process logic

from integration
logic 262–264

web service task 264–268
testing

with Activiti Explorer
109–110

with JUnit 94–95
XML file for 93

BPMN activity 416
BPMN file 41
bpmn-examples project 12, 15,

42, 320, 334, 396–397
bpmndi prefix 35
BRMSs (business rule manage-

ment systems) 288–289
business activity 340–342
business activity monitoring. See

BAM
business process execution lan-

guage for web services. See
BPEL4WS

Business Process Management
Initiative. See BPMI

business process management.
See BPM

business rule management sys-
tems. See BRMSs

business rule task 404–405
business rules 286–310

and BRMSs 288–289
defined 287–288
Drools framework 292–301

defining rules 296

overview 292–295
running rules 296–298
using spreadsheets to create

decision tables
298–301

in Activiti 301–307
business rule task 301–303
in process definition

303–307
in BPMN 2.0 291–292
using different types in

process 289–291
web-based editor for 307–309

BYTES_ column 372

C

call activity 414–415
calling, standalone

subprocesses 123–125
Camel file 269
camel task 405
CamelBehaviour class

273–274, 405
camelContext.createProducer-

Template() 271, 275
camelContext.start() 271
camelContext.stop() 272
CamelIntroRoute() 271
categories, for BPMN 2.0

constructs 24–26
CDI, JSF process applications

using 202–209
CEP (complex event process-

ing), and BAM 343–344
checkCredit 91, 93
checkIn method 323, 325
class definition, Java service tasks

with 73–78
cleanUpTaskHistory() 227, 229
CMIS (Content Management

Interoperability
Services) 320–325

retrieving folder
content 320–323

storing new document
version 323–325

CMISCheatSheet document 327
CmisTest class 324
com.itextpdf.text.Document()

335
Complete Task button 48
completedDefinitions.put.

definition.getId() 391

CompletedInstancesPage
class 390

CompletedInstancesPanel()
389

completeSubTasks() 227
completeSubTasksViaParentTask

() 228
completing tasks, with

TaskService 61–63
complex event processing. See

CEP
conditional sequence flow

401–402
conditionExpression

element 102
config.xml file 103
Configuration() 345, 348, 350,

357, 362
ConfigurationFactory class 213
configure() 270, 274
configuring, Activiti

Engine 181–185
database options 182–184
overview 181–182

connectionParams.getLdapPort
() 242

connectionParams.getLdap-
Server() 242

constructs, for BPMN 2.0 24–26
Content Management Interop-

erability Services. See CMIS
contextInitialized method

362–363
Create deployment artifacts

option 44
Create Script Task item 38
createAttachment method 327
createProcessInstanceQuery()

58, 64–65, 81, 84
createStandaloneProcessEngine

Configuration 16
createTask() 62
Credit Check Excel

template 329–330
creditcheck.xlsx file 331
CreditCheckCMISTask 330–332
creditCheckOk variable 91–93,

95, 100
CreditCheckRuleRunner

class 297–298
CreditCheckService class 125
CurrentTimeEvent class 352

INDEX422
D

database options, for Activiti
Engine 182–184

DatabaseSettingsPanel() 389
Date() 73, 77–78, 357, 360
DefaultCamelContext() 271
DefaultLocalMuleClient

class 280
DefaultMuleContextFactory()

279, 284
DefaultViewManager class 388
defining, business rules 296
definition.getId() 97
definitionList.size() 215
definitions element 12, 93
delegateTask.getAssignee() 234
delegateTask.getId() 232
delegateTask() 232
delegating tasks, in

workflows 231–233
deleteDeployment() 64
deploy() method 303
Deployer interface 303
deployment options, for Activiti

Engine
choosing between 175
embedding in Java

application 170–172
standalone instance 172–175

deployment tables, for Activiti
database 371–373

deployment.getDeployment-
Time() 64

deployment.getId() 64
Deployments tab 45
Design step 21
development environment

50–56
Activiti engine

logging in 53–54
on Apache Tomcat with

standalone
database 55–56

with in-memory
database 54

with standalone
database 55

and Activiti libraries 50–51
Maven configuration for

project 51–53
DRL file 372
Drools framework 292–301

defining rules 296
overview 292–295

running rules 296–298
using spreadsheets to create

decision tables 298–301

E

EAR file 197
Eclipse file 156
EJB interface 197
EJB service tasks 197–202
email service task 102–106

