Y 4

Azure Automation
Using the ARM
Model

An In-Depth Guide to Automation
with Azure Resource Manager

Shijimol Ambi Karthikeyan

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

Azure Automation
Using the ARM
Model

Shijimol Ambi Karthikeyan

Apress®

vww . allitebooks.con

http://www.allitebooks.org

Azure Automation Using the ARM Model

Shijimol Ambi Karthikeyan
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-3218-7 ISBN-13 (electronic): 978-1-4842-3219-4
https://doi.org/10.1007/978-1-4842-3219-4

Library of Congress Control Number: 2017959334
Copyright © 2017 by Shijimol Ambi Karthikeyan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www. freepik.com).

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Nikhil Karkal

Development Editor: Matthew Moodie/Priyanka Mehta
Technical Reviewer: Pranab Mazumdar

Coordinating Editor: Prachi Mehta

Copy Editor: Sharon Wilkey

Distributed to the book trade worldwide by Springer Science + Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-3218-7. For more detailed information, please visit
WwWW.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3219-4
www.freepik.com
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-3218-7
www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my dearest Amma and Achan, my guardian angels
watching over me from heaven

vww . allitebooks.con

http://www.allitebooks.org

Contents at a Glance

About the AUthOr ... ——————— Xi
About the Technical ReVIEWETccccvnsssssmemmmnmnmmsssssssssssssnnsmesssssnns Xiii
Acknowledgments.........cccuuusssssnssnnmmmmmssssssssssssnnnnessssssssssssnnsnnessssnns XV
Introduction........cccuiimememmmnnmnnmnsssssssss s —————————— XVii
Chapter 1: Introduction to Azure Automation...........cccerrrssneennrsssnnns 1
Chapter 2: Azure Automation Assets......cccoummmmmmmnnnnnnmmssssssssssnnnnns 25
Chapter 3: Azure Automation Runbook Typesc.ucccurrmsssannnsassnns 59
Chapter 4: Azure Automation DSC..........cccecvnsmmmnrmssssnnsenssssnnnsesnns 87
Chapter 5: Hybrid Cloud Automation........cccussseeemmnnnnnnssssssssnnnnnnn 119
Chapter 6: Sample Runbooks and Use Casescccurrrsssssssnnnnnnns 141
INA@X .eiiiiiiissnnennnnnnnnnesssssssnnnnnnnnnsesssssssnnnnnnnnenesssssssnnnnnnnnensssssssnnnnnnnnns 17
\%4

vww . allitebooks.con

http://www.allitebooks.org

Contents

About the AUTROLc.ciireemeiiirreneiirreesssr s s s enn s nnnnasssnnnnnnssns xi
About the Technical REeVIEWETcuureeersrrremmssssssnssssssssnssssssnnssssnssnnnns Xiii

Acknowledgments..........cccnnnssssmmmmnnnmmssssssssssssnsnnssssssssssssssssssssssssssss XV

Introduction........ccccmnsmmmmsmnmmsnnmmssnsnmssnnnssss s Xvii
Chapter 1: Introduction to Azure Automation...........cccerrrssneennrsssnnns 1
Azure ARM Deployment Modelccoeeeeeeeneneriese e e e s s e 2

RBAGC ... ettt e e R e nn s 2
Template DEpIOYMENT ... 2
LT OO 2
RESOUICE GIOUPS ... 3
ReSOUICE POIICIES ... 3
Azure Automation in the ARM Portalcoccceriiennnsenenssenesseseseseens 3
Creating Your Automation Account and Getting Startedccocveevveeverrerrcenenene 4
Exploring the DashbO@rdccoceceveiererererererereres e see s e sesse e saesesaesessesessens 6
PowerShell in Azure AUtomation ... 11
0T 3] 1| 11
POWEISHEI WOTKFIOW.......ccceeeeceeeeeese e 11
T o) 1 | 1
Graphical POwerShell WOrkflow..........coceeevereiereresesesesesessesessesessesessesessessssessesenns 12
RUNDOOK GAIIEIYcererertrerer st 12
Uploading RUnbooks t0 the GallEryocccvrnecerreeeserseeeses s 14

vii

CONTENTS

Azure Automation SECUNtYccccvvrrrrrir e 17
Role-Based ACCESS CONIOL........cccceeerrnererrrsssesessssssesess e sese s sese s sesssssssseesenns 19
SUMMANY ... a e s s 22

Chapter 2: Azure Automation AsSets.......cuusemmmmrnnnmmmmnsssssssnnnnsennn 29

Azure Automation ASSEtS.........cvrrmnnninn e ——————— 25
SCREUUIES ..ottt s 25
MOQUIBS ...t ———————— 30
VariabIES.....cceciiiiiiiss s —————— 35
(0] 1T 0 T 41
CrtifiCAtEScceiereccrr i ——————— 47
CredentialS.........cv e 50

Nested RUNDOOKScoeeerernernnenesrssesssesse s ssssessesnas 52
Invoking a Child RUNDOOK INNNE ..o 52
Starting a Runbook by Using
Start-AzureRMAutomationRUNDOOK............ccverererenenernssrss s 55

31111 1P S 57

Chapter 3: Azure Automation Runbook Typesccususssassssasssanss 59

PowerShell RUNDOOKS ... 59

PowerShell Workflow RUNDOOKS...........ccccoceinenenernnsesesesessssenes 66
INNESCHIPE ACHIVILY ...ttt e s 66
Parallel Processing in the WOrkflowcccouceenieensennnncnesnness s sesenns 67
Checkpoints in the WOrKFIOWcccveeverierenieneseresesesesessssessesessesesesessessesesssssaens 67
SAMPIE USE CASE....veereerrrerererseersesessesassessssessesssssssssessssessessssesssssssssessssessenssssssaens 68

Graphical RUNDOOKSccecereerierererer s 72

RUNDOOK QUIPULS ..o e 84
OUEPUL SEFEAMS......c.eeereeerere ettt s s s e s e sae e se e a s s e e sae e naens 84
MESSAQE SITBAMS.......ceeeeereererere s ee et rae s e e s e s ae e ae e s e e s e s e e ea e e sae e sae e naenes 85

SUMMANY ... a e s s 86

viii

CONTENTS

Chapter 4: Azure Automation DSC..........ccccvsemmnrnsssnnnnmssssssnnsssssnns 87
POWEISHEI DSC.......cocveeeeeerirerisiss e se e sssnnens 87
CONFIGUIALION ... 87
RESOUICES......ecceiriec ittt 88
DSC Engine (Local Configuration Manager)...........cccerrenererneneneresenesesessssesesenens 91
SAMPIE USE CASEeeveereereereerreeresseesesssessesssessssssssssssssssssssssssssssssesaes 97
Azure AUtOMALion DSC ..o 100
DSC CONfIQUIALIONS......ccevereerererreerseserse e sessesesse s sessesessesessesassesassessesessssessesnaes 101
DSC Node CONfIgUrationsceeeeverererereresserensessssessssessesessessssessssessssessesessensnaes 106
D o 108
Onboarding Linux Machine to Azure Automation DSC..........c.cccvcerrunnne 113
1111 P2 S 118
Chapter 5: Hybrid Cloud Automation..........cccccmmmnssssnnnnssssnnnnnnns 119
Operations Management Suite and Azure Automation............ccceeuuee. 119
Getting Started with Hybrid Runbook Worker.............ccoeeevernierenennens 120
Hybrid Runbook Worker ArchiteCture.........ccocvvvvevivnnnsr e 120
Setting Up OMS and Linking It with Azure Automation........................ 123
Executing Runbooks by Using Hybrid Runbook Workerccc....... 130
SAMPIE USE CASE....eevereereeereererrerereerersesessersesessssessesessessssessssessesesssssssessssessssessenees 130
Using Azure Automation Webhooks and Integrating with OMS............ 132
Set Up WebhooKsS in OMS AIEITScccveeerrerereererereresssessssessesessesessessssessssessssenes 135
Azure Automation Integration with GitHub Source Control...........cccoevvrvrrierennens 137
SUMMANY ...t sn s sr e sn e sn s sn e nn e n e nr e n e n e n s 139
Chapter 6: Sample Runbooks and Use Casesccuuseerrssssnnnnsesss 141
Operations Automation for Office 365........ccccerererereresesesesee e 141
Office 365 REPOITING.......cveueererereeeeririee e 141
PrErEOUISITES.cueeeeeecereeeee e 141

ix

CONTENTS

RUNDOOK ...t 145
RUNDOOK 2.ttt 147
Azure BIob BacCKUPcccoceeeerierrcrrerer e s 150
PrErEOUISITES. .. vueeeeeresecresese e s e se s e er s p s s s 150
RUNDOOK. ... e e s sse s snnsennas 151
Linux Node DSC Configuration Managementc.ccoeevververrerseriennens 155
PrErEQUISITES.....eiveeeeercte et 155
DSC Composite Resources in Azure Automation...........ccccveerveerierienne 158
Step 1: Create DSC Composite RESOUICE.......cccuveeerierrsererirerinesrs e 159
Step 2: Import Module in Azure Automationccocecvennicrncrnnsesnn e 164
Step 3: Create DSC Configuration That calls the Uploaded Modules.................... 165
SUMMAIY ...t r s nn s nnas 169
0] T o] 170

About the Author

Shijimol A. K. currently works as a Partner Technical
Consultant for Microsoft Partner Technical Services
team. She has more than 11 years of experience

in IT and specializes in datacenter management,
virtualization, and cloud computing technologies.

She started her career with EY IT services, on a
datacenter management team managing complex
virtualized production datacenters. She has expertise
in managing VMware and Hyper-V virtualization stacks
and Windows/Linux server technologies. She has also
worked on DevOps CI/CD implementation projects
using tools such as TeamCity, Jenkins, Git, TortoiseSVN,
Mercurial, and Selenium. She later moved on to cloud
computing and gained expertise in Windows Azure,
focusing on Azure Iaa$, Backup/DR, and Automation.
She holds industry standard certifications in technologies including Microsoft Azure,
Windows Server, and VMware. She also holds ITIL and TOGAF 9 certifications.

xi

About the Technical
Reviewer

Pranab Mazumdar is currently working as an embedded escalation engineer for
Microsoft, focusing on Azure SQL Database (Paa$ and IaaS) and Azure SQL Data
Warehouse. He works closely with the engineering team to improve the service and
make it a world-class stateful service, helping customers and partners be successful with
their businesses. Prior to aligning to the cloud side of the business, he was an escalation
engineer with the SQL Server team in CSS/GBS, where he worked with the product

team to fix bugs in the SQL Server product, thereby making SQL a better and preferred
RDBMS. He has been working with Microsoft for over 12 years, with specializations in
SQL Server engine performance, high availability, and disaster recovery. He has worked
with many large corporations on complex SQL deployments. Apart from SQL, he also has
worked with Operational Insights, formerly known as System Center Advisor, migrating
and helping create new sets of rules and validation processes. He holds several Microsoft
certifications, including MCAD, MCSD, MCDBA, MSCE, MCTS, MCITP, and MCT; his
most recent certification is Microsoft Certified Solutions Associate: Cloud Platform. He
likes to be connected to his customers and has been a speaker at TechEd, GIDS, SQL
Saturday, SQL Talks, and other community UG events. Recently, he coauthored Pro SQL
Server on Microsoft Azure and was the technical reviewer of Practical Azure Application
Development.

xiii

https://na01.safelinks.protection.outlook.com/?url=http://www.amazon.in/Pro-SQL-Server-Microsoft-Azure/dp/148422082X&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=Lqv5YW2MoDkzVk5NNqIWlK/ICrd3ogYi0yeD8pc5V4Q=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=http://www.amazon.in/Pro-SQL-Server-Microsoft-Azure/dp/148422082X&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=Lqv5YW2MoDkzVk5NNqIWlK/ICrd3ogYi0yeD8pc5V4Q=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=https://www.amazon.com/Practical-Azure-Application-Development-Step/dp/1484228162/ref=sr_1_1?s=books&ie=UTF8&qid=1499842358&sr=1-1&keywords=practical+azure&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=tiL6sh72QgRWDLQKUMwZB242OKBJ2e9Tey5OpWHHjco=&reserved=0#_blank
https://na01.safelinks.protection.outlook.com/?url=https://www.amazon.com/Practical-Azure-Application-Development-Step/dp/1484228162/ref=sr_1_1?s=books&ie=UTF8&qid=1499842358&sr=1-1&keywords=practical+azure&data=02|01|pranab.mazumdar@microsoft.com|490392723307490074e908d4dfb8c616|72f988bf86f141af91ab2d7cd011db47|1|0|636379432078183115&sdata=tiL6sh72QgRWDLQKUMwZB242OKBJ2e9Tey5OpWHHjco=&reserved=0#_blank

Acknowledgments

First and foremost, I would like to thank my parents for everything I have ever
accomplished in my life, including this book. My mother, Ambi R., inspired me to aim for
the stars. My father, Karthikeyan M., taught me to be patient while doing so. They are no
longer around, but their love and blessings keep me going.

My husband, Sujai Sugathan, supported me throughout this new endeavor as
he always does for all my adventures. He kept reminding me about the deadlines so
that my editors didn’t have to. My daughter, Sanjana Sujai, did her bit too by being the
most wonderful and understanding seven-year-old. I am thankful to my sister, Gigimol
AK,; my mother-in-law, Sowja Sugathan; and my best friend, Anjana S; these strong
women in my life always inspire me to take up new challenges. I am also thankful to the
mentors in my professional life—there are too many to list—for their constant support
and encouragement. Last but not least, I would like to thank the team at Apress: Nikhil
Karkal for onboarding me, Prachi Mehta for her support during the publishing process,
and Pranab Mazumdar and Priyanka Mehta for their valuable input during the review
process.

XV

Introduction

Microsoft Azure cloud adoption is on the rise, and Azure Automation plays a key role in
building a sustainable and repeatable framework for creating and managing resources in
Azure. This book will provide you an in-depth understanding of the options available in
Azure Automation via the Azure Resource Manager (ARM) portal.

Microsoft recommends the ARM model as the way forward for all Azure
deployments. This book focuses exclusively on the ARM deployment model for Azure
Automation. This model has more robust options when compared to the classic
deployment model.

This book provides in-depth coverage of topics such as runbook authoring and
types of Automation runbooks. It also covers advanced topics including hybrid cloud
automation from the ARM-based Azure portal.

Chapter 1, “Introduction to Azure Automation,” introduces Azure Automation,
providing an overview of features and guidelines on getting started with the service in the
ARM portal.

Chapter 2, “Azure Automation Assets,” explores the basic building blocks of
runbooks, called Automation assets. These assets include schedules, modules,
certificates, connections, variables, and credentials.

Chapter 3, “Azure Automation Runbook Types,” covers the various runbook types in
Azure Automation: PowerShell, PowerShell Workflow, Graphical and Graphical PowerShell
Workflow. This chapter gives a walk-through of runbook creation, testing, and publishing.

Chapter 4, “Azure Automation DSC,” covers integration of Azure Automation with
PowerShell Desired State Configuration(DSC), including various cloud, on-premises, and
hybrid scenarios.

Chapter 5, “Hybrid Cloud Automation,” covers the Hybrid Runbook Worker in Azure
Automation, which facilitates execution of runbooks in your on-premises datacenters or
systems hosted in third-party cloud service providers.

Chapter 6, “Sample Runbooks and Use Cases,” provides a walk-through of some
popular use cases and their implementations using Azure Automation.

This book is written for infrastructure and cloud architects, cloud support engineers,
system administrators, and IT strategists with a basic understanding of the Azure cloud
platform and PowerShell scripting.

xvii

http://dx.doi.org/10.1007/978-1-4842-3219-4_1
http://dx.doi.org/10.1007/978-1-4842-3219-4_2
http://dx.doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_4
http://dx.doi.org/10.1007/978-1-4842-3219-4_5
http://dx.doi.org/10.1007/978-1-4842-3219-4_6

CHAPTER 1

Introduction to Azure
Automation

Automating operational tasks is critical for streamlining infrastructure management,
both on premises and in the cloud. Microsoft Azure Automation comes with capabilities
that help administrators automate their cloud-based, operational, repetitive tasks. It
is versatile, with hybrid connection capabilities that help you automate tasks in your
on-premises datacenters as well as with other cloud service providers like Amazon Web
Services (AWS). Being built on top of the ever-reliable PowerShell, it is a useful tool in
the arsenal of any Azure cloud administrator. Azure runbooks are easy to create, edit,
and execute and can integrate well with almost all resources in the Microsoft Azure
ecosystem.
Azure Automation has significantly changed since its inception as a small feature
in the Azure classic portal. With the introduction of the Azure Resource Manager (ARM)
model and the new Azure portal, Azure Automation also significantly ramped up, with
many new features such as Azure Graphical runbooks. As more and more organizations
are moving toward the cloud, automation is also much in demand to maximize the return
on investment (ROI). Microsoft Azure is a leader in the cloud market, and developing
skillsets in Azure Automation is a valuable tool in the arsenal of a cloud administrator.
This chapter introduces you to the ARM deployment model in Azure and the various
components of Azure Automation in the ARM model. These include but are not limited
to the Azure Automation overview dashboard, PowerShell, runbooks, jobs, Runbook
Gallery, hybrid workers, and Azure Automation security. We will focus on establishing a
basic understanding of the key concepts of Azure Automation, which will be explained in
detail in subsequent chapters.

Note Azure has two deployment models: the classic, or Azure Service Management
(ASM), model and the more recent Azure Resource Manager (ARM) model. This book focuses
on the ARM deployment model.

© Shijimol Ambi Karthikeyan 2017 1
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_1

https://doi.org/10.1007/978-1-4842-3219-4_1

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Azure ARM Deployment Model

The ARM model is the way forward for all Azure deployments as recommended by
Microsoft. Compared to the monolithic deployment model of the Azure classic portal,
ARM brings in flexibility and robustness with features including resource groups, role-
based access control, template deployments, tagging, and resource policy. Let’s look
at some of the key features of the ARM model before delving into Azure Automation,
because many of these features will prominently feature in some of the Automation
runbooks that we will be discussing further in this book.

RBAC

Azure role-based access control (RBAC) helps you implement fine-grained access
restrictions on resources created in Azure. In the classic model, there was only one role,
named Co-administration, which had full access to the entire Azure subscription. This
was not suitable when administrators wanted to implement more restrictions at at the
resource level. With the introduction of RBAC, there are many predefined roles that you
can leverage.

In addition, you can even create your own roles. The three main roles are Reader,
Contributor, and Owner. You can apply the roles at various scopes—to resource groups,
virtual machines (VMs), or networks, for example.. The Owner role has full permission
to the applied scope and enables the member of the role to add another user in the
given scope. The Contributor role also has full access, but a member of the Contributor
group cannot add another user to the scope. Reader provides only read access to any
applied scope. In addition, each resource type has its own set of predefined roles that an
administrator can leverage to set permissions.

Template Deployment

In the ARM model, you have the option to automate the deployment of resources by using
JSON templates. This is useful for deploying complex multitier environments in a single
click. You can define the parameters in JSON format, define dependencies, and then
create a template for complex architectures. This is useful in crash-and-burn scenarios
and time-sensitive deployments.

Tags

You can tag the resources in Azure with a key/value pair so that you can do a logical
marking of resources coming under a certain scope. For example, you can create a tag
for all development resources in your environment, and when you select the tag from
the portal, Azure will list all the resources coming under that tag. Tags are also useful for
billing purposes. In the Azure consumption bill, you can filter resources based on their
tags. This will help you identify the cost incurred by a resource grouped under a given

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

tag. One possible use case is cross-charging; you can create a tag for all resources for
another department, sort the charges based on the tag, and cross-charge to a respective
department.

Resource Groups

Azure resource groups are a new feature in ARM that enable you to logically group related
resources and manage them as a single entity. Any resource created in the ARM model
should be part of a resource group, and it can be part of only one resource group at a
given time. Adding resources to a resource group allows you to manage their life cycle
and create a security boundary. Grouping resources in resource groups becomes relevant
when you want to be able to create, update, or delete them together.

Resource Policies

Resource policies allow administrators to implement restrictions in terms of resource
locations or naming conventions. A policy consists of a policy definition and

policy assignment at a given scope. Resource policies are quite useful when cloud
administrators want to implement certain rules and regulations—for example, all created
resources should reside in a chosen Azure location, or the resources should adhere to a
given naming convention. Unlike RBAC, which decides the permission levels of a user at
a given scope, policies define the properties of the resources at the applied scope, such as
their naming conventions or location.

Azure Automation in the ARM Portal

The concept of cloud computing is heavily dependent on automation, wherein users can
log in and spin up resources based on their requirements. More and more organizations
are adopting the cloud-first policy, and hence there is an increasing demand on
automating long-running complex operational tasks in the cloud. Azure Automation was
introduced to fill this gap.

Automation was introduced in the classic portal initially. With the introduction of
the ARM model and the strategy of promoting it for all services new and old, Automation
was introduced in the ARM-based portal as well. The new ARM-based portal is simply
referred to as the Azure portal. Automation runbooks are based on PowerShell and bring
in the exciting possibilities of PowerShell scripting to the Azure platform in an easy-to-
handle interface.

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Creating Your Automation Account and Getting Started
Let’s look at how to create an automation account in the ARM portal:

1. Go to the Azure portal. In the left panel, click More Services
and then type in automation (Figure 1-1).

X
Shift+Space to toggle favorites

New automation X

Dashboard p
’ Automation Accounts

®" Keywords: process automation

Resource groups

Figure 1-1. Searching with the automation keyword

2. Alist of automation accounts is displayed. To create a new
account, click Add (Figure 1-2).

Automation Accounts

Microsoft

+ Add EZ Columns O Refresh

Subscriptions: 3 of 4 selected - Don't see a subscription? Switch directories

Figure 1-2. Adding a new Automation account

3. Youneed to provide some information while creating the
Automation account (Figure 1-3). The Automation account
should have a unique name and be assigned to a resource
group. You can either use an existing resource group or create
anew resource group.

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Add Automation Account a X

* Name ©
Automationdemo
* Subscription
Visual Studio Enterprise
* Resource group ©

® createnew O Use existing

automationrg

* Location

Southeast Asia
* Create Azure Run As account @

Yes No

The Run As account feature will
create a Run As account and a
Classic Run As account.Click here to
learn more about Run As accounts.

Pin to dashboard

Figure 1-3. New Automation account details

4. You also have an option to create a new Run As account in
the classic (a.k.a. Service Management) as well as the Azure
portal. Run As accounts are required to authenticate with
Azure to create and manage resources using your runbooks.
In the case of ARM, the account that gets created is a service
principal in Azure Active Directory, along with an associated
certificate. This account gets the Contributor role by default.
The classic Run As account that gets created uses the concept
of certificate authentication in the Service Management
model. It uploads a management certificate that can be
used to access and manage classic portal resources by the
Automation runbooks. The classic portal is being deprecated
and is beyond the scope of this book.

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

5. When you click the Create button, the Automation account is
created. It is then listed under the Automation accounts in the
Azure portal (Figure 1-4).

oengd BB Cotomes 0 Fatresh

MAME (LT RESOURCE GROUP ~ LOCARION

&3 sutomationdema Automation Account ssnmatiarag St Axla

Figure 1-4. Automation account list

6. Ifyou click the Automation account, Azure takes you to the
overview, which provides a nice tiled dashboard of various
components included in it (Figure 1-5).

omationdemo

O 5o o B ootete =P Move WP Feedback () Refrash
£ Overview A Rescurces
log m Runbooks = 19 . Hybrid Worker Groups
u Solutions. - Ll
ol Access control MAM) - 48 Jots TS 02
Tag
DSC Cenfigurations DSC Nodes
A Diagnose and solve problems 0E 0@
PROCESS AUTOMATION
= Menitoring
&3 Runbooks
Job Statistics
Jobs
B Runbooks Gallery
FALID | cutuen
0 RUNNING
CONFIGURATION MANAGEMENT
- S COMBLETED
B 05C nodes SUSFEHOD | ranto
0 | stoepin
@ DSC configurations 0 | sussnceo
COMPLETID
Bl DSC nede configurations 0
SHARED RESOURCES
2 Hybrid werker groups b

Figure 1-5. Automation account dashboard

Exploring the Dashboard

We will be discussing many of these components in detail in this book, and we’ll start off
with a brief introduction to them now.

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Solutions

Automation accounts can be linked with the Operations Management Suite (OMS), and
the solutions connected to it (Figure 1-6).

Solutions

Solution Filter-.

MNAME

ADAssessment({laasOMS)

ADReplication(laaSOMS)

Agentk OMS)
AlertManagement{laaSOMS)
AntiMalware(laaSOMS)
Azurefctivity(laaSOMS)
AzureNSGAnalytics(laaSOMS)
CapacityPerformance(laaSOM5)
ChangeTracking(laaSOMS)
Office365(1aaSOMS)
SCOMAssessment{laaSOMS)
Security(laaSOMS)
SQLlAssessment(laaSOMS)

Updates(laaSOMS)

Figure 1-6. OMS Solutions list

You can integrate your automation account directly with OMS. Alternately, you can
create webhooks for runbooks and execute them based on OMS search criteria. This is
explained in detail in Chapter 5, Hybrid Cloud Automation.

Runbooks

Runbooks are the basic building blocks of Azure Automation. You can create your own
runbooks for various tasks to be executed via the Automation platform. A Runbook
Gallery is available that has many runbooks already published by Microsoft or community
contributors; you can import these runbooks, customize them, and schedule them based
on your requirements (Figure 1-7).

http://dx.doi.org/5

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

o fddarunbock [l Browse gallery () Refresh

I

NAME AUTHORING STATUS LAST MODIFIED ™
& AzurcAutomationTutorial v Published 2/21/2017 7:28 AM
A AzureAutomationTutorialScript v Published 2/21/2017 312 PM
& AzureClassicAutomationTuterial v/ Published 2/21/2017 7:28 AM
2 AzureClassicAutomationTuterial.. v Published 2/21/2017 7:28 AM
& StartAzureV2Vm1 v Published 3772017 11:43 AM
& StopAzureV2Vm # In edit 2/27/2017 9:35 AM
2 testpowershell # In edit 2/27/2017 9:36 AM

Figure 1-7. List of runbooks

Jobs

The Jobs panel in the overview gives information about runbook execution status. You
can drill down deeper and get information on the input, output, and more. Each time
arunbook execution is initiated, either via a schedule or manually, a job is created. An
Azure automation worker executes the job. Many jobs can run in parallel; one runbook
might have multiple jobs being executed. You can also view the job status in the
dashboard (Figure 1-8).

Job Statistics

FAILED COMPLETED
599 | Faiep
I queven
SUSPEMDED RUNNING
| 0 I sTopPeED
| susPenDED

COMPLETED

238

Figure 1-8. Job Statistics overview

Multipl

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

e statuses can be associated with a job. These include Completed, Failed,

Queued, Running, Stopped, and Suspended:

Assets

Assets in an

Completed: Indicates that the job execution completed
successfully.

Failed: The job failed to execute. It could be because
of compilation errors or execution errors based on the
runbook type.

Queued: The Azure Automation worker is not available to
execute the job, and hence it is in a queue.

Running: The job is being executed.

Stopped: This indicates that the user stopped the job
execution while it was running.

Suspended: The job is in a suspended state, for various
possible reasons. It could be suspended manually by a user or
by a command in the script. A user can restart the runbook at
any given time, and it will restart from the beginning if there
are no checkpoints in the script.

Automation account consist of the following components: schedules,

modules, certificates, connections, variables, and credentials (Figure 1-9). Azure

Automation

assets are discussed in detail in Chapter 2.

O Refresh

Schedules

Oo

2-1.1-

Connections Variables Credentials

Modules Certificates

15= | 2

0x 0

Figure 1-9. Assets overview

http://dx.doi.org/10.1007/978-1-4842-3219-4_2

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Hybrid Worker Groups

You can use Azure Automation to execute runbooks in your on-premises environment
as well. You need to deploy Azure automation hybrid workers to on-premises servers

and connect them to your Azure Automation account. You can get a list of such hybrid
workers from the overview dashboard (Figure 1-10).

B l Hybrid Worker Groups

+ Configure O Refresh

GROUP NAME

test

adVM.scemad.com_aa%¢708a-...

Backupvm1_06248ab8-6c93-4...

Demowebvm1_8979f7f1-c207-...

MININT-E7BGB11_94d27dcd-5...

scomiis.scemad.com_0ad684b1..

NUMBER OF WORKERS

LAST REGISTRATION TIME

2/25/2017 10:54 AM

2/27/2017 439 PM

2/25/2017 10:48 AM

2/25/2017 10:52 AM

2/25/2017 10:52 AM

2/21/2017 2:27 PM

Figure 1-10. List of Hybrid Worker Groups

DSC Configurations and DSC Nodes

Desired State Configuration (DSC), as the name indicates, is a configuration management
solution that helps maintain your infrastructure configuration as code. It is based on
PowerShell and implements the desired state in target machines by leveraging the Local
Configuration Manager (LCM). Azure Automation DSC integrates the capabilities of
Azure Automation with DSC-based configuration management (Figure 1-11).

El DSC Configurations

+ Add a configuration

NAME

MyDscTest

E Learn more O Refresh

AUTHORING STATUS

Published

LAST MODIFIED

4/11/2017 412 AM

»# 0O X

Figure 1-11. DSC configurations list

10

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

By leveraging Azure Automation DSC, you can manage the desired state of your
infrastructure configuration across on-premises physical/virtual machines as well as cloud
resources. We will discuss Azure Automation DSC configuration in detail later in this book
in Chaper 4.

PowerShell in Azure Automation

The runbooks in Azure automation are completely based on PowerShell. Four types of
runbooks are available: PowerShell, PowerShell Workflow, Graphical, and Graphical
PowerShell Workflow. Though based on PowerShell, each runbook type has its own
features and limitations.

