
Beginning
AI Bot
Frameworks

Getting Started with Bot Development
—
Manisha Biswas

www.allitebooks.com

http://www.allitebooks.org

Beginning AI Bot
Frameworks

Getting Started with Bot
Development

Manisha Biswas

www.allitebooks.com

http://www.allitebooks.org

Beginning AI Bot Frameworks: Getting Started with Bot Development

ISBN-13 (pbk): 978-1-4842-3753-3 ISBN-13 (electronic): 978-1-4842-3754-0
https://doi.org/10.1007/978-1-4842-3754-0

Library of Congress Control Number: 2018956746

Copyright © 2018 by Manisha Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3753-3.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Manisha Biswas
Kolkota, West Bengal, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3754-0
http://www.allitebooks.org

I dedicate this book to my parents.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Table of Contents

Chapter 1: AI and Bot Basics ��1

Artificial Intelligence ���1

Classification ���8

Prediction ��8

Interconnection Between AI, ML, and DL ��10

Chatbots ��14

Generative Chatbot Model ���14

How Do Chatbots Work? ��15

Rise of the Chatbots—Conversational Commerce ��17

Growth of Chat Apps ��19

The Structure of a Bot ���21

Bot Frameworks ��23

Conclusion ��23

Chapter 2: Microsoft Bot Framework ���25

Starting with the Prerequisites ���26

Visual Studio ��26

Windows 10 ���27

Bot Builder ���27

Bot Framework Emulator ���28

www.allitebooks.com

http://www.allitebooks.org

vi

Creating a Simple Bot Framework App ���30

Using a Template to Create the Project ���30

Working with the Code ��33

Running the Application���42

Testing the Application ��44

Managing State ���46

Understanding the Use of Dialogs ���47

Publishing the Bot to the Cloud by Using Azure ��56

Conclusion ��65

Chapter 3: Wit�ai and Dialogflow ��67

Getting Started with Wit�ai ��67

Creating a New App ���67

Adding Intent ���70

Adding Text and Keywords ��73

Creating a New Entity ��77

Implementing Wit�ai with Facebook ��78

Working with Dialogflow ���84

Accessing Dialogflow ��85

Creating the Pizza Bot ���87

Using Small Talk ��88

Linking to a Google Project ��90

Adding an Intent ��91

Creating a New Entity ��92

Deploying the Bot ��94

Integration with Web Instance ���98

Conclusion ��100

TABLE OF CONTENTS

vii

Chapter 4: IBM Watson Chatbots ��101

Implementing Watson ���102

IBM Cloud ��102

Watson Assistant Service ��104

Creating a FAQ Bot ��106

Creating Intent for the Bot ���108

The Dialog Flow for the App ��112

Making Sense of the Flow ���113

Trying the Bot ��115

Creating a Coffee Bot ��117

Creating a Workspace ��117

Working with Intents ���118

Working with Entities���126

Working with Dialogs ���129

Nested Intents ���133

Conclusion ��137

Chapter 5: Chatbot with TensorFlow���139

TensorFlow Basics ��139

Setting Up the Working Environment ���140

Creating a Neural Network ��143

Working with the Activation Function ���149

TensorBoard ��151

Versions of TensorFlow ��158

Keras Overview ���159

Getting Started with a Keras Chatbot ��163

Introducing nmt-chatbot ���166

TABLE OF CONTENTS

viii

End-to-End Systems ���172

Recurrent Neural Network ���172

Working with a Seq2seq Bot ���176

Instructions for Updating ��178

Download and Install CUDA ���178

Download and Install cuDNN ���180

Uninstall TensorFlow, Install TensorFlow GPU ��181

Update the %PATH% on the System ��181

Conclusion ��182

 Index ���183

TABLE OF CONTENTS

ix

About the Author

Manisha Biswas has a Bachelor of Technology degree in information

technology and is currently working as a data scientist at Prescriber360, in

Kolkata, India. She is involved with several areas of technology, including

web development, IoT, soft computing, and artificial intelligence. She

is also an Intel Software Innovator and was awarded the Shri Dewang

Mehta IT Award in 2016 by NASSCOM. Biswas recently formed a Women

in Technology community in Kolkata to empower women to learn and

explore new technologies. She has always had a passion for inventing

things, creating something new, and inventing new looks for old things.

When not in front of her terminal, she is an explorer, a foodie, a doodler,

and a dreamer. Biswas is always eager to share her knowledge and ideas

with others. She is following that passion by sharing her experiences with

her community so that others can learn and give shape to new ideas in

innovative ways. This passion is also what inspired her to become an

author and write this book.

xi

About the Technical Reviewer

Abhishek Nandy has a Bachelor of Technology degree in IT. He

considers himself a constant learner and is a Microsoft MVP for the

Windows Platform, an Intel Black Belt Software Developer, as well as

an Intel Software Innovator. He has a keen interest in AI, IoT, and game

development. Currently, he is an application architect in an IT firm as well

as a consultant in AI and IoT who works on projects related to AI, ML, and

deep learning. He also is an AI trainer and runs the technical part of the

Intel AI Student Developer program. He was involved in the first Make in

India initiative, where he was among top 50 innovators and was trained

in IIMA.

xiii

For me, writing this book was highly inspiring and challenging because of

ongoing changes to the technology stacks of the various bot frameworks,

so I would like to express special thanks and gratitude to all my teachers

and mentors. It was a fascinating journey to complete the book; thanks to

all my friends and family for the support.

Acknowledgments

1© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0_1

CHAPTER 1

AI and Bot Basics
This chapter covers the basics of bots, how they work, and their

interactions with users. We will also touch on what exactly artificial

intelligence (AI) is before moving on to discuss further details of chatbots

and why they are necessary.

Additionally, this chapter explains the connections between AI and its

subsets of machine learning and deep learning. Finally, we will study the

structure of AI and bots and cover available bot frameworks.

 Artificial Intelligence
Artificial intelligence, or AI, is a buzzword nowadays. It is a branch of

computer science gaining immense popularity. The goal of AI is to create

computer systems that are independent and function intelligently.

AI is easiest to understand when we describe it in terms of

characteristics or capabilities of human beings. Let’s explore how AI works

with human beings or models human behavior.

Human beings connect with other human beings through language. In

the field of AI, we call that language exchange speech recognition. Because

speech recognition is more statistically based, we call this type of learning

statistical learning.

Humans can read and write text. In AI, this communication process is

called natural language processing (NLP).

2

Humans also can see through their eyes and process what they see.

This kind of perception, when converted into the medium of AI, is known

as computer vision. Computer vision falls under a category of computer

science that deals with symbolic learning.

When humans look at the world around them, they create pictures

through their eyes. In AI terminology, this is known as image processing.

Humans can recognize their environment and move around it freely

and in any manner. When we replicate these kinds of actions in AI, we

enable robotics.

Humans have the ability to group patterns of like objects. In terms

of AI, we call this pattern recognition. Machines are better at pattern

recognition than humans because machines can use more data. Machines

interpret the data as follows:

 1. The dataset is fed into the machine.

 2. The machine processes the dataset.

 3. The machine splits the dataset into training and

testing data.

 4. The machine process the training dataset to create a

model by using machine-learning algorithms.

 5. The machine compares the model with the testing

data.

 6. The machine joins the training and testing data,

evaluates, and finally visualizes the data.

Chapter 1 aI and Bot BasICs

3

Dataset

Process data

Split
ML algorithm

Training Testing

Compare

Evaluate

Visualize

Figure 1-1. Machine-learning flow

Figure 1-1 illustrates this process.

Chapter 1 aI and Bot BasICs

4

Machines can deal with excessive amounts of data in datasets. As

the machines try to interpret and learn from the data, without being

programmed to do so, we call that process machine learning (ML).

In the human brain, a network of neurons works on making decisions

by actively working together. When the same situation is applied

artificially, artificial neurons (These neurons are the basis of neural

network) try to work similarly to biological neurons, and this behavior

is called cognitive computing. When communication happens within

neurons and they convey information and create a network on its own,

we call it neural networks. When the network becomes too complex to

understand, with complex datasets and many hidden layers involved,

machines are performing deep learning (DL).

When machines scan an image from left to right or from top to bottom,

those machines form a convolutional neural network.

Humans generally remember what they did yesterday or, for example,

what we had for dinner yesterday. Machines that can understand the same

sequential concepts form recurrent neural networks.

Figure 1-2 shows that AI works in two ways. One is a symbolic-based

approach, and the other is a data-based approach. Symbolic-based

learning uses image recognition; generally, this technique is used for

robotics. When we are dealing with huge datasets, we use the data-based

approach, also called the machine-learning approach.

Chapter 1 aI and Bot BasICs

5

When we use the data-based approach, generally we are dealing with a

lot of data that we need to learn from. Subsequently, machines will be able

to predict better from early stages as they are now lots of data to work using

this data-based approach.

Let’s look at an example of how machines work with data. We have

sales and advertisement data, and use linear regression to identify the

relationship between them. Linear Regression deals with numerical

values for a solution. We are trying get the Linear regression curve that

fits the straight line equation that is y = mx + C, where m is the slope of

the gradient C is the constant x is the dependent variable and y is the

independent variable. First, let’s look at the data points in Figure 1-3.

Figure 1-2. Two main approaches in the way AI works

Chapter 1 aI and Bot BasICs

6

Figure 1-4 shows some patterns, and now we can apply machine

learning (ML) to it. After the machine learns the patterns, it can make

predictions based on what it has learned.

Figure 1-3. Data points indicating sales vs. advertisement data

Figure 1-4. The curve shows a pattern. The curve generated from
sales increase pattern with respect to advertisements.

Chapter 1 aI and Bot BasICs

7

Whereas one, two, or three dimensions (The dimensional data are

the data generated from information gathered) are easy for humans to

learn, machines can learn in many dimensions. The high dimensional

data has large amount of information example would be that for a

famous personality we check for where they were born, how they came

to limelight, their career all have some data but some valuable insights

are required to get the best information so machine learning on high

dimensions help the data readable and faster to access.

Figure 1-5 shows how data is available in a high-dimensional space

and the magnitude of the data associated with it. Machines learn from this

high-dimensional data space fast and efficiently.

High-dimensional
Dataspace

Figure 1-5. High-dimensional space

Chapter 1 aI and Bot BasICs

8

A machine can look at large amount of data within the dataset,

which we call high- dimensional data, and determine patterns. After the

machine learns these patterns, this valuable information gives useful

insights leading to a lot of research, and again leading to faster-evolving AI.

Machine uses the patterns to do two things:

• Classification

• Prediction

 Classification
When we work with different kinds of datasets, we generally divide

the datasets into observation types. We utilize the training data so that

we can apply different machine-learning algorithms to it. When using

Classification if we are trying to classify mail coming into our account as

legitimate or spam we associate two levels either it will get inside the mail

box or will be inside spam. We associate labels for it which determines the

spam filtering process through classification.

 Prediction
When we are working toward future readiness of a particular dataset, we

generally run predictions by using the available dataset. The model we

create after applying machine-learning techniques is a benchmark so that

we can predict future outcomes based on this model. Machines generally

learn in two ways:

• Supervised learning

• Unsupervised learning

Chapter 1 aI and Bot BasICs

9

 Supervised Learning

Supervised learning is generally based on available ground truth (we are

sharing every resource for the data points such as inputs, outputs, and any

other available information). Therefore, we are providing the machine or

program with input and output. The machine goes through the available

information and finally predicts. Regression is an example of supervised

learning. Let us suppose we want to predict a price of a property in an area

the model we created applying regression and the slope formula that is y =

mx + C we can get a result that is far off from the actual property price the

difference is the error in order to get the model more accurate and close to

the result we will tweak the slope values to get the proper value.

