Tijs Rademakers

Fortwornser Tom Baeyens
i loram Barrer

.III HANHNIRG

.alitebooks.co

http://www.allitebooks.org

Activiti Designer

P55

DDOOj

]

Process implementation _\

Activiti Engine -
/7 ¢ >

<definitions>
<process>

<start Event/> H (Tasks) (Jobs) R

<sequenceFl ow >

<endEvent/ > \
</ process>

Web forms

</ definitions> \

- J

Activiti provides a complete BPM solution, starting with the Activiti Designer to draw your business processes using BPMN.
The XML output of the Activiti Designer is deployed to the Activiti Engine that runs the process definition. The Activiti Engine
executes automated steps, like calling a web service, as well as manual steps that involve people and web forms.

vww.allitebooks.cond

http://www.allitebooks.org

Activits in Action

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Actioitt in Action

ExrcuTABLE BUSINESS PROCESSES IN BPMN 2.0

TIJS RADEMAKERS

MANNING
Shelter Island

vww.allitebooks.cond

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Sebastian Stirling

/l/l Manning Publications Co. Technical proofreader: Andy Verberne
20 Baldwin Road Copyeditor: June Eding
PO Box 261 Proofreader: Nermina Miller
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617290121
Printed in the United States of America

12345678910 - MAL- 17 16 15 14 13 12

N

© 0 g o O

10
11
12

Introducing the Activiti framework 3
BPMN 2.0: what’s in it for developers? 19
Introducing the Activiti tool stack 32
Working with the Activiti process engine 49

Implementing a BPMN 2.0 process 87

Applying advanced BPMN 2.0 and extensions 112
Dealing with error handling 146

Deploying and configuring the Activiti Engine 169
Exploring additional Activiti modules 193

Implementing advanced workflow 225
Integrating services with a BPMN 2.0 process 260

Ruling the business rule engine 286

BRIEF CONTENTS

13 = Document management using Alfresco 311

14 = Business monitoring and Activiti 340

15 = Managing the Activiti Engine 369

Sforeword by tom baeyens xv
Sforeword by joram barrez xvii
preface xix

acknowledgments — xxi

about this book xxiii

about the cover illustration xxviii

1.1
1.2

1.3
1.4

1.5

The Activiti tool stack 4
Getting to know Activiti 5

A little bit of history 5 = The basics of the Activiti Engine
Knowing the competitors 7

Installing the Activiti framework 9

Implementing your first process in Activiti 11

Say hello to Activiti 12 = Implementing a simple book order
process 14

Summary 18

6

2.1

2.2

2.3

2.4

3.1

3.2

3.3
3.4
3.5

4.1

4.2

4.3

CONTENTS

Taking a closer look at BPM 20
Walking around the BPM life cycle 21

Evolution to BPMN 2.0 22

Wasn'’t there a standard called WS-BPEL? 22 = And then there
was BPMN 2.0 23 = Getting your head around all the BPNMIN 2.0
constructs 24

Introducing BPMN 2.0 from a developer’s viewpoint = 26
High-level modeling with BPMN 2.0 26 = Detailed process modeling 28

Summary 31

Working with the Activiti Modeler 33
Installing the Activiti Modeler 33 = Modeling processes with the
Activiti Modeler 34

Adding technical details with the Activiti Designer 36

Getting up and running with Activiti Designer 36 = Designing a
process from scratch 37 = Testing processes with the Activiti
Designer 39 = Importing a Modeler process into the Designer 42

Managing the Engine using the Activiti Explorer 45
Processes and tasks with the Activiti Explorer 46
Summary 48

Creating an Activiti development environment 50

Getting familiar with the Activiti libraries 50 = Mavenizing your
Activiti project 51 = Logging in the Activiti Engine 53
Developing and testing with the Activiti Engine 54

Using the Activiti Engine API 56

Starting process instances with the RuntimeService 57 = Working
with user tasks via the TaskService 59 = Deleting process
definitions with the RepositoryService 64 = Creating users, groups,
and memberships with the IdentityService 66 = A sneak peek into
the past with the HistoryService 67

Using plain Java to do BPM 72

Java service task with class definition 73 = Introducing asynchronous
behavior 75 = Java service task with class definition and field
extensions 76 = Java service task with method and value expressions 78

44

4.5

5.1

5.2

5.3

5.4

5.5

5.6
5.7

6.1

6.2

6.3

CONTENTS

Using Spring with Activiti 79
Creating a generic Spring configuration for Activiti 79
Implementing a Spring-enabled unit test for Activiti 81

Summary 84

Introducing a real business process 88

Analyzing the loan request process 88 = Taking a process model to
an XML process file 89

Developing script and service tasks 90

Scripting in the Activiti Engine 90 = Implementing a Java service
task 92 = Creating the BPMN 2.0 XML file 93 = Testing the
process with [Unit 94

Interacting with user tasks and Activiti forms 95

Creating forms in Activiti 95 = Adding a task form on a start
event 96 = Testing forms using the FormService 97 = Adding
user tasks with an escalation workflow 98

Handling decisions and sending email 101

Controlling flow with an exclusive gateway 101 = Implementing
an email service task 102

Deploying processes to the Activiti Engine 106

Understanding the Activiti BAR file 106 = Deploying processes to
the Activiti Engine 107

Testing the process with Activiti Explorer 109
Summary 111

Using BPMN 2.0 subprocesses 113
Background to BPMN subprocesses 113 = Implementing embedded
subprocesses 114 = Implementing standalone subprocesses 120
Working with BPMN 2.0 parallel gateways 126
Implementing a process with a parallel gateway 127 = Testing a
process with a parallel gateway 129

Adding a JPA extension to your process 130

Modeling a process with a database entity 131 = Implementing a process

with JPA extensions 132 = Testing a process with JPA extensions

136

6.4

6.5

7.1

7.2

7.3
7.4

8.1

8.2

8.3

8.4

8.5

CONTENTS

Using execution and task listeners 137

Modeling a process with execution and task listeners 138
Implementing execution and task listeners 139 = Testing the event
stack list 142

Summary 144

Choosing between error handling options 147
Using error end and boundary events 147 = Using Java logic for
error handling 149 = Using both error handling approaches
together 151

Implementing error handling with BPMN 2.0
constructs 152

Designing the sales opportunity process solution 152 = Modeling
the sales opportunity business process 154 = Implementing a
BPMN process with the Activiti Designer 155 = Implementing
service tasks that invoke a web service 160 = Testing the sales
opportunity process solution 163

Implementing error handling using Java logic 165

Summary 168

Choosing between deployment options 170

Embedding the Activiti Engine in a Java application 170 = Using
a standalone Activiti Engine instance 172 = Choosing between the
deployment options 175

Using a Spring-managed Activiti Engine 176

Creating a process engine from a config file or Java 176 = Creating
a process engine from a Spring configuration 177

Configuring the Activiti Engine 181

Basic configuration overview of the Activiti

Engine 181 = Configuring the Activiti Engine database

options 182 = Exploring other configuration options 184
REST communication with the Activiti Engine 185

Introducing the Activiti REST APl 185 = Implementing a new

Activiti REST service 187

Summary 192

11

9.1
9.2

9.3

9.4

10.2

10.3

10.4

10.5

11.1

11.2
11.3

CONTENTS

Spring annotations 194
Building an Activiti JEE 6 application 196

Implementing EJB service tasks 197 = Implementing a JSF process
application using CDI 202

Deploying Activiti to an OSGi container 209

Introducing the OSGi standard 209 = Using Apache Karaf as an
OSGi container 210 = Installing the Activite OSGi bundle 211
Getting a list of process definitions in Apache Karaf 215
Building a process and task OSGi bundle 217

Summary 221

Going beyond a simple user task 226
Working with subtasks 226 = Delegating tasks 231
Implementing the four-eye principle 233

Managing the user identities in an LDAP server 236
Installing Apache Directory Server 237 = Writing LDAP query
logic for the Activiti Engine 241

Implementing the BPMN 2.0 multi-instance activity 246
Configuring a multi-instance activity 246 = Implementing a
multi-instance embedded process 247

Custom form types and external form rendering 253

Implementing a custom form type 253 = Using external form
rendering 257

Summary 259

Invoking services from a BPMN 2.0 process 261

Calling services via a service task 261 = Separating process logic
from integration logic 262

Using the BPMN 2.0 web service task 264
Integrating with Apache Camel 268

Introducing Apache Camel 268 = Sending and receiving process
messages with Apache Camel 272

11.4

11.5

]2 12.1

12.2

12.3

12.4

12.5

]3 13.1

13.2

13.3

13.4

147

CONTENTS

Integrating with Mule ESB 276

Introducing Mule ESB 276 = Sending and receiving process
messages with Mule ESB 280

Summary 285

Introducing business rule management 287

What’s a business rule? 287 = Business rule management
systems 288 = Using different types of rules in business
processes 289 = Business rule management in BPMN 2.0 291

Entering the rule world of Drools 292

Drools, the business logic integration platform 292 = Introducing
Drools Expert 293 = Hands-on with Drools Expert 296 = Using
spreadsheels to create Drools decision tables 298

Integrating Drools with Activiti 301

Activiti and the business rule task 301 = Using business rules in a
process definition 303

Creating a web-based rule editor 307
Introducing flexibility with a custom rule authoring application 307

Summary 309

Introducing Alfresco Community 312
Installing Alfresco Community 312 = Introducing Activiti
integration in Alfresco 315

Using CMIS to store and retrieve documents 320

Retrieving folder content from Alfresco using CMIS 320 = Storing
a new document version 323

Adding documents to a BPMN 2.0 process definition 326

Working with task and process instance attachments 326
Implementing a document-aware process definition 328
Deploying and testing the document-aware process definition 336

Summary 338

Monitoring business processes 341

Introducing business activity monitoring (BAM) 341
Introducing complex event processing (CEP) 343

Download from Wow! eBook <www.wowebook.com>

14.2

14.3

14.4

14.5

15 15.1

15.2
15.3
15.4
15.5

appendix A
appendix B

CONTENTS

Meeting the Esper framework 345
Kick-starting Esper 345 = Introducing event windows 347
Monitoring Activiti processes with Esper 355

Integrating Activiti and Esper 355 = Testing the Activiti and
Esper setup 356

Monitoring Activiti with a Vaadin dashboard 359

An Activiti BAM architecture 359 = Producing REST events with
Activiti - 360 = Setting up the Vaadin application with the Esper
REST service 362 = Monitoring Activiti processes with a Vaadin
dashboard 364

Summary 366

Working with the Activiti database 370

Understanding the Activiti runtime execution database model 370
Understanding the Activiti history database model 377 = Creating
the Activiti database 379 = Upgrading the Activiti database 380

Dealing with process versioning 381
Understanding the job executor 384
Building an administrator dashboard 386
Summary 392

Working with the source code 395
BPMN 2.0 supported elements in Activiti 398
index 418

Business processes represent the core functions of an organization. If these core
functions are implemented inefficiently, a company gives its competitors an easy
advantage. Business Process Management (BPM) is nothing more than ensuring that
an organization is run well and remains in good shape. For small companies, a single
person might be able to oversee everything that is going on and deal with situations
as they occur. But when companies grow larger and processes expand, it’s harder to
maintain control. Work is delegated, people start optimizing their own responsibili-
ties, and an overview can quickly get lost. Over the long run, constant monitoring
and improving of business processes are what separates good organizations from
excellent ones.

One aspect of managing business processes is automation. Despite big advance-
ments in software technology in the last decade, building custom software to support
business processes remains expensive for enterprises.

Traditional BPM Systems (BPMSs) have attempted to simplify the creation of soft-
ware for monitoring business processes. The biggest advantage of BPMSs is that they’re
based on flowchart diagrams. Business managers and technical team members can
understand these diagrams, which helps bring communication of requirements to a
new level.

The bottleneck of traditional BPMSs has been flexibility. BPMSs that focus on tech-
nical integration with backend systems over web services (for example, BPEL) are not
suited for business people. And BPMSs that focus on business diagrams are typically
limited in backend integration and scripting.

XV

xvi

FOREWORD BY TOM BAEYENS

This lack of flexibility is why I started building a home-brewed process engine back
in 2002. Initially, the goal was to build an interpreter for state machines. It was much
later that I heard from many developers that they had gone through the same initial
phase. Originally, my process engine was intended as an internal project for which I
was doing Java consulting.

Without expectations and without really knowing what I was getting myself into, I
published the project on SourceForge as jBPM. My reaction to the first forum post was,
“Cool! Someone found my engine!”—and this motivated me to improve. Many more
forum posts kept me going until JBoss came along and asked me to develop it further.

After the Business Process Model and Notation (BPMN) standard was introduced,
we realized that it would be crucial to have an Apache-licensed implementation of
BPMN. jBPM’s LGPL could pose a problem for mass adoption. At the same time,
Alfresco needed an Apache-based BPMN engine, so the company hired me, and that is
how Activiti was born. Because of the different licenses, we couldn’t use any of the
JBPM code, so we had to write it from scratch at Alfresco: but this became an opportu-
nity to revisit all the key architectural decisions that had been made before.

During the evolution of jBPM, leading up to Activiti, I took a new approach to
the old problem. Initially, the focus was on state machines, but eventually we con-
structed an engine to match the way business people and developers collaborate. We
designed the engine in such a way that it would allow business people to define the
graphical flow of the process and, at the same time, give developers the opportunity
to bind program logic inside the process flows. In addition, the engine was light-
weight and integrated easily into any Java environment. The result was what we call
embeddable BPM.

BPMN is a recent standard that has emerged from a long list of predecessors in the
BPM space. It describes the shapes and connections for drawing business-process dia-
grams as well as their meanings and file formats. BPMN is different because of its clear
focus on the business side and process modeling, whereas earlier standards focused
more on the technical aspects.

In this book, Tijs has included concrete instructions for developers, technical man-
agers, and business analysts to start building BPMN process solutions with Activiti. The
book includes a comprehensive overview of the Activiti framework, the Activiti
Engine, and BPMN. But Tijs goes beyond the basics and describes how to integrate
these with a rule engine and web-based services.

The reader will get a thorough understanding of BPM technology as it is applied in
today’s enterprise environments. This is definitely the most practical guide to BPMN
using Activiti as the engine.

Towm BAkyENS
AcrtiviTi AND JBPM FOUNDER
CHIEF BPM ARCHITECT, ALFRESCO

A picture is worth a thousand words

I believe this is a saying that exists in every culture around the world. And, truly, our
minds are impressive image-processing machines, spotting structure and anomalies in
a fraction of a second. Yet we tend to base much of our daily communication, both
personal and professional, on the written word.

As software developers, we live in the most interesting of times, with the World
Wide Web, the mobile (r)evolution, and the movement to the cloud with a clear focus
on consumers. Yet the building process of that software remains complex—we pro-
duce pages and pages of lengthy documents to describe what we would like to see
emerge from that ocean of zeroes and ones.

What if there were a way to improve this situation? As it happens, improving this
situation is the main goal of those who are involved with BPM.

I started my career as a typical Java developer, a generalist doing tids and tads of
everything involving Java. One day, out of the blue, I was assigned to a jBPM project. At
that point, I had never heard of BPM or anything close to it. Long story short: I fell in
love. I devoted my days, nights, and weekends to understanding the inner workings of
the engine. Open source is a powerful potion, and I drank it. The community was
hard to please (I got an “rtfm” on my first post) but responsive to those who were will-
ing to learn and to share their knowledge.

It was, as the French would say, a coup de foudre (love at first sight). I worked on BPM
projects coding during the day, and I lurked on the forums at night. And then it hap-
pened. About a year after my first encounter with BPM, I met Tom Baeyens, the proj-
ect lead of jBPM at the time, at a seminar where we both were speakers. We connected

xvii

xviii

FOREWORD BY JORAM BARREZ

immediately as fellow geeks. A year later, I joined his team at JBoss and followed him
subsequently to help build Activiti at Alfresco.

Why the switch? The answer is simple. There was no room for an Apache-licensed
engine at JBoss at that time, but we knew that an Apache license was crucial due to the
advent of the BPMN 2.0 standard. If we weren’t going to do it, someone else would.

Putting all our experiences together—what worked, what didn’t work, and what
rocked—we started to build a BPMN 2.0 engine at the beginning of 2010, an engine that
would do exactly what I started my story with: improve communication between those
who need software solutions and those who build software by using flowchart-like dia-
grams. Expressing how your business works with diagrams is hard, but it is worth the
effort. Visualization is a powerful tool and, in the past, I often saw clients change their
way of working after seeing how the different steps connected. The BPMN 2.0 standard
is of great value here. It may seem simplistic, but by defining how certain shapes have
specific meanings, not only can you visualize your workflows, you can find others in the
industry who speak the same language. The fact that version 2.0 also includes execution
semantics adds the next level of power: not only do the diagrams become standardized,
but now you can switch the engine that’s executing the diagrams with any BPMN 2.0-
compliant engine—not that there is any reason to switch from Activiti, of course!

As a Java developer, I used to loathe BPM suites—big black boxes that cost tons of
money to produce pictures. Every sane developer understands that pictures will never
make it into stable, performant software. That is why you will love Activiti: it is built
with benefits for business users in mind, without forgetting the developers. All the
code is open source—if something bothers you or isn’t clear, you can join our discus-
sions on the forum. Activiti in its simplest form is a library, a JAR, one among many,
embeddable in every Java project, be it EE, Spring, or OSGi. With Activiti, you write
unit tests just as you are used to doing. But instead of testing code, you are testing pro-
cesses—based on diagrams that you and the business people discussed and under-
stood—enriched with Java code to make them do exactly what you want them to do.
Then you integrate them with other components exactly as you envisioned.

I touch only briefly here on the benefits of BPM and the power of Activiti. Tijs does
an outstanding job of covering every facet of Activiti in great detail, and I’'m excited
and thankful that he put so much time into this book project. Software and open
source frameworks in general rise or fall with the available documentation, and it’s my
belief that this is a superb book that provides much-needed, detailed information.
There currently is no better source of knowledge on Activiti and BPMN 2.0. Period.

Think about it: processes are all around us. Without processes, a company
wouldn’t exist or, at least, it wouldn’t make money for long. Every company needs pro-
cesses to fulfill its goals. And in this quickly changing world, opportunities exist every-
where, from mobile integration in the workflow to massive cloud services
orchestrations. It’s up to you to grab them.

JorAM BARREZ
COFOUNDER OF ACTIVITI
CorE AcTIviTI DEVELOPER, ALFRESCO

Writing this book was a life-changer for me. After I wrote Open Source ESBs in Action for
Manning a few years ago, I focused on my daily job for some time, working with open
source enterprise integration frameworks like Mule, Camel, ServiceMix, and Spring
Integration. My work, over time, drove me to designing and developing processes and
BPM, and I started using jBPM and WebSphere Process Server. Then I learned that the
founder of the jJBPM project, Tom Baeyens, was leaving JBoss to work on a new open
source project, which was in stealth mode at that time (early 2010). When the first
alpha version of Activiti was released, I told myself I had to contribute to that project,
one way or another.

A piece that was missing in the first stages of the Activiti project was an Eclipse
plug-in. I had some email conversations with Tom about contributing the plug-in to
Activiti. We met and he told me that his goal was to disrupt the process engine space
with the Activiti project. My enthusiasm grew even more and I offered my time to start
working on a first version of the Activiti Designer. Together with my former col-
leagues, Tiese Barrell, Yvo Swillens, and Ron van Liempd, we were able to deliver a
first version within a couple of months.

As we became part of the Activiti developer community, my hands were itching to
start writing a book about Activiti. I felt that a great open source process engine would
need a detailed book to describe all the possibilities and potential it offers. Manning
was eager to publish a book about Activiti, and, together with Ron, we started writing
in the autumn of 2010. We had a hard time keeping up with the frequent releases and
the new functionality that kept on coming. But, it also was a lot of fun to be able to
write about a new functionality that was just (or about to be) released.

PREFACE

After a few meet-ups with the Activiti developer community and a couple of nice
dinners with the Activiti team, we began discussing the possibility of my joining
Alfresco to work on Activiti. In May 2011, I accepted the offer and was able to begin
working on Activiti full-time.

In the meantime, the writing of this book fell a little behind schedule. There was
so much interesting work to be done developing the Activiti Designer, working on
the Activiti Engine, and starting in a new job, that time caught up with me. After I
had settled in a bit, I took up the writing task again and began working on the
remaining chapters.

So here I am, at the end of the process. I've switched from being a consultant to an
open source software engineer, and I’m close to completing my second book. And, just
like with my previous book, I have a new family addition coinciding with the book’s
release. I hope you will enjoy reading this book as much as I loved writing it!

Many people deserve thanks for helping me with this book project. First of all, I want
to thank Ron for starting this adventure with me and for his contributions to the book.

A big thank you to the guys on the Activiti team—Tom, Joram, and Frederik—for
starting this great open source project and for all the help they gave me during the writ-
ing of the book. Special thanks to Tom and Joram for kindly contributing the forewords.

I’d also like to thank the guys at camunda (Bernd and Daniel, in particular) for
their contribution to the Activiti project and for their help when I was writing about
the camunda fox cycle and the Activiti CDI module.

Thanks to Balsamiq Studios and Giacomo “Peldi” Guilizzoni for providing licenses
for their great Balsamiq tool. I really enjoyed creating the graphics for this book.

Thanks to Tiese Barrell and Yvo Swillens for their enthusiasm and development
work on the Activiti Designer. Together we became part of the great Activiti devel-
oper community.

A special thank-you to Andy Verberne for his work on the technical proofread of
the final manuscript (again).

Without the patience of my lovely Ankie, the writing of this book would not have
been possible. She managed to love me, even after long working days and in spite of
my sometimes grumpy communication when examples were not working as expected.
Liv and Noah, thank you for all the joy you bring to my life. Thanks to my parents and
parents-in-law for their love and interest in my writing.

Thanks also to the following reviewers of the manuscript who read it and provided
feedback during the various stages of its development: Gil Goldman, Michal Minicki,

xxii

ACKNOWLEDGMENTS

Sven Vintges, Joram Barrez, Jeff Davis, Gordon Dickens, Roy Prins, Claus Ibsen, Feder-
ico Tomassetti, Greg Helton, Mykel Alvis, and Nicolas Leroux.

Finally, my appreciation to everyone at Manning, starting with publisher Marjan
Bace, my editor Sebastian Stirling, and the production team of June Eding, Nermina
Miller, Mary Piergies, Gordan Salinovic, and Janet Vail.

Activiti is an open source Business Processing Model and Notation (BPMN) 2.0 process
engine framework that provides an environment for running your business and tech-
nical processes. It’s a project funded by Alfresco and established by jBPM founder Tom
Baeyens. Activiti provides much more functionality than simply running BPMN 2.0 pro-
cesses in a rock-solid way. It provides a web-based modeling tool for business analysts, an
Eclipse plug-in for developers, and a web application to work with and manage the pro-
cesses. In addition, Activiti community members, including SpringSource, FuseSource,
MuleSoft, and camunda, have implemented further functionality like full Spring inte-
gration, an OSGi bundle, Mule and Camel integration, and a CDI module.

This book is written by one of the Activiti core developers and the lead developer
of the Activiti Designer component. It contains loads of examples to help you under-
stand the BPMN 2.0 language and how to work with all the extensions Activiti provides.
In the final chapters, the book goes beyond Activiti’s core functionality and shows how
to do CMIS communication from a process definition and how to implement a busi-
ness activity monitoring environment using the open source Esper framework.

You should not expect to find examples of all the nitty-gritty details of the BPMN 2.0
specification. Instead, the focus is on Activiti-supported elements and the most common
use cases for developing process definitions.

You also won’t find in-depth discussions of the business side of BPM. Many other
books focus on the business perspectives of BPM; this book focuses on the technical
aspects of BPM, mostly on BPMN 2.0 and Activiti.

xxiii

XXiv

ABOUT THIS BOOK

This book is written for everyone who’s interested in learning about Activiti. In addi-
tion, it’s a great way to learn about BPMN 2.0 from a practical perspective. Every devel-
oper, process designer and analyst, or architect will benefit from the information and
examples provided to learn about the basics and details of the Activiti framework.
With the technical perspective offered in this book, you shouldn’t be afraid of the Java
and XML code listings.

The book has 14 chapters divided into 4 parts:

= Part 1 Introducing BPMN 2.0 and Activiti

* Part 2 Implementing BPMN 2.0 processes with Activiti
* Part 3 Enhancing BPMN 2.0 processes

= Part 4 Managing BPMN 2.0 processes

There are also two appendixes. Appendix A explains how to work with the source
code examples, and appendix B covers elements supported by Activiti BPMN 2.0.

Part 1 shows you how to get started with the Activiti framework and explains the
background of the BPMN 2.0 standard. You are introduced to the different compo-
nents of the Activiti framework and developing with the Activiti API.

Chapter 1 introduces the Activiti framework and shows you how to set up the Activ-
iti default environment. At the end of the chapter, you implement your first simple
BPMN 2.0 process definition and test it with a simple JUnit test.

Chapter 2 provides a short introduction to Business Process Management. Here,
you’ll learn about the background of the BPMN 2.0 standard, compared with other
standards like WS-BPEL. Finally, you are introduced to core BPMN 2.0 elements.

Chapter 3 provides an overview of all the components of the Activiti framework,
including the Activiti Modeler, Activiti Designer, Activiti Explorer, and the camunda
fox cycle. Using a simple process example, we walk through the components and
you’ll learn how to model, design, and deploy a BPMN 2.0 process definition.

Chapter 4 gives an overview of the Activiti API, starting with short code examples
illustrating the main Activiti interfaces. Then, you’ll learn how to implement Java
logic in a BPMN 2.0 process definition and how to work with Spring beans.

In part 2, we shift the focus from understanding the Activiti framework and
BPMN 2.0 to using them to develop process definitions. We discuss and use most of
the supported BPMN 2.0 elements and talk about important topics like error han-
dling and deploying process definitions to an Activiti Engine. In the final chapter, we
explore additional modules provided by the Activiti framework, such as CDI
and OSGi.

Chapter 5 shows how to implement a full-blown process definition using Activiti.
We explore the workflow and form capabilities of the Activiti Engine and you’ll learn
how to use an email task to send emails during process execution.

ABOUT THIS BOOK XXV

Chapter 6 introduces a number of advanced BPMN 2.0 constructs and Activiti
extensions. You'll learn about multiple execution paths using the parallel gateway and
how to structure larger process definitions using standalone or embedded subpro-
cesses. You also are introduced to the JPA and listener Activiti extensions.

Chapter 7 describes ways to deal with error handling in BPMN 2.0 processes. You
can use the standard error end event and boundary error event or implement an
approach using Java exceptions and multiple outgoing sequence flows.

Chapter 8 talks about ways to deploy the Activiti Engine in your environment. You
can choose an embedded approach, using only Activiti JARs, or go for a standalone
approach using the Activiti REST API. At the end of chapter, you’ll also learn how to
implement an additional REST service when necessary.

Chapter 9 shows how to make use of the Activiti OSGi bundle and the CDI module.
With the OSGi bundle, you can deploy Activiti on an OSGi container like Apache Karaf
and take advantage of the flexibility offered by that platform. The Activiti CDI module
provides integration with the Contexts and Dependency Injection JEE framework. You
can use handy annotations to quickly build a JSF process and workflow application.

In part 3, we focus on more advanced features and extensions to the Activiti
framework. In the previous two parts, we looked at the basic functionality of Activiti
and BPMN 2.0, so now it’s time to step up and talk about advanced ways of using
Activiti. We integrate Activiti with the Drools rule engine, the Alfresco document
management system, Mule and Camel for external communication, and Esper for
business activity monitoring.

Chapter 10 discusses advanced workflow features with subtasks, task delegation,
and the four-eye principle workflow pattern. We also show how to use an LDAP server
for identity management and how to use the BPMN 2.0 multi-instance construct. And,
finally, we look at how to implement additional form types and go for an external
form-rendering approach.

Chapter 11 shows how you can communicate with external services and applica-
tions to execute business logic that is necessary during process execution. With the
Activiti Mule and Camel modules, it’s simple to use the powerful features these frame-
works provide to implement all kinds of communication logic.

Chapter 12 provides a detailed overview of how to use the Drools rule engine with
Activiti business rule tasks. We start with an introduction to the Drools framework and
implement a couple of rule examples. After you implement a process definition con-
taining two business rule tasks, you’ll learn how to implement a Vaadin web applica-
tion where you can change deployed rules in real time.

Chapter 13 shows how Activiti is used in the open source Alfresco product and how
you can use the CMIS standard (with Apache Chemistry) to communicate with
Alfresco from a process definition.

Chapter 14 introduces business activity monitoring with Activiti using the open
source Esper framework. You’ll learn how to fire events to Esper using Activiti listen-
ers and how to implement eventing logic in Esper to combine events into useful

ABOUT THIS BOOK

management information. Finally, you’ll see how you can implement a simple Vaadin
dashboard to monitor business processes running on the Activiti Engine.

In part 4, we leave behind the development of process definitions and focus on
running process definitions on the Activiti Engine in a production environment. This
part consists of one chapter.

Chapter 15 discusses important topics that are needed to run processes on the Activ-
iti Engine successfully. First, we look at the database model of the Activiti Engine in
detail, and then we move on to dealing with process versioning. Then, you’ll see how
jobs are handled in the Activiti Engine using the asynchronous job executor implemen-
tation. And, finally, you’ll learn how you can extend the Activiti Explorer with additional
management functionality, like areport of all running and completed process instances.

Appendix A provides an overview of all the projects you’ll find in the book’s source
code. Pointers are given on where each project is used in which chapter of the book.
Appendix B provides a detailed overview of the BPMN 2.0 elements supported by the
Activiti Engine.

Source code in listings or in text appears in a fi xed-wi dthfont |i ke thi s to separate
it from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered cueballs link to additional explanations
that follow the listing.

There are many code examples in this book. The process definitions are described
using XML code that shows the BPMN 2.0 XML elements. The process logic, like Java
service tasks and listeners, is implemented in Java.

The source code for the book is divided into a number of projects. The bpm-
exanpl es project contains the most example code and the other projects are used to
implement special artifacts like web applications. For a full description of the source
code projects, please refer to appendix A.

Source code for the examples in this book can be downloaded from the pub-
lisher’s website at www.manning.com/ActivitiinAction. There’s also a special website
devoted to this book at www.bpmnwithactiviti.org.

Purchase of Activiti in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/ActivitiinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the

ABOUT THIS BOOK xxvii

author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Tijs Rademakers is a senior software engineer at Alfresco, where he is a member of the
Activiti core development team. He is an Activiti committer to the Activiti Engine and
lead developer for the Activiti Eclipse Designer. Tijs is coauthor of Open Source ESBs in
Action (Manning, 2008) and has over 10 years of software engineering experience,
with a focus on open source BPM and enterprise integration frameworks. He lives in
Valkenswaard in the Netherlands with his girlfriend and two children.

The figure on the cover of Activiti in Action is captioned “Member of the Eastern
Goths,” also known as the Ostrogoths, an ancient Germanic tribe that in the late fifth
century AD established a large kingdom in Italy. Their descendants still live in north-
ern Italy today. This illustration is taken from a recent reprint of Balthasar Hacquet’s
Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published
by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739-1815) was an
Austrian physician and scientist who spent many years studying the botany, geology,
and ethnography of many parts of the Austrian Empire, as well as the Veneto, the
Julian Alps, and the western Balkans, inhabited in the past by peoples of many differ-
ent tribes and nationalities. Hand drawn illustrations accompany the many scientific
papers and books that Hacquet published.

The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of Alpine and Balkan regions just 200 years ago. This was
a time when the dress codes of two villages separated by a few miles identified people
uniquely as belonging to one or the other, and when members of an ethnic tribe,
social class, or trade could be easily distinguished by what they were wearing. Dress
codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitant of one continent from another
and today’s inhabitants of the picturesque towns and villages in the Italian Alps are
not readily distinguishable from residents of other parts of Europe.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.

XXViii

his first part of the book provides an introduction to the Activiti framework
and the background about the BPMN 2.0 standard. In chapter 1, we’ll cover how
to set up an Activiti environment, starting with the download of the Activiti
framework. In chapter 2, you’ll be introduced to the main elements of the BPMN
2.0 standard in order to create process definitions. Chapter 3 offers an overview
of the Activiti framework’s main components, including the Activiti Designer
and Explorer. Finally, in chapter 4, we’ll discuss the Activiti API with several short
code examples.

Every day, your actions are part of different processes. For example, when you
order a book in an online bookstore, a process is executed to get the book paid for,
packaged, and shipped to you. When you need to renew your driver’s license, the
renewal process often requires a new photograph as input. Activiti provides an
open source framework to design, implement, and run processes. Organizations
can use Activiti to implement their business processes without the need for expen-
sive software licenses.

This chapter will get you up and running with Activiti in 30 minutes. First, we’ll
take a look at the different components of the Activiti tool stack, including a Mod-
eler, Designer, and a REST web application. Then, we’ll discuss the history of the
Activiti framework and compare its functionality with its main competitors, jBPM
and BonitaSoft.

CHAPTER 1 Introducing the Activiti framework

Before we dive into code examples in section 1.4, we’ll first make sure the Activiti
framework is installed correctly. At the end of this chapter, you’ll have a running Activ-
iti environment and a deployable example.

First, let’s look at Activiti’s tool stack and its different components, including the
modeling environment, the engine, and the runtime explorer application.

The core component of the Activiti framework is the process engine. The process
engine provides the core capabilities to execute Business Process Model and Notation
(BPMN) 2.0 processes and create new workflow tasks, among other things. You can
find the BPMN specification and lots of examples at www.bpmn.org, and we’ll go into
more detail about BPMN in chapter 2. The Activiti project contains a couple of tools
in addition to the Activiti Engine. Figure 1.1 shows an overview of the full Activiti
tool stack.

Let’s quickly walk through the different components listed in figure 1.1. With the
Activiti Modeler, business and information analysts are capable of modeling a BPMN 2.0-
compliant business process in a web browser. This means that business processes can eas-
ily be shared—no client software is needed before you can start modeling. The Activiti
designer is an Eclipse-based plugin, which enables a developer to enhance the modeled
business process into a BPMN 2.0 process that can be executed on the Activiti process
engine. You can also run unit tests, add Java logic, and create deployment artifacts with
the Activiti Designer.

In addition to the design tools, Activiti provides a number of supporting tools.
With Activiti Explorer, you can get an overview of deployed processes and even dive
into the database tables underneath the Activiti process engine. You can also use Activ-
iti Explorer to interact with the deployed business processes. For example, you can get
a list of tasks that are already assigned to you. You can also start a new process instance
and look at the status of that newly created process instance in a graphical diagram.

Design tools h (Process engine h /Supporting tools
i Deploy simple /—\ Start processes, o
Activiti Modeler processes to the Activiti Engine tasks and Activiti Explorer
Non-technical modeling engine The core process manage engine Use processes and
(web-based) engine, which can be tasks and process
embedded in your Java engine management
Import BPMN XML (web) application or can (web-based)

file into the \ run standalone /

Activiti Designer

o K Deploy advanced Activiti REST \
Activiti Designer processes to the Web application that
Technical modeling engine starts the process
(Eclipse—plugin) engine and provides a
REST API
(. J (. J (. /

Figure 1.1 An overview of the Activiti tool stack: in the center, the Activiti process engine, and on
the right and left sides, the accompanying modeling, design, and management tools. The grayed-out
components are add-ons to the core Activiti framework.

Getting to know Activiti 5

Finally, there’s the Activiti REST component, which provides a web application that

starts the Activiti process engine when the web application is started. In addition, it

offers a REST API that enables you to communicate remotely with the Activiti Engine.
The different components are summarized in table 1.1.

Table 1.1 An overview of the different components of the Activiti tool stack

Activiti Engine The core component of the Activiti tool stack that performs the process engine func-
tions, such as executing BPMN 2.0 business processes and creating workflow tasks.

Activiti Modeler A web-based modeling environment for creating BPMN 2.0-compliant business pro-
cess diagrams. This component is donated by Signavio, which also provides a com-
mercial modeling tool, named the Signavio Process Editor.

Activiti Designer An Eclipse plugin that can be used to design BPMN 2.0-compliant business pro-
cesses with the addition of Activiti extensions, such as a Java service task and exe-
cution listeners. You can also unit test processes, import BPMN 2.0 processes,
and create deployment artifacts.

Activiti Explorer A web application that can be used for a wide range of functions in conjunction with
the Activiti Engine. You can, for example, start new process instances and get a list
of tasks assigned to you. In addition, you can perform simple process management
tasks, like deploying new processes and retrieving the process instance status.

Activiti REST A web application that provides a REST interface on top of the Activiti Engine. In the
default installation (see section 1.1.3), the Activiti REST application is the entry
point to the Activiti Engine.

You can’t start developing without a clear understanding of the Activiti framework and
the architecture that’s built around a state machine. Let’s take a closer look at the his-
tory of the Activiti framework and discuss the Activiti Engine in more detail.

When you start working with a new framework, it’s always good to know some project
background and have an understanding of the main components. In this section,
we’ll be looking at exactly that.

The Activiti project was started in 2010 by Tom Baeyens and Joram Barrez, the former
founder and the core developer of jBPM (JBoss BPM), respectively. The goal of the
Activiti project is to build a rock-solid open source BPMN 2.0 process engine. In the
next chapter, we’ll talk in detail about the BPMN 2.0 specification, but in this chapter
we’ll focus on the Activiti framework itself and getting it installed and up and running
with simple examples.

Activiti is funded by Alfresco (known for its open source document management
system of the same name; see www.alfresco.com and chapter 13 for more details), but
Activiti acts as an independent, open source project. Alfresco uses a process engine to

CHAPTER 1 Introducing the Activiti framework

support features such as a review and approval process for documents, which means
that the document has to be approved by one user or a group of users. For this kind of
functionality, Activiti is integrated into the Alfresco system to provide the necessary
process and workflow engine capabilities.

JBPM was used in the past instead of Activiti to provide this process
and workflow functionality. jBPM is still included in Alfresco, but it may be
deprecated at some point in time.

Besides running the Activiti process engine in Alfresco, Activiti is built to run stand-
alone or embedded in any other system. In this book, we’ll focus on running Activiti
outside the Alfresco environment, but we’ll discuss the integration opportunities
between Activiti and Alfresco in detail in chapter 13.

In 2010, the Activiti project started off quickly and succeeded in producing
monthly (!) releases of the framework. In December 2010, the first stable and produc-
tion-ready release (5.0) was made available. The Activiti developer community, includ-
ing companies like SpringSource, FuseSource, and Mulesoft, has since been able to
develop new functionality on a frequent basis. In this book, we’ll explore this contrib-
uted functionality, such as the Spring integration (chapter 4) and the Mule and
Apache Camel integration (chapter 11).

But first things first. What can you do with a process engine? Why should you use
the Activiti framework? Let’s discuss the core component, the Activiti Engine.

Activiti is a BPMN 2.0 process-engine framework that implements the BPMN 2.0 specifi-
cation. It’s able to deploy process definitions, start new process instances, execute user
tasks, and perform other BPMN 2.0 functions, which we’ll discuss throughout this book.

But at its core, the Activiti Engine is a state machine. A BPMN 2.0 process definition
consists of elements like events, tasks, and gateways that are wired together via
sequence flows (think of arrows). When such a process definition is deployed on the
process engine and a new process instance is started, the BPMN 2.0 elements are exe-
cuted one by one. This process execution is similar to a state machine, where there’s
an active state and, based on conditions, the state execution progresses to another
state via transitions (think again of arrows). Let’s look at an abstract figure of a state
machine and see how it’s implemented in the Activiti Engine (figure 1.2).

In the Activiti Engine, most BPMN 2.0 elements are implemented as a state.
They’re connected with leaving and arriving transitions, which are called sequence
flows in BPMN 2.0. Every state or corresponding BPMN 2.0 element can have attached
a piece of logic that will be executed when the process instance enters the state. In
figure 1.2, you can also look up the interface and implementing class that are used in
the Activiti Engine. As you can see, the logic interface ActivityBehavior is imple-
mented by a lot of classes. That’s because the logic of a BPMN 2.0 element is imple-
mented there.

Getting to know Activiti 7

Parent
1
Ve 7\ Leaving transitions * .
* State > Transition
Nested states Interface: PvmActivity o » . Interface: PvmTransition
Class: Activitylmpl Arriving transitions Class: Transitionimpl
Behavior
1
Ve . ™\ Figure 1.2 An abstract overview of a state machine
Logic and how it’s implemented in the Activiti Engine. States
Interface: ActivityBehavior have leaving and arriving transitions and can be nest-
Class: Lots of classes ed. In addition, they contain logic implemented with

the Acti vi t yBehavi or interface.

When you see a complex BPMN 2.0 example later on in the book, remember that, in
essence, it’s a rather simple state machine. Now let’s look at a couple other open
source process engines that offer functionality similar to Activiti, and also consider
the differences.

When you’re interested in an open source process engine like Activiti, it’s always good
to know a little bit more about the competing open source frameworks. Because the
main developers of Activiti were previously involved with the JBoss BPM or jBPM frame-
work, there’s also some controversy surrounding this discussion. It’s obvious that jBPM
and Activiti share a lot of the same architectural principles, but there are also many
differences. We’ll only discuss the two main open source competitors of Activiti:

= JBoss BPM or jBPM—An open source process engine that first supported the cus-
tom jPDL process language, but, because version 5.0 supports BPMN 2.0, the
JBPM project has merged with the JBoss Drools project (an open source busi-
ness-rule management framework) and replaced Drools Flow as the rule flow
language for the Drools framework.

= BonitaSofti—An open source process engine that provides support for the
BPMN 2.0 process language. The main differentiators of BonitaSoft are the
large set of supported elements and the integrated development environment.

Let’s discuss the similarities and differences between Activiti and its two competitors
in a bit more detail.

Activiti and jBPM have a lot in common: they’re both developer-oriented process
engine frameworks built around the concept of a state machine (see section 1.2.2).

CHAPTER 1 Introducing the Activiti framework

Because jBPM 5 also implements the BPMN 2.0 specification, a lot of similar function-

ality can be found. But there are a number of differences that are important to men-

tion; see table 1.2.

Table 1.2 Main differences between Activiti and jBPM

Community
members

Spring support

Business rules
support

Additional
tools

Project

Activiti has a base team consisting of
Alfresco employees. In addition, companies
like SpringSource, FuseSource, and Mule-
Soft provide resources on specific compo-
nents. There are also individual open source
developers committing to the Activiti project.

Activiti has native Spring support, which
makes it easy to use Spring beans in your
processes and to use Spring for JPA and
transaction management.

Activiti provides a basic integration with the
Drools rule engine to support the BPMN 2.0
business rule task.

Activiti provides modeler (Oryx) and designer
(Eclipse) tools to model new process defini-
tions. The main differentiator is the Activiti
Explorer, which provides an easy-to-use web
interface to start new processes, work with
tasks and forms, and manage running pro-
cesses. In addition, it provides ad hoc task
support and collaboration functionality.

Activiti has a strong developer and user com-
munity with a solid release schedule of two
months. Its main components are the Engine,
Designer, Explorer, and REST application.

jBPM has a base team of JBoss
employees. In addition, there are indi-
vidual committers.

jBPM has no native Spring support, but
you can use Spring with additional
development effort.

jBPM and Drools are integrated on a
project level, so there’s native integra-
tion with Drools on various levels.

jBPM also provides a modeler based on
the Oryx project and a Eclipse designer.
With a web application, you can start
new process instances and work with
tasks. The form support is limited.

jBPM has a strong developer and user
community. The release schedule isn’'t
crystal clear, and some releases have
been postponed a couple of times. The
Designer application is (at the moment
of writing) still based on Drools Flow,
and the promised new Eclipse plugin
keeps getting postponed.

It’s always difficult to compare two open source frameworks objectively, and this book
is about Activiti. This book by no means presents the only perspective on the differ-

ences between the frameworks, but it identifies a number of differences that you can

consider when making a choice between them.
Next up is the comparison between Activiti and BonitaSoft.

BonitaSoft is the company behind Bonita Open Solution, an open source BPM prod-
uct. There are a number of differences between Activiti and BonitaSoft:

Installing the Activiti framework 9

= Activiti is developer-focused and provides an easy-to-use Java API to communi-
cate with the Activiti Engine. BonitaSoft provides a tool-based solution where
you can click and drag your process definition and forms.

= With Activiti, you’re in control of every bit of the code you write. With Bonita-
Soft, the code is often generated from the developer tool.

= BonitaSoft provides a large set of connectivity options to a wide range of third-
party products. This means it’s easy to configure a task in the developer tool to
connect to SAP or query a particular database table. With Activiti, the connectiv-
ity options are also very broad (due to the integration with Mule and Camel),
but they’re more developer focused.

Although both frameworks focus on supporting the BPMN 2.0 specification and offer-
ing a process engine, they take different implementation angles. BonitaSoft provides a
development tool where you can draw your processes and configure and deploy them
without needing to write one line of code. This means that you aren’t in control of the
process solution you’re developing. Activiti provides an easy-to-use Java API that will
need some coding, but, in the end, you can easily embed it into an application or run
it on every platform you’d like.

As you can see, Activiti is not the only open source process engine capable of run-
ning BPMN 2.0 process models, but it’s definitely a flexible and powerful option, and
one that we’ll discuss in detail in this book. Now that you know the different compo-
nents of Activiti, let’s get the framework installed on your development machine.

The first thing you have to do is point your web browser to the Activiti website at
www.activiti.org. You’ll be guided to the latest release of Activiti via the download but-
ton. Download the latest version and unpack the distribution to a logical folder, such as

C\lactiviti (W ndows)
/usr/local/activiti (Linux or Mac QOS)

- . > (& docs
This isn’t the beginning of a long and complex = license.txt
installation procedure—with Activiti, there’s a | notice.txt
setup directory that contains an Ant build file @) readme.html
that installs the Activiti framework. The direc- (v Bsetup 00000]
tory structure of the distribution is shown in build.db.properties
figure 1.3. build.properties
Before you go further with the installation build.xml
procedure, make sure that you've installed a > [files
Java b SDK or higher, pointed the JAVA HOVE »] workspace

environment variable to the Java installation
directory, and installed a current version (1.8.x
or higher) of Ant (http://ant.apache.org).

8) (p // p g) Activiti distribution with the setup directo-
Shortcuts to the Java SDKand the Antframework v '2h g the Ant build.xml file as the main
are also provided on the Activiti download page. parts for the installation procedure.

Figure 1.3 The directory structure of the

10

CHAPTER 1 Introducing the Activiti framework

The last thing to confirm is that you have an internet connection available without
a proxy, because the Ant build file will download additional packages. If you’re behind
a proxy, make sure you’ve configured the Ant build to use that proxy (more info can
be found at http://ant.apache.org/manual/proxy.html).

When you open a terminal or command prompt and go to the setup directory
shown in figure 1.3, you only have to run the ant command (or ant denv. start). This
will kick off the Activiti installation process, which will look for a build.xml file in the
setup directory. The installation performs the following steps:

1 An H2 database is installed to /apps/h2, and the H2 database is started on
port 9092.

2 The Activiti database is created in the running H2 database.

3 Apache Tomcat 6.0.x is downloaded and installed to /apps/apache-tomcat-6.0.x,
where x stands for the latest version.

4 Demo data, including users, groups, and business processes, are installed to the
H2 database.

5 The Activiti REST and Activiti Explorer WARs are copied to the webapps direc-
tory of Tomcat.

6 Tomcat is started, which means that the Activiti Explorer and REST applications
are running.

7 Depending on on your OS, a web browser is started by the installation script with
the Activiti Explorer URL. On Windows 7, no web browser is started; in other ver-
sions of Windows, the web browser is only started if you have Firefox installed.

When the Ant script has finished, you have the Activiti tool stack installed and run-
ning. That’s not bad for about a minute of installation time. The Ant build file isn’t
only handy for installing Activiti but also for doing common tasks, like stopping and
starting the H2 database (ant h2.stop, ant h2.start) and the Tomcat server (ant
toncat.stop, ant tontat.start) and for re-creating a vanilla database schema
(ant internal.db.drop, ant i nternal.db.create). It’s worth the time to look at the
Ant targets in the Ant build file.

The installation of Activiti consists foremost of two web applications being
deployed to a Tomcat server and a ready-to-use H2 database being created with exam-
ple processes, groups, and users already loaded. Figure 1.4 shows the installation
result in a schematic overview.

Notice that we haven’t yet installed the Activiti Modeler and Designer applications.
These components aren’t part of the installation script and have to be installed sepa-
rately. We’ll discuss how to do this in chapter 3.

To verify whether the installation has succeeded, the Activiti Explorer, listed in
table 1.3, should be available via your favorite web browser. You can use the user
kernit with password kernit to log in. To work with the Activiti REST application, you
can use a REST client, such as the REST client Firefox plugin. You can read more about
the Activiti REST API in chapter 8.

Implementing your first process in Activiti 11

(Apache Tomcat h

activiti-rest activiti-explorer

- Figure 1.4 An overview of the installation

- Example processes, result of the Activiti tool stack, including a
database groups + users running Tomcat server and H2 database
with the two Activiti web applications al-
ready deployed.

Table 1.3 The URI of the Activiti Explorer and REST web applications available for you after the
installation of Activiti

Activiti Explorer http://localhost:8080/activiti-explorer The Explorer application can be used
to work with the deployed processes.
This is a good starting point from

which to try the example processes.

Activiti REST http://localhost:8080/activiti-rest/service | The REST application can be used to
gain remote access to the Activiti
Engine via a REST interface. For all
available REST services, you can
look in the Activiti user guide that
can be found on the Activiti website.

By trying the Activiti Explorer application, you can verify whether the installation was
successful. After logging in and clicking on the Process tab, you should get a list of the
examples processes that are deployed on the Activiti Engine.

Working with demo processes is fun, but it’s even better to try out your own devel-
oped business process.

Let’s try to implement a simplified version of a book order process. We could use the
Activiti Modeler to first model the process, and the Activiti Designer to implement
and deploy the process, but it’s better to start off with a BPMN 2.0 XML document for
learning purposes. There won’t be any drag-and-drop development, but get ready for
some XML hacking.

12

CHAPTER 1 Introducing the Activiti framework

We’ll keep things simple for now; if you don’t understand every construct already,
don’t be worried—we’ll discuss the BPMN 2.0 elements in more detail in chapter 2.

In the following listing, a starter for the BPMN 2.0 XML definition of the book
order process is shown with only a start event, an end event, and a sequence flow to
connect the two.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL"
t ar get Nanespace="http://ww. bpmwi t hactiviti.org">

<process id="si npl ebookorder" nanme="Order book">
<startEvent id="starteventl" nane="Start"/>
<sequenceFl ow i d="sequencef| owl"
sourceRef ="startevent 1" target Ref ="endevent 1"/>
<endEvent id="endevent1l" name="End"/>
</ process>
</ definitions>
A BPMN 2.0 XML definition always starts with a def i ni ti ons element that is identified
with a namespace from the OMG BPMN specification. Each process definition must
also define a namespace; here, you define a t ar get Nanmespace with the book’s website
as its attribute value. Activiti also provides a namespace, which enables you to use
Activiti extensions to the BPMN 2.0 specification, as you’ll see in chapter 4. You can
now run this simple process to test if you've correctly defined the process definition
and the environment setup in the right manner.

To test this process, you have to create a Java project in your favorite editor. In this
book, we’ll use Eclipse for the example description, because the Eclipse Designer is
only available as an Eclipse plugin. But it’s easier to download the source code from
the book’s website at Manning (or you can go directly to the Google code repository
at http://code.google.com/p/activitiinaction) and import the examples from there.

When you import the bpm- exanpl es project (used in this chapter), the Activiti
libraries have to be added to the Java build path. The book’s source code uses Maven
to retrieve all the necessary dependencies. The sample project’s code structure is
explained in detail in chapter 4 and appendix A. But, starting from Eclipse Indigo
(version 3.7.x), there’s good built-in Maven support, so it’s easy to get it working. Acti-
vate the Maven project capabilities by choosing the Configure-Convert to Maven Proj-
ect option in the project menu when you right-click on the bpmm- exanpl es project in
Eclipse. Eclipse will download all the necessary dependencies and configure the class-
path for you.

With the dependencies in place, you can look for the Si npl eProcessTest unit test
in the org. bprmwi t hacti viti. chapter 1 package of the bprm- exanpl es project. The
Si npl eProcessTest class contains one test method, shown in the following listing.

Implementing your first process in Activiti 13

public class SinpleProcessTest {

@est
public void startBookOrder() {
ProcessEngi ne processEngi ne = ProcessEngi neConfi guration Creates
. creat eSt andal onel nMenPr ocessEngi neConfi guration() F Activiti
. bui | dProcessEngi ne(); engine

Runti meServi ce runtimeService =
processEngi ne. get Runti meServi ce();

Reposi toryService repositoryService =
processEngi ne. get Reposi t oryServi ce();

repositoryService. creat eDepl oyment ()

. addd asspat hResour ce(/ erloys
" : " simplebookorder
bookor der. si npl e. bpmm20. xm ") o
) process definition
.depl oy();
Processl nst ance processl nstance = Starts bookorder
runti meService. start Processl nst anceByKey(process instance
"si npl ebookor der");

assert Not Nul | (processlnstance.getld());
Systemout.println("id " + processlnstance.getld() + " " +
processl nstance. get ProcessDefinitionld());
}

}

In just a few lines of code, you’re able to start up the Activiti process engine, deploy
the book order process XML file from listing 1.1 to it, and start a process instance for
the deployed process definition.

The process engine can be created with the ProcessEngi neConfiguration @0,
which can be used to start the Activiti engine and the H2 database. In this case, the
process engine is started with an in-memory H2 database. There are different ways to
start up an Activiti engine, and we’ll look at the options in detail in chapter 4.

Activiti can also run on database platforms other than H2, such as
Oracle or PostgreSQL.

The next important step in listing 1.2 is the deployment of the bookorder.sim-
ple.bpmnZ20.xml file from listing 1.1. To deploy a process from Java code, you need to
access the Reposi t or ySer vi ce from the ProcessEngi ne instance. Via the Reposi t or y-
Ser vi ce instance, you can add the book order XML file to the list of classpath resources
to deploy it to the process engine (). The process engine will validate the book order
process file and create a new process definition in the H2 database.

It’s easy to start a process instance based on the newly deployed process definition
by invoking the startProcesslnstanceByKey method on the RuntineService
instance, which is also retrieved from the ProcessEngine instance. The key
bookor der, which is passed as the process key parameter, should be equal to the pro-
cess i d attribute from the book order process of listing 1.1. A process instance is

14

CHAPTER 1 Introducing the Activiti framework

stored to the H2 database, and a process instance ID that can be used as a reference to
this specific process instance is created. This identifier is very important.

You can now run the unit test and the result should be green. In the console, you
should see a message like this:

id 4 sinplebookorder:1:3

This message means that the process instance ID is 4 and the process definition that
was used to create the instance was the si npl ebookor der definition with version 1 and
the process definition database ID is 3.

Now that we’ve covered the basics, let’s implement a bit more of the book order
process; then you can use the Activiti Explorer to claim and finish a user task for your
process.

It would be a shame to finish chapter 1 with an example that only contains a start and
an end event. Let’s enhance your simple book order process with a script task and a
user task so you can see a bit of action on the Activiti engine. First, the script task will
print an ISBN number that will be provided as input to the book order process when
it’s started in a unit test (like this example) or in the Activiti Explorer. Then, a user
task will be used to manually handle the book ordering.

Activiti allows you to use the scripting language you want, but Groovy is supported
by default. We’ll use a line of Groovy to print the ISBN process variable. The following
listing shows a revised version of the book order process.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
t ar get Namespace="ht t p: // www. bprmwi t hacti viti.org">

<process id="bookorder" nanme="Order book">
<startEvent id="starteventl" name="Start"/>
<sequenceFl ow i d="sequencef | owl" nane="Val i date order"
sourceRef ="startevent 1" target Ref ="scri pttaskl"/> Defines
<script Task id="scripttaskl" QJ script task
name="Val i date order"
scri pt For mat =" gr oovy" >

<script> Prints
out:println "validating order for isbn " + isbhn; <1—‘ ISBN
</ scri pt>

</ scri pt Task>
<sequenceFl ow i d="sequencef | ow2" nanme="Sending to sal es"”
sour ceRef ="scri pttaskl" target Ref ="usertaskl1"/> Defines
<user Task id="usertaskl" name="Work on order"> <1 user task
<docunent at i on>book order user task</documentation>
<potenti al Owner >
<r esour ceAssi gnment Expr essi on>
<f or mal Expr essi on>sal es</ f or mal Expr essi on>
</ resour ceAssi gnrment Expr essi on> ﬁ
</ pot enti al Omner >

Assigns task to
sales group

Implementing your first process in Activiti 15

</ user Task>
<sequenceFl ow i d="sequencef| ow3" name="Endi ng process"
sour ceRef ="usertaskl" target Ref="endevent1"/>
<endEvent id="endevent1" name="End"/>
</ process>
</ definitions>

With the two additional tasks added to the process definition, the number of lines in
the XML file grows quite a bit. In chapter 3, we’ll look at the Activiti Designer, which
does the BPMN 2.0 XML generation for you and provides a drag-and-drop type of pro-
cess development.

The script task contains a out: println variable ¢, which is a Groovy reserved
word within the Activiti script task for printing text to the system console. Also
notice that the i sbn variable can be used directly in the script code without any addi-
tional programming.

The user task contains a potential owner definition, which means that the task
can be claimed and completed by users that are part of the group sales. When you run
this process in a minute, you’ll see in the Activiti Explorer that this user task is avail-
able in the task list for the user ker ni t , who is part of the sal es group.

Now that you’ve added more logic to the process, you also need to change your
unit test. One thing you need to add is an i shn process variable when starting the pro-
cess. To test whether the user task is created, you also need to query the Activiti engine
database for user tasks that can be claimed by the user kerm t.

Take alook at the changed unit test in the next code listing. You can again find this
unit test class in the bpm- exanpl es project in the or g. bprmwi t hactiviti.chapterl
package.

public class BookOrder Test {

@est
public void startBookOrder() {
ProcessEngi ne processEngi ne = ProcessEngi neConfi guration
. creat eSt andal onePr ocessEngi neConfi gurati on()
. bui | dProcessEngi ne();

RepositoryService repositoryService =
processEngi ne. get Reposi t oryServi ce();
Runti neService runti meService =
processEngi ne. get Runti meServi ce();
IdentityService identityService =
processEngi ne. getldentityService();
TaskServi ce taskService = Gets TaskService
processEngi ne. get TaskSer vi ce(); | instance
reposi toryServi ce. creat eDepl oynent ()
. addCl asspat hResour ce(" bookor der. bpmm20. xm ")
. deploy();

Map<String, Object> variableMap =
new HashMap<String, Object>();

16

CHAPTER 1 Introducing the Activiti framework

vari abl eMap. put ("i sbn", "123456"); St'arts process
identityService. set AuthenticatedUserld("kermt"); with variable
Processl nstance processlnstance = Sets
runti meServi ce. start Processl nst anceByKey(authenticated
"bookorder", vari abl eMap); user to kermit
assert Not Nul | (processl nstance. getld());
Li st <Task> taskLi st = taskService. createTaskQuery() Finds tasks
. taskCandi dat eUser ("kernmit") available for
list() kermit

assert Equal s(1, taskList.size());
Systemout.println("found task " +
taskLi st. get (0).get Name());

t askServi ce. conpl et e(t askLi st.get(0).getld());
}

}

The BookOr der Test unit test starts a process instance with a Map of variables ¢ that
contains one variable with a name of i sbn and a value of 123456. In addition, when
the process instance has been started, a TaskServi ce instance is used to retrieve
the tasks available to be claimed by the user ker mi t . Because there’s only one process
instance running with one user task, you test that the number of tasks retrieved is 1.

Also note that you’re not using the in-memory database anymore but have
switched (createStandal oneProcessEngi neConfiguration) to the default stand-
alone H2 database that’s installed as part of the Activiti installation procedure. This
means that, before running the unit test, the H2 database should be running (ant
h2.start or ant denp.start). Now you can run the unit test to see if your changes
work. In the console, you should see a similar output to
validating order for isbn 123456
found task Work on order
The first line is printed by the Groovy script task in the running process instance. The
last line confirms that one user task is available for claim for the user kermi t . Because
a user task is created, you should be able to see this task in the Activiti Explorer. Con-
firm that Tomcat has been started (ant tontat.start or ant denp.start).

Now, point your browser to http://localhost:8080/activiti-explorer and log in with
the user kernmit and the same password. When you click on the link Queued, you
should see one task in the group Sal es. When you click on this Sal es group, you
should see a screen with one user task with the name of Work on Order like the
screenshot shown in figure 1.5.

For the sake of completeness, you can claim the user task and see that it becomes
available in the Inbox page. There you can complete the task, which triggers the pro-
cess instance to complete to the end state. But, before you do that, you can click on
the process link, Part of process: ‘Order Book’, to see details about the running pro-
cess instance, as shown in figure 1.6.

In the process instance overview, you can get the details about the user tasks that
aren’t yet completed and the process variables of the running instance. The Activiti

Implementing your first process in Activiti 17

< ActivitiExplorer

nbox My Tasks Queued B Involved Archived] Wow Task Events

[C] Work on order Work on order
53] No due date = Medium Priority () Created moments ago

Clalm | book order user task

PBan of process: ‘Order book

People -
a No owner |_Transfer a No assignes | Reassign

Subtasks +
No subtasks defined for this task

Related content +*

No related content attached for this task

Figure 1.5 A screenshot of the Activiti Explorer showing the user task of the book order process.

< ActivitrExplorer

My instances Process definitions ¥ Doleto

4% order book (413)

Order book (413)
@ Started moments ago
Tasks
NAME PRIORITY ASSIGNEE DUEDATE CREATED COMPLETED
D Work on order 50 ﬁ Kermit the Frog moments ago
Variables
NAME VALUE
isbn 123456

Figure 1.6 A screenshot of the Activiti Explorer application showing the details of a running process
instance with open user tasks and the process instance variables.

Explorer contains a lot more functionality, which we’ll discuss throughout the book,
starting in chapter 3.

This completes our first journey in the Activiti framework. In the coming chapters,
we’ll take a more detailed look at the Activiti tool stack and explore how to use Activiti’s
Java API to, for example, create processes or retrieve management information. But,
first, we’ll look more closely at BPMN 2.0.

18

CHAPTER 1 Introducing the Activiti framework

In this chapter, we started with an introduction into Activiti, including its history and
its competitors. We also got acquainted with the Activiti tool stack and you were able
to implement a simple book order process using a script and user task. You also
started the Activiti process engine, deployed a book order process, started a process
instance, and did some unit testing on it with a couple lines of Java code.

It’s obvious that Activiti provides you with a powerful API and tool stack to run your
processes. But how can you model and implement these processes? The BPMN 2.0
specification is the foundation for the Activiti Engine, and, to prepare for the exam-
ples in the rest of the book, we’ll discuss the details of BPMN 2.0 in the next chapter.

This chapter stands out from the others in this book because it doesn’t contain a
single code example. To get your head around developing BPMN 2.0 processes, it’s
necessary to have a thorough understanding of BPM and the main elements of the
BPMN 2.0 palette. If you’re already familiar with BPM and BPMN 2.0, feel free to
skip this chapter and move on to exploring the Activiti framework in chapter 3.

The definition of business process management (BPM) is broad, and BPM vendors
are broadening the term even further every day. Because I can’t (and don’t want) to
cover the full spectrum of what’s covered by BPM, this chapter defines the boundaries
that we’ll cover in this book. You’ll find that this book isn’t about, for example, the
theory behind business processes, business rules, business activity monitoring, and
straight-through processing. Rather, this book will show you how to develop and
deploy business processes with BPMN 2.0 and the Activiti process engine.

19

20

CHAPTER 2 BPMN 2.0: what’s in it for developers?

But, before we start implementing code examples (in chapter 4), we’ll first take a
look at the topic of BPM. Once you have a good sense of this broad world, we’ll look at
the BPMN 2.0 specification and see why it’s such an important industry standard. Then,
the theoretical foundation for this book is presented, and we’ll look at BPMN 2.0 purely
from a developer’s perspective.

I've already mentioned that BPM covers a wide spectrum. That’s because BPM has an
ambitious goal: improving processes continuously and promoting efficiency and effec-
tiveness. You can imagine that achieving that goal involves a lot of different roles and
players, including management, end users, business analysts, information analysts,
architects, developers, and system controllers.

Goals like promoting efficiency and effectiveness are typical targets that the man-
agement of an organization tries to achieve. BPM can be regarded as a management
discipline and, therefore, it’s obvious that these kinds of goals are part of the targets
set by implementing BPM. In this book, although we won’t focus on the management
side of BPM, I fully comprehend the importance of it. We’ll concentrate on the techni-
cal aspects of BPM with process engines and business process management suites.

Our starting point and the central component within BPM is a business process.
Simple examples of business processes are a vacation request process or a book order
process. Such a process consists of several activities that eventually result in your
receiving a vacation request confirmation or the book you bought. Let’s look at a sam-
ple book order process in figure 2.1.

Process payment Payment has

been settled

Book in stock

Receive book Check stock

order request

Ship book

Book not in stock
Order book from
publisher

Figure 2.1 A sample book order business process that processes book payment and eventually ships
the book to the customer

Taking a closer look at BPM 21

The book order business process consists of six activities that may need to be exe-
cuted. Once the book order request is received, the payment is processed to make
sure the money is received, and the stock of the book is checked. When the book is in
stock, it’s shipped to the customer and a confirmation email is sent. But, when the
book isn’t in stock, it needs to be ordered from the publisher before it can be shipped.
So the “Order book from publisher” activity is optional; it’s only executed when the condi-
tion “Book not in stock” is met.

As you can see, this business process is fairly simple—and incomplete. For exam-
ple, what happens when the process payment fails? Error handling is one of the chal-
lenging aspects of developing a business process. Dealing with error handling is
covered in chapter 7.

Another element that the example doesn’t cover is how the shipping process will
be triggered when a book is ordered from a publisher and arrives at the bookstore.
Because there are a lot of additional activities involved, like sending the order to the
publisher and following up with the publisher when the book doesn’t arrive on time,
the “Order book from publisher” activity could be modeled as a subprocess. Subpro-
cesses are a good solution to abstract a main process flow from all the details and to
structure process logic for the purpose of reuse. In chapter 6, we’ll look into subpro-
cesses in more detail.

To be able to implement even a simple business process like the example in fig-
ure 2.1, a number of steps have to be performed. We’ll now look at these important
steps in the BPM life cycle.

Creating a fully functional business pro-
cess involves five steps, often referred to Optimization Design
collectively as the BPM life cycle, shown

in figure 2.2.

Each of these five steps represents an Business Process
. o Management
important development phase in imple- Life Cycle
menting a successful process solution:
= Design—The first step consists of Monitoring Modeling
activities that define the business @

process: identifying high-level Execution

activities, discussing possible
Figure 2.2 The five steps of the business process

. management discipline: design, modeling, execu-
service level agreements, and tjon, monitoring, and optimization

specifying process details such as
actors, notifications, and escalations.

organizational changes, defining

= Modeling—In this step, the business process is fully specified and validated. The
process flow is formalized, for example, by using BPMN; additionally, process
variables are defined and candidate services that can be used to execute an

22

CHAPTER 2 BPMN 2.0: what’s in it for developers?

activity are identified. To validate the business process, “what-if” scenarios are
performed with process simulation.

= Execution—The modeled business process is implemented in a business process
application, often using a business process management system (BPMS) such as
Activiti. You still need to add technical details to the business process before you
can execute it. The process is implemented with a process language like WS-
BPEL or BPMN 2.0.

= Monitoring—The processes are monitored for business goals that are defined by
key performance indicators (KPIs). Examples of KPIs are “the average number
of orders received in a day should be at least 30” and “the time to send a pro-
posal to a customer based on a web inquiry shouldn’t exceed eight hours.”

= Optimization—Based on new insights, changing business requirements, and
monitoring results, the implemented business processes will need to be opti-
mized. When the optimization phase is done, the business process goes into the
design phase again and the cycle is completed.

The BPM life cycle shows that implementing business processes is an ongoing process
due to the everchanging business environment and need for optimization. How long
it takes to walk through all five steps of the BPM life cycle depends greatly on the busi-
ness environment and the ability of a business to execute. In some businesses, it may
take years to complete the cycle; in others, it can be done in weeks or even days. In
this book, we’ll focus on the execution step of the BPM life cycle because this book is
aimed at running business processes on the Activiti process engine.

To get processes implemented and deployed on the Activiti Engine, you need a
thorough understanding of the BPMN 2.0 language. Let’s see how the BPM industry
evolved to support the BPMN 2.0 specification as the dominant process language.

Now that you have a good grasp of BPM terminology, it’s time to look at a language that
implements a business process: Business Process Model and Notation (BPMN) 2.0.
Before we start looking at the BPMN 2.0 language constructs, though, it’s good to know
a bit about the history of the Object Management Group (OMG). OMG is a well-known
standardization organization that develops and maintains the Unified Modeling Lan-
guage (UML) standard, for example.

Right! From a developer’s perspective, the first industry standard for implementing
business processes was the Web Services Business Process Execution Language (WS-
BPEL) specification. Although BPMN 1.0 had been standardized and was widely used
by information and business analysts from 2004 on, WS-BPEL was the first BPM lan-
guage that was used by developers to run processes on a process engine. In figure 2.3,
the timeline of the WS-BPEL standard is shown.