in XML file 104–106
using Apache James mail

server 103
email task 406
emailAddress variable 92, 94,

96–97, 104
embedded subprocesses

114–126, 415–416
defining JIRA escalation

with 115–116
testing with activiti

explorer 119–120
xml process definition

for 116–119
Engine database 58, 78, 95, 170,

327, 374, 379, 384
EPL statement 345–346, 349,

351, 358–359, 362–363
error boundary events, error

handling with 147–149,
151–152

error end events, error handling
with 147–149, 151–152

error handling 146–168
implementing in

processes 152–165
implementing BPMN pro-

cess with Activiti
Designer 155–160

implementing service tasks
that invoke web
service 160–163

modeling sales opportunity
process 154–155

sales opportunity
process 152–154

testing sales opportunity
process 163–165

using Java logic 165–168
using error boundary

events 147–149, 151–152
using error end events

147–149, 151–152
using Java logic 149–152

Esper framework 345–355
event windows in 347–355

joining different event
types 353–355

length event windows
347–349

time event windows
349–353

hello world example 345–347
with Activiti processes 355

EvaluationCMISTask 332
event windows, in Esper

framework 347–355
joining different event

types 353–355
length event windows

347–349
time event windows 349–353

exclusive gateway
35, 101–102, 413

executeJavaService() 75, 136
execution listeners 137–144

implementing 139–142
modeling process with 138
testing for completion

of 142–144
Execution step 22
execution.getEventName() 141
execution.getId() 73, 77, 357,

360
execution.getProcessInstanceId

() 330
ExecutionListener

interface 140–141
Expression class 77
external rendering, of

forms 257–258

F

FileInputStream(filename).
deploy() 41

flow, controlling 101–102
folder.getChildren() 322
folders, retrieving content

of 320–323
formKey attribute 95
formProperty.getPropertyId()

98
formProperty.getPropertyValue

() 98
formProperty.getValue() 255
formProperty.isRequired() 255
formProperty.isWritable() 255

INDEX 423
forms, in workflows 253–258
custom form types 253–256
external rendering of

257–258
FormService interface

97–98, 378
formService.submitTaskForm-

Data() 137
four-eye principle, and

tasks 233–236

G

Generate unit test action 40–41
generic task configuration

402–404
asynchronous

continuations 402
execution listeners 402–403
multi-instance 403–404

getContentStream method 323
getDefaultProcessEngine

method 108
getProcessDefinitionList() 206
getProcessInfo() 187
getQuery() 189
getRequest() 174, 188
getSessionType() 241
getTasks() 174
Groovy code 39
group.getName() 66

H

high-level modeling 26–28
historicActivityInstance.get-

ActivityName() 70
historicActivityInstance.get-

ActivityType() 70
historicActivityInstance.get-

DurationInMillis() 70
historicProcessInstance.get-

DurationInMillis() 70
historicProcessInstance.getEnd-

Time() 70
historicProcessInstance.get-

ProcessDefinitionId() 70
historicProcessInstance.getStart

Time() 70
historicTask.getAssignee() 234
historicTaskInstance.get-

Assignee() 189

historicTaskInstance.getEnd-
Time() 189–190

historicTaskInstance.getId() 18
9, 228

historicTaskInstance.getName()
189

historicTaskInstance.getOwner
() 189

historicTaskInstance.getStart-
Time() 189

historicTaskList.size()
227, 229, 232

historicVariableUpdate.get-
Revision() 72

historicVariableUpdate.getValue
() 72, 252

historicVariableUpdate.get-
VariableName() 72, 252

historicVariableUpdate.get-
VariableTypeName() 72

historicVariableUpdateList.size
() 71

history database model, for
Activiti database 377–379

historyList.get.historyList.size()
143

historyList.size() 143
HistoryService interface 67, 69,

71, 253
historyService.createHistoric-

ProcessInstanceQuery() 390

I

ID_ column 372
identityBean.resolveAssignees()

404
IdentityService interface 66–67,

240, 245
in-memory database, Activiti

engine with 54
Inbox link 48
inclusive gateway 413–414
init() 57
installing

Activiti Designer 36–37
Activiti Modeler 33
Activiti OSGi bundle 211–215
Alfresco 312–314
Apache Directory Server

237–241
instance.getBusinessKey() 188
instance.getDurationInMillis()

188
instance.getEndTime() 188

instance.getId() 188
instance.getProcessDefinitionId

() 188, 391

J

james_install_dir/bin
directory 103

JAR file 50, 106–107, 164, 167,
201, 209, 336

Java
embedding Activiti Engine

in 170–172
error handling in 149–152,

165–168
Java class 72–73, 382–385,

407–408
Java object 90, 92
Java Persistence API extensions.

See JPA extensions
Java service tasks, in Activiti

process engine 72–79
asynchronous behavior of

75–76
with class definition 73–75
with class definition and field

extensions 76–78
with method and value

expressions 78–79
JAVA_HOME environment

variable 9
JavaBpmnTest class 76
JavaDelegate class 73, 163
JavaDelegate interface 78–79,