PowerShell

These are the basic PowerShell-based runbooks available in Azure Automation. Using
these runbooks is similar to executing Azure PowerShell module-based commands from
the Azure portal. The related PowerShell modules should already be imported in your
Azure Automation account.

Certain capabilities such as parallel processing of tasks and runbook checkpoints
are not available in these basic PowerShell-based runbooks. You will have to go for
PowerShell Workflow-based runbooks if you want to use these features. You can create
runbooks by using the simple Azure PowerShell-based scripts that you might be already
using to manage your Azure infrastructure, and leverage additional capabilities such as
scheduling them.

PowerShell Workflow

PowerShell Workflow runbooks are intended for more-complex tasks that involve
executing steps in parallel, calling other child runbooks, and so forth. As the name
indicates, this type of runbook is written using PowerShell workflows that in turn use
Windows Workflow Foundation. PowerShell workflows allow you to set checkpoints in
your script so that you can restart the script from the checkpoint if an exception occurs
during execution. This kind of workflow can cater to advanced automation requirements
of complex cloud infrastructures.

Graphical

Graphical runbooks can be created from the Azure portal, but unlike the PowerShell and
PowerShell Workflow runbooks, they cannot be edited or created outside the portal. They
use PowerShell in the back end, but the process is transparent to the user. There is an option
to convert the Graphical runbooks to Graphical PowerShell Workflow, and vice versa.
Graphical runbooks are a good place to start for a cloud administrator who doesn’t
have much expertise in PowerShell. This type of runbook uses a visual authoring model
and represents the data flow pictorially in an easy-to-understand fashion. The editing
can also be done directly from the portal, against each building block of the runbook, to
implement changes in the logic.

11

http://dx.doi.org/4

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Graphical PowerShell Workflow

Graphical PowerShell Workflow runbooks are based on PowerShell workflows in the
back end. Other than that, the properties are the same as that of a Graphical runbook.
Graphical PowerShell Workflow runbooks can be edited and managed only from within
the Azure portal.

Runbook Gallery

A Runbook Gallery is readily available in the Azure portal, where several runbooks
catering to multiple scenarios are already available. Some of these runbooks are
contributed by the community, and others are provided by Microsoft. You can access
the Runbook Gallery by clicking the runbook tiles in the overview dashboard of the
Automation account.

Click Overview » Runbooks » Browse Gallery to access the gallery (Figure 1-12).

Y Fiter
Gallery Source
ey Popularity v | A Saript Center v
Stop Azare V2 VMs) Type
Graphecal Rurkook Created by: 52 Automation Product Team) Powershal seripl
This o Azure sing an ot Patings 438 of 5

24,795 dewnloads
Last updated: 10,/23/2016

s
i!i and stops all V2 VM in an AZure Subscrigfion Of in a rescUrce grous of a single named V2
WL Yiou can attach & recurving schedsle 1o this runbook 89 nun it at 8 specific tme.

| Graphical runbogk

Sehechules can define multiple time periods for Shuldown, inchuding tmse rangas and days
Tags: VM Litecycle Mansgernens, Dev § Test Ervirorements

Start fzure V2 Vs
Graphical Rurbook

This Graphscal PovwerShell rus 10 Azure uing an
and 5tarts 3 V2 VM in 3n AZurg subscription of in 3 18s0urTE Group of 3 single named V2
WAL You can 7tach 3 his runbosk &3 nn it ¢ tme. The
Tag: Ansre Virtual Machines, Start hicalPs

R o

Stop Amire Classic Vi
BowieShil Werkliow Runbook

This Power Shell Wiorkfiow runbook connects o Anure and stops all classic ¥ids in an Anure
sudcription o choud service, You can a1ach 3 schedide to this runbook to run it at 3

Start Azure Classic VM.

Powershell Workfiow Runbook

This PowerShell worddlow runbodk connects 1o Azure 3ad starts all classic VME in 2n Azure
Subseriphon of doud senice, You €an attach & schedule 12 this unbock to run A ata
spects pene,

Last upddated: 2/29/2016

‘Created by: SC Automaticn Product Team
Ratings: 467 of §

18,908 domnkoads.

Last upcdated: 10,232016

Created by 5 Automation Product Team
Ratings: 48 of §

14615 downloads

Last updated: 518/2016

Created by 5C Automation Product Team
Fatings: 425 of 5

10,624 downloads

Lt urlated SOAROS

Tags: faqura Virtual Machines, Stop VM, GraghicaiPs =7 rwecshell workiow
Scheduled Virtual Machine Shutdowr, Startup X
Powershell Runbook Created by: Automys Publisher
Automates the scheduled starmup and shutcown of Azune virtual machings. Schedules are Ratings: 451 of 5 | Miroich
e impiemented by tagging VM of resource groups with individual simple schecules. 14,515 downloads

| Community

Figure 1-12. Azure Runbook Gallery

On the right-hand side, you can see the Gallery Source listed. It could be either Script
Center (which is the default) or the PowerShell Gallery. You will find scripts/runbooks
more relevant to Azure by choosing the Script Center option. The PowerShell Gallery
contains mostly general-purpose PowerShell scripts. This right-hand pane also provides
an option to filter the runbooks based on their type (PowerShell Script, Graphical
Runbook, or PowerShell Workflow). Further filtering is possible based on the publisher
(you can choose runbooks published by Microsoft or by the community).

12

CHAPTER 1

INTRODUCTION TO AZURE AUTOMATION

You can search for runbooks for specific use cases in the search bar. Usually,
runbooks are readily available for all major Automation use cases. If not, you will find
something close enough that you can tweak and reuse.

Select the runbook from the gallery, and you can review the information about the
runbook from its description. For Graphical runbooks, you can review the dataflow in a
flow chart representation. You can import the runbook to your Automation account by
clicking Import (Figure 1-13).

1] Import

View Source Project

Q- 11 H

This Graphical PowerShell runbook connects 1o Azure using an Automation Run As account and stops all V2 VMis in an Azure subscription orin a
resource group of a single named V2 VM. You can attach a recumming schedule to this unbook to run it at a specific time.

Get Run As Connection

I
e

Connect to Azure

- -
Get single VM Get all VM in RG

Merge VMs

I
Get VM with Status

READ ME

Get all VMs in Sub

Ratings: 438 of 5
24,808 downloads
Last updated: 10/23/2016

~

Figure 1-13. Importing a Graphical runbook

You need to provide a name and may provide an optional description while
importing the runbook by using the Import option available in the portal). Once
imported, the runbook will be listed in your Automation account. However, this runbook
is not available for execution unless you publish it.

13

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

To publish the runbook, click Edit. This opens the runbook edit pane (Figure 1-14).

R @ pbish X top Blinpwandowpe 8 Tepane WP Feodback
St Wiy e e
Connoct 10 Azurg

» B caours
v L Runscoks & - i
P assTs Gat single VM Get 3 VM i G Gat all Vi in Sub
» BF FUNECOK CONTROL Ly — s

W

o

MergE VME

Figure 1-14. Runbook edit pane

Here you can view and customize the runbook as per your requirements. Then click
Publish to make the runbook available in the Automation account.

Uploading Runbooks to the Gallery

If you have created a runbook that could be valuable to the wider community, you can
upload it to the Runbook Gallery. The step-by-step procedure is as follows:

1. Login to the Script Center by using your Microsoft account at
http://gallery.technet.microsoft.com/site/upload.

2. Under the File Upload option, upload your runbooks.
This could be a . ps1 file for PowerShell Workflows or
.graphrunbook for Graphical runbooks (Figure 1-15).

File upload

Figure 1-15. File upload option

3. Provide the title and description of your runbook (Figure 1-16).

14

http://gallery.technet.microsoft.com/site/upload

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Title *

The tithe should capture the essence of your contnbution.

Description *

The should provide 3bout yOur Contribution. YOu Can Prowice the description in HTAL and we support the embedding of code snippets,
Moges. and 20810 files that help illustrate your contribution.

Km0 EEIEES w0 @R

ormat - For size 'Z'A'BIHIE'J’J%J

Figure 1-16. Runbook title and description

You should list all dependencies of the runbook in the
description. If runbooks refer to other runbooks, that
information must be provided in the description, and the
corresponding runbooks should have the same tag.

4. Provide a summary of the runbook and the language of choice
(Figure 1-17). The summary will be displayed in the Runbook

Gallery search results.
Summary *
Provide summary inf: ion for your bution. This inf will rep your b in search results. Max 280 characters.

(®) Use the first 280 characters of my description.
e} I'want to write my own summary.

Language
Select the language in which you wrote your description.
[English (United States) v

Figure 1-17. Runbook summary

5. Inthe next section, select the category as Windows Azure and
the subcategory as Automation (Figure 1-18). The next option,
operating system, is irrelevant in this case and can be ignored.

15

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

C ,*
(O Active Directory O Office
O Applications O Office 365
O Appv () Operating System
© Backup and System Restore () Other Directory Services
» Databases i Printing
O Deskiop O Project Server
O Enterprise Mobility + Security © Remate Desktop Services
(O Exchange () Scripting Techniques
O Group Policy 3 Security
) Hardhware) Servers
O Interoperability and Migration () SharePgint
O Local Account Management (0 Storage
© Logs and monitoring © System Center
O uyme Q) UEV
) Messaging & Communication () Using the Internet
) Microsoft Dynamics @ Windows Azure
© Multimedia O Windows Update
() Networking
Sub-category *
@ Automation O Storage
O €oN © Store
¢ Cloud Services O Storsimple
) Diagnostics) Traffic Manager
O Graphical Runbook © Virtual Machines
() Media Services O Virtual Networks.
() Service Bus) Web Sites
O SoLDB

Figure 1-18. Selecting the Category and Sub-category

6. Assign tags relevant to your runbook. This helps in listing the
runbook under the relevant categories. A Graphical runbook
should have the GraphicalPS tag associated with it (Figure 1-19).

[Powershell (3521 usages)

] powershell Seript (1517 usages)
[Active Directory (745 usages)

[sau server (556 usages)

[office 365 (475 usages)

[sharePoint 2010 (451 usages)

[Exchange 2010 (441 usages)

[sharePoint 2013 (436 usages)

[windows PowerShell (434 usages)
[sharepoint Online (398 usages)
[Exchange 2013 (370 usages) v
[scem 356 usacest

>

Add Cancel

Figure 1-19. Assigning tags

16

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

7. You have the option to enable Q & A for this contribution or
mark the runbook as an official Microsoft contribution if you
have received permissions to do so (Figure 1-20).

Options

(] This is an official Microsoft contribution.
I have received permission from the involved Microsoft Product teamys) to distribute this as an Official Microsoft Contribution.

|/ Enable Questions and Answers for this contribution

Figure 1-20. Enabling Q & A

8. Select the License options: TechNet Terms of Use, MIT,
or MS-LPL (Figure 1-21). TechNet terms of use refers to
Microsoft Developer Services Agreement. MIT and MS-LPL
come under open source licensing. The last step is to agree to
the terms of use and submit the runbook.

License *
(O Techhet Terms of Use @ It

(O MS-LPL

Terms of use*

The Terms of Use contains the terms that apply to your contribution, Please read them. If you do not agree to these terms, do not make any contributions. You also
agree that we may publish the profile information that we associate with your TechNet Live ID in connection with your contribution,

[1 agree to the Terms of Use

Figure 1-21. License options

Azure Automation Security

Azure Automation should be linked with an Azure Automation account that has access
to resources in the associated Azure subscription. In the classic model, certificate-based
authentication was used. However, in the ARM model, Azure AD-based authentication
is used. This simplifies the authentication process, as one account can be used for
authenticating for both the classic and ARM models.

When you create the Automation account, Azure automatically creates a Run As
account for both the ARM and classic models with the required permissions, as explained
earlier. You can see the details of these accounts by selecting the Run As accounts from
the respective Automation dashboard (Figure 1-22).

17

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

- Run As Accounts

) Search (Ctri+/) [Leam more

@ azure Run As Account ©
Expires 2/21/2018 12:00 AM

Credentials ~

** Connections
© Azure Classic Run As Account @

i Certificates Expires 2/21/2018 12:00 AM

Figure 1-22. Azure Automation Run As accounts

You can click each account to view further details.

When the Azure Run As accounts are created, a couple of other resources are also
created in the back end for the users to start with. These include two sample runbooks:
one PowerShell-based runbook called AzureAutomationTutorialScript, and one
Graphical runbook called AzureAutomationTutorial. These runbooks demonstrate how
to authenticate by using the Run As accounts. Similarly, two runbooks are created for the
classic Run As account as well (Figure 1-23).

O Search fCateg o nddammbook B Browse gallery € Refresh
i Becess control (1AM] ~ |
HaME AUTHORING STATUS LAST MODIFIED
& Tags
A AnsefutomationTutorial + Published 272172017 T28 AW
K Diagnose and sobvr problems
2 AnwelutomabonTusonalSeript + Published 2212007 392 PM
PROCESS ALTOMATION
AR ArureClassciutomationTisonal ' Publihed 27212007 728 M
£ Runbooks
2 AzmeClassicAutomationTutorisiSeript + Published 221/2017 728 AM

Figure 1-23. Sample runbooks

Click any of the runbooks and execute them to verify the Run As accounts

Let’s start the AzureAutomationTutorial runbook to verify the ARM Run As
accounts. Click the runbook, which takes you to the execution pane. Now click Start.

In the Job pane, click Output, and you should be able to view the output of the
runbook, which is the list of all resources in your subscription (Figure 1-24).

18

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

Bessarce "stersinplet” of type "Wicressft. Starkiaplefasssgers’

Besowrce C o fype Rigrssaft
Resaerce "asrdemictrd” of Type “RLCARE . StoragestorageALCIm S

Eessarce Tommailil’ of Type 'Wirsssft Redmerpeei oes Sl 1

Eessarce Tommailta’ of Type 'Wirsssbt Redimenpee oes Sl 1

Ao pp—— Besssrce “domrvecti’ of type “Micrasolt.Meteorks i tus e tuorks "
Cverview [*of e Ricrasolt.
Ingut Besmerce "Bestiowmet” of type "Ricreseft et ki vis bus e tummis
E Resowrie "Wperstion” of Uy “MiCraseltutonat i/ stomat Lt ommts’
Resrurse " " of type
Bevsarce * - ab type Wicrossdt.
Errees Waimings _ R
ox oA o R,

Rersarce " of Type "mloroued T, Autaat o sataat emas oot frannkes”

Figure 1-24. Sample Runbook output

You can repeat the same with AzureClassicAutomationTutorial to get similar
results.

Role-Based Access Control

If you want to provide role-based access for different users to your Automation account,
use the basic RBAC model of ARM. Along with the Owner, Contributor and Reader role,
you can also use the Automation Operator role that is tailor made for Automation. In
addition to these Four roles, you can also use the User Access Administrator role that can
be assigned to manage user access to your Azure resources.

The Contributor role provides full read/write/delete permissions in the Automation
account, except for providing another user access to the Automation resources. Reader,
on the other hand, provides only read-level permissions, as the name indicates. The
Automation Operator role, provides restrictive permissions to the assigned user. This role
is specifically targeting users who need permissions to start, stop, suspend, or resume
Azure Automation jobs and nothing else. It is useful when you want to provide delegated
permissions to a team member to manage Azure Automation jobs.

Follow these steps to provide role-based access to a user:

1. Go to the Automation account and click Access Control
(IAM), as shown in Figure 1-25.

rgautmn - Access control (IAM)

O Search (Ctri+/) eadd [Remove S Roles [Refresh P Help
- Cvervien o Name @ Type @ Role O
Search by name or email All - 2 select:
B Activity log

7 items (1 Users, 1 Groups, 5 Apps)

il Access control (LAM)
NAME TYPE

Figure 1-25. Azure Automation access control (IAM)

19

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

2. Click the Add option. This opens the permissions pane
(Figure 1-26).

Add permissions X

Role @
ot v
Automation Operator @
Search by name or email address v @
4 .

Figure 1-26. Setting permissions

Here you can search for the specific role and the username by
name or email ID. The user should already be present in your
Azure AD associated with the subscription. You can save the
permission after you have added the user.

However, if you are using hybrid workers to execute runbooks
against your on-premises datacenter, you should provide a
credential with permissions to execute the runbook against
the target machine. This is applicable for executing runbooks
against AWS resources as well.

Let’s look at how to add resources for hybrid workers. This
involves creating a credential asset with the username/
password.

3. From the Azure Automation dashboard, click Assets »
Credentials to open the Credentials dialog box (Figure 1-27).

Credentials # O X
o Add a credential {) Refresh

NAME USER NAME LAST MODIFIED

No credentials found.

Figure 1-27. Adding credentials

20

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

4. Click the Add a Credential option and then provide the name,
description, username, and password (Figure 1-28).

New Credential

* Name
l Hybridworker v
Description

Test v
* User name
[contoso\adminuser1 v
* Password
l (ZIZITI2 2112} 4
* Confirm password
[S8 0B0OBRROG vy

Figure 1-28. New credential details

The username in this case can be in the form of
domain\username (as shown in Figure 1-28),
username@domain, or simply the username alone if it is a
local account.

You can call this credential in your runbooks, or alternately
specify a Run As account for a given Hybrid Worker Group.
That way, the credential is automatically invoked for
authentication each time you execute a runbook against a
Hybrid Worker Group.

5. To associate the credential with a Hybrid Worker Group, click
the Hybrid Worker Group from the Automation dashboard.
Select the target group and then click Hybrid Worker Group
Settings (Figure 1-29).

21

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION

cmad.com_aa9c708a-05a5-4ef9-bec9-c8c35934c58e - Hybrid worker group se
O Search (Clri+/) Hsave X piscard
Runés @ | pefault
> ovenie [custom
Choose Run As credential
SETTINGS Hybridworker
"' properties

HYBRID WORKER GROUPS

= Hybrid worker group settings

Figure 1-29. Associate credential with Hybrid Worker Group

6. Click the Custom option. Select the Run As credential from
the drop-down menu and save the changes.

The process for creating AWS credentials is the same. You need to create a credential
asset. The only difference is that in place of a username, you should provide an AWS
access ID and secret access key in the Password field.

Summary

This chapter provided an overview of Azure Automation in ARM, introduced the various
types of runbooks and their assets, explored the Runbook Gallery, and discussed Azure
Automation security. The next chapter covers Azure Automation assets in detail.

Additional Resources
https://docs.microsoft.com/en-us/azure/automation/automation-intro

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-
typesi#tgraphical-runbooks

https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-
started

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery

https://docs.microsoft.com/en-us/azure/automation/automation-role-based-
access-control

22

https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-started
https://docs.microsoft.com/en-us/azure/automation/automation-offering-get-started
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery
https://docs.microsoft.com/en-us/azure/automation/automation-role-based-access-control
https://docs.microsoft.com/en-us/azure/automation/automation-role-based-access-control

CHAPTER 1 * INTRODUCTION TO AZURE AUTOMATION
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-
worker
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-
types#powershell-runbooks

23

https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#powershell-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#powershell-runbooks

CHAPTER 2

Azure Automation Assets /

This chapter covers the various Azure Automation assets and their relevance in

Azure Automation. We will also look at nested runbooks, which enable modularity

and reusability of runbooks. Automation assets play an important role in Azure
Automation, as you can reference the assets within a runbook, and they will be accessed
at different stages during runbook execution. Automation assets provide flexibility

to the administrator since they can be defined once and reused whenever required.

For example, you can create a schedule for repetitive execution of runbooks, and the
same schedule can be linked to multiple runbooks. You can create a connection asset

to establish connections to target resources, and this asset can be used by multiple
runbooks. This chapter will give you a detailed understanding of Azure Automation assets
and how they can be defined and leveraged in Azure Automation.

Azure Automation Assets

Assets in an Automation account can be considered globally available settings that can be
used by runbooks in that given account. The assets are classified as schedules, modules,
variables, connections, certificates, and credentials.

Schedules

One of the most important requirements of any automation framework is the capability
to schedule repeated tasks. In Azure Automation, this is achieved by using the schedules
asset. You can create schedules and attach them to runbooks so the runbooks are run
repeatedly—on a daily, weekly, or monthly basis, for example. You can attach multiple
runbooks to a schedule, and attach multiple schedules to a runbook.

© Shijimol Ambi Karthikeyan 2017 25
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_2

https://doi.org/10.1007/978-1-4842-3219-4_2

CHAPTER 2 * AZURE AUTOMATION ASSETS

To create and attach a schedule to a runbook, follow these steps:

Click the Automation dashboard and then choose Assets »

Schedules. Next click on Add a Schedule (Figure 2-1).

| Schedules

+ Add a schedule

NAME
tes
testschedule
testupdaterun

updatesrun

O Refresh

NEXT RUN
Expired
41472017 8:11 PM (Europe/London)
Expired

Expired

STATUS

v On

v On

v On

v On

Figure 2-1. Azure Automation schedules

Provide the information shown in Figure 2-2.

26

CHAPTER 2 © AZURE AUTOMATION ASSETS

New Schedule

* Name
I Schedulebook1 v

Description

* Starts ©
2017-04-14 8:07:57 PM

UK - UK Time v

Recurrence

* Recur every

1 Hour v

Set expiration
- e
* Expires

2018-04-14 8:07:57 PM

Figure 2-2. Describing a new schedule

In particular, you need to provide the following details:
e Aname for the schedule
e Description
e Astart time for the schedule, along with the time zone

e Therecurrence is set to Once by default. However, you can set
it to Recurring and configure the frequency as every Hour, Day,
Week, or Month.

e Bydefault, the expiration is set as No (the schedule never expires).
However, you can set an expiry date and time for the schedule if
required.

27

CHAPTER 2 * AZURE AUTOMATION ASSETS

The next step is to link this schedule with a runbook. Open
the target runbook. In the overview tab, select Schedules
(Figure 2-3).

P stat <P view # edit (D schedule [webhook [Delete & Bport

Essentials ~

Resource group

omsrg

Account

omsrgautmn

Location

East US 2

Subscription name

Microsoft Azure Internal Consumption

Details

Schedules Webhooks

0o O

Figure 2-3. Schedules in the overview tab

Click the Add a Schedule option. Then link the schedule to
your runbook and select the schedule (Figure 2-4).

O acdaschede L) Reben Schedie
Schedulebook] 4 | Create a new schecuie

Parartons and rum 1ot % Seneoul 1

Configure parameters and run settings DOwy

testschecule
Houe

Figure 2-4. Linking a schedule

You can set the input parameters of the runbooks to be

used for the schedule. In this example, the runbook input
parameters include the resource group name (optional),

the name of the VM(optional), and the connection

asset name (which, if not provided, will use the default
AzureRunAsConnector asset). You should also specify the run
settings, which determine where the runbook gets executed
(either on Azure or on a hybrid worker (Figure 2-5).

28

CHAPTER 2 © AZURE AUTOMATION ASSETS

Schedule 5 Parameters

Schedulebook1 RESOURCEGROUPNAME ©
- No value

Parameters and run settings

. Cptional Strin
Configure parameters and run settings > v
VMMAME @
No valuve
Cptional String

AZURECONMNECTIONASSETNAME @
Default will be used
Cptional String. Default: AzureRundsConnection’

Run Settings

Runcn @

| Azure | Hybrid Worker

Figure 2-5. Input parameters for the runbook

If you wish to unlink the schedule from a runbook at any given
point, you can select the schedule and then choose More »
Unlink (Figure 2-6).

tes

Schedule

Hsave X Discarc *++ More

Name |m Delete

tes
& Unlink

Last modmeu

Figure 2-6. Unlinking a schedule

29

CHAPTER 2 * AZURE AUTOMATION ASSETS

Modules

For the runbooks to be executed without any errors, the PowerShell modules
corresponding to the commands being used should be imported into the Automation
account. This concept is like that in standard PowerShell, where the respective modules
should be made available in the PowerShell runtime before executing a PowerShell
command. Like Runbook Gallery, a PowerShell Module Gallery is available in the Azure
portal (Figure 2-7).

P Search fCtrisg) o addamodue T Updste &rure Modules B Browse galery) Retresh
& Ovenven ~ N LAST MOCRD STATUS
B atylog Anwe 2172017 321 M Avadatle
i Acoeis control JAM) Anstestarage 2/21/2017 314 Pt wadabie
& oy AzueRMsaitomation 2RVHNT 394 PM Avadatie
X Ciagnoie and sche problems AzuseRMCompute 221TNT 34 PM avadabie
AneRMPrefile 22172017 314 PM Anadatle
PEOCESS ATOMATICN
& AQureRM RS0 0RS LT INT EAPM Avadatle
&% FRunboocks
AzueeRMSCl L2127 Z4PM Avadacle
i Jobs
AzreRMStorge 22127 38 PM Avadatie
B Runbooks Salry
Micrasoft PowerShel Core 41472017 1045 PRA Analatle
COMFIGLRATION MANAGEMENT
Micrasoft Powershel Diagnostics 41472017 10045 PV Avadatle

Figure 2-7. PowerShell module list

The majority of the required PowerShell modules are readily available in the account
by default. The Azure team regularly updates the modules. You can keep the modules in
your account up-to-date by clicking Update Azure Modules.

You will then get a notification that all modules will be updated to the latest version.
Click Yes (Figure 2-8).

F iadamosie | €D Update faure bccubes | W) Broase galery L) e

Update all xisting Azure modules ta the letest version
Thes will update the mesting Adwne madules 1o the test versior, The update may take several meutes. Do you wart 10 continue? After seotesiel update, for rurbook that use these moduies and have a bnked schaoule you will noed
10 Ll 39 re-Bk The schedule so that the updated modules wil B¢ wied By e rurbook,

Figure 2-8. Module update notification

You can see that the modules are being updated (Figure 2-9).

@ Browse gallery) Refresh

@ Aeure moduies ore being updated

NAME LAST MOOIFIED

Figure 2-9. Azure modules being updated

30

CHAPTER 2 © AZURE AUTOMATION ASSETS

Once the update is complete, you will be notified that the modules have been
updated (Figure 2-10).

4 acdamodde €) Update howe Medues () Beomse gallery L) Feren

) ot roowes nove boon Lputed, e DO TUR st TS OIS A NI 3 WD TN (O A1 1300 T8 LANA 0 e I T ML 50 TR IR LEBted IO a1 B 0 By T WIECBL

Figure 2-10. Notification of update completion

It is recommended to link and unlink any runbook schedules by using these
modules, and to link them back after the modules are updated.

If any particular module is not available in the gallery, you can browse the
PowerShell Gallery, search for the module, and import it. Click the Browse Gallery option
to access the gallery, shown in Figure 2-11.

Browse Gal

J.":| | Popularity v | A

AzureRM profile

mmm Microsoft Azure | - Profile credential emdlets for Azure Rescurce Cregted by: anure-sck
1| Manager 961827 downloads
BN 7ag5 Azure ResourceManager ARM Profil Authentication Environment Subsaription Last updatad: 4/5/2017

FShodule

e PSDscResources Created by: PowerShellTeam
mmm This module contains the standard DSC resources. 564451 downloads
Tags: DesiredStateConfiguration DSC DSCRessurcakit DSCResource PSMadule Lastupdatect 327
e Ax.ure.smuge) Created by azure-sdk
Microsoft Azure PowerShell - Storage service cmdlets. Manages blobs, queuds, tables and "
1| 402939 downloads
mmmm files in Microsoft Azure storage accounts gk 4, 17
Tags: Azure Storage Blob Queue Table PSModule Lest updated: 47320
—— AzureRM . ApiManagement . g Created by: azure-sdk
- ::r::;ﬂt #Azure Powershell - Api Management service cmdlets for Azure Resource 281501 downloads
| 3
Tags: Azure ResaurcaManager ARM ApiManagement PSModule Last opdalnct 4/2/2017

Figure 2-11. Azure Automation module gallery

31

CHAPTER 2 * AZURE AUTOMATION ASSETS

Select the module that you would like to import to view the details, shown in
Figure 2-12.

Lkj Import

Microsoft Azure PowerShell - Api Management service crdlets for Azure Resource Manager

nagement PSModule Version: 3.6.0
281,501 downloads
Last updated: 4/5/2017

Content

Search to fiter items...

TYPE NAME

Cmdlat Add-AzureRmapiManagementRegion

Cmdlet p

Crodlt w4z i
Crndlet MNew- &z

Figure 2-12. Viewing the details of a PowerShell module

In the preceding example, we are trying to import the AzureRM. ApiManagement
module. This module contains Azure Storage management commands such as Add-
AzureRmApiManagementRegion,Get-AzureRmApiManagementRegion, and New-AzureRmA
piManagementHostnameConfiguration. If your runbook uses any of these commands,
you should import this module to the Automation account before executing the runbook.
Otherwise, you might get a Command Not Found error. Some of the modules will have a
dependency on other modules. In this case, the AzureStorage module has a dependency
on the AzureRM.Profile(=2.8.0) module. Therefore, the module should be imported
and available in the account, and the version should be 2.8.0.

Click the Import option to import the module to your account (Figure 2-13).

eRM.ApiManagement

L LY import
Microsoft Azure PowerShell - Api Management service emdlets for Azure Resource Manager
Created by: azure-sdk

Tags: Arure Reso
Dependencies:

Module Version: 3.6.0
281,501 downloads
Last updated: 4/5/2017

View Source Proj

Learn more

Figure 2-13. Importing dependent modules

32

CHAPTER 2 © AZURE AUTOMATION ASSETS

You will get a message stating that importing a module might take couple of minutes.
You will also see warning for any dependencies that need to be updated. You can choose
to update the dependent modules when you import the new module (Figure 2-14).

- Import a X

Importing a module may take
several minutes.

Name

AzureStorage

This Azure module has dependent
Azure modules that must be
updated. Please check the box
below to update all of the Azure
modules.

A After successful update, for
runbooks that use these modules
and have a linked schedule you will
need to unlink and re-link the
schedule so that the updated
modules will be used by the
runbook.

| agree to update all of the Azure modules

Figure 2-14. Updating modules during import

Click the OK button to proceed.
The progress of the import will be displayed in the portal (Figure 2-15).