Evolution to BPMN 2.0 23

2002 BEA, IBM,
Microsoft

2007 IBM, SAP and
others

2005 IBM, SAP

BPEL4People
white paper

BPEL4People
specification

BPEL4WS 10

2003 BEA, IBM,
Microsoft, SAP, Siebel

2007 OASIS

BPELAWS 1.1 WS-BPEL 2.0

2002 2003 2004 2005 2006 2007 2008

Figure 2.3 The timeline of the WS-BPEL 2.0 standard, the successor to the BPELAWS, WSFL, and XLANG
process languages

The timeline shows that we already had executable process languages before 2002 with
IBM’s web services flow language (WSFL) and Microsoft’s XLANG specification. But,
because other software vendors didn’t use these languages, there was a traditional ven-
dor lock-in scenario. It was 2002 before BEA, IBM, and Microsoft made the business pro-
cess execution language for web services (BPEL4WS) publicly available. The purpose of
this team of software vendors was to standardize version 1.1 of BPEL4WS at OASIS.
In 2007, OASIS finally standardized the specification and renamed it WS-BPEL 2.0.

Although the WS-BPEL 2.0 standard was quite successful at defining an execution
model for business processes, important constructs were lacking. One important miss-
ing elementis human task or workflow support, which is used to allocate work to a group
of people or an individual. In figure 2.3, the BPEL4People specification is included,
because this add-on specification to WS-BPEL 2.0 does provide this functionality. But
BPEL4People isn’t standardized and it isn’t fully embraced by BPM software vendors.

Another construct that’s lacking in WS-BPEL is cyclic control flow. That sounds a bit
complex, but it’s nothing more than looping back to a previous activity in a process.
In WS-BPEL, this can’t be done (other than by using a while loop with all kinds of diffi-
cult conditional logic). But, let’s not stay too long in the past; let’s look at the new
standard for implementing business processes, BPMN 2.0.

Although WS-BPEL was standardized in 2007, BPMN 1.0 was already standardized by the
Business Process Management Initiative (BPMI) in 2004. BPMN 1.x is widely used as a
modeling notation for business processes. As a process developer, you may have received
a BPMN 1.x model for requirements or documentation purposes from information or

24

CHAPTER 2 BPMN 2.0: what’s in it for developers?

2004 BPMI

BPMN 1.0

2009 OMG
BPMN 1.2

2008 OMG

BPMN 1.1

2011 OMG

BPMN 2.0

2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 2.4 The timeline of the BPMN 2.0 standard, which was the successor to the BPMN 1.x modeling
notations

business analysts. But, then you had to convert those models into an execution lan-
guage, such as WS-BPEL.

Now, as figure 2.4 shows, we have BPMN 2.0 “to the rescue.”

Now we have a standard for modeling business processes and implementing a pro-
cess execution model. There’s a real opportunity for business-oriented individuals
and developers to speak with the same vocabulary and share business models without
the need for conversion.

And, because the BPMN 2.0 standard provides an opportunity to bring business
and IT closer together, there’s a real need for collaboration tools. A business process
will be defined and implemented by a lot of people with different backgrounds, and
it’s a real challenge to provide a toolset that can enable everyone to do their jobs.

Now that you know a bit about the history of BPMN 2.0, we can look at the ele-
ments of the language itself and start modeling.

You only need to take a quick look at the BPMN 2.0 specification at the Object Manage-
ment Group (OMG) website (www.omg.org/spec/BPMN) and it becomes obvious that
it’s a rather substantial specification, filling around 550 pages and including over 100
BPMN 2.0 constructs. It can be overwhelming to get started with BPMN 2.0 and try to
comprehend the basics of the specification. Therefore, it’s important to start by struc-
turing the BPMN 2.0 into different groups of modeling detail.

An important advocate of grouping the constructs is Bruce Silver, author of BPMN
Method & Style. The book is a good read and a great guide to getting started with
modeling BPMN 1.x and 2.0 processes. In addition, Silver groups the BPMN constructs
into three different levels:

Evolution to BPMN 2.0 25

= Level 1 is described as descriptive BPMN, which can be used for high-level mod-
eling with a restricted palette of BPMN constructs.

= Level 2 can be used for detailed modeling, including event and exception han-
dling, and is described as analytical BPMN. It uses a wide range of BPMN constructs.

= Level 3 is the execution model of BPMN (which is new in BPMN 2.0), which can
be deployed on a process engine.

With these different levels in mind, it’s easier to start with BPMN by using the level 1
group of BPMN constructs.

Another important advocate of categorizing BPMN constructs is the Workflow Man-
agement Coalition (WIMC). The WIMC, and Robert Shapiro in particular, grouped the
BPMN 2.0 constructs into four different categories (see the PowerPoint presentation
at http://bit.ly/qYRHiIQ for more details), shown in figure 2.5.

The categorization of the WIMC, as shown in figure 2.5, is similar to the levels cre-
ated by Silver. The descriptive category can be compared to level 1, DODAF (an archi-
tecture framework of the United States Department of Defense) to level 2, and the
complete palette to level 3. The main difference is the simple category, which can be
used for high-level modeling of business processes. Even then, you can question
whether a vital construct of business process modeling, such as pool and lane,
shouldn’t belong to the simple category as well. But, it’s obvious that Silver’s level 1

e)
Complete
Plus 50 elements
4 I
Dodaf
Plus 29 elements
4)
Descriptive
4 N
Simple
Pool TextAnnotation
StartEvent Lane Association
EndEvent UserTask DataAssociation
SequenceFlow ServiceTask DataStore
Task Re-usable SubProcess MessageStartEvent
SubProcess MessageFlow MessageEndEvent
Exclusive gateway DataObiject TimerStartEvent
Parallel gateway Datalnput TerminateEndEvent
\ / DataOutput
o)
o /
o)

Figure 2.5 A categorization of BPMN 2.0 constructs by the WfMC. The simple category can be used
for high-level business modeling without a lot of restrictions. The descriptive category can be used for
more detailed modeling by business and information analysts.

26

CHAPTER 2 BPMN 2.0: what’s in it for developers?

palette of and the descriptive category of WIMC are better starting points than the
complete palette of the BPMN 2.0 standard.

Now that you understand the history of BPMN 2.0, it’s time to start looking at the
BPMN constructs and do some modeling!

To become familiar with the important constructs of BPMN, we’ll first start with a high-
level business process model before we design a more detailed process model with
constructs like error events, similar to the different levels and categories of WIMC
(shown in figure 2.5) and Silver’s book. Level 3 of Silver’s categorization is the imple-
mentation of the process in BPMN 2.0 XML; we’ll skip that step for now and stick with
the modeling levels.

In section 2.1, we looked at a sample book order business process. In figure 2.1, the
book order process was modeled without a real model notation. With the simple or
level 1 palette in mind, we’ll take another look at the book order process and convert
it into a real BPMN 2.0 business process model.

This means that we have to add a more formal notation to describe the book order
process. In the BPMN 2.0 book order process, we’ll use start and end events, parallel
gateways, pools, and tasks. Figure 2.6 shows the book order process, modeled with a
simple subset of the BPMN 2.0 palette.

é s
% —-<+ > -19 > — L)
8
E 4
2|z l _ , l
2

Figure 2.6 A high-level BPMN 2.0 model describing the book order process with a simple subset of the
BPMN 2.0 construct palette

Introducing BPMN 2.0 from a developer’s viewpoint 27

Before discussing the process in more detail, let’s first look at the individual BPMN 2.0

constructs in table 2.1.

Table 2.1 Overview of the BPMN 2.0 constructs used in figure 2.6

Process
payment

. Sales New book order

Start event

End event

Pool

Lane

Task

Parallel gateway

Exclusive gateway

Message flow

Sequence flow

A start event is the trigger to start a new process instance.

An end event is the last step before the process instance is
completed. Note that the end event has a thicker circular bor-
der than the start event.

A pool represents the container for the activities of a
process. Best practice is to use the process name for the
pool name.

A lane represents a role within a process model. In most
cases, this is an organizational unit or a role definition.

A task is a piece of work that has to be executed as part of
the process definition. A task can be an automated activity or
a manual activity.

A parallel gateway is used to indicate that activities can be exe-
cuted simultaneously or that all incoming activities must be
completed before the process progresses to the next activity.

An exclusive gateway is used for conditional logic. Based on a
condition, only one of the outgoing sequence flows will be fol-
lowed.

A message flow is used to send a signal or message from
one pool to another. It may not be used to connect activities
within one pool.

A sequence flow connects activities, gateways, and events to
each other within one pool. Therefore, It represents the orches-
tration of the process definition.

28

CHAPTER 2 BPMN 2.0: what’s in it for developers?

Now that you know the meaning of the individual BPMN 2.0 constructs, let’s walk
through the full process model. One of the eye-catching differences between the
models in figures 2.1 and 2.6 is the use of pools and lanes. In figure 2.6, there are
three pools: Customer, New book order, and Publisher. The pools describe either
the business process itself or different external participants that interact with the
business process. In the New book order pool, there are two lanes that characterize
the different organizational units within the bookstore company. Because the book-
store in this example is a small company, there are only sales and inventory organiza-
tional units.

In this business process model, we focus on the bookstore, but we could also
include the process activities that are necessary for the publisher to complete the
order process. The process begins with a customer order request, pictured here as a
message flow (the dashed line) initiating a start event (a circle).

When the process is started, two tasks should be completed: the process payment
and the check stock tasks. Because these tasks can be executed in parallel, a parallel
gateway is modeled after the start event. After the stock is checked, an exclusive gate-
way is used for the conditional logic of the book being in stock or not. When the book
isn’t in stock, it’s ordered from the publisher by an additional task.

When the book is in stock, either because it was already or because there was an
extra order sent to the publisher, the book is ready for shipment. But, before the book
can be shipped, we must be sure that the payment has been successfully completed. A
parallel gateway is used to join the tasks, meaning that the process won’t go further
until both these tasks have been completed.

After the parallel gateway, two additional tasks are executed to inform the cus-
tomer about the arrival date and ship the book to the customer before the process is
completed by an end event. As you can see, the high-level model doesn’t contain stuff
like error handling or the definition of the type of a task; that’s what we’ll add in the
next section.

Although a book ordering process may seem simple at first, when looking at it in more
detail, it’s clear that a lot of process logic is needed. In this section, we’ll focus on
detailing the process payment task by adding validation and error-handling logic. This
also means we’ll need BPMN 2.0 constructs that are part of the descriptive or level 2
palette. Figure 2.7 shows the subprocess payment, which is a more detailed model of
the process payment task from figure 2.6.

As you can see, we’re using a number of additional BPMN 2.0 constructs in the pro-
cess model in figure 2.7. Let’s first look at these extra elements’ definitions in table 2.2.

In figure 2.7, the tasks have been made more specific by adding type identifiers.
For example, the invoice credit card task is modeled as a service task, because the
validity of the credit card can be checked by invoking a web service. There’s also a user
task to indicate that the task has to be performed by a human. The contact customer

Introducing BPMN 2.0 from a developer’s viewpoint

' ™
Process payment

&

Invoice credit
card
Invoice ok?

Bad credit card

&

Contact
customer
Resolved?

Reject order

i Bad credit card

No

Terminate order

Figure 2.7 The extracted process payment subprocess from the book order process model.
The subprocess shows the use of end error and start error events and a terminate end event.

Table 2.2 Overview of the additional BPMN 2.0 constructs used in figure 2.7

End error event An error end event is a specific kind of end
event, which can be used to throw an error
Bad credit card inside the process model definition.
Start error event A start error event can be used to catch a
@ specific error thrown by an error end event,

Bad credit card such as one within a subprocess.

Intermediate error event | An intermediate error event can be used to
catch a fault on a task or a subprocess
Reject order boundary.

CHAPTER 2 BPMN 2.0: what’s in it for developers?

Table 2.2 Overview of the additional BPMN 2.0 constructs used in figure 2.7 (continued)

end event that causes the process to be ter-
minated. If a terminate end event is used in a
subprocess, it only causes the subprocess to
be terminated, not the parent process.

@ Terminate end event A terminate end event is a special kind of

f STV Service task A service task is a specific type of task that
% represents an automated activity. For exam-
Invoice credit ple, a service task could be a web service

card call or a Java class invocation.
User task A user task is a specific type of human task
Cg] that is performed via a computer interface. A
Contact user task can be claimed and completed by a
customer configured individual or group of users.

Subprocess A subprocess is a compound activity that can
Process payment contain multiple other activities, including
tasks, gateways, and events. A subprocess
can be embedded in the parent process or be
a standalone process model that can be
invoked by the parent process via a call activity.

Text annotation A text annotation can be used to add docu-
mentation to specific elements of the pro-
cess model.

Terminate order

activity is a user task because an employee of the bookstore has to get in contact with
the customer to solve the bad credit card problem.

In the process payment subprocess shown in figure 2.7, you can see a couple of
other new BPMN 2.0 constructs. First, note that a subprocess always starts with a start
event. To begin, the credit card information is validated by invoking an automated
task. Then you check the outcome of this credit card validation with an exclusive gate-
way. If the credit card validation is successful, the payment is finished and the subpro-
cess is ended.

If the credit card validation doesn’t succeed, an error end event throws an excep-
tion. This exception is caught within the subprocess by the error start event that’s han-
dling the bad credit card exception. In this case, the customer is contacted personally
by a bookstore employee to determine whether the credit card information was
entered incorrectly or if the customer can pay in another way. If the payment can be

Summary 31

settled with the customer, a normal end event in the exception handler is reached and
the subprocess is completed.

But, if the payment can’t be settled, another error end event throws a reject
order exception. This exception isn’t handled within the subprocess, but with an
error boundary event. This error boundary event handles the exception by forward-
ing it to a terminate end event, which causes the whole book order process to be ter-
minated immediately.

We covered many of the most important parts of the BPMN 2.0 palette in this sec-
tion, but we haven’t discussed the full palette, and by no means have we talked about
every BPMN 2.0 construct in detail. Nevertheless, this should provide you with a good
start in BPMN 2.0 modeling, and we’ll be discussing more details of BPMN 2.0 through-
out the rest of the book. Now it’s time to get more familiar with the different compo-
nents of the Activiti framework.

We started this chapter with a gentle introduction to business process management
and BPM vocabulary. You also saw a bit of history when we talked about WS-BPEL,
BPMN 1.x, and, eventually, BPMN 2.0. At that point, we took a closer look at the way
you can do modeling with BPMN 2.0, and we looked at the different categorization
strategies WEMC and Bruce Silver use to make BPMN 2.0 understandable and user
friendly for different users.

Finally, we got acquainted with a large set of BPMN 2.0 elements with a high-level
process model and a detailed subprocess. You now have a good enough foundation in
BPMN 2.0 to work with the examples in the remainder of this book. But, before we
dive deeper into developing BPMN 2.0 processes, we’ll first look at the different com-
ponents of the Activiti tool stack in the next chapter.

Now that you know more about what BPMN 2.0 can do for you in terms of develop-
ing, it’s time to take a closer look at the Activiti tool stack. We’ll start by looking in
more detail at the Activiti tools that you saw in the first chapter, and you’ll learn a
bit about the background of where the tools come from. Then, one by one, we’ll
look at all the tools and see them in action!

We’ll start with the Activiti Modeler. You’ll model a simple process definition as
a means to get started in modeling business processes with the Activiti Modeler.
Then, we’ll take a look at Activiti’s Eclipse-based development environment, the
Activiti Designer. You’ll implement a simple process and unit test it on a local Activ-
iti Engine distribution. You’ll also import the process model created in the Activiti
Modeler into the Activiti Designer.

32

Working with the Activiti Modeler 33

With the Activiti Explorer, we’ll take a look at how to deploy process definitions,
start new process instances, and work with user tasks. The Activiti Explorer provides
an easy-to-use web interface that can work with the Activiti Engine—without the need
to write code.

We’ve got lots of ground to cover—time to get started with the Activiti Modeler!

To run processes on a runtime environment like the Activiti Engine, you first need to
define a business process. You could do this by using the Activiti Designer Eclipse tool
or by writing the BPMN 2.0 XML yourself. But, as you saw in the first chapter, BPMN 2.0
creates a real opportunity for business-oriented people and developers to use the
same vocabulary.

Therefore, a typical workflow of defining a business process is started with busi-
ness-oriented people modeling their processes graphically, for example, with Activiti
Modeler. Let’s see how Modeler provides the means to do this.

The Activiti Modeler is an add-on component to the core Activiti framework and has
to be deployed via a separate installation script. We’ll look at how to perform the
installation by building from the sources, but you can also download the WAR deploy-
able directly from the book’s website (www.bpmnwithactiviti.org).

The Activiti Modeler sources are available from the Signavio Core Components
Google repository (http://code.google.com/p/signavio-core-components). First, you
have to check out the sources. In the root directory, you can find a build.properties
file that needs to be edited to get the Activiti Modeler application. The following code
snippet shows the values that need to be changed:

versi on=1-0-05.9
war = signhavi-ocoreactiviti-nodeler
configuration = defaultActiviti
fileSystenRootDirectory = e/repo../../../workspace/
activiti-nodel er-exanpl es
Once you’ve changed the Properties file, you can start the Ant build script with the
following command:

ant build-all-in-one-war

This will create a target/activiti-modeler.war file that can be deployed in the webapps
directory of the Tomcat application that’s part of the Activiti installation directory.
When you copy that WAR file and start up the Tomcat container, you’ll be able to start
the Activiti Modeler application by pointing your web browser (Firefox and Chrome
are supported; Internet Explorer isn’t supported) to http://localhost:8080/activiti-
modeler. You should see the startup screen as shown in figure 3.1.

With the Activiti Modeler installed, we can now take a look at how you can start
modeling new processes.

34

CHAPTER 3 Introducing the Activiti tool stack

& ActivitiModeler mws signavio 2

Figure 3.1 The Activiti Modeler’s startup screen showing the example processes that are part of the
Activiti distribution

Let’s take the simple bookstore process from chapter 2 and model it in the Activiti
Modeler to see how the tool works. Point your browser at http://localhost:8080/activ-
iti-modeler again. Browse a bit through the examples that you see in your workspace
and investigate how to create a folder structure in the Modeler to organize your mod-
els. You can find the folders you create with the Modeler on the filesystem in the Activ-
iti installation directory under workspace/activiti-modeler-examples. When you take a
look in this directory, you’ll see that the directories already contain sample BPMN 2.0
models created with the Activiti Modeler.

Now let’s design a basic process with the Activiti Modeler, save it, and check out
how this process is stored in the model repository. Again, you’ll use the basic book
ordering process example from chapter 2 and implement the process model as shown
in figure 3.2.

Start by choosing New > Business Process Diagram (BPMN 2.0) from the top left
corner of the Activiti Modeler startup screen. When your browser finishes loading the

» Process
payment
O—D<|— Seg;lrisra\?%l;wth Send shipment
&
m Prepare book
™ for shipment

Figure 3.2 The sample book order process that you’ll model with the Activiti Modeler

Working with the Activiti Modeler 35

modeling page, you’ll see all of the BPMN constructs that the Activiti Modeler sup-
ports in the shape repository in the left pane. You can now start dragging and drop-
ping the BPMN constructs onto the modeling pane.

The Activiti Engine doesn’t support all of these BPMN elements.
To find out which of the BPMN elements the Activiti Engine supports, you
can look at appendix B or the Activiti user guide (see www.activiti.org/
userguide).

Let’s begin with a start event, which you can find in the
Start Events folder of the palette. Drag and drop it onto
the modeling pane. When you hover over the start
event, a context menu appears, as shown in figure 3.3.
This menu can help you to quickly add a new BPMN ele-
ment to your process model. Let’s pick the exclusive
gateway construct.
In the book order process, you have the “Process pay- Figure 3.3 A context menu

ment” and the “Prepare book for shipment” tasks, which ~ from the modeling pane in the
Activiti Modeler, which enables

.] you to quickly draw tasks, gate-
to change the exclusive gateway into a parallel gateway. ways, events, and sequence

You can do that by clicking on the transform shape icon flows
when hovering over the Exclusive Gateway and then

should be executed in parallel (see figure 3.2). You need

choosing the Parallel Gateway from the pop-up menu, as shown in figure 3.4.

Now you can add a new task, “Process payment,” and change its type by opening
the attributes view on the right side of the screen, selecting the task in the modeler
pane, and browsing in the Properties view to add a TaskType of type User (figure 3.5).

You can now complete the book order process model (refer to figure 3.2). When
you’ve finished modeling the book order process, you can save the diagram to the
default file repository, located in the Activiti installation directory under workspace/
activiti-modeler-examples. Take a look
at the BPMN 2.0 file that’s saved in
your filesystem in the Activiti Modeler
repository and you’ll see that, next to
the process definition itself, the file
contains elements with the bprmdi pre-
fix. The BPMN DI schema contains ele-
ments that declare information
concerning the graphical representa-
tion of the process constructs. You can
use this diagram information to
import the process model into the

Activiti Designer and add technical Figure 3.4 A pop-up menu that allows you to trans-
details to it. form an exclusive gateway to another gateway type

36

CHAPTER 3 Introducing the Activiti tool stack

BHE '« D X' | s | & & =
Shapa Repository &) T Properties (Task) >
4 Acivies e L
0 ma \

! | |2 Main attributes
@) cotapsed Subprocoss || [Fome T et
[E) Expanced Subprocess. | | | Documentation
- e 1| |15 for Componsasion
) Collapsed EvertSubprocess Y M . ca
[ar] ’ Process 1 | ~
L. Event-Sutprocoss paant | W | User Bl
e ||| nseacniate None

BackgroundCalor

» Swimlanes : Ilmowu & Send
» Artifacts] 9 Receive
> Data Ob} || |2 Mare attributes A User
» Start Events : Or Manual
» Catching Intermediate Events \ ® Service
» Throwing Intermediate Events 1 B Business Rule
» End Events : & Script
» Connecting Objects |

|

|

|

|

|

|

|

I

Figure 3.5 Adding detail to the modeled activities is possible using the Properties view on the right
side of the modeling canvas. In the Properties view, you can, for example, specify the type of task.

At some point, the business/process analyst will finish modeling the business process
in the Activiti Modeler. Then, you need to add technical details to the process before
it’s ready to run on a process engine. For example, you may need to include Java
classes to implement the service task logic.

The Activiti Designer can be used to add technical details to an imported process
model. But, it can also be used to model new processes from scratch. In addition, the
Designer provides functionality to test processes and create deployment artifacts.

First, let’s install the Activiti Designer and get it up and running.

Installing the Eclipse-based Designer tool is a simple process that takes only a few
minutes:

1 Download and install an Eclipse Indigo distribution (the previous version,
Helios, is not supported).

2 Install the Activiti Designer plugin from the Activiti update site http://
activiti.org/designer/update. Note that you should keep the option “Contact
All Update Sites During Install to Find Required Software” checked.

3 Restart Eclipse.

You should now be able to create your first Activiti Designer Eclipse project by using
the Activiti Project option in the New Project Eclipse wizard, as shown in figure 3.6.

Adding technical details with the Activiti Designer 37

aNnO New Project

Select a wizard

Create a new Activiti Project with a basic folder structure and a Maven POM file.

Wizards:

type filter text

P (= General
¥ (= Activiti
__ WlActivitiProject
F(=CVS
b (= Eclipse Modeling Framework
P (= Java
P (= Plug-in Development
P [(=5VN

F (= Examples

Figure 3.6 Creating
a new Activiti project
with the Activiti De-
|® < Back E Next > 3 L Cancel) Finish signer via Eclipse’s
4 New Project wizard

When you look at the Java project the Activiti Designer has just created, you can see
the source folders adhering to the Apache Maven standards. The resources directories
in these folders will contain the models you create with the Designer tool later on.

Now that the Activiti Designer is installed and up and running, you can start devel-
oping a simple process to get familiar with its functionality.

In this section, you’ll create a basic process with only a simple Groovy script task to
show the Activiti Designer functionality. Once you're familiar with the Designer, we’ll
take a look at how to do more complicated stuff in later chapters.

Right-click with the mouse on the newly created project to open the context menu
in Designer and then go to New > Other and choose Activiti Diagram. After you’ve
provided a filename for the new process, the editor pane will open and on the right
side you’ll see the palette with the supported BPMN 2.0 constructs. See figure 3.7.

You can start dragging and dropping BPMN 2.0 constructs onto the pane. In addi-
tion, when you hover over a node in the diagram, you can see that a context menu
appears. You can use this context menu to quickly develop a new process model,
which is similar to using the Activiti Modeler. Let’s start with designing a simple
process model and creating a diagram that has a start event, a script task, and an
end event.

38

CHAPTER 3 Introducing the Activiti tool stack

Figure 3.7 The Activiti Designer editor’s pane with the BPMN 2.0 constructs in the palette

First, drag a start event to the diagram and then
hover over the start node and select the new ele-
ment icon, as shown in figure 3.8.

Choose the Create Script Task item from the
pop-up menu. This action will create a new script
task next to the start event and automatically add a
sequence flow. Now, add an end event to complete
this simple process (figure 3.9).

Now you need to test this process, and it’s cur-
rently not doing anything, so you have to add script-
ing logic to the script task. Open the Properties

=

Script Task

Figure 3.9 A simple process with a script task
designed with the Activiti Designer

a
OF
S~ ®
* {8 Create service task

) Create script task

) Create user task

Create mail task

B3 Create business rule task
5 Create manual task

= Create receive task

O Create call activity

& Create exclusive gateway
& Create parallel gateway
© Create error end event
B Create alfresco script task
@ Create alfresco user task
B Create alfresco mail task

-}

Figure 3.8 The hover capabilities of
the Activiti Designer allow you to
quickly add a new task, gateway, or
end event to the diagram.

Adding technical details with the Activiti Designer 39

[21 problems | =] Properties £3 # Ant| ©] Error Log | E] Console

General Script Language: groovy
Main config Script: "out:printin "Run process, run!”;
Listeners

Multi instance

Figure 3.10 Adding a piece of Groovy scripting code in the script task Properties view

view of the script task by selecting it (make sure the Properties view is open in your
Eclipse canvas). Then select Groovy from the drop-down menu next to Script Lan-
guage, and add the following line of Groovy code: out:println "Run process,
run!"; (figure 3.10).

Now that you’ve designed the process model and implemented a line of scripting
code, you're ready to test it. Let’s take a look at how to test processes with a generated
JUnit test.

In order to test the newly created process, you need a BPMN 2.0 XML file. When you
save the diagram, the BPMN XML content is generated in the model file that is created
when you complete the create diagram wizard. You can view the XML content by open-
ing the model file in the Eclipse XML editor. The generated XML should look similar
to the XML content shown in the next code listing.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns="http://ww.ong. or g/ spec/ BPM\/ BPMN 2.0 root element with
20100524/ MODEL" namespace declarations
t ar get Nanespace="http://ww. activiti.org/test"
xm ns:activiti="http://activiti.org/bpm">

<process id="M/Process" nanme="M/Process">
<docunent ati on>

40

CHAPTER 3 Introducing the Activiti tool stack

Pl ace docurentation for the ' MyProcess'

</ docunent ati on>
<start Event

<scri pt>

<! [CDATA[out : println "Run process,

</script>
</ scri pt Task>

id="startevent 1"
<scriptTask i d="scripttaskl"
scri pt For mat =" G oovy" >

<sequenceFl ow i d="f1 owl"
target Ref ="scri pttaskl">

</ sequenceFl ow>

<sequenceFl ow i d="f1 ow2"

t ar get Ref =" endevent 1" >

</ sequenceFl ow>
<endEvent
</ process>
</definitions>

i d="endevent 1"

process here.

name="Start"></startEvent >

nane="Scri pt Task" Groovy
scripting code
definition
run!";]1]>
name="" sourceRef="startevent 1"
name="" sourceRef ="scripttaskl"
End event
nane="End" ></ endEvent > definition

Note that I didn’t include the BPMN DI XML containing the graphical information in
this listing because that isn’t relevant for now. To generate a unit test, you can select
the model file in the package explorer view. Right-click on the file and you’ll see a

context menu appear (figure 3.11).

RGN, © rrosec Explorer

¥ = Scripe
(8 sre/main/java
¥ [sre/main/resources
(B sre/test/java
[src/test/resources
B8 JRE System Library [Java SE 6 (MacOS X Default
P (Ssrc

L= target

4 pon
* =5 test

New

Open
Open With
Show In

= Copy

iz Copy Qualified Name
7 Paste

¥ Delete

Remove from Context
Mark as Landmark

Build Path

Refactor NHT

23 Import...

w5 Export...

4" Refresh
Assign Working Sets...

Validate

Run As
Debug As
Team
Compare With
Replace With

Source

Properties

F5

A Y Y Y YY

A4

Ed

Figure 3.11 A pop-up menu that
contains the Generate unit test ac-
tion to create a JUnit test for a
XML process definition

Generate unit test

Adding technical details with the Activiti Designer 41

Click on the “Generate unit test” action and a JUnit test will be generated in the
org.activiti.designer.test package. To get the necessary project dependencies in
place, you can run the Maven nvn eclipse: ecl i pse command or use the M2Eclipse
plugin. Make sure you have configured in your Eclipse workspace a M2_REPO classpath
variable that points to the Maven repository (which, by default, is located in the .m2/
repository in your user home directory).

Before running the test, take a look at the generated code in the following listing.

public class ProcessTest MyProcess {

private String filenane =
"/ Users/trademaker s/ wor kspace/ Scri pt/ MyProcess. bpmm";

@Rul e
public ActivitiRule activitiRule = new ActivitiRule();

@est
public void startProcess() {
Reposi toryService repositoryService =
activitiRul e. get RepositoryService();
reposi toryServi ce. creat eDepl oynent ()
. addl nput St r ean(" pr ocess. bprm20. xmi ", Deploys process
new Fil el nput Stream(fil enanme)). depl oy(); < definition
Runti meServi ce runti neService =
activitiRule.getRuntinmeService();
Map<String, Object> variableMap =
new HashMap<String, Object>();
vari abl eMap. put ("nane", "Activiti");

Processl nstance processlnstance = runtimeService Starts anew
.startProcessl nst anceByKey(" My/Process", 41 process instance
vari abl eMap) ;

assert Not Nul | (processlnstance.getld());
Systemout.println("id " + processlnstance.getld() + "
+ processl nstance. get ProcessDefinitionld());

}
}

As you can see, the code differs a bit from the unit test implemented in chapter 1.
Here, you make use of the Acti viti Rul e class, which is a utility class that sets up the
Activiti Engine in a unit test. (I’ll talk in more detail about this handy class in the next
chapter.) The BPMN 2.0 XML file is deployed via the Reposi toryService that reads
the BPMN file from an | nput St r eam

process.bpmn20.xml is used as the filename for the process defini-
tion input stream. Activiti 5.9 only accepts process definition files with an
extension of .bpmn20.xml. Starting from Activiti 5.10, .bpmn extensions are
also supported.

The Runti neServi ce is used to start a new process instance of the process . When
you run this unit test, you can see Run process, run! appear in the Eclipse console,
and the process instance and process definition identifiers are printed out.

42

CHAPTER 3 Introducing the Activiti tool stack

This simple example only shows the typical workflow in the Activiti Designer. Let’s
return to the process definition created with the Activiti Modeler in section 3.1 and

import it into the Activiti Designer.

It’s easy to import a process definition
created with the Activiti Modeler into
the Designer. What you need is the
BPMN 2.0 XML file created by the Activiti
Modeler. When you implement the pro-
cess model in section 3.1, a BPMN 2.0
XML file is generated in the workspace/
activiti-modeler-examples folder of your
Activiti installation directory. Look for a
file starting with the name you chose
when saving the model and ending with
bpmn20.xml. The sample Modeler file
can also be found in the bpm- exanpl es
project under modeler/chapter3 (see
this book’s source code).

. ;\L'j Project Explorer

¥ [=> chapter3-import-example
(# src/main/java
> é srcfmain,i'resources
[src/test/java
[src/test/resources

P =\ JRE System Library [Java SE 6 (MacOS X Default)
P (= src

(= target

@ pom.xml

Figure 3.12 A BPMN 2.0 file can be imported by
just copying the file to an Activiti Designer project.

Create a new Activiti project in the Activiti Designer and then copy the Activiti
Modeler bpmn20.xml file to the Activiti Designer project and rename the file exten-

sion to .bpmn (see figure 3.12).

When you open the .bpmn file, the Activiti Designer will read the BPMN 2.0 ele-
ments and create and open a new diagram, as shown in figure 3.13.

e
@

Process payment

R——

e
xx]

Prepare book for
shipment

—

e} ®

Send emal with

arrival date Send shipment

Figure 3.13 A BPMN 2.0 XML file can be imported into the Activiti Designer and a new diagram will be

created and opened, as shown here.

Adding technical details with the Activiti Designer 43

The newly created diagram looks similar to the Activiti Modeler diagram shown in fig-
ure 3.2.

The process identifier of the imported process can contain spaces.
Make sure that the spaces are removed, because the id attribute isn’t
allowed to contain spaces according to the BPMN 2.0 specification. You can
do this by clicking on a white space in the diagram and filling in the i d field
in the Properties view.

You can now add new BPMN 2.0 elements and detailed information, such as the per-
son or group to which the four user tasks have to be assigned. You can also quickly
change a task type. Let’s take a look at how to do that with the “Process payment” user
task and change it into a simple script task. Hover over the “Process payment” element
and choose the icon with the small pencil. There, you can change the element into a
script task (figure 3.14).

Figure 3.14 Changing
the process payment
user task into a script
task

When the “Process payment” user task is transformed to a script task, you can add
scripting logic to it. When you want to add Java logic, the service task would be the
task type of choice. But, for this example, you add a log line by filling in the script text
box in the Properties view of the script task, as shown in figure 3.15.

What’s left is the assignee configuration for the three remaining user tasks. Fill in
a value of “kermit” in the assignee Property field of every user task (figure 3.16). This
will assign every user task directly to the kermit user.

{21 Problems | ! Properties £3 . ¥ Ant| ©) Error Log | & Console

' General Script Language: groovy
| Main config Script: [out:println "Processing payment”;
| Listeners

| Multi instance

Figure 3.15 A piece of
scripting logic can be
configured for a script
task.

CHAPTER 3 Introducing the Activiti tool stack

W Problems | % Ant| €] Error Log |

> =0

Multi instance | Form key:

Due date (variable):

Priority:

Documentation:

General | Assignee:
Main confi)
9 Candidate users (comma separated):
Form |
Listeners | Candidate groups (comma separated:

| kermig

Figure 3.16 The user task Properties view contains a lot of configuration items, including the assignment

definition.

When you save the diagram, you’ve
completed the book order process
implementation and you’re ready to
deploy it to the Activiti Engine. The
Activiti Designer can ease the deploy-
ment task with the generation of a BAR
file, which is nothing more than a
zipped file that contains the BPMN 2.0
XML process definition and Java class
files that are available in the project.
The BAR file will be generated when
you right-click on an Activiti project
and choose the “Create deployment
artifacts” option from the pop-up
menu. See figure 3.17.

When you click to generate the
deployment artifacts, a deployment
folder is created in the root of the
corresponding Activiti project.
There, you can find the BAR file that
can be deployed on the Activiti
Engine. It’s time to see your book
order process in action using the
Activiti Explorer.

je £ L) Project Explorer
£ chapter3-import-example

(8 srefmain/java New >
» (B src/main/resources Go Into

(B srftest/java

[sreftest/resources

Open in New Window

@\ JRE System Library ava 5t 6 | Open Type Hierarchy Fé
» B sre Show In HEW >
=target
<4 Book order process.bpmn (@ Copy 3C
) pem,xmi “ Copy Qualified Name
T Paste £
% Delete =
Remove from Context l
Build Path >
Source HS >
Refactor HT >
£x3 Import...
w3 Export...
2 Refresh FS

Close Project
Assign Working Sets...

Run As >
Debug As >
Validate

Team >
Compare With >
Restore from Local History...
Configure >
Properties x|

~Create deployment artifacts

Figure 3.17 The BAR deployment artifact containing
the BPMN 2.0 XML process definition can be generated
by right-clicking on an Activiti project and choosing the
“Create deployment artifacts” option.

Managing the Engine using the Activiti Explorer 45

The Activiti Explorer can be used to execute a wide variety of tasks. In this section,
we’ll explore the Activiti Engine management capabilities and, in the next section
(3.4), we’ll focus on the process and task functionality. Now that you’ve created a BAR
file in the Activiti Designer, you can use the Activiti Explorer to deploy the BAR file to
the Activiti Engine.

Make sure the Tomcat server running the Activiti Explorer application is started.
Then, open a browser and go to http://localhost:8080/activiti-explorer. Log in as ker-
mit, with the password kermit. As you can see in the Users tab, Kermit is registered as
system administrator and, therefore, allowed to perform management tasks in the
Activiti Explorer. The other example users, Fozzie and Gonzo, aren’t allowed to do
this because they don’t have the system administrator security role. See figure 3.18 for
Kermit’s user details—this is the view in the Activiti Explorer where you’ll do user and
group administration.

When you click on the Deployments tab, you can upload a new deployment arti-
fact. In the pop-up menu, you can choose to open a File dialog box to select the BAR
file or to drag and drop the BAR file onto the web page. Choose your preferred way of
uploading the BAR deployment artifact to the Activiti Explorer and you’ll see a new
view showing the details of the new deployment. When you click on the book order

< ActivitiExplorer

Database Deployments Jobs Users Groups & Croate user

& Fozzie Bear (fozzie)

c G .
& conzome Grat gz 8 Kermit the Frog
&b Kemmitthe Frog (kermit)
Details

Edit dotails

Id: kermit Datots usar
First nama: Kermit

Last name: the Frog

Email: kermit@localhost
Groups + ‘
] NAME TYPE ACTIONS |
management Management assignment x
sa'es Saes. assignment x
admin System administrator security-role x m
manager Manager sacurity-role X 2

© Activitl.org. All rights reserved.

Figure 3.18 The user administration page in the Activiti Explorer, showing the user details of Kermit

46

CHAPTER 3 Introducing the Activiti tool stack

¥o) Book order process
1 Version 1 3,1 Deployed moments ago

Process Diagram

S|

Process payme...

=

a

Send email wit... Send shipment

—_—

-
5

Prepare book f...

——

Figure 3.19 Graphical overview of the deployed book order process definition

process definition, you can see the graphical overview of the process model, as shown
in figure 3.19.

In addition to the deployment and user and group management capabilities of
the Activiti Explorer, you can also get a view of every database table and look at the
jobs that are scheduled in the Activiti Engine. But we’ll leave this functionality for
later chapters, starting with chapter 5, where you’ll implement a more complex pro-
cess definition.

Now let’s look at other capabilities of the Activiti Explorer. You’ll be starting a new
process instance and working with the different user tasks of the book order process
model.

With the book order process deployed on the Activiti Engine, you can now start new
process instances of this process definition. The process definition view shown in fig-
ure 3.19 already contains the Start process button in the top-right corner to start a
new process instance; let’s do that.

The Activiti Explorer automatically checks if a user task is created for the logged-in
user. If that’s the case, the Activiti Explorer shows the task detail page right after you
start the new process instance. See figure 3.20.

In the task details page, you can perform several actions on the user task. You can,
for example, add a document that’s part of the user task or reassign the user task to
somebody else. You can also create new subtasks to split up a large task into multiple
smaller tasks.

The task page also includes a link to the process instance status overview: Part of
process: ‘Book Order Process’. The process instance overview provides a graphical
overview of the process status, the outstanding tasks, and the process variables. See fig-
ure 3.21.

Processes and tasks with the Activiti Explorer 47

Inbox @ My Tasks Queued Involved Archived [Mew Task
|
[C] Prapara book for shipment Prepare book for shipment
[35] Mo due date = Medium Prioty &) Created moments ago
This case has no description sel.
People +
8 4 Kermit the Frog
No owner (_ Transter W0 Assignee | Reassign
Subtasks +

No subtasks defined for this taak

Related content +

No refated content attached for this task

Complete task

Figure 3.20 The task details page of the first user task created in the book order process. The task is
assigned to Kermit.

Book order process (993)

&) started moments ago

Process Diagram

Process paymae...
a8
Send shipment
—
2=
Prepare book f...
—
Tasks
NAME PRIORITY ASSIGNEE DUEDATE CREATED COMPLETED
>0 |
D Prepare book for shipment 50 &J Kermit the Frog moments ago
Variables

There are no variables for this process instance.

Figure 3.21 The process instance overview page, showing the process instance status, the open user
tasks, and the process variables

48

CHAPTER 3 Introducing the Activiti tool stack

As you can see in figure 3.21, the current open task in the process instance is the “Pre-
pare book for shipment” user task. The “Process payment” script task has already been
executed and completed. But the “Process payment” task could also have been a user
task that hadn’t been completed yet. In that case, the process instance’s graphical
overview would have two user tasks highlighted with red rectangles.

To complete the user task, you need to go back to the task details page. This is pos-
sible by clicking the Tasks tab and the Inbox link. On the task details page, you can
click on the Complete Task button to complete the user task. Then, the process
instance moves on to the next user task in the book order process. When you also
complete the next two user tasks, the process instance will be completed.

There’s a lot more to explore in the Activiti Explorer, but we’ve already covered
the core functionality. In the next chapters, you’ll frequently be using Activiti
Explorer in the implementation and testing of example processes.

This completes the introduction to the Activiti tool stack and the add-on compo-
nents that you can download and install separately.

We’ve covered a lot of ground in this chapter. If you worked your way through the
examples, you’ll now have a good idea of what Activiti is all about.

You saw how the Activiti Modeler works and played a bit with it to get a feel for
modeling business processes. You discovered the Eclipse-based Designer environment
and learned how to test processes in a fast and convenient way without having to write
lots of code. You also imported an example process created in the Activiti Modeler
into the Activiti Designer and eventually created a deployable BAR file for it. With
Activiti Explorer, you saw how to deploy new process definitions and work with process
instances and user tasks.

You have a good grasp of the Activiti stack now, and you’re ready to discover more
of the ins and outs of BPM with Activiti. In the next chapter, we’ll start implementing
processes on the Activiti Engine and start developing with its API.

It’s time to take a look at the core asset of the Activiti platform, the Activiti process
engine. We already looked at a simple example in chapter 1 and at the Activiti tool
stack in chapter 3, but, in this chapter, we’ll discuss how you can use the Activiti
Java API to interact with and use the process engine in a lot more detail.

To develop business process applications, you first have to set up a decent devel-
opment environment, including a Maven configuration. We’ll cover this first.
Then, we’ll take a look at the Activiti API, which will provide the necessary inter-
faces to start new processes, claim user tasks, and query the process engine for spe-
cific process instances, for example. After that, we’ll explore the Java service tasks
of Activiti, which provide a way to implement BPMN 2.0 processes with plain Java
logic. When there’s no need for web service interfaces or other external interfaces,

49

50

CHAPTER 4 Working with the Activiti process engine

the Java service tasks provide an easy-to-use framework to build processes. We’ll also
discuss how to execute these Java service tasks asynchronously. Finally, we’ll look at
how to apply Spring beans inside the BPMN 2.0 processes and even run the whole
Activiti engine within a Spring container.

Let’s get started by setting up a development environment so you can work with
Activiti and explore some examples.

In this chapter, you’ll be developing a lot of code snippets and unit tests. Instead of
using a simple text editor, you might like to use your favorite development tool to
develop processes, process logic, and unit tests. In this section, you’ll be introduced to
the different Activiti libraries you can use and how to set up a Maven project structure.

Logging is an important tool for understanding what’s going on in a complex
framework, like a process engine. First you’ll learn how you can tune the log levels for
your needs. Then you’ll see a couple of options for running the Activiti engine.

Let’s begin by taking a closer look at the Activiti library structure.

In chapter 3, you saw that the Activiti distribution consists of several modules, includ-
ing the Activiti Explorer and the add-on components Activiti Modeler and camunda
fox cycle. Each of these modules have their dependencies and project structure. In
this section, we’ll only focus on the Activiti Engine module, which provides the core
component of the project.

But the Activiti engine also consists of several layers, as shown in figure 4.1. The
first layer is the engine itself, which provides the engine interfaces we’ll discuss in sec-
tion 4.2 and which implements the BPMN 2.0 specification. The engine component
also includes a process virtual machine abstraction, which translates the BPMN 2.0
engine logic into a state machine model, as discussed in chapter 1. This process virtual
machine, therefore, is capable of supporting other process languages and provides
the foundational layer of the Activiti Engine. The engine component is implemented
in the activiti-engine-version JAR file.

An optional layer is the Spring container integration for the Activiti engine, which
we’ll discuss in detail in section 4.4. This layer makes the Activiti engine available for
use inside a Spring container and provides functionality to invoke Spring beans
directly from service tasks. This layer is provided with the activiti-spring-version JAR
file that’s available in the workspace/activiti-spring-examples/libs-runtime directory
of the Activiti distribution.

As you can see in figure 4.1, each layer of the Activiti Engine adds a specific set of
functionality. Before you can use the Activiti Engine in the development environment,
the dependent libraries must also be available. In the next section, you’ll see a Maven-
based project structure that will provide you with the necessary dependencies. But you
can also reference the library dependencies from the Activiti workspace directory.
Notice that you then have to start by running the setup as described in chapter 1.

Creating an Activiti development environment 51

a Activiti Spring component N
[Spring container] [Expressions and beans]

o

e Activiti Engine component N

[BPMN 2.0] [Core interfaces]
Figure 4.1 Overview

Process virtual machine of the different layers

of the Activiti Engine,
State machine model Persistency including the process
virtual machine, the

engine, and the Spring
N\ J integration layers

After the Activiti installation script (see chapter 1) has been executed, you can find
the Activiti Engine libraries in the workspace/activiti-engine-examples directory. The
runtime libraries can be found in the libs-runtime directory, and the libraries neces-
sary to test the examples are provided in the libs-test directory of every example proj-
ect. If you don’t want to use Maven for your project, you can retrieve the necessary
libraries from the workspace/activiti-spring-examples directory, but, you’ll see in the
next section that a Maven project structure makes life a bit easier.

Apache Maven can be considered the default choice for dependency management
and project build management in general, and Activiti makes it easy to set up your
project with Maven. In this section, you’ll learn about the Maven configuration that’s
used in the source code of this book’s examples. The examples in the Activiti distribu-
tion also have a Maven structure and a pom.xml file. To create a new Activiti project
with a Maven configuration from scratch, you can create a new Maven project in the
Eclipse IDE. In the presented wizard, you can fill in the necessary group and artifact
identifier and choose a project name.

The pom.xml in the root of the new project needs some work; you have to add the
Activiti dependencies. The following listing shows a Maven pom.xml that contains the
minimal set of dependencies you need when starting an Activiti project. For a full list
of all the dependencies you’ll use throughout this book, you can look at the pom.xml
file in the root of the bpm- exanpl es project in the book’s source code.

<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>or g. bprmwi t hacti vi ti </ gr oupl d>

52

CHAPTER 4 Working with the Activiti process engine

<artifactld>your-project</artifactld>
<packagi ng>j ar </ packagi ng>

<ver si on>1. 0- SNAPSHOT</ ver si on>
<nane>your - pr oj ect </ nane>

<properties>
<activiti-version>5.9</activiti-version>
</ properties>

<dependenci es>
<dependency>
<groupl d>org. activiti</groupld> Activiti
<artifactld>activiti-engine</artifactld> Engine
<version>${activiti-version}</version> dependencies
</ dependency>
<dependency>
<gr oupl d>com h2dat abase</ gr oupl d> H2 database
<artifactld>h2</artifactld> L/ driver
<versi on>1. 2. 132</ ver si on>
<scope>t est </ scope>
</ dependency>
<dependency>
<groupl d>j uni t </ groupl d>
<artifactld>junit</artifactld>
<ver si on>4. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
<r eposi tori es> Alfresco Maven
<repository> rep.o§i!:ory for
<i d>Activiti</id> Activiti
<url>http://maven. al fresco. com nexus/ cont ent/
repositories/activiti</url>
</repository>
</repositories>
</ proj ect >

In the listing, the Maven namespace declarations are left out to make the configura-
tion more readable. To include the Activiti Engine dependencies, you only have to
include the activiti-engi ne dependency (0. This dependency will also get all the
third-party libraries, which are necessary to run the Activiti Engine. Notice that, in this
Maven configuration, the Activiti Spring module isn’t included because you don’t
need it for your first examples, but the module is included in the book’s example
source code.

To be able to test with an in-memory H2 database, you must also add the H2 data-
base dependency). The H2 database dependency also provides the database driver
to connect to both the standalone H2 database provided with the Activiti distribution
as well as the in-memory H2 database.

Because the Activiti Engine dependency isn’t yet available from a central Maven
repository, you also need to add the Alfresco Maven repository for the Activiti project
Ifyou’re using the Eclipse development tool, you can now use the Maven Update Project
Configuration menu item to create the necessary Eclipse project and classpath files.

Creating an Activiti development environment 53

Similar Maven archetypes are available for Intelli] IDEA and other IDEs,
and you can still use the good old command line to execute Maven commands.

Now all the Java libraries needed to run the Activiti Engine are available inside the
IDE. This means that you can start implementing Activiti logic in your project. In the
bpm- exanpl es project available in the book’s source code, you can see that we also
used a Maven configuration and defined the Activiti Engine dependencies. Now let’s
discuss how to tune logging in the Activiti Engine.

Logging statements can help a lot when you’re debugging, but they’re also essential
for getting good error descriptions from a production system. When you’re using mul-
tiple open source frameworks in one project—like you do in this chapter with Activiti
and Spring—you may run into different logging systems.

Activiti uses the standard Java java.util.logging API, also known as JDK 1.4 logging,
and Spring uses Apache commons logging. This means that, by default, it’s not possi-
ble to have one logging configuration file. Luckily, there’s the Simple Logging Facade
for Java (SLF4]—http://www.slf4j.org) framework that can translate log messages
from different frameworks into the log message of your choice.

In this book, we’ll use Log4] (http://logging.apache.org/log4j/1.2) as the log-
ging system of choice, but you can easily change this to Apache Commons Logging,
for example. SLF4] provides support for Log4] as well as Apache Commons Logging.
For JDK 1.4 logging statements to be translated by SLF4] to Log4], you have to do
some coding.

You’ll be using a lot of unit tests to work with the Activiti BPM platform, so the next
code snippet shows the Abstract Test class you’ll be extending from in every unit test
to initialize your logging framework:

inport java.util.logging. Handl er;
inport java.util.logging. Logvanager;
import java.util.logging.Logger;

inport org.activiti.engine.inpl.util.LogUtil;
import org.slf4j.bridge. SLF4JBri dgeHandl er;

public abstract class AbstractTest {

@Bef oreC ass

public static void routelLoggi ngToSIf4j () {
LogUtil.readJavaltil Loggi ngConfi gFronCl asspat h();
Logger rootLogger =

LogManager . get LoghManager () . get Logger ("");
Handl er[] handl ers = root Logger. get Handl ers();
for (int i =0; i < handlers.length; i++) {
r oot Logger . renpveHandl er (handl ers[i]);

}
SLF4JBri dgeHandl er.install();

54

CHAPTER 4 Working with the Activiti process engine

This abstract unit test class first makes sure that the | oggi ng. properti es for the JDK 1.4
logging of the Activiti Engine are read from the classpath. By default, the JDK 1.4 logging
reads the log configuration of your JAVA_HOME/lib/logging.properties—and that’s not
what you want. In the logging.properties file of the bprm- exanpl es project, the log level
is set to FINEST so you can get all the logging information out of the Activiti Engine when
you want to.

Next in the code snippet, the log handlers are removed from the
java.util.logging. Logger class; otherwise, the JDK 1.4 logging framework still per-
forms the logging. At the end of the code snippet, the i nstal | method of the SLF4]
bridge is invoked, which will direct all JDK 1.4 logging output to SLF4]. Because you
have the SLF4] Log4] library on the classpath, you can now define the log level of the
Activiti Engine, the Spring framework, and other external frameworks in a default
log4j.xml file. With this configuration, all logging is redirected to Log4j and you can
define the desired logging level in the | 0g4j . xn that’s available on the classpath.

This means you can define a log level of DEBUG when you want to do some debug-
ging, and you can set the level to ERRORwhen you don’t want extra information logged
in your unit tests. In the source code examples implemented in the bpmm- exanpl es
project, you extend the Abstract Test class in all unit test classes.

Now that the logging configuration is in place, let’s discuss the options available
for running the Activiti Engine.

The primary component you have to deal with when designing and developing
BPMN 2.0 processes with Activiti is the Activiti Engine. The engine is your entry point
to deploying new process definitions, starting new process instances, querying for
user tasks, and so on. But what are the options for running the Activiti Engine during
development? In the following subsections, we’ll discuss the following three options:

= Running the Activiti Engine in the JVM with an in-memory database (H2)

= Running the Activiti Engine in the JVM with a standalone database (H2)

= Running the Activiti Engine on an application server (Apache Tomcat) with a
standalone database (H2)

Let’s look at the first of these options now.

A good way to test a BPMN 2.0 process is to run the Activiti Engine inside the Java Vir-
tual Machine (JVM) with an in-memory database. In this deployment scenario, the
unit tests can also be run within a continuous build environment without the need for
external server components. The whole process engine environment runs from within
the JVM and the unit test. Figure 4.2 illustrates this method of deployment.

In the source code examples we’ll discuss in the rest of this chapter, this deploy-
ment alternative is used because it’s the easiest to use from within an IDE. In the next
subsection, we’ll take a look at another option: using a standalone database.

Creating an Activiti development environment 55

e Java Virtual Machine (JVM) N
[Unit test H Activiti Engine j
Figure 4.2 The de-
5 ployment scenario
where the Activiti En-
ng_dmflgory gine runs within the
atabase JVM with an in-memo-
N\ _/ ry database

If you want to work with process definitions or instances that are deployed and run-
ning on a standalone environment, you need another deployment alternative. You
must be able to run the Activiti Engine connected to a standalone database. This
enables possibilities, such as querying the standalone database for specific running
process instances. This type of deployment is shown in figure 4.3.

In the first example of this book, shown in chapter 1, you used this deployment
option; an Activiti Engine is created from within a unit test and connected to a stand-
alone H2 database. The H2 database is already installed and started as part of the
Activiti installation setup. This type of setup isn’t suitable for unit testing because the
outcome of the unit test may vary with each run depending on what’s already present
in the database unless you clean the database before each run. But, it can be handy
for integration testing, where you also want to use the Activiti Explorer together with a
process you create from your local development environment.

The previous deployment options are useful for unit and integration testing. But,
eventually, you’ll want to deploy your business processes on a production-like envi-
ronment and do some basic testing there, too. This means that you can’t start an
Activiti Engine from within a unit test, because it runs on a separate application
server environment.

What you can do is use the REST API provided with the Activiti Engine to interact
with the process engine. The deployment of a new process definition must then be

Figure 4.3 The de-

Java Virtual Machine (JVM)
ployment alternative
where the Activiti En-

[Unit test H Activiti Engine]
gine runs within the

same JVM as the unit
Standalone database (H2) test and connectstoa

standalone database

56

CHAPTER 4 Working with the Activiti process engine

Java Virtual Machine Application server
(IVM) (Apache Tomcat)

\ REST API f o
[Java application Activiti engine

A
[Standalone database (HZ)J

Figure 4.4 A typical Activiti Engine environment where the process engine runs on an ap-
plication server, such as Apache Tomcat, with a standalone database. The REST API provides
the necessary interface to interact with the process engine.

done via Activiti Explorer (like you did in chapter 3) or an Ant script by deploying a
Business Archive file. This alternative is shown in figure 4.4.

In an environment like the one shown in figure 4.4, the need for unit tests is typi-
cally low because the deployment alternatives discussed earlier are more likely to be
used for unit and integration testing. But, you will still need to communicate with the
process engine when tools like the Activiti Explorer don’t provide all the information
you need or in cases where you want to communicate with the process engine from
other applications. An example would be when you want to build a custom user inter-
face for users to interact with the user tasks in a particular process. The REST API pro-
vides a great way to implement the necessary communication.

In chapter 8, we’ll take close look at the possibilities of the REST API. But first, it’s
time to learn about the Java interfaces you can use to talk with the Activiti Engine.

The Activiti Engine API is divided into seven core interfaces, each targeted at interact-
ing with different functionality of the process engine. Table 4.1 summarizes the core
interfaces.

Table 4.1 Overview of the seven core interfaces of the Activiti API

For nSer vi ce To work with the user task forms generated by the Activiti form engine, the
form service provides several methods.

Hi st oryServi ce To retrieve information about completed process instances, you can use the
history service interface.

ldentityService The identity service provides an interface on the authentication component
of the Activiti process engine.

Using the Activiti Engine API 57

Table 4.1 Overview of the seven core interfaces of the Activiti API (continued)

Managenent Ser vi ce | The management service can be used to query the Activiti tables and exe-
cute jobs.

Reposi t oryServi ce | The repository service provides functionality to deploy, query, delete, and
retrieve process definitions.

Runt i neServi ce The runtime service provides an interface to start and query process
instances. In addition, process variables can be retrieved and set, and pro-
cesses can be signaled to leave a wait state.

TaskServi ce With the task service you can do a lot of things with user tasks. For exam-
ple, you can create a new task and query Activiti for a list of tasks that a
specific user can claim.

In this section, we’ll discuss most of these interfaces with small and easy-to-use code
examples, starting with the Runti meServi ce. We won’t be covering the For nSer vi ce
and the Managenent Service here because they provide specific functionality. The
For mBer vi ce can be used to interact with a user task or start event forms (we’ll discuss
this in chapter 5), and the Managenent Ser vi ce can be used to access jobs and query
the Activiti tables (the job architecture is discussed in chapter 15).

The primary usage of the Runt i meSer vi ce is to start new process instances based on a
specific process definition. But this isn’t the sole purpose of this interface; it also pro-
vides simple query functionality and methods to set and retrieve process variables,
among other operations.

Let’s first look at how to use the Runti neSer vi ce to start a new process instance.

public class RuntineServiceTest extends Abstract Test {
private static RuntinmeService runtimeService;

@Bef ored ass
public static void init() { Creates Activiti
ProcessEngi ne processEngi ne = <1 engine
Pr ocessEngi neConfi gurati on
. creat eSt andal onel nMenPr ocessEngi neConfi gurati on()
. bui | dProcessEngi ne();

Reposi toryService repositoryService =
processEngi ne. get Reposi t oryServi ce();
repositoryService. creat eDepl oyrment ()

. addd asspat hResour ce(E:gll(?;iier
"chapt er 4/ bookor der . bprm20. xm) process

- depl oy();
runti neService = processEngi ne. get Runti neService();

58

CHAPTER 4 Working with the Activiti process engine

}

@est
public void startProcesslnstance() {
Map<String, Object> variableMap =
new HashMap<String, Object>();
vari abl eMap. put ("i sbn", "123456");
Processl nstance processlnstance = Starts new
runti nmeService. start Processl| nst anceByKey (F process
"bookorder", variabl eMap); instance
assert Not Nul | (processl nstance. getld());
Systemout.printin("id " + processlnstance.getld() +
+ processlnstance. get ProcessDefinitionld());

}
@est
public void queryProcesslnstance() {
Li st <Processl nst ance> i nstancelLi st = runtineService Queries for
. creat eProcessl nstanceQuery() running
. processDefinitionKey("bookorder") _bookorder
dist(); instances
for (Processlnstance queryProcesslnstance : instanceList) {
assert Equal s(fal se, queryProcesslnstance. i sEnded());
Systemout.printin("id " + queryProcesslnstance.getld() +
", ended=" + queryProcesslnstance.isEnded());
}
}
}

To implement a unit test class with multiple test methods, it’s a good practice to create
the Activiti engine () inani ni t method annotated with @ef or eCl ass. This makes the
Activiti engine available in every test method. Then the book order process used in chap-
ter 1 is deployed on the engine 4. Figure 4.5 shows the simple book order process.

To start a new process instance for the book order process shown in figure 4.5, you
can use the startProcesslnstanceByKey method of the Runti meServi ce inter-
face. With this method, the latest version of the specified process definition name is
started. You can optionally provide a map of process variables as in this example. The
other way to start a new process instance is to use the startProcessl nstanceByl d
method, which starts a specific version of a process definition. The process definition
identifier is stored within the Activiti Engine database and is provided when you
deploy a process definition with the Reposi t or ySer vi ce. But, most of the time, you’ll
want to use the st art Processl nst anceByKey method because you want to use the lat-
est version of the process.

In the last step of the unit test, you query the Activiti engine for running process
instances of the book order process €3. Note that you use the processDef i ni ti onKey

Figure 4.5 The process diagram
of a simple book order process,
Validate order Complete order containing a “Validate order
script” task and a “Complete or-
der user” task.

=1

Using the Activiti Engine API 59

2.
Run process instance up to the
1. wait state, here a user task
runtimeService.startProcess
InstanceByKey

/
e
<—

(.

3.
return process instance
ID,e.q.3

8 Complete order

Figure 4.6 Overview of what happens with the process instance after you’'ve started the process in-
stance in the unit test

method here, which means all running process instances for all versions of the book
order process are returned. To retrieve only the running process instances of a spe-
cific version of the book order process definition, you have to use the processDefi ni -
tionl d method and provide the process definition identifier value.

When you run this unit test, you’ll see one running process instance with the pro-
cess instance query because you only started one new process instance. Let’s see what
happened inside the Activiti engine with the book order process instance after you
started the process instance (figure 4.6).

The Activiti Engine executes the process instance immediately after the book
order process is started with the st art Processl nst anceByKey method. Because this is
a synchronous execution in a single transaction and thread, the unit test will wait until
the process instance identifier is returned. Activiti executes the process until a wait
state is encountered. A user task is an example of such a wait state because somebody
has to claim and complete the task before the process instance will proceed to the
next activity. “Validate order” is a script task, which isn’t a wait state and, therefore, it
executes synchronously in the current thread. In section 4.3, you’ll see how to define
an automatic task, like a script or a Java service task, to run asynchronously.

For the unit test example, the Activiti engine executes the “Validate order” script
task and initiates the “Complete order” user task. Then the wait state is activated and
the process instance identifier is returned to the unit test. When you query the Activiti
engine for running processes, you find exactly one instance, which has a current
activity of the type user task. Now let’s look at how to deal with this user task using
the TaskSer vi ce.

The TaskSer vi ce provides a lot of functionality surrounding user tasks for the Activiti
engine. You can, for example, use the TaskServi ce to query the engine for specific
tasks or to create a new standalone task for a specific user. In this section, we’ll walk
through most of the functionality the TaskSer vi ce interface provides, starting with
querying for running user tasks.

CHAPTER 4 Working with the Activiti process engine

In the previous section, we looked at the usage of the Runti neServi ce with a rather
large unit test. From now on, you’ll use the unit testing functionality that the Activiti
framework provides, as you'll see listing 4.3.

When you want to test your process definition without a lot of plumbing code, you can
use the unit testing functionality of the Activiti framework. The unit testing functionality
of Activiti using JUnit 4 is centered on the use of the Activiti Rul e class. The
Acti vi ti Rul e class is a subclass of the JUnit Test WAt chman class, which intercepts
test method calls so it can provide the setup and teardown functionality. If you want
to use JUnit 3 to create your tests, you can use the Abstract Activiti Test Case
abstract base class.

But, first things first. At the creation of an Acti vi ti Rul e instance, an Activiti Engine
is created using the activiti.cfg.xml configuration file found on the classpath by de-
fault. This can be overwritten if you want to. The activiti.cfg.xml configuration file con-
tains, for example, the definition of the Activiti Engine and configures the database
(embedded or standalone) that’s used by the Activiti Engine. We’ll discuss all the con-
figuration options of the activiti.cfg.xml file in chapter 8.

The main usage of the Acti vi ti Rul e instance is that you can deploy a process def-
inition before atestmethod is executed. This can be done by including the @epl oynment
annotation. By default, a process definition with the name testclassname.testmethod-
name.bpmn20.xml in the same package as the test class is deployed, but this can
be overridden by specifying one or more bpmn20.xml files with the r esour ces element
of the @epl oyment annotation. The @epl oyment annotation also makes sure that
after the test method has executed, running process instances, user tasks, and jobs
are deleted. This is handy for keeping the database clean while running your unit tests.

In addition, the Acti vi ti Rul e instance can be used to retrieve the seven core inter-
faces we discuss in this section (section 4.2). You can also specify a specific
java. util . Dat e with the set Current Ti me method, which can be used to test tim-
ers and due dates.

public class TaskServi ceTest extends AbstractTest {

@rul e () Initiates
public ActivitiRule activiti Rule = new Activiti Rul e(4 Activiti unit
"activiti.cfg-memxm"); testing

private void startProcesslnstance() {

Runti neService runti meService =
activitiRule.getRuntineService();

Map<String, Object> variableMap =
new HashMap<String, Object>();

vari abl eMap. put ("i sbn", "123456");

runti neService. start Processl| nst anceByKey((Starts new
"bookorder", variabl eMap); 4 process instance

Using the Activiti Engine API 61

}

@est

@epl oynent (resour ces={ < Deploys book
"chapt er 4/ bookor der. bprm20. xm " }) order process

public void queryTask() {

startProcessl nstance();

TaskService taskService = activitiRule.getTaskService();

Task task = taskService. createTaskQuery() k Queries
.taskCandi dat eG oup(" sal es") for user
.singleResult(); tasks

assert Equal s(" Conpl ete order", task.getNane());

Systemout.printin("task id " + task.getld() +
", name " + task.getNane() +
", def key " + task.getTaskDefinitionKey());

}
}

This unit test makes use of the powerful unit testing functionality Activiti provides
with the ActivitiRul e class @. This reduces the plumbing code necessary to test a
process definition to a minimum. With the @epl oynent annotation), the book
order process definition is deployed to the Activiti engine. But, you still have to start a
new process instance () before you can proceed with the actual testing logic.

Querying for user tasks is done via the TaskQuery interface where you can, for
example, specify candidate user or group criteria and define ordering instructions. In
this example, you query for user tasks that can be completed by users belonging to the
sales group €. The user task defined in the book order process definition has a group
definition that’s equal to the name sal es:

<user Task id="usertaskl"
name=" Conpl et e order"
activiti:candi dateG oups="sal es">
<docunent ati on>book order user task</docunentation>
</ user Task>

Because you know that only one user task is running inside the unit test, you can use

the si ngl eResul t method to return one Task instance.
Now let’s move on to creating a new task and completing it.

The most common functionalities of the TaskServi ce that you’ll be using are the
cl ai mand conpl et e methods. When a user task is created for a process instance, a
person has to claim and complete the user task before the process instance proceeds
to the next activity. Claiming a task means that the person who claims the task
becomes the owner (assignee) of the task. It also means that the claimed task isn’t
available anymore for the other potential task owners to claim or complete it.

The TaskServi ce doesn’t prohibit you from completing a task before
it has been claimed. But, it’s a best practice to claim a task with a particular
user first and then complete it. This ensures that a full audit trail, including
the name of the user who completed the task, is available.

CHAPTER 4 Working with the Activiti process engine

1. 2. 3. 4.
Test task created Candidate user JohnDoe is JohnDoe claims the task The task is completed
added

. . Assignee is
@ @ e Comp|6ted

Figure 4.7 Anoverview of the different states a user task goes through when it’s created, claimed,
and completed

In the next example, you're going to create a standalone user task and claim and com-
plete it. A standalone user task isn’t bound to a specific process instance and can be
created at any point in time in the Activiti Engine. The claim and complete function-
ality is no different for a process-bound user task. Figure 4.7 shows the different states
the user task will have in this example.

The next listing implements the different states shown in figure 4.7 in a unit test
method. The creat eTask test method is implemented in the same unit test class as
the previous listing.

public class TaskServi ceTest extends AbstractTest {

@rul e
public ActivitiRule activitiRule = new ActivitiRul e(
"activiti.cfg-memxm");

@rest
public void createTask() {
TaskService taskService = activitiRule.getTaskService();
Task task = taskService. newTask();
task. set Name(" Test task");
task.setPriority(100);
t askServi ce. saveTask(t ask);
assertNul | (task. get Assignee());

New user
task created

IdentityService identityService =

activiti Rul e.getldentityService(); New user
User user = identityService. newUser("JohnDoe"); o1 added
identityService. saveUser (user);
t askServi ce. addCandi dat eUser (task. get1d(), "JohnDoe"); User task
task = taskService. createTaskQuery() j gets
.taskCandi dat eUser (" JohnDoe") candidate

.singleResul t(); user
assert Not Nul | (task);
assert Equal s("Test task", task.getName());
assert Nul | (task. get Assi gnee());

Using the Activiti Engine API 63

taskService. clai n(task. getld(), "JohnDoe"); <1 Usertask
task = taskService.createTaskQuery() claimed

.t askAssi gnee(" JohnDoe")

.singleResult();
assert Equal s("JohnDoe", task.getAssignee());

taskServi ce. conpl et e(task. getld()); < User task
task = taskService. createTaskQuery() completed
.t askAssi gnee(" JohnDoe")
.singleResult();
assert Nul | (task);

}
}
To create a standalone user task, you can use the newTask method €0 of the TaskSer -
vi ce interface. In this example, the user task name and priority are set and the task is
saved with these new values.

The priority attribute of a user task can be used to define the urgency of
the work to be done. By default, this value is 50, but you define any value
from 0 to 100 (where 100 is the highest priority level and 0 the lowest). The
Activiti Engine itself doesn’t use the priority attribute, but it can be used by
your workflow application.

When the new user task is created, the assi gnee attribute is empty, meaning that
there is no specific user allocated yet to do the work associated with the user task. To
be able to claim the user task with a specific user, you first add a new user to the Activ-
iti Engine. This is done via the | dentityServi ce and the newlser method . Note
that the user isn’t created before the saveUser method is invoked. Once the John Doe
user is created, you can add a candidate user to the user task). This means that John
Doe is the candidate who’ll execute the work associated with the user task.

In Activiti, there’s no validation if the user who claims the user task is
also part of the candidate user or group. The Engine doesn’t even validate
whether the user is known. This makes it easy to plug in your own identity man-
agement solution, which can, for example, be an LDAP repository. We’ll take a
look at various options to implement identity management in chapter 10. It’s
a best practice to define a list of candidate users or groups and only claim the
user task with a user that’s on this list. The validation logic that checks if a user
exists in your identity management system and whether the user is part of a spe-
cific group must be implemented by you.