150, 167, 219
JAXBContext.newInstance.event

.getClass() 361
jBPM (JBoss Process Manage-

ment) open source
framework 7–8

JIRA escalation, with embedded
subprocesses 115–116

job executor, for Activiti
Engine 384–386

JobExecutor class 385
JPA (Java Persistence API)

extensions 130–137
implementing process

with 132–136
modeling process with data-

base entity 131–132
testing process with 136–137

JSF process applications, using
CDI 202–209

JSF table 205–206

INDEX424
JSON object 190
JUnit class 271
JUnit, testing BPMN 2.0 process

with 94–95

K

kbase.addKnowledgePackages.
kbuilder.getKnowledge-
Packages() 300

kbase.newStatelessKnowledge-
Session() 297

kbuilder.getKnowledgePackages
() 298

kbuilder.newKnowledgeBase()
300

kermit user 10, 15–16, 43
KEY_ column 372
KnowledgeBaseFactory.new-

KnowledgeBase() 298
KnowledgeBuilderFactory.new-

KnowledgeBuilder()
298, 300

KPIs (key performance
indicators) 22

L

LDAP server
query logic for Activiti

Engine 241–245
user identities in 236–245

installing Apache Directory
Server 237–241

LDAP query logic for Activ-
iti Engine 241–245

LDAPConnectionParams
class 241

LDAPUserManager class
243–244

length event windows, in Esper
framework 347–349

life cycle, of BPM 21–22
listeners

execution 137–144
implementing 139–142
modeling process with 138
testing for completion

of 142–144
task 137–144

implementing 139–142
modeling process with 138
testing for completion

of 142–144

listusers command 103
loan request example 328–336
loan request process 88–90
Loan Sharks organization 88
LocalProcessEngineLookup

class 208
Logger class 54
logging, in Activiti engine 53–54
LogManager.getLogManager()

53
LogUtil.readJavaUtilLogging-

ConfigFromClasspath() 53

M

M2_REPO classpath variable 41
managing tasks, in Activiti

Explorer 45–46
MANIFEST.MF file 201
manual task 408–409
Maven command 364, 392
Maven configuration, for

project 51–53
message.getMimeMessage() 105
messages, for processes

with Apache Camel 272–276
with Mule ESB 280–285

META-INF/processes.xml
file 199–200

Modeler file 42
modeling processes

with execution listeners 138
with task listeners 138

Modeling step 21
Monitoring step 22
Mule ESB, in BPMN 2.0

processes 276–285
overview 276–280
sending and receiving process

messages with 280–285
Mule task 409
MuleClient class 280
muleContext.dispose() 280, 284
muleContext.getRegistry() 284
muleContext.start() 280, 284
muleContext.stop() 280, 284
multi-instance activities 246–253

configuring 246–247
implementing multi-instance

embedded process 247–253
multi-instance embedded

process 247–253
mvn eclipse:eclipse

command 41
My Tasks dashlet 315, 319

MyBatis database 182
myExpenses folder 322–323
MySQL database 177, 380

N

name process variable 104
none end event 400
none start event 399
numLoansQueue.poll() 352

O

Object Management Group. See
OMG

objectIdPropDef.getQueryName
() 321

ObjectMapper() 187, 189
ObjectType type 321
OMG (Object Management

Group) 22
open source frameworks 7–9

BonitaSoft 8–9
jBPM 7–8

openSession() 241
Optimization step 22
OSGi containers, deploying

Activiti modules to 209–221
and OSGi standard 209–210
building process and task

OSGi bundle 217–221
installing Activiti OSGi

bundle 211–215
using Apache Karaf as OSGi

container 210–211
using Karaf console 215–217

OSGi-INF/blueprint/
context.xml file 216

otherTaskId.getExpressionText
() 233–234

out:println variable 15
out.close() 361
output.close() 322

P

parallel gateways 35, 126–130,
414

implementing process
with 127–129

testing process with 129–130
parentTask.getId() 227, 229
POICMISHelper class 331

INDEX 425
POICMISHelper() method
330, 332, 336

POJO class 346
POM file 272, 281
POST method 364
postEvent method 364
Prepare book for shipment

task 35, 48
process engine 6–7
process execution tables, for

Activiti database 373–374
process modeling 28–31
Process payment task 35, 43, 48
ProcessDefinition 97, 109
processDefinition.getId()

64, 216
processDefinition.getKey()

64, 215
processDefinition.getName()

215
ProcessEngine class 107–108,

172, 181
ProcessEngine interface 211
processEngine.getHistoryService

() 233
processEngine.getIdentity-

Service() 15
processEngine.getRepositorySer

vice() 13, 15, 57, 107, 235
processEngine.getRuntime-

Service() 13, 15, 57, 235
processEngine.getTaskService()

15, 229, 235
ProcessEngineConfiguration

class 177, 181–182
ProcessEngineConfiguration-

Impl class 377
ProcessEngineFactoryELRe-

solver class 213
ProcessEngineFactoryWithEL-

Resolver class 213
processEngineName.get-

ExpressionText() 233
ProcessEngines class 171, 177
ProcessEngines.destroy()