33

CHAPTER 2 * AZURE AUTOMATION ASSETS

AzureRM.ApiManagement

o Activities are being extracted.
Overview

AzureRM.ApiManagement

Last modified: 4/15/2017 3:49 AM

Version:

Size: 0 KB

Global module: No EEE

Activities

o™

MNAME DESCRIPTION

Mo results

Figure 2-15. Module update in progress

During the import process, the PowerShell cmdlets and metadata will be extracted
and made available in the Automation account.

In addition to importing modules from the gallery, you can use your own modules by
clicking Automation Accounts » Modules » Add a Module (Figure 2-16).

Sasnn Coe s ok amodde €) Update e Moduies () Beomse palery) Sy

s (AT aorr0 srans

Figure 2-16. Importing a new Automation module

The module can be uploaded as a zip file. The name of the module should be the
same as the zip file (Figure 2-17).

34

CHAPTER 2 © AZURE AUTOMATION ASSETS

:"IJ ‘ Add Module

Importing a module may take
several minutes.

* Upload File (zip format, 100 MB max size) @

Select a file .

Figure 2-17. Uploading a module as a zip file

Variables

Variables are, as the name indicates, values that can be provided as inputs to runbooks
and shared between them. Variables are particularly useful when a certain set of values
should be shared among multiple jobs or runbooks.

A variable can also be defined inside a runbook, but the scope of the variable is then
restricted inside that particular runbook. This is different from variables that are defined
from the portal, which are persistent outside the scope of the runbook. The values can be
set by runbooks and used by another runbook or DSC configuration. Since the values are
persistent, they can also be used by runbooks the next time they are executed

Creating a Variable from the Portal
It is quite easy to create a variable from within the portal:

1. From the Automation account, scroll down to Shared
Resources » Variables. Then click the Add a Variable option
(Figure 2-18).

Automationdemo - Variables

D Search (Ctri+/) + Add a variable O Refresh

XK Diagnose and solve problems A NAME TYPE

No vaniables found.
PROCESS AUTOMATION

&3 Runbooks

Figure 2-18. Adding a new variable

35

CHAPTER 2 * AZURE AUTOMATION ASSETS

2. Enter the Name, Description, Type, and Value (Figure 2-19).

New Variable

* Name

Variable1 v

Description

Test variable v

Type ©
String v

* Value

temp v

* Encrypted

Figure 2-19. Variable details

The type of variables can be String, Boolean, DateTime, Integer, or Not Specified. If
Not Specified is used, the value of the variable will be set as NULL. You can set the value
of the variable at a later point by using the Set-AzureAutomationVariable PowerShell
command. The syntax for the command is as follows:

Set-AzureAutomationVariable
-AutomationAccountName <String>
-Description <String>
-Name <String>
[-Profile <AzureSMProfile>]
[<CommonParameters>]

By default, the variables are not created as encrypted. However, you can choose

to encrypt the variables, if required, during creation. If encrypted, the variable can be
retrieved only from within a runbook by using the Get-AutomationVariable activity.

36

CHAPTER 2 © AZURE AUTOMATION ASSETS

Managing Variables by Using PowerShell

You can create and manage Azure Automation variables by using PowerShell. You should
be logged in to your Azure account via Azure PowerShell (Figure 2-20).

PS C:\WINDOWS\system32> Login-AzureRmAccount
Figure 2-20. Logging into an Azure account via Azure PowerShell

Provide the Azure login credentials when prompted.
The Get-AzureRmAutomationVariable command will get the values of a given Azure
Automation account variable (Figure 2-21). The syntax is as follows:

Get-AzureRmAutomationVariable
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[<CommonParameters>]

S C:\WINDOWS\system32> Get-AzureRmAutomationvariable

let Get-AzureRmAutomationvariable at command pipeline position 1
upply values for the following parameters:
1? for Help.) 4
esourceGroupName: automationrg
tomationAccountName: Automationdemo

alue : temp

ncrypted : False
esourceGroupName . automationrg
tomationAccountName : Automationdemo

ame : variablel

reationTime : 4/15/2017 6:23:17 AM +01:00
astModifiedTime : 4/15/2017 6:23:17 AM +01:00
scription : Test variable

Figure 2-21. Get-AzureRMAutomationVariable command output

The command pulls out the available variables in the given Automation account.
You can pull out information on a specific variable independently and store it in
another variable during runtime by using the commands shown in Figure 2-22.

PS C:\WINDOWS\system32> Svariable = Get-AzureRmAutosationvariable -AutomationAccountName ResourceGrou
hame Name
PS C:\WINDOWS\system32> Svalue - Svariable.value

PS C:\WINDOWS\sys tem32> Svalue
t

Figure 2-22. Variable runtime manipulation

37

CHAPTER 2 * AZURE AUTOMATION ASSETS

Similarly, you can also create new variables via PowerShell by using the New-
AzureRmAutomationVariable command. The syntax is shown here:

New-AzureRmAutomationVariable
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[-Description <String>]
-Encrypted <Boolean>
[-Value <Object>]
[<CommonParameters>]

In Figure 2-23, the command is executed against the target Automation account
name and resource group with the name and value of the new variable.

'S g \ﬂm\sﬁteﬂjth New nurmtmt\mVInlbI! AutomationAccounthame Kame Encrypt
False -value s roupa

value : test2

Encrypted : False

ResourceGroupName : Automationrg

AutomationAccountName : thtwﬂdﬂn

Name : variable2

CreationTime H l/lS/ZOl? 6:36:16 AM +01:00

LastModifiedTime : 4/15/2017 6:36:16 AM +01:00

Description]

Figure 2-23. Creating a new Automation variable

You can go back to the portal and check, and the variable will be listed there
(Figure 2-24).

[P Ty

A e vaaut LAST MODEED

Viraba! Sog

i

412017 623 AM

virabel s e 4132017 658 AM

Figure 2-24. List of variables in the Azure portal

The Set-AzureRmAutomationVariable command can also be used to set the value of
an existing variable (Figure 2-25).

S C \lllm\systnlb Sel-l.zureln\u‘wahw\r.nwlz Jtomat 1onACCoun tName Name
Encrypted sr-hr

alue : Testl
ncrypted : False

&5 0urceGroupName : Automationrg
tomationAccountName : An&muondm

: variablel
reationTime H 4!1;/20!7 6:23:17 AM +01:00
astModifiedTime : 4/15/2017 6:42:44 AM +01:00
scription : Test variable

Figure 2-25. Setting the value of an Azure Automation variable

38

CHAPTER 2 © AZURE AUTOMATION ASSETS

Here you can see that the value of the variable that we originally set from the Azure
portal is set to Test1.

You can delete the variables by using the Remove-AzureRmAutomationVariable
command. The syntax is as follows:

Remove-AzureRmAutomationVariable
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[-Force]

[-Confirm]
[-WhatIf]
[<CommonParameters>]

You can provide mandatory parameters such as Automation account name, resource
group name, and variable name to delete a variable (Figure 2-26).

rs C:\WINDOWS\sys tem32> Remove-AzureRmAutomationvariable -aut

Figure 2-26. Deleting an Azure Automation variable

Using Encrypted Variables

Creating encrypted variables is easy from the portal; you set Encrypted to Yes in the
portal. You will not be able to view the value of the encrypted variable from the portal
(Figure 2-27).

o= ndd avarisble € Refresh

HAME eE WALUE
Variable1 String Testl
Variable3 Urikrown {encrypted) b iriintaries

Figure 2-27. Encrypted Variable

The value cannot be retrieved by using the Get-AzureRmAutomationVariable
command either (Figure 2-28).

S C:\WINDOWS\system32> Svalue = Svariable.value
'S C:\WINDOWS\system32> Svalue

Es C:\WINDOWS\System32> Svariable - Get-AzureRmAutomationvariable Aut
S C:\WINDOWS\system32>

Figure 2-28. Encrypted variable runtime manipulation

You can get the value from inside a runbook by using the Get-AutomationVariable
activity.

39

CHAPTER 2 * AZURE AUTOMATION ASSETS

Let’s create a sample runbook to demonstrate this:

1. Choose Automation Accounts » Runbooks » Add a
Runbook.

2. Select the option to create a new runbook rather than
importing from the gallery, as shown in Figure 2-29.

Add Runbook # 0O X Runbook
Quick Create > * Name @
Create a new runbook Testrunbookl o
Import 3 * Runbook type @
Import an existing runbcok Powershell v
Description

Encrypted variable tesf

Figure 2-29. Creating a new runbook

3. This opens the Edit PowerShell Runbook pane. Type in
Get-AutomationVariable <Variablenamey.

4. Figure 2-30 shows the display of the value in the test pane.

Edit PowerShell Runbook*

=] Save Publish R k P r = Test pane Feedback
A & X (£ v

» BHCMDLETS 1 Get-AutomationVariable Variable3
» 2 RUNBOOKS

» S ASSETS

Figure 2-30. Azure Automation runbook edit pane

5. Click the Save option. Then click Test Pane and start the
runbook.

There you can see that the activity pulls out the value of the encrypted variable
(Figure 2-31).

40

CHAPTER 2 © AZURE AUTOMATION ASSETS

P stat W sop I end QR

Parameters

No input parameters

Run Settings
Run on Azure @

Using a hybrid runbook s
worker can increase test
performance.

Leamn more

Figure 2-31. Azure Automation runbook output

Connections

The runbooks need to connect to various resources or external systems, and connection
assets encapsulate the information required to enable this. The connection information
could include username/password, subscription IDs, URLS, ports, and so forth. When
you create the Azure Automation Run As accounts, two connection assets are created by
default. You can view them from Automation account dashboard by choosing Assets »
Connections (Figure 2-32).

U Refieh & addaconnection) Rebesh

Assets MAME TRE LAST MODIFIED:
5 8s sl s
hedule Mo Ceian AnseChusichunisConnection AmurechassicCentificate B/30/2016 340 P
AnseRundsConnection AguresendcePrincipal 8730/2016 3:40 P

20 16= 2.

Variables Credentials

0x 0

Figure 2-32. Azure Automation connections list

Let’s look at these assets so you can understand how the connection assets work; see
Figure 2-33.

41

CHAPTER 2 * AZURE AUTOMATION ASSETS

o nddaconnection £ Refresh Hs X Discard [Delete

Narne

NAME TVPE LAST MODIFIED A anheetion

AzurellassicRuntsConnection AzureClassicCertificate B/30/2016 340 M Last modified
8/20/2016 340 PM

AzureRunAsConnection 1pal 3y 340 PM
Description
This connection containg information A
about the serviee peincapal that was |
ically created for this i b

7‘,’9@
AzureSenvicePrincipal
* Applicationid

* Tenantid

* CertificateThumbgprint

* Subsaiptionid

Baperde. coa i noofao

Figure 2-33. Connection information for AzureRunAsConnection

Here you can see the details of the service principal created in Azure AD for the
Automation Run As account. This information includes the application ID, tenant ID,
certificate thumbprint, and subscription ID.

When it comes to the classic connection asset, the parameters will be the
subscription name, subscription ID, and certificate asset name. This certificate asset is
also created automatically when you create the Run As account (Figure 2-34).

I | Connections

o add aconnection £ Refresh Hsave X Disc @ Delete
Mame
LiSTMI0ineD AzureClassicRunasConnection
AzureClassicRunAsConnection AzureClassicCertificate B/30/2016 3:40 PM Last modified
8/20/2016 2:40 PM
onnection A icePrincipal 8/30/2016 3:40 PM
Description
This connection contains information A

needed to authenticate with Azure 5o that
you an manage Azure classic resources v

Type
AzureClassicCertificate

* SubscriptionName
Visual Studio Enterprise

* Subscriptionid

* CertificateAssetName
AzureClassicRunAsCertificate

Figure 2-34. Connection information for AzureClassicRunAsConnection

42

CHAPTER 2 © AZURE AUTOMATION ASSETS

Each connection is associated with a connection type, and each connection type

is defined in integration modules. You can make your own PowerShell modules and
include them in Azure Automation as integration modules. In addition to the PowerShell
module, the integration module can optionally contain a metadata file that specifies

the connection type to be used in Azure Automation. Integration modules provide the
flexibility of bringing your own PowerShell modules to Azure when the required modules
are not available by default. The modules that are available by default are called global
modules. The modules imported by users takes precedence over the global modules.

Creating a New Connection

From the Automation account dashboard, choose Assets » Connections » Add a
Connection. Depending on the type of connection selected, you need to provide
additional inputs (Figure 2-35).

New Connection

* Name
I testconnection \/|
Description
* Type @
Azure v

* AutomationCertificateName

* SubscriptionlD

Figure 2-35. New connection details

In this example, I have selected the connection type as Azure, and this option
prompts for entering the Automation certificate name and the subscription ID.

43

CHAPTER 2 * AZURE AUTOMATION ASSETS

Managing Connections by Using PowerShell

You can use Azure PowerShell to manage connection assets.

Get-AzureRmAutomationConnection

The Get-AzureRmAutomationConnection command gets information about connections
in each automation account (Figure 2-36).
The syntax of this command is as follows:

Get-AzureRmAutomationConnection
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-ConnectionTypeName] <String>
[<CommonParameters>]

Or:

Get-AzureRmAutomationConnection
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[<CommonParameters>]

5 LI ANLNUUWS ASYSTEm3Z> N Ny .
S C:\WINDOWS\system32> Get-AzureRmAutomationConnection -ResourceGroupName -AutomationAccoun tName

onnectionTypeN, : AzureClassicCertificate
1eIdDehnltlorNa!ues : {}

esourceGroupName : Automationrg
utomaticnAccountiame : nu:oma:iondm

ame : 'Iassvr_RunAsconnecnon
reationTime : 4!9!20 8:40:19 Av +01:00
as tModi fiedTime 1 4/9/2017 8:40:19 AH +01:00
escription -
onnectionTypeName : AzureServicePrincipal
ieldoefinitionvalues : {}
ResourceGroupName : Automationrg
Gu:mtimcmmm : Automationdemo
Name : AzureRunAsConnection
CreationTime : 4/9/2017 8:40:42 AM +01:00
iLastModifiedTime : 4/9/2017 8:40:42 AM +01:00

1Description

Figure 2-36. Getting connection information via Azure PowerShell

If you run the command with the Automation account name and resource group name
as parameters, all the connection information in that Automation account is pulled out.

New-AzureRmAutomationConnection

The New-AzureRmAutomationConnection command is for creating a new connection.
The syntax is as follows:

New-AzureRmAutomationConnection
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>

44

CHAPTER 2 © AZURE AUTOMATION ASSETS

[-Name] <String>

[-ConnectionTypeName] <String>
[-ConnectionFieldValues] <IDictionary>
[-Description <String>]
[<CommonParameters>]

Let’s create a new connection asset by using PowerShell. In the first command, the
connection field values (the certificate name and the subscription ID) are provided. This
information is called in the New-AzureRmAutomationConnection command to create the
connection asset (Figure 2-37).

pPs C: \U‘thS\s)ﬁtel!?:
p> $Fieldvalues = @{

psc: \lllhmls\sysmﬂb ue- Azureﬂmuto-atimtmne(tim Name tionTypeName Azure
$rieldvalues -Re omat{ onAccountName

Connection Ty?eﬂ-e -
Fieldoefini values : {m:e-a:ioncertifi:ueuue SubscriptionID)
ResourceGroupkame : Automati onrg

AutomationAccountName : Mlﬂl!\mm

Name Connect
CreationTime - 4.’15/201? 6 24:20 PM 4+01:00

LastmodifiedTime : 4/15/2017 6:24:20 PM 4+01:00
Description i

Figure 2-37. Creating a new connection via Azure PowerShell

You can see that the asset is listed in the portal after it’s created (Figure 2-38).

+ Add a connection O Refresh

NAME TYPE
AzureClassicRunAsConnection AzureClassicCertificate
AzureRunAsConnection AzureServicePrincipal
Connection1 Azure

Figure 2-38. Connection list in the Azure portal

Remove-AzureRmAutomationConnection

As the name indicates, the Remove-AzureRmAutomationConnection command deletes an
existing connection from the Automation account.
The syntax is as follows:

Remove-AzureRmAutomationConnection
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[-Force]

45

CHAPTER 2 * AZURE AUTOMATION ASSETS

[-Confirm]
[-WhatIf]
[<CommonParameters>]

The command deletes the newly created connection asset, as shown in Figure 2-39.

PS C:\WINDOWS'\Systemi2> Rmove AzureRmAutomationConnection -AutomationAccountName Name
ResourceGroupName

Confirm

Are sure you want to remove the Azure Automation Connection ?
[yl ¥Des“ [N] “D [5] Suspend [?] Help (default is "¥"): ¥

PS C:\WINDOWS'svstem32>

Figure 2-39. Removing a connection via Azure PowerShell

Set-AzureRmAutomationConnectionFieldValue

Another command, Set-AzureRmAutomationConnectionFieldValue, can set the values
of a field for a connection asset.
Here is the syntax:

Set-AzureRmAutomationConnectionFieldValue
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
-ConnectionFieldName <String>
-Value <Object>
[<CommonParameters>]

In the example in Figure 2-40, the command is used to update the certificate name of
the connection asset named Connection2.

Ps C: \'NINI]J\\’S\S;'S(TM#Z!- Set Azurewutonatwl(onnecuonnelavalue -Name
value “Az -ResourceGroupName

ConnectionTypeName : Azure

Fieldpefinitionvalues : {AutomationCertificatename, SubscriptionID}
ResourceGrouphame : Automationrg

lAutomationAccountName : Automationdemo

Name : Connection2

CreationTime : 4/15/2017 6:31:42 PM +01:00

Las tModifiedTime : 4/15/2017 6:33:12 PM +01:00

Description =

Figure 2-40. Setting a connection value via PowerShell

Get-AutomationConnection

The activity named Get-AutomationConnection can be used to get information about the
connection from within a runbook.

Let’s create a runbook with the type PowerShell to test this out. Call the activity
with the connection name and parameter to retrieve information about the connection
(Figure 2-41).

46

CHAPTER 2 © AZURE AUTOMATION ASSETS

Edit PowerShell Runbook

= @ publish X) [Testpane WP Feedback
» B8 CMDLETS 1 Get-AutomationConnection Connection2
» 5 RUNBOOKS
» @ ASSETS

Figure 2-41. Azure Automation runbook edit pane

You can save the runbook and execute it in the Test pane to view the results
(Figure 2-42).

P stan W s Il suspend Q¥

Parameters

No input parameters

Run Settings
Run en Azure ©
- Name
Using a hybrid runbook — mmz= amama
worker can increase test AutomationCertificateName “AzureClassicRunAsCertificate™
pgrforr.r.nanttcc. SubscriptionID 5a858dBe-29d4- 1fea-850F-13403922a99

Figure 2-42. Runbook test result

Certificates

Certificate assets authenticate the access of runbooks to various resources in Azure,
including ARM and classic resources. When the Azure Automation Run As account is
created, two certificate assets are created by default. You can view these assets from the
Automation account dashboard by choosing Assets » Certificates (Figure 2-43).

Automationdemo - Certificates

NAM EXPIRATION
~
SC node configur
ArureClasscRunAsCertificate 4972018
SHARLD RISOURCTS AneluniaOuriiicste 4972018

) Hybrid worker groups

Figure 2-43. Azure Automation certificates list

47

CHAPTER 2 * AZURE AUTOMATION ASSETS

AzureClassicRunAsCertificate, as the name indicates, authenticates access to
manage classic resources. AzureRunAsCertificate authenticates access to manage ARM
resources.

You can also add new certificates by clicking Add a Certificate to access the Add a
Certificate dialog box (Figure 2-44).

Add a certificate O X

* Name

ClientCertificateName v

Description

[

* Upload a certificate file (.cer,.pfx)

ClientCertificateName.pfx v .

. . X o
ClientCertificateName.pfx
* Password

LAl il 11l l} v
* Exportable

ves [

Figure 2-44. New certificate details

You can choose to upload a . cer file or a . pfx file. If you upload a . pfx file, you will
get an option to enter a password and set whether the value is exportable.

A certificate can be uploaded via PowerShell as well, by using the New-
AzureRmAutomationCertificate command (Figure 2-45).

48

CHAPTER 2 © AZURE AUTOMATION ASSETS

The syntax is as follows:

New-AzureRmAutomationCertificate
[-ResourceGroupName] <String>
[-AutomationAccountName] <String>
[-Name] <String>
[-Path] <String>
[-Description <String>]
[-Exportable]

[-Password <SecureString>]

[<CommonParameters>]

Figure 2-45. Creating a new certificate via Azure PowerShell

Execute the command with certificate information and Automation account
information as parameters.
You can use the certificate from within a runbook by using the

PS C:\»> dcertname

s C:\> Scertpath _

PS C:\> Scert ConvertTo-5ecurestring -5tring AsPlainText -Force

PS C:\> SResourceGroup

PS C:\> Nw-Muremutmt‘muCurllfl(_ate Automat ounthame Name JcertName -Path §certPath -Pascw
d ScertPwd -Exportable -ResourceGroupName SRLaU”LLGII}lIU

b

Thumbprint H 32502!\EASDZCSIS!MEM!M?E‘:I3ECEEF3CI—‘D

Exportable : True

ExpiryTime : 11;15;2024 3:43:14 AM +00:00

flesourceGrouplame : Automationrg

utomationAccountName : Automationdemo

pame : Testcermficatc

CreationTime 1 4/15/2017 7:31:50 PM +01:00

LastdodifiedTime : 4/15/2017 7:31:50 PM +01:00

Description H

WO

Get-AutomationCertificate activity. Create a new runbook and call the activity with

certificate name as a parameter (Figure 2-46).

Fsave @ publish X Revert to put ® Checkin [Testpane WP Feedback
» B3 CMDLETS 1 Get-AutomationCertificate ClientCertificateName

» 5 RUNBOOKS
» @ ASSETS

Figure 2-46. Azure Automation runbook edit pane

49

CHAPTER 2 * AZURE AUTOMATION ASSETS

You can run a test execution to review the output values (Figure 2-47).

P ostat W s n ¢
Parameters

Mo input parameters

Run Settings

Run on Azure ©

Thumbprint Subject
. : ” 3
Using a hybrid runbock =
worker can increase test 32602A3CABD2CB1E394EA4IG06TECIIECEEF3CFD CN=ClientCertificateName

performance.

Figure 2-47. Test execution output

Credentials

The credential asset in Azure Automation is same as the PowerShell PSCredential object
holding security credentials for authenticating against a service. These credentials can be

called by runbooks for authentication purposes.
Creating credential objects from the portal is straightforward. Go to the Azure

Automation dashboard and choose Assets » Credentials » Add a Credential to access

the New Credential dialog box (Figure 2-48).

50

CHAPTER 2 © AZURE AUTOMATION ASSETS

New Credential O X

* Name

TestCred Vv

Description

* User name

user1 v

* Password

LLI 2] v

* Confirm password

eesecnoee * v

Figure 2-48. New credential details

You can also provide a username in the format domain\username or
username@domain.

The value of a credential can be viewed by using the Get-AutomationPSCredential
workflow from within a runbook.

Similar to the examples mentioned earlier for other assets, you can create a runbook
with the Get-AutomationPSCredential activity and the credential name (Figure 2-49).

51

CHAPTER 2 * AZURE AUTOMATION ASSETS

Edit PowerShell Runbook*

H save @ publish X s i Testpane WP Feedback
» HHCMDLETS Get-AutomationPSCredential Tesl(red
] RUNBOOKS

» @ ASSETS

Figure 2-49. Azure Automation Runbook edit pane

Execute the runbook to get values of the credentials. Note that the password will not
be displayed because it is stored as secure string (Figure 2-50).

”

P stat MW sop I

Parameters

No input parameters

Run Settings

Run on Azure @

UserName Password

Using a hybrid runbook & ER—

worker can increase test userl System.Security.SecureString
performance.

Leam more

Figure 2-50. Azure Automation runbook output

Nested Runbooks

Along with the various Automation assets, nested runbooks are another Azure
Automation feature that enables modularity. You can define commonly executed tasks
as a runbook and then call it as a child runbook from various parent runbooks. There are
two ways to call a child runbook: either by invoking the child runbook inline or by using
the Start-AzureRMAutomationRunbook PowerShell cmdlet.

Invoking a Child Runbook Inline

Runbook inline invocation is the synchronous execution of a child runbook from a
parent runbook. The parent runbook will wait for the execution of child runbook to be
completed before moving on to the next line of code. Only a single Azure Automation job
is created that takes care of the tasks defined in both child runbook and parent runbook.

52

CHAPTER 2 © AZURE AUTOMATION ASSETS

The child runbook that is invoked inline should be published before the parent runbook.
You can store the output of a child runbook in a variable while invoking it inline. The
parameters for a child runbook can also be passed on by using variables. However, the
name of a child runbook cannot be passed on using a variable and should be explicitly
named inside the parent runbook. The execution of child and parent runbook is covered
in a single job, which makes debugging easier.

From the edit pane of the parent runbook, you can directly add a child runbook from
the same Automation account via the Add to Canvas option (Figure 2-51).

H Save Cr Publish X L, B Test pane . Feedback

» BB CMDLETS
- = RUNBO
* Al
AzureAutomationTutorial
AzureAutomationTutorialScript
AzureClassicAutomationTutorial
AzureClassicAutomationTutorial
k-1

StopAzureV2Vm
testpowershell A s

b e ASSETS | asd e T

Figure 2-51. Adding a child runbook to the canvas

This option will add the child runbook to the parent runbook from which it is
invoked (Figure 2-52).

Edit PowerShell Runbc

@' publish ¥ Revert to published g I8 testpane WP Feedback

CMDLETS

RUNBOOKS

Figure 2-52. Inserting the child runbook

53

CHAPTER 2 * AZURE AUTOMATION ASSETS

To keep the example simple, I have included an echo command in the child runbook
so that the execution order is clear (Figure 2-53).

Edit Pov |l Runbook

@& publish X Revert to published 8 testpane WP Feedback

» BB CMDLETS F”"

Figure 2-53. Contents of the child runbook

Publish the child runbook first, followed by the parent runbook. Now start the parent
runbook and review the output (Figure 2-54).

=, Output
EI‘) E:.JI’\I)(‘-‘I‘)F:-H"

Nested Runbook invoked

Nested Runbook executed

Figure 2-54. Invoke method output

The child runbook is executed from within the parent runbook, and we can see the
results in the same output window.

If you check the jobs associated with the child runbook, no jobs will be listed
(Figure 2-55), because the execution happens from within the parent runbook job.

O Refresh

STATUS

=l Activity log No jobs found.

Figure 2-55. The child runbook’s job list

54

CHAPTER 2 © AZURE AUTOMATION ASSETS

Starting a Runbook by Using
Start-AzureRMAutomationRunbook

Start-AzureRMAutomation command can be used to initiate an asynchronous execution
of a child runbook when it is called from within the parent runbook. Any runbook
execution initiated by using Start-AzureRMAutomationRunbook will run as a separate
job, independent of the parent runbook from which it is called. The name of the runbook
can be passed on as a parameter, and the job status can also be stored in a variable.
While the parent runbook will continue to execute the next line of code after starting
the child runbook, the job status can be leveraged to delay this execution. The Get-
AzureRMAutomationJobOutput command can be used to extract the output of a child
runbook that is started with the Start-AzureRMAutomationRunbook command. The
debugging of the child runbook and parent runbook will be slightly difficult compared to
the invoking method, because multiple jobs are created during the execution. Unlike the
previous option, the child runbook in this method is not limited to the same Automation
account. You can call runbooks from different Automation accounts or even different
subscriptions, provided the connection asset to that subscription is available.

The contents of a sample parent runbook that calls a child runbook by using Start-
AzureRMAutomationRunbook is shown here

$connectionName = "AzureRunAsConnection"
try
{

Get the connection "AzureRunAsConnection
$servicePrincipalConnection=Get-AutomationConnection -Name
$connectionName

"Logging in to Azure..."

Add-AzureRmAccount ~
-ServicePrincipal °
-TenantId $servicePrincipalConnection.TenantId °
-ApplicationId $servicePrincipalConnection.ApplicationId °
-CertificateThumbprint $servicePrincipalConnection.
CertificateThumbprint

}
catch {
if (!$servicePrincipalConnection)
{
$ErrorMessage = "Connection $connectionName not found."
throw $ErrorMessage
} else{
Write-Error -Message $_.Exception
throw $_.Exception
}
}

55

CHAPTER 2 * AZURE AUTOMATION ASSETS

#Start runbook by using the Start-AzureRmAutomationRunbook command with the
#iresource group name, runbook name, and automation account name as input
parameters

Start-AzureRmAutomationRunbook -ResourceGroupName 'sccmrg' -Name
"testpowershell' -AutomationAccountName 'hybriddemo'

Asyou can see in this code, it is necessary to connect to the Azure subscription
first by using the AzureRunASConnection credentials before you can use the Start-
AzureRmAutomationRunbook command.

The output of the runbook is shown in Figure 2-56.

» ArzureCloud], [AzvreChinaClouwd, AzureChinaClowd], [AzvreUSCovernment, ArureUSGovernsent]} Mi

ResourceGrouphame : scemrg

AutomationAceountName : hybriddess

Jobrd : 00006280 -F6Of 547- 2085 fdef5a251
CreationTine

StatusDetails

JobParameters {
RunbockNase : testpowershell
Hybridworker z

Figure 2-56. Runbook output

Note that the output of the child runbook is not listed. While using the invoke
method, both parent and child runbook were executed from the same job, and you could
see the output in one place.

However, if you check the job list associated with the child runbook, you can see that
it has been executed separately (Figure 2-57).

CREATED

£730/2017 &16 AM

Figure 2-57. Child runbook job list

56

CHAPTER 2 © AZURE AUTOMATION ASSETS

You need to check the job details of the child runbook to view its output (Figure 2-58).

