
Applied Natural
Language Processing
with Python

Implementing Machine Learning
and Deep Learning Algorithms for
Natural Language Processing
—
Taweh Beysolow II

Applied Natural
Language Processing

with Python
Implementing Machine

Learning and Deep Learning
Algorithms for Natural
Language Processing

Taweh Beysolow II

Applied Natural Language Processing with Python

ISBN-13 (pbk): 978-1-4842-3732-8 ISBN-13 (electronic): 978-1-4842-3733-5
https://doi.org/10.1007/978-1-4842-3733-5

Library of Congress Control Number: 2018956300

Copyright © 2018 by Taweh Beysolow II

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Siddhi Chavan
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3732-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Taweh Beysolow II
San Francisco, California, USA

https://doi.org/10.1007/978-1-4842-3733-5

To my family, friends, and colleagues for their continued
support and encouragement to do more with myself than

I often can conceive of doing

v

Table of Contents

Chapter 1: What Is Natural Language Processing? ������������������������������1

The History of Natural Language Processing ��2

A Review of Machine Learning and Deep Learning ��4

NLP, Machine Learning, and Deep Learning Packages with Python ����������������4

Applications of Deep Learning to NLP ���10

Summary���12

Chapter 2: Review of Deep Learning���13

Multilayer Perceptrons and Recurrent Neural Networks ������������������������������������13

Toy Example 1: Modeling Stock Returns with the MLP Model �����������������������15

Vanishing Gradients and Why ReLU Helps to Prevent Them ��������������������������27

Loss Functions and Backpropagation ��29

Recurrent Neural Networks and Long Short-Term Memory ��������������������������30

Toy Example 2: Modeling Stock Returns with the RNN Model �����������������������32

Toy Example 3: Modeling Stock Returns with the LSTM Model ���������������������40

Summary���41

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

vi

Chapter 3: Working with Raw Text ��43

Tokenization and Stop Words ��44

The Bag-of-Words Model (BoW) ��50

CountVectorizer ���51

Example Problem 1: Spam Detection ��53

Term Frequency Inverse Document Frequency ���57

Example Problem 2: Classifying Movie Reviews ���62

Summary���74

Chapter 4: Topic Modeling and Word Embeddings ����������������������������77

Topic Model and Latent Dirichlet Allocation (LDA) ��77

Topic Modeling with LDA on Movie Review Data ���81

Non-Negative Matrix Factorization (NMF) ���86

Word2Vec ��90

Example Problem 4�2: Training a Word Embedding (Skip-Gram) �������������������94

Continuous Bag-of-Words (CBoW) ��103

Example Problem 4�2: Training a Word Embedding (CBoW) �������������������������105

Global Vectors for Word Representation (GloVe) ���106

Example Problem 4�4: Using Trained Word Embeddings with LSTMs ����������111

Paragraph2Vec: Distributed Memory of Paragraph Vectors (PV-DM) ����������������115

Example Problem 4�5: Paragraph2Vec Example with Movie
Review Data ��116

Summary���118

Chapter 5: Text Generation, Machine Translation, and Other
Recurrent Language Modeling Tasks ������������������������������121

Text Generation with LSTMs ���122

Bidirectional RNNs (BRNN) ��126

Table of ConTenTsTable of ConTenTs

vii

Creating a Name Entity Recognition Tagger ��128

Sequence-to-Sequence Models (Seq2Seq) ��133

Question and Answer with Neural Network Models ��134

Summary���141

Conclusion and Final Statements ���142

 Index ���145

Table of ConTenTsTable of ConTenTs

ix

About the Author

Taweh Beysolow II is a data scientist and

author currently based in San Francisco,

California. He has a bachelor’s degree in

economics from St. Johns University and a

master’s degree in applied statistics from

Fordham University. His professional

experience has included working at Booz

Allen Hamilton, as a consultant and in various

startups as a data scientist, specifically

focusing on machine learning. He has applied machine learning to federal

consulting, financial services, and agricultural sectors.

xi

About the Technical Reviewer

Santanu Pattanayak currently works at GE

Digital as a staff data scientist and is the author

of the deep learning book Pro Deep Learning

with TensorFlow: A Mathematical Approach

to Advanced Artificial Intelligence in Python

(Apress, 2017). He has more than eight years of

experience in the data analytics/data science

field and a background in development and

database technologies. Prior to joining GE,

Santanu worked at companies such as RBS,

Capgemini, and IBM. He graduated with a degree in electrical engineering

from Jadavpur University, Kolkata, and is an avid math enthusiast. Santanu

is currently pursuing a master’s degree in data science from the Indian

Institute of Technology (IIT), Hyderabad. He also devotes his time to data

science hackathons and Kaggle competitions, where he ranks within the

top 500 across the globe. Santanu was born and brought up in West Bengal,

India, and currently resides in Bangalore, India, with his wife.

xiii

Acknowledgments

A special thanks to Santanu Pattanayak, Divya Modi, Celestin Suresh

John, and everyone at Apress for the wonderful experience. It has been a

pleasure to work with you all on this text. I couldn’t have asked for a better

team.

xv

Introduction

Thank you for choosing Applied Natural Language Processing with Python

for your journey into natural language processing (NLP). Readers should

be aware that this text should not be considered a comprehensive study

of machine learning, deep learning, or computer programming. As such,

it is assumed that you are familiar with these techniques to some degree.

Regardless, a brief review of the concepts necessary to understand the

tasks that you will perform in the book is provided.

After the brief review, we begin by examining how to work with raw

text data, slowly working our way through how to present data to machine

learning and deep learning algorithms. After you are familiar with some

basic preprocessing algorithms, we will make our way into some of the

more advanced NLP tasks, such as training and working with trained

word embeddings, spell-check, text generation, and question-and-answer

generation.

All of the examples utilize the Python programming language and

popular deep learning and machine learning frameworks, such as scikit-

learn, Keras, and TensorFlow. Readers can feel free to access the source

code utilized in this book on the corresponding GitHub page and/or try

their own methods for solving the various problems tackled in this book

with the datasets provided.

1© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5_1

CHAPTER 1

What Is Natural
Language
Processing?
Deep learning and machine learning continues to proliferate throughout

various industries, and has revolutionized the topic that I wish to discuss

in this book: natural language processing (NLP). NLP is a subfield of

computer science that is focused on allowing computers to understand

language in a “natural” way, as humans do. Typically, this would refer to

tasks such as understanding the sentiment of text, speech recognition, and

generating responses to questions.

NLP has become a rapidly evolving field, and one whose applications

have represented a large portion of artificial intelligence (AI)

breakthroughs. Some examples of implementations using deep learning

are chatbots that handle customer service requests, auto-spellcheck on cell

phones, and AI assistants, such as Cortana and Siri, on smartphones. For

those who have experience in machine learning and deep learning, natural

language processing is one of the most exciting areas for individuals to

apply their skills. To provide context for broader discussions, however, let’s

discuss the development of natural language processing as a field.

2

 The History of Natural Language Processing
Natural language processing can be classified as a subset of the broader

field of speech and language processing. Because of this, NLP shares

similarities with parallel disciplines such as computational linguistics,

which is concerned with modeling language using rule-based models.

NLP’s inception can be traced back to the development of computer science

in the 1940s, moving forward along with advances in linguistics that led to

the construction of formal language theory. Briefly, formal language theory

models language on increasingly complex structures and rules to these

structures. For example, the alphabet is the simplest structure, in that it is

a collection of letters that can form strings called words. A formal language

is one that has a regular, context-free, and formal grammar. In addition to

the development of computer sciences as a whole, artificial intelligence’s

advancements also played a role in our continuing understanding of NLP.

In some sense, the single-layer perceptron (SLP) is considered to be the

inception of machine learning/AI. Figure 1-1 shows a photo of this model.

The SLP was designed by neurophysiologist Warren McCulloch and

logician Walter Pitt. It is the foundation of more advanced neural network

models that are heavily utilized today, such as multilayer perceptrons.

Figure 1-1. Single-layer perceptron

Chapter 1 What Is Natural laNguage proCessINg?

3

The SLP model is seen to be in part due to Alan Turing’s research in the

late 1930s on computation, which inspired other scientists and researchers

to develop different concepts, such as formal language theory.

Moving forward to the second half of the twentieth century, NLP starts

to bifurcate into two distinct groups of thought: (1) those who support a

symbolic approach to language modelling, and (2) those who support a

stochastic approach. The former group was populated largely by linguists

who used simple algorithms to solve NLP problems, often utilizing pattern

recognition. The latter group was primarily composed of statisticians

and electrical engineers. Among the many approaches that were popular

with the second group was Bayesian statistics. As the twentieth century

progressed, NLP broadened as a field, including natural language

understanding (NLU) to the problem space (allowing computers to react

accurately to commands). For example, if someone spoke to a chatbot and

asked it to “find food near me,” the chatbot would use NLU to translate this

sentence into tangible actions to yield a desirable outcome.

Skip closer to the present day, and we find that NLP has experienced

a surge of interest alongside machine learning’s explosion in usage over

the past 20 years. Part of this is due to the fact that large repositories of

labeled data sets have become more available, in addition to an increase in

computing power. This increase in computing power is largely attributed

to the development of GPUs; nonetheless, it has proven vital to AI’s

development as a field. Accordingly, demand for materials to instruct

data scientists and engineers on how to utilize various AI algorithms has

increased, in part the reason for this book.

Now that you are aware of the history of NLP as it relates to the present

day, I will give a brief overview of what you should expect to learn. The

focus, however, is primarily to discuss how deep learning has impacted

NLP, and how to utilize deep learning and machine learning techniques to

solve NLP problems.

Chapter 1 What Is Natural laNguage proCessINg?

4

 A Review of Machine Learning and Deep
Learning
You will be refreshed on important machine learning concepts,

particularly deep learning models such as multilayer perceptrons (MLPs),

recurrent neural networks (RNNs), and long short-term memory (LSTM)

networks. You will be shown in-depth models utilizing toy examples before

you tackle any specific NLP problems.

 NLP, Machine Learning, and Deep Learning
Packages with Python
Equally important as understanding NLP theory is the ability to apply it in

a practical context. This book utilizes the Python programming language,

as well as packages written in Python. Python has become the lingua

franca for data scientists, and support of NLP, machine learning, and

deep learning libraries is plentiful. I refer to many of these packages when

solving the example problems and discussing general concepts.

It is assumed that all readers of this book have a general understanding

of Python, such that you have the ability to write software in this language.

If you are not familiar with this language, but you are familiar with others,

the concepts in this book will be portable with respect to the methodology

used to solve problems, given the same data sets. Be that as it may, this

book is not intended to instruct users on Python. Now, let’s discuss some of

the technologies that are most important to understanding deep learning.

 TensorFlow

One of the groundbreaking releases in open source software, in addition

to machine learning at large, has undoubtedly been Google’s TensorFlow.

It is an open source library for deep learning that is a successor to Theano,

a similar machine learning library. Both utilize data flow graphs for

Chapter 1 What Is Natural laNguage proCessINg?

5

computational processes. Specifically, we can think of computations as

dependent on specific individual operations. TensorFlow functionally

operates by the user first defining a graph/model, which is then operated

by a TensorFlow session that the user also creates.

The reasoning behind using a data flow graph rather than another

computational format computation is multifaceted, however one of the

more simple benefits is the ability to port models from one language to

another. Figure 1-2 illustrates a data flow graph.

For example, you may be working on a project where Java is the

language that is most optimal for production software due to latency

reasons (high-frequency trading, for example); however, you would like to

utilize a neural network to make predictions in your production system.

Rather than dealing with the time-consuming task of setting up a training

framework in Java for TensorFlow graphs, something could be written in

Python relatively quickly, and then the graph/model could be restored by

loading the weights in the production system by utilizing Java. TensorFlow

code is similar to Theano code, as follows.

 #Creating weights and biases dictionaries

 weights = {'input': tf.Variable(tf.random_normal([state_

size+1, state_size])),

biases

weights

inputs

targets

MatMul

Add Softmax

Xent

Graph of Nodes, also called operations (ops)

Figure 1-2. Data flow graph diagram

Chapter 1 What Is Natural laNguage proCessINg?

6

 'output': tf.Variable(tf.random_normal([state_size,

n_classes]))}

 biases = {'input': tf.Variable(tf.random_normal([1, state_

size])),

 'output': tf.Variable(tf.random_normal([1, n_classes]))}

 #Defining placeholders and variables

 X = tf.placeholder(tf.float32, [batch_size, bprop_len])

 Y = tf.placeholder(tf.int32, [batch_size, bprop_len])

 init_state = tf.placeholder(tf.float32, [batch_size, state_

size])

 input_series = tf.unstack(X, axis=1)

 labels = tf.unstack(Y, axis=1)

 current_state = init_state

 hidden_states = []

 #Passing values from one hidden state to the next

 for input in input_series: #Evaluating each input within

the series of inputs

 input = tf.reshape(input, [batch_size, 1]) #Reshaping

input into MxN tensor

 input_state = tf.concat([input, current_state], axis=1)

#Concatenating input and current state tensors

 _hidden_state = tf.tanh(tf.add(tf.matmul(input_

state, weights['input']), biases['input'])) #Tanh

transformation

 hidden_states.append(_hidden_state) #Appending the next

state

 current_state = _hidden_state #Updating the current state

TensorFlow is not always the easiest library to use, however, as there

often serious gaps between documentation for toy examples vs. real-

world examples that reasonably walk the reader through the complexity of

implementing a deep learning model.

Chapter 1 What Is Natural laNguage proCessINg?

7

In some ways, TensorFlow can be thought of as a language inside of

Python, in that there are syntactical nuances that readers must become

aware of before they can write applications seamlessly (if ever). These

concerns, in some sense, were answered by Keras.

 Keras

Due to the slow development process of applications in TensorFlow,

Theano, and similar deep learning frameworks, Keras was developed for

prototyping applications, but it is also utilized in production engineering

for various problems. It is a wrapper for TensorFlow, Theano, MXNet, and

DeepLearning4j. Unlike these frameworks, defining a computational graph

is relatively easy, as shown in the following Keras demo code.

def create_model():

 model = Sequential()

 model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),

 input_shape=(None, 40, 40, 1),

 padding='same', return_sequences=True))

 model.add(BatchNormalization())

 model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),

 padding='same', return_sequences=True))

 model.add(BatchNormalization())

 model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),

 padding='same', return_sequences=True))

 model.add(BatchNormalization())

 model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),

 padding='same', return_sequences=True))

 model.add(BatchNormalization())

 model.add(Conv3D(filters=1, kernel_size=(3, 3, 3),

Chapter 1 What Is Natural laNguage proCessINg?

8

 activation='sigmoid',

 padding='same', data_format='channels_last'))

 model.compile(loss='binary_crossentropy', optimizer='adadelta')

 return model

Although having the added benefit of ease of use and speed with

respect to implementing solutions, Keras has relative drawbacks when

compared to TensorFlow. The broadest explanation is that Keras

users have considerably less control over their computational graph

than TensorFlow users. You work within the confines of a sandbox

when using Keras. TensorFlow is better at natively supporting more

complex operations, and providing access to the most cutting-edge

implementations of various algorithms.

 Theano

Although it is not covered in this book, it is important in the progression

of deep learning to discuss Theano. The library is similar to TensorFlow

in that it provides developers with various computational functions (add,

matrix multiplication, subtract, etc.) that are embedded in tensors when

building deep learning and machine learning models. For example, the

following is a sample Theano code.

(code redacted please see github)

X, Y = T.fmatrix(), T.vector(dtype=theano.config.floatX)

 weights = init_weights(weight_shape)

 biases = init_biases(bias_shape)

 predicted_y = T.argmax(model(X, weights, biases), axis=1)

 cost = T.mean(T.nnet.categorical_crossentropy(predicted_y, Y))

 gradient = T.grad(cost=cost, wrt=weights)

 update = [[weights, weights - gradient * 0.05]]

Chapter 1 What Is Natural laNguage proCessINg?

9

 train = theano.function(inputs=[X, Y], outputs=cost,

updates=update, allow_input_downcast=True)

 predict = theano.function(inputs=[X], outputs=predicted_y,

allow_input_downcast=True)

 for i in range(0, 10):

 print(predict(test_x_data[i:i+1]))

if __name__ == '__main__':

 model_predict()

When looking at the functions defined in this sample, notice that T is

the variable defined for a tensor, an important concept that you should

be familiar with. Tensors can be thought of as objects that are similar

to vectors; however, they are distinct in that they are often represented

by arrays of numbers, or functions, which are governed by specific

transformation rules unique unto themselves. Tensors can specifically be

a single point or a collection of points in space-time (any function/model

that combines x, y, and z axes plus a dimension of time), or they may be a

defined over a continuum, which is a tensor field. Theano and TensorFlow

use tensors to perform most of the mathematical operations as data is

passed through a computational graph, colloquially known as a model.

It is generally suggested that if you do not know Theano, you should

focus on mastering TensorFlow and Keras. Those that are familiar with

the Theano framework, however, may feel free to rewrite the existing

TensorFlow code in Theano.

Chapter 1 What Is Natural laNguage proCessINg?

10

 Applications of Deep Learning to NLP
This section discusses the applications of deep learning to NLP.

 Introduction to NLP Techniques and Document
Classification

In Chapter 3, we walk through some introductory techniques, such as

word tokenization, cleaning text data, term frequency, inverse document

frequency, and more. We will apply these techniques during the course

of our data preprocessing as we prepare our data sets for some of the

algorithms reviewed in Chapter 2. Specifically, we focus on classification

tasks and review the relative benefits of different feature extraction

techniques when applied to document classification tasks.

 Topic Modeling

In Chapter 4, we discuss more advanced uses of deep learning, machine

learning, and NLP. We start with topic modeling and how to perform it via

latent Dirichlet allocation, as well as non-negative matrix factorization.

Topic modeling is simply the process of extracting topics from documents.

You can use these topics for exploratory purposes via data visualization or

as a preprocessing step when labeling data.

 Word Embeddings

Word embeddings are a collection of models/techniques for mapping

words (or phrases) to vector space, such that they appear in a high-

dimensional field. From this, you can determine the degree of similarity,

or dissimilarity, between one word (or phrase, or document) and another.

When we project the word vectors into a high-dimensional space, we can

envision that it appears as something like what’s shown in Figure 1-3.

Chapter 1 What Is Natural laNguage proCessINg?

11

Ultimately, how you utilize word embeddings is up to your own

interpretation. They can be modified for applications such as spell check,

but can also be used for sentiment analysis, specifically when assessing

larger entities, such as sentences or documents in respect to one another.

We focus simply on how to train the algorithms and how to prepare data to

train the embeddings themselves.

 Language Modeling Tasks Involving RNNs

In Chapter 5, we end the book by tackling some of the more advanced NLP

applications, which is after you have been familiarized with preprocessing

text data from various format and training different algorithms.

Specifically, we focus on training RNNs to perform tasks such as name

entity recognition, answering questions, language generation, and

translating phrases from one language to another.

walked

walking

swam

swimming

Verb tense

Figure 1-3. Visualization of word embeddings

Chapter 1 What Is Natural laNguage proCessINg?

12

 Summary
The purpose of this book is to familiarize you with the field of natural

language processing and then progress to examples in which you

can apply this knowledge. This book covers machine learning where

necessary, although it is assumed that you have already used machine

learning models in a practical setting prior.

While this book is not intended to be exhaustive nor overly academic,

it is my intention to sufficiently cover the material such that readers are

able to process more advanced texts more easily than prior to reading

it. For those who are more interested in the tangible applications of NLP

as the field stands today, it is the vast majority of what is discussed and

shown in examples. Without further ado, let’s begin our review of machine

learning, specifically as it relates to the models used in this book.

Chapter 1 What Is Natural laNguage proCessINg?

13© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5_2

CHAPTER 2

Review of Deep
Learning
You should be aware that we use deep learning and machine learning

methods throughout this chapter. Although the chapter does not provide

a comprehensive review of ML/DL, it is critical to discuss a few neural

network models because we will be applying them later. This chapter also

briefly familiarizes you with TensorFlow, which is one of the frameworks

utilized during the course of the book. All examples in this chapter use toy

numerical data sets, as it would be difficult to both review neural networks

and learn to work with text data at the same time.

Again, the purpose of these toy problems is to focus on learning how

to create a TensorFlow model, not to create a deployable solution. Moving

forward from this chapter, all examples focus on these models with text data.

 Multilayer Perceptrons and Recurrent
Neural Networks
Traditional neural network models, often referred to as multilayer

perceptron models (MLPs), succeed single-layer perceptron models (SLPs).

MLPs were created to overcome the largest shortcoming of the SLP model,

which was the inability to effectively handle data that is not linearly

separable. In practical cases, we often observe that multivariate data is

14

non-linear, rendering the SLP null and void. MLPs are able to overcome

this shortcoming—specifically because MLPs have multiple layers. We’ll

go over this detail and more in depth while walking through some code to

make the example more intuitive. However, let’s begin by looking at the

MLP visualization shown in Figure 2-1.

Each layer of an MLP model is connected by weights, all of which are

initialized randomly from a standard normal distribution. The input layer

has a set number of nodes, each representative of a feature within a neural

network. The number of hidden layers can vary, but each of them typically

has the same number of nodes, which the user specifies. In regression, the

output layer has one node. In classification, it has K nodes, where K is the

number of classes.

Next, let’s have an in-depth discussion on how an MLP works and

complete an example in TensorFlow.

Figure 2-1. Multilayer perceptron

Chapter 2 review of Deep Learning

15

 Toy Example 1: Modeling Stock Returns
with the MLP Model
Let’s imagine that we are trying to predict Ford Motor Company (F)

stock returns given the returns of other stocks on the same day. This is a

regression problem, given that we are trying to predict a continuous value.

Let’s begin by defining an mlp_model function with arguments that will be

used later, as follows:

def mlp_model(train_data=train_data, learning_rate=0.01,

iters=100, num_hidden1=256):

This Python function contains all the TensorFlow code that forms the

body of the neural network. In addition to defining the graph, this function

invokes the TensorFlow session that trains the network and makes

predictions. We’ll begin by walking through the function, line by line, while

tying the code back to the theory behind the model.

First, let’s address the arguments in our function: train_data is the

variable that contains our training data; in this example; it is the returns of

specific stocks over a given period of time. The following is the header of

our data set:

0 0.002647 -0.001609 0.012800 0.000323 0.016132 -0.004664

-0.018598

1 0.000704 0.000664 0.023697 -0.006137 -0.004840 0.003555

-0.006664

2 0.004221 0.003600 0.002469 -0.010400 -0.008755 -0.002737

0.025367

3 0.003328 0.001605 0.050493 0.006897 0.010206 0.002260

-0.007156

4 0.001397 0.004052 -0.009965 -0.012720 -0.019235 -0.002255

0.017916

Chapter 2 review of Deep Learning

16

5 -0.009326 -0.003754 -0.014506 -0.006607 -0.034865 0.011463

0.003844

6 0.008446 0.005747 0.022830 0.009312 0.021757 -0.000319

0.023982

7 0.002705 0.002623 0.007636 0.020099 -0.007433 -0.008303

-0.004330

8 -0.011224 -0.009530 -0.008161 -0.003230 -0.015381 -0.003381

-0.010674

9 0.012496 0.010942 0.016750 0.007777 0.001233 0.008724

0.033367

Each of the columns represent the percentage return of a stock on a

given day, with our training set containing 1180 observations and our test

set containing 582 observations.

Moving forward, we come to the learning rate and activation function.

In machine learning literature, the learning rate is often represented by the

symbol η (eta). The learning rate is a scalar value that controls the degree

to which the gradient is updated to the parameter that we wish to change.

We can exemplify this technique when referring to the gradient descent

update method. Let’s first look at the equation, and then we can break it

down iteratively.

q q h qt t i

N i i

N
h x y+ == - () -()1 1

21
S

(2.1)

q q h q q qt t i

i i i

N
h x y h x+ == - () -()Ñ ()1 1

1
2S

In Equation 2.1, we are updating some parameter, θ, at a given

time step, t. hθ(x)i is equal to the hypothesized label/value, y being the

actual label/value, in addition to N being equal to the total number of

observations in the data set we are training on.

