
Azure Automation
Using the ARM
Model

An In-Depth Guide to Automation
with Azure Resource Manager
—
Shijimol Ambi Karthikeyan

www.allitebooks.com

http://www.allitebooks.org

Azure Automation
Using the ARM

Model
An In-Depth Guide to Automation

with Azure Resource Manager

Shijimol Ambi Karthikeyan

www.allitebooks.com

http://www.allitebooks.org

Azure Automation Using the ARM Model

Shijimol Ambi Karthikeyan				
Bangalore, Karnataka, India			

ISBN-13 (pbk): 978-1-4842-3218-7		 ISBN-13 (electronic): 978-1-4842-3219-4
https://doi.org/10.1007/978-1-4842-3219-4

Library of Congress Control Number: 2017959334

Copyright © 2017 by Shijimol Ambi Karthikeyan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com).

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie/Priyanka Mehta
Technical Reviewer: Pranab Mazumdar
Coordinating Editor: Prachi Mehta
Copy Editor: Sharon Wilkey

Distributed to the book trade worldwide by Springer Science + Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-3218-7. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3219-4
www.freepik.com
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-3218-7
www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my dearest Amma and Achan, my guardian angels
watching over me from heaven

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Introduction to Azure Automation���������������������������������� 1

■■Chapter 2: Azure Automation Assets��� 25

■■Chapter 3: Azure Automation Runbook Types������������������������������� 59

■■Chapter 4: Azure Automation DSC��� 87

■■Chapter 5: Hybrid Cloud Automation��� 119

■■Chapter 6: Sample Runbooks and Use Cases������������������������������ 141

Index��� 171

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Introduction to Azure Automation���������������������������������� 1

Azure ARM Deployment Model��� 2

RBAC�� 2

Template Deployment�� 2

Tags��� 2

Resource Groups��� 3

Resource Policies�� 3

Azure Automation in the ARM Portal�� 3

Creating Your Automation Account and Getting Started�� 4

Exploring the Dashboard��� 6

PowerShell in Azure Automation�� 11

PowerShell�� 11

PowerShell Workflow��� 11

Graphical��� 11

Graphical PowerShell Workflow��� 12

Runbook Gallery��� 12

Uploading Runbooks to the Gallery��� 14

■ Contents

viii

Azure Automation Security��� 17

Role-Based Access Control�� 19

Summary�� 22

■■Chapter 2: Azure Automation Assets��� 25

Azure Automation Assets�� 25

Schedules�� 25

Modules��� 30

Variables�� 35

Connections��� 41

Certificates�� 47

Credentials�� 50

Nested Runbooks��� 52

Invoking a Child Runbook Inline�� 52

Starting a Runbook by Using
Start-AzureRMAutomationRunbook��� 55

Summary�� 57

■■Chapter 3: Azure Automation Runbook Types������������������������������� 59

PowerShell Runbooks�� 59

PowerShell Workflow Runbooks�� 66

InlineScript Activity�� 66

Parallel Processing in the Workflow�� 67

Checkpoints in the Workflow��� 67

Sample Use Case��� 68

Graphical Runbooks��� 72

Runbook Outputs�� 84

Output Streams�� 84

Message Streams�� 85

Summary�� 86

■ Contents

ix

■■Chapter 4: Azure Automation DSC��� 87

PowerShell DSC�� 87

Configuration��� 87

Resources�� 88

DSC Engine (Local Configuration Manager)��� 91

Sample Use Case��� 97

Azure Automation DSC��� 100

DSC Configurations�� 101

DSC Node Configurations�� 106

DSC Nodes��� 108

Onboarding Linux Machine to Azure Automation DSC�������������������������� 113

Summary�� 118

■■Chapter 5: Hybrid Cloud Automation��� 119

Operations Management Suite and Azure Automation������������������������� 119

Getting Started with Hybrid Runbook Worker��������������������������������������� 120

Hybrid Runbook Worker Architecture��� 120

Setting Up OMS and Linking It with Azure Automation������������������������ 123

Executing Runbooks by Using Hybrid Runbook Worker����������������������� 130

Sample Use Case��� 130

Using Azure Automation Webhooks and Integrating with OMS������������ 132

Set Up Webhooks in OMS Alerts�� 135

Azure Automation Integration with GitHub Source Control������������������������������������ 137

Summary�� 139

■■Chapter 6: Sample Runbooks and Use Cases������������������������������ 141

Operations Automation for Office 365�� 141

Office 365 Reporting�� 141

Prerequisites��� 141

■ Contents

x

Runbook 1��� 145

Runbook 2��� 147

Azure Blob Backup��� 150

Prerequisites��� 150

Runbook�� 151

Linux Node DSC Configuration Management��������������������������������������� 155

Prerequisites��� 155

DSC Composite Resources in Azure Automation���������������������������������� 158

Step 1: Create DSC Composite Resource��� 159

Step 2: Import Module in Azure Automation�� 164

Step 3: Create DSC Configuration That calls the Uploaded Modules��������������������� 165

Summary�� 169

Conclusion�� 170

Index��� 171

xi

About the Author

Shijimol A. K. currently works as a Partner Technical
Consultant for Microsoft Partner Technical Services
team. She has more than 11 years of experience
in IT and specializes in datacenter management,
virtualization, and cloud computing technologies.
She started her career with EY IT services, on a
datacenter management team managing complex
virtualized production datacenters. She has expertise
in managing VMware and Hyper-V virtualization stacks
and Windows/Linux server technologies. She has also
worked on DevOps CI/CD implementation projects
using tools such as TeamCity, Jenkins, Git, TortoiseSVN,
Mercurial, and Selenium. She later moved on to cloud
computing and gained expertise in Windows Azure,
focusing on Azure IaaS, Backup/DR, and Automation.

She holds industry standard certifications in technologies including Microsoft Azure,
Windows Server, and VMware. She also holds ITIL and TOGAF 9 certifications.

xiii

About the Technical
Reviewer

Pranab Mazumdar is currently working as an embedded escalation engineer for
Microsoft, focusing on Azure SQL Database (PaaS and IaaS) and Azure SQL Data
Warehouse. He works closely with the engineering team to improve the service and
make it a world-class stateful service, helping customers and partners be successful with
their businesses. Prior to aligning to the cloud side of the business, he was an escalation
engineer with the SQL Server team in CSS/GBS, where he worked with the product
team to fix bugs in the SQL Server product, thereby making SQL a better and preferred
RDBMS. He has been working with Microsoft for over 12 years, with specializations in
SQL Server engine performance, high availability, and disaster recovery. He has worked
with many large corporations on complex SQL deployments. Apart from SQL, he also has
worked with Operational Insights, formerly known as System Center Advisor, migrating
and helping create new sets of rules and validation processes. He holds several Microsoft
certifications, including MCAD, MCSD, MCDBA, MSCE, MCTS, MCITP, and MCT; his
most recent certification is Microsoft Certified Solutions Associate: Cloud Platform. He
likes to be connected to his customers and has been a speaker at TechEd, GIDS, SQL
Saturday, SQL Talks, and other community UG events. Recently, he coauthored Pro SQL
Server on Microsoft Azure and was the technical reviewer of Practical Azure Application
Development.

https://na01.safelinks.protection.outlook.com/?url=http://www.amazon.in/Pro-SQL-Server-Microsoft-Azure/dp/148422082X&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=Lqv5YW2MoDkzVk5NNqIWlK/ICrd3ogYi0yeD8pc5V4Q=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=http://www.amazon.in/Pro-SQL-Server-Microsoft-Azure/dp/148422082X&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=Lqv5YW2MoDkzVk5NNqIWlK/ICrd3ogYi0yeD8pc5V4Q=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=https://www.amazon.com/Practical-Azure-Application-Development-Step/dp/1484228162/ref=sr_1_1?s=books&ie=UTF8&qid=1499842358&sr=1-1&keywords=practical+azure&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=tiL6sh72QgRWDLQKUMwZB242OKBJ2e9Tey5OpWHHjco=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=https://www.amazon.com/Practical-Azure-Application-Development-Step/dp/1484228162/ref=sr_1_1?s=books&ie=UTF8&qid=1499842358&sr=1-1&keywords=practical+azure&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=tiL6sh72QgRWDLQKUMwZB242OKBJ2e9Tey5OpWHHjco=&reserved=0#_blank

xv

Acknowledgments

First and foremost, I would like to thank my parents for everything I have ever
accomplished in my life, including this book. My mother, Ambi R., inspired me to aim for
the stars. My father, Karthikeyan M., taught me to be patient while doing so. They are no
longer around, but their love and blessings keep me going.

My husband, Sujai Sugathan, supported me throughout this new endeavor as
he always does for all my adventures. He kept reminding me about the deadlines so
that my editors didn’t have to. My daughter, Sanjana Sujai, did her bit too by being the
most wonderful and understanding seven-year-old. I am thankful to my sister, Gigimol
A.K.; my mother-in-law, Sowja Sugathan; and my best friend, Anjana S; these strong
women in my life always inspire me to take up new challenges. I am also thankful to the
mentors in my professional life—there are too many to list—for their constant support
and encouragement. Last but not least, I would like to thank the team at Apress: Nikhil
Karkal for onboarding me, Prachi Mehta for her support during the publishing process,
and Pranab Mazumdar and Priyanka Mehta for their valuable input during the review
process.

xvii

Introduction

Microsoft Azure cloud adoption is on the rise, and Azure Automation plays a key role in
building a sustainable and repeatable framework for creating and managing resources in
Azure. This book will provide you an in-depth understanding of the options available in
Azure Automation via the Azure Resource Manager (ARM) portal.

Microsoft recommends the ARM model as the way forward for all Azure
deployments. This book focuses exclusively on the ARM deployment model for Azure
Automation. This model has more robust options when compared to the classic
deployment model.

This book provides in-depth coverage of topics such as runbook authoring and
types of Automation runbooks. It also covers advanced topics including hybrid cloud
automation from the ARM-based Azure portal.

Chapter 1, “Introduction to Azure Automation,” introduces Azure Automation,
providing an overview of features and guidelines on getting started with the service in the
ARM portal.

Chapter 2, “Azure Automation Assets,” explores the basic building blocks of
runbooks, called Automation assets. These assets include schedules, modules,
certificates, connections, variables, and credentials.

Chapter 3, “Azure Automation Runbook Types,” covers the various runbook types in
Azure Automation: PowerShell, PowerShell Workflow, Graphical and Graphical PowerShell
Workflow. This chapter gives a walk-through of runbook creation, testing, and publishing.

Chapter 4, “Azure Automation DSC,” covers integration of Azure Automation with
PowerShell Desired State Configuration(DSC), including various cloud, on-premises, and
hybrid scenarios.

Chapter 5, “Hybrid Cloud Automation,” covers the Hybrid Runbook Worker in Azure
Automation, which facilitates execution of runbooks in your on-premises datacenters or
systems hosted in third-party cloud service providers.

Chapter 6, “Sample Runbooks and Use Cases,” provides a walk-through of some
popular use cases and their implementations using Azure Automation.

This book is written for infrastructure and cloud architects, cloud support engineers,
system administrators, and IT strategists with a basic understanding of the Azure cloud
platform and PowerShell scripting.

http://dx.doi.org/10.1007/978-1-4842-3219-4_1
http://dx.doi.org/10.1007/978-1-4842-3219-4_2
http://dx.doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_4
http://dx.doi.org/10.1007/978-1-4842-3219-4_5
http://dx.doi.org/10.1007/978-1-4842-3219-4_6

1© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_1

CHAPTER 1

Introduction to Azure
Automation

Automating operational tasks is critical for streamlining infrastructure management,
both on premises and in the cloud. Microsoft Azure Automation comes with capabilities
that help administrators automate their cloud-based, operational, repetitive tasks. It
is versatile, with hybrid connection capabilities that help you automate tasks in your
on-premises datacenters as well as with other cloud service providers like Amazon Web
Services (AWS). Being built on top of the ever-reliable PowerShell, it is a useful tool in
the arsenal of any Azure cloud administrator. Azure runbooks are easy to create, edit,
and execute and can integrate well with almost all resources in the Microsoft Azure
ecosystem.

Azure Automation has significantly changed since its inception as a small feature
in the Azure classic portal. With the introduction of the Azure Resource Manager (ARM)
model and the new Azure portal, Azure Automation also significantly ramped up, with
many new features such as Azure Graphical runbooks. As more and more organizations
are moving toward the cloud, automation is also much in demand to maximize the return
on investment (ROI). Microsoft Azure is a leader in the cloud market, and developing
skillsets in Azure Automation is a valuable tool in the arsenal of a cloud administrator.

This chapter introduces you to the ARM deployment model in Azure and the various
components of Azure Automation in the ARM model. These include but are not limited
to the Azure Automation overview dashboard, PowerShell, runbooks, jobs, Runbook
Gallery, hybrid workers, and Azure Automation security. We will focus on establishing a
basic understanding of the key concepts of Azure Automation, which will be explained in
detail in subsequent chapters.

■■ Note  Azure has two deployment models: the classic, or Azure Service Management
(ASM), model and the more recent Azure Resource Manager (ARM) model. This book focuses
on the ARM deployment model.

https://doi.org/10.1007/978-1-4842-3219-4_1

Chapter 1 ■ Introduction to Azure Automation

2

Azure ARM Deployment Model
The ARM model is the way forward for all Azure deployments as recommended by
Microsoft. Compared to the monolithic deployment model of the Azure classic portal,
ARM brings in flexibility and robustness with features including resource groups, role-
based access control, template deployments, tagging, and resource policy. Let’s look
at some of the key features of the ARM model before delving into Azure Automation,
because many of these features will prominently feature in some of the Automation
runbooks that we will be discussing further in this book.

RBAC
Azure role-based access control (RBAC) helps you implement fine-grained access
restrictions on resources created in Azure. In the classic model, there was only one role,
named Co-administration, which had full access to the entire Azure subscription. This
was not suitable when administrators wanted to implement more restrictions at at the
resource level. With the introduction of RBAC, there are many predefined roles that you
can leverage.

In addition, you can even create your own roles. The three main roles are Reader,
Contributor, and Owner. You can apply the roles at various scopes—to resource groups,
virtual machines (VMs), or networks, for example.. The Owner role has full permission
to the applied scope and enables the member of the role to add another user in the
given scope. The Contributor role also has full access, but a member of the Contributor
group cannot add another user to the scope. Reader provides only read access to any
applied scope. In addition, each resource type has its own set of predefined roles that an
administrator can leverage to set permissions.

Template Deployment
In the ARM model, you have the option to automate the deployment of resources by using
JSON templates. This is useful for deploying complex multitier environments in a single
click. You can define the parameters in JSON format, define dependencies, and then
create a template for complex architectures. This is useful in crash-and-burn scenarios
and time-sensitive deployments.

Tags
You can tag the resources in Azure with a key/value pair so that you can do a logical
marking of resources coming under a certain scope. For example, you can create a tag
for all development resources in your environment, and when you select the tag from
the portal, Azure will list all the resources coming under that tag. Tags are also useful for
billing purposes. In the Azure consumption bill, you can filter resources based on their
tags. This will help you identify the cost incurred by a resource grouped under a given

Chapter 1 ■ Introduction to Azure Automation

3

tag. One possible use case is cross-charging; you can create a tag for all resources for
another department, sort the charges based on the tag, and cross-charge to a respective
department.

Resource Groups
Azure resource groups are a new feature in ARM that enable you to logically group related
resources and manage them as a single entity. Any resource created in the ARM model
should be part of a resource group, and it can be part of only one resource group at a
given time. Adding resources to a resource group allows you to manage their life cycle
and create a security boundary. Grouping resources in resource groups becomes relevant
when you want to be able to create, update, or delete them together.

Resource Policies
Resource policies allow administrators to implement restrictions in terms of resource
locations or naming conventions. A policy consists of a policy definition and
policy assignment at a given scope. Resource policies are quite useful when cloud
administrators want to implement certain rules and regulations—for example, all created
resources should reside in a chosen Azure location, or the resources should adhere to a
given naming convention. Unlike RBAC, which decides the permission levels of a user at
a given scope, policies define the properties of the resources at the applied scope, such as
their naming conventions or location.

Azure Automation in the ARM Portal
The concept of cloud computing is heavily dependent on automation, wherein users can
log in and spin up resources based on their requirements. More and more organizations
are adopting the cloud-first policy, and hence there is an increasing demand on
automating long-running complex operational tasks in the cloud. Azure Automation was
introduced to fill this gap.

Automation was introduced in the classic portal initially. With the introduction of
the ARM model and the strategy of promoting it for all services new and old, Automation
was introduced in the ARM-based portal as well. The new ARM-based portal is simply
referred to as the Azure portal. Automation runbooks are based on PowerShell and bring
in the exciting possibilities of PowerShell scripting to the Azure platform in an easy-to-
handle interface.

Chapter 1 ■ Introduction to Azure Automation

4

Creating Your Automation Account and Getting Started
Let’s look at how to create an automation account in the ARM portal:

	 1.	 Go to the Azure portal. In the left panel, click More Services
and then type in automation (Figure 1-1).

Figure 1-1.  Searching with the automation keyword

Figure 1-2.  Adding a new Automation account

	 2.	 A list of automation accounts is displayed. To create a new
account, click Add (Figure 1-2).

	 3.	 You need to provide some information while creating the
Automation account (Figure 1-3). The Automation account
should have a unique name and be assigned to a resource
group. You can either use an existing resource group or create
a new resource group.

Chapter 1 ■ Introduction to Azure Automation

5

	 4.	 You also have an option to create a new Run As account in
the classic (a.k.a. Service Management) as well as the Azure
portal. Run As accounts are required to authenticate with
Azure to create and manage resources using your runbooks.
In the case of ARM, the account that gets created is a service
principal in Azure Active Directory, along with an associated
certificate. This account gets the Contributor role by default.
The classic Run As account that gets created uses the concept
of certificate authentication in the Service Management
model. It uploads a management certificate that can be
used to access and manage classic portal resources by the
Automation runbooks. The classic portal is being deprecated
and is beyond the scope of this book.

Figure 1-3.  New Automation account details

Chapter 1 ■ Introduction to Azure Automation

6

	 5.	 When you click the Create button, the Automation account is
created. It is then listed under the Automation accounts in the
Azure portal (Figure 1-4).

Figure 1-5.  Automation account dashboard

Figure 1-4.  Automation account list

	 6.	 If you click the Automation account, Azure takes you to the
overview, which provides a nice tiled dashboard of various
components included in it (Figure 1-5).

Exploring the Dashboard
We will be discussing many of these components in detail in this book, and we’ll start off
with a brief introduction to them now.

Chapter 1 ■ Introduction to Azure Automation

7

Solutions
Automation accounts can be linked with the Operations Management Suite (OMS), and
the solutions connected to it (Figure 1-6).

Figure 1-6.  OMS Solutions list

You can integrate your automation account directly with OMS. Alternately, you can
create webhooks for runbooks and execute them based on OMS search criteria. This is
explained in detail in Chapter 5, Hybrid Cloud Automation.

Runbooks
Runbooks are the basic building blocks of Azure Automation. You can create your own
runbooks for various tasks to be executed via the Automation platform. A Runbook
Gallery is available that has many runbooks already published by Microsoft or community
contributors; you can import these runbooks, customize them, and schedule them based
on your requirements (Figure 1-7).

http://dx.doi.org/5

Chapter 1 ■ Introduction to Azure Automation

8

Jobs
The Jobs panel in the overview gives information about runbook execution status. You
can drill down deeper and get information on the input, output, and more. Each time
a runbook execution is initiated, either via a schedule or manually, a job is created. An
Azure automation worker executes the job. Many jobs can run in parallel; one runbook
might have multiple jobs being executed. You can also view the job status in the
dashboard (Figure 1-8).

Figure 1-8.  Job Statistics overview

Figure 1-7.  List of runbooks

Chapter 1 ■ Introduction to Azure Automation

9

Multiple statuses can be associated with a job. These include Completed, Failed,
Queued, Running, Stopped, and Suspended:

Completed: Indicates that the job execution completed
successfully.