2017 6:16 AM

Nested Runbook executed

Figure 2-58. Child runbook output

Summary

This chapter explained the various Azure automation assets, their properties, and how to
leverage them while creating runbooks. This chapter also explained how to implement
modularity by leveraging nested runbooks. The next chapter explores the various Azure
runbook types in detail.

Additional References

https://azure.microsoft.com/en-in/blog/getting-started-with-azure-
automation-automation-assets-2/

https://docs.microsoft.com/en-in/azure/automation/automation-credentials
https://docs.microsoft.com/en-in/azure/automation/automation-certificates

https://docs.microsoft.com/en-in/azure/automation/automation-schedules

57

https://azure.microsoft.com/en-in/blog/getting-started-with-azure-automation-automation-assets-2/
https://azure.microsoft.com/en-in/blog/getting-started-with-azure-automation-automation-assets-2/
https://docs.microsoft.com/en-in/azure/automation/automation-credentials
https://docs.microsoft.com/en-in/azure/automation/automation-certificates
https://docs.microsoft.com/en-in/azure/automation/automation-schedules

CHAPTER 3

Azure Automation
Runbook Types

Azure Automation uses Four types of runbooks, as briefly introduced in Chapter 1:
PowerShell, PowerShell Workflow, Graphical and Graphical PowerShell Workflow. This
chapter offers a deep dive into each of these runbook types and shows how to get started
with them. You'll also learn how to create, import, edit, test, and publish runbooks in

an Automation account. Note that the Graphical and Graphical PowerShell Workflow
runbooks have almost similar properties with exception that the latter uses PowerShell
Workflow in the backend. Hence we will be focussing only on Graphical runbooks among
the two in this chapter.

PowerShell Runbooks

PowerShell runbooks are PowerShell scripts that can be executed against Azure resources.
You can either import your own PowerShell script or use one from the PowerShell Gallery
or Script Center. After importing the runbooks, you can edit them directly from the
Runbook Gallery.

Let’s import a PowerShell script directly from the Azure gallery. Go to Automation
dashboard and choose Runbooks » Browse Gallery. For the Gallery Source, select Script
Center, Type as PowerShell script and Publisher as Microsoft (Figure 3-1).

© Shijimol Ambi Karthikeyan 2017 59
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_3

https://doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_1

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

Filter O X

Gallery Source

Seript Center w

Type

+/| PowerShell script
D Graphical runbook
EI PowerShell workflow

Publisher

v Microsoft

l:[Community

Figure 3-1. Selecting the PowerShell Script option

I chose Microsoft as the Publisher for this demonstration.

Select the runbook to be imported. In this case, I am going to import a simple
PowerShell runbook from the gallery that starts Azure VMs in a subscription or cloud
service (Figure 3-2).

Start Azure V2 VMs
PowerShell Runbook
This PowerShell script runbook connects to Azure and starts all VMs in an Azure
- subscription or cloud service. You can attach a schedule to this runbook to run it at a

specific time.
Tags: Virtual Machine, Windows Azure Virtual Machines, Azure Automation

Figure 3-2. Selecting a sample runbook

Once the runbook is imported, by default the edit pane will open. On the left side
of the edit panel, you can view all the available components for the runbook, listed as
CMDLETS, RUNBOOKS, and ASSETS (Figure 3-3).

60

Hsave @ publish X
» BH CMDLETS
» &% RUNBOOKS
b & ASSETS

Figure 3-3. Runbook components

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

If you expand CMDLETS, you can view details of all the modules imported for that

runbook (Figure 3-4).

b Azure

b Azure.Storage

b AzureRM.ApiManagement
b AzureRM.Automation

» AzureRM.Compute

b AzureRM.Profile

» AzureRM.Resources

» AzureRM.Sql

» AzureRM.Storage

b Microsoft.PowerShell.Core

» Microsoft.PowerShell.Diagnostics

b Microsoft.PowerShell.Security
» Microsoft.PowerShell.Utility

» Microsoft WSMan.Management

~vEcvoers

» Microsoft.PowerShell. Management

» Orchestrator.AssetManagement.Cmdlé

Figure 3-4. Available modules

If you want to customize the runbook and add a command from one of those
modules, you can click the command and select the Add to Canvas option (Figure 3-5).

61

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

¥ Azure 3 Connects to Azurd
¥ Add-AzureAccount by -
ServicePrincipal . Add to canvas
User sV 7

Figure 3-5. Adding the command to the canvas

This copies over the command with the required parameters to the edit pane on the
right-hand side. You can update the parameter values and integrate the command with
the script logic. This feature is particularly useful when you are creating a new runbook
on your own.

The RUNBOOKS component in the left panel lists the runbooks that are currently
available in the Automation account (Figure 3-6).

v & RUNBOOKS 3 Calcu
v Al 4 .DESCRIPT
5 Enume
Add-DataDiskToRmVM ==
AzureAutomationTutorial + Addto canvas

AzureAutomationTutorialScript ***% g

AzureClassicAutomationTutorial *** 10 The d
11 httg:
AzureClassicAutomationTutorial *** 12
CalculateBlobCost 13 Note:
14 can b
scaleUpV2Vm ses 15 Set-A
StanAzuira\/2\Vm “es 16 .EXAMPLE

Figure 3-6. Adding the runbook to the canvas

If you want to call any of these runbooks from within your Automation account,
you can click that runbook and choose Add to Canvas. The runbook being inserted will
act as a child runbook. There are certain restrictions on what kind of runbook can act as
a child runbook. PowerShell-based runbooks such as pure play PowerShell runbooks
and Graphical runbooks can call each other. The Workflow runbooks (PowerShell
Workflow and Graphical PowerShell Workflow runbooks) can call each other. However,
to call a PowerShell runbook from within a PowerShell Workflow runbook, the Start-
AzureRMAutomationRunbook command should be used, and vice versa.

Let’s insert a PowerShell child runbook from within another PowerShell runbook
(Figure 3-7).

62

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

CalculateBlobCost iter
scaleUpV2vm g Add to canvas 7, 2
Start-AzureV2VMs '35 \CalculateBlobCost.psl

Figure 3-7. Adding a child runbook to the canvas

You can see that it is inserted as .\CalaculateBlobCost.ps1.

In the Assets section, you can view all assets related to that specific Automation
account (Figure 3-8).

v & ASSETS
» Variables
» Connections

» Credentials

» Certificates

Figure 3-8. Runbook Assets list

You can add the assets to the runbook again by selecting the Add to Canvas option.
When you insert the assets, they will be inserted using the corresponding activity
(Figure 3-9).

Ll
35 Get-AutomationCertificate -Name ‘AzureClassicRunAsCertificate’
37 Get-AutomationPSCredential -Name 'testcred’

39 Get-AutomationConnection -Name ‘AzureClassicRunAsConnection’
40

Figure 3-9. Assets inserted to canvas

Asyou can see, editing the runbooks from the portal is thus made easy with many
point-and-play features that help you customize the runbooks.

The best practice while creating runbooks is to give a description at the beginning
of the runbook. Let’s take a look at the runbook that we imported. It starts with the
description that explains the runbook requirements in terms of inputs and expected
outputs (Figure 3-10).

63

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

T &

@ SNOPSIS
Connects to Azure and starts of all WMs in the specified Azure subscription or resource group
S DESCRIPTION
This runbook connects to Azure and starts all Wis in an Azure subscription or resour: ap
You can attach a sc o this runbook to run it at a specific time. Hote that th book does not start

Azure classic WMs. Use https://gallery.technet microsoft. com/scriptoenter/Start -Azure-Classic-VMs-86ef746h for that.

REQUIRED AUTOMATION ASSETS
1 1. An Automation varisble asset called “AzureSubscriptionld” that contains the GUID for this Azure subscription.
To wse an asset with a different nase you can pass the asset name as a runbook input parameter or change the de

1t value for the input parameter.

2. An Mutomation credential asset called "AzureCredential” that contalns the Azure AD user credential with autho for this ription

To use an asset with a different nase you can pass the asset name as a runbook input parameter or change the default value for the input paraseter.

Figure 3-10. Runbook description

Before starting the runbook, the parameters can be defined. This is a recommended
best practice if you want to reuse the runbook with different values each time that you run
it (Figure 3-11).

36 param (

37 [Parameter(Mandatory=$false)]

38 [String] $AzureCredentialAssetName = ‘AzureCredential’,

39

40 [Parameter(Mandatory=$false)]

41 [String] $AzureSubscriptionIdAssetName = 'AzureSubscriptionld’,
42

43 [Parameter(Mandatory=$false)]

44 [String] $ResourceGroupName

45)

Figure 3-11. Runbook parameters

Parameters are defined inside a param statement. You can indicate whether the
parameters are mandatory. In this case, the parameter is not mandatory, and it will use
the default values provided (AzureCredential and AzureSubscriptionId). If no default
values are provided, as in the case of the parameter $ResourceGroupName, then a null
value will be used. All these parameters are of the type String; hence the inputs provided
during execution should be of the type String. The type will differ based on the input
values that you want to provide. For example, if you are providing numeric values, you
might want to add a parameter of type int.

Similarly, the OutputType command specifies the type of data returned by the script
(Figure 3-12).

Returns strings with status messages
[OutputType([String])]

Figure 3-12. Runbook output type

The Get-AutomationPSCredential activity is used here to get values of the
Azure credential asset and pass it on to the Add-AzureRMAccount command for the
authentication against the Azure subscription (Figure 3-13).

64

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

$Cred = Get-AutomationPSCredential -Name $AzureCredentialAssetName -ErrorAction Stop

$null = Add-AzureRmAccount -Credential $Cred -ErrorAction Stop -ErrorVariable err
if(gerr) {
throw ferr

}

$SubIld = Get-AutomationVariable -Name $AzureSubscriptionIldAssetName -ErrorAction Stop

Figure 3-13. Get Automation Credential asset values

The subscription ID is again obtained from a variable asset.

Now the script moves on to the logical flow, wherein the target VMs are retrieved
by using the Get-AzureRmVM command and then started by using the Start-AzureRmvM
command (Figure 3-14).

If there is a specific resource group, then get all VMs in the resource group,
otherwise get all VMs in the subscription.
if ($ResourceGroupName)

{
$VMs = Get-AzureRmVM -ResourceGroupName $ResourceGroupName
}
else
{
$VMs = Get-AzureRmvM
}

Start each of the VMs
foreach ($VM in $VMs)

{
¢StartRtn = $VM | Start-AzureRmVM -ErrorAction Continue
if ($StartRtn.Status -ne 'Succeeded')
{
The VM failed to start, so send notice
Write-Output ($VM.Name + " failed to start™)
Write-Error ($VM.Name + " failed to start. Error was:") -ErrorAction Continue
Write-Error (ConvertTo-Json $StartRtn.Error) -ErrorAction Continue
}
else
{
The VM stopped, so send notice
Write-Output ($VM.Name + " has been started")
}
}

Figure 3-14. Runbook logical workflow

Asyou can see in the example, PowerShell scripts that you might be running from
on-premises can be used as a runbook in Azure with minimal modification.

65

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

PowerShell Workflow Runbooks

To create a new PowerShell Workflow-based runbook, go to your Azure Automation
account and choose Runbooks » Add a Runbook. You can select the Quick Create option
and set the runbook type as PowerShell Workflow.

PowerShell workflows are based on Windows Workflow Foundation. PowerShell
Workflow based runbooks are slightly complex when compared to PowerShell runbooks
and needs additional changes to convert the PowerShell script to a workflow. It is
recommended to use workflows when you need checkpoints within the script or failure
recovery, for example.

One visible difference between PowerShell runbooks and PowerShell Workflow-
based runbooks is the usage of the Workflow keyword. The syntax is as follows:

Workflow <workflowname>

{
}

<Commands>

The workflowname should be same as the runbook name. A workflow consists
of activities executed one after the other. The PowerShell cmdlets are automatically
converted to activities during execution.

InlineScript Activity

Some cmdlets that cannot be converted to an activity are run as is, using InlineScript.
However, some cmdlets are excluded from this process and cannot be executed from
within the script. You will get error messages if you try running those cmdlets from
within the runbook directly. Hence an InlineScript block should be declared, and the
commands should be executed from within the script block. The variables/parameters
declared in the runbook elsewhere are not available inside the InlineScript block by
default. If you want to call them within the InlineScript block, use the $Using scope
modifier. A sample InlineScript block is shown here:

InlineScript{

$Vnet =$Using:Vnet
$ResourceGroup = $Using: ResourceGroup

$vnet = Get-AzureRmVirtualNetwork -Name $VNet -ResourceGroupName
$ResourceGroup

}

This script is calling the parameters $Vnet and $ResourceGroup declared outside the
InlineScript block with the $Using scope definition.

Though InlineScript blocks are useful in many scenarios, some features of the
workflow such as parallel execution and checkpoints are not available inside them.

66

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

Parallel Processing in the Workflow

One of the key features of workflows is the ability to execute activities in parallel. These
activities should be defined inside a parallel script block inside the workflow:

Workflow test
parallel {

Get-Process -Name PowerShell*
Get-Service -Name s*

}
Write-output "Tasks completed"

}

Here the Get-Process and Get-Service commands are executed in parallel. Then
the parallel block is exited, and the command to write the output is executed.

If you want to execute a set of commands against few targets concurrently, use the
foreach -parallel construct. The syntax is as follows:

foreach -parallel ($<item> in $<collection>{
sequence {

<Activity1>
<Activity2>

}

Here Activityl and Activity2 are executed against each item in the collection in
parallel. However, their execution order against any particular item will be sequential.

Checkpoints in the Workflow

While running the activities in a workflow, exceptions could be thrown. Instead of
executing the entire workflow from the beginning, you might want to resume the workflow
from the point where the exception was thrown. Checkpoints are placed in the workflow to
enable this. The command used is checkpoint-workflow. The syntax is as follows:

<Activity1>
checkpoint-workflow

<Activity2>

If an exception happens after Activity1, the workflow will start off from Activity2
when you execute the workflow the next time.

67

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

Sample Use Case

The use case that I am going to discuss here is automated provisioning of VMs with the
number of data disks that you define. You can also specify the size of the data disks to

be provisioned. In Azure, you can attach data disks from the portal only after the VM
creation. Here we are automating the same process, wherein the VMs can be provisioned
with data disks already attached.

There is no runbook readily available in the gallery to do this task. Therefore, an
Azure PowerShell script to create a new Azure VM in the ARM portal was tweaked to
achieve this: https://msdn.microsoft.com/en-us/library/mt603754.aspx.

The tweaks include the following:

Converted the PowerShell script to workflow.
Minor changes to use existing storage and network.
Commands to add data disk.

Had to introduce InlineScript in the workflow so that the
PowerShell commands are executed independently. If this is
not done, it will throw errors due to issues in data conversion.

Introduced basic for loop to add data disks based on
provisioning requirements.

Here is the runbook:

Runbook:

workflow dynamicDDwithparamter

{

param (

If you do not enter anything, the default values will be taken
UM name, availability set, and NIC card name
[parameter(Mandatory=$true)]

[String]$VMName,

[parameter(Mandatory=$true)]

[String]$ComputerName,

[parameter(Mandatory=$true)]

[String]$AvailabilitySetname,

68

https://msdn.microsoft.com/en-us/library/mt603754.aspx

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

[parameter(Mandatory=$true)]
[String]$InterfaceName,

Compute - Name of UM to be created,Vm size, data disk name
[parameter(Mandatory=$true)]
[String]$UserName,
[parameter(Mandatory=$true)]
[String]$Password,

Storage - Name of existing storage
[parameter(Mandatory=$true)]
[String]$StorageName = "testsql295p"”,

Global - Uses an existing resource group
[parameter(Mandatory=$true)]
[String]$ResourceGroupName = "autotest"”,
[parameter(Mandatory=$true)]
[String]$Location = "WestEurope",

Network - Name of existing network. This should match the network
#isettings of other WMs in the target availability set

[parameter(Mandatory=$true)]

[String]$SubnetiName = "Subnet1",

[parameter(Mandatory=$true)]

[String]$VNetName = "VNet10",

[parameter(Mandatory=$true)]

Datadisk - Provide number of data disks and size of the disks
[Int]$Disknumber ,

[parameter(Mandatory=$true)]

69

CHAPTER 3 © AZURE AUTOMATION RUNBOOK TYPES
[Int]$DisksizeinGB ,
Compute - UM size
[parameter(Mandatory=$true)]
[String]$VMSize = "Standard A2"
)
InlineScript{
$VMName =$Using:VMName
$StorageName = $Using:StorageName
$ResourceGroupName = $Using:ResourceGroupName
$Location = $Using:Location
$InterfaceName = $Using:InterfaceName
$SubnetiName = $Using:SubnetiName
$VNetName = $Using:VNetName
$ComputerName = $Using:ComputerName
$VMSize = $Using:VMSize
$AvailabilitySetname = $Using:AvailabilitySetname
$UserName = $Using:UserName
$Password = $Using:Password
$Disknumber = $Using:Disknumber
$DisksizeinGB =$Using:DisksizeinGB
$connectionName = "AzureRunAsConnection"
Get the connection "AzureRunAsConnection
$servicePrincipalConnection=Get-AutomationConnection -Name
$connectionName

"Logging in to Azure..."
Add-AzureRmAccount °

-ServicePrincipal °

70

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

-TenantId $servicePrincipalConnection.TenantId °
-ApplicationId $servicePrincipalConnection.ApplicationId °

-CertificateThumbprint $servicePrincipalConnection.
CertificateThumbprint

$0SDiskName = $VMName + "OSDisk"
$dataDiskName = $VMName + "DataDisk"

$StorageAccount = Get-AzureRmStorageAccount -ResourceGroupName
$ResourceGroupName -AccountName $StorageName

"Collected storage account details ..."
Network - Creates Public IP, NIC card, and get VUNet details
"configure NIC..."

$PIp = New-AzureRmPublicIpAddress -Name $InterfaceName -ResourceGroupName
$ResourceGroupName -Location $Location -AllocationMethod Dynamic -Force

$vnet = Get-AzureRmVirtualNetwork -Name $VNetName -ResourceGroupName
$ResourceGroupName

$subnetconfig = Get-AzureRmVirtualNetworkSubnetConfig -VirtualNetwork $vnet
$Interface = New-AzureRmNetworkInterface -Name $InterfaceName
-ResourceGroupName $ResourceGroupName -Location $Location -SubnetId $VNet.
Subnets[0].Id -PublicIpAddressId $PIp.Id -Force
Compute configuration
Set up local VM object

"creating VM object properties..."

$secpasswd = ConvertTo-SecureString $Password -AsPlainText -Force

$mycreds = New-Object System.Management.Automation.PSCredential ($UserName,
$secpasswd)

$AvailabilitySet = Get-AzureRmAvailabilitySet -ResourceGroupName
$resourcegroupName -Name $AvailabilitySetname

$VirtualMachine = New-AzureRmVMConfig -VMName $VMName -VMSize $VMSize
-availabilitysetID $AvailabilitySet.id

$VirtualMachine = Set-AzureRmVMOperatingSystem -VM $VirtualMachine -Windows

-ComputerName $ComputerName -Credential $mycreds -ProvisionVMAgent
-EnableAutoUpdate

71

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

$VirtualMachine = Set-AzureRmVMSourceImage -VM $VirtualMachine
-PublisherName MicrosoftWindowsServer -Offer WindowsServer -Skus 2012-R2-
Datacenter -Version "latest"

$VirtualMachine = Add-AzureRmVMNetworkInterface -VM $VirtualMachine -Id
$Interface.Id

$0SDiskUri = $StorageAccount.PrimaryEndpoints.Blob.ToString() + "vhds/" +
$0SDiskName + ".vhd"

$VirtualMachine = Set-AzureRmVMOSDisk -VM $VirtualMachine -Name $0SDiskName
-VhdUri $0SDiskUri -CreateOption FromImage
Attach Data Disks

For ($i=1; $i -le $Disknumber; $i++) {
$dataDiskName = $dataDiskName + $i

$DataDiskVhdUriol = $StorageAccount.PrimaryEndpoints.Blob.ToString() +
"vhds/" + $dataDiskName + ".vhd"

$VirtualMachine = Add-AzureRmVMDataDisk -VM $VirtualMachine -Name
$dataDiskName -Caching 'ReadOnly' -DiskSizeInGB $DisksizeinGB -Lun $i
-VhdUri $DataDiskVhdUriol -CreateOption Empty

$dataDiskName = $VMName + "DataDisk"

}

"created VM object properties..."
Create the VM in Azure
"creating Virtual machine..."

New-AzureRmVM -ResourceGroupName $ResourceGroupName -Location $Location -VM
$VirtualMachine

"created Virtual machine..."

Graphical Runbooks

Graphical runbooks use a point-and-play model, which makes it easier for
administrators to create and execute them with minimal PowerShell knowledge. Even
though Graphical runbooks use PowerShell under the hood, the process is transparent
to the user.

72

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

You can either import a runbook from the gallery or create a new one from your
Automation account by choosing Runbooks » Add a Runbook. Set the runbook type
to Graphical Workflow. The library items on the left panel are same as discussed earlier
for the PowerShell runbook, except that it has an additional RUNBOOK CONTROL item
available (Figure 3-15).

» B CMDLETS
b &5 RUNBOOKS
» S8 ASSETS
+&¥ RUNBOOK CONTROL

Code aee

Junction Py

Figure 3-15. Runbook control asset

Runbook control activity includes Code and Junction activity types. The Code activity
can be used when you want to insert a set of PowerShell commands in the workflow. If
you add the code to the canvas and edit the same, you will get an option to insert the
PowerShell cmdlets (Figure 3-16).

PowerShell code @

Name
PowerShell code

* Label ©
Code

Comment

Convert exceptions to errors @

Code
Author activity logic

Retry behavior
Configure retry behavior

Figure 3-16. Code activity

73

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

You can also configure a retry logic for the code block (Figure 3-17).

MName
PowerShell code

* Label ©
Code

Comment

Convert exceptions to errars @

]

Code
Author activity logic

Retry behavior
Configure retry behavior

Enable retry @
Yes Mo

Delay before each retry attempt @

1] Seconds bt

Retry until this condition is true @

$RetryData NumberOfAttempts -ge 10 # retry 10 times

Examples that can be used in retry condition: @
SReuyDala.NumbelofAltempts -ge 10 # retry 10 times
$RetryData. Output.Count -ge 1 # retry until output is produced

SRetryData.TotalDuration.TotalMinutes -ge 2 # retry for maximum of 2 minutes

Figure 3-17. Retry logic

To start creating your Graphical runbooks from the edit panel, click the
corresponding cmdlet and choose Add to Canvas. Alternately, you can search for a
command and add it to the canvas (Figure 3-18).

add-azureRMaccount

v & CMDLETS

¥ AzureRM.Profile

Add-AzureRmAccount

Add to canvas

Figure 3-18. Searching for and adding a command to the canvas

After adding the command, double-click the command in the canvas to configure its

parameters (Figure 3-19).

74

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

ServicePrincipalWithSubscriptionName

Nama Fararasier sat @ 5 [Confirm <%y

Add-AzureBmAcosunt Choose 8 parameler set ii::;::::gmmuwgmmmwm-mr»scrmnl-.n,
andeC

[-Emsranmentiame <Spstem Strings]

* Lbet ©
Add.AnruRmAeount

“SubseripteaNamp <Syitee String>
Terantid <System Sting>
[-Whatlf <System.ManagementAutematon SwichParameters]

r
AccessTokerWithSubscriptionMame
Cormven exceptions to s @ -AccessToken <System String>
Accountid <System.Striag>
[-Confirm Sy om Swi]
[-Emvironment
e 5 ande " '
Configure parameters [-EmdranmentName <Sribem Strings]
“Subseripticabame <Systte Stings
[-Tenamtld <System Siring>]
[-Whatlf <System. 1

Cemmant

Yes

DOstional acditional parameters 5
Configure parameters

Rtey behaor UserWithSubscriptionName
G i » [Canfirm <8y i 3
“anfiguie retry behavice

[-Credential <System Maragement Automaticn PSCredential>]

[-Evironment

«Microsalt Asure Commands.£ iar Mo 1)
[-EmiranmentName <System Stings}

“Subseripticabama <Systee Strings

[-Tenaathd <Syihem String =]

[Whatlf <System.Management Autemation SwchParameters]

Figure 3-19. Configuring parameters of the command

Parameter options are displayed, and you can choose one of those parameters based
on the workflow logic that you want to implement. Based on the chosen parameter set,
you can configure the individual parameters further (Figure 3-20).

Lo

Parameter set ©

F

UserWithSubscriptionName

Parameters

CONFIRM @

-

Not configured

CREDENTIAL O

i

Mot configured

ENVIRONMENT @

P

Not configured
ENVIRONMENTNAME © J
Mot configured
© 5UBSCRIPTIONNAME © \

Configure mandatory parameter

TENANTID @ q
Not configured

WHATIF ©

’

Not configured

Figure 3-20. Configuring individual parameters

75

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

The mandatory parameters are marked in red. You can select from a list of Data
Source drop-down options to configure the parameter values (Figure 3-21).

Parameter Value

Activity Parameter Configur... B X

Parameter sets

-~ Data source
Parameter set © o
>
UserwithSubscriptionName Constant value
Runbook input
Activity output
Parameters PowerShell expression
Variable asset
CONFIRM © o Credential asset
Connection asset
Not configured Certificate asset
Empty string
CREDENTIAL © . Null

Not configured

ENVIRONMENT © 4
;

Not configured

ENVIRONMENTNAME © N
.

Not configured

0 SUBSCRIPTICNNAME @ i

Configure mandatory parameter

Figure 3-21. Selecting a data source

Based on the data source selected, further reconfiguration options are provided.
For example, if the variable asset is selected, a list of available variable assets in the
subscription is presented to choose from (Figure 3-22).

Parameter Value =|

Data source

| Variable asset v
NAME TYPE VALUE
AzureSubscriptionld String 5a850d8e-29d4-4fea-850f-13...

Figure 3-22. Variable asset list

You can configure optional additional parameters such as -Verbose: $true
(Figure 3-23).

76

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

Additional Parameters @

Name

Add-AzureRmAccount

* Label @
Add-AzureRmAccount

Comment

Convert exceptions to errors @

Parameters >
Configure parameters

Optional additional parameters >
Configure parameters

Figure 3-23. Configuring additional parameters

Based on your workflow logic, you can select the next cmdlet and link them together.
To link one activity to another, hover over the activity in the canvas until a small circle
appears at the bottom (Figure 3-24).

Add-AzureRmAccount

N

)

Figure 3-24. Linking commands

77

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

Click and drag to the next activity box to create the link (Figure 3-25).

Add-AzureRmAccount

~

Get-AzureRmVM

Figure 3-25. Clicking and dragging to link activity

Double-click the link to get further configuration options (Figure 3-26).

Type @

Error Link @

Comment

Apply condition

Condition expression @

Figure 3-26. Linking configuration options

78

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

The link type can be Pipeline or Sequence. If Pipeline is used, the destination
activity is executed only if the source activity produces an output, which will always be an
individual object. The number of times the destination activity is executed depends on
the number of such outputs from the source activity. Sequence links, on the other hand,
always run once and receive output from the source activity as an array of objects.

Pipeline is selected by default. The destination activity, which is Get-AzureRmVM,
will be executed if the source activity (Add-AzureRMAccount) is completed successfully.
Depending on the source activity output, the destination activity is executed once for
every object output from the source activity. If Sequence is selected, the destination
activity runs one time when the source activity execution is completed.

Error Link is by default set to No. You can toggle it to Yes if you want the destination
activity to be executed if the source activity emits an error.

You can configure the input and output of the runbook from the edit panel of the
runbook. Click Input and Output » Add Input (Figure 3-27).

E‘ save @ Publish X t 5] Input and output B Testpane WP Feedback

Figure 3-27. Input and output configuration

The name, type, and default values can be further configured (Figure 3-28).

Input and Output Runbook Input Parameter

+ Add input * Name @

Input parameters @

. ; Description @
No items to display
OQutput types @
Enter the type name... Type @
String v
No items to display
Mandatory @

o |
Default value @

Figure 3-28. Input parameter

79

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

The parameter will be listed as the Data Source when you configure parameters for
your activity (Figure 3-29).

Parameter Value

Data source

| Runbook input ~ l

Testinput (String)
Optional

Figure 3-29. Parameter listed as the data source

Similarly, you can define the output type as well, which will be used as a data source
for parameters. Alternately, for any destination activity, the output of source activity can
be provided as an input data source (Figure 3-30).

Parameter Value a X

Data source

Activity output v |

Select data

P Output (PSAzureProfile)

Figure 3-30. Output as the data source

After configuring the runbook, you can test it from the Test pane. The last step is to
publish the runbook so that it is available in the Automation account (Figure 3-31).

H Save @ Publish b4 —E Input and output [Testpane WP Feedback

Figure 3-31. Publishing the runbook

Now, let’s look at a runbook from the Runbook Gallery to put together all the
concepts that we've discussed (Figure 3-32).

80

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

Stop Azure V2 VMs
Graphical Runbook

i

This Graphical PowerShell runbook connects to Azure using an Automation Run As account
and stops all V2 VMs in an Azure subscription or in a resource group or a single named V2
VM. You can attach a recurring schedule to this runbook to run it at a specific time.

Tags: Azure Virtual Machines, Stop VM, GraphicalPS

Figure 3-32. Sample runbook

This runbook stops ARM VMs based on the inputs provided (Figure 3-33). The entire
workflow is depicted in the edit pane in an easy-to-understand diagram.

Gat Run As Connection READ ME
I 3
Connect to Azure
et L | IS T
{ | 1
Gat single VM Gatall VMs in RG Gat all VM in Sub

Figure 3-33. Graphical runbook edit pane

81

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

In the first step, a runbook input parameter is used to retrieve the
AzureRunAsConnection value (Figure 3-34).