 Unsupervised Learning

Depending on the scenario, the dataset we’re working with may not have

any prior information available. We might be dealing with datasets that are

not labeled or classified. In this case, we use unsupervised learning.

Clustering is an example of unsupervised learning.

There is a different way to deal with environments, and we call this

branch of machine learning reinforcement learning. In reinforcement

learning, we give a machine a goal and ask it to learn it from trial-and- error.

Machines learn in the three ways, shown in Figure 1-6: supervised,

unsupervised, and reinforcement learning.

Chapter 1 aI and Bot BasICs

10

Figure 1-7. AI, ML, and DL

Machine learns

Supervised

Unsupervised

Reinforcement learning

Figure 1-6. Machines learn in three ways

 Interconnection Between AI, ML, and DL
AI, ML, and DL, depicted in Figure 1-7, are separate terms. However, they

do have interconnections, described next.

Chapter 1 aI and Bot BasICs

11

AI refers to a broad category of computing in which a system is capable

enough to learn directly from data. This is possible because of a lot of

interactions, analysis, structuring, and visual representations of data

using data analytics. This is applied by sets of rules defined by human

intervention or increasingly by the subset of AI that is also known as

machine learning.

With the advancement of ML, many things underwent changes,

including processing the data and the way information is used. Data needs

some form of automation to evaluated faster without the need for human

intervention. ML deals with large data sets too.

When we use a lot of data for our work, we reach a computational

tipping point, which is when lots of data is gathered together and size is

really huge to work with as depicted in Figure 1-8. This can result in new

implementation methods in data analytics.

Figure 1-8. Reaching the computational tipping point

Chapter 1 aI and Bot BasICs

12

Figure 1-9. The evolution from artificial intelligence to deep learning

A neural network, illustrated in Figure 1-10, is another concept we will

discuss in this book that has become popular. When analysing an image

the first thing computer does is to break the image in RGB scale now we

have different levels of abstractions for the layers. We need to access the

layer in different way. So a neural network is generated and as we see if the

level of abstraction goes beyond 3 it directly falls under Deep Learning and

neural network is a part of it.

A subset of ML known as deep learning (DL) was one result of reaching

this tipping point. Figure 1-9 illustrates the relationship between AI, ML,

and DL.

Chapter 1 aI and Bot BasICs

13

Figure 1-10. Neural network

The neural network made sense of different connected neuron

networks and produced outputs that brought groundbreaking results. This

resulted in the progressive growth of AI in a broader sense for capabilities

such as image, speech, and natural language recognition. This produced

significant and positive impacts in our daily lives. The evolution of deep

learning signifies that AI is not static and will grow and adapt accordingly

as different techniques arise. One good example would be that we travel

to a different place we don’t know the language the capabilities of AI can

take an image or the information that is there using the webcam and can

convert it into easy english language.

Chapter 1 aI and Bot BasICs

14

 Chatbots
Chatbots they have come a long way. From being static to more on

interaction.

In today’s world, we have to hide service layers within plain

conversational techniques. We don’t want to show whats happening

underneath so we wrap the service layer and hide the logic so that we are

not able to show the entire process of communication as many people

want their technique to be secretive.

For the best chatbots, we need to underline one thing. If a human

being analyzes both a bot and a human conversation and is unable to tell

the difference between the two, we say it passes the Turing test. However,

until now, no bot has been able to achieve this feat.

Traditionally speaking, chatbots have used what we call a retrieval-

based model. In this model, a programmer's code provides predefined

responses, and chatbots learn in a heuristic way to pick the appropriate

response.

The first chatbots ever created used rule-based expression matching.

Now the approach has moved to using ML as a classifier for better

responses. We can take as an example Facebook’s API, for which we can

hard-code responses and then classify words with intent. Then if we ask or

phrase a query as, “What day is today?” or “Today is what day?” Chatbot

understands both.

 Generative Chatbot Model
A generative chatbot model relies on predefined responses, and whatever

we do, we should write them from scratch. When we are working with

chatbots, we first have to see whether we are working on a closed domain

or an open domain.

Chapter 1 aI and Bot BasICs

15

 Open Domain

In an open domain, a conversation can go anywhere. There are infinite

things to talk about.

 Closed Domain

In a closed domain, a conversation focuses on a single subject or topic. The

chatbots evolve based on the kind of conversation we want: long or short.

Short conversations are easier to use.

 How Do Chatbots Work?
The best way to learn how chatbots work is to first understand the brain of

bot. We call this a digital brain, and it consists of three main parts:

• Knowledge source: Where we need to find out which

informations needs to provided to the bot so the

conversation starts and for Q and A

• Stock phrases: Its something where we can handle

general phrases of conversation which is used more

often

• Conversational memory: When we are doing a

conversation we have to remember the flow what has

happened so conversational memory is required

When we start communicating with a bot, we may send a message

(for example, “hello”), and the bot starts working—or more accurately,

analyzing the message. The bot’s activity is known as parsing. Next the bot

will look for keywords in order to reply to the message.

Chapter 1 aI and Bot BasICs

16

Digital brain

Conversational memory

Stock phrases

Knowledge source

Figure 1-11. The bot’s digital brain

Then the brain of the bot will use its three main parts to analyze the

message and then construct its reply. Figure 1-11 shows the structure of

the bot’s digital brain.

Chapter 1 aI and Bot BasICs

17

Figure 1-12 shows how the response is generated from the digital brain.

Digital brain

Knowledge source

Stock phrases

Conversational memory

Reply

Figure 1-12. The response being generated by the bot

 Rise of the Chatbots—Conversational Commerce
Conversational commerce uses chats, messaging, or some kind of natural

language as its interface. Conversational means it uses some kind of voice

or text medium to transfer data and understand how people communicate.

What we are doing with chats and messaging is using this particular

medium to easily interact with each other. To make our jobs easier to

Chapter 1 aI and Bot BasICs

18

answer simple queries for our business we feed the bot with common

questions and answers so that we can save time before they go to the

customer care if required.

The advent of conversational commerce allows users to talk to

companies and have companies also talk back in an easy manner. This can

happen in three ways:

• Bidirectional: That is the communication flow is faster

and seamless within the bot

• Asynchronous: Allowing the messaging to be controlled

at timely mannere and not within specified time

intervals

• In real time: The communication response is to make it

realtime

 The Role of Chatbots

In conversational commerce, chatbots are the computer programs used to

simulate a conversation with a human. They use a text-based approach.

Chatbots work on the following:

• Basic operations

• Basic things answering the general queries with ease

• Basic questions

 The Role of Humans

Conversational commerce is powered by humans. The UI developed is

powered by humans. The structure (also called an interface) is designed by

humans and is where the communication occurs.

When a conversations increases in complexity, it is handed over for

human operators to resolve.

Chapter 1 aI and Bot BasICs

19

 Growth of Chat Apps
The chatbot’s popularity comes from the growing use of messaging

applications such as Facebook Messenger, WhatsApp, and Telegram.

These chat apps are now trending and surpassing social applications.

The Facebook Messenger platform is a good example of an application

that has surpassed all social apps because of the following:

• A unified and a free flowing UI

• Great experience

• Very dynamic as many people use them

Chatbot allows us to work on business criteria by having direct

conversations with a company.

The following sections provide some chatbot examples.

 Poncho

Poncho is a weather activity bot whose logo is cat. The cat handles all the

conversations for you and shares the weather in a simple and collaborative

way.

 CNN Bot

This is a news bot providing news options. We can ask specific questions to

the bot with keywords such as “Space.” It will then give us information about

space news. The CNN bot also learns from our daily activity and predicts

accordingly, with news options available based on the type of searches we do.

 Spider Bots

Another common bot type is the web spider bot. These bots gather

information from the web in order to discover details that can be

harvested and stored. We can use these bots to capture e-mail

Chapter 1 aI and Bot BasICs

20

information from a page and move to the next page. This process is

known as scraping. Search engines like Google use spiders to increase

the speed of their searches.

 Twitter Bots

There are bots present on Twitter that analyze tweets. They work on

finding specific topics, intending to do retweets based on those topics.

 Botnets

When a coordinated unit of bots works together in tandem, we call that a

botnet. Botnets can be requested go to the same web page at once and make

web sites crash. This is also known as a distributed denial-of-service (DDoS)

attack when botnets are distributed.

 Reinforcement Learning Bot

Reinforcement learning bots use a reinforcement learning approach.

Reinforcement learning is based on trial-and-error. Reinforcement

learning is also based on environments (It can be a 3d space, A game based

scenario etc) and worlds, hence why we should not work on modeling the

world. Instead we should work on modeling the mind that means the best

possible step that needs to taken should be given to the machine such that

it works within its limits.

DeepMind (Its a Google funded startup that works towards finding

reinforcement learning solutions to practice) worked toward finding a

solution that is now popular and works toward formulation of artificial

general intelligence.

DeepMind’s algorithm works toward solving solutions, such as playing

Atari games with one unified approach, is known as Deep Q-Learning. It

takes two inputs: the raw pixels of the game and the game score. Based

on those two, it has to reach its objective to maximize the score. First it

Chapter 1 aI and Bot BasICs

21

uses deep convolutional neural networks to interpret the pixels. Deep

convolutional neural networks extract features and the bot learns as

hidden layers get incredibly abstract.

 The Structure of a Bot
This section describes what a bot structure looks like and how

conversations flows.

Figure 1-13 describes how the structure of the bot’s programming

is formed.

Texting Place

Intent

Entities

Dialog flow, or form
flow

Chatbot

Figure 1-13. The structure of the bot

We first start with texting with some questions, then we move to the

place/template where we start developing or coding the logic of the bot

here the response flow is generated. Next, we describe the intent that

forms the basis of the bot’s communication, in order to provide a textual

response and making the chatbot interactive.

Chapter 1 aI and Bot BasICs

22

We use entities to break the piece of information that is message flow to

better understand what is happening for our usage to communicate. Finally,

we create a workflow for the bot to get organized. This flow which allows the

entire process to work efficiently it is either called a dialog flow or form flow.

Let’s talk about the structure of bot in detail now. We generally want

to see an efficient text response platform. For bots to work in a specific

manner, we need a specific software development kit or interface where

we start preparing the logic. The logic can be embedded within an IDE or it

can be completely cloud based, as in IBM’s Watson.

We need to have a template, or place, where we start our development.

Of course, it’s easier to start with a template because the basis is already

formed.

Now we need to find specific ways to deal with a type of

communication. For this, we use intent. Intent is generally the basis for

the training of our bot. For example, if we have an intent for the bot to

offer greetings, the ways for the bot to start with that intent might be “Hi,”

“Hello,” “Hey there,” and so forth. We have to provide specific text for

understanding the logic of the intent.

Now we move to something called entities. When a user has a text

conversation with a bot, the bot uses intent to choose the response or to

make intelligent decisions to get the conversation flow going.

 Dialog Flow or Form Flow

This dialog flow, or form flow, s the process by which we structure the

intents and entities to work together for a specific goal for the bot. We

declare all the functionalities that will be performed by the bot. Now we

are done with the logic, and this is how the bot is organized.

Chapter 1 aI and Bot BasICs

23

 Bot Frameworks
The technology giants have all come up with different bot frameworks to

get started with bot development. Here are the major bot frameworks:

• Microsoft has the Bot Framework.

• Google has Wit.ai and Dialogflow.