172, 177
ProcessEngines.getDefaultProce

ssEngine() 107, 171–172
ProcessEngines.getProcessEngin

es() 229, 233
ProcessEngines.init() 176
processes 11–18

business rules in 289–291,
303–307

error handling in 152–165

implementing BPMN pro-
cess with Activiti
Designer 155–160

implementing service tasks
that invoke web
service 160–163

modeling sales opportunity
process 154–155

sales opportunity
process 152–154

testing sales opportunity
process 163–165

using Java logic 165–168
importing Modeler into

Designer 42–44
in Activiti Explorer 46–48
in Activiti Modeler

designing 37–39
modeling 34–35

modeling
with execution

listeners 138
with task listeners 138

sending and receiving mes-
sages for
with Apache Camel

272–276
with Mule ESB 280–285

simple 12–14
with parallel gateways

127–129
processes, in Activiti

Designer 39–42
ProcessInitiator class 194
processInstance.getId() 13, 16,

41, 58, 75, 284, 302
processInstance.getProcessDefin

itionId() 13, 41, 58, 64
ProcessList class 206
programmatically, deploying

BPMN 2.0 process to Activiti
Engine 107–108

Project Contract.pdf
document 315, 319

Properties file 33
Properties view 35–36, 39, 43–44
property values tables, for Activ-

iti database 376–377
Property.ValueChangeListener()

389
pwc.cancelCheckOut() 324
pwc.getContentStream() 323

Q

queryHistoricActivities() 70
queryHistoricInstances() 69
queryHistoricVariableUpdates()

71
querying, for tasks with

TaskService 60–61
queryProcessInstance.getId()

58
queryProcessInstance.isEnded()

58
queryProcessInstance() 58
queryTask.getAssignee() 232
queryTask.getDelegationState()

232
queryTask.getOwner() 232
queryTask() 61, 267

R

Random() method 365
readKnowledgeBase()

297–298, 300
receive task 409
repoDocument.close() 322
repository.createSession() 321
RepositoryService 107
RepositoryService interface

64–65, 216
repositoryService.createDeploy

ment() 13, 15, 41, 57,
64, 108

repositoryService.createProcess
DefinitionQuery()
185–186, 206

representational state transfer.
See REST

requestApproved variable
100, 102

REST (representational state
transfer)

producing events with Activ-
iti, for Vaadin web
application 360–362

setting up Esper service, for
Vaadin web
application 362–364

with Activiti Engine 185–192
Activiti REST API 185–187
Activiti REST service

187–192
REST interface 5, 11, 172
RetrieveCustomerTask

class 161–162, 165

INDEX426
retrieveFolder() 322
reusable processes, for stand-

alone subprocesses
121–122

rootLogger.getHandlers() 53
RouteBuilder class 273–274
RouteBuilder() 270
running, business rules 296–298
RunningInstancesPanel() 389
runtime execution database

model, for Activiti
database 370–377

deployment tables 371–373
process execution tables

373–374
property values tables

376–377
storing asynchronous jobs

in 376
user task tables 374–375
variable table 375–376

RuntimeService 41, 57–59, 94,
358, 365

S

script child element 90
script task 90–92, 410

implementing 91–92
in Activiti Engine 90–91
overview 90

scriptFormat attribute 90
ScriptTaskListener class 318
searchQuery.toString() 243
secondTask.getAssignee() 236
secondTask.getId() 236
sendLoanRequestProcessed-

Event method 351–352, 355
sendMailLocalTest() 105
sendMessages() 271
sequence flow 401
sequenceFlow 93, 100–102, 104
Serializable interface 78, 92
service task, calling in BPMN 2.0

processes 261–262
services, in BPMN 2.0

processes 260–285
Apache Camel 268–276
calling via service task

261–262
Mule ESB 276–285
separating process logic from

integration logic 262–264
web service task 264–268

SessionFactory interface 241

SessionFactoryImpl.newInstance
() 320

setCellValue method 330–331
showBookManagementPage()

389
Silver, Bruce 24
SimpleProcessTest class 12
simpleProcessTest()

84, 196, 275
simpleSpringTest() 81
spreadsheets, creating decision

tables with 298–301
Spring

Activiti Engine managed
by 176–181
from config file or

Java 176–177
from Spring

configuration 177–181
in Activiti process engine

79–84
generic Spring configura-

tion for 79–81
Spring-enabled unit test for

Activiti 81–84
Spring annotations, and Activiti

modules 194–196
standalone database, Activiti

engine with 55
standalone instance, of Activiti

Engine 172–175
standalone subprocesses

120–126
calling using call activity

123–125
defining reusable process

for 121–122
testing 125–126

start event, for Activiti
forms 96–97

startAndComplete() 69, 71
startBookOrder() 13, 15
startEsper method 350, 357, 359
startFormSubmit() 97
starting, Activiti Engine

171–172
StartInstanceCommand

class 220
startProcess() 41
startProcessInstance()