HName

Get-AutomationConnection

* Label @
Get Run As Connection

Comment

Convert exceptions to emors @

o I

Parameters

1 of 1 configured

v NAME ©
AzureConnecti

Data source
>

Runbook input

ResourceGroupName (String)
Crptional

VMName (5tring)

Ciptional
AzureConnectionAssetMame (String)
Default value: AzureRunfsConnection

Figure 3-34. Input parameter to retrieve AzureRunAsConnection

The next step establishes a connection to the target Azure account (Figure 3-35).

Name
Add-AzureRmAccount
* Label @

Connect to Azure

Comment

Connect with Azure. Reguires an Azure
Run As Account.

Convert exceptions to errors @

Yes

Paramuters

Configure parameters

Optonal acdmonal parameters
Configure parameters

Retry behavior
Configure retry behavior

Parameter set @

ServicePrincipalCertificate

Parameters

v APFLICATIOND ®

Get Run As Connection [Activity outp...

V' CERTIFICATETHUMEPRINT @

Get Run As Connection [Activity outp...

ENVIRONMENT @
Mot configured

ENVIRDNMENTNAME @
Nat configured

' SERVICEPRINCIPAL @
true (Constant vahee)

v TENANTID ©

Get Run As Connection [Activity outp..

w~

Actnity output

Select data

¥ Get Run As Connection

Selected activity name

Feld path @

Appilicationid

Figure 3-35. Connecting to the target Azure account

The activity output of the previous activity is used as one of the input parameters,
and the value to be used is distinguished by the Field path.
A sequence link with conditional logic is created to three target activities (Figure 3-36).

82

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

Gat Run As Connection READ ME
1
‘ Connect to Azure
A — ——_.___../.I\.___ ————a
. ke . o
l Get single VM Gt all VM3 in BG Get ll VM i S

A Type @
LT Sequence
Error Link @

N -

Camment

Apply condition

2N -

Condition expression @

ResourceGroupMame unbook input
parameters have valuss

L3

{

(SYMMName -ne $null) -and
(SVMMame.Length -gt 0))

}-and {

((SResgurceGrouphame -ne Snull) -and

(SResousceGroupiamelength gt o)),
)

Figure 3-36. Target activities

Depending on the input provided during execution and the evaluation of the
condition, the workflow will either get a single VM, get all VMs in a resource group, or
get all VMs in a subscription. It will then proceed to stop the VMs.

During execution, you need to provide the required parameters. In this case, all the
parameters are optional and have default values assigned if not provided during runtime

(Figure 3-37).

’ Start B Stop Il Suspend

Parameters
RESOURCEGROUPNAME @

¢ re

AzurePPE

Optional, String

VMNAME @

Demowebvm1

Optional, String

AZURECONNECTIONASSETNAME @

Default will be used

Optional, String, Default:
AzureRunAsConnection’

Figure 3-37. Input parameters during execution

83

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

If the resource group name is not provided, all resource groups in the subscription
will be selected by default, and all VMs in the subscription will be shut down. If you want
to shut down a VM, the resource group name and VMname should be provided as shown in
Figure 3-37.

Runbook Outputs

As in PowerShell, Azure Automation runbooks also communicate the status and output
as message streams. These streams include Output, Warning, Error, Verbose, and
Progress. The Debug stream in PowerShell for interactive users is not used in Azure
Automation runbooks. These message streams are written in the job history if you are
executing a published runbook. If executing the runbook from a Test pane, results are
written in the output pane.

Output Streams

The Write-output command should be used to create output objects. The most common
use case occurs when you call a child runbook inline from within a parent runbook. The
output objects are passed back to the parent runbook. Alternately, you can use the write-
output command from within a function, and the output objects will be passed back to
the runbook. The syntax of the command is as follows:

Write-Output
[-InputObject] <PSObject[]>
[-NoEnumerate]
[<CommonParameters>]

The output type can be declared as an OutPutType attribute. The output type can be
integer, string, array, and so forth. For example:

[OutputType([string])]

Declaration of the output type helps defining the runbook logic, because it gives an
indication of the expected output.

Sample code snippets for PowerShell and PowerShell-based runbooks are shown
here:

Write-output -InputObject $Outputobject
$Outputobject
Write-output " Sample output”

For Graphical runbooks, the Input and Output menu (Figure 3-38) can be used to
declare the runbook output type.

84

CHAPTER 3 ' AZURE AUTOMATION RUNBOOK TYPES

| Input and Output

+ Add input

Input parameters @

urceGroupName (S

Figure 3-38. Declaring the output type in the runbook

Message Streams

Message streams are used to provide warnings, errors, and verbose messages to the user.

Warning and error messages can be invoked by using the write-error and write-
warning cmdlets, respectively. Here is a sample code snippet for error and warning
messages that can be used in a runbook:

Write-Warning -Message " Warning message"
Write-Warning -Message "Error message"

Verbose messages help with debugging the runbook. These messages can be
enabled, if required, from the Runbook settings in the Azure portal (Figure 3-39).

Logging

Activity-level tracing

Tra |

None Basic | Detmled

t time, total duration

n on Verbese logging in on the tracing,

Figure 3-39. Enabling logging for verbose messages
85

CHAPTER 3 " AZURE AUTOMATION RUNBOOK TYPES

Summary

This chapter covered the various runbook types possible in Azure. The chapter also
provided a walk-through of runbook creation and customization as well as the output
streams of a runbook. We also covered a couple of use cases related to the different
runbook types.

Additional Resources

https://docs.microsoft.com/en-us/azure/automation/automation-
troubleshooting-automation-errors

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-
and-messages

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

86

https://docs.microsoft.com/en-us/azure/automation/automation-troubleshooting-automation-errors
https://docs.microsoft.com/en-us/azure/automation/automation-troubleshooting-automation-errors
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-and-messages
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-output-and-messages
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types

CHAPTER 4

Azure Automation DSC /

PowerShell DSC is a configuration management solution from Microsoft that can be used
across both Windows and Linux platforms. It is aligned with the configuration as a code
concept, wherein you can define the desired state of your environments as simple text-
based configurations and ensure compliance against these configurations. PowerShell
DSC is supported in Azure Automation, where you can upload your DSC configurations,
compile them, and apply them to DSC nodes. This chapter covers the components of
PowerShell DSC; you'll learn how to create and apply DSC configurations and how the
whole workflow can be done again via Azure Automation DSC.

PowerShell DSC

PowerShell DSC works based on the concept of configuration, resources, and the DSC
engine, which is the local configuration manager.

Configuration

The configuration defines the framework of DSC, which includes the variables to be used,
the target nodes, and the resources for configuring those target nodes. DSC uses PowerShell
syntax and starts with the configuration keyword. Sample configuration is given here:

Configuration TestConfiguration {
Node localhost{

WindowsFeature requiredfeaturel {
Ensure = "Present”

Name = "Web-Server"
}
Service requiredservicel {
Name = "W3SvC"
StartupType = 'Automatic'
State = 'Running’
}
}
}
© Shijimol Ambi Karthikeyan 2017 87

S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_4

https://doi.org/10.1007/978-1-4842-3219-4_4

CHAPTER 4 ' AZURE AUTOMATION DSC

This is a basic configuration that, when applied against nodes, ensures that the
Web-Server feature is present in the target node. It will also ensure that the World
Wide Web Publishing service is started. The target node here is localhost. You can also
input the hostname as a parameter by using a param block before the Node block. The
configuration can be updated as follows:

Configuration TestConfiguration {
param(

)

[string[]]$ComputerName="WebVM1"

Node $ComputerName {
WindowsFeature requiredfeaturel {
Ensure = "Present"

Name = "Web-Server"

}

Service requiredservicel {
Name = "W3SVC"
StartupType = 'Automatic'
State = 'Running'

}

The configuration files can be saved as a .ps1 file and compiled as a PowerShell
function to create a Management Object Format (MOF) file. The MOF file contains the
desired configuration, which will be applied to the target nodes. Execution of this MOF
file is carried out either in the Push or Pull mode by the Local Configuration Manager. We
will revisit the process later in this chapter when we discuss the DSC engine.

Resources

Inside each Node block, there can be multiple resource blocks that define the action to
be taken on those nodes. In the preceding example, in each target node, DSC will ensure
that the Web-Server feature is installed. A set of built-in resources can be used in DSC
configurations, or you can create your own custom resources.

The following are some of the important built-in resources available in DSC:

WindowsFeature: Installs a Windows feature and ensures that
the feature is present in the target node

WindowsProcess: Ensures that a given process is started and
present in the target node

Archive: Used to unpack a zip file to a specified destination path
User: Creates and manages local user accounts

Group: Creates and manages local groups

88

CHAPTER 4 ' AZURE AUTOMATION DSC

Log: Logs messages in DSC Analytics log during execution
Package: Used to install/uninstall packages on the target node
Registry: Manages Registry keys

Script: Executes PowerShell scripts

Service: Manages services

File: Used for file and folder management

Environment: Used for managing system environment variables

In addition to these main resources, other built-in resources are available
for functionalities defining dependencies, enabling optional features, installing
package . cab files, and more. For example, these resources include but are not
limited to WaitforAllResource, WaitforAnyResource, WindowsFeatureSet, and
WindowsOptionalFeatureSet. We will not go into extensive detail about the resources in
this chapter; instead we’ll focus on a use-case perspective.

The command Get-DSCResource can be used with the -syntax parameter to get the
syntax of the built-in resources, and you can use that as a reference to create the resource
(Figure 4-1).

PS C:\WINDOWS\system32> Get-DSCResource WindowsFeature -syntax
WindowsFeature {gtr1ng] #ResourceName

Name = [str1n i
Credential = [PSCredential]]
DependsOn = [string[]]1]
Ensure = {str1ng]{ Absent | Present }]
IncludeAllSubFeature = [bool]]
LogPath = [string]]
PstcRunAscredent1a1 = [PSCredentiall]
Source = [string]]

i+

PS C:\WINDOWS\system32> Get-DSCResource WindowsProcess -syntax
WindowsProcess fgtr1ng] #ResourceName

Arguments = [string]
Path = [string 1
Credential = [PSCredential]]
DependsOn = [string[]11]
Ensure = [string]{ nbsent Present }]
PsDscRunAsCredential = [PSCredent1a1
StandardErrorPath = str1ng
standardInputPath = 5tr1ng
StandardOutputPath [strin
workingDirectory = [str1ng]?

i+

PS C:\WINDOWS\system32> Get-DSCResource archive -syntax
Archive [String] #ResourceName

Destination = Estr1ng}
Path = [string

Checksum = [str1ng]§ CreatedDate | ModifiedDate | SHA-1 | SHA-256 | SHA-512 }]
Credential = [PSCre ent1al]

DependsOn = [string[

Ensure = [string]{ nbsent | Present }]

Force = [boo

PsDscRunAsCredential = [PSCredential]l

validate = [bool]l]

Figure 4-1. Get-DSCRecource command syntax

89

CHAPTER 4 ' AZURE AUTOMATION DSC

Now let’s look at few sample resource blocks using some of the built-in resources.
You have already seen an example of the WindowsFeature and Service resources in the
previous section. Let’s revisit the example so you can understand what that code will
accomplish:

WindowsFeature requiredfeaturel {
Ensure = "Present"”

Name = "Web-Server"

}

Service requiredservicel {
Name = "W3SVC"
StartupType = 'Automatic'
State = 'Running’

}

The WindowsFeature resource will ensure that the Web-Server feature is installed
on the target node. The Service feature, on the other hand, ensures that the World Wide
Web publishing service is set to Automatic and is in the running state. Note that the Name
used here is not same as the display name of the feature/service. You can get the name
of the feature and service by using the Get-WindowsFeature and Get-Service cmdlets,
respectively.

Here'’s another example:

File Websitenew {
Ensure = 'Present’
SourcePath = 'c:\websitecontent\index.html'
DestinationPath = 'c:\inetpub\wwwroot'

}

This example uses the built-in resource file, and copies the file from the source
c:\websitecontent\index.html to the destination c: \inetpub\wwwroot. The use case
here is copying a custom index.html file to the inetpub root.

Consider this example:

Archive TestArchive {
Ensure = 'Present’
Path = 'C:\Archivetest\Test.zip'
Destination = 'c:\Archivetest\testfolder'

Here, the built-in resource archive is used. The contents of the zip file Test.zip will
be extracted to the Destination path.

90

https://technet.microsoft.com/en-us/library/jj205469.aspx

CHAPTER 4 ' AZURE AUTOMATION DSC

Now let’s consider a use case of a JDK installation. The following sample code shows
how to install the . exe file by using the Package resource and then set the JAVA_HOME
environment variable by using the Environment resource:

Package JavalInstall{

Ensure = 'Present’

Path = 'C:\test\jdk-8u131-windows-x64.exe’
Name = 'Java 8 Update 131 (64-bit)’
Productld ="'

Arguments = '/s STATIC=1 WEB_JAVA=0'
}
Environment Javahome{
Ensure = 'Present’
Name = 'JAVA HOME'
Value = 'C:\Program Files\Java\jdk1.8.0 131’
}

This can be useful when you want to perform a hands-free installation of JDK using
DSC. The .exe file is available at the path C:\test\jdk-8u131-windows-x64.exe. You
need to specify the name, product ID if known (it will work even if we leave it blank for
JDK), and any arguments that you want to pass during installation. Here we are passing
the arguments of a silent installation of JDK.

DSC Engine (Local Configuration Manager)

The Local Configuration Manager, or LCM, is responsible for applying the configuration
on the target nodes and maintaining the as is state, which is the highlight of DSC. The
LCM manages Pull and Push modes as well as partial configurations. DSC can work in
either a Pull mode or Push mode architecture.

DSC Push Mode

The Push mode is the manual approach of applying a DSC configuration. The
configurations are pushed to the target nodes by an administrator using the Start-
DSCConfiguration cmdlet. You can point to the MOF file to be used by using the

-Path parameter. The first step is to compile the configurations stored as . ps1 files as
PowerShell functions. For example, if the PowerShell script name is example.ps1, you can
compile it from a PowerShell prompt as shown in Figure 4-2.

PS C:\DSCsamples> .\Example.psl
PS C:\DSCsamples> example
Directory: C:\DSCsamples\Example

Mode LastwriteTime Length Name

—a--—— 7/6/2017 12:41 P™ 2566 localhost.mof

Figure 4-2. Compiling a DSC configuration
91

CHAPTER 4 ' AZURE AUTOMATION DSC

You can see that it creates a folder of the same name with a MOF file inside it
(Figure 4-3).

A

& localhost.mof

his PC > OSDisk (C:) > DSCsamples > Example

[0 Name

Figure 4-3. Folder with MOF file

It is this MOF file that will be applied by using the Start-DSCConfiguration
command in Push mode as follows. You can use the -wait or -verbose commands to get
details of the operation. The command expects the MOF file to be present in the location
from which the command is executed. Alternately, you can point to the folder containing
the MOF file by using the -path command (Figure 4-4).

S5 C: \D@Cs les> Start-DscContiguration -Path .\Example -Wait -verbose
P orm Dperal‘lnn "Invoke CimMethod' with following parameters
GendeF'\guratmnApply ‘className' = MSFTJJS(Lo:aIconﬁgu.n
Iroot/Microsoft/Windows /Des i redStateConfiguration’.

VERBOSE @

VERBOSE: An LCM method call arrived from com

Figure 4-4. Output of Start-DscConfiguration

92

" 'methodname '

guter MININT-S2EIH4C with user sid

system cannot find the file specified.
related file/directory is: c:\DSCTestFile. txt.
0.0000 seconds.

system cannot find the file specified.
related file/directory is: c:\DSCTestFile.txt.
0.0000 seconds.

S-1-5-21-2146773085-903163285-719344707-2071

vE BOSE: [MININT-S2EIHAC]: LCM: Start Set

VERBOSE: [MININT-S2EIHAC]: LM: Start Resource File]MyFile

VERBOSE: [MININT-S2EIH4C]: LOM: start Test File]MyFile

VERBOSE MININT-S2ETHAC] : File|MyFile] The
: [MININT-S2EIHAC]: File]uyFile] The

VERBOSE: [MININT-SZEIHAC]: LOM: { End Test] File]uyrile] in

VERBOSE : [MININT-S2EIH4C): LOM: start Set Fileuyrile

VERBOSE: [MININT-S2EIHAC): File|MyFile| The

WVERBOSE: [MININT-S2EIHAC]: File|MyFile] The
: [MININT-S2EIHAC]: LOM: End Set File]MyFile] in

VERBOSE : [MININT-SZEIH4C]: LOM: End Resource File]MyFile

VERBOSE: [MININT-S2EIHAC]: LOM: End Set X

VERBOSE: [MININT-SZEIHAC]: LOM: End Set in 0.1850 seconds.

VERBOSE : Operation "Invol e CimMethod' complete.

vERM?‘E: T|me1taken for configuration job to complete is 0.347 seconds

o< FeAnEreamnlars

CHAPTER 4 ' AZURE AUTOMATION DSC

By default, the configuration is applied to the machine from which the command
is executed. To push the configuration to a remote computer, use the -computername
parameter. The architecture is depicted in Figure 4-5.

Target nodes

DSC config

Push mode

Sysadmin machine

Figure 4-5. DSC Push architecture

No specific setup is required for leveraging the Push mode architecture. However,
itis not scalable when we consider large deployments and environment management.
A more ideal use case is testing DSC configurations, since that does not require setup of
an additional server as a central repository for configurations.

93

CHAPTER 4 ' AZURE AUTOMATION DSC

DSC Pull Mode

In Pull mode, as the name indicates, a centralized pull server comes into the picture.
In this architecture, the LCM on the target nodes periodically contacts the pull server
for compliance checks. The configurations for the nodes are sent by the pull server,
which is then executed by the LCM on the target nodes. The pull server could be a web
server configured to provide an OData web service or an SMB share to hold the DSC
configurations (Figure 4-6).

Target nodes

A

v

DSC configs Pull Server

Figure 4-6. DSC Pull architecture

Azure Automation DSC uses Pull mode and comes with a built-in pull server. This
reduces the complications of setting up an additional pull server to manage clients,
thereby reducing operational overhead. In both the Pull and Push models, the engine that
finally applies the configuration on the target nodes is the Local Configuration Manager.

94

CHAPTER 4 ' AZURE AUTOMATION DSC

Configuration Management Using LCM

LCM is available by default on all machines running PowerShell 4.0 or above. It
controls how the configurations are applied and managed depending on the Push/Pull
architecture used. You can examine the current configuration of LCM by executing the
command Get-DSCLocalConfigurationManager (Figure 4-7).

ActionAfterReboot
AgentId
AllowmoduleOverwrite
CertificatelD

ConfigurationID
ConfigurationMode

Credential
Debu?‘lode
Down loadManagerCustomData
DownloadManagerName
LCMCompatibleversions
LCMState

LCMStateDetail

LCMVersion X
StatusRetentionTimeInDays
SignaturevalidationPolicy
Signaturevalidations
aximumDownloadSizeMB
PartialConfigurations
RebootNodeIfNeeded
RefreshFrequencyMins
RefreshMode
ReportManagers
ResourceModuleManagers
PSComputerName

ConfigurationDownloadManagers

: 1di
1 2.0
=10
: NONE

: 500

PS C:\DSCsamples> Get-DSCLocalContigurationManager

: ContinueConfiguration
E FT?5414E-6248-11E7-8?06-03FC93606090
: False

!

i i) ApplyAndMoni tor
ConfigurationModeFrequencyMins :

45
{NONE}

{1.0, 2.0}
dle

{}

: False
: 30
: PUSH

Figure 4-7. Get-DSCLocalConfigurationManager command output

Let’s review some of the important properties revealed by this command:

RefreshMode: In this configuration, the property is set to Push.
In a pull server architecture, the value will be set to Pull. It
can also be updated as Disabled if you do not want DSC to
manage the desired state of your nodes. In one use case, you
are using other configuration management tools and want to

avoid conflicts.

ActionAfterReboot: The options available are
continueconfiguration and stopconfiguration. This
property defines the action to be taken on the target node if
it reboots on applying a configuration.

95

CHAPTER 4 ' AZURE AUTOMATION DSC

ConfigurationModeFrequencyMins: This property defines the
frequency at which the LCM checks for compliance against
the latest locally available configuration. This configuration

is checked and downloaded based on the value of the
RefreshFrequencyMins property. The value is set to 15
minutes by default.

RefreshFrequencyMins: This property is significant in Pull
mode. It denotes the interval at which the configuration is
downloaded by LCM to the target nodes.

ConfigurationMode: This property defines how the
configurations are applied by LCM on target nodes. These are
the possible values:

ApplyOnly: If this value is used, the configuration is applied
and LCM does not take any further action until another new
configuration is pushed to it (Push mode) or pulled to it by
DSC when it contacts the pull server.

ApplyAndMonitor: The configuration is monitored by LCM,
and any deviations are marked in the logs.

ApplyAndAutoCorrect: If this value is used, any configuration
drifts that are detected are logged and will be corrected in
accordance with the latest available configuration file.

AllowModuleOverwrite: If this value is set to true, the
configuration on the target node is replaced by the latest
modules downloaded.

RebootNodeIfNeeded: When changes are made to target
nodes by using the DSC configuration, you might be required
to reboot the systems for the changes to be effective. This
property indicates whether the system should be rebooted
after applying the configuration.

Using PowerShell DSC on Premises

The entire process has three phases, regardless of whether the architecture is using a
Push or Pull model:

1. Authoring phase: The DSC configurations are created as
PowerShell functions. The editing can be done in tools such as
Notepad or PowerShell ISE.

2. Staging phase: The configuration is compiled and converted
to MOF files. In a Push architecture, the configuration
is pushed to the target nodes. In a Pull architecture, the
configuration is stored in the pull server and sent to the target
nodes during the refresh interval.

96

CHAPTER 4 ' AZURE AUTOMATION DSC

3. Execution phase: In this “make it so” phase, LCM applies the
compiled MOF files against the target nodes. The MOF files
are stored locally in the %system32%\configuration folder
(Figure 4-8).

C: \Hlnduws\System32\Conf1gurat10n)dir
Uolume in drive C is 0SDisk

Uolume Serial Number is B8B4-3670

Directory of C:\Windows:\System32\Conf iguration

0A?7,03,2017 B6:24 AM 4,108 backup.mof
a?7,/83,2017 B6:24 AM <DIR> BuiltinProvCache
A7,083,2017 B6:24 AM 4,108 Current.mof
87,8?7,2817 ©2:86 AM 244 DSCEngineCache .mof
P6,30,2017 07:82 AM 582 MetaConfig.mof
8?7,83,2817 B6:24 AM 3.464 Previous.mof
@a?7,87,20817 02:86 AM 3 PullRunLog.txt

6 Fileds> 12,413 hytes

1 Dirds> 29.958,328.328 hytes free

Figure 4-8. Contents of the %system32% \configuration folder

The current.mof file will have the latest configuration applied to the node. This is also
backed up as backup.mof in the same folder. Whenever a new configuration is applied,
the current.mof file is renamed to previous.mof. Another file named pending.mof would
be present if execution of any configuration happens to fail. LCM will try to execute the
pending.mof file if it is present.

Sample Use Case

Now let’s put together what we have discussed so far in a sample use case and apply it to a
target node by using a simple DSC configuration.
The DSC configuration file that I am going to use has the following contents:

Configuration DSCdemo {

Import the module that contains the required DSC resources
Import-DscResource -ModuleName PsDesiredStateConfiguration

This configuration will be applied to the localhost
Node 'localhost' {

The first step is to ensure that the Web-Server feature is
installed
WindowsFeature WebServer {

Ensure = "Present”

Name = "Web-Server"

97

CHAPTER 4

AZURE AUTOMATION DSC

The File resource is used to copy the index.html file to the
website root folder.
File WebsiteContent {
Ensure = 'Present’
SourcePath = 'c:\test\index.html'
DestinationPath = 'c:\inetpub\wwwroot'
Force = $true
}
Here the service resource is being called to keep the World Wide
Web Publishing service running
Service requiredservicel {
Name = 'W3SVC'
StartupType = 'Automatic’
State = 'Running'
}

JIDK is being installed using the Package resource. It expects the
exe file to be present in the location 'C:\test'
Package PackageExample{

Ensure = 'Present' # You can also set Ensure to "Absent"
Path = 'C:\test\jdk-8u131-windows-x64.exe"

Name = 'Java 8 Update 131 (64-bit)’

Productld ="'

Arguments = '/s STATIC=1 WEB_JAVA=0'

Environment Javahome{
Ensure = 'Present’
Name = 'JAVA HOME'

Value = 'C:\Program Files\Java\jdk1.8.0_131'

}

The comments provide a good explanation of the desired state that will be achieved
by applying this configuration. In a nutshell, it will install the Web-Sexrver feature. It
copies over an index.html file to the root folder of the server, ensures that the World
Wide Web publishing service is started, installs the JDK package, and sets the JAVA_HOME
environment variable. Let’s save this configuration as DSCdemo. ps1.

98

CHAPTER 4 ' AZURE AUTOMATION DSC

In this use case, I am executing the DSC configurations from the PowerShell ISE.
The first step is to compile and create the MOF file (Figure 4-9).

PS C:\test> .\DSCdemo.psl
PS C:\test> dscdemo

Directory: C:\test\DSCdemo

Mode LastWriteTime Length Name

-a--- 7/7/2017 4:16 AM 4050 localhost.mof

Figure 4-9. Creating the MOF file

In the next step, we will apply the MOF against the target node by using the
start-DSCconfiguration command. In the PowerShell ISE, a progress bar indicates
the progress of execution (Figure 4-10).

e T
—— =
TEsTI | isn t Iuwie1 Ervv | ronment |Javahome |
e Start Pest Come 1 vment | dar abhome |
- fowe| oot | Jevabme] (37 $OU) Srws et var able * v pom
1 Flimd rmaa T tnbonnad {a B B2 carnade

Figure 4-10. Start-DscConfiguration in progress

The command used for execution is Start-DscConfiguration -path .\DSCdemo

-wait -verbose.
The output is shown in Figure 4-11.

[e s Start-DAECon T garat ton path (Cdem cwail -berbaie
e ok Clmathi Tk Fetiaring Pas mters, ‘et = Sandcant g s oy, € asihma = T

VIRBOGE; An LCM lﬂlog;uli mrived free er TESTZ with wper i 5-1-3- 21 MB4BTLS1- 152H15007E- THO0LIA60- 300,
100 art I
1 LOu; * | | [Rindomsseatursjsebserver

wirms AT e Wbt rver
wi aperation
L3

e
The speration "Get ceded: Wk Sorve
e T i i 84720 seconds.
ip st
End Besowrce wi m.n] var
Stary Besource | | () e eebs | becontent |
Starn Test 1 e fwebs | ecomtent
1 b Boebs | Cecomtent "T rﬁ:mlmmumm 50 0L et —rt
v X
[P
Stars st v i
i sz
B —unn rm Tt frewcite
51 L e et w R wml e Vindes M1el
e T e et
SUry Besource | | [Service)requiresuervicel]
Swere Test s
e Service) 1 v o.1100 woconan
Stary st
Service requiredservicel| Service WHVC' siarted.
[| e
o
Stars Resowrce | [[Cmvivonment :whm
sare Tent Jaw
mcironment | luvahose| (M1 FOU) G rasmont var fable v jang "
o e e R s
Stare et rorment | Tuv ahame
somment | uvabvome | (CREATED Erwivommest varisble *Iva bo* with value 'C:\Pregras Files\dava\fd.0.0.100°
Bd Set e in 0,010 seconds.
B Resoarce
Sert Resowrce ioge e
il ! Parh wes © b 284
e ear
t: lown 13 Falue -
B update 100 (04-bAth fa met femtalled
foe, = 3 -
Stare e
L Ty T TP E———

Figure 4-11. Start-DscConfiguration verbose output

99

CHAPTER 4 ' AZURE AUTOMATION DSC

TreTT 7
VEMROSE: (TSR] Lom [Eed Test 1 [Peckese IPackaoet s
vemmom rmm.-i. Lom: [Searn et 1| LPakage [Paia

i

wmmos | [TEsTew
vemmom . [TEsTew
womBo . {TEsTve) Package

T

sa¥A-0
S5 [u STATEC] WOE_1avaed

On reviewing the output, we can see that several activities are happening after we
apply the configuration:

DSC checks whether the Web-Server feature is installed and
confirms that it exists.

The file index.html is copied over from the source location to
the inetpub root.

Starts the W3SVC service.

Checks for the environment variable JAVA_HOME. It is not
found, and hence DSC creates the environment variable.

Installs the JDK package with the provided parameters.

Azure Automation DSC

Azure Automation DSC is basically PowerShell DSC implemented via the Pull architecture
into the Azure Automation suite. The pull server is built in by default. You can upload
the DSC configurations to the Azure portal, compile them, and then apply them to target
nodes. The target nodes in this case could be Azure VMs, on-premises VMs, or VMs in other
platforms such as AWS. Azure Automation DSC provides a truly hybrid and centralized way
of managing the configuration of all your systems from the Azure portal GUL

Let’s look at the DSC components from the Azure portal. You can view them listed
under your Configuration Management in your Azure Automation account (Figure 4-12).

CONFIGURATION MANAGEMENT

Ed DSC nodes

N7 DSC configurations

3 DSC node configurations

Figure 4-12. DSC components in the Azure portal

100

CHAPTER 4 ' AZURE AUTOMATION DSC

DSC Configurations

The PowerShell DSC configurations should first be created in an editor such as Notepad
or the PowerShell ISE and then uploaded to Azure Automation DSC as a . ps1 file.

1. Inyour Azure Automation account, select DSC Configuration
from the overview panel or from Configuration Management.
Click the Add a Configuration option (Figure 4-13).