In the next step of the unit test, the user task is claimed with the John Doe user
Now the assignee attribute of the user task is filled with the user identifier of the
claimer, which in this example, is John Doe. To complete the user task, the conpl et e
method is used ¢). When the user task is completed, it can’t be found with a task
query anymore. The only way to retrieve the user task at this point is via the Hi st ori c-
Acti vi tyl nst anceQuery, which we’ll discuss in section 4.2.5. First, let’s look at how to
delete a process definition via the Reposi t or ySer vi ce.

64

CHAPTER 4 Working with the Activiti process engine

You already used the Reposi t or ySer vi ce interface in section 4.2.1 to deploy a process
definition; it can also be used to query the Activiti engine for deployment artifacts and
process definitions. In this section, you’ll also use the delete functionality, which the
Reposi toryServi ce interface provides. Let’s work through an example where you
deploy a new process definition and delete it at the end (see the next listing).

public class RepositoryServiceTest extends AbstractTest {

@Rul e
public ActivitiRule activitiRule = new ActivitiRul e(
"activiti.cfg-nmemxm");

Deploys new
@est) process
public void del eteDepl oynment () { definition
Reposi toryService repositoryService =
activitiRul e. get RepositoryService();
String deploynment| D = repositoryService. creat eDepl oynent ()
. addd asspat hResour ce(" chapt er 4/ bookor der . bprm20. xm ")
. depl oy()
.getld();
Depl oynent depl oynent = repositoryService Queries
. creat eDepl oyment Query() engine for

.singleResult();

assert Not Nul | (depl oyrment) ;

assert Equal s(depl oynment | D, depl oyrment. getld());

System out. println("Found depl oynent " + depl oynent.getld()
+ ", deployed at " + deploynent. get Depl oynment Ti me());

deployments

ProcessDefinition processDefinition = repositoryService Retrieves
. createProcessDefinitionQuery() QJ the deployed
.l at est Versi on() process
.singleResult(); definition

assert Not Nul | (processDefinition);

assert Equal s("bookorder", processDefinition.getKey());

System out. println("Found process definition " +
processDefinition.getld());

Runti meService runtineService =
activitiRul e.getRuntineService();

Map<String, Object> variableMap =
new HashMap<String, Object>();

vari abl eMap. put ("i sbn", "123456"); Starts new

runti meService. start Processl nst anceByKey (process
"bookorder", variabl eMap); instance

Processl nstance processlnstance = runti meService
. creat eProcessl nstanceQuery()
.singleResul t();

assert Not Nul | (processl nstance);

assert Equal s(processDefinition.getld(),
processl nst ance. get ProcessDefinitionld());

Using the Activiti Engine API 65

reposi toryService. del et eDepl oynent (depl oyment I D, true); Deletes
depl oyment = repositoryService process
definition
. creat eDepl oynent Query() and
.singleResult(); instances

assertNul | (depl oynent);

processDefinition = repositoryService
.createProcessDefinitionQuery()
.singl eResult();

assert Nul | (processDefinition);

processl nstance = runti meService
. creat eProcessl nst anceQuery()
.singleResult();

assertNul | (processlnstance);

}
}
This is quite a bit of coding, but, as you can see, you do a lot of querying to validate
the results of the deployment activities. First, you start with deploying the book order
process definition () like you did in section 4.2.1. The difference here is that you
keep track of the deployment identifier that’s generated by the Activiti Engine. This
deployment identifier will be needed later on.

When the deployment has been executed, you can query the process engine for
deployment artifacts with the Depl oynent Query). Because you're using an in-mem-
ory database, you’ll expect to find only the deployment done in this unit test. In addi-
tion to the deployment artifact query, you can also query the engine for the latest
version of the deployed process definitions via the ProcessDefi ni ti onQuery

A deployment can contain multiple resources, including a process
definition. But, it can also contain other resources, such as a business rule
and a process definition image.

Because you want to show the ability to delete the process definition, including possi-
ble running process instances and process history information, a new process instance
is started € in the unit test. The Reposi t or yServi ce interface provides two types of
del et e methods:

= The del et eDepl oynment method with a deployment identifier and a false input
parameter, which only deletes the deployment and not the corresponding pro-
cess instance data. When there are still running process instances, you’ll get an
exception when running this method.

= The del et eDepl oynent method with a deployment identifier and a true input
parameter, which deletes all information regarding the process definition, run-
ning instances, and history. If you want all process data, including running pro-
cess instances, to be deleted, you should use a Boolean value of true for the
second input parameter.

Because you've been running process instances in this unit test, you must use the
Boolean value of true ©), or you’ll receive an exception. In the last part of the unit

66

CHAPTER 4 Working with the Activiti process engine

test, you validate that the deployment, process definition, and instance are deleted.
You can execute this unit test to ensure it runs successfully. Let’s move on to the | den-
tityService interface and see how to create new group memberships.

In section 4.2.2, we talked about assigning, claiming, and completing user tasks with
the TaskServi ce interface. You’ve already seen how to create a new user within the
Activiti identity module by using the | dentityService. The | dentityService inter-
face does provide a lot more functionality, including query functions and group mem-
bership functions. This can be handy if you want to query the Activiti Engine for users
belonging to a specific group or assign users a new group membership.

In the next listing, a new user, group, and group membership are created and the
newly created group membership is tested using the book order process example
you’ve seen before.

public class ldentityServiceTest extends Abstract Test {

@Rul e
public ActivitiRule activitiRule =
new ActivitiRule("activiti.cfg-memxm");

@epl oyment (resources = {"chapter4/bookorder. bpm20. xm "})
public void testMenbership() {
ldentityService identityService =
activiti Rule.getldentityService();

User newUser = identityService Creates a
. newUser ("John Doe"); new user
i dentityService. saveUser (newlser);
User user = identityService Queries for all
.createUser Query() ueries lor a
. ’ registered users
.singleResul t();

assert Equal s("John Doe", user.getld());

Group newGoup = identityService
. newG oup("sal es");

newGr oup. set Name(" Sal es") ; Creates a

i dentityService. saveG oup(newG oup) ; <1 new group

Group group = identityService
. creat eG oupQuery()
.singleResul t();

Creates
assert Equal s(" Sal es", group.getNane()); a group
identityService. createMenbershi p("John Doe", "sales"); <}J membership
identityService. set Aut henti catedUser!d("John Doe"); <] Sets process

initiator

Runti neService runti meService =
activitiRule.getRuntinmeService();

Map<String, Object> variableMap =
new HashMap<String, Object>();

vari abl eMap. put ("isbn", "123456");

Using the Activiti Engine API 67

runti meServi ce. start Processl| nst anceByKey(
"bookorder", vari abl eMap);
TaskService taskService = activitiRul e.getTaskService();
Task task = taskService. createTaskQuery() Queries to
. taskCandi dat eUser (" John Doe") k validate group
.singleResult(); membership
assert Not Nul | (task);
assert Equal s(" Conpl ete order", task.getNane());

}
}
You again create a new user (), but now you also query the Engine to see if the user
was created correctly (2. Because you eventually want to test whether the newly cre-

ated John Doe user will be a candidate user for the user task in the book order pro-
cess, you also create a new group ¢, sal es, which is used in the group assignment in
that process.

Having created the user and group, you can now create a group membership of
John Doe for the sal es group 3. As you can see, this is all easy to do when using the
I dentityService interface. The | dent i tyServi ce also enables you to set the authen-
ticated user ; in this example, it’s used to set the user who starts or initiates the pro-
cess instance. In the process definition, a process variable can be configured whereby
this user identifier will be available during process execution:

<startEvent id="startEvent" activiti:initiator="starter" />

When you start a book order process instance, you can now test whether your new
user is a candidate user for the Conpl ete order user task. To test this, you use a task
query with a candidate user criterion, which is equal to John Doe (). When the group
membership has been created successfully, the retrieved user task name should be
equal to Conpl et e or der.

It’s nice to be able to start new process instances and work with user tasks using the
Activiti API. But, what happens if a process instance is finished or terminated? Will you
still be able to retrieve information about these process instances, such as for reporting?
Yes; and that’s what the next section about the Hi st or yServi ce interface is about.

When information about ended process instances is needed, or previous activities from
a running execution must be retrieved, the Hi st oryServi ce provides an interface to
query this kind of data. But before we dive into a code example of how to use the
Hi st oryServi ce interface, let’s first look at how the historic data about process
instances and activities is stored inside the Activiti engine database. You’ll again use the
book order process for this and start a new process instance, as shown in figure 4.8.
Note that a historic process instance is stored right away when a new process instance
is started. A query on historic process instances will also give results when all created pro-
cess instances are still running; they don’t have an end time yet. The database table in
which you can find the historic process instances is the ACT_HI_PROCINST table. When
the process instance enters its first activity state, such as Val i dat e or der, arecord in the

68 CHAPTER 4 Working with the Activiti process engine

1.
runtimeService.startProcess
InstanceByKey /

g Validate order

8 Complete order

<
6.
Return process instance
ID,e.g.3
2. 3. 4, 5.

Store history Store Update Store

process history endtime history

instance activity history activity

activity

ACT_HI_PROCINST
ACT_HI_ACTINST

Figure 4.8 Overview of the historic data of process instances and activities, which is stored by the
Activiti engine in the database when starting the example book order process

historic activity table (ACT_HI_ACTINST) is made. When the activity is finished, the
record is updated with the end time of the activity. Figure 4.9 finishes the book order
process example and shows what happensifthe “Complete order” user task is completed.

When the user task is completed, the end time of the corresponding history activity
instance is updated with the time at completion. Then the book order process instance
reaches its final end state and the end time of the historic process instance is filled in.
Because the process instance has finished its execution at this point, the Activiti Engine

1.
taskService.complete

O

2. 3. 4.
Update Update Remove
endtime endtime execution and
history history process| variables
activity instance

- Q|_pR6c;|}\}§ Figure 4.9 The complete story of

ACT_HI_ACTINST
ACT_RU_EXECUTION
ACT_RU_VARIABLE

what’s stored in the Activiti engine
database when the book order pro-
cess user task is completed

Using the Activiti Engine API 69

will also delete the runtime execution information other than the history from the data-
base. The deleted data is the execution instance stored in the ACT_RU_EXECUTION
table and the process variables persisted in the ACT_RU_VARIABLE table.

The execution data is deleted to reduce the number of rows in the running pro-
cess instance tables to improve performance. The historic tables don’t have any for-
eign keys so they can be backed up easily. Note that the process variables aren’t
automatically stored in the history tables. The updates to process variables are only
stored in a historic table, named ACT_HI_DETAIL, when you set the level of historic
information to keep to f ul | . We’ll discuss how to configure the level of historic infor-
mation that’s logged shortly.

First, let’s look at a unit test that uses the Hi st oryServi ce interface to query the
Activiti Engine for history process instances and history activities.

public class Hi storyServiceTest extends Abstract Test {

@ul e
public ActivitiRule activitiRule = new ActivitiRul e(
"activiti.cfg-memfullhistory. xm");

private String startAndConplete() {
Runti neService runti meService =
activitiRule.getRuntimeService();
Map<String, Object> variableMap =
new HashMap<String, Object>();

vari abl eMap. put ("isbn", "123456"); Starts a
String processlnstancel D = runtimeService r/ new process
.start Processl nst anceByKey(instance
"bookorder", vari abl eMap)
.getld();
TaskService taskService = activitiRul e. get TaskService();
Task task = taskService. createTaskQuery()
.taskCandi dat eG oup("sal es")
.singleResult();
vari abl eMap = new HashMap<String, Object>();
vari abl eMap. put ("extralnfo", "Extra information"); Completes a
vari abl eMap. put ("i sbn", "654321"); QJ user task with
t askServi ce. conpl et e(t ask. get1d(), variabl evap); variables
return processlnstancel D,
}
@est
@epl oynent (resour ces={"chapt er 4/ bookor der. bprm20. xm "})
public void queryHi storiclnstances() {
String processlnstancel D = start Andconpl ete();
Hi storyServi ce historyService =
activitiRule.getH storyService();
Hi stori cProcessl nstance historicProcesslnstance =
hi st oryServi ce Queries for
.createHi storicProcessl nstanceQuery() historic
. processl nst ancel d(pr ocessl nst ancel D) process

.singleResult(); instances

70

CHAPTER 4 Working with the Activiti process engine

assertNot Nul | (historicProcesslnstance);

assert Equal s(processl nstancel D, historicProcesslnstance
-getld());

System out.println("history process with definitionid " +
hi stori cProcessl nst ance. get ProcessDefinitionld() +
", started at " +

hi stori cProcessl nstance.getStartTi me() +
, ended at " + historicProcesslnstance. get EndTi ne() +
, duration was " +
hi stori cProcessl nstance.getDurationlnMIlis());

"

"

}

@est
@epl oynent (resour ces={" chapt er 4/ bookor der. bprm20. xm "})
public void queryHi storicActivities() {
start Andconpl ete();
Hi storyService historyService =
activitiRule.getHi storyService();
Li st<Hi storicActivitylnstance> activityList =

hi st oryServi ce Queries
.createHi storicActivitylnstanceQuery() 7~ forhistoric
list(); activities

assert Equal s(3, activityList.size());
for (H storicActivitylnstance historicActivitylnstance :
activityList) {
assert Not Nul | (historicActivitylnstance.getActivityld());
Systemout.println("history activity " +
hi storicActivitylnstance. getActivityNane() +
", type " +
hi storicActivitylnstance.getActivityType() +
, duration was " +
hi storicActivitylnstance.getDurationinMIlis());

"

}
}

}

The st art AndConpl et e method starts a new process instance () and completes the
user task with an update to the i sbn process variable and the addition of a new process
variable ext ral nf o @). This corresponds to the execution logic in figures 4.8 and 4.9.
The variables that are passed onto the process instance at the user task completion will
be used later on, in listing 4.8.

In the first unit test implemented using the Hi st ori cProcessl nst anceQuery, the
historic process instance started and completed in the start AndConpl et e method is
retrieved). Note that H st ori cProcessl nst anceQuery would also have returned the
book order process instance if the user task wasn’t completed and the process
instance was still running, as illustrated in figure 4.4. The information that can be
retrieved from a Hi stori cProcessl nstance is basic; for example, the start and end
times.

More interesting is the information that can be retrieved via the Hi st ori cActi vity-
I nst anceQuery €, which can provide a list of activities that have been executed by the
Activiti Engine. In this example, the querywill return three activities: the start event plus

Using the Activiti Engine API 71

the “Validate order” and “Complete order” tasks from the book order process defini-
tion. This kind of information can be handy when you want to see the audit trail whose
route has been executed in a specific process instance.

In this example, the default history settings of Activiti were used. But you can con-
figure four levels of history archiving:

= None—No history information is archived.

= Activity—All process and activity instance information is archived.

= Audit (default)—All process, activity instance, and form properties information
is archived.

= Full—The highest level of archiving; all audit information is archived and, addi-
tionally, the updates to process variables and user task form properties are
stored.

When you don’t want to use the default setting of audi t for history archiving, you can
specify an alternative value in the Activiti configuration file, which by default is activ-
iti.cfg.xml. To do this, add the following property to the process engine configuration:

<property name="history" value="full" />

In this example, you’ve specified the highest level of history archiving, but this can be
any of the four levels mentioned previously. In the highest level, the updates to pro-
cess variables are logged in the history table ACT_HI_DETAIL. The next listing shows a
unit test method—the same Hi storyServiceTest class used in listing 4.7—which
retrieves these process variable updates.

@est
@epl oynent (resour ces={" chapt er 4/ bookor der . bpmm20. xm "})
public void queryHistoricVariabl eUpdates() {
start AndConpl et e();
Hi storyService historyService =
activitiRule.getH storyService();
Li st<Hi storicDetail > historicVariabl eUpdatelLi st =
hi storyService

.createH storicDetail Query() Qu(::ries process
.vari abl eUpdat es() 4| variable updates
ist();

assert Not Nul | (historicVariabl eUpdat eLi st);
assert Equal s(3, historicVariabl eUpdatelist.size());
for (Hi storicDetail historicDetail

hi st ori cVvari abl eUpdat eLi st) { HistoricVariableUpdate
assert True(historicDetail instanceof for process variable
Hi st ori cVari abl eUpdat e) ; updates

Hi storicVari abl eUpdat e historicVariabl eUpdate =

(Hi storicVariabl eUpdate) historicDetail;
assert Not Nul | (historicVariabl eUpdat e. get Executionld());
System out.println("historic variabl e update,

revision " +

72

CHAPTER 4 Working with the Activiti process engine

hi stori cVari abl eUpdat e. get Revi sion() +
, variable type name " +
hi storicVari abl eUpdat e. get Vari abl eTypeName() +
", variable nane " +
hi storicVari abl eUpdat e. get Vari abl eNarme() + Gets new
", Variable value '" + QJ process
hi stori cVari abl eUpdat e. get Val ue() +"' ") ; variable value

"

}
}
When the history level is set to full, the historic detail query can be used to retrieve
process variable updates (. This means that, when a new process variable is created,
an update row is created. But an update row also is created when the value of a pro-
cess variable is changed, as you saw with the i shn variable in listing 4.7.

The process variable updates can be retrieved using Hi storicVari abl eUpdat e
instances). In this unit test, you don’t do a lot of testing, but you print all the vari-
able update information for learning purposes, like the new process variable value
When you run this unit test, you should see the following console output:
historic variable update, revision 0, variable type nane string, variable

nane isbn, Variable value '123456'
historic variable update, revision 1, variable type name string, variable
nane isbn, Variable value '654321
historic variable update, revision 0, variable type nanme string, variable
name extralnfo, Variable value 'Extra information'
The first entry is created at the start of the process instance, when the i shn process
variable is set. The second entry shows a new revision of the i sbn variable, created
when the user task is completed. And, the same goes for the last process variable
update entry. This completes our detailed discussion of the history service interface.

We haven’t covered the Managenent Servi ce and For nBervi ce interfaces yet. In
the previous sections, you worked with the most frequently used interfaces of the
Activiti Engine. These two, less common interfaces will be discussed in chapter 5,
when you’ll use a task form and a boundary timer event.

Now, though, let’s look at developing Java service tasks.

By now, you're familiar with the Activiti Engine API, but we haven’t discussed the use
of Java inside a process definition yet. In addition to the script, web service, and user
tasks available to define a process, you can also use Java classes to implement the pro-
cess logic. When there’s no web service that can be executed to deal with business
logic, you can use a Java service task to do that work.

The use of Java to implement a service task isn’t standard BPMN 2.0
functionality but is provided as an add-on by the Activiti framework.

The Java service task can be used in four ways:

Using plain Java to do BPM 73

= Java service task class

= Java service task class with field extensions

= Java service task with method or value expressions

= A delegate expression that defines a variable that is resolved to a Java bean at
runtime

In the following sections, we’ll look at each of these four options with short code
examples.

The simplest way of using a Java service task is to create a simple Java class that extends
the JavaDel egat e convenience class and defines the fully qualified class name (pack-
age name and the class name) in the service task of the process definition.

Let’s use the book order process example again and implement the validate order
functionality in a Java class.

public class ValidateService inplenents JavaDel egate {

@verride

public voi d execut e(Del egat eExecuti on execution) {
Systemout.println("execution id " + execution.getld());
Long isbn = (Long) execution.getVariable("isbn");
Systemout.printlin("received isbn " + isbhn);
execution.setVariabl e("validatetime", new Date());

}

}

A typical Java service task must implement the JavaDel egat e class, which makes it easy
to implement a bit of process logic. This convenience class takes care of leaving the
Java service task when it has finished to all the outgoing transitions for which the
sequence flow condition, if present, doesn’t evaluate to false. When the Java service
task is executed in the process instance, the execut e method will be invoked by the
Activiti Engine. The Del egat eExecut i on instance provides an interface to retrieve
and set the process variables. In this simple listing, the isbn process variable is
retrieved and the val i dat et i me variable is set with the current date and time.

The only thing you have to change in the process definition is the service task for
the validate order step; but, in the following listing, the full process definition is
included to make it more comprehensible.

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
t ar get Nanmespace="ht t p: / / ww. bprmwi t hacti vi ti.org"
xm ns:activiti="http://activiti.org/bpm">

74 CHAPTER 4 Working with the Activiti process engine

<process id="bookorder" name="bookorder">

<startEvent id="startevent1" nane="Start"/> Definition of
<servi ceTask id="servi ceTaskl" <1 service task
name="Val i date order"
activiti:class="org. bpmwi thactiviti. P Configures a fully
chapter4.java. Val i dat eServi ce"/ > qualified class name

<sequenceFl ow i d="sequencef | owl"
nane="Val i dat e order"
sour ceRef ="start event 1"

t ar get Ref ="servi ceTask1"/ > Shorthand
<user Task id="usertaskl" name="Conplete order" to co‘nﬁgure
activiti:candi dat eG oups="sal es"/> candidate groups

<sequenceFl ow i d="sequencef | ow2"
name="Sendi ng to nanagenent"
sour ceRef ="servi ceTask1"

t ar get Ref ="usertask1"/>
<endEvent id="endevent1l" nane="End"/>
<sequenceFl ow i d="sequencef | ow3"

name="f1| ow'

sour ceRef ="usert ask1"

t ar get Ref =" endevent 1"/ >

</ process>
</definitions>

The service task () is configured with a cl ass attribute @ that’s part of the Activiti
BPMN extensions namespace. Note that you configured the Val i dat eServi ce class
shown in listing 4.8. The user task is changed a bit because you use the shorthand
candi dat eG oups attribute here). Activiti provides an easier way to define candidate
users and groups with extension attributes because the BPMN 2.0 specification is a lit-
tle bit verbose on this point. The same candidate group assignment would look like
the following code snippet with BPMN 2.0—compliant XML:

<user Task id="usertaskl" name="Conpl ete order">
<docunent at i on>book order user task</docunentation>
<pot enti al Omer >
<r esour ceAssi gnment Expr essi on>
<f or mal Expr essi on>sal es</f or mal Expr essi on>
</ resour ceAssi gnment Expr essi on>
</ pot enti al Omer >
</ user Task>

To test your book order process with a Java service task, you can develop a simple unit
test like the one shown in the next listing.

public class JavaBpmmTest extends Abstract Test {

@rul e
public ActivitiRule activiti Rule = new ActivitiRul e(
"activiti.cfg-memxm");

private Processlnstance startProcesslnstance() {
Runti neService runti meService =

Using plain Java to do BPM 75

activitiRul e.getRuntimeService();
Map<String, Object> variableMap =
new HashMap<String, Object>();

vari abl eMap. put ("i sbn", 123456L); Starts new
return runtinmeService. startProcessl nstanceByKey(r/ process
"bookorder", vari abl eMap); instance
}
@est Deploys Java book
@epl oynment (resour ces={ < order process

"chapt er 4/ bookor der. j ava. bprm20. xm "})
public void executeJavaService() {
Processl nstance processlnstance = startProcesslnstance();
Runti meServi ce runtimeService =
activitiRule.getRuntimeService(); Gets
Date validatetine = (Date) runti meService. getVari abl e(r validatetime
processl nstance. getld(), "validatetime"); process variable
assertNot Nul | (val i datetinme);
Systemout.printin("validatetine is " + validatetine);
}
}
To test the execution of the Java service task, you first have to start a new process
instance () of the book order process in listing 4.10. To deploy the process definition
with only one line of coding, you use the @epl oynent annotation). Because the
Val i dat eSer vi ce class invoked in the Java service task sets a process variable with the
name val i dat eti me, you test if that variable is set ©. This shows you don’t need a
large unit test to verify a successful execution of a process definition.
Up to this point, you’ve been executing processes in a synchronous manner, until
you encounter non-automatic tasks, such as a user task. In the next section, you'll see
how to use async continuations to execute a service task asynchronously.

In figure 4.6, you saw that Activiti executes automatic tasks like a service task in the
same transaction and thread as the transaction and thread the process was started in.
This means that the Java class that starts a process instance will have to wait until all
automatic tasks have been executed in a process definition. When a service task con-
tains long-running logic, like the invocation of an external web service or the con-
struction of a large PDF document, this may not be the desired behavior.
Activiti provides a solution for these cases in the form of async continuations. From

a BPMN 2.0 XML perspective, the definition of an asynchronous service task
(or another type of task) is easy. You only have to add an async attribute to the service
task configuration:
<servi ceTask id="serviceTask1l"

name="Val i date order"

activiti:async="true"

activiti:class="org. bpmwi thactiviti.chapter4.java.lLongVali dateService"/>
When we define a service task with the async attribute set to t r ue, the execution of the
service task logic will be executed in a separate transaction and thread. The process

76

CHAPTER 4 Working with the Activiti process engine

2.
Start process instance until
1. async validate order
runtimeService.startProcess service task

InstanceByKey /
{@} Validate order

— >
4—.

8 Complete order

Execute script task when
job is executed

O

3. L
Return process instance
ID, e.g.3 4

Figure 4.10 Asynchronous execution of the validate order service task using an Activiti async
continuation

state is persisted to the Activiti database and a job is created to handle the service task
execution. Figure 4.10 shows the book order process definition with the asynchronous
validate order service task.

As you can see in figure 4.10, the unit test class (JavaBpmTest) that starts the pro-
cess instance will get a response right after the Activiti Engine stores the process state
and creates a job to execute the “Validate order” service task. The Activiti job executor
component that executes these jobs will be discussed in detail in chapter 15. For now,
think of it as a standalone component that executes jobs in a separate transaction and
thread. In the execut eAsyncSer vi ce method of the JavaBpmTest class, you can find
a unit test that executes the book order process as described in figure 4.10.

Besides a service task, you can also configure async continuations on other auto-
matic tasks like a business rule task, call activity, or script task, and even on a subpro-
cess. Furthermore, you can configure an async continuation on a non-automatic task
like a user task or a receive task, which results in the execution listener being executed
in a separate thread. (Execution listeners are introduced in chapter 6.)

You can also enhance the Java service task by injecting process variables or string
values. In the next section, the book order example is changed a bit to include field
extensions.

In section 4.4, you’ll learn how to use the Activiti Engine inside a Spring container,
which provides many ways to implement dependency injection. But the Activiti engine
also provides some simple functionality regarding dependency injection. To be able to
implement dependency injection, you’ll have to change the Val i dat eServi ce a bit,
like the example in the following listing.

public class ValidateServiceWthFields
i mpl ements JavaDel egate {

private Expression validatetext;

Using plain Java to do BPM 77

private Expression isbn;

@verride

public voi d execute(Del egat eExecuti on execution) {
Systemout.println("execution id " + execution.getld());
Systemout.println("received isbn " +

(Long) i sbn. get Val ue(execution)); Get isbn
execution. setVari abl e("val i datetime", new Date()); expression
System out. println(value

val i dat et ext . get Val ue(execution).toString() +
execution. getVariabl e("validatetinme"));
}
}

The Val i dat eSer vi ceW t hFi el ds class defines two attributes that can be injected by
the Activiti Engine: the i sbn and val i dat et ext attributes. Notice that the attributes
are of type org. activiti.engine.inpl.el.Expression. The Expressi on class is used
by Activiti to support simple string attribute values as well as complex expressions.

You might have expected a String type attribute for the val i dat e-
text parameter. But a service task has only one instance inside the Activiti
Engine, which is reused for every process instance. Therefore, multiple
threads can access a service task class at the same time, and class level attri-
butes aren’t thread safe. Activiti introduces an Expressi on class and the
attribute value is retrieved by passing a Del egat eExecuti on instance to the
Expr essi on instance, which can then evaluate the Expressi on value for that
specific process instance.

In this example, the i sbn expression consists of some logic to give the i sbn at least a
value that consists of more than six digits, as you’ll see in the next code snippet. To get
the value of the i sbn number with the expression calculated, you can invoke the get -
Val ue method with the Del egat eExecut i on instance as a parameter

Now you only have to change the service task definition of the book order process,
shown in listing 4.10, according to the following code snippet:

<servi ceTask id="servi ceTaskl" nane="Validate order"
activiti:class="org. bpmmw thactiviti.chapterd4.
java. Val i dat eServi ceW t hFi el ds" >
<ext ensi onEl enent s>
<activiti:field name="val i datetext"
stringVal ue="Val i dat on done at "/>
<activiti:field name="isbn">
<activiti:expression>
${isbn > 999999 ? isbn : 1000000 + isbn}
</activiti:expression>
</activiti:field>
</ ext ensi onEl enent s>
</ servi ceTask>

With this ext ensi onEl enent s XML element, fields to be injected into the Val i dat e-
Servi ceWt hFi el ds class can be specified. This can be a simple St ri ng value, like the
val i dat et ext field, or an expression using, for example, process variables like the

78

CHAPTER 4 Working with the Activiti process engine

i sbn field. Note that you can directly use process variables in a process definition for
the Activiti engine. You don’t need additional coding. Because this new process defini-
tion can be tested with a unit test similar to the one shown in listing 4.11, we won’t
cover this in more detail.

In addition to using classes inside a Java service task, you can also use method or
value expressions; this is what we’ll explore in the next section.

When you don’t want to be dependent on the JavaDel egat e interface in your service
class, you can define a method or value expression for a Java service task. Let’s look at
two simple examples to get you introduced to this type of Java service task.

When you have a BookOr der class with a val i dat e method like the following code
snippet, you can use a method expression:

public class BookOrder inplenents Serializable {
private static final long serial VersionUD = 1L;

public Date validate(Long isbn) {
Systemout.println("received isbn " + isbhn);
return new Date();

}
}
The method expression will invoke the val i dat e method and proceed to next transi-
tion. Note that you now have an isbn instance as a parameter in the validate
method. How the i sbn instance is passed on is defined in the method expression of
the Java service task:
<serviceTask id="serviceTaskl" name="Validate order"
activiti:expression="#{bookOrder.validate(isbn)}"
activiti:resultVariabl eName="val i datetinme"/>
If necessary, you can still pass a Del egat eExecut i on instance as a parameter into the
method by using the implicit execut i on variable, as illustrated in section 4.4.2. The
attribute resul t Vari abl eName is used to make the return value of the method avail-
able as a process variable with the name validatetime. To be able to use the
BookOr der instance inside the process definition, you must make sure the class is
made available as a process variable with a name of bookOr der. This can be done when
the process is started, like you did in the unit test of listing 4.11.

When you use a Java bean as a process variable, make sure the bean
implements the Seri al i zabl e interface because the process variable will be
persisted to the Activiti Engine database.

Another use of expressions inside a Java service task is a value expression. A value
expression defines an attribute inside a Java bean for which the corresponding getter
method will be invoked. This isn’t a common use of Java service tasks, but it looks like
the following XML snippet:

Using Spring with Activiti 79

<servi ceTask id="serviceTaskl" nane="Validate order"
activiti:expression="#{bookOrder.isbn}"
activiti:resultVvariabl eNane="isbn"/>

In this example, the get | sbn method will be invoked on the BookOr der process vari-
able and the resulting value is assigned to the i sbn process variable.

We haven’t discussed the del egat eExpr essi on attribute yet, which is the fourth
way to define a Java service task. With a delegate expression, you can configure a vari-
able that is evaluated at runtime to a Java class that must implement the JavaDel egat e
interface. Here’s a simple example:
<servi ceTask id="servi ceTaskl" name="Validate order"

activiti:del egat eExpressi on="#{orderValidator}"/>
The order Val i dat or variable should evaluate to a bean name that is defined in the
Spring configuration or to a fully qualified class name.

In the next section, we’ll explore richer functionality and the use of the Spring

container with the Activiti Engine.

Activiti is able to run on various platforms, including the plain Java approach we’ve
taken until now and on a servlet container or application server like Apache Tomcat.
But, it’s also easy to run the Activiti Engine within a Spring application context. By
using the Spring container to execute the Activiti Engine, you can, for example, use
the Spring dependency injection functionality and invoke a Spring bean from a ser-
vice task in the BPMN process. In the second subsection, you'll see that it’s easy to
develop unit tests with Spring and Activiti; but, first, you must define the Spring con-
figuration to integrate with the Activiti Engine.

To set up the Spring container to start up the Activiti engine, you need a generic
application context configuration. You can use the Spring configuration shown in the
following listing every time you want to use a Spring container to start up the Activiti
Engine. For convenience reasons, the namespace declarations that are part of the
root element beans are left out of the listing, but they can be found in the source code
of the book.

<beans>
<bean i d="dat aSource" cl ass="org.springfranmework.jdbc. Defines H2
dat asour ce. Transact i onAwar eDat aSour cePr oxy" > L datasource
<property name="t ar get Dat aSour ce" >
<bean cl ass="org. springframework. j dbc.
dat asour ce. Si npl eDri ver Dat aSour ce" >
<property nanme="driverCd ass" value="org.h2.Driver" />
<property name="url"
val ue="j dbc: h2: mem acti vi ti; DB_CLOSE_DELAY=1000" />

80

CHAPTER 4 Working with the Activiti process engine

<property nane="username" val ue="sa" />

<property nanme="password" val ue="" />
</ bean>
< >
aveans Wraps
transaction
<bean id="transacti onManager" manager
cl ass="org. spri ngframework. j dbc.
dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dat aSource" ref="dataSource" />
</ bean>
<bean i d="processEngi neConfi guration" (:) Creates Activiti
class="org.activiti.spring. k process engine
Spri ngProcessEngi neConfi guration"> configuration

<property nanme="dat abaseType" val ue="h2" />
<property name="dat aSource" ref="dataSource" />
<property name="transacti onManager"

ref ="transacti onManager" />

<property nane="dat abaseSchenmaUpdat e" val ue="true" /> Deploys
<property nane="depl oynent Resour ces" - book order
val ue="cl asspat h*: chapt er 4/ bookor der . spri ng. bprm20. xm " /> process
<property nane="j obExecutorActivate" value="fal se" />
</ bean>

<bean i d="processEngi ne"
class="org.activiti.spring.ProcessEngi neFact or yBean">
<property nanme="processEngi neConfi guration"
ref ="processEngi neConfi gurati on" />
</ bean>

<bean i d="repositoryService"
fact ory- bean="processEngi ne"
factory-met hod="get Reposi toryServi ce" /> Creates a
<bean id="runti meService" RuntimeService
fact ory- bean="processEngi ne" instance
factory-net hod="get Runti meService" />
<bean id="taskService"
fact ory- bean="processEngi ne"
fact ory- net hod="get TaskServi ce" />
<bean i d="hi storyService"
fact ory- bean="processEngi ne"
factory-net hod="get H storyService" />
<bean i d="nmanagenent Servi ce"
fact ory- bean="processEngi ne"
fact ory- net hod="get Managenent Servi ce" />
</ beans>

In this listing, you can see that many things you developed programmatically in Java in
the previous examples are now defined in the Spring configuration file. For example,
you have to define a process engine configuration ¢, which will be used to define the
configuration options of the Activiti Engine.

In this Spring configuration, you defined an in-memory H2 data source () in a so-
called transaction-aware data source definition. Because the data source is wrapped in
a transaction manager (4, you can use the standard Spring JDBC transaction manager.

Using Spring with Activiti 81

With the data source and the transaction manager defined, you can instantiate the
Spri ngProcessEngi neConfi guration with these components). This means the
Activiti Engine configuration is created with an in-memory data source when the
Spring container is started. You can also specify a number of processes or task forms
that have to be deployed to the Activiti Engine when it has started with the depl oy-
ment Resour ces property €. You'll see how this makes unit testing even easier in a
moment. Note that this property definition is specific to the example you’ll imple-
ment in this section. The Spri ngProcessEngi neConfi guration is used to instantiate
the ProcessEngi neFact or yBean that starts the Activiti Engine with the configured
resources and settings.

In addition to the instantiation of the Activiti Engine, the Spring container can
also create the core interface classes to the Activiti Engine for you. For example, the
Runt i meSer vi ce is created via the get Runt i meSer vi ce method of the processEngi ne
bean ¢). With this generic Spring configuration defined, you can now proceed to
define a unit test that uses this Spring configuration to test a specific process.

Because you’ve already defined all the necessary configuration of the Activiti engine,
your unit test can be kept simple. The next listing shows a unit test that starts a new
process instance of the book order process definition and completes the user task.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@cont ext Confi gurati on("cl asspat h: chapt er 4/ P Loads Spring
spring-test-application-context.xm") configuration

public class SpringTest extends AbstractTest {

@wutow red P Injects RuntimeService
private RuntinmeService runtinmeService; instance

@\ut owi red

private TaskService taskService;

@est

public void sinpleSpringTest() {
Map<String, Object> variableMap =
new HashMap<String, Object>();
vari abl eMap. put ("i sbn", 123456L);
runti meServi ce. start Processl| nst anceByKey(P Starts a process
"bookorder", variabl eMap); instance
Task task = taskService
.creat eTaskQuery()
.singleResult();
assert Equal s(" Conpl ete order", task.getNane());
taskServi ce. conpl ete(task.getld());
assert Equal s(0, runtimeService.
creat eProcessl nstanceQuery().count());

82

CHAPTER 4 Working with the Activiti process engine

As you can see, the unit test is simple because you don’t have to create the Activiti
engine yourself. With the standard Spring annotations @unWth and @ont ext -
Configuration €0, the Spring configuration you defined in listing 4.13 is used as part
of this unit test.

With the @\utowired annotation, you can let the Spring container inject an
instance of the Runti nmeSer vi ce in your unit test class ¢2. This means you don’t have
to do any plumbing before you can start a new process instance of the book order pro-
cess definition). Because the book order process is already deployed as part of the
Activiti Engine creation in the Spring configuration, you don’t have to deploy the pro-
cess first, either.

To complete the unit test, you query the Activiti engine for any running user tasks.
Because you run this unit test with an in-memory database, you can be sure that no
user task is running other than the Conpl ete Order user task defined in the book
order process. When this task is completed, you can make sure that there’s no run-
ning process instance anymore by running a process instance query.

To make this unit test work, you have to implement the process definition of the
bookor der. spring. bprm20. xni file. This process definition has some small differ-
ences when compared to the bookorder.bpmn20.xml file you've used before. In this
process definition, a Spring bean is used to implement the validation order activity
that was first implemented with a script task. Let’s take a quick look at the revised XML
definition of the service task:
<servi ceTask id="serviceTaskl"

nane="Val i date order"
activiti:expression="#{order.validate(execution)}"/>
Because you run the Activiti Engine within the Spring container, you can directly ref-
erence Spring beans from a service task.

A Spring service task isn’t standard BPMN 2.0 functionality, but is
implemented as an add-on by the Activiti framework.

The expressi on attribute can be used to define a Spring bean name with the method
that must be invoked, which, in this case, is the or der Spring bean and the val i date
method. As you saw in section 4.3, you can pass on a Del egat eExecut i on instance with
the reserved keyword execut i on. Because you didn’t configure the Spring bean or der
in section 4.3.1, the following code snippet must be added to the generic Spring con-
figuration from listing 4.13:
<bean i d="order"

class="org. bpmmwi t hactiviti.chapter4.spring. OderService" />
The last step is to implement the Spring bean class Or der Servi ce before you can
finally run the unit test. This class is really simple and only prints a message to the sys-
tem console:

Using Spring with Activiti 83

public class OrderService {
public void validate(Del egat eExecuti on execution) {
Systemout.printin("validating order for isbn " +
execution. getVariable("isbn"));

}
}

As you can see, this needs no explaining. Now you can run the unit test provided in
listing 4.14 and see that it runs successfully.

In addition to the definition of deployment resources in the Spring configuration used
in the previous example, you can also define a deployment per test method. To im-
plement this strategy, an Activiti Rul e Spring bean must be added to the Spring
configuration:

<bean id="activiti Rule" class="org.activiti.engine.test.ActivitiRule">
<property name="processEngi ne" ref="processEngi ne" />
</ bean>

The Acti viti Rul e Spring bean must also be injected into the Spring-enabled unit
test via the @\ut ow r e annotation:

@\ut owi r ed

@Rul e

public ActivitiRule activitiSpringRule;

Now you can add a @epl oynment annotation to every test method where you want to
deploy a specific process definition to test the process logic. The advantage of this
deployment strategy is that it's finer grained. You can define a specific process def-
inition to be deployed before a test method is executed, and it will be undeployed
afterwards. When you define the deployment resources as part of the Spring config-
uration, they will be available for every test method.

The unit test shown in the next listing can be rewritten to use the more flexible
deployment strategy by using the @epl oynent annotation.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass) Spring configuration
@ont ext Confi guration("cl asspat h: chapt er 4/ without deployment
spring- nodepl oynent - appl i cati on-context.xm ") resources
public class SpringWthDepl oyment Test extends Abstract Test {
@\ut owi red
private RuntimeService runtimeService;
@\ut owi r ed
private TaskService taskService;
@\wut owi r ed
@rul e P ActivitiRule instance
public ActivitiRule activitiSpringRule; for test convenience

84

CHAPTER 4 Working with the Activiti process engine

@rest
@epl oynment (resources = { Process definition
" chapt er 4/ bookor der . spri ng. bpm20. xm " }) ~ to be deployed
public void sinpleProcessTest() {
runti neService. start Processl nst anceByKey("bookorder");
Task task = taskService. createTaskQuery().singleResult();
assert Equal s(" Conpl ete order", task.getNane());
taskServi ce. conpl ete(task.getld());
assert Equal s(0, runtinmeService
. createProcessl nstanceQuery()
.count());

}

}

In this unit test, you use a Spring configuration that has no deployment resources
defined (’—unlike the Spring configuration you saw in section 4.4.1. To be able to
use the @epl oyment annotation, you have to inject the Activiti Rul e instance €2,
which provides a hook into the Activiti Engine to deploy and undeploy process defini-
tions. As shown with the si npl eProcessTest method &), you can now configure a
process definition file as part of the @epl oynent annotation.

There are plenty of possibilities for using the strength of the Spring framework
together with the Activiti process engine, such as using Spring’s transaction handling.
The information provided in this section should get you started. In chapter 6, you’ll
see how Spring can be used to retrieve and update entity objects from a database.

You now know a lot about the different ways you can develop and test with the Activiti
Engine. You can query the process engine with all kinds of criteria to retrieve process
definitions, instances, and user tasks. Because the Activiti Engine provides a service
task that invokes a Java class, we also took a look at how to use this BPMN construct
within a BPMN 2.0 process definition. This provides a powerful feature if you need
process logic inside your business process. You also saw that you can make a service
task asynchronous by adding an async continuation attribute to its definition.

We also covered the Spring integration module, which provides functionality to
run the Activiti Engine within a Spring container. Running the Activiti Engine in a
Spring container makes it possible to use Spring beans from a service task or expres-
sions inside conditions or variable assignments. Because Spring provides functionality
like transaction and security management and easy hooks to implement data access
and messaging logic (among other things), the integration of Spring with Activiti pro-
vides lots of possibilities.

In the next chapter, we’ll move away from the short code examples you’ve seen so
far, and we’ll look at a larger business process that you can implement using the Activ-
iti Designer and the Eclipse IDE.

ow that we’ve covered the basic functionality of Activiti and the most com-
mon BPMN 2.0 elements, it’s time to start implementing process definitions. We
start off in chapter 5 with a detailed guide on how to implement a process defini-
tion from scratch with workflow and email functionality. In chapter 6, you’ll be
introduced to more advanced BPMN 2.0 constructs, like the embedded subpro-
cess and the parallel gateway. Next, in chapter 7, we’ll cover the importance of a
good error handling approach using standard BPMN 2.0 constructs and some cus-
tom functionality. In chapter 8, we’ll discuss best practices for using the Activiti
Engine in your environment and how to use and extend the Activiti REST API.
Finally, we’ll explore the Activiti OSGi and CDI modules in chapter 9.

In the first chapter, I mentioned how big the BPMN 2.0 specification was. To be
honest, if you took a look at all the constructs that are available and the number
of pages the specification covers, you’ll probably feel hesitant to ever take another
look. But if you take a practical approach to BPMN, the specification suddenly
becomes a whole lot easier to handle; you don’t have to know all the nitty-gritty
details of BPMN 2.0 to do business process modeling in your enterprise. In this
chapter, we’ll examine a practical approach to implementing a BPMN 2.0 busi-
ness process.

87

88

CHAPTER 5 Implementing a BPMN 2.0 process

We’ll start by looking at a loan request business process that we’ll use throughout
the chapter. After considering it from a functional point of view, we’ll get down to the
BPMN 2.0 XML step by step. First, we’ll add business logic to the process by implement-
ing a script task and a service task. Then we’ll add a start form to the process and cover
the workflow functionality with user tasks. In the fourth section, we’ll cover the exclu-
sive gateway and the email task with a mail server.

Then, when the process is finished, we’ll check out deployment options to get the
process running on Activiti Engine. Finally, we’ll test the process with Activiti
Explorer.

We’ve got a lot of things to do. Let’s start with modeling a loan request business
process.

This section will introduce the loan request process that you’ll implement in the
upcoming sections. Throughout the chapter, tasks are enhanced or implemented in
alternative ways for illustration purposes, so you’ll get a complete picture of the possi-
bilities with BPMN 2.0 and Activiti. In the end, you’ll have the loan request process up
and running on the Activiti Engine.

Let’s start by exploring the loan request process from a business perspective.

The company that wants you to build a process with Activiti is the Loan Sharks organi-
zation, and the first process they’d like to see running is, of course, the loan request
process. Loan Sharks wants to handle loan requests efficiently from their newly cre-
ated website. The process contains automated steps for checking the credit amount in
relation to the income of the potential customer. Not all steps in the process will need
to be automated, though, because Loan Sharks management believes that each loan
request should be evaluated by one of the employees.

The first step is to visualize the loan request business model so Loan Sharks man-
agement can approve the approach you want to take with the process implementa-
tion. The loan request process is modeled with Activiti Modeler, and the result is
shown in figure 5.1.

A loan request process starts when Loan Sharks receive a request for a loan. This
request is accompanied by some basic information, like the customer’s name, email
address, current income, and the amount of money the customer wants to borrow.
Before the loan request is passed on to a Loan Sharks employee, a credit check is per-
formed. The credit check ensures that the requested loan amount isn’t higher than
half of the income of the applicant. The result of the credit check has no direct influ-
ence on the process flow but is stored as additional process information.

When the credit check has been executed, an evaluation workflow of the loan
request is started. Fozzie, an employee of Loan Sharks (and one of the standard users
in the Activiti process engine), receives a task in his task list to perform a loan request
evaluation, and he has to hurry! As you can see in the process model of figure 5.1, a

Introducing a real business process 89

Figure 5.1 An overview of the loan request process designed in the Activiti Modeler

timer symbol is attached to the “Evaluate loan request” task. In BPMN 2.0 this is called
a timer boundary event. If Fozzie isn’t fast enough at completing the “Evaluate loan
request” task, the task is escalated to a member of the management group. Consider-
ing the default users of the Activiti process engine, this means that Kermit will receive
a task in the management group.

Either Fozzie or Kermit will need to evaluate the loan request, and, based on the
outcome of that evaluation, the request is either processed or denied. In cases where
the request isn’t approved, an email is sent to the customer with information about
why the loan request was denied. Otherwise, the request is approved, and another
employee of Loan Sharks will create a formal loan agreement and finalize the request
for the customer.

Now that it’s clear what the process should do, let’s take it a step further and imple-
ment the process activities to get it running on Activiti Engine!

In the previous chapters, you've seen that there are different ways to develop business
processes in Activiti.

Your first option is to create the model in Activiti Modeler and import it into the
Activiti Designer Eclipse plugin to implement the technical parts, such as a Java ser-
vice task. For some processes, it’s even possible to skip the Activiti Designer because
no additional technical implementation is needed.

A second option is to start in the Activiti Designer and implement the business
process with the technical parts right away. From the Designer, you eventually create
a Business Archive (BAR) file that can be deployed to the Activiti Engine using Activ-
iti Explorer.

The last option is to use your favorite XML editor to develop the BPMN 2.0 XML.
For smaller processes, this is workable; for larger processes, this becomes quite
tedious, but it’s a good way to become more familiar with the BPMN 2.0 XML. That’s
why we’re going for the direct XML editing approach in this chapter.

90

CHAPTER 5 Implementing a BPMN 2.0 process

When you’re more familiar with the BPMN 2.0 constructs, you’ll probably be better
off using the Modeler and the Designer. Also, when you take an XML editing approach,
the Designer provides a BPMN 2.0 XML editor that has XML code completion.

In each of the upcoming sections, we’ll work out a part of the overall loan request
process. The first part we’ll be implementing is the credit check and the construction
of the loan application Java object. It’s time to start coding!

In this section, we’ll focus on the pro-
cess logic tasks that need to be imple-
mented for the loan request process.
Figure 5.2 shows the first activities of the

loan request process. Figure 5.2 Fragment of the loan request process
First, we’ll take a look at the script from the Activiti Modeler containing a script and Java

b1 - service task and a start event to kick off the process
task. Then you’ll implement the Java P

service task. (We’ll cover the Java service

tasks in less detail because the previous chapter already provided the necessary infor-
mation about Java service tasks.) At the end of this section, we’ll take a look at the
BPMN 2.0 XML you’ve created so far and test the first part of the process with a unit test.

The first task you encounter when you look at the loan request process is the credit
check activity. You’ll use a script task to implement the credit check, but you could
also have used a Java service task or a business rule task.

The script task is an official BPMN 2.0 construct. In figure 5.2, you can see the symbol
that BPMN 2.0 prescribes for the script task—it has the same rectangular shape as a
regular service task. The process engine will execute the script logic that’s defined in
the script task. An analyst will define the task in the model, and a developer has to
implement the script with a language the engine can interpret. When the script is exe-
cuted, the script task completes and the engine moves on toward the next activity.

The configurable options of the script task BPMN 2.0 constructare the scri pt For mat
attribute and the scri pt child element. The scri pt For mat attribute defines the format
of the script (JavaScript, Groovy, and so on) and is mandatory. The optional scri pt
child element contains the actual script that needs to be executed. If no scriptis defined,
the task will complete without doing anything.

For the Activiti Engine to execute the script task, the scri pt For mat attribute must have
avalue that’s compatible with JSR-223 (“Scripting for the Java Platform”). The supported
languages include Groovy, Clojure, JRuby, Jython, and JavaScript. For more information,
you can check out the JSR-223 specification at http://jcp.org/en/jsr/detail?id=223.

Developing script and service tasks 91

Because the Groovy jar is shipped by default with the Activiti distribution, we’ll
use Groovy as the script language in the “Check credit” task. If you want to use
another JSR-223 compatible scripting language, it’s sufficient to add the correspond-
ing jar file to the classpath and use the appropriate name in the script task configu-
ration. If you use Java 6, you get the JavaScript scripting engine for free because it’s
part of the Java 6 implementation.

All the process variables are accessible in the script because the script has access to
the execution that arrives in the task. You can, for example, use the process variable
i nput Array, an array of integers, as shown in the following code snippet:
<scri pt >

sum = 0;
for (i ininputArray) {
sum += i

}
</script>
There’s no boilerplate code necessary to get hold of process variables. Besides reading
variables, it’s also possible to set process variables in a script by using an assignment
statement. In the previous example, the sumvariable will be stored as a process vari-
able after the script has been executed. If you want to avoid this default behavior, you
can use script-local variables. In Groovy, you must use the keyword def : def sum=0. In
that case, the sumvariable isn’t stored as a process variable.

An alternative way to set process variables is by explicitly using the execution vari-
able that’s available in the script task the same way you saw it used in the previous
chapter in the Java service task:
<scri pt >

def bookVar = "BPMN 2.0 with Activiti"

execution. set Vari abl e("bookNane", bookVar);
</script>

Now let’s return to the process and the “Check credit” script task.

Loan Sharks agrees to let a customer pass the credit check when their income divided
by two is bigger than the requested loan amount. The following listing shows the
BPMN 2.0 XML fragment that defines the script task.

<scri pt Task i d="checkCredit" scri ptFormat="groovy">
<scri pt>
out:println "Checking credit for " + nane;
credit CheckGk = fal se;
if((income / 2) > |oanAmount) ({
credit CheckCk = true;
}
out:println "Checked credit for + nane
+ " outcome is " + creditCheckCk;
</script>
</script Task>

92

CHAPTER 5 Implementing a BPMN 2.0 process

In the script, you use the nane variable to print a logging statement on the console so
you can follow the process flow. Then you create a new process variable, cr edi t CheckCk,
thatwill contain the credit check outcome. As long as your loan requestor has an income
that’s more than twice the requested loan amount, the credit check will pass.

You now have your first script task in the process under control; let’s move on to
the Java service tasks.

In this section, we’ll implement the “Create application” task. The “Create applica-
tion” task gathers all the information produced so far into a LoanAppl i cation Java
bean, and puts it in the process context as a process variable. This makes all the infor-
mation regarding the loan request available in one Java object that can be used in the
remaining activities of the process.

If you need more background about the ins and outs of the Java ser-
vice task, go back to chapter 4, section 4.3. There you can find all the details
of the Java service task.

The Creat eAppl i cati onTask service task gathers all the data that was produced in the
previous steps into one container object and sets it as a process variable. In the later
tasks, you’ll see how you can access this object from the forms in the user tasks and in
the email task to retrieve customer information.

The next listing displays the service task implementation.

public class CreateApplicationTask inplenments JavaDel egate {

public void execute(Del egat eExecuti on execution) {
LoanApplication Ia = new LoanApplication();
| a. set Credi t CheckOk((Bool ean) execution

.getVariabl e("creditCheckCk")); Retrieves
| a. set Cust onmer Name((Stri ng) process variable
execution. get Vari abl e("nanme")); to populate bean

| a. setl ncome((Long) execution.getVariable("inconme"));
| a. set Request edAnpunt ((Long)
execution. getVariabl e("l oanAmount ")) ;
| a. set Emai | Addres((String)
execution. getVari abl e("emai | Address"));
execution. setVariabl e("l oanApplication", |a);
}
}

In the execute method of the ApplicationCreator Java service task class, you
create the LoanAppl i cati on instance. Remember that this object has to implement
the Serializabl e interface; otherwise, the Activiti Engine won’t be able to store
it as a process variable in the process database. The values that are used to populate
the object are retrieved from the start form you’ll build in section 5.3.2 and from

Developing script and service tasks 93

the credit check script task €. At the end, don’t forget to store the variable in
the execution.

Now that you have your business logic together, we’ll take a look at the first part of
the loan request BPMN 2.0 XML and then we’ll build a unit test.

To be able to test the first part of the loan request process, we’ll implement a BPMN 2.0
XML file with the three activities we’ve covered so far. Listing 5.3 shows what the loan
request process looks like so far.

<process id="|oanrequest"”
nanme="Process to handl e a | oan request">
<startEvent id="theStart" />
<sequenceFl ow sourceRef="theStart"

tar get Ref ="checkCredit" /> Credit check
<script Task i d="checkCredit" scri ptFormat="groovy"> <,_J script task
<script>

out:println "Checking credit for

credit CheckCk = fal se;

if((incone / 2) > | oanAmount) {
creditCheckCk = true;

+ naneg,

}
out:println "Checked credit for " + nanme
+ " outcone is " + creditCheckOK;

</script>
</ scri pt Task>
<sequenceFl ow sour ceRef ="checkCredit" Creates loan
t arget Ref ="cr eat eAppl i cation" /> QJ appl-ication
<servi ceTask id="createApplication" service task

activiti:class="org. bpmmwi thactiviti.
chapt er5. Creat eAppl i cati onTask"/ >
<sequenceFl ow sour ceRef ="creat eAppl i cati on”
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>

After the process is started, the process execution is forwarded to the checkCredit
script task 0. Then the process continues to the creat eApplication Java service

task . (We already looked at the implementation details of these tasks in the previ-
ous sections.)

Listing 5.3 doesn’t use the definiti ons element. It was left out to be
brief, but remember that it’s needed when you want to execute the BPMN
2.0 XML. You can find the full code example in the book’s source code.

All the constructs used in the process can be easily tested in a JUnit test. It’s good prac-
tice to test as early as possible; you want to get rid of possible bugs in the BPMN process
before you deploy the process to a QA environment. Let’s give the process a spin!

94

CHAPTER 5 Implementing a BPMN 2.0 process

In the previous chapter, we looked at unit testing with Activiti. We’re now going to put
what you learned there into practice. We’ll use the Acti viti Rul e class to get the Run-
ti meServi ce and use the @epl oynent annotation to deploy the process. Take a look
at the following listing to see how it’s done.

public class LoanRequest Test {

@rul e
public ActivitiRule activitiRule =
new ActivitiRule("activiti.cfg-memfullhistory.xm");

@rest
@epl oyment (resour ces={"chapt er5/
| oanrequest _firstpart.bpm20.xm "})
public void creditCheckTrue() {
Map<String, Object> processVariables =
new HashMap<String, Object>();
processVari abl es. put ("name", "M ss Piggy");
processVari abl es. put ("i ncome", 100I);
processVari abl es. put ("l oanAmount ", 101);
processVari abl es. put ("enni | Addr ess",
"m ss. pi ggy@ ocal host");
activitiRul e. get Runti meServi ce() Starts process with
. startProcessl nst anceByKey(< variables map
"| oanrequest"”, processVariabl es);

Li st<Hi storicDetail > historyVariables =
activitiRul e.getHi storyService()
.createHistoricDetail Query() Retrieves process
. vari abl eUpdat es() P variable updates
.orderByVari abl eNane()
.asc()
dist();

assertNot Nul | (hi storyVari abl es);
assert Equal s(7, historyVariables.size()); Get.s LoanApplication
Hi storicVari abl eUpdat e | oanAppUpdate = 4| variable updates
((Hi storicVariabl eUpdate) historyVariabl es. get(5));
assert Equal s("| oanAppl i cati on",
| oanAppUpdat e. get Var i abl eNane());
LoanApplication la = (LoanApplication)
| oanAppUpdat e. get Val ue();
assert Equal s(true, la.isCreditCheckCk());

}
}
Because you haven’t implemented a start form for the process yet, you need to pass
the necessary process variables when you start a new process instance (). When the

start Processl nst anceByKey method has been executed, the process is already fin-
ished because there are no wait states in the loan request process. Because you want to

Interacting with user tasks and Activiti forms 95

test whether the “Credit check” and the “Create loan application” tasks have been exe-
cuted as expected, you need a way to retrieve the process variables.

In chapter 4, you learned that you can use the Hi st oryServi ce to get all process
variable updates for a finished process instance. To store all process variable updates,
you have to configure the Activiti Engine with a hi st ory parameter value of ful | . You
do this in the activiti.cfg-memful | history. xm configuration file, as follows:

<bean i d="processEngi neConfi guration"
class="org.activiti.engine.inpl.cfg.
St andal onel nMenPr ocessEngi neConfi gurati on">
<property name="dat abaseSchemaUpdat e" val ue="true"/>

<property name="history" value="full" />
<property nanme="jobExecutorActivate" val ue="false" />
</ bean>

In the unit test, you query the Activiti Engine database for all process variable updates
sorted by variable name ©4. This means that the | oanAppl i cat i on variable set by the
Creat eAppl i cati onTask service task should be at the sixth place of the result list

If the credi t CheckCk attribute of the LoanAppl i cati on object equals t r ue, this means
that the script and the service task are executed as expected.

Now you can give the unit test a spin to see if it’s working as expected. You’ve seen
how to implement business logic with scripts and Java service tasks and how to test it
with a simple unit test. Let’s add some workflow logic and a start form to the process
to get it ready to run with the Activiti Explorer.

To implement a human workflow in a process, you need a way to interact with it. The
BPMN 2.0 specification doesn’t define how to implement this user interaction besides
the user task. But Activiti provides task forms to create a GUI application to work with
user tasks.

In this section, you’ll learn all about these Activiti task forms and how to apply
them in the loan request process. First, we’ll take a look at forms in Activiti in general,
and then we’ll create a start form so you can submit a loan request that starts the pro-
cess. After the form is made, we’ll explore how to test the capabilities of forms using
the For nBer vi ce. Finally, you’ll see some workflows in action with escalation and the
timer boundary event.

First things first, though: how do you create forms with Activiti?

Activiti supports two ways of rendering forms. You can use the Activiti Explorer’s form
rendering by defining form properties on a start event or a user task. Or, if you want to
render the forms yourself, you can use your own template technology and define the
template with the acti vi ti: f or rKey attribute, which can be specified on a start event
or a user task. This is an example of using the f or nKey attribute on a start event:

<startEvent id="theStart" activiti:fornKey="your.form' />

96

CHAPTER 5 Implementing a BPMN 2.0 process

Process to handle a loan request

Version 1 (3) Deployed one day ago

Name
Email address
Income

Loan amount

Figure 5.3 The user task form used
to start the loan request business pro-
cess within the Activiti Explorer

Start process Cancel
In this chapter, we’ll be using the form rendering of the Activiti Explorer. The exter-
nal form rendering will be discussed further in chapter 10.

Figure 5.3 gives you an idea how a form will be rendered with Activiti Explorer. It
shows the start form for the loan request that we’ll define in this section.

To use the built-in rendering, the form properties have to be defined with the start
event or a user task. Let’s start with the initial start event form for the loan request
process.

To start an instance of the loan request process, we’ll use a form on the start event.
Employees of Loan Sharks can use this form to fill out data about a customer who
wants to borrow money. The following listing shows the form properties of the start
event that will be rendered in the Activiti Explorer (as illustrated in figure 5.3).

<startEvent id="theStart">
<ext ensi onEl enent s>
<activiti:fornProperty id="nane"
name=" Name"

required="true" emailAddress will

t ype:“ stri ng" /> becomeapl’ocess
<activiti:fornmProperty id="enail Address" variable

nanme="Enai | address"

required="true" <1 Income field

type="string" /> is of type long
<activiti:fornProperty id="incone"

nanme="1 nconme"

required="true"

type="long" /> <=1 Label for
<activiti:fornmProperty id="IoanAmunt" loanAmount field

name="Loan anount"
required="true"
type="1long" />
</ ext ensi onEl enent s>
</startEvent >

Interacting with user tasks and Activiti forms 97

After the form is submitted, the fields in the form will be stored in the process context
as process variables. The emai | Addr ess field will be accessible in the process context
with the process variable enai | Addr ess (). You can define in the form whether a cer-
tain value is required and what type it is @). The default type is string; other sup-
ported types are | ong, Bool ean, enum and dat e. When you choose a dat e type field,
the Activiti Explorer will render a date picker object. The nane attribute value ©) is
used by the Activiti Explorer to create a label for the form property.

We can now test the form property definition functionality using the For ner vi ce.

In chapter 4, we took a look at the main Activiti interfaces. One of them was the For m
Servi ce. You’'ll use this interface now to test your newly created form from listing 5.5.
The For nBer vi ce gives access to the form properties of a user task or start event and
can be used to submit the form fields to complete a specific user task.

Let’s write a unit test that shows the For nSer vi ce API for the form defined in list-
ing 5.5.

public class FornBerviceTest {

@rul e
public ActivitiRule activitiRule =
new ActivitiRule("activiti.cfg-nemxm");

@rest
@epl oynent (r esour ces={ Deploys procgsswith
"chapt er5/startform bpm20. xm "}) < form properties
public void startFornmSubmt() {
ProcessDefinition definition = activitiRule
. get Reposi toryServi ce()
.createProcessDefinitionQuery()
. processDefinitionKey("startFornTest")
.singl eResult();

assertNot Nul | (definition); Retrieves FormService

FornBervice fornmBervice = activitiRule < interface
. get FornServi ce();
Li st <FornProperty> fornList = fornService
. get Start FornDat a(definition.getld()) Retrieve.sform
. get For nProperti es(); < properties
assert Equal s(4, fornList.size());

Map<String, String> fornProperties =

new HashMap<String, String>();
fornProperties. put("name", "Mss Piggy");
fornmProperties. put("email Address", "piggy@ ocal host");
fornProperties.put("inconme", "400");

fornProperties. put ("l oanAnount”, "100"); Submits form

f or mBer vi ce. submi t St art For nDat a(<;_1 properties
definition.getld(), fornProperties);

98

CHAPTER 5 Implementing a BPMN 2.0 process

Li st<Hi storicDetail> historyVariables = activitiRule
.get Hi storyService()
.createHistoricDetail Query() View history query
.fornProperties() | for form properties
list();

assert Not Nul | (hi storyVari abl es);
assert Equal s(4, historyVariables.size());

Hi storicFornProperty fornProperty = (HistoricFornProperty)
hi storyVari abl es. get (0);
assert Equal s("l oanAmount ", fornProperty. getPropertyld());
assert Equal s(" 100",
fornProperty. get PropertyVal ue());

fornProperty = (HistoricFornProperty)

hi storyVari abl es. get (1) ;
assert Equal s("inconme", fornProperty.getPropertyld());
assert Equal s("400",

fornProperty. get PropertyVal ue());

}
}
The form properties are configured on the start event of the startform bpm20. xn
process definition €). Through the ActivitiRul e instance, you can retrieve the

For nBervi ce interface ¢2). Then you can retrieve the form properties for the deployed
process definition using the get St art For nDat a method ©). The Activiti Explorer uses
this method to render the task form component.

To fill in the form properties, you need to store the form values in a map. Notice
that this map holds all the values of the form properties as strings, not as the type
defined in the start event (see listing 5.5). At the start of the process, these properties
are converted into process variables of the correct type. Then the For nSer vi ce can be
used to submit the form with the form properties map

When the submi t St ar t For nDat a method execution is finished, your simple process
is completed as well. This is because there are no wait states in the process definition.
Therefore, you use the Hi st orySer vi ce again) to validate whether the form proper-
tiesi ncone and | oanAnount are equal to the values you submitted. Form properties are
stored in the Activiti history database tables by default (the history level of audit). You
don’t need additional process engine configuration like you did in section 5.2.4.

Now that you have a form to start the process, let’s move on to the user tasks that
are needed to perform the loan request evaluation. They need forms too!

Now you have the first part of your loan request process in place; next, you need to
add the workflow logic. Figure 5.4 shows the user task activities that we’ll implement
in this section.

In the “Evaluate loan request” task that’s assigned to Fozzie, a form will be pre-
sented containing the information that’s kept in the LoanAppl i cation process vari-
able you created in listing 5.2. This way, Fozzie will be able to see the result of the

Interacting with user tasks and Activiti forms 99

“Check credit” script task and can look into the
process variables that are passed on as form prop-
erties at the start of the process instance.

The timer symbol attached to the “Evaluate loan
request” task is called a timer boundary event. A
timer boundary event acts as a stopwatch or alarm
clock. The timer starts when the execution arrives
in the activity with the timer boundary event. When
the timer fires after a specified interval, the activity
is interrupted and the sequence flow going out of
the timer boundary event is followed. When the
user task is assigned to Fozzie, the clock starts tick- Figure 5.4 The part of the loan re-

ing and, in this example, Fozzie will have no more duest process that implements the
workflow and escalation logic with

than one minute to complete the task (youll see o iochon o timer boundary event

this soon, in the BPMN 2.0 XML of listing 5.8).

If Fozzie doesn’t complete his work on time, the task will be escalated. The “Evalu-
ate loan request” task is cancelled and deleted, and the “Evaluate request by man-
ager” user task is created and added to the candidate management group. When a
manager claims the user task, the same task form will be shown as the “Evaluate loan
request” task.

Now let’s start implementing the new task form and create the escalation workflow
logic, including the timer boundary event.

You already saw that it’s easy to use process variables in the credit check script task
implemented earlier on. When defining task forms, you can use a similar syntax to
include process variable values. Activiti uses the JUEL expression language (http://
juel.sourceforge.net) for this.

The next listing shows how you can use the LoanApl i cati on process variable in
your approval task form definition.

<user Task i d="eval uat eLoanRequest"
nanme="Eval uate | oan request"
activiti:assignee="fozzie">
<ext ensi onEl enent s>

<activiti:fornProperty id="customerNane" Displays
name="Cust omer name" customerName
expressi on="${1 oanAppl i cat i on. cust oner Nare}" process variable

writabl e="fal se"/>
<activiti:formProperty id="incone"
nane="|ncone of custoner"
expressi on="${1 oanAppl i cati on. i ncone}" Sets field as
writable="fal se"/> <1 read-only
<activiti:fornmProperty id="requestedAmunt"
name="Request ed | oan anmount"

100

CHAPTER 5 Implementing a BPMN 2.0 process

expressi on="${1 oanAppl i cati on. request edAmount } "
writabl e="fal se"/>

<activiti:fornProperty id="creditCheckC"
nanme="CQut cone of credit check"

expr essi on="${| oanAppl i cati on. cr edi t CheckCk}" Defines new
witable="fal se"/> requestApproved
<activiti:fornProperty id="request Approved" process variable

name="Do you approve the request?"
requi red="true"
type="enunt' >
<activiti:value id="true" name="Yes"/>
<activiti:value id="fal se" name="No"/>
</activiti:fornProperty>
<activiti:formProperty id="expl anation"
nanme="Expl anati on"/>
</ ext ensi onEl enent s>
</ user Task>

In the ${| oanAppl i cati on. cust oner Nane} expression (), the | oanAppl i cati on pro-
cess variable is used. At runtime, the variables in the expressions are resolved to their
values in the process instance. A form property can be defined as read-only by config-
uring the wri t abl e attribute with value f al se

Based on the read-only information, Fozzie or a manager will have to make a deci-
sion concerning the loan request and, in case of denial, an explanation should be
given. You’ll use this explanation in the email task implemented later on.

The “Evaluate loan request” user task must have a timer boundary event to cancel the
task after one minute. The next listing shows a fragment of the loan request process in
which the user tasks and the timer boundary event are declared. Note that the form
properties definition is left out because it was already defined in listing 5.7.