58, 60–61, 74–75
startProcessInstanceByKey

method 13, 94
stopping, Activiti Engine, in Java

applications 171–172

StoreOpportunityTask class 163
String type 77
StringBuffer() 354, 357, 362
StringBuilder() 243
SubEtha 105
subject attribute 104
submitStartFormData

method 98
subprocesses 21, 28–31,

113–126
embedded 114–126

defining JIRA escalation
with 115–116

testing with activiti
explorer 119–120

xml process definition
for 116–119

overview 113–114
standalone 120–126

calling using call
activity 123–125

defining reusable process
for 121–122

testing 125–126
subTask.setParentTaskId.

delegateTask.getId() 230
subTaskList.getValue.delegate-

Task.getExecution() 229
subtasks, in workflows 226–231
sum variable 91
sumLoanedAmountQueue.poll

() 352
System.out.println 70, 322

T

task listeners 137–144
implementing 139–142
modeling process with 138
testing for completion

of 142–144
task.getAssignee() 63, 142
task.getId() 61, 275, 327
task.getName() 61–62, 67,

81, 84, 275
task.getTaskDefinitionKey() 61
taskList.size() 16, 189, 227,

229, 252
TaskListener interface 141–142
TaskQuery interface 61
TaskResource class 174
tasks 226–236

and four-eye principle
233–236

INDEX 427
tasks (continued)
attaching documents to

326–328
delegating 231–233
in Activiti Explorer 46–48
subtasks 226–231

Tasks tab 48
TaskService 59–63, 358, 365

creating and completing tasks
via 61–63

querying for tasks with 60–61
TaskService method 231
taskService.addCandidateUser.

task.getId() 62
taskService.claim.firstTask.getId

() 236
taskService.claim.task.getId()

63
taskService.complete.task.getId

() 63, 69, 81, 84
taskService.complete.taskService

.createTaskQuery()
358–359, 365

taskService.createTaskQuery()
16, 61–63, 67, 69, 84, 232

taskService.getSubTasks.parent-
Task.getId() 227, 229

taskService.newTask()
62, 227–229, 232, 327

taskService.resolveTask.delegate
Task.getId() 232

testing
Activiti forms, using

FormService 97–98
BPMN 2.0 process

with Activiti Explorer
109–110

with JUnit 94–95
embedded subprocesses, with

activiti explorer 119–120
execution listeners 142–144
process with parallel

gateways 129–130
standalone subprocesses

125–126
task listeners 142–144

TextAreaFormType class 255
time event windows, in Esper

framework 349–353
timer boundary event 89, 95,

99–100, 111, 416–417
timer intermediate catching

event 417

timer start event 399
TimeWindowTest class 350
tool stack 4–5

U

UEL method 408
UML (Unified Modeling

Language) 22
unit testing, in Activiti process

engine 81–84
UpdateListener 345–355,

358–359, 364
upgrading, Activiti

database 380–381
url.openConnection() 361
user identities, in LDAP

server 236–245
installing Apache Directory

Server 237–241
LDAP query logic for Activiti

Engine 241–245
user task tables, for Activiti

database 374–375
user tasks with escalation

workflow 98–101
approval task form 99–100
timer boundary event

100–101
USER_GROUP class 244
user.getId() 66
user.setFirstName.attribute.get-

String() 244
user.setId.attribute.getString()

244
user.setLastName.attribute.get-

String() 244
UserEntity() 243
UserManager class 242
UserPage class 387
userQuery.getId() 243
userQuery.getLastName() 243
userService.getReviewers() 247

V

Vaadin web application 359–365
Activiti architecture 359–360
monitoring Activiti processes

with 364–365
producing REST events with

Activiti 360–362
setting up Esper REST

service 362–364

validate() 203–204
validateFourEyes() 235
ValidateService class 74–75
ValidateServiceWithFields

class 77
validatetext.getValue(execution)

.toString() 77
variable table, for Activiti

database 375–376
variable.isCustomerFound()

167
variable.setContactPerson.custo

mer.getContactPerson()
161

variable.setCustomerId.custome
r.getCustomerId() 161, 166

variable.setCustomerName.custo
mer.getCustomerName()
161

variableList.get.variableList.size
() 144

variableUpdate.getValue() 143
variableUpdate.getVariable-

Name() 143
VERSION column 381
version.getCheckinComment()

324
version.getLastModifiedBy()

324
version.getName() 324
version.getVersionLabel() 324
version.isLatestVersion() 324
versionDocument() 323
versioning, for Activiti

processes 381–384
viewManager.showBookManage

mentPage() 388
vote.isApproved() 252
Vote() 250
voting.getVotes() 252
voting.isDecisionVoting-