+ Add a configuration [Learn more D Refresh

ALETLADIALS. Lary

Figure 4-13. Adding a DSC configuration

Let’s select the same demo script that we used earlier in the
on-premises example (Figure 4-14).

Import

1 Configuration

Add a new configuration or update an existing
one. Select a file smaller than 1 MB to import.

* Configuration file ®
DSCdemo.psi v E
Xo

DSCdemo.psi

* MName

Description

DSC demo script

Figure 4-14. Selecting a script

101

CHAPTER 4 ' AZURE AUTOMATION DSC

The name of the configuration will be automatically retrieved
when you upload a DSC configuration with proper syntax.
Click OK to import the configuration. After it’s imported, it
will be listed under DSC Configurations in the Automation
account with Authoring status as Published (Figure 4-15).

DSCdemo

+ Add a configuration [} Learn more O Refresh

AUTHORING STATUS

Published

Figure 4-15. DSC authoring status

3.

When you click the published configuration, it gives you
additional options for management (Figure 4-16).

& Compide 5 Export x Delete

Essentials ~

Account
omsrg omsrgautmn
Location Subscription name
eastus?2
Subscrniption ID Status
Published ib
Last published Config 0N Source
/12017 3:47 PM View configuration source

Deployments to Pull Server

Compilation jobs

STATUS CREATED LAST UPDATED

No compdation jobs found.

Figure 4-16. DSC published configuration management

102

CHAPTER 4 ' AZURE AUTOMATION DSC

4. You can compile the configuration from here, delete it,
or exportitas a .ps1 file from the portal. Click the View
Configuration Source option to see the content of the
configuration (Figure 4-17).

Configueation D50 dema |

Import hat contans the requed O urces
Import-L e -ModuleName PiDesireds T aton

o Th
Node W

0 will be applied 10 the locaihost

The fust step is to ersure that WebServer feature i installed
WindowsFeature WebServer |

Ensure = “Present”

MName = “Web-Server”

Path = ‘cAbestundex htmi’
DestinataonPath = ‘Clinetputy wwweool
Force = §true

Here the sennce resouror i beng calied 1o keep the World wide web publshing servoe

runnng
Senuce requrediennced |

oe i5 wsed o copy the index hemi file to the website root folder.

Figure 4-17. Viewing the DSC source

Note Editing the DSC configuration is not possible from the Azure portal at the time of

writing this book.

103

CHAPTER 4 ' AZURE AUTOMATION DSC

5. The next step is to compile the configuration. Click Compile.
You will get a prompt to confirm the action. After compiling,
the configurations will be placed in the built-in DSC pull
server in Azure, and any existing configurations with the same
name will be replaced. Click the Yes option, and the request
will be queued for compilation (Figure 4-18).

B Compile & Export ¥ Delete

Compile DSC Configuration

Are you sure you want to compile this configuration? Any node configurations
generated will be automatically placed on the Azure Automation DSC pull server. If
node configurations with the same name exist on the pull server, they will be
overwritten.

Figure 4-18. Compiling the DSC configuration

6. The configuration is then queued for compilation. After the
compilation is completed, the pane will show the status
(Figure 4-19).

Deployments to Pull Server
Compilation jobs
STATUS CREATED LAST UPDATED

+' Completed T/7/2017 4:09 PM 7/7/2017 411 PM

Figure 4-19. Compilation job status

104

CHAPTER 4 ' AZURE AUTOMATION DSC

7. Information about the node configuration that is available on

the pull server after compilation is also displayed (Figure 4-20).

Available on Pull Server
Node Configurations
NAME LAST UPDATED

DSCdemo.localhost /772017 411 PM

Figure 4-20. Node configuration on the pull server

8. Ifyou click the job compilation status, additional information
is displayed, such as errors, warnings, and exceptions. You can

click each of the tabs to get additional information (Figure 4-21).

Details

Input

</>
Configuration source
_:3 snapshot

Monitoring

Errors Warnings

0 x 1 A ﬁ‘ All Logs

Exception

None

Figure 4-21. Job output

105

CHAPTER 4 ' AZURE AUTOMATION DSC

DSC Node Configurations

Node configurations are the MOF files created after compiling the DSC configurations.
You can view the list of MOF files present in the Azure Automation DSC pull server by
choosing Azure Automation » Configuration Management » DSC Node Configuration
(Figure 4-22).

+ Add a NodeConfiguration 3 Delete O Refresh
NAME CREATED
DSCdemo.localhost 7/1/2017 4:11 PM
MyfFile.localhost 6/27/2017 6:12 PM
OMSAgent.localhost 6/19/2017 1:28 PM

Figure 4-22. MOF files in the pull server

The DSCdemo config that we compiled in the previous step is also listed. You
can see that there is an option to add a Node configuration. If you have compiled a
DSC configlocally that created an MOF file, it can be uploaded here. Click the Add a
NodeConfiguration option. Browse and upload the MOF file. Provide the name of the
configuration. The node configuration name will be created automatically after you
provide the configuration name (Figure 4-23).

Import
F Confia The file must be a DSC Node Configuration script (.mof) smaller than 1 MB.

* Node Configuration File @

localhost.mof v E

Xeo
localhost.mof
* Configuration Name
example J]

Node Configuration Name (auto generated) @

example.localhost

Figure 4-23. Uploading the MOF file

106

CHAPTER 4 ' AZURE AUTOMATION DSC

The uploaded node configuration is now available in the DSC pull server along with
the other node configurations that were compiled from the Azure portal (Figure 4-24).

+ Add a NodeConfiguration ~ ¥ Delete O Refresh

NAME CREATED
DsCdemo.localhost 7/7/2017 411 PM
Example.localhost 7/8/2017 5:13 PM

Figure 4-24. Uploaded MOF listed in DSC pull server

This is a good example of flexibility of the Azure Automation platform. Users can
choose to compile and create the MOF files directly from the portal, or bring in already
compiled configurations that they might be using in their existing infrastructure.

Now that the DSC configuration is imported, compiled, and made available in the
Azure Automation DSC pull server, the next step is to apply the configurations against
target nodes.

107

CHAPTER 4 ' AZURE AUTOMATION DSC

DSC Nodes

Azure Automation DSC can be used to manage Azure VMs (both classic and ARM),

VMs in AWS, and Windows and Linux machines (physical and virtual) on-premises or
hosted on any other third-party cloud service provider platform. Let’s take the example of

onboarding an Azure VM in Azure Automation DSC:

1. Go to Automation Accounts » Configuration Management »
DSC Nodes. Click the Add Azure VM option (Figure 4-25).

+ Add Azure VM + Add on-prem VM B Learn more O Refresh

DSC nodes Status

Search nodes 7 selected

Figure 4-25. Adding an Azure VM

2. Select the VM that you want to onboard. Click OK (Figure 4-26).

Virtual Machines 5
irtual hi boal
Select virtual machines to on rd Azure Linux VMs are not supp d for in-portal onboarding, thoug
in the list below. Azure Classic VMs will not appear in the list below
Registration onboarded using the Azure Classic VMs experience, via All settings
> Add -> Azure Automation DSC.

Configure registration data

HNAME TYPE LOCATION
advM Microsoft.ComputefvirtualM... eastus
Backupserver Microsoft.ComputefvirnualM... eastus
Backupym1 Micrasoft.Compute/fvirtualM... eastus
v BackupVM2 Microsoft. Compute/fvirtuall... eastus

Figure 4-26. Selecting a VM to be onboarded

Note As you can see in the warning message in Figure 4-26, Linux machine VMs,

even if they are listed in the portal, cannot be onboarded directly from the portal. It should

be done with a registration script. Azure classic VMs should also be onboarded using an
alternate process of installing the DSS VM extension separately.

108

CHAPTER 4 ' AZURE AUTOMATION DSC

The next step is configuration of registration data. This is
nothing but the LCM properties to be set on the target node.
The properties of LCM are set, and the node will be registered
with Azure Automation DSC upon completion (Figure 4-27).

Virtual Machines

5 * Registration key
1 virtual machine(s) selected [Primary key | secondary key
Registration Node Configuration Name ©
Configure registration data | DSCdemoJocalhost |

Refresh Fraquency @

30

Configuration Mode Frequency @

15

Configuration Mode @

ApplyAndMonitor v
Allcw Module Override @[]
Reboot Node if Needed @ [J]

Action after Reboot @

ContinueConfiguration v

Figure 4-27. Registration data

The properties being set here are as follows:

The Automation account registration key.

A node configuration to be assigned to the VM. The DSCdemo
configuration that we compiled earlier is selected from the
drop-down list.

Refresh frequency, which is same as the RefreshFrequencyMins
property of the LCM. It is the duration within which LCM
contacts the Azure Automation DSC pull server to get the latest
configurations.

Configuration mode frequency, which is same as the
ConfigurationModeFrequencyMins property of the LCM.

It denotes the interval at which LCM attempts compliance
against the latest configuration downloaded from the Azure
Automation DSC pull server.

109

CHAPTER 4 ' AZURE AUTOMATION DSC

Configuration mode, which is the same as the
ConfigurationMode property of the LCM. You can select
from the following values in the drop-down menu:
ApplyAndMonitor, ApplyOnly, or ApplyAndAutoCorrect.

Module overwrite is allowed, so that new configurations
downloaded from the pull server can overwrite existing
modules on the target nodes.

Reboot of the node is allowed if it is required to fully apply the
configuration.

Action After Reboot can be either ContinueConfiguration
or StopConfiguration. In this example, we have selected
ContinueConfiguration.

4. Click OK and then click Create to start the onboarding
process. If you click notifications, you can see that the
DSC VM extension registration request is being submitted
(Figure 4-28).

Motifications

Dismiss: informationad pleted All

=== DSC VMs Extension Registration Running

DSC extension registration request submission

Figure 4-28. DSC extension registration

5. Ifall goes well, you will get a notification that the DSC
registration is initiated successfully (Figure 4-29).

X
© VM DSC registration initiated successfully ~ 7:16 PM

e O I Virtual machines may take up to 10 minutes to show up in
Azure Automation DSC. backupVM2 : Registration started
successfully

w

Figure 4-29. Portal notification

110

CHAPTER 4 ' AZURE AUTOMATION DSC

What happens in the back end is that Azure platform initiates

the installation of the DSC extension in the Azure VM and

registers it with the Azure Automation DSC service by using

the primary registration key.

6. After successful registration, the configuration that we

selected during registration (DSCDemo) is applied. You can view
the compliance of the node from the portal under DSC Nodes

(Figure 4-30).

+ Add Azure VM + Add on-prem VM [Z Learm more O Refresh

D5C nodes Status
Search nodes... 7 selected
NAME “~ STATUS “~ NODE CONFIGURATION

BACKUPVM2 +' Compliant DSCdemo.localhost

Mode Configuration Ng

w 9 selected

%~ LAST SEEN

7/8/2017 716 PM

Figure 4-30. Node compliance status

7. Click the node to view additional details (Figure 4-31).

ﬁ Assign node configuration x Unregister

Essentials ~

Resource group

omsrgautmn

251 seen time Virtual machine

1/82017 7:16 PM BACKUPVMZ2

Configualion Node configuration
DSCee DSCdemoJdocalhost

7/8/2017 T4 PM Compliant

Reports
TYPL STATUS REPORT TIME
Initial v Compliant T/R2017 6 PM

Figure 4-31. Node additional details

111

CHAPTER 4 ' AZURE AUTOMATION DSC

8. You can drill down to further details on the compliance
against each resource by clicking the available report
(Figure 4-32).

[7:16 PM

@ View raw report

T

v Compliant ~

Report time
7/8/2017 7:16 PM

Start time
7/8/2017 7:14 PM

Total runtime

2 minutes, 39 seconds

Type

Initial

Resources

& WindowsFeature v Compliant
& File v/ Compliant
o Service v/ Compliant
& Environment v/ Compliant
& Package v/ Compliant

Figure 4-32. Compliance details

9. Inthe DSCDemo sample config, we configured WindowsFeature,
File, Service, Environment, and Package resources. The
portal provides the compliance information against each of
those resources, as shown in Figure 4-32.

If you log in to the target Azure VM, you can see that the node is configured as per
the instruction in the DSC config. The Web-Server feature is installed, the W3SVC service is
running, the index.html file is copied over to the inetpub root, the Java SDK is installed,
and the JAVA_HOME environment variable is set.

112

CHAPTER 4 ' AZURE AUTOMATION DSC

Since the configuration mode frequency is set to 15 mins, LCM will ensure
compliance against the config every 15 minutes, and the status will be displayed in the
portal (Figure 4-33).

'n' Assign node configuration 3 Unregister
Essentials -~
Resource group IP adidress
10006
Id Account
omsrgautmn
Last seen time Virtual machane
7/8/2017 7:46 PM BACKUPVMZ
Configuration Node configuration
DSCdemo DSCdemo.localhost
Registration time Status
7/8/2017 7:14 PM Compliant
Reports
TYPE STATUS REPORT TIME
Consistency v Compliant 7/8/2017 7:31 PM
Initial v Compliant 7/8/2017 7:16 PM

Figure 4-33. LCM compliance check

This comprehensive reporting capability is one of the key highlights of Azure
Automation DSC. An administrator will get a view of the compliance status of all target
nodes from a single management interface.

Onboarding Linux Machine to Azure
Automation DSC

PowerShell DSC can be used to manage Linux machines also because MOF uses open
standards compatible with Linux. You can onboard your Linux physical/virtual machines
hosted on-premises or in Azure to Azure Automation DSC and manage them through

the portal. In this section, we will onboard an Ubuntu 14.04 LTS machine to Azure
Automation DSC.

113

CHAPTER 4 ' AZURE AUTOMATION DSC

First download the required packages by using the following commands:

wget https://github.com/Microsoft/omi/releases/download/v1.1.0-0/0omi-
1.1.0.ss1_100.x64.deb

wget https://github.com/Microsoft/PowerShell-DSC-for-Linux/releases/
download/v1.1.1-294/dsc-1.1.1-294.ss1 100.x64.deb

Install the packages by using the following command:
sudo dpkg -i omi-1.1.0.ssl 100.x64.deb dsc-1.1.1-294.ssl 100.x64.deb

The output of a successful installation is shown in Figure 4-34.

2017-07-08 20:59:52 (1.64 MB/s) - ‘dsc-1.1.1-294.ssl 100.x6é4.deb’ saved [5759228/5758228

azureuserfubuntudsc:~5 sudo dpkg -i omi-1.1.0.ssl_100.x64.deb dsc-1.1.1-294.ssl_100.x64.deb
Selecting previously unselected package omi.

(Reading database ... 28885 files and directories currently installed.)
Preparing to unpack omi-1.1.0.ssl_100.x64.deb ...
Creating omiusers group ...
sent invalidate (passwd) request, exiting
sent invalidate(group) request, exiting
sent invalidate(group) request, exiting
Unpacking omi (1.1.0.0) ...
Selecting previously unselected package dsc.
Preparing to unpack dsc-1.1.1-294.ss1 100.x64.deb ...
Checking for ctypes python module...ok!
Unpacking dsc (1.1.1.294
Setting up omi (1.1.0.0)
Generating a 2048 bit RSA private key
s
ing new private key to '/etc/opt/omi/ssl/omikey.pem’
Configuring OMI service ...

* Starting Microsoft OMI Server:

Frocessing triggers for ureadahead (0.100.0-16)
Setting up dsc (1.1.1.294)
Installing resource MSFT nxFilelineResource
Installing resource MSFT nxFileResource
Installing resource MSFT_nxUserResource

Installing resource MSFT_nxPackageResource

Installing resource MSFT_nxGroupResource
Installing resource MSFT_nxArchiveRescurce

Installing resource MSFT_nxSshAuthorizedKeysRescurce
Installing resource MSFT_nxScriptResource

Installing resource MSFT nxEnvironmentResource
Installing resource MSFT_nxServiceRescurce

* shutting down Microsoft OMI Server:

* starting Microsoft OMI Server:

wri

Figure 4-34. DSC package installation output

114

CHAPTER 4 ' AZURE AUTOMATION DSC

The scripts for Linux DSC operations can be found at/opt/microsoft/dsc/Scripts
(Figure 4-35).

Figure 4-35. DSC scripts

Let’s check the current configuration of LCM by using the
GetDsclLocalConfigurationManager.py command (Figure 4-36).

azureuser@ubuntudsc:/opt/microsoft/dsc/Scripts$ sudo ./GetDsclocalConfigurationManager.py
instance of GetMetaConfiguration
{
ReturnValue=0
MetaConfiguration= instance of MSET_DSCMetaconfigu:a:ion
{
ConfigurationModeFreguencyMins=30
RebootNodeIlfNeeded=false
ConfigurationMode=ApplyAndMonitor
redential=NULL
RefreshMode=PUSH
CertificateID=NULL
ConfigurationID=NULL
DownloadManagerName=NULL
DownloadManagerCustomData=NULL
RefreshFrequencyMins=1
AllowModuleOverwrite=false
LocalCenfigurationManagerState=Busy
ConfigurationDownloadManagers=NULL
ResourceModuleManagers=NULL
ReportManagers=NULL
PartialConfigurations=NULL
ActionAfterReboot=NULL
DebugMode=NULL
LCMVersion=NULL
LCMCompatibleVersions=NULL
LCMState=NULL
LCMStateDetail=NULL
StatusRetentionTimeInDays=NULL
AgentId=F648740C-3F0C-44ZC-AC4C-BCDSAZTEEDCE
EnableSignaturevValidation=NULL
DisableModuleSignatureValidation=NULL

Figure 4-36. Current configuration of LCM

We can see that by default RefreshMode is set to PUSH. Let’s register this machine to
Azure Automation DSC. A script is available for this in the scripts folder, which should be
executed with the Azure Automation registration key and URL as parameters:

sudo ./Register.py <Automation account registration key>
<Automation account registration URL>

115

CHAPTER 4 ' AZURE AUTOMATION DSC

The registration key and URL can be found in the Azure portal; select Automation
Account » Account Settings » Keys.
On successful execution, you should get the following output (Figure 4-37).

Figure 4-37. Registration output

If we check the LCM configuration status now, RefreshMode will be set to Pull, and
the corresponding Azure Automation pull server values should be reflected (Figure 4-38).

arursuserfubuntudse: fopt/mi
ins of GetMetaConfigur
{

osoft/dsc/Scriptss suda . /GetDsclocalConfigurationManager.py
ion

ReturnValue={

MetaConfiguration= instance of MSFT_DSCMetaConfiguration
)

ConEigurationMedeFrequencyMins=30
RebootNodeIfNeeded=false
ContigurationModes=RpplyRAndManitor

~redenrial g

= un
ConfigurationID=NULL

DownloadManage rlame=NULL
DounloadManagerCustombata=NULL
RefreshFrequencyMins=30
AllewModuleOverwrite=false
LocalConfigurationManagerStatesNULL
configurationDownloadManagerss=

instance of MSET_WebDownloadManager
]

Resourcelds=[ConfigurationRepositoryWeb]Azurehutomat ionbsc
SourceInfosC:\OsaS-RegistrationMetaConfig?.psl::20::9: :ConfigurationRepositoryieb
[Key] ServerURL
certificateID=NULL
AllowUnsecureConnection=NULL
strationKey=
configuraticnlazes={}

Figure 4-38. RefreshMode value

116

CHAPTER 4 ' AZURE AUTOMATION DSC

The node will be reflected in the Azure portal also under the DSC nodes (Figure 4-39).

DSC nodes

Search nodes...

NAME

BACKUPVM2

ubuntudsc

+ Add Azure VM + Add on-prem VM [} Learn more

STATUS

+/ Compliant

+' Compliant

7 selected

C) Refresh

Status

“~ NODE CONFIGURATION

DSsCdemo.localhost

Figure 4-39. Ubuntu node reflected in the Azure portal

Note that the node configuration is not present because we haven’t applied any DSC
configurations yet.
Select the node and click Assign Node Configuration to assign a configuration from the

list of compiled configs available in the Azure Automation DSC pull server (Figure 4-40).

Resousce grone

L]

Lint sen fome
VRT3 P
Canfigatsten

it g et
TR0AT 1012 P

Reports

Coruiptpncy

B Assign modde corfiguniton 0 Unreghter

ATATUS

o Compliant

P aciderss
uroas

hevourn
e
Ve macrue
ulbuntudic

Sioxde confguestion

St

Complant

PT343 P

Changing the mode configurion ssigned 55 8 rode will Caue the rode
7 h e time & pule.
an LAST MOOEWD
AL demaoc shent 11T N1 P
aaen e bocaihost TAONT X0 P
WAy de Sacahout WITRNT &2 P
O gt o bt 20T 128 Pw
TestConfig NottetSener ATIENT 4537 AN
Teabl el Wk e SPTTIRNT BRIT AN
TestConfiguastion locsnos TAAFI0NT 105 AM

Webnite Test bocathont

I 135 AM

Figure 4-40. Assigning a node configuration

Azure Automation DSC provides a platform-independent way of managing the
desired state of your infrastructure from a centralized portal. Users can create DSC
configs, import them to Azure Automation DSC, and ensure compliance against the
target workloads, all from the Azure portal. The rich reporting capabilities built into
Azure Automation DSC make it easier for administrators to ensure compliance of hybrid
environments using this service.

117

CHAPTER 4 ' AZURE AUTOMATION DSC

Summary

This chapter covered the fundamentals of PowerShell DSC. You learned the key
components, such as configurations, resources, and LCM, as well as the pull and push
architecture and how it all maps to Azure Automation DSC in the Azure portal. We also
covered one sample use case in which a target node on-premises and in Azure was
configured using the same DSC config. The important takeaway is that you can easily
onboard your existing DSC configurations to the Azure Automation DSC platform and
manage your target nodes from the Azure portal.

Additional Resources
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-
started

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

118

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

CHAPTER 5

Hybrid Cloud Automation)

Azure Automation is a comprehensive solution that can be used to automate
administrative tasks in environments hosted in Azure as well as in on-premises
datacenters or even third-party cloud service providers. The management of the latter
(on-premises, third-party hosting provider, or third-party cloud service providers) is
done through Azure Automation Hybrid Runbook Worker. It is also integrated with
Operations Management Suite, which takes care of the agent installation, management,
and monitoring. This chapter reviews the features of Hybrid Runbook Worker and walks
through its usage in Automation scenarios. We will start with a small introduction to
Operations Management Suite and how it integrates with Azure Automation.

Operations Management Suite and Azure
Automation

Operations Management Suite (OMS) is the management-as-a-service offering hosted

in Azure. It is based on services hosted in Azure that cater to specific management tasks.
It uses an agent-based architecture and can be used to manage both your on-premises
and cloud-hosted infrastructure. OMS has several built-in solutions that can be used for
specific management tasks including patch management, threat analysis, health checks
on systems such as Active Directory (AD) and Structured Query Language (SQL), to name
a couple. It also provides a host of other features such as integration with Power BI and
Office 365. The four main components of OMS are as follows:

e Log Analytics: This service monitors and collects logs from
various sources, stores it in Azure storage, and then analyzes the
data and provides valuable insights on your environment based
on the same.

e Automation: This is where Azure Automation fits in. It can be
purchased as part of the Operations Management Suite or can
be availed as a service from within the Azure portal. However,
to use the hybrid worker features for executing Automation
tasks on systems hosted on-premises, the OMS workspace is a
prerequisite.

© Shijimol Ambi Karthikeyan 2017 119
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_5

https://doi.org/10.1007/978-1-4842-3219-4_5

CHAPTER 5 * HYBRID CLOUD AUTOMATION

e Azure Backup: This cloud-based backup solution offered by Azure
is part of the Operations Management Suite. It can be used for
backing up files/folders and applications hosted in systems in
Azure and on-premises. It can also be used for taking VM-level
backups of Azure VMs.

e Azure Site Recovery: Azure Site Recovery (ASR) is the disaster
recovery as a service using Azure, and is part of the Operations
Management Suite. The solution offers Azure as a secondary
datacenter in case of a disaster recovery (DR) scenario. If
customer has an already existing secondary datacenter, ASR
can be used for orchestrating the DR between the primary and
secondary sites.

Azure Automation is one of the key pillars of OMS; many solutions in OMS integrate
with Azure Automation to initiate remediation tasks. For example, you can set an alert
for the occurrence of a specific incident and then call a runbook as a remediation step.
You should link your Automation account with OMS and call the runbooks associated
with that Automation account directly from the OMS workspace. Alternately, you can
create webhooks for Automation runbooks and leverage them for OMS alert remediation.
An OMS workspace is required if you want to set up Azure hybrid workers to execute
Automation runbooks against on-premises target nodes.

Getting Started with Hybrid Runbook Worker

Hybrid Runbook Worker is closely integrated with the OMS workspace and the
Automation and Control solutions associated with it. Having an OMS workspace is a
prerequisite if you want to use Hybrid Runbook Worker. The Automation and Control
solutions should be configured to integrate with the desired Automation account where
your runbooks are stored. This Automation account should be in the same region,
subscription, and resource group as your Automation account. In addition, there is a
dependency on the solution named Automation Hybrid Worker. This solution should be
added to the OMS workspace so that the necessary PowerShell modules are downloaded
to the target machine.

Hybrid Runbook Worker Architecture

The architecture of an environment integrated with Azure Automation and OMS using
Hybrid Runbook Worker is shown in Figure 5-1.

120

CHAPTER 5 * HYBRID CLOUD AUTOMATION

. e
h’pu : Automation account e OMS workspace
e o kit oot {} uigtmd Aol oo B

% .] : -
o - -
i ek ik Woitar xm:*"l | "i | i

: n e OMS Repository
. i ’
Oty =
a ook Hybekd Runbook Wirer |

Installation/Management of MMA

Figure 5-1. Hybrid Runbook Worker architecture

The integration of on-premises machines with OMS is done by installing the
Microsoft Management Agent (MMA). This agent can be downloaded from the OMS
workspace. You will also need the workspace ID and keys for integration. This process
is discussed in detail in the next section. The role of OMS is to manage MMA. Once the
connection with the OMS workspace is established, you need to configure the Hybrid
Runbook Worker so that it is added to the right Hybrid Worker Group in the Automation
account. The agent will then contact the Azure Automation account and pull the relevant
runbooks and instructions required for executing the commands. Any assets required
for executing the runbooks are also retrieved by the agent. All transactions use the Pull
model, so there is no inbound firewall requirement. The machine where the agent is
installed should have a connection to the Internet over port 443 and a connection to
Azure Automation URLs.

Hybrid Runbook Workers are logically grouped as Hybrid Runbook Worker Groups
in the Azure portal. To get a list of Hybrid Worker Groups associated with an Automation
account, go to Automation Account » Overview » Hybrid Worker Groups (Figure 5-2).

121

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Essentials ~
Rescurce group (change) Status
omsrg Active
Location Last modified
East US 2 B/30/2017 4:06 PM
Subscription name (change) Last modified by
Resources
Runbooks —
H
Im Solutions LKl 31 &
= 10 iii Jabs ASSETS
Hybrid Worker Groups DSC Configurations DSC Nodes
3 =
8@ 108& 2a

Figure 5-2. Hybrid Worker Groups

Hybrid Worker Groups can have a single worker or multiple workers for high-
availability purposes. When you initiate the execution of a runbook, it is the Hybrid
Worker Group that you select as a target and not a specific member. This decision is made
by the member of the group.

To add a new hybrid worker, click the Hybrid Worker Groups tab from the overview
and click Configure. This will provide you with a set of instructions on how to configure a
Hybrid Runbook Worker (Figure 5-3).

Figure 5-3. Instructions for configuring Hybrid Runbook Worker

122

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Setting Up OMS and Linking It with Azure
Automation

You can sign up for OMS at http://microsoft.com/OMS or alternately create a workspace
from within your Azure subscription. The step by step process of creating a workspace
from your Azure Subscription and linking it with Azure Automation is as follows:

1. To create a workspace from the Azure portal, click New »
Data + Analytics » Log Analytics (Figure 5-4).

~ E
[rerrp————— Duta Lake Store
MARKETPLACE Sew o n
Compute Data Factory
Networking m
Storage
Jata C,
Web + Mobile E L 3IA atalog
Databases
IR > Power Bl Embedded
Al + Cognitive Services ‘rm

Internet of Things
Erterprise Integration Log Analytics
Soecurity + ldentity

Figure 5-4. Selecting Log Analytics

®

2. Fill in the details required to create the OMS workspace
(Figure 5-5).

123

http://microsoft.com/OMS

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Pricing Tier

* OMS Workspace @
OMSBookDemo v

Or link existing portalmms.microsoftcom

* Subscription

Visual Studio Enterprise w

* Resource group @

®) Create new () Use existing
AutoTest v
* Location
West Europe w
* Pricing tier 5
Free

Pin to dashboard

Free v

To use Operations Management Suite
entitiements choose Per Nade (OMS). All
solutions are available on Per Node (OMS) and
Free tiers.

INSIGHTS AND ANALYTICS / LOG ANALYTICS

To use Service Map or Network Performance
monitoring solutions, choose Per Node (OMS) or
Free. Some solutions are also available on Per GB
(Standalone).

Learn more

SECURITY AND COMPLIANCE

To use the Secunty & Compliance solutions
choase Per Node (OMS), Per GB (Standalone), or
Free. These solutions are free for the first 60 days.
After that, a per node charge will apply regardiess
of your workspace pricing tier.

Learn more

AUTOMATION AND CONTROL

To use Update Management or Change Tracking
solutions choose Per Node (OMS) or Free.
Adding one of these solutions links your
workspace to an Automation account. The linked
workspace and Automation account share the
same pricing tier.

Figure 5-5. Fill in details to create OMS Workspace

Specifically, provide the following details:

In the OMS Workspace text box, provide a name for the
workspace, or you can link an existing workspace.

Choose the subscription and the Resource Group.

Choose the Location. Note that the Automation account
integration with OMS required for Hybrid Runbook Worker
is available only in few regions as of writing this book. You
can see the latest information on Azure service availability by
region at https://azure.microsoft.com/en-in/regions/
services/. Check for availability of the Automation and

Control service.