<sequenceFl ow sour ceRef ="creat eAppl i cation"
t ar get Ref =" eval uat eLoanRequest" />

<user Task i d="eval uat eLoanRequest"
name="Eval uate | oan request"
activiti:assignee="fozzie" />

<sequenceFl ow sour ceRef =" eval uat eLoanRequest " Attaches a
t ar get Ref =" appr oval Gat eway" /> boundary event
<boundar yEvent id="escal ati onTi mer" to user task

cancel Activity="true"
att achedToRef =" eval uat eLoanRequest " >
<ti mer Event Definition>
<timeDuration>PT1M&/ti meDuration> <7 Declares time
</timerEventDefinition> duration
</ boundar yEvent >
<sequenceFl ow sour ceRef ="escal ati onTi ner"
t ar get Ref =" eval uat eRequest ByManager" />
<user Task i d="eval uat eRequest ByManager "
nanme="Loan eval uati on by manager"

Handling decisions and sending email 101

activiti:candi dat eG oups="nmanagenent" /> Adds task to
<sequenceFl ow sour ceRef =" eval uat eRequest ByManager" management
t ar get Ref =" appr oval Gat eway" /> group

The boundary event is a standard BPMN 2.0 construct /) that has a time duration def-
inition attached to the event. The value is set to PTAIM @), and this notation conforms
to the ISO 8601 standard as required by the BPMN 2.0 specification. PT1Mstands for
Period Time 1 Minute. You can find more about the notation on the ISO 8601 page of
Wikipedia: http://en.wikipedia.org/wiki/ISO_8601#Durations.

When the timer goes off, the eval uat eLoanRequest user task is canceled and the job
of evaluating the loan is escalated to the user task eval uat eRequest ByManager. This user
task is made available to the users of the management group, to be claimed

After these two user tasks, the customer will either have approval for the loan
request or not. Let’s take a look at what we do with this decision and meet the exclu-
sive gateway.

In this section, we’ll examine two new
constructs in the loan request process.
First, we’ll take a look at the exclusive
gateway BPMN 2.0 construct that helps
to control execution flow in the loan
request handling. We’ll then explore
how Activiti extends BPMN 2.0 function-
ality by implementing an Activiti-specific
construct, the email task. Figure 5.5
shows the remaining part of the loan
request process.

Either Fozzie or Kermit (as sole
member of the management group) has
evaluated the loan request in the last Figure 5.5 An exclusive gateway is used to im-
steps we covered. This evaluation will plement conditional logic after the evaluation of
trigger some actions. If the loan request the loan request.. Based on the evaluation out-
is approved, the request is processed come, an execution path is chosen.
and the customer will receive the requested amount of money. If the employees of the
Loan Sharks decide not to approve the loan request, an email will be sent to inform
the customer that the request has been denied and explain why. First, we’ll take a look
at how to deal with the outcome of the evaluation, and then you’ll start sending an
email message.

Gateways are the BPMN 2.0 way of controlling the flow of execution. A gateway is
graphically visualized as a diamond shape, with an icon inside. In the parallel gateway,

102

CHAPTER 5 Implementing a BPMN 2.0 process

this icon is a + symbol. When you need conditional logic, you can use an exclusive
gateway, also called the XOR gateway. The BPMN 2.0 icon for this type of gateway is an
X, as you can see in figure 5.5.

When the process execution arrives at an exclusive gateway, the condition expres-
sions on the outgoing sequence flows are evaluated. The sequence flow correspond-
ing to the first condition expression that evaluates to true will be executed. When
more than one condition expression evaluates to true, only the first sequence flow
will be executed, and the other condition expressions aren’t even evaluated. If no con-
dition expression evaluates to true, the Activiti Engine will throw an exception. To
prevent this, you can define a default flow on the exclusive gateway in case no condi-
tion expression evaluates to t r ue.

In the following code snippet, you can see how the exclusive gateway used in the
loan request process is implemented in BPMN 2.0 XML:

<excl usi veGat eway i d="approval Gat eway" />
<sequenceFl ow sour ceRef =" appr oval Gat eway"
t ar get Ref ="i nf or nCust oner " >
<condi ti onExpr essi on xsi:type="t For mal Expressi on">
${request Approved == fal se}
</ condi ti onExpr essi on>
</ sequenceF| ow>
<sequenceFl ow sour ceRef =" appr oval Gat eway"
t ar get Ref =" processRequest " >
<condi ti onExpr essi on xsi:type="t For mal Expressi on">
${request Approved == true}
</ condi ti onExpr essi on>
</ sequenceF| ow>

The condi ti onExpressi on element that’s nested in a sequenceFl ow uses the same
type of expression you saw earlier in the forms. In these two condition expressions,
you use the r equest Appr oved process variable that’s set by one of the two loan request
evaluation user tasks executed in the previous step of the process.

Because the loan request evaluation leads either to approval or denial, there are
only two sequence flows leaving the exclusive gateway. This isn’t a restriction; you’re
allowed to define as many sequence flow paths as you want.

When the employees of the Loan Sharks decide not to approve a loan request, the
customer receives an email. The email service task is the last step in the loan request
process in the case of denial.

The email task isn’t part of the BPMN 2.0 specification, so it doesn’t
have a dedicated icon and is shown as a regular service task. Activiti provides a
default email service task that can be used to send emails to one or more
recipients, including support for CC, BCC, and HTML content. It’s a bonus!

Before you can execute the email task in the loan request process, you need to set up
a mail server. We’ll use the Apache James project for that and we’ll look at how to get

Handling decisions and sending email 103

the mail server up and running. Then we’ll implement a small process example to test
the email task and send Miss Piggy a message. This way you can see how the email task
works and make sure that the James environment is configured correctly.

Download Apache James from http://james.apache.org and unzip the file in a direc-
tory of your choice. Because not all operating systems allow the use of ports like 25 for
SMTP and 110 for POP, we’ll configure James to use ports 1025 for SMTP and 1110 for
POP for these examples.

You can configure this by editing the config.xml file in the apps/james/SAR-INF
directory of your Apache James installation. Notice that the config.xml file is created
only after James is started for the first time. You can start the server by executing the
run.sh or run.bat file in the james_install_dir/bin directory. Search in the config.xml
file for the following items and configure the ports as specified in the following con-
figuration snippet:
<pop3server enabl ed="true">

<port>1110</port>
</ pop3server >

<snt pserver enabl ed="true">
<port >1025</ port>
</ snt pserver >

<nnt pserver enabl ed="true">
<port>1119</port>

</ nnt pserver >

Now you can restart the server.

Once the server is up, you’ll need to add a user account so you have somebody to
send email to from the process. Start a telnet session with | ocal host on port 4555;
you can log in with the preconfigured r oot user, password r oot . Then add a user with
the following command:

adduser mi ss. piggy piggy

A user called mi ss. pi is added with —
he email address T 55. pi R 1 TS [o]x]
the email address m ss. pi ggy@ ocal - AMES Remote Administration Tool 2.3.2
host and the password pi ggy. To check loase gater your login and password
if Miss Piggy’s account is added, you can o0 ords
H oot
execute the |istusers command to elcone root. HELP for a list of comnands
verify it. The screenshot in figure 5.6 sor Riza.piggy added
. . . listusers
gives a view of the telnet session to sum- xisting accounts 1
. . ser: miss.piggy
marize things. JL‘
That’s all there is to it. The James 0 [
mail server is configured correctly and Figure 5.6 Screenshot of a telnet session that
is waiting to receive mail on port 1025. adds the Miss Piggy user to the Apache James mail

Back to Activiti! server

104 CHAPTER 5 Implementing a BPMN 2.0 process

Now that your mail server is up, you're ready to define an email task in a BPMN 2.0
XML process definition. Take a look at the BPMN 2.0 XML in the next listing.

<process id="sinpl eEmai | Process" >
<startEvent id="theStart" />
<sequenceFl ow sourceRef ="t heStart" targetRef="sendMil" /> Der"_‘es mail
<serviceTask id="sendMil" activiti:type="mail"> service task
<ext ensi onEl ement s>
<activiti:field nane="to"

stringVal ue="m ss. pi ggy@ ocal host"/ > Declares recipient

<activiti:field name="subject" and subject
expression="Hel l o ${nane}"/>

<activiti:field nane="htm ">
<activiti:expression>

<! [CDATA[
<htm >
<body> Uses name
Hel | o ${nane},

 +_| process variable

Your | oan request has been denied.

Ki nd regards,

Loan Sharks
</ body>
</htm >
11>
</activiti:expression>
</activiti:field>
</ ext ensi onEl ement s>
</ servi ceTask>
<sequenceFl ow sour ceRef ="sendMai | " target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
The mail service task is defined by adding an Activiti-specific attribute to a regular
service task (). The email address is defined in the t o field and the subject with the
subj ect attribute
The email address that you send in listing 5.9 is hardcoded in the BPMN 2.0 XML, but
in the loan request process you want this property to be flexible because it depends on
who is filing for a loan. To solve that problem, you can use the expr essi on attribute to
define the address:

<activiti:field name="to" expression="${| oanApplication. email Address}" />

The email you use has HTML content. You can see that in the email task you also have
access to process variables; in this case, you use the nane process variable

You can now run the process within Eclipse but you need a mail server to can test
the email service task. The following listing shows an elegant way to write a unit test
for this. Notice that you must first stop the James server.

Handling decisions and sending email 105

public class Mil TaskTest {

@ul e .
public ActivitiRule activitiRule = Starts engine

new Activiti Rul e("activiti.cfg-memmail.xm"); <1 with mail client
@est

@epl oynent (resour ces={"chapter5/testSi npl eMai | . bprm20. xm "})
public void sendMil Local Test() throws Exception {
W ser wiser = new Wser();
wi ser. set Port (1025);
wi ser.start();
Map<String, Obj ect > processVari abl es =
new HashMap<Stri ng, Obj ect >();
processVari abl es. put ("nane", "M ss Piggy");
activitiRul e. getRuntineService()
.startProcessl nstanceByKey("si npl eEmai | Process”,

processVari abl es) ; Checks t!]at
Li st <W ser Message> nmessages = Wi ser. get Messages(); one emall
assert Equal s(1, nessages.size()); was received

W ser Message nessage = nessages. get (0);
M nmeMessage m nmeMessage = nessage. get M neMessage() ;
assert Equal s("Hell o M ss Piggy",
m nmeMessage. get Header (" Subj ect”, null));
wi ser.stop();

}
}
Make sure that the mail server port in the activiti.cfg-mem-mail.xml file @} is config-
ured for port 1025. By default, Activiti expects the mail server to run on SMTP port 25;
you have to override the port by defining the following mail server:

<mai | server="|ocal host" port="1025" />

The Activiti project uses a mail server that’s great for unit testing and is called Sub-
Etha SMTP (http://code.google.com/p/subethasmtp/). This mail server project pro-
vides a class named W ser , which can be used to start a mail server with a few lines of
code. And when you want to check if an email has been sent to the mail server, you
can use the get Messages method 2. In this unit test, you validate whether the subject
of the email is the one you defined in the process definition of listing 5.9.

In addition to writing a unit test using the SubEtha mail server project, you can
also use Apache James as you will do in the loan request business process. You can use
a unit test similar to the one in listing 5.10 but remove the W ser mail test class and
start a new process instance. Also, make sure you’ve started Apache James. To view the
email, you can install an email client such as Mozilla Thunderbird. Remember that
Apache James is using port 1110 for SMTP. In Thunderbird, the email should look sim-
ilar to the one shown in figure 5.7.

In the previous sections, you implemented a number of activities of the loan request
process definition. Because it would be a waste of paper to show the full BPMN 2.0 XML
definition, now is a good time to look at the loanrequest.bpmn20.xml file in the source

106 CHAPTER 5 Implementing a BPMN 2.0 process

File Edt ‘View Go Message Tools Help
2 Getmal - ke [:lnddresssook) Tag - J

) Inbox Hello Miss Piggy! - In... ﬁ -

[-_é replyl . IL:; forwaldl [®]'unk‘ [®x delete]

m noreply@activiti.org <noreply@activiti.org>
subject Hello Miss Piggy! 18:33
to You other actions -

Hello Miss Piggy,
Your loan request has been denied.

Kind regards,

The Loan Sharks Company.
Figure 5.7 Email received
after executing the simple
[=F email task process

code of this book (bpmn-examples/src/main/resources/chapter5). Notice that we
skipped one activity in the process, which is the “Process request” user task that’s exe-
cuted when the loan request is approved. You already implemented two user tasks ear-
lier on, and this activity contains no new configuration items.

When you want to use the email task in a process definition deployed
on the Activiti Explorer, you need to set the mail server and SMTP port cor-
rectly in the applicationContext.xml file because, by default, the emails are
sent to port 25 on localhost. You can find the Spring configuration file that
the Activiti Explorer uses in the Tomcat webapps/activiti-explorer/WEB-INF
directory. In the processEngineConfigurati on bean, add the element
<property name="nai | ServerPort" val ue="1025"/>.

In the next section, we’re going to package the loan request process definition in a
BAR file and deploy it to Activiti Explorer to see it running!

Before you can test the loan request process with the Activiti Explorer, you need to
deploy it. We’ll look into three options for deploying a process archive: using Java,
Ant, or Activiti Explorer. At the end of this section, we’ll take a quick look at using
Activiti Explorer to check the outcome of a deployment.

The unit of deployment on Activiti Engine is a business archive (BAR) file. A business
archive is equivalent to a standard Java JAR file and, therefore, a zip file. It can contain
BPMN 2.0 processes, custom task templates, rules, and any other type of file. A busi-
ness archive is a collection of resources.

Deploying processes to the Activiti Engine 107

When a business archive file is deployed, it’s scanned for files with a bpmn20.xml
extension. Each file that has this extension will be parsed and can contain multiple
process definitions.

The Java classes that are added in the BAR file aren’t added to the
classpath. All the classes the process needs at runtime, such as the Java ser-
vice tasks or implementations of event listeners, should be present on the
Activiti Engine classpath for the processes in the business archive to run. In
the loan request example, running on the Activiti Explorer on the default
Tomcat instance, you need to put a JAR file containing the Java service task
in the webapps/activiti-explorer/WEB-INF/lib directory.

We’ve created an Ant build.xml file in the src/main/resources/chapterb directory of
the book’s source code to generate a BAR file containing the process definition. When
you run this Ant target, a BAR file is created in the src/main/resources/chapter5/dist
directory that contains the loan request process definition. In the same directory, a
JAR file containing the Java service task class is created.

To run the example, you have to copy the newly created loanrequest.jar file to the
webapps/activiti-explorer/WEB-INF/lib directory of the Tomcat distribution in Activiti
(inside the apps folder).

Now that you have the Java classes on the Tomcat classpath and you’ve created a
BAR file with the loan request process definition, you can deploy the loan request
example to the Activiti Engine. Let’s take a look at two options for doing so.

To deploy business archives on the Activiti Engine, you have three options. Deploy-
ments can be done via Java using the Reposi t oryServi ce, using an Ant target, or—
the easiest option—using Activiti Explorer. Let’s take a look at the Java and Activiti
Explorer options.

We’ll skip the Ant target option, but you can find an example in the Ant build file
we used earlier to create the BAR and JAR files. Make sure the H2 database and the
Tomcat server are running. You can do this by running the ant denp. start command
from the setup directory of the Activiti distribution, as explained in chapter 1.

The first option we’ll explore is deploying the loan request process using the Activiti
API. Take a look at the next listing; it shows how you can use a standalone J2SE applica-
tion to deploy the archive.

public class BarDepl oyer {

public static void main(String[] args) throws Exception {
ProcessEngi ne processEngi ne =
ProcessEngi nes. get Def aul t ProcessEngi ne();
Reposi toryService repositoryService = Gets a.handle on
pr ocessEngi ne. get Reposi toryService(); | RepositoryService

108

CHAPTER 5 Implementing a BPMN 2.0 process

String barFil eName =
"src/ mai n/ resour ces/ chapt er5/di st/| oanrequest. bar";

Zi pl nput St ream i nput St ream = new Zi pl nput St r eam(new Readsin
Fi | el nput St rean(bar Fi | eNane)) ; < barfile
String deploynment| D = repositoryService. creat eDepl oyment ()
. nane(bar Fi | eNane)
.addZzi pl nput St rean{ i nput St ream
. depl oy() Deploys
-getld(); contents
Li st <Stri ng> depl oyedResources = repositoryService of file

. get Depl oynment Resour ceNanes(depl oynent | D) ;
for(String depl oyedResource : depl oyedResour ces) {
Systemout. println("Deployed : " + depl oyedResource);
}
i nput Stream cl ose();
}
}

First, you need to get a handle on a Pr ocessEngi ne instance. You use the get Def aul t -

ProcessEngi ne method to get this. Then you use the Reposi t orySer vi ce

, read the

BAR file €3 in a Zi pl nput St r eam and deploy it). With the deployment ID that you get
back after the deployment, you can query the RepositoryService to display the

deployed resources.

If you try this and see the deployed resources displayed in the console, everything

is correctly deployed.
Let’s take a look at the Activiti Explorer deployment option now.

To deploy the loanrequest.bar file with

Activiti Explorer, you only have to start a Upload new deployment
web browser with http://localhost:8080/

.. . Select a file (.bar, .zip or .bpmn20.xmi) or drop a file in
activiti-explorer, log in, and choose the the rectangle below.

Manage tab. There, you can deploy new
BAR files using the “Choose a file” button,
as shown in figure 5.8. :
Choose afile
When the loan request process
archive is uploaded to the Activiti engine,
it’s automatically deployed, versioned,
and available in the Activiti Explorer for
starting a new process instance. In the
same deployment screen of Activiti
Explorer, you can also delete a deploy-
ment archive.

Drop a file here

When you deploy multiple versions Figure 5.8 A pop-up menu showing the Activiti Ex-

of a process, you'll find multiple deploy- ~ Plorer deployment function

ments in the deployment view as well. Another place to look for deployment informa-
tion is the database link in the Activiti Explorer. You can, for example, find the loan

request process definition in the ACT_RE_PROCDEF table.

Testing the process with Activiti Explorer 109

BPMN itself doesn’t have a notion of versioning, but Activiti does. The version of a
process is defined during deployment. Before the ProcessDefiniti on is stored in
the Activiti database, a version will be assigned to it. The first time a process with a
certain process identifier, which is defined in the BPMN 2.0 XML, is deployed, the
version value is set to 1. For every subsequent deployment, the version number is
increased by 1. You can have instances of multiple versions of a process running at
the same time.

But, enough about deployments and database tables; let’s see some action.

Because you need to fill out a start form to get a loan request process instance run-
ning, go to the Activiti Explorer page at http://localhost:8080/activiti-explorer and
log in as fozzie (password is also fozzie). In the Process tab, the list of deployed process
definitions is shown, including the loan request process. The process definition name
corresponds to the name attribute in the BPMN 2.0 XML file.

When you click the “Start process” button, the start form should automatically
appear. Let’s start a loan request for Miss Piggy and fill out the form, as shown in fig-
ure 5.9.

Fill in all the fields—they’re all defined as mandatory in the form definition. Make
sure you fill in mi ss. pi ggy@ ocal host in the email address field. Then click the “Start
process” button.

You can now see that the “Evaluate loan request” task appears in Fozzie’s task list.
Be fast now because, if you don’t click the “Complete task” button within one minute,
the task will be escalated to Kermit the manager—the timer is running from the
moment the task was assigned to Fozzie.

Unfortunately, Fozzie isn’t the fastest worker on the planet, and the task disap-
peared from his task list. Let’s log out and log in as Kermit. The “Evaluate loan request
by manager” task was not assigned to Kermit explicitly in the process definition but to

" Process to handle a loan request

Version 2 'E) Deployed 10 minutes ago

Name | Miss Piggy
Email address = miss.piggy@localhost

Income | 1000

Loan amount | 400 Figure5.9 Startformfor
a loan request by Miss
Piggy using the Activiti

Start process Cancel Explorer

110

CHAPTER 5 Implementing a BPMN 2.0 process

the management group. Kermit has to open the Queued list and claim the task before
he can work on it; and after he does that, nobody else can work on it. When you’ve
claimed the task as Kermit, you can work on it and end it by clicking the “Complete
task” button, as shown in figure 5.10.

Although Miss Piggy passed the credit check, Kermit denies her the loan. After you
click “Complete task,” an email will be sent to Miss Piggy’s email account to inform
her about the unfortunate event. You will see an email arrive in your email client.

That concludes our trip to implement your first complete business process with
Activiti. Of course, you can play around a bit with the process to see, for example, how
the checks behave with different input or to grant Miss Piggy the loan and see how the
process finishes.

Evaluate loan request by manager

[31] No due date = Medium Priority (¥ Created moments ago

This case has no description set.

Part of process: 'Process to handle a loan request'

People

Q) 4" Kermit the Frog
b No owner (_Transfer 9\ Assignee (Reassign
Subtasks

No subtasks defined for this task

Related content
No related content attached for this task

Fill in the form below and complete the task:

Do you approve the request?* | No v

Motivation | No more money..] |

Complete task Reset form

Figure 5.10 Denying Miss Piggy’s loan request with a user task form in the Activiti Explorer

Summary 111

A complete business process has been implemented in this chapter. You’ve seen how
script tasks and Java service tasks can perform the logic that’s needed to handle a loan
request. We also covered the exclusive gateway, which controls the path of execution
in a process. You also saw how Activiti extends the BPMN 2.0 functionality with an
email service task.

We also examined how to apply workflows in Activiti with user tasks and forms and,
by using a timer boundary event, to escalate a task to another employee. In addition,
we covered the deployment options for getting the process running on the Activiti
Engine and testing it with the Activiti Explorer application.

You already know a lot about implementing BPMN 2.0 business processes, from the
abstract model to concrete code, and you’re ready to create your own processes. In
chapter 6, we’ll take a look at the more advanced BPMN 2.0 constructs like the parallel
gateway and subprocesses and Activiti extensions like event listeners. We’ll take it one
step further to a real-life business process!

In the previous chapter, we implemented a full business process from start to finish
using a subset of the BPMN 2.0 constructs. When you want to build your own busi-
ness process, you'll likely find that you need more advanced functionality in your
processes. On the following pages, you’ll learn all about developing processes with
Activiti that use subprocesses, parallel execution, database integration and execu-
tion, and task listeners.

In this chapter, we’ll approach each advanced construct separately so we can focus
on that piece of process logic and learn all the nitty-gritty details. First, you’ll see how
to structure business processes using subprocesses and learn about the differences
between embedded and standalone subprocesses. Then we’ll go on with parallel
gateways and discuss the consequences of parallel execution in a business process.

112

Using BPMN 2.0 subprocesses 113

In addition, we’ll explain the use of JPA to access various databases transparently in
Activiti. Together with execution and task listeners, the functionality of JPA is offered
via Activiti extensions on top of the BPMN 2.0 specification. These powerful parts of
the Activiti toolbox aren’t standardized by OMG, but they provide additional function-
ality to process developers.

We’re going to take off on our Activiti trip and progress into the more advanced
features of the process engine. Fasten your seatbelts and enjoy the flight while you
read about subprocesses and work with the examples.

Business processes that consist of dozens or even hundreds of activities aren’t rare in
large organizations. For example, a business process for ordering a complex product
like an airplane or even a car consists of several steps: order part A, test part B, and so
on. To make a large business process more readable and better structured, it can be a
good idea to divide parts of the business process into smaller subprocesses. Another
advantage of using subprocesses is that they can be reused by other business pro-
cesses, resulting in standardization.

When an organization has multiple ordering business processes that each consist of a
number of common activities and a small number of process-specific activities, it
would be a nightmare to maintain each order process definition separately. It would
be better to define subprocesses that can be shared by each business process and then
add the process-specific activities.

Subprocesses have a number of advantages from a business and modeling perspec-
tive, but what are your choices for implementing such subprocesses? The first choice
that has to be made is between embedded (inline) and standalone subprocesses.

An embedded subprocess is part of the main process but defines its own scope in
the process. The embedded subprocess shown in figure 6.1 is collapsed so that the
activities in the subprocess aren’t shown. You can imagine that, for large processes, a
model with collapsed subprocesses can make the process definition more readable.
And, when you want to see the activities inside the subprocess, you can expand it.

A standalone subprocess is a business process that can also be used as a main pro-
cess when this is applicable. This means that the subprocess has its own versioning life

. Embedded sub .
process Figure 6.1 An embedded sub-

process is an integral part of the
main process and introduces a
new scope for the whole subpro-
cess in the main process.

Main process

114

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Call activity

Main process

e e mendannnnn

Figure 6.2 A standalone sub-
process that is invoked by the
main process via a call activity.
A subprocess definition consists
of a start and end event, just like
the main process definition.

Subprocess

cycle in contrast to an embedded subprocess. A standalone subprocess can be invoked
from a main process by using a call activity. In the call activity, the unique identifier of
the subprocess is defined so a process engine can retrieve and start it. Figure 6.2 shows
an overview of a standalone subprocess.

In the case of a standalone subprocess, the main process starts a new process
instance of the subprocess definition and waits until the subprocess completes. The
subprocess can just as easily be started by another main process or be started as a main
process itself.

That’s enough about the theory of subprocesses; let’s implement the embedded
and standalone subprocess types in Activiti.

Real-life process definitions often don’t consist of just a few activities—they can be so
enormous that they don’t fit on A3 pages. Embedded subprocesses can provide a
great help for these process definitions by structuring them into smaller parts. When
each embedded subprocess is collapsed, the process definition is readable as a series
of major activities. When you’re interested in the details of a specific activity, that one
can be expanded.

As we already saw, this same kind of structuring can be achieved by using call activ-
ities and standalone subprocess definitions. As is often the case with design decisions,
neither standalone nor embedded subprocesses are the best choice all the time. But
let’s look at some situations where you could decide to go for an embedded subpro-
cess instead of a standalone subprocess:

Using BPMN 2.0 subprocesses 115

= The embedded subprocess is an integral part of the main process and needs
process context, like the process variables of the main process, to be able to exe-
cute its process logic.

= When it’s not likely that the subprocess will be reused by other main processes
or be used as a main process itself.

= When there’s only a need for a separate scope inside the main process and
there’s no case of reusable logic.

We’ll look at reasons to choose standalone subprocesses in the next section. But first,
it’s time to look at an example featuring embedded subprocesses: the JIRA escalation
process.

A popular issue-tracking tool for Java development projects is JIRA from Atlassian. JIRA
is well suited for prioritizing issues, but a project manager may want to have additional
ways to follow up on specific issues. Let’s look at a process definition where a project
manager can add an item to the engineering team’s task list directing them to work
on a specific JIRA issue (see figure 6.3).

In the escalation process definition in figure 6.3, we make use of an embedded pro-
cess to define a scope for the development and test user tasks. Because we want to define
a timer boundary event that fires when the issue isn’t resolved within a specific time
period, we need these two tasks to be within one scope. An embedded subprocess is the
BPMN 2.0 construct used to define such a scope within the main process definition.

Figure 6.3 An escalation process where a project manager can add a task item for the engineering team
to solve an unresolved issue

116

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Developer
subprocess

Log JIRA issue

JIRA issue not
solved in time

Escalation main process

Figure 6.4 The escalation process definition with the embedded subprocess collapsed. This makes
the process definition easier to read and to comprehend.

Because the timer boundary event is defined on the embedded subprocess, the timer
will fire when the embedded process hasn’t ended after the specified time duration.
As an added benefit, you can also look at the same escalation process with a collapsed
embedded subprocess, shown in figure 6.4.

With the embedded subprocess collapsed, the process definition becomes easy to
comprehend. Note that embedded subprocesses can also be used hierarchically; sub-
processes can consist of other embedded subprocesses.

With the escalation process defined, let’s transform it into an executable BPMN 2.0
process by translating it to XML.

The JIRA issue escalation process definition consists of many BPMN 2.0 constructs, so
the XML will be verbose. To make it easier to comprehend, we’ll start the process
implementation with the embedded subprocess in the following listing. Then, in list-
ing 6.2, you’ll see the main process definition where the subprocess is embedded. The
whole XML process definition can be found in the source code package for this book.

<subProcess i d="devel oper SubProcess" > Defines
<startEvent id="theStartDevel oper SubProcess" /> embedded
<sequenceFl ow sour ceRef ="t heSt art Devel oper SubPr ocess" subprocess

t ar get Ref =" Devel oper Task" />
<user Task i d="Devel oper Task" nanme="Conpl ete JI RA i ssue"
activiti:candi dat eG oups="engi neeri ng">
<docunent ati on>
JIRA issue is ${i ssueNunber}
</ docunent ati on>
</ user Task>
<sequenceFl ow sour ceRef =" Devel oper Task"
t ar get Ref =" Test Task" />
<user Task id="Test Task" name="Test sol ution"
activiti:candi dat eG oups="engi neeri ng" > Provides
<document at i on> documentation with

JIRA issue is ${issueNunber} process variable

Using BPMN 2.0 subprocesses 117

</ docurent ati on>
<ext ensi onEl ement s>
<activiti:fornProperty id="sol uti onApproved"
nanme="Do you approve the sol ution?"
requi red="true"
type="enunt >
<activiti:value id="true" name="Yes"/>
<activiti:value id="fal se" nanme="No"/>
</activiti:fornProperty>
</ ext ensi onEl ement s>
</ user Task>
<sequenceFl ow sour ceRef =" Test Task"
target Ref =" Test K" />
<excl usi veGat eway i d="Test K"/ >
<sequenceFl ow sour ceRef =" Test K"
t ar get Ref =" Devel oper Ready" >
<condi ti onExpr essi on> Checks if tester
${sol uti onApproved == true} 41 approved solution
</ condi ti onExpr essi on>
</ sequenceFl ow>
<sequenceFl ow sour ceRef =" Test K"
t ar get Ref =" Devel oper Task" > <— Returns to
<condi ti onExpr essi on> development task
${ sol uti onApproved == fal se}
</ condi ti onExpr essi on>
</ sequenceFl ow>
<scri pt Task i d="Devel oper Ready"
scri pt For mat =" gr oovy" >
<scri pt>
out:println "Developer is ready with JIRA issue "
+ i ssueNunber
</script>
</script Task>
<sequenceFl ow sour ceRef =" Devel oper Ready"
t ar get Ref ="t heEndDevel oper SubPr ocess" /> Leaves embedded
<endEvent id="t heEndDevel oper SubProcess" /> 4 subprocess
</ subProcess>

An embedded subprocess is defined with a subPr ocess element () containing the activ-
ities that are executed in the scope of the embedded subprocess. Because you’ll test the
escalation process with the Activiti Explorer, you add a meaningful docunent at i on ele-
ment to the user tasks containing the value of the i ssueNunber process variable

When the development task is completed, a test task is created to approve the solu-
tion. When a tester fills in an approval and completes the user task form, the process
continues with the last step in the subprocess ©). If the tester doesn’t approve the solu-
tion, the developer task is created again € so a developer can come up with another
solution. The embedded subprocess is completed when the end event is reached 7,
as happens in the main process. The difference is that, when the embedded subpro-
cess is completed, the process execution will continue with the next activity attached
to the subprocess with a sequence flow.

Now let’s look at the main process definition to see how the subprocess from the
previous listing is embedded.

118

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

<definitions xm ns="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL"

xmns:activiti="http://activiti.org/bpm"
t ar get Nanespace="http://ww. bpmwi t hacti vi ti. or g/ subprocess">

<process id="escal ati onProcess"

name="Escal ati on process exanple">
<startEvent id="theStart">
<ext ensi onEl ement s>
<activiti:fornProperty id="issueNunber" <1 Starts form for
nane="|ssue nunber" issue number
required="true"
type="long" />
</ ext ensi onEl enent s>
</ startEvent >
<sequenceFl ow sourceRef ="theStart"
t ar get Ref =" Logl ssue" />
<script Task i d="Logl ssue" scri pt For mat ="groovy">
<scri pt>
out:println "Project manager asks devel oper to
conplete JIRA issue " + issueNunber
</script>
</ scri pt Task>
<sequenceFl ow sour ceRef =" Logl ssue"

t ar get Ref =" devel oper SubPr ocess" /> Start of embedded
<subProcess i d="devel oper SubProcess" > <1 subprocess
<!-- see code listing 6.1 -->

</ subPr ocess>
<boundaryEvent id="escal ati onTi ner Devel oper"
cancel Activity="true"

att achedToRef =" devel oper SubProcess" > Boundary
<ti ner Event Defi ni ti on> event attached
<tineDuration>PT1M/ti meDur ati on> to subprocess

</timerEvent Definition>
</ boundar yEvent >
<sequenceFl ow sour ceRef ="escal ati onTi mer Devel oper"
t ar get Ref =" Pr oj ect Manager Escal ati onTask" />
<user Task i d="Proj ect Manager Escal ati onTask" < Escalation
nanme="JI RA i ssue is not conpleted in tine" task
activiti:candi dat eG oups="nmanagenent ">
<docunent ati on>
JIRA issue is ${issueNunber}
</ docunent ati on>
</ user Task>
<sequenceFl ow sour ceRef =" Pr oj ect Manager Escal ati onTask"
tar get Ref ="t heEnd" />
<sequenceFl ow sour ceRef =" devel oper SubProcess"
target Ref ="t heEnd" />
<endEvent id="theEnd" />

</ process>
</definitions>

The main process kicks off with a start event containing a task form defined with the
f or nProperty attribute @0. In the start form, the project manager will specify the issue

Using BPMN 2.0 subprocesses 119

number. When the i ssueNurber process variable is logged with the script task, the
embedded subprocess of listing 6.1 is executed

The timer boundary event that’s attached to the embedded subprocess is also
defined in the main process definition ¢). In this example, the timer will fire when
the embedded subprocess hasn’t been completed within one minute. When the timer
boundary event is executed, a user task is created for the managenent group

Before you can test this process in the Activiti Explorer, you’ll have to deploy the
process definition in a BAR file to the Activiti Engine. Then you can use the Activiti
Explorer to work through the various tasks in the issue tracking process.

First, we’ll create a BAR file that contains the BPMN 2.0 XML file for the escalation pro-
cess. In chapter 5, you created a BAR file with an Ant build file; we’ll repeat this to cre-
ate the BAR file for the escalation process.

The BAR file is created when running the build.xml Ant build file. You can find
this build file in src/main/resources/chapter6/embedded_subprocess, and the jirais-
sue.bar file is created in a dist subdirectory there. You can now start up Activiti
Explorer to deploy the escalation deployment artifact. In the Deployments tab, you
can upload the jiraissue.bar file.

Now that the escalation process definition is available in the Activiti Engine, it’s
time to start a new process instance in the Activiti Explorer. Figure 6.5 shows a screen-
shot of the Activiti Explorer as it starts the escalation process.

When the issue tracking process has started, a new task should be available for the
engineering team. Remember that you assigned the first developer task to this candi-
date group (see listing 6.1). When you click on the Tasks tab in the Activiti Explorer, you
should see that a queued task with the name “Complete JIRA issue” has been created in
the engineering group. Now, claim and complete this task, and a new “Test solution”
task will be created for the same engineering candidate group (see figure 6.6).

When you don’t approve the solution, a new developer task will be created.
Because you defined a timer boundary event on the embedded subprocess in listing
6.2, an escalation task will be created one minute after the start of the embedded sub-
process. Don’t approve the test solution and wait a few moments: a new task, “JIRA
issue is not completed in time,” will be created. When this task is created, you know
that the timer boundary event job was executed as you would expect.

Yo Escalation process example

Version 1 (3) Deployed 30 minutes ago

Issue number*

Figure 6.5 The Activiti Explor-
er showing the start form of the

Start process Cancel .
escalation process

120

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Test solution

[31] No due date = Medium Priority (&) Created moments ago

JIRAIssue is 1234

Part of process: 'Escalation process example'

People s
O [i@°, Kermit the Frog

“ No owner | Transfer “oul Assignee | Reassign

Subtasks &

No subtasks defined for this task

Related content =

No related content attached for this task
Fill in the form below and complete the task:

Do you approve the solution? * -

Complete task Reset form

Figure 6.6 The Test Solution task form in the Activiti Explorer, which is part of the
embedded subprocess in the issue tracking process definition
The timer boundary event only fires when the Activiti Engine’s job exec-

utor is activated. By default, the job executor is active in the Activiti Engine.
This can be overridden by defining a j obExecut or Acti vat e property with a
value of fal se on the engine configuration. Disabling the job executor can
be useful when you have a cluster of Activiti Engines and you only want to exe-
cute jobs on specific instances.

As you saw in this issue tracking process example, an embedded subprocess is an inte-
gral part of the main process definition. Process variables are shared between the
main process and the embedded subprocesses, which introduces no additional com-
plexity to run the process on the Activiti Engine. Embedded subprocesses, first and
foremost, provide a way to define scopes in a process definition. And, with the intro-
duction of scopes, you can define boundary events such as timers and errors on a
group of activities as you did in the example.
Now let’s see how this works with standalone subprocesses using call activities.

An embedded process is always a subprocess by definition, but it’s more vague with
standalone subprocesses. In essence, a standalone subprocess is exactly the same as a
normal process definition. You can use every process as a standalone subprocess by
invoking it with a call activity.

Using BPMN 2.0 subprocesses 121

We already talked about the benefits of using subprocesses in general, but when
would a standalone subprocess be a good choice? First of all, it’s a choice of design
and not of mathematics. But, you should think of using standalone subprocesses in
the following situations:

= When a part of a process definition is reusable in other process definitions.
= When process logic inside a subprocess is also used as a main process.
= When a part of a process is expected to change a lot.

A standalone subprocess offers more flexibility than embedded subprocesses because
new versions of a subprocess can be deployed without the need to change the parent
process. Also, the standalone subprocess can be reused in every process that needs its
process logic. Another big difference with an embedded subprocess is that a stand-
alone subprocess can be started as a main process as well.

The downsides of a standalone subprocess are the extra maintenance it requires
and the strict separation between the process contexts of a main process and subpro-
cess. While the process context in an embedded subprocess is shared between the
main process and the subprocess, it’s impossible to share the process context with a
standalone subprocess. The only communication that’s possible is to add input and
output parameters to a call activity configuration. Then the input parameters will be
available in the standalone subprocess and the output parameters will be made avail-
able to the main process context.

But, enough theory. Let’s look at a standalone subprocess definition and see how
to implement a call activity to invoke it.

The main benefit of implementing a standalone subprocess is reusability. In the exam-
ple we’ll look at—a mobile telephone contracting process—the focus is on achieving
this goal. A mobile telephone company wants to standardize its contract process fur-
ther for the personal and business market. Although the process steps involved in
coming to a contract agreement are different between the personal and business con-
tract processes, the credit check activity is similar in both processes.

Because the credit department handles individual as well as organizational credit
check requests, it seems obvious to make this step reusable for other processes. Fig-
ure 6.7 shows the credit check process.

First, the customer’s credit history is validated. If there’s a reason to take a closer
look at the customer’s current situation, the request is initially disapproved. A credit
manager can then make the final decision to approve or disapprove the customer for
a new contract. In figure 6.8, this credit check process is used as a standalone subpro-
cess in the personal mobile contract process definition.

The personal mobile contract is simple because a new or existing customer can
request a new contract via a website. The customer receives a confirmation or denial
via email within seconds based on the outcome of the credit check subprocess. In the
remaining part of this section, you’ll implement the personal mobile contract process,

122

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Figure 6.7 A simplified version of a credit check process that’s used by both the personal
and the business mobile contract processes

Send maobile
agreement by

e-mail

O—. Check credit

1l

Send denial

message by
e-mail

Personal mobile contract process

Disapproved i Approved
NoX

Figure 6.8 The personal mobile contract process definition containing a call activity that
invokes the credit check standalone subprocess

but let’s take quick look at how the credit check process is also used in the business
mobile contract process (see figure 6.9).

As you can see, the business mobile contract process contains more user tasks than
the personal process definition. A new business agreement always starts with one or
more face-to-face meetings. Then, a sales manager can create a new initial business
contract agreement. Before the contract is approved, a credit check is performed, just
like in the personal contract process. Eventually, the agreement is approved or disap-
proved, and this is communicated to the business customer in a meeting.

Because we don’t want to repeat ourselves, we’ll focus on the personal mobile con-
tract process for the code implementation. Let’s see how we can kick off a standalone
subprocess with a call activity.

Using BPMN 2.0 subprocesses 123

&

~ Contact
customer to

start new
contract

Approved

@
@
§ Enter new
a business Check credit x
o contract
1
£ £ 3
g g
Q o P
] a Contract
2 manager
g a second opinion
(2]
2
@
Second chance Denied Contact
x customer for

denial

Figure 6.9 The business mobile contract process containing the call activity to the credit check stand-
alone subprocess

To be able to reuse the credit check process, you must be able to provide that process
with the necessary customer information—at least a customer number—to perform
the credit check. And, when the credit check has been performed, it’s important that
the approval or disapproval outcome is communicated back to the main process. In
the next listing, the implementation of the call activity with input and output parame-
ters is shown.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
xmns:activiti="http://activiti.org/bpm"
t ar get Nanespace="htt p://ww. bpmwi t hacti viti.org/
per sonal nobi | econtract">

<process id="personal Mobil eContract"
nane="Per sonal nobile contract">
<startEvent id="theStart">
<ext ensi onEl enent s> Starts with
<activiti:fornProperty id="customer Nunber" task form
name="Cust omer numnber"
requi red="true"
type="string" />
<activiti:fornProperty id="contract Type"
nanme="Contract type"
required="true"
type="enun >
<activiti:value id="100m n"
nane="100 m nutes"/>
<activiti:value id="200m n"

124

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

nane="200 m nutes"/>
<activiti:value id="500m n"
name="500 m nutes"/>
</activiti:fornProperty>
</ ext ensi onEl enent s>
</startEvent >
<sequenceFl ow sourceRef ="t heStart"
t ar get Ref =" credi t Check" />
<cal | Activity id="credit Check" Invokes credit
cal | edEl enent ="cr edi t CheckPr ocess" > | check process
<ext ensi onEl enent s>
<activiti:in source="custoner Nunber"

target="custoner| D' /> Defines input
<activiti:in source="contract Type" <1 parameter
target="contract Type" />
<activiti:out source="creditCheckApproved" <] Defines output
target="creditApproved" /> parameter

</ ext ensi onEl enent s>
</callActivity>
<sequenceFl ow sour ceRef ="cr edi t Check"
t ar get Ref ="credi t Approved" />
<excl usi veGat eway i d="credit Approved"/>
<sequenceFl ow sour ceRef ="credi t Appr oved"
t ar get Ref =" sendMbbi | eAgr eenment " >
<condi ti onExpressi on>
${credit Approved == true}
</ condi ti onExpr essi on>
</ sequenceFl ow>
<sequenceFl ow sour ceRef ="credi t Appr oved"
t ar get Ref =" sendDeni al ">
<condi ti onExpr essi on> Uses credit
${credi t Approved == fal se} < check outcome
</ condi ti onExpr essi on>
</ sequenceFl ow>
<user Task i d="sendMobi | eAgr eenent "
nanme="Send nobile contract"
activiti:candi dateG oups="sal es"/ >
<sequenceFl ow sour ceRef ="sendMbi | eAgr eenent "
tar get Ref ="t heEnd" />
<user Task i d="sendDeni al "
nanme="Send | etter of denial"
activiti:candi dateG oups="sal es"/>
<sequenceFl ow sour ceRef =" sendMbbi | eAgr eenent "
t ar get Ref ="t heEnd" />
<endEvent id="theEnd" />

</ process>
</ definitions>
The implementation of a call activity is simple with BPMN 2.0 and Activiti. The identi-
fier of the standalone subprocess is configured in the cal | edEl ement attribute
The latest version of the invoked subprocess is always started when the call activity is
executed. The call activity waits until the execution of the subprocess is finished.

To communicate with the subprocess, you can define input and output parame-

ters. In this example, a customer number and contract type ¢4 are provided as input

Using BPMN 2.0 subprocesses 125

to the credit check subprocess. As you can see, a mapping defines which variable of
the parent process (the sour ce attribute) is copied to which variable of the subprocess
(the t ar get attribute).

The input and output parameter mapping functionality is included in
the BPMN 2.0 specification using an i oSpeci ficati on element that is very
verbose. Therefore, Activiti supports the much simpler to use i n and out ele-
ments. The Activiti roadmap contains an item to support this BPMN 2.0 com-
pliant way of creating input and output parameters as well.

In addition to the input parameters, the (dis)approval outcome of the credit check pro-
cess is injected as a cr edi t Appr oved process variable in the main process context
This process variable is used in the next steps of the personal mobile contract process
to decide between emailing a contract agreement or a denial message

Because the logic of the credit check process is already clear from the definition
shown in figure 6.7, the BPMN 2.0 XML isn’t shown here. (You can look up the imple-
mentation of this subprocess in the book’s source code.)

The credit check process contains an extra script task after the user
task to copy the value of the variable that holds the outcome of the user task
(credi t CheckAppr ovedFor m) to the process variable (cr edi t CheckAppr oved).
The Activiti Engine returns an exception if you use the credi t CheckAppr oved
variable directly in the form property definition. This is because the variable
is also used in the out parameter definition of the call activity.

Now let’s test the process definitions and see if it will work as expected.

To test the personal mobile contract process example, you have to deploy two process
definitions—the main and the standalone subprocess definition. This isn’t a problem
because you only have to make sure that both BPMN 2.0 XM files are present in the
BAR file you create.

The contract process BAR file is created when running the build.xml Ant build
file. In the src/main/resources/chapter6/callactivity directory, you can find this Ant
build file and, when executed, the BAR file is created in a dist subdirectory there.
Now, deploy the newly created callactivity.bar file to the Activiti Engine using the
Activiti Explorer.

Because the credit check process contains a Java service task, you have to perform
an additional step to deploy the Cr edi t CheckSer vi ce Java class to the Activiti Engine
classpath. In addition to the BAR file, the Ant build file also created a callactivity.jar
file that contains the compiled class file. You need to first stop the running Tomcat
instance, for example, by executing the ant tontat.stop command in the setup
directory of your Activiti installation. Then, copy the callactivityjar file to the
webapps/activiti-explorer/WEB-INF/lib directory of the Tomcat instance in the Activ-
iti installation directory. Now, you can start Tomcat again (ant tontat.start) and the
Credi t CheckSer vi ce class will be available on the Activiti Engine classpath.

126 CHAPTER 6 Applying advanced BPMN 2.0 and extensions

With the personal mobile contract
and credit check processes fully
deployed, you can now go to the Activiti

Yo Personal mobile contract

Version 1 (3) Deployed moments ago

Explorer to starta new process instance.
Note that both processes are available ~ Customernumber® |99
to startin the process instance listin the Contracttype* | 500 minutes -

Activiti Explorer. But, you want to start
the personal mobile contract process—
you can do that as shown in figure 6.10.

When the process is started, a cus- Figure 6.10 Screenshot of starting the personal
tomer number and a contract type mobile contract process within the Activiti Explorer

Start process Cancel

value have to be provided. Note that

the credit history service task in the credit check subprocess automatically approves
processes for customer numbers between 1,000 and 10,000. If you fill in a customer
number of 99, a new user task named “Personal credit check” will be created to per-
form an extra validation on the credit of the customer. When you complete that user
task, you can choose to approve or disapprove the request, and you should see a corre-
sponding user task created from the personal contract main process.

We’ve talked about subprocesses in a lot of detail. A subprocess is an essential and
powerful construct in BPMN because it can provide a scope definition with an embed-
ded subprocess and reusability and flexibility with a standalone subprocesses and call
activity. Our next topic is the parallel gateway construct, which provides functionality
to perform activities simultaneously.

You already used an exclusive gateway in a number of examples in the previous chap-
ters. An exclusive gateway is a simple but powerful construct for controlling the flow
throughout a process definition. A parallel gateway is part of the same gateway con-
struct family, but it can be considered a more advanced BPMN element.

It’s a common requirement for parts of process logic to be executed at the same
time. If there are multiple tasks to perform, it would be inefficient to place the activ-
ities in a waiting line. A parallel gateway makes it possible to perform multiple activi-
ties simultaneously.

In addition, when a parallel gateway is placed after multiple incoming sequence
flows, it will make sure that all activities are finished before the process execution goes
further. A parallel gateway executes all outgoing sequence flows leaving the gateway
and waits for all incoming sequence flows to complete.

With a simplified example process, the functionality of a parallel gateway becomes
easier to comprehend. Let’s look at a fictional day in the life of a multitasking devel-
oper in figure 6.11. The first parallel gateway is called a fork because it makes the pro-
cess execution fork into two parallel executions. The second parallel gateway is a join
because it makes the process execution wait until all the activities between the fork
and join gateways are executed.

Working with BPMN 2.0 parallel gateways 127

= o= &
Tweet about Social work on Work through

last night's Facebook email backlog
maowvie

&8

End of lon
day at worl

Working day

Take a coffee break

Figure 6.11 A multitasking process definition with a fork and join parallel gateway. All activities must
be executed before the process will end with the last activity after the join parallel gateway.

In the following sections, we’ll implement the multitasking process in a BPMN 2.0
XML file.

Parallel gateways aren’t hard to implement in a BPMN 2.0 process definition. But the
runtime behavior is more difficult to grasp. As you’ll discover, the different outgoing
sequence flows aren’t really executed in parallel but are still running one after another.

Real parallel execution with multiple threads running at the same time
isn’t the result of using a parallel gateway. The activity sequences that are
modeled after the fork construct run after each other. The first sequence of
activities is executed until a wait state is encountered. This can be a receive or
user task or a parallel gateway join when there are no wait state activities in
the sequence. After the first sequence of activities has come into a wait state,
the second sequence of activities will be executed, and so on. There are good
reasons why the Activiti framework decided to implement the parallel gateway
this way. If there are multiple threads running at the same time, a need for
locking and concurrency checking would come up and that would introduce
a lot more complexity and lead to some performance loss.

Let’s first look at the implementation of the multitasking example process definition
in the next listing.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Nanespace="http://ww. bprmwi t hacti viti.org/
par al | el gat eway" >

<process id="multitaskingProcess"
nanme="Mil titaski ng process">
<startEvent id="theStart" />
<sequenceFl ow sourceRef="theStart"
target Ref ="fork" /> Fork parallel
<paral |l el Gateway id="fork" /> 4| gateway

128 CHAPTER 6 Applying advanced BPMN 2.0 and extensions

<sequenceFl ow sour ceRef ="f or k"

target Ref ="tw tterTask" />
<sequenceFl ow sour ceRef ="f or k"

t ar get Ref =" cof f eebr eak” /> First activity of
<manual Task id="twi tterTask" /> < first sequence
<sequenceFl ow sourceRef ="twi tter Task"

t ar get Ref ="f acebookTask" />
<manual Task i d="facebookTask" />
<sequenceFl ow sour ceRef ="f acebookTask"

t ar get Ref =" backl ogEmai | Task" />
<user Task i d="backl ogEnai | Task"

nane="Read enuni| backl og"

activiti:assignee="kermt"/>
<sequenceFl ow sour ceRef =" backl ogEnai | Task"

target Ref="join" /> First activity of
<i nt er nedi at eCat chEvent i d="cof f eebreak" > <1 second sequence

<ti mer Event Definition>

<ti meDurati on>PT30S</ti meDurati on>

</timerEventDefinition>
</i nt er mredi at eCat chEvent >
<sequenceFl ow sour ceRef =" cof f eebr eak"

t ar get Ref =" doWor kTask" />
<user Task i d="doWwrkTask"

name="Do wor k"

activiti:assignee="kermt" />
<sequenceFl ow sour ceRef =" doWr kTask"

targetRef="join" /> Join parallel
<paral | el Gateway id="join" /> < gateway
<sequenceFl ow sour ceRef ="j oi n"

t ar get Ref =" endOf Wor kDayTask" />
<user Task i d="endO Wor kDayTask"

name="Fi ni sh work day"

activiti:assignee="kermt"/>
<sequenceFl ow sour ceRef =" endOf Wor kDay Task"

target Ref ="t heEnd" />
<endEvent id="theEnd" />

</ process>
</definitions>

As you already saw, the BPMN 2.0 XML definition of a parallel gateway isn’t difficult.
The runtime behavior is another thing. For example, how does the Activiti Engine
know the first defined parallel gateway () is a fork? It doesn’t know that. The parallel
gateway acts as a join and fork. First, the Activiti Engine waits until all incoming
sequence flows have been executed; then, it will fork into all outgoing sequence flows.
For your f ork parallel gateway, there’s only one incoming sequence flow, so the pro-
cess will immediately perform the fork behavior.

The parallel gateway won’t evaluate any condition expression on an
outgoing sequence flow; if a condition expression is present on one of the
sequence flows out of a fork parallel gateway, it’s ignored.

In this example process, the first sequence of activities that’s executed starts with a Twit-
ter task 4. For the sake of showing the functionality of a parallel gateway, this is a manual

Working with BPMN 2.0 parallel gateways 129

task. A manual task can be regarded as a kind of pass-through activity so the process
immediately continues. Because the first two tasks in the first sequence of activities are pass-
through activities, the first sequence doesn’t stop until it reaches the backl ogEmai | Task
user task, which is a wait state. Then execution continues in the second sequence where
the cof f eebr eak intermediate timer event) is executed. Be aware that the activities in
the second outgoing sequence flow of the fork parallel gateway aren’t executed before
the first sequence flow reaches the backl ogEmai | Task user task.

Eventually, all the activities in both sequence flows will be executed and the j oi n
parallel gateway) progresses the process execution to the endCf Wor kDayTask user
task. Note that the j oi n parallel gateway makes sure that both incoming sequence
flows have been completed before the process continues.

If you had implemented the backlog email user task as an automatic task,
all the activities in the first outgoing sequence flow of the fork parallel gate-
way would be executed before the second outgoing sequence flow was exe-
cuted. In that case, the parallel gateways in the multitasking process
definition could be removed, the activities of the second outgoing sequence
flow could be added after the backlog email user task, and the process execu-
tion would be exactly the same.

With the parallel process implementation in place, you can test the multitasking pro-
cess with the Activiti Explorer to get a better understanding of the process execution
flow.

The challenge in testing the process definition with a parallel gateway is that some
parts of the process execution aren’t visible in the process instance and task details.
You’ll, therefore, need to switch to the database view in the Activiti Explorer a few
times. But first, you have to create the BAR file using the Ant build file build.xml in the
src/main/resources/chapter6/parallel directory. Then you can deploy the created
BAR file to the Activiti Engine using Activiti Explorer like you did before.

When you’ve deployed the process definition and started a new process instance in
the Activiti Explorer, you should see one user task appearing (when logged in as ker-
mit), as shown in figure 6.12.

Take a look back at the multitasking process definition in listing 6.4 and you’ll see
that the backlog email user task is the third activity in the first outgoing sequence flow
of the parallel gateway. The first two activities, Twitter and Facebook, have already
been executed because they’re implemented as manual tasks.

In the Activiti Explorer, you can look in the database view to check whether the Twitter
and Facebook manual tasks really have been executed. Click on the ACT_HI_ACTINST
table, and you should see a similar overview to that shown in figure 6.13.

As you can see in figure 6.13, these activities have been executed as expected. You
can now complete the email backlog user task. Notice that the “end workday” user
task isn’t yet created. Remember that you first have to complete the “do work” user

130

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Figure 6.12 The Activiti Explorer showing the user task that will be created when you
start a new instance of the multitasking process definition

[j ACT_HI_ACTINST

ID_ PROC_DEF_ID_ PROC_INST_ID_ EXECUTION_ID_ ACT_ID_ ACT_NAME_ ACT_TYPE_ ASSIGNEE_
2177 multitaskingProcess:1:2173 2174 2175 twitterTask manualTask

2178 multitaskingProcess:1:2173 2174 2175 facebookTask manualTask

2179 muititaskingProcess:1:2173 2174 2175 backlogEmailTask Read e-mail backlog userTask kermit

Figure 6.13 The Activiti Explorer showing the activities that have been executed after starting a new
multitasking process instance

task before the second parallel gateway continues the process execution. And because
there’s first a “coffee break” intermediate timer of 30 seconds, you have to wait a bit.
When the 30 seconds have passed, the “do work” user task can be completed and the
“end workday” user task appears.

With the multitasking process tested, you can now move on to a piece of functionality
that’s not part of the BPMN 2.0 specification but that can certainly provide great value:
the Java Persistence API (JPA) integration. This powerful feature helps to retrieve data-
base entities within a process instance without the need to write database logic.

The Java Persistence API (JPA) is an important specification for implementing persis-
tency within Java. JPA is also widely adopted, not only by the JEE application server

Adding a JPA extension to your process 131

vendors but also by open source frameworks like Hibernate and Apache Open]JPA. If
you aren’t yet familiar with JPA, you can read about all of its details on the Hibernate
and Apache OpenJPA websites or in a book like Java Persistence with Hibernate by Chris-
tian Bauer and Gavin King (Manning, 2006).

What'’s the use case for using the JPA extension in your process definition? When
you have a business process that needs a database entity like “customer” or “address”
from a relational database, you can write the data access logic yourself in a Java service
task and add this to the process definition. But, with the JPA extension, this isn’t neces-
sary. You can create a process variable implemented with a JPA annotated JavaBean
and use the database entity in your process definition like a normal process variable.

To really grasp the JPA extension functionality, we’ll take a look at a small example
so we can discuss in detail the use of JPA in Activiti and note some caveats.

When a publisher signs a book contract, one of the first tasks is to create a title and
ISBN for the book. More interestingly, with regard to the JPA extension, the book’s
information must be entered into the publisher’s database. In the process definition
of figure 6.14, the start of a new book project is modeled.

booktitle != "Activiti in
*"| Action’

and isbn

@

=

¥ =

= Create a book ‘;%"” in tf‘? S -
2 title and isbn ook's title , et a subtitle
8

s}

booktitle ==
“Activiti in Action'

Figure 6.14 When a new book project is started, the initial available book information is stored in the
publisher’s database. Then the publisher adds the necessary title and ISBN information and, optionally,
a subtitle.

As you can see, the process definition is centered on the book object. You need to
make sure that the title, ISBN, author list, and optional subtitle are available in the
publisher’s book database—to do so, you can use the JPA extension. The book object is
simple because it contains the four already mentioned attributes. Let’s look at the
book entity object in the following code snippet:

@ntity
public class Book {

@d
@xner at edVal ue

132 CHAPTER 6 Applying advanced BPMN 2.0 and extensions

private int id;

private String title;
private String subTitle;
private String isbn;

@l ement Col | ecti on(fetch=FetchType. EAGER)
private List<String> authors;

/] getters and setters
}
Notice that Java’s Book object uses the El enent Col | ecti on annotation that’s part of
JPA 2.0. With this handy annotation, you can use collection attributes inside an entity
object without needing any additional coding. You’ll now use the Book object to cre-
ate, update, and retrieve a book entity object with the JPA extension in the implemen-
tation of the new book project process definition.

Starting with the process model in figure 6.14, you can define a BPMN 2.0 XML defini-
tion, including the database persistency logic. For this example, you’ll use Activiti
inside a Spring container because the Spring framework makes the transaction han-
dling and Ent i t yManager injection easy. The BPMN 2.0 XML is shown in the next listing.

<definitions xm ns="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xmns:activiti="http://activiti.org/bpm"
t ar get Namespace="htt p: // www. bprmwi t hacti vi ti.org/j pa">

<process id="jpaTest">
<startEvent id="theStart" />
<sequenceFl ow sourceRef ="theStart"

t ar get Ref =" cr eat eBook" /> Creates and
<servi ceTask i d="creat eBook" persist book
activiti:expression="%{bookService. creat eBook(object

aut horList)}"
activiti:resultVariabl eNane="book"/>
<sequenceFl ow sour ceRef =" cr eat eBook"
target Ref ="fill Bookl nfo" />
<user Task id="fill Bookl nfo"
activiti:assignee="kermt">
<ext ensi onEl enent s>

<activiti:fornP ty id="booktitle"
activiti:fornProperty i ooktitle L Updates

nanme="Book title book title

expressi on="#{book.title}"
required="true" />
<activiti:fornProperty id="isbn"
name="1sbn"
expr essi on="#{book. i sbn}"
requi red="true" />
</ ext ensi onEl enent s>
</ user Task>
<sequenceFl| ow sour ceRef ="fi || Bookl nf 0"

Adding a JPA extension to your process 133

tar get Ref =" makeSubtitle" />
<excl usi veGat eway i d="nmakeSubtitle"/>
<sequenceFl ow i d="nmakeSubti t| eYes"
sour ceRef =" makeSubtitle"
target Ref="createSubtitle">
<condi ti onExpr essi on> Checks
${book.title == 'Activiti in Action'} 41 book title
</ condi ti onExpr essi on>
</ sequenceFl ow>
<sequenceFl ow i d="makeSubti t| eNo"
sour ceRef =" makeSubtitle"
t ar get Ref =" makeSubti t | eReady" >
<condi ti onExpr essi on>
${book.title !'= "Activiti in Action'}
</ condi ti onExpr essi on>
</ sequenceFl ow>
<script Task id="createSubtitle"
scri pt For mat =" gr oovy" >

<script>
book. subTitl e = "Execut abl e busi ness
processes in BPWN 2.0";
out:println "book subTitle is set to " + Updates)
book. subTi t! e; 4 book subtitle
</script>

</script Task>
<sequenceFl ow sourceRef ="createSubtitle"
t ar get Ref =" makeSubti t | eReady" />
<excl usi veGat eway i d="nakeSubtitl eReady"/>
<sequenceFl ow i d="t oEnd"
sour ceRef =" makeSubt i t | eReady"
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
</ definitions>
Notice that you can’t tell from the BPMN 2.0 XML that the JPA extension is being used
for this process definition. The XML definition only mentions the book process vari-
able, and this could just as well be implemented with a normal JavaBean.

In the first step of the process, you use a Java service task to create and persist a
Book entity object €. As you can see in the Java service task definition, the result of
the creat eBook method will be set as a new process variable, book. The book service
itself is a Spring bean, which we’ll discuss in the listing 6.7.

After the Book object is persisted, you use a user task to let the publisher fill in the
title and ISBN for the book. With the form properties and JPA functionality of Activiti,
you can use the task form to update the book process variable, which is also automati-
cally saved into the database. The booktit| e form property will, for example, update
the tit| e attribute of the Book entity object

Because the Book entity object is available through the book process variable, it can
be used in other parts of the process like a conditional expression on a sequence
flow ©). If the book title is equal to this book’s title, the subTi t| e attribute is set in a
script task €. In JPA terms, the persisted Book object is updated with a subTi t| e value.

134

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

With the BPMN 2.0 XML definition in place, you can now glue things together
with the Spring configuration. Because it would be repetitious to include the whole
Spring configuration, the following listing only shows the JPA-specific differences. In
chapter 4 and in the source code of the book, you can find the details about the rest
of the Spring configuration.

<bean i d="transacti onManager"
cl ass="org. springframework. ormj pa. JpaTransacti onManager" >
<property name="entityManager Fact ory"
ref ="entityManager Factory"/> JPA transaction
</ bean> manager

<bean i d="per si st enceUni t Manager"
cl ass="org. springframework. orm j pa. persi stenceunit.
Def aul t Per si st enceUni t Manager " >
<property nanme="persistenceXnl Location">

<val ue> JPA persistence
cl asspat h: chapt er 6/ j pa/ j pa- per si st ence. xn < unit configuration
</ val ue>
</ property>
</ bean>
<bean id="entityManager Factory" <— Defines an
cl ass="org. spri ngframewor k. orm j pa. EntityManagerFactory

Local Cont ai ner Ent i t yManager Fact or yBean" >
<property name="persistenceUnit Manager"
ref =" persi st enceUni t Manager "/ >
</ bean>

<bean i d="processEngi neConfi guration"
class="org.activiti.spring.SpringProcessEngi neConfiguration">

<property name="dat abaseType" val ue="h2" />

<property nane="dat aSource" ref="activitiDataSource" />

<property name="transacti onManager"
ref ="transacti onManager" />

<property nane="dat abaseSchemaUpdat e" val ue="true" /> Injects the entity

<property name="j paEntityManager Fact ory" < manager factory
ref ="entityManager Factory" />

<property nanme="j paHandl eTransacti on" val ue="true" />

<property name="j paCl oseEntityManager" val ue="true" />

<property name="depl oynent Resour ces"

val ue="cl asspat h*: chapt er 6/ j pa/ processW t hJPA. bprm20. xm " />
<property name="jobExecutorActivate" value="fal se" />

</ bean> Spring bean

<bean i d="hookSer vi ce" <1 with JPA logic
cl ass="org. bpmwi t hactiviti.chapter6.jpa. BookService"/>

The nice thing about using Spring in combination with JPA is that you can use the
Spring transaction manager (. The transaction manager takes care of creating and
committing the transaction necessary to persist the Book entity object, as you’ll see in
the BookSer vi ce implementation.

Adding a JPA extension to your process 135

To use JPA, youneed an Ent i t yManager Fact or y definition ¢ thatreferences the per-
sistence unit configuration defined in jpa-persistence.xml). The jpa-persistence.xml
JPA configuration file defines a bookSt or e persistence unit with Hibernate as a JPA pro-
vider. Note that you could also use another JPA provider like Apache OpenJPA. The jpa-
persistence.xml JPA configuration file contains the standard JPA attributes, as you can see
in the next code snippet:
<persi stence xm ns="http://java. sun. coml xm / ns/ per si st ence"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi :schemalLocation="http://java. sun. conf xm / ns/ persi stence

http://java. sun. com xm / ns/ per si st ence/ persi stence_2_0. xsd"
version="2.0">

<persi stence-unit name="bookStore" transaction-type="RESOURCE LOCAL" >
<provi der >or g. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<cl ass>org. bpmwi t hacti viti.chapter6.jpa. Book</cl ass>
<excl ude-unli st ed- cl asses>true</ excl ude-unl i st ed- cl asses>
<properties>
<property nanme="hi bernate. dial ect"
val ue="org. hi bernate. di al ect. HSQLD al ect"/ >
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="create-drop"/>
<property name="hi bernate.connection.url"
val ue="j dbc: h2: mem bookst or e; DB_CLOSE_ON_EXI T=FALSE"/ >
<property nanme="hi bernate. connection.driver_class"
val ue="org. h2. Driver"/>
<property nanme="hi bernate. connection. usernane" val ue="sa"/>
<property nanme="hi bernate. connecti on. password" val ue=""/>
</ properties>
</ persi st ence-uni t>
</ per si st ence>

The Book object shown in the previous section is configured here as a JPA entity. In
addition, the H2 connection and driver definition are configured and the persistence
unit name is set to bookSt or e.

Now back to the Spring configuration from listing 6.6. With the Enti t yManager -
Fact ory defined, you can inject it into the Activiti process engine configuration
This activates the JPA extension in the Activiti Engine, and JPA-annotated classes will
be matched against a JPA entity manager. The BPMN 2.0 process definition shown in
listing 6.5 is deployed to the engine as well.

The last piece is the Spring bean bookSer vi ce €. The Java implementation of this
class has to create and persist the JPA book object and return it to the process instance
as a new process variable. That sounds like quite a bit of coding to do, but as you can
see in the next listing, it’s short and easy.

public class BookService {

@er si st enceCont ext
private EntityManager entityManager;

publ i ¢ Book createBook(List<String> authorList) {

136

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

Book book = new Book();
for (String author : authorlList) ({
book. get Aut hor s() . add(aut hor) ;
zent i t yManager . per si st (book) ;
return book;
}

}
To persist the Java book object, you need a JPA entity manager. With Spring’s depen-
dency injection, it’s a simple matter of adding the @er si st enceCont ext annotation
to the class to have the Spring container inject it. Note that you don’t have to define a
Transactional annotation, because the Activiti Engine takes care of starting and
committing the JPA transaction.

At the start of the process, a list of authors should be provided as a process vari-
able. When you create a new Book instance, that list of authors is added and the JPA
entity manager persists it to the H2 database defined in the jpa-persistence.xml file.

Now that we’ve covered all elements of the new book project process implementa-
tion, let’s move on to validate your implementation with a unit test.

Because you’ve used the Spring container to glue the Activiti Engine together with
the JPA Enti t yManager Fact ory, writing a unit test for this process isn’t that hard. You
just need to start a new process instance, complete the user form, and validate after-
ward that the book object is stored in the H2 database with the right values (see the
next listing).

@RunW t h(Spri ngJUni t 4C assRunner. cl ass)
@ont ext Confi guration("cl asspat h: chapt er 6/
j pal/ j pa-application-context.xm")

public class JPABookTest extends AbstractTest { Injects entity

@er si st enceCont ext manager for
private EntityManager entityManager; database access
@\ut owi r ed

private RuntinmeService runtineService;

@\ut owi red

private TaskService taskService;

@\ut owi red

private FornBervice fornfervice;

@rest

public void executeJavaService() {
Map<String, Object> processVariables =
new HashMap<String, Object>();
Li st<String> authorList = new ArrayList<String>();
aut hor Li st. add("Tijs Rademakers");

Using execution and task listeners 137

aut hor Li st. add("Ron van Lienpd");
processVari abl es. put ("aut horLi st", authorlList);

runti neService. start Processl nst anceByKey(
"j paTest", processVari abl es);
Task task = taskService
.createTaskQuery()
.singleResult();
Map<String, String> fornProperties =
new HashMap<String, String>();
fornProperties. put("booktitle", "Activiti in Action"); .
fornProperties. put("isbn", "123456"); Submits
f or mBer vi ce. subni t TaskFor nDat a(t ask. get 1 d(), < userform
fornProperties);

Book book = (Book) entityManager. createQuery(
"from Book b where b.title = ?")
.setParaneter(1, "Activiti in Action")
.get Singl eResul t();
assert Not Nul | (book) ;

assert Equal s("Activiti in Action", book.getTitle()); Validates
assert Equal s(" Execut abl e business " + boolf’s
"processes in BPMN 2.0", book.getSubTitle()); <1J subtitle

assert Equal s(2, book. getAuthors().size());
assert Equal s("Tijs Rademakers",
book. get Aut hors().get(0));
}
}

To be able to validate the Book entity object after the process instance has ended, you
need an Enti t yManager to access the database via JPA (). After the process instance is
started with a list of authors, the user task is retrieved and the book title and ISBN user
form values are submitted using the FornBervi ce). The FornService is a handy
interface to simulate a user filling in a user task form.