• IBM has Watson.

• Amazon Web Services (AWS) has its own bot

framework powered by AWS Lambda.

• We can develop a chatbot by using TensorFlow.

• We can also use FlockOS to develop chatbots.

Chatbots are gaining in popularity. That’s why every big company is

trying to create a framework where bot development can occur.

As we gather information with the flow of bots, we use a programming

language to structure the bot and redirect it accordingly.

We are seeing the rise of chatbots as the evolving bot frameworks are

becoming readily available to use.

 Conclusion
This chapter presented the basics of bot frameworks and described the

process of developing bots. We also covered artificial intelligence with

descriptions of machine learning as well as deep learning. We have shown

how conversational commerce works and discussed the digital brain in

terms of chatbots. Finally, we touched on the structure of bots and ended

with the frameworks available for bot development. In the next chapter, we

can begin bot development.

Chapter 1 aI and Bot BasICs

25© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0_2

CHAPTER 2

Microsoft Bot
Framework
This chapter covers the Microsoft Bot Framework. We will start with a brief

introduction to the Microsoft Bot Framework. After that, we will move to:

• The template for Bot Framework with Visual Studio

• Begin working with the Bot Framework with Visual

Studio

• Talk about different Bot Framework states such as

Intent, Entities for Bots and then describe dialogs and

form flow

• Language Understanding and Intelligent Service (LUIS).

• The new LUIS web site, the changes, and explore and

discuss its features

• Developing an end-to-end bot using different bot

properties

• Publishing the bot

• Using Dynamics CRM to use it in Bot Framework

• Studying the structure of AI and bots.

26

When we are working toward building connections that is the

interactive nature of chatbots and a well- managed conversation flow, we

aim to use frameworks that make the work easier for us. The Microsoft

Bot Framework is an essential collection of tools and supportive software

development kits (SDKs) for making the work easier when creating and

deploying well-managed conversation bots.

 Starting with the Prerequisites
To use the Microsoft Bot Framework for development, we first need to

satisfy some prerequisites. This section describes some of the things that

are necessary in order to get started:

• IDE: Visual Studio

• Operating system: Windows 10

• Bot development framework: Bot Builder

• Emulator for testing: Bot Framework Emulator

 Visual Studio
First, for the framework to work, we need an integrated development

environment (IDE), a place where we can code the entire thing. Visual

Studio is an essential choice for developing for Microsoft Bot Framework.

It combines the use of Microsoft technology smoothly and it is aligned well

with the Microsoft technology stack. In this book, we will work with Visual

Studio 2015, but we could use Visual Studio 2017. You can download

Visual Studio from https://docs.microsoft.com/en-us/visualstudio/

install/install-visual-studio.

Chapter 2 MiCrosoft Bot fraMework

https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio

27

 Windows 10
We need to have an operating system in place for developing and hosting

the IDE. The operating system of choice is Windows 10, and you can

download it from www.microsoft.com/en-in/software-download/

windows10. Figure 2-1 shows the Windows 10 download page.

Figure 2-1. The page to download Windows 10

 Bot Builder
We also need to have a blueprint for our Bot Framework development

with Visual Studio. We will have to download a template, and, yes, we will

have to choose a programming language in which to develop our bot. The

programming language of choice is C#. We will be dealing with the same

programming language most of the time during our bot development.

You can download the template from https://docs.microsoft.com/

en-us/bot-framework/bot-builder-overview-getstarted. Scroll down

this page to find the template to download, as shown in Figure 2-2.

Chapter 2 MiCrosoft Bot fraMework

https://www.microsoft.com/en-in/software-download/windows10
https://www.microsoft.com/en-in/software-download/windows10
https://docs.microsoft.com/en-us/bot-framework/bot-builder-overview-getstarted
https://docs.microsoft.com/en-us/bot-framework/bot-builder-overview-getstarted

28

 Bot Framework Emulator
When we are done coding, we’ll need to test the bot locally before hosting

it. We’ll use a bot emulator to test all the functionalities and the entire flow

of the bot. You can download the Bot Framework Emulator from https://

docs.microsoft.com/en-us/bot-framework/debug-bots-emulator.

Figure 2-3 shows the emulator’s download page.

Figure 2-2. The link to download the Visual Studio template

Chapter 2 MiCrosoft Bot fraMework

https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator
https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator

29

The main page hosts all the bot emulators. From that list, we can

download and run the emulator’s EXE file. The executable will create a

shortcut on the desktop. You can then double-click that shortcut to get the

emulator running. The direct link to get the EXE is https://github.com/

Microsoft/BotFramework-Emulator/releases/tag/v3.5.34.

Figure 2-4 shows the appropriate EXE to download.

Figure 2-3. The emulator download page

Chapter 2 MiCrosoft Bot fraMework

https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.34
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.34

30

 Creating a Simple Bot Framework App
In this section, you will create a simple bot framework app by using the

VS template in the C# language. Then you’ll test the app first by running it

locally and then by using the Bot Framework Emulator.

 Using a Template to Create the Project
To get started, you first have to start the Visual Studio IDE for development.

When you open Visual Studio, the IDE screen looks like Figure 2-5.

Figure 2-4. The EXE file for the emulator

Chapter 2 MiCrosoft Bot fraMework

31

You need to open a new template to create a project. Click the File tab

at the top left and then click New ➤ Project, as shown in Figure 2-6.

Figure 2-5. The Visual Studio IDE screen when opened for the first
time

Figure 2-6. Creating a new project

Chapter 2 MiCrosoft Bot fraMework

32

In the New Project window that opens, you will see that the

downloaded Visual Studio template for C# is available for creating a bot.

Within the templates for Visual C#, you can find the Bot Application

template (see Figure 2-7).

Figure 2-7. The Bot Application template

You are now ready to create an app from the template. In this example,

you will use the template without changing any parameters so you can see

what the Bot Application template does.

First, you need to name the app. In this example, you will name

it App1. Then click OK to continue. In the back end, the template will

formulate the bot framework essentials and create the necessary files to get

your first bot application working. Let’s run and observe the code created.

Chapter 2 MiCrosoft Bot fraMework

33

 Working with the Code
As the project file is created, you will focus on the Solution Explorer option,

where you can see the hierarchy of the available files. Figure 2-8 shows the

files created at the start of the project.

Figure 2-8. The available files for the new project

Chapter 2 MiCrosoft Bot fraMework

34

In terms of getting everything right, the most important file is the web.

config file. This is used for hosting the app on the Web with Azure as well

as having the entire key details filled in correctly. It’s an XML file in which

you have to provide the details for the application ID as well as other

details from the Bot Framework web site, which we will discuss later.

Figure 2-9 shows the how the XML file looks when accessed in the IDE.

Figure 2-9. The web.config file in the IDE

The entire web.config XML file has the structure shown in Listing 2-1.

Listing 2-1. web.config file as XML Format

<?xml version="1.0" encoding="utf-8"?>

<!--

 For more information on how to configure your ASP.NET

application, please visit

 http://go.microsoft.com/fwlink/?LinkId=301879

 -->

<configuration>

Chapter 2 MiCrosoft Bot fraMework

35

 <appSettings>

 <!-- update these with your BotId, Microsoft App Id and

your Microsoft App Password-->

 <add key="BotId" value="YourBotId" />

 <add key="MicrosoftAppId" value="" />

 <add key="MicrosoftAppPassword" value="" />

 </appSettings>

 <!--

 For a description of web.config changes see http://

go.microsoft.com/fwlink/?LinkId=235367.

 The following attributes can be set on the <httpRuntime> tag.

 <system.Web>

 <httpRuntime targetFramework="4.6" />

 </system.Web>

 -->

 <system.web>

 <customErrors mode="Off" />

 <compilation debug="true" targetFramework="4.6" />

 <httpRuntime targetFramework="4.6" />

 </system.web>

 <system.webServer>

 <defaultDocument>

 <files>

 <clear />

 <add value="default.htm" />

 </files>

 </defaultDocument>

 <handlers>

 <remove name="ExtensionlessUrlHandler-Integrated-4.0" />

 <remove name="OPTIONSVerbHandler" />

Chapter 2 MiCrosoft Bot fraMework

36

 <remove name="TRACEVerbHandler" />

 <add name="ExtensionlessUrlHandler-Integrated-4.0"

path="*." verb="*" type="System.Web.Handlers.

TransferRequestHandler" preCondition="integratedMode,

runtimeVersionv4.0" />

 </handlers></system.webServer>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Helpers" publicKey

Token="31bf3856ad364e35" />

 <bindingRedirect oldVersion="1.0.0.0-3.0.0.0"

newVersion="3.0.0.0" />

 </dependentAssembly>

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Mvc" publicKeyToken=

"31bf3856ad364e35" />

 <bindingRedirect oldVersion="1.0.0.0-5.2.3.0"

newVersion="5.2.3.0" />

 </dependentAssembly>

 <dependentAssembly>

 <assemblyIdentity name="System.Web.WebPages" publicKey

Token="31bf3856ad364e35" />

 <bindingRedirect oldVersion="1.0.0.0-3.0.0.0"

newVersion="3.0.0.0" />

 </dependentAssembly>

 <dependentAssembly>

 <assemblyIdentity name="Newtonsoft.Json" publicKeyToken

="30ad4fe6b2a6aeed" culture="neutral" />

 <bindingRedirect oldVersion="0.0.0.0-8.0.0.0"

newVersion="8.0.0.0" />

 </dependentAssembly>

Chapter 2 MiCrosoft Bot fraMework

37

 <dependentAssembly>

 <assemblyIdentity name="System.Net.Http.Primitives"

publicKeyToken="b03f5f7f11d50a3a" culture="neutral"/>

 <bindingRedirect oldVersion="0.0.0.0-4.2.29.0"

newVersion="4.2.29.0" />

 </dependentAssembly>

 <dependentAssembly>

 <assemblyIdentity name="System.Net.Http.Formatting"

publicKeyToken="31bf3856ad364e35" culture="neutral"/>

 <bindingRedirect oldVersion="0.0.0.0-5.2.3.0"

newVersion="5.2.3.0" />

 </dependentAssembly>

 </assemblyBinding>

 </runtime></configuration>

Figure 2-10 shows the most important part of the XML file, where we

have to make changes. The Configuration tab is where we have to put in

all the information. The appID, BotID and the AppPassword needs to be

updated.

Figure 2-10. Code for the Confiuration tab

Listing 2-2 shows how to get the BotId, MicrosoftAppId, and

MicrosoftAppPassword values that need to be put in.

Chapter 2 MiCrosoft Bot fraMework

38

Listing 2-2. Important Code Section Providing Values from the bot

Website

<appSettings>

 <!-- update these with your BotId, Microsoft App Id and

your Microsoft App Password-->

 <add key="BotId" value="YourBotId" />

 <add key="MicrosoftAppId" value="" />

 <add key="MicrosoftAppPassword" value="" />

 </appSettings>

You will get the details of the bot ID, Microsoft app ID, and the

password from the Bot Framework web site. You will go through that

process later in this chapter, when you publish the app. For now, let’s

concentrate on the coding logic.

Inside the controllers folder, you will find the MessageController.cs

file. The logic for the template works like this: The MessageController.cs

file checks for activity and then scans any message sent to the bot. The file

checks the string length and then returns the character size or message

length. Listing 2-3 shows the process in C# of checking the length of the

characters.

Listing 2-3. The Reply Message Code Block in C#

if (activity.Type == ActivityTypes.Message)

 {

 ConnectorClient connector = new

ConnectorClient(new Uri(activity.ServiceUrl));

 // calculate something for us to return

 int length = (activity.Text ?? string.Empty).