Failed: The job failed to execute. It could be because
of compilation errors or execution errors based on the
runbook type.

Queued: The Azure Automation worker is not available to
execute the job, and hence it is in a queue.

Running: The job is being executed.

Stopped: This indicates that the user stopped the job
execution while it was running.

Suspended: The job is in a suspended state, for various
possible reasons. It could be suspended manually by a user or
by a command in the script. A user can restart the runbook at
any given time, and it will restart from the beginning if there
are no checkpoints in the script.

Assets
Assets in an Automation account consist of the following components: schedules,
modules, certificates, connections, variables, and credentials (Figure 1-9). Azure
Automation assets are discussed in detail in Chapter 2.

Figure 1-9.  Assets overview

http://dx.doi.org/10.1007/978-1-4842-3219-4_2

Chapter 1 ■ Introduction to Azure Automation

10

Hybrid Worker Groups
You can use Azure Automation to execute runbooks in your on-premises environment
as well. You need to deploy Azure automation hybrid workers to on-premises servers
and connect them to your Azure Automation account. You can get a list of such hybrid
workers from the overview dashboard (Figure 1-10).

Figure 1-11.  DSC configurations list

Figure 1-10.  List of Hybrid Worker Groups

DSC Configurations and DSC Nodes
Desired State Configuration (DSC), as the name indicates, is a configuration management
solution that helps maintain your infrastructure configuration as code. It is based on
PowerShell and implements the desired state in target machines by leveraging the Local
Configuration Manager (LCM). Azure Automation DSC integrates the capabilities of
Azure Automation with DSC-based configuration management (Figure 1-11).

Chapter 1 ■ Introduction to Azure Automation

11

By leveraging Azure Automation DSC, you can manage the desired state of your
infrastructure configuration across on-premises physical/virtual machines as well as cloud
resources. We will discuss Azure Automation DSC configuration in detail later in this book
in Chaper 4.

PowerShell in Azure Automation
The runbooks in Azure automation are completely based on PowerShell. Four types of
runbooks are available: PowerShell, PowerShell Workflow, Graphical, and Graphical
PowerShell Workflow. Though based on PowerShell, each runbook type has its own
features and limitations.

PowerShell
These are the basic PowerShell-based runbooks available in Azure Automation. Using
these runbooks is similar to executing Azure PowerShell module-based commands from
the Azure portal. The related PowerShell modules should already be imported in your
Azure Automation account.

Certain capabilities such as parallel processing of tasks and runbook checkpoints
are not available in these basic PowerShell-based runbooks. You will have to go for
PowerShell Workflow–based runbooks if you want to use these features. You can create
runbooks by using the simple Azure PowerShell-based scripts that you might be already
using to manage your Azure infrastructure, and leverage additional capabilities such as
scheduling them.

PowerShell Workflow
PowerShell Workflow runbooks are intended for more-complex tasks that involve
executing steps in parallel, calling other child runbooks, and so forth. As the name
indicates, this type of runbook is written using PowerShell workflows that in turn use
Windows Workflow Foundation. PowerShell workflows allow you to set checkpoints in
your script so that you can restart the script from the checkpoint if an exception occurs
during execution. This kind of workflow can cater to advanced automation requirements
of complex cloud infrastructures.

Graphical
Graphical runbooks can be created from the Azure portal, but unlike the PowerShell and
PowerShell Workflow runbooks, they cannot be edited or created outside the portal. They
use PowerShell in the back end, but the process is transparent to the user. There is an option
to convert the Graphical runbooks to Graphical PowerShell Workflow, and vice versa.

Graphical runbooks are a good place to start for a cloud administrator who doesn’t
have much expertise in PowerShell. This type of runbook uses a visual authoring model
and represents the data flow pictorially in an easy-to-understand fashion. The editing
can also be done directly from the portal, against each building block of the runbook, to
implement changes in the logic.

http://dx.doi.org/4

Chapter 1 ■ Introduction to Azure Automation

12

Graphical PowerShell Workflow
Graphical PowerShell Workflow runbooks are based on PowerShell workflows in the
back end. Other than that, the properties are the same as that of a Graphical runbook.
Graphical PowerShell Workflow runbooks can be edited and managed only from within
the Azure portal.

Runbook Gallery
A Runbook Gallery is readily available in the Azure portal, where several runbooks
catering to multiple scenarios are already available. Some of these runbooks are
contributed by the community, and others are provided by Microsoft. You can access
the Runbook Gallery by clicking the runbook tiles in the overview dashboard of the
Automation account.

Click Overview ➤ Runbooks ➤ Browse Gallery to access the gallery (Figure 1-12).

Figure 1-12.  Azure Runbook Gallery

On the right-hand side, you can see the Gallery Source listed. It could be either Script
Center (which is the default) or the PowerShell Gallery. You will find scripts/runbooks
more relevant to Azure by choosing the Script Center option. The PowerShell Gallery
contains mostly general-purpose PowerShell scripts. This right-hand pane also provides
an option to filter the runbooks based on their type (PowerShell Script, Graphical
Runbook, or PowerShell Workflow). Further filtering is possible based on the publisher
(you can choose runbooks published by Microsoft or by the community).

Chapter 1 ■ Introduction to Azure Automation

13

You can search for runbooks for specific use cases in the search bar. Usually,
runbooks are readily available for all major Automation use cases. If not, you will find
something close enough that you can tweak and reuse.

Select the runbook from the gallery, and you can review the information about the
runbook from its description. For Graphical runbooks, you can review the dataflow in a
flow chart representation. You can import the runbook to your Automation account by
clicking Import (Figure 1-13).

Figure 1-13.  Importing a Graphical runbook

You need to provide a name and may provide an optional description while
importing the runbook by using the Import option available in the portal). Once
imported, the runbook will be listed in your Automation account. However, this runbook
is not available for execution unless you publish it.

Chapter 1 ■ Introduction to Azure Automation

14

Here you can view and customize the runbook as per your requirements. Then click
Publish to make the runbook available in the Automation account.

Uploading Runbooks to the Gallery
If you have created a runbook that could be valuable to the wider community, you can
upload it to the Runbook Gallery. The step-by-step procedure is as follows:

	 1.	 Log in to the Script Center by using your Microsoft account at
http://gallery.technet.microsoft.com/site/upload.

	 2.	 Under the File Upload option, upload your runbooks.
This could be a .ps1 file for PowerShell Workflows or
.graphrunbook for Graphical runbooks (Figure 1-15).

Figure 1-15.  File upload option

Figure 1-14.  Runbook edit pane

To publish the runbook, click Edit. This opens the runbook edit pane (Figure 1-14).

	 3.	 Provide the title and description of your runbook (Figure 1-16).

http://gallery.technet.microsoft.com/site/upload

Chapter 1 ■ Introduction to Azure Automation

15

You should list all dependencies of the runbook in the
description. If runbooks refer to other runbooks, that
information must be provided in the description, and the
corresponding runbooks should have the same tag.

	 4.	 Provide a summary of the runbook and the language of choice
(Figure 1-17). The summary will be displayed in the Runbook
Gallery search results.

Figure 1-16.  Runbook title and description

Figure 1-17.  Runbook summary

	 5.	 In the next section, select the category as Windows Azure and
the subcategory as Automation (Figure 1-18). The next option,
operating system, is irrelevant in this case and can be ignored.

Chapter 1 ■ Introduction to Azure Automation

16

	 6.	 Assign tags relevant to your runbook. This helps in listing the
runbook under the relevant categories. A Graphical runbook
should have the GraphicalPS tag associated with it (Figure 1-19).

Figure 1-19.  Assigning tags

Figure 1-18.  Selecting the Category and Sub-category

Chapter 1 ■ Introduction to Azure Automation

17

	 7.	 You have the option to enable Q & A for this contribution or
mark the runbook as an official Microsoft contribution if you
have received permissions to do so (Figure 1-20).

Figure 1-20.  Enabling Q & A

Figure 1-21.  License options

	 8.	 Select the License options: TechNet Terms of Use, MIT,
or MS-LPL (Figure 1-21). TechNet terms of use refers to
Microsoft Developer Services Agreement. MIT and MS-LPL
come under open source licensing. The last step is to agree to
the terms of use and submit the runbook.

Azure Automation Security
Azure Automation should be linked with an Azure Automation account that has access
to resources in the associated Azure subscription. In the classic model, certificate-based
authentication was used. However, in the ARM model, Azure AD-based authentication
is used. This simplifies the authentication process, as one account can be used for
authenticating for both the classic and ARM models.

When you create the Automation account, Azure automatically creates a Run As
account for both the ARM and classic models with the required permissions, as explained
earlier. You can see the details of these accounts by selecting the Run As accounts from
the respective Automation dashboard (Figure 1-22).

Chapter 1 ■ Introduction to Azure Automation

18

You can click each account to view further details.
When the Azure Run As accounts are created, a couple of other resources are also

created in the back end for the users to start with. These include two sample runbooks:
one PowerShell-based runbook called AzureAutomationTutorialScript, and one
Graphical runbook called AzureAutomationTutorial. These runbooks demonstrate how
to authenticate by using the Run As accounts. Similarly, two runbooks are created for the
classic Run As account as well (Figure 1-23).

Figure 1-23.  Sample runbooks

Figure 1-22.  Azure Automation Run As accounts

Click any of the runbooks and execute them to verify the Run As accounts
Let’s start the AzureAutomationTutorial runbook to verify the ARM Run As

accounts. Click the runbook, which takes you to the execution pane. Now click Start.
In the Job pane, click Output, and you should be able to view the output of the

runbook , which is the list of all resources in your subscription (Figure 1-24).

Chapter 1 ■ Introduction to Azure Automation

19

You can repeat the same with AzureClassicAutomationTutorial to get similar
results.

Role-Based Access Control
If you want to provide role-based access for different users to your Automation account,
use the basic RBAC model of ARM. Along with the Owner, Contributor and Reader role,
you can also use the Automation Operator role that is tailor made for Automation. In
addition to these Four roles, you can also use the User Access Administrator role that can
be assigned to manage user access to your Azure resources.

The Contributor role provides full read/write/delete permissions in the Automation
account, except for providing another user access to the Automation resources. Reader,
on the other hand, provides only read-level permissions, as the name indicates. The
Automation Operator role, provides restrictive permissions to the assigned user. This role
is specifically targeting users who need permissions to start, stop, suspend, or resume
Azure Automation jobs and nothing else. It is useful when you want to provide delegated
permissions to a team member to manage Azure Automation jobs.

Follow these steps to provide role-based access to a user:

	 1.	 Go to the Automation account and click Access Control
(IAM), as shown in Figure 1-25.

Figure 1-24.  Sample Runbook output

Figure 1-25.  Azure Automation access control (IAM)

Chapter 1 ■ Introduction to Azure Automation

20

	 2.	 Click the Add option. This opens the permissions pane
(Figure 1-26).

Figure 1-27.  Adding credentials

Figure 1-26.  Setting permissions

Here you can search for the specific role and the username by
name or email ID. The user should already be present in your
Azure AD associated with the subscription. You can save the
permission after you have added the user.

However, if you are using hybrid workers to execute runbooks
against your on-premises datacenter, you should provide a
credential with permissions to execute the runbook against
the target machine. This is applicable for executing runbooks
against AWS resources as well.

Let’s look at how to add resources for hybrid workers. This
involves creating a credential asset with the username/
password.

	 3.	 From the Azure Automation dashboard, click Assets ➤
Credentials to open the Credentials dialog box (Figure 1-27).

Chapter 1 ■ Introduction to Azure Automation

21

	 4.	 Click the Add a Credential option and then provide the name,
description, username, and password (Figure 1-28).

Figure 1-28.  New credential details

The username in this case can be in the form of
domain\username (as shown in Figure 1-28),
username@domain, or simply the username alone if it is a
local account.

You can call this credential in your runbooks, or alternately
specify a Run As account for a given Hybrid Worker Group.
That way, the credential is automatically invoked for
authentication each time you execute a runbook against a
Hybrid Worker Group.

	 5.	 To associate the credential with a Hybrid Worker Group, click
the Hybrid Worker Group from the Automation dashboard.
Select the target group and then click Hybrid Worker Group
Settings (Figure 1-29).

Chapter 1 ■ Introduction to Azure Automation

22

Figure 1-29.  Associate credential with Hybrid Worker Group

	 6.	 Click the Custom option. Select the Run As credential from
the drop-down menu and save the changes.

The process for creating AWS credentials is the same. You need to create a credential
asset. The only difference is that in place of a username, you should provide an AWS
access ID and secret access key in the Password field.

Summary
This chapter provided an overview of Azure Automation in ARM, introduced the various
types of runbooks and their assets, explored the Runbook Gallery, and discussed Azure
Automation security. The next chapter covers Azure Automation assets in detail.

■■ Additional Resources

https://docs.microsoft.com/en-us/azure/automation/automation-intro

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-

types#graphical-runbooks

https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-

started

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery

https://docs.microsoft.com/en-us/azure/automation/automation-role-based-

access-control

https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-started
https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-started
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery
https://docs.microsoft.com/en-us/azure/automation/automation-role-based-access-control
https://docs.microsoft.com/en-us/azure/automation/automation-role-based-access-control

Chapter 1 ■ Introduction to Azure Automation

23

https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-

worker

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-

types#powershell-runbooks

https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#powershell-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#powershell-runbooks

25© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_2

CHAPTER 2

Azure Automation Assets

This chapter covers the various Azure Automation assets and their relevance in
Azure Automation. We will also look at nested runbooks, which enable modularity
and reusability of runbooks. Automation assets play an important role in Azure
Automation, as you can reference the assets within a runbook, and they will be accessed
at different stages during runbook execution. Automation assets provide flexibility
to the administrator since they can be defined once and reused whenever required.
For example, you can create a schedule for repetitive execution of runbooks, and the
same schedule can be linked to multiple runbooks. You can create a connection asset
to establish connections to target resources, and this asset can be used by multiple
runbooks. This chapter will give you a detailed understanding of Azure Automation assets
and how they can be defined and leveraged in Azure Automation.

Azure Automation Assets
Assets in an Automation account can be considered globally available settings that can be
used by runbooks in that given account. The assets are classified as schedules, modules,
variables, connections, certificates, and credentials.

Schedules
One of the most important requirements of any automation framework is the capability
to schedule repeated tasks. In Azure Automation, this is achieved by using the schedules
asset. You can create schedules and attach them to runbooks so the runbooks are run
repeatedly—on a daily, weekly, or monthly basis, for example. You can attach multiple
runbooks to a schedule, and attach multiple schedules to a runbook.

https://doi.org/10.1007/978-1-4842-3219-4_2

Chapter 2 ■ Azure Automation Assets

26

To create and attach a schedule to a runbook, follow these steps:

Click the Automation dashboard and then choose Assets ➤
Schedules. Next click on Add a Schedule (Figure 2-1).

Figure 2-1.  Azure Automation schedules

Provide the information shown in Figure 2-2.

Chapter 2 ■ Azure Automation Assets

27

In particular, you need to provide the following details:

•	 A name for the schedule

•	 Description

•	 A start time for the schedule, along with the time zone

•	 The recurrence is set to Once by default. However, you can set
it to Recurring and configure the frequency as every Hour, Day,
Week, or Month.

•	 By default, the expiration is set as No (the schedule never expires).
However, you can set an expiry date and time for the schedule if
required.

Figure 2-2.  Describing a new schedule

Chapter 2 ■ Azure Automation Assets

28

The next step is to link this schedule with a runbook. Open
the target runbook. In the overview tab, select Schedules
(Figure 2-3).

Figure 2-3.  Schedules in the overview tab

Figure 2-4.  Linking a schedule

Click the Add a Schedule option. Then link the schedule to
your runbook and select the schedule (Figure 2-4).

You can set the input parameters of the runbooks to be
used for the schedule. In this example, the runbook input
parameters include the resource group name (optional),
the name of the VM(optional), and the connection
asset name (which, if not provided, will use the default
AzureRunAsConnector asset). You should also specify the run
settings, which determine where the runbook gets executed
(either on Azure or on a hybrid worker (Figure 2-5).

Chapter 2 ■ Azure Automation Assets

29

If you wish to unlink the schedule from a runbook at any given
point, you can select the schedule and then choose More ➤
Unlink (Figure 2-6).

Figure 2-5.  Input parameters for the runbook

Figure 2-6.  Unlinking a schedule

Chapter 2 ■ Azure Automation Assets

30

Modules
For the runbooks to be executed without any errors, the PowerShell modules
corresponding to the commands being used should be imported into the Automation
account. This concept is like that in standard PowerShell, where the respective modules
should be made available in the PowerShell runtime before executing a PowerShell
command. Like Runbook Gallery, a PowerShell Module Gallery is available in the Azure
portal (Figure 2-7).

Figure 2-7.  PowerShell module list

Figure 2-8.  Module update notification

Figure 2-9.  Azure modules being updated

The majority of the required PowerShell modules are readily available in the account
by default. The Azure team regularly updates the modules. You can keep the modules in
your account up-to-date by clicking Update Azure Modules.

You will then get a notification that all modules will be updated to the latest version.
Click Yes (Figure 2-8).

You can see that the modules are being updated (Figure 2-9).

Chapter 2 ■ Azure Automation Assets

31

Once the update is complete, you will be notified that the modules have been
updated (Figure 2-10).

Figure 2-10.  Notification of update completion

It is recommended to link and unlink any runbook schedules by using these
modules, and to link them back after the modules are updated.

If any particular module is not available in the gallery, you can browse the
PowerShell Gallery, search for the module, and import it. Click the Browse Gallery option
to access the gallery, shown in Figure 2-11.

Figure 2-11.  Azure Automation module gallery

Chapter 2 ■ Azure Automation Assets

32

In the preceding example, we are trying to import the AzureRM.ApiManagement
module. This module contains Azure Storage management commands such as Add-
AzureRmApiManagementRegion,Get-AzureRmApiManagementRegion, and New-AzureRmA
piManagementHostnameConfiguration. If your runbook uses any of these commands,
you should import this module to the Automation account before executing the runbook.
Otherwise, you might get a Command Not Found error. Some of the modules will have a
dependency on other modules. In this case, the AzureStorage module has a dependency
on the AzureRM.Profile(=2.8.0) module. Therefore, the module should be imported
and available in the account, and the version should be 2.8.0.

Click the Import option to import the module to your account (Figure 2-13).

Figure 2-12.  Viewing the details of a PowerShell module

Figure 2-13.  Importing dependent modules

Select the module that you would like to import to view the details, shown in
Figure 2-12.

Chapter 2 ■ Azure Automation Assets

33

You will get a message stating that importing a module might take couple of minutes.
You will also see warning for any dependencies that need to be updated. You can choose
to update the dependent modules when you import the new module (Figure 2-14).

Figure 2-14.  Updating modules during import

Click the OK button to proceed.
The progress of the import will be displayed in the portal (Figure 2-15).

Chapter 2 ■ Azure Automation Assets

34

During the import process, the PowerShell cmdlets and metadata will be extracted
and made available in the Automation account.

In addition to importing modules from the gallery, you can use your own modules by
clicking Automation Accounts ➤ Modules ➤ Add a Module (Figure 2-16).

Figure 2-15.  Module update in progress

Figure 2-16.  Importing a new Automation module

The module can be uploaded as a zip file. The name of the module should be the
same as the zip file (Figure 2-17).

Chapter 2 ■ Azure Automation Assets

35

Variables
Variables are, as the name indicates, values that can be provided as inputs to runbooks
and shared between them. Variables are particularly useful when a certain set of values
should be shared among multiple jobs or runbooks.

A variable can also be defined inside a runbook, but the scope of the variable is then
restricted inside that particular runbook. This is different from variables that are defined
from the portal, which are persistent outside the scope of the runbook. The values can be
set by runbooks and used by another runbook or DSC configuration. Since the values are
persistent, they can also be used by runbooks the next time they are executed

Creating a Variable from the Portal
It is quite easy to create a variable from within the portal:

	 1.	 From the Automation account, scroll down to Shared
Resources ➤ Variables. Then click the Add a Variable option
(Figure 2-18).