After the process instance has ended, you can check whether the Book entity object
was created and persisted in the H2 database. Because you’re testing with this book’s
name, the subTi t| e attribute should be filled

There is an important requirement to using the Activiti JPA extension.
All JPA entity objects should have an @ d-annotated primary key. @nbedded! d
and @dd ass aren’t supported. This is something to be aware of when using
the JPA extension.

This simplified new book project process definition example gave a good overview of
the possibilities of the JPA extension. With a checkbox at the JPA extension, there’s
another interesting and powerful Activiti extension to explore: the event listener.

When the process engine executes a process, several things happen in the back-
ground that you won’t necessarily be aware of. Automatic activities are executed, tran-
sitions are performed, and user tasks are created and assigned to the configured users

138

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

and groups. When you want to get more information out of the process execution,
Activiti provides an extension on top of the BPMN 2.0 specification, referred to as exe-
cution and task listeners.

Execution listeners can be configured on the process itself, on activities, and on
transitions. Task listeners can only be configured on user tasks. These listeners pro-
vide great hooks into the process execution, and they can be used for things like busi-
ness process monitoring and simpler things like flexibly assigning a group of
candidate users to a user task. Table 6.1 provides an overview of the BPMN 2.0 con-
structs and event types that can be monitored using the Activiti execution and task lis-
teners extension.

Table 6.1 An overview of the event types that can be configured in a BPMN 2.0 XML process definition
using the Activiti execution and task listeners extension

Process start, end A start and end event of a process instance can be captured
with a process execution listener

Activity start, end A start and end execution listener of an activity can be
implemented
Transition take A transition execution listener can catch a take transition event
User task create, A user task throws events when it's created, when the task
assignment, assignment has been performed, and when the user task has
complete been completed

As you can see in table 6.1, it’s possible to configure execution and task listeners on
most elements of the BPMN process definition. But how does this work in practice?
Let’s start by looking at a short example and then dive into the code to figure it out.

In chapter 14, we’ll be discussing business events in-depth with real-life examples. In
this section, we’ll focus on learning about the implementation of execution and task
listeners in Activiti with a simplified and imaginary process. Because execution and
task listeners watch and react on the process execution, it works a bit like gossip maga-
zines that follow everything that happens with celebrities and gossip about it. You can
make a simple process definition of this, where celebrity Brad goes out for a drink
(see figure 6.15).

Because execution and task listeners are an extension provided by the Activiti
Engine, you can’t make use of standard BPMN 2.0 elements to model the catching of
events in figure 6.15. In this model, you use text annotations to point out all the
events that will be caught during the execution of the process instance.

This fictitious process definition doesn’t need a lot of explaining, so let’s start
implementing this process definition with BPMN 2.0 XML.

Using execution and task listeners 139

.| start event .. end event

Catch start and
.{end activity
Catch process events ‘Catch process

P

=l

Brad has a
drink

Brad leaves
the house

Gossip process

.

; Catch assignment,
ggﬂutgﬁeevent create and complete
user task events

Figure 6.15 An imaginary process definition of gossiping about Brad going out for a drink

Activiti supports two types of listeners, the Execut i onLi st ener and the TaskLi st ener.
The ExecutionLi st ener can be used to implement a listener for the process, activity,
and transition event types. The TaskLi st ener is solely dedicated to the listener imple-
mentation of a user task.

Execution and task listeners can be implemented as Java classes but can also be
configured with expressions that call JavaBeans. In the gossip process implementa-
tion, you’ll use all the supported types of listeners, so let’s first walk through that
BPMN 2.0 XML definition.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Nanespace="http://ww. bprmwi t hacti viti.org/
processevent| i stener">

<process id="gossi pProcess">
<ext ensi onEl enent s>
<activiti:executionListener
cl ass="org. bpmwi t hactiviti.chapter6.
l'i st ener. Gossi pAbout Process” Process start
event="start" /> <] execution listener
<activiti:executionListener
cl ass="org. bpmwi t hacti viti. chapter®6.
| i stener. Gossi pAbout Process"
event ="end" />
</ ext ensi onEl enent s>
<startEvent id="theStart" />
<sequenceFl ow sourceRef="theStart"
tar get Ref =" br adLeavesHouseTask" >
<ext ensi onEl ement s> Takes transition
<activiti:executionListener < execution listener
expressi on="${ gossi pTransi ti on. gossi p(execution)}"/>
</ ext ensi onEl enent s>
</ sequenceFl ow>

140 CHAPTER 6 Applying advanced BPMN 2.0 and extensions

<script Task id="bradLeavesHouseTask" scri pt For mat ="groovy">
<ext ensi onEl enent s>
<activiti:executionListener
expressi on="${ gossi pActi vity.gossipStart (
execution)}"
event="start" /> <1 Activity start
<activiti:executionListener execution listener
expressi on="${ gossi pActi vi ty. gossi pEnd(
execution)}"
event="end" />
</ ext ensi onEl enment s>
<script>
out:println "Brad | eaves the house"
</script>
</ scri pt Task>
<sequenceFl ow sour ceRef =" br adLeavesHouseTask"
t ar get Ref =" bradHasADr i nkTask" />
<user Task i d="bradHasADri nkTask"
activiti:assi gnee="Brad">
<ext ensi onEl enent s>
<activiti:taskLi stener

expressi on="${ gossi pUser Task. gossi pTask(Use.r task
task, task.eventName)}" asmgqment
event ="assi gnnent" /> QJ task listener

<activiti:taskLi stener
expressi on="${ gossi pUser Task. gossi pTask(
task, task.eventNane)}"
event="create" />
<activiti:taskLi stener
expressi on="${execution. set Vari abl e(Creates
‘readyDrinking, true)}” j readyDrinking
event ="conpl ete"/ > variable on
</ ext ensi onEl enent s> complete task
</ user Task>
<sequenceFl ow sour ceRef =" bradHasADr i nkTask"
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
</ definitions>

Because you implement all the available Activiti listeners in this example, it’s a long
BPMN 2.0 XML definition. In this listing, you use two types of listener implementations:
classes and expressions. To show how you can leverage the Spring framework to imple-
ment a listener, you run the Activiti Engine inside a Spring container in this example.
The first listener defined in the listing is the start process execution listener
When the process is started, the Gossi pAbout Process class is invoked with an execu-
tion context as input parameter. An execution listener that’s configured with the
cl ass attribute is obliged to implement the Executi onLi st ener interface, as in the
following code snippet of the process listener implementation:

public class Gossi pAbout Process i npl enments ExecutionListener {

@verride

public void notify(Del egat eExecuti on executi on)
throws Exception {

Using execution and task listeners 141

System out. println(
"Did you know the followi ng process event occurred =
+ execution. get Event Nane());
Event Uti | . addEvent (execution, "process");

}

}

The ExecutionLi stener interface has one method, notify, which must be imple-
mented. The Del egat eExecut i on input parameter can be used to retrieve the neces-
sary information about the event and to get information from the process, like process
variables. In this case, you print the name of the event that has been fired, which can be
start orend for a process event listener. In addition, you call an Event Ut i | class to add
this event to an event stack list that can later be used to test if the events were fired as
expected. Let’s quickly look at the Event Uti | class:

public class EventUil {
@uppr essWar ni ngs("unchecked")
public static void addEvent (Del egat eExecuti on executi on,
String source) {
Li st<String> eventList = (List<String>)
execution. getVariabl e("eventList");
if(eventList == null) {
event Li st = new ArrayList<String>();
}
event Li st. add(source + + execution. get Event Nane());
execution. setVariabl e("eventList", eventList);

}

}

The addEvent method retrieves the event Li st variable from the process context and
adds the event to the event stack list. The Event Uil class contains another addEvent
method to add the task listener event you’ll see in a bit because that listener has a pro-
cess context parameter different from Del egat eExecut i on, namely Del egat eTask.

Back to the BPMN 2.0 XML from listing 6.9. Another execution listener that’s
implemented for the gossip process is the t ake transition listener ©3. When the transi-
tion is executed, this execution listener is fired. The gossi pTransi ti on part of the
expression refers to a Spring bean. On this Spring bean, the gossip method is invoked
with the Del egat eExecution instance as an input parameter. The implementation
class is similar to the Gossi pAbout Process class but without the need to implement
the Execut i onLi st ener interface. It can be found in the source code of this book.

Another example of an execution listener is the start event listener ¢, which is
also configured as a Spring bean. This activity execution listener is similar to the pro-
cess and transition execution listeners.

The task listeners configured on the user task are a different beast. When the user
task is started, the Spring bean corresponding to the Gossi pAbout User Task class is
invoked €. To implement a listener on a user task using the cl ass attribute, the
TaskLi st ener interface must be implemented. But, in this example, you use the
expressi on attribute instead and pass the task and event Nane variables into the
Spring bean yourself. Let’s look at the implementation in the next short listing.

142 CHAPTER 6 Applying advanced BPMN 2.0 and extensions

public class Gossi pAbout User Task

public void gossi pTask(Del egat eTask task,
String event Nane) {

i f (TaskLi st ener. EVENTNAVE_CREATE. equal s(event Nane)) {
System out . printl n(
"Drink user task is created and assigned to John");

t ask. set Assi gnee(" John"); <] Setsanew
} else if(TaskListener. EVENTNAMVE ASSI GNVENT assignee

.equal s(event Name)) {
System out. printl n(
"Drink user task is assigned to " +
t ask. get Assi gnee());

}
Event Uti | . addEvent (task, event Nane);

}
}

While an execution listener can be used to retrieve information from the process con-
text and set process variables, a task listener can change the assignment of a user task.
This gives you great flexibility to implement custom assignment logic when a simple
assignment doesn’t suit your functional requirements.

First, you need to know which task event type has been fired. In this example, the
assignee of the user task is changed to John when the task event type is creat e (0. In
the task listener implementation, the assignee configuration of the BPMN 2.0 XML
definition, Br ad, is overridden.

The order of events for a user task is maybe not what you would expect.
The first event that’s thrown is the assi gnnent event. After the assi gnnent is
handled, the user task creat e eventis fired. When the user task assignment is
changed in the task listener, a new assi gnnent event will be thrown. Only
change the assi gnnent of the user task in a create event. When it’s done
inside an assi gnment event, a StackOverfl owError exception is thrown in
the Activiti Engine, because the assi gnnent event is then called in a loop.

Enough said about the task listener implementation; let’s return for a last comment to
the BPMN 2.0 XML definition from listing 6.9. An execution or task listener can also be
implemented with an expression that doesn’t involve an additional Java class or bean.
In the gossip process definition, a new process variable will be created when the user
task is completed) and no additional Java class definition is needed to implement
this. Now let’s see how to test the event stack list to validate the execution of the vari-
ous listeners.

In other examples in this book, we used the Hi st or ySer vi ce to get information about
the process flow execution after a process instance was ended. Execution and task lis-
teners aren’t part of that history information because they aren’t process activities.

Using execution and task listeners 143

Therefore, we need another way to validate whether the listeners were executed and if
the order of execution was what we expected it to be. In the implementation, we
therefore build up an event stack list.

But, as you may recall from the history configuration discussion of chapter 3, pro-
cess variable information is only stored in the history tables if the history configura-
tion is set to full. In the event listener example, this is done with the history
property of the Spri ngProcessEngi neConfi guration in the Spring application con-
text file (gossip-application-context.xml). The Spring configuration file can be found
in chapter 6’s resources folder in the book’s source code.

The test class you have to implement must use the Spring testing functionality to
make sure the Spring application context is built up in the right way (see the follow-
ing listing).

@RunW t h(Spri ngJUnit 4C assRunner. cl ass)

@Cont ext Confi guration("cl asspath: chapter6/1istener
gossi p-appl i cation-context.xm ")

public class ProcessListenerTest extends AbstractTest {

@\ut owi r ed
private RuntimeService runtimeService;

@\ut owi red
private TaskService taskService;

@\wut owi r ed
private H storyService historyService;

@uppr ess\War ni ngs(" unchecked")
@est
public void gossip() {
Processl nstance processlnstance = runtinmeService
.startProcessl nst anceByKey("gossi pProcess");
assert Not Nul | (processl nstance);
Task task = taskService
. creat eTaskQuer y() Task is reassigned
.t askAssi gnee(" John") 4| tojJohn
.singleResult();
taskServi ce. conpl ete(task.getld());
Li st<Hi storicDetail > historyList = historyService
.createHistoricDetail Query()

) vgri abl eUpdat es() <=1 Queries only
dist(); variable updates

assert Equal s(9, historylList.size());
Hi stori cVari abl eUpdate vari abl eUpdate =
(Hi storicVariabl eUpdat e)
hi storyLi st. get (historyList.size() - 1);
assert Equal s("eventList",
vari abl eUpdat e. get Vari abl eNane());
Li st<String> variabl eLi st = Variable must be
(List<String>) variabl eUpdate. get Val ue(); < alist of Strings

144

CHAPTER 6 Applying advanced BPMN 2.0 and extensions

assert Equal s("process:start", variableList.get(0));

assert Equal s("transition:take", variableList.get(1)); Transition
assertEqual s("activity:start", variableList.get(2)); take event
assert Equal s("process: end", should be
vari abl eLi st. get (vari abl eLi st.size() - 1)); second
}

}

When a gossip process instance is started, the first wait state is the user task. In the pro-
cess definition, the user task is assigned to Brad, but in the task listener of listing 6.10
it’s reassigned to John. Therefore, you need to query on assignee John () to find the
waiting user task.

After the user task is completed, thereby finishing the process instance, you can
query the historic information of the ended process instance (). Because you want to
validate the event stack list, the Activiti Engine should only return the variable
updates. Note that in this example you have no form properties and, therefore, the
vari abl eUpdat es method could also be removed to get the same query result.

The event stack list is implemented with the event Li st process variable, which is a
collection of Stri ngs

As you’ve seen in this example, the use of execution and task listeners can help you
to listen for certain events during the process execution. This can provide input to
applications, such as business application monitoring applications, which we’ll discuss
in chapter 14. The task listener provides another layer of flexibility because it provides
a way to assign a user task at runtime with custom logic.

In the previous chapters, we gradually built up the pace to get familiar with the Activiti
platform and the BPMN 2.0 specification. But, in this chapter, we stepped it up a bit to
introduce you to several more advanced features of Activiti.

Subprocesses can help a lot to increase the readability, flexibility, and reusability of
your business processes and, therefore, are first-class citizens of the BPMN 2.0 specifi-
cation. To run activities in parallel during process execution, the parallel gateway was
introduced. The main thing to remember about parallel gateways is that process exe-
cution isn’t split into multiple threads, but the execution paths are completed until a
wait state is reached.

In addition to the subprocess and parallel gateway BPMN 2.0 constructs, two Activ-
iti extensions were highlighted. First, the Activiti Engine provides integration with the
JPA persistency standard to make it easy to access database entities from the process
instance. Without any additional coding, a customer can be retrieved from a database
table based on a customer identifier. Second, execution and task listeners are part of
the Activiti Engine implementation. Start and end events can be captured from pro-
cess, transition, and activity elements of a process definition. And to make it possible
to use custom logic at runtime to deal with user tasks, the creat e, assi gnnent, and
conpl et e events can be caught.

Summary 145

With the introduction in the previous chapters and the advanced features intro-
duced in this chapter, you can already implement complex business process can
already be implemented. But to be able to implement real-life processes, you need to
deal with error handling. That’s what we’ll talk about in the next chapter.

Having read the first six chapters, you now know a lot about BPMN 2.0 and Activiti.
You’ve been introduced to the tools, taken a good look at the Activiti Engine ser-
vices API, implemented a real-world business process, and deployed that process on
Activiti Engine. In the examples in the previous chapters, we focused on happy flow
processes. Now, it’s time to start thinking about error handling.

In chapter 5, we implemented a simplified credit check script task, but, if the
credit check logic is implemented with a service call to an external component, a
lot of errors could occur. Think about “Customer not found” or connection errors;
how could they be handled in a BPMN process definition?

146

Choosing between error handling options 147

There generally are two ways of dealing with errors in a BPMN process definition
running on Activiti. The first option is to use the standard BPMN error handling con-
structs. The second option is to use Java logic and Java service tasks to implement
error handling. In section 7.1, we’ll discuss the general idea behind both approaches.
In section 7.2, we’ll look at how you can implement a full business process with the
BPMN error handling elements. In the implementation of this example, we’ll use the
Activiti Designer to speed up the development process. Then, in section 7.3, we’ll
implement the business process again but, this time, using Java logic to implement the
error handling.

To get a good overview of the two approaches to error handling, we’ll start by look-
ing at the different ways in which BPMN and Activiti can help you implement error
handling logic.

Drawing a process model without thinking about possible exceptions or errors is usu-
ally not difficult. But, at some point, error handling strategies must be implemented
in the process model to make it enterprise ready. What must happen to the process
execution when an order fails to be persisted in a database? Must it be handled by a
process administrator, or can somebody solve the error using a user task? These kinds
of questions need to be answered before the process definition can be regarded
as complete.

Implementing error handling in a process model isn’t an easy task, but the BPMN
standard and the Activiti Engine provide flexible ways to deal with error logic. Sec-
tion 7.1.1 provides an introduction to error end events and error boundary events as
part of the BPMN standard, and, in section 7.1.2, we’ll look at using Java logic to
implement error handling.

The first option to think about when implementing error handling is the use of error
end events and error boundary events. These constructs are part of the BPMN 2.0 stan-
dard and make it possible to design error handling strategies as part of the process
model. We already used boundary events in chapters 5 and 6 with the time boundary
event. You learned there that you can define a boundary event on a task (often a ser-
vice task or a user task) and an embedded subprocess.

Error boundary events provide a way to catch errors that occur during process exe-
cution; if an error occurs within a subprocess, the error boundary event can be used
to catch that error and handle it the way you want it to be handled. To be able to catch
an error, you must also be able to throw an error. The need to explicitly throw an
error with an error end event is the main difference with the Java exception style of
handling errors. Java exceptions occur during Java execution, and they can be caught
using standard Java code. Therefore, they can be regarded as technical errors. With
error boundary events, the errors need to be explicitly thrown in the process model by
using error end events; this type of error is a logical error.

148

CHAPTER 7 Dealing with error handling

Using error boundary events can be regarded as logical error handling
because it always requires an error end event for such an error to be fired.
Java logic in a service task can be used to implement technical error handling
to deal with problems like database connection and web service communica-
tion failures.

Because you need an error end event in order to fire an error, an error boundary
event must be defined on an embedded subprocess or a call activity. When an error
end event is executed in an embedded subprocess or a standalone subprocess, an
error boundary event will catch that error. In section 7.2, we’ll work through a full
example using error end events and error boundary events. For now, let’s focus on the
basic explanation with a simple process model, shown in figure 7.1.

The symbol for an error end event is the same as a normal end event, but it con-
tains a Z-like icon. The error boundary event contains a similar icon. In the review
user task, it’s determined whether there are order details lacking. If the necessary
order details aren’t provided, the error end event is reached. This will throw an error,
which is caught by the error boundary event. The error boundary event triggers
another user task to complete the order details and executes the embedded subpro-
cess again.

Note that this example only explains the use of the error end event and error
boundary event. For this example, you could also leave out the error events and move
the “additional order details” user task to the position of the error end event. Then,
you could draw the outgoing sequence flow out of the “additional order details” task
directly to the “Review order details” user task. But, using the error end event may add

&

Review order
details

&

Enter order
details

Details missing

Provide
additional
order details

Figure 7.1 Example process showing the use of an error end event and an error boundary event. When
there are order details missing, an error end event is thrown and then caught by the error boundary event
defined on the embedded subprocess.

Choosing between error handling options 149

more semantics to the process definition to indicate that missing order details should
be regarded as a logical error.

How are the error end event and the error boundary event correlated? You can
imagine process definitions where there are multiple error end events and error
boundary events. The error events contain an error code attribute, which should
uniquely define that specific error event. If the error end event and error boundary
event each define an error definition with the same error code, they’re correlated.
You can also define an error boundary event without a reference to an error code to
catch all errors that occur within the scope on which the boundary event is defined.

Now that you’ve been introduced to logical error handling using error end events
and error boundary events, let’s look at how to deal with technical errors. Using Java
logic, you can implement routing logic to choose between outgoing sequence flows to
direct the process execution based on the occurrence of an exception.

It’s always good to have a choice in how you implement something like error han-
dling. The Activiti Engine provides this flexibility by supporting both the standard
BPMN error handling constructs as well as error handling via Java exceptions. For each
error handling implementation, you could choose either one of the two solutions, but
there are semantic differences.

With the error end event and error boundary event constructs, you explicitly
design the error handling as part of the process model. Choosing the Java logic
approach means that the error handling is implemented inside a service task and,
therefore, is not part of the process model. Figure 7.2 shows a simplified process
model with the Java exception approach.

In figure 7.1, you saw the error handling logic as part of the process model, but,
with the Java logic approach, it’s not explicitly modeled. Figure 7.2 shows a simplified
order-entry process, where the order is persisted in the database via a service task. If
you don’t implement any error handling logic in the process implementation, the

%
Op

Persist order in

database |

Order persisted

Fill in order

&

Manually enter
order in
database

Order not persisted

Figure 7.2 Example process model containing error handling with the Java logic approach. In the process
model, only multiple outgoing sequence flows are designed out of the service task.

150

CHAPTER 7 Dealing with error handling

process transaction will roll back when an exception occurs in the persistence logic of
the service task. At runtime, this means that the user who fills in the order in a task
entry application (like Activiti Explorer) would get an error message when the user
task is completed. The transaction of the process is rolled back, and the current state
again is the “Fill in order” user task.

This might be good enough for the requirements of the process model, and, in that
case, you don’t have to implement error handling logic. But, in some cases, you may
want to catch the database persistence exception and direct it to a specific administra-
tor user task. With requirements like those, the Java logic approach would fit nicely.

As you can see in figure 7.2, there are two sequence flows going out of the database
persistence service task. This means that you can implement decision logic in the ser-
vice task to choose which sequence flow it should take next. You can implement logic
to take sequence flow A if the order is persisted, and to take sequence flow B if a data-
base exception occurred and the order isn’t persisted. Let’s see how this is imple-
mented in a Java service task.

public class O derPersistTask inplements ActivityBehavior {

@er si st enceCont ext
EntityManager entityManager;

@verride
public void execute(ActivityExecution execution)
throws Exception {
Pvnilransition transition = null;
try {
Order order = (Order) execution.getVariable("order");
entityManager. persi st(order);
transition = execution
.getActivity() Get the right
. findQut goi ngTransi tion("orderPersisted"); < sequence flow
} catch(Throwabl e e) {
transition = execution
.getActivity()
.findQut goi ngTransition("orderNotPersisted");
} Take the retrieved
execution. take(transition);) sequence flow
}
}

When you want to implement decision logic in a Java service task, the Act i vi t yBehavi or
interface must be implemented instead of the JavaDel egat e interface. The Activity-
Behavi or interface provides more functionality to control the execution of the process.
But, be aware that using the ActivityBehavi or interface also means that you must
explicitly implement logic to leave the service task, as you can see in the last line of the
listing with the t ake method invocation €. When you use the JavaDel egat e interface,
this isn’t necessary because it will take care of leaving the service task when the execut e
method is completed.

Choosing between error handling options 151

Note that you try to persist an Or der instance via the JPA Ent i t yManager. When the
database transaction is committed, the sequence flow with an identifier of order -
Per si st ed is retrieved (). A sequence flow is represented inside the Activiti Engine as
a Pvnifransi ti on instance. When an exception occurs, another sequence flow (with
the or der Not Per si st ed identifier) is retrieved.

This approach shows an alternative way of handling errors inside a BPMN process
model. Note that this approach is limited to Java service tasks. To complete our over-
view of error handling patterns in process models running on the Activiti Engine,
we’ll now take a look at how to use both error handling approaches together in the
next section.

To show that the BPMN error event and Java logic error handling approaches can be
used in a flexible manner in the Activiti Engine, we’ll use both mechanisms together.
This isn’t an uncommon way of implementing error handling. With the Java logic
approach, you can elegantly handle technical errors in a Java service task. And, by
using BPMN error end events and error boundary events, you can make sure that the
error handling logic is explicitly designed as part of the process model. That isn’t the
case when using only the Java logic approach, as you saw in the previous section.

To be able to compare the two options—one using the Java error handling
approach and the other combining BPMN error event constructs and Java excep-
tions—we’ll use the same order-entry process example as in figure 7.2. In figure 7.3,
there’s also a BPMN error end event and an error boundary event.

g 7

Persist order in
database

Order persisted

&

Fill in order

Order not persisted

Figure 7.3 Example order process that makes use of both MaﬂQUggv %nter
BPMN 2.0 error handling constructs and the Java logic er- a;(agalsg

ror handling approach

152

CHAPTER 7 Dealing with error handling

Because we’re using the BPMN 2.0 error handling constructs in this sample order pro-
cess, we must also define a scope with an embedded subprocess to be able to use the
error boundary event. When you compare the order processes of figures 7.2 and 7.3,
the main difference is that the error handling strategy is explicitly defined in figure 7.3
and implicitly in figure 7.2. The execution flow of both processes is similar, so the dif-
ferences are more on a semantic level.

In general, it can be said that, if you want to explicitly model the error handling
strategies in a process definition, you should use BPMN 2.0 error handling constructs.
This approach makes sure that error handling is clearly defined and provides insight
to every reader of the process model. If the error handling is technical and it would
only clutter the process definition, you could choose the Java logic approach. Remem-
ber that this is only possible for Java service tasks.

A third approach is shown in figure 7.3 and combines both error handling
approaches. In the combined approach, a technical Java exception is transformed
into a logical error with an error end event. This approach is handy if a technical
exception is of importance in the process execution flow and therefore should be
made explicit with an error end event.

Enough said about the approaches to error handling. Let’s get our hands dirty with
the implementation of a sales opportunity business processes with error handling.

To show the usage of the error end event and the error boundary event in a BPMN 2.0
process, we’ll implement a sales opportunity process. And, to make the process imple-
mentation similar to a real-world project, the service tasks invoke an external ser-
vice—in this example, a web service—to execute the necessary logic. We have a lot of
good stuff coming up, starting with the sample implementation overview.

To implement a full sales opportunity process solution, you have to deal with quite a
few components. Therefore, we’ll start this section off with a high-level design of the
solution to give you a good picture of what you’ll be implementing in the remainder
of this section. Figure 7.4 shows the design of the sales opportunity process implemen-
tation and the web service application you’ll be invoking.

The book- sal es-app application shown in figure 7.4 contains a web service that
uses a Cust oner DAO class to retrieve customers and store sales opportunities to an H2
opportunity database instance. It uses Spring to manage the dependencies, Hibernate
JPA for persistence, and Apache CXF for the web service implementation. In the
book’s source code, you can find the full web application.

For the sales opportunity process implementation, you only need to concern your-
self with the customer web service because that will be the interface you’ll be commu-
nicating with from the service tasks. Let’s look at the web service operations in a
screenshot of the WSDL Design view in Eclipse (see figure 7.5).

Implementing error handling with BPMN 2.0 constructs 153

~

Process definition Service task

(\ WS HTTP
» RetrieveCustomerTask

Tomcat (port 8080): activiti—explorer application Jetty (port 8081): book—sales—app application

Sales >
opportunity
process
(\ WS HTTP
St

CustomerDAO

> oreOpportunityTask

[CustomerService web servica

(N J (S J
Figure 7.4 High-level design of the sales opportunity szc;'fgk;’:suemty
process solution, containing a BPMN 2.0 process def-
inition with two service tasks that will invoke
an external customer web service
£ CustomerServiceService El O CustomerService
= CustomerServicePort ## findCustomer
http:/ flocalhost:8081/... [linput [parameters (€] findCustomer
Oloulpul [parameters [€] findCustomerResponse
i findCustomerByld
linput [parameters (] findCustomerByld
4 output [7 parameters (€] findCustomerByldResponse
4% storeSalesOpportunity
[»]input [parameters = [€] storeSalesOpportunity
loutput | [parameters |e] storeSalesOpportunityResponse
storeSalesOpportunity -

[E] storeSalesOpportunity
[] product [0..1] string
[€] expectedQuantity long
= [€] description [0..1] string
(2] customerld long

hitp: / fws.chapter7.bpmnwithactiviti.ong/

Figure 7.5 The WSDL Design view in Eclipse showing the customer web service interface. The input
parameters of the st or eSal esQppor t uni t y operation are highlighted.

154

CHAPTER 7 Dealing with error handling

The customer web service interface shown in figure 7.5 consists of three operations.
There are two operations to find a customer, one by identifier and one by customer
name or contact person. The third operation accepts input parameters as product
and cust omer | d and stores them as a new sales opportunity in the H2 database using
the Cust oner DAO class from figure 7.4.

Now that you have a good overview of the full sales opportunity process solution,
it’s time to look at the details of the process definition itself.

In the sales opportunity process, a new sales opportunity is created for an existing cus-
tomer. An added complication is that, when a customer isn’t yet available in the Cus-
tomer Relationship Management application, it has to be created. Figure 7.6 shows
the process model, created with the Activiti Modeler.

To start a new process instance of the sales opportunity process definition, you
have to provide information about the sales opportunity. The input parameters are
the product name, expected quantity, a description, and the customer identifier, if
known. When the customer identifier isn’t known, the first step in the sales opportu-
nity process is to provide additional information about the customer, including the
customer name and a contact person.

In the embedded subprocess scope, a service task is executed to find the customer,
based on the information provided. This can be the customer identifier or the pro-
vided additional customer information. This service task will invoke the customer web
service discussed in the previous section. When the customer isn’t found, an error end
event is thrown and then caught by the error boundary event. Then, the customer
must be created manually in the CRM application (in our example, the H2 database)
and the newly created customer identifier must be provided.

When the customer is created or the customer is found by the service task, the
sales opportunity is stored in the database, again, via the customer web service. The

O—.j Find customer

Customer found

customerld present

Py

“= Provide
additional
customer

information

Customer not found

No customerld

H

&]
Create a new
customer enm’J

Figure 7.6 A sales opportunity process model that makes use of BPMN error handling constructs. When
a customer isn’t found, it has to be created, and the customer identifier must be provided via a user task.

Implementing error handling with BPMN 2.0 constructs 155

process instance is then completed. Now that you have the process model defined,
you can implement the process in an executable BPMN 2.0 XML process definition.

To implement the sales opportunity process definition, you could write the raw
BPMN 2.0 XML like you did in the previous chapters and examples. But, when you have
already modeled the process definition in the Activiti Modeler (or another BPMN 2.0
compliant process modeler), it’s very easy to kick-start the implementation using the
Activiti Designer’s import functionality. As we look at using the Activiti Designer, we’ll
also focus on the implementation of the error handling constructs in the sales oppor-
tunity process definition.

In chapter 3, we covered how to
install the Activiti Designer, so let’s start
it up. To import the sales opportunity

v L:‘,’vSa!esOpportu nity
(8 src/main/java
> (# src/main/resources
(@8 src/test/java

process, you firstneed to create an Activ-

= . . L . (B src/testfresources
iti project using Activiti’s new project b =) JRE System Library [Java SE 6 (MacOS X De
wizard in Eclipse. For this example, » & src
name the project Sal esOpportunity. (S target -
. . Add sal rtunity.
When the project is created, you can Sl e
|m] pom.xml

right-click on the project and choose
Import BPMN 2.0 file (see figure 7.7).

When you click on the Import
BPMN 2.0 file action, a file browser
opens so that you can select an XML file for import. When you model a process with the
Activiti Modeler and save the diagram, two XML files are created: a signavio.xml file that
contains meta-information about the diagram, such as the name of the author and a
description, and a bpmn20.xml file that contains the BPMN 2.0 XML and the BPMN Dia-
gram Interchange (DI) information.

Figure 7.7 The BPMN import command in the Ac-
tiviti Designer Eclipse plugin

The Object Management Group (OMG) standardization organization released
BPMN 2.0 in January 2011. The main difference from BPMN 1.x was the addition
of an executable process definition language using XML. But, in addition to the
step forward of being an executable as well as modeling language, the BPMN 2.0
specification added a diagram interchange language.

This diagram interchange language ensures that process diagrams created with one
process modeling tool can also be read and maintained by another. They then both
have to support the diagram interchange format. The diagram interchange information
is also specified in XML and contains the graphical data of the process model; it con-
tains width, height, and x and y position information about the shapes representing
the BPMN events, tasks, gateways, and so on. In addition, it contains the graphical
information about the sequence flows connecting the different BPMN elements.

156

CHAPTER 7 Dealing with error handling

The Activiti Modeler adds DI information to the bpmn20.xml file of any process model
created with this tool. The Activiti Designer reads BPMN 2.0 process models (both
with and without BPMN DI information) and it creates DI information in the
bpmn20.xml file.

By default, the signavio.xml and bpmn20.xml files created by the Activiti Modeler can
be found in the workspace/activiti-modeler-examples directory in your Activiti instal-
lation directory. This directory is a simple file repository, so you can browse it with any
file explorer and you can add and delete process models by copying and deleting the
files. If you created the process model shown in figure 7.6 with the Activiti Modeler,
you can select the bpmn20.xml file in the activiti-modeler-examples directory with the
Eclipse file browser. You can also find the process model files in the book’s source
code examples in the modeler/chapter7 directory of the bpmn- exanpl es project.
There you can select the Add sales opportunity.bpmn20.xml file.

After selecting the bpmn20.xml file, the Activiti Designer will read the XML file and
create a graphical representation of it. Although the process model may not look
exactly the same as shown in the Activiti Modeler, after some manual restructuring, the
sales opportunity process model should look similar to the screenshot in figure 7.8.

Now you can fill in the missing information in the sales opportunity process defini-
tion. First, you need to add conditional logic to the outgoing sequence flows of the
first exclusive gateway. When no customer number (identifier) has been provided in
the start form, the Provide Additional Customer Information user task must be exe-
cuted. Click on the incoming sequence flow of this user task and select the Main Con-
fig tab in the Properties view. There, you can fill in the conditional logic, as shown in
figure 7.9.

When the cust omer Nunber process variable is equal to 0, the “Provide additional
customer information” user task will be executed. To complete the conditional logic,

@ Find
customer

@Add sales
opportunity

@ Provide
additional

customer

information

@ Create

anew
customer

entry

Figure 7.8 The imported sales opportunity process model in the Activiti Designer’s canvas

Implementing error handling with BPMN 2.0 constructs 157

[2. Problems | @ Javadoc L@J Declaration | =) Properties 2

General Condition: [${customerNumber == 0}

Main config

Listeners
Figure 7.9 The Main

Config tab in the Prop-
erties view of the in-
coming sequence flow
of the “Provide addi-
tional customer infor-
mation” user task

you need to add a condition to the other outgoing sequence flow of the first exclusive
gateway as well. There, the conditional logic should be as follows:

${ cust omer Nunber > 0}

The customer number is implemented as a form property that needs to be configured
on the start event of the process definition. You can configure the form properties of a
start event in its Properties view (see figure 7.10).

Form properties:

Id Name Type Value/Expression Required
product Product string true
quantity Quantity long true
description Description string true
customerNumber Customer number long true
R — -

Figure 7.10 The Properties view where the form properties of the start event can be configured

When you save the process diagram at this point, you’ll notice that the BPMN 2.0 XML
hasn’t yet been generated due to errors in the process definition. You need to solve
these errors (shown in figure 7.11) before the BPMN 2.0 XML will be generated.

* @ Javadoc | [, Declaration| I Properties

5 errors, 2 warnings, 0 others
Description
v @ Errors (5 items)

@ Marshalling to Activiti BPMN 2.0 format was skipped because validation of the diagram failed.
@ ServiceTask Add sales opportunity has no class specified
@ ServiceTask Find customer has no class specified
3 UserTask Create a new customer entry has no assignee, candidate users, candidate groups set
3 UserTask Provide additional customer information has no assignee, candidate users, candidate groups set

Figure 7.11 The Problems view in the Activiti Designer, showing the errors of the sales opportunity
process definition

158

CHAPTER 7 Dealing with error handling

[Properties £2 . (% Probl ¥ Ant| 9] Error Log
General Assignee:
Main confi ’

9 Candidate users (comma separated):
Form

Listeners Candidate groups (comma separated: sales

Multi instance
Form key:

Due date (variable):

Priority:

Additional info needed for sales opportunity for product ${product}

Documentation:

Figure 7.12 The configuration of the additional customer information user task

The service tasks will be implemented in the next section, so we’ll focus for now on the
user tasks and then the error handling elements. First, you can configure the additional
customer information user task to use a sal es candidate group (see figure 7.12).

You can also configure the form properties for the additional customer information
user task with three properties: cust onmer Nane, cont act Per son, and cust oner Addr ess.

A similar configuration can be set up for the “Create a new customer entry” user
task, which has only one form property, cust omer Nurrber. In this task form, you must
provide a customer number, which is used to store the sales opportunity in the next
service task. This customer number should be copied to the customer process vari-
able, which is created in the “Find customer” service task we’ll discuss in the next sec-
tion. The form properties can be used to automatically copy a form field value to a
process variable using the expr essi on attribute, as shown in figure 7.13.

With the user task configuration in place, we can now focus on the error handling
logic. When the “Find customer” service task is unable to retrieve the customer from the
CRM application (in our case a web service), the custonmer Found attribute of the
cust oner process variable objectis set to f al se. We need to add conditional logic to the
outgoing sequence flows of the exclusive gateway next to the “Find customer” service
task. The sequence flowwith the error end eventasits target should have the conditional

Form properties:

d Name Type ValuefExpression Required
customerAddedNumber Customer number long #{customer.customerld} true

Figure 7.13 The Properties tab of the “Create a new customer entry” user task, showing the form prop-
erty configuration

Implementing error handling with BPMN 2.0 constructs 159

[2{ Problems | @ Javadoc |[&&, Declaration |] Properties 2

General Condition: ${customer.customerFound == false}

Main config

Listeners
Figure 7.14 The condi-
tional logic of the incom-
ing sequence flow of the
error end event

logic configured as shown in figure 7.14. The other sequence flow should have a similar
conditional logic configuration with a cust omer Found validation set to t r ue.

That brings us to the configuration of the error end event and the error boundary
error event. These events should be

correlated with an error code. The - - —— -
|21 Problems @ Javadoc ||, Declaration [Properties 32

error end event should always have an

error definition, so let’s configure a ~ General Error code: customertotFound
b

cust oner Not Found error code for this

event, as shown in figure 7.15.

Main config

For the error boundary event, you Figure 7.15 The error code configuration of the error
can choose not to define an error gnd event

code at all or to define the same error

code as the error end event. If you leave the error code blank, every error that occurs
inside the subprocess will be caught by the error boundary event. In this example,
only one error end event is defined, so that would work. To make the process defini-
tion clearer for another developer, it would be better to define the same error code
for the error boundary event.

Although you’re not yet able to generate the BPMN 2.0 XML because of the missing
implementation configuration of the two service tasks, you can already have a sneak
preview of the XML configuration of the error end event and the error boundary
event. It’s not groundbreaking but it’s good to understand the underlying details. The
error end event configuration looks like this:
<endEvent id="errorendevent1">

<errorEventDefinition errorRef="custonmerNot Found" />
</ endEvent >
The errorRef attribute can be used in two ways. In this example, it’s used to define an
error code value of cust oner Not Found. But, you can also use it as a reference to an
error definition in the process definition. Such an error definition would look like the
following:

<error id="custonerNot Found" errorCode="123" />

The Activiti Designer always generates the error Ref attribute as a plain error code
definition without an additional error definition. But, there’s no reason to not use the

160

CHAPTER 7 Dealing with error handling

error definition way of configuration. The boundary error event uses similar error
definition syntax:

<boundar yEvent id="boundaryerror1"
attachedToRef =" subprocess1">

<errorEventDefinition errorRef="custonerNot Found" />
</ boundar yEvent >
As you saw in previous examples using a timer boundary event, a boundary event is
attached to another BPMN element. In the preceding example, the error boundary
event is attached to the subprocess. In addition, the error boundary event uses the
exact same error event definition element to configure the error that it will handle.

Now we have filled in most of the missing process logic. There are two important

pieces missing, namely the two service task implementations.

For the sales opportunity process implementation, we’re in need of a CRM applica-
tion. As you saw in section 7.2.1, we created a web application with a customer web ser-
vice that can be invoked from the sales opportunity process. Let’s use this simple web
application as our CRM application for now.

We could use a web service task that’s part of the BPMN 2.0 specification to invoke
the customer web service, but we’ll discuss that option in chapter 11. In this chapter,
we’ll be using a Java service task with a generated web service client using the Apache
CXF framework to invoke the customer web service. The generated web service client
code is also part of the bprm- exanpl es project in the book’s source code, but we now
need to add it to the Activiti Designer project.

The following plugin configuration should be added to the Maven pom.xml file of
the Sal esCpportuni ty project:

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. cxf </ groupl d>
<artifact|d>cxf-codegen-plugin</artifactld>
<ver si on>2. 3. 4</ ver si on>
<executions>
<execution>
<i d>gener at e- sour ces</i d>
<phase>gener at e- sour ces</ phase>
<configuration>
<sour ceRoot >gener at ed/ cxf </ sour ceRoot >
<wsdl Opti ons>
<wsdl Opti on>
<wsdl >src/ mai n/ resour ces/ chapter7/errorevent/
wsdl / cust ormer Ser vi ce. wsdl </ wsdl >
<wsdl Locati on>http://1 ocal host: 8081/ book- sal es-app/
servi ces/ cust ormer ?wsdl </ wsdl Locat i on>
</ wsdl Opti on>
</ wsdl Opti ons>
</ confi guration>

Implementing error handling with BPMN 2.0 constructs 161

<goal s>
<goal >wsdl 2j ava</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>

</ bui | d>
As you can see, the plugin expects a WSDL file in the src/main/resources/chapter7/
errorevent/wsdl folder. The WSDL can be copied from the same location in the bpm-
exanpl es project to your Designer project.

Make sure that the web service client code is generated when executing the
mvn ecl i pse: ecl i pse command. The web service client code is generated into the
generated/cxf folder inside the Designer project. The Cust omer Ser vi ceSer vi ce class
(the additional Servi ce postfix is generated by the CXF framework) is the main web
service client interface for communicating with the customer web service.

Now let’s create the RetrieveCustoner Task class (see the following listing) that
you’ll use for the “Find customer” service task in the Activiti Designer. The class needs
to be created in the or g. bpmmwi t hactiviti. chapter7. errorevent package.

public class RetrieveCustonerTask inplenents JavaDel egate {

private CustonerServiceService customerService = <7 Instantiates web
new Cust oner Servi ceService(); service client
@verride

public voi d execute(Del egat eExecuti on execution)
throws Exception {
Long custonerld = (Long) execution.getVari abl e(P Gets customer number
"cust omer Nunber ") ; process variable
Cust omer custoner = null;
if(custonmerlid > 0) {
customer = custoner Service
. get Cust oner Servi cePort ()
. findCust ormer Byl d(cust orer | d);
} else {
String custonmerNane = (String) execution.getVariabl e(
"cust orrer Nane") ;
String contactPerson = (String) execution.getVariabl e(
"cont act Person");

cust omer = custoner Service Invokes
. get Cust oner Ser vi cePort () findCustomer
. findCust onmer (cust oner Nanme, cont act Person); operation
}
Cust omer Vari abl e vari abl e = new CustonerVari abl e();
if(custonmer !'= null) {

vari abl e. set Cust onmer Found(true);

vari abl e. set Cust omer | d(cust omer . get Cust orer 1 d()) ;

vari abl e. set Cust omer Nane(cust onmer . get Cust oner Nane()) ;
vari abl e. set Cont act Per son(cust oner . get Cont act Per son()) ;

162

CHAPTER 7 Dealing with error handling

vari abl e. set Cust oner Addr ess(
cust oner . get Cust omer Addr ess());

} else {

vari abl e. set Cust omer Found(f al se) ;
} Sets customer
execution. setVariabl e("custoner”, variable); < | process variable

}

}

To be able to invoke the customer web service, you need an instance of the Cust om
er Servi ceSer vi ce web service client class that you generated with the Apache CXF
code generation plugin . And, because you can find customers both on customer
identifier as well as customer name and contact person name, you first need to deter-
mine if the cust oner Number process variable is greater than 0. Then, you can
invoke the web service via the web service client class with the fi ndCust omer Byl d or
the fi ndCust oner &) operations.

When the response is received from the customer web service, the Cust oner Vari -
abl e process variable object is filled with the response parameters when a customer is
found. When no customer is found, there’s still a Cust oner Var i abl e instance set as a
process variable € but the cust oner Found attribute is set to f al se.

As you can see in the implementation of this service task, it’s quite simple to invoke
a web service with a generated web service client. We’ll discuss the standard BPMN 2.0
web service task in chapter 11, but this way of dealing with web services remains an
interesting option.

The RetrieveCustomer Task class uses the CustomerVariabl e class, which you
haven’t created yet. But, this class can be copied from the bpm- exanpl es project (see
the org. bpmmwi thactiviti.chapter7.errorevent package). Now that you've cre-
ated the RetrieveCust oner Task class, you can configure it to be used on the “Find
customer” service task, as shown in figure 7.16.

.00

Select entries: -

Retrieve

Matching items:

'€ RetrieveCustomerTask - org.bpmnwithactiviti.chapter7.errorevent

& org.bpmnwithactiviti.chapter7.errorevent - chapter7-errorevent/src/main/java

- /= L
= - ?) Cancel) OK i
2 problems | 2 Properties a & N ()
o p—
General Type: ®) Java class () Expression () Delegate expression
Main config -

Service class: org.bpmnwithactiviti.chapter7.erro
Listeners

Multi instance Result variable:

Figure 7.16 The configuration of the find customer service task, which uses the
Ret ri eveCust oner Task

Implementing error handling with BPMN 2.0 constructs 163

Now, there’s one Java service task configuration missing, which is the “Add sales
opportunity” service task. You need an additional service task class implementation
for this: St or eQppor t uni t yTask.

public class StoreCpportunityTask inplenents JavaDel egate {

private Custoner Servi ceServi ce custonerService =
new Cust oner Servi ceServi ce();

@verride
public voi d execut e(Del egat eExecuti on execution)
throws Exception {
Cust omer Vari abl e customer = (CustomerVari abl e) P Gets customer
execution. getVariabl e("custoner"); process variable
String product = (String)
execution. get Vari abl e(" product");
Long expectedQuantity = (Long)
execution. getVariabl e("quantity");
String description = (String)
execution. get Vari abl e("description");
cust onmer Ser vi ce. get Cust oner Ser vi cePort ()
.storeSal esQpportuni ty(product, expectedQuantity, P Stores sales
description, custoner.getCustomerid()); opportunity
}
}

In the St or eQppor t uni t yTask class, you store the opportunity information like pr od-
uct and quantity with a reference to the cust oner. You retrieve the necessary cus-
tomer () and opportunity information from the process variables. Then, you use the
generated web service client to store the sales opportunity in the CRM application

The last bit of work left is to configure this JavaDel egat e class on the “new cus-
tomer entry” Java service task, like you did in figure 7.15.

This completes our design work for the sales opportunity process definition, so
let’s take it to the next level and start deploying and testing the solution.

To be able to test the sales opportunity example, you need to start the customer web
service application and deploy the sales opportunity process artifacts.

First, start the web service with the book- sal es- app application, which is part of the
book’s source code. The web application uses an H2 database running on | ocal host,
so make sure the Activiti H2 database is running (with the ant h2. start command).

To build and run the web application in Jetty, go to the project’s root directory and
run the nvn cl eaninstall jetty:run command. The web application should now be
running inside the Jetty web container on port 8081.

The customer web service is now running and ready to be invoked from the sales
opportunity process. To test whether the web service is running, you can open a web
browser on http://localhost:8081/book-sales-app/services/customer?wsdl.

164

CHAPTER 7 Dealing with error handling

In the Activiti Designer, it’s easy to create

Run As >
the deployment artifacts for your process defi- Debug As >
nition. From within the Activiti perspective, Validate
right-click on the Activiti project and choose Team . >
Ie Debl Artif: f h Compare With >

reate Deployment Artifacts from the menu Restore from Local History...
(see figure 7.17). Configure >
When the Create Deployment Artifacts Properties %l

menu option is selected, a deployment direc-
tory is created with a BAR file and a JAR file
inside it. The BAR file contains the BPMN 2.0

. Figure 7.17 The pop-up menu that’s
XML file of the sales opportunity process and shown when you right-click on an Activiti
the three user task forms that you’ve imple- project. The option to create the deploy-
mented. The JAR file contains the class files of =~ mentartifacts, like the BAR and JAR files,
the service tasks (RetrieveCustonerTask, is highlighted.
St oreQpportuni tyTask) and the web service
client classes.

To be able to execute the sales opportunity process using the Activiti Explorer, you
must make sure that the JAR file is published to the classpath of the Activiti Explorer
web application. Copy the JAR file to the WEB-INF/lib directory of the Activiti Explorer
web application. The Tomcat instance should then be stopped (ant tonctat. stop) if
it’s already running and started again (ant tontat.start).

You’re almost ready with the deployment steps; only the BAR deployment remains.
This can be done using the Deployment tab in the Activiti Explorer. Select the BAR
file, which was created by the Activiti Designer in the deployment directory of the
Activiti Eclipse project.

When the sales opportunity BAR file is deployed on the Activiti Engine via the
Activiti Explorer, you can start a new process instance like before. The start form of
the sales opportunity process definition is shown in figure 7.18.

In order to use the unit test we’ll discuss later on, you should fill the Product field
exactly as shown in figure 7.18. When the customer number isn’t known, a value of 0

ﬁ Add sales opportunity

Version 1 &) Deployed 2 hours ago

Product* Apple iMac
Quantity* 1
Description* Quad core, 27 inch

Customer number (0 if notknown)* 0

Figure 7.18 Activiti Explorer

showing the start form of the sales
| Start process] Cancel .
opportunity process

Implementing error handling using Java logic 165

must be filled in. In this case, a new user task is created for the sales group to fill in
additional information about the customer. If you fill in a customer number in the
start form, this step is skipped. Find out if a user task has been created by logging in to
the Activiti Explorer with the Kermit user. Then, fill in some values for the customer
name, contact person, and customer address.

Next, the service task that retrieves the customer by invoking the customer web ser-
vice is executed. In this case, the customer can’t be found, because the H2 database
doesn’t contain any customers yet. Then, the error event is executed, and the bound-
ary error event should catch this error and create a new user task to add a new cus-
tomer entry. Make sure that this user task is created for the sal es candidate group.

In this new customer entry user task form, a valid customer identifier must be pro-
vided because, in the next service task, the sales opportunity will be stored in the H2
database with a reference to the customer table. In the book-sal es-app project,
you’ve provided a Test Dat a class in the main source tree. By executing this class, a
new customer entry is created in the H2 database and the customer identifier is
printed in the Eclipse console. Fill in the printed customer identifier and complete
the user task.

Then, you can perform the final test and validate whether the sales opportunity
indeed is created in the H2 database for the provided customer identifier. This test is
implemented in the Qpportuni tyTest unit test, which can also be found in the main
source tree of the book- sal es- app project.

We’ve now covered in detail how to implement a process definition using an error
end event and an error boundary event. In the next section, we’ll spend some more
time on error handling in process definitions using Activiti as we discuss the use of
Java exceptions.

In section 7.1, you saw that implementing error handling without error end events
and error boundary events is possible using Java service tasks with logic to choose
between different outgoing sequence flows. To be able to compare the use of this type
of error handling to the BPMN 2.0 style using error end and boundary events, we’ll
implement the sales opportunity process from section 7.2 again in this section.

We already went through all the activities of the sales opportunity process in the
previous section, so we’ll focus on the differences related to the Java logic error han-
dling here. To get a good picture of the differences, let’s start with the process model
shown in figure 7.19.

As you can see in figure 7.19, the process model is easy to comprehend because
you don’t need a subprocess scope for the error handling constructs. The error han-
dling logic isn’t expressed in the process diagram but instead is implemented inside
the “Find customer” service task.

Let’s look at the revised implementation of the RetrieveCustoner Task class,
which still is the implementation of the “Find customer” service task.

166

CHAPTER 7 Dealing with error handling

&

Find customer

&

Add sales
opportunity

customerld present

/EJ Provide
additional
customer

information

No customerld

iy

Create a new
customer entry

Figure 7.19 Process model of the sales opportunity process using Java service logic to implement
error handling

public class RetrieveCustonerTask

i mpl ements ActivityBehavior { Implements
private CustomnerServiceService custonerService = iAnc‘:t;:;;);zehawor
new Cust oner Servi ceService();
@verride
public void execute(ActivityExecution execution) Defines input
throws Exception { parameter as
Long custonerld = (Long) ActivityExecution
execution. get Vari abl e("cust oner Nunber") ; instance

Cust onmer customer = null;
if(customerld > 0) {
customer = custoner Service
. get Cust oner Servi cePort ()
.findCust ormer Byl d(cust orer 1 d) ;
} else {
String custonerNane = (String)
execution. get Vari abl e(" cust oner Nane") ;
String contactPerson = (String)
execution. get Vari abl e("cont act Person");
customer = custoner Service
. get Cust oner Ser vi cePort ()
. findCust oner (cust oner Nane, contact Person);
}
Custoner Vari abl e vari abl e = new CustonerVari abl e();
if(customer != null && custoner.getCustonmerld() > 0) {
vari abl e. set Cust oner Found(true);
vari abl e. set Cust oner | d(cust oner . get Custonerld());
vari abl e. set Cust orrer Nanme(
cust oner. get Cust oner Nane()) ;
vari abl e. set Cont act Per son(
cust oner. get Cont act Person());
vari abl e. set Cust oner Addr ess(
cust omer . get Cust oner Address()) ;
} else {

Implementing error handling using Java logic 167

vari abl e. set Cust omer Found(f al se) ;
}
execution. setVariabl e("custoner”, variable);
Pvnifransition transition = null;

i f(variable.isCustomerFound() == true) {
transition = execution Finds outgoing
.getActivity() sequence flow
. findQut goi ngTransi tion("customer Found"); by ID
} else {

transition = execution
.getActivity()
. findQut goi ngTransi ti on("cust omer Not Found") ;

}
execution.take(transition); <] Takesright
} transition

}

When you want to implement a Java service task with logic that chooses between dif-
ferent outgoing sequence flows, make sure you implement the ActivityBehavi or
interface () instead of the JavaDel egat e interface you’d normally use. The Acti v-
i tiBehavi or interface provides an Acti vi t yExecuti on instance parameter), which
can be used to choose a specific outgoing sequence flow.

With the findQutgoingTransition method, you can retrieve an outgoing
sequence flow by identifier). If the customer can be found by the customer web ser-
vice, the cust omer Found sequence flow is retrieved.

Look at the BPMN 2.0 XML snippet of the revised sales opportunity process with a
focus on the outgoing sequence flows of the Java service task:
<servi ceTask id="RetrieveCustomer Task"

activiti:class="org. bpmmwi thactiviti.chapter?7.

errorjava. Retri eveCust oner Task" />
<sequenceFl ow i d="cust oner Not Found"

sour ceRef ="Ret ri eveCust oner Task"

t ar get Ref =" Handl eCust onmer Not FoundTask" />
<sequenceFl ow i d="cust oner Found"

sour ceRef ="Ret ri eveCust oner Task"

t ar get Ref =" St or eQpport uni t yTask" />
Here, you can see that there are two outgoing sequence flows defined for the “Find
customer” Java service task. When the right outgoing sequence flow is retrieved, the
t ake method is invoked € to execute this sequence flow. Be aware that, if you don’t
t ake an outgoing sequence flow in the execut € method implementation, the process
instance execution will stop at the current Java service task. The JavaDel egat e inter-
face makes sure that a default outgoing sequence flow is executed when the execut e
method is completed.

The rest of the BPMN 2.0 XML remains the same as the process implementation
from the previous section. To test the revised solution using the Java logic for error
handling, run the Ant build file build.xml that you can find in the src/main/
resources/chaper7/errorjava folder. This creates a dist folder containing a BAR and a
JAR file, which you can deploy in the same manner as in the previous section. The JAR

168

CHAPTER 7 Dealing with error handling

file must be copied to the WEB-INF/lib directory of the activiti-expl orer applica-
tion, and the BAR file can de deployed using Activiti Explorer.

The tests here are exactly the same as the one performed in section 7.2.5. This
completes our discussion about ways to implement error handling in process defini-
tions for the Activiti Engine.

Although most people think about process definitions in a happy flow manner (that
is, without error and transaction handling and other detailed process modeling), the
exceptions and errors that can occur during process execution are equally impor-
tant. Thinking about all paths that handle possible errors during process execution
is difficult, so it’s important to understand the different ways you can implement
error handling.

Luckily, the BPMN 2.0 specification provides specific constructs for dealing with
errors, with the error end event and the error boundary event as the best examples.
Using the BPMN error handling constructs enhances the process definition because it
clearly shows the way errors are handled during process execution. But, when you
think of all the errors that could occur during process execution, a lot of them are
related to connectivity problems, database connections, and other technical errors.
When you model these error paths in a process definition using the BPMN error con-
structs, the diagram becomes unreadable.

For both technical and other types of errors, you have the option of using Java
logic in Java service tasks to deal with the errors. With multiple sequence flows going
out of a service task, you can choose the right process path based on Java logic. This
approach can be used to terminate a process if a web service call fails and to proceed
with the normal process execution if the call succeeds. In this case, the error handling
logic is implemented in the Java service task and, therefore, is not readable in the pro-
cess model.

When dealing with error handling, it’s important to choose between explicitly
modeling the error paths and implicitly implementing it in a Java service task. You can
also mix both ways of handling errors in a process definition when needed.

We’ve talked a lot about the API for the Activiti Engine and implementing BPMN 2.0
processes to run on it. But, to run the Activiti Engine in your enterprise, you’ll have
to understand the different ways you can install and deploy the Activiti tool stack,
and mainly the Activiti Engine, in your environment. That’s what we’ll cover in the
next chapter.

In the last two chapters, you were introduced to advanced BPMN constructs, includ-
ing error boundary events and embedded subprocesses. That’s all great—but how
can you install and deploy these advanced BPMN process definitions in your envi-
ronment? Now, it’s time to take a step back and see how Activiti fits into the big pic-
ture of your application landscape.

169

170

CHAPTER 8 Deploying and configuring the Activiti Engine

First, we’ll discuss the two common deployment scenarios for the Activiti Engine:
the embedded and the standalone options. In addition, we’ll take a look at how you
can use the Spring container for transaction management. With the standalone
option, I’ll show how you can use the Activiti REST web application as a foundation for
implementing the Activiti Engine in your organization. Then, I’ll show you how to
configure the Activiti Engine. Finally, you’ll see how to communicate with the Activiti
Engine using the REST API and learn how to add a new Activiti REST service.

First things first: let’s take a look at the deployment options you have with the
Activiti Engine and discuss why you would choose one configuration over the other.

There are two common ways to set up your application environment with an Activiti
Engine.
= Embedded—Embed the Activiti Engine instance in your application and use the
Activiti Java API to communicate with the Activiti Engine. This involves copying
the necessary Activiti JARs into your project and starting up the Activiti Engine
from within your application using a default Activiti configuration file.
= Standalone—Set up a standalone Activiti Engine instance and have multiple appli-
cations access the Activiti Engine via the REST API. This option is created when
you run the Activiti installation script. The Activiti Engine runs on the provided
Apache Tomcat instance in the Activiti Explorer and the REST web application.

As you can see, the main options are embedded and standalone deployments. In addi-
tion, you’ll have to choose whether you want to use a Spring container.

In this section, we’ll examine these two deployment options from an architectural
point of view. We’ll also look at options to think about when setting up your Activiti
Engine application, such as required library dependencies.

First, let’s talk about the details of the embedded deployment option.

One way to use the Activiti Engine is to embed it in your application. This application
can be a web application deployed on an application server or even a Java client appli-
cation. To embed the Activiti Engine in your application, you only have to include the
Activiti Engine and its dependent JARs. Then you can start the process engine and
you’re good to go from the application’s perspective.

You also need a database server to host the Activiti Engine database. In the previ-
ous chapters, we used the H2 database a lot, but you can use other database servers
like MySQL, PostgreSQL, and Oracle.

Before we explore things a bit further, take a look at figure 8.1, which outlines the
embedded deployment option.

The main idea of the embedded deployment option is that the Activiti Engine
runs in the same JVM as your own application code. This can be a good choice if

Choosing between deployment options 171

e

| (Web) application
))
Application logic | 3 Activiti Engine

/

The Activiti Engine is \
started via a \ N
ServletContextListener, /J / \

for example -

.
>
T

Activiti Engine
database Figure 8.1 Deployment diagram

showing Activiti Engine embedded in
aJava application using the standard
~. JEE ServiletContextListener

there’s an application that needs workflow or process logic and there’s no central pro-
cess engine available.
The first thing to consider is how to handle the process engine startup and shutdown.

The easiest way to build a new ProcessEngi ne instance is to use the org. activiti
. engi ne. ProcessEngi nes management class. The following snippet starts the process
engine and returns the default process engine instance:

ProcessEngi ne processEngi ne = ProcessEngi nes. get Def aul t ProcessEngi ne();

The get Def aul t ProcessEngi ne method will first invoke the init method of the
ProcessEngi nes class, which will scan the classpath and look for an activiti.cfg.xml or
an activiti-context.xml Spring configuration file. Based on the configuration files found,
the process engine is configured. We used a number of different configuration files in
the previous chapters, so you have at least a basic understanding of the contents of such
a configuration file. We’ll discuss configuration files in more detail in section 8.2.

When you’re developing a web application, a good place for the ProcessEngi nes
get Def aul t ProcessEngi ne method call is a standard JEE Servl et Cont ext Li st ener;
this ensures the Activiti Engine is started when the web application is started. A sam-
ple implementation of such a listener class is shown in the next listing.

public class ActivitiServl et ContextListener inplenments
Ser vl et Cont ext Li st ener {

private static final Logger |ogger =

172

CHAPTER 8 Deploying and configuring the Activiti Engine

Logger . get Logger (Acti vi ti Servl et Cont ext Li st ener. cl ass);

@verride
public void contextlnitialized(ServletContextEvent
servl et Cont ext Event) { Initializes,
ProcessEngi ne processEngi ne = configures, and
Pr ocessEngi nes. get Def aul t ProcessEngi ne() ; builds engine
if (processEngine == null) {
| ogger.error("Could not start the Activiti Engine");
}
}
@verride
public void contextDestroyed(Servl et Cont ext Event
servl et Cont ext Event){ Destroys)
ProcessEngi nes. destroy(); <1 process engine
}

}

That’s not hard, is it? The Pr ocessEngi nes management class provides a get Def aul t -
ProcessEngi ne () and a dest r oy convenience method () to take care of starting and
destroying the Activiti Engine. The Pr ocessEngi ne class provides an easy access to the
Activiti Engine from within your Java (web) application. You can, for example, start
new process instances via the ProcessEngi ne get Runti meSer vi ce method.

Another option is to use the Activiti Engine as a standalone application and com-
municate via the Activiti REST API or the Activiti Explorer. Let’s explore that option in
more detail.

In the previous section, you saw how you can embed the Activiti Engine in an applica-
tion. The communication between the application and the Activiti Engine is imple-
mented using the Java API In this section, we’ll look at how to set up a so-called
standalone Activiti Engine. The main difference is the use of the Activiti REST API in
the standalone deployment setup of the Activiti Engine.

REST is an acronym for Representational State Transfer, a popular style of software
architecture for distributed systems. Applications providing a REST interface, such as
Activiti, are often referred to as Restful applications. REST is based on the standard
HTTP operations, like GET, PUT, and POST, and makes use of those operations to pro-
vide CRUD (create, read, update, and delete) functionality.

For Activiti, this means you can retrieve process instances using a GET operation or
deploy a new process definition using a PUT operation. For more information about
REST in general and how to work with a REST framework called Restlet, you can read
the book Restlet in Action by Jerome Louvel, Thierry Templier, and Thierry Boileau
(Manning, 2009). In addition, we’ll talk about the Activiti REST API in more detail in
section 8.4.

Choosing between deployment options 173

Activiti provides an out-of-the-box REST component, which can be used to communi-
cate with the Activiti Engine from any remote location. Mobile, Groovy, and other
applications leverage this communication layer because of REST’s simple communica-
tion protocol. Figure 8.2 provides an overview of the standalone Activiti Engine
deployment setup.

Notice that the Activiti REST API is implemented in a separate web application
named activiti-rest. In the previous section about the embedded deployment
option, you saw that you can use a Ser vl et Cont ext Li St ener to manage starting and
destroying the Activiti Engine. In the Activiti REST web application, starting the Activ-
iti Engine is implemented in exactly the same way.

In figure 8.2, three applications (A, B, and C) have been included to show how you
can communicate with the Activiti Engine from another application. As you can see, it
doesn’t matter whether an application is deployed on the same application server or
even on a mobile phone; all communication is via the Activiti REST API.

The activiti-rest web application is an important component if you want to use
the Activiti Engine in a standalone deployment option, so let’s look at one of the REST
service implementations to get a better idea of its functionality.

4 Application server h Application server
activiti-rest web REST HTTP o
application Application B
REST HTTP L
Application A
REST HTTP /
Mobile phone
activiti-explorer
- application
ApplicationC
\
(& %

Activiti Engine
database

Figure 8.2 Deployment diagram showing the Activiti Engine in a standalone setup

174

CHAPTER 8 Deploying and configuring the Activiti Engine

When you download the Activiti distribution and run the Ant deno. start task, the
Activiti REST application is installed together with all the other Activiti applications.
Activiti uses the Restlet framework (www.restlet.org) for the implementation of the
REST services.

All the Activiti REST services are described in the Activiti user guide.
It’s a good source if you’re looking for a service overview.

Let’s look at one of the REST service implementations to get an idea of the implemen-
tation logic. The REST service class that’s invoked when you need to collect details
about a certain task instance is the TaskResource class. The next listing shows the
implementation of this class.

public class TaskResource extends SecuredResource { Extends base
lass with
@et ¢ o
publ i c TaskResponse get Tasks() { :::I:It:ntlcatlon
if(authenticate() == false) return null;

String taskld = (String) getRequest()
.getAttributes()

.get("taskld"); <+ Retrieves taskld
Task task = ActivitiUtil.getTaskService() from the request

. createTaskQuery()
.taskl d(taskld)
.singl eResul t();
TaskResponse response = new TaskResponse(task);

TaskFormDat a t askFornData =
ActivitiUtil.getFornService()
. get TaskFor nDat a(t askl d) ;
if(taskFornData !'= null) {
response. set For mResour ceKey(t askFor nDat a. get For nKey()) ;
}

return response;
}

}
Most of the Activiti REST services are secured and need authentication. Therefore,
most REST service classes extend the Secur edResour ce base class €, which provides
an aut henticate method to validate the provided username and password. When
no group parameter is provided to the aut henti cate method, all registered users
are allowed to access the REST service. Otherwise, only members of the group can
access the REST service, in which case the admin or system administrators group is
typically used.

In the REST service, the taskl d parameter can be easily retrieved). Then, the
task query is executed, and a response object that will be transformed to J[SON auto-
matically by Restlet framework’s Jackson plugin is created.

Choosing between deployment options 175

Now that you understand the purpose of the acti vi ti-rest application, let’s take
a step back and discuss the standalone deployment option shown in figure 8.2 in a bit
more detail.

In the default Tomcat setup created when you install Activiti, there are two web appli-
cations deployed (the Activiti Explorer and Activiti REST). An important thing to be
aware of is that each web application contains its own process engine instance but they
share the same H2 database (see figure 8.2).

If you want to run your processes with Java service tasks or listeners on both the
Activiti Explorer and the Activiti REST web application, you’ll have to make sure that
the Java service task and listener classes are available on both classpaths. It’s perfectly
fine to run more than one Activiti Engine on the same database. Activiti is designed to
run well in this kind of deployment scenario, and there are no specific issues that you
have to take into account.

Another solution could be to merge the Activiti Explorer and Activiti REST web
applications into a single web application. That would eliminate the need to deploy
the service task and listener classes to more than one web application. The Activiti
REST web application can be easily merged with any web application that supports the
use of the Restlet framework. In section 8.4, we’ll discuss how to create a new web
application out of the Activiti REST subproject.

Now let’s recap the two deployment options.

Your choice of deployment option will generally depend on the application you are
working with. Table 8.1 identifies some application characteristics that can help you
choose between the embedded and standalone deployment options.

Now that we’ve taken a look at the different ways you can deploy the Activiti
Engine, let’s dive a bit deeper and consider the choice of whether to run the Activiti
Engine within a Spring container or not.

Table 8.1 Choosing a deployment option based on application characteristics

More than one application needs to Standalone | To communicate with the Activiti Engine from
access the Activiti Engine instance multiple applications, you need the REST API, so
your choice should be the standalone setup.

You need specific workflow or process | Embedded Because you only need the Activiti Engine for one

capabilities in a single web application application, the embedded setup will work well.
You need to communicate with the Standalone | The Activiti REST API is the obvious communi-
Activiti Engine from a non-Java platform cation layer for non-Java applications.

You want to use Activiti Explorer Standalone | When you want to use the Activiti Explorer to

manage the process engine, the standalone
deployment is the obvious choice.

176

CHAPTER 8 Deploying and configuring the Activiti Engine

In chapter 4, we discussed the use of Spring beans with the Activiti Engine. As you
know, the Activiti Engine uses a Spring-based configuration file. But, in addition to
the configuration, you can also choose to run the Activiti Engine inside a Spring-man-
aged container. In this section, we’ll first look at running the Activiti Engine with only
a Spring-based configuration, and then we’ll look at additional benefits of using a
Spring-managed container.

An Activiti Engine can be configured in multiple ways. In this section, we’ll look at two
options, starting with the XML configuration in an activiti.cfg.xml configuration file:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmework. or g/ scherma/ beans
http://ww. springframework. or g/ scherma/ beans/ spri ng- beans. xsd" >

<bean i d="processEngi neConfiguration"
class="org.activiti.engine.inpl.cfg.
St andal onePr ocessEngi neConfi guration" />
</ beans>

This configuration starts an Activiti Engine that connects by default to a H2 database.
The Activiti Engine will manage the database transactions in isolation, so there’s no
way to integrate your own service task implementation logic with the Activiti Engine
transaction manager.

