
www.allitebooks.com

http://www.allitebooks.org

Asynchronous Android

Harness the power of multi-core mobile processors
to build responsive Android applications

Steve Liles

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Asynchronous Android

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-687-4

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Steve Liles

Reviewers
David Bakin

Elie Abu Haydar

Hassan Makki

Matt Preston

Hélder Vasconcelos

Acquisition Editors
Harsha Bharwani

Kunal Parikh

Lead Technical Editor
Larissa Pinto

Technical Editors
Arwa Manasawala

Anand Singh

Proofreaders
Ameesha Green

Maria Gould

Copy Editors
Alisha Aranha

Mradula Hegde

Karuna Narayanan

Shambhavi Pai

Alfida Paiva

Lavina Pereira

Adithi Shetty

Project Coordinator
Jomin Varghese

Indexer
Hemangini Bari

Graphics
Yuvraj Mannari

Valentina D'silva

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steve Liles is a self-confessed geek and has been an Android fan since the launch day
of the G1. When he isn't at work building publishing systems and apps for newspapers
and magazines, you'll find him tinkering with his own apps, building 3D printers, or
playing RTS games. He is currently working with a start-up to build an advertising
system that links the print and digital worlds using computer vision on Android and
iOS devices.

I would like to sincerely thank the technical reviewers, who
delivered their invaluable feedback gently and constructively.
Without them, this book would be a pale shadow of the thing
you now hold in your hands.

I once read that book acknowledgements are apologies to the
people who have suffered. I must, therefore, unreservedly thank
and apologize to my wife, not only for her patience and support
during this project, but also through all the years and projects
gone before.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

David Bakin's first concurrent program was a Tektronix terminal emulator,
written in assembly for an IMLAC PDS-1, which was a PDP-8-like machine with a
GPU. He's written a lot of multiprocess and multithread concurrent programs and
a number of tools for visualizing and debugging concurrent programs since then.
He says computers now are orders of magnitude more powerful than the PDS-1,
but concurrent programming hasn't gotten any easier.

His favorite languages are C++ and Haskell, and he prefers to use strong typing
and functional programming techniques to write correct code. On the other hand,
he also likes Smalltalk, Mathematica, and SIMD code in assembler because they're
a lot of fun.

Elie Abu Haydar, born and raised in Beirut, has been interested in software
development since his high school years. In 2006, he graduated from the American
University of Science and Technology in Lebanon with a BS in Computer Science.
As a software developer at KnowledgeView Ltd., Elie is seriously involved
in every aspect of newsroom and publishing products where he uses Java to
develop publishing solutions. These include backend web services and frontend
web and mobile applications. Elie also contributes in the technical research and
development of existing and future company projects.

Hassan Makki is a computer and communication engineer. He was born in 1979
in Lebanon and graduated in 2005. Since graduation, he has worked as a software
engineer and has long-standing experience in C++, Java, and Android development.
He began developing and managing Web and Android apps in 2011, and has
developed around 30 apps related to news, music, sports, and advertisements.

Matt Preston is a professional software engineer with 14 years of experience in
developing and maintaining a variety of systems for large international news and
media organizations. He has worked on a range of low-latency/high-concurrency
projects, ranging from mobile apps to distributed systems. Recently, he has been
working on low-latency search and analytics using Elasticsearch.

I would like to thank my friend and colleague Steve Liles for this
opportunity to let me review this book. We worked together for over
12 years and he's one of the best developers I have ever worked with.
I learned a lot from him; I still continue to do so. Finally, thanks to
Erica for all the tea; sorry about the late nights.

Hélder Vasconcelos has been a senior software engineer at Airtel ATN
(Dublin, Ireland) since October 2012. He has extensive experience in designing
and developing real-time/multithreaded Java and C/C++ applications for the
telecommunications and aviation industry. Apart from his day-to-day job, for
the last three years, he has been designing and developing native Android
applications for Bearstouch Software and other third-party clients.

He graduated with a degree in Electronic & Telecommunications Engineering from
the University of Aveiro in January 2006. He worked as a VoIP systems engineer
at RedeRia Innovation (Aveiro, Portugal) from January 2006 to June 2007. He also
worked as a software engineer at Outsoft/PT Inovação (Aveiro, Portugal) from
October 2007 to October 2012.

Thanks to everyone involved in this project for your hard work and
commitment, my awesome wife Tania for her love and support, and
my parents and family for their awesome effort in my education.
Additionally, I would like to thank my friends, colleagues, clients,
and teachers for helping me to shape and improve my skills and
perspectives during my career.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Building Responsive Android Applications	 7

Introducing the Dalvik Virtual Machine	 8
Memory sharing and the Zygote	 9

Understanding the Android thread model	 9
The main thread	 10
Unresponsive apps and the ANR dialog	 10
Maintaining responsiveness	 11
Concurrency in Android	 11

Correctness issues in concurrent programs	 12
Liveness issues in concurrent programs	 12
Android-specific concurrency issues	 13

Android-specific concurrency constructs	 14
Summary	 14

Chapter 2: Staying Responsive with AsyncTask	 15
Introducing AsyncTask	 16
Declaring AsyncTask types	 18
Executing AsyncTasks	 19
Providing feedback to the user	 20

Providing progress updates	 22
Canceling AsyncTask	 23
Handling exceptions	 25
Controlling the level of concurrency	 26
Common AsyncTask issues	 28

Fragmentation issues	 28

Table of Contents

[ii]

Activity lifecycle issues	 29
Handling lifecycle issues with early cancellation	 30
Handling lifecycle issues with retained headless fragments	 30

Applications of AsyncTask	 33
Summary	 34

Chapter 3: Distributing Work with Handler and HandlerThread	 35
Understanding Looper	 36
Building responsive apps with Handler	 38

Scheduling work with post	 39
Canceling a pending Runnable	 42

Scheduling work with send	 42
Canceling pending Messages	 45
Composition versus Inheritance	 45
Multithreaded example	 47

Sending Messages versus posting Runnables	 50
Building responsive apps with HandlerThread	 50

Handler programming issues	 52
Leaking implicit references	 52
Leaking explicit references	 53

Applications of Handler and HandlerThread	 55
Summary	 55

Chapter 4: Asynchronous I/O with Loader	 57
Introducing Loaders	 57
Building responsive apps with AsyncTaskLoader	 59
Building responsive apps with CursorLoader	 66
Combining Loaders	 69
Applications of Loaders	 74
Summary	 74

Chapter 5: Queuing Work with IntentService	 75
Introducing Service and IntentService	 76
Building responsive apps with IntentService	 76

Handling results	 79
Returning results with PendingIntent	 79
Posting results as system notifications	 81

Applications of IntentService	 83
HTTP uploads with IntentService	 83
Reporting progress	 86

Summary	 89

Table of Contents

[iii]

Chapter 6: Long-running Tasks with Service	 91
Building responsive apps with Service	 92

Controlling concurrency with Executors	 92
Returning results with Messenger	 96

Communicating with Services	 98
Direct communication with local Services	 99
Broadcasting results with Intents	 103
Detecting unhandled broadcasts	 106

Applications of Services	 108
Summary	 109

Chapter 7: Scheduling Work with AlarmManager	 111
Scheduling alarms with AlarmManager	 112

Canceling alarms	 115
Scheduling repeating alarms	 116

Handling alarms	 117
Handling alarms with Activities	 118
Handling alarms with BroadcastReceiver	 119

Doing work with BroadcastReceiver	 120
Doing background work with goAsync	 121

Handling alarms with Services	 122
Staying awake with WakeLocks	 123
Applications of AlarmManager	 125
Summary	 125

Index	 127

Preface
Programming is the most fun a person can have on their own. This is a fact
well-known to programmers, though it seems the rest of the world is yet to catch
on. You already know this or you wouldn't be reading this book, but it constantly
amazes me that more people aren't falling over themselves to learn to code.

Meanwhile, mobile devices have made computers fun even for non-coders.
We carry in our pockets small machines with incredible processing power and
a giddying array of sensors and interfaces.

Android takes these fun machines and makes them accessible to programmers
through a fabulously well-crafted platform and tool chain, in a programming
language that has stood the test of time yet continues to develop and evolve.

What could possibly be better than programming fun machines to do cool things,
in a powerful language, on a well-crafted platform, with a world-class tool chain?
For me, the answer is doing so with a good enough understanding of those things
to make the difference between a good app and a great one.

There are many things that must come together to make a great app. You need a great
idea—I can't help you there. You need a pretty user interface—sorry, wrong book. You
need a great user experience—aha! Now we're getting somewhere. Among the many
things that contribute to a great user experience, responsiveness is right up there near
the top of the list.

It's easiest to define responsiveness with examples of its lack: pauses and glitches
while scrolling content, user interfaces that freeze while loading data from storage,
applications that don't give progress updates to let us know what's happening,
failing to complete work that we initiated, staring at a spinner while data is
fetched from the network, and the list goes on.

Preface

[2]

This book is about making the difference between a good app and a great one;
smoothing out the glitches, keeping the UI responsive, telling the user how things
are going, making sure we finish what we started, using those powerful multicore
processors, and doing it all without wasting the battery. Let's have some fun!

What this book covers
Chapter 1, Building Responsive Android Applications, gives an overview of the Android
process and thread model, and describes some of the challenges and benefits of
concurrency in general, before discussing issues specific to Android.

Chapter 2, Staying Responsive with AsyncTask, covers the poster child of concurrent
programming in Android. We learn how AsyncTask works, how to use it correctly,
and how to avoid the common pitfalls that catch out even experienced developers.

Chapter 3, Distributing Work with Handler and HandlerThread, details the fundamental
and related topics of Handler, HandlerThread, and Looper, and illustrates how
they can be used to schedule tasks on the main thread, and to coordinate and
communicate work between cooperating background threads.

Chapter 4, Asynchronous I/O with Loader, introduces the Loader framework and
tackles the important task of loading data asynchronously to keep the user interface
responsive and glitch free.

Chapter 5, Queuing Work with IntentService, gives us the means to perform background
operations beyond the scope of a single Activity lifecycle and to ensure that our work
is completed even if the user leaves the application.

Chapter 6, Long-running Tasks with Service, extends the capabilities we discovered
with IntentService and gives us control over the level of concurrency applied to our
long-running background tasks.

Chapter 7, Scheduling Work with AlarmManager, completes our toolkit by enabling
us to arrange for work to be done far into the future and on repeating schedules.
It also enables us to build apps that alert users to new content and start instantly
with fresh data.

What you need for this book
To follow along and experiment with the examples, you will need a development
computer with a Java 6 (or 7) SE Development Kit and the Android Software
Development Kit Version 7 or above (you will need at least Version 19 to try
all of the examples).

Preface

[3]

You will also need an Integrated Development Environment such as Android Studio
or Eclipse. The examples have been developed using Google's new Android Studio
IDE and use its integrated build system, Gradle.

While you can run the examples using the emulator provided by the Android SDK,
it is a poor substitute for the real thing. A physical Android device is a much faster
and more pleasurable way to develop and test Android applications!

Many of the examples will work on a device running any version of Android since
2.1, Éclair. Some examples demonstrate newer APIs and as a result, require a more
recent Android version—up to Android 4.4, KitKat.

You can also download a prebuilt application containing all of the examples from
Google Play; search for "Asynchronous Android".

Who this book is for
This book is for developers who have mastered the basics of Android and are
ready to take the next big step to improve the quality of your apps—not just
behind the scenes engineering quality, but real perceivable improvements that
make a difference to end users.

A reasonable understanding of core Android development is assumed. If you
have built Android apps before and are comfortable with the Activity class and
its lifecycle, XML layout files, and the Android manifest, you should have no
problem understanding the topics in this book.

Familiarity with Java's concurrency primitives and higher-level constructs will
aid and deepen understanding, but is not a prerequisite.

Android developers with no prior experience of concurrency and asynchronous
programming will learn when, why, and how to apply Android's concurrency
constructs to build responsive apps.

Java experts new to Android will be equipped to properly apply their existing
knowledge in the Android environment and will discover elegant solutions to
familiar problems in Android's high-level concurrency constructs.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

protected void onPause() {
 super.onPause();
 if (task != null)
 task.cancel(false);
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

protected void onPause() {
 super.onPause();
 if (task != null)
 task.cancel(false);
}

Any command-line input or output is written as follows:

> telnet 192.168.0.4 4444

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Building Responsive
Android Applications

The Android operating system has, at its heart, a heavily modified Linux kernel
designed to securely and efficiently run many process virtual machines on devices
with relatively limited resources.

To build Android applications that run smoothly and responsively in these resource-
constrained environments, we need to arm ourselves with an understanding of the
options available, and how, when, and why to use them—this is the essence of
this book.

However, before we do that, we'll briefly consider why we need to concern ourselves
at all. We'll see how serious Google is about the efficiency of the platform, explore
the Android process model and its implications for programmers and end users,
and examine some of the measures that the Android team have put in place to
protect users from apps that behave badly.

To conclude, we'll discuss the general approach used throughout the rest of the book
to keep applications responsive using asynchronous programming and concurrency,
and its associated challenges and benefits.

In this chapter, we will cover the following topics:

•	 Introducing the Dalvik Virtual Machine
•	 Memory sharing and the Zygote
•	 Understanding the Android thread model
•	 The main thread

Building Responsive Android Applications

[8]

•	 Unresponsive apps and the ANR dialog
•	 Maintaining responsiveness
•	 Concurrency in Android

Introducing the Dalvik Virtual Machine
Android applications are typically programmed using the Java language, but the
virtual machines in the Android stack are not instances of the Java Virtual Machine
(JVM). Instead, the Java source is compiled to Java byte-code and translated into a
Dalvik executable file (DEX) for execution on a Dalvik Virtual Machine (DVM).

It is no accident that Google chose Java as the primary language, allowing a vast
pool of developer talent to quickly get to work on building apps, but why not
simply run Android applications directly on a JVM?

Dalvik was created specifically for Android, and as such, was designed to operate
in environments where memory, processor, and electrical power are limited, for
example, mobile devices. Satisfying these design constraints resulted in a very
different virtual machine than the typical JVM's that we know from desktop
and server environments.

Dalvik goes to great lengths to improve the efficiency of the JVM, involving
a range of optimizations to simplify and speed up interpretation and reduce
the memory footprint of a running program. The most fundamental difference
between the two VM architectures is that the JVM is a stack-based machine,
whereas the DVM is register-based.

A stack-based virtual machine must transfer data from registers to the operand
stack before manipulating them. In contrast, a register-based VM operates by
directly using virtual registers. This increases the relative size of instructions
because they must specify which registers to use, but reduces the number of
instructions that must be executed to achieve the same result.

Dalvik's creators claim that the net result is in Dalvik's favour and that the DVM
is on average around 30 percent more efficient than the JVM. Clearly, Google has
gone to great lengths to squeeze every last drop of performance out of each mobile
device to help developers build responsive applications!

Chapter 1

[9]

Memory sharing and the Zygote
Another huge efficiency of the platform is brought about by the way in which a new
DVM instance is created and managed.

A special process called the Zygote is launched when Android initially boots. The
Zygote starts up a virtual machine, preloads the core libraries, and initializes various
shared structures. It then waits for instructions by listening on a socket.

When a new Android application is launched, the Zygote receives a command
to create a virtual machine to run the application on. It does this by forking its
prewarmed VM process and creating a new child process that shares its memory with
the parent, using a technique called Copy-On-Write. This has some fantastic benefits:

•	 First, the virtual machine and core libraries are already loaded into the
memory. Not having to read this significant chunk of data to initialize
the virtual machine drastically reduces the startup overhead.

•	 Second, the memory in which these core libraries and common structures
reside is shared by the Zygote with all other applications, resulting in
saving a lot of memory when the user is running multiple apps.

Understanding the Android thread model
Each forked application process runs independently and is scheduled frequent, small
amounts of CPU time by the operating system. This time-slicing approach means
that even a single-processor device can appear to be actively working in more than
one application at the same time, when in fact, each application is taking very short
turns on the CPU.

Within a process, there may be many threads of execution. Each thread is a separate
sequential flow of control within the overall program—it executes its instructions in
order, one after the other. These threads are also allocated slices of CPU time by the
operating system.

While the application process is started by the system and prevented from directly
interfering with data in the memory address space of other processes, threads may
be started by application code and can communicate and share data with other
threads within the same process.

Building Responsive Android Applications

[10]

The main thread
Within each DVM process, the system starts a number of threads to perform
important duties such as garbage collection, but of particular importance to
application developers is the single thread of execution known as the main
or UI thread. By default, any code that we write in our applications will be
executed by the main thread.

For example, when we write code in an onCreate method in the Activity
class, it will be executed on the main thread. Likewise, when we attach listeners
to user-interface components to handle taps and other user-input gestures, the
listener callback executes on the main thread.

For apps that do little I/O or processing, this single thread model is fine.
However, if we need to do CPU-intensive calculations, read or write files
from permanent storage, or talk to a web service, any further events that
arrive while we're doing this work will be blocked until we're finished.

Unresponsive apps and the ANR dialog
As you can imagine, if the main thread is busy with a heavy calculation or reading
data from a network socket, it cannot immediately respond to user input such as a
tap or swipe.

An app that doesn't respond quickly to user interaction will feel unresponsive—
anything more than a couple of hundred milliseconds delay is noticeable. This
is such a pernicious problem that the Android platform protects users from
applications that do too much on the main thread.

If an app does not respond to user input within 5 seconds,
the user will see the Application Not Responding (ANR)
dialog and be offered the option to quit the app.

Android works hard to synchronize user interface redraws with the hardware
refresh rate. This means that it aims to redraw at 60 frames per second—that's just
16.67 ms per frame. If we do work on the main thread that takes anywhere near 16
ms, we risk affecting the frame rate, resulting in jank—stuttering animations, jerky
scrolling, and so on.

At API level 16, Android introduced a new entity, the Choreographer, to oversee
timing issues. It will start issuing dropped-frame warnings in the log if you drop
more than 30 consecutive frames.

Chapter 1

[11]

Ideally, of course, we don't want to drop a single frame. Jank, unresponsiveness, and
especially the ANR, offer a very poor user experience and translate into bad reviews
and an unpopular application. A rule to live by when building Android applications
is: do not block the main thread!

Android provides a helpful strict mode setting in
Developer Options on each device, which will flash
the screen when applications perform long-running
operations on the main thread.

Further protection was added to the platform in Honeycomb (API level 11) with the
introduction of a new Exception class, NetworkOnMainThreadException, a subclass
of RuntimeException that is thrown if the system detects network activity initiated
on the main thread.

Maintaining responsiveness
Ideally then, we want to offload long-running operations from the main thread so that
they can be handled in the background, and the main thread can continue to process
user interface updates smoothly and respond in a timely fashion to user interaction.

For this to be useful, we must be able to coordinate work and safely pass data between
cooperating threads—especially between background threads and the main thread.

We also want to execute many background tasks at the same time and take advantage
of additional CPU cores to churn through heavy processing tasks quickly.

This simultaneous execution of separate code paths is known as concurrency.

Concurrency in Android
The low-level constructs of concurrency in Android are those provided by the Java
language: java.lang.Thread, java.lang.Runnable, and the synchronized and
volatile keywords.

Higher-level mechanisms introduced to Java 5 in the java.util.concurrent package,
such as Executors, atomic wrapper classes, locking constructs, and concurrent
collections, are also available for use in Android applications.

We can start new threads of execution in our Android applications just as we would
in any other Java application, and the operating system will schedule some CPU time
for those threads.

Building Responsive Android Applications

[12]

To do some work off the main thread, we can simply create a new instance of java.
lang.Thread, override its run() method with the code we want it to execute, and
invoke its start() method.

While starting new threads is easy, concurrency is actually a very difficult thing to
do well. Concurrent software faces many issues that fall into the two broad categories:
correctness (producing consistent and correct results) and liveness (making progress
towards completion).

Correctness issues in concurrent programs
A common example of a correctness problem occurs when two threads need to
modify the value of the same variable based on its current value. Let's imagine
that we have an integer variable myInt with the current value of 2.

In order to increment myInt, we first need to read its current value and then add
1 to it. In a single threaded world, the two increments would happen in a strict
sequence—we read the initial value 2, add 1 to it, set the new value back to the
variable, then repeat the sequence. After the two increments, myInt holds the
value 4.

In a multithreaded environment, we run into potential timing issues. It is possible
that two threads trying to increment the variable would both read the same initial
value (2), add 1 to it, and set the result (in both cases, 3) back to the variable.

Both threads have behaved correctly in their localized view of the world, but in
terms of the overall program, we clearly have a correctness problem; 2 + 2 should
not equal 3! This kind of timing issue is known as a race condition.

A common solution to correctness problems such as race conditions is mutual
exclusion—preventing multiple threads from accessing certain resources at the
same time. Typically, this is achieved by ensuring that threads acquire an exclusive
lock before reading or updating shared data.

Liveness issues in concurrent programs
Liveness can be thought of as the ability of the application to do useful work and
make progress towards goals. Liveness problems tend to be an unfortunate side
effect of the solution to correctness problems. By locking access to data or system
resources, it is possible to create bottlenecks where many threads are contending
for access to a single lock, leading to potentially significant delays.

Chapter 1

[13]

Worse, where multiple locks are used, it is possible to create a situation where no
thread can make progress because each requires exclusive access to a lock that
another thread currently owns—a situation known as a deadlock.

Android-specific concurrency issues
There are two additional problems facing developers of concurrent Android
applications which are specific to Android.

The Activity lifecycle
Android applications are typically composed of one or more subclasses of android.
app.Activity. An Activity instance has a very well-defined lifecycle that the
system manages through the execution of lifecycle method callbacks, all of which
are executed on the main thread.

An Activity instance that has been completed should be eligible for garbage
collection, but background threads that refer to the Activity or part of its view
hierarchy can prevent garbage collection and create a memory leak.

Similarly, it is easy to waste CPU cycles (and battery life) by continuing to do
background work when the result can never be displayed because Activity
has finished.

Finally, the Android platform is free at any time to kill processes that are not the
user's current focus. This means that if we have long-running operations to complete,
we need some way of letting the system know not to kill our process yet!

All of this complicates the do-not-block–the-main-thread rule because we need to
worry about canceling background work in a timely fashion or decoupling it from
the Activity lifecycle where appropriate.

Manipulating the user interface
The other Android-specific problem lies not in what you can do from the UI thread,
but in what you cannot do:

You cannot manipulate the user interface from any
thread other than the main thread.

This is because the user-interface toolkit is not thread-safe, that is, accessing it from
multiple threads may cause correctness problems. In fact, the user-interface toolkit
protects itself from potential problems by actively denying access to user-interface
components from threads other than the one that originally created those components.

Building Responsive Android Applications

[14]

The final challenge then lies in safely synchronizing background threads with the
main thread so that the main thread can update the user interface with the results
of the background work.

Android-specific concurrency constructs
The good news is that the Android platform provides specific constructs to address
the general issues of concurrency, and to solve the specific problems presented
by Android.

There are constructs that allow us to defer tasks to run later on the main thread,
to communicate easily between cooperating threads, and to issue work to managed
pools of worker threads and re-integrate the results.

There are solutions to the constraints of the Activity lifecycle both for medium-term
operations that closely involve the user-interface and for longer-term work that must
be completed even if the user leaves the application.