The Pricing Tier to be used is either Free, or Per Node if you
want to use Automation and Control solutions.

3. From Azure Portal » Log Analytics, select the newly created
OMS work space. Click OMS portal to access the newly
created workspace (Figure 5-6).

124

https://azure.microsoft.com/en-in/regions/services/
https://azure.microsoft.com/en-in/regions/services/

L

H Activity log

;_." Access control (IAM)

CHAPTER 5 * HYBRID CLOUD AUTOMATION

OMSBookDemo

sl

Essentials ~

& OMS Workspace ~

Resource group (change)
autotest

Status

Active

Location

Figure 5-6. New OMS workspace

The next step is to add the Automation solution from the OMS
workspace so that we can use Hybrid Runbook Worker.

Click the OMS home page, click Solutions Gallery, and select

Automation and Control » Configure Workspace (Figure 5-7).

Solutions Gallery » Details

Automation & Control

A\ requires account configuration

Configure Workspace |

Figure 5-7. Configuring the workspace

Link your target Automation account with OMS. If an
Automation account exists in the same subscription, resource
group, and location as your OMS workspace, it will be

listed under Use Existing. Otherwise, you can create a new
Automation account. In this example, I am going to create a

new Automation account. Click OK and then Close (Figure 5-8).

125

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Configure Workspace Automation Account

*Automation Account

1 Visual Studic Ent . ® Create new C‘Us&existunq

iarumhyblid 1]

*Automation account >

Select Account Azure Subscription

Visual Studio Enterprise

Resource Group
Location

Workspace Pricing Tier

Figure 5-8. Creating a new automation account

7. Ifyou checkin the Azure portal, you can see that this
Automation account is now created in the same resource
group and location as my OMS workspace (Figure 5-9).

Subscriptions: Visual Studo Enterpise = Don'l see a subscripion? Swich deectones
Fader By rame. All locaticns:

3 inems
wawr ™ RESOURCE GROUP LOCATION

&£ Astomatondemo Atomaton Acoount sumomatong Soutnenst Ava
O azuretybria) Automation Account sutotest West furope

Figure 5-9. Created account in the Azure portal

8. Now that the Automation account and the OMS workspace
are linked, we will add the Automation Hybrid Worker
solution. This will ensure that Hybrid Runbook Worker is
automatically downloaded to the nodes that you onboard to
OMS.

126

CHAPTER 5 * HYBRID CLOUD AUTOMATION

9. From the OMS workspace, go to Solutions Gallery » Select
Automation Hybrid Worker » Add (Figure 5-10).

Solutions Gallery » Details

Automation Hybrid Worker

Available

Add

Figure 5-10. Adding Automation Hybrid Worker

10. The next step is onboarding of nodes to OMS. This can be
done via installation of the Microsoft Monitoring Agent. This
agent can be downloaded via OMS Workspace » Settings
» Connected Sources » Windows Servers/Linux Servers
(Figure 5-11).

Overview » Settings

Windows Servers
=.B Solutions > = Windows Servers > Altach any Windcws server of dlient.

0 WINDOWS COMPUTERS CONNECTE
fg} Connected Sources > O Linux Servers >
6) Data 5 - Storage 3 You'll need the Workspace ID and Ke
. Computer Groups > ** System Center > AAbshiomiadinbei e ottt 1.
B4 Accounts > i1 Windows Telemetry >

e soge sorsasangaeng s smssasssmerenst | I
A dents b
& proview Featirac k1 e o] 1Y

Figure 5-11. Downloading the OMS agent

Certain prerequisites should be met before installing Hybrid Runbook Worker:
— Minimum OS required is Windows Server 2012.

— Minimum PowerShell version is 4.0. It is recommended to use
PowerShell 5.0.

— The target node should have a minimum specification of two
cores and 4 GB RAM.

127

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Hybrid Runbook Worker initiates the connection to the Azure Automation service,
so only outbound Internet access over port 443 is required from the target nodes.

Also, it should be able to access the Azure Automation URLs. If a proxy server is in the
environment, it should be configured to allow access to *.azure-automation.net.

The installation of the Hybrid Runbook Worker agent is done on the target node by
using a simple installation wizard. During the installation, you will be prompted to enter
the OMS work space details. These details can be obtained from the same location in the
OMS portal.

The required scripts and modules for configuring Hybrid Runbook Worker will
be available in the onboarded node since the Automation Hybrid Worker solution is
enabled. These scripts can be found from the location shown in Figure 5-12.

C:\Program Files\Microsoft Monitoring Agent\Agent\AzureAutomation> cd ‘C:\Program Files\Microsoft Monitoring Agent,
t\AzureAutomation\7. 2.12318. 0\HybridRegistration’

Figure 5-12. Hybrid worker script location
Note that the version at the time of writing this book is 7.2.12318. This could change

when new versions are released.
Import the Hybrid Registration module present in this location (Figure 5-13).

PS C:\Program h'lu\llcroscrh Ilomtormo Aoenl:\&unt\uur'uuto-atwn\l 2.12318.0\HybridRegistration> Import-Module Mﬂ
dRegistration.psdl o o o

Figure 5-13. Importing the Hybrid Registration module

Register the hybrid worker by using the following command, as shown in Figure 5-14:

Add-HybridRunbookWorker -Name <String> -EndPoint <Url> -Token <String>

PS C: \Proqr- Fl'les\.lh(rosn" lfonnunnq Agent\Agent\Azur eAutomation\7.2.12318. 0\HybridReg 1 strat 1on> Add-HybrdRunbooki
rker -Name Hybridtest -EndPoin
R - T Ok en m

Figure 5-14. Registering the hybrid worker

The details are as follows:
— Name: This is the name of the Hybrid Runbook Worker Group.

— Endpoint: This is the endpoint URL of Azure Automation. The
information can be found via Azure Automation » Account
Settings » Keys.

— Token: This is the primary/secondary key available from the
same interface.

Once the registration is completed, the hybrid worker will be listed in the Azure
portal under Hybrid Worker Groups (Figure 5-15).

128

CHAPTER 5 * HYBRID CLOUD AUTOMATION

- Hybrid worker groups

o configure) Refresh

B Hunbooks Gallery
GROUP NAME NUMBER OF WORKERS

CONFIGURATION MANAGEMENT Hybridtest 1

Figure 5-15. Hybrid worker listed in the Azure portal

Double-click the Hybrid Worker Group to get additional details of the registered
hybrid worker (Figure 5-16).

.I | Hybridt ybrid Workers
C - H
Search (Ctri+d) + Configure
2 Overview WORKER NAME
Demawebvm2
SETTINGS
Properties
HYBRID WORKER GROUPS

Hybrid worker group settings

é‘J Hybrid Workers

Figure 5-16. Getting information on hybrid workers

By default, the Automation runbooks will run under the context of Microsoft
Management Agent installed on the target server. However, if you want to use alternate
credentials—say, a local admin account to execute the runbooks—a credential asset can
be created and assigned to the worker group (Figure 5-17).

129

CHAPTER 5 * HYBRID CLOUD AUTOMATION

O

L Search (Ctrl+/) H save X Discard

Run As @ Default -

Choose Run As credential

c:DJ Overview

SETTINGS Hybriduser

"' Pproperties

HYBRID WORKER GROUPS

= Hybrid worker group settings

Figure 5-17. Hybrid worker group Run As credential

Executing Runbooks by Using Hybrid Runbook
Worker

Runbooks can be created or imported using the steps explained in Chapter 3. The only
difference occurs during the execution phase. The runbook will be executed against a
target hybrid worker.

Sample Use Case

Let’s start with a simple workbook that will pull out the list of services with a given startup
type provided via the parameters and that is in running status. This workbook could be
part of a bigger use case in which the administrator wants to do some additional tasks
based on the retrieved data. For the sake of simplicity, we will test this small runbook
against the target machine where we had installed a hybrid worker and registered it
against an Automation account.

The contents of the runbook for this example are as follows:

param(
Startup type of the service.
[Parameter (Mandatory = $true)]
[string]$StartupType

)

$Servicestatus = Get-WmiObject Win32 Service -ComputerName . [where {($_.
startmode -like "*$StartupType*") -and ($_.state -like "*running*")}|select
DisplayName,Name, StartMode, State|ft -AutoSize

Write-output $Servicestatus

130

http://dx.doi.org/10.1007/978-1-4842-3219-4_3

CHAPTER 5 * HYBRID CLOUD AUTOMATION

When you start the runbook in Azure Automation, change the Run Settings option to
Hybrid Worker. For the Choose the Hybrid Worker Group drop-down option, provide the
mandatory input parameter and click OK (Figure 5-18).

Parameters
* STARTUPTYPE @

manual

Mandatory; String

Run Settings
Runon @

e

Choose Hybrid Worker group

| Hybridtest v |

Figure 5-18. Providing input parameters

Click Output to view the results. The runbook will pull out the list of manual services
in the target machine in running status (Figure 5-19).

.27 PM * 0O X

hpplication Lxperience
Application Information
Cortificate Propagation
NG Koy Isslstion

Metwork List Servies

Output Perforsance Logs & Alerts pla
2 Plug and Play PlugPlay

Remate Desitop Comfigurstion Sessionfmy

Microseft Software Shadow C... swprv

Bemots Desktep Services TersSarvics

N4

Figure 5-19. Runbook output

131

CHAPTER 5 * HYBRID CLOUD AUTOMATION

To verify the outcome, we can run the commands in the runbook directly on the
target server (Demowebvm2) where the agent is installed. We can see that the results are the
same (Figure 5-20).

ndows Powers
Copyright (C) 2014 Microsoft Corporation. All rights reserved.

PsC \Dsers\azureusen- SServicestatus = Get-WmiObject Win32_Service -ComputerName . |where {($_.startm|
-and (5_.state -like "*running®*”)}|select DisplayName,Name,StartMode,State
iPs C: \lrsers\azureuur:- Write-output $Servicestatus

Name StartMode State
Application Information Appinfo Manual Running
Certificate Propagation CertPropSvec Manual Running
Device Setup Manager DsmSve Manual Running
CNG Key Isolation KeyIso Manual Running
‘Network List Service netprofm Manual Running

Performance Logs & Alerts pla Manual Running
Plug and Play PlugPlay Manual Running
Smart Card Device Enumerat... ScDeviceEnum Manual Running
Remote Desktop (onﬁgurnhun SessionEnv Manual Running
Microsoft Software Shadow ... swprv Manual Running
Remote Desktop Services TermService Manual Running
‘Remote Desktop Services Us... UmRdpService Manual Running
v cheartbeat Manual Running
vmi ckvpexchange Manual Running
.. vmicrdv Manual Running
. vmicshutdown Manual Running
«« vmictimesync Manual Running
. vmicvss Manual Running
0 Copy V55 Manual Running
‘Windows Process Activation... WAS Manual Running

inHTTP Web Proxy Auto-Dis... WinHttpAutoProxySvc Manual Running

P5 C:\Users\azureuser> _

Figure 5-20. Results from within the VM

Using Azure Automation Webhooks and
Integrating with OMS

Azure Automation can be integrated with OMS by using a webhook, which is an HTTP
request that can be used to start a runbook. Webhooks can be created directly from a
published runbook as follows.

1. Browse to the Azure Automation account and choose
Overview » Runbooks. Select the runbook and then click
Webhook (Figure 5-21).

132

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Hybridtest1

0 Search (Ctri+/) P stat <P view # Edit (D Schedule

Essentials ~
£ Overview A

Resource group
B Activity log autotest

Account
& Tags azurehybrid1
. Location

X Diagnose and solve problems West Europe

Subscription name

Figure 5-21. Webhook integration

2. Provide details of the webhook to be created (Figure 5-22).

anew webho... # O X

For security, after creating a
webhook its URL can't be viewed.
Make sure to copy it before pressing
"0OK", and to store it securely. Learn
more

* Name

webhook1 V|

* Enabled

Yes No

* Expires

20130718 B[514247 pM

URL®
https://s1events.azure-automation.net/... E

Figure 5-22. Webhook details

133

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Specifically, provide the following details:

Provide a name for the webhook.

You can enable the webhook when you create it or choose to
enable it at a later point after creating it.

Set an expiry date for the webhook, after which it cannot be
used.

An URL is created automatically for all the webhooks and will
have a security token included in it. This security token
authenticates the HTTP call made to the webhook. The URL
should be copied over during creation because it will not be
available after that for security reasons.

Parameters and run settings
Configure parameters and run settings Run Settings

3. Configure the Run As option in the next step. Any mandatory
input parameters should be defined at this point while
creating the webhook. By default, the runbook will be
executed on Azure, but you can change the target to a hybrid
worker also. Click OK and then click Create to create the
webhook (Figure 5-23).
Start a runbook via a simple HTTP POST to a URL Parameters
Webhook y * STARTUPTYPE ©
webhook1 |_manua ot

Mandatory, String

Runon @
.]

Choose Hybrid Worker group

| Hybridtest v

Figure 5-23. Creating a webhook

134

CHAPTER 5 * HYBRID CLOUD AUTOMATION

4. Once created, the webhook will be listed when you select the
runbook (Figure 5-24).

== Add Webhook € Refresh

NAME EXPIRATION LAST TRIGGERED STATUS

webhook1 7/11/2018 6:38 PM v Enabled

Figure 5-24. List of webhooks

5. The parameters, such as the expiry date, can be edited from this
view. We can also enable/disable the webhook (Figure 5-25).

0O X a‘f Parameters

Hybridtestl

H X i [Delete Parameters
* STARTUPTYPE @
Name
webhook1 manual
Mandatory, String
* Enabled
Yes No y
Run Settings
Expiration Runon @
2018-07-11 M | 62850 PM Azure | Hybrid Worker

Choose Hybrid Worker group

Parameters and run settings
ki > Hybridtest v

Review parameters and settings

Figure 5-25. Reviewing the parameters and settings

Set Up Webhooks in OMS Alerts

From the OMS workspace, click Settings » Alerts to view the list of alerts created. You can
edit the alerts. Under the Actions tab, the options for adding the webhook will be listed
(Figure 5-26).

135

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Actions

B2 Email notification
Yes No

Subject

Recommended Alert: Computers missing security updates

Recipients (semi-colon separated)

testemail@hotmail.com

&% Webhook

Yes No

Webhook URL
1atRGvaVeXtTobyKdAkLK2rPSeaxNIUP%2brsvEHUOrM%3d

[] Include custom JSON payload

Test webhook Webhook sent successfully

Figure 5-26. Webhooks in OMS alerts

Provide the webhook that was created in the previous section. Click the Test
Webhook button to test the functionality. If all works well, you will get the message
“Webhook sent successfully” Any parameters that should to be sent to the runbook via
the webhook can be included as a JSON file.

Alternately, you have an option to select the runbook from the attached Automation
account (Figure 5-27).

136

CHAPTER 5 * HYBRID CLOUD AUTOMATION

«I\ Runbook
Yes No

Automation account
omsrgaimnn

Select a runbook

testpowershell M

Run on

Hybrid worker

Figure 5-27. Selecting a runbook

Once you integrate your Automation account with OMS, all runbooks in the
account will be listed in the Select a Runbook drop-down list. This makes it easier for the
administrator to choose one of the available runbooks for remediation.

Azure Automation Integration with GitHub
Source Control

You can integrate Azure Automation with your repositories in GitHub. You can use this
to push or pull the PowerShell runbooks in your Automation account to the GitHub
repository.

From the Azure Automation account, select Account Settings » Source Control
(Figure 5-28).

137

CHAPTER 5 * HYBRID CLOUD AUTOMATION

RELATED RESOURCES

® Solutions

M Workspace

@ Unlink Workspace

ACCOUNT SETTINGS
I Properties
? Keys
© Pricing tier and usage

¥ Source Control

Figure 5-28. Selecting the Source Control option

Under Choose Source, select GitHub (Figure 5-29).

Figure 5-29. Choosing GitHub

Note Only GitHub is available as of writing this book. It is expected that Visual Studio
Online(TFS) will be available soon.

Authorize the access by providing the GitHub login credentials. If you click
Authorize, you will be redirected to the GitHub login page (Figure 5-30).

Figure 5-30. Selecting Authorize

138

CHAPTER 5 * HYBRID CLOUD AUTOMATION

After logging in, you need to authorize the account with GitHub (Figure 5-31).

Authorize Automation Source Control

Automation Source Control by azureautomation

wants to access your automationbk account

i | Repositories

' Public and private

Authorizing will redirect to 5 .
; Siad Authorize azureautomation
https://portal azure.com

Figure 5-31. Authorizing Azure Automation

In the next step, select the repository, branch, and runbook folder path to complete
the integration of Source Control with the Automation account.

Once it’s integrated, you will be able to check in your runbooks directly from the
runbook edit pane into the source control repository (Figure 5-32).

I8 Test pane W reedback

Figure 5-32. Checking in runbooks

Summary

This chapter explored how to manage infrastructure hosted outside Azure by using
Hybrid Runbook Worker. The features of Hybrid Runbook Worker along with its
integration with Operations Management Suite were also explained.

139

CHAPTER 5 * HYBRID CLOUD AUTOMATION

Additional Resources
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview

https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-
runbook-worker

https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-
runbooks

140

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hybrid-runbook-worker
https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-hrw-run-runbooks

CHAPTER 6

Sample Runbooks and
Use Cases

Relevance of any technology depends on its capability to handle real-life use cases. Azure
Automation is no different. In the previous chapters, we discussed the various facets and
components of Azure Automation. Now that the groundwork is done, let’s explore sample
use cases for the technology.

Operations Automation for Office 365

Some of the common Office 365 administrative tasks can be automated using Azure
Automation runbooks. In the first set of use cases, we will explore automation of Office
365 reporting and management using Azure Automation.

Office 365 Reporting

Runbooks will be used to pull out reports from the Azure AD tenant associated with Office
365 accounts. The details can be displayed as output or can be used to create reports that
will be e-mailed to the administrator via the SendGrid e-mail relay service.

We will look at two use cases in this section. The first one is a simple runbook to
pull out a list of blocked users in an Office 365 tenant. We will use the second runbook
to create a password expiry date report for users in each tenant and e-mail it to
administrators.

Prerequisites

The MSonline module should be imported to the Azure Automation account before the
runbook can be executed. The MSonline module is available in a General availability and
Public preview version. Cmdlets in the preview version are not available in the module in
the gallery. If you are using the cmdlets from the preview version, the latest module can
be downloaded from www. powershellgallery.com/packages/AzureADPreview.

© Shijimol Ambi Karthikeyan 2017 141
S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4_6

https://doi.org/10.1007/978-1-4842-3219-4_6
http://www.powershellgallery.com/packages/AzureADPreview

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

From the Azure Automation account, choose Modules » Browse Gallery and then
search for MSonline and import the module (Figure 6-1).

MsOnline

Mutcnoht Arure Active Diectony Module For Windows PowerShel Created by AzureADPowerShell

27931 downloads

fease note that the Settings cmdiets that were published in the preview release of the ast updated: 3/2/2017

Tags

Figure 6-1. Searching for MSOnline

If you click the imported module, you can see a list of activities that are basically the
PowerShell commands used for the AD tenant management (Figure 6-2).

NAME

Add-MsolAdmini: iveUnitMemi

Add-MsolForeignGroupToRole

Add-MsolGroupMember

Add-MsolRoleMember

Add-MsolScopedRoleMember

Confirm-MsolDomain

Confirm-MsolEmailVerifiedDomain

Connect-MsolService

Convert-MsolDomainToFederated

Convert-MsolDomainToStandard

Convert-MsolFederatedUser

Disable-MsolDevice

Enable-MsolDevice

Get-MsolAccountSku

Figure 6-2. List of activities

142

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

We will use the third-party mail relay service SendGrid in the second use case to

send an alert e-mail to administrators.

Search for the SendGrid service from the Azure portal by choosing More Services

(Figure 6-3).

Shift+5Space to toggle favorites
sendGrid

SendGrid Accounts

X

Figure 6-3. Searching for SendGrid

Click the option to create the service (Figure 6-4).

* Name

| SendGridtest v

* Password @

| TITTYTTT) v

* Confirm Password

seseseeee v

* Subscription

Visual Studio Enterprise v

* Resource group @

® Create new O Use existing

sendgridtest v
* Pricing tier
¢ >
free

Promotion Code @

* Contact Information
Completed.

* Legal terms 5
Legal terms accepted

Figure 6-4. Creating the service

143

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Specifically, provide the following details:

Provide the Name and Password, and select the Subscription
and Resource Group.

From the Pricing Tier, the free tier should be sulfficient for up
to 25,000 e-mails/month.

Provide your Contact Information (first name, last name, and
e-mail ID) as mandatory values.

Accept the Legal Terms and create the service.

After creating the service, select the service and then choose Settings » General

» Configurations and make a note of the username listed there. We will be using this
username and the password that we provided during service creation to configure an
Automation credential for the SendGrid connection. The SMTP server name will be
smtp.sendgrid.net (Figure 6-5).

Filter

SUPPORT + TROUBLESHOOTING

Configurations

setfings USERNAME

| azure_4224bfa16409f20e300c80990eec3E |.

Activity lo 3
- res PASSWORD
Your Password
GEMERAL
Properties 3 SMTP SERVER
smtp.sendgrid.net
Configurations > Ry !

Figure 6-5. SendGrid configuration details

144

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

The next step is to create the Azure Automation credential asset. We will be creating
two assets for this runbook: Office 365 admin credentials and SendGrid login credentials

(Figure 6-6).

* Name * Name

0365cred v SendGrid it
Description Description
* User name * User name

adminuser@zzrzzutztzzs Yd.onmicrosoft.c SPURE AN AL Lt rdnlh AR ARRAS TR
* Password * password

ssssessssnes v sssssssss v
* Confirm password * Confirm password
| ssssssssssss | ssssssene v

Figure 6-6. Creating credentials

Runbook 1

We will start with a simple runbook that will pull out a list of blocked users in Office 365

and display the output:

Connect to Office 365 using the 0365 credential object
$cred0365 = Get-AutomationPSCredential -Name 'o0365cred’
Connect-MsolService -Credential $cred0365
Get list of users
$users = Get-MsolUser -all
Check for blocked users and display results
$count = 0
foreach ($user in $users) {
$displayname = get-msoluser -UserPrincipalname $user.UserPrincipalName

if ($displayname.BlockCredential)

$Count = $count + 1
echo $user.UserPrincipalName 'is blocked' }

}

if ($count -eq 0)
{ echo "There are no blocked users"

}

145

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Create a runbook using the preceding content and publish it. Execute the runbook
and choose Azure for the Run On option (Figure 6-7).

art Runbook
4 ent

Parameters

Mo input parameters

Run Settings

Runon @

Hybrid Worker

Figure 6-7. Selecting the Run On setting
On execution, the output will be as follows (Figure 6-8).

testuser2fazureautotest948.onmicrosoft.com

Y is blocked

Output

E—:J' Output

. All Logs

Figure 6-8. Viewing the output

146

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

Let’s log in to Office 365 Admin portal and verify that the user is blocked (Figure 6-9).

shijimol ak adminuser@azureautotestd40. onmicrosoft.com 365 Enterprise E3

Test Userl Testuserl@azureautotesta40 365 Enterprise E3

L4 test usersd testuser2 @arureautotestd40 onmicrosoft.com

Figure 6-9. Verifying that the user is blocked

Runbook 2

This runbook will pull out a report of the list of users and their password expiry date in a
CSV file and send the report as an attachment to the administrator. This can be scheduled
as a weekly task by creating a schedule in Azure Automation. The PowerShell script to be
used as a runbook is given next. The tasks performed by the runbook are highlighted as
comments in the runbook.

#Create the CSV, which will be updated with date, name of users, e-mail
address, #days to password expiry, and the password expiry date
$logging = "Enabled"

$logFile = ".\passwordexpirydates.csv"

$date = Get-Date -Format ddMMyyyy

if (($logging) -eq "Enabled")

{

$logfilePath = (Test-Path $logFile)
if (($logFilePath) -ne "True")
{

Create CSV File and Headers
New-Item $logfile -ItemType File
Add-Content $logfile "Date,Name,EmailAddress,DaystoExpire,ExpiresOn"

}

Echo "Logfile created"

Connect to Office 365 using the 0365 credential object

Echo "getting credentials"”

$cred = Get-AutomationPSCredential -Name 'o0365cred’
Connect-MSolService -credential $cred

Echo "Connected to office365"

Get Users From MSOL where Passwords Expire

$users = get-msoluser | where { $.PasswordNeverExpires -eq $false }
$domain = Get-MSOLDomain | where {$_.IsDefault -eq $true }

$temp = (Get-MsolPasswordPolicy -domain $domain.Name).ValidityPeriod
If ($temp -eq $null)

147

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

{

$maxPasswordAge = "90"

}

else
{
$maxPasswordAge = ((Get-MsolPasswordPolicy -domain $domain.Name).
ValidityPeriod).ToString()
}
Process Each User for Password Expiry
foreach ($user in $users)
{
$Name = $user.DisplayName
$emailaddress = $user.UserPrincipalName
$passwordSetDate = $user.LastPasswordChangeTimestamp
$expireson = $passwordsetdate + $maxPasswordAge
$today = (get-date)
$daystoexpire = (New-TimeSpan -Start $today -End $Expireson).Days
if (($logging) -eq "Enabled")
{

Add-Content $logfile "$date,$Name,$emailaddress,$daystoExpire,$expireson”

}
}

Echo " Password expiry report created"

#Get sendgrid Automation credentials

$Sendgridcredential =Get-AutomationPSCredential -Name 'sendgrid'
$SMTPServer = "smtp.sendgrid.net"”

$EmailFrom = "adminuser@outlook.com"

$EmailTo = "adminuser@outlook.com”

$Subject = "User Password expiry Report"

$Body = "User Password expiry Report"

#Send email using SendGrid credentials with report as attachment
Send-MailMessage -smtpServer $SMTPServer -Credential $Sendgridcredential
-Usessl -Port 587 -from $EmailFrom -to $EmailTo -subject $Subject -Body
$Body -attachments "passwordexpirydates.csv"

Echo " Password expiry report sent to administrator"

Get-PSSession | Remove-PSSession

148

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

Once executed, the runbook will give the following output (Figure 6-10).

7 3:54 PM

Directory: C:\Temp\23dndit®.2jf
LasthriteTime Length Name

7/15/2817 2:54 PM @ passwordexpirydates.csv

Logfile created

getting credentials

Connected to office365

Password expiry report created

Password expiry report sent teo administrator

Figure 6-10. Runbook output

The User Password expiry date report will be e-mailed to the administrator via
SendGrid (Figure 6-11).

User Password expiry Report

° - -t @outlook.com

You ¥

passwordexpirydates.csv W
585 bytes

Download Save to OneDrive - Personal

User Password expiry Report

Figure 6-11. Password expiry report

149

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

The contents of the report are shown in Figure 6-12.

A B C D E

Date Name EmailAddress DaystoExp ExpiresOn
15072017 test user2 testuser2@azureautotest94 88 10/11/2017 17:07
15072017 Test Userl Testuserl@azureautotest94 87 10/11/2017 9:00

Figure 6-12. Contents of the report

Azure Blob Backup

The native backup solution in Azure, Azure Backup, does not support backup of

Azure blob storage at the time of writing this book. In this use case, we will explore an
alternative of leveraging the snapshot feature of Azure Storage to make a backup of Azure
blob storage. This runbook will take a snapshot of the source blob and copy it over to a
different storage account as a backup. A schedule can be created in Azure Automation to
execute this runbook depending on the backup frequency requirements.

Prerequisites

We need the following Azure Automation assets as prerequisites:

AzureRunAsConection as a connection asset. This will be created
by default when you create the Automation account. If it is not
present for any reason, it should be created by providing the
service principal details for the Automation account (Figure 6-13).

NaME L LAST MOCIFIED

ArureClassicRunAsConnection AzureClassieCertificate 4972017 BAD AM

AzureRunAsConnection AzureServicePrincipal 4/9/2017 840 AM

Connection2 Agure 471572017 6:33 PM

Figure 6-13. AzureRunAsConnection asset

150

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

An Azure Automation module for storage. You should update
this module to the latest version if it is already present
(Figure 6-14).

Browse Gallery

Figure 6-14. Azure.Storage module

Runbook

#Define the storage account and context.
param(
Source Storage account name
[Parameter(Mandatory = $true)]
[string]$SourceStorageAccountName,
Source Storage account key
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[string]$SourceStorageAccountKey,
Source Storage account container name
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[string]$SourceContainerName,
Source Storage account blob name
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[string]$SourceBlobName,
#Destination Storage account name
[Parameter(Mandatory = $true)]
[string]$DestinationStorageAccountName,
#Destination Storage account key
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[string]$DestinationStorageAccountKey,
#Destination Storage account container name
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[string]$DestinationContainerName

151

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

)
$connectionName = "AzureRunAsConnection"
try
{
Get the connection "AzureRunAsConnection "
$servicePrincipalConnection=Get-AutomationConnection -Name
$connectionName
"Logging in to Azure..."
Add-AzureRmAccount ~
-ServicePrincipal °
-TenantId $servicePrincipalConnection.TenantId °
-ApplicationId $servicePrincipalConnection.ApplicationId °
-CertificateThumbprint $servicePrincipalConnection.
CertificateThumbprint
}
catch {
if (!$servicePrincipalConnection)
{
$ErrorMessage = "Connection $connectionName not found."
throw $ErrorMessage
} else{
Write-Error -Message $.Exception
throw $_.Exception
}
}

$SourceContext = New-AzureStorageContext -StorageAccountName
$SourceStorageAccountName -StorageAccountKey $SourceStorageAccountKey
#Fetch details of the blob.

$blob = Get-AzureStorageBlob -Context $SourceContext -Container
$SourceContainerName -Blob $SourceBlobName

Echo "#ittiii#Details of blob#itttitits"

$blob

Echo "###HHHHHHHHHHHFHHHH AR

#iCxreate snapshot of the blob.