Length;

Chapter 2 MiCrosoft Bot fraMework

39

 // return our reply to the user

 Activity reply = activity.CreateReply($"You

sent {activity.Text} which was {length}

characters");

 await connector.Conversations.

ReplyToActivityAsync(reply);

 }

The first line of code uses the Client connector. This connector

establishes a channel to communicate via the bot messaging system. The

next line checks for the string length of the message. Using the ?? operator

provides two options: activity.Text ?? string.Empty. If we get a

character of a certain length, the logic on the left is implemented. If the

message is empty, the logic on the right is implemented.

Listing 2-4 shows the complete MessageController.cs file.

Listing 2-4. Entire Message Reply Code Block

using System;

using System.Linq;

using System.Net;

using System.Net.Http;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.Description;

using Microsoft.Bot.Connector;

using Newtonsoft.Json;

namespace Bot_Application1

{

 [BotAuthentication]

 public class MessagesController : ApiController

 {

Chapter 2 MiCrosoft Bot fraMework

40

 /// <summary>

 /// POST: api/Messages

 /// Receive a message from a user and reply to it

 /// </summary>

 public async Task<HttpResponseMessage> Post([FromBody]

Activity activity)

 {

 if (activity.Type == ActivityTypes.Message)

 {

 ConnectorClient connector = new

ConnectorClient(new Uri(activity.ServiceUrl));

 // calculate something for us to return

 int length = (activity.Text ?? string.Empty).

Length;

 // return our reply to the user

 Activity reply = activity.CreateReply($"You

sent {activity.Text} which was {length}

characters");

 await connector.Conversations.

ReplyToActivityAsync(reply);

 }

 else

 {

 HandleSystemMessage(activity);

 }

 var response = Request.

CreateResponse(HttpStatusCode.OK);

 return response;

 }

Chapter 2 MiCrosoft Bot fraMework

41

 private Activity HandleSystemMessage(Activity message)

 {

 if (message.Type == ActivityTypes.DeleteUserData)

 {

 // Implement user deletion here

 // If we handle user deletion, return a real

message

 }

 else if (message.Type == ActivityTypes.

ConversationUpdate)

 {

 // Handle conversation state changes, like

members being added and removed

 // Use Activity.MembersAdded and Activity.

MembersRemoved and Activity.Action for info

 // Not available in all channels

 }

 else if (message.Type == ActivityTypes.

ContactRelationUpdate)

 {

 // Handle add/remove from contact lists

 // Activity.From + Activity.Action represent

what happened

 }

 else if (message.Type == ActivityTypes.Typing)

 {

 // Handle knowing tha the user is typing

 }

Chapter 2 MiCrosoft Bot fraMework

42

 else if (message.Type == ActivityTypes.Ping)

 {

 }

 return null;

 }

 }

}

 Running the Application
Now let’s run the bot project. To run the project file, select the green Play

button with the browser selected, as shown in Figure 2-11.

Figure 2-11. Running the project

Figure 2-12. The bot running in the web browser

When you run the application, you will see that it opens locally in a

web browser; see Figure 2-12.

Chapter 2 MiCrosoft Bot fraMework

43

Take note of the localhost address. For testing purposes, you have to

use this link. Now, let’s start the emulator. Figure 2-13 shows the screen

when the Bot Framework Emulator starts.

Figure 2-13. The Bot Framework Emulator screen

You have to provide the endpoint URL or the localhost URL for the bot

app. After providing the localhost address, and keeping the other options

vacant, click the Connect button, as shown in Figure 2-14.

Figure 2-14. Sharing the localhost address and then connecting

Chapter 2 MiCrosoft Bot fraMework

44

 Testing the Application
Now let’s test the application. First, send a message of Hi there who are

you. The reply message provides the number of characters, as shown in

Figure 2-15.

Figure 2-15. The response for the message

The bot code and the logic is a combination of three things, illustrated

in Figure 2-16.

Bot

Connector

Activities

Messages

Figure 2-16. Bot code logic

The connector handles all communications. The activities are the

events that occur between a bot and a user. The messages are the messages

that are displayed between a bot and a user.

Chapter 2 MiCrosoft Bot fraMework

45

Let’s modify the code a bit. This time, in the activities section, you’ll

use Markdown content. So let’s go back to the code. Keep everything in the

activities section and add the code in Listing 2-5.

Listing 2-5. Markdown Reply Format

reply.TextFormat = "markdown";

reply.Text += ",this is a continued effort that we are making";

reply.Text += ", We are writing for Apress";

The update Activities code chunk looks like this.

if (activity.Type == ActivityTypes.Message)

 {

 ConnectorClient connector = new

ConnectorClient(new Uri(activity.ServiceUrl));

 // calculate something for us to return

 int length = (activity.Text ?? string.Empty).

Length;

 // return our reply to the user

 Activity reply = activity.CreateReply($"You

sent {activity.Text} which was {length}

characters");

 reply.TextFormat = "markdown";

 reply.Text += ",this is a continued effort that

we are making";

 reply.Text += ", We are writing for Apress";

 await connector.Conversations.

ReplyToActivityAsync(reply);

 }

Let’s run this code and test it in the emulator. As you run the code in

the emulator, you’ll see that it prints the messages in Markdown format.

The added text is also printed. Figure 2-17 shows the response.

Chapter 2 MiCrosoft Bot fraMework

46

Figure 2-17. The response after updating the code

 Managing State
This section shows how to manage states in bots. When we have to manage

complex communication, we need to have a kind of communication

medium, or a place, to get the conversation going. Figure 2-18 shows

options for managing states in bots. Table 2-1 explains each state.

Managing state

Storage methods

Class-specific logic at
runtime

In Form flow, or
dialog flow

State client

Figure 2-18. Ways of managing bots

Chapter 2 MiCrosoft Bot fraMework

47

 Understanding the Use of Dialogs
Dialogs are the flow of conversation to provide a way to communicate a

response by using messages in chained manner.

When we are creating a bot, we are working in an efficient manner

so that we get a response in proper way. More specifically, we are trying

to receive the interaction which should be responsive. Therefore, we are

working toward a quality experience of the bot conversation. Dialogs help

us realize the perfect experience for the bot.

Let’s just work on the code concept for dialogs now. First, open Visual

Studio and select the bot template again. Name it ManishaBot, as shown in

Figure 2-19.

Table 2-1. Managing States

Managing State Description

storage methods we can save the state of a bot with the help of databases.

we can save the data in sQL server, azure, and so forth.

Class-specific logic

at runtime

we can initiate a class at runtime and make the bot work.

then we can understand the logic as the bot evolves with

different functionality for the lifetime of the bot.

form flow, or dialog

flow

if we want to initiate certain things sequentially, we need to

implement form flow, or dialog processes.

state client this option is similar to viewing state or session states in

.Net or MVCs.

Chapter 2 MiCrosoft Bot fraMework

48

Within the directory structure of the project, you need to create a

Dialogs folder. The process for creating the folder is shown in Figure 2-20:

click Add ➤ New Folder.

Figure 2-19. Creating the dialog bot

Chapter 2 MiCrosoft Bot fraMework

49

Figure 2-20. Creating a folder named Dialogs

Within the Dialogs folder, you will add one class file. Click Add ➤ New

Item, as shown in Figure 2-21.

Chapter 2 MiCrosoft Bot fraMework

50

Figure 2-21. Adding a new item. From the Visual Studio we select a
new item and then add a class file.

Now you will add a class file. The process, as shown in Figure 2-22.

Name the class file RandomFactDialog.cs.

Figure 2-22. Creating a class. Here we are creating a separate class so
that we can formulate the logic in here.

Chapter 2 MiCrosoft Bot fraMework

51

Next you’ll link the message controller to the dialog class you created;

see Listing 2-6.

Listing 2-6. Referencing the RandomFactDialog Class File

if (activity.Type == ActivityTypes.Message)

 {

 ConnectorClient connector = new

ConnectorClient(new Uri(activity.ServiceUrl));

 // calculate something for us to return

 // int length = (activity.Text ?? string.

Empty).Length;

 // return our reply to the user

 // Activity reply = activity.CreateReply($"You

sent {activity.Text} which was {length}

characters");

 //await connector.Conversations.

ReplyToActivityAsync(reply);

 await Conversation.SendAsync(activity, () =>

Dialogs.RandomFactDialog.Dialog);

}

The most important part being this piece of code where we link

it to the Dialog class we created.

await Conversation.SendAsync(activity, () => Dialogs.

RandomFactDialog.Dialog);

Now the RandomFactDialog class file where you implement chaining

for messages looks like Listing 2-7.

Chapter 2 MiCrosoft Bot fraMework

52

Listing 2-7. Chaining Messages

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using Microsoft.Bot.Builder.Dialogs;

namespace ManishaBot.Dialogs

{

 [Serializable]

 public class RandomFactDialog

 {

 public static readonly IDialog<object> Dialog = Chain

 .PostToChain()

 .Select(m => "The fact is,you said **" + m.Text + "**")

 .PostToUser();

 }

}

Let’s run the code and see what exactly happens. Type hi. With the

dialog chaining, the response is available in the bot, as you can see in

Figure 2-23.

Figure 2-23. The response for the bot

Chapter 2 MiCrosoft Bot fraMework

53

Now you will develop a more complex dialog chaining. Listing 2-8

shows the changes in the structure of the dialog chaining.

Listing 2-8. Chaining a Series of Messages

public static readonly IDialog<object> Dialog = Chain

 .PostToChain()

 .Select(m => m.Text)

 .Switch

 (

 Chain.Case

 (

 new Regex("^tell me a fact"),

 (context, text) =>

 Chain.Return("Grabbing a fact...")

 .PostToUser()

 .ContinueWith<string, string>(async (ctx, res) =>

 {

 var response = await res;

 // var fact = await Helpers.GeneralHelper.

GetRandomFactAsync();

 return Chain.Return("**FACT:** *" +"** We

are working on a fact that we are writing

for Apress**" + "*");

 })

Chapter 2 MiCrosoft Bot fraMework

54

),

 Chain.Default<string, IDialog<string>>(

 (context, text) =>

 Chain.Return("Say 'tell me a fact'")

)

)

 .Unwrap().PostToUser();

Listing 2-9 provides the class file in its entirety.

Listing 2-9. The Class File Showing the Entire Chaining Process

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using Microsoft.Bot.Builder.Dialogs;

using System.Text.RegularExpressions;

using System.Threading.Tasks;

namespace ManishaBot.Dialogs

{

 [Serializable]

 public class RandomFactDialog

 {

 public static readonly IDialog<object> Dialog = Chain

 .PostToChain()

 .Select(m => m.Text)

 .Switch

 (

Chapter 2 MiCrosoft Bot fraMework

55

 Chain.Case

 (

 new Regex("^tell me a fact"),

 (context, text) =>

 Chain.Return("Grabbing a fact...")

 .PostToUser()

 .ContinueWith<string, string>(async (ctx, res) =>

 {

 var response = await res;

 // var fact = await Helpers.GeneralHelper.

GetRandomFactAsync();

 return Chain.Return("**FACT:** *" +"** We

are working on a fact that we are writing

for Apress**" + "*");

 })

),

 Chain.Default<string, IDialog<string>>(

 (context, text) =>

 Chain.Return("Say 'tell me a fact'")

)

)

 .Unwrap().PostToUser();

 public static Task Helpers { get; private set; }

 }

}

Chapter 2 MiCrosoft Bot fraMework

56

If you run the code now, you will get the result shown in Figure 2-24.