∇θhθ(x)i is the gradient of the output with respect to the parameters of

the model.

Chapter 2 review of Deep Learning

17

Each unit in a neural network (with the exception of the input layer)

receives the weighted sum of inputs multiplied by weights, all of which are

summed with a bias. Mathematically, this can be described in Equation 2.2.

y f x w bT= ()+, (2.2)

In neural networks, the parameters are the weights and biases. When

referring to Figure 2-1, the weights are the lines that connect the units in

a layer to one another and are typically initialized by randomly sampling

from a normal distribution. The following is the code where this occurs:

 weights = {'input': tf.Variable(tf.random_normal([train_x.

shape[1], num_hidden])),

 'hidden1': tf.Variable(tf.random_normal([num_

hidden, num_hidden])),

 'output': tf.Variable(tf.random_normal([num_hidden,

1]))}

 biases = {'input': tf.Variable(tf.random_normal([num_

hidden])),

 'hidden1': tf.Variable(tf.random_normal([num_

hidden])),

 'output': tf.Variable(tf.random_normal([1]))}

Because they are part of the computational graph, weights and biases

in TensorFlow must be initialized as TensorFlow variables with the tf.

Variable(). TensorFlow thankfully has a function that generates numbers

randomly from a normal distribution called tf.random_normal(), which

takes an array as an argument that specifies the shape of the matrix that you

are creating. For people who are new to creating neural networks, choosing

the proper dimensions for the weight and bias units is a typical source of

frustration. The following are some quick pointers to keep in mind :

• When referring to the weights, the columns of a given

layer need to match the rows of the next layer.

Chapter 2 review of Deep Learning

18

• The columns of the weights for every layer must match

the number of units for each layer in the biases.

• The output layer columns for the weights dictionary

(and array shape for the bias dictionary) should be

representative of the problem that you are modeling.

(If regression, 1; if classification, N, where N = the

number of classes).

You might be curious as to why we initialize the weights and biases

randomly. This leads us to one of the key components of neural networks’

success. The easiest explanation is to imagine the following two scenarios:

• All weights are initialized to 1. If all the weights are

initialized to 1, every neuron is passed the same value,

equal to the weighted sum, plus the bias, and then put

into some activation function, whatever this value may be.

• All weights are initialized to 0. Similar to the prior

scenario, all the neurons are passed the same value,

except that this time, the value is definitely zero.

The more general problem associated with weights that are initialized

at the same location is that it makes the network susceptible to getting

stuck in local minima. Let’s imagine an error function, such as the one

shown in Figure 2-2.

Chapter 2 review of Deep Learning

19

Imagine that when we initialize the neural network weights at 0, and

subsequently that when it calculates the error, it yields the value at the Y

variable in Figure 2-2. The gradient descent algorithm always gives the

same update for the weights from the first iteration of the algorithm, and

it likely gives the same value moving forward. Because of that, we are not

taking advantage of the ability of neural networks to start from any point in

the solution space. This effectively removes the stochastic nature of neural

networks, and considerably reduces the probability of reaching the best

possible solution for the weight optimization problem. Let’s discuss the

learning rate.

Figure 2-2. Error plot

Chapter 2 review of Deep Learning

20

 Learning Rate

The learning rate is typically a static floating-point value that determines

the degree to which the gradient, or error, affects the update to the

parameter that you seek to optimize. In example problems, it is common to

see learning rates initialized anywhere from 0.01 to 1e–4. The initialization

of the learning rate parameter is another point worth mentioning, as it can

affect the speed at which the algorithm converges upon a solution. Briefly,

the following are two scenarios that are problematic:

• The learning rate is too large. When the learning rate

is too large, the error rate moves around in an erratic

fashion. Typically, we observe that the algorithm on one

iteration seems to find a better solution than the prior

one, only to get worse upon the next, and oscillating

between these two bounds. In a worst-case scenario,

we eventually start to receive NaN values for error rates,

and all solutions effectively become defunct. This is the

exploding gradient problem, which I discuss later.

• The learning rate is too small. Although, over time,

this does not yield an incorrect, ultimately, we spend

an inordinate amount of time waiting for the solution

to converge upon an optimal solution.

The optimal solution is to pick a learning rate that is large enough

to minimize the number of iterations needed to converge upon an

optimal solution, while not being so large that it passes this solution in

its optimization path. Some solutions, such as adaptive learning rate

algorithms, solve the problem of having to grid search or iteratively

use different learning rates. The mlp_model() function uses the Adam

(adaptive moment estimation) optimization algorithm, which updates the

learning rate aw we learn. I briefly discuss how this algorithm works, and

why you should use it to expedite learning rate optimization.

Chapter 2 review of Deep Learning

21

Adam was first described in a paper that written by Diederik Kingma

and Jimmy Lei Ba. Adam specifically seeks to optimize learning rates by

estimating the first and second moments of the gradients. For those who

are unfamiliar, moments are defined as specific measures of the shape of a

set of points. As it relates to statistics, these points are typically the values

within a probability distribution. We can define the zeroth moment as the

total probability; the first moment as the mean; and second moment as the

variance. In this paper, they describe the optimal parameters for Adam, in

addition to some initial assumptions, as follows:

• α = Stepsize; α ≔ 0.001, ϵ = 10−8

• β1, β2 = Exponential decay rates for 1st and 2nd moment

estimateions β1 = 0.9, β2 = 0.999; β1, β2 ∈ [0, 1)

• f(θ) = Stochastic objective function that

we are optimizing with parameters θ

• m = 1st moment vector, v = 2nd moment vector (Both

initialized as 0s)

With this in mind, although we have not converged upon an optimal

solution, the following is the algorithm that we use:

• gt = ∇θft(θt − 1)

• ˆ ˆ,m v = -Bias corrected first and second moment estimates

resppectively;

• m m g v v gt t t t t t: := =b b b b1 1 1 2 1 2
21 1* + -()* * + -()*- -

• ˆ : , :m
m

v
v

t
t
t t

t
t

= =
1 11 2- -b b

• q q at t
t

t

m

v
:= - *-1

ˆ

() +

While the preceding formulae describe Adam when optimizing

one parameter, we can extrapolate the formulae to adjust for multiple

parameters (as is the case with multivariate problems). In the paper, Adam

Chapter 2 review of Deep Learning

22

outperformed other standard optimization techniques and was seen as the

default learning rate optimization algorithm.

As for the final parameters, num_hidden refers to the number of units in

the hidden layer(s). A commonly referenced rule of thumb is to make this

number equal to the number of inputs plus the number of outputs, and

then multiplied by 2/3.

Epochs refers to the number of times the algorithm should iterate

through the entirety of the training set. Given that this is situation

dependent, there is no general suggestible number of epochs that a neural

network should be trained. However, a suggestible method is to pick an

arbitrarily large number (1500, for example), plot the training error, and

then observe which number of epochs is sufficient. If needed, you can

enlarge the upper limit to allow the model to optimize its solution further.

Now that I have finished discussing the parameters, let’s walk through

the architecture, code, and mathematics of the multilayer perceptron, as

follows:

#Creating training and test sets

train_x, train_y = train_data[0:int(len(train_data)*.67),

1:train_data.shape[1]], train_data[0:int(len(train_data)*.67), 0]

test_x, test_y = train_data[int(len(train_data)*.67):, 1:train_

data.shape[1]], train_data[int(len(train_data)*.67):, 0]

Observe that we are creating both a training set and a test set. The

training and test sets contain 67% and 33%, respectively, of the original data

set labeled train_data. It is suggested that machine learning problems

have these two data sets, at a minimum. It is optional to create a validation

set as well, but this step is omitted for the sake of brevity in this example.

Next, let’s discuss the following important aspect of working with

TensorFlow:

#Creating placeholder values and instantiating weights and

biases as dictionaries

Chapter 2 review of Deep Learning

23

X = tf.placeholder('float', shape = (None, 7))

Y = tf.placeholder('float', shape = (None, 1))

When working in TensorFlow, it is important to refer to machine

learning models as graphs, since we are creating computational graphs

with different tensor objects. Any typical deep learning or machine

learning model expects an explanatory and response variable; however,

we need to specify what these are. Since they are not a part of the graph,

but are representational objects that we are passing data through, they are

defined as placeholder variables, which we can access from TensorFlow

(imported as tf) by using tf.placeholder(). The three arguments for this

function are dtype (data type), shape, and name. dtype and shape are the

only required arguments. The following are quick rules of thumb:

• Generally, the shape of the X and Y variables should

be initialized as a tuple. When working with a two-

dimensional data set, the shape of the X variable

should be (none, number of features), and the shape

of the Y variable should be (none, [1 if regression, N if

classification]), where N is the number of classes.

• The data type specified for these placeholders should

reflect the values that you are passing through them.

In this instance, we are passing through a matrix of

floating-point values and predicting a floating-point

value, so both placeholders for the response and

explanatory variables have the float data type. In

the instance that this was a classification problem,

assuming the same data passed through the

explanatory variable, the response variable has the int

data type since the labels for the classes are integers.

Chapter 2 review of Deep Learning

24

Since I discussed the weights in the neural network already, let’s get

to the heart of the neural network structure: the input through the output

layers, as shown in the following code (inside mlp_model() function):

#Passing data through input, hidden, and output layers

input_layer = tf.add(tf.matmul(X, weights['input']),

biases['input']) (1)

input_layer = tf.nn.sigmoid(input_layer) (2)

input_layer = tf.nn.dropout(input_layer, 0.20) (3)

hidden_layer = tf.add(tf.multiply(input_layer,

weights['hidden1']), biases['hidden1'])

hidden_layer = tf.nn.relu(hidden_layer)

hidden_layer = tf.nn.dropout(hidden_layer, 0.20)

output_layer = tf.add(tf.multiply(hidden_layer, weights

['output']),biases['output']) (4)

When looking at the first line of highlighted code (1), we see the input

layer operation. Mathematically, operations from one neural network layer

to the next can be represented by the following equation:

layer f X w biask k k

T
k= *()+() (2.2.1)

f(x) is equal to some activation function. The output from this

operation is passed to the next layer, where the same operation is run,

including any operations placed between layers. In TensorFlow, there are

built-in mathematical operations to represent the preceding equation:

tf.add() and tf.matmul().

After we create the output, which in this instance is a matrix of

shape (1, 256), we pass it to an activation function. In the second line of

highlighted code (2), we first pass the weighted sum of the inputs and bias

to a sigmoid activation function, given in Equation 2.3.

s =

+
æ
è
ç

ö
ø
÷-

1

1 e x
(2.3)

Chapter 2 review of Deep Learning

25

e is the exponential function. Activation functions serve as a way to

scale the outputs from Equation 2.2, and are sometimes directly related to

how we classify outputs. More importantly, this is the core component of

the neural network that introduces non-linearity to the learning process.

Simply stated, if we use a linear activation function, where f(x) = x, we are

simply repetitively passing the outputs of a linear function from the input

layer to the output layer. Figure 2-3 illustrates this activation function.

Although the range here is from –6 to 6, the function essentially looks

like −∞ to ∞, in that there are asymptotes at 0 and 1 as X grows infinitely

larger or infinitely smaller, respectively. This function is one of the more

common activation functions utilized in neural networks, which we use in

the first layer.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1.0

0.8

0.6

0.4

0.2

0.0

Ac
tiv

at
io

n
Fu

nc
tio

n
Ou

pt
ut

X Value

Sigmoid Activation Function

Figure 2-3. Sigmoid activation function

Chapter 2 review of Deep Learning

26

Also, we defined the derivative of this function, which is important

in mathematically explaining the vanishing gradient problem (discussed

later in the chapter). Although going through all the activation functions

in neural networks would be exhaustive, it is worth discussing the other

activation function that this neural network utilizes. The hidden layer uses a

ReLU activation function, which is mathematically defined in Equation 2.4.

ReLU x x() = ()max 0, (2.4)

The function is illustrated in Figure 2-4.

Figure 2-4. ReLU activation function

Chapter 2 review of Deep Learning

27

Both mathematically and visually, the ReLU activation function is

simple. The output of a ReLU is a matrix of 0s, with some positive values.

One of the major benefits of the ReLU activation function lies in the fact

that it produces a sparse matrix as its output. This attribute is ultimately

why I have decided to include it as the activation function in the hidden

layer, particularly as it relates to the vanishing gradient problem.

 Vanishing Gradients and Why ReLU Helps
to Prevent Them
The vanishing gradient problem is specific to the training of neural

networks, and it is part of the improvements that researchers sought to

make with LSTM over RNN (both are discussed later in this chapter). The

vanishing gradient problem is a phenomenon observed when the gradient

gets so small that the updates to weights from one iteration to the next

either stops completely or is considerably negligible.

Logically, what proceeds is a situation in which the neural network

effectively stops training. In most cases, this results in poor weight

optimization, and ultimately, bad training and test set performance. Why

this happens can be explained precisely by how the updates for each of the

weights are calculated:

When we look at Figure 2-3, we see the derivative of the sigmoid

function. The majority of the function’s derivate falls in a narrow range,

with most of the values being close to 0. When considering how to

calculate the gradient of differing hidden layers, this is precisely what

causes a problem as our network gets deeper. Mathematically, this is

represented by the following equation:

¶
¶

=
¶

¶

¶
¶

¶
¶

¶
¶=

åE

W

E

y

y

s

s

s

s

Wk k

k3

0

2
3

3

3

3

3

Chapter 2 review of Deep Learning

28

As you can see, when we backpropagate the error to layer k, which in

this example is 0 (the input layer), we are multiplying several derivatives of

the activation function’s output several times. This is a brief explanation of

the chain rule and underlies most of a neural networks’ backpropagation

training algorithm. The chain rule is a formula that specifies how to calculate

a derivative that is composed of two or more functions. Assume that we have

a two-layer neural network. Let’s also assume that our respective gradients

are 0.001 and 0.002. This yields 2 e–6 as a respective gradient of the output

layer. Our update to the next gradient would be described as negligible.

You should know that any activation function that yields non- sparse

outputs, particularly when used for multiple layers in succession,

typically causes vanishing gradients. We are able to substantially mitigate

this problem by using a combination of sparse and non-sparse output

activation functions, or exclusively utilize non-spare activation functions.

We illustrate an example of such a neural network in the mlp_model()

function. For now, however, let’s take a look at one last activation layer

before we finish analyzing this MLP.

Observe that after every activation layer, we use the dropout layer, invoked

by tf.nn.dropout(). Dropout layers have the same dimensions as the layer

preceding them; however, they arbitrarily set a random selection of weights’

values to 0, effectively “shutting off” the neurons that are connected to them.

In every iteration, there are a different set of random neurons that shut off.

The benefit of using dropout is to prevent overfitting, which is the instance in

which a model performs well in training data but poorly in test data.

There are a multitude of factors that can cause overfitting, including (but

not limited to) not having enough training data or not cross- validating data

(which induces a model to memorize idiosyncrasies of a given orientation of

a data set rather than generalizing to the distribution underlying the data).

Although you should solve issues like these first, adding dropout is not a bad

idea. When you execute functions without dropout, you notice overfitting

relative to the models that do contain dropout.

Let’s discuss some final MLP topics—specifically, the key components

to what causes the model to learn.

Chapter 2 review of Deep Learning

29

 Loss Functions and Backpropagation
Loss functions are specifically how we define the degree to which our

model was incorrect. In regression, the most typical choices are mean

squared error (MSE) or root mean squared error (RMSE). Mathematically,

they are defined as follows:

MSE

N
h x y

i

N

i
i= ()-()

=
å1

1

2

q
(2.5)

RMSE
N

h x y
i

N

i
i= ()-()

=
å1

1

2

q

(2.6)

error = tf.reduce_mean(tf.pow(output_layer – Y,2)) (mean squared error

in code)

Intuitively, MSE (see Equation 2.5) provides a method for assessing

what was the average error over all predictions in a given epoch. RMSE

(see Equation 2.6) provides the same statistic, but takes the square root

of the MSE value. The benefit of RMSE is that it provides a statistic in

the same unit as the predicted value, allowing the user to assess the

performance of the model more precisely. MSE does not have this benefit,

and as such, it becomes less interpretable—except in the sense that a lower

MSE from one epoch to the next is desirable.

As an example, if we are predicting money, what does it mean that our

prediction is $0.30 squared inaccurate? While we can tell that we have a

better solution if the next epoch yields an MSE of $0.10, it is much harder

to tell precisely what an MSE of $0.10 translates to in a given prediction.

We compare the results of using RMSE vs. MSE in the final toy example in

the chapter. In natural language processing, however, we more often deal

with error functions reserved for classification tasks. With that in mind,

you should be accustomed to the following formulas.

Chapter 2 review of Deep Learning

30

The binary cross entropy is

 y h y p y px i

, q()() = - ()+ -() -()log log)1 1 (2.7)

The multiclass cross entropy is

 y h s sx i j yi

, ,q()() = - +()max 0 D (2.8)

Cross entropy is the number of bits needed to identify an event drawn

from a set. The same principles (with respect to training using an MSE

or RMSE loss function) are carried when using a cross-entropy-based

loss function. Our objective is to optimize the weights in a direction that

minimizes the error as much as possible.

At this point, we have walked through the MLP from the initialization

of the parameters, what they mean, how the layer moves from each layer,

what the activation functions do to it, and how the error is calculated. Next,

let’s dig into recurrent neural networks, long short-term memory, and their

relative importance in the field of natural language processing.

 Recurrent Neural Networks and Long Short-Term
Memory
Despite the relative robustness of MLPs, they have their limitations. The

model assumes independence between inputs and outputs, making

it a suboptimal choice for problems in which the output of function is

statistically dependent on the preceding inputs. As this relates to natural

language processing (NLP), there are tasks that MLPs might be particularly

useful for, such as sentiment analysis. In these problems, one body of text

being classified as negative is not dependent on assessing the sentiment of

a separate body of text.

As an example, I wouldn’t need to read multiple restaurant reviews to

determine whether an individual review is positive or negative. It can be

determined by the attributes of a given observation. However, this is not

Chapter 2 review of Deep Learning

31

always the type of NLP problem we encounter. For example, let’s assume

that we are trying to spell-check on the following sentences:

“I am happy that we are going too the mall!”

“I am happy to. That class was excellent.”

Both sentences are incorrect in their usage of the words too and to,

respectively, because of the context in which they appear. We must use the

sequence of words prior, and perhaps even the words after, to determine

what is incorrect. Another similar problem would be predicting words in a

sentence; for example, let’s look at the following sentence.

“I was born in Germany. I speak _______.”

Although there isn’t necessarily one answer to complete this sentence,

as being born in Germany does not predetermine someone to speaking

only German, there is a high probability that the missing word is German.

However, we can only say that because of the context that surrounds the

words, and assuming that the neural network was trained on sentences (or

phrases) and has a similar structure. Regardless, these types of problems

call for a model that can accommodate some sort of memory related to the

prior inputs, which brings us to recurrent neural network. Figure 2-5 shows

the structure of an RNN.

o

V
W

W

W

U

V

U

x

s

Unfold

ot-1

xt-1

st-1

W W

U

V

ot +1

xt +1

st +1

U

V

ot

xt

st

Figure 2-5. Recurrent neural network

Chapter 2 review of Deep Learning

32

It is important to examine the structure of the RNN as it relates to

resolving the statistical dependency problem. Similar to the prior example,

let’s walk through some example code in TensorFlow to illustrate the

model structure using a toy problem. Similar to the MLP, we will work with

a toy problem to create a function that loads and preprocesses our data for

the neural network, and then make a function to build our neural network.

The following is the beginning of the function:

def build_rnn(learning_rate=0.02, epochs=100, state_size=4):

The first two arguments should be familiar. They represent the same

concepts as in the MLP example. However, we have a new argument called

state_size. In a vanilla RNN, the model we are building here, we pass

what is called the hidden state from a given time step forward. The hidden

state is similar to the hidden layer of an MLP in that it is a function of the

hidden states at previous time steps. The following defines the hidden state

and output as

h f W x W h bt xh t hh t h= + +()-1 (2.9)

 y W h bt ho t o= + (2.10)

ht is the hidden state, W is the weight matrix, b is the bias array, y is the

output of the function, and f(x) is the activation function of our choosing.

 Toy Example 2: Modeling Stock Returns
with the RNN Model
Using the code in the build_rnn() function, observe the following.

#Loading data

 x, y = load_data(); scaler = MinMaxScaler(feature_range=(0, 1))

 x, y = scaler.fit_transform(x), scaler.fit_transform(y)

Chapter 2 review of Deep Learning

33

 train_x, train_y = x[0:int(math.floor(len(x)*.67)), :],

y[0:int(math.floor(len(y)*.67))]

 #Creating weights and biases dictionaries

 weights = {'input': tf.Variable(tf.random_normal([state_

size+1, state_size])),

 'output': tf.Variable(tf.random_normal([state_size,

train_y.shape[1]]))}

 biases = {'input': tf.Variable(tf.random_normal([1, state_

size])),

 'output': tf.Variable(tf.random_normal([1, train_y.

shape[1]]))}

We begin by loading the training and test data, performing a similar

split in the test set such that the first 67% of the complete data set becomes

the training set and the remaining 33% becomes the test set. In this

instance, we distinguish between two classes, 0 or 1, indicating whether

the price went up or down. Moving forward, however, we must refer back

to the state size parameter to understand the shape of the matrices we

produce, again as TensorFlow variables, for the weight and bias matrices.

To crystallize your understanding of the state size parameter, refer to

Figure 2-5, in which the center of the neural network represents a state. We

multiply the given input, as well as the previous state, by a weight matrix,

and sum all of this with the bias. Similar to the MLP, the weighted sum

value forms the input for the activation function.

The output of the activation function forms the hidden state at time

step t, whose value becomes part of the weighted sum in Equation 2.10.

The value of this matrix application ultimately forms the output for the

RNN. We repeat these operations for as many states that we have, which

is equal to the number of inputs that we pass through the neural network.

When referring back to the image, this is what is meant by the RNN being

“unfolded.” The state_size in our example is set to 4, meaning that we are

inputting four input sequences before we make a prediction.

Chapter 2 review of Deep Learning

34

Let’s now walk through the TensorFlow code associated with these

operations.

#Defining placeholders and variables

 X = tf.placeholder(tf.float32, [batch_size, train_x.shape[1]])

 Y = tf.placeholder(tf.int32, [batch_size, train_y.shape[1]])

 init_state = tf.placeholder(tf.float32, [batch_size, state_

size])

 input_series = tf.unstack(X, axis=1)

 labels = tf.unstack(Y, axis=1)

 current_state = init_state

 hidden_states = []

 #Passing values from one hidden state to the next

 for input in input_series: #Evaluating each input within

the series of inputs

 input = tf.reshape(input, [batch_size, 1]) #Reshaping

input into MxN tensor

 input_state = tf.concat([input, current_state], axis=1)

#Concatenating input and current state tensors

 _hidden_state = tf.tanh(tf.add(tf.matmul(input_

state, weights['input']), biases['input'])) #Tanh

transformation

 hidden_states.append(_hidden_state) #Appending the next

state

 current_state = _hidden_state #Updating the current state

Similar to the MLP model, we need to define place holder variables for

both the x and y tensors that our data will pass through. However, a new

placeholder will be here, which is the init_state, representing the initial

state matrix. Notice that the current state is the init_state placeholder for

the first iteration through the next. It also holds the same dimensions and

expects the same data type.

Chapter 2 review of Deep Learning

35

Moving forward, we iterate through every input_sequence in the data set,

where _hidden_state is the Python definition of formula (see Equation 2.9).

Finally, we must come to the output state, given by the following:

logits = [tf.add(tf.matmul(state, weights['output']),

biases['output']) for state in hidden_states]

The code here is representative of Equation 2.10. However, this will

only give us a floating-point decimal, which we need to convert into a label

somehow. This brings us to an activation function which will be important

to remember for multiclass classification, and therefore for the remainder

of this text, the softmax activation function. Subsequently, we define this

activation function as the following:

S y
e

e
i

y

i

N y

i

i() =
æ

è

ç
ç

ö

ø

÷
÷

=å 1

(2.11)

When you look at the formula, we are summing some value over all

the possible values. As such, we define this as a probability score. When

relating this back to classification, particularly with the RNN, we are

outputting the relative probability of an observation being of one class vs

another (or others). The label we choose in this instance is the one with the

highest relative score, meaning that we choose a given label k because it

has the highest probability of being true based on the model’s prediction.