Outcome() 252

W

WAR file 33, 200, 209, 307
web service task 264–268,

412–413
Web Services Business Process

Execution
web services flow language. See

WSFL
web-based editor, for business

rules 307–309

INDEX428
WEB-INF/beans.xml file 199
WfMC (Workflow Management

Coalition) 25
Wiser class 105
wiser.getMessages() 105
wiser.start() 105
wiser.stop() 105
Wiser() method 105
Workflow Management Coali-

tion. See WfMC
workflows 225–259

forms in 253–258
custom form types 253–256
external rendering of

257–258
managing user identities in

LDAP server 236–245

installing Apache Directory
Server 237–241

LDAP query logic for Activ-
iti Engine 241–245

multi-instance activities
246–253
configuring 246–247
implementing multi-

instance embedded
process 247–253

tasks in 226–236
and four-eye principle

233–236
delegating 231–233
subtasks 226–231

WS-BPEL (Web Services Busi-
ness Process Execution
Language) 22–23

WSDL file 161, 265
WSFL (web services flow

language) 23

X

XML file
email service task in 104–106
for BPMN 2.0 process 93
for loan request process

89–90
xml process definition, for

embedded
subprocesses 116–119

XOR gateway 102

Z

ZipInputStream 108

Tijs Rademakers

A
ctiviti streamlines the implemention of your business
processes: with Activiti Designer you draw your business
process using BPMN. Its XML output goes to the Activiti

Engine which then creates the web forms and performs the com-
munications that implement your process. It’s as simple as that.
Activiti is lightweight, integrates seamlessly with standard frame-
works, and includes easy-to-use design and management tools.

Activiti in Action introduces developers to business process
modeling with Activiti. You’ll start by exploring BPMN 2.0 from
a developer’s perspective. Th en, you’ll quickly move to examples
that show you how to implement processes with Activiti. You’ll
dive into key areas of process modeling, including workfl ow, ESB
usage, process monitoring, event handling, business rule engines,
and document management integration.

What’s Inside
● Activiti from the ground up
● Dozens of real-world examples
● Integrate with standard Java tooling

Written for business application developers. Familiarity with
Java and BPMN is helpful but not required.

Tijs Rademakers is a senior soft ware engineer specializing in open
source BPM, lead developer of Activiti Designer, and member
of the core Activiti development team. He’s the coauthor of
Manning’s Open Source ESBs in Action.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/ActivitiinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Activiti IN ACTION

METHODOLOGY/JAVA

M A N N I N G

“A comprehensive overview
of the Activiti framework, the
Activiti Engine, and BPMN.”

—From the Foreword by Tom
Baeyens, Founder of jBPM

“A superb book. Best source
of knowledge on Activiti and

BPMN 2.0. Period.”—From the Foreword by Joram
Barrez, Cofounder of Activiti

“Th e very fi rst book on
Actviti ... immediately

sets the bar high.”—Roy Prins, CIBER Netherlands

“Just enough theory
to let you get

 right down to coding.”—Gil Goldman
Dalet Digital Media Systems

SEE INSERT

	Activiti in Action
	brief contents
	contents
	foreword by tom baeyens
	foreword by joram barrez
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1 Introducing BPMN 2.0 and Activiti
	Introducing BPMN 2.0 and Activiti
	Chapter 1 Introducing the Activiti framework
	1.1 The Activiti tool stack
	1.2 Getting to know Activiti
	1.2.1 A little bit of history
	1.2.2 The basics of the Activiti Engine
	1.2.3 Knowing the competitors

	1.3 Installing the Activiti framework
	1.4 Implementing your first process in Activiti
	1.4.1 Say hello to Activiti
	1.4.2 Implementing a simple book order process

	1.5 Summary

	Chapter 2 BPMN 2.0: what’s in it for developers?
	2.1 Taking a closer look at BPM
	2.1.1 Walking around the BPM life cycle

	2.2 Evolution to BPMN 2.0
	2.2.1 Wasn’t there a standard called WS-BPEL?
	2.2.2 And then there was BPMN 2.0
	2.2.3 Getting your head around all the BPMN 2.0 constructs

	2.3 Introducing BPMN 2.0 from a developer’s viewpoint
	2.3.1 High-level modeling with BPMN 2.0
	2.3.2 Detailed process modeling

	2.4 Summary

	Chapter 3 Introducing the Activiti tool stack
	3.1 Working with the Activiti Modeler
	3.1.1 Installing the Activiti Modeler
	3.1.2 Modeling processes with the Activiti Modeler

	3.2 Adding technical details with the Activiti Designer
	3.2.1 Getting up and running with Activiti Designer
	3.2.2 Designing a process from scratch
	3.2.3 Testing processes with the Activiti Designer
	3.2.4 Importing a Modeler process into the Designer

	3.3 Managing the Engine using the Activiti Explorer
	3.4 Processes and tasks with the Activiti Explorer
	3.5 Summary

	Chapter 4 Working with the Activiti process engine
	4.1 Creating an Activiti development environment
	4.1.1 Getting familiar with the Activiti libraries
	4.1.2 Mavenizing your Activiti project
	4.1.3 Logging in the Activiti Engine
	4.1.4 Developing and testing with the Activiti Engine