Figure 2-17.  Uploading a module as a zip file

Figure 2-18.  Adding a new variable

Chapter 2 ■ Azure Automation Assets

36

	 2.	 Enter the Name, Description, Type, and Value (Figure 2-19).

Figure 2-19.  Variable details

The type of variables can be String, Boolean, DateTime, Integer, or Not Specified. If
Not Specified is used, the value of the variable will be set as NULL. You can set the value
of the variable at a later point by using the Set-AzureAutomationVariable PowerShell
command. The syntax for the command is as follows:

Set-AzureAutomationVariable
 -AutomationAccountName <String>
 -Description <String>
 -Name <String>
 [-Profile <AzureSMProfile>]
 [<CommonParameters>]

By default, the variables are not created as encrypted. However, you can choose
to encrypt the variables, if required, during creation. If encrypted, the variable can be
retrieved only from within a runbook by using the Get-AutomationVariable activity.

Chapter 2 ■ Azure Automation Assets

37

Managing Variables by Using PowerShell
You can create and manage Azure Automation variables by using PowerShell. You should
be logged in to your Azure account via Azure PowerShell (Figure 2-20).

Figure 2-20.  Logging into an Azure account via Azure PowerShell

Provide the Azure login credentials when prompted.
The Get-AzureRmAutomationVariable command will get the values of a given Azure

Automation account variable (Figure 2-21). The syntax is as follows:

Get-AzureRmAutomationVariable
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [<CommonParameters>]

Figure 2-21.  Get-AzureRMAutomationVariable command output

The command pulls out the available variables in the given Automation account.
You can pull out information on a specific variable independently and store it in

another variable during runtime by using the commands shown in Figure 2-22.

Figure 2-22.  Variable runtime manipulation

Chapter 2 ■ Azure Automation Assets

38

Similarly, you can also create new variables via PowerShell by using the New-
AzureRmAutomationVariable command. The syntax is shown here:

New-AzureRmAutomationVariable
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [-Description <String>]
 -Encrypted <Boolean>
 [-Value <Object>]
 [<CommonParameters>]

In Figure 2-23, the command is executed against the target Automation account
name and resource group with the name and value of the new variable.

Figure 2-23.  Creating a new Automation variable

Figure 2-24.  List of variables in the Azure portal

You can go back to the portal and check, and the variable will be listed there
(Figure 2-24).

The Set-AzureRmAutomationVariable command can also be used to set the value of
an existing variable (Figure 2-25).

Figure 2-25.  Setting the value of an Azure Automation variable

Chapter 2 ■ Azure Automation Assets

39

Here you can see that the value of the variable that we originally set from the Azure
portal is set to Test1.

You can delete the variables by using the Remove-AzureRmAutomationVariable
command. The syntax is as follows:

Remove-AzureRmAutomationVariable
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [-Force]
 [-Confirm]
 [-WhatIf]
 [<CommonParameters>]

You can provide mandatory parameters such as Automation account name, resource
group name, and variable name to delete a variable (Figure 2-26).

Figure 2-26.  Deleting an Azure Automation variable

Using Encrypted Variables
Creating encrypted variables is easy from the portal; you set Encrypted to Yes in the
portal. You will not be able to view the value of the encrypted variable from the portal
(Figure 2-27).

The value cannot be retrieved by using the Get-AzureRmAutomationVariable
command either (Figure 2-28).

You can get the value from inside a runbook by using the Get-AutomationVariable
activity.

Figure 2-28.  Encrypted variable runtime manipulation

Figure 2-27.  Encrypted Variable

Chapter 2 ■ Azure Automation Assets

40

Let’s create a sample runbook to demonstrate this:

	 1.	 Choose Automation Accounts ➤ Runbooks ➤ Add a
Runbook.

	 2.	 Select the option to create a new runbook rather than
importing from the gallery, as shown in Figure 2-29.

Figure 2-29.  Creating a new runbook

Figure 2-30.  Azure Automation runbook edit pane

	 3.	 This opens the Edit PowerShell Runbook pane. Type in
Get-AutomationVariable <Variablename>.

	 4.	 Figure 2-30 shows the display of the value in the test pane.

	 5.	 Click the Save option. Then click Test Pane and start the
runbook.

There you can see that the activity pulls out the value of the encrypted variable
(Figure 2-31).

Chapter 2 ■ Azure Automation Assets

41

Connections
The runbooks need to connect to various resources or external systems, and connection
assets encapsulate the information required to enable this. The connection information
could include username/password, subscription IDs, URLs, ports, and so forth. When
you create the Azure Automation Run As accounts, two connection assets are created by
default. You can view them from Automation account dashboard by choosing Assets ➤
Connections (Figure 2-32).

Figure 2-31.  Azure Automation runbook output

Figure 2-32.  Azure Automation connections list

Let’s look at these assets so you can understand how the connection assets work; see
Figure 2-33.

Chapter 2 ■ Azure Automation Assets

42

Here you can see the details of the service principal created in Azure AD for the
Automation Run As account. This information includes the application ID, tenant ID,
certificate thumbprint, and subscription ID.

When it comes to the classic connection asset, the parameters will be the
subscription name, subscription ID, and certificate asset name. This certificate asset is
also created automatically when you create the Run As account (Figure 2-34).

Figure 2-33.  Connection information for AzureRunAsConnection

Figure 2-34.  Connection information for AzureClassicRunAsConnection

Chapter 2 ■ Azure Automation Assets

43

Each connection is associated with a connection type, and each connection type
is defined in integration modules. You can make your own PowerShell modules and
include them in Azure Automation as integration modules. In addition to the PowerShell
module, the integration module can optionally contain a metadata file that specifies
the connection type to be used in Azure Automation. Integration modules provide the
flexibility of bringing your own PowerShell modules to Azure when the required modules
are not available by default. The modules that are available by default are called global
modules. The modules imported by users takes precedence over the global modules.

Creating a New Connection
From the Automation account dashboard, choose Assets ➤ Connections ➤ Add a
Connection. Depending on the type of connection selected, you need to provide
additional inputs (Figure 2-35).

Figure 2-35.  New connection details

In this example, I have selected the connection type as Azure, and this option
prompts for entering the Automation certificate name and the subscription ID.

Chapter 2 ■ Azure Automation Assets

44

Managing Connections by Using PowerShell
You can use Azure PowerShell to manage connection assets.

Get-AzureRmAutomationConnection

The Get-AzureRmAutomationConnection command gets information about connections
in each automation account (Figure 2-36).

The syntax of this command is as follows:

Get-AzureRmAutomationConnection
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-ConnectionTypeName] <String>
 [<CommonParameters>]

Or:
Get-AzureRmAutomationConnection
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [<CommonParameters>]

If you run the command with the Automation account name and resource group name
as parameters, all the connection information in that Automation account is pulled out.

New-AzureRmAutomationConnection

The New-AzureRmAutomationConnection command is for creating a new connection.
The syntax is as follows:

New-AzureRmAutomationConnection
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>

Figure 2-36.  Getting connection information via Azure PowerShell

Chapter 2 ■ Azure Automation Assets

45

 [-Name] <String>
 [-ConnectionTypeName] <String>
 [-ConnectionFieldValues] <IDictionary>
 [-Description <String>]
 [<CommonParameters>]

Let’s create a new connection asset by using PowerShell. In the first command, the
connection field values (the certificate name and the subscription ID) are provided. This
information is called in the New-AzureRmAutomationConnection command to create the
connection asset (Figure 2-37).

Figure 2-38.  Connection list in the Azure portal

Figure 2-37.  Creating a new connection via Azure PowerShell

You can see that the asset is listed in the portal after it’s created (Figure 2-38).

Remove-AzureRmAutomationConnection

As the name indicates, the Remove-AzureRmAutomationConnection command deletes an
existing connection from the Automation account.

The syntax is as follows:

Remove-AzureRmAutomationConnection
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [-Force]

Chapter 2 ■ Azure Automation Assets

46

 [-Confirm]
 [-WhatIf]
 [<CommonParameters>]

The command deletes the newly created connection asset, as shown in Figure 2-39.

Figure 2-39.  Removing a connection via Azure PowerShell

Set-AzureRmAutomationConnectionFieldValue

Another command, Set-AzureRmAutomationConnectionFieldValue, can set the values
of a field for a connection asset.

Here is the syntax:

Set-AzureRmAutomationConnectionFieldValue
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 -ConnectionFieldName <String>
 -Value <Object>
 [<CommonParameters>]

In the example in Figure 2-40, the command is used to update the certificate name of
the connection asset named Connection2.

Figure 2-40.  Setting a connection value via PowerShell

Get-AutomationConnection

The activity named Get-AutomationConnection can be used to get information about the
connection from within a runbook.

Let’s create a runbook with the type PowerShell to test this out. Call the activity
with the connection name and parameter to retrieve information about the connection
(Figure 2-41).

Chapter 2 ■ Azure Automation Assets

47

You can save the runbook and execute it in the Test pane to view the results
(Figure 2-42).

Figure 2-42.  Runbook test result

Figure 2-41.  Azure Automation runbook edit pane

Figure 2-43.  Azure Automation certificates list

Certificates
Certificate assets authenticate the access of runbooks to various resources in Azure,
including ARM and classic resources. When the Azure Automation Run As account is
created, two certificate assets are created by default. You can view these assets from the
Automation account dashboard by choosing Assets ➤ Certificates (Figure 2-43).

Chapter 2 ■ Azure Automation Assets

48

AzureClassicRunAsCertificate, as the name indicates, authenticates access to
manage classic resources. AzureRunAsCertificate authenticates access to manage ARM
resources.

You can also add new certificates by clicking Add a Certificate to access the Add a
Certificate dialog box (Figure 2-44).

Figure 2-44.  New certificate details

You can choose to upload a .cer file or a .pfx file. If you upload a .pfx file, you will
get an option to enter a password and set whether the value is exportable.

A certificate can be uploaded via PowerShell as well, by using the New-
AzureRmAutomationCertificate command (Figure 2-45).

Chapter 2 ■ Azure Automation Assets

49

The syntax is as follows:

New-AzureRmAutomationCertificate
 [-ResourceGroupName] <String>
 [-AutomationAccountName] <String>
 [-Name] <String>
 [-Path] <String>
 [-Description <String>]
 [-Exportable]
 [-Password <SecureString>]
 [<CommonParameters>]

Execute the command with certificate information and Automation account
information as parameters.

You can use the certificate from within a runbook by using the
Get-AutomationCertificate activity. Create a new runbook and call the activity with
certificate name as a parameter (Figure 2-46).

Figure 2-45.  Creating a new certificate via Azure PowerShell

Figure 2-46.  Azure Automation runbook edit pane

Chapter 2 ■ Azure Automation Assets

50

Credentials
The credential asset in Azure Automation is same as the PowerShell PSCredential object
holding security credentials for authenticating against a service. These credentials can be
called by runbooks for authentication purposes.

Creating credential objects from the portal is straightforward. Go to the Azure
Automation dashboard and choose Assets ➤ Credentials ➤ Add a Credential to access
the New Credential dialog box (Figure 2-48).

Figure 2-47.  Test execution output

You can run a test execution to review the output values (Figure 2-47).

Chapter 2 ■ Azure Automation Assets

51

You can also provide a username in the format domain\username or
username@domain.

The value of a credential can be viewed by using the Get-AutomationPSCredential
workflow from within a runbook.

Similar to the examples mentioned earlier for other assets, you can create a runbook
with the Get-AutomationPSCredential activity and the credential name (Figure 2-49).

Figure 2-48.  New credential details

Chapter 2 ■ Azure Automation Assets

52

Execute the runbook to get values of the credentials. Note that the password will not
be displayed because it is stored as secure string (Figure 2-50).

Figure 2-49.  Azure Automation Runbook edit pane

Figure 2-50.  Azure Automation runbook output

Nested Runbooks
Along with the various Automation assets, nested runbooks are another Azure
Automation feature that enables modularity. You can define commonly executed tasks
as a runbook and then call it as a child runbook from various parent runbooks. There are
two ways to call a child runbook: either by invoking the child runbook inline or by using
the Start-AzureRMAutomationRunbook PowerShell cmdlet.

Invoking a Child Runbook Inline
Runbook inline invocation is the synchronous execution of a child runbook from a
parent runbook. The parent runbook will wait for the execution of child runbook to be
completed before moving on to the next line of code. Only a single Azure Automation job
is created that takes care of the tasks defined in both child runbook and parent runbook.

Chapter 2 ■ Azure Automation Assets

53

The child runbook that is invoked inline should be published before the parent runbook.
You can store the output of a child runbook in a variable while invoking it inline. The
parameters for a child runbook can also be passed on by using variables. However, the
name of a child runbook cannot be passed on using a variable and should be explicitly
named inside the parent runbook. The execution of child and parent runbook is covered
in a single job, which makes debugging easier.

From the edit pane of the parent runbook, you can directly add a child runbook from
the same Automation account via the Add to Canvas option (Figure 2-51).

Figure 2-51.  Adding a child runbook to the canvas

This option will add the child runbook to the parent runbook from which it is
invoked (Figure 2-52).

Figure 2-52.  Inserting the child runbook

Chapter 2 ■ Azure Automation Assets

54

To keep the example simple, I have included an echo command in the child runbook
so that the execution order is clear (Figure 2-53).

Figure 2-53.  Contents of the child runbook

Figure 2-54.  Invoke method output

Figure 2-55.  The child runbook’s job list

Publish the child runbook first, followed by the parent runbook. Now start the parent
runbook and review the output (Figure 2-54).

The child runbook is executed from within the parent runbook, and we can see the
results in the same output window.

If you check the jobs associated with the child runbook, no jobs will be listed
(Figure 2-55), because the execution happens from within the parent runbook job.

Chapter 2 ■ Azure Automation Assets

55

Starting a Runbook by Using
Start-AzureRMAutomationRunbook
Start-AzureRMAutomation command can be used to initiate an asynchronous execution
of a child runbook when it is called from within the parent runbook. Any runbook
execution initiated by using Start-AzureRMAutomationRunbook will run as a separate
job, independent of the parent runbook from which it is called. The name of the runbook
can be passed on as a parameter, and the job status can also be stored in a variable.
While the parent runbook will continue to execute the next line of code after starting
the child runbook, the job status can be leveraged to delay this execution. The Get-
AzureRMAutomationJobOutput command can be used to extract the output of a child
runbook that is started with the Start-AzureRMAutomationRunbook command. The
debugging of the child runbook and parent runbook will be slightly difficult compared to
the invoking method, because multiple jobs are created during the execution. Unlike the
previous option, the child runbook in this method is not limited to the same Automation
account. You can call runbooks from different Automation accounts or even different
subscriptions, provided the connection asset to that subscription is available.

The contents of a sample parent runbook that calls a child runbook by using Start-
AzureRMAutomationRunbook is shown here:

$connectionName = "AzureRunAsConnection"
try
{
 # Get the connection "AzureRunAsConnection "
 �$servicePrincipalConnection=Get-AutomationConnection -Name

$connectionName

 "Logging in to Azure..."
 Add-AzureRmAccount `
 -ServicePrincipal `
 -TenantId $servicePrincipalConnection.TenantId `
 -ApplicationId $servicePrincipalConnection.ApplicationId `
 �-CertificateThumbprint $servicePrincipalConnection.

CertificateThumbprint
}
catch {
 if (!$servicePrincipalConnection)
 {
 $ErrorMessage = "Connection $connectionName not found."
 throw $ErrorMessage
 } else{
 Write-Error -Message $_.Exception
 throw $_.Exception
 }
}

Chapter 2 ■ Azure Automation Assets

56

#Start runbook by using the Start-AzureRmAutomationRunbook command with the
#resource group name, runbook name, and automation account name as input
parameters
Start-AzureRmAutomationRunbook -ResourceGroupName 'sccmrg' -Name
'testpowershell' -AutomationAccountName 'hybriddemo'

As you can see in this code, it is necessary to connect to the Azure subscription
first by using the AzureRunASConnection credentials before you can use the Start-
AzureRmAutomationRunbook command.

The output of the runbook is shown in Figure 2-56.

Figure 2-56.  Runbook output

Figure 2-57.  Child runbook job list

Note that the output of the child runbook is not listed. While using the invoke
method, both parent and child runbook were executed from the same job, and you could
see the output in one place.

However, if you check the job list associated with the child runbook, you can see that
it has been executed separately (Figure 2-57).

Chapter 2 ■ Azure Automation Assets

57

You need to check the job details of the child runbook to view its output (Figure 2-58).

Figure 2-58.  Child runbook output

Summary
This chapter explained the various Azure automation assets, their properties, and how to
leverage them while creating runbooks. This chapter also explained how to implement
modularity by leveraging nested runbooks. The next chapter explores the various Azure
runbook types in detail.

■■ Additional References

https://azure.microsoft.com/en-in/blog/getting-started-with-azure-

automation-automation-assets-2/

https://docs.microsoft.com/en-in/azure/automation/automation-credentials

https://docs.microsoft.com/en-in/azure/automation/automation-certificates

https://docs.microsoft.com/en-in/azure/automation/automation-schedules

https://azure.microsoft.com/en-in/blog/getting-started-with-azure-automation-automation-assets-2/
https://azure.microsoft.com/en-in/blog/getting-started-with-azure-automation-automation-assets-2/
https://docs.microsoft.com/en-in/azure/automation/automation-credentials
https://docs.microsoft.com/en-in/azure/automation/automation-certificates
https://docs.microsoft.com/en-in/azure/automation/automation-schedules

59© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_3

CHAPTER 3

Azure Automation
Runbook Types

Azure Automation uses Four types of runbooks, as briefly introduced in Chapter 1:
PowerShell, PowerShell Workflow, Graphical and Graphical PowerShell Workflow. This
chapter offers a deep dive into each of these runbook types and shows how to get started
with them. You’ll also learn how to create, import, edit, test, and publish runbooks in
an Automation account. Note that the Graphical and Graphical PowerShell Workflow
runbooks have almost similar properties with exception that the latter uses PowerShell
Workflow in the backend. Hence we will be focussing only on Graphical runbooks among
the two in this chapter.

PowerShell Runbooks
PowerShell runbooks are PowerShell scripts that can be executed against Azure resources.
You can either import your own PowerShell script or use one from the PowerShell Gallery
or Script Center. After importing the runbooks, you can edit them directly from the
Runbook Gallery.

Let’s import a PowerShell script directly from the Azure gallery. Go to Automation
dashboard and choose Runbooks ➤ Browse Gallery. For the Gallery Source, select Script
Center, Type as PowerShell script and Publisher as Microsoft (Figure 3-1).

https://doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_1

Chapter 3 ■ Azure Automation Runbook Types

60

I chose Microsoft as the Publisher for this demonstration.
Select the runbook to be imported. In this case, I am going to import a simple

PowerShell runbook from the gallery that starts Azure VMs in a subscription or cloud
service (Figure 3-2).

Once the runbook is imported, by default the edit pane will open. On the left side
of the edit panel, you can view all the available components for the runbook, listed as
CMDLETS, RUNBOOKS, and ASSETS (Figure 3-3).

Figure 3-2.  Selecting a sample runbook

Figure 3-1.  Selecting the PowerShell Script option

Chapter 3 ■ Azure Automation Runbook Types

61

Figure 3-3.  Runbook components

Figure 3-4.  Available modules

If you expand CMDLETS, you can view details of all the modules imported for that
runbook (Figure 3-4).

If you want to customize the runbook and add a command from one of those
modules, you can click the command and select the Add to Canvas option (Figure 3-5).

Chapter 3 ■ Azure Automation Runbook Types

62

This copies over the command with the required parameters to the edit pane on the
right-hand side. You can update the parameter values and integrate the command with
the script logic. This feature is particularly useful when you are creating a new runbook
on your own.