Figure 2-24. Working on a complex chaining process

You start the conversation with hi. The bot responds with Say ‘tell me

a fact’. When you type tell me a fact, the bot gets inside the chaining logic

and pops up a message.

 Publishing the Bot to the Cloud by Using
Azure
In order to publish the bot to the cloud, you first need to register the bot.

You do that by heading to https://dev.botframework.com/.

The Bot Framework page is shown in Figure 2-25.

Chapter 2 MiCrosoft Bot fraMework

https://dev.botframework.com/

57

At the top of the page, click the My Bots link, as shown in Figure 2-26.

Figure 2-25. The Bot Framework page

Figure 2-26. My Bots option

From the My Bots page, click the Create a Bot button, shown in

Figure 2-27.

Figure 2-27. The Create a Bot option

Chapter 2 MiCrosoft Bot fraMework

58

Figure 2-28. Creating a bot

On the next page, click the Create button, shown in Figure 2-28.

Click the radio button labeled Register an Existing Bot Using Bot

Builder SDK, shown in Figure 2-29. Then click the OK button.

Chapter 2 MiCrosoft Bot fraMework

59

Next, provide the details for the bot, as shown in Figure 2-30.

Figure 2-29. Selecting the Bot Builder option

Figure 2-30. Providing details about the bot

Chapter 2 MiCrosoft Bot fraMework

60

After you provide the details for the bot, you need to generate an

application ID and password. Click the option to Create Microsoft App ID

and Password, as shown in Figure 2-31.

Figure 2-31. Generating App ID and password

In the next window, your application ID is displayed, as shown in

Figure 2-32.

Figure 2-32. You have the app ID

Chapter 2 MiCrosoft Bot fraMework

61

Click the Generate an App Password to Continue button. Type in the

application ID, password, and bot handle in the web.config file. The new

password is generated, as shown in Figure 2-33.

Figure 2-33. The new password is generated

To publish the bot from Visual Studio, right-click it to access the

Publish option, as shown in Figure 2-34.

Chapter 2 MiCrosoft Bot fraMework

62

Figure 2-34. Preparing for publishing

Chapter 2 MiCrosoft Bot fraMework

63

The App Service screen opens, as shown in Figure 2-35. Click the New

button for the Azure service.

Figure 2-35. Click the New button

The bot is ready to be published. You will validate the connection and

publish, as shown in Figure 2-36.

Chapter 2 MiCrosoft Bot fraMework

64

After the bot is published, you need to edit the configuration in the Bot

Framework portal. Figure 2-37 shows how the Azure web page looks.

Figure 2-37. The bot is published in Azure

Figure 2-36. Validating and publishing the bot

Chapter 2 MiCrosoft Bot fraMework

65

Now head back to the Bot Framework portal. You need to edit the

message endpoint for the bot. It will be the Azure web site followed by

/api/messages. See the underlined section in Figure 2-38.

Figure 2-38. Adding the details in the configuration option

The bot is now ready and in the cloud.

 Conclusion
This chapter presented the Microsoft Bot Framework so that you could

learn about its fundamentals, and publish a bot to the cloud.

You learned about the Bot Framework template and created an

example that could recognize the characters sent to the bot. You saw how

to reference a class file in the main bot framework logic. Next, you learned

Chapter 2 MiCrosoft Bot fraMework

66

how to log in to the Bot Framework web site to generate the application ID

and password needed for your web.config file. Finally, you learned how to

publish the bot from Visual Studio to Azure Cloud.

This first introduction forms the basis of how a bot framework works.

In the next chapter, you’ll learn about new bots from other organizations.

Chapter 2 MiCrosoft Bot fraMework

67© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0_3

CHAPTER 3

Wit.ai and Dialogflow
This chapter covers the basics of Wit.ai and Dialogflow, two chatbot

interfaces from Google that provide helpful capabilities. You’ll start by

exploring a simple bot flow using Wit.ai, and then move on to Dialogflow

to create a full-fledged bot to deploy to the Web.

 Getting Started with Wit.ai
Wit.ai is a web-based IDE for creating bots. To launch Wit.ai, you have to

go to https://wit.ai/.

In this section, you’ll work on creating a new app and then you’ll add

intent to it. Next, you’ll add text and keywords to modify the bot. Later in

this chapter, you’ll implement the Dialogflow tools to implement the bot.

 Creating a New App
In this section, you will work on creating your first app. From the Wit.ai

web site, click Quick Start, as shown in Figure 3-1.

https://wit.ai/
https://dialogflow.com/
https://wit.ai/

68

This opens a page that presents options to create the first app by using

either GitHub or Facebook, as shown in Figure 3-2.

Figure 3-1. Choosing the Quick Start option to create an app

Figure 3-2. Logging in using GitHub

Chapter 3 Wit.ai and dialogfloW

69

After you log in, you’ll have the option to create your new app, as

shown in Figure 3-3.

Figure 3-3. Creating a new app

Let’s create a simple app. You’ll name the app TestStories. In the app

description section, type Demo. Select the Private option for the app data.

Then click the Create App button, shown in Figure 3-4.

Figure 3-4. Setting the details for your new app

Chapter 3 Wit.ai and dialogfloW

70

 Adding Intent
Clicking the Create App button opens the next page, which presents the

Stories option. Following that, you head to the Understanding option; this

page is shown in Figure 3-5.

Figure 3-5. The Understanding options at the Wit.ai site

Let’s work through the new app with a pizza example.

Chapter 3 Wit.ai and dialogfloW

71

In the User Says text box, type I want some cheese pizza, as shown in

Figure 3-6.

Figure 3-6. Adding details we are working towards ordering pizza so
we are constructing the way to start the conversation

Figure 3-7. Creating a new intent. An intent is needed in here so that
while conversation it is able to find the right order for communication.

Now you’re ready to create an intent. You add the value for the intent

as pizza, as shown in Figure 3-7.

Chapter 3 Wit.ai and dialogfloW

72

You add a pizza option with cheese and finally click the Validate

button, as shown in Figure 3-8.

Figure 3-8. Creating an intent and then validating it. We are creating
different intent so that we are giving an option to choose for the user
which type of pizza they want to have.

After validating that is creation of the entities option, you have two

entities created now, highlighted in Figure 3-9.

Figure 3-9. The app shows two intents

Chapter 3 Wit.ai and dialogfloW

73

 Adding Text and Keywords
Let’s work on modifying the bot. We will work now on creating the flow of

the chatbot so the user is able to order different kind of pizzas.

In this section, you’ll try to add a sentence. Figure 3-10 shows how to

add a sentence for recognition.

Figure 3-10. The app is trying to understand a sentence. Here we are
working on how a chatbot will be able to discover what user is typing
so that the sentence that is created is understandable to the bot.

Next, click Validate. Now you need to select an entity. Choose Pizza

and click the arrow associated with it (see Figure 3-11).

Figure 3-11. Select an entity and the arrow associated with it

Chapter 3 Wit.ai and dialogfloW

74

When you click the Pizza arrow, you head to the page that has

keywords and synonyms, as shown in Figure 3-12.

Figure 3-12. Page for adding a new keyword

Chapter 3 Wit.ai and dialogfloW

75

Now click the Understanding option in order to train the bot to

recognize the new keywords that you added. It is visible at the bottom.

Let’s start with pepperoni pizza. For understanding the flow of the

intent for pepperoni pizza, type in I want a pepperoni pizza, we are

showing how the bot can be made to order a specific pizza as shown in

Figure 3-14. Then click Validate.

Here you’ll add new keywords. The results are shown in Figure 3-13.

Figure 3-13. Added keywords so that we are exactly creating the
ways different type of pizzas are ordered

Figure 3-14. Adding the pepperoni pizza option

Chapter 3 Wit.ai and dialogfloW

76

Delete the Pizza option, because you want to work on the size of the pizza.

Click the cross option to delete the pizza value, as shown in Figure 3- 17.

Now you’ll add veggie pizza, as shown in Figure 3-15.

Figure 3-15. Adding veggie pizza option

Let’s now add a Large pizza option. For that, you need to make some

changes, shown in Figure 3-16.

Figure 3-16. You need to change the pizza option

Figure 3-17. Deleting the pizza option

Chapter 3 Wit.ai and dialogfloW

77

 Creating a New Entity
In this section, you’ll create an entity named pizzaSize, shown in Figure 3- 18.

Figure 3-18. Creating the pizzaSize entity

After creating the intent, the bot page looks like Figure 3-19.

Figure 3-19. Adding a new intent

Chapter 3 Wit.ai and dialogfloW

78

 Implementing Wit.ai with Facebook
You’ve gone through the process of creating a simple app that uses some

of the features of Wit.ai. In this section, you’ll implement Wit.ai with

Facebook. The Facebook API is available at developers.facebook.com.

You will create a chatbot for the official Facebook page, or any Facebook

page. This chatbot will add to Facebook Messenger. You will have to set up

webhooks accordingly. To get webhooks working, you need to set up ngrock.

First, create a new app as you’ve done before. This time, name it Test1,

as shown in Figure 3-20.

Figure 3-20. Adding a new name

Now head back to the Facebook for Developers site at https://

developers.facebook.com/. You need to use your Facebook credentials to

log in. The page looks Figure 3-21.

Chapter 3 Wit.ai and dialogfloW

https://developers.facebook.com/
https://developers.facebook.com/

79

Now you need to create a new app. Click the My Apps option at the top

right to access the drop-down menu for creating a new app, as shown in

Figure 3-22.

Figure 3-21. The Facebook for Developers page

Figure 3-22. Adding a new app

Chapter 3 Wit.ai and dialogfloW

80

Name it SampleApp and add a product to it by clicking the Add a

Product button, as shown in Figure 3-23.

Figure 3-23. Adding a sample app

For a product, you need to add a messenger, shown in Figure 3-24.

Figure 3-24. Selecting the Messenger option

Chapter 3 Wit.ai and dialogfloW

81

Click the Set Up button in the Messenger option. You will be using Wit.

ai’s natural language processing (NLP) rather than Facebook’s (which is very

basic), although both of them work perfectly together. Now you have to set

up a page with the app name created; xxxxxx, as shown in Figure 3- 25. Your

goal is to create a chatbot for the official Facebook page.

Figure 3-25. Selecting a web page in Facebook

The site will ask for authentication, and then the token will be created.

Now you need to quickly set up webhooks. Click the Setup Webhooks

button, shown in Figure 3-26.

Figure 3-26. Setting up Webhooks

Clicking this option opens a page for assigning details. Before using

webhooks, you need to configure ngrock. Go to the ngrock site at

https://ngrok.com/, shown in Figure 3-27.

Chapter 3 Wit.ai and dialogfloW

https://ngrok.com/

82

Figure 3-27. The ngrok site

Figure 3-28. Downloading ngrok for Windows

Download ngrock by clicking the Downloading Ngrok link to access

the download options, shown in Figure 3-28.

Chapter 3 Wit.ai and dialogfloW

83

After downloading ngrock, launch ngrok.exe from the command

prompt. You have to open the command prompt and head to the localhost

page. At my end, the localhost was 4040. Key in the following details at the

command prompt:

F:\ngrock>ngrok.exe http -host-header=rewrite localhost:4040

If web server that is ngrock is up, you will see the window in Figure 3-29.

Figure 3-29. The ngrok status

Figure 3-30. The inspect page as reflected that carries the
information of the localhost page

Let’s head to the localhost page, shown in Figure 3-30, at

http://7c9cc892.ngrok.io/inspect/http.