While some of these constructs were only introduced with newer releases of the
Android platform, all are available through the support libraries and, with a few
exceptions, the examples in this book target devices that run API level 7 (Android
2.1) and above.

The rest of this book discusses these Android-specific constructs and their usage
and applications.

Summary
In this chapter, we learned that Google takes the efficiency of the Android
platform very seriously. We also looked at the extraordinary lengths they go
to in order to ensure a smooth user experience, evidencing the importance of
building responsive applications.

We discussed the Android thread model and the measures that the platform may
take to protect the user from apps that misbehave or are not sufficiently responsive.

Finally, we gained an overview of the general approach to building responsive
apps through concurrency, and learned some of the issues faced by developers
of concurrent software in general and Android applications in particular.

In the next chapter, we'll start to build responsive applications by applying the
infamous AsyncTask instance to execute work in the background using pools
of threads, and return progress updates and results to the main thread.

Staying Responsive
with AsyncTask

The first Android-specific concurrency construct we'll look at is
android.os.AsyncTask, a neat construct that encapsulates the messy business
of managing threads, performing background work, and publishing progress
and results back to the main thread to update the user interface.

In this chapter we will cover the following topics:

•	 Introducing AsyncTask
•	 Declaring AsyncTask types
•	 Executing AsyncTasks
•	 Providing feedback to the user
•	 Providing progress updates
•	 Canceling AsyncTasks
•	 Handling exceptions
•	 Controlling the level of concurrency
•	 Common AsyncTask issues
•	 Applications of AsyncTask

Staying Responsive with AsyncTask

[16]

Introducing AsyncTask
AsyncTask was introduced in Android at API level 3, Cupcake, with the express
purpose of helping developers to avoid blocking the main thread. The Async part
of the name of this class comes from the word asynchronous, which literally means
not occurring at the same time.

AsyncTask is an abstract class, and as such, must be subclassed for use. At
the minimum, our subclass must provide an implementation for the abstract
doInBackground method, which defines the work that we want to get done
off the main thread.

protected Result doInBackground(Params… params)

There are four other methods of AsyncTask which we may choose to override:

protected void onPreExecute()
protected void onProgressUpdate(Progress… values)
protected void onPostExecute(Result result)
protected void onCancelled(Result result)

Although we will override one or more of these five methods, we will not invoke
them directly from our own code. These are callback methods, meaning that they
will be invoked for us (called back) at the appropriate time.

The key difference between doInBackground and the other four methods is the
thread on which they execute.

Before any background work begins, onPreExecute will be invoked and will run
to completion on the main thread.

Once onPreExecute completes, doInBackground will be scheduled and will start
work on a background thread.

During the background work, we can publish progress updates from doInBackground,
which trigger the main thread to execute onProgressUpdate with the progress values
we provide. By invoking this on the main thread, AsyncTask makes it easy for us to
update the user interface to show progress (remember that we can only update the
user interface from the main thread).

When the background work completes successfully, doInBackground may return
a result. This result is passed to onPostExecute, which is invoked for us on the
main thread so that we can update the user interface with the results of our
background processing.

Chapter 2

[17]

This pattern of passing data from one thread to another
is very important, because it helps us to avoid several
thread-safety issues.
Our AsyncTask could manipulate fields of the enclosing
Activity class, but then we would have to take extra
precautions, such as adding synchronization to prevent
race conditions and ensure visibility of updates.

MAIN BACKGROUND

onPreExecute

onProgressUpdate

onProgressUpdate

onProgressUpdate

onProgressUpdate

onProgressUpdate

onPostExecute

publishProgress

publishProgress

doInBackgroundpublishProgress

publishProgress

publishProgress

The preceding figure displays a sequence of method calls executed by AsyncTask,
illustrating which methods run on the main thread versus the AsyncTask
background thread.

If we invoke AsyncTask's cancel method before doInBackground completes,
onPostExecute will not be called. Instead, the alternative onCancelled callback
method is invoked so that we can implement different behavior for a successful
versus cancelled completion.

The onPreExecute, onProgressUpdate, onPostExecute, and
onCancelled methods are invoked on the main thread, so we must
not perform long-running/blocking operations in these methods.

Staying Responsive with AsyncTask

[18]

Declaring AsyncTask types
AsyncTask is a generically typed class, and exposes three type parameters:

abstract class AsyncTask<Params, Progress, Result>

When we declare an AsyncTask subclass, we'll specify types for Params, Progress,
and Result; for example, if we want to pass a String parameter to doInBackground,
report progress as a Float, and return a Boolean result, we would declare our
AsyncTask subclass as follows:

public class MyTask extends AsyncTask<String, Float, Boolean>

If we don't need to pass any parameters, or don't want to report progress, a good
type to use for those parameters is java.lang.Void, which signals our intent clearly,
because Void is an uninstantiable class representing the void keyword.

Let's take a look at a first example, performing an expensive calculation in the
background and reporting the result to the main thread:

public class PrimesTask
extends AsyncTask<Integer, Void, BigInteger> {
 private TextView resultView;

 public PrimesTask(TextView resultView) {
 this.resultView = resultView;
 }

 @Override
 protected BigInteger doInBackground(Integer... params) {
 int n = params[0];
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<n; i++) {
 prime = prime.nextProbablePrime();
 }
 return prime;
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 resultView.setText(result.toString());
 }
}

Chapter 2

[19]

Here, PrimesTask extends AsyncTask, specifying the Params type as Integer so that
we can ask for the nth prime, and the Result type as BigInteger.

We pass a TextView to the constructor so that PrimesTask has a reference to the user
interface that it should update upon completion.

We've implemented doInBackground to calculate the nth prime, where n is an
Integer parameter to doInBackground, and returned the result as BigInteger.

In onPostExecute, we simply display the result parameter to the view we were
assigned in the constructor.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Executing AsyncTasks
Having implemented doInBackground and onPostExecute, we want to get our task
running. There are two methods we can use for this, each offering different levels of
control over the degree of concurrency with which our tasks are executed. Let's look
at the simpler of the two methods first:

public final AsyncTask<Params, Progress, Result> execute(Params…
params)

The return type is the type of our AsyncTask subclass, which is simply for convenience
so that we can use method chaining to instantiate and start a task in a single line and
still record a reference to the instance:

class MyTask implements AsyncTask<String,Void,String>{ … }
MyTask task = new MyTask().execute("hello");

The Params… params argument is the same Params type we used in our class
declaration, because the values we supply to the execute method are later passed
to our doInBackground method as its Params… params arguments. Notice that it is
a varargs parameter, meaning that we can pass any number of parameters of that
type (including none).

Staying Responsive with AsyncTask

[20]

Each instance of AsyncTask is a single-use object—once we have
started an AsyncTask, it can never be started again, even if we
cancel it or wait for it to complete first.
This is a safety feature, designed to protect us from concurrency
issues such as the race condition we saw in Chapter 1, Building
Responsive Android Applications.

Executing PrimesTask is straightforward—we need Activity, which constructs an
instance of PrimesTask with a view to update, then invokes execute with a suitable
value for n:

public class PrimesActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_example_1);
 final TextView resultView =
 (TextView) findViewById(R.id.result);
 Button goButton = (Button) findViewById(R.id.go);

 goButton.setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 new PrimesTask(resultView).execute(500);
 }
 });
 }
}

Great! We're not blocking up the main thread, so our app is nice and responsive,
but we can do better.

Providing feedback to the user
Having started what we know to be a potentially long-running task, we probably want
to let the user know that something is happening. There are a lot of ways of doing this,
but a common approach is to present a dialog displaying a relevant message.

Chapter 2

[21]

A good place to present our dialog is from the onPreExecute method of
AsyncTask, which executes on the main thread. Hence, it is allowed to
interact with the user interface.

The modified PrimesTask will need a reference to a Context, so that it can
prepare a ProgressDialog, which it will show and dismiss in onPreExecute
and onPostExecute respectively. As doInBackground has not changed, it is
not shown in the following code, for brevity:

public class PrimesTask extends AsyncTask<Integer, Void, BigInteger>{
 private Context ctx;
 private ProgressDialog progress;
 private TextView resultView;

 public PrimesTask(Context ctx, TextView resultView) {
 this.ctx = ctx;
 this.resultView = resultView;
 }

 @Override
 protected void onPreExecute() {
 progress = new ProgressDialog(ctx);
 progress.setTitle(R.string.calculating);
 progress.setCancelable(false);
 progress.show();
 }

 // … doInBackground elided for brevity …

 @Override
 protected void onPostExecute(BigInteger result) {
 resultView.setText(result.toString());
 progress.dismiss();
 }
}

All that remains is to pass a Context to the constructor of our modified
PrimesTask. As Activity is a subclass of Context, we can simply pass
a reference to the host Activity:

goButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 new PrimesTask(
 PrimesActivity.this, resultView).execute(500);
 }
});

Staying Responsive with AsyncTask

[22]

Providing progress updates
Knowing that something is happening is a great relief to our users, but they might
be getting impatient and wondering how much longer they need to wait. Let's show
them how we're getting on by adding a progress bar to our dialog.

Remember that we aren't allowed to update the user interface directly from
doInBackground, because we aren't on the main thread. How, then, can we
tell the main thread to make these updates for us?

AsyncTask comes with a handy callback method for this, whose signature we saw
at the beginning of the chapter:

protected void onProgressUpdate(Progress… values)

We can override onProgressUpdate to update the user interface from the main
thread, but when does it get called and where does it get its Progress… values
from? The glue between doInBackground and onProgressUpdate is another of
AsyncTask's methods:

protected final void publishProgress(Progress... values)

To update the user interface with our progress, we simply publish progress
updates from the background thread by invoking publishProgress from within
doInBackground. Each time we call publishProgress, the main thread will be
scheduled to invoke onProgressUpdate for us with these progress values.

The modifications to our running example to show a progress bar are quite simple.
First, we must change the class declaration to include a Progress type. We'll be
setting progress values in the range 0 to 100, so we'll use Integer:

public class PrimesTask
extends AsyncTask<Integer, Integer, BigInteger> {

Next, we need to set the style and the bounds of the progress bar. We can do that
with the following additions to onPreExecute:

progress.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
progress.setProgress(0);
progress.setMax(100);

We also need to implement the onProgressUpdate callback to update the progress
bar from the main thread:

@Override
protected void onProgressUpdate(Integer... values) {
 progress.setProgress(values[0]);
}

Chapter 2

[23]

The final modification is to calculate the progress at each iteration of the for
loop, and invoke publishProgress so that the main thread knows to call back
onProgressUpdate:

protected BigInteger doInBackground(Integer... params) {
 int primeToFind = params[0];
 BigInteger prime = new BigInteger("2");
 int progress = 0;
 for (int i=0; i<primeToFind; i++) {
 prime = prime.nextProbablePrime();
 int percent = (int)((i * 100f)/primeToFind);
 if (percent > progress) {
 publishProgress(percent);
 progress = percent;
 }
 }
 return prime;
}

It is important to understand that invoking publishProgress does not directly
invoke the main thread, but adds a task to the main thread's queue, which will
be processed at some time in the near future by the main thread.

Notice that we're being careful to publish progress only when the percentage
actually changes, avoiding any unnecessary overhead.

The delay between publishing the progress and seeing the user interface update
will be extremely short, and the progress bar will update smoothly, provided we
are careful to follow the golden rule of not blocking the main thread from any of
our code.

Canceling AsyncTask
Another nice usability touch we can provide for our users is the ability to cancel a
task before it completes—for example, if the task depends on some user input and,
after starting the execution, the user realizes that they have provided the wrong
value. AsyncTask provides support for cancellation with the cancel method.

public final boolean cancel(boolean mayInterruptIfRunning)

The mayInterruptIfRunning parameter allows us to specify whether an AsyncTask
thread that is in an interruptible state may actually be interrupted—for example, if
our doInBackground code is performing interruptible I/O.

Staying Responsive with AsyncTask

[24]

Simply invoking cancel is not sufficient to cause our task to finish early. We need
to actively support cancellation by periodically checking the value returned from
isCancelled and reacting appropriately in doInBackground.

First, let's set up our ProgressDialog to trigger the AsyncTask's cancel method
by adding a few lines to onPreExecute:

progress.setCancelable(true);
progress.setOnCancelListener(
 new DialogInterface.OnCancelListener() {
 public void onCancel(DialogInterface dialog) {
 PrimesTask.this.cancel(false);
 }
 });

Now we can trigger cancel by touching outside the progress dialog, or pressing the
device's back button while the dialog is visible. We'll invoke cancel with false, as
we are not doing interruptible work inside the method or checking the return value
of Thread.interrupted, so calling an interrupt will have no effect. We still need to
check for cancellation in doInBackground, so we will modify it as follows:

protected BigInteger doInBackground(Integer... params) {
 int primeToFind = params[0];
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<primeToFind; i++) {
 prime = prime.nextProbablePrime();
 int percentComplete = (int)((i * 100f)/primeToFind);
 publishProgress(percentComplete);
 if (isCancelled())
 break;
 }
 return prime;
}

The cancelled AsyncTask does not receive the onPostExecute callback. Instead,
we have the opportunity to implement different behavior for a cancelled execution
by implementing onCancelled. There are two variants of this callback method:

protected void onCancelled(Result result);
protected void onCancelled();

The default implementation of the parameterized onCancelled(Result result)
method delegates to the onCancelled method.

Chapter 2

[25]

If AsyncTask can provide either a complete result (such as a fully downloaded
image) or nothing, then we will probably want to override the zero argument
onCancelled() method.

If we are performing an incremental computation in our AsyncTask, we might
choose to override the onCancelled(Result result) version so that we can
make use of the result computed up to the point of cancellation.

In all cases, since onPostExecute does not get called on a canceled AsyncTask, we
will want to make sure that our onCancelled callbacks update the user interface
appropriately—in our example, this entails dismissing the progress dialog we
opened in onPreExecute, and updating the result text.

protected void onCancelled(BigInteger result) {
 if (result != null)
 resultView.setText("cancelled at " + result.toString());
 progress.dismiss();
}

Another situation to be aware of occurs when we cancel an AsyncTask that has not
yet begun its doInBackground method. If this happens, doInBackground will never
be invoked, though onCancelled will still be called on the main thread.

Handling exceptions
The callback methods defined by AsyncTask dictate that we cannot throw checked
exceptions, so we must wrap any code that throws checked exceptions with try/
catch blocks. Unchecked exceptions that propagate out of AsyncTask's methods
will crash our application, so we must test carefully and handle these if necessary.

For the callback methods that run on the main thread—onPreExecute,
onProgressUpdate, onPostExecute, and onCancelled—we can catch exceptions
in the method and directly update the user interface to alert the user.

Of course, exceptions are likely to arise in our doInBackground method too, as this is
where the bulk of the work of AsyncTask is done, but unfortunately, we can't update
the user interface from doInBackground. A simple solution is to have doInBackground
return an object that may contain either the result or an exception, as follows:

static class Result<T> {
 private T actual;
 private Exception exc;
}

Staying Responsive with AsyncTask

[26]

@Override
protected final Result<T> doInBackground(Void... params) {
 Result<T> result = new Result<T>();
 try {
 result.actual = calculateResult();
 } catch (Exception exc) {
 result.exc = exc;
 }
 return result;
}

protected abstract T calculateResult() throws Exception;

Now we can check in onPostExecute for the presence of an Exception in the
Result object. If there is one, we can deal with it, perhaps by alerting the user;
otherwise, we just use the actual result as normal.

@Override
protected final void onPostExecute(Result<R> result) {
 if (result.exc != null) {
 // … alert the user …
 } else {
 // … success, continue as normal …
 }
}

In the downloadable code, you'll find a handy SafeAsyncTask class that takes care of
exception handling, and makes it easy to deal with exceptions or results.

Controlling the level of concurrency
So far, we've carefully avoided being too specific about what exactly happens
when we invoke AsyncTask's execute method. We know that doInBackground
will execute off the main thread, but what exactly does that mean?

The original goal of AsyncTask was to help developers avoid blocking the main
thread. In its initial form at API level 3, AsyncTasks were queued and executed
serially (that is, one after the other) on a single background thread, guaranteeing
that they would complete in the order they were started.

Chapter 2

[27]

This changed in API level 4 to use a pool of up to 128 threads to execute multiple
AsyncTasks concurrently with each other—a level of concurrency of up to 128. At
first glance, this seems like a good thing, since a common use case for AsyncTask is to
perform blocking I/O, where the thread spends much of its time idly waiting for data.

However, as we saw in Chapter 1, Building Responsive Android Applications, there
are many issues that commonly arise in concurrent programming, and indeed, the
Android team realized that by executing AsyncTasks concurrently by default, they
were exposing developers to potential programming problems (for example, when
executed concurrently, there are no guarantees that AsyncTasks will complete in
the same order they were started).

As a result, a further change was made at API level 11, switching back to serial
execution by default, and introducing a new method that gives concurrency
control back to the app developer:

public final AsyncTask<Params, Progress, Result>
executeOnExecutor(Executor exec, Params… params)

From API level 11 onwards, we can start AsyncTasks with executeOnExecutor,
and in doing so, choose the level of concurrency for ourselves by supplying an
Executor object.

Executor is an interface from the java.util.concurrent package of the JDK,
and was first introduced in Java 5. Its purpose is to present a way to submit tasks
for execution without spelling out precisely how or when the execution will be
carried out.

Implementations of Executor may run tasks sequentially using a single thread,
use a limited pool of threads to control the level of concurrency, or even directly
create a new thread for each task.

The AsyncTask class provides two Executor interfaces that allow you to choose
between the concurrency levels described earlier in this section:

•	 SERIAL_EXECUTOR: This Executor queues tasks and uses a single
background thread to run them to completion, each in turn in the
order they were submitted.

•	 THREAD_POOL_EXECUTOR: This Executor runs tasks using a pool of threads
for efficiency (starting a new thread comes with some overhead cost that
can be avoided through pooling and reuse). THREAD_POOL_EXECUTOR is an
instance of the JDK class ThreadPoolExecutor, which uses a pool of threads
that grows and shrinks with demand. In the case of AsyncTask, the pool is
configured to maintain at least five threads, and expands up to 128 threads.

Staying Responsive with AsyncTask

[28]

To execute AsyncTask using a specific executor, we invoke the executeOnExecutor
method, supplying a reference to the executor we want to use, for example:

task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);

As the default behavior of execute since API level 11 is to run AsyncTasks serially
on a single background thread, the following two statements are equivalent:

task.execute(params);
task.executeOnExecutor(AsyncTask.SERIAL_EXECUTOR, params);

Besides the default executors provided by AsyncTask, we can choose to create
our own. For example, we might want to allow some concurrency by operating
off a small pool of threads, and allow many tasks to be queued if all threads are
currently busy.

This is easily achieved by configuring our own instance of ThreadPoolExecutor
as a static member of one of our own classes—for example, our Activity class.
Here's how we might configure an executor with a pool of four to eight threads
and an effectively infinite queue:

private static final Queue<Runnable> QUEUE =
 new LinkedBlockingQueue<Runnable>();
public static final Executor MY_EXECUTOR =
 new ThreadPoolExecutor(4, 8, 1, TimeUnit.MINUTES, QUEUE);

The parameters to the constructor indicate the core pool size (4), the maximum pool
size (8), the time for which idle additional threads may live in the pool before being
removed (1), the unit of time (minutes), and the queue to use when the pool threads
are busy.

Using our own Executor is then as simple as invoking our AsyncTask as follows:

task.executeOnExecutor(MY_EXECUTOR, params);

Common AsyncTask issues
As with any powerful programming abstraction, AsyncTask is not entirely free from
issues and compromises.

Fragmentation issues
In the Controlling the level of concurrency section, we saw how AsyncTask has
evolved with new releases of the Android platform, resulting in behavior that
varies with the platform of the device running the task, which is a part of the
wider issue of fragmentation.

Chapter 2

[29]

The simple fact is that if we target a broad range of API levels, the execution
characteristics of our AsyncTasks—and therefore, the behavior of our apps—
can vary considerably on different devices. So what can we do to reduce the
likelihood of encountering AsyncTask issues due to fragmentation?

The most obvious approach is to deliberately target devices running at least
Honeycomb, by setting a minSdkVersion of 11 in the Android Manifest file.
This neatly puts us in the category of devices, which, by default, execute
AsyncTasks serially, and therefore, much more predictably.

However, this significantly reduces the market reach of our apps. At the time of
writing in September 2013, more than 34 percent of Android devices in the wild
run a version of Android in the danger zone between API levels 4 and 10.

A second option is to design our code carefully and test exhaustively on a range
of devices—always commendable practices of course, but as we've seen, concurrent
programming is hard enough without the added complexity of fragmentation, and
invariably, subtle bugs will remain.

A third solution that has been suggested by the Android development community is
to reimplement AsyncTask in a package within your own project, then extend your
own AsyncTask class instead of the SDK version. In this way, you are no longer at
the mercy of the user's device platform, and can regain control of your AsyncTasks.
Since the source code for AsyncTask is readily available, this is not difficult to do.

Activity lifecycle issues
Having deliberately moved any long-running tasks off the main thread, we've
made our applications nice and responsive—the main thread is free to respond
very quickly to any user interaction.

Unfortunately, we have also created a potential problem for ourselves, because
the main thread is able to finish the Activity before our background tasks complete.
Activity might finish for many reasons, including configuration changes caused the
by the user rotating the device (the default behavior of Activity on a change in
orientation is to restart with an entirely new instance of the activity).

If we continue processing a background task after the Activity has finished, we are
probably doing unnecessary work, and therefore wasting CPU and other resources
(including battery life), which could be put to better use.

Staying Responsive with AsyncTask

[30]

Also, any object references held by the AsyncTask will not be eligible for garbage
collection until the task explicitly nulls those references or completes and is itself
eligible for GC (garbage collection). Since our AsyncTask probably references the
Activity or parts of the View hierarchy, we can easily leak a significant amount of
memory in this way.

A common usage of AsyncTask is to declare it as an anonymous inner class of
the host Activity, which creates an implicit reference to the Activity and an
even bigger memory leak.

There are two approaches for preventing these resource wastage problems.

Handling lifecycle issues with early cancellation
First, and most obviously, we can synchronize our AsyncTask lifecycle with that of
the Activity by canceling running tasks when our Activity is finishing.

When an Activity finishes, its lifecycle callback methods are invoked on the main
thread. We can check to see why the lifecycle method is being called, and if the
Activity is finishing, cancel the background tasks. The most appropriate Activity
lifecycle method for this is onPause, which is guaranteed to be called before the
Activity finishes.

protected void onPause() {
 super.onPause();
 if ((task != null) && (isFinishing()))
 task.cancel(false);
}

If the Activity is not finishing—say because it has started another Activity and
is still on the back stack—we might simply allow our background task to continue
to completion.

Handling lifecycle issues with retained headless
fragments
If the Activity is finishing because of a configuration change, it may still be useful
to complete the background task and display the results in the restarted Activity.
One pattern for achieving this is through the use of retained Fragments.

Fragments were introduced to Android at API level 11, but are available through a
support library to applications targeting earlier API levels. All of the downloadable
examples use the support library, and target API levels 7 through 19. To use
Fragments, our Activity must extend the FragmentActivity class.