	4.2 Using the Activiti Engine API
	4.2.1 Starting process instances with the RuntimeService
	4.2.2 Working with user tasks via the TaskService
	4.2.3 Deleting process definitions with the RepositoryService
	4.2.4 Creating users, groups, and memberships with the IdentityService
	4.2.5 A sneak peek into the past with the HistoryService

	4.3 Using plain Java to do BPM
	4.3.1 Java service task with class definition
	4.3.2 Introducing asynchronous behavior
	4.3.3 Java service task with class definition and field extensions
	4.3.4 Java service task with method and value expressions

	4.4 Using Spring with Activiti
	4.4.1 Creating a generic Spring configuration for Activiti
	4.4.2 Implementing a Spring-enabled unit test for Activiti

	4.5 Summary

	Part 2 Implementing BPMN 2.0 processes with Activiti
	Chapter 5 Implementing a BPMN 2.0 process
	5.1 Introducing a real business process
	5.1.1 Analyzing the loan request process
	5.1.2 Taking a process model to an XML process file

	5.2 Developing script and service tasks
	5.2.1 Scripting in the Activiti Engine
	5.2.2 Implementing a Java service task
	5.2.3 Creating the BPMN 2.0 XML file
	5.2.4 Testing the process with JUnit

	5.3 Interacting with user tasks and Activiti forms
	5.3.1 Creating forms in Activiti
	5.3.2 Adding a task form on a start event
	5.3.3 Testing forms using the FormService
	5.3.4 Adding user tasks with an escalation workflow

	5.4 Handling decisions and sending email
	5.4.1 Controlling flow with an exclusive gateway
	5.4.2 Implementing an email service task

	5.5 Deploying processes to the Activiti Engine
	5.5.1 Understanding the Activiti BAR file
	5.5.2 Deploying processes to the Activiti Engine

	5.6 Testing the process with Activiti Explorer
	5.7 Summary

	Chapter 6 Applying advanced BPMN 2.0 and extensions
	6.1 Using BPMN 2.0 subprocesses
	6.1.1 Background to BPMN subprocesses
	6.1.2 Implementing embedded subprocesses
	6.1.3 Implementing standalone subprocesses

	6.2 Working with BPMN 2.0 parallel gateways
	6.2.1 Implementing a process with a parallel gateway
	6.2.2 Testing a process with a parallel gateway

	6.3 Adding a JPA extension to your process
	6.3.1 Modeling a process with a database entity
	6.3.2 Implementing a process with JPA extensions
	6.3.3 Testing a process with JPA extensions

	6.4 Using execution and task listeners
	6.4.1 Modeling a process with execution and task listeners
	6.4.2 Implementing execution and task listeners
	6.4.3 Testing the event stack list

	6.5 Summary

	Chapter 7 Dealing with error handling
	7.1 Choosing between error handling options
	7.1.1 Using error end and boundary events
	7.1.2 Using Java logic for error handling
	7.1.3 Using both error handling approaches together

	7.2 Implementing error handling with BPMN 2.0 constructs
	7.2.1 Designing the sales opportunity process solution
	7.2.2 Modeling the sales opportunity business process
	7.2.3 Implementing a BPMN process with the Activiti Designer
	7.2.4 Implementing service tasks that invoke a web service
	7.2.5 Testing the sales opportunity process solution

	7.3 Implementing error handling using Java logic
	7.4 Summary

	Chapter 8 Deploying and configuring the Activiti Engine
	8.1 Choosing between deployment options
	8.1.1 Embedding the Activiti Engine in a Java application
	8.1.2 Using a standalone Activiti Engine instance
	8.1.3 Choosing between the deployment options

	8.2 Using a Spring-managed Activiti Engine
	8.2.1 Creating a process engine from a config file or Java
	8.2.2 Creating a process engine from a Spring configuration

	8.3 Configuring the Activiti Engine
	8.3.1 Basic configuration overview of the Activiti Engine
	8.3.2 Configuring the Activiti Engine database options
	8.3.3 Exploring other configuration options

	8.4 REST communication with the Activiti Engine
	8.4.1 Introducing the Activiti REST API
	8.4.2 Implementing a new Activiti REST service

	8.5 Summary

	Chapter 9 Exploring additional Activiti modules
	9.1 Spring annotations
	9.2 Building an Activiti JEE 6 application
	9.2.1 Implementing EJB service tasks
	9.2.2 Implementing a JSF process application using CDI

	9.3 Deploying Activiti to an OSGi container
	9.3.1 Introducing the OSGi standard
	9.3.2 Using Apache Karaf as an OSGi container
	9.3.3 Installing the Activiti OSGi bundle
	9.3.4 Getting a list of process definitions in Apache Karaf
	9.3.5 Building a process and task OSGi bundle

	9.4 Summary

	Part 3 Enhancing BPMN 2.0 processes
	Chapter 10 Implementing advanced workflow
	10.1 Going beyond a simple user task
	10.1.1 Working with subtasks
	10.1.2 Delegating tasks
	10.1.3 Implementing the four-eye principle