Chapter 3 Wit.ai and dialogfloW

http://7c9cc892.ngrok.io/inspect/http

84

When the page is up, you can see the statistics in the command-

prompt window, as shown in Figure 3-31.

Figure 3-31. You have set up the ngrok environment

Deploying the Wit.ai bot is easy after you’ve set up the ngrok

environment as well as the webhook’s natural language processing

section. Next you will work with Dialogflow to create a complete bot that’s

deployable to the Web.

 Working with Dialogflow
In this section, you’ll use Dialogflow (formerly Api.ai) to create a bot. First

you’ll access the web console through your Google account. Then you’ll

create a Pizza bot. Finally, you’ll use Small Talk to xxxxx and then link

the bot to a Google project. A small talk is a way to access prebuilt API for

doing the conversation in a proper manner.

Let’s start now.

Chapter 3 Wit.ai and dialogfloW

85

 Accessing Dialogflow
This section introduces you to Dialogflow and gets you logged in via your

Google account.

Head to the Dialogflow web site at https://dialogflow.com/.

The Dialogflow web site for creating chatbots is shown in Figure 3-32.

Figure 3-32. The Dialogflow web site

From this Dialogflow page, you can either sign up for free or, if you

already have an account, you can to the console. If you have a Google

account, you need to verify it and log in, as shown in Figure 3-33.

Figure 3-33. Logging in using a Google account

Chapter 3 Wit.ai and dialogfloW

https://dialogflow.com/

86

Allow the access, as shown in Figure 3-34.

Figure 3-34. Allow Dialogflow to access Goggle Assistant

The next page is a Welcome screen. The apps in Dialogflow are known

as agents. You will have to create one by clicking Create Agent, as shown in

Figure 3-35.

Chapter 3 Wit.ai and dialogfloW

87

 Creating the Pizza Bot
In this section, you will use Dialogflow to create a simple pizza bot. Name

it PizzaBot, as shown in Figure 3-36.

Figure 3-35. The Dialogflow welcome page after loogging in

Figure 3-36. Creating a pizza bot

Now you need to figure out what you need to do with the app.

Chapter 3 Wit.ai and dialogfloW

88

 Using Small Talk
You will be using Small Talk for the bot’s interactions. You’ll use Small Talk

for interactions like Hi, Hello, and so forth. Then you’ll allow users to order

the pizza. Dialogflow has this wonderful built-in API that does all the small

talk for us. You just need to enable it, as shown in Figure 3-37.

Chapter 3 Wit.ai and dialogfloW

89

Fi
gu

re
 3

-3
7.

 E
n

ab
li

n
g

Sm
al

l T
al

k
pr

eb
u

il
t a

ge
n

ts
. T

he
 u

se
r

se
le

ct
s

th
e

sm
al

l t
al

k
op

ti
on

 s
o

th
at

 w
e

ar
e

im
po

rt
in

g
th

e
ba

si
c

w
ay

 th
e

co
m

m
u

n
ic

at
io

n
 o

cc
u

rs
.

Chapter 3 Wit.ai and dialogfloW

90

You then import Small Talk accordingly.

 Linking to a Google Project
In this section, you’ll see how to integrate your bot with a Google project.

You can link to a Google Project or create a new one, as shown in

Figure 3- 38.

Figure 3-38. Linking to a Google project

After linking to a Google project or naming a new one, enable Small

Talk for the PizzaBot app, as shown in Figure 3-39. Small Talk will help

us immensely. Small Talk has all the basic conversation flows for us and

makes us easier to communicate.

Chapter 3 Wit.ai and dialogfloW

91

Figure 3-39. Enabling Small Talk and saving it

In the next step, you need to create a new entity for the app.

 Adding an Intent
Now you will create an intent. now one of the thongs user might think of as

parameter being hungry. So you will add an intent named Hungry. We will

to create a new intent, as shown in Figure 3-40.

Figure 3-40. Creating a new intent. We would be creating a new
intent for the chatbot.

Chapter 3 Wit.ai and dialogfloW

92

You then add training parameters or examples, as shown in Figure 3- 41.

Figure 3-41. Adding parameters

You’ve created a simple flow for the bot. Now you will work on creating

new entities for the it.

 Creating a New Entity
In this section, you will work on constructing the bot while creating new

entities. Click the Entities option and then click Create Entity, as shown

in Figure 3-42.

Figure 3-42. Selecting the Entities option

Chapter 3 Wit.ai and dialogfloW

93

This creates a field for you with the required details. For pizzas, the

entity will be Topping, as shown in Figure 3-43.

Figure 3-43. Declare an entity called Topping

You will add four toppings for this example:

• Onions

• Mushroom

• Peperoni

• Pineapple

Now save the Topping parameters.. The bot UI will then look like

Figure 3-44.

Chapter 3 Wit.ai and dialogfloW

94

 Deploying the Bot
You have already imported the Small Talk agent. Now you’ll import a

new agent. Let’s name the agent Questionbot. The more agents we add it

becomes easier for the conversational flow. You create a Questionbot and

now you will try to use prebuilt agents in it, as shown in Figure 3-45.

Figure 3-44. The Topping options

Figure 3-45. Adding prebuilt agents

Chapter 3 Wit.ai and dialogfloW

95

You will have to select all the intents available so the bot flow will be

perfect; see Figure 3-46.

Figure 3-46. The Small Talk agent

Then you need to copy the intents by clicking to put a check mark on

the copy-related entities and naming the destination agent (in this case, it

is Questionbot). Next, click Start, as shown in Figure 3-47.

Chapter 3 Wit.ai and dialogfloW

96

If you now go to the Questionbot, you will see the intents and all

of the content in the bot. Try are you a bot as a parameter, as shown in

Figure 3- 48.

Figure 3-47. Copying related entities

Chapter 3 Wit.ai and dialogfloW

97

Figure 3-48. You ask a question, and the bot answers

Chapter 3 Wit.ai and dialogfloW

98

 Integration with Web Instance
In this section, you will work toward getting the integration for the Web. We

will now try to integrate the app to certain platform let’s try in Web Demo.

Figure 3-49. Selecting the Web Demo integration option. We are
integrating the bot to enable the web version for conversation.

Chapter 3 Wit.ai and dialogfloW

99

Figure 3-50. Testing the link

Toggle the slider to right to test the link, as shown in Figure 3-50.

Chapter 3 Wit.ai and dialogfloW

100

Figure 3-51. Integrating the web link for the bot

 Conclusion
In this chapter, you worked on two bot frameworks and learned how they

work. You created a complete deployable bot by using Dialogflow and saw

its result. This chapter provided simple examples and integrations as well

as use cases for bots.

Integrate the web link for the bot by using an iframe in an HTML page

so the bot works accordingly, shown in Figure 3-51.

Chapter 3 Wit.ai and dialogfloW

101© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0_4

CHAPTER 4

IBM Watson Chatbots
Watson is a computer system specifically built for Q-and-A types of

capabilities. Its core implementations use natural language processing,

information retrieval, knowledge representation, automated reasoning,

and machine-learning technologies in the field of open domain question

answering. It is used for quick AI-based solutions.

In this chapter, you will learn how to implement IBM’s bot service,

known as Watson, for your use (see Figure 4-1). In order to access Watson,

you will create an account for the IBM Cloud (formerly known as Bluemix).

Then you will use the Watson Assistant (formerly known as Conversational

Services) to create two chatbots: a FAQ bot and a coffee bot.

Figure 4-1. The IBM web page for Watson

102

 Implementing Watson
In this section, you’ll learn how to access Watson and you’ll get to know

its various services. You access Watson via the IBM Cloud web site, so

you will first set up an account through the IBM Cloud for the Watson

service. We will setup the new account.

 IBM Cloud
Start by accessing the IBM Cloud by opening a web browser to https://

www.ibm.com/cloud-computing/in-en/. Figure 4-2 shows the IBM Cloud

web site.

Figure 4-2. IBM Cloud main page

Log in here by using your IBM ID, as shown in Figure 4-3.

Chapter 4 IBM Watson ChatBots

https://www.ibm.com/cloud-computing/in-en/
https://www.ibm.com/cloud-computing/in-en/

103

After logging in, you will see the web page shown in Figure 4-4.

Figure 4-3. IBM Cloud login window

Figure 4-4. The IBM Cloud main console window

Chapter 4 IBM Watson ChatBots

104

On this page, click the Create Resource button at the top right, and

shown in Figure 4-5, to create a resource and add new services.

Figure 4-5. Creating a new resource. When we create resource
we then will be able to create conversational bot

 Watson Assistant Service
In this section, you will see how to set up the Watson Assistant service.

When we create the resource there are lot of options available. You will

have to add the Watson Assistant service in it. A lot of services are available

for Watson, as you can see in Figure 4-6.

Figure 4-6. Various Watson services available

Chapter 4 IBM Watson ChatBots

105

For this example, you will choose the Watson Assistant, shown in Figure 4-7.

Figure 4-7. Choosing the Watson Assistant service

Next, click the Create button at the bottom right to create the service

plan for Watson Assistant this shows the different plans for the watson

assistant service and how much you get with free tier, as shown in Figure 4-8.

Figure 4-8. The Watson Assistant service plan

The setup is easy. We need to click on create and the setup process will

move towards completion. After setup is complete, click the Launch tool

for the service to start.

Chapter 4 IBM Watson ChatBots

106

 Creating a FAQ Bot
In this section, you will use the Watson Assistant to create a chatbot that

uses FAQ for answering. Clicking the Launch tool in the preceding step has

opened the IBM Watson Assistant screen, shown in Figure 4-9. Click the

Create a Workspace button at the bottom of the screen to get started.

Figure 4-9. Getting started with the IBM Watson Assistant

Now you will create the workspace. Click the Workspaces tab and then

click the Create button in the Create a New Workspace section, as shown in

Figure 4-10.

Chapter 4 IBM Watson ChatBots

107

On the next screen, give the workspace name; in this example, type in

FAQBot and then type in a description, as shown in Figure 4-11. Then click

the Create button.

Figure 4-10. Creating the workspace

Chapter 4 IBM Watson ChatBots

108

 Creating Intent for the Bot
The next step is to create intents for the bot according to your needs. We need

to click on add intent. At this point, the Watson console looks like Figure 4-12.

Figure 4-11. Naming the workspace

Figure 4-12. Creating a new intent

Chapter 4 IBM Watson ChatBots

109

Our FAQBot will be based on IBM Business process on Cloud. Name

the first intent Capabilities, as shown in Figure 4-13.

Figure 4-13. We now add the name of the intent as Capabilities in
the intent name option. Naming the intent.

Figure 4-14. Adding a description for the intent

Next, you need to add a description of the intent, as shown in Figure 4- 14.

Chapter 4 IBM Watson ChatBots

110

Then add examples to the Capabilities intent, as shown in Figure 4-15.

Figure 4-15. Adding user examples for the Capabilities intent

Figure 4-16. Creating a new intent named Migration

Now you’ll create a second intent. Name this intent Migration, as

shown in Figure 4-16.

Chapter 4 IBM Watson ChatBots

111

Create a third intent and name it User, as shown in Figure 4-17.

Figure 4-17. Creating a third intent named User

Now create a fourth intent named SSO, which stands for single

sign- on, as shown in Figure 4-18.

Figure 4-18. Creating the SSO intent

Chapter 4 IBM Watson ChatBots

112

Now you have all the intents listed, as shown in Figure 4-19.