Chapter 2

[31]

The Fragment lifecycle is closely bound to that of the host Activity, and a fragment
will normally be disposed when the activity restarts. However, we can explicitly
prevent this by invoking setRetainInstance(true) on our Fragment so that it
survives across Activity restarts.

Typically, a Fragment will be responsible for creating and managing at least a
portion of the user interface of an Activity, but this is not mandatory. A Fragment
that does not manage a view of its own is known as a headless Fragment.

Isolating our AsyncTask in a retained headless Fragment makes it less likely that we
will accidentally leak references to objects such as the View hierarchy, because the
AsyncTask will no longer directly interact with the user interface. To demonstrate
this, we'll start by defining an interface that our Activity will implement:

public interface AsyncListener<Progress, Result> {
 void onPreExecute();
 void onProgressUpdate(Progress... progress);
 void onPostExecute(Result result);
 void onCancelled(Result result);
}

Next, we'll create a retained headless Fragment, which wraps our AsyncTask.
For brevity, doInBackground is omitted, as it is unchanged from the previous
examples—see the downloadable samples for the complete code.

public class PrimesFragment extends Fragment {
 private AsyncListener<Integer,BigInteger> listener;
 private PrimesTask task;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 task = new PrimesTask();
 task.execute(2000);
 }

 public void onAttach(Activity activity) {
 super.onAttach(activity);
 listener = (AsyncListener<Integer,BigInteger>)activity;
 }

 public void onDetach() {
 super.onDetach();
 listener = null;
 }

Staying Responsive with AsyncTask

[32]

 class PrimesTask
 extends AsyncTask<Integer, Integer, BigInteger>{
 protected void onPreExecute() {
 if (listener != null) listener.onPreExecute();
 }

 protected void onProgressUpdate(Integer... values) {
 if (listener != null)
 listener.onProgressUpdate(values);
 }

 protected void onPostExecute(BigInteger result) {
 if (listener != null)
 listener.onPostExecute(result);
 }

 protected void onCancelled(BigInteger result) {
 if (listener != null)
 listener.onCancelled(result);
 }

 // … doInBackground elided for brevity …
 }
}

We're using the Fragment lifecycle methods (onAttach and onDetach) to add or
remove the current Activity as a listener, and PrimesTask delegates directly to
it from all of its main-thread callbacks.

Now, all we need is the host Activity that implements AsyncListener and
uses PrimesFragment to implement its long-running task. The full source code
is available to download from the Packt Publishing website, so we'll just take a
look at the highlights.

First, the code in the button's OnClickListener now checks to see if Fragment
already exists, and only creates one if it is missing:

FragmentManager fm = getSupportFragmentManager();
PrimesFragment primes =
 (PrimesFragment)fm.findFragmentByTag("primes");
if (primes == null) {
 primes = new PrimesFragment();
 FragmentTransaction transaction = fm.beginTransaction();
 transaction.add(primes, "primes").commit();
}

Chapter 2

[33]

If our Activity has been restarted, it will need to re-display the progress dialog
when a progress update callback is received, so we check and show it, if necessary,
before updating the progress bar:

public void onProgressUpdate(Integer... progress) {
 if (dialog == null)
 prepareProgressDialog();
 progress.setProgress(progress[0]);
}

Finally, Activity will need to implement the onPostExecute and onCancelled
callbacks defined by AsyncListener. Both methods will update the resultView
as in the previous examples, then do a little cleanup—dismissing the dialog and
removing Fragment as its work is now done:

public void onPostExecute(BigInteger result) {
 resultView.setText(result.toString());
 cleanUp();
}

public void onCancelled(BigInteger result) {
 resultView.setText("cancelled at " + result);
 cleanUp();
}

private void cleanUp() {
 dialog.dismiss();
 dialog = null;
 FragmentManager fm = getSupportFragmentManager();
 Fragment primes = fm.findFragmentByTag("primes");
 fm.beginTransaction().remove(primes).commit();
}

Applications of AsyncTask
Now that we have seen how to use AsyncTask, we might ask ourselves when we
should use it.

Good candidate applications for AsyncTask tend to be relatively short-lived
operations (at most, for a second or two), which pertain directly to a specific
Fragment or Activity and need to update its user interface.

Staying Responsive with AsyncTask

[34]

AsyncTask is ideal for running short, CPU-intensive tasks, such as number
crunching or searching for words in large text strings, moving them off the main
thread so that it can remain responsive to input and maintain high frame rates.

Blocking I/O operations such as reading and writing text files, or loading images
from local files with BitmapFactory, are also good use cases for AsyncTask.

Of course, there are use cases for which AsyncTask is not ideally suited. For anything
that requires more than a second or two, we should weigh the cost of performing
this operation repeatedly if the user rotates the device, or switches between apps
or activities, or whatever else may be going on that we cannot control.

Taking these things into account, and the rate at which complexity increases as we
try to deal with them (for example, retained headless fragments!), AsyncTask starts
to lose its shine for longer operations.

AsyncTask is often used to fetch data from remote web servers, but this can fall foul
of the Activity lifecycle issues we looked at earlier. End users may be working with
a flaky 3G or HSDPA connection, where network latencies and bandwidth can vary
widely, and a complete HTTP request-response cycle can easily span many seconds.
This is especially important when we are uploading significant amount of data, such
as an image, as the available bandwidth is often asymmetric.

While we must perform network I/O off the main thread, AsyncTask is not necessarily
the ideal option—as we'll see later; there are more appropriate constructs available for
offloading this kind of work from the main thread.

Summary
In this chapter, we've taken a detailed look at AsyncTask and how to use it to write
responsive applications that perform operations without blocking the main thread.

We saw how to keep the user informed of the progress, and even allow them to cancel
operations early. We also learned how to deal with issues that can arise when the
Activity lifecycle conspires against our background tasks.

Finally, we considered when to use AsyncTask, and when it might not be appropriate.

In the next chapter, we'll take a look at some lower-level constructs—fundamental
building blocks on which the other concurrency mechanisms of the platform,
including AsyncTask, are built.

Distributing Work with
Handler and HandlerThread

In Chapter 2, Staying Responsive with AsyncTask, we familiarized ourselves with the most
well-known concurrency construct of the Android platform. What is perhaps less well
known are the mechanics of how AsyncTask coordinates work between background
threads and the main thread.

In this chapter we'll meet some of the lower-level constructs that AsyncTask builds
on to get its work done.

We'll see how to defer tasks to happen in the future on the main thread, whether that
is as soon as possible, after a specified delay, or at a specified time, and we'll apply
the same concepts to scheduling work on background threads and coordinating the
results with the main thread.

In this chapter we will cover the following topics:

•	 Understanding Looper
•	 Building responsive apps with Handler
•	 Scheduling work with post
•	 Canceling a pending Runnable
•	 Scheduling work with send
•	 Canceling pending Messages
•	 Multithreaded programming with Handler
•	 Building responsive apps with HandlerThread
•	 Handler programming issues
•	 Applications of Handler and HandlerThread

Distributing Work with Handler and HandlerThread

[36]

Understanding Looper
Before we can understand Handler, we need to meet the aptly named Looper.
Looper is a simple class that quite literally loops forever, waiting for Messages
to be added to its queue and dispatching them to target Handlers. It is an
implementation of a common UI programming concept known an Event Loop.

To set up a Looper thread, we need to invoke two static methods of Looper—
prepare and loop—from within the thread that will handle the message loop.

class SimpleLooper extends Thread {
 public void run() {
 Looper.prepare();
 Looper.loop();
 }
}

That was easy; however, the SimpleLooper class defined here provides no way to
add messages to its queue, which is where Handler comes in.

Handler serves two purposes—to provide an interface to submit Messages to its
Looper queue and to implement the callback for processing those Messages when
they are dispatched by the Looper.

To attach a Handler to SimpleLooper, we need to instantiate the Handler from
within the same thread that prepared the Looper. The Handler is associated with
the main Looper by the super-class constructor, which obtains the Looper using
a static method.

class SimpleLooper extends Thread {
 public Handler handler;
 public void run() {
 Looper.prepare();
 handler = new Handler();
 Looper.loop();
 }
}

Once started, the Looper thread will wait (Object.wait) inside Looper.loop() for
Messages to be added to its queue.

When another thread adds a Message to the queue it will notify (Object.notify)
the waiting thread, which will then dispatch the Message to its target Handler by
invoking the Handler's dispatchMessage method.

Chapter 3

[37]

The wait/notify mechanism is a very efficient way of suspending activity on a
particular thread while there is no work for it to do, so that it doesn't waste CPU
cycles, then resuming work once there is something for it to do.

Because dispatchMessage is invoked by the thread running the message loop,
we can send Messages to the Handler from any thread and they will always be
dispatched by the message loop thread as shown in the following diagram:

THREAD 1

handler. sendMessage

handler. sendMessage
wait

handler.dispatchMessage

wait

handler.dispatchMessage

wait

LOOPER THREAD THREAD 2

handler.dispatchMessage

handler.dispatchMessage

handler.sendMessage

handler.sendMessage

Distributing Work with Handler and HandlerThread

[38]

We already saw that we can create our own Looper threads, but here's the fun part
and this may come as a surprise: the main thread is in fact a Looper thread, as we
can see in the following stack trace:

at example.handler.MyActivity.onCreate(Example1Activity.java:19)
at android.app.Activity.performCreate(Activity.java:5206)
…
at android.os.Handler.dispatchMessage(Handler.java:99)
at android.os.Looper.loop(Looper.java:137)
at android.app.ActivityThread.main(ActivityThread.java:4898)

That's right! Everything that happens in an Activity lifecycle callback method is
running in a dispatchMessage call invoked by the main Looper!

The interesting thing to realize here is that we can send messages to the main
thread from any other thread (or even from the main thread itself) and in doing
so, hand over work from background threads to the main thread—for example,
to have it update the user interface with the results of background processing.

Building responsive apps with Handler
The Handler class is fundamental to the infrastructure of Android apps—together
with Looper. It underpins everything that the main thread does—including the
invocation of the Activity lifecycle methods.

While Looper takes care of dispatching work on its message-loop thread, Handler
provides the means to add work to the message queue belonging to a Looper.

We can create a Handler to submit work to be processed on the main thread simply
by creating a new instance of Handler from an Activity lifecycle method such as
onCreate, shown as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Handler handler = new Handler();
 // …
}

We could also be explicit that we want to submit work to the main thread by passing
a reference to the main Looper instance into the Handler constructor.

Handler handler = new Handler(Looper.getMainLooper());

Chapter 3

[39]

Exactly what we mean by "work" can be described by subclasses of java.lang.
Runnable, or instances of android.os.Message. We can post Runnables to a
Handler instance or send Messages to it, and it will add them to the queue
belonging to the associated Looper instance.

Scheduling work with post
We can post work to a Handler very simply, for example, by creating an anonymous
inner Runnable:

handler.post(new Runnable(){
 public void run() {
 // do some work on the main thread.
 }
});

The Looper instance to which the Handler is bound works its way through the queue,
executing each Runnable as soon as possible. Posting with the post method simply
adds a new Runnable at the end of the queue.

If we want our Runnable to take priority over anything currently in the queue, we
can post it to the front of the queue ahead of existing work:

handler.postAtFrontOfQueue(new Runnable(){
 public void run() {
 // do some work on the main thread.
 }
});

In a single-threaded application it might seem like there is not a whole lot to be
gained from posting work to the main thread like this, but breaking things down
into small tasks that can be interleaved and potentially reordered is very useful
for maintaining responsiveness.

This becomes clear if we consider the question: what if we want to schedule some
work in 10 seconds time? One way to do this would be to Thread.sleep the main
thread for 10 seconds, but that would mean the main thread can't do anything else
in the meantime. Also, remember that we must never block the main thread! The
alternative is to post a delayed Runnable to the Handler.

handler.postDelayed(new Runnable(){
 public void run() {
 // do some work on the main thread
 // in 10 seconds time

Distributing Work with Handler and HandlerThread

[40]

 }
}, TimeUnit.SECONDS.toMillis(10));

We can still post additional work for execution in the meantime, and our delayed
Runnable instance will execute after the specified delay. Note that we're using
the TimeUnit class from the java.lang.concurrent package to convert seconds
to milliseconds.

A further scheduling option for posted work is postAtTime, which schedules
Runnable to execute at a particular time relative to the system uptime (how long
it has been since the system booted):

handler.postAtTime(new Runnable(){
 public void run() {
 // … do some work on the main thread
 }
}, SystemClock.uptimeMillis() + TimeUnit.SECONDS.toMillis(10));

Since postDelayed is implemented in terms of an offset from the SystemClock
uptime, it is usually easier to just use postDelayed.

As we'll see in the Issues section, posting an anonymous
Runnable makes for concise examples but when used
with postDelayed or postAtTime requires care to
avoid potential resource leakage.

Since we instantiated our Handler on the main thread, all work submitted to it executes
on the main thread. This means that we must not submit long running operations to
this particular Handler, but we can safely interact with the user interface:

handler.post(new Runnable(){
 public void run() {
 TextView text = (TextView) findViewById(R.id.text);
 text.setText("updated on the UI thread");
 }
});

This applies regardless of which thread posts the Runnable, which makes Handler an
ideal way to send the results of work performed by other threads to the main thread.

Thread thread = new Thread(){
 public void run(){
 final BigInteger result = calculatePrime(500);
 handler.post(new Runnable(){

Chapter 3

[41]

 public void run(){
 TextView text = (TextView)
 findViewById(R.id.text);
 text.setText(result.toString());
 }
 });
 }
};
thread.setPriority(Thread.MIN_PRIORITY);
thread.start();

If you start your own threads for the background work, make sure
to set the priority to Thread.MIN_PRIORITY to avoid starving
the main thread of CPU time.

Handler is so fundamental that it is integrated right into the View class hierarchy,
so we can rewrite the last example as follows:

final TextView text = (TextView) findViewById(R.id.text);
Thread thread = new Thread(){
 public void run(){
 final BigInteger result = calculatePrime(500);
 text.post(new Runnable(){
 public void run() {
 text.setText(result.toString());
 }
 });
 }
};
thread.setPriority(Thread.MIN_PRIORITY);
thread.start();

For comparison, both of the previous examples are roughly equivalent to the
following AsyncTask code:

new AsyncTask<Void,Void,BigInteger>(){
 public BigInteger doInBackground(Void… params){
 return calculatePrime(500);
 }
 public void onPostExecute(BigInteger result){
 TextView text = (TextView) findViewById(R.id.text);
 text.setText(result.toString());
 }
}.execute();

Distributing Work with Handler and HandlerThread

[42]

When writing code in an Activity class, there is an alternative way of executing
a Runnable on the main thread using the runOnUiThread method of Activity.
If invoked from a background thread, the Runnable will be posted to a Handler
instance attached to the main thread. If invoked from the main thread, the Runnable
will be executed immediately.

Canceling a pending Runnable
We can cancel a pending operation by removing a posted Runnable callback from
the queue.

final Runnable runnable = new Runnable(){
 public void run() {
 // … do some work
 }
};
handler.postDelayed(runnable, TimeUnit.SECONDS.toMillis(10));
Button cancel = (Button) findViewById(R.id.cancel);
cancel.setOnClickListener(new OnClickListener(){
 public void onClick(View v) {
 handler.removeCallbacks(runnable);
 }
});

Notice that in order to be able to specify what to remove, we must keep a reference
to the Runnable instance, and that cancellation applies only to pending tasks—it
does not attempt to stop a Runnable that is already mid-execution.

Scheduling work with send
When we post a Runnable, we can—as seen in the previous examples—define the
work at the call site with an anonymous Runnable. As such, the Handler does not
know in advance what kind of work it might be asked to perform.

If we often need to perform the same work from different call sites we could define
a static or top-level Runnable class that we can instantiate from different call sites.

Alternatively, we can turn the approach on its head by sending Messages to a
Handler, and defining the Handler to react appropriately to different Messages.

Chapter 3

[43]

Taking a simple example, let's say we want our Handler to display hello or
goodbye, depending on what type of Message it receives. To do that, we'll
extend Handler and override its handleMessage method.

public static class SpeakHandler extends Handler {
 public static final int SAY_HELLO = 0;
 public static final int SAY_BYE = 1;
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case SAY_HELLO:
 sayWord("hello"); break;
 case SAY_BYE:
 sayWord("goodbye"); break;
 default:
 super.handleMessage(msg);
 }
 }
 private void sayWord(String word) { … }
}

Here we've implemented the handleMessage method to expect messages with two
different what values and react accordingly.

If you look carefully at the Speak Handler class example
explained earlier, you'll notice that we defined it as a static
class. Subclasses of Handler should always be declared as
top-level or static classes to avoid inadvertent memory leaks!

To attach an instance of our Handler to the main thread, we simply instantiate it
from any method which runs on the main thread:

private Handler handler;
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 handler = new SpeakHandler();
 // …
}

Remember that we can send Messages to this Handler from any thread, and they
will be processed by the main thread. We send Messages to our Handler as shown:

handler.sendEmptyMessage(SAY_HELLO);

Distributing Work with Handler and HandlerThread

[44]

Messages may also carry an object payload as context for the execution of the
message. Let's extend our example to allow our Handler to say any word that
the message sender wants:

public static class SpeakHandler extends Handler {
 public static final int SAY_HELLO = 0;
 public static final int SAY_BYE = 1;
 public static final int SAY_WORD = 2;
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case SAY_HELLO:
 sayWord("hello"); break;
 case SAY_BYE:
 sayWord("goodbye"); break;
 case SAY_WORD:
 sayWord((String)msg.obj); break;
 default:
 super.handleMessage(msg);
 }
 }
 private void sayWord(String word) { … }
}

Within our handleMessage method, we can access the payload of the Message
directly by accessing the public obj property. The Message payload can be set
easily via alternative static obtain methods.

handler.sendMessage(
 Message.obtain(handler, SpeakHandler.SAY_WORD, "tada!"));

While it should be quite clear what this code is doing, you might be wondering why
we didn't create a new instance of Message by invoking its constructor, and instead
invoked its static method obtain.

The reason is efficiency. Messages are used only briefly—we instantiate, dispatch,
handle, and then discard them. So if we create new instances for each we are creating
work for the garbage collector.

Garbage collection is expensive, and the Android platform goes out of its way to
minimize object allocation whenever it can. While we can instantiate a new Message
object if we wish, the recommended approach is to obtain one, which re-uses
Message instances from a pool and cuts down on garbage collection overhead.

Chapter 3

[45]

Just as we can schedule Runnables with the variants of the post method, we can
schedule Messages with variants of send.

handler.sendMessageAtFrontOfQueue(msg);
handler.sendMessageAtTime(msg, time);
handler.sendMessageDelayed(msg, delay);

There are also empty-message variants for convenience, when we don't have a payload.

handler.sendEmptyMessageAtTime(what, time);
handler.sendEmptyMessageDelayed(what, delay);

Canceling pending Messages
Canceling sent Messages is also possible, and actually easier than canceling posted
Runnables because we don't have to keep a reference to the Messages that we might
want to cancel—instead we can just cancel Messages by their what value.

handler.removeMessages(SpeakHandler.SAY_WORD);

Note that just as with posted Runnables, Message cancellation only removes
pending operations from the queue—it does not attempt to stop an operation
which is already being executed.

Composition versus Inheritance
So far we subclassed Handler to override its handleMessage method, but that isn't
our only option. We can prefer composition over inheritance by passing an instance
of Handler.Callback during Handler construction.

public static class Speaker implements Handler.Callback {
 public static final int SAY_HELLO = 0;
 public static final int SAY_BYE = 1;
 public static final int SAY_WORD = 2;
 @Override
 public boolean handleMessage(Message msg) {
 switch(msg.what) {
 case SAY_HELLO:
 sayWord("hello"); break;
 case SAY_BYE:
 sayWord("goodbye"); break;
 case SAY_WORD:
 sayWord((String)msg.obj); break;
 default:

Distributing Work with Handler and HandlerThread

[46]

 return false;
 }
 return true;
 }
 private void sayWord(String word) { … }
}

Notice that the signature of handleMessage is slightly different here—we must
return a boolean indicating whether or not the Message was handled. To create
a Handler that uses our Callback, simply pass the Callback during Handler
construction.

Handler handler = new Handler(new Speaker());

If we return false from the handleMessage method of our Callback, the
Handler will invoke its own handleMessage method, so we could choose to use
a combination of inheritance and composition to implement default behavior in
a Handler subclass, and mix in special behavior by passing in an instance of
Handler.Callback.

public static class SpeakHandler extends Handler {
 public static final int SAY_HELLO = 0;
 public static final int SAY_BYE = 1;
 public SpeakHandler(Callback callback) {
 super(callback);
 }
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case SAY_HELLO:
 sayWord("hello"); break;
 case SAY_BYE:
 sayWord("goodbye"); break;
 default:
 super.handleMessage(msg);
 }
 }
 private void sayWord(String word) { … }
}
public static class Speaker implements Handler.Callback {
 public static final int SAY_WORD = 2;
 @Override
 public boolean handleMessage(Message msg) {
 if (msg.what == SAY_WORD) {

Chapter 3

[47]

 sayWord((String)msg.obj);
 return true;
 }
 return false;
 }
 private void sayWord(String word) { … }
}
Handler h = new SpeakHandler(new Speaker());
h.sendMessage(Message.obtain(handler, Speaker.SAY_WORD, "!?"));

With SpeakHandler set up like this, we can easily send Messages from any thread
to update the user interface. Sending from a background thread or the main thread
itself is exactly the same—just obtain a Message and send it via SpeakHandler.

Multithreaded example
Let's extend our example to bind the app to a network socket and echo lines of text
it receives from the socket to the screen. Listening for lines of text from the network
socket is a blocking operation, so we must not do it from the main thread.

We'll start a background thread, then bind the server socket and wait for a client
to connect over the network. When this background thread receives text from the
socket, it will send it in a Message to the SpeakHandler instance, which will update
the user interface on the main thread.

static class Parrot extends Thread {
 private Handler handler;
 private InetAddress address;
 private ServerSocket server;

 public Parrot(InetAddress address, Handler handler) {
 this.handler = handler;
 this.address = address;
 setPriority(Thread.MIN_PRIORITY);
 }

 public void run() {
 try {
 server = new ServerSocket(4444, 1, address);
 while (true) {
 Socket client = server.accept();
 handler.sendMessage(Message.obtain(handler,
 SpeakHandler.SAY_HELLO));
 BufferedReader in = new BufferedReader(

Distributing Work with Handler and HandlerThread

[48]

 new InputStreamReader(
 client.getInputStream()));
 String word;
 while (!"bye".equals(word = in.readLine())) {
 handler.sendMessage(Message.obtain(handler,
 SpeakHandler.SAY_WORD, word));
 }
 client.close();
 handler.sendMessage(
 Message.obtain(
 handler, SpeakHandler.SAY_BYE));
 }
 } catch (Exception exc) {
 Log.e(TAG, exc.getMessage(), exc);
 }
 }
}

Let's have a quick look at the key elements of the run method. First, we bind
a socket to port 4444 (any port higher than 1024 will do) on the given address,
which allows us to listen for incoming connections. The second parameter says
we're only allowing one connection at a time:

server = new ServerSocket(4444, 1, address);

We loop forever, or until an exception is thrown. Inside the loop we wait for a client
to connect:

Socket client = server.accept();

The accept method blocks, so our background thread is suspended until a client
makes a connection. As soon as a client connects, we send a SAY_HELLO message
to our Handler, so the main thread will update the user interface for us:

handler.sendMessage(
 Message.obtain(handler, SpeakHandler.SAY_HELLO));

Next, we wrap a buffering reader around our socket's input stream, and loop on its
readLine method, which blocks until a line of text is available.