If you don’t want to use a Spring configuration at all, that’s also possible. But, then,
the ProcessEngi nes i nit method will not start the Activiti Engine because no activ-
iti.cxf.xml or activiti-context.xml file will be present. Let’s change the example from
listing 8.1 and refactor it to remove the need for a (Spring) configuration file.

public class ActivitiJavaServl et ContextListener inplenments
Ser vl et Cont ext Li stener {

@verride

public void contextlnitialized(ServletContextEvent event) {
ProcessEngines.init();
ProcessEngi ne processEngi ne = ProcessEngi neConfi guration

. creat eSt andal onePr ocessEngi neConfi guration() Creates
.setJdbcUr| ("jdbc: mysql ://| ocal host: 3306/ Activiti Engine
activiti ?aut oReconnect =true") configuration

.setJdbcDriver("com nysql.jdbc.Driver")
. set JdbcUser nane("activiti")

.set JdbcPassword("test")

. set JobExecut or Acti vat e(true)

. bui I dProcessEngi ne(); Registers

ProcessEngi nes. regi st er ProcessEngi ne(pr ocessEngi ne) ; <1 engine

}

Using a Spring-managed Activiti Engine 177

@verride
public void contextDestroyed(Servl et Context Event event) {
ProcessEngi nes. destroy();

}
}
Asyou can see, the i ni t method is invoked in the ProcessEngi nes class to initialize it.
Because no activiti.cfg.xml or activiti-context.xml file is implemented in this case, no
process engine is yet created. But you still need to run the i ni t method to make sure
some internal class attributes are initialized correctly.

No problem; you can create a new ProcessEngi ne instance by using the Process-
Engi neConf i gur ati on class. In the first method, you create a default process engine
that uses the default H2 database configuration. As you can see, it’s easy to choose your
own database—in this case, a MySQL database. When the bui | dPr ocessEngi ne method
is invoked, the Activiti process engine is created and started.

Because you still want to use the ProcessEngi nes class to manage the available pro-
cess engine instances, you register the newly created engine in that class 2. Considering
the engine is registered, you can still use the destr oy method of the ProcessEngi nes
class to stop the Activiti Engine.

Now, let’s look at how you can run the Activiti Engine in a Spring-managed
container.

When you do want to make use of a Spring container’s transaction management,
Activiti also makes that easy. You can define an activiti-context.xml file containing the
Activiti Spring configuration. Then, you can reuse the Ser vl et Cont ext Li st ener from
listing 8.1.

Another way would be to use a context listener provided by the Spring framework,
as shown in the following web.xml code snippet:

<cont ext - par an>

<par am name>cont ext Confi gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ acti vi ti-context.xnl </ param val ue>
</ cont ext - par an>

<listener>

<l'i stener-cl ass>

org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener

</listener-class>
</listener>
When this snippet is included in the web.xml file of your web application, the activiti-
context.xml Spring configuration file will be loaded. In that file, you can define an
Activiti Engine. This means that the Activiti Engine is started within the Spring con-
tainer. Now, you can use Spring beans in a BPMN 2.0 XML process implementation but
also use the Spring transaction manager to manage both the Activiti data source and
Java service task implementations with a @Tr ansact i on annotation.

178

CHAPTER 8 Deploying and configuring the Activiti Engine

Let’s finish this section with a recap of how such a Spring configuration file can be

implemented.
<bean i d="dat aSource" Identifies Activiti
cl ass="org. spri ngframewor k. j dbc. dat asour ce. database
Si npl eDri ver Dat aSour ce" > configuration

<property name="driverd ass"

val ue="org. h2. Driver" />
<property name="url"

val ue="j dbc: h2:tcp://1 ocal host/activiti" />
<property name="usernane" val ue="sa" />
<property nanme="password" val ue="" />

</ bean> Defines transaction

<bean id="transacti onManager" </ manager
cl ass="org. springfranmework. j dbc. dat asour ce.
Dat aSour ceTr ansact i onManager " >
<property name="dat aSource" ref="dataSource" />

</ bean> Defines Activiti
<bean i d="processEngi neConfi gurati on" <1 engine config
class="org.activiti.spring.
Spri ngPr ocessEngi neConfi gurati on">
<property nanme="dat abaseType" val ue="h2" />
<property name="dat aSource" ref="dataSource" />
<property name="transacti onManager"
ref ="transacti onManager" />
</ bean> Creates
<bean i d="processEngi ne" < process engine
class="org.activiti.spring.ProcessEngi neFact oryBean">
<property name="processEngi neConfi guration"
ref =" processEngi neConfi guration" />
</ bean>
<t x:annotation-driven <DT Defines manager
transacti on- manager ="transacti onManager" /> for @Transactional

<bean id="hi storyService" annotation

fact ory- bean="processEngi ne"
factory-met hod="get Hi storyServi ce" />

<bean id="runti meService"

fact ory- bean="processEngi ne"

factory-met hod="get Runti meServi ce" />
In the Spring configuration, you do the same sorts of things that you did in listing 8.3.
You define the Activiti data source (), create an Activiti Engine configuration ¢, and
build a new ProcessEngi ne instance (). The difference is that you define a Spring
transaction manager 2, which will manage the Activiti database transactions. In addi-
tion, you can use the transaction manager to coordinate multiple Activiti API invoca-
tions in the same transaction using the @r ansacti onal annotation

Let’slook atan example where you start two process instances in the same transaction.

Using a Spring-managed Activiti Engine 179

public class Transacti onal Bean {

@\ut owi red

private RuntimeService runtimeService;

@r ansact i onal < Execute method
public voi d execute(bool ean throwError) in a transaction

throws Exception {

runti nmeService. start Processl nst anceByKey(
"transactionTest");

Map<String, Object> variableMap =
new HashMap<String, Object>();
vari abl eMap. put ("throwError", throwError);

runti neService. startProcessl nst anceByKey(
"transactionTest", variabl eMap);
}

}

In this transactional example, a RuntimeService is used to start two new process
instances of a simple process definition with only start and end events and in
between a service task. The execut e method is annotated with the @Tr ansacti onal
annotation (), which means that a transaction is started before the execution of the
method, and the transaction is committed when the method is completed, unless a
Runti meExcepti on is thrown. The Activiti Engine will use the transaction to start the
process instance. If the process execution throws an error, the whole transaction will
be rolled back and no process instance will run or be stored in the Activiti database.

And, that’s exactly what you do if the input parameter t hr owEr r or is equal to t r ue.
When a process instance is started with a t hr owEr r or variable set to true, the service
task within the process definition will throw an |11 egal Argunent Excepti on, as you
can see here:

public class ErrorServiceTask inplenments JavaDel egate {

@verride
public void execute(Del egat eExecuti on execution) throws Exception {
i f(execution. hasVariable("throwError") &&
Bool ean. val ueOr (execution. getVariabl e("throwkrror").toString())) {

throw new |11 egal Argunent Excepti on("Rol | back!!");

}
}
}
This shows how easy it is to wrap two Activiti transactions in one Spring transaction to
prevent the first process instance from being persisted when the second process
instance fails.
Let’s complete this example with a unit test, as shown in the next listing.

180 CHAPTER 8 Deploying and configuring the Activiti Engine

@unW t h(Spri ngJUni t 4C assRunner. cl ass)

@Cont ext Confi guration("cl asspat h: chapt er 8/
spring-transacti on-context.xm")

public class Transacti onTest extends AbstractTest {

@ut owi r ed Injects Transactional-

private Transactional Bean transacti onal Bean; < Bean instance

@\ut owi red

private HistoryService historyService;

@\ut owi red

@Rrul e

public ActivitiRule activitiSpringRule;

@est Executes

@epl oynent (resour ces={"chapter8/transaction/ transaction
transaction. test.bpm20.xm "}) with commit

public void doTransacti onWthCommit() throws Exception {
transacti onal Bean. execut e(f al se);
assert Equal s(2, historyService
.createH storicProcessl nstanceQuery()

list() Commits
size()); two process
} ’ ’ instances

@rest
@epl oyment (resour ces={"chapt er8/transacti on/
transaction.test.bpm20.xm "})
public void doTransacti onWthRol | back() throws Exception {
try {
transacti onal Bean. execut e(true);
fail ("Expected an exception");

} catch(Exception e) { Rolls back
/] exception expected <1 transaction
}
assert Equal s(0, historyService <7 Finds no committed
.createH storicProcessl nstanceQuery() process instance
dist()
.size());
}
}
To test the example, you need a Transactional Bean instance injected in the test
class (. In the first method, you test whether the transaction is committed when you
don’t throw an error 4. To test this, you query the Activiti Engine to see if you can
find two committed process instances
In the second method, you let the second process instance throw an |1 egal -

Ar gunent Excepti on 2. In that case, the transaction should be rolled back, so no com-
mitted process instance should be found

To be thorough, you can remove the @r ansact i onal annotation from the execut e
method of Tr ansact i onal Bean and make sure that the second test method fails in that
case. The first process instance should be committed to the database, in this case, but
not the second.

Configuring the Activiti Engine 181

Now that we’ve explored the options for running the Activiti Engine inside a
Spring container, we can look in more detail at the different configuration options for
the Activiti Engine. These configuration options are independent of whether you use
a Spring container or not.

We looked at the differences between using the embedded and standalone deploy-
ment options and the choices for using a Spring container, but configuring the Activ-
iti Engine is necessary regardless of how you deploy it. To fully optimize the process
engine for your needs, it’s good to have an overview of the configuration options. And
that overview is what you’ll get in this section.

Remember that, when the Activiti Engine is started, the ProcessEngi nes singleton
class scans the classpath for an activiti.cfg.xml or activiti-context.xml configuration
file. Let’s start with a simple configuration example of the activiti.cfg.xml file:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="processEngi neConfi guration"
class="org.activiti.engine.inpl.cfg.
St andal onePr ocessEngi neConfi gurati on">

</ bean>
</ beans>
The configuration must contain a bean with ID processEngi neConfi gurati on. This
bean is used to construct the ProcessEngi ne class instance that’s equivalent to an
Activiti Engine instance.

There are multiple convenience classes that can be used to define the process-
Engi neConfi gurati on; in this code snippet, the St andal onePr ocessEngi neConf i gu-
ration is used. Each of these convenience classes represents a different environment
and sets default configuration options accordingly. The following classes extend the
ProcessEngi neConfi gur ati on class

= org.activiti.engine.inpl.cfg.Standal oneProcessEngi neConfi guration
This is the implementation you need in a regular Activiti environment when
you aren’t using Spring. With this class, the process engine is started by
default with a standalone H2 database, and Activiti will take care of the data-
base transactions.

= org.activiti.spring.SpringProcessEngi neConfiguration
This class is used in a Spring environment. This enables the use of Spring beans
in the Activiti Engine and BPMN 2.0 XML process definitions. By default, this
configuration class also uses a standalone H2 database.

182

CHAPTER 8 Deploying and configuring the Activiti Engine

= org.activiti.engine.inpl.cfg.Standal onel nMenPr ocessEngi neConfi gurati on
This is a convenience class used for unit testing purposes. An in-memory H2
database is used by default and will be created and dropped when the engine
boots and shuts down.

= org.activiti.engine.inpl.cfg.JtaProcessEngi neConfiguration
This class is to be used when the Activiti Engine runs on an application server
and there’s a need for participating in JTA transactions.

For illustration purposes, let’s look at how you can create a complete ProcessEngi ne-
Confi guration object programmatically, instead of configuring Activiti with a config-
uration file. In this way, you can choose not to use a configuration file at all. Take a
look at the following code line:

ProcessEngi neConf i gur ati on. cr eat eSt andal onePr ocessEngi neConfi guration();

After the cr eat eSt andal onePr ocessEngi neConf i gur at i on method returns, you have
a ProcessEngi neConfi guration that can be further configured if the defaults don’t
fit your needs.
To give you an idea about what you can do to configure your engine instance,
check out this snippet:
ProcessEngi ne processEngi ne = ProcessEngi neConfi guration
. cr eat eSt andal onePr ocessEngi neConfi gurati on()
.setJdbcUrl ("jdbc: h2:tcp://1ocal host/activiti")
. set JobExecut or Acti vat e(true)
. bui | dProcessEngi ne();
You can also set all the options that are available in the configuration file
programmatically.
Now, let’s explore the different configuration options in more detail, starting with
the database configuration options.

Because the Activiti Engine is implemented with the MyBatis database framework (for
more information, see www.mybatis.org), the process engine data model can be
deployed on several databases. The MyBatis framework abstracts the database logic
from the specific database implementation, like other popular object-relational map-
ping (ORM) frameworks, such as Hibernate and Open]JPA. Activiti supports the data-
bases listed in table 8.2.

H2 1.2.132
MySQL 5.1.11

Oracle 10.2.0

PostgreSQL 8.4

DB2 9.7

Microsoft SQL Server 2008 :3:::0:3; 4 bgazf;?;s

Configuring the Activiti Engine 183

You can configure the database in the Activiti configuration file in three different ways:

= Define JDBC properties, such as the database driver and the JDBC URL location.

= Use a javax. sql . DataSour ce implementation and refer to the defined data
source in the ProcessEngi neConfi gurati on bean.

= Use a JNDI reference to a database resource, so you can leverage the application
server configuration capabilities.

In order to configure a database to be used by the Activiti Engine, you need to define
the database location URL and driver; also, to be able to login, you need to define the
j dbcUser name and j dbcPasswor d properties:
<property name="jdbcUrl"

val ue="j dbc: postgresql : / /| ocal host: 5432/ activiti" />
<property name="jdbcDriver" val ue="org.postgresqgl.Driver" />
<property name="j dbcUser nanme" val ue="activiti" />
<property name="jdbcPassword" val ue="activiti" />
A data source is constructed by interpreting the defined properties and a default
MyBatis connection pool is created. Optionally, the values of the following proper-
ties can be changed:

= jdbcMaxActiveConnecti ons—The number of active connections that the con-
nection pool can hold at any given moment. The default value is 10.

= j dbcMax! dl eConnecti ons—The number of idle connections that the connec-
tion pool can hold at any given moment. The default value is 5.

= j dbcMaxCheckout Ti me—The amount of time in milliseconds that a connection
can be “checked out” from the connection pool before it’s forcefully returned.
The default is 20,000 milliseconds (20 seconds).

= j dbcMaxWai t Ti me—A low-level setting that gives the pool a chance to print a log
status and re-attempt to acquire a connection if it’s taking unusually long. The
default value is 20,000 milliseconds (20 seconds).

There’s one last database property that deserves some special attention: the dat abase-
SchemaUpdat e property. It defines the strategy for handling the update to a new Activiti
database schema when the process engine boots up. It can have one of the following
three values:

= fal se—This is the default value. It checks the version of the database schema
against the Activiti Engine library when the process engine is being created
and throws an exception if the database version doesn’t match the version of
the engine.

= true—When the process engine is being built, a check is done. When an
update of the schema is necessary, it will be performed, and, if the schema
doesn’t exist yet, it will be created.

= create-drop—This option creates the database schema when the process
engine is being created and drops it when the engine shuts down.

184

CHAPTER 8 Deploying and configuring the Activiti Engine

With these database configuration options in mind, let’s look at other options you can
use to configure the Activiti Engine, such as options to configure a mail server or
define history settings.

Let’s start with the j obExecut or Acti vat e
property. The job executor is a compo-
nent that manages threads that fire tim-

ers and asynchronous tasks. You saw its

. . Timer fires after 1 hour
use in the loan request example in chap-
ter 5, where the timer boundary event
was introduced to escalate a user task. S
Figure 8.3 shows an example with a timer

boundary event.

Process moves to
escalation task

When the Activiti Engine encounters
a BPMN element with a boundary timer, 2 Figure 8.3 A simple example of a timer boundary
new job is created in the job executor to event, showing the result of the job execution of a
handle the timer event; so, the job execu- timer boundary event.
tor can be regarded as a management component that handles all of the scheduled
events. By default, the job executor is turned on when the process engine boots, but

you can define its activation in the Activiti Engine configuration like this:
<property nanme="j obExecutorActivate" val ue="fal se" />

When you need timer support, such as a timer boundary event in your process defini-
tions, keep in mind that you don’t switch off the job executor.

It’s also possible to override the default job executor settings, like the number of
jobs to retrieve and execute in one batch and the wait time in milliseconds that’s used
when a job has failed during execution. The following code snippet shows how you
can override the default job executor settings in an Activiti Engine configuration:

<bean i d="processEngi neConfi guration"
class="org.activiti.engine.inpl.cfg.Standal oneProcessEngi neConfi gurati on">

<property name="j obExecutor" ref="jobExecutorBean" />
</ bean>

<bean i d="j obExecut or Bean"
class="org.activiti.engine.inpl.jobexecutor.JobExecutor">

<property name="naxJobsPer Acqui sition" val ue="10" />

<property name="waitTimelnM|1|is" val ue="10000" />
</ bean>
Another set of configuration options defines the mail server settings. Next to the
mai | Server Port and mai | Server Host attributes, you can set the mail server user-
name (nmai | Server User nane), the password (mai | Server Password), and the default

REST communication with the Activiti Engine 185

fromaddress (mail ServerDefaul t From). If you don’t set the default from address,
noreply@wctiviti.orgwill be used instead.

The last configuration parameter concerns the amount of history information the
Activiti Engine will write to the history tables of the Activiti database. It’s configured
with the hi st ory property:

<property name="history" value="audit" />

Using the hi story property gives you options in configuring how much history you
want to store in the history tables. There are four options, listed in ascending order of
information that’s written:

1 none—After a process instance is finished, there’s no historical information
available.

2 activity—This option archives all process and activity instances; no additional
details will be persisted.

3 audi t —This is the default history parameter. It archives all process and activity
instances and all form properties that are submitted so that all user interaction
through forms is auditable.

4 full —This is the highest and, therefore, the slowest archiving configuration.
This option archives the audit level data as well as all process variable updates.

That concludes our trip through the configuration options. You’re now ready to use
the Activiti Engine in your projects. In the next section, we’ll check out more details
about the Activiti Engine REST API and take a look at how you can use and extend it.

In this section, we’ll take a look at how you can communicate with the Activiti Engine
in a distributed manner using the Activiti REST API. Because the amount of REST lan-
guage and framework support is enormous, you can use the REST API from all kinds
of devices, implemented with the language of your choice. Let’s meet the Activiti
REST API.

The Activiti REST web application activiti-rest is installed by default, so you can
use the REST API right away. The REST services are organized around similar names,
like the TaskSer vi ce and Reposi t or ySer vi ce core interface classes you saw in chap-
ter 4. For example, the TaskSer vi ce logic is available at activiti-rest/service/task.

Let’s take a closer look at one of the REST services. In order to list all of the
installed process definitions, you can call the API using the following URI:

http://1 ocal host: 8080/ activiti-rest/servicelprocess-definitions
This REST service is equivalent to the following Java code snippet:

repositoryService.createProcessDefinitionQuery().list();

186

CHAPTER 8 Deploying and configuring the Activiti Engine

You can also use the process query options that are available in the Java API. If, for
example, you want to limit the result set of the call to two definitions and receive the
list in descending order, you would use this call:

http://1ocal host: 8080/ activiti-rest/service/process-definitions?
si ze=2&or der =desc

The same functionality can be implemented with the following code snippet:

repositoryService. createProcessDefinitionQuery()

.desc()

.1istPage(0, 2);
Starting process instances using the REST API is also possible. You can do this, for
example, with a REST client plugin available for Firefox, RESTClient.

In the previous query for all process definitions, we retrieved a list of all of the
deployed process definitions, including a key and a unique identifier. You have two ways
to start a new process instance via the REST API. The first option is to use the key param-
eter, which corresponds to the i d attribute of the process element in the BPMN 2.0
XML file. For the ad hoc expense process that’s part of the Activiti out-of-the-box exam-
ples, the following PCST request can be used to start a new process instance:

URI: http://|ocal host:8080/activiti-rest/servicel/process-instance

Request body: { "processDefinitionKey":"fixSystenfailure" }

You can do the same with a POST request using the process definition identifier you
can look up in the process definition query:

URI: http://|ocal host:8080/activiti-rest/servicel/process-instance

Request body: { "processDefinitionld":"fixSystenfailure:1:24" }

With the RESTClient Firefox plugin, you can make this POST request as shown in fig-
ure 8.4. Don’t forget to log in first using the Login button for the RESTClient Fire-
fox plugin.

J' 0] REST Client for Firefox =1 ~
GI:E] | B chrome:/ /restclient/content/restclient.xul v | (4§~ Goog Q) @

{=7 Open | =7 Open Entire Request E] Save m Save Entire Request
REST Request

| Copy ?‘,‘ Clear b Add Request Header Ele Logout

L

Method: [pr Tw] nttp://localhost:8080/activiti-rest/service/p instance v (send)
= S
Request Header: Name Value lic]
Authorization Basic a2VybWiOOmticmlpdA==
Request Body: "processD ailure”}

| Response Header Resp Body - F dJSON |

id: 918

processinstanceld: 918
processDefinitionld: fixSystemFailure:1:24
businessKey: nun

Figure 8.4 The RESTClient Firefox plugin after having invoked a REST POST request to start a new ad
hoc expense process instance

REST communication with the Activiti Engine 187

Regardless of which way you start a new process instance, you should receive the same
response from the Activiti Engine. As you can see in figure 8.4, the response should be
something like this:

{
"id": "918",
"processlnstanceld": "918",
"processDefinitionld": "fixSystenfailure:1l:24",
"busi nessKey": null

}

You now have an i d value that corresponds to the unique identifier of the newly cre-
ated process instance. This process instance identifier can be used to communicate
with the running process instance on the Activiti Engine.

In the next section, you’ll see how you can enhance the REST API to do just that!

Although the Activiti REST API already contains a range of services, you may have a
reason to create an additional REST service, for example, a REST service that returns
details of a specific process instance regardless of whether it’s still running or already
archived. Such a REST service is not available by default, so it would provide a nice
addition to the set of available REST services.

Before you begin the task of adding a new REST service, you need to create a copy
of the activiti-rest project so you have a project environment to work in. In the
source code accompanying this book, you can find a project named book-r est - app,
which contains a copy of the activiti-rest project.

With the source code of the Activiti REST application in place, you can start adding
the new detailed process instance REST service. Before we go through the different
steps that are needed to get your custom history service up and running, take a look at
an overview of the steps involved:

1 Implement a REST service class with the desired history logic.
2 Configure that service class and URI in the Activiti REST root class Activiti -
Rest Appl i cati on.

3 Fire up the revised Activiti REST application.

Let’s get started with the first step. The REST service you implement will return all the
details about a process instance, including the open user tasks and process variables.
Let’s look at the main part of the REST service implementation.

public class Hi storylnstanceDet ai |l sResource
ext ends SecuredResource {

@zet
publ i ¢ Obj ect Node get Processinfo() { Creates JSON
Obj ect Node responseJSON = new Obj ect Mapper () <1 response

188

CHAPTER 8 Deploying and configuring the Activiti Engine

. creat eCbj ect Node() ;
String processlnstanceld = null;

try {

if(authenticate() == false) return null; Gets process

processlnstanceld = (String) getRequest() < instance ID
.getAttributes()
.get ("processlnstancel d");

Hi storicProcessl nstance instance = Queries for
ActivitiUtil.getHi storyService() requested
.createH storicProcesslnstanceQuery() process

. processl nstancel d(processl nst ancel d)
.singleResult();

if(instance == null) return null;

responseJSON. put (" processl nstancel d",

instance. getld());
responseJSON. put (" busi nessKey",

i nstance. get Busi nessKey() != null ?

i nst ance. get Busi nessKey() : "null");

responseJSON. put (" processDefinitionld",

i nstance. get ProcessDefinitionld());
responseJSON. put ("“start Ti me",

Request Uti |l .dateToString(instance.getStartTinme()));

if(instance.getEndTime() == null) { Determines if
responseJSON. put ("conpl eted", false); process has
} else { completed

responseJSON. put ("conpl eted", true);
responseJSON. put (" endTi me",

Request Uti | . dateToString(instance. get EndTime()));
responseJSON. put (" duration",

instance. getDurationlnMIlis());

}

addTaskLi st (processl nstancel d, responseJSQON); Adds all
addActi vityLi st (processlnstanceld, responseJSON); open user
addVari abl eLi st (processl nstancel d, responseJSON); tasks

} catch (Exception e) {
throw new Activiti Exception(
"Failed to retrieve the process instance" +
" details for id " + processlnstanceld, e);

}

return responseJSON;
}

}

All Activiti REST services work with JSON messages, so first you create a JSON response
object (b that you can fill with the process instance detail information. To be able to
query the Activiti Engine, you need to retrieve the process instance ID from the REST
service call ¢). There are two common ways to provide variables to a REST service. In
this case, we expect the process instance ID to be part of the URL, like this:

http://1 ocal host: 8080/ activiti-rest/service/process-instance/ 562

REST communication with the Activiti Engine 189

Another way to pass variables to a REST service is to use request parameters like this:
http://1ocal host: 8080/ activiti-rest/service/process-instance?i d=562

The i d request parameter can be easily retrieved using the API provided by the Restlet
framework get Quer y() . get Val ues("i d") . With the process instance ID retrieved, you
can query the process engine for its details ¢). As you can see, you use the Hi st ory-
Servi ce to get both running and completed process instances.

You can now fill the JSON response object with the basic information about the
retrieved process instance. You check whether the end time is filled to see if the pro-
cess instance is already completed). But only returning the basic information about
the process instance wouldn’t give a full overview of the state of the instance, so you
also retrieve the user tasks (2, executed activities, and process variables related to the
process instance.

In the source code (the book-rest - app project), you can find the full implementa-
tion of the REST service, but here we’ll focus on retrieving the user task information
because the other parts are similar to the history REST service we saw in listing 8.7.
Let’s look at the addTaskLi st method in the next listing.

private void addTaskLi st (String processlnstanceld,
bj ect Node responseJSON) {

Li st <Hi stori cTaskl nstance> taskList =
ActivitiUil.getH storyService()
. createHi storicTaskl nstanceQuery()

. processl nstancel d(processl nst ancel d) Gets tasks
.orderByHi storicActivitylnstanceStartTi ne() r/ in ascending
.asc() start time
dist();
if(taskList != null && taskList.size() > 0) {
ArrayNode tasksJSON = new Cbj ect Mapper () Creates JSON
.creat eArrayNode(); <1 array for tasks

responseJSON. put ("tasks", tasksJSON);

for (H storicTaskl nstance historicTasklnstance : taskList) {
bj ect Node taskJSON = new Obj ect Mapper ()
. creat eObj ect Node() ;
t askJSON. put ("taskl d", historicTasklnstance.getld());
t askJSON. put ("t askNane", historicTaskl nstance. get Nane()

I'= null ? historicTasklnstance.getName() : "null");
t askJSON. put ("owner", hi storicTaskl nstance. get Oaner ()
I'=null ? historicTasklnstance.getOaner() : "null"); Sets assignee
t askJSON. put (" assi gnee", < ifavailable
hi st ori cTaskl nstance. get Assi gnee()!= null ?
hi st ori cTaskl nst ance. get Assignee() : "null");

taskJSON. put ("startTine", RequestUtil.dateToString(
hi st ori cTaskl nstance.getStartTime()));

i f (historicTasklnstance. get EndTi ne() == null) {
t askJSON. put ("conpl eted”, false);

190

CHAPTER 8 Deploying and configuring the Activiti Engine

} else {
t askJSON. put (" conpl et ed", true);
t askJSON. put (" endTi me", RequestUtil.dateToString(
hi st ori cTaskl nst ance. get EndTi ne()));
t askJSON. put ("duration", historicTaskl nstance
.getDurationinMI1lis());

}
t asksJSON. add(t askJSON) ;

}
}

}

With the same Hi st oryServi ce you used in the previous listing, you can retrieve all
user tasks, open or completed, related to a specific process instance. To produce a
nicely ordered list, the user tasks are retrieved in the order of start time €. If there
are user tasks available, you create a JSON array) that you’ll fill with the retrieved list
of tasks.

For every task instance, you can now get the details, such as the assignee allocated
to the user task ©). Note that you can’t add nul | values to a JSON object (otherwise,
you’ll get a Nul | Poi nt er Excepti on); therefore, you need the additional if/else logic.

With the REST service class in place, the only implementation step needed to start
the REST web application is to add a URI configuration to specify where the REST ser-
vice can be invoked. You can do this in the Acti vi ti Rest Appl i cati on class, as shown
in the following code snippet:
router. attach("/history/processlnstance/ { processl nstancel d}",

Hi st oryl nst anceDet ai | sResour ce. cl ass);
The preceding code snippet shows the line you need to add to make the REST service
class from listing 8.7 available on http://localhost:8081/history/processInstance /562
for a process instance with an ID of 562. This line is added to the cr eat el nboundRoot
method of the Acti vi ti Rest Appli cati on class.

Now that you’ve finished the new process instance details REST service, you're
ready to deploy and test it. When you run the nvn cleaninstall jetty:run com-
mand on the book-rest-app project, a Jetty servlet container is started on port 8081
with the Activiti REST application deployed.

With the RESTClient Firefox plugin you used earlier on in this chapter, you can
now easily test your new REST service. First, you need to get hold of a process instance
ID that you can use for the REST service call. Let’s send the following URI request (see
also figure 8.5):

http://1 ocal host: 8081/ book-rest-app/ servi ce/ process-instances

This should return a list of process instances that are stored on your Activiti Engine.
Now you can select one of these process instances and use the process instance ID to
invoke the newly developed REST service. For example, if you select the expense pro-
cess shown in figure 8.5, you’ll send a request to the following URI (see also figure 8.6):

http://1 ocal host: 8081/ book-rest-app/ servi ce/ hi story/ processl nstance/ 441

REST communication with the Activiti Engine 191

REST Request

Method: GET B http://localhost:8081/book-rest-app/service/process-instances
Request Header: Name Value
Authorization Basic a2VybWI0Omticm1lpdA==

Request Body:

size: 3
total: 3
data:

id: 441

startTime: 2011-09-03T13:44:35CEST
processDefinitionld: adhoc_Expense_process:1:25
businessKey: null

id: 452
startTime: 2011-09-03T13:45.01CEST
:Ntlessl}:ﬁnil:f:‘d! escalationExample:1:22 Figure 8.5 The REST service call for getting all
usinessKey: nu . .
) 4 running process instances
REST Request
Method:)) . .
GET http://localhost:8081/book-rest-app/service/history/processinstance /441
Request Header: Name Value

Authorization Basic a2VybWi0OmtlcmlpdA==

Request Body:

processinstanceld: 441

businessKey: null

processDefinitionld: adhoc_txpense_process:liZy
startTime: 2011-09-03T13:44:35CEST
completed: false

tasks:

[

{
taskld: 444
taskName: Request expense refund
owner: null

assignee: kermit
startTime: 2011-09-03T13:44:35CEST
completed: true
endTime: 2011-09-03T13:44:53CEST
duration; 17305

taskld: 450
taskName: Handle expense request

owner; null |

assignee: U <

startTime: 2011-08-03T13:44:53CEST Flgure.8.6) Part of the JSON response

completed: false when invoking the newly developed pro-
} cess instance details REST service

192

CHAPTER 8 Deploying and configuring the Activiti Engine

As figure 8.6 shows, the REST service returns basic information about the process
instance along with a list of tasks, activities, and process variables associated with that
specific process.

With this detailed example of implementing a new Activiti REST service, we’ve
completed this chapter. You now certainly know your way around the Activiti configu-
ration and setup. You should now able to set up Activiti any way that you want.

Before this chapter, we looked into the details of the BPMN 2.0 specification and the
Activiti Engine. In this chapter, we took a step back and saw how you can position the
Activiti Engine and the other applications in your application landscape.

There are two different ways of deploying Activiti in your environment. With the
embedded approach, the Java API is used, as in all of the examples we’ve discussed
since the beginning of the book. In contrast, deploying Activiti in a standalone fash-
ion, such as on Tomcat, implies using the Activiti REST APIL. You saw how to use the
REST services, and we even took a shot at extending the available services by introduc-
ing a new process instance details service.

In addition, you saw how transaction management can be done with Activiti’s
Spring integration features. This provides powerful integration options between your
application logic transaction and the Activiti Engine transactions.

In the chapters to come, we’ll explore more advanced options, like hooking up
Activiti to an ESB and integrating Activiti with a business rule and document manage-
ment system. But, first, we’ll take a deep dive into a number of powerful Activiti mod-
ules: Activiti Spring, CDI, and OSGi.

We’ve already covered a lot of the core Activiti functionality and become familiar
with the BPMN 2.0 industry standard. You’re already able to design and implement
complex business processes using advanced BPMN 2.0 constructs, like the parallel
gateway and error boundary events. We also covered how to set up a production
environment for Activiti Engine using the embedded and standalone approaches.

We haven’t yet discussed the full range of possibilities for the Activiti Spring
module. In this chapter, I’ll introduce you to a method annotation that starts new
processes and to the use of process-scoped variables. This provides a good warm-up
for the Activiti CDI and OSGi module sections because they also provide this func-
tionality, among a lot of additional possibilities.

You can do a lot more with Activiti than just embedding it or deploying it to a
servlet container. In this chapter, you’ll see how you can develop full-fledged JEE 6

193

194

CHAPTER 9 Exploring additional Activiti modules

applications using the Contexts and Dependency Injection (CDI) specification
(JSR 299). You’ll make use of the Activiti CDI module and see how to deploy this
application on JBoss and GlassFish application servers.

Another interesting approach to using the Activiti Engine is by deploying it to an
OSGi container so you can make use of all the OSGi versioning and dependency
management capabilities. The Activiti OSGi module enables you to deploy the Activ-
iti Engine to an OSGi container, like the Apache Karaf framework that we’ll use in
the examples.

We’ll begin with an overview of the additional Spring annotations available when
using the Spring container approach. You already saw how to make use of Spring
beans in the process definition, but there’s more to see. Let’s get started!

We’ll start this chapter with a short introduction to a number of Spring annotations
that can ease the development of an Activiti Spring application. In addition to the use
of Spring beans for service tasks, there are a couple of additional Spring annotations
that you can use.

First, the @t art Process annotation can be used to start a new process instance
when the method is invoked. The following listing shows the implementation of a
Processlnitiator class that uses this annotation.

public class Processlnitiator {

@5t art Process(processKey="bookorder",
ret urnProcessl nst ancel d=true)

public String startBookOrder(@rocessVariabl e("isbn")
String isbn, @rocessVariable("amunt") int amount) {

return null;
}

}
When you use the @t art Process annotation, it’s required to define a processKey
that matches a deployed process definition. In addition, you can specify whether you
want the process instance identifier to be returned by the method (the default is no).
For the method attributes, you can implement @ ocessVari abl e annotations to
expose these values as new process variables in the newly created process instance.

Because a Spring interceptor will enhance this method, you don’t have to return any-
thing, and, if you do return a value, it will be ignored. As I said before, a process instance
identifier can be returned, but that’s specified with the r et ur nProcessl nst ancel d attri-
bute. When you invoke the start BookOrder method, a new process instance of the
bookor der process definition will be created, and the i sbn and amount values will be
available as process variables.

Another feature that you can use is a process-scoped object instance. You can
define a Spring bean as process scoped, which means that it will be automatically tied

Spring annotations 195

to the execution lifetime of a process instance. Defining a Spring bean as a process-
scoped object is easy to do in a Spring configuration, as you can see in this snippet:

<bean i d="bookCOrder"
class="org. bpmmwi t hacti vi ti.chapter9. BookOr der"
scope="process"/>

You can autowire such a process-scoped object in a service task, as you can see in the
Val i dat eOr der Task implementation in the next listing.

public class ValidateO derTask {

@A\ut owi red
private BookOrder bookOrder; QT Injects a
process-scoped

public void validate(String isbn, int anpbunt) { object instance

bookOr der. set | sbn(i sbhn);

bookOr der . set Amount (anount) ;

i f (bookOrder. get Amount () > 10) {
bookOr der . set Approved(fal se);

} else {
bookOr der . set Approved(true);

}

}
}

A process-scoped object can be injected using the @\ut owired annotation ¢0. This
makes the BookOr der instance available for use without additional coding. When you
pass along the i sbn and armount process variables exposed in listing 9.1, you can use
the BookOr der object as a process instance object.

In the following snippet, you can see how the process variables are passed to the
Val i dat eOr der Task:

<process id="bookorder" name="bookorder">
<startEvent id="startEvent" nanme="Start" />
<sequenceFl ow sour ceRef="startEvent"
target Ref ="val i dat eOrder"/ >
<servi ceTask id="validateOrder"
activiti:expression="#{val i dateTask. val i date(isbn, amunt)}" />
<sequenceFl ow sour ceRef ="val i dat eOr der "
target Ref ="scri pt Qut put"/ >
<scriptTask id="scriptCQutput" scriptFornmat="groovy">

<script>
out:println "order for isbn " + bookOrder.isbn + " and anount " +
bookOrder. anpbunt + " is approved? " + bookOrder. approved + "\n";

</script>

</ script Task>
<sequenceFl ow sour ceRef ="scri pt Qut put "
tar get Ref =" endEvent "/ >
<endEvent id="endEvent" name="End"/>
</ process>

196

CHAPTER 9 Exploring additional Activiti modules

The process-scoped BookOr der variable can also be used in a script task by using the
bookOr der process variable name. Using these additional Activiti Spring capabilities
makes the code even cleaner, as you can see in the following unit test:

@RunW t h(Spri ngJUni t 4] assRunner . cl ass)
@Cont ext Confi guration("cl asspat h: chapter9/spring-application-context.xm")
public class SpringAnnotationTest extends AbstractTest {

@\ut owi r ed
Processlnitiator initiator;

@rest

public void sinpleProcessTest() {
String instancelD = initiator.startBookOrder("123456", 3);
assert Not Nul | (i nstancel D);

}
}
You don’t need any more Activiti API classes because the @t art Process abstracts that
for you.
Now that you’re warmed up, let’s explore the possibilities of deploying the Activiti
Engine on a JEE application server, leveraging technologies such as CDI and EJB.

The Activiti Engine can be easily embedded into a web or enterprise application and,
therefore, is also easily embeddable in a JEE (Java Enterprise Edition) application.
But, it would also be cool to use E]JBs or CDI beans for Java service task implementa-
tions and make use of the hot deployment features of an application server. In this
section, we’ll cover how to deploy the Activiti Engine in a JBoss Application Server 7
(JBoss AS 7) and make use of CDI and EJB beans. Figure 9.1 illustrates the JBoss AS 7
infrastructure we’ll be using.

In this section, we’ll be using the Activiti CDI module that’s part of the Activiti project
and that implements the logic needed to use the Activiti Engine with CDI. In addition,

4 N

Camunda fox modules
activiti—cdi .
Camunda fox provides

additional modules for
JBoss AS7 integration
The Activiti CDI module
provides the logic to use

the Activit Engine within a
CDI context

Figure 9.1 An overview
of the JBOSS AS 7 environ-
ment we’ll be using in this
section. We’ll make use of
the Activiti CDI module
and the open source ca-
munda fox product.

JBoss Application Server 7

Building an Activiti JEE 6 application 197

we’ll be using the camunda fox distribution of JBoss AS 7 with the Activiti Engine
installed by default. Camunda (www.camunda.com) is a German company that’s part of
the Activiti community and employs committers of the Activiti Engine. They provide an
open source product called camunda fox (www.camunda.com/fox) that provides a ver-
sion of Activiti with support and additional functionality. An example of this additional
functionality is the JBoss AS 7 integration thatwe’ll use to implementa process definition
that uses an EJB service task to implement the process logic.

Although we use camunda fox in this example, the source code isn’t dependent on this
product and solely makes use of the Activiti framework. What camunda fox provides us
with is a JBoss AS 7 environment with the Activiti Engine installed by default; when you
start the JBoss AS 7 server, the Activiti Engine is also started and is available via JNDI. In
addition, when you deploy a new module to the JBoss AS 7 container (a JAR, WAR, or
EAR file), this module is scanned for process definitions that will be deployed automat-
ically on the Activiti Engine. (If you’re interested in the source code of the deployer,
you can look at https://bitbucket.org/camunda.) This means that you don’t have to
worry about installing Activiti anymore; it’s already available out of the box.

In this section, we’ll develop three modules. The first module contains the process
definition and a Java delegate class that’s called from a service task inside the process.
The second module contains an EJB that will be called by the Java delegate class. This
EJB holds the service task logic. The third module contains the EJB interface that’s
injected in the Java delegate class and is implemented by the EJB. Figure 9.2 provides a
quick overview of this example.

We’ll split the process definition from the service task logic to make it possible to
deploy new versions of the service task logic (the EJB) without needing to deploy a new
process definition. You could also deploy the process definition with the service task
logic in one deployment artifact. If you were to redeploy a new version of the service
task logic together with an unchanged process definition in one deployment artifact,

4 N

book-jee6-process book-jee6-interface book-jee6-ejb

A WAR file containing the A JAR file containing the A JAR file containing the
process definition and CDI EJB interface EJB implementation

Java delegate class

Camunda fox

. /

Figure 9.2 An overview of the EJB example we’ll implement in this section. Note that we’re also making
use of a CDIl-enabled Java delegate class.

198

CHAPTER 9 Exploring additional Activiti modules

the process definition wouldn’t be redeployed because it remained the same. There’s
logic in the camunda fox deployer module that takes care of this.

We’re going to implement the service task logic in an EJB. In addition to EJB good-
ies such as transactions and security, there’s an additional benefit of deploying the EJB
on another server than the Activiti Engine. It opens up new possibilities for scaling.

But, because we can’t invoke an EJB directly from a service task in a process defini-
tion, we need an additional Java delegate to inject the EJB. This Java delegate needs to
be implemented in the same module as the process definition (the book-j ee6- pro-
cess module that you can find in the book’s source code). Let’s look at the implemen-
tation of this Java delegate.

@\aned
public class HelloDel egate inplenents JavaDel egate {

@EJB(| ookup="j ava: gl obal / book-j ee6- ej b/ Hel | oBean")
private Hell o hel | oBean;

@verride
public void execute(Del egat eExecuti on executi on)
throws Exception {

hel | oBean. sayHel | o((Stri ng)
execution. get Vari abl e("nane"));
}
}

Although the Hel | oDel egat e implementation contains just a few lines, a lot is hap-
pening. First, you annotate the delegate class with the @amed annotation. This is a
CDI annotation that you can use in the process definition you’ll see in listing 9.4.
The @\amed annotation makes the hel | oDel egat e name available to be used in
a del egat eExpr essi on.

This example uses the Java delegate only as a gateway to the Hel | oBean EJB, which
is injected using the @JB annotation. The lookup value is constructed in the follow-
ing way:

j ava: gl obal / nodul e- nane/ EJB- ¢l ass- nane

In the execut e method, you can now invoke the EJB sayHel | 0 method. As you can
see, the Hel | o interface is used here to communicate with the Hel | oBean. This
removes the dependency from the Java delegate to the EJB and thereby removes the
dependency from the book- j ee6- process module to the book-j ee6- ej b module.

But both modules need a dependency to the Hel | 0 interface. Because you don’t
want a dependency from the book-j ee6- process module to the book-j ee6- ej b mod-
ule, you have two options:

= Add a third module that only includes the Hel | 0 interface and add a depen-
dency from the two other modules to it.

= Include the Hel | 0 interface in the book-jee6-process module and add a
dependency to it from the book- j ee6- ej b module.

Building an Activiti JEE 6 application 199

In this example, we’ll go for the first option because that’s a lot cleaner implementa-
tion and really separates the EJB logic from the process definition.

Now let’s look at the process definition for this example. We’re implementing a
simple process here because we want to focus on the CDI Java delegate and the EJB ser-
vice task approach. In the next listing, you can see how you can invoke the CDI Java
delegate from the process definition.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:activiti="http://activiti.org/bpm"
t ypeLanguage="http://wwmv. w3. or g/ 2001/ XM_Schena"
expr essi onLanguage="htt p: // ww. w3. or g/ 1999/ XPat h"
t ar get Nanespace="http:// ej bexanpl e" >

<process id="jee6" nane="JEE6 exanple process">
<startEvent id="starteventl" nanme="Start">
<ext ensi onEl ement s>
<activiti:fornmProperty id="name" <=7 Defines a simple
nane="Nane" type="string" start form
requi red="true" />
</ ext ensi onEl ement s>
</ startEvent >
<sequenceFl ow sour ceRef ="startevent 1"
t ar get Ref ="servi cet ask1" />
<servi ceTask i d="servicetaskl"
activiti:del egat eExpressi on="#{hel | oDel egate}" /> <7 Invokes CDI
<sequenceFl ow sour ceRef ="servi cet ask1" Java delegate
t ar get Ref =" endevent 1" />
<endEvent id="endeventl1" name="End" />
</ process>
</definitions>

The simple process definition starts with the configuration of a start event task form
containing one form property, nane (). You’ll be passing this form value along to the
EJB bean from the service task. The Java delegate can be invoked using the del egat e-
Expressi on (4. Because the @amed annotation is added to the Hel | oDel egat e (see
listing 9.3), you can invoke it with the hel | oDel egat e value.

You now have the process definition and the Java delegate class in place in the
book-j ee6- process module. There are still two files that you need to add to the
book- j ee6- process project to make it complete: an empty WEB-INF/beans.xml file to
enable CDI and the META-INF/processes.xml file to configure the process engine
deployment of the process definition. This second file is specific to the camunda fox
implementation and looks like this:

<processArchi ve>
<confi guration>
<undepl oynent del ete="fal se" />
</configuration>
</ processAr chi ve>

200

CHAPTER 9 Exploring additional Activiti modules

You can configure whether you want to delete the process definition when the WAR
file is undeployed.

You can also use an empty META-INF/processes.xml file if you want to accept the
defaults. The default value when undeploying the WAR file is f al se—so, by default,
the process definition remains installed.

When we deploy the WAR file later on in this section, the process definition from
listing 9.4 should be deployed on the Activiti process engine running on the camunda
fox JBoss server. At the time of this writing, the process definition is always deployed to
the default Activiti process engine that’s installed with camunda fox. In the near
future, this will be made configurable via the META-INF/ processes.xml file.

The process definition is deployed to the Activiti Engine using a camunda fox cli-
ent library. When the WAR file is deployed and started, this client library is activated.
The camunda fox client library looks for process definition files in the WAR file and
deploys them to the default Activiti engine. All you have to do is include the client
library dependency in your pom.xml file, as shown in the following code snippet:

<properties>
<f ox. versi on>1. 18. 4. CR</ f ox. ver si on>
</ properties>

<dependenci es>
<dependency>
<groupl d>org. bpmmwi t hact i vi ti </ groupl d>
<artifactld>book-jee6-interface</artifactld>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>com canunda. f ox</ gr oupl d>
<artifactld>fox-platformclient</artifactld>
<versi on>${f ox. ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>j avax</ gr oupl d>
<artifactld>j avaee-api </artifactld>
</ dependency>
</ dependenci es>

<repositories>
<r eposi tory>
<i d>camunda- f ox</ i d>
<nanme>canmunda fox Maven Repository</name>
<url >http://fox.canmunda. com nvn/ </ url >
</repository>
</repositories>

The book-j ee6- process module is now complete. The implementation of the book-
j ee6- ej b module is simple. First, you have the Hel | oBean EJB implementation:

@t at el ess
public class HelloBean inplenents Hello {

public void sayHel I o(String nanme) {
Systemout.printin("hello " + nane);
}
}

Building an Activiti JEE 6 application 201

You define a standard stateless EJB bean here.

There’s only one thing left before you can deploy both modules to the JBoss AS 7
container. You need to define a dependency from the book-j ee6- ej b module to the
book-j ee6-interface module so you can resolve the Hel | 0 interface. The depen-
dency needs to be added to the MANIFEST.MF file in the JAR file. With the Maven JAR
plugin, you can configure this in the pom.xml file of the book-j ee6- ej b project:
<bui | d>

<fi nal Nane>book- j ee6- ej b</fi nal Name>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ groupl d>
<artifactld>maven-jar-plugin</artifactld>
<confi guration>
<ar chi ve>
<mani festEntri es>
<Dependenci es>depl oynent . book- j ee6-i nterface. j ar </ Dependenci es>
</ mani festEntri es>
</ archi ve>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui I d>
The Dependenci es entry in the manifest file adds a direct dependency to the JAR file
with depl oynent. as a prefix. You can now build the three modules by running the
mvn cl ean install command from the book- j ee6- parent project.

But before you can deploy the WAR and two JAR files, you need to get the camunda
fox distribution of the JBoss AS 7 server. You can download the server from the follow-
ing website: www.camunda.com/fox/community/download. Unzip the download to a
directory of your choice and run it by executing the appropriate command from the

root directory:

= For Linux or Mac OS X:

./ server/jboss-as-7.1.0.Final/bin/standal one. sh
= For Windows:

server\j boss-as-7. 1. 0. Fi nal \ bi n\ st andal one. bat

You can check that the Activiti Engine is running by opening the Activiti Explorer on
http://localhost:8080/explorer. Note that this URI is different from the Activiti
Explorer installed on the default Tomcat server. This Activiti Explorer is connected to
the default Activiti Engine started within the JBoss AS 7 server. The Activiti Engine uses
an in-memory H2 database by default.

Now let’s deploy the three modules you developed in this section. First, copy the
book-jeeb-interface.jar module you can find in the book-jee6-interface/target direc-
tory to the standalone/deployments directory in the JBoss AS 7 server. Then deploy
the book-jeeb-process.war file to deploy the process definition from listing 9.4. Next,
copy the book-jee6-ejb.jar file to the same directory.

You can now start a new instance of the example process using the Activiti
Explorer deployed on the JBoss AS 7 server. Figure 9.3 shows the start form you’ll need

202

CHAPTER 9 Exploring additional Activiti modules

& ActivitiExplorer

My instances Process definitions

{f;’? JEEG example process

@_ JEEG example process

Version 1 (3) Deployed moments ago
Name *

Start process Cancel

Figure 9.3 Activiti Explorer showing the start form of the EJB example process

to fill in when starting a new process instance. You can now start a new process
instance, and you should see a hello message in the JBoss console.

It’s also easy to test the flexibility of introducing a new implementation of the Hel | o-
Bean EJB. Change the Syst em out message and run the nvn cl eaninstal | command
again. Then, delete the book-jee6-ejb.jar file from the standalone/deployments direc-
tory in the JBoss AS 7 server and the newly generated book-jee6-ejb.jar.undeployed file.
Now, copy the newly built book-jeeb-ejb. jar file to the standalone/deployments direc-
tory, start a new process instance via the Activiti Explorer, and watch the JBoss console
for the changed hello message.

Now that you’re familiar with CDI and using EJB service tasks, we can go ahead and
extend our use of the Activiti CDI module when developing a JSF process application
using CDIL

One of the uses of CDI is to provide easy integration of bean logic and JSF pages. The
Activiti CDI module enables you to use the Activiti API and process variables directly
from a JSF page. This makes it easy to develop custom task list applications and even
full process applications yourself.

In this section, we’re going to implement a simple JSF book order application (see
book- cdi - app in the book’s source code) using several CDI beans and an Activiti pro-
cess definition. Figure 9.4 gives a general overview of the book order process.

Let’s start with the process model at the center of figure 9.4. First, we’ll validate an
ISBN number that’s provided via a JSF start form page. The validation is implemented
in a CDI bean named BookOr der Task. Next, a user task is created to complete the
order, which means that somebody has to approve the order. Finally, the outcome of
the approval step is processed via the CDI bean. We’ll add the order to an approved or
disapproved list of book orders in this step.

Building an Activiti JEE 6 application 203

New book order aned s CDI bean with BookOrder
puhl\c class BookOrderTask { @BusinessProcessS
bean injection
ISBN: 111111

Smenl
&
Start form defined \mlh Valldate 1SBN Com;;let: book
taskForm_newOrder jsf i

Complete order

Prooess
approval

User task form defined with Completing order for book with isbn 111111

taskForm_completeOrder jsf.
Uses the BookOrder
@BusinessProcessScope

Isbn: 111111
Approve? [

(Submit)

Figure 9.4 The book order process we’re going to implement, showing the JSF pages and the
BookOr der Task CDI bean

We’re also going to create a BookOrder bean that has a @usi nessProcessScoped
annotation. This annotation is also part of the Activiti CDI module and tells the appli-
cation server to bind that bean to a process instance for its whole execution.

Let’s first look at the implementation of the BookOr der Task to understand the
main functionality of the book order process.

@uaned < Makes bean available
public class BookOrder Task { in CDI context

@ nj ect 4—‘

private BookOrder book; Injects @BusinessProcessScoped

variable

@ nj ect

private BookFeed bookFeed; Injects

public void validate() { @ApplicationScoped

I ong nunberlsbn = Long. val ueCr (variable

book. getlsbn().toString());
i f (nunber|sbn < 100000 || numnberlsbn > 999999) {
Systemout.printin(">>> Invalid | SBN\: " + nunberlsbn);
}
}

public void approve() {
i f (book. i sApproved()) {
bookFeed. addAppr ovedl shn(book. get |1 shn());
} else {
bookFeed. addNot Appr ovedl sbn(book. get | sbn());

204

CHAPTER 9 Exploring additional Activiti modules

}
}
}
First, you need to make the BookOrder Task available in the CDI context using the
@amed annotation (). Once that’s done, you can invoke the class from a process defi-

nition using the following expression, which comes from the validate task of the book
order process definition:

<servi ceTask id="val i dat eTask"
activiti:expression="#{bookO der Task.validate()}" />

In addition, you can inject beans that are available in the CDI context into the service
task class. First, you inject the BookOrder instance attached to the current process
instance). You use this object to retrieve the ISBN number and the approval out-
come variables in the val i dat e and appr ove methods.

The second bean you inject is the BookFeed instance, which is an @\ppl i cati on-
Scoped bean). This means that there’s exactly one instance of this object during the
lifetime of the CDI application; when the server is stopped or the application is
restarted, the bean will be initialized again. You use this bean to store approved and
disapproved book orders so that you can display them via a JSF page. Let’s take a look
the bean implementation.

@ppl i cati onScoped <=1 Defines bean as
public class BookFeed { application scoped

private List<String> approvedOrders =
new ArrayList<String>();

private List<String> notApprovedOrders =
new ArrayList<String>();

public void addApprovedl sbn(String isbn) {
approvedOrders. add(i sbn);

}

public void addNot Approved!| sbn(String isbn) {
not Appr ovedOr der s. add(i sbn);

}
@r oduces Exposes approved
@lamed(" approvedOr ders") orders to CDI context

public List<String> get ApprovedOrders() ({
return approvedOrders;

}
@r oduces P Exposes disapproved
@lamed(" not Appr ovedOr der s") orders to CDI context

public List<String> getNot ApprovedOrders() {
return not ApprovedOr ders;
}
}

Building an Activiti JEE 6 application 205

A bean can be defined as application scoped using the @\ppl i cati onScoped annota-
tion €. The BookFeed class is used as a convenience class to expose the approved
order (/) and disapproved order ¢} lists to the CDI context for use in a JSF page. You
use these exposed entries in the template.xhtml page, which you can find in the src/
main/webapp/WEB-INF/templates directory of the book- cdi - app project. The follow-
ing code snippet shows the definition of a JSF table listing the approved orders:
<h1>Approved orders: </ hl>
<h: dat aTabl e val ue="#{approvedOrders}" var="v_isbn">

<h: col um>#{v_i sbn} </ h: col uim>
</ h: dat aTabl e>
Now that you’re familiar with the logic of the book order process definition, let’s go
back to the beginning of the process and look at the start form defined in the start
event. The start event contains the following configuration of the form key:

<startEvent id="startEvent" nane="Start"
activiti:fornmKey="taskForm newOrder.jsf" />

You can retrieve the form key definition

directly from JSF. In the main screen of the List of deployed processes

JSF book order application, you’re pre-

. . N Versi i
sented with a list of deployed process defi- Key Name ersion - Action
nitions (see figure 9.5). bookorder bookorder 1 Start

In the example shown in figure 9.5,
there are two versions of the book order bookorder bookorder 2 Start

process definition deployed. To generate Figure 9.5 The JSF book order application

the HTML link (see the Action column in showing a list of deployed process definitions
figure 9.5) that leads to the JSF start form,

you need a bit of logic. The following code snippet generates the data table and the
link from the processList.xhtml page:

<h: dat aTabl e val ue="#{processDefinitionList}" var="v_process"
<h: col um>
<f:facet name="header">Key</f:facet>
#{v_process. key}
</ h: col um>
<h: col utm>
<f:facet name="header">Nanme</f:facet>
#{v_process. nane}
</ h: col um>
<h: col utm>
<f:facet name="header">Version</f:facet>
#{v_process. versi on}
</ h: col um>
<h: col um>
<f:facet name="header">Action</f:facet>
<h: out put Li nk
val ue="#{f ornServi ce. get Start For nDat a(v_process. id).fornKey}">
Start
<f: param name="processDefi ni ti onKey"

206

CHAPTER 9 Exploring additional Activiti modules

val ue="#{v_process. key}" />
</ h: out put Li nk>
</ h: col um>
</ h: dat aTabl e>

In the table, you list all the items found in the processDefi ni ti onLi st variable. This
variable is produced by the ProcessLi st class, which abstracts the JSF page from the
process definition query, as you can see in the next snippet:

public class ProcessList {

@ nj ect
private RepositoryService repositoryService,;

@r oduces
@Narred(" processDefinitionList")
public List<ProcessDefinition> getProcessDefinitionList() {
return repositoryService. createProcessDefinitionQuery()
dist();
}
}

The key, name, and version attributes of the process definition are shown in the first
three columns of the JSF table. In the fourth column, the form key is retrieved via the
For nBer vi ce and the process definition identifier. As you can see, the Activiti CDI
module enables the use of Activiti API interfaces directly in the JSF page. The link will
send you to the form key value (taskForm_newOrder.jsf) with the process definition
key as a request parameter.

Let’s look at the form definition in the taskForm_newOrder.xhtml page:

<h: forne
<t abl e>
<tr>
<td>| SBN: </ td>
<t d><h: i nput Text val ue="#{bookOrder.isbn}" /></td>
</tr>
<tr>
<td></td>
<t d><h: commandBut t on val ue="Submnit"
acti on="#{busi nessProcess. start ProcessByKey(
processDefinitionKey)}" />
</td>
</tr>
</ tabl e>
</ h: fornme

In addition to using the Activiti APT interfaces in a JSF page, the Activiti CDI module also
offers a busi nessProcess context variable that corresponds to the Busi nessProcess
bean. This bean provides a lot of convenience methods to start new process instances,
complete tasks, and get process variables, for example. In this snippet, you use it to start
a new process instance for a specific process definition key.

In addition, you use the BookOrder @usi nessProcessScoped bean to couple the
ISBN form field to the isbn attribute of that bean. When the process instance is

Building an Activiti JEE 6 application 207

started, the value entered in the ISBN form field will be available in the BookOr der
bean instance in listing 9.5.

You now have a good overview of the possibilities provided by the Activiti CDI mod-
ule when it’s used in a JSF application like the book- cdi - app project. But, before you
deploy that application to a JBoss AS 7 server, there’s an additional interesting func-
tion to discuss; you can listen to process events without defining process event listen-
ers in a process definition. The next listing gives an idea of how this works.

public class EventBean {

public void onProcessEvent (@bserves Starts with
Busi nessProcessEvent busi nessProcessEvent) { observing

Systemout.println("----- event type " + process events

busi nessProcessEvent . get Type(). get TypeNane() +
W "y

Systemout. println("Process instance id " +
busi nessProcessEvent . get Processl nstancel d());

i f (busi nessProcessEvent. get Type() == <7 Checks
Busi nessProcessEvent Type. TAKE) { event type

Systemout. println("Transition nane " +
busi nessProcessEvent . get Transi ti onNane()) ;
} else {
Systemout.println("Activity id " +
busi nessProcessEvent.get Activityld());

}
System out. println("Timestanp " +
busi nessProcessEvent . get Ti neSt anp()) ;

}
}

To enable a bean method to start observing process events, you only have to add the
@bser ves annotation to amethod parameter with a type of Busi nessProcessEvent
Once you’ve added this annotation, you get every start and end event of an activity and
the take event when a sequence flow is executed. In this example, you only print the var-
ious attributes of a Busi nessProcessEvent to the console. When the event type is a
sequence flow take event 4, you print the transition name; otherwise, you print the
activity identifier.

To enable the process event listening capabilities of the Activiti CDI module, you
have to add an additional bean in the Activiti process engine configuration. The fol-
lowing snippet shows the engine configuration as you can find it in the src/main/
resources/activiti.cfg.xml file:

<bean i d="processEngi neConfi guration"
class="org.activiti.cdi.CdiJtaProcessEngi neConfiguration">
<property nanme="dat aSour ceJndi Nane"
val ue="j ava: j boss/ dat asour ces/ Exanpl eDS" />
<property nanme="dat abaseType" val ue="h2" />
<property nanme="transacti onManager" ref="transacti onManager" />

208

CHAPTER 9 Exploring additional Activiti modules

<property name="transacti onsExt ernal | yManaged" val ue="true" />

<property nanme="dat abaseSchermaUpdat e" val ue="true" />

<property nanme="cust onPost BPM\Par seLi st ener s" >
<list>

<bean

class="org.activiti.cdi.inpl.event. Cdi Event SupportBpmmPar seLi st ener"/>
</list>

</ property>

</ bean>

You need to add a custom BPMN parse listener to enable the process event listener.
With this in place, you only have to add a couple of boilerplate configurations. First,
you need to enable the start process instance and complete task capabilities of the
Apache CDI module by defining the following beans.xml file in the src/main/
webapp/WEB-INF directory:

<beans xm ns="http://java.sun.conl xm /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java. sun.conml xm / ns/j avaee
http://java. sun. com xm / ns/j avaeel/ beans_1_0. xsd" >

<i nterceptors>
<cl ass>org.activiti.cdi.inpl.annotation. StartProcessl|nterceptor</class>
<cl ass>org.activiti.cdi.inpl.annotation. Conpl et eTaskl nterceptor</class>
</interceptors>
</ beans>

Next, you have to deploy the diagrams/bookorder.bpmn20.xml process definition

when the JSF application is installed and started. You can define the process files you
want to deploy in the processes.xml file in the src/main/resources folder:

<processes>

<process resource="di agrams/ bookor der. bprm20. xm " />
</ processes>
There’s only one piece remaining now: the Activiti CDI module needs a way to get a
reference to the Activiti Engine. In this example, you extend the Local Process-
Engi neLookup class, which means that the process engine is configured locally in the
application using an activiti.cfg.xml file or an activiti-context.xml file. You implement
the following simple class:

public class ProcessEngi neConfigurati on extends Local ProcessEngi neLookup {

}

This makes this application deployable on every JEE application server with support
for JSF 2.0. You could also make use of the process engine installed in the camunda
fox server by making a JNDI reference:

public class ProcessEngi neConfiguration extends Jndi ProcessEngi neLookup {
@verride
protected void initJndi Name() {
j ndi Name = "java: gl obal / processEngi ne/ defaul t";
}
}

Deploying Activiti to an OSGi container 209

If you use this JNDI-based configuration, you don’t need an additional activiti.cfg.xml
file anymore.

But, let’s focus on the first version with the local process engine configuration. You
can build the WAR file by running a nvn cl ean package command from the book-
cdi - app project directory. This generates a WAR file in the target directory, which you
can copy to the standalone/deployments folder of a JBoss application server. But, you
could also deploy this WAR on any other application server like GlassFish.

The application can be tested by opening a web browser with the following loca-
tion: http://localhost:8080/book-cdi-app-1.0. You can now start a new process
instance by clicking on the list of processes link and filling in the start form.

Take your time to look through the full source code of the book- cdi - app applica-
tion because we haven’t discussed all the files in detail.

Now that you understand how to use the Activiti Engine on a JEE application server
using CDI and EJBs, it’s time to look at another deployment option. With the Activiti
OSGi module you’re able to work with Activiti using OSGi bundles. This opens up new
opportunities for hot deployment and modular process applications.

You’re already able to use the Activiti Engine on a JEE 6 application server like JBoss or
GlassFish. But, there’s another interesting deployment approach available with the
Activiti OSGi module. In this section, we’ll start with a short introduction to OSGi, and
then we’ll quickly move on and use the Activiti Engine on the Apache Karaf OSGi con-
tainer.

The OSGi standard has been available for quite some time now. It was founded by the
OSGi Alliance (www.osgi.org) in 1999. It provides a framework for a modular and
dynamic component model, mainly to overcome the classloading and versioning
issues on the Java platform. OSGi is a standard solely available for the Java platform.

The deployment environment for the OSGi framework is often referred to as an
OSGi container. Probably the most famous OSGi container is the Eclipse platform,
where the full platform and all plugins are implemented with OSGi bundles. As a devel-
oper, you’ll be developing these OSGi bundles to implement logic in an OSGi container.

That may sound a bit complex, but an OSGi bundle is often no more than a JAR file
produced by a Java project. The great thing about OSGi is that you divide an applica-
tion, or even multiple applications, into multiple bundles. When you want to change a
specific part of an application, you only have to change one or two bundles and rede-
ploy them, and the application will automatically (without restarting) make use of
these new bundles.

An OSGi bundle typically provides a component implementation that exposes cer-
tain classes to other OSGi bundles. It can also import interfaces that are implemented
by other OSGi bundles, which are required to be available in the OSGi container.

210

CHAPTER 9 Exploring additional Activiti modules

Abundle follows a defined life cycle, as
shown in figure 9.6. Thislife cycle isimple-
mented by the OSGi container to handle
an OSGi bundle. First, the bundle has the
state installed, which means the bundle is

Installed
Uninstalled Stopping

Figure 9.6 An overview of an 0SGi bundle life cy-
cle, starting with installed state and ending with
pretty self-explanatory. When the bundle the uninstalled state

is active, it needs to be in the started state.

I know this is a short introduction to OSGi, but there’s a lot of material about it
available on the internet, and you can read a lot more in the book 0SGi in Action, by
Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage (Manning, 2011).

Later on in this section, we’ll be deploying the Activiti Engine as an OSGi bundle to
an OSGi container. In addition, we’ll deploy a process definition and a Java service task
class in separate bundles to the OSGi Activiti Engine. But first, we need an OSGi con-
tainer to work with. Let’s introduce Apache Karaf.

deployed on the OSGi container butis not
yet available to be used by other bundles.
Then, the OSGi containerlooks to find out
if the required dependencies specified by

the bundle meta information can be
resolved. If the required dependencies
can be found, the life cycle will move to the
resolved state. From there, the states are

Apache Karaf is an OSGi runtime environment and it uses Apache Felix as its default
OSGi container. It’s also possible to run the Activiti Engine on Apache Felix, but
Apache Karaf provides a nice administration console, integration with Maven, and an
OSGi Blueprint implementation. These additions make the development and deploy-
ment of OSGi bundles a lot easier, so that’s why we’ll use Apache Karaf here.

Take a look at the simplified architectural overview of the Apache Karaf framework
in figure 9.7.

All of the Apache Karaf components are built on an OSGi container foundation. By
default, Karaf uses the Apache Felix implementation, but you can also use the Equinox

[Console] [Logging] [Deployer] Grovisioni@ [Admin] [Blueprint]
[OSGi]

Figure 9.7 An architectural overview of Apache Karaf showing its main components,
which are built on an 0SGi container like Apache Felix or Equinox

Apache Karaf

Deploying Activiti to an OSGi container 211

OSGi container (the Eclipse implementation) by changing one property file. We’ll be
using the console component quite a lot in the remainder of this section. By using the
console, we can deploy new OSGi bundles, for example, from a Maven repository.

Another component that’s important for the Activiti Engine implementation is the
Blueprint component. The OSGi Enterprise Specification contains the definition of a
blueprint container. The goal of the Blueprint container is to integrate the OSGi spec-
ification with JEE technologies like JTA and JNDI. Another benefit is that it’s easy to
define exposed and referenced services to and from other bundles using an XML defi-
nition or annotations. We’ll be using the Blueprint XML definition in some examples
here shortly.

First, let’s get the Apache Karaf framework installed and started. Installing is easy:
Download the latest version from the http://karaf.apache.org website. (Note that ver-
sion 2.2.3 is used in the examples in this chapter.) Unpack the distribution to your
location of choice, and open a command console or terminal. Then, go to the
unpacked directory and start the Karaf container:

= Linux, Mac OS X:
.1 bi n/ kar af

= Windows:
bi n\ kar af . bat

When the Karaf container is started, ce2rn2330F93:apache-karaf-2.2.3 trademakerss ./bin/karaf
you should see a console similar to
what’s shown in figure 9.8.

The Karaf console has a lot of avail-
able commands when you press Tab,
asshown in the welcome (ext in fig- 15 [fors st of pvitble coments

ure 9.8. One Of the Commands ShOWS Hit 'ectrl-d>' or 'osgi:shutdown' to shutdown Karaf.

which bundles are installed and run- karaféroot> [

Apache Karaf (2.2.3)

ning on. thf_: Apache Karaf container: Figure 9.8 The Apache Karaf console, shown when
the osgi : | i st command. If you run you start the Karaf container with default settings
this command, you’ll notice that by

default you have an empty container. Let’s change that and install the Activiti Engine.

To make the Activiti Engine available in an OSGi container, you need additional logic
that’s provided by the Activiti OSGi module. The Activiti OSGi module will scan every
OSGi bundle in the OSGI-INF/activiti folder for process definitions. When a new pro-
cess definition is found, it will deploy the definition on the Activiti Engine that’s
exposed via the org. activi ti.engi ne. ProcessEngi ne interface. Figure 9.9 shows the
bundles that we’ll be deploying to the Apache Karaf container.