Figure 4-19. All intents listed

 The Dialog Flow for the App
In this section, you will create the dialogs for the FAQBot. Click the Dialog

tab and then click the Create button, as shown in Figure 4-20.

Figure 4-20. The dialog creation space. Here we will be creating the
dialog flow for the bot created we need click on create.

Chapter 4 IBM Watson ChatBots

113

On the next screen, click Welcome so that we can start the

conversation with a greeting over here, as shown in Figure 4-21.

Figure 4-21. The dialog workflow

 Making Sense of the Flow
Now that you’ve created various dialogs with creation of dialogs we

are linking the flow of the bot to work efficiently, you’re ready to create

interactions in this section by linking up the entire flow. You’ll start by

adding an intention for what you want to do.

xxxxxxxxxxxxxxx, as shown in Figure 4-22.

Chapter 4 IBM Watson ChatBots

114

Next, add other intentions for the Migration intent, as shown in

Figure 4-23.

Figure 4-22. Creating a new node we want to touch on every
information to be touched upon and also the flow to be perfect.

Figure 4-23. Adding a new node for the Migration intent

Add an intention for the User intent, as shown in Figure 4-24.

Chapter 4 IBM Watson ChatBots

115

Now add a single sign-on, as shown in Figure 4-25.

Figure 4-24. Adding new intent User

Figure 4-25. Adding nodes for SSO

 Trying the Bot
In this last section for our first bot, you will see how to interact with the bot.

Click the Try It button at the top right to access a Try It Out link, shown in

Figure 4-26. Let’s try out the bot now.

Chapter 4 IBM Watson ChatBots

116

Figure 4-26. Trying the bot. Here we are just testing the bot how it
works and the flow logic is perfect or not.

Chapter 4 IBM Watson ChatBots

117

In the following section, you will create another bot. This one will help

the user order coffee.

 Creating a Coffee Bot
In this section, you will create a CoffeeBot with Watson Assistant. This bot

will help the user order a cup of coffee. First you will create a workspace;

then you will create new intents and add entities. Next, you will add

dialogs. Finally, you’ll create a nested structure for the intents.

 Creating a Workspace
To get started, you will create a new workspace. The workspace is created

from watson assistant window and for the new bot creation this step is

taken, as shown in Figure 4-27.

Figure 4-27. Creating a new workspace for the coffee bot

Chapter 4 IBM Watson ChatBots

118

On the screen that opens, name the chatbot CoffeeBot, as shown in

Figure 4-28. Then click the Create button.

Figure 4-28. Naming the workspace

 Working with Intents
In this section, you will start creating intents for the usage of our bot. Click

the Intents tab and then click the Add Intent button, as shown in Figure 4- 29.

Chapter 4 IBM Watson ChatBots

119

Let’s start by creating an intent named Greetings, as shown in Figure 4- 30.

Figure 4-30. Naming the intent Greetings

Figure 4-29. Creating the intent for the CoffeeBot

Chapter 4 IBM Watson ChatBots

120

There are different ways that the bot can greet a user. You’ll use this

screen to choose from the options, as shown in Figure 4-31.

Figure 4-31. Adding user examples

Chapter 4 IBM Watson ChatBots

121

Next, you’ll add an intent named BuyCoffee, as shown in Figure 4-32.

Figure 4-32. Creating a new intent named BuyCoffee

Add some examples for it, as shown in Figure 4-33.

Chapter 4 IBM Watson ChatBots

122

Figure 4-33. Adding user examples

Create another intent and name it Suggestion, as shown in Figure 4-34.

Figure 4-34. Creating a new intent named Suggestion

Chapter 4 IBM Watson ChatBots

123

Add some examples to this new intent, as shown in Figure 4-35.

Figure 4-35. Adding user examples for Suggestion

Chapter 4 IBM Watson ChatBots

124

Next, add another intent named Yes, as shown in Figure 4-36. As you

did previously for the other intents, add user examples.

Figure 4-36. Adding user examples for the Yes intent

Chapter 4 IBM Watson ChatBots

125

ThankYou will be the next intent, as shown in Figure 4-37. Name this

intent and add examples.

Figure 4-37. ThankYou intent and user examples

Chapter 4 IBM Watson ChatBots

126

The next intent will be Cancel, as shown in Figure 4-38. Follow the

same process to name it and add examples.

Figure 4-38. Adding the Cancel intent

 Working with Entities
In this section, you will working with entities to get the bot more

structured. Click the Entities tab and then My Entities to access the screen

shown in Figure 4-39. Click the Add Entity button.

Chapter 4 IBM Watson ChatBots

127

On the screen that opens, name the entity by typing CoffeeSize, as

shown in Figure 4-40. Then click the Create Entity button.

Figure 4-39. Adding entities

Figure 4-40. Naming the entity CoffeSize

On the next screen, choose values for CoffeeSize, as shown in Figure 4- 41.

Chapter 4 IBM Watson ChatBots

128

Figure 4-41. Adding values for the CoffeeSize entity

Figure 4-42. Adding synonyms for CoffeeOptions

Now add an entity named here we select the different sizes that are

available for CoffeeOptions, as shown in Figure 4-42.

Chapter 4 IBM Watson ChatBots

129

 Working with Dialogs
In this section, you will work with dialogs that will create a flow for

seamless interactions between the bot and the user.

From the XXXX screen, do XXXXX to add a new dialog, as shown in

Figure 4-43.

Figure 4-43. Adding a new dialog

After creating the dialog, the workspace looks like Figure 4-44.

Chapter 4 IBM Watson ChatBots

130

You will have to add additional dialogs for the bot so that you can bring

the things together. In this place itself we add different logic so that the bot

works properly You’ve already created intents as well as entities for ordering

coffee, so now you can use them to create the workflow.

Let’s first add a node where we are requesting for buying a coffee, as

shown in Figure 4-45.

Figure 4-44. Adding the dialog flow for the bot

Chapter 4 IBM Watson ChatBots

131

Figure 4-45. Adding a new node for BuyCoffee

Chapter 4 IBM Watson ChatBots

132

The content and response for the bot is shown in Figure 4-46.

Figure 4-46. Adding a response for BuyCoffee

Next, add a new Suggestion node for the CoffeeBot, as shown

in Figure 4-47. In this node, you will create child nodes to indicate

preferences for different coffee types.

Chapter 4 IBM Watson ChatBots

133

 Nested Intents
This section covers how to use nested intents so that you can match up the

flow that is how the bot will work accordingly as we have meant it to be for

the bot.

To the right of each node name, you can see three vertical dots,

as shown in Figure 4-48. These dots are used to create a nested child

workflow. XXXXXXXXXXX

Figure 4-47. Adding a new Suggestion node

Chapter 4 IBM Watson ChatBots

134

, as shown in Figure 4-50.

You can now see the child node you’ve created for the coffee options,

as shown in Figure 4-49.

Figure 4-48. Adding a new child node

Figure 4-49. Adding nested intent

Chapter 4 IBM Watson ChatBots

135

Figure 4-50. Nested intent conveys what we are doing for purchasing
or ordering coffee with all the options for small, medium, and large

Now the next node will be for canceling the order. XXXXXXXXXXX, as

shown in Figure 4-51.

Figure 4-51. Canceling the status of the order is done here through
the conversation with the dialogs order

Chapter 4 IBM Watson ChatBots

136

You will have options for Yes and No, so further nesting the process is

required. When you add up all the nodes, you get the categorized structure

shown in Figure 4-52!

Figure 4-52. The complete workflow for the CoffeeBot

Chapter 4 IBM Watson ChatBots

137

 Conclusion
In this chapter, you learned how to get started with the IBM Cloud; note

that IBM offers a free one-month trial of this service.

This chapter also introduced IBM Watson. You learned how to create

two chatbots with Watson Assistant.

In the last chapter, your journey to learn about chatbots will continue.

You will create TensorFlow chatbots and learn about their uses.

Chapter 4 IBM Watson ChatBots

139© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0_5

CHAPTER 5

Chatbot with
TensorFlow
In this chapter, you will create chatbots by using TensorFlow. You’ll start by

learning some TensorFlow basics.

You’ll work on open source models. Then you’ll then move on to

different approaches for creating the chatbots. You’ll set up a TensorFlow

GPU with access to NVDIA CUDA. You’ll closely examine CUDA and then

create the chatbots.

 TensorFlow Basics
TensorFlow is a data science framework primarily meant for dataflow- based

work. It uses Tensors and their approach to nodes in an effective way so that

we can easily implement it in machine learning as well as deep learning, a

Tensor is a generalized matrix that might be 1d, 2d or of higher order.

This section presents the basics of Tensors and of setting up the proper

working environment. Later in this chapter, you will construct a neural

network from scratch in TensorFlow and then use the TensorBoard feature

to see how a TensorFlow graph works.

140

 Setting Up the Working Environment
This section provides an overview of the way the Anaconda distribution for

Python is set up with the GPU version.

You will work on activating the Anaconda environment and start your

TensorFlow basics from there.

You’ll use an Anaconda distribution for Python and then install

TensorFlow with it. You’ll be working with the GPU version. First you

activate the Anaconda environment, as shown in Figure 5-1.

Figure 5-1. Activating the TensorFlow environment

You’ll use Intel-optimized Python for writing the code in Python. The

mode is shown in Figure 5-2.

Figure 5-2. Intel-optimized Python

Chapter 5 Chatbot with tensorFlow

141

Now let’s check our version of TensorFlow, as shown in Figure 5-3.

Figure 5-3. Checking the version of TensorFlow

To check the version, first you import TensorFlow:

>>> import tensorflow as tf

>>> print(tf.__version__)

1.1.0

Let’s just break the word tensor it means n-dimensional array.

You will create the most basic thing in TensorFlow that is constant.

You will create a variable named hello. The work is shown here and in

Figure 5-4:

>>> import tensorflow as tf

>>> hello = tf.constant("Hello")

>>> Intel = tf.constant("Intel")

>>> type(Intel)

<class 'tensorflow.python.framework.ops.Tensor'>

>>> print(Intel)

Tensor("Const_1:0", shape=(), dtype=string)

>>> with tf.Session() as sess:

... result=sess.run(hello+Intel)

Now we print the result.

>>> print(result)

b'Hello Intel '

>>>

Chapter 5 Chatbot with tensorFlow

142

Now let’s add two numbers in TensorFlow. First, you declare two

variables:

>>> a =tf.constant(50)

>>> b =tf.constant(70)

You check the type of one of the variables:

>>> type(a)

<class 'tensorflow.python.framework.ops.Tensor'>

Here, you can see that the object is of type Tensor.

To add two variables, you have to create a session:

>>> with tf.Session() as sess:

... result = sess.run(a+b)

To see the result, just type result:

>>> result

120

>>>

Figure 5-4. Working with TensorFlow

Chapter 5 Chatbot with tensorFlow

143

 Creating a Neural Network
In this section, you will create a neural network that performs a simple linear

fit to some 2D data. You will work with TensorFlow to create a graph. You’ll

initiate the session, feed the data into TensorFlow, and get the output.

Figure 5-5 shows the flow of work in TensorFlow.

Start

Build a graph

Initiate a session

Feed data in

Get an output

Figure 5-5. Flow of TensorFlow

Chapter 5 Chatbot with tensorFlow

144

Figure 5-6 shows the structure of the neural network that you’ll create.

W

X

tf.matmul () tf.add()

b

Activation
Function

Figure 5-6. Constructing a neural network

You use the following linear equation to implement the neural network:

WX + b = Z

You will add in a cost function to train the network to optimize the

parameters.