The RUNBOOKS component in the left panel lists the runbooks that are currently
available in the Automation account (Figure 3-6).

If you want to call any of these runbooks from within your Automation account,
you can click that runbook and choose Add to Canvas. The runbook being inserted will
act as a child runbook. There are certain restrictions on what kind of runbook can act as
a child runbook. PowerShell-based runbooks such as pure play PowerShell runbooks
and Graphical runbooks can call each other. The Workflow runbooks (PowerShell
Workflow and Graphical PowerShell Workflow runbooks) can call each other. However,
to call a PowerShell runbook from within a PowerShell Workflow runbook, the Start-
AzureRMAutomationRunbook command should be used, and vice versa.

Let’s insert a PowerShell child runbook from within another PowerShell runbook
(Figure 3-7).

Figure 3-6.  Adding the runbook to the canvas

Figure 3-5.  Adding the command to the canvas

Chapter 3 ■ Azure Automation Runbook Types

63

You can see that it is inserted as .\CalaculateBlobCost.ps1.

In the Assets section, you can view all assets related to that specific Automation
account (Figure 3-8).

You can add the assets to the runbook again by selecting the Add to Canvas option.
When you insert the assets, they will be inserted using the corresponding activity
(Figure 3-9).

As you can see, editing the runbooks from the portal is thus made easy with many
point-and-play features that help you customize the runbooks.

The best practice while creating runbooks is to give a description at the beginning
of the runbook. Let’s take a look at the runbook that we imported. It starts with the
description that explains the runbook requirements in terms of inputs and expected
outputs (Figure 3-10).

Figure 3-7.  Adding a child runbook to the canvas

Figure 3-8.  Runbook Assets list

Figure 3-9.  Assets inserted to canvas

Chapter 3 ■ Azure Automation Runbook Types

64

Before starting the runbook, the parameters can be defined. This is a recommended
best practice if you want to reuse the runbook with different values each time that you run
it (Figure 3-11).

Parameters are defined inside a param statement. You can indicate whether the
parameters are mandatory. In this case, the parameter is not mandatory, and it will use
the default values provided (AzureCredential and AzureSubscriptionId). If no default
values are provided, as in the case of the parameter $ResourceGroupName, then a null
value will be used. All these parameters are of the type String; hence the inputs provided
during execution should be of the type String. The type will differ based on the input
values that you want to provide. For example, if you are providing numeric values, you
might want to add a parameter of type int.

Similarly, the OutputType command specifies the type of data returned by the script
(Figure 3-12).

The Get-AutomationPSCredential activity is used here to get values of the
Azure credential asset and pass it on to the Add-AzureRMAccount command for the
authentication against the Azure subscription (Figure 3-13).

Figure 3-11.  Runbook parameters

Figure 3-12.  Runbook output type

Figure 3-10.  Runbook description

Chapter 3 ■ Azure Automation Runbook Types

65

The subscription ID is again obtained from a variable asset.
Now the script moves on to the logical flow, wherein the target VMs are retrieved

by using the Get-AzureRmVM command and then started by using the Start-AzureRmVM
command (Figure 3-14).

As you can see in the example, PowerShell scripts that you might be running from
on-premises can be used as a runbook in Azure with minimal modification.

Figure 3-13.  Get Automation Credential asset values

Figure 3-14.  Runbook logical workflow

Chapter 3 ■ Azure Automation Runbook Types

66

PowerShell Workflow Runbooks
To create a new PowerShell Workflow-based runbook, go to your Azure Automation
account and choose Runbooks ➤ Add a Runbook. You can select the Quick Create option
and set the runbook type as PowerShell Workflow.

PowerShell workflows are based on Windows Workflow Foundation. PowerShell
Workflow based runbooks are slightly complex when compared to PowerShell runbooks
and needs additional changes to convert the PowerShell script to a workflow. It is
recommended to use workflows when you need checkpoints within the script or failure
recovery, for example.

One visible difference between PowerShell runbooks and PowerShell Workflow-
based runbooks is the usage of the Workflow keyword. The syntax is as follows:

Workflow <workflowname>
{
 <Commands>
}

The workflowname should be same as the runbook name. A workflow consists
of activities executed one after the other. The PowerShell cmdlets are automatically
converted to activities during execution.

InlineScript Activity
Some cmdlets that cannot be converted to an activity are run as is, using InlineScript.
However, some cmdlets are excluded from this process and cannot be executed from
within the script. You will get error messages if you try running those cmdlets from
within the runbook directly. Hence an InlineScript block should be declared, and the
commands should be executed from within the script block. The variables/parameters
declared in the runbook elsewhere are not available inside the InlineScript block by
default. If you want to call them within the InlineScript block, use the $Using scope
modifier. A sample InlineScript block is shown here:

InlineScript{

 $Vnet =$Using:Vnet
 $ResourceGroup = $Using: ResourceGroup

$vnet = Get-AzureRmVirtualNetwork -Name $VNet -ResourceGroupName
$ResourceGroup

}

This script is calling the parameters $Vnet and $ResourceGroup declared outside the
InlineScript block with the $Using scope definition.

Though InlineScript blocks are useful in many scenarios, some features of the
workflow such as parallel execution and checkpoints are not available inside them.

Chapter 3 ■ Azure Automation Runbook Types

67

Parallel Processing in the Workflow
One of the key features of workflows is the ability to execute activities in parallel. These
activities should be defined inside a parallel script block inside the workflow:

Workflow test
parallel {

 Get-Process –Name PowerShell*

 Get-Service –Name s*

 }
Write-output "Tasks completed"

}

Here the Get-Process and Get-Service commands are executed in parallel. Then
the parallel block is exited, and the command to write the output is executed.

If you want to execute a set of commands against few targets concurrently, use the
foreach -parallel construct. The syntax is as follows:

foreach –parallel ($<item> in $<collection>{

 sequence {

 <Activity1>
 <Activity2>

 }

Here Activity1 and Activity2 are executed against each item in the collection in
parallel. However, their execution order against any particular item will be sequential.

Checkpoints in the Workflow
While running the activities in a workflow, exceptions could be thrown. Instead of
executing the entire workflow from the beginning, you might want to resume the workflow
from the point where the exception was thrown. Checkpoints are placed in the workflow to
enable this. The command used is checkpoint-workflow. The syntax is as follows:

<Activity1>
checkpoint-workflow
<Activity2>

If an exception happens after Activity1, the workflow will start off from Activity2
when you execute the workflow the next time.

Chapter 3 ■ Azure Automation Runbook Types

68

Sample Use Case
The use case that I am going to discuss here is automated provisioning of VMs with the
number of data disks that you define. You can also specify the size of the data disks to
be provisioned. In Azure, you can attach data disks from the portal only after the VM
creation. Here we are automating the same process, wherein the VMs can be provisioned
with data disks already attached.

There is no runbook readily available in the gallery to do this task. Therefore, an
Azure PowerShell script to create a new Azure VM in the ARM portal was tweaked to
achieve this: https://msdn.microsoft.com/en-us/library/mt603754.aspx.

The tweaks include the following:

Converted the PowerShell script to workflow.

Minor changes to use existing storage and network.

Commands to add data disk.

Had to introduce InlineScript in the workflow so that the
PowerShell commands are executed independently. If this is
not done, it will throw errors due to issues in data conversion.

Introduced basic for loop to add data disks based on
provisioning requirements.

Here is the runbook:

Runbook:
 ===
workflow dynamicDDwithparamter
 {

 param (

 # If you do not enter anything, the default values will be taken

 # VM name, availability set, and NIC card name

 [parameter(Mandatory=$true)]

 [String]$VMName,

 [parameter(Mandatory=$true)]

 [String]$ComputerName,

 [parameter(Mandatory=$true)]

 [String]$AvailabilitySetname,

https://msdn.microsoft.com/en-us/library/mt603754.aspx

Chapter 3 ■ Azure Automation Runbook Types

69

 [parameter(Mandatory=$true)]

 [String]$InterfaceName,

 ## Compute - Name of VM to be created,Vm size, data disk name

 [parameter(Mandatory=$true)]

 [String]$UserName,

 [parameter(Mandatory=$true)]

 [String]$Password,

 ## Storage - Name of existing storage

 [parameter(Mandatory=$true)]

 [String]$StorageName = "testsql295p",

 ## Global - Uses an existing resource group

 [parameter(Mandatory=$true)]

 [String]$ResourceGroupName = "autotest",

 [parameter(Mandatory=$true)]

 [String]$Location = "WestEurope",

 �## Network - Name of existing network. This should match the network
#settings of other VMs in the target availability set

 [parameter(Mandatory=$true)]

 [String]$Subnet1Name = "Subnet1",

 [parameter(Mandatory=$true)]

 [String]$VNetName = "VNet10",

 [parameter(Mandatory=$true)]

 ## Datadisk - Provide number of data disks and size of the disks

 [Int]$Disknumber ,

 [parameter(Mandatory=$true)]

Chapter 3 ■ Azure Automation Runbook Types

70

 [Int]$DisksizeinGB ,

 ## Compute - VM size

 [parameter(Mandatory=$true)]

 [String]$VMSize = "Standard_A2"

)

 InlineScript{

 $VMName =$Using:VMName

 $StorageName = $Using:StorageName

 $ResourceGroupName = $Using:ResourceGroupName

 $Location = $Using:Location

 $InterfaceName = $Using:InterfaceName

 $Subnet1Name = $Using:Subnet1Name

 $VNetName = $Using:VNetName

 $ComputerName = $Using:ComputerName

 $VMSize = $Using:VMSize

 $AvailabilitySetname = $Using:AvailabilitySetname

 $UserName = $Using:UserName

 $Password = $Using:Password

 $Disknumber = $Using:Disknumber

 $DisksizeinGB =$Using:DisksizeinGB

$connectionName = "AzureRunAsConnection"
 # Get the connection "AzureRunAsConnection "
 �$servicePrincipalConnection=Get-AutomationConnection -Name

$connectionName
 "Logging in to Azure..."
 Add-AzureRmAccount `

 -ServicePrincipal `

Chapter 3 ■ Azure Automation Runbook Types

71

 -TenantId $servicePrincipalConnection.TenantId `

 -ApplicationId $servicePrincipalConnection.ApplicationId `

 �-CertificateThumbprint $servicePrincipalConnection.
CertificateThumbprint

$OSDiskName = $VMName + "OSDisk"

$dataDiskName = $VMName + "DataDisk"

$StorageAccount = Get-AzureRmStorageAccount -ResourceGroupName
$ResourceGroupName -AccountName $StorageName

"Collected storage account details ..."
Network - Creates Public IP, NIC card, and get VNet details
 "configure NIC..."

$PIp = New-AzureRmPublicIpAddress -Name $InterfaceName -ResourceGroupName
$ResourceGroupName -Location $Location -AllocationMethod Dynamic -Force

$vnet = Get-AzureRmVirtualNetwork -Name $VNetName -ResourceGroupName
$ResourceGroupName

$subnetconfig = Get-AzureRmVirtualNetworkSubnetConfig -VirtualNetwork $vnet

$Interface = New-AzureRmNetworkInterface -Name $InterfaceName
-ResourceGroupName $ResourceGroupName -Location $Location -SubnetId $VNet.
Subnets[0].Id -PublicIpAddressId $PIp.Id -Force

Compute configuration
Set up local VM object
 "creating VM object properties..."

$secpasswd = ConvertTo-SecureString $Password -AsPlainText -Force

$mycreds = New-Object System.Management.Automation.PSCredential ($UserName,
$secpasswd)

$AvailabilitySet = Get-AzureRmAvailabilitySet -ResourceGroupName
$resourcegroupName -Name $AvailabilitySetname

$VirtualMachine = New-AzureRmVMConfig -VMName $VMName -VMSize $VMSize
-availabilitysetID $AvailabilitySet.id

$VirtualMachine = Set-AzureRmVMOperatingSystem -VM $VirtualMachine -Windows
-ComputerName $ComputerName -Credential $mycreds -ProvisionVMAgent
-EnableAutoUpdate

Chapter 3 ■ Azure Automation Runbook Types

72

$VirtualMachine = Set-AzureRmVMSourceImage -VM $VirtualMachine
-PublisherName MicrosoftWindowsServer -Offer WindowsServer -Skus 2012-R2-
Datacenter -Version "latest"

$VirtualMachine = Add-AzureRmVMNetworkInterface -VM $VirtualMachine -Id
$Interface.Id

$OSDiskUri = $StorageAccount.PrimaryEndpoints.Blob.ToString() + "vhds/" +
$OSDiskName + ".vhd"

$VirtualMachine = Set-AzureRmVMOSDisk -VM $VirtualMachine -Name $OSDiskName
-VhdUri $OSDiskUri -CreateOption FromImage
 # Attach Data Disks

For ($i=1; $i -le $Disknumber; $i++) {
 $dataDiskName = $dataDiskName + $i

 �$DataDiskVhdUri01 = $StorageAccount.PrimaryEndpoints.Blob.ToString() +
"vhds/" + $dataDiskName + ".vhd"

 �$VirtualMachine = Add-AzureRmVMDataDisk -VM $VirtualMachine -Name
$dataDiskName -Caching 'ReadOnly' -DiskSizeInGB $DisksizeinGB -Lun $i
-VhdUri $DataDiskVhdUri01 -CreateOption Empty

 $dataDiskName = $VMName + "DataDisk"

 }

"created VM object properties..."
Create the VM in Azure
 "creating Virtual machine..."

New-AzureRmVM -ResourceGroupName $ResourceGroupName -Location $Location -VM
$VirtualMachine

"created Virtual machine..."

 }

}
==

Graphical Runbooks
Graphical runbooks use a point-and-play model, which makes it easier for
administrators to create and execute them with minimal PowerShell knowledge. Even
though Graphical runbooks use PowerShell under the hood, the process is transparent
to the user.

Chapter 3 ■ Azure Automation Runbook Types

73

You can either import a runbook from the gallery or create a new one from your
Automation account by choosing Runbooks ➤ Add a Runbook. Set the runbook type
to Graphical Workflow. The library items on the left panel are same as discussed earlier
for the PowerShell runbook, except that it has an additional RUNBOOK CONTROL item
available (Figure 3-15).

Runbook control activity includes Code and Junction activity types. The Code activity
can be used when you want to insert a set of PowerShell commands in the workflow. If
you add the code to the canvas and edit the same, you will get an option to insert the
PowerShell cmdlets (Figure 3-16).

Figure 3-15.  Runbook control asset

Figure 3-16.  Code activity

Chapter 3 ■ Azure Automation Runbook Types

74

You can also configure a retry logic for the code block (Figure 3-17).

Figure 3-17.  Retry logic

To start creating your Graphical runbooks from the edit panel, click the
corresponding cmdlet and choose Add to Canvas. Alternately, you can search for a
command and add it to the canvas (Figure 3-18).

Figure 3-18.  Searching for and adding a command to the canvas

After adding the command, double-click the command in the canvas to configure its
parameters (Figure 3-19).

Chapter 3 ■ Azure Automation Runbook Types

75

Parameter options are displayed, and you can choose one of those parameters based
on the workflow logic that you want to implement. Based on the chosen parameter set,
you can configure the individual parameters further (Figure 3-20).

Figure 3-19.  Configuring parameters of the command

Figure 3-20.  Configuring individual parameters

Chapter 3 ■ Azure Automation Runbook Types

76

The mandatory parameters are marked in red. You can select from a list of Data
Source drop-down options to configure the parameter values (Figure 3-21).

Figure 3-21.  Selecting a data source

Based on the data source selected, further reconfiguration options are provided.
For example, if the variable asset is selected, a list of available variable assets in the
subscription is presented to choose from (Figure 3-22).

Figure 3-22.  Variable asset list

You can configure optional additional parameters such as -Verbose: $true
(Figure 3-23).

Chapter 3 ■ Azure Automation Runbook Types

77

Based on your workflow logic, you can select the next cmdlet and link them together.
To link one activity to another, hover over the activity in the canvas until a small circle
appears at the bottom (Figure 3-24).

Figure 3-23.  Configuring additional parameters

Figure 3-24.  Linking commands

Chapter 3 ■ Azure Automation Runbook Types

78

Click and drag to the next activity box to create the link (Figure 3-25).

Figure 3-26.  Linking configuration options

Figure 3-25.  Clicking and dragging to link activity

Double-click the link to get further configuration options (Figure 3-26).

Chapter 3 ■ Azure Automation Runbook Types

79

The link type can be Pipeline or Sequence. If Pipeline is used, the destination
activity is executed only if the source activity produces an output, which will always be an
individual object. The number of times the destination activity is executed depends on
the number of such outputs from the source activity. Sequence links, on the other hand,
always run once and receive output from the source activity as an array of objects.

Pipeline is selected by default. The destination activity, which is Get-AzureRmVM,
will be executed if the source activity (Add-AzureRMAccount) is completed successfully.
Depending on the source activity output, the destination activity is executed once for
every object output from the source activity. If Sequence is selected, the destination
activity runs one time when the source activity execution is completed.

Error Link is by default set to No. You can toggle it to Yes if you want the destination
activity to be executed if the source activity emits an error.

You can configure the input and output of the runbook from the edit panel of the
runbook. Click Input and Output ➤ Add Input (Figure 3-27).

Figure 3-27.  Input and output configuration

Figure 3-28.  Input parameter

The name, type, and default values can be further configured (Figure 3-28).

Chapter 3 ■ Azure Automation Runbook Types

80

The parameter will be listed as the Data Source when you configure parameters for
your activity (Figure 3-29).

Figure 3-30.  Output as the data source

Figure 3-31.  Publishing the runbook

Figure 3-29.  Parameter listed as the data source

Similarly, you can define the output type as well, which will be used as a data source
for parameters. Alternately, for any destination activity, the output of source activity can
be provided as an input data source (Figure 3-30).

After configuring the runbook, you can test it from the Test pane. The last step is to
publish the runbook so that it is available in the Automation account (Figure 3-31).

Now, let’s look at a runbook from the Runbook Gallery to put together all the
concepts that we’ve discussed (Figure 3-32).

Chapter 3 ■ Azure Automation Runbook Types

81

This runbook stops ARM VMs based on the inputs provided (Figure 3-33). The entire
workflow is depicted in the edit pane in an easy-to-understand diagram.

Figure 3-32.  Sample runbook

Figure 3-33.  Graphical runbook edit pane

Chapter 3 ■ Azure Automation Runbook Types

82

In the first step, a runbook input parameter is used to retrieve the
AzureRunAsConnection value (Figure 3-34).

Figure 3-34.  Input parameter to retrieve AzureRunAsConnection

Figure 3-35.  Connecting to the target Azure account

The next step establishes a connection to the target Azure account (Figure 3-35).

The activity output of the previous activity is used as one of the input parameters,
and the value to be used is distinguished by the Field path.

A sequence link with conditional logic is created to three target activities (Figure 3-36).

Chapter 3 ■ Azure Automation Runbook Types

83

Depending on the input provided during execution and the evaluation of the
condition, the workflow will either get a single VM, get all VMs in a resource group, or
get all VMs in a subscription. It will then proceed to stop the VMs.

During execution, you need to provide the required parameters. In this case, all the
parameters are optional and have default values assigned if not provided during runtime
(Figure 3-37).

Figure 3-36.  Target activities

Figure 3-37.  Input parameters during execution

Chapter 3 ■ Azure Automation Runbook Types

84

If the resource group name is not provided, all resource groups in the subscription
will be selected by default, and all VMs in the subscription will be shut down. If you want
to shut down a VM, the resource group name and VMname should be provided as shown in
Figure 3-37.

Runbook Outputs
As in PowerShell, Azure Automation runbooks also communicate the status and output
as message streams. These streams include Output, Warning, Error, Verbose, and
Progress. The Debug stream in PowerShell for interactive users is not used in Azure
Automation runbooks. These message streams are written in the job history if you are
executing a published runbook. If executing the runbook from a Test pane, results are
written in the output pane.