BufferedReader in = new BufferedReader(
 new InputStreamReader(client.getInputStream()));
String word;
while (!"bye".equals(word = in.readLine())) {

Chapter 3

[49]

When we receive some text from the socket, we send it in a Message to our Handler.

handler.sendMessage(
 Message.obtain(handler, SpeakHandler.SAY_WORD, word));

If we receive bye, we'll break out of the loop, disconnect this client, and say goodbye:

client.close();
handler.sendMessage(
 Message.obtain(handler, SpeakHandler.SAY_BYE));

To obtain the address of the device, we can use the Wi-Fi service. We'll need to
convert the value we get from the Wi-Fi service to an instance of the InetAddress
class, elided here for brevity.

private InetAddress getAddress() {
 WifiManager wm = (WifiManager)getSystemService(WIFI_SERVICE);
 return asInetAddress(wm.getConnectionInfo().getIpAddress());
}

Binding the socket and using the Wi-Fi service requires permissions to be requested
in the Android manifest:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
 android:name="android.permission.ACCESS_WIFI_STATE"/>

Finally we need to create and start Parrot in a suitable Activity lifecycle method,
for example, onResume. To make it easy to connect, we'll display the address and
port on the screen.

TextView view = (TextView) findViewById(R.id.speak);
if (parrot == null) {
 InetAddress address = getAddress();
 parrot = new Parrot(address, handler);
 parrot.start();
 view.setText("telnet " + address.getHostAddress() + " 4444");
}

We should also remove pending messages in onPause, and disconnect the socket
if the Activity is finishing—the complete code is available for download from the
accompanying website.

When the app starts, you'll see a message on the device screen like telnet 192.168.0.4
4444. To connect and send messages to your device's screen, open the command
prompt on your development computer and copy the text from your device screen
to the command prompt.

Distributing Work with Handler and HandlerThread

[50]

You should see the following output:

Trying 192.168.0.4...
Connected to 192.168.0.4.
Escape character is '^]'.

Congratulations! You're connected. Enter some words in the command prompt and
they'll appear on your device screen. Enter bye to disconnect.

Sending Messages versus posting Runnables
It is worth spending a few moments to consider the difference between posting
Runnables and sending Messages.

The runtime difference mostly comes down to efficiency. Creating new instances of
Runnable each time we want our Handler to do something adds garbage collection
overhead, while sending messages re-uses Message instances, which are sourced
from an application-wide pool.

The difference at development time is between allowing code at the call site to
specify arbitrary work for the Handler to do (Runnable.run) potentially spreading
similar code throughout the codebase, versus the Handler defining the work it is
prepared to do in a single place (Handler.handleMessage).

For prototyping and small one-offs, posting Runnables is quick and easy, while
the advantages of sending Messages tend to grow with the size of the application.
It should be said that Message sending is more "The Android Way", and is used
throughout the platform to keep garbage to a minimum and apps running smoothly.

Building responsive apps with HandlerThread
So far we only really considered Handler as a way to request work be performed on
the main thread—we've submitted work from the main thread to itself, and from a
background thread to the main thread.

In fact we can bind Handlers to any thread we create, and in doing so allow any
thread to submit work for another thread to execute. For example, we can submit
work from the main thread to a background thread or from one background thread
to another.

We saw one way of setting up a Looper thread with a Handler in the Understanding
Looper section earlier in this chapter, but there's an easier way using a class provided
by the SDK for exactly this purpose, android.os.HandlerThread.

Chapter 3

[51]

When we create a HandlerThread, we specify two things: a name for the thread,
which can be helpful when debugging; and its priority, which must be selected
from the set of static values in the android.os.Process class.

HandlerThread thread =
 new HandlerThread("bg", Process.THREAD_PRIORITY_BACKGROUND);

Thread priorities in Android are mapped onto Linux "nice" levels,
which govern how often a thread gets to run.
In addition to prioritization, Android limits CPU resources using
Linux cgroups. Threads that are of background priority are
moved into the bg_non_interactive cgroup, which is limited
to 5 percent of available CPU if threads in other groups are busy.
Adding THREAD_PRIORITY_MORE_FAVORABLE to
THREAD_PRIORITY_BACKGROUND when configuring your
HandlerThread moves the thread into the default cgroup, but
always consider whether it is really necessary—it often isn't!

HandlerThread extends java.lang.Thread, and we must start() it before it will
actually begin processing its queue:

thread.start();

Now we need a Handler through which we can pass work to our HandlerThread.
So we create a new instance, but this time we parameterize the constructor with the
Looper associated with our HandlerThread.

Handler handler = new Handler(thread.getLooper());

That's all there is to it—we can now post Runnables for our HandlerThread to execute:

handler.post(new Runnable(){
 public void run() {
 // ... do some work in the background thread
 }
});

To send Messages to our HandlerThread, we'll need to override handleMessage or
provide a Callback via the alternate Handler constructor:

Handler.Callback callback = new Handler.Callback(){ … };
Handler handler = new Handler(thread.getLooper(), callback);

Distributing Work with Handler and HandlerThread

[52]

If we create a HandlerThread to do background work for a specific Activity,
we will want to tie the HandlerThread's lifecycle closely to that of the Activity
to prevent resource leaks.

A HandlerThread can be shut down by invoking quit, which will stop the
HandlerThread from processing any more work from its queue. A quitSafely
method was added at API level 18, which causes the HandlerThread to process
all remaining tasks before shutting down. Once a HandlerThread has been told
to shut down, it will not accept any further tasks.

Just as we did in the previous chapter with AsyncTask, we can use the Activity
lifecycle methods to determine when we should quit the HandlerThread.

private HandlerThread thread;
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 thread = new HandlerThread(…);
}
protected void onPause() {
 super.onPause();
 if ((thread != null) && (isFinishing()))
 thread.quit();
}

Handler programming issues
The Handler class is truly fundamental to the Android platform and is used widely
throughout, but there are plenty of ways we can get ourselves into trouble if we
aren't careful.

Leaking implicit references
The biggest worry when using Handler within an Activity is resource leakage which,
just as with AsyncTask, is very easy to do. Here's one of our earlier examples:

final Runnable runnable = new Runnable(){
 public void run() {
 // … do some work
 }
};
handler.postDelayed(runnable, TimeUnit.SECONDS.toMillis(10));

Chapter 3

[53]

By declaring an anonymous inner Runnable inside an activity, we have made an
implicit reference to that containing Activity instance. We've then posted the
Runnable to a handler and told it to execute in 10 seconds time.

If the Activity finishes before the 10 seconds are up, it cannot yet be garbage
collected because the implicit reference in our Runnable means that the Activity
is still reachable by live objects.

So, although it makes for a concise example, it is not a good idea in practice to
post non-static Runnables onto the main thread's Handler queue (especially with
postDelayed or postAtTime) unless we're very careful to clean up after ourselves.

One way to minimize this problem is to avoid using non-static inner classes; for
example, by always declaring Runnables as top-level classes in their own file, or as
static classes in an Activity subclass. This means that references must be explicit,
which makes them easier to spot and nullify.

In addition, we can cancel pending tasks during Activity lifecycle callbacks such
as onPause. This is easiest if we're working with Messages since we can remove them
by their what value, and don't have to keep references as we would with Runnables.

For HandlerThread instances we've created, we should make sure to quit when
the Activity is finishing, which will prevent further execution and free up the
Runnable and Message objects for garbage collection.

Leaking explicit references
If we are to interact with the user interface, we'll at least need a reference to an
object in the View hierarchy, which we might pass into our static or top-level
Runnable's constructor.

static class MyRunnable implements Runnable {
 private View view;
 public MyRunnable(View view) {
 this.view = view;
 }
 public void run() {
 // … do something with the view.
 }
}

However, by keeping a strong reference to the View, we are again subject to potential
memory leaks if our Runnable outlives the View; for example, if some other part of
our code removes this View from the display before our Runnable executes.

Distributing Work with Handler and HandlerThread

[54]

One solution to this is to use a weak reference, and check for null before using the
referenced View.

static class MyRunnable implements Runnable {
 private WeakReference<View> view;
 public MyRunnable(View view) {
 this.view = new WeakReference<View>(view);
 }
 public void run() {
 View v = view.get(); // might return null
 if (v != null) {
 // … do something with the view.
 }
 }
}

If you haven't used WeakReference before, what it gives us is a way to refer to
an object only for as long as some other live object has a stronger reference to it
(for example, a "normal" property reference).

When all strong references are garbage collected, our WeakReference will also lose its
reference to the View, get() will return null, and the View will be garbage collected.

This fixes the resource leakage problem, but we must always check for null before
using the returned object, to avoid potential NullPointerException's.

If we're sending Messages to our Handler and expecting it to update the user
interface, it will also need a reference to the View hierarchy. A nice way to manage
this is to attach and detach the Handler from onResume and onPause.

private static class MyHandler extends Handler {
 private TextView view;
 public void attach(TextView view) {
 this.view = view;
 }
 public void detach() {
 view = null;
 }
 @Override
 public void handleMessage(Message msg) {
 //…
 }
}

Chapter 3

[55]

Applications of Handler and
HandlerThread
The Handler class is incredibly versatile, which makes its range of applications
very broad.

So far we looked at Handler and HandlerThread in the context of the Activity
lifecycle, which constrains the sort of applications that make sense—ideally we do
not want to perform long-running operations (more than a second or so) at all in
this context.

With that constraint in mind, good candidate uses include performing calculations,
string processing, reading and writing small files on the filesystem, and reading or
writing to local databases using a background HandlerThread.

We might consider AsyncTask instead for one-off's, or if we want to display
progress or cancel a task part way through. The Android platform also uses Handler
extensively as a mechanism for abstracting the work that needs doing from the
thread that will do it. A nice example of this can be found in android.hardware.
SensorManager, which allows listeners to be registered along with a Handler so
that we can easily handle sensor data in a separate HandlerThread.

In the download section available from the Packt Publishing website you'll find
an example of processing sensor data in the background, using the magnetic field
sensor and the accelerometer in combination to create a simple compass.

Summary
In this chapter we used Handler to queue work for the main thread to process,
as a means of maintaining responsiveness in a single-threaded application.

We saw the different ways we can define work with Handler—arbitrary work
defined at the call site with Runnable, or predefined work implemented in the
Handler itself and triggered by message sending.

We learned how to use Handler in a multithreaded application to pass work
and results back and forth between cooperating threads, performing blocking
operations on an ordinary background thread, and communicating the results
back to the main thread to update the user interface.

Distributing Work with Handler and HandlerThread

[56]

We also met HandlerThread and used it to create a background thread with
its own Looper, allowing us to use these same techniques to queue work for
background processing.

This isn't the last we'll see of Handler and HandlerThread—they can also be
usefully put to work in other contexts, as we'll discover in Chapter 5, Queuing
Work with IntentService and Chapter 6, Long-running Tasks with Service.

In the next chapter we'll learn about Loaders—a construct designed to ease
asynchronous loading of data on the Android platform.

Asynchronous I/O with Loader
The concurrency constructs we've encountered so far have been quite general in
purpose, but in this chapter we'll take a look at a construct with a more specific
focus—Loader.

In this chapter we will cover the following topics:

•	 Introducing Loaders
•	 Building responsive apps with AsyncTaskLoader
•	 Building responsive apps with CursorLoader
•	 Combining Loaders
•	 Applications of Loaders

Introducing Loaders
As the name suggests, the job of Loader is to load data on behalf of other parts
of the application, and to make that data available across activities and fragments
within the same process.

Loaders were introduced to the Android platform at API level 11, but are available
for backwards compatibility through the support libraries. The examples in this
chapter use the support library to target API levels 7 through 19.

Provided we implement our Loaders correctly, we get a number of benefits:

•	 The heavy lifting is automatically performed on a background thread,
and the results are safely introduced to the main thread on completion.

•	 Loaded data can be cached and redelivered on repeat calls for speed
and efficiency.

Asynchronous I/O with Loader

[58]

•	 The framework gives us control over when a Loader instance is destroyed,
and allows Loaders to live outside the Activity lifecycle, making their data
available across the application and across Activity restarts.

•	 Loaders monitor their underlying datasource, and reload their data in the
background when necessary. The framework includes lifecycle callbacks that
allow us to properly dispose of any expensive resources held by our Loaders.

When we use Loaders, we will not do so in isolation, because they form part
of a small framework. Loaders are managed objects, and are looked after by a
LoaderManager, which takes care of coordinating Loader lifecycle events with
the Fragment and Activity lifecycles, and makes the Loader instances available
to client code throughout an application.

To connect a Loader with a recipient for the data it loads, the framework provides
the LoaderCallbacks interface. LoaderCallbacks requires an implementing class
to provide three methods:

CursorLoader onCreateLoader(int id, Bundle bundle);
void onLoadFinished(Loader<Cursor> loader, Cursor media);
void onLoaderReset(Loader<Cursor> loader);

The onCreateLoader method allows us to instantiate the particular Loader
implementation we want. The onLoaderFinished method provides a way to
receive the result of background loading in the main thread. The onLoaderReset
method gives us a place to perform any cleanup that is needed when Loader is
being discarded.

Loader is an abstract class, and does not itself implement any asynchronous
behavior. Although we can extend Loader directly, it is more common to use
one of the two provided subclasses, AsyncTaskLoader or CursorLoader,
depending on our requirements.

AsyncTaskLoader is a general-purpose Loader, which we can subclass when
we want to load just about any kind of data from just about any kind of source,
and do so off the main thread.

CursorLoader extends AsyncTaskLoader, specializing it to efficiently source
data from a local database and manage the associated database Cursor correctly.

Let's begin by implementing a simple AsyncTaskLoader to load a bitmap in the
background from the MediaStore.

Chapter 4

[59]

Building responsive apps with
AsyncTaskLoader
AsyncTaskLoader is a Loader implementation that uses AsyncTasks to perform
its background work, though this is largely hidden from us when we implement
our own subclasses.

We don't need to trouble ourselves about the AsyncTasks—they are completely
hidden by AsyncTaskLoader—but with what we learned earlier about AsyncTask,
it is interesting to note that tasks are executed using AsyncTask.THREAD_POOL_
EXECUTOR to ensure a high degree of concurrency when multiple Loaders are
in use.

Loader is generically typed so, when we implement it, we need to specify the type
of object that it will load—in our case android.graphics.Bitmap:

public class ThumbnailLoader extends AsyncTaskLoader<Bitmap> {
 // ...
}

The Loader abstract class requires a Context passed to its constructor, so we must
pass a Context up the chain. We'll also need to know which thumbnail to load,
so we'll also pass an identifier, mediaId:

private Integer mediaId;
public ThumbnailLoader(Context context, Integer mediaId){
 super(context);
 this.mediaId = mediaId;
}

We don't need to keep our own reference to the Context object—Loader exposes
a getContext method, which we can call from anywhere in our class, where we
might need a Context.

We can safely pass a reference to an Activity instance as the
Context parameter, but we should not expect getContext()
to return the same object!
Loaders potentially live much longer than a single Activity,
so the Loader superclass only keeps a reference to the
ApplicationContext to prevent memory leaks.

Asynchronous I/O with Loader

[60]

There are several methods we will need to override, which we'll work through one
at a time. The most important is loadInBackground—the workhorse of our Loader,
and the only method which does not run on the main thread:

@Override
public Bitmap loadInBackground() {
 //...
}

We're going to fetch a thumbnail Bitmap from MediaStore, which is fairly
straightforward but is a potentially slow operation that is good to perform off
the main thread.

The following diagram displays the Loader Lifecycle, showing callbacks invoked
by Loader and a typical AsyncTaskLoader implementation:

Activity/Fragment
Stops

Activity/Fragment
finishes

or destroyLoader
called explicitly

reset

RESET

Activity/Fragment
Starts

onReset

LoaderCallbacks
onLoaderReset

FRAMEWORK CALLBACKS

CREATED

startLoading

STARTED

stopLoading

Stopped

onStopLoading cancelLoad

onCanceled

forceLoadno cached data

onStartLoading

has cached data

LoaderCallbacks
onLoadFinished

LoaderCallbacks
onCreateLoader

MAIN
THREAD

deliverResult

Triggers Cancellation

loadInBackground

BACKGROUND
THREAD

TYPICAL AsyncTaskLoader IMPLEMENTATION

Chapter 4

[61]

Loading a thumbnail entails some small delay due to blocking I/O reading from
permanent storage, but it is also possible that the MediaStore does not yet have
a thumbnail of the image we're requesting, in which case it must first read the
original image and create a scaled thumbnail from it—a much more expensive
operation that we definitely don't want to perform on the main thread!

Luckily we don't need to concern ourselves much with what's going on inside
MediaStore—provided we call it on a background thread, we can afford to
wait for it to do its thing:

@Override
public Bitmap loadInBackground() {
 ContentResolver res = getContext().getContentResolver();
 if (mediaId != null) {
 return MediaStore.Images.Thumbnails.getThumbnail(
 res, mediaId,
 MediaStore.Images.Thumbnails.MINI_KIND, null);
 }
 return null;
}

We'll want to cache a reference to the Bitmap object that we're delivering, so that
any future calls can just return the same Bitmap immediately. We'll do this by
overriding deliverResult:

@Override
public void deliverResult(Bitmap data) {
 this.data = data;
 super.deliverResult(data);
}

To make our Loader actually work, we still need to override a handful of
lifecycle methods that are defined by the Loader base class. First and foremost
is onStartLoading:

@Override
protected void onStartLoading() {
 if (data != null) {
 deliverResult(data);
 } else {
 forceLoad();
 }
}

Asynchronous I/O with Loader

[62]

Here we check our cache (data) to see if we have a previously loaded result that
we can deliver immediately via deliverResult. If not, we trigger a background
load to occur—we must do this, or our Loader won't ever load anything. All of
this takes place on the main thread.

We now have a minimal working Loader implementation, but there is some
housekeeping required if we want our Loader to play well with the framework.

First of all we need to make sure to clean up the Bitmap when our Loader is
discarded. Loader provides a callback intended for that exact purpose—onReset.

@Override
protected void onReset() {
 if (data != null)
 data.recycle();
}

The framework will ensure that onReset is called when Loader is being discarded,
which will happen when the app exits or when the Loader instance is explicitly
discarded via LoaderManager.

There are two more lifecycle methods, which are important to implement correctly
if we want our app to be as responsive as possible: onStopLoading and onCanceled
(be careful of the spelling of onCanceled here versus onCancelled in most places).

The framework will tell us when it doesn't want us to waste cycles loading data by
invoking the onStopLoading callback. It may still need the data we have already
loaded though, and it may tell us to start loading again, so we should not clean
up resources yet. In AsyncTaskLoader we'll want to cancel the background work
if possible, so we'll just call the superclass cancelLoad method:

@Override
protected void onStopLoading() {
 cancelLoad();
}

Finally, we need to implement onCanceled to clean up any data that might be loaded
in the background after a cancellation has been issued:

@Override
public void onCanceled(Bitmap data) {
 if (data != null)
 data.recycle();
}

Chapter 4

[63]

Depending on the kind of data Loader produces, we may not need to worry about
cleaning up the result of canceled work—ordinary Java objects will be cleaned up
by the garbage collector when they are no longer referenced.

Bitmap, however, can be a tricky beast—older versions of Android store the bitmap
data in native memory, outside of the normal object heap, requiring a call to recycle
to avoid potential OutOfMemoryErrors.

So far so good—we have a Loader. Now we need to connect it to a client Activity
or Fragment. We know that our Activity is going to load an image from an ID
reference, and that it will need somewhere to display that image. Let's get these
easy bits out of the way first:

public class ThumbnailActivity extends Activity {	
 private Integer mediaId;
 private ImageView thumb;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.thumb);
 thumb = (ImageView) findViewById(R.id.thumb);
 mediaId = getMediaIdFromIntent(getIntent());
 }
}

To launch this Activity, we will select an image in the gallery app and "send" it to
 our Activity. The getMediaIdFromIntent method will extract the ID from the
Intent we receive:

private Integer getMediaIdFromIntent(Intent intent) {
 if (Intent.ACTION_SEND.equals(intent.getAction())) {
 Uri uri = intent.getParcelableExtra(Intent.EXTRA_STREAM);
 return new Integer(uri.getLastPathSegment());
 } else {
 return null;
 }
}

In order to make our Activity available in the share via app selection, we need to
specify that it can handle images in an ACTION_SEND intent by adding the appropriate
intent filter in our AndroidManifest.xml file:

<activity
 android:name=".example1.ThumbnailActivity"

Asynchronous I/O with Loader

[64]

 android:label="@string/thumb_activity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <data android:mimeType="image/*" />
 ...
 </intent-filter>
</activity>

OK, we're ready to start fitting out our Activity to work with Loader! First, we
need to obtain a reference to LoaderManager and call its initLoader method.

public abstract <D> Loader<D> initLoader(
 int id, Bundle args,
 LoaderManager.LoaderCallbacks<D> callback);

The parameters to initLoader specify an int identifier for ThumbnailLoader. We
can use this identifier to look up ThumbnaiLoader from LoaderManager whenever
we need to interact with it. Remember that Loaders are not closely bound to the
Activity lifecycle, so we can use this ID to retrieve the same Loader instance in a
different Activity!

It's generally a good idea to use a public static int field to record the ID for each
Loader, making it easy to use the correct ID from anywhere. A nice way to avoid
accidentally re-using the same ID for different Loaders is to use the hashCode of
a String name.

public static final int LOADER_ID = "thumb_loader".hashCode();

We can also pass a Bundle of values—the second parameter—to configure the Loader
should we need to. For now we'll keep our example simple and just pass null.

The third parameter is an object that implements LoaderCallbacks. It's quite
common to implement the callbacks directly in the Activity and pass this when
initializing the Loader from within the Activity:

public class ThumbnailActivity extends Activity
implements LoaderManager.LoaderCallbacks<Bitmap> {
 public static final int LOADER_ID =
 "thumb_loader".hashCode();
 private Integer mediaId;
 private ImageView thumb;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.thumb);

Chapter 4

[65]

 thumb = (ImageView) findViewById(R.id.thumb);
 mediaId = getMediaIdFromIntent(getIntent());
 if (mediaId != null)
 getLoaderManager().initLoader(
 LOADER_ID, null, this);
 }

 @Override
 public Loader<Bitmap> onCreateLoader(
 int id, Bundle bundle){
 return null; // todo
 }

 @Override
 public void onLoadFinished(
 Loader<Bitmap> loader, Bitmap bitmap){
 // todo
 }

 @Override
 public void onLoaderReset(Loader<Bitmap> loader) {
 // todo
 }
}

When we initialize ThumbnaiLoader via LoaderManager's initLoader method, it
will either return an existing Loader with the given ID (LOADER_ID) or, if it doesn't
yet have a Loader with that ID, it will invoke the first of the LoaderCallbacks
methods—onCreateLoader. This is where we get to choose which type of Loader
to instantiate:

@Override
public Loader<Bitmap> onCreateLoader(
 int loaderId, Bundle bundle) {
 return new ThumbnailLoader(
 getApplicationContext(), mediaId);
}

Notice that the parameters to onCreateLoader receive the same ID and bundle values
we passed to the initLoader call.