Equation 2.11 is subsequently represented in the code by the following line:

predicted_labels = [tf.nn.softmax(logit) for logit in logits]

#predictions for each logit within the series

Being that this is a classification problem, we use a cross entropy–

based loss function and for this toy example we will use the gradient

descent algorithm, both of which were elaborated upon in the prior

section MLPs. Invoking the TensorFlow session also is performed in the

same fashion as it would be for the MLP graph (and furthermore for all

TensorFlow computational graphs). In a slight derivation from the MLP,

Chapter 2 review of Deep Learning

36

we calculate errors at each time step of an unrolled network and sum these

errors. This is known as backpropagation through time (BPTT), which is

utilized specifically because the same weight matrix is used for every time

step. As such, the only changing variable besides the input is the hidden

state matrix. As such, we can calculate each time step’s contribution to the

error. We then sum these time step errors to get the error. Mathematically,

this is represented by the following equation:

¶
¶

=
¶

¶

¶
¶

¶
¶

¶
¶=

åE

W

E

y

y

s

s

s

s

Wk k

k3

0

3
3

3

3

3

3

This is an application of the chain rule, as described briefly in the

section on how we backpropagate the error from the output layer back to

the input layer to update the weights with respect to their contribution to

the total error. BPPT applies the same logic; instead, we treat the time steps

as the layers. However, although RNNs solved many problems of MLPs,

they had relative limitations, which you should be aware of.

One of the largest drawbacks of RNNs is that the vanishing gradient

problem reappears. However, instead of it being due to having very

deep neural network layers, it is caused by trying to evaluate arbitrarily

long sequences. The activation function used in RNNs is often the tanh

activation function. Mathematically, we define this as follows:

tanh x() = -

+

-

-

e e

e e

x x

x x

Figure 2-6 illustrates the activation function.

Chapter 2 review of Deep Learning

37

Similar to the problem with the sigmoid activation function, the

derivative of the tanh function can 0, such that when backpropagated

over large sequences results in a gradient that is equal to 0. Similar to the

MLP, this can cause problems with learning. Depending on the choice of

activation function, we also might experience the opposite of the vanishing

gradient problem—the exploding gradient. Simply stated, this is the result

of the gradients appearing as NaN values. There are couple of solutions for

the vanishing gradient function in RNNs. Among them are to try weight

regularization via an L1 or L2 norm, or to try different activation functions

as we did in the MLP, utilizing functions such as ReLU. However, one of the

more straightforward solutions is to use a model devised in the 1990s by

Sepp Hochreiter and Jürgen Schmidhuber: the long short-term memory unit,

or LSTM. Let’s start with what this model looks like, as shown in Figure 2-7.

Figure 2-6. Tanh activation and derivative function

Chapter 2 review of Deep Learning

38

LSTMs are distinguished structurally by the fact that we observe them

as blocks, or units, rather than the traditional structure a neural network

often appears as. That said, the same principles are generally applied here.

However, we have an improvement over the hidden state from the vanilla

RNN. I will walk through the formulae associated with the LSTM.

i W x W h W c bt xi t hi t hc t i= + + +()- -s 1 1 (2.12)

f W x W h W c bt xf t hf t hf t f= + + +()- -s 1 1 (2.13)

c f c i W x W h bt t t t xc t hc t c= + + +()- - 1 1tanh (2.14)

o W x W h W c bt xo t ho t co t o= + + +()-s 1 (2.15)

h o ct t t= () tanh (2.16)

it is the input gate, ft is the forget gate, ct is the cell state, ot is the output

gate, htis the output vector, σ is the sigmoid activation function, and tanh is

the tanh activation function. Both the hidden and cell states are initialized

at 0 upon initialization of the algorithm.

The formulae from the LSTM is similar to that of the vanilla RNN,

however there is some slight complexity added. Initially, let’s draw our

attention to the diagram, specifically the LSTM unit in the center, and

understand the directional flow as they relate to the formulae.

x

x x

+

tanh

tanh
x

x

+
tanh

x

x

+
tanh

x

x

+
tanhtanh

x

x

+
tanhtanh

A A

Xt-1

ht-1 ht ht+1

Xt+1Xt

Figure 2-7. LSTM units/blocks

Chapter 2 review of Deep Learning

39

Preliminarily, let’s discuss the notation. Each block, denoted by ,

represents a neural network layer, through which we pass through values.

The horizontal lines with arrows represent the vectors and direction in

which the data moves. After it moves through a neural network layer, the

data often is passed to a pointwise operation object, represented by .

Now that I have discussed how to read the diagram, let’s dive in deeper.

LSTMs are distinguished by having gates that regulate the information

that passes through individual units, as well as what information passes to

the next unit. Individually, these are the input gate, the output gate, and

the forget gate. In addition to these three gates, an LSTM also contains a

cell, which is an important aspect of the unit.

On the diagram, the cell is represented by the horizontal line, and it

is mathematically represented in Equation 2.14. The cell state is similar

to the hidden state, featured here as well as in the RNN, except there is

discretion as to how much information we pass from one unit to the next.

When looking at the diagram, an input, xt, is passed through the input

gate. Here the neural network is put through a neural network layer,

with a sigmoid activation function that passes the output to a pointwise

multiplication operator. This operation is combined with the forget gate, ft,

which is the entirety of Equation 2.14.

Above all, what you should take away from this operation is that its

output is a number between and including 0 and 1. The closer the number

is to 1, information is increasingly passed to the subsequent unit. In

contrast, the closer the number is to 0, information is decreasingly passed

to the subsequent unit.

In Equation 2.13, the forget gate, is what regulates this acceptance of

information, which is represented by ct − 1.

Moving to Equation 2.15 and relating it to the diagram, this is the

neural network layer furthest to the right that is passed through another

sigmoid layer, in similar fashion in to the input layer. The output of this

sigmoid activated neural network layer is then multiplied with the tanh

activated cell state vector, in Equation 2.16 Finally, we pass both the

Chapter 2 review of Deep Learning

40

cell state vector and the output vector to the next LSTM unit. While I

do not draw out the LSTM in the same fashion as the RNN, I utilize the

TensorFlow API’s implementation of the LSTM.

 Toy Example 3: Modeling Stock Returns
with the LSTM Model
As was the case in our prior neural network examples, we must still create

TensorFlow placeholders and variables. For this example, the LSTM

expects sequences of data, which we facilitate by first creating a three-

dimensional X placeholder variables. To avoid debugging issues when

deploying this API with different data sets, you should be careful to read the

following instructions carefully.

 X = tf.placeholder(tf.float32, (None, None, train_x.shape[1]))

 Y = tf.placeholder(tf.float32, (None, train_y.shape[1]))

 weights = {'output': tf.Variable(tf.random_normal([n_

hidden, train_y.shape[1]]))}

 biases = {'output': tf.Variable(tf.random_normal([train_y.

shape[1]]))}

 input_series = tf.reshape(X, [-1, train_x.shape[1]])

 input_series = tf.split(input_series, train_x.shape[1], 1)

 lstm = rnn.core_rnn_cell.BasicLSTMCell(num_units=n_hidden,

forget_bias=1.0, reuse=None, state_is_tuple=True)

 _outputs, states = rnn.static_rnn(lstm, input_series,

dtype=tf.float32)

 predictions = tf.add(tf.matmul(_outputs[-1],

weights['output']), biases['output'])

 accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax

(tf.nn.softmax(predictions), 1)tf.argmax(Y, 1)), dtype=tf.

 float32)),

Chapter 2 review of Deep Learning

41

 error = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(labels=Y, logits=predictions))

 adam_optimizer = tf.train.AdamOptimizer(learning_rate).

minimize(error)

When creating a sequence of variables, we start by creating a three-

dimensional placeholder named X, which is what we feed our data into.

We transform this variable by creating a two-dimensional vector of the

observations with the tf.reshape().

Next, we create a tensor object for each of these observations with the tf.

split() function, which are then stored as a list underneath input_series.

Then, we can create an LSTM cell using the BasicLSTMCell() function.

The static_rnn() function accepts any type of RNN cell, so you can

utilize other types of RNNs, such as GRUs or vanilla RNNs, and the inputs.

Everything else follows the same pattern as the prior examples, in that we

create TensorFlow variables to calculate accuracy, the error rate, and the

Adam optimizer.

 Summary
We have reached the end of our brief, but necessary review of machine

learning before we dive deeply into tackling problems using these models

on text data. However, it is important for us to review some key concepts:

• Model choice matters! Understand the data that you

are analyzing. Is the label you are predicting dependent

on other prior observed labels, or are these inputs

and outputs statistically independent of one another?

Failing to inspect these key properties of your data

beforehand will waste time and provide you with

suboptimal results. Do not skip these steps.

Chapter 2 review of Deep Learning

42

• Parameter choice matters! Picking the right model

for a problem is the first step, but you have to tune this

model properly to get optimal results. Inspect model

performance when you alter the number of hidden

units and epochs. I suggest utilizing algorithms such

as Adam to tune the learning rate while the network

is training. Where possible, grid search or use similar

reactive search methods to find better parameters.

• Activation functions matter! Be mindful of how your

neural network behaves with respect to the vanishing

gradient problem, particularly if you are working with

long sequences or have very deep neural networks.

With these concepts in mind, there is one that we did not cover in this

chapter: data preprocessing. It is more appropriate to discuss with the

problems we are facing.

Let’s move from this chapter and get into the weeds of natural

language processing with a couple of example problems. In the next

chapter, we walk through a couple of methods for preprocessing text,

discuss their relative advantages and disadvantages, and compare model

performance when using them.

Chapter 2 review of Deep Learning

43© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5_3

CHAPTER 3

Working with
Raw Text
Those who approach NLP with the intention of applying deep learning

are most likely immediately confronted with a simple question: How

does a machine learning algorithm learn to interpret text data? Similar

to the situations in which a feature set may have a categorical feature, we

must perform some preprocessing. While the preprocessing we perform

in NLP often is more involved than simply converting a categorical

feature using label encoding, the principle is the same. We need to find

a way to represent individual observations of texts as a row, and encode

a static number of features, represented as columns, across all of these

observations. As such, feature extraction becomes the most important

aspect of text preprocessing.

Thankfully, there has been a considerable amount of work,

including ongoing work, to develop preprocessing algorithms of various

complexities. This chapter introduces these preprocessing methods, walks

through which situations they each work well with, and applies them to

example NLP problems that focus on document classification. Let’s start

by discussing what you should be aware of prior to performing feature

extraction from text.

44

 Tokenization and Stop Words
When you are working with raw text data, particularly if it uses a web

crawler to pull information from a website, for example, you must assume

that not all of the text will be useful to extract features from. In fact, it is

likely that more noise will be introduced to the data set and make the

training of a given machine learning model less effective. As such, I suggest

that you perform preliminary steps. Let’s walk through these steps using

the following sample text.

sample_text = "'I am a student from the University of Alabama. I

was born in Ontario, Canada and I am a huge fan of the United

States. I am going to get a degree in Philosophy to improve

my chances of becoming a Philosophy professor. I have been

working towards this goal for 4 years. I am currently enrolled

in a PhD program. It is very difficult, but I am confident that

it will be a good decision"'

When the sample_text variable prints, there is the following output:

'I am a student from the University of Alabama. I

was born in Ontario, Canada and I am a huge fan of the United

States. I am going to get a degree in Philosophy to improve my

chances of becoming a Philosophy professor. I have been working

towards this goal for 4 years. I am currently enrolled in a PhD

program. It is very difficult, but I am confident that it will

be a good decision'

You should observe that the computer reads bodies of text, even if

punctuated, as single string objects. Because of this, we need to find a way

to separate this single body of text so that the computer evaluates each

word as an individual string object. This brings us to the concept of word

tokenization, which is simply the process of separating a single string

Chapter 3 Working With raW text

45

object, usually a body of text of varying length, into individual tokens

that represent words or characters that we would like to evaluate further.

Although you can find ways to implement this from scratch, for brevity’s

sake, I suggest that you utilize the Natural Language Toolkit (NLTK)

module.

NLTK allows you to use some of the more basic NLP functionalities,

as well as pretrained models for different tasks. It is my goal to allow

you to train your own models, so we will not be working with any of the

pretrained models in NLTK. However, you should read through the NLTK

module documentation to become familiar with certain functions and

algorithms that expedite text preprocessing. Relating back to our example,

let’s tokenize the sample data via the following code:

from nltk.tokenize import word_tokenize, sent_tokenize

sample_word_tokens = word_tokenize(sample_text)

sample_sent_tokens = sent_tokenize(sample_text)

When you print the sample_word_tokens variable, you should observe

the following:

['I', 'am', 'a', 'student', 'from', 'the', 'University', 'of',

'Alabama', '.', 'I', 'was', 'born', 'in', 'Ontario', ',',

'Canada', 'and', 'I', 'am', 'a', 'huge', 'fan', 'of', 'the',

'United', 'States', '.', 'I', 'am', 'going', 'to', 'get', 'a',

'degree', 'in', 'Philosophy', 'to', 'improve', 'my', 'chances',

'of', 'becoming', 'a', 'Philosophy', 'professor', '.', 'I',

'have', 'been', 'working', 'towards', 'this', 'goal', 'for',

'4', 'years', '.', 'I', 'am', 'currently', 'enrolled', 'in',

'a', 'PhD', 'program', '.', 'It', 'is', 'very', 'difficult',

',', 'but', 'I', 'am', 'confident', 'that', 'it', 'will', 'be',

'a', 'good', 'decision']

Chapter 3 Working With raW text

46

You will also observe that we have defined another tokenized object,

sample_sent_tokens. The difference between word_tokenize() and

sent_tokenize() is simply that the latter tokenizes text by sentence

delimiters. This is observed in the following output:

 ['I am a student from the University of Alabama.', 'I \nwas

born in Ontario, Canada and I am a huge fan of the United

States.', 'I am going to get a degree in Philosophy to improve

my chances of \nbecoming a Philosophy professor.', 'I have

been working towards this goal\nfor 4 years.', 'I am currently

enrolled in a PhD program.', 'It is very difficult, \nbut I am

confident that it will be a good decision']

Now we have individual tokens that we can preprocess! From this

step forward, we can clean out some of the junk text that we would not

want to extract features from. Typically, the first thing we want to get rid

of are stop words, which are usually defined as very common words in a

given language. Most often, lists of stop words that we build or utilize in

software packages include function words, which are words that express

a grammatical relationship (rather than having an intrinsic meaning).

Examples of function words include the, and, for, and of.

In this example, we use the list of stop words from the NLTK package.

[u'i', u'me', u'my', u'myself', u'we', u'our', u'ours',

u'ourselves', u'you', u"you're", u"you've", u"you'll",

u"you'd", u'your', u'yours', u'yourself', u'yourselves',

u'he', u'him', u'his', u'himself', u'she', u"she's", u'her',

u'hers', u'herself', u'it', u"it's", u'its', u'itself',

u'they', u'them', u'their', u'theirs', u'themselves', u'what',

u'which', u'who', u'whom', u'this', u'that', u"that'll",

u'these', u'those', u'am', u'is', u'are', u'was', u'were',

Chapter 3 Working With raW text

47

u'be', u'been', u'being', u'have', u'has', u'had', u'having',

u'do', u'does', u'did', u'doing', u'a', u'an', u'the', u'and',

u'but', u'if', u'or', u'because', u'as', u'until', u'while',

u'of', u'at', u'by', u'for', u'with', u'about', u'against',

u'between', u'into', u'through', u'during', u'before',

u'after', u'above', u'below', u'to', u'from', u'up', u'down',

u'in', u'out', u'on', u'off', u'over', u'under', u'again',

u'further', u'then', u'once', u'here', u'there', u'when',

u'where', u'why', u'how', u'all', u'any', u'both', u'each',

u'few', u'more', u'most', u'other', u'some', u'such', u'no',

u'nor', u'not', u'only', u'own', u'same', u'so', u'than',

u'too', u'very', u's', u't', u'can', u'will', u'just', u'don',

u"don't", u'should', u"should've", u'now', u'd', u'll',

u'm', u'o', u're', u've', u'y', u'ain', u'aren', u"aren't",

u'couldn', u"couldn't", u'didn', u"didn't", u'doesn',

u"doesn't", u'hadn', u"hadn't", u'hasn', u"hasn't", u'haven',

u"haven't", u'isn', u"isn't", u'ma', u'mightn', u"mightn't",

u'mustn', u"mustn't", u'needn', u"needn't", u'shan', u"shan't",

u'shouldn', u"shouldn't", u'wasn', u"wasn't", u'weren',

u"weren't", u'won', u"won't", u'wouldn', u"wouldn't"]

All of these words are lowercase by default. You should be aware that

string objects must exactly match to return a true Boolean variable when

comparing two individual strings. To put this more plainly, if we were to

execute the code “you” == “YOU”, the Python interpreter returns false.

The specific instance in which this affects our example can be observed

by executing the mistake() and advised_preprocessing() functions,

respectively. Observe the following outputs:

Chapter 3 Working With raW text

48

['I', 'student', 'University', 'Alabama', '.', 'I', 'born',

'Ontario', ',', 'Canada', 'I', 'huge', 'fan', 'United',

'States', '.', 'I', 'going', 'get', 'degree', 'Philosophy',

'improve', 'chances', 'becoming', 'Philosophy', 'professor',

'.', 'I', 'working', 'towards', 'goal', '4', 'years', '.',

'I', 'currently', 'enrolled', 'PhD', 'program', '.', 'It',

'difficult', ',', 'I', 'confident', 'good', 'decision']

['student', 'University', 'Alabama', '.', 'born', 'Ontario',

',', 'Canada', 'huge', 'fan', 'United', 'States', '.',

'going', 'get', 'degree', 'Philosophy', 'improve', 'chances',

'becoming', 'Philosophy', 'professor', '.', 'working',

'towards', 'goal', '4', 'years', '.', 'currently', 'enrolled',

'PhD', 'program', '.', 'difficult', ',', 'confident', 'good',

'decision']

As you can see, the mistake() function does not catch the uppercase

“I” characters, meaning that there are several stop words still in the text.

This is solved by uppercasing all the stop words and then evaluating

whether each uppercase word in the sample text was in the stop_words

list. This is exemplified with the following two lines of code:

stop_words = [word.upper() for word in stopwords.

words('english')]

word_tokens = [word for word in sample_word_tokens if word.

upper() not in stop_words]

Although embedded methods in feature extraction algorithms likely

account for this case, you should be aware that strings must match exactly,

and you must account for this when preprocessing manually.

That said, there is junk data that you should be aware of—specifically,

the grammatical characters. You will be relieved to hear that the word_

tokenize() function also categorizes colons and semicolons as individual

Chapter 3 Working With raW text

49

word tokens, but you still have to get rid of them. Thankfully, NLTK

contains another tokenizer worth knowing about, which is defined and

utilized in the following code:

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer(r'\w+')

sample_word_tokens = tokenizer.tokenize(str(sample_word_

tokens))

sample_word_tokens = [word.lower() for word in sample_word_

tokens]

When we print the sample_word_tokens variable, we get the following

output:

['student', 'university', 'alabama', 'born', 'ontario',

'canada', 'huge', 'fan', 'united', 'states', 'going', 'get',

'degree', 'philosophy', 'improve', 'chances', 'becoming',

'philosophy', 'professor', 'working', 'towards', 'goal',

'4', 'years', 'currently', 'enrolled', 'phd', 'program',

'difficult', 'confident', 'good', 'decision']

In the course of this example, we have reached the final step! We have

removed all the standard stop words, as well as all grammatical tokens.

This is an example of a document that is ready for feature extraction,

whereupon some additional preprocessing may occur.

Next, I’ll discuss some of the various feature extraction algorithms.

And let’s work on denser sample data alongside a preprocessed example

paragraph.

Chapter 3 Working With raW text

50

 The Bag-of-Words Model (BoW)
A BoW model is one of the more simplistic feature extraction algorithms

that you will come across. The name “bag-of-words” comes from the

algorithm simply seeking to know the number of times a given word is

present within a body of text. The order or context of the words is not

analyzed here. Similarly, if we have a bag filled with six pencils, eight

pens, and four notebooks, the algorithm merely cares about recording the

number of each of these objects, not the order in which they are found, or

their orientation.

Here, I have defined a sample bag-of-words function.

def bag_of_words(text):

 _bag_of_words = [collections.Counter(re.findall(r'\w+',

word)) for word in text]

 bag_of_words = sum(_bag_of_words, collections.Counter())

 return bag_of_words

sample_word_tokens_bow = bag_of_words(text=sample_word_tokens)

print(sample_word_tokens_bow)

When we execute the preceding code, we get the following output:

Counter({'philosophy': 2, 'program': 1, 'chances': 1, 'years': 1,

'states': 1, 'born': 1, 'towards': 1, 'canada': 1, 'huge': 1,

'united': 1, 'goal': 1, 'working': 1, 'decision': 1,

'currently': 1, 'confident': 1, 'going': 1, '4': 1,

'difficult': 1, 'good': 1, 'degree': 1, 'get': 1, 'becoming': 1,

'phd': 1, 'ontario': 1, 'fan': 1, 'student': 1, 'improve': 1,

'professor': 1, 'enrolled': 1, 'alabama': 1, 'university': 1})

This is an example of a BoW model when presented as a dictionary.

Obviously, this is not a suitable input format for a machine learning

algorithm. This brings me to discuss the myriad of text preprocessing

Chapter 3 Working With raW text

51

functions available in the scikit-learn library, which is a Python library

that all data scientists and machine learning engineers should be familiar

with. For those who are new to it, this library provides implementations

of machine learning algorithms, as well as several data preprocessing

algorithms. Although we won’t walk through much of this package, the text

preprocessing functions are extremely useful.

 CountVectorizer
Let’s start by walking through the BoW equivalent—CountVectorizer,

an implementation of bag-of-words in which we code text data as a

representation of features/words. The values of each of these features

represent the occurrence counts of words across all documents. If you

recall, we defined a sample_sent_tokens variable, which we will analyze.

We define a bow_sklearn() function beneath where we preprocess our

data. The function is defined as follows:

from sklearn.feature_extraction.text import CountVectorizer

def bow_sklearn(text=sample_sent_tokens):

 c = CountVectorizer(stop_words='english',

token_pattern=r'\w+')

 converted_data = c.fit_transform(text).todense()

 print(converted_data.shape)

 return converted_data, c.get_feature_names()

To provide context, in this example, we are assuming that each sentence

is an individual document, and we are creating a feature set in which each

feature is an individual token. When we instantiate CountVectorizer(), we

set two parameters: stop_words, and token_pattern. These two arguments

are the embedded methods in the feature extraction that remove stop

words and grammatical tokens. The fit_transform() attribute expects

to receive a list, an array, or a similar object of iterable string objects. We

assign the bow_data and feature_names variables to the data that the

Chapter 3 Working With raW text

52

bow_sklearn() returns, respectively. Our converted data set is a 6 × 50 matrix,

which means that we have six sentences, all of which have 50 features.

Observe our data set and feature names, respectively, in the following

outputs:

[[0 1 0 1 0 1 0 0]

 [0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0]

 [0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 2 1 0 0 0 0 0 0 0]

 [1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]

 [0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]

 [0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]]

[u'4', u'alabama', u'born', u'canada', u'chances',

u'confident', u'currently', u'decision', u'degree',

u'difficult', u'enrolled', u'fan', u'goal', u'going', u'good',

u'huge', u'improve', u'ontario', u'phd', u'philosophy',

u'professor', u'program', u'states', u'student', u'united',

u'university', u'working', u'years']

To extrapolate this example to a larger number of documents, and

ostensibly larger vocabulary sizes, our matrices for preprocessed text data

tends to have a large number of features, sometimes well over 1000. How

to evaluate these features effectively is the machine learning challenge

we seek to solve. You typically want to use the bag-of-words feature

extraction technique for document classification. Why is this the case?