Output Streams
The Write-output command should be used to create output objects. The most common
use case occurs when you call a child runbook inline from within a parent runbook. The
output objects are passed back to the parent runbook. Alternately, you can use the write-
output command from within a function, and the output objects will be passed back to
the runbook. The syntax of the command is as follows:

Write-Output
 [-InputObject] <PSObject[]>
 [-NoEnumerate]
 [<CommonParameters>]

The output type can be declared as an OutPutType attribute. The output type can be
integer, string, array, and so forth. For example:

[OutputType([string])]

Declaration of the output type helps defining the runbook logic, because it gives an
indication of the expected output.

Sample code snippets for PowerShell and PowerShell-based runbooks are shown
here:

Write-output -InputObject $Outputobject
$Outputobject
Write-output " Sample output"

For Graphical runbooks, the Input and Output menu (Figure 3-38) can be used to
declare the runbook output type.

Chapter 3 ■ Azure Automation Runbook Types

85

Message Streams
Message streams are used to provide warnings, errors, and verbose messages to the user.

Warning and error messages can be invoked by using the write-error and write-
warning cmdlets, respectively. Here is a sample code snippet for error and warning
messages that can be used in a runbook:

Write-Warning -Message " Warning message"
Write-Warning -Message "Error message"

Verbose messages help with debugging the runbook. These messages can be
enabled, if required, from the Runbook settings in the Azure portal (Figure 3-39).

Figure 3-38.  Declaring the output type in the runbook

Figure 3-39.  Enabling logging for verbose messages

Chapter 3 ■ Azure Automation Runbook Types

86

Summary
This chapter covered the various runbook types possible in Azure. The chapter also
provided a walk-through of runbook creation and customization as well as the output
streams of a runbook. We also covered a couple of use cases related to the different
runbook types.

■■ Additional Resources

https://docs.microsoft.com/en-us/azure/automation/automation-

troubleshooting-automation-errors

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-

and-messages

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

https://docs.microsoft.com/en-us/azure/automation/automation-troubleshooting-automation-errors
https://docs.microsoft.com/en-us/azure/automation/automation-troubleshooting-automation-errors
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-and-messages
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-and-messages
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

87© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_4

CHAPTER 4

Azure Automation DSC

PowerShell DSC is a configuration management solution from Microsoft that can be used
across both Windows and Linux platforms. It is aligned with the configuration as a code
concept, wherein you can define the desired state of your environments as simple text-
based configurations and ensure compliance against these configurations. PowerShell
DSC is supported in Azure Automation, where you can upload your DSC configurations,
compile them, and apply them to DSC nodes. This chapter covers the components of
PowerShell DSC; you’ll learn how to create and apply DSC configurations and how the
whole workflow can be done again via Azure Automation DSC.

PowerShell DSC
PowerShell DSC works based on the concept of configuration, resources, and the DSC
engine, which is the local configuration manager.

Configuration
The configuration defines the framework of DSC, which includes the variables to be used,
the target nodes, and the resources for configuring those target nodes. DSC uses PowerShell
syntax and starts with the configuration keyword. Sample configuration is given here:

Configuration TestConfiguration {

 Node localhost{
 WindowsFeature requiredfeature1 {
 Ensure = "Present"
 Name = "Web-Server"
 }
 Service requiredservice1 {
 Name = "W3SVC"
 StartupType = 'Automatic'
 State = 'Running'

 }
 }
}

https://doi.org/10.1007/978-1-4842-3219-4_4

Chapter 4 ■ Azure Automation DSC

88

This is a basic configuration that, when applied against nodes, ensures that the
Web-Server feature is present in the target node. It will also ensure that the World
Wide Web Publishing service is started. The target node here is localhost. You can also
input the hostname as a parameter by using a param block before the Node block. The
configuration can be updated as follows:

Configuration TestConfiguration {
param(
 [string[]]$ComputerName="WebVM1"
)

 Node $ComputerName {
 WindowsFeature requiredfeature1 {
 Ensure = "Present"
 Name = "Web-Server"
 }
 Service requiredservice1 {
 Name = "W3SVC"
 StartupType = 'Automatic'
 State = 'Running'

 }
 }
}

The configuration files can be saved as a .ps1 file and compiled as a PowerShell
function to create a Management Object Format (MOF) file. The MOF file contains the
desired configuration, which will be applied to the target nodes. Execution of this MOF
file is carried out either in the Push or Pull mode by the Local Configuration Manager. We
will revisit the process later in this chapter when we discuss the DSC engine.

Resources
Inside each Node block, there can be multiple resource blocks that define the action to
be taken on those nodes. In the preceding example, in each target node, DSC will ensure
that the Web-Server feature is installed. A set of built-in resources can be used in DSC
configurations, or you can create your own custom resources.

The following are some of the important built-in resources available in DSC:

WindowsFeature: Installs a Windows feature and ensures that
the feature is present in the target node

WindowsProcess: Ensures that a given process is started and
present in the target node

Archive: Used to unpack a zip file to a specified destination path

User: Creates and manages local user accounts

Group: Creates and manages local groups

Chapter 4 ■ Azure Automation DSC

89

Log: Logs messages in DSC Analytics log during execution

Package: Used to install/uninstall packages on the target node

Registry: Manages Registry keys

Script: Executes PowerShell scripts

Service: Manages services

File: Used for file and folder management

Environment: Used for managing system environment variables

In addition to these main resources, other built-in resources are available
for functionalities defining dependencies, enabling optional features, installing
package .cab files, and more. For example, these resources include but are not
limited to WaitforAllResource, WaitforAnyResource, WindowsFeatureSet, and
WindowsOptionalFeatureSet. We will not go into extensive detail about the resources in
this chapter; instead we’ll focus on a use-case perspective.

The command Get-DSCResource can be used with the -syntax parameter to get the
syntax of the built-in resources, and you can use that as a reference to create the resource
(Figure 4-1).

Figure 4-1.  Get-DSCRecource command syntax

Chapter 4 ■ Azure Automation DSC

90

Now let’s look at few sample resource blocks using some of the built-in resources.
You have already seen an example of the WindowsFeature and Service resources in the
previous section. Let’s revisit the example so you can understand what that code will
accomplish:

WindowsFeature requiredfeature1 {
 Ensure = "Present"
 Name = "Web-Server"
 }
 Service requiredservice1 {
 Name = "W3SVC"
 StartupType = 'Automatic'
 State = 'Running'
 }

The WindowsFeature resource will ensure that the Web-Server feature is installed
on the target node. The Service feature, on the other hand, ensures that the World Wide
Web publishing service is set to Automatic and is in the running state. Note that the Name
used here is not same as the display name of the feature/service. You can get the name
of the feature and service by using the Get-WindowsFeature and Get-Service cmdlets,
respectively.

Here’s another example:

File Websitenew {
 Ensure = 'Present'
 SourcePath = 'c:\websitecontent\index.html'
 DestinationPath = 'c:\inetpub\wwwroot'
 }

This example uses the built-in resource file, and copies the file from the source
c:\websitecontent\index.html to the destination c:\inetpub\wwwroot. The use case
here is copying a custom index.html file to the inetpub root.

Consider this example:

Archive TestArchive {
 Ensure = 'Present'
 Path = 'C:\Archivetest\Test.zip'
 Destination = 'c:\Archivetest\testfolder'
}

Here, the built-in resource archive is used. The contents of the zip file Test.zip will
be extracted to the Destination path.

https://technet.microsoft.com/en-us/library/jj205469.aspx

Chapter 4 ■ Azure Automation DSC

91

Now let’s consider a use case of a JDK installation. The following sample code shows
how to install the .exe file by using the Package resource and then set the JAVA_HOME
environment variable by using the Environment resource:

Package JavaInstall{
 Ensure = 'Present'
 Path = 'C:\test\jdk-8u131-windows-x64.exe'
 Name = 'Java 8 Update 131 (64-bit)'
 ProductId = ''
 Arguments = '/s STATIC=1 WEB_JAVA=0'
 }
Environment Javahome{
 Ensure = 'Present'
 Name = 'JAVA_HOME'
 Value = 'C:\Program Files\Java\jdk1.8.0_131'
 }

This can be useful when you want to perform a hands-free installation of JDK using
DSC. The .exe file is available at the path C:\test\jdk-8u131-windows-x64.exe. You
need to specify the name, product ID if known (it will work even if we leave it blank for
JDK), and any arguments that you want to pass during installation. Here we are passing
the arguments of a silent installation of JDK.

DSC Engine (Local Configuration Manager)
The Local Configuration Manager, or LCM, is responsible for applying the configuration
on the target nodes and maintaining the as is state, which is the highlight of DSC. The
LCM manages Pull and Push modes as well as partial configurations. DSC can work in
either a Pull mode or Push mode architecture.

DSC Push Mode
The Push mode is the manual approach of applying a DSC configuration. The
configurations are pushed to the target nodes by an administrator using the Start-
DSCConfiguration cmdlet. You can point to the MOF file to be used by using the
-Path parameter. The first step is to compile the configurations stored as .ps1 files as
PowerShell functions. For example, if the PowerShell script name is example.ps1, you can
compile it from a PowerShell prompt as shown in Figure 4-2.

Figure 4-2.  Compiling a DSC configuration

Chapter 4 ■ Azure Automation DSC

92

You can see that it creates a folder of the same name with a MOF file inside it
(Figure 4-3).

It is this MOF file that will be applied by using the Start-DSCConfiguration
command in Push mode as follows. You can use the -wait or -verbose commands to get
details of the operation. The command expects the MOF file to be present in the location
from which the command is executed. Alternately, you can point to the folder containing
the MOF file by using the -path command (Figure 4-4).

Figure 4-3.  Folder with MOF file

Figure 4-4.  Output of Start-DscConfiguration

Chapter 4 ■ Azure Automation DSC

93

By default, the configuration is applied to the machine from which the command
is executed. To push the configuration to a remote computer, use the -computername
parameter. The architecture is depicted in Figure 4-5.

No specific setup is required for leveraging the Push mode architecture. However,
it is not scalable when we consider large deployments and environment management.
A more ideal use case is testing DSC configurations, since that does not require setup of
an additional server as a central repository for configurations.

Figure 4-5.  DSC Push architecture

Chapter 4 ■ Azure Automation DSC

94

DSC Pull Mode
In Pull mode, as the name indicates, a centralized pull server comes into the picture.
In this architecture, the LCM on the target nodes periodically contacts the pull server
for compliance checks. The configurations for the nodes are sent by the pull server,
which is then executed by the LCM on the target nodes. The pull server could be a web
server configured to provide an OData web service or an SMB share to hold the DSC
configurations (Figure 4-6).

Azure Automation DSC uses Pull mode and comes with a built-in pull server. This
reduces the complications of setting up an additional pull server to manage clients,
thereby reducing operational overhead. In both the Pull and Push models, the engine that
finally applies the configuration on the target nodes is the Local Configuration Manager.

Figure 4-6.  DSC Pull architecture

Chapter 4 ■ Azure Automation DSC

95

Configuration Management Using LCM
LCM is available by default on all machines running PowerShell 4.0 or above. It
controls how the configurations are applied and managed depending on the Push/Pull
architecture used. You can examine the current configuration of LCM by executing the
command Get-DSCLocalConfigurationManager (Figure 4-7).

Let’s review some of the important properties revealed by this command:

RefreshMode: In this configuration, the property is set to Push.
In a pull server architecture, the value will be set to Pull. It
can also be updated as Disabled if you do not want DSC to
manage the desired state of your nodes. In one use case, you
are using other configuration management tools and want to
avoid conflicts.

ActionAfterReboot: The options available are
continueconfiguration and stopconfiguration. This
property defines the action to be taken on the target node if
it reboots on applying a configuration.

Figure 4-7.  Get-DSCLocalConfigurationManager command output

Chapter 4 ■ Azure Automation DSC

96

ConfigurationModeFrequencyMins: This property defines the
frequency at which the LCM checks for compliance against
the latest locally available configuration. This configuration
is checked and downloaded based on the value of the
RefreshFrequencyMins property. The value is set to 15
minutes by default.

RefreshFrequencyMins: This property is significant in Pull
mode. It denotes the interval at which the configuration is
downloaded by LCM to the target nodes.

ConfigurationMode: This property defines how the
configurations are applied by LCM on target nodes. These are
the possible values:

ApplyOnly: If this value is used, the configuration is applied
and LCM does not take any further action until another new
configuration is pushed to it (Push mode) or pulled to it by
DSC when it contacts the pull server.

ApplyAndMonitor: The configuration is monitored by LCM,
and any deviations are marked in the logs.

ApplyAndAutoCorrect: If this value is used, any configuration
drifts that are detected are logged and will be corrected in
accordance with the latest available configuration file.

AllowModuleOverwrite: If this value is set to true, the
configuration on the target node is replaced by the latest
modules downloaded.

RebootNodeIfNeeded: When changes are made to target
nodes by using the DSC configuration, you might be required
to reboot the systems for the changes to be effective. This
property indicates whether the system should be rebooted
after applying the configuration.

Using PowerShell DSC on Premises
The entire process has three phases, regardless of whether the architecture is using a
Push or Pull model:

	 1.	 Authoring phase: The DSC configurations are created as
PowerShell functions. The editing can be done in tools such as
Notepad or PowerShell ISE.

	 2.	 Staging phase: The configuration is compiled and converted
to MOF files. In a Push architecture, the configuration
is pushed to the target nodes. In a Pull architecture, the
configuration is stored in the pull server and sent to the target
nodes during the refresh interval.

Chapter 4 ■ Azure Automation DSC

97

	 3.	 Execution phase: In this “make it so” phase, LCM applies the
compiled MOF files against the target nodes. The MOF files
are stored locally in the %system32%\configuration folder
(Figure 4-8).

The current.mof file will have the latest configuration applied to the node. This is also
backed up as backup.mof in the same folder. Whenever a new configuration is applied,
the current.mof file is renamed to previous.mof. Another file named pending.mof would
be present if execution of any configuration happens to fail. LCM will try to execute the
pending.mof file if it is present.

Sample Use Case
Now let’s put together what we have discussed so far in a sample use case and apply it to a
target node by using a simple DSC configuration.

The DSC configuration file that I am going to use has the following contents:

Configuration DSCdemo {

 # Import the module that contains the required DSC resources
 Import-DscResource -ModuleName PsDesiredStateConfiguration

 # This configuration will be applied to the localhost
 Node 'localhost' {

 �# The first step is to ensure that the Web-Server feature is
installed

 WindowsFeature WebServer {
 Ensure = "Present"
 Name = "Web-Server"
 }

Figure 4-8.  Contents of the %system32%\configuration folder

Chapter 4 ■ Azure Automation DSC

98

 �# The File resource is used to copy the index.html file to the
website root folder.

 File WebsiteContent {
 Ensure = 'Present'
 SourcePath = 'c:\test\index.html'
 DestinationPath = 'c:\inetpub\wwwroot'
 Force = $true
 }
 �# Here the service resource is being called to keep the World Wide

Web Publishing service running
 Service requiredservice1 {
 Name = 'W3SVC'
 StartupType = 'Automatic'
 State = 'Running'
 }

 �# JDK is being installed using the Package resource. It expects the
exe file to be present in the location 'C:\test'

 Package PackageExample{
 Ensure = 'Present' # You can also set Ensure to "Absent"
 Path = 'C:\test\jdk-8u131-windows-x64.exe'
 Name = 'Java 8 Update 131 (64-bit)'
 ProductId = ''
 Arguments = '/s STATIC=1 WEB_JAVA=0'
 }
 Environment Javahome{
 Ensure = 'Present'
 Name = 'JAVA_HOME'
 Value = 'C:\Program Files\Java\jdk1.8.0_131'
 }

 }
}

The comments provide a good explanation of the desired state that will be achieved
by applying this configuration. In a nutshell, it will install the Web-Server feature. It
copies over an index.html file to the root folder of the server, ensures that the World
Wide Web publishing service is started, installs the JDK package, and sets the JAVA_HOME
environment variable. Let’s save this configuration as DSCdemo.ps1.

Chapter 4 ■ Azure Automation DSC

99

Figure 4-10.  Start-DscConfiguration in progress

In this use case, I am executing the DSC configurations from the PowerShell ISE.
The first step is to compile and create the MOF file (Figure 4-9).

In the next step, we will apply the MOF against the target node by using the
start-DSCconfiguration command. In the PowerShell ISE, a progress bar indicates
the progress of execution (Figure 4-10).

The command used for execution is Start-DscConfiguration -path .\DSCdemo
-wait -verbose.

The output is shown in Figure 4-11.

Figure 4-9.  Creating the MOF file

Figure 4-11.  Start-DscConfiguration verbose output

Chapter 4 ■ Azure Automation DSC

100

On reviewing the output, we can see that several activities are happening after we
apply the configuration:

DSC checks whether the Web-Server feature is installed and
confirms that it exists.

The file index.html is copied over from the source location to
the inetpub root.

Starts the W3SVC service.

Checks for the environment variable JAVA_HOME. It is not
found, and hence DSC creates the environment variable.

Installs the JDK package with the provided parameters.

Azure Automation DSC
Azure Automation DSC is basically PowerShell DSC implemented via the Pull architecture
into the Azure Automation suite. The pull server is built in by default. You can upload
the DSC configurations to the Azure portal, compile them, and then apply them to target
nodes. The target nodes in this case could be Azure VMs, on-premises VMs, or VMs in other
platforms such as AWS. Azure Automation DSC provides a truly hybrid and centralized way
of managing the configuration of all your systems from the Azure portal GUI.

Let’s look at the DSC components from the Azure portal. You can view them listed
under your Configuration Management in your Azure Automation account (Figure 4-12).

Figure 4-12.  DSC components in the Azure portal

Chapter 4 ■ Azure Automation DSC

101

DSC Configurations
The PowerShell DSC configurations should first be created in an editor such as Notepad
or the PowerShell ISE and then uploaded to Azure Automation DSC as a .ps1 file.

	 1.	 In your Azure Automation account, select DSC Configuration
from the overview panel or from Configuration Management.
Click the Add a Configuration option (Figure 4-13).

Let’s select the same demo script that we used earlier in the
on-premises example (Figure 4-14).

Figure 4-13.  Adding a DSC configuration

Figure 4-14.  Selecting a script

Chapter 4 ■ Azure Automation DSC

102

	 2.	 The name of the configuration will be automatically retrieved
when you upload a DSC configuration with proper syntax.
Click OK to import the configuration. After it’s imported, it
will be listed under DSC Configurations in the Automation
account with Authoring status as Published (Figure 4-15).

	 3.	 When you click the published configuration, it gives you
additional options for management (Figure 4-16).

Figure 4-15.  DSC authoring status

Figure 4-16.  DSC published configuration management

Chapter 4 ■ Azure Automation DSC

103

	 4.	 You can compile the configuration from here, delete it,
or export it as a .ps1 file from the portal. Click the View
Configuration Source option to see the content of the
configuration (Figure 4-17).

■■ Note  Editing the DSC configuration is not possible from the Azure portal at the time of
writing this book.

Figure 4-17.  Viewing the DSC source

Chapter 4 ■ Azure Automation DSC

104

	 5.	 The next step is to compile the configuration. Click Compile.
You will get a prompt to confirm the action. After compiling,
the configurations will be placed in the built-in DSC pull
server in Azure, and any existing configurations with the same
name will be replaced. Click the Yes option, and the request
will be queued for compilation (Figure 4-18).

	 6.	 The configuration is then queued for compilation. After the
compilation is completed, the pane will show the status
(Figure 4-19).

Figure 4-19.  Compilation job status

Figure 4-18.  Compiling the DSC configuration

Chapter 4 ■ Azure Automation DSC

105

	 7.	 Information about the node configuration that is available on
the pull server after compilation is also displayed (Figure 4-20).

	 8.	 If you click the job compilation status, additional information
is displayed, such as errors, warnings, and exceptions. You can
click each of the tabs to get additional information (Figure 4-21).