The implementation of onLoadFinished must take the loaded Bitmap and insert it
into our ImageView:

@Override
public void onLoadFinished(Loader<Bitmap> loader, Bitmap bitmap) {
 thumb.setImageBitmap(bitmap);
}

Asynchronous I/O with Loader

[66]

We're almost done—all that remains is to do any necessary clean up in
onLoaderReset:

@Override
protected void onReset() {
 Log.i(LaunchActivity.TAG, getId() + " onReset");

 // if we have a bitmap, make sure it is
 // recycled asap.
 if (data != null) {
 data.recycle();

 data = null;
 }
}

Phew! We've loaded an image in the background and displayed it when loading is
completed. When compared with AsyncTask, things here are more complicated—
we've had to write more code and deal with more classes, but the payoff is that
the data is cached for use across Activity restarts and can be used from other
Fragments or Activities.

In the next section we'll implement CursorLoader to efficiently retrieve and display
a list of all images on the device.

Building responsive apps with
CursorLoader
CursorLoader is a specialized subclass of AsyncTaskLoader that uses its lifecycle
methods to correctly manage the resources associated with a database Cursor.

A database Cursor is a little like an Iterator, in that it allows you to scroll through
a dataset without having to worry where exactly the dataset is coming from or what
data structure it is a part of.

We're going to use CursorLoader to query the MediaStore for a list of all images on
the device. Because CursorLoader is already implemented to correctly handle all of
the details of working with a Cursor, we don't need to subclass it. We can simply
instantiate it, passing in the information it needs in order to open the Cursor it
should manage for us. We can do this in the onCreateLoader callback:

@Override
public CursorLoader onCreateLoader(int id, Bundle bundle) {
 return new CursorLoader(this,

Chapter 4

[67]

 MediaStore.Images.Media.EXTERNAL_CONTENT_URI,
 new String[]{
 MediaStore.Images.Media._ID,
 MediaStore.Images.Media.DISPLAY_NAME
 }, "", null, null);
}

Just as with the previous example, we'll implement the callbacks in our Activity
subclass. We're going to use GridView to display our loaded results, so we'll
implement an Adapter interface to supply views for its cells, and we'll connect
the Adapter to the Cursor created by our Loader:

public class MediaStoreActivity extends Activity
implements LoaderManager.LoaderCallbacks<Cursor> {
 public static final int MS_LOADER = "ms_crsr".hashCode();
 private MediaCursorAdapter adapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.images);

 adapter = new MediaCursorAdapter(
 getApplicationContext());

 GridView grid = (GridView)findViewById(R.id.grid);
 grid.setAdapter(adapter);

 getLoaderManager().initLoader(MS_LOADER, null, this);
 }

 @Override
 public CursorLoader onCreateLoader(int id, Bundle bundle) {
 return new CursorLoader(this,
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI,
 new String[]{
 MediaStore.Images.Media._ID,
 MediaStore.Images.Media.DISPLAY_NAME
 }, "", null, null);
 }

 @Override
 public void onLoadFinished(
 Loader<Cursor> loader, Cursor media) {

Asynchronous I/O with Loader

[68]

 adapter.changeCursor(media);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 adapter.changeCursor(null);
 }
}

Have a look at the parts in bold in the previous code. We create a
MediaCursorAdapter, and pass it to the GridView, we then initialize our
CursorLoader. When loading is completed, we pass the loaded Cursor to
the Adapter, and we're done.

The remaining piece to implement is MediaCursorAdapter, which is going to start
out as a very simple class. The job of our CursorAdapter is simply to map rows of
data from the Cursor to each View in the individual GridView cells.

The Android SDK provides the very handy SimpleCursorAdapter class, which does
just what we need. So for now we'll just subclass it and instruct it, via constructor
parameters, which layout to inflate for each cell and the Cursor fields to map to
each View within that layout.

public class MediaCursorAdapter extends SimpleCursorAdapter {
 private static String[] FIELDS = new String[]{
 MediaStore.Images.Media._ID,
 MediaStore.Images.Media.DISPLAY_NAME
 };

 private static int[] VIEWS = new int[]{
 R.id.media_id, R.id.display_name
 };

 public MediaCursorAdapter(Context context) {
 super(context, R.layout.example2_cell,
 null, FIELDS, VIEWS, 0);
 }
}

The layout files and source code are available on the accompanying website. When
you run this Activity, you'll see a two-column grid where each cell contains the
ID and display name of an image from the MediaStore. If, like me, you have a lot
of images on your device, you can fling the grid and watch the file names spin by.

Chapter 4

[69]

Scroll to somewhere in the middle of the list and rotate your device, and you'll
notice that the Activity restarts and redisplays the grid immediately, without
losing its place—this is because the CursorLoader survived the restart, and still
holds the Cursor object with the same rows loaded.

This is technically all very interesting, but it isn't much to look at. In the next
section we'll combine our two Loaders to implement a scrollable grid displaying
the images themselves.

Combining Loaders
In the preceding sections we developed an AsyncTaskLoader that can load a
single image thumbnail as a Bitmap, and a CursorLoader that loads a list of all
available images on the device. Let's bring them together to create an app that
tiles thumbnails of all the images on the device in a scrollable grid, performing
all loading in the background.

Thanks to our CursorLoader, we already have access to the IDs of the images we
need to load—we're displaying them as text—so we just need to pass those IDs to
our ThumbnailLoader for it to asynchronously load the image for us.

Recall that ThumbnailLoader was set up to load one Bitmap and cache it forever
(that is, until explicitly removed from LoaderManager). We want to change that
so that a single ThumbnailLoader can first be constructed without a mediaId,
and later be told to load an image with a particular mediaId.

public ThumbnailLoader(Context context) {
 super(context);
}

We'll enable ThumbnailLoader to load a new image instead of its current one,
by setting a new mediaId. Since the bitmap is cached, just setting a new ID won't
suffice—we also need to trigger a reload:

public void setMediaId(Integer newMediaId) {
 if ((mediaId != null) && (!mediaId.equals(newMediaId))
 this.mediaId = newMediaId;
 onContentChanged();
 }
}

Asynchronous I/O with Loader

[70]

What's this? onContentChanged is a method of the abstract Loader superclass, which
will force a background load to occur if our Loader is currently in the "started" state.
If we're currently "stopped", a flag will be set and a background load will be triggered
next time the Loader is started. Either way, when the background load completes,
onLoadFinished will be triggered with the new data.

We need to make a few changes to our onStartLoading method to correctly handle
the case where we were "stopped" when onContentChanged was invoked. Let's
remind ourselves of what it used to look like:

@Override
protected void onStartLoading() {
 if (data != null) {
 deliverResult(data);
 } else {
 forceLoad();
 }
}

Now let's update onStartLoading to check if we need to reload our data,
and respond appropriately:

@Override
protected void onStartLoading() {
 if (data != null)
 deliverResult(data);
 if (takeContentChanged() || data == null)
 forceLoad();
}

The updated onStartLoading still delivers its data immediately—if it has any.
It then calls takeContentChanged to see if we need to discard our cached Bitmap
and load a new one. If takeContentChanged returns true, we invoke forceLoad
to trigger a background load and redelivery.

Now we can cause our ThumbnailLoader to load and cache a different image,
but a single ThumbnailLoader can only load and cache one image at a time,
so we're going to need more than one active instance.

Let's walk through the process of modifying MediaCursorAdapter to initialize
a ThumbnailLoader for each cell in the GridView, and to use those Loaders to
asynchronously load the images and display them.

Chapter 4

[71]

First, we can no longer rely on SimpleCursorAdapter, so we'll need to subclass
CursorAdapter instead. We'll also need LoaderManager, which we'll pass to the
constructor, and we'll grab LayoutInflater from the Context to use later when
we create the View objects:

public class MediaCursorAdapter extends CursorAdapter {
 private LoaderManager mgr;
 private LayoutInflater inf;
 private int count;
 private List<Integer> ids;

 public MediaCursorAdapter(Context ctx, LoaderManager mgr) {
 super(ctx.getApplicationContext(), null, true);
 this.mgr = mgr;
 inf = (LayoutInflater) ctx.
 getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 ids = new ArrayList<Integer>();
 }

 @Override
 public View newView(
 Context ctx, Cursor crsr, ViewGroup parent) {
 return null; // todo
 }

 @Override
 public void bindView(View view, Context ctx, Cursor crsr) {
 // todo
 }
}

We have two methods to implement—newView and bindView. GridView will invoke
newView until it has enough View objects to fill all of its visible cells, and from then on
it will recycle these same View objects by passing them to bindView to be repopulated
with data for a different cell as the grid scrolls. As a view scrolls out of sight, it
becomes available for rebinding.

What this means for us is that we have a convenient method in which to initialize
our ThumbnailLoaders—newView, and another convenient method in which to
retask Loader to load a new thumbnail—bindView.

Asynchronous I/O with Loader

[72]

newView first inflates ImageView for the cell and gives it a unique ID, then passes it to
a ThumbnailCallbacks class, which we'll meet in a moment. ThumbnailCallbacks
is in turn used to initialize a new Loader, which shares the ID of the View. In this
way we are initializing a new Loader for each visible cell in the grid:

@Override
public View newView(final Context ctx, Cursor crsr, ViewGroup vg){
 ImageView view = (ImageView)
 inf.inflate(R.layout.example3_cell, vg, false);
 view.setId(
 MediaCursorAdapter.class.hashCode() + count++);
 mgr.initLoader(
 view.getId(), null,
 new ThumbnailCallbacks(ctx, view));
 ids.add(view.getId());
 return view;
}

In bindView, we are recycling each existing View to update the image being
displayed by that View. So the first thing we do is clear out the old Bitmap.

Next we look up the correct Loader by ID, extract the ID of the next image
to load from the Cursor, and load it by passing the ID to a new method of
ThumbnailLoader—setMediaId.

@Override
public void bindView(View view, final Context ctx, Cursor crsr) {
 ((ImageView)view).setImageBitmap(null);
 ThumbnailLoader loader = (ThumbnailLoader)
 mgr.getLoader(view.getId());
 loader.setMediaId(crsr.getInt(
 crsr.getColumnIndex(MediaStore.Images.Media._ID)));
}

We need to add one more method to our Adapter so that we can clean up
ThumbnaiLoaders when we no longer need them. We'll call these ourselves when
we no longer need these Loaders—for example, when our Activity is finishing:

public void destroyLoaders() () {
 for (Integer id : ids)
 mgr.destroyLoader(id);
}

That's our completed Adapter. Next, let's look at ThumbnailCallbacks which,
as you probably guessed, is just an implementation of LoaderCallbacks:

public class ThumbnailCallbacks implements
LoaderManager.LoaderCallbacks<Bitmap> {

Chapter 4

[73]

 private Context context;
 private ImageView image;

 public ThumbnailCallbacks(Context context, ImageView image) {
 this.context = context.getApplicationContext();
 this.image = image;
 }

 @Override
 public Loader<Bitmap> onCreateLoader(int i, Bundle bundle) {
 return new ThumbnailLoader(context);
 }

 @Override
 public void onLoadFinished(Loader<Bitmap> loader, Bitmap b) {
 image.setImageBitmap(b);
 }

 @Override
 public void onLoaderReset(Loader<Bitmap> loader) {
 }
}

The only interesting things ThumbnailCallbacks does is create an instance of
ThumbnailLoader, and set a loaded Bitmap to its ImageView.

Our Activity is almost unchanged—we need to pass an extra parameter when
instantiating MediaCursorAdapter and, to avoid leaking the Loaders it creates,
we need to invoke the destroyLoaders method of MediaCursorAdapter in
onPause or onStop, if the Activity is finishing:

@Override
protected void onStop() {
 super.onStop();

 if (isFinishing()) {
 getSupportLoaderManager().destroyLoader(MS_LOADER);
 adapter.destroyLoaders();
 }
}

The full source code is available from the Packt Publishing website. Take a look at the
complete source code to appreciate how little there actually is, and run it on a device to
get a feel for just how much functionality Loaders give you for a relatively small effort!

Asynchronous I/O with Loader

[74]

Applications of Loaders
Due to its focused nature, applications of Loader are relatively easy to identify.
The obvious applications include reading any kind of data from files or databases
local to the device, as we've done in the examples in this chapter.

Of course there is no reason that the definition of "loading" should not encompass
computing a value or set of values—in the download section of the Packt Publishing
website you can find an example that uses Loader to calculate a set of prime numbers.

One strong advantage of Loaders over direct use of AsyncTask is that their lifecycle
is very flexible with respect to the Activity and Fragment lifecycles. Without any
extra effort we can handle configuration changes such as an orientation change.
We can even start loading in one Activity, navigate through the app, and collect
the result in a completely separate Activity, if that makes sense for our app.

This decoupling from the Activity lifecycle makes Loader in some ways a better
candidate than AsyncTask to perform network transfers such as HTTP downloads;
however, they require more code, and still aren't a perfect fit. We'll discuss more
appropriate alternatives in Chapter 5, Queuing Work with IntentService and Chapter 6,
Long-running Tasks with Service.

Summary
The Loader framework in Android does a wonderful job of making it easy to
load data in the background and deliver it to the main thread when it is ready.

In this chapter we learned about the essential characteristics of all Loaders—
background loading, caching of loaded data, and a managed lifecycle.

We took a detailed look at AsyncTaskLoader as a means to perform arbitrary
background loading, and CursorLoader for asynchronous loading from local
database Cursors.

We saw that Loaders can free us from some of the constraints imposed by
the Activity lifecycle, and took advantage of that to continue to work in
the background even across Activity restarts.

In the next chapter we'll free ourselves completely from the constraints of
the Activity lifecycle and perform long-running background operations
with IntentService, even when our app is no longer in the foreground.

Queuing Work with
IntentService

We're building up quite a toolkit for asynchronous Android programming. We can
perform work off the main thread and update the user interface using HandlerThread
and Handler. If we're working in the context of a single Activity and want to show
progress as we go, we can use AsyncTask. When we need to load data asynchronously
and have it survive across Activity restarts, we can turn to Loaders.

What if we want to perform some background work that must complete even if the
user exits the application?

Applications usually don't get killed immediately by the system, so we could just start
a background thread and hope that the system doesn't kill our application before the
work is completed.

However, this would be quite unreliable, and we can be sure that it won't work well on
a large percentage of Android devices in the wild. Luckily, there is a solution available
in the form of Service and its more specialized subclass IntentService.

In this chapter, we will cover the following topics:

•	 Introducing Service and IntentService
•	 Building responsive apps with IntentService
•	 Returning results with PendingIntent
•	 Posting results as system notifications
•	 Applications of IntentService
•	 Reporting progress from IntentService

Queuing Work with IntentService

[76]

Introducing Service and IntentService
If the basic unit of a visible application is Activity, its equivalent unit for
non-visible components is Service. Just like activities, services must be declared
in the AndroidManifest file so that the system is aware of them and can manage
them for us.

<service android:name=".MyService"/>

Service has lifecycle callback methods similar to those of Activity, which are
always invoked on the application's main thread.

Also, just like Activity, Service does not automatically entail a separate
background thread or process, and performing intensive or blocking operations in
a Service callback method can lead to an Application Not Responding dialog.

However, there are several ways in which services are different to activities, listed
as follows:

•	 A Service does not provide a user interface
•	 There can be many services active at the same time within an application
•	 A Service can remain active even if the application hosting it is not the

current foreground application, which means that there can be many
services of many apps all active at the same time

•	 Because the system is aware of services running within a process, it can
avoid killing those processes unless absolutely necessary, allowing the
background work to continue

In this chapter, we will focus on the IntentService class, a special-purpose subclass
of Service that makes it very easy to implement a task queue to process work on a
single background thread.

Building responsive apps with
IntentService
The IntentService class is a specialized subclass of Service that implements a
background work queue using a single HandlerThread. When work is submitted to
an IntentService, it is queued for processing by a HandlerThread, and processed
in order of submission.

Chapter 5

[77]

If the user exits the app before the queued work is completely processed, the
IntentService will continue working in the background. When the IntentService
has no more work in its queue, it will stop itself to avoid consuming unnecessary
resources.

The system may still kill a background app with an active IntentService, if it really
needs to (to reclaim enough memory to run the current foreground process), but it
will kill lower priority processes first, for example, other non-foreground apps that
do not have active services.

The IntentService class gets its name from the way in which we submit work to it:
by invoking startService with an Intent.

startService(new Intent(context, MyIntentService.class));

We can call startService as often as we like, which will start the IntentService
if it isn't already running, or simply enqueue work to an already running instance
if there is one.

If we want to pass some data to a Service, we can do so by supplying a data Uri
or extra data fields via an Intent.

Intent intent = new Intent(context, MyIntentService.class);
intent.setData(uri);
intent.putExtra("param", "some value");
startService(intent);

We can create an IntentService subclass by extending android.app.
IntentService and implementing the abstract onHandleIntent method.
We must invoke the single-argument constructor with a name for its background
thread (naming the thread makes debugging and profiling much easier).

public class MyIntentService extends IntentService {
 public MyIntentService() {
 super("thread-name");
 }
 protected void onHandleIntent(Intent intent) {
 // executes on the background HandlerThread.
 }
}

We'll need to register the IntentService in our AndroidManifest file, using a
<service> element as follows:

<service android:name="com.mypackage.MyIntentService"/>

Queuing Work with IntentService

[78]

If we want our IntentService to only be used by the components of our own
application, we can specify that it is not public with an extra attribute:

<service android:name=".MyIntentService"
 android:exported="false"/>

Let's get started by implementing IntentService to do something we're already
familiar with—calculating the nth prime:

public class PrimesIntentService extends IntentService {
 public static final String PARAM = "prime_to_find";

 public PrimesIntentService() {
 super("primes");
 }

 protected void onHandleIntent(Intent intent) {
 int n = intent.getIntExtra(PARAM, -1);
 BigInteger prime = calculateNthPrime(n);
 }

 private BigInteger calculateNthPrime(int n) {
 BigInteger prime = BigInteger.valueOf(2);
 for (int i=0; i<n; i++)
 prime = prime.nextProbablePrime();
 return prime;
 }
}

Notice that we're declaring a public static constant name for the parameter, just
to make it easy to use the correct name from any client Activity that wants to invoke
the Service. We can invoke this IntentService to calculate the nth prime as follows:

private void triggerIntentService(int primeToFind) {
 Intent intent = new Intent(this, PrimesIntentService.class);
 intent.putExtra(PrimesIntentService.PARAM, primeToFind);
 startService(intent);
}

So far so good, but you've probably noticed that we haven't done anything with the
result we calculated. In the next section, we'll look at some of the ways in which we
can send results from services to activities or fragments.

Chapter 5

[79]

Handling results
Any Service—including subclasses of IntentService—can be used to start
background work from which the originating Fragment or Activity doesn't
expect a response.

However, it is very common to need to return a result or display the result of the
background work to the user. We have several options for doing this:

•	 Send a PendingIntent to the Service from the originating Activity, allowing
the Service to callback to the Activity via its onActivityResult method

•	 Post a system notification allowing the user to be informed that the
background work was completed, even if the application is no longer in
the foreground

•	 Send a Message to a Handler in the originating Activity using Messenger
•	 Broadcast the result as an Intent, allowing any Fragment or Activity—

including the originator—to receive the result of background processing

We'll learn about Messenger and BroadcastReceiver in Chapter 6, Long-running
Tasks with Service. In this chapter, we'll return results with PendingIntent, and
alert the user with system notifications.

Returning results with PendingIntent
When we invoke an IntentService, it does not automatically have any way to
respond to the calling Activity; so if the Activity wants to receive a result, it must
provide some means for the IntentService to reply.

Arguably, the easiest way to do that is with PendingIntent, which will be familiar
to any Android developer who has worked with multiple activities using the
startActivityForResult and onActivityResult methods, as the pattern is
essentially the same.

First, we'll add a few static members to PrimesIntentService to ensure that we use
consistent values between it and the calling Activity:

public static final String PENDING_RESULT = "pending_result";
public static final String RESULT = "result";
public static final int RESULT_CODE = "nth_prime".hashCode();

Queuing Work with IntentService

[80]

We'll also need to define a static member in our Activity for the REQUEST_CODE
constant, which we can use to correctly identify the results returned to our
onActivityResult method:

private static final int REQUEST_CODE = 0;

Now, when we want to invoke PrimesIntentService from our Activity, we'll
create a PendingIntent for the current Activity, which will act as a callback to
invoke its onActivityResult method.

We can create a PendingIntent with the createPendingResult method of
Activity, which accepts three parameters: an int result code, an Intent to use
as the default result, and an int that encodes some configuration for how the
PendingIntent can be used (for example, whether it may be used more than once).

PendingIntent pending = createPendingResult(
 REQUEST_CODE, new Intent(),(), 0);

We pass the PendingIntent to the IntentService by adding it as an extra in the
Intent we launch the IntentService with:

private void triggerIntentService(int primeToFind) {
 PendingIntent pending = createPendingResult(
 REQUEST_CODE, new Intent(), 0);
 Intent intent = new Intent(this, PrimesIntentService.class);
 intent.putExtra(PrimesIntentService.PARAM, primeToFind);
 intent.putExtra(
 PrimesIntentService.PENDING_RESULT, pending);
 startService(intent);
}

To handle the result that will be returned when this PendingIntent is invoked, we
need to implement onActivityResult in the Activity, and check for the result code:

protected void onActivityResult(int req, int res, Intent data) {
 if (req == REQUEST_CODE &&
 res == PrimesIntentService.RESULT_CODE) {
 BigInteger result = (BigInteger)
 data.getSerializableExtra(PrimesIntentService.RESULT);
 // … update UI with the result
 }
 super.onActivityResult(requestCode, resultCode, data);
}

Chapter 5

[81]

The IntentService can now reply to the calling Activity by invoking one of the
PendingIntent's send methods with the appropriate request code. Our updated
onHandleIntent method looks as follows:

protected void onHandleIntent(Intent intent) {
 int n = intent.getIntExtra(PARAM, -1);
 BigInteger prime = calculateNthPrime(n);
 try {
 Intent result = new Intent();
 result.putExtra(RESULT, prime);
 PendingIntent reply =
 intent.getParcelableExtra(PENDING_RESULT);
 reply.send(this, RESULT_CODE, result);
 } catch (PendingIntent.CanceledException exc) {
 Log.i(TAG, "reply cancelled", exc);
 }
}

The additional code creates a new Intent object and populates it with our calculated
prime, then sends it back to the calling Activity using PendingIntent. We also have
to handle the CanceledException, in case the calling Activity decided that it wasn't
interested in the result any more and cancelled the PendingIntent. That's all there is
to it—our Activity will now be invoked via its onActivityResult method when the
IntentService completes its work.

As a bonus, we will still receive the result if the Activity has restarted, for example,
due to configuration changes such as a device rotation.