We assume that documents of certain classifications contain certain

words. For example, we expect a document referencing political science

to perhaps feature jargon such as dialectical materialism or free market

capitalism; whereas a document that is referring to classical music will

have terms such as crescendo, diminuendo, and so forth. In these instances

of document classification, the location of the word itself is not terribly

important. It’s important to know what portion of the vocabulary is present

in one class of document vs. another.

Chapter 3 Working With raW text

53

Next, let’s look at our first example problem in the code in the

text_classifiction_demo.py file.

 Example Problem 1: Spam Detection
Spam detection is a relatively common task in that most people have an

inbox (email, social media instant messenger account, or similar entity)

targeted by advertisers or malicious actors. Being able to block unwanted

advertisements or malicious files is an important task. Because of this, we

are interested in pursuing a machine learning approach to spam detection.

Let’s begin by describing the data set before digging into the problem.

This data set was downloaded from the UCI Machine Learning

Repository, specifically the Text Data section. Our data set consists of 5574

observations—all SMS messages. We observe from our data set that most

of the messages are not terribly long. Figure 3-1 is a histogram of our entire

data set.

Figure 3-1. SMS message length histogram

Chapter 3 Working With raW text

54

Something else we should be mindful of is the distribution between

the class labels, which tends to be heavily skewed. In this data set, 4825

observations are marked as “ham” (being not spam), and 747 are marked

as “spam”. You must be vigilant in evaluating your machine learning

solutions to ensure that they do not overfit the training data, and then fail

miserably on test data.

Let’s briefly do some additional data set discovery before we move on

to tackling the problem directly. When we look at the header of our data

set, we observe the following:

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... U c already then say...

4 ham Nah I don't think he goes to usf, he lives aro...

The first column is our categorical label/response variable. The second

column comprises text contained within each individual SMS. We will use

a bag-of-words representation via the CountVectorizer(). Our entire data

set has a vocabulary size of 8477 words. The load_spam_data() function

shows that the preprocessing steps mimic the warmup example at the

beginning of the chapter.

Let’s fit and train our model and evaluate the results. When beginning

a classification task, I suggest that you evaluate the results of the logistic

regression. This determines if your data is linearly separable or not. If it

is, the logistic regression should work fine, which saves you from further

model selection and time-consuming hyper-parameter optimization. If it

does fail, then you can use those methods.

We train a model using both L1 and L2 weight regularization in the

text_classifiction_demo.py file; however, we will walk through the L1

norm regularized example here because it yielded better test results:

Chapter 3 Working With raW text

55

#Fitting training algorithm

l = LogisticRegression(penalty='l1')

accuracy_scores, auc_scores = [], []

Those of you that are not familiar with logistic regression you should

learn about elsewhere; however, I will discuss the L1-regularized logistic

regression briefly. L1 norm regularization in linear models is standard

for LASSO (least absolute shrinkage selection operator), where during

the learning process, the L1 norm can theoretically force some regression

coefficients to 0. In contrast, the L2 norm, often seen in ridge regression,

can force some regression coefficients during the learning process to

numbers close to 0. The difference between this is that coefficients that

are 0 effectively perform feature selection on our feature set by eliminating

them. Mathematically, we represent this regularization via Equation 3.1.

min log ;)

i

M
i Ip y x

=
å- +

1
1

(| q b q

(3.1)

We will evaluate the distribution of test scores over several trials. scikit-

learn algorithms’ fit() method trains the algorithm of a given data set. As

such, all the iterations that optimize the parameters are performed. To see

logging information in the training process, set the verbose parameter to 1.

Let’s look at the code that will collect the distribution of both accuracy

and AUC scores.

for i in range(trials):

 if i%10 == 0 and i > 0:

 print('Trial ' + str(i) + ' out of 100 completed')

 l.fit(train_x, train_y)

 predicted_y_values = l.predict(train_x)

 accuracy_scores.append(accuracy_score(train_y, predicted_y_

values))

Chapter 3 Working With raW text

56

 fpr, tpr = roc_curve(train_y, predicted_y_values)[0],

roc_curve(train_y, predicted_y_values)[1]

 auc_scores.append(auc(fpr, tpr))

scikit-learn performs cross-validation so long as you define a random

seed utilizing the np.random.seed() function, which we do near the

beginning of the file. During each trial, we are fitting the data set to the

algorithm, predicting the accuracy and AUC score, and appending them

to a list that we defined. When we evaluate our results from training, we

observe the following:

Summary Statistics (AUC):

 Min Max Mean SDev Range

0 0.965348 0.968378 0.967126 0.000882 0.00303

Summary Statistics (Accuracy Scores):

 Min Max Mean SDev Range

0 0.990356 0.99116 0.990828 0.000234 0.000804

Test Model Accuracy: 0.9744426318651441

Test True Positive Rate: 0.8412698412698413

Test False Positive Rate: 0.004410838059231254

[[1580 7]

 [40 212]]

Fortunately, we see that logistic regression performs excellently on

this problem. We have excellent accuracy and AUC scores, with very little

variance from one trial to the next. Let’s evaluate the AUC score, as shown

in Figure 3-2.

Chapter 3 Working With raW text

57

Our test AUC score is 0.92. This algorithm would be deployable in an

application to test for spam results. In the course of solution discovery,

I suggest that you use this model rather than others. Although you are

encouraged to find other methods, I observed that the gradient-boosted

classification tree and random forests performed considerably worse,

with AUC scores of roughly 0.72. Let’s discuss a more sophisticated term

frequency scheme.

 Term Frequency Inverse Document Frequency
Term frequency–inverse document frequency (TFIDF) is based on BoW, but

provides more detail than simply taking term frequency, as was done in

the prior example. TFIDF yields a value that shows how important a given

word is by not only looking at term frequency, but also analyzing how

many times the word appears across all documents. The first portion, term

frequency, is relatively straightforward.

Figure 3-2. Test set ROC curve

Chapter 3 Working With raW text

58

Let’s look at an example to see how to calculate TFIDF. We define a

new body of text and use the sample text defined at the beginning of the

chapter, as follows:

text = “‘I was a student at the University of

Pennsylvania, but now work on

Wall Street as a Lawyer. I have been living in

New York for roughly five years

now, however I am looking forward to eventually

retiring to Texas once I have

saved up enough money to do so.”’

document_list = list([sample_text, text])

Now that we have a list of documents, let’s look at exactly what the

TFIDF algorithm does. The first portion, term frequency, has several

variants, but we will focus on the standard raw count scheme. We simply

sum the terms across all documents. The term frequency is equivalent to

Equation 3.2.

f

f
t d

t d t d

,

,¢ ¢Îå (3.2)

ft, d is equal to the frequency of the term across all documents. ft d¢,

is equal to the frequency of that same term but within each individual

document. In our code, we document these steps in the tf_idf_example()

function, as follows:

def tf_idf_example(textblobs=[text, text2]):

def term_frequency(word, textblob): (1)

Chapter 3 Working With raW text

59

return textblob.words.count(word)/float(len(textblob.words))

def document_counter(word, text):

return sum(1 for blob in text if word in blob)

def idf(word, text): (2)

return np.log(len(text) /1 + float(document_counter(word,

text)))

def tf_idf(word, blob, text):

return term_frequency(word, blob) * idf(word, text)

output = list()

for i, blob in enumerate(textblobs):

output.append({word: tf_idf(word, blob, textblobs) for word in

blob.words})

print(output)

Thanks to the TextBlob package, we are able to fairly quickly re-create

the TFIDF toy implementation. I will address each of the functions within

the tf_idf_example() function. You are aware of term frequency, so I

can discuss inverse document frequency. We define inverse document

frequency as a measure of how frequently a word appears across the entire

corpus. Mathematically, this relationship is expressed in Equation 3.3.

 idf ,t D
N

d D t d
() =

Î Î{ }
log

: (3.3)

This equation calculates the log of the total number of documents in

our corpus, divided by all the documents in which the term that we are

evaluating appears. In our code, we calculate this with the function (2).

Now, we are ready to proceed to the final step of the algorithm, which is

multiplying the term frequency by the inverse document frequency, as

shown in the preceding code. We then yield the following output:

Chapter 3 Working With raW text

60

 [{'up': '0.027725887222397813', 'money':

'0.021972245773362195', 'am': '0.027725887222397813', 'years':

'0.027725887222397813', 'as': '0.027725887222397813', 'at':

'0.027725887222397813', 'have': '0.055451774444795626',

'in': '0.027725887222397813', 'New': '0.021972245773362195',

'saved': '0.021972245773362195', 'Texas':

'0.021972245773362195', 'living': '0.021972245773362195',

'for': '0.027725887222397813', 'to': '0.08317766166719343',

'retiring': '0.027725887222397813', 'been':

'0.021972245773362195', 'looking': '0.021972245773362195',

'Pennsylvania': '0.021972245773362195', 'enough':

'0.021972245773362195', 'York': '0.021972245773362195',

'forward': '0.027725887222397813', 'was':

'0.027725887222397813', 'eventually': '0.021972245773362195',

'do': '0.027725887222397813', 'I': '0.11090354888959125',

'University': '0.027725887222397813', 'however':

'0.027725887222397813', 'but': '0.021972245773362195', 'five':

'0.021972245773362195', 'student': '0.021972245773362195',

'now': '0.04394449154672439', 'a': '0.055451774444795626',

'on': '0.027725887222397813', 'Wall': '0.021972245773362195',

'of': '0.027725887222397813', 'work': '0.021972245773362195',

'roughly': '0.021972245773362195', 'Street':

'0.021972245773362195', 'so': '0.021972245773362195', 'Lawyer':

'0.021972245773362195', 'the': '0.027725887222397813', 'once':

'0.021972245773362195'}, {'and': '0.0207285337484549', 'is':

'0.0207285337484549', 'each': '0.0207285337484549', 'am':

'0.026156497379620575', 'years': '0.026156497379620575',

'have': '0.05231299475924115', 'in': '0.026156497379620575',

'children': '0.0414570674969098', 'considering':

'0.0207285337484549', 'retirement': '0.0207285337484549',

'doctor': '0.0207285337484549', 'retiring':

Chapter 3 Working With raW text

61

'0.026156497379620575', 'two': '0.0207285337484549', 'long':

'0.0207285337484549', 'next': '0.0207285337484549', 'to':

'0.05231299475924115', 'forward': '0.026156497379620575',

'was': '0.026156497379620575', 'couple': '0.0207285337484549',

'more': '0.0207285337484549', 'ago': '0.0207285337484549',

'them': '0.0207285337484549', 'that': '0.0207285337484549',

'I': '0.1046259895184823', 'University':

'0.026156497379620575', 'who': '0.0414570674969098', 'however':

'0.026156497379620575', 'quite': '0.0207285337484549',

'me': '0.0207285337484549', 'Yale': '0.0207285337484549',

'with': '0.0207285337484549', 'the': '0.05231299475924115',

'a': '0.07846949213886173', 'both': '0.0207285337484549',

'look': '0.026156497379620575', 'of': '0.026156497379620575',

'grandfather': '0.0207285337484549', 'spending':

'0.0207285337484549', 'three': '0.0207285337484549', 'time':

'0.0414570674969098', 'making': '0.0207285337484549', 'went':

'0.0207285337484549'}]

This brings us to the end of our toy example using TFIDF. Before we

jump into the example, let’s review how we would utilize this example

in scikit-learn, such that we can input this data into a machine learning

algorithm. Similar to CountVectorizer(), scikit-learn has provided a

TfidfVectorizer() method that comes in handy. The following shows its

utilization. I will dive into a deeper use of its preprocessing methods later.

def tf_idf_sklearn(document=document_list):

 t = TfidfVectorizer(stop_words='english',

token_pattern=r'\w+')

 x = t.fit_transform(document_list).todense()

 print(x)

Chapter 3 Working With raW text

62

When we execute the function, it yields the following result:

[[0. 0. 0. 0. 0. 0.24235766

 0.17243947 0. 0.24235766 0.24235766 0. 0.

 0.24235766 0. 0.24235766 0.24235766 0.24235766 0.

 0. 0.17243947 0.24235766 0.24235766 0. 0.24235766

 0.24235766 0.24235766 0. 0.17243947 0.24235766 0.

 0.24235766 0. 0.17243947 0.24235766]

 [0.20840129 0.41680258 0.20840129 0.20840129 0.20840129 0.

 0.14827924 0.20840129 0. 0. 0.20840129 0.20840129

 0. 0.20840129 0. 0. 0. 0.20840129

 0.20840129 0.14827924 0. 0. 0.20840129 0.

 0. 0. 0.41680258 0.14827924 0. 0.20840129

 0. 0.20840129 0.14827924 0.]]

This function yields a 2 × 44 matrix, and it is ready for input into a

machine learning algorithm for evaluation.

Now let’s work through another example problem using TFIDF as our

feature extractor while utilizing another machine learning algorithm as we

did for the BoW feature extraction.

 Example Problem 2: Classifying Movie Reviews
We obtained the following IMDB movie review data set from http://www.

cs.cornell.edu/people/pabo/movie-review-data/.

We are going to work with the raw text directly, rather than using

preprocessed text data sets often provided via various machine learning

packages.

Let’s take a snapshot of the data.

tristar / 1 : 30 / 1997 / r (language , violence , dennis

rodman) cast : jean-claude van damme ; mickey rourke ; dennis

rodman ; natacha lindinger ; paul freeman director : tsui hark

Chapter 3 Working With raW text

http://www.cs.cornell.edu/people/pabo/movie-review-data
http://www.cs.cornell.edu/people/pabo/movie-review-data

63

screenplay : dan jakoby ; paul mones ripe with explosions ,

mass death and really weird hairdos , tsui hark's " double

team " must be the result of a tipsy hollywood power lunch

that decided jean-claude van damme needs another notch on his

bad movie-bedpost and nba superstar dennis rodman should have

an acting career . actually , in " double team , " neither's

performance is all that bad . i've always been the one critic

to defend van damme -- he possesses a high charisma level that

some genre stars (namely steven seagal) never aim for ; it's

just that he's never made a movie so exuberantly witty since

1994's " timecop . " and rodman . . . well , he's pretty much

rodman . he's extremely colorful , and therefore he pretty much

fits his role to a t , even if the role is that of an ex-cia

As you can see, this data is filled with lots of grammatical noise that we

will need to remove, but is also rich in descriptive text. We will opt to use

the TfidfVectorizer() method on this data.

First, I would like to direct you to two functions at the beginning of

the file:

def remove_non_ascii(text):

 return ".join([word for word in text if ord(word) < 128])

Notice that we are using the native Python function ord(). This

function expects a string, and it returns either the Unicode point for

Unicode objects or the value of the byte. If the ord() function returns

an integer less than 128, this poses no problem for our preprocesser

and therefore we keep the string in question; otherwise, we remove

the character. We end this step by joining all the remaining words back

together with the ".join() function. The reasoning for preprocessing

during data preparation is that our text preprocessor expects Unicode

objects when being fed to it. When we are capturing raw text data,

particularly if it is from an HTML page, many of the string objects

Chapter 3 Working With raW text

64

loaded before preprocessing and removal of stop words will not be

Unicode-compatible.

Let’s look at the function that loads our data.

def load_data():

 negative_review_strings = os.listdir('/Users/tawehbeysolow/

Downloads/review_data/tokens/neg')

 positive_review_strings = os.listdir('/Users/tawehbeysolow/

Downloads/review_data/tokens/pos')

 negative_reviews, positive_reviews = [], []

We start by loading the file names of all the .txt files to be processed.

To do this, we use the os.listdir() function. I suggest you use this

function when building similar applications that require preprocessing a

large number of files.

Next, we load our files with the open() function, and then apply the

remove_non_ascii() function, as follows:

 for positive_review in positive_review_strings:

 with open('/Users/tawehbeysolow/Downloads/review_data/

tokens/pos/'+str(positive_review), 'r') as positive_file:

 positive_reviews.append(remove_non_ascii(positive_

file.read()))

 for negative_review in negative_review_strings:

 with open('/Users/tawehbeysolow/Downloads/review_data/

tokens/neg/'+str(negative_review), 'r') as negative_file:

 negative_reviews.append(remove_non_ascii(negative_

file.read()))

With our initial preprocessing done, we end by concatenating both

the positive and negative reviews, in addition to the respective vectors

that contain their labels. Now, we can get to the meat and potatoes of this

machine learning problem, starting with the train_logistic_model()

Chapter 3 Working With raW text

65

function. In a similar fashion, we use logistic regression as the baseline

for the problem. Although most of the following functions are similar in

structure to Example Problem 1, let’s look at the beginning of this function

to analyze what we have changed.

#Load and preprocess text data

x, y = load_data()

t = TfidfVectorizer(min_df=10, max_df=300, stop_

words='english', token_pattern=r'\w+')

x = t.fit_transform(x).todense()

We are utilizing two new arguments: min_df corresponds to the

minimum document frequency to retain a word, and max_df refers to

the maximum amount of documents that a word can appear in before

it is omitted from the sparse matrix that we create. When increasing the

maximum and minimum document frequencies, I noticed that the L1

penalty model performed better than the L2 penalty model. I would posit

that this is likely due to the fact that as we increase the min_df parameter,

we are creating a considerably sparser matrix than if we had a denser

matrix. You should keep this in mind so as to not overselect features if they

performed any feature selection on their matrices beforehand.

Let’s evaluate the results of the logistic regression, as shown in the

following output (also see Figures 3-3 and 3-4).

Summary Statistics from Training Set (AUC):

 Mean Max Range Mean SDev

0 0.723874 0.723874 0.0 0.723874 0.0

Summary Statistics from Training Set (Accuracy):

 Mean Max Range Mean SDev

0 0.726788 0.726788 0.0 0.726788 0.0

Training Data Confusion Matrix:

[[272 186]

 [70 409]]

Chapter 3 Working With raW text

66

Summary Statistics from Test Set (AUC):

 Mean Max Range Mean SDev

0 0.723874 0.723874 0.0 0.723874 0.0

Summary Statistics from Test Set (Accuracy):

 Mean Max Range Mean SDev

0 0.726788 0.726788 0.0 0.726788 0.0

Test Data Confusion Matrix:

[[272 186]

 [70 409]]

Summary Statistics from Training Set (AUC):

 Mean Max Range Mean SDev

0 0.981824 0.981824 0.0 0.981824 0.0

Summary Statistics from Training Set (Accuracy):

 Mean Max Range Mean SDev

0 0.981857 0.981857 0.0 0.981857 0.0

Training Data Confusion Matrix:

[[449 9]

 [8 471]]

Summary Statistics from Test Set (AUC):

 Mean Max Range Mean SDev

0 0.981824 0.981824 0.0 0.981824 0.0

Summary Statistics from Test Set (Accuracy):

 Mean Max Range Mean SDev

0 0.981857 0.981857 0.0 0.981857 0.0

Test Data Confusion Matrix:

[[449 9]

 [8 471]]

Chapter 3 Working With raW text

67

Both in training and performance, logistic regression performs

considerably better when utilizing the L2 weight regularization method,

given the parameters we used for the TfidfVectorizer() feature

extraction algorithm.

Figure 3-3. L1 logistic regression test set ROC curve

Chapter 3 Working With raW text

68

I created multiple solutions to evaluate: a random forest classifier, a

naïve Bayes classifier, and a multilayer perceptron. We begin with a general

overview of all of our methods and their respective orientations.

Starting with the multilayer perceptron in the mlp_movie_

classification_model.py file, notice that much of the neural network

is the same as the example in Chapter 2, with the exception of an extra

hidden layer. That said, I would like to direct your attention to lines 92

through 94.

regularization = tf.contrib.layers.l2_regularizer(scale=0.0005,

scope=None)

regularization_penalty = tf.contrib.layers.apply_

regularization(regularization, weights.values())

cross_entropy = cross_entropy + regularization_penalty

Figure 3-4. L2 logistic regression test set ROC curve

Chapter 3 Working With raW text

69

In these lines, we are performing weight regularization, as

discussed earlier in this chapter with the logistic regression L2 and L1

loss parameters. Those of you who wish to apply this in TensorFlow

can rest assured that these are the only modifications needed to add a

weight penalty to your neural network. While developing this solution,

I tried weight regularization utilizing L1 and L2 loss penalties, and I

experimented with dropout. Weight regularization is the process of

limiting the scope to which the weights can grow when utilizing different

vector norms. The two most referenced norms for weight regularization

are L1 and L2 norms. The following are their respective equations, which

are also illustrated in Figure 3-5.

 L1 = =
=
åv

1
1

1

i

N

iv

 L2 = =
=
åv

2
1

2

i

N

iv

Figure 3-5. L1 and L2 norm visualization

Chapter 3 Working With raW text

70

When initially utilizing both one and two hidden layer(s), I noticed

that both the test and training performance were considerably worse

with dropout, even using dropout percentages as low as 0.05. As such,

I cannot suggest that you utilize dropout for this problem. As for weight

regularization, additional parameter selection is not advisable; however,

I found negligible differences with L1 vs. L2 regularization. The confusion

matrix and the ROC curve are shown in Figure 3-6.

Test Set Accuracy Score: 0.8285714285714286

Test Set Confusion Matrix:

[[122 26]

 [22 110]]

Figure 3-6. ROC curve for multilayer perceptron

Chapter 3 Working With raW text

71

Let’s analyze the choice of parameters for the random forest and

naïve Bayes classifiers. We kept our trees relatively short at a max_depth

of ten splits. As for the naïve Bayes classifier, the only parameter we chose

is alpha, which we set to 0.005. Let’s evaluate Figures 3-6 and 3-7 for the

results of the model.

The Figure 3-8 shows the result of a naïve Bayes classifier.

Figure 3-7. ROC curve for random forest

Chapter 3 Working With raW text

72

Summary Statistics from Training Set Random Forest (AUC):

 Mean Max Range Mean SDev

0 0.987991 0.987991 0.0 0.987991 0.0

Summary Statistics from Training Set Random Forest (Accuracy):

 Mean Max Range Mean SDev

0 0.98826 0.98826 0.0 0.98826 0.0

Training Data Confusion Matrix (Random Forest):

[[447 11]

 [0 479]]

Summary Statistics from Training Set Naive Bayes (AUC):

 Mean Max Range Mean SDev

0 0.965362 0.965362 0.0 0.965362 2.220446e-16

Figure 3-8. ROC curve for naïve Bayes classifier

Chapter 3 Working With raW text

73

Summary Statistics from Training Set Naive Bayes (Accuracy):

 Mean Max Range Mean SDev

0 0.964781 0.964781 0.0 0.964781 3.330669e-16

Training Data Confusion Matrix (Naive Bayes):

[[454 4]

 [29 450]]

Test Data Confusion Matrix:

[[189 27]

 [49 197]]

Test Data Confusion Matrix (Random Forest):

[[162 54]

 [19 227]]

When evaluating the results, the neural network has a tendency to

overfit to training data, but its test performance is very similar to logistic

regression, although slightly less accurate. When assessing the results

of the naïve Bayes classifier and the random forest classifier, we observe

roughly similar AUC scores, with only a difference in false positives and

true positives as the trade-off that we must accept. In this instance, it is

important to consider our objective.

If we are using these algorithms to label the reviews that users input,

and then perform analytics on top of these reviews, we want to maximize

the accuracy rate, or seek models with the highest true positive rate and

true negative rate. In the instance of spam detection, we likely want the

model that has the best ability to properly classify spam from normal mail.

I have introduced and applied the bag-of-words schemes in both

the logistic model and the naïve Bayes classifier. This brings us to the

final part of this section, in which I discuss their relative advantages and

disadvantages. You should be aware of this so as to not waste time altering

subpar solutions. The major advantage of BoW is that it is a relatively

straightforward algorithm that allows you to quickly turn text into a

Chapter 3 Working With raW text

74

format interpretable by a machine learning algorithm, and to attack NLP

problems directly.

The largest disadvantage of BoW is its relative simplicity. BoW does

not account for the context of words, and as such, it does not make it the

ideal feature extraction method for more complex NLP tasks. For example,

“4” and “four” are considered semantically indistinguishable, but in BoW,

they are considered two different words altogether. When we expand this

to phrases, “I went to college for four years,” and “For 4 years, I attended a

university,” are treated as orthogonal vectors. Another example of a BoW

shortcoming is that it cannot distinguish the ordering of words. As such,

“I am stupid” and “Am I stupid” appear as the same vector.