The Activiti Engine and Activiti OSGI modules are provided out of the box by the
Activiti framework. The book- 0sgi - engi ne module is provided with the book- 0sgi - app
project that you can find in the book’s source code.

212

CHAPTER 9 Exploring additional Activiti modules

(N

book-osgi-engine

Modules to make the Activiti
Engine libraries available in
an OSGi environment. Every
new bundle is scanned for

process definitions and OSGi
Java delegates

Apache Karaf

Figure 9.9 The 0SGi bundles

we’ll be deploying on the Apache
Karaf container to get the Activ-
iti Engine available and started

Configures and starts the
Activiti process engine.

. /

The book-0sgi-engine project contains a contextxml file in the src/main/
resources/OSGI-INF/blueprint folder that will create a new instance of the Activiti
Engine in the Apache Karaf container. The context.xml file is the OSGi Blueprint XML
definition introduced in section 9.3.2. As you can see in the next listing, it contains a
lot of XML elements, but you’re already familiar with most of them because the config-
uration is similar to the Activiti Engine Spring configuration. Note that I left out some
bits that we’ll discuss in section 9.3.4.

<bl ueprint xm ns="http://ww. osgi.org/xm ns/blueprint/vl.0.0"
xm ns:ext="http://aries. apache. org/ bl uepri nt/xm ns/ bl ueprint-ext/vl.0.0">

<ext: property-placehol der />

<bean i d="dat aSource" cl ass="org. h2.jdbcx. JdbcDat aSour ce" >
<property name="URL"

val ue="jdbc: h2:tcp://local host/activiti" /> <7 DefinesActiviti
<property name="user" val ue="sa" /> data source
<property nanme="password" val ue="" />
</ bean>

<bean i d="confi gurati onFactory"
class="org.activiti.osgi.Dblueprint. ConfigurationFactory">
<property name="dat aSource" ref="dataSource" />

<property nane="dat abaseSchemaUpdat e" val ue="true" /> ActiviI:iegrS‘:isi
</ bean> configuration
<bean id="configuration” wrapper

factory-ref="configurationFactory"
fact ory- net hod="get Confi guration" />

<bean i d="processEngi neFactory"
class="org.activiti.osgi.blueprint. P Defines 0SGi process
Pr ocessEngi neFact or yW t hELResol ver " engine factory

Deploying Activiti to an OSGi container 213

init-nethod="init"
destroy- met hod="destroy" >

<property nanme="processEngi neConfi guration”
ref="configuration" /> Injects Blueprint
<property nanme="bundl e" ref="bl ueprintBundl e" /> <1 bundle context
<property nanme="bl ueprint ELResol ver"
ref ="bl uepri nt ELResol ver" />
</ bean>

<bean i d="processEngi ne" factory-ref="processEngi neFactory"
factory-net hod="get Obj ect" />

<bean id="runtineService" factory-ref="processEngi ne"
factory-nmet hod="get Runti neService" />

<bean id="repositoryService" factory-ref="processEngi ne"
factory-net hod="get Reposi toryService" />

<bean i d="bl ueprint ELResol ver"
class="org.activiti.osgi.blueprint.BlueprintELResolver" />

<servi ce ref="processEngi ne" Defines
interface="org.activiti.engine.ProcessEngi ne" /> process engine
<service ref="runti meService" 0SGi service

interface="org.activiti.engine.RuntinmeService" />
<service ref="repositoryService"
interface="org.activiti.engine.RepositoryService" />
</ bl ueprint>
You start the Activiti Engine configuration with the definition of the data source
Then you need a new ProcessEngi neConfi gurati on definition because the Blue-
print container can’t work with the default ones. The Confi gurati onFactory class is
just a wrapper around a Standal oneProcessEngi neConfiguration, and you can
inject a data source into it.

Then you arrive at the main part of the process engine configuration, which is
the ProcessEngi neFact ory subclass ProcessEngi neFact or yW t hELResol ver defini-
tion ©). Because you can’t use the default bean classloading logic implemented in
the standard Activiti Engine process engine factories, an OSGi-specific subclass is
needed. The Activiti OSGi module provides this subclass with the ProcessEngi ne-
Fact oryW t hELResol ver class to deal with the OSGi classloading.

You inject the OSGi bundle context by referring to the bl uepri nt Bundl e €. What
the Activiti OSGi module adds in the ProcessEngi neFact or yELResol ver class is the
resolving of expressions used in a process definition.

For example, consider an Activiti service task configuration with an attribute like
activiti:del egat eExpressi on="${nmyBean}". By default, this expression is resolved
with Java classloading logic, but that doesn’t work in an OSGi container like Apache
Karaf. Therefore, you can use the Activiti OSGi-specific process engine factory to
search in the OSGi service registry, create a new process engine instance, and expose it
as an OSGi service). The process engine OSGi service can now be resolved by the
Activiti OSGi bundle to deploy new process definitions.

214

CHAPTER 9 Exploring additional Activiti modules

Now let’s get this package ready to be deployed on Apache Karaf. To make the
installation easy, you've created a features project named book- osgi - f eat ur es. This
project contains a features.xml file in the src/main/resources folder that contains all
the dependencies necessary to get the Activiti Engine and OSGi modules installed.
You’ve also added the book- 0sgi - engi ne module so that the process engine will get
created. The following code snippet shows the part in the features.xml file where you
need to add the book- 0sgi - engi ne module:
<f eat ures name="book- osgi - ${ proj ect. version}">

<f eat ure nanme="book-osgi" versi on="${project.version}">
<feature version="${activiti.version}">activiti</feature>
<bundl e>
mvn: or g. bpmmwi t hacti vi ti/ book- osgi - engi ne/ ${ pr oj ect . ver si on}
</ bundl e>
</feature>
</features>
As you can see, this defines a new feature named book-o0sgi, consisting of an
OSGi bundle book- 0sgi - engi ne and a nested activiti feature, which contains the
Activiti Engine and OSGi modules and dependencies. Now you can build the OSGi
bundle and feature projects by running mvn cl ean install from the book-osgi-app
root directory.

Now that you have the OSGi bundles and the feature definitions available in your
Maven repository, it’s time to go back to the Apache Karaf console started in the previ-
ous section. Apache Karaf can install new bundles and features directly from a Maven
repository. To use your bundles, you first have to make the Maven repository location
of the book- 0sgi - f eat ur es project available to Apache Karaf by executing the follow-
ing command in the Apache Karaf console:
features:addurl nvn:org. bpmmwi t hactiviti/book-osgi-features/

1.0.0/xm /features
The features are now read by the Apache Karaf container, and you can view them by
executing the f eatures: | i st command in the Karaf console.

Next, you can install and start the Activiti Engine in the Karaf container by execut-
ing the following command, but first make sure the H2 database in the Activiti distri-
bution is running (ant h2.start from the setup folder):

features:install book-osgi

The Activiti Engine and OSGi modules and their dependencies are now installed, and
the book- 0sgi - engi ne module will create a new process engine instance and make it
available in the OSGi registry. In figure 9.10, you can see that these modules are
installed by running the features: | i st command.

To check that the Activiti Engine is started, you can run the log: t ai | command in
the Karaf console. You should see a log statement like this:

ProcessEngi ne default created

Deploying Activiti to an OSGi container 215

karaf@root> features:list

State Version Name Repository

[installed] [3.0.5.RELEASE] spring book-0sgi-1.0.0
[installed] [5.9] activiti book-0sgi-1.0.0
[installed] [1.0.0] book-osgi book-0sgi-1.0.0

Figure 9.10 The Apache Karaf console showing that the Activiti Engine and the book- osgi features
have been installed

That’s great, but how can you use this running OSGi process engine? Let’s begin by
adding a new custom command to the Apache Karaf console that lists all deployed
process definitions on the Activiti Engine. That will give you a first view of this OSGi
process engine.

When we use Apache Karaf as our OSGi container and manager, it would be nice to be
able to communicate with the Activiti Engine from the Karaf console. It turns out that
this is quite easy to do by using the Karaf console extensibility points and plugging
new commands into the container.

First, you need to define a new Osgi CommandSupport subclass that implements the
logic you want to use in the Karaf console. The following listing shows a command
implementation that will list all deployed process definitions (you can find it in the
book- osgi - kar af module of the book- 0sgi - app project).

@onmmand(scope="activiti", name="list-definitions", < Defines console
description="List all process definitions") command text
public class ListDefinitionsComand
ext ends Osgi CommandSupport {

private RepositoryService repositoryService; <] Injects RepositoryService

@verride instance
protected Object doExecute() throws Exception {
Li st <ProcessDefinition> definitionList =
reposi toryService Queries
. creat eProcessDefinitionQuery() F Activiti
dist(); Engine
if(definitionList != null && definitionList.size() > 0) {
Systemout.println("-------mmmmii ")
Systemout.println("--Activiti process definitions--");
Systemout.printIn("------------mmmmii ")
for (ProcessDefinition processDefinition : definitionList) {
Systemout.printin("");
Systemout.println("-----------mmmmm i ")
Systemout.println("Name\t\t\t\t" +
processDefinition.getName());
Systemout.println("Key\t\t\t\t" +
processDefinition. getKey());
Systemout.printIn("ldit\t\t\t" +

216

CHAPTER 9 Exploring additional Activiti modules

processDefinition.getld());
Systemout.printin("-------------------------------- "),
Systemout.println("");

}
}

return null;

}

public void setRepositoryService(RepositoryService
repositoryService) {
this.repositoryService = repositoryService;
}
}
As you can see, defining a new Karaf console command is quite easy. You start by
defining the command text, which in this case, is activiti:list-definitions @. To
be able to query the Activiti Engine for deployed process definitions, you need an
instance of the RepositoryService interface @). In listing 9.10, you’ll see that the
Karaf container will inject this instance. Finally, in the doExecut e method, you can
query the Activiti Engine using the Reposi toryServi ce interface &) as you’ve done
before (for example, in chapter 4).
To get this new command installed on the Karaf container, you need to define a
Blueprint XML definition like you did in the previous section. In the next listing, the
OSGi-INF/blueprint/context.xml file of the book- 0sgi - kar af project is shown.

<bl ueprint xm ns="http://ww. osgi.org/xm ns/blueprint/v1.0.0">

<command- bundl e
xm ns="http://karaf.apache. org/ xm ns/shel | /v1.0.0">

<command nanme="activiti/list-definitions"> < Defines Karaf

<action class="or g. bpr’mWI thactiviti.karaf. console command

Li st Defi ni ti onsComrand" >
<property nane="repositoryService"
ref ="repositoryService"/>

</ action>

</ command>

References
</ conmand- bundl| e> R . .
epositoryService
<reference i d="repositoryService" 0SGi service

interface="org.activiti.engine.RepositoryService" />

</ bl ueprint >

This context.xml file is read by the Karaf container when you deploy the book- 0sgi -
kar af OSGi module. You first need to define the name of the command, which often cor-
responds to the scope and name annotations in the command class €. To inject an
instance of the Reposi t or ySer vi ce, you need to reference the OSGi service published
in the OSGi registry with the or g. acti vi ti. engi ne. Reposi t oryServi ce interface
Remember that you defined this OSGi service in listing 9.8. This shows the power
of the OSGi container’s modular architecture. You can register services in the OSGi
registry that you can use from other OSGi modules. Without the Blueprint container,

Deploying Activiti to an OSGi container 217

karaf@root> osgi:install -s mvn:org.bpmnwithactiviti/book-osgi-karaf/1.0.0
Bundle ID: 74
karaf@root> activiti:list-definitions

—--Activiti process definitions——

Name Vacation request

Key vacationRequest

Id vacationRequest:1:21

Name Helpdesk process

Key escalationExample

Id escalationExample:1:22

Figure 9.11 The Karaf console output when running the acti viti:|ist-definiti ons command

you’d need a lot of additional configuration to export and import packages to and
from the OSGi modules. But, with the Blueprint container, it’s as easy as defining a
servi ce and aref erence element in a context.xml configuration.

Now that you have the configuration in place, you can install the new command on
the Karaf container. If you haven’t already executed an nvn cl ean install in the
book-osgi-app directory, you should do this now to get the book- osgi - kar af bundle
installed in the Maven repository. Next, you can run the following command in the
Karaf console to make the new command class available:

osgi:install -s nwvn:org. bpmwi t hactiviti/book-osgi-karaf/1.0.0

It’s as simple as that. Now you can execute the activiti:list-definitions com-
mand and you’ll see an output similar to what’s shown in figure 9.11.

Now that you can communicate with the Activiti Engine from the Karaf console,
it’s time to get your first process running and to deploy it in an OSGi bundle.

Developing process and service task OSGi bundles is quite easy. First, look at figure 9.12
to get an idea of the bundles you will have deployed at the end of this section.

As you can see in figure 9.12, you’ll deploy two additional OSGi bundles in this sub-
section: the book- 0sgi - process and the book- 0sgi -t ask bundle.

First, you’llimplement the process bundle. This means you have to create a pom.xml
file (at least if you take the Maven approach) with contents similar to the following:
<groupl d>or g. bpmmwi t hacti vi ti </ gr oupl d>
<artifactld>book-osgi-process</artifactld>
<nanme>Activiti in Action OSG process</name>
<packagi ng>bundl e</ packagi ng>
<versi on>1. 0. 0</versi on>

218

CHAPTER 9 Exploring additional Activiti modules

o . book-osgi-process
activiti-engine
Modules to make the Activiti
Engine libraries available in Deploys a process
an OSGi environment. Every definition.
Y— activiti-osgi new bundle is scanned for
9 process definitions and OSGi
T Java delegates
i~z 9
() —0S0i—
- book-osgi-task
Q
g_ book-osgi-engine
< Deploys a service task
class.
Configures and starts the book-osgi-karaf
Activiti process engine.
Makes the activiti:start
and activiti:list—definition
console commands
available.

Figure 9.12 An overview of all the 0SGi bundles that will have been deployed at the end of the Activiti
0SGi examples

The only element that’s different from normal Maven build files is the packaging type

of bundl e.
The only thing left to do is define a process definition XML file in the OSGi-INF/

activiti folder, because this folder is scanned by the Activiti OSGi module for new pro-
cess definitions. Let’s take a quick look at the example.bpmn20.xml file you need to

create there.

<definitions id="definitions"
xm ns="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Nanespace="Exanpl es"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL
http://ww. ong. or g/ spec/ BPMN 2. 0/ 20100501/ BPMN20. xsd" >

<process id="osgi Process" nane="Q0sgi process"> <1 Process key is

<startEvent id="start" /> osgiProcess
<sequenceFl ow sourceRef="start"

t ar get Ref ="servi ceTask"/ >
<servi ceTask id="serviceTask"

activiti:del egat eExpressi on="${testBean}" /> <— testBeanisan
<sequenceFl ow sour ceRef ="servi ceTask" 0SGi service

target Ref ="scri pttaskl"/>
<scriptTask id="scripttaskl"

scri pt For mat =" gr oovy" >

<scri pt>
out:println "script task name " + custoner. naneg;

Deploying Activiti to an OSGi container 219

</script>
</script Task>
<sequenceFl ow sour ceRef ="scri pttaskl"
target Ref ="end"/>
<endEvent id="end"/>
</ process>
</definitions>
There’s nothing special about this process definition. You can start a new process
instance using the key osgi Process (), like you’ll do in a few moments. But the inter-
esting part is the service task definition €. You’re using a del egat eExpr essi on defini-
tion of t est Bean, which references an OSGi service. And, finally, you print the name
of a cust oner process variable object to the console using a script task.
You define the t est Bean OSGi service in a separate OSGi bundle in the book- 0sgi -
t ask project. In this project, you need to implement a service task class and define a
Blueprint configuration in the OSGi-INF/blueprint folder (see the following listing).

<bl ueprint xm ns="http://ww. osgi.org/xm ns/bl ueprint/vl.0.0">

<bean id="test Bean"
class="org. bpmmwi t hactiviti.osgi. TestBean" />

<servi ce ref="testBean"
interface="org.activiti.engine.del egate.
JavabDel egate" />

</ bl ueprint>

The service task implementation Test Bean is simple. What’s important is that the ser-
vice task implements the JavaDel egat e interface because this interface will be used to
reference the service task from the Bl uepri nt ELResol ver, as you’ll see in listing 9.13.
For the sake of completeness, here’s the Test Bean implementation:

public class TestBean inplenents JavaDel egate {

@verride
public voi d execute(Del egat eExecuti on execution) throws Exception {
Systemout.println("invoked TestBean !!!111rrrrrrrrrrrrrrt)

Cust omer custoner = new Custoner();
custoner. set Nane("test");
execution. setVariabl e("custoner", custoner);

}
}
Because you implement the JavaDel egat e interface you’ve been using a lot in the
previous chapters, you don’t have to do anything special in the service task class
implementation.

Let’s take a quick look back at figure 9.12 and see what’s left to develop. As you can
see, you’ve implemented all OSGi bundles, so what’s missing? We haven’t discussed the
Bl uepri nt ELResol ver configuration yet. This configuration makes sure that the t est -
Bean OSGi service is available to be used in a process instance in the Activiti Engine.

220

CHAPTER 9 Exploring additional Activiti modules

You already saw that a Bl uepri nt ELResol ver instance was injected into the process
engine configuration (see listing 9.8). But you need to add a few lines to the same pro-
cess engine configuration file of the book- 0sgi - engi ne project to make your service
task bean available in the Activiti Engine (see the next listing).

<reference-list id="activityProviders"
availabi lity="optional"
interface="org.activiti.engine.del egate. JavabDel egate"
activati on="eager">

<reference-listener ref="blueprintELResol ver"

bi nd- met hod="bi ndSer vi ce"

unbi nd- met hod="unbi ndSer vi ce"/ >
</reference-list>
You already saw that you can define a reference to an OSGi service from another bundle.
Here, you see that you can also define a reference list of all OSGi services implementing
the Acti vi t yBehavi or interface. With the opti onal value in the avail abi | ity attri-
bute, you tell the Blueprint container that the list can be empty.

Then you make use of a neat feature of the Blueprint container. When something
changes in the reference list, the bl ueprint ELResol ver bean will be invoked. The
bi ndSer vi ce method will be invoked when a new reference is found, and the unbi nd-
Servi ce will be invoked only if a reference is removed.

Now you’re all set. You can deploy the book-0sgi -task and book- osgi - process
bundles to the Karaf container. Run the following two commands:
osgi:install -s nvn:org. bpmwi t hactiviti/book-osgi-task/1.0.0
osgi:install -s mvn:org. bpmmwi t hactiviti/book-osgi-process/1.0.0
After the first command is executed, you should see the following message appear in
the Apache Karaf logging (l og: tail):

added Activiti service to del egate cache testBean

This tells you that the service task class has been added to the cache discussed in list-
ing 9.13. When you run the | 0g: tai | command, you should see a message saying that
the example process definition has been processed:

Processing resource OSG - I NF/ activiti/exanpl e. bprm20. xm

Now you know the service task has been added to the cache and the process definition
has been parsed. Try running the activiti:list-definitions command now. You
should see the new process definition in the list with the key osgi Process.

But now you need a way to start a new process instance. You already installed the
activiti:start command as part of the book- 0sgi - karaf module. If you want to
look at the implementation code for this command, you can look for the Start|n-
st anceComand class in this project. You can now run the following command to start
a new process instance:

activiti:start osgi Process

Summary 221

You should now see output that matches karaferoot> activiti:start osgiProcess

the screenshot in ﬁgure 9.13. invoked TestBean !!!!lPlbilbiRLpLRLLl
script task name test

The i nvoked message is produced by
the service task class TestBean in the —-Activiti start process instance—-
book- osgi -t ask bundle. The rest of the T—=——~=———""7——~—"~~—"""""""—""—~~""—~

Instance id 11629
console output shows the output of the g, 4047 true
script task: the process instance ID and a

Boolean value of the process end status. Figure 9.13 The Karaf console output after start-
ing a new process instance

That’s great, but wouldn’t it be cool if we
could redeploy the book- 0sgi - t ask bundle without changing the process definition?

First, change the TestBean class in the book-osgi-task project and edit the
System out call to i nvoked2. Next, build the module by running nvn cl ean i nstal |
in the project directory. Now, look up the bundle ID of the old book- 0sgi - t ask bun-
dle by running the osgi : | i st command.

In the following lines, which should execute to redeploy the new book- 0sgi - t ask
bundle, we assume a bundle ID of 68:
0sgi :uninstall 68
osgi : refresh nvn: org. bprmwi t hacti viti/book-osgi-task/1.0.0
osgi:install mvn:org. bpmmwi t hactiviti/book-osgi-task/1.0.0
activiti:start osgi Process
You can see that the i nvoked message has changed to i nvoked2.

This example shows no production-like code, but it does show the possibilities
available when using the Karaf container to deploy the Activiti Engine and how you
can make the service task classes hot deployable.

We’ve covered a lot of interesting stuff in this chapter; if you want more, take a
moment to rethink the possibilities shown in the examples. You can take this one step
further and do some experimenting with the chapter’s source code.

In the previous chapter, you learned how to run the process engine either embedded
in the application or on its own in the out-of-the-box Tomcat installation. But, for
enterprise deployments, the possibilities don’t stop there.

First, you saw that the Activiti Spring module provides some useful additional func-
tionality. You can use a simple annotation to start a new process instance, and you can
use process-scoped variables.

Then, we moved to a more complicated topic and installed the Activiti Engine as a
service in a JBoss application server to use it in a JEE 6 application. We also looked at
combining Activiti with CDI and at how you can develop web applications that can
communicate with processes via simple expressions and beans.

Then, you saw how to run the Activiti Engine in an OSGi container with Apache
Karaf. By developing OSGi bundles, you can separate the process definitions from the
service task implementations. You also learned how to communicate with the Activiti
Engine from the Karaf console by implementing custom command classes.

222

CHAPTER 9 Exploring additional Activiti modules

In the next chapter, we’ll approach the Activiti Engine from another angle as we
focus on the workflow, or human task functionality. You’re already familiar with the
Activiti Explorer’s default workflow and task management capabilities, but, in the next
chapter, you’ll discover the possibilities of integrating an LDAP server with Activiti and
implementing custom forms.

e’ve covered how to implement complex business or technical processes
with Activiti. But, how can you leverage additional components like a rule
engine, a document management system, and an ESB? In this part of the book,
we’ll be exploring possibilities for extending the Activiti process engine with
other great open source components. Note that, if you already want to create
your first process in a real-life project and learn about important Activiti Engine
administration knowledge, you can jump ahead to part 4.

First up in chapter 10, we’ll discuss how to enhance the standard workflow
functionality with the four-eye principle, LDAP integration, and the BPMN 2.0
multi-instance construct. Then, in chapter 11, we’ll move on to communicat-
ing with external services and applications using Mule and Apache Camel.
Chapter 12 covers the usage of the Drools rule engine via the BPMN 2.0 busi-
ness rule task element. In chapter 13, we’ll discuss the functionality Activiti pro-
vides to the Alfresco document and records management system and explore
how to use CMIS to communicate with the Alfresco repository from a process
definition. Finally, in chapter 14, we’ll cover the integration with Activiti listen-
ers and Esper to produce a business activity monitoring dashboard.

In the previous chapters, we implemented a lot of user tasks to deal with manual or
workflow functionality in a business process. By now, you're also already familiar
with the technique of defining form properties to create forms in the Activiti
Explorer web application. But there’s a lot more to explore.

When you’re dealing with tasks like “Organize a developer conference,” you
want to be able to structure tasks into subtasks. Imagine that you have that exact
task. You could break the work up into multiple subtasks like “Book venue,” “Invite
speakers,” and “Organize catering.” Activiti provides an API to create such subtasks.

In addition, you’ll want to be able to assign a task or subtask to another person
and be informed when the task is completed. Activiti provides task delegation

225

226

CHAPTER 10 Implementing advanced workflow

functionality that allows you to delegate a task to another person, and when this per-
son completes the task, the task will be placed in your inbox again.

Activiti also provides support for more complex workflow functionality like the
Jour-eye principle. Think of a process where there are two user tasks, “Develop” and
“Test,” that should be executed by the same group of people, like the engineers
group. The four-eye principle ensures that the person who performs the “Develop”
task isn’t allowed to perform the “Test” task. There should be at least four eyes (two
people) involved in the execution of the two user tasks.

In this chapter, we’ll go beyond the definition of a simple user task and make your
processes ready for more complex workflow requirements. First, we’ll look at several
additional workflow features around user tasks that are supported by the Activiti
Engine out of the box. We’ll introduce you to creating subtasks, delegating tasks to a
colleague, and implementing the four-eye principle.

Then we’ll move on to managing the user identities outside of the Activiti Engine
database. In a lot of organizations, identity management is implemented in an LDAP
server. We’ll take a look at integrating the Activiti identity management functionality
with the Apache Directory Server (an LDAP server).

In the third section, we’ll take a look at a new BPMN 2.0 construct called multi-
instance. By defining a user task with a multi-instance configuration, you can assign
multiple related user tasks to users or groups. This can be handy for review or
approval tasks where more than one person has to perform the user task.

Finally, we’ll look at ways to enhance the task form handling for a user task in the
Activiti Explorer or a custom web application. In the previous chapters, we were
restricted in the simple form field types like string, dat e, and | ong. In this chapter,
you’ll see how to extend the form types for more complex form field requirements.

That’s a lot of ground to cover. Let’s start with a number of workflow features
implemented in the Activiti user task element that are waiting to be used in the pro-
cess applications.

The workflow functionality surrounding a user task doesn’t stop with claiming and
completing tasks in the Activiti Engine. In this section, we’ll be looking at more
advanced workflow patterns to support use cases where, for example, we need hierar-
chical tasks or want to delegate a specific task to another person. First, we’ll discuss
the concept of creating subtasks. Then, we’ll introduce a common management skill
called delegation. Finally, we’ll look at an implementation of the four-eye workflow
pattern using a task listener.

In a process definition, we can define a flat user task. BPMN 2.0 doesn’t talk about group-
ing user tasks into a parent task with multiple subtasks, but there are a lot of cases where
there’s a need for hierarchies in tasks. For example, when you’re planning a wedding,

Going beyond a simple user task

227

there are a lot of subtasks related to this large parent task, such as inviting the guests,

hiring a wedding location, choosing the dinner menu, and so on.

The Activiti Engine provides functionality to create a subtask for a specific user
task. The next listing presents a unit test that uses the TaskSer vi ce interface to create

subtasks.

public class SubTaskTest extends AbstractTest {

@rul e
public ActivitiRule activitiRule = new ActivitiRul e(

"activiti.cfg-memxm"); c;:::zi
@rest user task
public void conpl et eSubTasks() {

TaskService taskService = activitiRule.getTaskService();
Task parent Task = taskService. newTask();
par ent Task. set Assi gnee("kermt");
taskServi ce. saveTask(par ent Task) ; Creates
creat eSubTask("fozzie", parentTask.getld()); 4 subtask
creat eSubTask("gonzo", parentTask.getld());
Li st <Task> taskLi st = taskService. get SubTasks(<7 Gets all
par ent Task. getld()); subtasks
assert Equal s(2, taskList.size());
taskServi ce. conpl et e(taskList.get(0).getld());
taskServi ce. conpl et e(t askLi st.get(1).getld()); Completes
taskLi st = taskService. get SubTasks(parent Task.getld()); second
assert Equal s(0, taskList.size()); subtask
Li st <Hi st ori cTaskl nstance> hi storicTaskLi st =
activitiRule.getHi storyService()

.creat eHi storicTaskl nstanceQuery()

.finished()

dist();
assert Equal s(2, historicTaskList.size()); Completes
taskServi ce. conpl et e(par ent Task. get 1 d()); 4 parent task
hi storicTaskLi st = activitiRule.getH storyService()

.creat eHi storicTaskl nstanceQuery()

. finished()

dist();
assert Equal s(3, historicTaskList.size()); All tasks are
cl eanUpTaskHi story(): completed

} now

private void cleanUpTaskHi story() {
Li st <H st ori cTaskl nstance> hi storicTaskLi st =
activitiRule.getHi storyService()
.creat eHi storicTaskl nstanceQuery()
.finished()
dist();

Li st<String> tasklds = new ArraylList<String>();
for (H storicTaskl nstance historicTaskl nstance :
hi stori cTaskList) {

228

CHAPTER 10 Implementing advanced workflow

assert Not Nul | (hi storicTaskl nstance. get EndTi ne());
taskl ds. add(hi storicTaskl nstance. getld());

}
for(String taskld : tasklds) {
activitiRul e.getHi storyService() Cleans up created
. del et eHi storicTaskl nstance(taskld); user tasks
}

}

private void createSubTask(String assignee,
String parent Taskld) {

TaskServi ce taskService = activitiRule.getTaskService();
Task subTask = taskService. newTask();
subTask. set Assi gnee(assi gnee) ;
subTask. set Par ent Taskl d(par ent Taskl d) ; Sets parent
t askServi ce. saveTask(subTask) ; task identifier
}
}

In this example, you don’t use a process definition. You can easily create user tasks
without the need for a process definition, and doing so makes it easier to show the use
of subtasks.

The first step in the unit test is to create a parent user task (0. The Activiti Engine
has created a user task assigned to Kermit.

Then, you can use the identifier of this parent task to create a subtask . Two sub-
tasks are created and assigned to Fozzie and Gonzo. To retrieve the subtasks of a spe-
cific user task, you can now use the get SubTasks method on the TaskSer vi ce with the
parent task identifier as an input parameter

The subtasks are created like normal user tasks, but they have a parent task identi-
fier pointing to the parent user task. Despite this difference, you can complete the
individual subtasks just like you do with a standard user task

When the subtasks of a parent user task are all completed, the parent
user task will not be automatically completed. You’ll have to explicitly com-
plete the parent user task as well.

With the subtasks completed, you now need to complete the parent user task
When you query the history tables of the Activiti Engine for finished user tasks, you
should see that all three user tasks (the parent task and the two subtasks) have been
completed

The unit testin listing 10.1 showed the default way of dealing with subtasks. First, the
subtasks are completed, and then the parent user task. In the next listing, you’ll see that
you can also complete a parent user task without the subtasks being completed.

@est
public void conpl et eSubTasksVi aPar ent Task() {
TaskServi ce taskService = activitiRul e.get TaskService();

Going beyond a simple user task 229

Task parent Task = taskService. newTask();
par ent Task. set Assi gnee("kermt");
taskServi ce. saveTask(par ent Task) ; Creates
creat eSubTask("fozzi e", parentTask.getld()); 4| subtask
creat eSubTask("gonzo", parentTask.getld());
Li st <Task> taskLi st = taskService. get SubTasks(

par ent Task. get1d());

assert Equal s(2, taskList.size()); Completes

taskServi ce. conpl et e(parent Task. get1d()); <1 parent task
taskLi st = taskService. get SubTasks(parent Task.getld());

assert Equal s(0, taskList.size()); < Retrieves all
Li st <Hi st ori cTaskl nstance> hi stori cTaskLi st = subtasks

activitiRule.getHi storyService()
.creat eH storicTaskl nstanceQuery()
. finished()
Sist();
assert Equal s(3, historicTaskList.size());
cl eanUpTaskHi story();
}
This unit test method is implemented in the same SubTaskTest unit test class dis-
cussed in listing 10.1. The first part of the unit test is very similar to that listing. You
start with creating a parent user task and two subtasks €. But, here, you complete the
parent user task) before the subtasks.

In this listing, when you query the Activiti Engine for subtasks of the completed
parent user task, you get zero tasks back). This is the result of completing the parent
user task. When a parent user task is completed, the subtasks are automatically com-
pleted as well, so when you query the Activiti Engine for finished task instances, you
get three results: the parent user task and the two subtasks.

As you saw in the previous examples, it’s easy to create subtasks on a parent user
task. For a user task in a process definition, you could automate creating subtasks by
implementing a task listener on the user task. This task listener could create a speci-
fied number of subtasks when the user task is created. The following code snippet
shows how you can implement this:

public class SubTaskLi stener inplenents TaskLi stener {
private Expression subTaskLi st;

@verride
public void notify(Del egateTask del egat eTask) {
ProcessEngi ne processEngi ne = ProcessEngi nes. get ProcessEngi nes()
. get (ProcessEngi nes. NAME_DEFAULT) ;
TaskServi ce taskService = processEngi ne. get TaskServi ce();
@uppr essWar ni ngs("unchecked")
Li st<String> subTaskNanmes = (List<String>)
subTaskLi st . get Val ue(del egat eTask. get Execution());
for(String subTaskNane : subTaskNanes) {

Task subTask = taskServi ce. newTask();
subTask. set Name(subTaskNane) ;
subTask. set Assi gnee("kermt");

230

CHAPTER 10 Implementing advanced workflow

subTask. set Par ent Taskl d(del egat eTask. get1d());
t askServi ce. saveTask(subTask) ;
}
}

public void setSubTaskLi st (Expressi on subTaskList) {
thi s. subTaskLi st = subTaskLi st;

}

}

When a user task is created in a process definition that has a task listener configura-
tion on a create task event, this TaskLi st ener will be invoked. Then, the Activiti
Engine retrieves a process variable containing a list of subtask names from the process
context and create a subtask for every name in that list. This example needs some pol-
ishing before you could use it in an enterprise context, but it shows that you can cre-
ate subtasks in a process instance without lots of coding.

Another way to create subtasks in a parent user task is by using the Activiti
Explorer. For example, when a process instance has created a user task, you can use
the Activiti Explorer to create a number of subtasks on the fly. Figure 10.1 shows an
example of a user task where a subtask called “Expense analysis” has been created.

Request expense refund

[31] No due date = Medium Priority (&) Created moments ago

Request the refund of an expense related to company business.

Part of process: 'Expense process'

People +
IfJi 4 Kermit the Frog
No owner (_Transfer "l Assignee | Reassign
Subtasks Create new subtask:
! |
ﬂ Expense analysis b 4
Related content +

No related content attached for this task
Fill in the form below and complete the task:

Amount*

Motivation

Complete task Reset form

Figure 10.1 The Activiti Explorer, highlighting the functionality that creates subtasks

Going beyond a simple user task 231

By defining a name for the subtask, a new subtask is created and you can click through
to that subtask to assign it to a user or group.
Let’s move on to the next workflow feature we want to discuss—delegation.

Delegating a task means transferring the task [h
to another person; then, once it’s done, the ‘/ h
. . Task: process sales order ‘
user task will be assigned back to the person N J
who delegated the task so it can be reviewed
and completed. Figure 10.2 outlines the
default sequence of steps that are involved [~
when delegating a user task. 4 h
. . Task: process sales order
When a user task is created in a process Owner: Kermit

instance or as an ad hoc user task, it first only | - /
L /

Set owner to Kermit

,‘\\

has a name and a unique identifier. In the A
Delegate task to Fozzie

example shown in figure 10.2, there’s a user

e ™\
task named Process Sales Order. When you [- ~N |
want to delegate a user task in Activiti, it’s Task: process sales order
important that the user task has an owner. In Owner: Kermit

A . . Assignee: Fozzie
this example, the owner is set to Kermit. _ Y.
Then Kermit can delegate the task to another _ //’
user, such as Fozzie. At that point, the user Fozzie resolves task
task has an assignee named Fozzie and an N
owner named Kermit. This means that when 4 N

.. . Task: process sales order

you query the Activiti Engine for user tasks Owner: Kermit
assigned to Kermit, you won’t retrieve this Assignee: Kermit
task anymore. Only Fozzie can work on it. ‘\\ /)

Then, the most interesting step of delegat-
ing a user task is executed. When Fozzie com- Figure 10.2 The default flow of steps when
pletes the task, the assignee of the user task delegating a user task. In this example, Ker-

. . y mit delegates a task to Fozzie.
will be set to Kermit because he’s the one
who delegated the task and is the owner. So the user task will not be completed; the
assignee value is just changed to the value of the user task owner.

Resolving a user task is something other than completinga user task, and it’s
implemented via another TaskSer vi ce method, as you’ll soon see in listing 10.3.

Let’s look at a unit test example in the next listing, which shows how you can use the
task delegation features of the Activiti Engine using the TaskSer vi ce interface.

public class Del egat eTaskTest extends AbstractTest {

@Rul e
public ActivitiRule activiti Rule = new ActivitiRul e(

232 CHAPTER 10 Implementing advanced workflow

"activiti.cfg-memxm"); Kermit is
@arest task owner

public void del egateTask() {

TaskService taskService = activitiRule.getTaskService();

Task del egat eTask = taskServi ce. newTask();

del egat eTask. set Owner ("kernmit");

t askServi ce. saveTask(del egat eTask) ;

Task queryTask = taskService. createTaskQuery()
.singleResult();

assert Equal s("kermit", queryTask.getOmer());

assert Nul | (queryTask. get Assi gnee()); Kermit delegates

t askServi ce. del egat eTask(4| task to Fozzie
del egat eTask. get1d(), "fonzie");

gueryTask = taskService. createTaskQuery().singleResult();

assert Equal s("fonzie", queryTask. getAssignee());

assert Equal s(Del egati onSt at e. PENDI NG,

quer yTask. get Del egati onState()); Fozzie
taskServi ce. resol veTask(del egat eTask. getld()); <1 resolves task
gueryTask = taskService. createTaskQuery().singleResult();
assert Equal s("kernmit", queryTask. get Assignee()); Kermit
assert Equal s(Del egati onSt at e. RESOLVED, becomes
quer yTask. get Del egati onState()); assignee

t askServi ce. conpl et e(del egat eTask. getld());
Li st <Hi st ori cTaskl nstance> hi stori cTaskLi st =
activitiRul e.getH storyService()

.createH storicTaskl nstanceQuery()
dist();

assert Equal s(1, historicTaskList.size());

for (H storicTaskl nstance historicTaskl nstance :

hi stori cTaskList) {

assert Not Nul | (hi storicTaskl nstance. get EndTi me());
}
}

}

In this example, you first create a user task and set the task owner to Kermit €. Then
you delegate the user task to Fozzie using the del egat eTask method 4. Now the user
task has an assignee value of Fozzi e and the Activiti Engine also maintains a Del ega-
tionSt at e value, which is PENDI NG at first. PENDI NG means that the person to whom
the task is delegated to still has to complete the work.

When Fozzie has finished his work, the user task is resolved using the r esol veTask
method ¢). When this method is invoked, the Activiti Engine processes the delegation
logic and sets the assignee to the task owner, which is Kermit in this example €. The
Del egat i onSt at e is also changed to RESOLVED at that point.

Kermit can now complete the user task when he chooses to.

Task delegation is an interesting workflow feature that you can use for ad hoc tasks,
but also for user tasks in process definitions. In the previous subsection about sub-
tasks, you saw that you can use a task listener to implement additional workflow fea-
tures in a process definition; that would also work well for task delegation.

Going beyond a simple user task 233

Because task delegation isn’t implemented in the Activiti Explorer, this completes
our delegation discussion. We’ll now move on to implementing the four-eye principle,
which isn’t supported by the Activiti Engine out of the box.

A commonly used workflow pattern is the four-eye principle. Imagine you have two
user tasks, “Develop solution” and “Review solution” in a process, and both tasks are
assigned to the same engineering group. Kermit claims and completes the first user
task, and then Kermit also wants to claim the review user task. The four-eye principle
prohibits Kermit from claiming the “Review solution” user task because he also com-
pleted the first user task. According to the four-eye principle, the Review Solution user
task must be performed by a second pair of eyes, which explains the name of the prin-
ciple.

The Activiti Engine doesn’t support the four-eye principle pattern by default, but
you can implement this functionality without a lot of coding. What you need is a piece
of logic that checks that the person who claims the second user task isn’t the person
who claimed and completed the first user task.

You can implement a task listener that’s executed when someone claims the user
task. Let’s look at the task listener implementation in the following listing.

public class FourEyesLi stener inplenments TaskLi stener {

private Fi xedVal ue ot her Taskl d;
private Fi xedVal ue processEngi neNang;

@verride
public void notify(Del egateTask del egat eTask) {
String nane = null;

i f(processEngi neNane != null) {
nanme = processEngi neNane. get Expressi onText () ; Sets the default
} else { process engine
nane = ProcessEngi nes. NAVE_DEFAULT,; name
}
ProcessEngi ne processEngi ne =
ProcessEngi nes. get ProcessEngi nes() . get (nane); <7 Retrieves
Hi storyService historyService = process engine

processEngi ne. get Hi st oryServi ce();

Hi st ori cTaskl nstance historicTask = historyService
.createHi storicTaskl nstanceQuery()
. processl nst ancel d(del egat eTask. get Processl nstancel d())
.taskDefini ti onKey(

ot her Taskl d. get Expressi onText ()) <1 Retrieves other
.singleResult(); task instance
if(historicTask == null) {

throw new Activiti Exception("The previous task " +
ot her Taskl d. get Expressi onText () +
" could not be found");

234

CHAPTER 10 Implementing advanced workflow

}
String claimer = del egat eTask. get Assi gnee(); .
String previousAssi gneee = historicTask. get Assi gnee(); Checks if

' ' assigneeisn’t
i f(clainmer.equal sl gnoreCase(previ ousAssi gneee)) { the same

throw new Activiti Exception("Assignee of task +

ot her Taskl d. get Expressi onText () +
" is not allowed to claimthis task");
}
}

public void set & her Taskl d(Fi xedVal ue ot her Taskl d) {
thi s. ot her Taskl d = ot her Taskl d;

}

public void setProcessEngi neNane(
Fi xedVal ue processEngi neNane) {
thi s. processEngi neNane = processEngi neNane;
}
}

This task listener implementation is designed to be reusable in your process defini-
tions, so the process engine name can be overridden in the task listener configuration
in the process definition. If you don’t override the name, the default value is used

to retrieve the process engine from the cache 2. When a process engine is created in
the Activiti Explorer or by using the Java API, it’s registered in the cache of the
ProcessEngi nes singleton.

With the process engine instance available, you can implement the four-eye princi-
ple logic. First, you have to retrieve the previous user task completed by some user.
The task identifier of the previous user task needs to be set as a field property in the
Activiti listener configuration, as you’ll see in listing 10.5. Then this task identifier is
used to retrieve the user task via the Hi st oryServi ce

Then, you can check whether the person who tries to claim the second user task
is the same as the assignee of the first user task €. If the values are the same, an
ActivitiExceptionis thrown and the user task will not be claimed.

The next listing shows how you can use this newly created task listener. This small
process definition example configures this task listener on the second user task.

<definitions xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Namespace="htt p: // wwv. bpmwi t hacti vi ti.org/foureyes">

<process id="four EyesProcess">

<startEvent id="theStart" />

<sequenceFl ow sourceRef ="t heStart"
target Ref ="first Task" />

<user Task id="firstTask" Assigns to candidate
activiti:candi dat e oups="sal es" /> <1 group sales

<sequenceFl ow sour ceRef ="first Task"
t ar get Ref =" secondTask" />

Going beyond a simple user task 235

<user Task i d="secondTask"
activiti:candi dat eG oups="sal es">
<ext ensi onEl enent s>
<activiti:taskListener
class="org. bpmmwi t hactiviti.chapter10. P Configures four-eye
f our eyes. Four EyesLi st ener" task listener
event ="assi gnment " >
<activiti:field name="ot her Taskl d"
stringVal ue="firstTask" /> < References first
</activiti:taskListener> user task
</ ext ensi onEl emrent s>
</ user Task>
<sequenceFl ow sour ceRef ="secondTask"
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
</definitions>

The process definition consists of two user tasks directly connected via a sequence
flow. Both user tasks have the sales group defined as their candidate group 0. The
second user task, to which you want to apply the four-eye principle, has a task listener
configured so that it corresponds to the implementation in listing 10.4. The
ot her Taskl d field property is set to reference the first user task

With the task listener implementation and process definition in place, you can
now easily create a unit test to test the solution. Because you want to use the default
process engine configuration, you need to initialize the process engine without the
help of the Activiti test classes. The ActivitiRule test class initializes the process
engine without registering it in the ProcessEngi nes cache. The following listing
shows the unit test implementation.

public class FourEyesTest extends Abstract Test {

@est
public void validateFourEyes() {
ProcessEngi ne processEngi ne = ProcessEngi neConfi guration
. creat eProcessEngi neConf i gur ati onFr omResour ce(
"activiti.cfg-memxm")
. set ProcessEngi neNane(Creates defa_ult
Pr ocessEngi nes. NAVE_DEFAULT) 41 process engine
. bui | dProcessEngi ne();

processEngi ne. get Reposi toryServi ce(). creat eDepl oynent ()
. addd asspat hResour ce(

"chapt er 10/ f our eyes/ f our Eyes. bpmm20. xml ") Deploys four-
. name("four Eyes") eye process
.depl oy(); definition

processEngi ne. get Runti neServi ce()
.start Processl nst anceByKey("four EyesProcess");

TaskServi ce taskService = processEngi ne. get TaskServi ce();
Task firstTask = taskService

236

CHAPTER 10 Implementing advanced workflow

. creat eTaskQuery()
.singleResul t();
taskService.clainm(firstTask.getld(), "kernmt");
taskServi ce. conpl ete(firstTask.getld()); <=1 Completes first

Task secondTask = taskService user task

. creat eTaskQuery()
.singleResul t();

try {
taskServi ce. cl ai m(secondTask. getld(), "kermt");
fail ("Expected claimerror"); Doesn’t allow
} catch(Activiti Exception e) { ﬁ Kermit to claim
/1 claimerror expected user task
}

secondTask = taskService
. creat eTaskQuery()
.taskl d(secondTask. get1d())
.singleResul t();

assertNul | (secondTask. get Assi gnee()); Allows Gonzo to

t askSer vi ce. cl ai n{ secondTask. get1d(), "gonzo"); <1 claim user task
t askServi ce. conpl et e(secondTask. get1d());

}
}
As you’ve learned, you can’t use the Acti vi ti Rul e test support class because the pro-
cess engine is registered in the cache being used in the listener implementation (see
listing 10.4), so you must build the process engine with a default process name your-
self (. Then you deploy the process definition discussed in listing 10.5 to the process
engine

When the process instance is started, the first user task is created and claimed and
completed by Kermit). The process instance then creates the second user task. First,
you try to claim the user task with the Kermit user. But, because Kermit also has
claimed and completed the first user task, the four-eye task listener throws an Act i vi -
ti Exception €. Then, you claim and complete the user task using the user Gonzo
because he’s allowed to claim the user task.

Task listeners provide nice integration points in the Activiti Engine and user tasks
in particular, which helps to implement workflow patterns without a lot of additional
coding. The four-eye principle is just one example that demonstrates this. Now let’s
move on to the topic of managing user and group identities. In the next section, we’ll
take a look at how to integrate an LDAP server with the Activiti Engine.

By default, the Activiti Engine uses a couple of database tables to manage the user and
group identities. We’ve worked with the demo users Kermit and Fozzie in the previous
examples. But a typical organization has a centralized solution for managing the user
and group identities for all the applications in the organization. In many cases, an
LDAP server is chosen as the identity management solution.

Managing the user identities in an LDAP server 237

In this section, you’ll learn how to use an LDAP server for managing the user and
group identities available to the Activiti Engine. You’ll use the open source Apache
Directory Server to implement the examples. Let’s first install the Apache Directory
Server before we dive into Activiti’s user and group management classes.

The Apache Directory Server project provides you with an LDAP server, an Eclipse
plugin to manage the LDAP server, and an LDAP client API framework. We’ll use all
these products in this section.

First, you can install the LDAP server by selecting the latest ApacheDS release from
http://directory.apache.org. In the examples in this book, I've used ApacheDS 1.5.7.
Go through the installation screens and accept the default options. Once it’s installed,
you’ll have an LDAP server running on port 10389.

Next, you can install the latest version of the Apache Directory Studio from the
same website. This will install an Eclipse product with the Apache Directory Studio
plugins preinstalled. The studio eases the administration of the LDAP server a lot, so
let’s start it up.

First you need to add a new connection in the Apache Directory Studio to the
ApacheDS LDAP server. Choose File > New from the toolbar, go to LDAP Browser >
LDAP Connection, and click Next. There, you can fill in the connection settings for
the ApacheDS LDAP server you installed (see figure 10.3).

.06 New LDAP Connection

Network Parameter

Please enter connection name and network parameters.
LDAP
bl

Connection name: | LocalLDAA

Network Parameter

Hostname: localhost

Port: [10389

& (%) (1)

Encryption method: | No encryption

b’

(" Check Network Parameter

-

') (<Back) (Next >) (cancel)

Figure 10.3 The wizard that creates a new LDAP connection in the Apache Directory Studio,
showing the connection settings

238

CHAPTER 10 Implementing advanced workflow

Figure 10.4 The authentication parameters needed to make a connection to the ApacheDS
LDAP server using the default administrator user

When you've filled in the connection settings, you need to enter the authentication
parameters before you can connect with the LDAP server. Figure 10.4 shows the
default authentication settings for the ApacheDS LDAP server.

This is the default administrator user that’s created by the ApacheDS LDAP server
installation script you ran at the beginning of this section:

Bind DN or user: uid=adnin, ou=system

Bi nd password: secret

Now you can click Finish, and the LDAP browser will show the entries in the ApacheDS
LDAP server. When you collapse the ou=system entry, you'll see that there’s a
ui d=admi n entry.

Now you need to create a couple of users and groups that you’ll later use to test the
integration between the Activiti Engine and the ApacheDS LDAP server. Right-click
the ou=users entry and choose New > New Entry. In the wizard’s pop-up menu,
choose the “Create Entry from Scratch” option. In the list of object classes, choose the
i net Or gPer son class, which represents a user entry in the LDAP server. Then, choose
the user identifier to complete the creation of the new user.

In figure 10.5, you add a user with a unique identifier, ui d, of Kermit. When you click
Next, you’ll see the last page of the wizard, where you have to fill in the sn (surname)

Managing the user identities in an LDAP server 239

Figure 10.5 The New Entry wizard showing a new user entry for the user Kermit

and cn (complete name) attributes. When you click Finish, the user entry is created in
the ApacheDS LDAP server.

If you also want to store the password value for the Kermit user in the LDAP server,
you need to add an additional attribute to the ui d=kermi t entry. When you click the
newly created user entry in the LDAP browser, you get an overview of the attributes in
the main panel of the Apache Directory Studio. When you right-click in the Attributes
view, you can choose New Attribute. Then you can select the user Passwor d attribute
from the list, as shown in figure 10.6.

Figure 10.6 Adding a new user Passwor d attribute to complete the credentials
for the newly created user entry

240

CHAPTER 10 Implementing advanced workflow

Then you can click Finish and enter a password of your choice. (In the examples, I've
used kermit as the password.) This completes the steps needed to create a new user
entry in the ApacheDS LDAP server. You can add additional users using the same steps.

Now you need to add two group entries so you can test the group functionality of
the Activiti Engine’s | dentityServi ce interface. Right-click the ou=groups entry in
the LDAP browser and choose New > New Entry again. Also choose “Create Entry from
Scratch” again, like you did when adding a new user entry. Next, you have to choose
the object class gr oupCOf Uni queNanmes, which means that you define a group entry
where you can add unique user entries; no duplicate user entries are allowed. Then
you need to define the name of the group entry by setting the cn attribute, as shown
in figure 10.7.

When you have defined the group name nanager, you can add a unique member
in the next screen of the wizard. Here, you can add the Kermit user entry you created
a few moments ago. To reference Kermit, you have to use the following value in the
unique member field:

ui d=kermi t, ou=users, ou=system

If there are more users available, you can add them by creating a new uni queMenber
attribute in the group entry.

To complete the group setup, create a group named sal es by following the same
steps you did for the manager group entry. You're all set up now to implement the
logic needed to integrate the Activiti Engine with the ApacheDS LDAP server. You've

Figure 10.7 Defining the group name by setting the cn attribute in the New Entry wizard

Managing the user identities in an LDAP server 241

created a Kermit user and two groups, manager and sales, where you added the Ker-
mit user entry. Let’s implement the LDAP query logic and configure the Activiti
Engine to use the new user and group manager classes.

Implementing a different identity management solution for the Activiti Engine isn’t
hard. The Activiti Engine provides integration points that you can implement to
access an identity management solution of your choice. The integration points are
separated in a user manager and a group manager class. We’ll start with the user man-
ager, which provides capabilities to query the Activiti Engine for users and validates
the user’s credentials.

First, you have to implement the Activiti Engine Sessi onFact ory interface to cre-
ate a factory class for the user manager.

public class LDAPUser Manager Fact ory
i npl enents SessionFactory {

private LDAPConnecti onParans connecti onParans;

publ i c LDAPUser Manager Fact or y(
LDAPConnect i onPar ans parans) {
t hi s. connecti onParans = parans;

}

@verride

public O ass<?> get SessionType() { Implements
return User Manager. cl ass; <] user manager

}

@verride

public Session openSession() { Creates LDAP
return new LDAPUser Manager (connecti onPar ans) ; <] user manager

}

}

When you create a new instance of the LDAPUser Manager Fact ory, the connection
parameters needed to communicate with the ApacheDS LDAP server are provided.
You’ll see the definition of these parameters in the Spring configuration later on, in
listing 10.10. The LDAPConnect i onPar ams class is simple and is just a container for the
connection parameters:

public class LDAPConnecti onParans {

private String | dapServer;
private int |dapPort;
private String | dapUser;
private String | dapPassword;

/] getters and setters

242

CHAPTER 10 Implementing advanced workflow

The Activiti Engine needs to know what kind of manager will be created with this fac-
tory class, so you have to implement the get Sessi onType method and specify that
you’ll implement a User Manager type (. And, finally, you have to implement the
openSessi on method to create a new instance of the LDAPUser Manager that con-
tains the LDAP query logic needed for the user manager.

That brings us immediately to the user manager class that contains the communi-
cation and query logic for the ApacheDS LDAP server: the LDAPUser Manager. We’ll look
at this class in two parts because it’s a larger class as a result of the LDAP query logic.

public class LDAPUser Manager extends User Manager { <7 Subclass of Activiti

private static final String USER GROUP = UserManager

"ou=users, ou=systent;
private LDAPConnecti onParanms connecti onParans;

publ i ¢ LDAPUser Manager (LDAPConnecti onPar ans parans) {
thi s. connecti onParans = par ans;

}
@verride Overrides
public User createNewUser(String userld) { < default methods
throw new Activiti Exception(
"LDAP user manager doesn't support creating a new user");
}
@verride

publ i ¢ Bool ean checkPassword(String userld,
String password) {

bool ean credentialsValid = fal se; Opens connection
LdapConnecti on connection = new LdapConnecti on(<1 to LDAP server
connecti onPar ans. get LdapServer (),
connecti onPar ans. get LdapPort ());
try {
Bi ndResponse response = connecti on. bi nd(< Authenticates
"uid=" + userld + "," + USER _GROUP, password); to LDAP server
i f(response. get LdapResul t (). get Resul t Code() ==
Resul t CodeEnum SUCCESS) {

credentialsValid = true;

}
} catch (Exception e) {

throw new Activiti Exception(

"LDAP connection bind failure", e);
}
LDAPConnectionUti |l . cl oseConnection(connection);
return credential sValid;
}
}

In this first part of the LDAPUser Manager implementation, you can see that it’s imple-
mented as a subclass of the Activiti User Manager class €. The User Manager class is the

Managing the user identities in an LDAP server 243

default implementation used to query for users in the Activiti database. That’s also why
you have to override several methods that deal with creating, deleting, and updating a
user entry, as you see here with the cr eat eNewser method (). Because you’re manag-
ing the user identities in an LDAP server, you don’t want the Activiti Engine to modify
it; that’s only allowed by LDAP administrators who manage the identities using, for exam-
ple, the Apache Directory Studio. Therefore, you throw an Acti vi ti Excepti on when
these methods are invoked. This listing only includes the cr eat eNewdser method, but,
in the book’s source code you can see that more of these methods are overridden.

The checkPasswor d method is invoked when the Activiti Engine wants to validate
the user credentials. This is done when a user logs in to the Activiti Explorer and the
Activiti REST API. To be able to validate the credentials, you need to open a connec-
tion to the ApacheDS LDAP server). Then you can authenticate with the user identi-
fier and the provided password €. The outcome of the authentication request is the
result of the checkPasswor d method.

But you don’t only want to check a user’s credentials. You also want to be able to
query the Activiti Engine for users. That’s done via the findUserByQueryCriteria
method, which is shown in part 2 of the LDAPUser Manager class.

@verride
public List<User> findUserByQueryCriteria(
bj ect query, Page page) {
Li st <User> userList = new ArraylList<User>();
User Queryl npl userQuery = (UserQuerylnpl) query;
StringBuil der searchQuery = new StringBuilder();
if(StringUtils.isNotEnpty(userQuery.getld())) { Adds user
sear chQuery. append(" (ui d="). append(<1 1D to query
user Query. getld()).append(")");

} else if(StringUils.isNotEmpty(
user Query. get Last Nane())) {

Searches with
sear chQuery. append(" (sn="). append(< surname (sn)
user Query. get Last Nane()) . append(")");
} else {
sear chQuery. append(" (uid=*)"); <7 Getsall
} users
LdapConnecti on connecti on = LDAPConnecti onUti |
. openConnect i on(connecti onPar ans) ;
try {
Cur sor <Sear chResponse> cursor = connection. search(<1 Queries
USER _GROUP, searchQuery.toString(), LDAP server
Sear chScope. ONELEVEL, "*");
while (cursor.next()) {
User user = new UserEntity(); <] Maps LDAP user
SearchResul tEntry response = to Activiti user

(SearchResul t Entry) cursor.get();
Iterator<EntryAttribute> itEntry =

response. getEntry().iterator();
whil e(itEntry. hasNext()) {

244

CHAPTER 10 Implementing advanced workflow

EntryAttribute attribute = itEntry. next();

String key = attribute.getld();

if("uid".equal sl gnoreCase(key)) {
user.setld(attribute.getString());

} else if("sn".equal sl gnoreCase(key)) {
user. setLast Nane(attribute.getString());

} else if("cn".equal sl gnoreCase(key)) {
user.setFirstName(attribute.getString().substring(

0, attribute.getString().indexOr (" ")));

}
}

user Li st. add(user);

}

cursor.cl ose();
} catch (Exception e) {
throw new Activiti Exception(
"LDAP connection search failure", e);

}
LDAPConnectionUti |l . cl oseConnection(connection);
return userlList;

}
This second part of the LDAPUser Manager class contains a bit more logic related to
the implementation of the LDAP user query. You have to be able to define an LDAP
query matching the values provided by the User Queryl npl input parameter. In this
example, you can use the user identifier €0 and the last name set in the query
parameter instance. There are also other query parameters that you can set when
using the createUser Query method of the Activiti Engine |dentityService. You
may want to support all of these query parameters, and that’s possible by adding
more attributes to the user entry attributes in the LDAP server. But, for this exam-
ple, you stop with supporting the user identifier and last name parameters. In addi-
tion, when no query parameter is set in the User Queryl npl instance, you query the
LDAP server for all users

When the query is defined, you can connect to the ApacheDS LDAP server and
query it using the query string). Note that you also use the USER_GROUP class attri-
bute that tells the LDAP server to only look in the ou=users, ou=syst ementry. When
you get a response from the LDAP server, you map every retrieved user entry to an
Activiti Engine User instance

In the book’s source code, you can find an implementation similar to listings 10.7
to 10.9 for the LDAP group manager: one queries for users belonging to a specific
group and the other gets all available groups. In the book’s source code, you can look
at the LDAPG oupManager Fact ory and LDAPG oupManager classes for the implementa-
tion details.

Now that you have the implementation classes, you still need to register them in
the Activiti Engine configuration. The following listing shows a sample Activiti Engine
configuration using an in-memory database and the LDAP user and group manager.

Managing the user identities in an LDAP server 245

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean i d="processEngi neConfi guration"
class="org.activiti.engine.inpl.cfg.
St andal onel nMenPr ocessEngi neConfi guration">

<property nanme="dat abaseSchemaUpdat e" val ue="true" />
<property nane="cust onfSessi onFactori es">

<list>
<bean cl ass="org. bpmwi t hacti vi ti.chapter 10. | dap. Registers user
LDAPUser Manager Fact ory" > | manager factory
<constructor-arg ref="1dapConnecti onParans" />
</ bean>
<bean cl ass="org. bpmwi t hacti vi ti.chapter 10. | dap. Registers group
LDAPG oupManager Fact ory" > | manager factory
<constructor-arg ref="1dapConnecti onParans" />
</ bean>
</list>
</ property>
</ bean> Specifies LDAP
<bean i d="I dapConnecti onPar ans" < connection settings

cl ass="org. bprmwi t hacti viti.chapter10. | dap.
LDAPConnect i onPar ans" >
<property name="| dapServer" val ue="I| ocal host" />
<property name="|dapPort" val ue="10389" />
<property nanme="| dapUser"
val ue="ui d=admi n, ou=systent />
<property name="| dapPassword" val ue="secret" />
</ bean>
</ beans>

The difference between this Activiti Engine with LDAP configuration and a default
Activiti Engine configuration is the use of the custonBessi onFactories property.
This property allows you to override the default user and group managers by defining
the factory classes . As you can see, you can use Spring bean injection to pass
along the LDAP connection parameters ¢} to the constructor of the factory classes.

In the book’s source code, you can find two unit tests, LDAPUser Test and LDAP-
G oupTest, that use this example Activiti Engine configuration and fire a couple of
tests using the | denti t ySer vi ce interface.

You now have a good overview of what needs to be done to integrate Activiti with an
LDAP server or another identity management solution. It’s time to move on to another
workflow feature of the Activiti Engine. We’ll be looking at a whole new BPMN 2.0 ele-
ment that we haven’t used before: the multi-instance construct.

246

CHAPTER 10 Implementing advanced workflow

When you want to implement a review process with Activiti, you need a way to add a
user task for every reviewer. And, suppose you want at least 75 percent of the reviewers
to complete the user task before the review can be considered finished. This kind of
functionality is what the multi-instance construct adds to the BPMN 2.0 palette.

A multi-instance activity is used to create multiple instances of an activity like in a
for-each construct. You can configure all task activities (like service and user task),
embedded subprocesses, and call activities to be a multi-instance activity. For example,
if you define a service task as a multi-instance activity, the same service task will be exe-
cuted multiple times.

You can define a multi-instance activity to run

sequentially or in parallel. Furthermore, you can & o
. . Multi-instance Multi-instance
define how many instances must be created. Fig- user task service task

ure 10.8 shows a parallel multi-instance user task

and a sequential multi-instance service task.

You can see that a parallel multi-instance Figure 10.8 Multi-instance examples
activity (user task) has a different icon than the f::I‘(N ::\i:g:;itilﬁ':;' r::j::flt:;:i::zrer
sequential multi-instance activity (service task). vice task
Also note that, for a service task, there’s techni-
cally no difference between a parallel and sequential multi-instance definition
because the instances are always executed after each other. But, for a user task and
also for an embedded subprocess, there’s a big difference. For a parallel user task, the
user task instances are created all at once, whereas, for a sequential user task, they are
created after each other .

Before you implement a workflow example using a multi-instance definition, let’s
take a look at the different configuration options.

Let’s start with a simple multi-instance definition for a user task that creates three par-
allel instances of the review user task:
<user Task id="revi ewTask">

<mul til nstanceLoopCharacteristics isSequential ="fal se">

<l oopCardi nal i t y>3</| oopCardi nal i ty>

</ multilnstanceLoopCharacteristics>
</ user Task>
The multi-instance definition is a child element of a task activity, embedded subpro-
cess, or call activity. You have to set the attribute i sSequential totrue or fal se for
sequential or parallel multi-instance activities. The number of instances can be
defined using the | oopCardi nal ity element. In this example, you set a static value
of 3, but you can also use process variables to define the number of instances:

<l oopCardi nal i t y>${ nr Of Revi ewer s} </ | oopCardi nal i ty>

Implementing the BPMN 2.0 multi-instance activity 247

The loop cardinality value is processed only once, when the multi-
instance activity is created. When the process variable value changes during
the multi-instance activity execution, this doesn’t result in another number of
instances.

This is nice, but it gets more interesting if you pass a process variable containing a col-
lection and use the values of the collection for the user task assignment:

<user Task id="revi ewTask"
name="Revi ew task ${| oopCounter}"
activiti:assignee="${reviewer}">
<mul ti | nstanceLoopCharacteristics isSequential ="fal se">
<| oopDat al nput Ref >r evi ewer sLi st </ | oopDat al nput Ref >
<i nput Dat al t em nanme="revi ewer "/ >
</ multilnstanceLoopCharacteristics>
</ user Task>

In this example, you have a process variable named r evi ewer sLi st , which consists of
an array of string values. For every string value in the reviewers list, a new process vari-
able named r evi ewer is created in the context of the multi-instance user task. You can
use this revi ewer process variable in the assignment definition (as you can see in the
code snippet). Implicit process variables are also created. For every instance of the
user task, a unique | oopCount er value corresponding to an instance number is avail-
able. The | oopCount er value ranges from 1 to the number of instances.

The review task example has a list of reviewers that consists of an array of string val-
ues. But more often, you would have a piece of Java logic to retrieve the reviewers
from a database, for example. This can be implemented with the following Activiti
extension attributes:

<user Task id="revi ewTask"
name="Revi ew task ${| oopCounter}"
activiti:assignee="${reviewer}">
<mul ti | nstanceLoopCharacteristics isSequential ="fal se"
activiti:collection="${userService.getReviewers()}"
activiti:elementVariabl e="reviewer"/>
</ user Task>
In this example, you have a user Servi ce process variable or Spring bean on which
you can invoke the get Revi ewer s method.

Another use of the multi-instance definition is a decision-making process. Because
you need multiple persons to vote for a decision, a multi-instance definition can help
to create a user task for every voter. In the next section, we’ll discuss an example show-
ing a simple decision process.

A typical workflow requirement is to have review or decision functionality in a process
definition. And when multiple people are involved in the review or decision process, a
multi-instance definition can help to ease the complexity of the process definition. In
this section, we’ll implement a decision process where multiple people can vote for a

248

CHAPTER 10 Implementing advanced workflow

Figure 10.9 A decision process definition containing a multi-instance embedded sub-
process to allow multiple people to vote for the final decision

preliminary decision to be made final. Figure 10.9 shows the decision process defini-
tion, as modeled with the Activiti Modeler.

In the first user task of the process, you have to provide information about the pre-
liminary decision and the participants. Then, multiple instances of the embedded
subprocess are created to allow each of the participants to vote for the final decision.
To make it easy to gather all votes, you add the vote to a process variable containing all
the votes. Finally, the outcome of the decision process is published.

To implement this process definition in the Activiti Engine, you need a BPMN 2.0
XML definition, but also a number of Java service tasks. Let’s start with the BPMN 2.0
XML definition in the next listing. Don’t be distracted by the length of the listing; it
contains a lot of familiar constructs.

<definitions xm ns="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Nanespace="http://ww. bprmwi t hactiviti.org/nultiinstance">

<process id="deci si onProcess" nanme="Deci si on nmaki ng process">
<startEvent id="theStart">
<ext ensi onEl enent s>
<activiti:fornProperty id="decisionlnfo"
nanme="Deci si on i nfo"

required="true" .
type="string" /> Provides comma-

<activiti:formProperty id="participants" < separated participants
name="Partici pants (comra separated)"
required="true"
type="string" />

Implementing the BPMN 2.0 multi-instance activity

</ ext ensi onEl emrent s>
</startEvent >
<sequenceFl ow sourceRef="theStart"
t ar get Ref =" cr eat eAssi gneelLi st" />
<servi ceTask i d="creat eAssi gneelLi st"
activiti:class="org. bpmwi thactiviti.chapterl0.
mul tiinstance. Creat eAssi gneelList" />
<sequenceFl ow sour ceRef ="cr eat eAssi gneeli st ™"
t ar get Ref =" deci si onSubProcess"/ >
<subProcess i d="deci si onSubProcess">
<mul ti | nstanceLoopCharacteristics
i sSequenti al ="fal se">

249

Creates list of

y participants

Creates a multi-
4 instance subprocess

<| oopDat al nput Ref >assi gneeli st </ | oopDat al nput Ref >

<i nput Dat al t em nane="assi gnee"/>
<conpl eti onCondi ti on>
${ nr O Conpl et edl nst ances/ nr&f I nstances > 0.5 }
</ conpl eti onConditi on>
</mul tilnstanceLoopCharacteristics>
<startEvent id="theStartSubProcess" />
<sequenceFl ow sour ceRef ="t heSt art SubPr ocess"
t ar get Ref =" deci si onTask" />
<user Task id="deci si onTask" nane="Deci sion task"
activiti:assignee="%${assignee}">
<ext ensi onEl enent s>
<activiti:fornProperty id="deci sionlnfo"
nane="Deci si on i nfo"
expressi on="${deci si onl nfo}"
writable="fal se"/>
<activiti:fornProperty id="vote"
nane="Do you approve the prelimnary decisi
required="true"
type="enunt >
<activiti:value id="true" name="Yes"/>
<activiti:value id="fal se" name="No"/>
</activiti:fornProperty>
</ ext ensi onEl enent s>
</ user Task>
<sequenceFl ow sour ceRef ="deci si onTask"
t ar get Ref =" gat her Deci si onVote" />
<servi ceTask i d="gat herDeci si onVot e"
activiti:class="org. bpmwi thactiviti.chapter10.
mul tiinstance. AddDeci si onVote" />
<sequenceFl ow sour ceRef =" gat her Deci si onVot e"
t ar get Ref ="t heEndSubPr ocess" />
<endEvent id="theEndSubProcess" />
</ subProcess>
<sequenceFl ow sour ceRef ="deci si onSubPr ocess"
t ar get Ref =" out comeTask" />
<servi ceTask i d="out comeTask"
activiti:class="org. bpmwi thactiviti.chapterl0.
mul tiinstance. PublishVotePol " />
<sequenceFl ow sour ceRef =" out coneTask"
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
</definitions>

a1

on"

]

Defines
completion
condition

Provides
participant vote

Publishes
result of votes

250

CHAPTER 10 Implementing advanced workflow

As you can see, BPMN 2.0 XML gets quite verbose when implementing a decision pro-
cess. You can also use the Activiti Designer to abstract you from the XML, because the
multi-instance definition is supported there also. But to learn about all the detalils, it’s
good to start with the XML definition as in this process example.