What if the user left the Activity (or even left the application) while the background
work was in progress? In the next section, we'll use notifications to provide feedback
without interrupting the user's new context.

Posting results as system notifications
System notifications appear initially as an icon in the notification area, normally at
the very top of the device screen. Once notified, the user can open the notification
drawer to see more details.

Notifications are an ideal way to inform the user of results or status updates from
services, particularly when the operation may take a long time to complete and the
user is likely to be doing something else in the meantime.

Queuing Work with IntentService

[82]

Let's post the result of our prime number calculation as a notification, with a message
containing the result that the user can read when they open the notification drawer.
We'll use the support library to ensure broad API level compatibility, and add one
method to PrimesIntentService as follows:

private void notifyUser(int primeToFind, String result) {
 String msg = String.format(
 "The %sth prime is %s", primeToFind, result);
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.prime_notification_icon)
 .setContentTitle(getString(R.string.primes_app))
 .setContentText(msg);
 NotificationManager nm = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 nm.notify(primeToFind, builder.build());
}

Here we're using NotificationCompat.Builder to build a notification that includes
an icon, a title (just the name of our application), and a message containing the result
of the calculation.

Each notification has an identifier, which we can use to control whether a new
notification is posted or an existing one is reused. The identifier is an int, and
is the first parameter to the notify method. Since our primeToFind value is an
int, and we would like to be able to post multiple notifications, it makes sense to
use primeToFind as the ID for our notifications so that each different request can
produce its own separate notification.

To post a notification containing the result of our calculation, we just need to update
onHandleIntent to invoke the notifyUser method:

protected void onHandleIntent(Intent intent) {
 int n = intent.getIntExtra(PARAM, -1);
 BigInteger prime = calculateNthPrime(n);
 notifyUser(n, prime.toString());
}

Now that we've learned the basics of using IntentService, let's consider some real-
world applications.

Chapter 5

[83]

Applications of IntentService
Ideal applications for IntentService include just about any long-running task
where the work is not especially tied to the behavior of a Fragment or Activity,
and particularly when the task must complete its processing regardless of whether
the user exits the application.

However, IntentService is only suitable for situations where a single worker
thread is sufficient to handle the workload, since it's work is processed by a
single HandlerThread, and we cannot start more than one instance of the same
IntentService subclass.

A usecase that IntentService is ideally suited for is uploading data to remote
servers. An IntentService is a perfect fit because:

•	 The upload usually must complete, even if the user leaves the application
•	 A single upload at a time usually makes best use of the available connection,

since bandwidth is often asymmetric (there is much smaller bandwidth for
upload than download)

•	 A single upload at a time gives us a better chance of completing each
individual upload before losing our data connection

Let's see how we might implement a very simple IntentService that uploads
images from the MediaStore to a simple web service via HTTP POST.

HTTP uploads with IntentService
For this example, we'll create a new Activity, UploadPhotoActivity, to allow the
user to pick an image to upload. We'll start from the code for MediaStoreActivity
that we created in Chapter 4, Asynchronous I/O with Loader.

Our new UploadPhotoActivity only needs a small modification to add an
OnItemClickListener interface to the GridView of images, so that tapping
an image triggers its upload. We can add the listener as an anonymous inner
class in onCreate as follows:

grid.setOnItemClickListener(
 new AdapterView.OnItemClickListener()) {
 public void onItemClick(
 AdapterView<?> parent, View view, int position, long id) {
 Cursor cursor = (Cursor)adapter.getItem(position);
 int mediaId = cursor.getInt(

Queuing Work with IntentService

[84]

 cursor.getColumnIndex(MediaStore.Images.Media._ID));
 Uri uri = Uri.withAppendedPath(
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI,
 Integer.toString(mediaId));
 Intent intent = new Intent(
 UploadPhotoActivity.this, UploadIntentService.class);
 intent.setData(uri);
 startService(intent);
 }
});

This looks like quite a dense chunk of code, but all it really does is use the position of
the tapped thumbnail to move the Cursor to the correct row in its result set, extract
the ID of the image that was tapped, create a Uri for its original file, and then start
UploadIntentService with an Intent containing that Uri.

We'll extract the details of the upload into a separate class, so UploadIntentService
itself is just a fairly sparse IntentService implementation. In onCreate, we'll set up
an instance of our ImageUploader class, which will be used to process all uploads
added to the queue during this lifetime of UploadIntentService.

public void onCreate() {
 super.onCreate();
 uploader = new ImageUploader(getContentResolver());
}

The onHandleIntent method just does the coordination duties of notifying the
user that an upload is in progress, using an ImageUploader instance to perform
the upload, then notifying the user of success or failure.

protected void onHandleIntent(Intent intent) {
 Uri data = intent.getData();
 int id = Integer.parseInt(data.getLastPathSegment());
 sendNotification(id, String.format("Uploading %s.jpg",id));
 if (uploader.upload(data, null)) {
 notifyUser(id, String.format("Completed %s.jpg",id));
 } else {
 notifyUser(id, String.format("Failed %s.jpg",id));
 }
}

The implementation of ImageUploader itself is not all that interesting—we just use
Java's HTTPURLConnection class to post the image data to the server. The complete
source code is available on the Packt Publishing website, so we'll just list two critical
methods—upload and pump—and leave out the housekeeping.

Chapter 5

[85]

public boolean upload(Uri data, ProgressCallack callback) {
 HttpURLConnection conn = null;
 try {
 int len = getContentLength(data);
 URL destination = new URL(UPLOAD_URL);
 conn = (HttpURLConnection) destination.openConnection();
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setFixedLengthStreamingMode(len);
 conn.setRequestMethod("POST");
 conn.setRequestProperty("Content-Type", "image/jpg");
 conn.setRequestProperty("Content-Length", len + "");
 conn.setRequestProperty(
 "Filename", data.getLastPathSegment() + ".jpg");
 InputStream in = null;
 OutputStream out = null;
 try {
 pump(
 in = content.openInputStream(data),
 out = conn.getOutputStream(),
 callback, len);
 } finally {
 close(in);
 close(out);

 return ((conn.getResponseCode() >= 200) &&
 (conn.getResponseCode() < 400));
 }
 catch (IOException exc) {
 Log.e(TAG, "upload failed", exc);
 return false;
 } finally {
 conn.disconnect();
 }
}

The pump method just copies 1 KB chunks of data from the InputStream to the
OutputStream, pumping the data to the server, as follows:

private void pump(
 InputStream in, OutputStream out,
 ProgressCallback callback, int len)
 throws IOException {

Queuing Work with IntentService

[86]

 int length,i=0,size=1024;
 byte[] buffer = new byte[size]; // 1kb buffer
 while ((length = in.read(buffer)) > -1) {
 out.write(buffer, 0, length);
 out.flush();
 if (callback != null)
 callback.onProgress(len, ++i*size);
 }
}

Each time a 1 KB chunk of data is pushed to the OutputStream, we invoke the
ProgressCallback method, which we'll use in the next section to report the
progress to the user.

Reporting progress
For long-running processes, it can be very useful to report progress so that the user
can take comfort in knowing that something is actually happening.

To report progress from an IntentService, we can use the same mechanisms that
we use to send results—for example, sending PendingIntents containing progress
information, or posting system notifications with progress updates.

We can also use some techniques that we'll cover in the next chapter: sending
messages via Messenger, or broadcasting intents to registered receivers.

Whichever approach we take to report progress, we should be
careful not to report progress too frequently, otherwise we'll
waste resources updating the progress bar at the expense of
completing the work itself!

Let's look at an example that displays a progress bar on notifications in the drawer—a
use case that the Android development team anticipated and therefore made easy for
us with the setProgress method of NotificationCompat.Builder:

Builder setProgress(int max, int progress, boolean indeterminate);

Here, max sets the target value at which our work will be completed, progress is
where we have got to so far, and indeterminate controls which type of progress bar
is shown. When indeterminate is true, the notification shows a progress bar that
indicates something is in progress without specifying how far through the operation
we are, while false shows the kind of progress bar that we need—one that shows
how much work we have done, and how much is left to do.

Chapter 5

[87]

We'll need to calculate progress and dispatch notifications at appropriate intervals,
which we've facilitated through our ProgressCallback class. Now we need to
implement the ProgressCallback, and hook it up in UploadIntentService:

private class ProgressNotificationCallback
implements ImageUploader.ProgressCallback {

 private NotificationCompat.Builder builder;
 private NotificationManager nm;
 private int id, prev;

 public ProgressNotificationCallback(
 Context ctx, int id, String msg) {
 this.id = id;
 prev = 0;
 builder = new NotificationCompat.Builder(ctx)
 .setSmallIcon(android.R.drawable.stat_sys_upload_done)
 .setContentTitle(getString(R.string.upload_service))
 .setContentText(msg)
 .setProgress(100,0,false);
 nm = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 nm.notify(id, builder.build());
 }

 public void onProgress(int max, int progress) {
 int percent = (int)((100f*progress)/max);
 if (percent > (prev + 5)))))))) {
 builder.setProgress(100, percent, false);
 nm.notify(id, builder.build());
 prev = percent;
 }
 }

 public void onComplete(String msg) {
 builder.setProgress(0, 0, false);
 builder.setContentText(msg);
 nm.notify(id, builder.build());
 }
}

The constructor of ProgressNotificationCallback consists of the familiar code to
post a notification with a progress bar.

Queuing Work with IntentService

[88]

The onProgress method throttles the rate at which notifications are dispatched,
so that we only post an update as each additional 5 percent of the total data is
uploaded—in order not to swamp the system with notification updates.

The onComplete method posts a notification that sets both the integer progress
parameters to zero, which removes the progress bar.

The final change is to make onHandleIntent use ProgressNotificationCallback
as follows:

protected void onHandleIntent(Intent intent) {
 Uri data = intent.getData();
 // unique id per upload, so each has its own notification
 int id = Integer.parseInt(data.getLastPathSegment());
 String msg = String.format("Uploading %s.jpg",id);
 ProgressNotificationCallback progress =
 new ProgressNotificationCallback(this, id, msg);
 if (uploader.upload(data, progress)) {
 progress.onComplete(
 String.format("Uploaded %s.jpg", id));
 } else {
 progress.onComplete(
 String.format("Upload failed %s.jpg", id));
 }
}

If you download the sample code from the Packt Publishing website, you can try to
upload an image from your phone to a simple web service running on Google App
Engine at http://devnullupload.appspot.com/upload (don't worry, the web
service just consumes the bytes and throws them away, so your images
are safe!)

Tap an image to start uploading and you'll see a notification appear. Slide open the
notification drawer and watch the progress bar ticking up in 5 percent increments
as your image uploads.

Chapter 5

[89]

Summary
In this chapter, we explored the incredibly useful IntentService—an ideal construct
for performing long-running background tasks off the main thread, surviving well
beyond the lifecycle of the initiating Activity, and even continuing to do useful work
when the application is no longer in the foreground.

We learned how to send work to an IntentService with parameterized Intents,
how to process that work in the background by implementing onHandleIntent,
and how to send results back to the originating Activity using a PendingIntent.

For cases where the application is no longer in the foreground or an operation is
particularly long-running, we saw how to post notifications to the notification drawer,
complete with progress updates.

In the next chapter, we'll use IntentService's superclass—Service—to perform work on
multiple background threads even when the host application is not in the foreground.

Long-running Tasks
with Service

In Chapter 5, Queuing Work with IntentService, we learned about a specialized subclass
of Service that handles its workload on a single background thread.

In this chapter, we'll extend our toolkit by directly extending Service to take control
of the level of concurrency applied to our long-running background tasks—how many
threads are used to perform the work—and use various methods to send work to
Services and receive results from them.

In this chapter, we will cover the following topics:

•	 Building responsive apps with Service
•	 Controlling concurrency with Executors
•	 Returning results with Messenger
•	 Direct communication with local Services
•	 Broadcasting results with Intents
•	 Detecting unhandled broadcasts
•	 Applications of Services

Long-running Tasks with Service

[92]

Building responsive apps with Service
Throughout this book, we have learned about the concurrency constructs provided
by the Android platform for doing work off the main thread. So, it might seem
surprising that, by itself, Service does not provide any background threads and
will run all of its callbacks directly on the main thread, just like Activity.

If we perform long-running work or block the main thread in a Service callback
method, our application may be shut down, and a system-triggered Application
Not Responding dialog is presented to the user.

While it is possible to configure the service to launch in a separate process, that
process will still run the Service callbacks on its own main thread and will be
subject to the same constraints. The only difference is that our foreground process
will not be shut down along with the misbehaving Service process.

The solution, of course, is to pass the work off from the main thread to background
"worker" threads.

IntentService, which we learned about in the previous chapter, does exactly this
by passing work from the main thread to a single background HandlerThread—an
elegant design and a nice example of using the platform concurrency constructs as
building blocks to compose concurrent applications.

Elegant though it may be, we can only invoke IntentService via an Intent and it
will queue all work and process it on a single thread. These design choices make
IntentService easy to use, but can also be limiting.

When we need more control over the level of concurrency, or alternative methods
to trigger long-running background work, we can create our own Service
implementations and take complete control.

Controlling concurrency with Executors
The Executor interface was introduced to the core Java libraries in Java 5 as a
means of submitting tasks to be executed without specifying exactly how or when
the execution will be carried out. We learned about Executor briefly in Chapter 2,
Staying Responsive with AsyncTask, and used it to control the level of concurrency
of our AsyncTasks.

Chapter 6

[93]

In this section, we'll use Executor to create our own alternative to IntentService,
initiating background work in a Service by sending it an Intent, but retaining
control over the level of concurrency. Like IntentService, our class will be abstract
and should be subclassed to define the actual behavior. So, we'll define an abstract
onHandleIntent method for the subclasses to implement:

public abstract class ConcurrentIntentService extends Service {
 protected abstract void onHandleIntent(Intent intent);
}

We must override the onBind method of Service, but for now, we will return null,
as we won't be using it just yet:

@Override
public IBinder onBind(Intent intent) {
 return null;
}

We'll allow subclasses to define the level of concurrency by passing an Executor to
the constructor.

public abstract class ConcurrentIntentService extends Service {
 private final Executor executor;
 public ConcurrentIntentService(Executor executor) {
 this.executor = executor;
 }

 protected abstract void onHandleIntent(Intent intent);
}

The onHandleIntent method will be invoked in the background using the Executor
and triggered from the onStartCommand method of our Service, which is invoked
by the platform when we call startService from our Activity.

@Override
public int onStartCommand(
 final Intent intent, int flags, int startId) {
 executor.execute(new Runnable(){
 @Override
 public void run() {
 onHandleIntent(intent);
 }
 });
 return START_REDELIVER_INTENT;
}

Long-running Tasks with Service

[94]

Note that we're returning START_REDELIVER_INTENT from onStartCommand, which
tells the system that if it must kill our Service, for example, to free up memory for a
foreground application, it should be scheduled to restart when the system is under less
pressure and the last Intent object sent to the Service should be redelivered to it.

Another sensible return value here might be START_NOT_STICKY, which would
mean the Service is not automatically restarted and Intents are not redelivered.
The third common flag—START_STICKY—is not appropriate to replicate the
behavior of IntentService, because we don't want to restart this Service
without an Intent to process.

That's all we really need to do to implement our concurrent Intent-driven Service,
but we should be responsible and stop the Service when it has no more work to do.
We'll need to keep track of how many tasks are running at any given time and when
the last one completes, invoke stopSelf.

To track tasks, we'll add a simple int counter property to the class and increment it
immediately when we receive a new Intent. We'll use a Handler created on the main
thread to send messages from the background threads to the main thread when a
task completes. This Handler will decrement the counter again and stop the Service
when the count reaches zero. By doing all of the tracking in a Handler on the main
thread, we avoid any synchronization issues.

private final CompletionHandler handler =
 new CompletionHandler();
private int counter;

@Override
public void onStart(final Intent intent, int startId) {
 counter++;
 executor.execute(new Runnable(){
 @Override
 public void run() {
 try {
 onHandleIntent(intent);
 } finally {
 handler.sendMessage(Message.obtain(handler));
 }
 }
 });
}

private class CompletionHandler extends Handler {
 @Override

Chapter 6

[95]

 public void handleMessage(Message msg) {
 if (--counter == 0) {
 Log.i(TAG, "0 tasks, stopping");
 stopSelf();
 } else {
 Log.i(TAG, counter + " active tasks");
 }
 }
}

We can now use our multithreaded Intent-driven Service exactly as we used
IntentService. We subclass it, this time passing an Executor configured to
run tasks in as many threads as we need, then invoke it from our Activities
and Fragments using Intents.

Using our new ConcurrentIntentService, we can make some very small
modifications to PrimesIntentService from Chapter 5, Queuing Work with
IntentService, to have it perform its calculations using a pool of threads:

public class PrimesIntentService extends ConcurrentIntentService {
 public static final int MAX_CONCURRENCY = 5;
 public static final String PARAM = "prime_to_find";

 public PrimesIntentService() {
 super(Executors.newFixedThreadPool(
 MAX_CONCURRENCY,
 new ThreadFactory(){
 @Override
 public Thread newThread(Runnable r) {
 Thread t = new Thread(r);
 t.setPriority(Thread.MIN_PRIORITY);
 t.setName("primes-intent-thread");
 return t;
 }
 }));
 }

 // … the rest of the class is unchanged from chapter 5
}

The changes we made are very small. We now extend ConcurrentIntentService
instead of IntentService, and we used a factory method from the Executor JDK
class to create a fixed-size pool of threads to run our tasks with.

Long-running Tasks with Service

[96]

Note that we supplied a ThreadFactory and used it to set the priority of the threads
in our pool to Thread.MIN_PRIORITY. It is crucial to do this so that our background
worker threads don't starve the main thread of CPU time.

An early warning sign that our worker threads are contending
too heavily with the main thread is a log message like this:

I/Choreographer﹕ Skipped 53 frames! The
application may be doing too much work on its
main thread.

Despite the message accusing the application of doing too much
on the main thread, it may also be produced if the application
is doing too much work in worker threads which have too high
a priority, and as a result compete too strongly with the main
thread for CPU time.

We can invoke our new concurrent version of PrimesIntentService just as
we invoked the single-threaded version in the previous chapter by calling
startService with an Intent:

Intent intent = new Intent(this, PrimesIntentService.class);
intent.putExtra(PrimesIntentService.PARAM, primeToFind);
startService(intent);

Returning results with Messenger
When we're doing work in a Service on behalf of an Activity, it is very common to
want to send results back to that Activity, even across configuration changes that
cause restarts. Wouldn't it be ideal if we could give our PrimesIntentService
a Handler that it can use to send messages for processing in the context of the
Activity? The great news is we can!

The Android framework provides the Messenger class, which wraps up Handler
and makes it possible to send messages from anywhere—including from remote
Services in other processes. Messenger implements Parcelable, which means we
can pass Messengers around in Intents, which we can't do with Handler directly.

Let's update our Service and Activity to communicate results using Messenger!

In PrimesIntentService, we'll add a static final int member to ensure that we
use consistent values for the message.what property and a static final String
member to use as the Intent's extra key when passing our Messenger.

Chapter 6

[97]

public static final int RESULT = "nth_prime".hashCode();
public static final String MSNGR = "messenger";

The first thing we'll need in the Activity is a Handler subclass that can process
the result messages. We'll define it as a static inner class of our Activity, so that
we don't accidently leak implicit references to the enclosing class.

private static class PrimesHandler extends Handler {
 private TextView view;
 public void handleMessage(Message message) {
 if (message.what == PrimesIntentService.RESULT) {
 if (view != null) { // if we're attached
 view.setText(message.obj.toString());
 }
 }
 }
 public void attach(TextView view) {
 this.view = view;
 }
 public void detach() {
 this.view = null;
 }
}

Our Handler member is also declared static so the same instance is available
across Activity restarts, and uses the attach/detach pattern we first saw in Chapter 3,
Distributing Work with Handler and HandlerThread, to ensure we don't leak references
to the View hierarchy. We'll also create a static Messenger in our Activity that
wraps our Handler.

private static PrimesHandler handler = new PrimesHandler();
private static Messenger messenger = new Messenger(handler);

@Override
protected void onStart() {
 super.onStart();
 handler.attach((TextView)findViewById(R.id.results));
}

@Override
protected void onStop() {
 super.onStop();
 handler.detach();
}

Long-running Tasks with Service

[98]

We can pass our Messenger to PrimesIntentService via an Intent that initiates
a calculation.

Intent intent = new Intent(this, PrimesIntentService.class);
intent.putExtra(PrimesIntentService.PARAM, primeToFind);
intent.putExtra(PrimesIntentService.MSNGR, messenger);
startService(intent);

The onHandleIntent method of PrimesIntentService will need to extract the
Messenger from the Intent and use it to send results back to the Activity. Sending
messages with Messenger is very similar to sending them with Handler—we obtain
a Message with the appropriate parameters and then send it with Messenger.send:

@Override
protected void onHandleIntent(Intent intent) {
 int primeToFind = intent.getIntExtra(PARAM, -1);
 Messenger messenger = intent.getParcelableExtra(MSNGR);
 try {
 if (primeToFind < 2) {
 messenger.send(Message.obtain(null, INVALID));
 } else {
 messenger.send(Message.obtain(
 null, RESULT, primeToFind, 0,
 calculateNthPrime(primeToFind)));
 }
 } catch (RemoteException anExc) {
 Log.e(TAG, "Unable to send message", anExc);
 }
}

In this section, we've started background work in a Service using Intents, and
given the Service a communication channel it can use to send results back to the
Activity, even if the Activity is restarted. In the next section, we'll look at some
alternative ways to initiate and communicate with Services.

Communicating with Services
In all of our dealings with Services so far, we have initiated work by invoking
startService with an Intent, but that isn't our only option. If our Service is
designed to only be used locally from within our own application process, we
can take significant shortcuts and work with Service just as we do with any
other Java object.

Chapter 6

[99]

Direct communication with local Services
To create a Service that we can interact with directly, we must implement the
onBind method that we previously ignored and from which we returned null.
This time, we'll return an implementation of IBinder that provides direct access
to the Service it binds. We'll always return the same IBinder as shown in the
following code:

public class LocalPrimesService extends Service {
 public class Access extends Binder {
 public LocalPrimesService getService() {
 return LocalPrimesService.this;
 }
 };
 private final Access binder = new Access();

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }
}

An Activity or Fragment that wants to directly interact with this Service needs
to bind to it using the bindService method and supply a ServiceConnection
to handle the connect/disconnect callbacks.

Services such as LocalPrimesService that are started by a client binding to them
are known as "bound" Services, and stop themselves automatically when all clients
have unbound. By contrast, our ConcurrentIntentService is a "started" Service.
A Service can be both "bound" and "started," but a Service that is explicitly started
must also be explicitly stopped.