Because of these shortcomings, it is appropriate for us to utilize more

advanced models, such as word embeddings, for these difficult problems,

which are discussed in detail in the next chapter.

 Summary
This brings us to the end of Chapter 3! This chapter tackled working with

text data in document classification problems. You also became familiar

with two BoW feature extraction methods.

Let’s take a moment to go over some of the most important lessons

from this chapter. Just as with traditional machine learning, you must

define the type of problem and analyze data. Is this simply document

classification? Are we trying to find synonyms? We have to answer these

questions before tackling any other steps.

The removal of stop words, grammatical tokens, and frequent words

improves the accuracy of our algorithms. Not every word in a document is

informative, so you should know how to remove the noise. That said, over-

selecting features can be detrimental to our model’s success, so you should

be aware of this too!

Chapter 3 Working With raW text

75

Whenever you are working with a machine learning problem, within

or outside the NLP domain, you must establish a baseline solution and

then improve if necessary! I suggest that you always start a deep learning

problem by seeing how the solution appears, such as with a logistic

regression. Although it is my goal to teach you how to apply deep learning

to NLP-based problems, there is no reason to use overly complex methods

where less complex methods will do better or equally as well (unless you

like to practice your deep learning skills).

Finally, while preprocessing methods are useful, BoW-based models

are best utilized with document classification. For more advanced NLP

problems, such as sentiment analysis, understanding semantics, and

similarly abstract problems, BoW likely will not yield the best results.

Chapter 3 Working With raW text

77© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5_4

CHAPTER 4

Topic Modeling and
Word Embeddings
Now that you have had an introduction to working with text data, let’s

dive into one of the more advanced feature extraction algorithms. To

accomplish some of the more difficult problems, it is reasonable for me

to introduce you to other techniques to approach NLP problems. We will

move through Word2Vec, Doc2Vec, and GloVe.

 Topic Model and Latent Dirichlet
Allocation (LDA)
Topic models are a method of extracting information from bodies of text

to see what “topics” occur across all the documents. The intuition is that

we expect certain topics to appear more in relevant documents and not as

much in irrelevant documents. This might be useful when using the topics

we associate with a document as keywords for better and more intuitive

search, or when using it for shorthand summarization. Before we apply

this model, let’s talk about how we actually extract topics.

78

Latent Dirichlet allocation (LDA) is a generative model developed in

2003 by David Blei, Andrew Ng, and Michael I. Jordan. In their paper, they

highlight the shortcomings of TFIDF. Most notably, TFIDF is unable to

understand the semantics of words, or the position of a word in text. This

led to the rise of LDA. LDA is a generative model, meaning that it outputs

all the possible outcomes for a given phenomenon. Mathematically, we

can describe the assumptions as follows:

 1. Choose N~Poisson(ξ) (a sequence of N words within

a document have a Poisson distribution)

 2. Choose θ~Dir(α) (a parameter θ has a Dirichlet

distribution)

 3. For each of the N words (wn):

• Choose topic zn~Multinomial(θ) (Each topic zn has

a multinomial distribution.)

• Choose wn from p (wn | zn, β), a multinomial

probability conditional on topic zn. (Each topic is

represented as a distribution over words, where a

probability is generated from the probability of the

nth word, conditional upon the topic as well as β

where βij = p(wj = 1|zi = 1) with dimensions k x V.)

 β = probability of a given word, V = number of

words in the vocabulary, k = the dimensionality of

the Dirichlet distribution, θ = the random variable

sampled from the probability simplex.

Let’s discuss some of the distributions utilized in these assumptions.

The Poisson distribution represents events that occur in a fixed time or

space and at a constant rate, independently of the time since the last event.

An example of this distribution is a model of the number of people who

call a pizzeria for delivery during a given period of time. The multinomial

Chapter 4 topiC Modeling and Word eMbeddings

79

distribution is the k-outcome generalization of the binomial distribution;

in other words, the same concept as the binomial distribution but

expanded to cases where there are more than two outcomes.

Finally, the Dirichlet distribution is a generalization of the beta

distribution, but expanded to handle multivariate data. The beta

distribution is a distribution of probabilities.

LDA assumes that (1) words are generated from topics, which have

fixed conditional distributions, and (2) that the topics within a document

are infinitely exchangeable, which means that the joint probability

distribution of these topics is not affected by the order in which they are

represented. Reviewing statements 1 and 2 allows us to state that words

within a topic are not infinitely exchangeable.

Let’s discuss parameter θ (drawn from the Dirichlet distribution),

which the dimensionality of the distribution, k, is utilized. We assume that

k is known and fixed, and that k-dimensional Dirichlet random variable θ

can take any values in the (k − 1) probability simplex. Here, we define the

probability simplex as the area of the distribution that we draw the random

variable from, graphically represented as a multidimensional triangle with

k + 1 vertices. The probability distribution on the simplex itself can be

represented as follows:

p
i

k

i

i

k

i

kq a
a

a
q qa a|() =

()
()

æ

è

ç
çç

ö

ø

÷
÷÷

¼=

=

- -å
Õ
G

1

1

1
1 11 1

G
, ,

(4.1)

α = k-vector of positive real valued numbers. Γ(x) = gamma function.

Subsequently, we define the joint distribution of a mixture of topics,

as follows:

p p p z p w z

n

N

n n n(, , | (| | |q a b q a q bz w ,)) ,= () ()
=
Õ

1
(4.2)

Chapter 4 topiC Modeling and Word eMbeddings

80

Therefore, a given sequence of words and topics must have the

following form:

p p p z p w z
n

N

n n nw z, (| (|() = ò ()æ
è
ç

ö

ø
÷

=
Õq q

1

)

(4.3)

In the LDA paper, the authors provide a useful illustration for

Equations 4.1, 4.2, and 4.3, as shown in Figure 4-1.

The example given in the LDA paper describes Figure 4-1 as an

illustration of a topic simplex inside a word simplex comprised of three

words. Each of the simplex points represent a given word and topic,

respectively.

Figure 4-1. Topic and word simplexes

Chapter 4 topiC Modeling and Word eMbeddings

81

Before we complete our discussion on the theory behind LDA, let’s

re-create all the work in Python. Thankfully, scikit-learn provides an

implementation of LDA that we will utilize in the upcoming example.

 Topic Modeling with LDA on Movie Review Data
Next, we look at the same movie review data that we used in our document

classification example. The following is an example of some of the code

that we will utilize to first create out topic model. We’ll start with an

implementation in sklearn.

def create_topic_model(model, n_topics=10, max_iter=5, min_

df=10, max_df=300, stop_words='english', token_pattern=r'\w+'):

 print(model + ' topic model: \n')

 data = load_data()[0]

 if model == 'tf':

 feature_extractor = CountVectorizer(min_df=min_df, max_

df=max_df, stop_words=stop_words, token_pattern=r'\w+')

 else:

 feature_extractor = TfidfVectorizer(min_df=min_df, max_

df=max_df, stop_words=stop_words, token_pattern=r'\w+')

 processed_data = feature_extractor.fit_transform(data)

We load the movie reviews that we used in Chapter 3 for the

classification problem. In this example, we will imagine that we want to

make a topic model for a given number of movie reviews.

Note We are importing the load_data() function from a previous
file. to execute the lda_demo.py file, use a relative import
from the code_applied_nlp_python directory, and execute the
following command: 'python –m chapter4.topic_modeling'

Chapter 4 topiC Modeling and Word eMbeddings

82

We load the data in with our function and then prepare it for input to

the LDA fit_transform() method. Like other NLP problems, we cannot

put raw text into any of our algorithms; we must always preprocess it in

some form. However, for producing a topic model, we will utilize both the

term frequency and the TFIDF algorithms, but mainly to compare results.

Let’s move through the rest of the function.

 lda_model = LatentDirichletAllocation(n_topics=n_topics,

learning_method='online', learning_offset=50., max_iter=max_

iter, verbose=1)

lda_model.fit(processed_data)

tf_features = feature_extractor.get_feature_names()

 print_topics(model=lda_model, feature_names=tf_features, n_top_

words=n_top_words)

When we execute the following function, we get this as our output:

tf topic model:

Topic #0: libby fugitive douglas sarah jones lee detective

double innocent talk

Topic #1: beatty joe hanks ryan crystal niro fox mail

kathleen shop

Topic #2: wars phantom lucas effects menace neeson jedi anakin

special computer

Topic #3: willis mercury simon rising jackal bruce ray lynch

baseball hughes

Topic #4: godzilla broderick redman bvoice kim michael

bloomington mission space york

Topic #5: planet apes joe sci fi space ape alien gorilla newman

Topic #6: d american fun guy family woman day ll james bit

Topic #7: bond brosnan bottle message blake theresa pierce

tomorrow dies crown

Chapter 4 topiC Modeling and Word eMbeddings

83

Topic #8: van spielberg amistad gibson en home american kevin

ending sense

Topic #9: scream 2 wild williamson horror smith kevin arquette

sidney finn

Being that this is movie data, we can see that the topics refer to both the

movie and the context surrounding it. For example, topic #4 lists “Godzilla”

(ostensibly a character) and “Broderick” (ostensibly an actor). We can also

produce topic models utilizing other feature extraction methods.

Now let’s look at the results of the topic model when we use the TFIDF

feature extractor.

tfidf topic model:

Topic #0: libby driver jacket attending terrorists tends finn

doom tough parodies

Topic #1: godzilla beatty douglas arthur christ technology

burns jesus york cases

Topic #2: wars lucas episode menace jar niro jedi darth anakin

phantom

Topic #3: sub theron genre keaton cooper victor rita irene

dating rules

Topic #4: midnight kim stiller mulan spice newman disney junkie

troopers strange

Topic #5: clooney palma kevin pacino snake home toy woody

pfeiffer space

Topic #6: anna disney jude carpenter men wrong siege lee king

family

Topic #7: scream got mail bond hanks book performances summer

cute dewey

Topic #8: en van z n er met reese die fallen lou

Topic #9: family american effects home guy woman michael

original 10 james

Chapter 4 topiC Modeling and Word eMbeddings

84

There are similar results, although we get slightly different results

for some of the topics. In some ways, the TFIDF model can be less

interpretable than the term-frequency model.

Before we move forward, let’s discuss how to utilize the LDA model

with a new package. Gensim is a machine learning library that is heavily

focused on applying machine learning and deep learning to NLP tasks.

The following is code that utilizes this package in the gensim_topic_

model() function:

def gensim_topic_model():

 def remove_stop_words(text): (1)

 word_tokens = word_tokenize(text.lower())

 word_tokens = [word for word in word_tokens if word not

in stop_words and re.match('[a-zA-Z\-][a-zA-Z\-]{2,}',

word)]

 return word_tokens

 data = load_data()[0]

 cleaned_data = [remove_stop_words(data[i]) for i in

range(0, len(data))]

When using this package, the Gensim LDA implementation expects a

different input than the gensim implementation, although it still requires

preprocessing. When looking at function, we have to remove stop words

using a proprietary function, as we did earlier in Chapter 3. In addition to

this, we should be mindful to remove words that appear too frequently,

and not frequently enough. Thankfully, Gensim provides a method within

the corpora.Dictionary() function to do this, as shown here:

dictionary = gensim.corpora.Dictionary(cleaned_data)

dictionary.filter_extremes(no_below=100, no_above=300)

corpus = [dictionary.doc2bow(text) for text in cleaned_data]

 lda_model = models.LdaModel(corpus=corpus, num_topics=n_topics,

id2word=dictionary, verbose=1)

Chapter 4 topiC Modeling and Word eMbeddings

85

Similar to the scikit-learn method, we can filter objects based on

document frequency. The preprocessing steps we are taking here are

slightly different than those present in the sklearn_topic_model()

function, which will become central to our discussion at the end of this

section. Similar to what you saw before, what seems like a minor change in

preprocessing steps can lead to a drastically different outcome.

We execute the gensim_topic_model() function and get the following

result:

Gensim LDA implemenation:

Topic #0: 0.116*"movie" + 0.057*"people" + 0.051*"like" +

0.049*"good" + 0.041*"well" + 0.038*"film" + 0.037*"one" +

0.037*"story" + 0.033*"great" + 0.028*"new"

Topic #1: 0.106*"one" + 0.063*"movie" + 0.044*"like" +

0.043*"see" + 0.041*"much" + 0.038*"story" + 0.033*"little" +

0.032*"good" + 0.032*"way" + 0.032*"get"

Topic #2: 0.154*"film" + 0.060*"one" + 0.047*"like" +

0.039*"movie" + 0.037*"time" + 0.032*"characters" +

0.031*"scene" + 0.028*"good" + 0.028*"make" + 0.027*"little"

Topic #3: 0.096*"film" + 0.076*"one" + 0.060*"even" +

0.053*"like" + 0.051*"movie" + 0.040*"good" + 0.036*"time" +

0.033*"get" + 0.030*"would" + 0.028*"way"

Topic #4: 0.079*"film" + 0.068*"plot" + 0.058*"one" +

0.057*"would" + 0.049*"like" + 0.039*"two" + 0.038*"movie" +

0.036*"story" + 0.035*"scenes" + 0.033*"much"

Topic #5: 0.136*"film" + 0.067*"movie" + 0.064*"one" +

0.039*"first" + 0.037*"even" + 0.037*"would" + 0.036*"time" +

0.035*"also" + 0.029*"good" + 0.027*"like"

Topic #6: 0.082*"movie" + 0.072*"get" + 0.068*"film" +

0.059*"one" + 0.046*"like" + 0.036*"even" + 0.035*"know" +

0.027*"much" + 0.027*"way" + 0.026*"story"

Chapter 4 topiC Modeling and Word eMbeddings

86

Topic #7: 0.131*"movie" + 0.097*"film" + 0.061*"like" +

0.045*"one" + 0.032*"good" + 0.029*"films" + 0.027*"see" +

0.027*"bad" + 0.025*"would" + 0.025*"even"

Topic #8: 0.139*"film" + 0.060*"movie" + 0.052*"like" +

0.044*"story" + 0.043*"life" + 0.043*"could" + 0.041*"much" +

0.032*"well" + 0.031*"also" + 0.030*"time"

Topic #9: 0.116*"film" + 0.091*"one" + 0.059*"movie" +

0.035*"two" + 0.029*"character" + 0.029*"great" + 0.027*"like"

+ 0.026*"also" + 0.026*"story" + 0.026*"life"

So far, the results from the scikit-learn implementation of LDA using

term frequency as our feature extractor has given the most interpretable

results. Most of the results are homogenous, which might not lead to much

differentiation, making the results from this less useful.

Using this same data set, let’s utilize another topic extraction model.

 Non-Negative Matrix Factorization (NMF)
Non-negative matrix factorization (NMF) is an algorithm that takes a

matrix and returns two matrices that have no non-negative elements. NMF

is closely related to matrix factorization, except NMF only receives non-

negative values (0 and anything above 0).

We want to utilize NMF rather than another type of matrix factorization

because we need positive coefficients, as is the case when using LDA. We

can describe the process with the following mathematical formula:

 V WH=

The matrix, V, is the original matrix that we input to the data. The two

matrices that we output are W and H. In this example, let’s assume matrix

V has 1000 rows and 200 columns. Each row represents a word and each

column represents a document. Therefore, we have a 1000-word vocabulary

featured across 200 documents. As it relates to the preceding equation, V is an

m×n matrix, W is an m×p matrix, and H is a p ×n matrix. W is a features matrix.

Chapter 4 topiC Modeling and Word eMbeddings

87

Let’s say that we would like to find five features such that we generate

matrix W with 1000 rows and 5 columns. Matrix H subsequently has a

shape equivalent to 5 rows and 200 columns. When we perform matrix

multiplication on W and H, we yield matrix V with 1000 rows and 200

columns, equivalent to the dimensionality described earlier. We consider

that each document is built from a number of hidden features, which NMF

would therefore generate. The following is the scikit-learn implementation

of NMF that we will utilize for this example:

def nmf_topic_model():

 def create_topic_model(model, n_topics=10, max_iter=5,

min_df=10,

 max_df=300, stop_words='english',

token_pattern=r'\w+'):

 print(model + ' NMF topic model: ')

 data = load_data()[0]

 if model == 'tf':

 feature_extractor = CountVectorizer(min_df=min_df,

max_df=max_df,

 stop_words=stop_words,

token_pattern=token_pattern)

 else:

 feature_extractor = TfidfVectorizer(min_df=min_df,

max_df=max_df,

 stop_words=stop_words,

token_pattern=token_pattern)

 processed_data = feature_extractor.fit_transform(data)

 nmf_model = NMF(n_components=n_components,

max_iter=max_iter)

 nmf_model.fit(processed_data)

 tf_features = feature_extractor.get_feature_names()

Chapter 4 topiC Modeling and Word eMbeddings

88

 print_topics(model=nmf_model, feature_names=tf_

features, n_top_words=n_topics)

 create_topic_model(model='tf')

We invoke the NMF topic extraction in virtually the same manner that

we invoke the LDA topic extraction model. Let’s look at the output of both

the term frequency preprocessed data and the TFIDF preprocessed data.

tf NMF topic model:

Topic #0: family guy original michael sex wife woman r men play

Topic #1: jackie tarantino brown ordell robert grier fiction

pulp jackson michael

Topic #2: jackie hong drunken master fu kung chan arts martial ii

Topic #3: scream 2 williamson horror sequel mr killer sidney

kevin slasher

Topic #4: webb jack girl gives woman ll male killed sir talking

Topic #5: musical musicals jesus death parker singing woman

nation rise alan

Topic #6: bulworth beatty jack political stanton black warren

primary instead american

Topic #7: godzilla effects special emmerich star york computer

monster city nick

Topic #8: rock kiss city detroit got music tickets band

soundtrack trying

Topic #9: frank chicken run shannon ca mun html sullivan

particularly history

The following is the TFIDF NMF topic model:

Topic #0: 10 woman sense james sex wife guy school day ending

Topic #1: scream horror williamson 2 sidney craven stab killer

arquette 3

Topic #2: wars phantom jedi lucas menace anakin jar effects

darth gon

Chapter 4 topiC Modeling and Word eMbeddings

89

Topic #3: space deep alien ship armageddon harry effects

godzilla impact aliens

Topic #4: disney mulan animated joe voice toy animation apes

mermaid gorilla

Topic #5: van amistad spielberg beatty cinque political slavery

en slave hopkins

Topic #6: carpenter ott ejohnsonott nuvo subscribe reviews

johnson net mail e

Topic #7: hanks joe ryan kathleen mail shop online fox tom meg

Topic #8: simon sandler mercury adam rising willis wedding

vincent kevin julian

Topic #9: murphy lawrence martin eddie ricky kit robbins miles

claude police

Before we evaluate the results and have a more thorough discussion

on both methods, let’s focus on visualizing the results. In the preceding

example, we’ve reasonably reduced the complexity so that users can

assess the different topics within the analyzed documents. However, this

isn’t as helpful when we want to look at larger amounts of data and make

inferences from this topic model relatively quickly.

We’ll begin with what I believe is a useful plot, supplied by pyLDAvis.

This software is extremely useful and works relatively easily when used

with a Jupyter notebook, which are excellent for code visualization and

results presentation. It is common to utilize a Jupyter notebook when using

a virtual machine instance from either Amazon Web Services (AWS) or

Google Cloud.

Note For those of you who have not worked with google Cloud
or aWs, i recommend these tutorials: google Compute engine:
www.youtube.com/watch?v=zzMCKv1g5z0 aWs: www.youtube.
com/watch?v=q1vVedHbkAY

Chapter 4 topiC Modeling and Word eMbeddings

http://www.youtube.com/watch?v=zzMCKv1g5z0
http://www.youtube.com/watch?v=q1vVedHbkAY
http://www.youtube.com/watch?v=q1vVedHbkAY

90

Set up an instance and start a Jupyter notebook. We will make some

minor adjustments for running this on your local machine to running it

in the cloud. In this example, the scikit-learn implementations—given the

preprocessing algorithms provided—make gleaning interpretable topics

much easier than the Gensim model. Although it gives more flexibility and

has a lot of features, Gensim requires you to fine-tune the preprocessing steps

from scratch. If you have the time to build results from scratch, this is not a

problem; however, keep this in mind when building your own application,

and consider the difficulties of having to use this method in Gensim.

In this demo, NMF and LDA typically give similar results; however, the

choice of one model vs. the other is often relative to the way we conceive

of the data. LDA assumes that topics are infinitely exchangeable, but the

words within a topic are not. As such, if we are not concerned about the

topic probability per document remaining fixed (it assumedly would not

be, as not all documents contain the same topics across large corpuses),

LDA is a better choice. NMF might be a better choice if we have a heavy

degree of certainty with respect to fixed topic probability and the data

set is considerably smaller. Again, these statements should be taken in

consideration when evaluating the results of the respective topic models,

as with all machine learning problems.

Let’s discuss a more advanced modeling technique that plays a role

in sentiment analysis (in addition to more advanced NLP tasks): word

embeddings. We begin by discussing a body of algorithms: Word2Vec.

 Word2Vec
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean

are credited with creating Word2Vec in 2014 while working at Google.

Word2Vec represents a significant step forward in NLP-related tasks, as it

provides a method for finding vector representations of words and phrases,

and it can be expanded as much as the documents.

Chapter 4 topiC Modeling and Word eMbeddings

91

First, let’s examine the Skip-Gram model, which is a shallow neural

network whose objective is to predict a word in a sequence based on the

words around it. Let’s take the following sequence of training words:

w w w wT= ¼()1 2, , ,

The objective function is the average log probability, represented by

the following:

1

1 0T
p w w

t

T

c j c j
t j t

= - £ £ ¹
+å å

,

log)(|

p w w p w w
v v

v v
t j t O I

w
T

wi

w

W

w
T

wi

O(| (|+

=

= =
¢()

¢()å
))

exp

exp
1

c = size of the training context, T = the total number of training words,

t = index position of the current word, j = the window that determines

which word in the sequence we are looking, wt = center word of the

sequence, and W= number of words in the vocabulary.

Before we move on, it’s important that you understand the formula and

how it explains what the model does. An n-gram is a continuous grouping

of n words. A Skip-Gram is a generalization of an n-gram, such that we

have groupings of words, but they no longer need to be continuous; that

is, we can skip words to create Skip-Grams. Mathematically, we typically

define k-skip-n-grams as follows:

{ , , , |w w w i i ki i i
j

n

j jn1 2
1

1¼ - <
=

-å }

Let’s assume the following is an input to the k-skip-n-gram model:

“The cat down the street”

Let’s also assume that we are seeking to create a 2-skip-bi-gram model.

As such, the training examples are as follows:

• “The, cat”, “The, down”, “The, the”, “The, street”

• “cat, the”, “cat, down”, “cat, the”, “cat, street”

Chapter 4 topiC Modeling and Word eMbeddings

92

• “down, the”, “down, cat”, “down, the”, “down, street”

• “the, The”, “the, cat”, “the, down”, “the, street”

• “street, The”, “street, cat”, “street, down”, “street, the”

So now you understand how the input data is represented as words.

Let’s discuss how we represent these words with respect to a neural

network. The input layer for the Skip-Gram model is a one-hot encoded

vector with W components. In other words, every element of the vector is

representative of a word in the vocabulary. The Skip-Gram architecture is

graphically represented in Figure 4-2.

Figure 4-2. Skip-Gram model architecture

Chapter 4 topiC Modeling and Word eMbeddings

93

The goal of the neural network is to predict the word that has the

highest probability of coming next in the input sequence. This is precisely

why we want to use softmax, and ultimately how you intuitively understand

the formula. We want to predict the word that is most probable given the

input of the words, and we are calculating this probability based on the

entirety of the input and output sequences observed by the neural network.

Be that as it may, we have a minor problem. Softmax computation

scales proportionally to the input size, which bodes poorly for this

problem because accurate results will likely require large vocabulary sizes

for training data. Hence, it is often suggested that we use an alternative

method. One of the methods often referenced is negative sampling.