When the process instance is started, a form property containing the participants
as a comma-separated string must be provided (). Because the multi-instance con-
struct doesn’t support a comma-separated string, you first must transform it to a
java.util.List and add it as an assi gneeLi st process variable

Then you define multi-instance characteristics on the embedded subprocess
using the assigneelLi st . You add a new configuration option to the multi-
instance definition by defining a completion condition €. In a completion condi-
tion, you can define an expression that completes the multi-instance activity before
all instances have completed. In this example, you use the implicit process variables
nr Of Conpl et edl nst ances (the number of instances of the multi-instance activity that
have already been completed) and nrOf | nstances (the total number of instances
calculated when creating the multi-instance activity). When more than half of the
instances have been completed, the multi-instance embedded subprocess will com-
plete and progress to the next activity; in this example, out comeTask.

As part of the multi-instance embedded subprocess, you define a vot e user task
where a participant can enter a vote for the preliminary decision). After the vote is
entered, the vote is added to a global list of votes in the gat her Deci si onVot e service
task. At the end of the process definition, the out conmeTask service task prints the
vote outcome to the console.

The implementation logic of the Java service task classes isn’t hard to understand.
The Creat eAssi gneelLi st transforms the comma-separated string into a list. The
AddDeci si onVot e class is quite simple, too, but it contains an important piece of logic
concerning the process context, as you can see in the next listing.

public class AddDeci si onVote inplenments JavaDel egate {

public void execute(Del egat eExecuti on execution) {

String assignee = (String)
execution. get Vari abl eLocal ("assi gnee"); <] Gets assignee

String voteQutcone = (String) from local context
execution. getVariabl e("vote");

Vote vote = new Vote();

vot e. set Nanme(assi gnee) ;

vot e. set Appr oved(Bool ean. val ueX (vot eCut cone)) ;

Deci si onVoting voting = (DecisionVoting)
execution. get Vari abl e("vot eCut cone") ;

voti ng. addVot e(vot e) ;

execution. setVari abl e("vot eQut cone", voting);

Implementing the BPMN 2.0 multi-instance activity 251

The AddDeci si onVot e class is executed after the participant enters the vote. You can
retrieve the assignee of the previous user task from the local context (). Because the
assignee is different for every instance of the multi-instance embedded subprocess, it’s
important that you can retrieve it from the local process context because the local
process context is unique for every instance. The assi gnee variable is available in the
local context of the Java service task.

Note that the vote outcome of the previous user task isn’t available in the local con-
text of the Java service task. This means you have to retrieve it from the global process
context using the get Var i abl e method.

In a multi-instance subprocess, the form properties of a user task are
set to the global process context and not to the multi-instance local context.
This means that when you have multiple user tasks in a multi-instance subpro-
cess, the values of the form properties mapped to process variables are over-
written by the last user task. In this example, you use one user task, and then
it’s no problem because the service task is executed in the same transaction as
the complete action of the user task.

At the end of the execut e method of the AddDeci si onVot e class, you explicitly set the
Deci si onVot i ng instance as a variable again after adding the vote outcome. You do
this so the new value of the vot eQut come process variable is added to the historic vari-
able update list.

In the last service task class of the decision process definition, Publ i shVot ePol | ,
the outcome of the voting is printed to the console. You can look at the details in the
book’s source code.

Now, let’s execute the decision process definition using a unit test.

public class MiltilnstanceTest extends AbstractTest {

@rul e
public ActivitiRule activitiRule = new ActivitiRul e(
"activiti.cfg-memfullhistory. xm");

@est
@epl oynment (resources={"chapter10/multiinstance/" +
“mul tiinstance. bpmm20. xm "})
public void doMil ti Tasking() {
String processDefinitionld = activitiRule
. get Reposi toryServi ce()
.createProcessDefinitionQuery()
.singl eResul t ()
.getld();
Map<String, String> variableMap =
new HashMap<String, String>();

vari abl eMap. put (" deci si onl nfo", "test"); Enters three
vari abl eMap. put ("partici pants", par?lgpants for
“kernit,fonzie, gonzo"); decision process

Processl nstance processlnstance = activitiRule

252

}

}

CHAPTER 10 Implementing advanced workflow

. get For nBSer vi ce()

. submi t St art For nDat a(

processDefinitionld, variabl eMap);
assert Not Nul | (processl nstance);
Li st <Task> taskList = activitiRule

. get TaskServi ce()

. creat eTaskQuery()

Jdist(); Creates three
assert Equal s(3, taskList.size()); 4| user tasks
for (Task task : taskList) {

if (activitiRule.getTaskService()
.createTaskQuery().taskld(task.getld()).count() >0) {
Map<String, String> taskMap =
new HashMap<String, String>();

taskMap. put ("vote", "true");

activitiRul e. get FornService()

. submi t TaskFor nDat a(t ask. get1d(), taskMap); Completes

} two of three
} user tasks

bool ean vot eCQut coneTested = fal se;
Li st<Hi storicDetail > historicVariabl eUpdatelList =
activiti Rule
.get Hi storyService()
.createH storicDetail Query()
.vari abl eUpdat es()

.orderByTi ne()
. desc() Gets all process

dist(); 4 variables
for (H storicDetail historicDetail
hi storicVari abl eUpdat eLi st) {

Hi storicVari abl eUpdate historicVariabl eUpdate =
(H storicVariabl eUpdate) historicDetail;

i f("voteCQutcome". equal s(
hi storicVari abl eUpdat e. get Vari abl eNane())) {

vot eQut coneTested = true;
Deci si onVoti ng voting = (Deci sionVoting)
hi stori cVari abl eUpdat e. get Val ue() ;
assert True(voting. i sDeci si onVoti ngQut cone()); Makes sure there
assert Equal s(2, voting. getVotes().size()); < aretwo votes
for (Vote vote : voting.getVotes()) {
assert True(vote. i sApproved());

}
br eak;
}

}

assert True(vot eQut coneTest ed) ;

To test the decision process definition, you start a new process instance with three par-

ticipants (). When the process instance is started, three instances of the embedded

subprocess should be created, so three user tasks should be found when retrieving all

the user tasks . Then you complete the user tasks with a vote equal to tr ue

10.4

104.1

Custom form types and external form rendering 253

When the second user task is completed, the completion condition that more than
half of the instances should be completed is true, and, therefore, the multi-instance
embedded subprocess will finish. This also implies that the third task is deleted before
it can be completed, and, therefore, the unit test implementation validates whether a
task still exists before it is completed. Then the vote results are published via the
Publ i shVot ePol | service task class.

To validate the process variables, you use the Hi st orySer vi ce interface to retrieve
all process variable updates ordered by update time in descending order €3; you'll get
the latest process variable updates at the top of the list. You're interested in the vot e-
Qut come process variable to test whether the decision outcome equals true, as
expected. In addition, you test whether there are two votes in the list & that also have
avalue of t rue.

As you’ve seen in this example, the multi-instance definition can be handy when
you want to implement review, approval, or decision-like logic in your process defini-
tion. In this decision process example, we used form properties again to define the
user forms that interact with the process. But we’re restricted to the form types sup-
ported by the Activiti Engine. In the next section, we’ll explore defining new form
types and using another type of form rendering.

Custom form types and external form rendering

We’ve been defining user task forms using the start event and user task form proper-
ties in this chapter’s examples as well as in previous chapters. But the number of
default form types supported by the Activiti Engine and Activiti Explorer is pretty lim-
ited when you want to implement complex user forms.

Implementing a custom form type

One example of a more complex form type is the User For niType that you can find in the
Activiti Explorer classes. The User For niType can be used to select a user from the list of
users in the Activiti Engine | dent i t ySer vi ce. Figure 10.10 shows a screenshot of a sam-
ple process definition that requires selecting an approver using the User For niType.

Select user

o] | ih Select myseit '|

& Kermit The Frog

Figure 10.10 An example
approval process using the
User For niType to select
an approver for the approval
process

254

CHAPTER 10 Implementing advanced workflow

As you can see, the User For nifype contains a lot more logic than the simple String or
Dat e form types. It’s implemented with a pop-up menu that searches in the user list
while you are typing the search characters. It’s possible to implement more complex
form types of this sort using the Vaadin framework (the web framework that is used to
implement the Activiti Explorer). In this section, we’ll take a look at how to imple-
ment a simple custom form type.

The first step in implementing a custom form type is to check out the source code
of the Activiti Explorer. This has been done for you, as you can see in the book-
expl orer - f or mproject in the book’s source code. There, you can start defining a new
form type by extending the Abst ract For nType class, as shown in the next listing.

public class Text AreaFornType extends Abstract ForniType {
public static final String TYPE_NAME = "textarea";

public String getName() {
return TYPE_NAME;

}
@verride Converts form value
publi c Object convert Fornval ueToModel Val ue(< to process variable
String propertyVal ue) {
return propertyVal ue;
}
@verride Converts process
public String convertMdel Val ueToFor nval ue(| variable to form value
Obj ect nodel Val ue) {
return (String) nodel Val ue;
}

}

Because the text area contains text, you don’t have to do a lot to implement the new
form type. You have to define a name that can be used to uniquely reference the form
type in the form properties definition. Then you need to implement logic to convert
the String value of the form field into a process variable (), in this case, also a St ri ng
value. You also need to convert the process variable object into a form field St ri ng

In addition to the form type definition, you also need to implement the form field
user interface. Because the Activiti Explorer is implemented in Vaadin, the form field
Ul logic also has to be implemented using Vaadin. Let’s see how we can implement a
text area in Vaadin in the following listing.

public class Text AreaFor nPropertyRenderer extends
Abst r act For nPr opert yRenderer {

public Text AreaFor nPropertyRenderer () { Sets form
super (Text Ar eaFor niType. cl ass) ; 4| typeclass

}
@verride

Custom form types and external form rendering 255

public Field getPropertyFiel d(FornProperty fornProperty) {

Text Area text Area = new Text Area(

get PropertyLabel (fornProperty)); < Defines
t ext Area. set Requi red(fornProperty.isRequired()); field label
t ext Area. set Enabl ed(fornProperty.isWitable());
t ext Area. set Rows(10);
t ext Ar ea. set Col utms(50) ;
t ext Ar ea. set Requi r edEr r or (get Message(

Messages. FORM_FI ELD_REQUI RED,

get PropertylLabel (fornProperty)));

if (fornProperty.getValue() !'= null) { Sets text
t ext Ar ea. set Val ue(f or mProperty. get Val ue()); < | areavalue

}

return textArea,

}

}
When you want to implement the UI for a new custom form field, it’s best to start with
extending the Abstract For nPropert yRender er class. The UI implementation is cou-
pled to the form type definition class by calling the superclass with the Text Ar eaFor m
Type class €. The form renderer of the Activiti Explorer expects a Fi el d instance to
display on the screen. A Text Ar ea is also a subclass of Fi el d, so you can return a Tex-
t Area as the result of the get PropertyFi el d method. The Abst ract For nProperty-
Render er provides a number of convenience class already, like the get Propert yLabel
method to retrieve the label text from a form property 2. Eventually, the value
defined in the form property is set to fill the text area

With the form type definition and the form field UI classes implemented, you have
to configure the new form type in two Spring configuration files in the Activiti
Explorer source code (or book-expl orer-form for this example). First, you have to
add a custom form type to the process engine configuration in the src/main/
webapp/WEB-INF/applicationContext.xml file:

<bean i d="processEngi neConfi guration"
class="org.activiti.spring.SpringProcessEngi neConfiguration">
<property nane="dat aSource" ref="dataSource" />
<property name="transacti onManager" ref="transacti onManager" />
<property nanme="dat abaseSchemaUpdat e" val ue="true" />
<property nanme="j obExecutorActivate" value="true" />
<property nanme="custonfFor mlypes">
<list>
<ref bean="user For nilype"/ >
<ref bean="t ext AreaFor nType"/>
</list>
</ property>
</ bean>

<bean i d="t ext Ar eaFor niType"

class="org. bpmwi t hactiviti.expl orer.form Text AreaFor nType"/ >
The second configuration file is the src/main/webapp/WEB-INF/activiti-ui-context.xml
definition of Ul-related classes. There you need to register the form property renderer
class, Text Ar eaFor nPropert yRender er:

256

CHAPTER 10 Implementing advanced workflow

<property name="propertyRenderers">
<list>
<bean
class="org.activiti.explorer.ui.form StringFornPropertyRenderer" />
<bean cl ass="org.activiti.explorer.ui.form EnunfFornPropertyRenderer" />
<bean cl ass="org.activiti.explorer.ui.form LongFornPropertyRenderer" />
<bean cl ass="org. activiti.explorer.ui.form DateFornPropertyRenderer" />
<bean cl ass="org.activiti.explorer.ui.form UserFornPropertyRenderer" />
<bean
class="org. activiti.explorer.ui.form Bool eanFor nPropertyRenderer" />
<bean
cl ass="org. bpmmwi t hactiviti.explorer.form
Text Ar eaFor nPr opertyRenderer" />
</list>
</ property>
Now you can start using the text area form type in the form property definition of a
BPMN 2.0 XML file. In the book- expl or er - f or mproject, the approval process contains
a start event form with a text area for the instructions form property. Start the book-
expl orer-formapplication by running nvn clean install jetty:runin the root
directory of the project. Next, open a web browser to http://localhost:8080/book-
explorer and start a new approval process. The instructions form field should now
contain the text area form field you defined in the custom form type classes (see fig-
ure 10.11).

You can implement a lot of different form types to support all kinds of form fields.
But, you may not want to invest in a Vaadin-based web application because your orga-
nization may have standardized on another UI technology. In the next section, we’ll
look into the external form rendering support in the Activiti Engine so that you can

use other UI technologies.

Version 1 (%) Deployed moments ago

i A Simple approval process

Approver No userselected (Selectuser

Approval due date *

Difficulty (number)

Instructions

Start process Cancel

Figure 10.11 A sample process using the new text area custom form type

Custom form types and external form rendering 257

When you don’t want to use the already existing form rendering infrastructure of the

Activiti Explorer written in Vaadin, there’s the option of external form rendering.

With external form rendering, you're writing the user forms with your technology of

choice, but that also means you’re pretty much on your own when writing the logic.
There are two ways to go ahead with external form rendering:

= Use the form properties infrastructure and build a form-rendering engine in
the UI technology of your choice.

= Only use the form key attribute in the start event or user task definition and
develop a web application pretty much the way you’re used to. The main differ-
ence is that the navigation will be partially dominated by the process definition.

When you go for the first option, your best reference is the Activiti Explorer code—
look at how the form rendering is implemented there. We looked at how the form
types and the field form rendering is implemented and configured in section 10.4.1.

But it may be better to go for the second option because you can then leverage the
UI technology in a more default way. In chapter 9, we looked at how you can use JSF 2
in combination with CDI to build a custom workflow and process application. In the
remainder of this section, we’ll focus on the form rendering implementation of the
book- cdi - app project you built in chapter 9.

Let’s go back to the book order process definition implemented in the book- cdi -
app project. You start the process definition with a start event for which you config-
ured a form key attribute:
<startEvent id="startEvent" name="Start"

activiti:fornmKey="taskForm newOrder.jsf" />
The form key corresponds directly to a JSF page that you want to use to present the
start form of the book order process. You could also use a logical name for the form
key and add a navigation rule in the faces-config.xml file.

When you want to open the start form of a process definition, you can use the
default JSF output link component. In the processList.xhtml file of the book- cdi - app
project, you list all the process definitions deployed on the Activiti Engine and, for
every process, you can go to the start form page using the following output link con-
figuration:
<h: out put Li nk

val ue="#{f or nSer vi ce. get St art For nDat a(v_process. id).fornKey}">

Start

<f: param name="processDefinitionKey" val ue="#{v_process. key}"></f: paranm>
</ h: out put Li nk>
In this example, you use the Activiti CDI module to get the form service interface.
Then you retrieve the start form data using the process definition identifier, and you
can access the form key attribute. You also pass along the process definition key as a
request parameter to be used in the t askFor m_newQr der . j sf page.

258

CHAPTER 10 Implementing advanced workflow

In this start form page, you can now implement a user form using standard JSF
tags. Let’s look at the main part of the t askFor m newCQr der . xht Ml page to see how this
is done:

<ui : defi ne nane="content">
<f: met adat a>
<l-- bind the key of the process to be started -->
<f:viewParam i d="processDefi niti onKey" nanme="processDefinitionKey" />
</ f: met adat a>

<h1>New book order</hl>
<h: forne
<t abl e>
<tr>
<td>l SBN. </ td>
<t d><h:input Text val ue="#{bookOrder.isbn}" /></td>
</tr>
<tr>
<td></td>
<t d><h: conmandBut t on val ue="Subni t"
acti on="#{busi nessProcess. start ProcessByKey(processDefinitionKey)}"/>
</td>
</tr>
</ tabl e>
</h:fornmp
</ ui : defi ne>
As you can see, this page contains only standard JSF tags. But, you also leverage the
Activiti CDI module for convenience. First, the process-scoped bookOr der variable is
available in the JSF page context, so you can inject the value of the ISBN form field
directly into the i shn attribute of the bookOrder process variable. You don’t use any
form property definition because you define the user form directly using JSF tags. But
you can directly set a form field value in a process variable by using the process-scoped
beans functionality of the Activiti CDI module.

In addition, you need a way to start a new process instance when you click Submit
in the user form. The Activiti CDI module helps here by offering a busi nessProcess
bean that you can invoke directly from a command button. But when you can’t or
don’t want to use the Activiti CDI module, you can still implement this logic easily in a
JSF managed bean.

As you can see, it’s not hard to implement your own form rendering logic. You can
utilize your UI technology of choice and Activiti can help with the form key attribute
to do basic page navigation for the user forms.

We’ve come to the end of a long chapter. We took a look at a good number of
workflow features you can implement on the Activiti Engine by utilizing the out-of-
the-box functionality or by developing small pieces of logic and configuring them in
the process engine configuration. You're now ready to develop your own work-
flow application!

Summary 259

Workflow is an important part of developing business process applications. In many
cases, not all tasks in a process can be executed automatically by invoking web services
or other external resources. For example, people must provide information in the
process, and they’re needed to review and approve specific parts of the process execu-
tion. In this chapter, you saw that Activiti supports a wide range of workflow features.

We started with an introduction to subtasks and task delegation features that are sup-
ported via the Activiti APT and, in part, via the Activiti Explorer. Then we saw thatit’s not
hard to implement a workflow pattern like the four-eye principle using a task listener.

Then we moved on to integrating an LDAP server with the Activiti Engine for iden-
tity management. In a lot of organizations, you don’t want to add a separate store of
identities like the default Activiti Engine database, but you want to leverage the exist-
ing identity management solution. Activiti is pluggable and can integrate with another
identity management solution using custom user and group managers.

We also looked at the configuration options of the new BPMN 2.0 multi-instance con-
struct and implemented an example process definition using a multi-instance embed-
ded subprocess. Multi-instance activities like user tasks and embedded subprocesses can
be handy when implementing review and approval logic involving multiple people.

Finally, we looked at how to extend and customize the form rendering capabilities
of the Activiti Engine. You can extend the set of supported form types by implement-
ing a new form type using the Vaadin UI framework. But, it’s also possible to use a UI
technology of your choice, like JSF (see chapter 9).

In the next chapter, we’ll start looking outside the Activiti Engine. Often, you need
to communicate with external resources such as ERP, CRM, and billing applications
from a business process. We’ll look at how you can leverage integration frameworks
like Mule and Camel to communicate with applications outside the Activiti Engine.

Up to now, we’ve been focusing on the Activiti process engine running BPMN 2.0
process definitions. But let’s think about a use case where we’d want an order pro-
cess accessing an order or enterprise resource planning (ERP) application, like SAP.
Using what we’ve covered so far, we could implement a service task with a Java class
or a Spring bean. In chapter 7, we saw that we can invoke a web service using a Java
service task, so that could be a good approach.

But, if we want to send a message to a queue or communicate with a legacy sys-
tem that only supports COBOL copybooks, this gets harder and harder. Wouldn’t it
be nice to leverage an integration platform like an enterprise service bus (ESB) or
something similar to implement this integration functionality? The Activiti project

260

Invoking services from a BPMN 2.0 process 261

contains integration with Mule ESB (from MuleSoft) and Apache Camel without the
need for glue coding.

This chapter will show you how to communicate with external services and applica-
tions, starting with the BPMN 2.0 web service support in section 11.2. Then, we’ll dis-
cuss the Camel integration of the Activiti framework in section 11.3 and use the Mule
ESB from a BPMN process in section 11.4. Because Camel and Mule provide similar
capabilities, we’ll implement comparable code examples, so you can decide which
coding style you like most.

But, first, let’s start with an introduction to communicating with external services
and applications from a process instance.

Activiti provides a flexible and extendable API to implement custom logic in BPMN
processes, for example, by implementing a Java service task or an event listener. You
can use plain Java to code your logic, or you can leverage the wide set of functionality
offered by the Spring framework and use expressions or delegate expressions in a ser-
vice task. This paves the way to also implement integration logic to invoke external
services or applications from a BPMN process.

But is the process engine the right place to implement this integration logic? If you
want to invoke a simple web service, it could be the right place. In section 11.2, you’ll
see that the BPMN palette includes a web service task to invoke web services. But, what
if the web service interface contains a data model that’s very different from the pro-
cess data model? Then you would need to implement transformation logic to be able
to invoke this web service.

Let’s look at two ways to communicate with services from a process, starting with
communicating via the service tasks.

With the Java service task and the web service task (implementing a web service task is
explained in section 11.2), all the options are open to implement integration logic in
the BPMN process definition itself. Let’s imagine a use case where an order process
needs to communicate with a customer relationship management (CRM) application
to retrieve credit rating details about a specific customer and communicate with the
ERP application to store order information.

To be able to communicate with these applications, you’ll have to implement quite
a bit of integration logic. First, you’ll need to transform the process variables into a
format that the CRM application and the ERP application can understand. If the ERP
application only communicates via, for example, a COBOL copybook format, this can
be quite cumbersome.

In addition, you’ll have to interface with the communication protocol of these
applications, whether message queuing, FTP, file, or something else. You’d have to
implement this kind of interfacing logic as well. You could use a framework to provide

262

CHAPTER 11 Integrating services with a BPMN 2.0 process

Activiti process engine

Review order

Customer has a bad rating

i
Get customer info

by customer
number

&

Store order in
ERP application

Customer has a good rating

Transformation logic Transformation logic

Interface logic Interface logic

o =

CRM application ERP application
T -
CRM application ERP application has a
has a web COBOL copybook MQ
service interface interface

Figure 11.1 Overview of an order process example that communicates with the CRM and ERP ap-
plications. Because these applications use a different data model, transformation logic is needed in
addition to the interfacing logic to communicate via web services and a message queue.

message queuing capabilities, like Apache ActiveMQ, but this would still mean addi-
tional coding. Figure 11.1 provides an overview of this use case.

As figure 11.1 shows, you’ll have to enhance the service tasks with transformation
and interface logic. Why not use a framework that provides tools to create integration
logic? That would clearly separate the process logic from the integration logic and
keep the Activiti process engine dedicated to managing processes. Activiti provides
out-of-the-box integration with Apache Camel and Mule ESB to let these frameworks
(or ESBs, if you prefer) handle the integration logic details.

Let’s look at an architecture that clearly separates process logic (BPM) from inte-
gration logic (ESB).

Although the Activiti Engine has a flexible and extendable foundation, it’s important
to keep in mind that it’s a process engine. Everything that closely relates to process
logic, like workflow people assignment, handling process events, or working with pro-
cess variables, has its place on the Activiti Engine. Even simple database logic with the
JPA extension and straightforward web service invocations using the web service task
or a Java service task with CXF client code (like we used in chapter 7) is fine.

Invoking services from a BPMN 2.0 process 263

But, when you run into requirements where you have to communicate with a ser-
vice or application, and you need to apply data transformation or implement logic to
communicate via message queuing or a file interface, you may want to consider using
an additional integration framework (like Apache Camel or Mule ESB) to implement
the integration logic. Let’s look at the same order process example as in the previous
section, but now with an integration framework or ESB added to the architecture (see
figure 11.2).

The addition of an ESB or integration framework to the architecture provides a
clear separation between the process definition and instances on the one side and the
logic to communicate with the CRM and ERP applications on the other side. Adding
an integration framework causes an additional learning curve and maintenance
requirements, but, as you’ll see in sections 11.3 and 11.4, it’s easy to leverage Apache
Camel and Mule ESB functionality without a lot of additional knowledge.

Ifyou do want to know more about Camel and Mule, you can learn all about
them in Camel in Action by Claus Ibsen and Jonathan Anstey (Manning, 2010) and
Mule in Action by David Dossot and John D’Emic (Manning, 2009).

Activiti process engine

&

Review order

Customer has a bad rating

&
o
Get customer info

by customer
number

%

Store order in
ERP application

Customer has a good rating

v v

Transformation logic Transformation logic

Interface logic Interface logic

ESB / integration platform

CRM application ERP application
e
CRM application ERP application has a
has a web COBOL copybook MQ
service interface interface

Figure11.2 The same order process example as figure 11.1, but now with the ESB or integration frame-
work added as an additional layer in the architecture

264

CHAPTER 11 Integrating services with a BPMN 2.0 process

But, before we dive into the integration frameworks, we’ll first look at the BPMN web
service task. For simple web service invocations, this BPMN 2.0 task element provides
you with all the functionality you need.

SOAP web service communication between applications is common in a lot of organi-
zations. In the BPMN 2.0 specification, a special task element to support web service
communication was added to facilitate this common way of communicating. In chap-
ter 7, we saw that it’s quite easy to implement a web service client in a Java service task
using a web service framework like Apache CXF. In this section, we’ll explore how you
can implement a web service invocation in a BPMN 2.0 process definition without the
need for additional Java coding.

As you’ll see in a moment, the configuration of the web service task is far from
easy. Remember that there’s an alternative: implementing a web service client using a
Java service task (see chapter 7). In the example implemented in this section, you’ll
invoke a simple web service, which will look up the address of a customer based on its
name. We’ll reuse some of the code we used in chapter 7 in the book- sal es- app web
application. The address web service looks like this:

@\ebServi ce
public class AddressService {

private Custoner DAO cust omer DAG,

@\ébResul t (nane="addr ess")
public String findCustonerAddress(
@\ebPar an{ nane="cust oner Nane") String custoner Nane) {

Custoner custoner = custoner DAO. get Cust omer ByNanmeOr Cont act Per son(
cust omer Nanme, null);
if (customer !'= null) {
return custoner. get Cust oner Address();
} else {
t hrow new Runti neException("Customer not found!");
}
}

@\éebMet hod(excl ude=true)
public void set Cust omer DAQ(Cust oner DAO cust oner DAO) {
t hi s. cust omer DAO = cust orrer DAO,

}

}
From the BPMN 2.0 process definition, you’ll invoke the fi ndCust oner Addr ess web
service method and provide a customer name as input. The web service will respond
with a customer address when the provided customer name can be found in the data-
base. To start the web service application, execute nvn jetty:run in the root of the
book- sal es- app web application project.

Now let’s move on to the BPMN 2.0 process definition. Because we want to focus on
the web service invocation, we’ll keep the rest of the process definition simple. The

Using the BPMN 2.0 web service task 265

process definition contains quite a lot of XML elements, so the BPMN 2.0 XML is
divided into two sections, starting with the web service definition in the next listing.

<definitions xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
t ar get Nanespace="http://ww. bprmwi t hactiviti.org"
xm ns:tns="http://ww. bprmwi t hactiviti.org"
xm ns:activiti="http://activiti.org/bpm"

xm ns: sal es="http://ws. chapter1l. bprmwi t hactiviti.org/"> ‘I”r:Eorts
<import inportType="http://schems. xm soap. or g/ wsdl /" <1J service
I ocation="http://1 ocal host: 8081/ book- sal es-app/
servi ces/ addr ess?wsdl| " Defines
nanespace="http://ws. chapter11. bprmwi t hactiviti.org/" /> request
<message i d="findCust oner Addr essRequest Message" <1J message
i temRef ="tns: fi ndCust orer Addr essRequestItent />
<message i d="findCustoner Addr essResponseMessage" References
itemRef ="t ns: fi ndCust omer Addr essResponseltem' /> WSDL input
<itenDefinition id="findCust omer Addr essRequest | t ent message
struct ureRef ="sal es: fi ndCust oner Addr ess" />
<itenDefinition id="findCustoner Addr essResponsel t enf
struct ureRef ="sal es: fi ndCust oner Addr essResponse" /> References
<interface name="Find custoner address" <,J WSDL port
i npl enent at i onRef =" sal es: Addr essSer vi ce"> type
<operation id="findCustomer AddressQOperati on"
nane="Fi nd custoner address operation"
i npl ement ati onRef ="sal es: fi ndCust orer Addr ess" > References
<i nMessageRef > ﬁ WSDL
tns: fi ndCust omer Addr essRequest Message operation
</ i nMessageRef >
<out MessageRef >
tns: fi ndCust omer Addr essResponseMessage
</ out MessageRef >
</ operati on>
</interface>
<itemDefinition id="name"
structureRef="string" />
<itenDefinition id="customnerNane" 47 Input element
structureRef="string" /> as defined in
<itenDefinition id="address" WSDL

structureRef="string" />
<itenDefinition id="webservi ceResponse"
structureRef="string" />

<!-- remmining, see code listing 11.2 -->
</ definitions>
To be able to invoke a web service from a web service task, you first have to import the
web service definition (). The location of the WSDL file must be defined and the tar-

get namespace of the imported WSDL must be configured. Then the input and output
messages for the web service invocation must be defined 4. These messages use an

266

CHAPTER 11 Integrating services with a BPMN 2.0 process

item definition with a reference to the input and output messages defined in the
WSDL). This makes the structure of the input and output message of the web service
operation available in the BPMN 2.0 process definition.

With the message structure defined, you can define the interface of the web service
invocation with a reference to the WSDL port type Addr essSer vi ce €. In the interface,
the web service operation you want to invoke, f i ndCust omer Addr ess, is defined ¢0. In
the web service operation, the input and output message definitions are referenced.

Finally, the input and output element variables are defined. The cust onmer Nanme
item definition (2 references the XSD element name of the input message defined in
the WSDL of the address web service. The nane item definition will be used in the next
listing to fill the cust omer Nane item definition from the nane process variable. The
same goes for the addr ess item definition, which matches the output XSD element in
the WSDL, and the webser vi ceResponse item definition that will be used as the new
process variable containing the web service result.

With the web service definition imported, you can now implement the web service
task and the rest of the process definition.

<process id="customner">
<startEvent id="startevent" nanme="Start"/>
<sequenceFl ow sour ceRef ="startevent"
t ar get Ref =" webSer vi ce"/ > Implements
<servi ceTask id="webService" web service

name="Fi nd custoner address web service" task

i mpl enent at i on="##WebSer vi ce"

oper ationRef ="t ns: fi ndCust oner Addr essQper ati on" > ﬁ References
<i oSpeci fication> deﬁneq

<dat al nput operation

i t enBubj ect Ref ="t ns: fi ndCust omer Addr essRequest | t ent’
i d="datal nput" />
<dat aQut put
i t enBubj ect Ref ="t ns: References
fi ndCust omer Addr essResponsel t ent' P item definition
i d="dat aQut put" />

<i nput Set >
<dat al nput Ref s>dat al nput </ dat al nput Ref s>
</ i nput Set > References
<out put Set > data(.)l.ltput
<dat aQut put Ref s>dat aQut put </ dat aQut put Ref s> definition

</ out put Set >
</ioSpecification>

<dat al nput Associ ati on> Maps process
<sour ceRef >nane</ sour ceRef > r variable to WSDL
<t ar get Ref >cust ormer Nane</ t ar get Ref > input element

</ dat al nput Associ ati on>

<dat aQut put Associ ati on> Maps WSDL
<sour ceRef >addr ess</ sour ceRef > r output element to
<t ar get Ref >webser vi ceResponse</t ar get Ref > process variable

</ dat aQut put Associ ati on>

Using the BPMN 2.0 web service task 267

</ servi ceTask>
<sequenceFl ow sour ceRef ="webServi ce"
target Ref="wai t State"/>
<receiveTask id="waitState" />
<sequenceFl ow sour ceRef ="wai t St at e"
tar get Ref =" endevent" />
<endEvent id="endevent" name="End"/>
</ process>
A web service task can be defined by using the i npl enent ati on attribute value of
##WebSer vi ce (). In addition, the web service operation that should be invoked must
be defined . This is a reference to the operation definition you implemented in the
first part of this process definition, in listing 11.1.

To fill in the customer name as an input variable for the web service and handle the
web service result, an i oSpeci fication and an input and output dat aAssoci ati on
must be defined. Thei oSpeci fi cati onreferences the item definitions of the input and
output messages defined in listing 11.1. This is completed with i nput Set and
out put Set definitions.

Next, the input and output element values must be defined. The dat al nput -
Associ at i on contains a sour ceRef value with the process variable that will be used as
input and a t ar get Ref value that matches the XSD element of the input message
The dat aQut put Associ ati on contains a sour ceRef value that matches the XSD ele-
ment of the output message and a t ar get Ref value with the name of the new process
variable that will contain the web service result

This example has only one input XSD element and one output XSD element, but
you can add as many input and output elements as needed. But, as you can see, the
number of XML elements needed to implement a web service invocation is quite
large. To test this web service example, you can run the WbServi ceTest unit test
available in the bprm- exanpl es project:

public class WbServiceTest extends Abstract Test {

@rul e
public ActivitiRule activitiRule =
new ActivitiRule("activiti.cfg-nmemxm");

@est
@epl oynment (resour ces={"chapt er 11/ webser vi ce/ cust oner. bprm20. xm "})
public void queryTask() {
Map<String, Object> variabl eMap = new HashMap<String, Cbject>();
vari abl eMap. put ("nane", "Al fresco");
vari abl eMap. put (" cont act person”, "Tom Baeyens");
Processl nstance processlnstance = activitiRule
.get Runti meService()
.start Processl nst anceByKey("custoner", variabl eMap);
bj ect responseValue = activitiRule
.get Runti meService()
.getVari abl e(processl nst ance. get Processl nstancel d(),
"webser vi ceResponse") ;
assert Equal s(" Hi ghl ands 343", responseVal ue);

268

CHAPTER 11 Integrating services with a BPMN 2.0 process

This unit test should run green when the web service is available and the Test Dat a class
in the book- sal es- app is executed to fill the database with test data. Combined with the
web service client example from chapter 7, this example gives a good picture of the pos-
sibilities for communicating with web services from a BPMN 2.0 process in Activiti.

Activiti’s web service task is implemented in a separate module named Activiti CXF.
Make sure that the dependency is on the classpath when using the web service task
functionality. The Activiti CXF module isn’t, for example, installed in the WEB-INF/lib
directory of the Activiti Explorer. We’ve added the following dependency to the
pom.xml file of the bpm- exanpl es project:

<dependency>
<groupl d>org. activiti </ groupl d>
<artifactld>activiti-cxf</artifactld>
<versi on>${activiti-version}</version>
</ dependency>

But, there are usually far more connectivity options needed, like JMS, file, and FTP
communication. In the next section, we’ll start exploring possibilities for more con-
nectivity options by using Apache Camel.

Big books have been written about the Apache Camel framework (such as Camel in
Action), but to get a clear understanding of the possibilities of integrating the Activiti
Engine with Apache Camel, you’ll need no more than this section. That’s because the
Camel integration is simple but powerful, and the Camel framework is quite easy
to learn.

Let’s start with an introduction into the Apache Camel framework and then look
into the Activiti integration.

Apache Camel is a powerful open source Java integration framework that can be used
by adding some JAR files to your project. There’s no need to run Apache Camel in a
separate container, although you could do that with Apache ServiceMix. The three
main functionalities of Apache Camel are listed below:

= Provides concrete implementations for the enterprise integrations patterns of
Hohpe’s eponymous book. For example, Apache Camel provides a content-
based router, a message filter, and a message transformer.

= Provides a lot of transport and API connectivity options like JMS, file, FTP, and
web services.

= Provides a domain-specific language (DSL) for configuring and implementing
the integration logic. This makes Apache Camel easy to use.

Integrating with Apache Camel 269

The Apache Camel framework consists of three basic elements: endpoints, processors,
and components, as you can see in figure 11.3.

An endpoint and a component are closely related. An endpoint specifies a location
URI from which Camel can send or receive messages. In this URI, a component is used
to specify the URI scheme name and thereby tell the Camel engine which connector
should be used, as shown in this example of a file endpoint:

file://test

In this case, the URI scheme is fil e, so the Camel file component will be used. The
t est addition states that it’s about the test directory.
Here’s another endpoint example, in this case a JMS endpoint:

j ms: queue: t est Queue

Figure 11.3 The architecture of Apache Camel showing the use of its three basic elements: endpoints,
processors, and components

270

CHAPTER 11 Integrating services with a BPMN 2.0 process

For this endpoint, the URI scheme is j M8, so the Camel JMS component will be used.
For the JMS component, we have to define whether it’s a queue or a topic and also the
name of the queue, which is t est Queue in this example.

Now let’s look at a bigger example that does some integration logic:

<rout e>
<fromuri="j ns: queue: or der Queue" />
<choi ce>
<when>
<xpat h>$priority = "'high' </ xpath>
<to uri="jns:queue: processOrder" />
</ when>

<ot herw se>
<to uri="file://order" />
</ ot her wi se>
</ choi ce>
</route>

This example already contains quite a bit of logic. When a new message arrives at the
or der Queue, it’s picked up by Camel and passed on to a content-based router. When the
header parameter pri ority is equal to hi gh, the order message is quickly passed on to
another JMS queue named processOr der. When the header parameter priority has
another value, the message is written to the order directory and manually processed.

In the previous code snippet, the integration logic is defined using the Spring XML
language. But, we can define this logic just as easily using the Java DSL:

Rout eBui | der routeBuil der = new Rout eBuilder() {
public void configure() {
fronm("j ms: queue: or der Queue")
.choi ce()
.when(header ("priority").isEqual To("hi gh"))
.to("jns: queue: processOrder")
.ot herwi se()
.to("file://order");
}
b
As you can see, there’s not much difference between the elements in the Spring XML
and the Java DSL implementations. The nice thing about the Java DSL is that you have
Java code completion, although you can have similar code completion by specifying
the XSD schema locations with a decent XML editor.
Before we move on to using Camel with the Activiti Engine, let’s first look at a
standalone Camel example.

public class Camel I ntroRoute extends RouteBuilder { Creates
i new Camel
erride
av route class

public void configure() throws Exception {

from"direct:start")

Integrating with Apache Camel 271

.l og(Loggi ngLevel . | NFO,
"Recei ved nmessage ${in. body}")

. choi ce() Tests for
.when(xpat h("/introduction/text() ‘/ intro equals
='Canel ' ")) Camel

.to("file://introduction?fil eNanme=canel -i ntro-
${i n. header . nane} -

$si npl e{ dat e: now. yyyyMvld_HHmMBS} . t xt ") Creates text file
. ot her wi se() with specific
.to("file://introduction? filename

fil eName=ot her-intro-${in. header. nane}-
$si npl e{dat e: now yyyyMwdd_HHmssS}. txt");
}

}
Implementing integrating logic means creating a route in Camel (. Think of a route
as defining the flow of a message from arrival in the Camel engine until it’s passed on
to a connector outside the Camel engine. In this example, you use the Camel direct
component to make it easy to test this route. The Camel direct component can be
used to send a synchronous message to an endpoint in the same Camel context. If you
want it to be asynchronous, you can use the Camel SEDA component.

When a message arrives at the start endpoint of the direct component, the mes-
sage is first logged with Jakarta Commons Logging. As you can see, you can specify the
log level and you can use expressions like i n. body to select which part of the message
you want to log.

After the message is logged, the message is passed on to an endpoint based on the
content using an XPath expression . The incoming message is expected to be XML,
and the i ntroduct i on root element should contain a text value that’s equal to Carel .
Otherwise, the message is passed on to another file endpoint ¢). As you can see, the
file component can be instructed to create a file with a specific filename. In this exam-
ple, the value of the name header parameter is included, and the current date and
time are added.

It’s quite easy to test this piece of integration logic, as the following listing shows.

public class Canel IntroTest extends Abstract Test {

@est
public void sendMessages() throws Exception { Adds Camel
Canel Cont ext canel Cont ext = new Def aul t Camel Cont ext () ; <}J route to
canel Cont ext . addRout es(new Canel | ntroRout e()) ; context
canel Context.start();
Producer Tenpl ate tpl = canel Cont ext. creat eProducer Tenpl ate();
t pl . sendBodyAndHeader ("direct:start",
"<i ntroduction>Canel </i ntroduction>",
"nane", "Radenakers");
t pl . sendBodyAndHeader ("direct:start", <7 Sends test
"<introducti on>Mil e</introduction>", message

"nane", "Radenakers");

272

CHAPTER 11 Integrating services with a BPMN 2.0 process

canel Cont ext. stop();

}

}

To test the Camel route in listing 11.3, you have to create a new Camel Cont ext and
add the Canel | ntr oRout e route class to that context instance (/). When the context is
created, you can start it by invoking the st art method on the context instance. Then
you can start sending messages to endpoints in the Camel engine. In this example,
you create an incoming endpoint of direct:start, so you can send a simple XML
introduction message with a nane header parameter

When you run this unit test in the book- canel project of the book’s source code,
you can see that an introduction directory is created and two files are created. You
could enhance this test a bit using the Camel test framework to make it standalone
testable. But, for now, this should provide you with enough information about the
execution of the Canel I nt r oRout e logic.

Now that you’ve been introduced to Apache Camel, it’s time to get back to the
topic of this chapter. How can you leverage the Apache Camel framework to commu-
nicate with services from a BPMN process? Let’s start with an overview of how the Activ-
iti Engine can communicate with Apache Camel.

To get a good overview of how Camel and Activiti can be used together, let’s look at a
hello world example. In the Activiti distribution, you can find a module named
activiti-canel, which implements the integration between Activiti and Camel. If
you add the following dependency to your POM file, you’ll have this integration avail-
able in your project:
<dependency>

<groupl d>org. activiti</groupld>

<artifactld>activiti-canel </artifactld>
</ dependency>

The Activiti Camel module uses Spring as a container to bind the Activiti Engine
beans with the Camel context beans. You have to set up the Activiti Engine in a Spring
configuration like you did several times in the previous chapters. I won’t explain it
again here, but you can find it in the canel - book source code in the src/main/
resources/helloworld folder with the filename activiti-application-context.xml.

Let’s see how you can set up the Camel context in a Spring configuration in the
following listing (camel-application-context.xml).

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: canmel ="http://canel . apache. or g/ schema/ spri ng"
xsi : schemaLocati on="http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd

Integrating with Apache Camel 273

http://canel . apache. or g/ schena/ spri ng
http://canel . apache. or g/ schema/ spri ng/ canel - spri ng. xsd" >

<canel Cont ext id="canel Process" < Defines Camel
xm ns="http://canel . apache. or g/ schena/ spri ng" > context
<packageScan>
<package>or g. bpmmwi t hactiviti.chapter11. Scans for
canel . hel | owor | d</ package> QT RouteBuilders

</ packageScan> in package
</ canel Cont ext >

<bean i d="canel "

class="org.activiti.camel.Canel Behavi our"> < Defines the Camel
<constructor-arg index="0"> ActivityBehaviour class
<list>
<bean class="org. activiti.canel. p Couples BPMN process
Si npl eCont ext Provi der" > with Camel context

<constructor-arg index="0"
val ue="hel | oCanel Process" />
<constructor-arg index="1"
ref ="canel Process" />
</ bean>
</list>
</ constructor-arg>
</ bean>
</ beans>

In the Camel configuration, you first define a Camel context where you can add
routes (1. Instead of writing down the route for this example using the Spring language
(like you saw in section 11.3.1), you instruct the Camel context to scan the classpath in
the hel | owor | d package 9. In listing 11.6, we’ll take a look at the Rout eBui | der class
that’s made available in the Camel context with this package scanning.

This is still plain Camel configuration, but now you have to make this Camel con-
text available to be used in the BPMN process instances of the Activiti Engine. The
Canel Behavi our class €, which is defined as a Spring bean with an identifier of
canel , implements the Acti vi t yBehavi or interface, and can, therefore, be used in a
Java service task in a BPMN process.

This is a good time to look at the process definition of our hello world process
(helloworld.bpmn20.xml):
<definitions xnm ns="http://ww.ong. org/ spec/ BPM\/ 20100524/ MODEL"

t ar get Nanespace="http://ww. bprmwi t hactiviti.org"
xm ns:activiti="http://activiti.org/bpm">

<process id="hel | oCanel Process" >
<startEvent id="start" />
<sequenceFl ow sourceRef ="start"
t ar get Ref ="servi ceTask1l" />
<servi ceTask id="serviceTaskl"
activiti:del egat eExpressi on="${canel }" />
<sequenceFl ow sour ceRef ="servi ceTaskl"
tar get Ref =" user Task1" />
<user Task id="user Taskl" name="Hel | oTask"
activiti:assignee="kermt"/>

274

CHAPTER 11 Integrating services with a BPMN 2.0 process

<sequenceFl ow sour ceRef ="user Task1"
target Ref ="end" />
<endEvent id="end" />
</ process>

</ definitions>
This simple process contains one new piece of functionality: the del egat eExpr essi on
in the Java service task. The canel identifier refers back to the Spring bean definition
shown in listing 11.5. When the service task is executed by the Activiti Engine, the exe-
cution is delegated to the Camel Behavi our class, which will send a message containing
all process variables to an Activiti endpoint defined in the Camel context. We’ll look at
the Rout eBui | der class that defines this Activiti endpoint in a moment, in listing 11.6.

Now you know how to access the Camel context from the Activiti Engine, but how
can you access the Activiti Engine from a Camel route? The Si npl eCont ext Pr ovi der
defined in listing 11.5 couples a BPMN process identifier (hel | oCanel Process) to the
Camel context identifier (canmel Process) €. As you can see, it’s possible to define a list
of context providers, so each BPMN process can be coupled to a Camel context. This
enables you to send messages from the Camel engine to a BPMN process. And, this makes
it possible to create a new process instance from the Camel context or to send messages
to a process instance that’s in a wait state (like the receive BPMN element).

Now let’s define a Camel route that creates a new process instance of the hello
world process that was shown in the previous code snippet and that can handle the
implementation of the service task defined in that process definition.

public class Canel Hel | oRout e ext ends Rout eBuil der {

@verride
public void configure() throws Exception {

from("activiti:hell oCanmel Process: servi ceTaskl")
.1 og(Loggi ngLevel . | NFQ,
"Recei ved nmessage on service task ${property.vari}")
.setProperty("var2").constant ("world")
.setBody(). properties();

from("direct:start").to("activiti:hell oCanel Process");

}
}
There are two Camel routes defined by this Rout eBui | der class. Let’s start with the
simple, second one. When a message is sent to the synchronous endpoint
direct:start, a new process instance of the hel | oCanel Process definition is cre-
ated. You can see that the new Activiti Camel component is used here because of the
activiti: prefix in the endpoint definition.

The other route implements the Java service task logic of servi ceTaskl. Remem-
ber that this service task is defined with a delegate expression to the Camel Behavi our
class. When the service task is executed, all process variables are passed on to the
Camel route as properties. This way, you can easily log a process variable with the

Integrating with Apache Camel 275

name var 1 using the Camel log component. In addition, you can define a new prop-
erty (var 2) in the Camel route, and this will be made available in the process instance
as a new process variable.

Now let’s get this Activiti Camel integration rolling with a unit test implementation.

@RunW t h(Spri ngJUni t 4C assRunner. cl ass)
@ont ext Confi gurati on(

"cl asspat h: hel | owor | d/ appl i cation-context.xm ") Uses Activiti and
public class Canel Hel | oTest extends Abstract Test { Camel Spring
@ut ovi r ed configurations
private Canel Context camnel Context;
@\ut owi r ed Injects Camel
private RuntineService runtimeService; context
instance
@\ut owi r ed
private TaskService taskService;
@\wut owi r ed
@Rul e
public ActivitiRule activitiSpringRule;
@est

public void sinpleProcessTest() {
Producer Tenpl ate tpl =
canel Cont ext . creat eProducer Tenpl ate();
String instanceld = (String) k Starts new
tpl.requestBody("direct:start", process
Col | ections. si ngl et onMap("var1", "hello")); instance

assert Equal s("worl d", runtimeService. getVari abl e(

i nstanceld, "var2")); Validates
Task task = taskService var2 process
. creat eTaskQuery() variable value

.singl eResult();
assert Equal s("Hel | oTask", task.getNanme());
taskServi ce. conpl ete(task.getld());
}
}

To run the Activiti Engine and the Camel context together, you have to define a
Spring parent configuration file, which imports both Spring configurations
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranmework. or g/ schena/ beans/ spri ng- beans. xsd" >

<i nport resource="activiti-application-context.xm" />

<i nmport resource="canel -application-context.xm" />
</ beans>
This clearly separates the Activiti Engine configuration from the Camel context con-
figuration and makes them separately maintainable. You can now also use the Spring

276

CHAPTER 11 Integrating services with a BPMN 2.0 process

autowiring mechanism to inject a Camel context in the unit test 4. Note that you
don’t have to start and stop it now; that’s done for you.

Because there’s a Camel route listing on the direct: start endpoint, you can send
a message that will start a new process instance of the hel | oCamel Process). Because
the message contains a Map with a var 1 entry, the Activiti Camel module transforms
this into a process variable. Note that Camel returns the process instance ID when the
first wait state in the process instance is encountered (in this case, a user task).

The service task in the process instance should have been executed by then, so you
can test whether the Camel route that implemented the service task was successful in
setting a new process variable var 2 with the value wor | d €3. You also test whether the
process instance state is with the Hel | oTask user task and complete it to make sure
that the process instance ends.

This completes our introduction to the Activiti Camel integration. Now that you
have a good overview of the main capabilities, you can explore more complex capabil-
ities and dive further into Apache Camel by reading the Camel in Action book or look-
ing at the documentation on the Apache Camel website (camel.apache.org). In this
chapter, though, we’ll move on to explore Mule ESB’s integration with the Activiti
Engine. Note that Apache Camel and Mule ESB provide similar functionality, so we’ll
show similar examples for Mule ESB to make it easier to compare both options.

Mule ESB is a widely used and popular open source ESB product that provides a wide
range of connectivity options, support for enterprise integration patterns, and an easy
to learn flow language. MuleSoft, the company behind Mule ESB, is one the partners
of the Activiti project and delivers the web service task implementation we discussed
in section 11.2. In this section, we’ll focus on how to leverage the Mule ESB functional-
ity from the Activiti Engine, starting with a solid introduction to Mule ESB.

Mule ESB is an open source ESB developed by MuleSoft and created by Ross Mason, one
of the founders of MuleSoft. Mule ESB was one of the first open source ESBs out there,
together with Apache ServiceMix, and it already has far more than a million downloads.
Its main difference from Apache Camel, which we discussed in section 11.3, is that Mule
ESB typically runs in its own container. This means that Mule ESB runs in a separate JVM
and is started with a startup script.

In the next section about the Activiti Mule ESB integration, we’ll show that it’s pos-
sible to run Mule ESB and the Activiti Engine in a shared Spring container. But the
easiest way of using Mule ESB is to download the whole package and run it in its own
container. Like Apache Camel, Mule ESB provides support for a wide range of connec-
tivity options, like JMS, file, FTP, and web services. Mule ESB also offers support for a
wide range of enterprise integration patterns, like content-based routing and a mes-
sage filter. Figure 11.4 provides an overview of Mule ESB available in its documenta-
tion material as well.

Integrating with Mule ESB

277

Figure 11.4 A high-level overview of the capabilities of Mule ESB, including connectors to communicate

with data sources and business applications

With Mule ESB, you're able to communicate
with all kinds of sources, including data-
bases, business applications, and web ser-
vices. Mule provides services to deal with
routing, transformation, message security,
and transaction management, and can be
run standalone, embedded, and in an appli-
cation server like Apache Tomcat or JBoss.

But how can we use Mule ESB to imple-
ment integration logic? In Mule ESB
version 3, everything is centered on the con-
cept of flows. A flow uses Mule building
blocks to build a piece of integration logic,
starting with the message arrival and con-
tinuing until the message is sent to another
destination. Figure 11.5 shows the structure
of a flow, which consists of a message source
and one or more message processors.

~

.

Flow

Message
Source

Message
Processor

Message
Processor

N N N

TN N N)

Message
Processor

)

\

%

Figure11.5 The structure of aMule flow, which

is the core concept when using Mule ESB

278

CHAPTER 11 Integrating services with a BPMN 2.0 process

A message source is an endpoint that Mule ESB will monitor for new messages
arriving. The message source can, for example, be a file endpoint, a JMS endpoint, or
a web service endpoint. A message source listening for new messages arriving at a JMS
endpoint can be defined this way:

<j ms: i nbound- endpoi nt queue="test" />

This message source definition will listen for new messages arriving at the t est queue.
But just as easily, you can define a message source that listens for new files in a specific
directory location:

<file:inbound-endpoint path="testDir" />

A message processor is a component that processes incoming messages and makes
them available to another message processor or an endpoint. A message processor
can, for example, be a piece of routing logic or implement transformation functional-
ity. Let’s look at an example of a transformation message processor:

<xm :xslt-transforner xsl-file="transformtion.xsl"/>

This message processor will transform a message using the transformation stylesheet
and make the outcome available for the next message processor. In addition to a mes-
sage source and message processors, a flow can also have an exception strategy defined.
You can, for example, configure an exception strategy that will be executed when no
routing rule matches the message content when using a content-based router.

A flow can also be nested, so a main flow can invoke several subflows. In this way,
reusable flow components can be defined, which are reused in a number of main flow
definitions.

Enough said about the foundational components of Mule ESB; let’s implement a
simple piece of integration logic and execute it with a unit test. In the following list-
ing, a Mule flow configuration with content-based routing is shown.

<mul e xm ns="http://ww. nul esoft. org/ schema/ nul e/ core" Defines all
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" Mule transport
xm ns: viE"ht t p: / / www. mul esof t. or g/ schena/ nul e/ vt namespaces

xmns: file="http://ww.nul esoft.org/schema/nule/file"
xsi :schemaLocati on="http://ww. nul esoft. org/ schena/ nul e/ core
http://ww. nul esoft. org/ schema/ nul e/ core/ 3. 1/ mul e. xsd
http://ww. nul esoft.org/schema/ mule/file
http://ww. nmul esoft.org/schema/nule/file/3. 1/ mule-file.xsd
http://ww. nul esoft. org/ schema/ nul e/ vm
http://ww. mul esoft. org/schema/ nul e/ vni 3. 1/ nul e-vm xsd" >

Listens for
<f1 ow nanme="Mil el ntro" > qJ messages on
<vm i nbound- endpoi nt pat h="in" vm queue

exchange- pattern="one-way" />
<l ogger nessage="Recei ved nmessage #[payl oad]" <1 Logsincoming
level ="INFO' /> message

<choi ce>

Integrating with Mule ESB 279

<when expression="/introduction/text()="Mle"" Routes the
eval uat or =" xpat h" > message based on
<fil e: out bound- endpoi nt message content

pat h="i nt r oducti on"
out put Pat t ern="rul e-i ntro-
#[functi on: dat est anp: ddMWyyy_ HHmrss] . txt" />

</ when>
<ot herw se>
<fil e: out bound- endpoi nt <71 Sends message
pat h="i ntroducti on" to file

out put Patt ern="ot her-intro-
#[functi on: dat est anp: ddMWyyy_ HHmrss] . txt" />
</ ot her wi se>
</ choi ce>
</fl ow>
</ mul e>
A Mule configuration starts with the root element definition <nmul > containing the
namespace definitions of the Mule transports thatare used in the flow configuration
In this case, the flow configuration uses the Virtual Machine (VM) and File Mule trans-
ports, in addition to the Mule Core component.

In this example, Mule ESB listens for new messages arriving at the i n VM queue
The Mule VM component is capable of defining queues within a JVM and even of mak-
ing them persistent using a file database. In the VM message source definition, you
defined that this flow will be one- way. This means that no response will be provided by
this flow.

After the message is consumed by the VM message source, you log the message pay-
load (content) to the Mule logging file using the | ogger component ¢; #[payl oad)]
is an expression that is processed by Mule ESB to log the message payload. Mule ESB
offers all kinds of expressions to retrieve content from a message, such as header val-
ues, message properties, and message payload details.

Once the message is logged, a content-based router makes sure the message is sent
to the right outbound endpoint €. In this content-based routing rule, you use an
XPath expression that checks whether the message payload contains an i ntroduct i on
XML element with the value of Mul e. If this is the case, a mule-intro file is created; oth-
erwise, an other-intro file is created using the Mule File component ¢). The Mule File
component offers all kinds of expressions to dynamically add text to the filename. In
this case, you use the current date and time value.

Now that you’ve created a simple flow configuration, how can you test it? Mule pro-
vides lots of functionality to write good unit tests. In the unit test shown in the next
listing, you start the Mule container in the JVM and send a couple of test messages.

public class MilelntroTest extends AbstractTest {

@est
public void testSend() throws Exception {
Mul eCont ext nul eCont ext = new Def aul t Mul eCont ext Fact ory()

280

CHAPTER 11 Integrating services with a BPMN 2.0 process

.createMul eContext ("intro/ nul e-context.xm");
mul eCont ext . start () Creates client
Mul eClient mul edient = new DefaultLocal Mul edient(<1 instance
mul eCont ext) ;
mul eClient.send("vm//in", new Defaul t Mul eMessage(
"<i ntroduction>Muil e</introduction>", nul eContext)); Sends test
mul eCl i ent.send("vm//in", new Defaul t Mul eMessage(<1 message
"<i ntroduction>Canel </introduction>", nmuleContext));
mul eCont ext . st op();
mul eCont ext . di spose();
}
}
It’s not hard to load a Mule configuration. First, the Def aul t Mul eCont ext Fact ory can
be used to read the XML file and create a Mul eCont ext instance. Then the Mule con-
tainer can be started by invoking the st art method on the newly created Mul eCont ext
instance. The Mule ESB runs within the JVM of the unit test with the flow configuration
loaded into it.

To send test messages to the Mule ESB container, you can use all kinds of imple-
mentations, depending on the message sources configured in the flow definition. In
this case, you've defined a VM queue message source. Mule provides an easy way to
send messages to an endpoint with the Mul eCl i ent class €. A Mule client can be local
(for Mule ESB running in the same JVM) or remote (when Mule runs standalone or in
another JVM). In this unit test, the Mule ESB container runs in the same JVM as the
unit test so you can use the local variant with the Def aul t Local Mul eQ i ent class.

With the Mule client instance available, you can start sending test messages to the
Mule container ¢4. In this example, you send two messages, one containing a Mule
introduction and one with a Camel introduction. Mule provides functionality to vali-
date in a unit test whether a message arrived at a specific endpoint, but to keep it sim-
ple, listing 11.9 just looks at the files created in the introduction directory to see if the
unit test outcome was successful.

You can run the Mil el ntroTest unit test in the book- nul e project that you’ll find
in the book’s source code. After the unit test has executed, you should have two newly
created files in the introduction folder, one with mule-intro and another with other-
intro as the prefix of the filename.

Now let’s move on to integrating Mule ESB with the Activiti Engine.

When you want to integrate the Activiti Engine with Mule ESB, you can choose
between two configurations. The first is to run them embedded in one Spring config-
uration, similar to the Apache Camel integration. The other option is to run the Mule
ESB container standalone and communicate with the Activiti Engine through the
REST API. Both configuration options use the same message processor definition to
create a new process, set a process variable, or signal a process instance. The differ-
ence between the two options is the Activiti connector configuration that’s part of the
Mule configuration.

Integrating with Mule ESB 281

When you use Activiti and Mule in an embedded setup, both engines run in the
same Java Virtual Machine (JVM) and they can access each other directly. This means
that Mule can access the Activiti process engine beans, and Activiti can send messages
to Mule flows using VM queues. In the standalone setup, Mule can access Activiti via
the Activiti REST API, and Activiti can send messages to Mule flows via web services.

To make it easier to test the example, we’ll implement the embedded integration
between the Activiti Engine and Mule ESB, but I'll explain where the standalone con-
figuration would differ.

To add the Mule integration functionality to the Activiti Engine, you’ll have to add
the following dependency to the project POM file:
<dependency>

<groupl d>org. activiti</groupld>

<artifactld>activiti-mule</artifactld>
</ dependency>
With this dependency enabled, you can implement the Mule configuration for the
example flow definition. This example is similar to the Apache Camel implementa-
tion, so it’s easy to compare both options. You’ll define two flows, one to create a new
process instance when a message arrives at a specific VM queue and another that will
be invoked from the BPMN process, log the incoming message, and return a simple
message back. Let’s take a look at the Mule configuration.

<mul e xm ns="http://ww. nmul esoft. org/schema/ nul e/ core"
xm ns: spring="http://ww.springfranework. org/ schema/ beans"
xm ns: vire" ht t p: // www. mul esof t . or g/ schema/ nul e/ vnt'
xm ns: script="http://wwmw. mul esoft.org/schema/ nmul e/ scri pting"
xm ns:activiti="http://ww. nul esoft.org/schena/ mul e/activiti-enbedded">

<spring: beans>

<spring:inport Imports
resource="activiti-application-context.xm" /> Activiti
</ spring: beans> Engine config
<activiti:connector name="act Server"
repositoryService-ref="repositoryService" j Defines
runtimeService-ref="runti neService" embedded Activiti
taskServi ce-ref ="t askServi ce" connector

hi st oryServi ce-ref ="hi storyService" />

<fl ow name="Mul eCr eat ePr ocess" >
<vm i nbound- endpoi nt path="create"
exchange- pattern="request - response" /> Creates new
<activiti:create-process parametersExpression=" <) process instance
#[header : | NBOUND: cr eat eProcessPar aneters]" />
</ fl ow>

<fl ow name="Mul eHel | 0" >
<vm i nbound- endpoi nt path="in"
exchange- patt er n="r equest - r esponse" /> Logs message
<l ogger nessage="Recei ved message #[payl oad]" < payload

282 CHAPTER 11 Integrating services with a BPMN 2.0 process

| evel ="I NFO' />
<scri pt:transforner>
<script:script engine="groovy">

return 'world' Sends
</script:script> ﬁ response with
</script:transforner> ‘world’ string
</fl ow>
</ mul e>

Because you want to run the Mule ESB embedded, together with the Activiti Engine,
you import the Spring beans that configure the Activiti Engine €. The Spring config-
uration to define the Activiti Engine was already shown a couple of times in the previous
chapters, mostly in chapter 4. But to make the Mule ESB context also available in the
Activiti Engine, you have to adapt the activiti-application-context.xml file a little bit:

<bean i d="processEngi neConfi guration"
class="org.activiti.spring.SpringProcessEngi neConfiguration">
<property name="dat abaseType" val ue="h2" />
<property name="dat aSource" ref="dataSource" />
<property nanme="transacti onManager" ref="transacti onManager" />
<property nanme="dat abaseSchermaUpdat e" val ue="true" />
<property nanme="depl oynent Resour ces"
val ue="cl asspat h*: hel | owor| d/ hel | owor | d. bpmm20. xm " />
<property name="beans">
<map>
<entry key="nul eContext" val ue-ref=
</ map>
</ property>
</ bean>

_mul eContext" />

The only difference between this and a normal Spring Activiti Engine configuration is
the beans property definition. The Mule context is coupled to the nul eCont ext
parameter.

Next up in listing 11.10, the Activiti embedded connector is defined . The
Spring Activiti service beans defined in the activiti-application-context.xml are cou-
pled to the Activiti connector. Now the Mule Activiti connector can start a new process
instance by using the Runt i neSer vi ce Spring bean.

When the Mule ESB runs in a JVM separate from the Activiti Engine, this connector
definition would change, like this:
<activiti:connector name="act Server"

activitiServerURL="http://|ocal host: 8080/ activiti-rest/servicel"

username="kermt"

password="kermt" />
With the remote Activiti connector definition, every call from Mule ESB to the Activiti
Engine is performed against the REST service layer, so you have to configure the REST
base URL and the username and password.

In the first flow definition of listing 11.10, a new process instance can be started by
sending a message to the creat e VM queue). The parameters needed to start a new
process instance, like the process definition key and the process variables, are

Integrating with Mule ESB 283

retrieved from the message header property named cr eat ePr ocessPar anet ers. The
created process instance is returned as a response of the flow definition.

In the second message flow definition, the incoming message on the i n queue is
logged to the Mule logging component ¢J. Then a simple Groovy script is executed
and a string with the value of wor | d is returned as a response of the flow

Now let’s look how you can send a message to thisi n queue from a BPMN 2.0 process.

<definitions xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
xm ns:activiti="http://activiti.org/bpm"
t ar get Nanespace="http: //ww. bpmwi t hactiviti.org">

<process id="hel | oWorl dwul e" >
<startEvent id="theStart" />

<sequenceFl ow sourceRef="theStart" BPMN Send
t ar get Ref ="sendMul " /> <]J task
<sendTask id="sendMul e" activiti:type="nule">
<ext ensi onEl enent s> Targets Mule
<activiti:field name="endpoint Url "> <1 endpoint

<activiti:string>vym//in</activiti:string>

</activiti:field>

<activiti:field nane="I| anguage">
<activiti:string>uel</activiti:string> Value of the

<lactiviti:field> QJ message
<activiti:field name="payl oadExpr essi on" > payload

<activiti:expression>${varl}</activiti:expression>
</activiti:field>

<activiti:field name="resul tVari abl e"> Processes
<activiti:string>var2</activiti:string> variable name
</activiti:field> for the response

</ ext ensi onEl ement s>
</ sendTask>
<sequenceFl ow sour ceRef ="sendMul e"
target Ref="wait State" />
<recei veTask id="waitState" />
<sequenceFl ow sour ceRef ="wai t St at e"
target Ref ="t heEnd" />
<endEvent id="theEnd" />
</ process>
</ definitions>
This process definition contains only a few steps. After the process instance has
started, a BPMN send task with an Activiti-specific type of mul e is used to send a mes-
sage to the Mule ESB container (/). In the extension fields of the send task, the config-
uration items needed to send the message are defined. First, the endpoint URI is
defined; in this example, the i n VM queue). Remember that the i n VM queue was
defined as a message source for the second Mule flow definition in listing 11.10.

In addition, the message payload is defined with the var 1 process variable ¢). This
means that the value of the var1 process variable is sent as a message to the i n VM
queue. Finally, the response of the Mule flow execution is set as a new process variable
named var 2

284

CHAPTER 11 Integrating services with a BPMN 2.0 process

After the Mule Send task has been completed, the process instance enters a Wait
state with the Receive task. This makes it easy to get a hold of the var 2 process variable
in the unit test, shown in the following listing.

public class Mil eHel | oTest extends AbstractTest {

@rest
public void testSend() throws Exception {
Mul eCont ext nul eCont ext = new Def aul t Mul eCont ext Fact ory()
. creat eMul eCont ext (" hel | owor| d/ appl i cati on-context.xm");
mul eCont ext . start ();
Mul eClient muleCient = new DefaultLocal Mul edient(
mul eCont ext) ;
Def aul t Mul eMessage nessage = new Def aul t Mul eMessage(

"", mul eCont ext); Sets varl
Map<String, Object> variableMap = process
new HashMap<String, Object>(); QJ variable
vari abl eMap. put ("var1", "hello");
vari abl eMap. put (" processDef i ni ti onKey", <+

"hel | oVor | dMul e") ; Sets process definition key
message. set Property("creat eProcessPar anet ers”,

vari abl eMap, PropertyScope. OQUTBOUND) ; j Sets message
Mil eMessage responseMessage = nul ed i ent. send(header

"vm//create", message); property
Processl nst ance processlnstance = (Processl| nstance)

r esponseMessage. get Payl oad() ; j Gets
assert Fal se(processl nstance. i sEnded()); process
Runt i neService runti meService = (Runti meService) instance

mul eCont ext . get Regi stry().get("runti neService");

Obj ect result = runtinmeService. getVari abl e(.
processl nstance. get 1 d(), "var2"); j Retrieves
assert Equal s("world", result); var2 process
variable

mul eCont ext . stop();
mul eCont ext . di spose();
}
}

This unit test contains quite a bit of logic in just a few lines of code. First, a new Mule
context is created for the Mule configuration discussed in listing 11.10. After the Mule
ESB instance is started, together with the Activiti Engine, a message is created to starta
new process instance. The var 1 process variable () and the process definition key
are set in a Map.

The Map instance is then used to create a message header property named
creat eProcessPar anet ers). Remember that this message header is processed by
the Mule Activiti transport (see listing 11.10). Then the Mule message is sent to the
create VM queue, and a new process instance of the BPMN process definition shown
in listing 11.11 is created in the Activiti Engine. The process instance object is sent
back as a response message). Note that this process instance object isn’t an Activiti
API object, but a Mule Activiti connector API object. The Mule Activiti connector
transforms the Activiti process instance to a Mule process instance object.

Summary 285

Finally, the unit test validates whether the var 2 process variable was set and contains
the value of wor | d €). The Runt i neSer vi ce instance is retrieved from the Mule registry,
because the Activiti Engine Spring beans are created as part of the Mule configuration.

The Mule ESB website (www.mulesoft.org) and books like Mule in Action by David
Dossot and John D’Emic (Manning, 2009) and Open Source ESBs in Action by Tijs Rade-
makers and Jos Dirksen (Manning, 2008) contain much more additional information
about the functionality of Mule ESB. You now have a good foundation for working on
more complex integration logic.

Business and application logic is typically scattered acr