Figure 4-20.  Node configuration on the pull server

Figure 4-21.  Job output

Chapter 4 ■ Azure Automation DSC

106

DSC Node Configurations
Node configurations are the MOF files created after compiling the DSC configurations.
You can view the list of MOF files present in the Azure Automation DSC pull server by
choosing Azure Automation ➤ Configuration Management ➤ DSC Node Configuration
(Figure 4-22).

The DSCdemo config that we compiled in the previous step is also listed. You
can see that there is an option to add a Node configuration. If you have compiled a
DSC config locally that created an MOF file, it can be uploaded here. Click the Add a
NodeConfiguration option. Browse and upload the MOF file. Provide the name of the
configuration. The node configuration name will be created automatically after you
provide the configuration name (Figure 4-23).

Figure 4-22.  MOF files in the pull server

Figure 4-23.  Uploading the MOF file

Chapter 4 ■ Azure Automation DSC

107

The uploaded node configuration is now available in the DSC pull server along with
the other node configurations that were compiled from the Azure portal (Figure 4-24).

This is a good example of flexibility of the Azure Automation platform. Users can
choose to compile and create the MOF files directly from the portal, or bring in already
compiled configurations that they might be using in their existing infrastructure.

Now that the DSC configuration is imported, compiled, and made available in the
Azure Automation DSC pull server, the next step is to apply the configurations against
target nodes.

Figure 4-24.  Uploaded MOF listed in DSC pull server

Chapter 4 ■ Azure Automation DSC

108

DSC Nodes
Azure Automation DSC can be used to manage Azure VMs (both classic and ARM),
VMs in AWS, and Windows and Linux machines (physical and virtual) on-premises or
hosted on any other third-party cloud service provider platform. Let’s take the example of
onboarding an Azure VM in Azure Automation DSC:

	 1.	 Go to Automation Accounts ➤ Configuration Management ➤
DSC Nodes. Click the Add Azure VM option (Figure 4-25).

	 2.	 Select the VM that you want to onboard. Click OK (Figure 4-26).

■■ Note A s you can see in the warning message in Figure 4-26, Linux machine VMs,
even if they are listed in the portal, cannot be onboarded directly from the portal. It should
be done with a registration script. Azure classic VMs should also be onboarded using an
alternate process of installing the DSS VM extension separately.

Figure 4-26.  Selecting a VM to be onboarded

Figure 4-25.  Adding an Azure VM

Chapter 4 ■ Azure Automation DSC

109

	 3.	 The next step is configuration of registration data. This is
nothing but the LCM properties to be set on the target node.
The properties of LCM are set, and the node will be registered
with Azure Automation DSC upon completion (Figure 4-27).

The properties being set here are as follows:

The Automation account registration key.

A node configuration to be assigned to the VM. The DSCdemo
configuration that we compiled earlier is selected from the
drop-down list.

Refresh frequency, which is same as the RefreshFrequencyMins
property of the LCM. It is the duration within which LCM
contacts the Azure Automation DSC pull server to get the latest
configurations.

Configuration mode frequency, which is same as the
ConfigurationModeFrequencyMins property of the LCM.
It denotes the interval at which LCM attempts compliance
against the latest configuration downloaded from the Azure
Automation DSC pull server.

Figure 4-27.  Registration data

Chapter 4 ■ Azure Automation DSC

110

Configuration mode, which is the same as the
ConfigurationMode property of the LCM. You can select
from the following values in the drop-down menu:
ApplyAndMonitor, ApplyOnly, or ApplyAndAutoCorrect.

Module overwrite is allowed, so that new configurations
downloaded from the pull server can overwrite existing
modules on the target nodes.

Reboot of the node is allowed if it is required to fully apply the
configuration.

Action After Reboot can be either ContinueConfiguration
or StopConfiguration. In this example, we have selected
ContinueConfiguration.

	 4.	 Click OK and then click Create to start the onboarding
process. If you click notifications, you can see that the
DSC VM extension registration request is being submitted
(Figure 4-28).

	 5.	 If all goes well, you will get a notification that the DSC
registration is initiated successfully (Figure 4-29).

Figure 4-29.  Portal notification

Figure 4-28.  DSC extension registration

Chapter 4 ■ Azure Automation DSC

111

What happens in the back end is that Azure platform initiates
the installation of the DSC extension in the Azure VM and
registers it with the Azure Automation DSC service by using
the primary registration key.

	 6.	 After successful registration, the configuration that we
selected during registration (DSCDemo) is applied. You can view
the compliance of the node from the portal under DSC Nodes
(Figure 4-30).

	 7.	 Click the node to view additional details (Figure 4-31).

Figure 4-30.  Node compliance status

Figure 4-31.  Node additional details

Chapter 4 ■ Azure Automation DSC

112

	 8.	 You can drill down to further details on the compliance
against each resource by clicking the available report
(Figure 4-32).

	 9.	 In the DSCDemo sample config, we configured WindowsFeature,
File, Service, Environment, and Package resources. The
portal provides the compliance information against each of
those resources, as shown in Figure 4-32.

If you log in to the target Azure VM, you can see that the node is configured as per
the instruction in the DSC config. The Web-Server feature is installed, the W3SVC service is
running, the index.html file is copied over to the inetpub root, the Java SDK is installed,
and the JAVA_HOME environment variable is set.

Figure 4-32.  Compliance details

Chapter 4 ■ Azure Automation DSC

113

Since the configuration mode frequency is set to 15 mins, LCM will ensure
compliance against the config every 15 minutes, and the status will be displayed in the
portal (Figure 4-33).

This comprehensive reporting capability is one of the key highlights of Azure
Automation DSC. An administrator will get a view of the compliance status of all target
nodes from a single management interface.

Onboarding Linux Machine to Azure
Automation DSC
PowerShell DSC can be used to manage Linux machines also because MOF uses open
standards compatible with Linux. You can onboard your Linux physical/virtual machines
hosted on-premises or in Azure to Azure Automation DSC and manage them through
the portal. In this section, we will onboard an Ubuntu 14.04 LTS machine to Azure
Automation DSC.

Figure 4-33.  LCM compliance check

Chapter 4 ■ Azure Automation DSC

114

First download the required packages by using the following commands:

wget https://github.com/Microsoft/omi/releases/download/v1.1.0-0/omi-
1.1.0.ssl_100.x64.deb
wget https://github.com/Microsoft/PowerShell-DSC-for-Linux/releases/
download/v1.1.1-294/dsc-1.1.1-294.ssl_100.x64.deb

Install the packages by using the following command:

sudo dpkg -i omi-1.1.0.ssl_100.x64.deb dsc-1.1.1-294.ssl_100.x64.deb

The output of a successful installation is shown in Figure 4-34.

Figure 4-34.  DSC package installation output

Chapter 4 ■ Azure Automation DSC

115

The scripts for Linux DSC operations can be found at/opt/microsoft/dsc/Scripts
(Figure 4-35).

Let’s check the current configuration of LCM by using the
GetDscLocalConfigurationManager.py command (Figure 4-36).

We can see that by default RefreshMode is set to PUSH. Let’s register this machine to
Azure Automation DSC. A script is available for this in the scripts folder, which should be
executed with the Azure Automation registration key and URL as parameters:

sudo ./Register.py <Automation account registration key>
<Automation account registration URL>

Figure 4-35.  DSC scripts

Figure 4-36.  Current configuration of LCM

Chapter 4 ■ Azure Automation DSC

116

The registration key and URL can be found in the Azure portal; select Automation
Account ➤ Account Settings ➤ Keys.

On successful execution, you should get the following output (Figure 4-37).

If we check the LCM configuration status now, RefreshMode will be set to Pull, and
the corresponding Azure Automation pull server values should be reflected (Figure 4-38).

Figure 4-37.  Registration output

Figure 4-38.  RefreshMode value

Chapter 4 ■ Azure Automation DSC

117

The node will be reflected in the Azure portal also under the DSC nodes (Figure 4-39).

Note that the node configuration is not present because we haven’t applied any DSC
configurations yet.

Select the node and click Assign Node Configuration to assign a configuration from the
list of compiled configs available in the Azure Automation DSC pull server (Figure 4-40).

Azure Automation DSC provides a platform-independent way of managing the
desired state of your infrastructure from a centralized portal. Users can create DSC
configs, import them to Azure Automation DSC, and ensure compliance against the
target workloads, all from the Azure portal. The rich reporting capabilities built into
Azure Automation DSC make it easier for administrators to ensure compliance of hybrid
environments using this service.

Figure 4-39.  Ubuntu node reflected in the Azure portal

Figure 4-40.  Assigning a node configuration

Chapter 4 ■ Azure Automation DSC

118

Summary
This chapter covered the fundamentals of PowerShell DSC. You learned the key
components, such as configurations, resources, and LCM, as well as the pull and push
architecture and how it all maps to Azure Automation DSC in the Azure portal. We also
covered one sample use case in which a target node on-premises and in Azure was
configured using the same DSC config. The important takeaway is that you can easily
onboard your existing DSC configurations to the Azure Automation DSC platform and
manage your target nodes from the Azure portal.

■■ Additional Resources

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-

started

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

119© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_5

CHAPTER 5

Hybrid Cloud Automation

Azure Automation is a comprehensive solution that can be used to automate
administrative tasks in environments hosted in Azure as well as in on-premises
datacenters or even third-party cloud service providers. The management of the latter
(on-premises, third-party hosting provider, or third-party cloud service providers) is
done through Azure Automation Hybrid Runbook Worker. It is also integrated with
Operations Management Suite, which takes care of the agent installation, management,
and monitoring. This chapter reviews the features of Hybrid Runbook Worker and walks
through its usage in Automation scenarios. We will start with a small introduction to
Operations Management Suite and how it integrates with Azure Automation.

Operations Management Suite and Azure
Automation
Operations Management Suite (OMS) is the management-as-a-service offering hosted
in Azure. It is based on services hosted in Azure that cater to specific management tasks.
It uses an agent-based architecture and can be used to manage both your on-premises
and cloud-hosted infrastructure. OMS has several built-in solutions that can be used for
specific management tasks including patch management, threat analysis, health checks
on systems such as Active Directory (AD) and Structured Query Language (SQL), to name
a couple. It also provides a host of other features such as integration with Power BI and
Office 365. The four main components of OMS are as follows:

•	 Log Analytics: This service monitors and collects logs from
various sources, stores it in Azure storage, and then analyzes the
data and provides valuable insights on your environment based
on the same.

•	 Automation: This is where Azure Automation fits in. It can be
purchased as part of the Operations Management Suite or can
be availed as a service from within the Azure portal. However,
to use the hybrid worker features for executing Automation
tasks on systems hosted on-premises, the OMS workspace is a
prerequisite.

https://doi.org/10.1007/978-1-4842-3219-4_5

Chapter 5 ■ Hybrid Cloud Automation

120

•	 Azure Backup: This cloud-based backup solution offered by Azure
is part of the Operations Management Suite. It can be used for
backing up files/folders and applications hosted in systems in
Azure and on-premises. It can also be used for taking VM-level
backups of Azure VMs.

•	 Azure Site Recovery: Azure Site Recovery (ASR) is the disaster
recovery as a service using Azure, and is part of the Operations
Management Suite. The solution offers Azure as a secondary
datacenter in case of a disaster recovery (DR) scenario. If
customer has an already existing secondary datacenter, ASR
can be used for orchestrating the DR between the primary and
secondary sites.

Azure Automation is one of the key pillars of OMS; many solutions in OMS integrate
with Azure Automation to initiate remediation tasks. For example, you can set an alert
for the occurrence of a specific incident and then call a runbook as a remediation step.
You should link your Automation account with OMS and call the runbooks associated
with that Automation account directly from the OMS workspace. Alternately, you can
create webhooks for Automation runbooks and leverage them for OMS alert remediation.
An OMS workspace is required if you want to set up Azure hybrid workers to execute
Automation runbooks against on-premises target nodes.

Getting Started with Hybrid Runbook Worker
Hybrid Runbook Worker is closely integrated with the OMS workspace and the
Automation and Control solutions associated with it. Having an OMS workspace is a
prerequisite if you want to use Hybrid Runbook Worker. The Automation and Control
solutions should be configured to integrate with the desired Automation account where
your runbooks are stored. This Automation account should be in the same region,
subscription, and resource group as your Automation account. In addition, there is a
dependency on the solution named Automation Hybrid Worker. This solution should be
added to the OMS workspace so that the necessary PowerShell modules are downloaded
to the target machine.

Hybrid Runbook Worker Architecture
The architecture of an environment integrated with Azure Automation and OMS using
Hybrid Runbook Worker is shown in Figure 5-1.

Chapter 5 ■ Hybrid Cloud Automation

121

The integration of on-premises machines with OMS is done by installing the
Microsoft Management Agent (MMA). This agent can be downloaded from the OMS
workspace. You will also need the workspace ID and keys for integration. This process
is discussed in detail in the next section. The role of OMS is to manage MMA. Once the
connection with the OMS workspace is established, you need to configure the Hybrid
Runbook Worker so that it is added to the right Hybrid Worker Group in the Automation
account. The agent will then contact the Azure Automation account and pull the relevant
runbooks and instructions required for executing the commands. Any assets required
for executing the runbooks are also retrieved by the agent. All transactions use the Pull
model, so there is no inbound firewall requirement. The machine where the agent is
installed should have a connection to the Internet over port 443 and a connection to
Azure Automation URLs.

Hybrid Runbook Workers are logically grouped as Hybrid Runbook Worker Groups
in the Azure portal. To get a list of Hybrid Worker Groups associated with an Automation
account, go to Automation Account ➤ Overview ➤ Hybrid Worker Groups (Figure 5-2).

Figure 5-1.  Hybrid Runbook Worker architecture

Chapter 5 ■ Hybrid Cloud Automation

122

Hybrid Worker Groups can have a single worker or multiple workers for high-
availability purposes. When you initiate the execution of a runbook, it is the Hybrid
Worker Group that you select as a target and not a specific member. This decision is made
by the member of the group.

To add a new hybrid worker, click the Hybrid Worker Groups tab from the overview
and click Configure. This will provide you with a set of instructions on how to configure a
Hybrid Runbook Worker (Figure 5-3).

Figure 5-3.  Instructions for configuring Hybrid Runbook Worker

Figure 5-2.  Hybrid Worker Groups

Chapter 5 ■ Hybrid Cloud Automation

123

Setting Up OMS and Linking It with Azure
Automation
You can sign up for OMS at http://microsoft.com/OMS or alternately create a workspace
from within your Azure subscription. The step by step process of creating a workspace
from your Azure Subscription and linking it with Azure Automation is as follows:

	 1.	 To create a workspace from the Azure portal, click New ➤
Data + Analytics ➤ Log Analytics (Figure 5-4).

Figure 5-4.  Selecting Log Analytics

	 2.	 Fill in the details required to create the OMS workspace
(Figure 5-5).

http://microsoft.com/OMS

Chapter 5 ■ Hybrid Cloud Automation

124

Specifically, provide the following details:

In the OMS Workspace text box, provide a name for the
workspace, or you can link an existing workspace.

Choose the subscription and the Resource Group.

Choose the Location. Note that the Automation account
integration with OMS required for Hybrid Runbook Worker
is available only in few regions as of writing this book. You
can see the latest information on Azure service availability by
region at https://azure.microsoft.com/en-in/regions/
services/. Check for availability of the Automation and
Control service.

The Pricing Tier to be used is either Free, or Per Node if you
want to use Automation and Control solutions.

	 3.	 From Azure Portal ➤ Log Analytics, select the newly created
OMS work space. Click OMS portal to access the newly
created workspace (Figure 5-6).

Figure 5-5.  Fill in details to create OMS Workspace

https://azure.microsoft.com/en-in/regions/services/
https://azure.microsoft.com/en-in/regions/services/

Chapter 5 ■ Hybrid Cloud Automation

125

	 4.	 The next step is to add the Automation solution from the OMS
workspace so that we can use Hybrid Runbook Worker.

	 5.	 Click the OMS home page, click Solutions Gallery, and select
Automation and Control ➤ Configure Workspace (Figure 5-7).

Figure 5-6.  New OMS workspace

Figure 5-7.  Configuring the workspace

	 6.	 Link your target Automation account with OMS. If an
Automation account exists in the same subscription, resource
group, and location as your OMS workspace, it will be
listed under Use Existing. Otherwise, you can create a new
Automation account. In this example, I am going to create a
new Automation account. Click OK and then Close (Figure 5-8).

Chapter 5 ■ Hybrid Cloud Automation

126

	 7.	 If you check in the Azure portal, you can see that this
Automation account is now created in the same resource
group and location as my OMS workspace (Figure 5-9).

Figure 5-9.  Created account in the Azure portal

Figure 5-8.  Creating a new automation account

	 8.	 Now that the Automation account and the OMS workspace
are linked, we will add the Automation Hybrid Worker
solution. This will ensure that Hybrid Runbook Worker is
automatically downloaded to the nodes that you onboard to
OMS.

Chapter 5 ■ Hybrid Cloud Automation

127

	 9.	 From the OMS workspace, go to Solutions Gallery ➤ Select
Automation Hybrid Worker ➤ Add (Figure 5-10).

Figure 5-10.  Adding Automation Hybrid Worker

Figure 5-11.  Downloading the OMS agent

	 10.	 The next step is onboarding of nodes to OMS. This can be
done via installation of the Microsoft Monitoring Agent. This
agent can be downloaded via OMS Workspace ➤ Settings
➤ Connected Sources ➤ Windows Servers/Linux Servers
(Figure 5-11).

Certain prerequisites should be met before installing Hybrid Runbook Worker:

–– Minimum OS required is Windows Server 2012.

–– Minimum PowerShell version is 4.0. It is recommended to use
PowerShell 5.0.

–– The target node should have a minimum specification of two
cores and 4 GB RAM.

Chapter 5 ■ Hybrid Cloud Automation

128

Hybrid Runbook Worker initiates the connection to the Azure Automation service,
so only outbound Internet access over port 443 is required from the target nodes.
Also, it should be able to access the Azure Automation URLs. If a proxy server is in the
environment, it should be configured to allow access to *.azure-automation.net.

The installation of the Hybrid Runbook Worker agent is done on the target node by
using a simple installation wizard. During the installation, you will be prompted to enter
the OMS work space details. These details can be obtained from the same location in the
OMS portal.

The required scripts and modules for configuring Hybrid Runbook Worker will
be available in the onboarded node since the Automation Hybrid Worker solution is
enabled. These scripts can be found from the location shown in Figure 5-12.

Figure 5-13.  Importing the Hybrid Registration module

Figure 5-14.  Registering the hybrid worker

Figure 5-12.  Hybrid worker script location

Note that the version at the time of writing this book is 7.2.12318. This could change
when new versions are released.

Import the Hybrid Registration module present in this location (Figure 5-13).

Register the hybrid worker by using the following command, as shown in Figure 5-14:

Add-HybridRunbookWorker –Name <String> -EndPoint <Url> -Token <String>

The details are as follows:

–– Name: This is the name of the Hybrid Runbook Worker Group.

–– Endpoint: This is the endpoint URL of Azure Automation. The
information can be found via Azure Automation ➤ Account
Settings ➤ Keys.

–– Token: This is the primary/secondary key available from the
same interface.

Once the registration is completed, the hybrid worker will be listed in the Azure
portal under Hybrid Worker Groups (Figure 5-15).

Chapter 5 ■ Hybrid Cloud Automation

129

Double-click the Hybrid Worker Group to get additional details of the registered
hybrid worker (Figure 5-16).

Figure 5-15.  Hybrid worker listed in the Azure portal

Figure 5-16.  Getting information on hybrid workers

By default, the Automation runbooks will run under the context of Microsoft
Management Agent installed on the target server. However, if you want to use alternate
credentials—say, a local admin account to execute the runbooks—a credential asset can
be created and assigned to the worker group (Figure 5-17).

Chapter 5 ■ Hybrid Cloud Automation

130

Executing Runbooks by Using Hybrid Runbook
Worker
Runbooks can be created or imported using the steps explained in Chapter 3. The only
difference occurs during the execution phase. The runbook will be executed against a
target hybrid worker.