Negative sampling is defined in the following equation:

log ~ logs s¢() + () -()éë ùû

=
åv v P w v vwo

T
wi

i

k

wi n wi
T

wi
1

Negative sampling achieves a cheaper computation than the softmax

activation function by approximating its output. More precisely, we are

only going to change K number of weights in the word embedding rather

than computing them all. The Word2Vec paper suggests to sample

with 5 to 20 words in smaller data sets, but 2 to 5 words in larger data sets

can achieve positive results.

Beyond the training of the word embedding, what are we actually

going to use it for? Unlike many neural networks, the main objective is not

necessarily to use it for the purpose of prediction, but rather to obtain the

trained hidden layer weight matrix. The hidden layer weight matrix is our

trained word embedding. Once this hidden layer is trained, certain words

cluster in areas of vector space, where they share similar contexts.

Chapter 4 topiC Modeling and Word eMbeddings

94

 Example Problem 4.2: Training a Word
Embedding (Skip-Gram)
Let’s display the power of Word2Vec by working through a demo example,

in Gensim and in TensorFlow. The following is some of the code that begins

our implementation of the TensorFlow Word2Vec Skip-Gram model:

def remove_non_ascii(text):

 return ".join([word for word in text if ord(word) < 128])

def load_data(max_pages=100):

 return_string = StringIO()

 device = TextConverter(PDFResourceManager(), return_string,

codec='utf-8', laparams=LAParams())

 interpreter = PDFPageInterpreter(PDFResourceManager(),

device=device)

 filepath = file('/Users/tawehbeysolow/Desktop/applied_nlp_

python/datasets/economics_textbook.pdf', 'rb')

 for page in PDFPage.get_pages(filepath, set(),

maxpages=max_pages, caching=True, check_extractable=True):

 interpreter.process_page(page)

 text_data = return_string.getvalue()

 filepath.close(), device.close(), return_string.close()

 return remove_non_ascii(text_data)

For our example problem, we will utilize the PDFMiner Python module.

For those of you who often parse data in different forms, this package is

highly recommended. PDF data is notorious in parsing, as it is often filled

with images and metadata that makes preprocessing the data a hassle.

Thankfully, PDFMiner takes care of most of the heavy lifting, making our

primary concerns only cleaning out stop words, grammatical characters,

and other preprocessing steps, which are relatively straightforward. For this

problem, we will read data from an economics textbook.

Chapter 4 topiC Modeling and Word eMbeddings

95

def gensim_preprocess_data():

 data = load_data()

 sentences = sent_tokenize(data)

 tokenized_sentences = list([word_tokenize(sentence) for

sentence in sentences])

 for i in range(0, len(tokenized_sentences)):

 tokenized_sentences[i] = [word for word in tokenized_

sentences[i] if word not in punctuation]

 return tokenized_sentences

We now move to tokenizing the data based on sentences. Do not

remove punctuation before this step. The NLTK sentence tokenizer relies on

punctuation to determine where to split data based on sentences. If this is

removed, it can cause you to debug something rather trivial. Regardless,

the next format the data should take is that of a list, where every entry is a

sentence whose words are tokenized, such that the words appear as follows:

 [['This', 'text', 'adapted', 'The', 'Saylor', 'Foundation',

'Creative', 'Commons', 'Attribution-NonCommercial-ShareAlike',

'3.0', 'License', 'without', 'attribution', 'requested',

'works', 'original', 'creator', 'licensee'], ['Saylor',

'URL', 'http', '//www.saylor.org/books', 'Saylor.org', '1',

'Preface', 'We', 'written', 'fundamentally', 'different',

'text', 'principles', 'economics', 'based', 'two', 'premises',

'1'], ['Students', 'motivated', 'study', 'economics', 'see',

'relates', 'lives'], ['2'], ['Students', 'learn', 'best',

'inductive', 'approach', 'first', 'confronted', 'question',

'led', 'process', 'answer', 'question'], ['The', 'intended',

'audience', 'textbook', 'first-year', 'undergraduates',

'taking', 'courses', 'principles', 'macroeconomics',

'microeconomics'], ['Many', 'may', 'never', 'take',

'another', 'economics', 'course'], ['We', 'aim', 'increase',

'economic', 'literacy', 'developing', 'aptitude', 'economic',

Chapter 4 topiC Modeling and Word eMbeddings

96

'thinking', 'presenting', 'key', 'insights', 'economics',

'every', 'educated', 'individual', 'know'], ['Applications',

'ahead', 'Theory', 'We', 'present', 'theory', 'standard',

'books', 'principles', 'economics'], ['But', 'beginning',

'applications', 'also', 'show', 'students', 'theory',

'needed'], ['We', 'take', 'kind', 'material', 'authors', 'put',

'applications', 'boxes', 'place', 'heart', 'book'], ['Each',

'chapter', 'built', 'around', 'particular', 'business',

'policy', 'application', 'microeconomics', 'minimum', 'wages',

'stock', 'exchanges', 'auctions', 'macroeconomics', 'social',

'security', 'globalization', 'wealth', 'poverty', 'nations']

Now that we have finished the preprocessing of our data, we can work

with the Gensim implementation of the Skip-Gram model.

def gensim_skip_gram():

 sentences = gensim_preprocess_data()

 skip_gram = Word2Vec(sentences=sentences, window=1,

min_count=10, sg=1)

 word_embedding = skip_gram[skip_gram.wv.vocab] (1)

Invoking the Skip-Gram model is relatively straightforward, and the

training of the model is taken care of for us as well. The training process

of a Skip-Gram model mimics that of all neural networks, in that we pass

an input through all the layers and then backpropagate the error through

each of the respective weights in each layer, updating them until we have

reached a loss tolerance threshold or until the maximum number of

epochs has been reached. Once the word embedding has been trained,

we obtain the weight matrix by indexing the model with the wv.vocab

attribute of the model itself.

Now, let’s discuss visualizing the words as vectors.

 pca = PCA(n_components=2)

 word_embedding = pca.fit_transform(word_embedding)

Chapter 4 topiC Modeling and Word eMbeddings

97

 #Plotting results from trained word embedding

 plt.scatter(word_embedding[:, 0], word_embedding[:, 1])

 word_list = list(skip_gram.wv.vocab)

 for i, word in enumerate(word_list):

 plt.annotate(word, xy=(word_embedding[i, 0],

word_embedding[i, 1]))

Word embeddings are output in dimensions that are difficult to

visualize in their raw formats. As such, we need to find a way to reduce

the dimensionality of this matrix, while also retaining all the variance and

attributes of the original data set. A preprocessing method that does this

is principal components analysis (PCA). Briefly, PCA transforms a matrix

so that it returns an eigen-decomposition called eigenvectors, in addition

to eigenvalues. For the sake of showing a two-dimensional plot, we want

to create a transformation that yields two principal components. It is

important to remember that these principal components are not exactly

the same as the original matrix, but an orthogonal transformation of the

word embedding that is related to it. Figure 4-3 illustrates the matrix.

Figure 4-3. Skip-Gram word embeddings generated via Gensim

Chapter 4 topiC Modeling and Word eMbeddings

98

In the vector space, words that are closer to one another appear in

similar contexts, and words that are further away from each other are more

dissimilar in respect to the contexts in which they appear. Cosine similarity

is a common method for measuring this. Mathematically, cosine distance

is described as follows:

cos q() = *A B
A B

We intuitively describe cosine similarity as the sum of the product of

all the respective elements of two given vectors, divided by the product of

their Euclidean norms. Two vectors that have a 0-degree difference yield

a cosine similarity of 1; whereas two vectors with a 90-degree difference

yield a cosine similarity of 0. The following is an example of some of the

cosine distances between different word vectors:

Cosine distance for people and Saylor

 -0.10727774727479297

Cosine distance for URL and people

 -0.137377917173043

Cosine distance for money and URL

 -0.03124461706797222

Cosine distance for What and money

 -0.007384979727807199

Cosine distance for one and What

 0.022940581092187863

Cosine distance for see and one

 0.05983065381073224

Cosine distance for economic and see

 -0.0530102968258333

Gensim takes care of some of the uglier aspects of preprocessing the

data. However, it is useful to know how to perform some of these things

from scratch, so let’s try implementing a word embedding utilizing the

same data, except this time we will do it in TensorFlow.

Chapter 4 topiC Modeling and Word eMbeddings

99

Let’s walk through a toy implementation to ensure that you are aware

of what the model is doing, and then walk through an implementation that

is easier to deploy.

def tf_preprocess_data(window_size=window_size):

 def one_hot_encoder(index, vocab_size):

 vector = np.zeros(vocab_size)

 vector[index] = 1

 return vector

 text_data = load_data()

 vocab_size = len(word_tokenize(text_data))

 word_dictionary = {}

 for index, word in enumerate(word_tokenize(text_data)):

 word_dictionary[word] = index

 sentences = sent_tokenize(text_data)

 tokenized_sentences = list([word_tokenize(sentence) for

sentence in sentences])

 n_gram_data = []

We must prepare the data slightly differently for TensorFlow than we

did for Gensim. The Gensim Word2Vec method takes care of most of the

back-end things for us, but it is worthwhile to implement a simple proof of

concept from scratch and walk through the algorithm.

We begin by making a dictionary that matches a word with an index

number. This index number forms the position in our one-hot encoded

input and output vectors.

Let’s continue preprocessing the data.

#Creating word pairs for word2vec model

 for sentence in tokenized_sentences:

 for index, word in enumerate(sentence):

 if word not in punctuation:

Chapter 4 topiC Modeling and Word eMbeddings

100

 for _word in sentence[max(index - window_size, 0):

 min(index + window_size,

len(sentence)) + 1]:

 if _word != word:

 n_gram_data.append([word, _word])

The preceding section of code effectively creates our n-grams, and

ultimately simulates how the Skip-Gram model convolves over a sentence

in such a way that it can predict the following word with the highest

probability. We then create an m×n matrix, where m is the number of words

in our input sequences, and n is the number words in the vocabulary.

 #One-hot encoding data and creating dataset intrepretable by

skip-gram model

 x, y = np.zeros([len(n_gram_data), vocab_size]),

np.zeros([len(n_gram_data), vocab_size])

for i in range(0, len(n_gram_data)):

 x[i, :] = one_hot_encoder(word_dictionary[n_gram_data[i]

[0]], vocab_size=vocab_size)

 y[i, :] = one_hot_encoder(word_dictionary[n_gram_data[i]

[1]], vocab_size=vocab_size)

return x, y, vocab_size, word_dictionary

Moving forward to the function that we will use to construct our Skip-

Gram model, we begin by loading the data and the vocabulary size and

word dictionary. As with other neural network models, we instantiate the

placeholders, variables, and weights. Per the Skip-Gram model diagram

shown in Figure 4-2, we only need to contain a hidden and an output

weight matrix.

Chapter 4 topiC Modeling and Word eMbeddings

101

def tensorflow_word_embedding(learning_rate=learning_rate,

embedding_dim=embedding_dim):

 x, y, vocab_size, word_dictionary = tf_preprocess_data()

 #Defining tensorflow variables and placeholder

 X = tf.placeholder(tf.float32, shape=(None, vocab_size))

 Y = tf.placeholder(tf.float32, shape=(None, vocab_size))

 weights = {'hidden': tf.Variable(tf.random_normal([vocab_

size, embedding_dim])),

 'output': tf.Variable(tf.random_

normal([embedding_dim, vocab_size]))}

 biases = {'hidden': tf.Variable(tf.random_

normal([embedding_dim])),

 'output': tf.Variable(tf.random_normal([vocab_

size]))}

 input_layer = tf.add(tf.matmul(X, weights['hidden']),

biases['hidden'])

 output_layer = tf.add(tf.matmul(input_layer,

weights['output']), biases['output'])

In Chapter 5, we walk through implementing negative sampling.

However, because the number of examples that we are using here is relatively

miniscule, we can get away with utilizing the regular implementation of

softmax as provided by TensorFlow. Finally, we execute our graph, as with

other TensorFlow models, and observe the results shown in Figure 4-4.

Chapter 4 topiC Modeling and Word eMbeddings

102

Cosine distance for dynamic and limited

 0.4128825113896724

Cosine distance for four and dynamic

 0.2833843609582811

Cosine distance for controversial and four

 0.3266445485300576

Cosine distance for hanging and controversial

 0.37105348488163503

Cosine distance for worked and hanging

 0.44684699747383416

Cosine distance for Foundation and worked

 0.3751656692569623

Figure 4-4. Word vectors from toy implementation of Skip- Gram

Chapter 4 topiC Modeling and Word eMbeddings

103

Again, the implementations provided here are not final examples of

what well-trained word embeddings necessarily looks like. We will tackle

that task more specifically in Chapter 5, as data collection is largely the

issue that we must discuss in greater detail. However, the Skip-Gram

model is only one of the word embeddings that we will likely encounter.

We now will continue our discussion by tackling the continuous

bag- of- words model.

 Continuous Bag-of-Words (CBoW)
Similar to a Skip-Gram model, a continuous bag-of-words model (CBoW)

is training on the objective of predicting a word. Unlike the Skip-Gram

model, however, we are not trying to predict the next word in a given

sequence. Instead, we are trying to predict some center word based on

the context around the target label. Let’s imagine the following input data

sentence:

“The boy walked to the red house”

In the context of the CBoW model, we could imagine that we would

have an input vector that appeared as follows:

“The, boy, to, the, red, house”

Here, “walked” is the target that we are trying to predict. Visually, the

CBoW model looks like Figure 4-5.

Chapter 4 topiC Modeling and Word eMbeddings

104

Each word in the input is represented in a single one-hot encoded vector.

Similar to the Skip-Gram model, the length of the input vector is equal to

the number of words in the vocabulary. When evaluating our input data, a

value of “1” is for the words that are present and a “0” is for the words that

are not present. In Figure 4-5, we are predicting a target word, w_t, based

on the words w_t-2, w_ t-1, w_ t+1, and w_t+2.

We then perform a weighted sum operation on this input vector with

weight and bias matrices that pass these values to the projection layer,

which is similar to the projection layer featured in the Skip-Gram model.

Finally, we predict the class label with another weighted sum operation

with the output weight and bias matrices in addition to utilizing a softmax

classifier. The training method is the same as the one used in the Skip-

Gram model.

Next, let’s work with a short example utilizing Gensim.

Figure 4-5. CBoW model representation

Chapter 4 topiC Modeling and Word eMbeddings

105

 Example Problem 4.2: Training a Word
Embedding (CBoW)
The Gensim implementation of CBoW requires that only a single

parameter is changed, as shown here:

cbow = Word2Vec(sentences=sentences, window=skip_gram_window_

size, min_count=10, sg=0)

We invoke this method and observe the results in the same manner

that we did for the Skip-Gram model. Figure 4-6 shows the results.

Figure 4-6. CBoW word embedding visualization

Chapter 4 topiC Modeling and Word eMbeddings

106

 Global Vectors for Word
Representation (GloVe)
GloVe is a contemporary and advanced method of vector representation

of words. In 2014, Jeffrey Pennington, Richard Socher, and Christopher

Manning wrote a paper in which they describe GloVe. This type of

word embedding is an improvement over both matrix factorization–

based representations of words, as well as the Skip-gram model. Matrix

factorization–based methods of word representation are not particularly

good at representing words with respect to their analogous nature.

However, Skip-Gram and CBoW train on isolated windows of text and do

not utilize the same information that a matrix-based factorization method

does. Specifically, when we use LDA to create a topic model, we have

to preprocess the text in a way that encodes each word with statistical

information that represents the word in the context of the whole text. With

Skip-Gram and CBoW, the one-hot encoded vector doesn’t capture that

same type of complexity.

GloVe specifically trains on “global word-to-word co-occurrence

counts.” Co-occurrence is the instance of two words appearing in a specific

order alongside one another. By global, I mean the co-occurrence counts

with respect to all documents in the corpus that we are analyzing. In this

sense, GloVe is utilizing a bit of the intuition behind both models to try and

overcome the respective shortcomings of the aforementioned alternatives.

Let’s begin by defining a co-occurrence matrix, X. Each entry in the

matrix represents the co-occurrence count of two specific words. More

specifically, Xi, j represents the number of times word j appears in the

context of word i. The following notation is also worth noting:

Xi =å

k
i kX ,

(4.4)

P P j i
X

Xi j
i j

i
,

,= () =|

(4.5)

Chapter 4 topiC Modeling and Word eMbeddings

107

Equation 4.4 is defined as the number of times any word appears in the

context of the word I. Equation 4.5 is the probability of a word j given word

i. We define this probability as the co-occurrence account of word j appears

in the context of the word “I” with the total co-occurrence counts of word i.

I suggest that the model should evaluate the ratios of co-occurrence

probabilities, which we define as follows:

F w w w
P

Pi j k
ik

jk

, , () =

(4.6)

w ∈ ℝd= word vectors and wk
dÎ = context vectors, F = exp(x)∗

You should observe that our definition of F has an asterisk above

it, particularly to indicate the fact that the value of F can be a multitude

of things; however, we often derive it to be the preceding definition.

The purpose of F is to encode the value yielded from the co-occurrence

probabilities into the word embedding.

The following functions derive the target label and the error function

we use to train the GloVe word embedding:

F w w Pi

T
k i k
() = , (4.7)

w w b b Xi

T
j i j i j

+ + - log , (4.8)

J f X w w b b X
i j

V

i j i
T

j i j i j= () + + -()
=
å
,

, ,log
1

2

(4.9)

Where f (Xij) = weighting function

As detailed in the GloVe paper, the weighting function should obey a

few rules. Foremost, if f is a continuous function, it should vanish as x → 0,

f (x) should be non-decreasing, and f(x) should be relatively small for large

values of x. These rules are to ensure that rare or frequent co-occurrence

values are not overweighted in the training of the word embedding.

Chapter 4 topiC Modeling and Word eMbeddings

108

Although the weighting function can be altered, the GloVe paper suggests

the following equation:

f x
x

x
if x x

otherwise
m

m() =
æ

è
ç

ö

ø
÷ <

ì

í
ï

î
ï

a

1

xm = maximum value of x, fixed to 100. The weighting function yields

the values shown in Figure 4-7 with respect to the x value.

Now that we have reviewed the model, it is useful for you to

understand how to use pretrained word embeddings, particularly since not

everyone will have the time or the ability to train these embeddings from

scratch due to the difficult nature of acquiring all of this data. Although

there is not necessarily one predetermined place to get a word embedding

from, you should be aware of the following GitHub repository that contains

Figure 4-7. Weighting function for GloVe

Chapter 4 topiC Modeling and Word eMbeddings

109

the files for multitudes of word embeddings: https://github.com/3Top/

word2vec-api#where-to-get-a-pretrained-models. You can feel free to

experiment and deploy these word embeddings for different tasks where

they see fit.

For this example, we will use a GloVe word embedding that contains

6 billion words and 50 features. This word embedding was trained from

data taken from Wikipedia and has a vocabulary containing 400,000 words.

Now, let’s begin with the code, shown here:

def load_embedding(embedding_path='/path/to/glove.6B.50D.txt'):

 vocabulary, embedding = [], []

 for line in open(embedding_path, 'rb').readlines():

 row = line.strip().split(' ')

 vocabulary.append(row[0]), embedding.append(row[1:])

 vocabulary_length, embedding_dim = len(vocabulary),

len(embedding[0])

 return vocabulary, np.asmatrix(embedding), vocabulary_

length, embedding_dim

We begin this problem by loading the word embeddings using the

native open() function to read the file line by line. Each line in the file

starts with a word in the vocabulary, and the subsequent entries in that

line represent the values within each of that word’s vector. We iterate

through all the lines in the file, appending the word and the word vector to

their respective arrays. As such, we are able to create a list of words within

a vocabulary and reconstruct the word embeddings from a .txt file. This

trained embedding should look like Figure 4-8.

Chapter 4 topiC Modeling and Word eMbeddings

https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models
https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models

110

Figure 4-8 shows the representation of the first 50 words in the

vocabulary when we look at the two principal components yielded from

the transformation of our word embedding. Examples of words that seem

to appear in similar contexts are had and has, and, and as, in addition to

his and he. When comparing the cosine similarities of other words in the

vocabulary, we observe the following.

Cosine Similarity Between so and u.s.: 0.5606769548631282

Cosine Similarity Between them and so: 0.8815159254335486

Cosine Similarity Between what and them: 0.8077565084355354

Cosine Similarity Between him and what: 0.7972281857691554

Cosine Similarity Between united and him: 0.5374600664967559

Cosine Similarity Between during and united: 0.6205250403136882

Cosine Similarity Between before and during: 0.8565694276984954

Cosine Similarity Between may and before: 0.7855322363492923

Cosine Similarity Between since and may: 0.7821437532357596

Figure 4-8. GloVe pretrained embedding

Chapter 4 topiC Modeling and Word eMbeddings

111

 Example Problem 4.4: Using Trained Word
Embeddings with LSTMs
Now that we have visually inspected the word embedding, let’s focus

on how to use trained embeddings with a deep learning algorithm.

Let’s imagine that we would like to include the following paragraph as

additional training data for our word embedding.

sample_text = "'Living in different places has been the

greatest experience that I have had in my life. It has allowed

me to understand people from different walks of life, as well

as to question some of my own biases I have had with respect

to people who did not grow up as I did. If possible, everyone

should take an opportunity to travel somewhere separate from

where they grew up."'.replace('\n', ")

With our sample data assigned to a variable, let’s begin by performing

some of the same preprocessing steps that we have familiarized ourselves

with, exemplified by the following body of code:

def sample_text_dictionary(data=_sample_text):

 count, dictionary = collections.Counter(data).most_

common(), {} #creates list of word/count pairs;

 for word, _ in count:

 dictionary[word] = len(dictionary) #len(dictionary)

increases each iteration

 reverse_dictionary = dict(zip(dictionary.values(),

dictionary.keys()))

 dictionary_list = sorted(dictionary.items(),

key = lambda x : x[1])

 return dictionary, reverse_dictionary, dictionary_list

Chapter 4 topiC Modeling and Word eMbeddings

112

We start by using a remove_stop_words() function, a redefinition of

a sample preprocessing text algorithm defined in Chapter 3 that removes

stop words from relatively straightforward sample data. When you are

using data that isn’t as clean as this sample data, I recommend that

you preprocess the data in a manner similar to what you did using the

economics textbook or War and Peace.

Moving to the sample_text_dictionary() function, we create a

term frequency dictionary, and then return these variables. This process

is important for you to understand, because this is an example of how

we deal with words that are not in the vocabulary of a trained word

embedding:

for i in range(len(dictionary)):

 word = dictionary_list[i][0]

 if word in vocabulary:

 _embedding_array.append(embedding_dictionary[word])

 else:

 _embedding_array.append(np.random.uniform(low=-0.2,

high=0.2, size=embedding_dim))

We begin by creating a variable title: _embedding_array. This variable

actually contains the word embedding representations of our sample

text. To handle words that are not in the vocabulary, we will create a

randomized distribution of numbers to simulate a word embedding, which

we then feed as inputs to the neural network.

Moving forward, we make the final transformations to the embedding

data before we create our computation graph.

embedding_array = np.asarray(_embedding_array)

 decision_tree = spatial.KDTree(embedding_array, leafsize=100)

Chapter 4 topiC Modeling and Word eMbeddings

113

We will use a k-nearest neighbors tree to find the embedding that is

closest to the array that our neural network outputs. From this, we use

reverse_dictionary to find the word that matches the predicted embedding.