$snap = $blob.ICloudBlob.CreateSnapshot()

Echo "#it#tHHH#H#####Details of snapshot#fii#i"

$snap

Echo "H##HHHHHHHHHHRFHHE AR

#iFetch time of the snapshot taken

$SnapshotTime = $snap.SnapshotTime

Echo "Snapshot timestamp is $SnapshotTime"

$DestinationContext = New-AzureStorageContext -StorageAccountName
$DestinationStorageAccountName -StorageAccountKey
$DestinationStorageAccountKey

$srcBlobSnapshot = Get-AzureStorageBlob -context $SourceContext -Container
$SourceContainerName |Where-Object {$_.ICloudBlob.IsSnapshot -and $_.Name -eq
$SourceBlobName -and $_.SnapshotTime -ne $null }

152

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

$srcBlobSnapshot | Format-Table -AutoSize
$RestorePoint = $srcBlobSnapshot | where { $_.SnapshotTime -eq $SnapshotTime

}
$snapshot = [Microsoft.WindowsAzure.Storage.Blob.CloudBlob]

$RestorePoint[0].ICloudBlob

#Copy snapshot to backup storage
Start-AzureStorageBlobIncrementalCopy -Context $SourceContext
-CloudBlob $snapshot -DestContex $DestinationContext -DestContainer
$DestinationContainerName

Echo "Snapshot copied"”

The runbook does the following:
— Create a snapshot of the source blob.

— Then a timestamp of the snapshot is used to identify the latest
snapshot from the other existing snapshots.

— The snapshot is copied over to backup storage account by using
the Start-AzureStorageBlobIncrementalCopy command, which
initiates an incremental copy of the snapshot.

The runbook expects the following inputs to be provided during execution: the
source storage, access key, container name, name of the blob to be backed up, destination
(backup) storage, access key, and container name (Figure 6-15).

.

Figure 6-15. Input parameters

153

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

On successful execution, output of the runbook will be as shown in Figure 6-16.

Qutput

=

AERRSSRARRARR SRR IS AN RRR ISR AN AA O

Smapshot timestamp is 07/15/2017 20:41:02 +80:00

IC1loudBlob BlobType Length ContentType

Microsoft....

ICloudBlob
BlebType
Length i -1
ContentType
LastModified

: PageBloh

1 71572017 8:41:84 PH +00:00
SnapshotTise

ContinuationToken :

Context
Nama + Demowebvml2@17@127094527.vhd

Smapshot copied

Figure 6-16. Runbook output

PageBlob 136367309312 applicatio...

LastMedified SnapshotTime Continuation Context

7/18/2017... 7/15/2017...

+ Microsoft.WindowsAzure.S5torage.Blob.CloudPageBlob

i Microsoft.WindowsAzure.Commands.Storage.AzureStorageContext

Token

Microsoft... Demowebvm...

We can use the Azure Storage explorer tool to view the snapshots being created in
the source storage account and then later being copied over to the destination storage.
Source blob snapshots are shown in Storage explorer view (Figure 6-17).

L Q- @

B vhds %

B backup x

Figure 6-17. Source blob snapshots

154

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

In Backup storage view, the snapshots are being copied over to a container named
backup in this storage (Figure 6-18).

backup ‘m X
I o & X
Collapse All efresh Al -
ollapse Al Refresh Al Download Open Copy URL Select All Delete
14 Quick Access
4 @ (Local and Attached) &« ~ ‘M backup » Snapshots for Demowebvm120170127093747 vt

» B Storage Accounts

4 P Visual Studio E
4 B Storage Accounts

b B 5a147

B 5al4ideastus

rprise (shijimolak@outlook.com) &

astasia

»

b B SalaT4dsoutheastasia

» B 5al474southindia

» B 5al4T4westus

» B asrdemostrl

B azureppedisks335

4 (B iaasdemostore5

Fl Blob Containers
B backup

Figure 6-18. Backup storage view

Linux Node DSC Configuration Management

In this use case, we will install a package in a Linux node using DSC and then start the
corresponding service associated with it. We will install the reverse proxy software nginx
using this runbook and start the service.

Prerequisites

The Linux node should be onboarded to the Azure Automation DSC account. The
steps were explained in Chapter 4. The next step is to import the nx module into the
Automation account that includes the DSC resources for Linux (Figure 6-19).

Pepularity

Madule with DSC Resources for Linue
Created by: MSH_OSIC
1607 downicads
Last updatedt 9/25/2015 Created by: MSF1_O51C
Tage: Pl

Figure 6-19. Importing the nx module

155

http://dx.doi.org/10.1007/978-1-4842-3219-4_4

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

This module comes with built-in resources similar to the resources available for
Windows (Figure 6-20).

NAME DESCRIPTIO

nxArchive
nxEnvironment
nxFile

nxFileLine

nxGroup

nxPackage

nxScript

nxService
nxSshAuthorizedKeys

nxUser

Figure 6-20. Activities in the nx module

We will be using the nxPackage and nXService resources in our runbook, which are
used for package management and service management, respectively.
Runbook

configuration nginxlinux {

Import-DscResource -ModuleName nx

node localhost {

#inginx package installated using nxPackage resource
nxPackage nginx

{
Name = "nginx"
Ensure = "Present"
PackageManager = "Apt"
}

156

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

#inginx service status checked using nxService resource
nxService nginxservice

{
Name = "nginx"
Controller = "init"
Enabled = $true
State = "Running"

}

}
}

Create the runbook and compile it. Before applying the configuration, we will
tweak the LCM on the target node to make the refresh interval smaller and the change
configuration mode to AplyAndMonitor. Thus we can ensure that the configuration is
pulled from the Azure Automation pull server and applied immediately. Here is the
command to be used:

sudo ./Register.py --RegistrationKey <Automation account
registration key> --ServerURL <Automation account registration
URL> --RefreshFrequencyMins 5 --ConfigurationModeFrequencyMins 5
--ConfigurationMode ApplyAndAutoCorrect

Before applying the DSC config, we will check the nginx service status in the target
node. The service will be listed as unrecognized (Figure 6-21).

Figure 6-21. Checking service status

Select the node from the Azure Automation DSC node list and then choose Assign
Node Configuration. Select the compiled node configuration and click OK. The new
configuration will be applied, and after some time the node status will be shown as
compliant (Figure 6-22).

B Runbooks Gallery

EONFIGURATION MAKAGEMENT
NAME o STATUS A NODE CONFIGURATION

)5C nodes
nituds mphiant nginx

e

Figure 6-22. Applying the DSC configuration

157

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Let’s go back to the target node and review the service status (Figure 6-23).

Figure 6-23. Reviewing the service status

The nginx service will be available at port 80 of the server (Figure 6-24).

B g/ TITLIINI P-C @& Welcome to ngirnd e

¥ - Microso... B¥ Pric ing Calculator Microsof. 2] LBdemo 2] Demoweb?2 2] DemoWebl @ Microsoft Azure Roadmap B Microsoft Azure €) azure-guickstart-

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx,

Figure 6-24. Nginx web page

DSC Composite Resources in Azure Automation

DSC composite resources can be used in Azure Automation in such a way that the
configurations can be reused. The composite resources can be imported as modules in
Azure Automation. In simple terms, the composite resource is a DSC configuration that
can accept input parameters. When we convert them as modules in Azure Automation,
they can be imported from another DSC configuration and then the values of parameters
can be passed on. The parameters in this context will act as the properties of the DSC
composite resource. In this use case, we will create a DSC composite resource, upload

it as module in Azure Automation, and finally call this module from another DSC
configuration, thereby enabling reusability.

158

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

Step 1: Create DSC Composite Resource

There is a specific folder structure to be followed while creating a DSC composite
resource that can be uploaded to Azure Automation DSC as a module. The folder

structure is shown in Figure 6-25.

ModuleName

1
s ModuleName.psd1

Lo ModuleName.psm1

CompositeConfigl

:‘- - -CompositeConfigl.psdl
Ce

L. iteConfigl.schema.psm1

CompositeConfig2

I 1

‘- -CompositeConfig2.psdl

L - .CompositeConfig2.schema.psm1l

CompositeConfig..N

+ = -CompositeConfigN.psd1

L - .CompositeConfigN.schema.psm1

Figure 6-25. Composite resource folder structure

Create the root folder with the name of the module that you want to create. It should
contain the corresponding . psm1 module file and the manifest file . psdi1. There should be
a folder named DSCResources inside the root folder. The DSC composite resources should
be present inside the DSCResources folder. These composite resources should have a
.psd1 as well as . schema.psmi file. The .schema.psml extension is required to mark it as
a composite resource. This file will contain the contents of the DSC configuration, which
can be later called as resources by other configurations in Azure Automation DSC.

159

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Let’s start by creating the root module folder (Figure 6-26).

PS C:\> JModulename
Ps C:\> mkdir SModulename

Directory: C:\

Mode LastWriteTime Length Name

d----- 7/17/2017 11:50 Am Compositemodule

Figure 6-26. Creating the root module

Create the .psdi file associated with it by using the New-ModuleManifest command
(Figure 6-27).

PS C:\> New-ModuleManifest -RootModu Compositemodule -Path “$Modulename
PS C:\>

Figure 6-27. Creating the .psdl file

In the folder, we can see that the .psdi file gets created (Figure 6-28).

p OSDisk (C:) > Compositemodule
Name

« | compositemodule.psd1

Figure 6-28. Listing the .psdl file

160

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

Part of the content of the file is shown in Figure 6-29.

|' compositemodule.psd1 X]

1 #
2 # Module manifest for module 'compositemodule’
3 #
4 # Generated by: userl
5 #
6 # Generated on: 7/17/2017
7 #
8
9 =e{
10

11 | # Script module or binary module file associated with this manifest.
12 | RootModule = 'Compositemodule’

14 | # Version number of this module.
15 | ModuleVersion - '1.0°

17 | # Supported PSEditions
18 |# CompatiblePseditions = @()

20 | # ID used to uniquely identify this module
21 | GUID '98379e2d-4778-45f5-b02a-1df1392elcdf’

23 | # Author of this module
24 | Author - 'userl’

26 | # Company or vendor of this module
27 | CompanyName = 'Unknown’

29 | # Copyright statement for this module
30 |Copyright = '(c) 2017 shiak. A1l rights reserved.’

31

32 | # Description of the functionality provided by this module

33 | # Description = "'

34

35 | # Minimum version of the Windows PowerShell engine required by this module
36 | # powerShellversion = '

37

38 |# Name of the Windows Powershe11 host required by this module

39 | # PowerShellHostName = '

40

41 | # Minimum version of the w1nduw5 PowerShell host required by this module
a2 # PrwarchallUnctvarcinn =

Figure 6-29. Contents of the file

You can see that the manifest contains metadata information, any defined
prerequisites, any functions, cmdlets, aliases to be exported, and so forth.

161

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Create a blank . psm1 file in the same folder with any content, which could even be a
comment (Figure 6-30).

PC > OSDisk (C:) > Compositemodule

~

[] Name I

DSCResources

« | compositemodule.psd1

« | compositemodule.psm1 7
"
e EC ormat Vvie elp

#test

Figure 6-30. Creating a .psml file

This file is required for uploading the module in Azure Automation.
The next step is to create the DSCResources folder and the composite resource folder
inside the root folder (Figure 6-31).

S C:\> mkdir "$Modulename
Directory: C:\Compositemodule\DSCResources

ode LastWriteTime Length Name

----- 7/17/2017 12:20 PM Compositel

Figure 6-31. Creating the DSCResources and composite resource folders

Create a manifest for the composite resource named Compositel. This time, we will
be creating the schema. psm1 file as well, which identifies this as a composite resource
(Figure 6-32).

'S C:\> New-ModuleManifest $Modulename

'S C:\> Add-Content t $Modu] ename

Figure 6-32. Creating the manifest

162

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

The files get created inside the Composite1 folder (Figure 6-33).

Compositemodule > DSCResources > Compositel
[0 Name

«) composite1.psd1

«) Composite1.Schema.psm1

Figure 6-33. List of created files

The contents of the . psd1 file will be similar to the Compositemodule.psdi file
created earlier. In the compositel.schema.psmi file, add your DSC configuration
(Figure 6-34).

Composite1.Schema.psm1 X

-jconfiguration Compositel {

File "filecreate' {
DestinationPath "C:\NewFile. txt'
Contents 'Composite DSC test'
Ensure 'Present’

Figure 6-34. Adding the DSC configuration

We will go with a simple configuration to create a new file and add content to it. Note
that the node statement is not present, since this DSC configuration will be used to create
aresource that will be called by other configurations.

We have now created all the required files for the module. To create the module,

simple zip the root folder to create a compositemodule.zip file and upload it to Azure
Automation.

163

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Step 2: Import Module in Azure Automation

From the Azure Automation account, choose Shared Resources » Modules » Add a
Module » Browse. Select the zip file and click OK (Figure 6-35).

D Add Module

‘ Importing a module may take

several minutes.

Upload File (zip format, 100 MB max size) @
Compositemodule.zip E
Xo

Compositemodule.zip

Figure 6-35. Importing the module

You will get a notification that the file is successfully uploaded and the activities are
being extracted (Figure 6-36).

& O @

Notifications

Dismiss:

Figure 6-36. Extracting activities

164

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

If the module is successfully uploaded, you can see the composite resource listed as
an activity under the module (Figure 6-37).

@ Delete

Overview

Compositemodule
Last modified: 7/17/2017 12:59 PM
Version: 1.0

B

| module: No

Activities

1%

MNAME DESCRIPTION

Compositel

Figure 6-37. Comsposite resource listed as activity

Step 3: Create DSC Configuration That calls the Uploaded
Modules

We will create a basic DSC configuration that calls the resource Compositel from the
uploaded modules. Note that there are no parameters in this resource; however, if your
original DSC composite resource expects parameters, it can be passed on at this point
from with the DSC configuration.

Configuration dsccompositemodtest {

Import-DscResource -ModuleName PSDesiredStateConfiguration
Import-DscResource -ModuleName Compositemodule

Node localhost {
Compositel serveri {

}

165

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Save the contents as a .ps1 file and upload it to the Azure Automation DSC
configuration (Figure 6-38).

Import

Add a new configuration or update an existing
one. Select a file smaller than 1 MB to import.

Configuration file @

dsccompositemodest.ps1

dsccompositemodest.ps1

Name

Description

Figure 6-38. Uploading the .psl file

Compile the configuration. If all goes well, the configuration will be successfully
compiled (Figure 6-39).

omsrgautmn

7/17} 28 PM

Deployments to Pull Server
Compilation jobs
STATUS LAST UPDATED

v Completed f17/20 28 T/17/2017 1:30 PM

Figure 6-39. Compiling the configuration

166

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

The next step is to apply this configuration against a target node. Select the node
from the Azure Automation account and then choose Configuration Management » DSC
Nodes. Click the Assign Node Configuration option and select the newly compiled MOF
from the pull server (Figure 6-40).

dsecompositemodiest localhost

Figure 6-40. Assigning the node configuration

The configuration will be updated when the target node contacts the pull server the
next time. Until that time, the status will be shown as pending (Figure 6-41).

+ Add Azure VM + Add on-prem VM [Learn more O Refresh

DSC nodes Status

7 selected

NAME = STATUS % NODE CONFIGURATION

BACKUPVM1 Pending dsccompositemodtest.localhost

Figure 6-41. Status before the node contacts the pull server

Once the configuration is updated, the status will be compliant (Figure 6-42).

+ Add Azure VM + Add on-prem VM [Learn more O Refresh

DSC nodes Status

7 selected

MNODE CONFIGURATION

BACKUPVM1 ' Compliant dsccompositemodtest.localhost

Figure 6-42. Status after the configuration is updated

167

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

You can double-click the node to get more details about the configuration being
applied (Figure 6-43).

B View raw report

Report details
Report ID

cedbe218-baf1-11e7-940c-000d3a1185... E

Report status

Compliant

Report time
T/17/2017 2:14 PM

Start time
717/2017 2:14 PM

Total runtime

1 seconds

Type

Consistency
Resources

ap File +/ Compliant

Figure 6-43. Viewing details of the applied configuration

It is interesting to note that the File resource originally defined in the DSC composite
resource is being listed here.

168

CHAPTER 6 © SAMPLE RUNBOOKS AND USE CASES

As a final step, let’s log in to the server and check whether the file is present in the C
drive with the contents defined in the DSC configuration (Figure 6-44).

A) | crmmesemmemmes

N=l Local Disk (C)) &
I Home Share View

* 4 |l » Computer » Local Disk (C:)
bt MName B Date modified Type Size
Desktop b cttest 1/2017 7:45 AM
Downloads Packages 1:
Recent places PerfLogs 7

|, Program Files e fold
braries . Program Files (x&6)
Documents Users folder
Music WER File folder
Pictures . Windows File folder
Videos WindowsAzure File folder
. NewfFile 3PM Text Document 1KB

g T Newfile -

Local [: 2
File Edit Format View Help

Tempg
New Vi kompﬂsite DSC test

Figure 6-44. Status in the target server

The file is present, and we can conclude that the DSC composite configuration is
successfully applied via Azure Automation DSC.

Summary

This chapter, the last one in this book, covered different practical use cases of Azure
Automation. This includes Office 365 automation and management, Linux machine
management, and complex configurations such as DSC composite resources.

169

CHAPTER 6 "' SAMPLE RUNBOOKS AND USE CASES

Conclusion

Azure Automation is a versatile tool in the arsenal of Azure administrators that can
accomplish various complex tasks easily via runbooks, DSC configurations, hybrid
workers, and more. In this book, we discussed the building blocks of Azure Automation.
The most fundamental building block is the runbook, and Chapter 3 covered the various
types. Runbooks are built on the foundation of PowerShell. The built-in galleries and
PowerShell repositories have many runbooks that are contributed by Microsoft as well
as by the PowerShell community; these cater to most of the common use cases. It is also
easy to create and upload runbooks of your own if you have expertise in PowerShell.
The Automation assets such as variables, credentials, connections, and certificates
prove a robust framework for sharing resources between runbooks and help establish
connections with target resources quite easily. Azure Automation is not limited to your
infrastructure hosted in Microsoft Azure. You can use the tools in it to manage resources
hosted on-premises as well as in third-party datacenters using DSC configurations and
Azure Hybrid Runbook Worker. Chapters 4 and 5 covered in detail how they can be
effectively leveraged to accomplish these infrastructure management tasks. Finally, we
touched upon some common use cases for Azure Automation in Chapter 6 and provided
sample runbooks for the same. You can go through the following additional resources if
you want to explore more about Azure Automation.

Happy learning!!

Additional Resources
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery

https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].
Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].
Value=WindowsAzure automation&f[1].Text=Automation

https://www.powershellgallery.com/
https://docs.microsoft.com/en-us/powershell/dsc/overview
https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-diagnostics

https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-
integration

https://azure.microsoft.com/en-us/blog/tag/azure-automation/

170

http://dx.doi.org/10.1007/978-1-4842-3219-4_3
http://dx.doi.org/10.1007/978-1-4842-3219-4_4
http://dx.doi.org/10.1007/978-1-4842-3219-4_5
http://dx.doi.org/10.1007/978-1-4842-3219-4_6
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-gallery
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://gallery.technet.microsoft.com/scriptcenter/site/search?f[0].Type=RootCategory&f[0].Value=WindowsAzure&f[1].Type=SubCategory&f[1].Value=WindowsAzure_automation&f[1].Text=Automation
https://www.powershellgallery.com/
https://docs.microsoft.com/en-us/powershell/dsc/overview
https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-diagnostics
https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-integration
https://docs.microsoft.com/en-us/azure/automation/automation-azure-vm-alert-integration
https://azure.microsoft.com/en-us/blog/tag/azure-automation/

Index

A nested runbooks
child runbook inline, 52
Assets, 25 insert option, 53
certificates invoke method output, 54
creation, 49 parent runbook job, 54
details, 48 Start-AzureRMAutomation
edit pane, 49 Runbook, 55
list, 47 schedules, 25
syntax, 49 dashboard, 26
test execution, 50 description, 27
connections details, 27
AzureClassicRunAsConnection, 42 input parameters, 29
AzureRunAsConnection, 42 link option, 28
dashboard, 41 overview tab, 28
details, 43 unlink option, 29
Get-AutomationConnection, 46 variables
Get-AzureRmAutomation command output, 37
Connection, 44 creation, 35, 38
list, 41 delete, 39
New-AzureRmAutomation details, 36
Connection, 44 edit pane, 40
Remove-AzureRmAutomation encrypted variable, 39
Connection, 45 output result, 41
Set-AzureRmAutomation portal and check, 38
ConnectionFieldValue, 46 PowerShell, 37
credentials runbook creation, 40
details, 50 runtime manipulation, 37, 39
edit pane, 52 value of, 38-39
output, 52 Automation
modules, 30 account creation
being updated, 30 dashboard, 6
details, 32 details, 5
gallery, 31 keyword, 4
import process, 32, 34 list, 6
list, 30 new account creation, 4
notification, 31 ARM (see Azure Resource Manager
update notification, 30, 33-34 (ARM) model)
zip file, 35 assets overview, 9
© Shijimol Ambi Karthikeyan 2017 171

S. Ambi Karthikeyan, Azure Automation Using the ARM Model,
https://doi.org/10.1007/978-1-4842-3219-4

https://doi.org/10.1007/978-1-4842-3219-4_6

INDEX

Automation (cont.)

DSC configurations list, 10
hybrid workers groups, 10
jobs panel, 8
OMS solutions, 7
portal, 3
PowerShell
graphical runbooks, 11
modules, 11
workflow, 12
Workflow runbooks, 11
return on investment, 1
runbook (see Gallerical runbooks)
security, 17
access control (IAM), 19
contributor role, 19
credential option, 20-21
dashboard, 17
hybrid worker group, 22
output results, 19
permissions, 20
role-based access control, 19
sample runbooks, 18

Azure Resource Manager (ARM) model, 1

deployment model, 2
grouping resources, 3
policies, 3

RBAC, 2

tags, 2

template deployment, 2

Azure Site Recovery (ASR), 120

B,C

Blob backup, 150

AzureRunAsConnection asset, 150
Azure.Storage module, 151
execution, 154

input parameters, 153
prerequisites, 150

source blob snapshots, 154
storage account and context, 151
storage view, 155

D,E,F

Desired State Configuration (DSC), 10, 87

composite resources, 158
applied configuration, 168
Compositemodule.psdl file, 163

DSCResources, 162
file contents, 161
folder structure, 159
list of file creation, 163
manifest, 162
modules, 164
node configuration, 167
.psdl file, 160
.psml1 file, 162
pull server, 167
root module, 160
status, 167
target server, 169
uploaded modules, 165
configurations, 87
authoring status, 102
compilation, 104
job status compilation, 104
output, 105
panel overview, 101
published configuration, 102
pull server, 105
script selection, 101
source view, 103
LCM (see Local Configuration
Manager (LCM))
Linux (see Linux machines)
node configurations, 100
MOF files, 106
pull server, 107
upload, 106
resources, 88
use case
configuration file, 97
MOF file, 99
output, 100
progress, 99
verbose output, 99
VMs
additional details, 111
compliance
details, 112
extension registration, 110
LCM compliance check, 113
node compliance status, 111
nodes, 108
onboard option, 108
portal notification, 110
properties, 109
registration data, 109

G

Gallerical runbooks
assigning tags, 16
category and sub-category, 16
edit pane, 14
enable Q & A, 17
file upload option, 14
import option, 13
license options, 17
overview, 12
summary, 15
title and description, 15
Get-AutomationConnection, 46
Get-AzureRmAutomation
Connection, 44
GitHub
account creation, 139
authorize selection, 138
runbooks, 139
selection, 138
source control option, 137-138
Global modules, 43
Graphical runbooks
additional parameters
option, 76
AzureRunAsConnection, 82
canvas, 74
click and drag option, 78
code activities, 73
concepts, 80
configuration options, 78
connection, 82
control asset, 72-73
data source, 76, 80
edit pane, 81
execution, 83
individual parameters, 75
input and output
configuration, 79
input parameter, 79
link commands, 77
message streams, 85
output streams, 84
parameters configuration, 75
publishing runbook, 80
results, 80
retry logic, 74
target activities, 83
variable asset list, 76
verbose messages, 85

INDEX

H, 1, J, K
Hybrid runbook worker, 119
architecture, 120
automation account, 121
execution phase, 130
input parameters, 131
instructions, 122
linking (Azure automation and OMS)
automation account
creation, 126
configuration, 125
details, 124
download, 127
gallery details, 127
information, 129
listing details, 128
log analytics, 123
portal selection, 124
prerequisites, 127
register worker details, 128
registration module, 128
resource group and
location, 126
run as credential, 130
script location, 128
workspace, 124
OMS workspace, 120

L

Linux
machines, 113
installation output, 114
LCM configuration, 115
node configuration, 117
RefreshMode value, 116
registration output, 116
scripts, 115
Ubuntu node, 117
node
activities, 156
configuration
management, 155
DSC configuration, 157
import nx module, 155
nginx web page, 158
nxPackage and nXService
resources, 156
review service status, 158
service status, 157

173

INDEX

Local Configuration Manager (LCM), 91
configuration management, 95
premises, 96
pull mode, 94
push mode

architecture, 93
configuration, 91
MOF file, 92

Management Object Format (MOF)
file, 88

Microsoft Management Agent
(MMA), 121

N

New-AzureRmAutomationConnection
command, 44

(0

Office 365 reports, 141
activity list, 142
contents of, 150
credentials, 145
CSV file creation, 147
execution, 146, 149
MSOnline search, 142
output, 145
password expiry report, 149
run on option, 146
SendGrid, 143
SendGrid configuration

details, 144
service creation, 143
verification, 147

Operations Management Suite

(OMS), 7,119

backup solution, 120
components, 119
integration, 137
webhooks, 132

actions tab, 135

creation, 134

details, 133

174

integration, 132
list of, 134
parameters review, 135

PQ
PowerShell

assets list, 63

canvas, 61

canvas option, 63

CMDLETS, 60

components, 60

credential asset values, 64

description, 63

graphical runbooks, 11

insert, 62

logical workflow, 65

modules, 11

OutputType command, 64

parameters, 64

RUNBOOKS component, 61

script options, 59

selection, 60

workflow, 12

workflow runbooks, 11
checkpoints, 67
InlineScript activities, 66
parallel processing, 66
syntax, 65
use case, 67

R

Remove-AzureRmAutomation
Connection, 45

Return on investment (ROI), 1

Role-based access control (RBAC), 2

Runbook types. See PowerShell

S, T,U
Set-AzureRmAutomation
ConnectionFieldValue, 46

VW, X, Y, Z

Virtual Machines (VMs), 2

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Automation
	Azure ARM Deployment Model
	RBAC
	Template Deployment
	Tags
	Resource Groups
	Resource Policies

	Azure Automation in the ARM Portal
	Creating Your Automation Account and Getting Started
	Exploring the Dashboard
	Solutions
	Runbooks
	Jobs
	Assets
	Hybrid Worker Groups
	DSC Configurations and DSC Nodes

	PowerShell in Azure Automation
	PowerShell
	PowerShell Workflow
	Graphical
	Graphical PowerShell Workflow

	Runbook Gallery
	Uploading Runbooks to the Gallery

	Azure Automation Security
	Role-Based Access Control

	Summary

	Chapter 2: Azure Automation Assets
	Azure Automation Assets
	Schedules
	Modules
	Variables
	Creating a Variable from the Portal
	Managing Variables by Using PowerShell
	Using Encrypted Variables

	Connections
	Creating a New Connection
	Managing Connections by Using PowerShell
	Get-AzureRmAutomationConnection
	New-AzureRmAutomationConnection
	Remove-AzureRmAutomationConnection
	Set-AzureRmAutomationConnectionFieldValue
	Get-AutomationConnection

	Certificates
	Credentials

	Nested Runbooks
	Invoking a Child Runbook Inline
	Starting a Runbook by Using Start-AzureRMAutomationRunbook

	Summary

	Chapter 3: Azure Automation Runbook Types
	PowerShell Runbooks
	PowerShell Workflow Runbooks
	InlineScript Activity
	Parallel Processing in the Workflow
	Checkpoints in the Workflow
	Sample Use Case

	Graphical Runbooks
	Runbook Outputs
	Output Streams
	Message Streams

	Summary

	Chapter 4: Azure Automation DSC
	PowerShell DSC
	Configuration
	Resources
	DSC Engine (Local Configuration Manager)
	DSC Push Mode
	DSC Pull Mode
	Configuration Management Using LCM
	Using PowerShell DSC on Premises

	Sample Use Case
	Azure Automation DSC
	DSC Configurations
	DSC Node Configurations
	DSC Nodes

	Onboarding Linux Machine to Azure Automation DSC
	Summary

	Chapter 5: Hybrid Cloud Automation
	Operations Management Suite and Azure Automation
	Getting Started with Hybrid Runbook Worker
	Hybrid Runbook Worker Architecture

	Setting Up OMS and Linking It with Azure Automation
	Executing Runbooks by Using Hybrid Runbook Worker
	Sample Use Case

	Using Azure Automation Webhooks and Integrating with OMS
	Set Up Webhooks in OMS Alerts
	Azure Automation Integration with GitHub Source Control

	Summary

	Chapter 6: Sample Runbooks and Use Cases
	Operations Automation for Office 365
	Office 365 Reporting
	Prerequisites
	Runbook 1
	Runbook 2

	Azure Blob Backup
	Prerequisites
	Runbook

	Linux Node DSC Configuration Management
	Prerequisites

	DSC Composite Resources in Azure Automation
	Step 1: Create DSC Composite Resource
	Step 2: Import Module in Azure Automation
	Step 3: Create DSC Configuration That calls the Uploaded Modules

	Summary
	Conclusion

	Index