	10.2 Managing the user identities in an LDAP server
	10.2.1 Installing Apache Directory Server
	10.2.2 Writing LDAP query logic for the Activiti Engine

	10.3 Implementing the BPMN 2.0 multi-instance activity
	10.3.1 Configuring a multi-instance activity
	10.3.2 Implementing a multi-instance embedded process

	10.4 Custom form types and external form rendering
	10.4.1 Implementing a custom form type
	10.4.2 Using external form rendering

	10.5 Summary

	Chapter 11 Integrating services with a BPMN 2.0 process
	11.1 Invoking services from a BPMN 2.0 process
	11.1.1 Calling services via a service task
	11.1.2 Separating process logic from integration logic

	11.2 Using the BPMN 2.0 web service task
	11.3 Integrating with Apache Camel
	11.3.1 Introducing Apache Camel
	11.3.2 Sending and receiving process messages with Apache Camel

	11.4 Integrating with Mule ESB
	11.4.1 Introducing Mule ESB
	11.4.2 Sending and receiving process messages with Mule ESB

	11.5 Summary

	Chapter 12 Ruling the business rule engine
	12.1 Introducing business rule management
	12.1.1 What’s a business rule?
	12.1.2 Business rule management systems
	12.1.3 Using different types of rules in business processes
	12.1.4 Business rule management in BPMN 2.0

	12.2 Entering the rule world of Drools
	12.2.1 Drools, the business logic integration platform
	12.2.2 Introducing Drools Expert
	12.2.3 Hands-on with Drools Expert
	12.2.4 Using spreadsheets to create Drools decision tables

	12.3 Integrating Drools with Activiti
	12.3.1 Activiti and the business rule task
	12.3.2 Using business rules in a process definition

	12.4 Creating a web-based rule editor
	12.4.1 Introducing flexibility with a custom rule authoring application

	12.5 Summary

	Chapter 13 Document management using Alfresco
	13.1 Introducing Alfresco Community
	13.1.1 Installing Alfresco Community
	13.1.2 Introducing Activiti integration in Alfresco

	13.2 Using CMIS to store and retrieve documents
	13.2.1 Retrieving folder content from Alfresco using CMIS
	13.2.2 Storing a new document version

	13.3 Adding documents to a BPMN 2.0 process definition
	13.3.1 Working with task and process instance attachments
	13.3.2 Implementing a document-aware process definition
	13.3.3 Deploying and testing the document-aware process definition

	13.4 Summary

	Chapter 14 Business monitoring and Activiti
	14.1 Monitoring business processes
	14.1.1 Introducing business activity monitoring (BAM)
	14.1.2 Introducing complex event processing (CEP)

	14.2 Meeting the Esper framework
	14.2.1 Kick-starting Esper
	14.2.2 Introducing event windows

	14.3 Monitoring Activiti processes with Esper
	14.3.1 Integrating Activiti and Esper
	14.3.2 Testing the Activiti and Esper setup

	14.4 Monitoring Activiti with a Vaadin dashboard
	14.4.1 An Activiti BAM architecture
	14.4.2 Producing REST events with Activiti
	14.4.3 Setting up the Vaadin application with the Esper REST service
	14.4.4 Monitoring Activiti processes with a Vaadin dashboard

	14.5 Summary

	Part 4 Managing BPMN 2.0 processes
	Chapter 15 Managing the Activiti Engine
	15.1 Working with the Activiti database
	15.1.1 Understanding the Activiti runtime execution database model
	15.1.2 Understanding the Activiti history database model
	15.1.3 Creating the Activiti database
	15.1.4 Upgrading the Activiti database

	15.2 Dealing with process versioning
	15.3 Understanding the job executor
	15.4 Building an administrator dashboard
	15.5 Summary

	appendix A Working with the source code
	A.1 Overview of the source code projects
	A.2 Using the bpmn-examples project

	appendix B BPMN 2.0 supported elements in Activiti
	B.1 Start and end events
	B.1.1 None start event
	B.1.2 Timer start event
	B.1.3 None end event
	B.1.4 Error end event

	B.2 Sequence flows
	B.2.1 Sequence flow
	B.2.2 Conditional sequence flow

	B.3 Tasks
	B.3.1 Generic task configuration
	B.3.2 Business rule task
	B.3.3 Camel task
	B.3.4 Email task
	B.3.5 Java service task
	B.3.6 Manual task
	B.3.7 Mule task
	B.3.8 Receive task
	B.3.9 Script task
	B.3.10 User task
	B.3.11 Web service task

	B.4 Gateways
	B.4.1 Exclusive gateway
	B.4.2 Inclusive gateway
	B.4.3 Parallel gateway

	B.5 Other activities
	B.5.1 Call activity
	B.5.2 Embedded subprocess

	B.6 Boundary events
	B.6.1 Error boundary event
	B.6.2 Timer boundary event

	B.7 Intermediate events
	B.7.1 Timer intermediate catching event

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