Let’s build our computational graph, as follows:

#Initializing placeholders and other variables

X = tf.placeholder(tf.int32, shape=(None, None, n_input))

Y = tf.placeholder(tf.float32, shape=(None, embedding_dim))

 weights = {'output': tf.Variable(tf.random_normal([n_hidden,

embedding_dim]))}

 biases = {'output': tf.Variable(tf.random_normal([embedding_

dim]))}

 weights = tf.Variable(tf.constant(0.0, shape=[vocabulary

length, embedding_dim]), trainable=True)

 _embedding = tf.placeholder(tf.float32, [vocabulary_length,

embedding_dim])

embedding_initializer = _weights.assign(_embedding)

embedding_characters = tf.nn.embedding_lookup(_weights, X)

 input_series = tf.reshape(embedding_characters, [-1, n_input])

input_series = tf.split(input_series, n_input, 1)

You will find most of this similar to the LSTM tutorial in Chapter 2,

but direct your attention to the second grouping of code, specifically

where we create the _weights and _embedding variables. When we are

loading a trained word embedding, or have an embedding layer in our

computational graph, the data must pass through this layer before it can

get to the neural network. The dimension of the network is the number of

words in the vocabulary by the number of features. Although the number

of features when training one’s own embedding can be altered, this is a

predetermined value when we load a word embedding.

Chapter 4 topiC Modeling and Word eMbeddings

114

We assign the weights variable to the _embedding placeholder, which

is ultimately the weights our optimizer is tuning, whereupon we create an

embedding characters variable. The tf.nn.embedding_lookup() function

specifically retrieves the index numbers of the _weights variable. Finally,

we transform the embedding_characters variable into the input_series

variable, which is actually directly fed into the LSTM layer.

From this point forward, the passage of data from the LSTM layer

through the rest of the graph should be familiar from the tutorial. When

executing the code, you should see output such as the following:

Input Sequence: ['me', 'to', 'understand', 'people']

Actual Label: from

Predicted Label: an

Epoch: 210

Error: 45.62042

Input Sequence: ['different', 'walks', 'of', 'life,']

Actual Label: as

Predicted Label: with

Epoch: 220

Error: 64.55679

Input Sequence: ['well', 'as', 'to', 'question']

Actual Label: some

Predicted Label: has

Epoch: 230

Error: 75.29771

An immediate suggestion for improving the error rate is to load

different sample texts, perhaps from an actual corpus of data to train on,

as the limited amount of data does not allow the accuracy to improve

significantly much.

Chapter 4 topiC Modeling and Word eMbeddings

115

Another suggestion is to use the load_data() function that is

commented out loading your own PDF file and experimenting from that

point forward.

Now that we have reviewed the methods in which we can represent

words as vectors, let’s discuss other textual representations. Thankfully,

since most of these are Word2Vec abstractions , it will not require nearly as

much explanation this time around.

 Paragraph2Vec: Distributed Memory
of Paragraph Vectors (PV-DM)
Paragraph2Vec is an algorithm that allows us to represent objects of

varying length, from sentences to whole documents, for the same purposes

that we represented words as vectors in the previous examples. This

technique was developed by Quoc Le and Tomas Mikolov, and largely is

based off the Word2Vec algorithm.

In Paragraph2Vec, we represent each paragraph as a unique vector

in a matrix, D. Every word is also mapped to a unique vector, represented

by a column in matrix W. We subsequently construct a matrix, h, which

is formed by concatenating matrices W and D. We think of this paragraph

token as an analog to the cell state from the LSTM, in that it is providing

memory to the current context in the form of the topic of the paragraph.

Intuitively, that means that matrix W is the same across all paragraphs,

such that we observe the same representation of a given word. Training

occurs as it does in Word2Vec, and the negative sampling can occur in this

instance by sampling from a fixed-length context in a random paragraph.

To ensure that you understand how this works functionally, let’s look at

one final example in this chapter.

Chapter 4 topiC Modeling and Word eMbeddings

116

 Example Problem 4.5: Paragraph2Vec Example
with Movie Review Data
Once again, Gensim thankfully has a Doc2Vec method that makes

implementation of this algorithm relatively straightforward. In this

example, we will keep things relatively simple and represent sentences in

a vector space, rather than create or approximate a paragraph tokenizer,

which we would likely want to be more precise than a heuristic that

would be relatively quick to draw up (i.e., paragraphs comprised of four

sentences each). In the doc2vec_example.py file, there are only slight

differences in the Doc2Vec model and the Word2Vec model, specifically

the preprocessing.

def gensim_preprocess_data(max_pages):

 sentences = namedtuple('sentence', 'words tags')

 _sentences = sent_tokenize(load_data(max_pages=max_pages))

 documents = []

 for i, text in enumerate(_sentences):

 words, tags = text.lower().split(), [i]

 documents.append(sentences(words, tags))

 return documents

The Doc2Vec implementation expects what is known as a named

tuple object. This tuple contains a list of tokenized words contained

in the sentence, as well as an integer that indexes this document. In

online documentation, some people utilize a class object entitled

LabledLineSentence(); however, this performs the necessary

preprocessing the same way. When we run our script, we iterate through

all the sentences that we are analyzing, and view their associated cosine

similarities. The following is an example of some of them:

Document sentence(words=['this', 'text', 'adapted', 'the',

'saylor', 'foundation', 'creative', 'commons', 'attribution-

Chapter 4 topiC Modeling and Word eMbeddings

117

noncommercial- sharealike', '3.0', 'license', 'without',

'attribution', 'requested', 'works', 'original', 'creator',

'licensee', '.'], tags=[0])

Document sentence(words=['saylor', 'url', ':', 'http', ':',

'//www.saylor.org/books', 'saylor.org', '1', 'preface', 'we',

'written', 'fundamentally', 'different', 'text', 'principles',

'economics', ',', 'based', 'two', 'premises', ':', '1', '.'],

tags=[1])

Cosine Similarity Between Documents: -0.025641936104727547

Document sentence(words=['saylor', 'url', ':', 'http', ':',

'//www.saylor.org/books', 'saylor.org', '1', 'preface', 'we',

'written', 'fundamentally', 'different', 'text', 'principles',

'economics', ',', 'based', 'two', 'premises', ':', '1', '.'],

tags=[1])

Document sentence(words=['students', 'motivated', 'study',

'economics', 'see', 'relates', 'lives', '.'], tags=[2])

Cosine Similarity Between Documents:

0.06511943195883922

Beyond this, Gensim also allows us to infer vectors without having

to retrain our models on these vectors. This is particularly important in

Chapter 5, where we apply word embeddings in a practical setting. You

can see this functionality when we execute the code with the training_

example parameter set to False. We have two sample documents, which we

define at the beginning of the file:

sample_text1 = "'I love italian food. My favorite items are

pizza and pasta, especially garlic bread. The best italian food

I have had has been in New York. Little Italy was very fun"'

Chapter 4 topiC Modeling and Word eMbeddings

118

sample_text2 = "'My favorite time of italian food is pasta with

alfredo sauce. It is very creamy but the cheese is the best

part. Whenevr I go to an italian restaurant, I am always

certain to get a plate."'

These two examples are fairly similar. When we train our model—more

than 300 pages worth of data from an economics textbook, we get the

following results:

 Cosine Similarity Between Sample Texts:

0.9911814256706748

Again, you should be aware that they will likely need significantly

larger amounts of data to get reasonable results across unseen data.

These examples show them how to train and infer vectors using various

frameworks. For those who are dedicated to training their own word

embeddings, the path forward should be fairly clear.

 Summary
Before we move on to work on natural language processing tasks, let’s

recap some of the most important things learned in this chapter. As

you saw in Chapter 3, preprocessing data correctly is the majority of the

work that we need to perform when applying deep learning to natural

language processing. Beyond cleaning out stop words, punctuation, and

statistical noise, you should be prepared to wrangle data and organize

it in an interpretable format for the neural network. Well-trained word

embeddings often require the collection of billions of tokens.

Chapter 4 topiC Modeling and Word eMbeddings

119

Making sure that you aggregate the right data is extremely important,

as a couple billion tokens from radically different data sources can leave

you with an embedding that doesn’t yield much of anything useful.

Although some of our examples yielded positive results, it does not

mean these applications would work in a production environment. You

must (responsibly) collect large amounts of text data from sources while

maintaining homogeneity in vocabulary and context.

In the following chapter, we conclude the book by working on

applications of recurrent neural networks.

Chapter 4 topiC Modeling and Word eMbeddings

121© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5_5

CHAPTER 5

Text Generation,
Machine Translation,
and Other Recurrent
Language Modeling
Tasks
In Chapter 4, I introduced you to some of the more advanced deep

learning and NLP techniques, and I discussed how to implement these

models in some basic problems, such as mapping word vectors. Before

we conclude this book, I will discuss a handful of other NLP tasks that are

more domain-specific, but nonetheless useful to go through.

By this point, you should be relatively comfortable with preprocessing

text data in various formats, and you should understand a few NLP tasks,

such as document classification, well enough to perform them. As such,

this chapter focuses on combining many of the skills we have worked with

by tackling a couple of problems. All solutions provided in this chapter are

feasible. You are more than welcome to present or complete new solutions

that outperform them.

122

 Text Generation with LSTMs
Text generation is increasingly an important feature in AI-based tools.

Particularly when working with large amounts of data, it is useful

for systems to be able to communicate with users to provide a more

immersive and informative experience. For text generation, the main goal

is to create a generative model that provides some sort of insight with

respect to the data. You should be aware that text generation should not

necessarily create a summary of the document, but generate an output

that is descriptive of the input text. Let’s start by inspecting the problem.

Initially, for such a task, we need a data source. From that, our data

source changes the results. For this task, we start by working with Harry

Potter and the Sorcerer’s Stone. I chose this book since the context should

provide some fairly notable results with respect to the topics that are

contained within the generated text.

Let’s go through the steps that we’ve become accustomed to. We will

utilize the load_data() preprocessing function that we used in word_

embeddings.py; however, the only change that we will make is loading

harry_potter.pdf instead of economics_textbook.pdf.

That said, this function allows you to easily utilize the preprocessing

function for whatever purpose, so long as the directory and other

arguments are changed. Being that this is a text generation example, we

should not clean the data beyond removing non-ASCII characters.

The following is an example of how the data appears:

"Harry Potter Sorcerer's Stone CHAPTER ONE THE BOY WHO LIVED

Mr. Mrs. Dursley, number four, Privet Drive, proud say

perfectly normal, thank much. They last people 'd expect

involved anything strange mysterious, n't hold nonsense. Mr.

Dursley director firm called Grunnings, made drills. He big,

beefy man hardly neck, although large mustache. Mrs. Dursley

thin blonde nearly twice usual amount neck, came useful spent

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

123

much time craning garden fences, spying neighbors. The Dursleys

small son called Dudley opinion finer boy anywhere. The

Dursleys everything wanted, also secret, greatest fear somebody

would discover. They think could bear anyone found Potters.

Mrs. Potter Mrs. Dursley's sister, n't met several years; fact,

Mrs. Dursley pretended n't sister, sister good-for-nothing

husband unDursleyish possible. The Dursleys shuddered think

neighbors would say Potters arrived street. The Dursleys knew

Potters small son,, never even seen. This boy another good

reason keeping Potters away; n't want Dudley mixing child like.

When Mr. Mrs. Dursley woke dull, gray Tuesday story starts,

nothing cloudy sky outside suggest strange mysterious things

would soon happening country. Mr. Dursley hummed picked boring

tie work, Mrs. Dursley gossiped away happily wrestled screaming

Dudley high chair. None noticed large, tawny owl flutter past

window. At half past eight, Mr. Dursley picked briefcase,

pecked Mrs. Dursley cheek, tried kiss Dudley good-bye missed, 1

Dudley tantrum throwing cereal walls. `` Little tyke, "chortled

Mr. Dursley left house. He got car backed number four's drive.

It corner street noticed first sign something peculiar -- cat

reading map. For second, Mr. Dursley n't realize seen -- jerked

head around look. There tabby cat standing corner Privet Drive,

n't map sight. What could thinking ? It must trick light. Mr.

Dursley blinked stared cat. It stared back. As Mr. Dursley

drove around corner road, watched cat mirror. It reading sign

said Privet Drive --, looking sign; cats..."

Let’s inspect our preprocessing function.

def preprocess_data(sequence_length=sequence_length, max_

pages=max_pages, pdf_file=pdf_file):

 text_data = load_data(max_pages=max_pages, pdf_file=pdf_file)

 characters = list(set(text_data.lower()))

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

124

 character_dict = dict((character, i) for i, character in

enumerate(characters))

 int_dictionary = dict((i, character) for i, character in

enumerate(characters))

 num_chars, vocab_size = len(text_data), len(characters)

 x, y = [], []

 for i in range(0, num_chars - sequence_length, 1):

 input_sequence = text_data[i: i+sequence_length]

 output_sequence = text_data[i+sequence_length]

 x.append([character_dict[character.lower()] for

character in input_sequence])

 y.append(character_dict[output_sequence.lower()])

 for k in range(0, len(x)): x[i] = [_x for _x in x[i]]

 x = np.reshape(x, (len(x), sequence_length, 1))

 x, y = x/float(vocab_size), np_utils.to_categorical(y)

 return x, y, num_chars, vocab_size, character_dict,

int_dictionary

When inspecting the function, we use methods similar to the tf_

preprocess_data() function in the toy example of a Skip-Gram model.

Our input and output sequences are fixed lengths, and we will transform

the y variable to a one-hot encoded vector, where each entry in the vector

represents a possible character. We represent the sequence of characters

as a matrix, where each row represents the entire observation and each

column represents a character.

Let’s look at the first example of Keras code used in the book.

 def create_rnn(num_units=num_units, activation=activation):

 model = Sequential()

 model.add(LSTM(num_units, activation=activation,

input_shape=(None, x.shape[1])))

 model.add(Dense(y.shape[1], activation='softmax'))

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

125

 model.compile(loss='categorical_crossentropy',

optimizer='adam')

 model.summary()

 return model

Keras, unlike TensorFlow, is considerably less verbose. As such, this

makes changing the architecture of a model relatively easy. We instantiate

a model by assigning it to a variable, and then simply add layer types with

the Sequential().add() function.

After running the network with 200 epochs, we get the following result:

 driv, proud say perfecdly normal, thanp much. they last

people 'd expect involved anytsing strange mysterious, s't

hold donsense. mr. dursley director firm called grunnings,

made drills. he big, berfy man, ardly neck, althougl larte

mustache. mrs. dursley thic -londe. early twece uiual amount

necd, came ueeful spent much time craning geddon fences,

spying neighbors. the dursleys small son called dudley

opinion finer boy anyw rd. the dursleys everything wanted,

slso secret, greatest fear somebody would discover. they

thinn could bear antone found potters. mrs. potterimrs.

dursley's sister, n't met several years; fact, mrs. dursley

pretended n't sister, sister good-sur-notding husband

undursleyir pousible. the dursleys suuddered think auigybors

would say potters arrived strett. the dursleys knew potters

small. on, ever even seen. thit boy another good reason

keeping potters away; n'e want dudley mixing child like.

wten mr. mrs. dursley woke dull, gray tuesday story startss,

nothing cloudy skycoutside suggest strange mytter ous taings

would soon darpening codntry. mr. dursley tummed picked

boring tie work, mrs. dursley gosudaed away happily wrestled

screaming dudley aigh cuair. noneoloticed large, tawny owl

flutter past wincow. at ialf past, ight, mr. dursley picked

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

126

briefcase, pecked mrs. dursley cheek, tried kiss dudley good-

bye missed, 1 dudley tantrum,hrowigg cereal walls. `` lwttle

tykp, "chortled mr. dursley left house. he got car backel

number four's drive. it corner street noticed fir t sign

somathing pcculilr -- cat feading,ap. for sicond, mr. dursley

r't realize scen -- jerked head around look. thereytab y

cat standing corneraprivet drive, n'tamap sight. what sould

thinking ? it muse trick light. mr. dursley blinked stared

cat. it stayed back. as mr. dursley drove around corner road,

watched catcmirror. it reading sign saidsprivet druve --,

lookingtsign; cats could n't read maps signs. mr. durs

Note Some of the text is interpretable, but obviously not everything
is as good as it could be. In this instance, I suggest that you allow the
neural network to train longer and to add more data. Also consider
using different models and model architectures. Beyond this example,
it would be useful to present a more advanced version of the LSTM
that is also useful for speech modeling.

 Bidirectional RNNs (BRNN)
BRNNs were created in 1997 by Mike Schuster and Kukdip Paliwal, who

introduced the technique to a signal-processing academic journal. The

purpose of the model was to utilize information moving in both a “positive

and negative time direction.” Specifically, they wanted to utilize both

the information moving up to the prediction, as well as the same stream

of inputs moving in the opposite direction. Figure 5-1 illustrates the

architecture of a BRNN.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

127

Let’s imagine that that we have a sequence of words, such as the

following: The man walks down the boardwalk.

In a regular RNN, assuming that we wanted to predict the word

boardwalk, the input data would be The, man, walks, down, the. If we

input bigrams, it would be The, man, man, walks, and so forth. We keep

moving through the input data, predicting the word that is most likely

to come next at each time step, culminating in our final target label, a

probability that corresponds to the one-hot encoded vector that is most

likely to be present given the input data. The only difference in a BRNN

is that while we are predicting the sequence left-to-right, we also are

predicting the sequence right-to-left.

BRNNs have been particularly useful for NLP tasks. The following is

the code for building a BRNN:

def create_lstm(input_shape=(1, x.shape[1])):

 model = Sequential()

 model.add(Bidirectional(LSTM(unites=n_units,

 activation=activation),

 input_shape=input_shape))

 model.add(Dense(train_y.shape[1]), activation=out_act)

 model.compile(loss='categorical_crossentropy',

metrics=['accuracy'])

 return model

...

A A A A

X0 X1 X2 Xi

s 0

si

y0 y1 y2 yi

s0

Figure 5-1. Bidirectional RNN

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

128

The structure of the bidirectional RNN is nearly identical in that we are

only adding a Bidirectional() cast over our layer. This often increases

the time it takes to train neural networks, but in general, it outperforms

traditional RNN architectures in many tasks. With this in mind, let’s apply

our model.

 Creating a Name Entity Recognition Tagger
People who have worked with NLTK or similar packages have likely come

across the name entity recognition (NER) tagger. NER taggers typically

output a label that identifies the entity within larger categories (person,

organization, location, etc.). Creating an NER tagger requires a large

amount of annotated data.

For this task, we will use a data set from Kaggle. When we unzip the

data, we see that it comes in the following format:

 played on Monday (home team in CAPS) :

VBD IN NNP (NN NN IN NNP) :

O O O O O O O O 0 O

American League

NNP NNP

B-MISC I-MISC

Cleveland 2 DETROIT 1

NNP CD NNP CD

B-ORG O B-ORG O

BALTIMORE 12 Oakland 11 (10 innings)

VB CD NNP CD (CD NN)

B-ORG O B-ORG O O O O O

TORONTO 5 Minnesota 3

TO CD NNP CD

B-ORG O B-ORG O

Milwaukee 3 CHICAGO 2

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

129

NNP CD NNP CD

B-ORG O B-ORG O

Boston 4 CALIFORNIA 1

The data is tab-delimited but also in .txt format. This requires some

data wrangling before we get to training the BRNN.

Let’s start by turning the text data into an interpretable format, as

follows:

def load_data():

 text_data = open('/Users/tawehbeysolow/Downloads/train.

txt', 'rb').readlines()

 text_data = [text_data[k].replace('\t', ' ').split() for k

in range(0, len(text_data))]

 index = range(0, len(text_data), 3)

 #Transforming data to matrix format for neural network

 input_data = list()

 for i in range(1, len(index)-1):

 rows = text_data[index[i-1]:index[i]]

 sentence_no = np.array([i for i in np.repeat(i,

len(rows[0]))], dtype=str)

 rows.append(np.array(sentence_no))

 rows = np.array(rows).T

 input_data.append(rows)

We must first iterate through each line of the .txt file. Notice that

the data is organized in groups of three. A typical grouping looks like the

following:

text_data[0]

['played', 'on', 'Monday', '(', 'home', 'team', 'in', 'CAPS',

')', ':']

 text_data[1]

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

130

['VBD', 'IN', 'NNP', '(', 'NN', 'NN', 'IN', 'NNP', ')', ':']

text_data[2]

['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']

The first set of observations contains the text itself, the second set of

observations contains the name entity tag, and the final set contains the

specific tag. Back to the preprocessing function, we take the groupings of

sentences and append an array that contains a sentence number label,

which I will discuss the importance of shortly.

When looking at a snapshot of the input_data variable, we see the

following:

input_data[0:1]

[array([['played', 'VBD', 'O', '1'],

 ['on', 'IN', 'O', '1'],

 ['Monday', 'NNP', 'O', '1'],

 ['(', '(', 'O', '1'],

 ['home', 'NN', 'O', '1'],

 ['team', 'NN', 'O', '1'],

 ['in', 'IN', 'O', '1'],

 ['CAPS', 'NNP', 'O', '1'],

 [')', ')', 'O', '1'],

 [':', ':', 'O', '1']], dtype='|S6')]

We need to remove the sentence label while observing the data in

such a fashion that the neural network implicitly understands how these

sentences are grouped. The reason we want to remove this label is that

neural networks read categorical labels (which the sentence number is

an analog for) in such a way that higher-numbered sentences explicitly

have a greater importance than lower-numbered sentences. For this task, I

assume most you understand we do not want to bake this into the training

process. As such, we move to the following body of code:

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

131

 input_data = pan.DataFrame(np.concatenate([input_data[j] for

j in range(0,len(input_data))]),

 columns=['word', 'pos', 'tag', 'sent_no'])

 labels, vocabulary = list(set(input_data['tag'].values)),

list(set(input_data['word'].values))

 vocabulary.append('endpad'); vocab_size = len(vocabulary);

label_size = len(labels)

 aggregate_function = lambda input: [(word, pos, label) for

word, pos, label in zip(input['word'].values.tolist(),

 input['pos'].values.tolist(),

 input['tag'].values.tolist())]

We organize the input_data into a data frame, and then create a

couple of other variables that we will use in the function later, as well as

the train_brnn_keras() function. Some of these variables are familiar to

others present in the scripts from the prior chapter (vocab_size represents

the number of words in the vocabulary, for example). However, the

important parts are mainly the last two variables, which is what you should

focus on to solve this problem.

The lambda function, aggregate_function, takes a data frame as

an input, and then returns a three-tuple for each observation within a

grouping. This is precisely how we will group all the observations within

one sentence. A snapshot of our data after this transformation yields the

following:

 sentences[0]

[('played', 'VBD', 'O'), ('on', 'IN', 'O'), ('Monday', 'NNP',

'O'), ('(', '(', 'O'), ('home', 'NN', 'O'), ('team', 'NN',

'O'), ('in', 'IN', 'O'), ('CAPS', 'NNP', 'O'), (')', ')', 'O'),

(':', ':', 'O')]

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

132

We have nearly finished all the necessary preprocessing; however,

there is a key step that you should be aware of.

 x = [[word_dictionary[word[0]] for word in sent] for sent

in sentences]

 x = pad_sequences(maxlen=input_shape, sequences=x,

padding='post', value=0)

 y = [[label_dictionary[word[2]] for word in sent] for sent

in sentences]

 y = pad_sequences(maxlen=input_shape, sequences=y,

padding='post', value=0)

 = [np_utils.to_categorical(label, num_classes=label_size)

for label in y]

In the preceding lines of code, we are transforming our words to their

integer labels as we did in many other examples, and creating a one-

hot encoded matrix. This is similar to the previous chapter, however, we

should specifically not use the pad_sequences() function.

When working with sentence data, we do not always get sentences of

equal length; however, the input matrix for the neural network has to have

an equal number of features across all observations. Zero padding is used

to add the extra features that normalize the size of all observations.

With this step done, we are now ready to move to training our neural

network. Our model is as follows:

def create_brnn():

 model = Sequential()

 model.add(Embedding(input_dim=vocab_size+1,

output_dim=output_dim,

 input_length=input_shape,

mask_zero=True))

 model.add(Bidirectional(LSTM(units=n_units,

activation=activation,

 return_sequences=True)))

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

133

 model.add(TimeDistributed(Dense(label_size,

activation=out_act)))

 model.compile(optimizer='adam', loss='categorical_

crossentropy', metrics=['accuracy'])

 model.summary()

 return model

Most of our model is similar to the prior Keras models built in this

chapter; however, we have an embedding layer (analogous to a word

embedding) that is stacked on top of the bidirectional LSTM, which is

subsequently staked on top of a fully connected output layer.