The ServiceConnection implementation simply casts the IBinder it receives to
the concrete class defined by the Service, obtains a reference to the Service, and
records it in a field of the Activity.

public class LocalPrimesActivity extends Activity {
 private LocalPrimesService service;
 private ServiceConnection connection;

 private class Connection implements ServiceConnection {
 @Override
 public void onServiceConnected(
 ComponentName name, IBinder binder) {

Long-running Tasks with Service

[100]

 LocalPrimesService.Access access =
 ((LocalPrimesService.Access)binder);
 service = access.getService();
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 service = null;
 }
 }
}

We can make the Activity bind and unbind during its onResume and onPause
lifecycle methods:

@Override
protected void onResume() {
 super.onResume();
 bindService(
 new Intent(this, LocalPrimesService.class),
 connection = new Connection(),
 Context.BIND_AUTO_CREATE);
}

@Override
protected void onPause() {
 super.onPause();
 unbindService(connection);
}

This is great—once the binding is made, we have a direct reference to the Service
instance and can call its methods! However, we didn't implement any methods in our
Service yet, so it's currently useless. Let's add a method to LocalPrimesService that
calculates the nth prime number in the background using AsyncTask:

public void calculateNthPrime(final int n) {
 new AsyncTask<Void,Void,BigInteger>(){
 @Override
 protected BigInteger doInBackground(Void... params) {
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<n; i++) {
 prime = prime.nextProbablePrime();
 }
 return prime;
 }

Chapter 6

[101]

 @Override
 protected void onPostExecute(BigInteger result) {
 // todo—communicate result to user
 }
 }.execute();
}

Since we now have a direct object reference to LocalPrimesService in our
LocalPrimesActivity, we can go ahead and invoke its calculateNthPrime
method directly—taking care to check that the Service is actually bound first,
of course.

if (service != null) {
 service.calculateNthPrime(500);
}

This is a very convenient and efficient way of submitting work to a Service—there's
no need to package up a request in an Intent, so there's no excess object creation or
communication overhead.

Since calculateNthPrime is asynchronous, we can't return a result directly from the
method invocation, and LocalPrimesService itself has no user interface, so how can
we present results to our user?

One possibility is to pass a callback to LocalPrimesService so that we
can invoke methods of our Activity when the background work completes.
In LocalPrimesService, we define a callback interface for the Activity
to implement:

public interface Callback {
 public void onResult(BigInteger result);
}

There is a serious risk that by passing an Activity into the Service, we'll expose
ourselves to memory leaks. The lifecycles of Service and Activity do not coincide,
so strong references to an Activity from a Service can prevent it from being
garbage collected in a timely fashion.

The simplest way to prevent such memory leaks is to make sure that
LocalPrimesService only keeps a weak reference to the calling Activity so that
when its lifecycle is complete, the Activity can be garbage collected, even if there is
an ongoing calculation in the Service. The modified calculateNthPrime method
of LocalPrimesService is shown in the following code:

public void calculateNthPrime(final int n, Callback activity) {
 final WeakReference<Callback> maybeCallback =

Long-running Tasks with Service

[102]

 new WeakReference<Callback>(activity);
 new AsyncTask<Void,Void,BigInteger>(){
 @Override
 protected BigInteger doInBackground(Void... params) {
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<n; i++) {
 prime = prime.nextProbablePrime();
 }
 return prime;
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 Callback callback = maybeCallback.get();
 if (callback != null)
 callback.onResult(result);
 }
 }.execute();
}

We invoke the callback on the main thread using onPostExecute, so that
PrimesActivity can interact with the user interface directly in the callback
method. We can implement the callback as a method of PrimesActivity:

public class PrimesActivity extends Activity
implements LocalPrimesService.Callback {

 @Override
 public void onResult(BigInteger result) {
 // … display the result
 }

 // other methods elided for brevity…
}

Now we can directly invoke methods on LocalPrimesService and return results via
a callback method of PrimesActivity by passing the Activity itself as the callback:

if (service != null) {
 service.calculateNthPrime(500, this);
}

Chapter 6

[103]

This direct communication between PrimesActivity and LocalPrimesService
is very efficient and easy to work with. However, there is a downside: if the
Activity restarts because of a configuration change, such as a device rotation, the
WeakReference to the callback will be garbage collected and LocalPrimesService
cannot send the result.

If we want to retain the ability to respond, even across Activity restarts, we'll need
a communication channel that can be reattached to our restarted Activity instance.

Earlier, we saw that we can use a Messenger to communicate results from a Service
to the originating Activity, even across Activity restarts. When dealing with bound
local Services, we can skip Messenger and directly use a Handler:

public void calculateNthPrime(final int n, Handler handler);

This is a very efficient option when we only care about collecting the result in the
originating Activity. If we want to allow other parts of the application to also receive
the results, we need a different mechanism—broadcasts.

Broadcasting results with Intents
Broadcasting an Intent is a way of sending results to anyone who registers to receive
them. This can even include other applications in separate processes if we choose,
but if the Activity and Service are a part of the same process, broadcasting is best
done using a local broadcast, as this is more efficient and secure.

We can update LocalPrimesService to broadcast its results with just a few extra
lines of code. First, let's define two constants to make it easy to register a receiver
for the broadcast and extract the result from the broadcast Intent object:

public static final String PRIMES_BROADCAST =
 "com.packt.PRIMES_BROADCAST";
public static final String RESULT = "nth_prime";

Now we can implement the method that does most of the work using the
LocalBroadcastManager to send an Intent object containing the calculated
result. We're using the support library class LocalBroadcastManager here for
efficiency and security—broadcasts sent locally don't incur the overhead of
interprocess communication and cannot be leaked outside of our application.

private void broadcastResult(String result) {
 Intent intent = new Intent(PRIMES_BROADCAST);
 intent.putExtra(RESULT, result);

Long-running Tasks with Service

[104]

 LocalBroadcastManager.getInstance(this).
 sendBroadcast(intent);
}

The sendBroadcast method is asynchronous and will return immediately without
waiting for the message to be broadcast and handled by receivers. Finally, we invoke
our new broadcastResult method from calculateNthPrime:

@Override
public void calculateNthPrime(final int n) {
 new AsyncTask<Void,Void,Void>(){
 @Override
 protected Void doInBackground(Void... params) {
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<n; i++)
 prime = prime.nextProbablePrime();
 broadcastResult(prime.toString());
 return null;
 }
 }.execute();
}

Great! We're broadcasting the result of our background calculation. Now we need
to register a receiver in PrimesActivity to handle the result. Here's how we might
define our BroadcastReceiver subclass:

private static class NthPrimeReceiver extends BroadcastReceiver {
 private TextView view;

 @Override
 public void onReceive(Context context, Intent intent) {
 if (view != null) {
 String result = intent.getStringExtra(
 LocalPrimesService.RESULT);
 view.setText(result);
 } else {
 Log.i(TAG, " ignoring - we're detached");
 }
 }

 public void attach(TextView view) {
 this.view = view;
 }

Chapter 6

[105]

 public void detach() {
 this.view = null;
 }
}

This BroadcastReceiver implementation is quite simple—all it does is extract
and display the result from the Intent it receives—basically fulfilling the role
of the Handler we used in the previous section.

We only want this BroadcastReceiver to listen for results while our Activity is
at the top of the stack and visible in the application, so we'll register and unregister
it in the onStart and onStop lifecycle methods. As with the Handler that we used
previously, we'll also apply the attach/detach pattern to make sure we don't leak
View objects:

private NthPrimeReceiver receiver = new NthPrimeReceiver();

@Override
protected void onStart() {
 super.onStart();
 bindService(
 new Intent(this, LocalPrimesService.class),
 connection = new Connection(),
 Context.BIND_AUTO_CREATE);
 receiver.attach((TextView)
 findViewById(R.id.result));
 IntentFilter filter = new IntentFilter(
 LocalPrimesService.PRIMES_BROADCAST);
 LocalBroadcastManager.getInstance(this).
 registerReceiver(receiver, filter);
}

@Override
protected void onStop() {
 super.onStop();
 unbindService(connection);
 LocalBroadcastManager.getInstance(this).
 unregisterReceiver(receiver);
 receiver.detach();
}

Of course, if the user moves to another part of the application that doesn't register
a BroadcastReceiver, or if we exit the application altogether, they won't see the
result of the calculation.

If our Service could detect unhandled broadcasts, we could modify it to alert the
user with a system notification instead. We'll see how to do that in the next section.

Long-running Tasks with Service

[106]

Detecting unhandled broadcasts
In the previous chapter, we used system notifications to post results to the notification
drawer—a nice solution when the user has navigated away from our app before
the background work has completed. However, we don't want to annoy the user
by posting notifications when our app is still in the foreground and can display the
results directly.

Ideally, we'll display the results in the app if it is still in the foreground and send
a notification otherwise. If we're broadcasting results, the Service will need to
know if anyone handled the broadcast and if not, send a notification.

One way to do this is to use the sendBroadcastSync synchronous broadcast
method and take advantage of the fact that the Intent object we're broadcasting
is mutable (any receiver can modify it). To begin with, we'll add one more constant
to LocalIntentService:

public static final String HANDLED = "intent_handled";

Next, modify broadcastResult to use the synchronous broadcast method and
return the value of a boolean extra property HANDLED from the Intent:

private boolean broadcastResult(String result) {
 Intent intent = new Intent(PRIMES_BROADCAST);
 intent.putExtra(RESULT, result);
 LocalBroadcastManager.getInstance(this).
 sendBroadcastSync(intent);

 return intent.getBooleanExtra(HANDLED, false);
}

Because sendBroadcastSync is synchronous, all registered BroadcastReceivers
will have handled the broadcast by the time sendBroadcastSync returns. This
means that if any receiver sets the Boolean "extra" property HANDLED to true,
broadcastResult will return true.

In our BroadcastReceiver, we'll update the Intent object by adding a boolean
property to indicate that we've handled it:

@Override
public void onReceive(Context context, Intent intent) {
 if (view != null) {
 String result = intent.getStringExtra(
 PrimesServiceWithBroadcast.RESULT);
 intent.putExtra(LocalPrimesService.HANDLED, true);
 view.setText(result);

Chapter 6

[107]

 } else {
 Log.i(TAG, " ignoring - we're detached");
 }
}

Now if PrimesActivity is still running, its BroadcastReceiver is registered and
receives the Intent object and will put the extra boolean property HANDLED with
the value true.

However, if PrimesActivity has finished, the BroadcastReceiver will no longer
be registered and LocalPrimesService will return false from its broadcastResult
method. We can use this to decide whether we should post a notification:

if (!broadcastResult(prime.toString()))
 notifyUser(n, prime.toString());

There's one final complication: unlike sendBroadcast, which always invokes
BroadcastReceivers on the main thread, sendBroadcastSync uses the thread that
it is called with. Our BroadcastReceiver interacts directly with the user interface,
so we must call it on the main thread. This is simple enough to achieve from our
AsyncTask—we'll move the broadcast from doInBackground to onPostExecute:

public void calculateNthPrime(final int n) {
 new AsyncTask<Void,Void,BigInteger>(){
 @Override
 protected BigInteger doInBackground(Void... params) {
 BigInteger prime = new BigInteger("2");
 for (int i=0; i<n; i++)
 prime = prime.nextProbablePrime();
 return prime;
 }
 @Override
 protected void onPostExecute(BigInteger result) {
 if (!broadcastResult(result.toString()))
 notifyUser(n, result.toString());
 }
 }.execute();
}

This does just what we want—if our BroadcastReceiver handles the message,
we don't post a notification; otherwise, we will do so to make sure the user gets
their result.

Having developed a good understanding of how to use Services to conduct
long-running background work, let's consider some real-world applications
and use cases.

Long-running Tasks with Service

[108]

Applications of Services
With a little bit of work, Services give us the means to perform long-running
background tasks, and free us from the tyranny of the Activity lifecycle. Unlike
IntentService, directly subclassing Service also gives us the ability control the
level of concurrency.

With the ability to run as many tasks as we need and to take as long as is necessary
to complete those tasks, a world of new possibilities opens up.

The only real constraint on how and when we use Services comes from the need to
communicate results to a user-interface component, such as a Fragment or Activity,
and the complexity this entails.

Ideal use cases for Services tend to have the following characteristics:

•	 Long-running (a few hundred milliseconds and upward)
•	 Not specific to a single Activity or Fragment class
•	 Must complete, even if the user leaves the application
•	 Requires more concurrency than IntentService provides, or needs

control over the level of concurrency

There are many applications that exhibit these characteristics, but the stand-out
example is, of course, handling concurrent downloads from a web service.

To make good use of the available download bandwidth and to limit the impact
of network latency, we want to be able to run more than one download at a time
(but not too many). We also don't want to use more bandwidth than necessary
by failing to completely download a file and having to restart the download later.
So ideally, once a download starts, it should run to completion even if the user
leaves the application.

In the accompanying downloads from the Packt Publishing website, you can find a
complete example of using a Service to download NASA's "Image of the Day" RSS,
parse the XML in the background to extract the titles and URLs of the images, and
download and display those images.

Chapter 6

[109]

Summary
In this chapter, we explored the very powerful Service component, putting it to use
to execute long-running background tasks with a configurable level of concurrency.

We learned that running tasks in a Service gives them the best possible chance of
successful completion if the user exits the application, because the system avoids
killing processes with active Services unless absolutely necessary.

We discovered various ways to initiate background work in a Service, from
starting the Service with an Intent object through to direct method invocation
using local Services.

We also saw the wide range of communication mechanisms available for delivering
results back to the user: direct invocation of local Service methods; sending Messages
with Messenger; broadcasting results to registered parties with BroadcastReceiver;
and, if the user has already left the application, raising system notifications.

Of course, we can also use PendingIntent to send data back to the originating
Activity, just as we did with IntentService in Chapter 5, Queuing Work with
IntentService.

In the next chapter, we'll add one last weapon to our arsenal: the ability to run
background tasks at specific times—even when the device is asleep—by scheduling
alarms with AlarmManager.

Scheduling Work with
AlarmManager

Maintaining the responsiveness of foreground apps has been our primary focus
throughout this book, and we've explored numerous ways to shift work away
from the main thread to run in the background.

In all of our discussions so far, we wanted to get the work done as soon as possible,
so although we moved it off to a background thread, we still performed the work
concurrently with ongoing main thread operations, such as updating the user
interface and responding to user interaction.

In this chapter we'll learn to schedule work to run at some distant time in the
future, launching our application without user intervention if it isn't already
running, and even waking the device from sleep if necessary.

In this chapter we will cover:

•	 Scheduling alarms with AlarmManager
•	 Canceling alarms
•	 Scheduling repeating alarms
•	 Handling alarms
•	 Staying awake with WakeLocks
•	 Applications of AlarmManager

Scheduling Work with AlarmManager

[112]

Scheduling alarms with AlarmManager
In Chapter 3, Distributing Work with Handler and HandlerThread, we learned to schedule
work on a HandlerThread using postDelayed, postAtTime, sendMessageDelayed,
and sendMessageAtTime. These mechanisms are fine for short-term scheduling of
work that should happen soon—while our application is running in the foreground.

However, if we want to schedule an operation to run at some point in the distant
future, we'll run into problems. First, our application may be terminated before
that time arrives, removing any chance of the Handler running those scheduled
operations. Second, the device may be asleep, and with its CPU powered down,
it cannot run our scheduled tasks.

The solution to this is to use an alternative scheduling approach—one that is designed
to overcome these problems: AlarmManager.

AlarmManager is a system service that provides scheduling capabilities far beyond
those of Handler. Being a system service, AlarmManager cannot be terminated and
has the capacity to wake the device from sleep to deliver scheduled alarms.

We can access AlarmManager via a Context instance, so from any lifecycle callback
in an Activity, we can get the AlarmManager by using the following code:

AlarmManager am = (AlarmManager)getSystemService(ALARM_SERVICE);

Once we have a reference to the AlarmManager, we can schedule an alarm to deliver
a PendingIntent object at a time of our choosing. The simplest way to do that is
using the set method.

void set(int type, long triggerAtMillis, PendingIntent operation)

When we set an alarm we must also specify a type flag—the first parameter to the
set method. The type flag sets the conditions under which the alarm should fire
and which clock to use for our schedule.

There are two conditions and two clocks, resulting in four possible type settings.

The conditions specify whether or not the device will be woken up if it is sleeping
at the time of the scheduled alarm—whether the alarm is a "wakeup" alarm or not.

The clocks provide a reference time against which we set our schedules, defining
exactly what we mean when we set a value to triggerAtMillis.

Chapter 7

[113]

The elapsed-time system clock—android.os.SystemClock—measures time as the
number of milliseconds that have passed since the device booted, including any time
spent in deep sleep. The current time according to the system clock can be found using:

SystemClock.elapsedRealtime()

The real-time clock measures time in milliseconds since the Unix epoch. The current
time according to the real-time clock can be found with:

System.currentTimeMillis()

In Java, System.currentTimeMillis() returns the
number of milliseconds since midnight on January 1,
1970, Coordinated Universal Time (UTC)—a point in
time known as the Unix epoch.
UTC is the internationally recognized successor to
Greenwich Mean Time (GMT) and forms the basis for
expressing international time zones, which are typically
defined as positive or negative offsets from UTC.

Given these two conditions and two clocks, the four possible type values we can use
when setting alarms are:

•	 AlarmManager.ELAPSED_REALTIME: This schedules the alarm relative to
the system clock. If the device is asleep at the scheduled time it will not be
delivered immediately, instead the alarm will be delivered the next time
the device wakes.

•	 AlarmManager.ELAPSED_REALTIME_WAKEUP: This schedules the alarm
relative to the system clock. If the device is asleep, it will be woken to
deliver the alarm at the scheduled time.

•	 AlarmManager.RTC: This schedules the alarm in UTC relative to the
Unix epoch. If the device is asleep at the scheduled time, the alarm
will be delivered when the device is next woken.

•	 AlarmManager.RTC_WAKEUP: This schedules the alarm relative to the
Unix epoch. If the device is asleep it will be awoken, and the alarm is
delivered at the scheduled time.

Scheduling Work with AlarmManager

[114]

Let's consider a few examples. We'll use the TimeUnit class from the java.lang.
concurrent package to calculate times in milliseconds. To set an alarm to go off
48 hours after the initial boot, we need to work with the system clock, as shown
in the following code:

long delay = TimeUnit.HOURS.toMillis(48L);
long time = System.currentTimeMillis() + delay;
am.set(AlarmManager.ELAPSED_REALTIME, time, pending);

We can set an alarm to go off in 2 hours from now using a clock, by adding two hours
to the current time. Using the system clock it looks like this:

long delay = TimeUnit.HOURS.toMillis(2L);
long time = SystemClock.elapsedRealtime() + delay;
am.set(AlarmManager.ELAPSED_REALTIME, time, pending);

To set an alarm for 2 hours from now using the real-time clock is similar to the
previous code:

long delay = TimeUnit.HOURS.toMillis(2L);
long time = System.currentTimeMillis() + delay;
am.set(AlarmManager.RTC, time, pending);

To set an alarm for 9 p.m. today (or tomorrow, if it's already past 9 p.m. today):

Calendar calendar = Calendar.getInstance();
if (calendar.get(Calendar.HOUR_OF_DAY) >= 21) {
 calendar.add(Calendar.DATE, 1);
}
calendar.set(Calendar.HOUR_OF_DAY, 21);
calendar.set(Calendar.MINUTE, 0);
calendar.set(Calendar.SECOND, 0);
am.set(AlarmManager.RTC, calendar.getTimeInMillis(), pending);

None of the examples so far will wake the device if it is sleeping at the time of the
alarm. To do that we need to use one of the WAKEUP alarm conditions, for example:

am.set(AlarmManager.ELAPSED_REALTIME_WAKEUP, time, pending);
am.set(AlarmManager.RTC_WAKEUP, time, pending);

If our application targets an API level below 19 (KitKat), alarms scheduled with
set will run at exactly the alarm time. For applications targeting KitKat or greater,
the schedule is considered inexact and the system may re-order or group alarms
to minimize wake-ups and save battery.

Chapter 7

[115]

If we need precision scheduling and are targeting KitKat or greater, we can use the
new setExact method introduced at API level 19, but we'll need to check that the
method exists before we try to call it; otherwise, our app will crash when run under
earlier API levels:

if (Build.VERSION.SDK_INT >= 19) {
 am.setExact(AlarmManager.RTC_WAKEUP, time pending);
} else {
 am.set(AlarmManager.RTC_WAKEUP, time, pending);
}

This will deliver our alarm at exactly the specified time on all platforms. We should
only use exact scheduling when we really need it—for example, to deliver alerts to
the user at a specific time. For most other cases, allowing the system to adjust our
schedule a little to preserve battery life is usually acceptable.

One more addition in KitKat is setWindow, which introduces a compromise between
exact and inexact alarms by allowing us to specify the time window within which the
alarm must be delivered. This still allows the system some freedom to play with the
schedules for efficiency, but lets us choose just how much freedom to allow.

Here's how we would use setWindow to schedule an alarm to be delivered within a
3 minute window—at the earliest 10 minutes from now and at the latest 13 minutes
from now—using the real-time clock:

long delay = TimeUnit.MINUTES.toMillis(10);
long window = TimeUnit.MINUTES.toMillis(3);
long earliest = System.currentTimeMillis() + delay;
am.setWindow(
 AlarmManager.RTC_WAKEUP, earliest, window, pending);

Canceling alarms
Once set, an alarm can be canceled very easily—we just need to invoke the
AlarmManager's cancel method with an Intent matching that of the alarm
we want to cancel.

The process of matching uses the filterEquals method of Intent, which compares
the action, data, type, class, and categories of both Intents to test for equivalence. Any
extras we may have set in the Intent are not taken into account. We can set and cancel
an alarm using different Intent instances like this:

public void setThenCancel() {
 AlarmManager am = (AlarmManager)

Scheduling Work with AlarmManager

[116]

 getSystemService(ALARM_SERVICE);
 long at =
 System.currentTimeMillis() +
 TimeUnit.SECONDS.toMillis(5L);
 am.set(AlarmManager.RTC, at, createPendingIntent());
 am.cancel(createPendingIntent());
}

private PendingIntent createPendingIntent() {
 Intent intent = new Intent("my_action");
 // extras don't affect matching
 intent.putExtra("random", Math.random());
 return PendingIntent.getBroadcast(
 this, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
}

It is important to realize that whenever we set an alarm, we implicitly cancel any
existing alarm with a matching Intent, replacing it with the new schedule.

Scheduling repeating alarms
As well as setting a one-off alarm, we have the option to schedule repeating
alarms using setRepeating and setInexactRepeating. Both methods take an
additional parameter that defines the interval in milliseconds at which to repeat
the alarm. Generally it is advisable to avoid setRepeating and always use
setInexactRepeating, allowing the system to optimize wake-ups and giving
more consistent behavior on devices running different Android versions:

void setRepeating(
 int type, long triggerAtMillis,
 long intervalMillis, PendingIntent operation);
void setInexactRepeating(
 int type, long triggerAtMillis,
 long intervalMillis, PendingIntent operation)

AlarmManager provides some handy constants for typical repeat intervals:

AlarmManager.INTERVAL_FIFTEEN_MINUTES
AlarmManager.INTERVAL_HALF_HOUR
AlarmManager.INTERVAL_HOUR
AlarmManager.INTERVAL_HALF_DAY
AlarmManager.INTERVAL_DAY

Chapter 7

[117]

We can schedule a repeating alarm to be delivered approximately 2 hours from now,
then repeating every 15 minutes or so thereafter like this:

Intent intent = new Intent("my_action");
PendingIntent broadcast = PendingIntent.getBroadcast(
 this, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
long start =
 System.currentTimeMillis() +
 TimeUnit.HOURS.toMillis(2L);
AlarmManager am = (AlarmManager)
 getSystemService(ALARM_SERVICE);
am.setRepeating(
 AlarmManager.RTC_WAKEUP, start,
 AlarmManager.INTERVAL_FIFTEEN_MINUTES, broadcast);

From API level 19, all repeating alarms are inexact—that is,
if our application targets KitKat or above, our repeat alarms
will be inexact even if we use setRepeating.
If we really need exact repeat alarms, we can use setExact
instead, and schedule the next alarm while handling the
current one.