Sample Use Case
Let’s start with a simple workbook that will pull out the list of services with a given startup
type provided via the parameters and that is in running status. This workbook could be
part of a bigger use case in which the administrator wants to do some additional tasks
based on the retrieved data. For the sake of simplicity, we will test this small runbook
against the target machine where we had installed a hybrid worker and registered it
against an Automation account.

The contents of the runbook for this example are as follows:

param(
 # Startup type of the service.
 [Parameter(Mandatory = $true)]
 [string]$StartupType

)

$Servicestatus = Get-WmiObject Win32_Service -ComputerName . |where {($_.
startmode -like "*$StartupType*") -and ($_.state -like "*running*")}|select
DisplayName,Name,StartMode,State|ft -AutoSize

Write-output $Servicestatus

Figure 5-17.  Hybrid worker group Run As credential

http://dx.doi.org/10.1007/978-1-4842-3219-4_3

Chapter 5 ■ Hybrid Cloud Automation

131

When you start the runbook in Azure Automation, change the Run Settings option to
Hybrid Worker. For the Choose the Hybrid Worker Group drop-down option, provide the
mandatory input parameter and click OK (Figure 5-18).

Figure 5-18.  Providing input parameters

Figure 5-19.  Runbook output

Click Output to view the results. The runbook will pull out the list of manual services
in the target machine in running status (Figure 5-19).

Chapter 5 ■ Hybrid Cloud Automation

132

To verify the outcome, we can run the commands in the runbook directly on the
target server (Demowebvm2) where the agent is installed. We can see that the results are the
same (Figure 5-20).

Figure 5-20.  Results from within the VM

Using Azure Automation Webhooks and
Integrating with OMS
Azure Automation can be integrated with OMS by using a webhook, which is an HTTP
request that can be used to start a runbook. Webhooks can be created directly from a
published runbook as follows.

	 1.	 Browse to the Azure Automation account and choose
Overview ➤ Runbooks. Select the runbook and then click
Webhook (Figure 5-21).

Chapter 5 ■ Hybrid Cloud Automation

133

	 2.	 Provide details of the webhook to be created (Figure 5-22).

Figure 5-21.  Webhook integration

Figure 5-22.  Webhook details

Chapter 5 ■ Hybrid Cloud Automation

134

Specifically, provide the following details:

–– Provide a name for the webhook.

–– You can enable the webhook when you create it or choose to
enable it at a later point after creating it.

–– Set an expiry date for the webhook, after which it cannot be
used.

–– An URL is created automatically for all the webhooks and will
have a security token included in it. This security token
authenticates the HTTP call made to the webhook. The URL
should be copied over during creation because it will not be
available after that for security reasons.

	 3.	 Configure the Run As option in the next step. Any mandatory
input parameters should be defined at this point while
creating the webhook. By default, the runbook will be
executed on Azure, but you can change the target to a hybrid
worker also. Click OK and then click Create to create the
webhook (Figure 5-23).

Figure 5-23.  Creating a webhook

Chapter 5 ■ Hybrid Cloud Automation

135

	 4.	 Once created, the webhook will be listed when you select the
runbook (Figure 5-24).

	 5.	 The parameters, such as the expiry date, can be edited from this
view. We can also enable/disable the webhook (Figure 5-25).

Set Up Webhooks in OMS Alerts
From the OMS workspace, click Settings ➤ Alerts to view the list of alerts created. You can
edit the alerts. Under the Actions tab, the options for adding the webhook will be listed
(Figure 5-26).

Figure 5-25.  Reviewing the parameters and settings

Figure 5-24.  List of webhooks

Chapter 5 ■ Hybrid Cloud Automation

136

Provide the webhook that was created in the previous section. Click the Test
Webhook button to test the functionality. If all works well, you will get the message
“Webhook sent successfully.” Any parameters that should to be sent to the runbook via
the webhook can be included as a JSON file.

Alternately, you have an option to select the runbook from the attached Automation
account (Figure 5-27).

Figure 5-26.  Webhooks in OMS alerts

Chapter 5 ■ Hybrid Cloud Automation

137

Once you integrate your Automation account with OMS, all runbooks in the
account will be listed in the Select a Runbook drop-down list. This makes it easier for the
administrator to choose one of the available runbooks for remediation.

Azure Automation Integration with GitHub
Source Control
You can integrate Azure Automation with your repositories in GitHub. You can use this
to push or pull the PowerShell runbooks in your Automation account to the GitHub
repository.

From the Azure Automation account, select Account Settings ➤ Source Control
(Figure 5-28).

Figure 5-27.  Selecting a runbook

Chapter 5 ■ Hybrid Cloud Automation

138

Under Choose Source, select GitHub (Figure 5-29).

Figure 5-28.  Selecting the Source Control option

Figure 5-29.  Choosing GitHub

Figure 5-30.  Selecting Authorize

■■ Note  Only GitHub is available as of writing this book. It is expected that Visual Studio
Online(TFS) will be available soon.

Authorize the access by providing the GitHub login credentials. If you click
Authorize, you will be redirected to the GitHub login page (Figure 5-30).

Chapter 5 ■ Hybrid Cloud Automation

139

After logging in, you need to authorize the account with GitHub (Figure 5-31).

Figure 5-31.  Authorizing Azure Automation

Figure 5-32.  Checking in runbooks

In the next step, select the repository, branch, and runbook folder path to complete
the integration of Source Control with the Automation account.

Once it’s integrated, you will be able to check in your runbooks directly from the
runbook edit pane into the source control repository (Figure 5-32).

Summary
This chapter explored how to manage infrastructure hosted outside Azure by using
Hybrid Runbook Worker. The features of Hybrid Runbook Worker along with its
integration with Operations Management Suite were also explained.

Chapter 5 ■ Hybrid Cloud Automation

140

■■ Additional Resources

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview

https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-

runbook-worker

https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-

runbooks

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-runbooks

141© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_6

CHAPTER 6

Sample Runbooks and
Use Cases

Relevance of any technology depends on its capability to handle real-life use cases. Azure
Automation is no different. In the previous chapters, we discussed the various facets and
components of Azure Automation. Now that the groundwork is done, let’s explore sample
use cases for the technology.

Operations Automation for Office 365
Some of the common Office 365 administrative tasks can be automated using Azure
Automation runbooks. In the first set of use cases, we will explore automation of Office
365 reporting and management using Azure Automation.

Office 365 Reporting
Runbooks will be used to pull out reports from the Azure AD tenant associated with Office
365 accounts. The details can be displayed as output or can be used to create reports that
will be e-mailed to the administrator via the SendGrid e-mail relay service.

We will look at two use cases in this section. The first one is a simple runbook to
pull out a list of blocked users in an Office 365 tenant. We will use the second runbook
to create a password expiry date report for users in each tenant and e-mail it to
administrators.

Prerequisites
The MSonline module should be imported to the Azure Automation account before the
runbook can be executed. The MSonline module is available in a General availability and
Public preview version. Cmdlets in the preview version are not available in the module in
the gallery. If you are using the cmdlets from the preview version, the latest module can
be downloaded from www.powershellgallery.com/packages/AzureADPreview.

https://doi.org/10.1007/978-1-4842-3219-4_6
http://www.powershellgallery.com/packages/AzureADPreview

Chapter 6 ■ Sample Runbooks and Use Cases

142

From the Azure Automation account, choose Modules ➤ Browse Gallery and then
search for MSonline and import the module (Figure 6-1).

Figure 6-1.  Searching for MSOnline

Figure 6-2.  List of activities

If you click the imported module, you can see a list of activities that are basically the
PowerShell commands used for the AD tenant management (Figure 6-2).

Chapter 6 ■ Sample Runbooks and Use Cases

143

We will use the third-party mail relay service SendGrid in the second use case to
send an alert e-mail to administrators.

Search for the SendGrid service from the Azure portal by choosing More Services
(Figure 6-3).

Click the option to create the service (Figure 6-4).

Figure 6-3.  Searching for SendGrid

Figure 6-4.  Creating the service

Chapter 6 ■ Sample Runbooks and Use Cases

144

Specifically, provide the following details:

Provide the Name and Password, and select the Subscription
and Resource Group.

From the Pricing Tier, the free tier should be sufficient for up
to 25,000 e-mails/month.

Provide your Contact Information (first name, last name, and
e-mail ID) as mandatory values.

Accept the Legal Terms and create the service.

After creating the service, select the service and then choose Settings ➤ General
➤ Configurations and make a note of the username listed there. We will be using this
username and the password that we provided during service creation to configure an
Automation credential for the SendGrid connection. The SMTP server name will be
smtp.sendgrid.net (Figure 6-5).

Figure 6-5.  SendGrid configuration details

Chapter 6 ■ Sample Runbooks and Use Cases

145

The next step is to create the Azure Automation credential asset. We will be creating
two assets for this runbook: Office 365 admin credentials and SendGrid login credentials
(Figure 6-6).

Runbook 1
We will start with a simple runbook that will pull out a list of blocked users in Office 365
and display the output:

Connect to Office 365 using the o365 credential object
$credO365 = Get-AutomationPSCredential -Name 'o365cred'
Connect-MsolService -Credential $credO365
Get list of users
$users = Get-MsolUser -all
Check for blocked users and display results
$count = 0
 foreach ($user in $users) {
 $displayname = get-msoluser -UserPrincipalname $user.UserPrincipalName

 if ($displayname.BlockCredential)
 {
 $Count = $count + 1
 echo $user.UserPrincipalName 'is blocked' }

 }

 if ($count -eq 0)
 { echo "There are no blocked users"
 }

Figure 6-6.  Creating credentials

Chapter 6 ■ Sample Runbooks and Use Cases

146

Figure 6-7.  Selecting the Run On setting

Figure 6-8.  Viewing the output

Create a runbook using the preceding content and publish it. Execute the runbook
and choose Azure for the Run On option (Figure 6-7).

On execution, the output will be as follows (Figure 6-8).

Chapter 6 ■ Sample Runbooks and Use Cases

147

Let’s log in to Office 365 Admin portal and verify that the user is blocked (Figure 6-9).

Runbook 2
This runbook will pull out a report of the list of users and their password expiry date in a
CSV file and send the report as an attachment to the administrator. This can be scheduled
as a weekly task by creating a schedule in Azure Automation. The PowerShell script to be
used as a runbook is given next. The tasks performed by the runbook are highlighted as
comments in the runbook.

#Create the CSV, which will be updated with date, name of users, e-mail
address, #days to password expiry, and the password expiry date
$logging = "Enabled"
$logFile = ".\passwordexpirydates.csv"
$date = Get-Date -Format ddMMyyyy
if (($logging) -eq "Enabled")
{
$logfilePath = (Test-Path $logFile)
 if (($logFilePath) -ne "True")
 {
 # Create CSV File and Headers
 New-Item $logfile -ItemType File
 Add-Content $logfile "Date,Name,EmailAddress,DaystoExpire,ExpiresOn"
 }
}
Echo "Logfile created"
Connect to Office 365 using the o365 credential object
Echo "getting credentials"
$cred = Get-AutomationPSCredential -Name 'o365cred'
Connect-MSolService -credential $cred
Echo "Connected to office365"
Get Users From MSOL where Passwords Expire
$users = get-msoluser | where { $_.PasswordNeverExpires -eq $false }
$domain = Get-MSOLDomain | where {$_.IsDefault -eq $true }
$temp = (Get-MsolPasswordPolicy -domain $domain.Name).ValidityPeriod
If ($temp -eq $null)

Figure 6-9.  Verifying that the user is blocked

Chapter 6 ■ Sample Runbooks and Use Cases

148

{
$maxPasswordAge = "90"
}
else
{
$maxPasswordAge = ((Get-MsolPasswordPolicy -domain $domain.Name).
ValidityPeriod).ToString()
}
Process Each User for Password Expiry
foreach ($user in $users)
{
 $Name = $user.DisplayName
$emailaddress = $user.UserPrincipalName
 $passwordSetDate = $user.LastPasswordChangeTimestamp
 $expireson = $passwordsetdate + $maxPasswordAge
 $today = (get-date)
 $daystoexpire = (New-TimeSpan -Start $today -End $Expireson).Days
 if (($logging) -eq "Enabled")
 {
 Add-Content $logfile "$date,$Name,$emailaddress,$daystoExpire,$expireson"
 }
}
Echo " Password expiry report created"
#Get sendgrid Automation credentials
$Sendgridcredential =Get-AutomationPSCredential -Name 'sendgrid'
$SMTPServer = "smtp.sendgrid.net"
$EmailFrom = "adminuser@outlook.com"
$EmailTo = "adminuser@outlook.com"
$Subject = "User Password expiry Report"
$Body = "User Password expiry Report"
#Send email using SendGrid credentials with report as attachment
Send-MailMessage -smtpServer $SMTPServer -Credential $Sendgridcredential
-Usessl -Port 587 -from $EmailFrom -to $EmailTo -subject $Subject -Body
$Body -attachments "passwordexpirydates.csv"
Echo " Password expiry report sent to administrator"
Get-PSSession | Remove-PSSession

Chapter 6 ■ Sample Runbooks and Use Cases

149

Once executed, the runbook will give the following output (Figure 6-10).

The User Password expiry date report will be e-mailed to the administrator via
SendGrid (Figure 6-11).

Figure 6-10.  Runbook output

Figure 6-11.  Password expiry report

Chapter 6 ■ Sample Runbooks and Use Cases

150

The contents of the report are shown in Figure 6-12.

Azure Blob Backup
The native backup solution in Azure, Azure Backup, does not support backup of
Azure blob storage at the time of writing this book. In this use case, we will explore an
alternative of leveraging the snapshot feature of Azure Storage to make a backup of Azure
blob storage. This runbook will take a snapshot of the source blob and copy it over to a
different storage account as a backup. A schedule can be created in Azure Automation to
execute this runbook depending on the backup frequency requirements.

Prerequisites
We need the following Azure Automation assets as prerequisites:

AzureRunAsConection as a connection asset. This will be created
by default when you create the Automation account. If it is not
present for any reason, it should be created by providing the
service principal details for the Automation account (Figure 6-13).

Figure 6-12.  Contents of the report

Figure 6-13.  AzureRunAsConnection asset

Chapter 6 ■ Sample Runbooks and Use Cases

151

An Azure Automation module for storage. You should update
this module to the latest version if it is already present
(Figure 6-14).

Runbook

#Define the storage account and context.
param(
 # Source Storage account name
 [Parameter(Mandatory = $true)]
 [string]$SourceStorageAccountName,
 # Source Storage account key
 [Parameter(Mandatory = $true)]
 [ValidateNotNullOrEmpty()]
 [string]$SourceStorageAccountKey,
 # Source Storage account container name
 [Parameter(Mandatory = $true)]
 [ValidateNotNullOrEmpty()]
 [string]$SourceContainerName,
 # Source Storage account blob name
 [Parameter(Mandatory = $true)]
 [ValidateNotNullOrEmpty()]
 [string]$SourceBlobName,
 #Destination Storage account name
 [Parameter(Mandatory = $true)]
 [string]$DestinationStorageAccountName,
 #Destination Storage account key
 [Parameter(Mandatory = $true)]
 [ValidateNotNullOrEmpty()]
 [string]$DestinationStorageAccountKey,
 #Destination Storage account container name
 [Parameter(Mandatory = $true)]
 [ValidateNotNullOrEmpty()]
 [string]$DestinationContainerName

Figure 6-14.  Azure.Storage module

Chapter 6 ■ Sample Runbooks and Use Cases

152

)
$connectionName = "AzureRunAsConnection"
try
{
 # Get the connection "AzureRunAsConnection "
 �$servicePrincipalConnection=Get-AutomationConnection -Name

$connectionName

 "Logging in to Azure..."
 Add-AzureRmAccount `
 -ServicePrincipal `
 -TenantId $servicePrincipalConnection.TenantId `
 -ApplicationId $servicePrincipalConnection.ApplicationId `
 -�CertificateThumbprint $servicePrincipalConnection.

CertificateThumbprint
}
catch {
 if (!$servicePrincipalConnection)
 {
 $ErrorMessage = "Connection $connectionName not found."
 throw $ErrorMessage
 } else{
 Write-Error -Message $_.Exception
 throw $_.Exception
 }
}

$SourceContext = New-AzureStorageContext -StorageAccountName
$SourceStorageAccountName -StorageAccountKey $SourceStorageAccountKey
#Fetch details of the blob.
$blob = Get-AzureStorageBlob -Context $SourceContext -Container
$SourceContainerName -Blob $SourceBlobName
Echo "#############Details of blob########"
$blob
Echo "#####################################"
#Create snapshot of the blob.
$snap = $blob.ICloudBlob.CreateSnapshot()
Echo "#############Details of snapshot########"
$snap
Echo "###"
#Fetch time of the snapshot taken
$SnapshotTime = $snap.SnapshotTime
Echo "Snapshot timestamp is $SnapshotTime"
$DestinationContext = New-AzureStorageContext -StorageAccountName
$DestinationStorageAccountName -StorageAccountKey
$DestinationStorageAccountKey
$srcBlobSnapshot = Get-AzureStorageBlob -context $SourceContext -Container
$SourceContainerName |Where-Object {$_.ICloudBlob.IsSnapshot -and $_.Name -eq
$SourceBlobName -and $_.SnapshotTime -ne $null }

Chapter 6 ■ Sample Runbooks and Use Cases

153

$srcBlobSnapshot | Format-Table -AutoSize
$RestorePoint = $srcBlobSnapshot | where { $_.SnapshotTime -eq $SnapshotTime
}
$snapshot = [Microsoft.WindowsAzure.Storage.Blob.CloudBlob]
$RestorePoint[0].ICloudBlob
#Copy snapshot to backup storage
Start-AzureStorageBlobIncrementalCopy -Context $SourceContext
-CloudBlob $snapshot -DestContex $DestinationContext -DestContainer
$DestinationContainerName
Echo "Snapshot copied"

The runbook does the following:

–– Create a snapshot of the source blob.

–– Then a timestamp of the snapshot is used to identify the latest
snapshot from the other existing snapshots.

–– The snapshot is copied over to backup storage account by using
the Start-AzureStorageBlobIncrementalCopy command, which
initiates an incremental copy of the snapshot.

The runbook expects the following inputs to be provided during execution: the
source storage, access key, container name, name of the blob to be backed up, destination
(backup) storage, access key, and container name (Figure 6-15).

Figure 6-15.  Input parameters

Chapter 6 ■ Sample Runbooks and Use Cases

154

On successful execution, output of the runbook will be as shown in Figure 6-16.

We can use the Azure Storage explorer tool to view the snapshots being created in
the source storage account and then later being copied over to the destination storage.

Source blob snapshots are shown in Storage explorer view (Figure 6-17).

Figure 6-16.  Runbook output

Figure 6-17.  Source blob snapshots

Chapter 6 ■ Sample Runbooks and Use Cases

155

In Backup storage view, the snapshots are being copied over to a container named
backup in this storage (Figure 6-18).

Linux Node DSC Configuration Management
In this use case, we will install a package in a Linux node using DSC and then start the
corresponding service associated with it. We will install the reverse proxy software nginx
using this runbook and start the service.

Prerequisites
The Linux node should be onboarded to the Azure Automation DSC account. The
steps were explained in Chapter 4. The next step is to import the nx module into the
Automation account that includes the DSC resources for Linux (Figure 6-19).

Figure 6-18.  Backup storage view

Figure 6-19.  Importing the nx module

http://dx.doi.org/10.1007/978-1-4842-3219-4_4

Chapter 6 ■ Sample Runbooks and Use Cases

156

This module comes with built-in resources similar to the resources available for
Windows (Figure 6-20).

We will be using the nxPackage and nXService resources in our runbook, which are
used for package management and service management, respectively.