We train our network on roughly 90% of the data we have, and then

subsequently evaluate the results. We find that our tagger on the training

data yields an accuracy of 90% and higher, depending on the number of

epochs we train it for.

Now that we have dealt with this classification task and sufficiently

worked with BRNNs, let’s move on to another neural network model and

discuss how it can be effectively applied to another NLP task.

 Sequence-to-Sequence Models (Seq2Seq)
Sequence-to-sequence models (seq2seq) are notable because they take

in an input sequence and return an output sequence, both of variable

length. This makes this model particularly powerful, and it is predisposed

to perform well on language modeling tasks. The particular model that

we will utilize is best summarized in a paper by Sutskever et al. Figure 5-2

illustrates the model.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

134

The model is generally comprised of two parts: an encoder and a

decoder. Both the encoder and the decoder are RNNs. The encoder reads

the input sequence and outputs a fixed-length vector in addition to the

hidden and cell states from the LSTM unit. Subsequently, the decoder

takes this fixed-length vector, in addition to the output hidden and cell

states, and uses them as inputs to the first of its LSTM units. The decoder

outputs a fixed-length vector, which we will evaluate as a target label. We

will perform prediction one character at a time, which easily allows us to

evaluate sequences of varying length from one observation to the next.

Next, you see this model in action.

 Question and Answer with Neural Network
Models
One popular application of deep learning to NLP is the chatbot. Many

companies use chatbots to handle generic customer service requests,

which require them to be flexible in translating questions into answers.

While the test case that we look at is a microcosm of questions and

how are you ?

I am good

DECODERENCODER

<GO>
Embedding

Figure 5-2. Encoder-decoder model

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

135

answers, it is an example of how we can train a neural network to properly

answer a question. We will use the Stanford Question Answering Dataset.

Although it is more representative of general knowledge, you would do

well to recognize the way in which these problems are structured.

Let’s begin by examining how we will preprocess the data by utilizing

the following function:

 dataset = json.load(open('/Users/tawehbeysolow/Downloads/

qadataset.json', 'rb'))['data']

 questions, answers = [], []

 for j in range(0, len(dataset)):

 for k in range(0, len(dataset[j])):

 for i in range(0, len(dataset[j]['paragraphs'][k]

['qas'])):

 questions.append(remove_non_ascii(dataset[j]

['paragraphs'][k]['qas'][i]['question']))

 answers.append(remove_non_ascii(dataset[j]

['paragraphs'][k]['qas'][i]['answers'][0]

['text']))

When we look at a snapshot of the data, we observe the following structure:

[{u'paragraphs': [{u'qas': [{u'question': u'To whom did the

Virgin Mary allegedly appear in 1858 in Lourdes France?',

u'id': u'5733be284776f41900661182', u'answers': [{u'text':

u'Saint Bernadette Soubirous', u'answer_start': 515}]},

{u'question': u'What is in front of the Notre Dame Main

Building?', u'id': u'5733be284776f4190066117f', u'answers':

[{u'text': u'a copper statue of Christ', u'answer_start':

188}]}, {u'question': u'The Basilica of the Sacred heart

at Notre Dame is beside to which structure?', u'id':

u'5733be284776f41900661180', u'answers': [{u'text': u'the Main

Building', u'answer_start': 279}]}, {u'question': u'What is the

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

136

Grotto at Notre Dame?', u'id': u'5733be284776f41900661181',

u'answers': [{u'text': u'a Marian place of prayer and

reflection', u'answer_start': 381}]}, {u'question': u'What

sits on top of the Main Building at Notre Dame?', u'id':

u'5733be284776f4190066117e', u'answers': [{u'text': u'a

golden statue of the Virgin Mary', u'answer_start': 92}]}],

u'context': u'Architecturally, the school has a Catholic

character. Atop the Main Building\'s gold dome is a golden

statue of the Virgin Mary. Immediately in front of the Main

Building and facing it, is a copper statue of Christ with arms

upraised with the legend "Venite Ad Me Omnes". Next to the

Main Building is the Basilica of the Sacred Heart. Immediately

behind the basilica is the Grotto, a Marian place of prayer and

reflection. It is a replica of the grotto at Lourdes, France

where the Virgin Mary reputedly appeared to Saint Bernadette

Soubirous in 1858. At the end of the main drive (and in a

direct line that connects through 3 statues and the Gold

Dome), is a simple, modern stone statue of Mary.'}, {u'qas':

[{u'question': u'When did the Scholastic Magazine of Notre

dame begin publishing?', u'id': u'5733bf84d058e614000b61be',

u'answers'

We have a JSON file with question and answers. Similar to the name

entity recognition task, we need to preprocess our data into a matrix

format that we can input into a neural network. We must first collect the

questions that correspond to the proper answers. Then we iterate through

the JSON file, and append each of the questions and answers to the

corresponding arrays.

Now let’s discuss how we are actually going to frame the problem for

the neural network. Rather than have the neural network predict each

word, we are going to have the neural network predict each character given

an input sequence of characters. Since this is a multilabel classification

problem, we will output a softmax probability for each element of the

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

137

output vector, and then choose the vector with the highest probability.

This represents the character that is most likely to proceed given the prior

input sequence.

After we have done this for the entire output sequence, we will

concatenate this array of outputted characters so that we get a human-

readable message. As such, we move forward to the following part of the code:

 input_chars, output_chars = set(), set()

 for i in range(0, len(questions)):

 for char in questions[i]:

 if char not in input_chars: input_chars.add(char.

lower())

 for i in range(0, len(answers)):

 for char in answers[i]:

 if char not in output_chars: output_chars.add(char.

lower())

 input_chars, output_chars = sorted(list(input_chars)),

sorted(list(output_chars))

 n_encoder_tokens, n_decoder_tokens = len(input_chars),

len(output_chars)

We iterated through each of the questions and answers, and collected

all the unique individual characters in both the output and input

sequences. This yields the following sets, which represent the input and

output characters, respectively.

input_chars; output_chars

[u' ', u'"', u'#', u'%', u'&', u"'", u'(', u')', u',', u'-',

u'.', u'/', u'0', u'1', u'2', u'3', u'4', u'5', u'6', u'7',

u'8', u'9', u':', u';', u'>', u'?', u'_', u'a', u'b', u'c',

u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', u'm',

u'n', u'o', u'p', u'q', u'r', u's', u't', u'u', u'v', u'w',

u'x', u'y', u'z']

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

138

[u' ', u'!', u'"', u'$', u'%', u'&', u"'", u'(', u')', u'+',

u',', u'-', u'.', u'/', u'0', u'1', u'2', u'3', u'4', u'5',

u'6', u'7', u'8', u'9', u':', u';', u'?', u'[', u']', u'a',

u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k',

u'l', u'm', u'n', u'o', u'p', u'q', u'r', u's', u't', u'u',

u'v', u'w', u'x', u'y', u'z']

The two lists contain 53 and 55 characters, respectively; however, they

are virtually homogenous and contain all the letters of the alphabet, plus

some grammatical and numerical characters.

We move to the most important part of the preprocessing, in which

we transform our input sequences to one-hot encoded vectors that are

interpretable by the neural network.

(code redacted, please see github)

 x_encoder = np.zeros((len(questions), max_encoder_len,

n_encoder_tokens))

 x_decoder = np.zeros((len(questions), max_decoder_len,

n_decoder_tokens))

 y_decoder = np.zeros((len(questions), max_decoder_len,

n_decoder_tokens))

 for i, (input, output) in enumerate(zip(questions,

answers)):

 for _character, character in enumerate(input):

 x_encoder[i, _character, input_

dictionary[character.lower()]] = 1.

 for _character, character in enumerate(output):

 x_decoder[i, _character, output_

dictionary[character.lower()]] = 1.

 if i > 0: y_decoder[i, _character,

output_dictionary[character.lower()]] = 1.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

139

We start by instantiating two input vectors and an output vector,

denoted by x_encoder, x_decoder, and y_encoder. Sequentially, this

represents the order in which the data passes through the neural network

and validated against the target label. While the one-hot encoding that

we chose to create here is similar, we make a minor change by creating a

three-dimensional array to evaluate each question and answer. Each row

represents a question, each time step represents a character, and each

column represents the type of character within our set of characters. We

repeat this process for each question-and-answer pair until we have an

array with the entire data set, which yields 4980 observations of data.

The last step defines the model, as given by the encoder_decoder()

function.

def encoder_decoder(n_encoder_tokens, n_decoder_tokens):

 encoder_input = Input(shape=(None, n_encoder_tokens))

 encoder = LSTM(n_units, return_state=True)

 encoder_output, hidden_state, cell_state = encoder(encoder_

input)

 encoder_states = [hidden_state, cell_state]

 decoder_input = Input(shape=(None, n_decoder_tokens))

 decoder = LSTM(n_units, return_state=True,

return_sequences=True)

 decoder_output, _, _ = decoder(decoder_input,

initial_state=encoder_states)

 decoder = Dense(n_decoder_tokens, activation='softmax')

(decoder_output)

 model = Model([encoder_input, decoder_input], decoder)

 model.compile(optimizer='adam', loss='categorical_

crossentropy', metrics=['accuracy'])

 model.summary()

 return model

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

140

We instantiated our model slightly differently than other Keras models.

This method of creating a model is done through using the Functional

API, rather than relying on the sequential model, as we have often done.

Specifically, this method is useful when creating more complex models,

such as seq2seq models, and is relatively straightforward once you have

learned how to use the sequential model. Rather than adding layers to

the sequential model, we instantiate different layers as variables and

then pass the data by calling the tensor we created. We see this when

observing the encoder_output variable when we instantiate it by calling

encoder(encoder_input). We keep doing this through the encoder-decoder

phase until we reach an output vector, which we define as a dense/fully

connected layer with a softmax activation function.

Finally, we move to training, and observe the following results:

Model Prediction: saint bernadette soubiroust

Actual Output: saint bernadette soubirous

Model Prediction: a copper statue of christ

Actual Output: a copper statue of christ

Model Prediction: the main building

Actual Output: the main building

Model Prediction: a marian place of prayer and reflection

Actual Output: a marian place of prayer and reflection

Model Prediction: a golden statue of the virgin mary

Actual Output: a golden statue of the virgin mary

Model Prediction: september 18760

Actual Output: september 1876

Model Prediction: twice

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

141

Actual Output: twice

Model Prediction: the observer

Actual Output: the observer

Model Prediction: three

Actual Output: three

Model Prediction: 19877

Actual Output: 1987

As you can see, this model performs considerably well, with only three

epochs. Although there are some problems with the spelling from adding

extra characters, the messages themselves are correct in most instances.

Feel free to keep experimenting with this problem, particularly by altering

the model architecture to see if there is one that yields better accuracy.

 Summary
With the chapter coming to a close, we should review the concepts that are

most important in helping us successfully train our algorithms. Primarily,

you should take note of the model types that are appropriate for different

problems. The encoder-decoder model architecture introduces the “many-

to- many” input-output scheme and shows where it is appropriate to apply it.

Secondarily, you should take note of where preprocessing techniques

can be applied to seemingly different but related problems. The translation

of data from one language to another uses the same preprocessing steps

as creating a neural network that answered questions based on different

responses. Paying attention to these modeling steps and how they relate

to the underlying structure of the data can save you time on seemingly

innocuous tasks.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

142

 Conclusion and Final Statements
We have reached the end of this book. We solved a wide array of NLP

problems of varying complexities and domains. There are many

concepts that are constant across all problem types, most specifically

data preprocessing. The vast majority of what makes machine learning

difficult is preprocessing data. You saw that similar problem types share

preprocessing steps, as we often reused parts of solutions as we moved to

more advanced problems.

There are some final principles that are worth remembering from

this point forward. NLP with deep learning can require large amounts of

text data. Collect it carefully and responsibly, and consider your options

when dealing with large data sets with respect to choice of language for

optimized run time (C/C++ vs. Python, etc.).

Neural networks, by and large, are fairly straightforward models to

work with. The difficulty is finding good data that has predictive power, in

addition to structuring it in such a way that our neural network can find

patterns to exploit.

Study carefully the preprocessing steps to take for document

classification, creating a word embedding, or creating an NER tagger, for

example. Each of these represents feature extraction schemes that can be

applied to different problems and illuminate a path forward during your

research.

Although intelligent preprocessing of data spoken about fairly often

in the machine learning community, it is particularly true of the NLP

paradigm of deep learning and data science. The models that we have

trained give you a roadmap on how to work with similar data sets in

professional or academic environments. However, this does not mean that

the models we have deployed could be used in production and work well.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

143

There are a considerable number of variables that I did not discuss,

being that they are problems of maintaining production systems rather

than the theory behind a model. Examples include unknown words

in vocabularies that appear over time, when to retrain models, how to

evaluate multiple models’ outputs simultaneously, and so forth.

In my experience, finding out when to retrain models has best been

solved by collecting large amounts of live performance data. See when

signals deprecate, if they do at all, and track the effect of retraining, as well

as the persistence in retraining of models. Even if your model is accurate, it

does not mean that it will be easy to use in practice.

Think carefully about how to handle false classifications, particularly

if the penalty for misclassification could cause the loss of money and/or

other resources. Do not be afraid to utilize multiple models for multiple

problem types. When experimenting, start simple and gradually add

complexity as needed. This is significantly easier than trying to design

something very complex in the beginning and then trying to debug a

system that you do not understand.

You are encouraged to reread this book at your leisure, as well as for

reference, in addition to utilizing the code on my GitHub page to tackle the

problems in their own unique fashion. While reading this book provides

a start, the only way to become proficient in data science is to practice the

problems on your own.

I hope you have enjoyed learning about natural language processing

and deep learning as much as I have enjoyed explaining it.

CHAPTER 5 TEXT GENERATION, MACHINE TRANSLATION AND OTHER RECURRENT
LANGUAGE MODELING TASKS

145© Taweh Beysolow II 2018
T. Beysolow II, Applied Natural Language Processing with Python,
https://doi.org/10.1007/978-1-4842-3733-5

Index

A, B
Backpropagation through time

(BPTT), 36
Bag-of-words (BoW) model

advantages, 73
CountVectorizer, 51–52
definition, 50
disadvantages, 74
feature extraction algorithm, 50
machine learning algorithm, 50
movie reviews (see IMDB

movie review data set)
scikit-learn library, 51
spam detection

accuracy and
AUC scores, 55–56

CountVectorizer(), 54
data set, 54
fit() method, 55
inbox, 53
load_spam_data(), 54
logistic regression, 54–56
np.random.seed()

function, 56
ridge regression, 55
ROC curve, 57
SMS message length

histogram, 53

text_classifiction_demo.py
file, 54

unwanted advertisements/
malicious files, 53

TFIDF, 57
Bidirectional RNNs

(BRNNs), 126–128, 133

C
Continuous bag-of-words (CBoW)

model, 103–105

D, E, F
Deep learning

applications
language modeling

tasks, 11
NLP techniques and

document
classification, 10

RNNs, 11
topic modeling, 10
word embeddings, 10–11

Keras, 7–8
models, 4
TensorFlow, 4–7
Theano, 8–9

https://doi.org/10.1007/978-1-4842-3733-5

146

G, H
Global Vectors for Word

Representation (GloVe)
co-occurrence, 106–107
cosine similarities, 110
description, 106
error function, 107
GitHub repository, 108
matrix-based factorization

method, 106
open() function, 109
pretrained embeddings, 108–110
weighting function, 107–108
Wikipedia, 109

I
IMDB movie review data set

”.join() function, 63
L1 and L2 norm visualization, 69
load data, 64
logistic regression, 65–66
machine learning packages, 62
min_df and max_df, 65
mlp_movie_classification_

model.py file, 68
open() function, 64
ord() function, 63
os.listdir() function, 64
positive and negative rate, 73
remove_non_ascii() function, 64
ROC curve

L1 and L2 logistic regression
test set, 67–68

multilayer perceptron, 70
naïve Bayes classifier, 71–73
random forest, 71

TfidfVectorizer() method, 63
train_logistic_model()

function, 65

J
Jupyter notebook, 89

K
Keras, 7–8

L
Latent Dirichlet allocation (LDA)

assumptions, 78
beta distribution, 79
joint probability

distribution, 79
movie review data

document classification, 81
fit_transform() method, 82
Gensim, 84–85
scikit-learn

implementation, 86
sklearn_topic_model()

function, 85
TFIDF model, 82–84
topics, 82–83

multinomial distribution, 78
Poisson distribution, 78
probability distribution, 79

Index

147

TFIDF, 78
topics and words simplexes, 80

Long short-term memory (LSTM)
BasicLSTMCell() function, 41
formulae, 38
gates, 39
placeholder variables, 40–41
sigmoid activation

function, 38–39
tanh activation function, 38
units/blocks, 37–38
word embeddings

computation graph, 112
_embedding_array, 112
error rate, 114
executing code, 114
load_data() function, 115
preprocessing steps, 111
remove_stop_words()

function, 112
reverse_dictionary, 113
sample data, 111
sample_text_dictionary()

function, 112
tf.nn.embedding_lookup()

function, 114
training data, 111
_weights and _embedding

variables, 113

M
Mean squared error (MSE), 29–30
Modeling stock returns

LSTM, 40
MLPs, 15
RNNs, 32

Multilayer perceptron
models (MLPs)

cross entropy, 30
error function, 18–19
Ford Motor Company (F), 15
learning rate

activation function, 16, 24–25
Adam optimization

algorithm, 20–21
epochs, 22
floating-point value, 20
optimal solution, 20
parameter, 20, 22
placeholder variables, 23
ReLU activation function, 26
sigmoid activation

function, 24–25
TensorFlow, 22–23
training and test sets, 22
vanishing gradient, 26
weights, neural network, 24

MSE and RMSE loss
function, 29–30

neural networks, 17
normal distribution, 17
sentiment analysis, 30
SLPs, 13
standard normal distribution, 14
TensorFlow, 15
tf.random_normal(), 17
train_data, 15

Index

148

vanishing gradients and
ReLU, 27–28

visualization, 14
weight and bias units, 17–18

N, O
Name entity recognition (NER)

tagger
aggregate_function, 131
categories, 128
data set, Kaggle, 128
embedding layer, 133
feature extraction, 142
input_data variable, 130–131
integer labels, 132
neural network, 130, 132
text data, 129
train_brnn_keras() function, 131
zero padding, 132

Natural language processing (NLP)
Bayesian statistics, 3
bifurcation, 3
complexities and domains, 142
computational linguistics, 2
computing power, 3
deep learning, Python (see

Deep learning)
definition, 1
formal language theory, 2
machine learning concepts, 4
principles, 142
SLP, 2–3

spell-check, sentences, 31
Natural Language Toolkit (NLTK)

module, 45–46
Natural language understanding

(NLU), 3
Neural networks

characters, 136–138
chatbots, 134
dense/fully connected layer, 140
encoder_decoder() function,

139–140
JSON file, 136
Keras models, 140
one-hot encoded

vectors, 138–139
seq2seq models, 140
Stanford Question Answering

Dataset, 135–136
Non-negative matrix factorization

(NMF)
features, 87
Gensim model, 90
Jupyter notebook, 89–90
and LDA, 90
mathematical formula, 86
scikit-learn implementation,

87–88, 90
topic extraction, 88

P, Q
Paragraph2Vec algorithm, 115

movie review data, 116–118
Principal components analysis

(PCA), 97

Multilayer perceptron models
(MLPs) (cont.)

Index

149

R
Recurrent neural networks (RNNs)

activation function, 35
BPTT, 36
build_rnn() function, 32
chain rule, 36
data set, 33, 35
floating-point decimal, 35
gradient descent algorithm, 35
hidden state, 32, 33
LSTM (see Long short-term

memory (LSTM))
placeholder variables, 34
sigmoid activation function, 37
state_size, 32–33
structure, 31–32
tanh activation and derivative

function, 36–37
TensorFlow, 32
vanishing gradient, 36–37

Root mean squared error
(RMSE), 29–30

S
Sequence-to-sequence models

(seq2seq), 133–134
Sigmoid activation

function, 24–25
Single-layer perceptron (SLP),

2–3, 13
Skip-Gram model

architecture, 92
k-skip-n-grams, 91

negative sampling, 93
neural network, 93
n-gram, 91
objective function, 91
one-hot encoded vector, 92
2-skip-bi-gram model, 91
training words, 91
word embedding

cosine similarity, 98
Gensim, 96–99
hidden layer weight

matrix, 93
index number, 99
negative sampling, 101
neural networks, 96
one-hot encoding data, 100
PCA, 97
PDFMiner, 94
TensorFlow, 94, 101–102
tokenizing data, 95
visualizing, 96–97
vocabulary size and word

dictionary, 100

T, U, V
TensorFlow, 4–7
Term frequency–inverse document

frequency (TFIDF), 57
Text generation, LSTMs

AI-based tools, 122
BRNNs, 126–128
data, 122
epochs, 125–126

Index

150

Harry Potter and the Sorcerer’s
Stone, 122

Keras code, 124
load_data(), 122
preprocessing function, 123–124
Sequential().add()

function, 125
Skip-Gram model, 124
tf_preprocess_data(), 124

Theano, 8–9
Tokenization and stop words

Boolean variable, 47
data set, 44
feature extraction

algorithms, 48–49
function words, 46
grammatical characters, 48
lowercase, 47
mistake() and advised_

preprocessing()
functions, 47–48

NLTK module, 45–46
sample_sent_tokens, 46
sample text, 44

sample_word_tokens, 45, 49
single string objects, 44
uppercase, 48

Topic models, 10
description, 77
LDA (see Latent Dirichlet

allocation (LDA))
NMF (see Non-negative matrix

factorization (NMF))
Word2Vec, 90–93

W, X, Y
Word embeddings, 10–11

CBoW, 103–105
GloVe, 106–110
LSTM (see Long short-term

memory (LSTM))
Paragraph2Vec, 115–118
Skip-Gram model (see Skip-

Gram model)

Z
Zero padding, 132

Text generation, LSTMs (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Natural Language Processing?
	The History of Natural Language Processing
	A Review of Machine Learning and Deep Learning
	NLP, Machine Learning, and Deep Learning Packages with Python
	TensorFlow
	Keras
	Theano

	Applications of Deep Learning to NLP
	Introduction to NLP Techniques and Document Classification
	Topic Modeling
	Word Embeddings
	Language Modeling Tasks Involving RNNs

	Summary

	Chapter 2: Review of Deep Learning
	Multilayer Perceptrons and Recurrent Neural Networks
	Toy Example 1: Modeling Stock Returns with the MLP Model
	Learning Rate

	Vanishing Gradients and Why ReLU Helps to Prevent Them
	Loss Functions and Backpropagation
	Recurrent Neural Networks and Long Short-Term Memory
	Toy Example 2: Modeling Stock Returns with the RNN Model
	Toy Example 3: Modeling Stock Returns with the LSTM Model

	Summary

	Chapter 3: Working with Raw Text
	Tokenization and Stop Words
	The Bag-of-Words Model (BoW)
	CountVectorizer
	Example Problem 1: Spam Detection
	Term Frequency Inverse Document Frequency
	Example Problem 2: Classifying Movie Reviews

	Summary

	Chapter 4: Topic Modeling and Word Embeddings
	Topic Model and Latent Dirichlet Allocation (LDA)
	Topic Modeling with LDA on Movie Review Data

	Non-Negative Matrix Factorization (NMF)
	Word2Vec
	Example Problem 4.2: Training a Word Embedding (Skip-Gram)

	Continuous Bag-of-Words (CBoW)
	Example Problem 4.2: Training a Word Embedding (CBoW)

	Global Vectors for Word Representation (GloVe)
	Example Problem 4.4: Using Trained Word Embeddings with LSTMs

	Paragraph2Vec: Distributed Memory of Paragraph Vectors (PV-DM)
	Example Problem 4.5: Paragraph2Vec Example with Movie Review Data

	Summary

	Chapter 5: Text Generation, Machine Translation, and Other Recurrent Language Modeling Tasks
	Text Generation with LSTMs
	Bidirectional RNNs (BRNN)

	Creating a Name Entity Recognition Tagger
	Sequence-to-Sequence Models (Seq2Seq)
	Question and Answer with Neural Network Models
	Summary
	Conclusion and Final Statements

	Index