Handling alarms
Now that we know how to schedule alarms, let's take a look at what we can schedule
with them.

Essentially, we can schedule anything that can be started with a PendingIntent,
which means we can use alarms to start Activities, Services, and BroadcastReceivers.
To specify the target of our alarm, we need to use the static factory methods of
PendingIntent:

PendingIntent.getActivities(…)
PendingIntent.getActivity(…)
PendingIntent.getService(…)
PendingIntent.getBroadcast(…)

In the following sections, we'll see how each type of PendingIntent can be used
with AlarmManager.

Scheduling Work with AlarmManager

[118]

Handling alarms with Activities
Starting an Activity from an alarm is as simple as registering the alarm
with a PendingIntent created by invoking the static getActivity method
of PendingIntent.

When the alarm is delivered, the Activity will be started and brought to the
foreground, displacing any app that was currently in use. Keep in mind that
this is likely to surprise and perhaps annoy users!

When starting Activities with alarms, we will probably want to set Intent.FLAG_
ACTIVITY_CLEAR_TOP; so that if the application is already running, our target
Activity assumes its normal place in the navigation order within the app.

Intent intent = new Intent(context, HomeActivity.class);
intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
PendingIntent pending = PendingIntent.getActivity(
 Context, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);

Not all Activities are suited to being started with getActivity. We might need to
start an Activity that normally appears deep within the app, where pressing "back"
does not exit to the home screen, but returns to the next Activity on the back-stack.

This is where getActivities comes in. With getActivities, we can push
more than one Activity onto the back-stack of the application, allowing us
to populate the back-stack to create the desired navigation flow when the user
presses "back". To do this, we create our PendingIntent by sending an array
of Intents to getActivities:

Intent home = new Intent(context, HomeActivity.class);
Intent target = new Intent(context, TargetActivity.class);
home.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
PendingIntent pending = PendingIntent.getActivities(
 context, 0, new Intent[]{ home, target },
 PendingIntent.FLAG_UPDATE_CURRENT);

The array of Intents specifies the Activities to launch, in order. The logical sequence
of events when this alarm is delivered is:

1.	 If the application is already running, any Activities on the back-stack
above HomeActivity are finished and removed, because we set the
Intent.FLAG_ACTIVITY_CLEAR_TOP flag.

2.	 HomeActivity is (re)started.
3.	 TargetActivity is started and placed on the back-stack above HomeActivity.

The TargetActivity becomes the foreground Activity

Chapter 7

[119]

Handling alarms with Activities is good to know about, but is not a technique we
will use often, since it is so intrusive. We are much more likely to want to handle
alarms in the background, which we'll look at next.

Handling alarms with BroadcastReceiver
We met BroadcastReceiver already in Chapter 6, Long-running Tasks with Service,
where we used it in an Activity to receive broadcasts from an IntentService.
In this section, we'll use BroadcastReceiver to handle alarms.

BroadcastReceivers can be registered and unregistered dynamically at runtime—
like we did in Chapter 6, Long-running Tasks with Service, or statically in the Android
manifest file with a <receiver> element, and can receive alarms regardless of how
they are registered.

It is more common to use a statically registered receiver for alarms, because these are
known to the system and can be invoked by alarms to start an application if it is not
currently running. A receiver registration in the manifest looks like this:

<receiver android:name=".AlarmReceiver">
 <intent-filter>
 <action android:name="reminder"/>
 </intent-filter>
</receiver>

The <intent-filter> element gives us the opportunity to say which Intents we
want to receive, by specifying the action, data, and categories that should match.
Here we're just matching Intents with the action reminder, so we can set an alarm
for this receiver with:

Intent intent = new Intent("reminder");
intent.putExtra(AlarmReceiver.MSG, "try the alarm examples!");
PendingIntent broadcast = PendingIntent.getBroadcast(
 context, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
AlarmManager am = (AlarmManager) getSystemService(ALARM_SERVICE);
long at = calculateNextMidnightRTC();
am.set(AlarmManager.RTC_WAKEUP, at, broadcast);

When this alarm comes due, AlarmManager will wake the device—if it isn't already
awake—and deliver the Intent to the BroadcastReceiver's onReceive method.

public class AlarmReceiver extends BroadcastReceiver {
 public static final String MSG = "message";
 @Override

Scheduling Work with AlarmManager

[120]

 public void onReceive(Context ctx, Intent intent) {
 // do some work while the device is awake
 }
}

The AlarmManager guarantees that the device will remain awake at least until
onReceive completes, which means we can be sure of getting some work done
before the device will be allowed to return to sleep.

Doing work with BroadcastReceiver
When the system delivers an alarm to our BroadcastReceiver it does so on the main
thread, so the usual main thread limitations apply: we cannot perform networking and
we should not perform heavy processing or use blocking operations.

In addition, a statically registered BroadcastReceiver has a very limited lifecycle.
It cannot create user-interface elements other than toasts or notifications posted via
NotificationManager; the onReceive method must complete within 10 seconds or
its process may be killed; and once onReceive completes, the receiver's life is over.

If the work that we need to do in response to the alarm is not intensive, we can
simply complete it during onReceive. A good use for BroadcastReceivers that
receive alarms is posting notifications to the notification drawer as follows:

public class AlarmReceiver extends BroadcastReceiver {
 public static final String MSG = "message";
 @Override
 public void onReceive(Context ctx, Intent intent) {
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(context)
 .setSmallIcon(android.R.drawable.stat_notify_chat)
 .setContentTitle("Reminder!")
 .setContentText(intent.getStringExtra(MSG));
 NotificationManager nm = (NotificationManager)
 context.getSystemService(
 Context.NOTIFICATION_SERVICE);
 nm.notify(intent.hashCode(), builder.build());
 }
}

We can make this more useful by including a PendingIntent object in the notification,
so that the user can tap the notification to open an Activity in our app:

@Override
 public void onReceive(Context ctx, Intent intent) {
 Intent activity = new Intent(

Chapter 7

[121]

 ctx, HomeActivity.class);
 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 PendingIntent pending = PendingIntent.getActivity(
 ctx, 0, activity,
 PendingIntent.FLAG_UPDATE_CURRENT);
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(context)
 .setSmallIcon(android.R.drawable.stat_notify_chat)
 .setContentTitle("Reminder!")
 .setContentText(intent.getStringExtra(MSG))
 .setContentIntent(pending)
 .setAutoCancel(true);
 NotificationManager nm = (NotificationManager)
 context.getSystemService(
 Context.NOTIFICATION_SERVICE);
 nm.notify(intent.hashCode(), builder.build());
 }

Although we can spend up to 10 seconds doing work in our BroadcastReceiver,
we really shouldn't—if the app is in use when the alarm is triggered the user
will suffer noticeable lag if onReceive takes more than a hundred milliseconds
to complete. Exceeding the 10 second budget will cause the system to kill the
application and report a background ANR.

A second option is available to us only if we're targeting API level 11 and above, and
allows onReceive to delegate work to a background thread for up to 10 seconds—
we'll discuss this in the next section.

Doing background work with goAsync
If our application targets a minimum API level of 11, we can use a feature of
BroadcastReceiver that it introduced: goAsync.

public final PendingResult goAsync()

With goAsync we can extend the lifetime of a BroadcastReceiver instance
beyond the completion of its onReceive method, provided the whole operation
still completes within the 10 second budget.

If we invoke goAsync, the system will not consider the BroadcastReceiver to have
finished when onReceive completes. Instead, the BroadcastReceiver lives on until
we call finish on the PendingResult returned to us by goAsync. We must ensure
that finish is called within the 10 second budget, otherwise the system will kill the
process with a background ANR.

Scheduling Work with AlarmManager

[122]

Using goAsync we can offload work to background threads using any appropriate
concurrency construct—for example, an AsyncTask—and the device is guaranteed
to remain awake until we call finish on the PendingResult.

public void onReceive(final Context context, final Intent intent) {
 final PendingResult result = goAsync();
 new AsyncTask<Void,Void,Void>(){
 @Override
 protected Void doInBackground(Void... params) {
 try {
 // … do some work here, for up to 10 seconds
 } finally {
 result.finish();
 }
 }
 }.execute();
}

This is nice; though its utility is limited by the 10 second budget and the effects
of fragmentation (it is only available to API level 11 or above). In the next section,
we'll look at scheduling long-running operations with services.

Handling alarms with Services
Just like starting Activities, starting a Service from an alarm involves scheduling an
appropriate PendingIntent instance, this time using the static getService method.

We almost certainly want our Service to do its work off the main thread, so sending
work to an IntentService this way seems ideal, and an IntentService will also
stop itself when the work is finished.

This works beautifully if the device is awake.

However, if the device is asleep we have a potential problem. AlarmManager's
documentation tells us that the only guarantee we have about the wakefulness
of the device is that it will remain awake until a BroadcastReceiver's onReceive
method completes.

Since directly starting a Service does not involve a BroadcastReceiver, and in any
case is an asynchronous operation, there is no guarantee that the Service will have
started up before the device returns to sleep, so the work may not get done until the
device is next awakened.

Chapter 7

[123]

This is almost certainly not the behavior we want. We want to ensure that the
Service starts up and completes its work, regardless of whether the device was
awake when the alarm was delivered. To do that, we'll need a BroadcastReceiver
and a little explicit power management, as we'll see next.

Staying awake with WakeLocks
Earlier in this chapter we learned that we can use a BroadcastReceiver to handle
alarms, and even do work in the background for up to 10 seconds, though only on
devices running API level 11 or greater.

In the previous section, we saw that handling alarms directly with services is not a
reliable solution for scheduling long-running work, since there is no guarantee that
our Service will start up before the device returns to sleep.

We have a problem! If we want to perform long-running work in response to alarms,
we need a solution that overcomes these limitations.

What we really want is to start a Service to handle the work in the background,
and to keep the device awake until the Service has finished its work. Fortunately,
we can do that by combining the wakefulness guarantees of BroadcastReceiver
to get the Service started, then keep the device awake with explicit power
management using PowerManager and WakeLock.

As you might guess, WakeLock is a way to force the device to stay awake. WakeLocks
come in various flavors, allowing apps to keep the screen on at varying brightness
levels or just to keep the CPU powered up in order to do background work. To use
WakeLocks, our application must request an additional permission in the manifest:

<uses-permission android:name="android.permission.WAKE_LOCK" />

To keep the CPU powered up while we do background work in a Service, we only
need a partial WakeLock, which won't keep the screen on, and which we can request
from the PowerManager like this:

PowerManager pm = (PowerManager)
 ctx.getSystemService(Context.POWER_SERVICE);
WakeLock lock = pm.newWakeLock(
 PowerManager.PARTIAL_WAKE_LOCK, "my_app");
lock.acquire();

We'll need to acquire a WakeLock during our BroadcastReceiver's onReceive
method, and find some way to hand it to our Service so that the Service can
release the lock once its work is done.

Scheduling Work with AlarmManager

[124]

Unfortunately, WakeLocks are not parcelable, so we can't just send them to the
Service in an Intent. The simplest solution is to manage the WakeLock instance as a
static property that both the BroadcastReceiver and the target Service can reach.

This is not difficult to implement, but we don't actually need to
implement it ourselves—we can use the handy v4 support library class,
WakefulBroadcastReceiver.

WakefulBroadcastReceiver exposes two static methods that take care of acquiring
and releasing a partial WakeLock. We can acquire the WakeLock, and start the Service
with a single call to startWakefulService:

ComponentName startWakefulService(Context context, Intent intent);

And when our Service has finished its work, it can release the WakeLock with the
corresponding call to completeWakefulIntent:

boolean completeWakefulIntent(Intent intent);

Since these methods are static, we don't need to extend WakefulBroadcastReceiver
to use them. Our BroadcastReceiver just needs to start the Service using
startWakefulService:

class AlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Intent serviceIntent = new Intent(
 context, MyIntentService.class);
 WakefulBroadcastReceiver.startWakefulService(
 context, serviceIntent);
 }
}

We must make sure to release the WakeLock once the Service has finished its work,
otherwise we'll drain the battery by keeping the CPU powered up unnecessarily:

class MyIntentService extends IntentService {
 @Override
 protected final void onHandleIntent(Intent intent) {
 try {
 // do background work while the CPU is kept awake
 } finally {
 WakefulBroadcastReceiver.
 completeWakefulIntent(intent);
 }
 }
}

Chapter 7

[125]

This is great—by using a statically registered BroadcastReceiver we've ensured
that we receive the alarm, even if our application is not running when the alarm
comes due. When we receive the alarm we acquire a WakeLock, keeping the device
awake while our Service starts up and does its potentially long-running work.
Once our work is done, we release the WakeLock to allow the device to sleep again
and conserve power.

Applications of AlarmManager
AlarmManager allows us to schedule work to run without user intervention.
This means that we can arrange to do work pre-emptively, for example, to prepare
data that our application will need to present to the user when they next open the
application, or to alert the user to new or updated information with notifications.

Ideal use cases include things like periodically checking for new e-mails,
downloading new editions of periodical publications (for example, daily
newspapers), or uploading data from the device to a cloud backup service.

Summary
In this chapter we learned to schedule work for our applications to perform at some
time in the future, either as a one-off operation or at regular intervals.

We learned to set alarms relative to the system clock or real time, how to wake the
device up from a deep sleep, and how to cancel alarms when we no longer need them.

Our exploration covered various options for responding to alarms, including bringing
an Activity to the foreground or doing work directly in a BroadcastReceiver,
synchronously or asynchronously.

Finally, we arranged for a Service to be launched with a WakeLock to keep the CPU
from powering down while our long-running background work is completed.

Over the course of this book, we've armed ourselves with a powerful array of tools
for building responsive Android applications. We discovered that it is incredibly
important to shift as much work as possible off the main thread, and explored a
number of constructs and techniques for doing that.

Scheduling Work with AlarmManager

[126]

We now know how to move short-term operations to background threads using
AsyncTask and HandlerThread. We learned how to perform asynchronous I/O to
load data from local files and databases with Loader, and then discovered how, when,
and why to use Service and its more specialized subclass IntentService to give our
long-running tasks the best possible chance of being completed successfully. Finally,
we learned how to schedule tasks to run at some future time using AlarmManager.

By keeping in mind that the main thread is sacred, and using the available constructs
to perform work on background threads whenever possible, our applications will be
smooth and responsive, and have the best possible chance of delighting our users.

Index
A
Activities

used, for handling alarms 118
activity lifecycle 13
activity lifecycle issues, AsyncTask

about 29
handling, with early cancellation 30
handling, with with retained headless

fragments 30-32
AlarmManager

alarms, cancelling 115
alarms, scheduling with 112-115
applications 125
repeating alarms, scheduling 116

alarms
cancelling, with AlarmManager 115
handling 117
handling, with Activities 118
handling, with BroadcastReceiver 119
handling, with services 122
repeating alarms, scheduling 116
scheduling, with AlarmManager 112-114

Android 7
Android-specific concurrency issues

about 13
activity lifecycle 13
user interface, manipulating 13

Android thread model
about 9
ANR dialog 11
concurrency 11
main thread 10
responsiveness, maintaining 11
specific concurrency constructs 14

unresponsive apps 10
Application Not Responding (ANR)

dialog 10
applications, AsyncTask 33
AsyncTask

about 16
applications 33, 34
callback methods 16
cancelling 23-25
concurrency level, controlling 26-28
exceptions, handling 25, 26
executing 19, 20
Executor interfaces 27
feedback, providing to user 20, 21
issues 28
progress updates, providing 22, 23
types, declaring 18, 19

AsyncTaskLoader
about 59
used, for building responsive apps 59-66

B
BroadcastReceiver

about 119
goAsync, using 121
used, for handling alarms 119
using 120, 121

C
cancelLoad method 62
concurrency 11
concurrency, in Android

about 11
correctness issues 12

[128]

liveness issues 12
specific concurrency issues 13

Copy-On-Write technique 9
correctness issues, concurrent programs 12
CursorLoader

about 66
used, for building responsive apps 66-68

D
Dalvik executable (DEX) 8
Dalvik Virtual Machine (DVM)

about 8
memory sharing 9
Zygote 9

dispatchMessage method 36
doInBackground method 16

E
exceptions, AsyncTask

handling 25, 26
Executor interfaces, AsyncTask

SERIAL_EXECUTOR 27
THREAD_POOL_EXECUTOR 27

Executor interface, Service 92

F
fragmentation issues, AsyncTask 28, 29

G
getMediaIdFromIntent method 63

H
handleMessage method 43
Handler

applications 55
attaching, to SimpleLooper 36
Sending Messages, versus posting

Runnables 50
work, scheduling with post 39-41

Handler class 38
Handler programming issues

about 52

explicit references, leaking 53
implicit references, leaking 52, 53

HandlerThread
applications 55
used, for building responsive apps 50, 51

I
IntentService

about 76, 92
applications 83
HTTP uploads 83-86
progress, reporting 86-88
results, handling 79
results, posting as system

notifications 81, 82
results, returning with

PendingIntent 79-80, 81
used, for building responsive apps 77, 78

issues, AsyncTask
about 28
activity lifecycle issues 29
fragmentation issues 28, 29

J
Java Virtual Machine (JVM) 8

L
liveness issues, concurrent programs 12
Loaders

about 57, 75
applications 74
AsyncTaskLoader 59
benefits 57, 58
combining 69-73
connecting 58
CursorLoader 66

LocalBroadcastManager class 103
long-running background tasks

working, with services 91
Looper

about 36
setting up 36

[129]

M
MediaCursorAdapter 68
mutual exclusion 12

O
onCanceled method 62
onCancelled callback method 17
onContentChanged method 70
onCreateLoader method 58
onHandleIntent method 93
onLoaderFinished method 58
onLoaderReset method 58
onLoadFinished method 70
onPreExecute method 16
onProgressUpdate callback method 22
onStartCommand method 93
onStartLoading method 70
onStopLoading method 62

P
PendingIntent

about 117
static factory methods 117

PrimesIntentService 98

R
race condition 12
readLine method 48
responsive apps

building, AsyncTaskLoader used 59-66
building, CursorLoader used 66-69
building, with Handler 38
building, with Service 92
builsing, with HandlerThread 50, 51

run() method 12

S
Service

about 76
alarms, handling 122
applications 108
communicating with 98

direct communication, with
local Services 99-102

Executor interface, controlling 92-96
results, broadcasting with Intents 103-105
results, returning with Messenger 96-98
unhandled broadcasts, detecting 106, 107
used, for building responsive apps 92

SimpleCursorAdapter class 68
SimpleLooper class 36
start() method 12

T
ThumbnailLoader

enabling 69

W
WakeLocks

about 123
used, for staying awake 123-125

work, posting to Handler
pending Runnable, cancelling 42
performing 40, 41
Runnable, executing 39

work, posting with send
composition, versus inheritance 45, 46
multithreaded example 47-49
pending Messages, cancelling 45
performing 42-44

Z
Zygote

about 9
benefits 9

Thank you for buying
Asynchronous Android

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Augmented Reality for Android
Application Development
ISBN: 978-1-78216-855-3 Paperback: 130 pages

Learn how to develop advanced Augmented Reality
applications for Android

1.	 Understand the main concepts and
architectural components of an AR application

2.	 Step-by-step learning through hands-on
programming combined with a background
of important mathematical concepts

3.	 Efficiently and robustly implement some of
the main functional AR aspects

Android Studio Application
Development
ISBN: 978-1-78328-527-3 Paperback: 110 pages

Create visually appealing applications using the new
IntelliJ IDE Android Studio

1.	 Familiarize yourself with Android Studio IDE

2.	 Enhance the user interface for your app using
the graphical editor feature

3.	 Explore the various features involved in
developing an android app and implement
them

Please check www.PacktPub.com for information on our titles

Android Native Development Kit
Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise
recipes on Android NDK development skills

1.	 Build, debug, and profile Android NDK apps

2.	 Implement part of Android apps in native
C/C++ code

3.	 Optimize code performance in assembly
with Android NDK

Android Development Tools for
Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools for Eclipse

1.	 Build Android applications using ADT
for Eclipse

2.	 Generate Android application skeleton
code using wizards

3.	 Advertise and monetize your applications

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building Responsive
Android Applications
	Introducing the Dalvik Virtual Machine
	Memory sharing and the Zygote

	Understanding the Android thread model
	The main thread
	Unresponsive apps and the ANR dialog
	Maintaining responsiveness
	Concurrency in Android
	Correctness issues in concurrent programs
	Liveness issues in concurrent programs
	Android-specific concurrency issues

	Android-specific concurrency constructs

	Summary

	Chapter 2: Staying Responsive
with AsyncTask
	Introducing AsyncTask
	Declaring AsyncTask types
	Executing AsyncTasks
	Providing feedback to the user
	Providing progress updates

	Canceling AsyncTask
	Handling exceptions
	Controlling the level of concurrency
	Common AsyncTask issues
	Fragmentation issues
	Activity lifecycle issues
	Handling lifecycle issues with early cancellation
	Handling lifecycle issues with retained headless fragments

	Applications of AsyncTask
	Summary

	Chapter 3: Distributing Work with Handler and HandlerThread
	Understanding Looper
	Building responsive apps with Handler
	Scheduling work with post
	Canceling a pending Runnable

	Scheduling work with send
	Canceling pending Messages
	Composition versus Inheritance
	Multithreaded example

	Sending Messages versus posting Runnables
	Building responsive apps with HandlerThread

	Handler programming issues
	Leaking implicit references
	Leaking explicit references

	Applications of Handler and HandlerThread
	Summary

	Chapter 4: Asynchronous IO with Loader
	Introducing Loaders
	Building responsive apps with AsyncTaskLoader
	Building responsive apps with CursorLoader
	Combining Loaders
	Applications of Loaders
	Summary

	Chapter 5: Queuing Work with IntentService
	Introducing Service and IntentService
	Building responsive apps with IntentService
	Handling results
	Returning results with PendingIntent
	Posting results as system notifications

	Applications of IntentService
	HTTP uploads with IntentService
	Reporting progress

	Summary

	Chapter 6: Long-running Tasks
with Service
	Building responsive apps with Service
	Controlling concurrency with Executors
	Returning results with Messenger

	Communicating with Services
	Direct communication with local Services
	Broadcasting results with Intents
	Detecting unhandled broadcasts

	Applications of Services
	Summary

	Chapter 7: Scheduling Work with AlarmManager
	Scheduling alarms with AlarmManager
	Canceling alarms
	Scheduling repeating alarms

	Handling alarms
	Handling alarms with Activities
	Handling alarms with BroadcastReceiver
	Doing work with BroadcastReceiver
	Doing background work with goAsync

	Handling alarms with Services

	Staying awake with WakeLocks
	Applications of AlarmManager
	Summary

	Index