Runbook

configuration nginxlinux {

 Import-DscResource -ModuleName nx
 node localhost {
 #nginx package installated using nxPackage resource
nxPackage nginx
{
 Name = "nginx"
 Ensure = "Present"
 PackageManager = "Apt"
}

Figure 6-20.  Activities in the nx module

Chapter 6 ■ Sample Runbooks and Use Cases

157

 #nginx service status checked using nxService resource
 nxService nginxservice
 {
 Name = "nginx"
 Controller = "init"
 Enabled = $true
 State = "Running"
 }

}
 }

Create the runbook and compile it. Before applying the configuration, we will
tweak the LCM on the target node to make the refresh interval smaller and the change
configuration mode to AplyAndMonitor. Thus we can ensure that the configuration is
pulled from the Azure Automation pull server and applied immediately. Here is the
command to be used:

sudo ./Register.py --RegistrationKey <Automation account
registration key> --ServerURL <Automation account registration
URL> --RefreshFrequencyMins 5 --ConfigurationModeFrequencyMins 5
--ConfigurationMode ApplyAndAutoCorrect

Before applying the DSC config, we will check the nginx service status in the target
node. The service will be listed as unrecognized (Figure 6-21).

Figure 6-21.  Checking service status

Select the node from the Azure Automation DSC node list and then choose Assign
Node Configuration. Select the compiled node configuration and click OK. The new
configuration will be applied, and after some time the node status will be shown as
compliant (Figure 6-22).

Figure 6-22.  Applying the DSC configuration

Chapter 6 ■ Sample Runbooks and Use Cases

158

Let’s go back to the target node and review the service status (Figure 6-23).

The nginx service will be available at port 80 of the server (Figure 6-24).

DSC Composite Resources in Azure Automation
DSC composite resources can be used in Azure Automation in such a way that the
configurations can be reused. The composite resources can be imported as modules in
Azure Automation. In simple terms, the composite resource is a DSC configuration that
can accept input parameters. When we convert them as modules in Azure Automation,
they can be imported from another DSC configuration and then the values of parameters
can be passed on. The parameters in this context will act as the properties of the DSC
composite resource. In this use case, we will create a DSC composite resource, upload
it as module in Azure Automation, and finally call this module from another DSC
configuration, thereby enabling reusability.

Figure 6-23.  Reviewing the service status

Figure 6-24.  Nginx web page

Chapter 6 ■ Sample Runbooks and Use Cases

159

Create the root folder with the name of the module that you want to create. It should
contain the corresponding .psm1 module file and the manifest file .psd1. There should be
a folder named DSCResources inside the root folder. The DSC composite resources should
be present inside the DSCResources folder. These composite resources should have a
.psd1 as well as .schema.psm1 file. The .schema.psm1 extension is required to mark it as
a composite resource. This file will contain the contents of the DSC configuration, which
can be later called as resources by other configurations in Azure Automation DSC.

Figure 6-25.  Composite resource folder structure

Step 1: Create DSC Composite Resource
There is a specific folder structure to be followed while creating a DSC composite
resource that can be uploaded to Azure Automation DSC as a module. The folder
structure is shown in Figure 6-25.

Chapter 6 ■ Sample Runbooks and Use Cases

160

Let’s start by creating the root module folder (Figure 6-26).

Create the .psd1 file associated with it by using the New-ModuleManifest command
(Figure 6-27).

In the folder, we can see that the .psd1 file gets created (Figure 6-28).

Figure 6-27.  Creating the .psd1 file

Figure 6-28.  Listing the .psd1 file

Figure 6-26.  Creating the root module

Chapter 6 ■ Sample Runbooks and Use Cases

161

Part of the content of the file is shown in Figure 6-29.

You can see that the manifest contains metadata information, any defined
prerequisites, any functions, cmdlets, aliases to be exported, and so forth.

Figure 6-29.  Contents of the file

Chapter 6 ■ Sample Runbooks and Use Cases

162

Create a blank .psm1 file in the same folder with any content, which could even be a
comment (Figure 6-30).

This file is required for uploading the module in Azure Automation.
The next step is to create the DSCResources folder and the composite resource folder

inside the root folder (Figure 6-31).

Create a manifest for the composite resource named Composite1. This time, we will
be creating the schema.psm1 file as well, which identifies this as a composite resource
(Figure 6-32).

Figure 6-30.  Creating a .psm1 file

Figure 6-31.  Creating the DSCResources and composite resource folders

Figure 6-32.  Creating the manifest

Chapter 6 ■ Sample Runbooks and Use Cases

163

The files get created inside the Composite1 folder (Figure 6-33).

The contents of the .psd1 file will be similar to the Compositemodule.psd1 file
created earlier. In the composite1.schema.psm1 file, add your DSC configuration
(Figure 6-34).

We will go with a simple configuration to create a new file and add content to it. Note
that the node statement is not present, since this DSC configuration will be used to create
a resource that will be called by other configurations.

We have now created all the required files for the module. To create the module,
simple zip the root folder to create a compositemodule.zip file and upload it to Azure
Automation.

Figure 6-33.  List of created files

Figure 6-34.  Adding the DSC configuration

Chapter 6 ■ Sample Runbooks and Use Cases

164

Step 2: Import Module in Azure Automation
From the Azure Automation account, choose Shared Resources ➤ Modules ➤ Add a
Module ➤ Browse. Select the zip file and click OK (Figure 6-35).

You will get a notification that the file is successfully uploaded and the activities are
being extracted (Figure 6-36).

Figure 6-35.  Importing the module

Figure 6-36.  Extracting activities

Chapter 6 ■ Sample Runbooks and Use Cases

165

If the module is successfully uploaded, you can see the composite resource listed as
an activity under the module (Figure 6-37).

Step 3: Create DSC Configuration That calls the Uploaded
Modules
We will create a basic DSC configuration that calls the resource Composite1 from the
uploaded modules. Note that there are no parameters in this resource; however, if your
original DSC composite resource expects parameters, it can be passed on at this point
from with the DSC configuration.

Configuration dsccompositemodtest {

 Import-DscResource -ModuleName PSDesiredStateConfiguration
 Import-DscResource -ModuleName Compositemodule

 Node localhost {
 Composite1 server1 {

 }
 }
}

Figure 6-37.  Comsposite resource listed as activity

Chapter 6 ■ Sample Runbooks and Use Cases

166

Save the contents as a .ps1 file and upload it to the Azure Automation DSC
configuration (Figure 6-38).

Compile the configuration. If all goes well, the configuration will be successfully
compiled (Figure 6-39).

Figure 6-38.  Uploading the .ps1 file

Figure 6-39.  Compiling the configuration

Chapter 6 ■ Sample Runbooks and Use Cases

167

The next step is to apply this configuration against a target node. Select the node
from the Azure Automation account and then choose Configuration Management ➤ DSC
Nodes. Click the Assign Node Configuration option and select the newly compiled MOF
from the pull server (Figure 6-40).

The configuration will be updated when the target node contacts the pull server the
next time. Until that time, the status will be shown as pending (Figure 6-41).

Once the configuration is updated, the status will be compliant (Figure 6-42).

Figure 6-40.  Assigning the node configuration

Figure 6-41.  Status before the node contacts the pull server

Figure 6-42.  Status after the configuration is updated

Chapter 6 ■ Sample Runbooks and Use Cases

168

You can double-click the node to get more details about the configuration being
applied (Figure 6-43).

It is interesting to note that the File resource originally defined in the DSC composite
resource is being listed here.

Figure 6-43.  Viewing details of the applied configuration

Chapter 6 ■ Sample Runbooks and Use Cases

169

As a final step, let’s log in to the server and check whether the file is present in the C
drive with the contents defined in the DSC configuration (Figure 6-44).

The file is present, and we can conclude that the DSC composite configuration is
successfully applied via Azure Automation DSC.

Summary
This chapter, the last one in this book, covered different practical use cases of Azure
Automation. This includes Office 365 automation and management, Linux machine
management, and complex configurations such as DSC composite resources.

Figure 6-44.  Status in the target server

Chapter 6 ■ Sample Runbooks and Use Cases

170

Conclusion
Azure Automation is a versatile tool in the arsenal of Azure administrators that can
accomplish various complex tasks easily via runbooks, DSC configurations, hybrid
workers, and more. In this book, we discussed the building blocks of Azure Automation.
The most fundamental building block is the runbook, and Chapter 3 covered the various
types. Runbooks are built on the foundation of PowerShell. The built-in galleries and
PowerShell repositories have many runbooks that are contributed by Microsoft as well
as by the PowerShell community; these cater to most of the common use cases. It is also
easy to create and upload runbooks of your own if you have expertise in PowerShell.
The Automation assets such as variables, credentials, connections, and certificates
prove a robust framework for sharing resources between runbooks and help establish
connections with target resources quite easily. Azure Automation is not limited to your
infrastructure hosted in Microsoft Azure. You can use the tools in it to manage resources
hosted on-premises as well as in third-party datacenters using DSC configurations and
Azure Hybrid Runbook Worker. Chapters 4 and 5 covered in detail how they can be
effectively leveraged to accomplish these infrastructure management tasks. Finally, we
touched upon some common use cases for Azure Automation in Chapter 6 and provided
sample runbooks for the same. You can go through the following additional resources if
you want to explore more about Azure Automation.

Happy learning!!

■■ Additional Resources

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery

https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].

Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].

Value=WindowsAzure_automation&f[1].Text=Automation

https://www.powershellgallery.com/

https://docs.microsoft.com/en-us/powershell/dsc/overview

https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-diagnostics

https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-

integration

https://azure.microsoft.com/en-us/blog/tag/azure-automation/

http://dx.doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_4
http://dx.doi.org/10.1007/978-1-4842-3219-4_5
http://dx.doi.org/10.1007/978-1-4842-3219-4_6
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://www.powershellgallery.com/
https://docs.microsoft.com/en-us/powershell/dsc/overview
https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-diagnostics
https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-integration
https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-integration
https://azure.microsoft.com/en-us/blog/tag/azure-automation/

171© Shijimol Ambi Karthikeyan 2017
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4

�       � A
Assets, 25

certificates
creation, 49
details, 48
edit pane, 49
list, 47
syntax, 49
test execution, 50

connections
AzureClassicRunAsConnection, 42
AzureRunAsConnection, 42
dashboard, 41
details, 43
Get-AutomationConnection, 46
Get-AzureRmAutomation

Connection, 44
list, 41
New-AzureRmAutomation

Connection, 44
Remove-AzureRmAutomation

Connection, 45
Set-AzureRmAutomation

ConnectionFieldValue, 46
credentials

details, 50
edit pane, 52
output, 52

modules, 30
being updated, 30
details, 32
gallery, 31
import process, 32, 34
list, 30
notification, 31
update notification, 30, 33–34
zip file, 35

nested runbooks
child runbook inline, 52
insert option, 53
invoke method output, 54
parent runbook job, 54
Start-AzureRMAutomation

Runbook, 55
schedules, 25

dashboard, 26
description, 27
details, 27
input parameters, 29
link option, 28
overview tab, 28
unlink option, 29

variables
command output, 37
creation, 35, 38
delete, 39
details, 36
edit pane, 40
encrypted variable, 39
output result, 41
portal and check, 38
PowerShell, 37
runbook creation, 40
runtime manipulation, 37, 39
value of, 38–39

Automation
account creation

dashboard, 6
details, 5
keyword, 4
list, 6
new account creation, 4

ARM (see Azure Resource Manager
(ARM) model)

assets overview, 9

Index

https://doi.org/10.1007/978-1-4842-3219-4_6

■ INDEX

172

DSC configurations list, 10
hybrid workers groups, 10
jobs panel, 8
OMS solutions, 7
portal, 3
PowerShell

graphical runbooks, 11
modules, 11
workflow, 12
Workflow runbooks, 11

return on investment, 1
runbook (see Gallerical runbooks)
security, 17

access control (IAM), 19
contributor role, 19
credential option, 20–21
dashboard, 17
hybrid worker group, 22
output results, 19
permissions, 20
role-based access control, 19
sample runbooks, 18

Azure Resource Manager (ARM) model, 1
deployment model, 2
grouping resources, 3
policies, 3
RBAC, 2
tags, 2
template deployment, 2

Azure Site Recovery (ASR), 120

�       � B, C
Blob backup, 150

AzureRunAsConnection asset, 150
Azure.Storage module, 151
execution, 154
input parameters, 153
prerequisites, 150
source blob snapshots, 154
storage account and context, 151
storage view, 155

�       � D, E, F
Desired State Configuration (DSC), 10, 87

composite resources, 158
applied configuration, 168
Compositemodule.psd1 file, 163

DSCResources, 162
file contents, 161
folder structure, 159
list of file creation, 163
manifest, 162
modules, 164
node configuration, 167
.psd1 file, 160
.psm1 file, 162
pull server, 167
root module, 160
status, 167
target server, 169
uploaded modules, 165

configurations, 87
authoring status, 102
compilation, 104
job status compilation, 104
output, 105
panel overview, 101
published configuration, 102
pull server, 105
script selection, 101
source view, 103

LCM (see Local Configuration
Manager (LCM))

Linux (see Linux machines)
node configurations, 100

MOF files, 106
pull server, 107
upload, 106

resources, 88
use case

configuration file, 97
MOF file, 99
output, 100
progress, 99
verbose output, 99

VMs
additional details, 111
compliance

details, 112
extension registration, 110
LCM compliance check, 113
node compliance status, 111
nodes, 108
onboard option, 108
portal notification, 110
properties, 109
registration data, 109

Automation (cont.)

■ INDEX

173

�       � G
Gallerical runbooks

assigning tags, 16
category and sub-category, 16
edit pane, 14
enable Q & A, 17
file upload option, 14
import option, 13
license options, 17
overview, 12
summary, 15
title and description, 15

Get-AutomationConnection, 46
Get-AzureRmAutomation

Connection, 44
GitHub

account creation, 139
authorize selection, 138
runbooks, 139
selection, 138
source control option, 137–138

Global modules, 43
Graphical runbooks

additional parameters
option, 76

AzureRunAsConnection, 82
canvas, 74
click and drag option, 78
code activities, 73
concepts, 80
configuration options, 78
connection, 82
control asset, 72–73
data source, 76, 80
edit pane, 81
execution, 83
individual parameters, 75
input and output

configuration, 79
input parameter, 79
link commands, 77
message streams, 85
output streams, 84
parameters configuration, 75
publishing runbook, 80
results, 80
retry logic, 74
target activities, 83
variable asset list, 76
verbose messages, 85

�       � H, I, J, K
Hybrid runbook worker, 119

architecture, 120
automation account, 121
execution phase, 130
input parameters, 131
instructions, 122
linking (Azure automation and OMS)

automation account
creation, 126

configuration, 125
details, 124
download, 127
gallery details, 127
information, 129
listing details, 128
log analytics, 123
portal selection, 124
prerequisites, 127
register worker details, 128
registration module, 128
resource group and

location, 126
run as credential, 130
script location, 128
workspace, 124

OMS workspace, 120

�       � L
Linux

machines, 113
installation output, 114
LCM configuration, 115
node configuration, 117
RefreshMode value, 116
registration output, 116
scripts, 115
Ubuntu node, 117

node
activities, 156
configuration

management, 155
DSC configuration, 157
import nx module, 155
nginx web page, 158
nxPackage and nXService

resources, 156
review service status, 158
service status, 157

■ INDEX

174

Local Configuration Manager (LCM), 91
configuration management, 95
premises, 96
pull mode, 94
push mode

architecture, 93
configuration, 91
MOF file, 92

�       � M
Management Object Format (MOF)

file, 88
Microsoft Management Agent

(MMA), 121

�       � N
New-AzureRmAutomationConnection

command, 44

�       � O
Office 365 reports, 141

activity list, 142
contents of, 150
credentials, 145
CSV file creation, 147
execution, 146, 149
MSOnline search, 142
output, 145
password expiry report, 149
run on option, 146
SendGrid, 143
SendGrid configuration

details, 144
service creation, 143
verification, 147

Operations Management Suite
(OMS), 7, 119

backup solution, 120
components, 119
integration, 137
webhooks, 132

actions tab, 135
creation, 134
details, 133

integration, 132
list of, 134
parameters review, 135

�       � P, Q
PowerShell

assets list, 63
canvas, 61
canvas option, 63
CMDLETS, 60
components, 60
credential asset values, 64
description, 63
graphical runbooks, 11
insert, 62
logical workflow, 65
modules, 11
OutputType command, 64
parameters, 64
RUNBOOKS component, 61
script options, 59
selection, 60
workflow, 12
workflow runbooks, 11

checkpoints, 67
InlineScript activities, 66
parallel processing, 66
syntax, 65
use case, 67

�       � R
Remove-AzureRmAutomation

Connection, 45
Return on investment (ROI), 1
Role-based access control (RBAC), 2
Runbook types. See PowerShell

�       � S, T, U
Set-AzureRmAutomation

ConnectionFieldValue, 46

�       � V, W, X, Y, Z
Virtual Machines (VMs), 2

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Automation
	Azure ARM Deployment Model
	RBAC
	Template Deployment
	Tags
	Resource Groups
	Resource Policies

	Azure Automation in the ARM Portal
	Creating Your Automation Account and Getting Started
	Exploring the Dashboard
	Solutions
	Runbooks
	Jobs
	Assets
	Hybrid Worker Groups
	DSC Configurations and DSC Nodes

	PowerShell in Azure Automation
	PowerShell
	PowerShell Workflow
	Graphical
	Graphical PowerShell Workflow

	Runbook Gallery
	Uploading Runbooks to the Gallery

	Azure Automation Security
	Role-Based Access Control

	Summary

	Chapter 2: Azure Automation Assets
	Azure Automation Assets
	Schedules
	Modules
	Variables
	Creating a Variable from the Portal
	Managing Variables by Using PowerShell
	Using Encrypted Variables

	Connections
	Creating a New Connection
	Managing Connections by Using PowerShell
	Get-AzureRmAutomationConnection
	New-AzureRmAutomationConnection
	Remove-AzureRmAutomationConnection
	Set-AzureRmAutomationConnectionFieldValue
	Get-AutomationConnection

	Certificates
	Credentials

	Nested Runbooks
	Invoking a Child Runbook Inline
	Starting a Runbook by Using Start-AzureRMAutomationRunbook

	Summary

	Chapter 3: Azure Automation Runbook Types
	PowerShell Runbooks
	PowerShell Workflow Runbooks
	InlineScript Activity
	Parallel Processing in the Workflow
	Checkpoints in the Workflow
	Sample Use Case

	Graphical Runbooks
	Runbook Outputs
	Output Streams
	Message Streams

	Summary

	Chapter 4: Azure Automation DSC
	PowerShell DSC
	Configuration
	Resources
	DSC Engine (Local Configuration Manager)
	DSC Push Mode
	DSC Pull Mode
	Configuration Management Using LCM
	Using PowerShell DSC on Premises

	Sample Use Case
	Azure Automation DSC
	DSC Configurations
	DSC Node Configurations
	DSC Nodes

	Onboarding Linux Machine to Azure Automation DSC
	Summary

	Chapter 5: Hybrid Cloud Automation
	Operations Management Suite and Azure Automation
	Getting Started with Hybrid Runbook Worker
	Hybrid Runbook Worker Architecture

	Setting Up OMS and Linking It with Azure Automation
	Executing Runbooks by Using Hybrid Runbook Worker
	Sample Use Case

	Using Azure Automation Webhooks and Integrating with OMS
	Set Up Webhooks in OMS Alerts
	Azure Automation Integration with GitHub Source Control

	Summary

	Chapter 6: Sample Runbooks and Use Cases
	Operations Automation for Office 365
	Office 365 Reporting
	Prerequisites
	Runbook 1
	Runbook 2

	Azure Blob Backup
	Prerequisites
	Runbook

	Linux Node DSC Configuration Management
	Prerequisites

	DSC Composite Resources in Azure Automation
	Step 1: Create DSC Composite Resource
	Step 2: Import Module in Azure Automation
	Step 3: Create DSC Configuration That calls the Uploaded Modules

	Summary
	Conclusion

	Index