First, import NumPy and TensorFlow:

(C:\Program Files\Anaconda3) C:\Users\abhis>activate

tensorflow-gpu

(tensorflow-gpu) C:\Users\abhis>python

Python 3.5.2 |Intel Corporation| (default, Feb 5 2017,

02:57:01) [MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

Intel(R) Distribution for Python is brought to you by Intel

Corporation.

Please check out: https://software.intel.com/en-us/python-

distribution

>>> import numpy as np

>>> import tensorflow as tf

>>>

Chapter 5 Chatbot with tensorFlow

145

You need to set random seed values for our process:

>>> np.random.seed(101)

>>> tf.set_random_seed(101)

Add some random data:

Using rand_a =np.random.uniform(0,100(5,5))

You add random data points going from 0 to 100 and then ask

operations logic to be in the shape of (5,5). You do the same for b:

>>> rand_a =np.random.uniform(0,100,(5,5))

>>> rand_a

array([[51.63986277, 57.06675869, 2.84742265, 17.15216562,

 68.52769817],

 [83.38968626, 30.69662197, 89.36130797, 72.15438618,

 18.99389542],

 [55.42275911, 35.2131954 , 18.18924027, 78.56017619,

 96.54832224],

 [23.23536618, 8.35614337, 60.35484223, 72.89927573,

 27.62388285],

 [68.53063288, 51.78674742, 4.84845374, 13.78692376,

 18.69674261]])

>>> rand_b

array([[99.43179012],

 [52.06653967],

 [57.87895355],

 [73.48190583],

 [54.19617722]])

Create placeholders for these uniform objects:

>>> a = tf.placeholder(tf.float32)

>>> b = tf.placeholder(tf.float32)

Chapter 5 Chatbot with tensorFlow

146

You use TensorFlow because it understands normal Python operations:

>>> add_op = a + b

>>> mul_op = a * b

Now you’ll create sessions that use graphs to feed dictionaries to get

results. First declare the session and then get the results of the add operation.

Pass in the operation and the feed dictionary. For the placeholder objects,

you need to feed data; you will do that by using the feed dictionary.

Pass data to the keys A and B:

add_result = sess.run(add_op,feed_dict={a:10,b:20})

>>> with tf.Session() as sess:

... add_result = sess.run(add_op,feed_dict={a:10,b:20})

... print(add_result)

As you have created random result, you will pass it to the feed dictionary:

>>> with tf.Session() as sess:

... add_result = sess.run(add_op,feed_

dict={a:rand_a,b:rand_b})

Print the value of add_result:

>>> print(add_result)

[[151.07165527 156.49855042 102.27921295 116.58396149 167.95948792]

 [135.45622253 82.76316071 141.42784119 124.22093201 71.06043243]

 [113.30171204 93.09214783 76.06819153 136.43911743 154.42727661]

 [96.7172699 81.83804321 133.83674622 146.38117981 101.10578918]

 [122.72680664 105.98292542 59.04463196 67.98310089 72.89292145]]

Create a matrix for multiplication:

>>> with tf.Session() as sess:

... mul_result = sess.run(mul_op,feed_dict={a:10,b:20})

 print(mul_result)

200

Chapter 5 Chatbot with tensorFlow

147

Use the following random values:

>>> with tf.Session() as sess:

... mul_result = sess.run(mul_op,

feed_dict={a:rand_a,b:rand_b})

>>> print(mul_result)

[[5134.64404297 5674.25 283.12432861 1705.47070312

 6813.83154297]

 [4341.8125 1598.26696777 4652.73388672 3756.8293457

 988.9463501]

 [3207.8112793 2038.10290527 1052.77416992 4546.98046875

 5588.11572266]

 [1707.37902832 614.02526855 4434.98876953 5356.77734375

 2029.85546875]

 [3714.09838867 2806.64379883 262.76763916 747.19854736

 1013.29199219]]

Create a neural network from result we obtained. Let’s add some

features to the data:

>>> n_features =10

Declare the number of layers of neurons. In this case, you have three:

>>> n_dense_neurons = 3

Let’s create a placeholder for x and add the data type, which is float.

Then you have to find the shape. First, you consider it None because it

depends on the batch of data you are feeding to the neural network.

Columns will be the number of features.

>>> x = tf.placeholder(tf.float32,(None,n_features))

Chapter 5 Chatbot with tensorFlow

148

Now you have the other variables. W is the weight variable, and you

initialize this with some sort of randomness; then you have the shape of it be

based on the number of features with the number of neurons in the layer:

>>> W = tf.Variable(tf.random_normal([n_features,n_dense_neurons]))

Declare the bias.

You declare the variables and can have it as ones or zeros we are using

the function within TensorFlow. Keep in mind that W will be multiplied by

x, so you need to maintain the dimension of column with dimension of

rows for matrix multiplication:

>>> b = tf.Variable(tf.ones([n_dense_neurons])

...

...

...

...)

>>>

Create an operation and activation function:

>>> xW = tf.matmul(x,W)

Create the output z:

>>> z = tf.add(xW,b)

Create the activation function:

>>> a = tf.sigmoid(z)

To complete the graph or the flow, run them in a simple session:

>>> init = tf.global_variables_initializer()

Chapter 5 Chatbot with tensorFlow

149

Finally, pass in a feed dictionary to create a session:

>>> with tf.Session() as sess:

... sess.run(init)

... layer_out = sess.run(a,feed_dict={x:np.random.

random([1,n_features])})

>>> print(layer_out)

[[0.19592889 0.84230143 0.36188066]]

You have now created a neural network and printed the final output

layer.

 Working with the Activation Function
You will now start working with the activation function and implement it

in TensorFlow to view any layer you want. You get accordingly the Intel-

optimized Python mode. You need to enable the environment again, as

shown in Figure 5-7.

Figure 5-7. Enabling the environment again

Chapter 5 Chatbot with tensorFlow

150

Now you import to get inside TensorFlow:

>>> import TensorFlow as tf

Next you implement the layer function.

For the layer, you should have inputs; this is the information being

processed from the last layer. Using in_size determines the size of the

input; this also describes the number of hidden neurons for the last layer.

Using out_layer shows the number of neurons for this layer. Then you

declare the activation function, which is None—that is, you are using a

linear activation function.

You have to define weight that is based on input and output size.

You will have to use random normal to generate the weights. You will

then pass the input and the output size. Initially, you use randomized

values because it improves the neural network.

You declare one-dimensional biases. You will initialize biases as zeros

and initialize all variables as 0.1. The dimension of it is 1 row and out_size

the no of columns. Because you want to add the weights to the bias, the

shape should be the same, so you use out_size.

For the operation or the compute process, you use matrix multiplication:

def add_layer(inputs, in_size, out_size,

activation_function=None):

 Weights = tf.Variable(tf.random_normal([in_size, out_size]))

 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)

 Wx_plus_b = tf.matmul(inputs, Weights) + biases

 if activation_function is None:

 outputs = Wx_plus_b

 else:

 outputs = activation_function(Wx_plus_b)

 print(outputs)

 return outputs

Chapter 5 Chatbot with tensorFlow

151

In the next section, you will review an important feature of TensorFlow

known as TensorBoard, which is useful for viewing the graph as well as

debugging.

 TensorBoard
Let’s talk about TensorBoard. TensorBoard is a data visualization tool

that is packaged within TensorFlow. When you are dealing with creating

a network in TensorFlow, it’s composed of operations and tensors. When

you feed data into the neural network, the data flows in through tensors

performing operations, and finally getting an output.

TensorBoard was created to know the flow of tensors in a model.

It helps in debugging and optimization. Let’s create some graphs and

then show them in TensorBoard. The basic operations are addition and

multiplication.

Figure 5-8 shows how a session works in TensorFlow.

Chapter 5 Chatbot with tensorFlow

152

Import TensorFlow as follows:

Import tensorflow as tf

We are showcasing an addition operation and showing the result in the

tensorboard.

Then declare placeholder variables:

X = tf.placeholder(tf.float32, name="X")

Y = tf.placeholder(tf.float32, name="Y")

Import TensorFlow

Placeholder variables

Declare session

Initialize

Feed dictionary

Use writer Log the graph and create
the graph Debugging

Figure 5-8. Creating a session with TensorFlow

Chapter 5 Chatbot with tensorFlow

153

Next, you need to declare the operations that you need to perform:

addition = tf.add(X, Y, name="addition")

In the next step, you have to declare session. You want to perform

operations, and you need to perform the operations inside a session. You

have to initialize the variables by using init. Then we have to run the sess

within init:

sess = tf.Session()

tf.initialize_all_variables() no long valid from

2017-03-02 if using tensorflow >= 0.12

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1:

 init = tf.initialize_all_variables()

else:

 init = tf.global_variables_initializer()

sess.run(init)

When you run the session using a feed dictionary, you initialize the

values of the variables:

result = sess.run(addition, feed_dict ={X: [5,2,1], Y: [10,6,1]})

Finally, using the summary writer, you get the debugging logs for the

graph:

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1: # tensorflow version < 0.12

 writer = tf.train.SummaryWriter('logs/nono', sess.graph)

else: # tensorflow version >= 0.12

 writer = tf.summary.FileWriter("logs/nono", sess.graph)

Chapter 5 Chatbot with tensorFlow

154

The entire code base in Python looks like this in a single oriented flow:

import tensorflow as tf

X = tf.placeholder(tf.float32, name="X")

Y = tf.placeholder(tf.float32, name="Y")

addition = tf.add(X, Y, name="addition")

sess = tf.Session()

tf.initialize_all_variables() no long valid from

2017-03-02 if using tensorflow >= 0.12

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1:

 init = tf.initialize_all_variables()

else:

 init = tf.global_variables_initializer()

sess.run(init)

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1: # tensorflow version < 0.12

 writer = tf.train.SummaryWriter('logs/nono', sess.graph)

else: # tensorflow version >= 0.12

 writer = tf.summary.FileWriter("logs/nono", sess.graph)

Let’s now visualize the graph generated. Go to the Anaconda prompt.

Activate the environment and go to the folder to run the Python file. In

Figure 5-9, you are enabling the Intel-optimized Python mode again.

Figure 5-9. Enabling Python mode

Chapter 5 Chatbot with tensorFlow

155

Now you need to run the Python file. Use the following command to

get the output shown in Figure 5-10:

(tensorflow-gpu) C:\Users\abhis\Desktop>python abb2.py

Figure 5-10. Running the code

Now open TensorBoard:

(tensorflow-gpu) C:\Users\abhis\Desktop>tensorboard

--logdir=logs/nono

WARNING:tensorflow:Found more than one graph event per run, or

there was a metagraph containing a graph_def, as well as one or

more graph events. Overwriting the graph with the newest event.

Starting TensorBoard b'47' at http://0.0.0.0:6006

(Press CTRL+C to quit)

Now let’s open the browser for TensorBoard access.

The following link needs to be opened:

http://localhost:6006/

Figure 5-11 shows the addition operation in TensorBoard.

Chapter 5 Chatbot with tensorFlow

156

For multiplication, the same process is followed and the code base is

shared here:

import tensorflow as tf

X = tf.placeholder(tf.float32, name="X")

Y = tf.placeholder(tf.float32, name="Y")

multiplication = tf.multiply(X, Y, name="multiplication")

sess = tf.Session()

tf.initialize_all_variables() no long valid from

2017-03-02 if using tensorflow >= 0.12

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1:

 init = tf.initialize_all_variables()

else:

 init = tf.global_variables_initializer()

Figure 5-11. TensorBoard output

Chapter 5 Chatbot with tensorFlow

157

sess.run(init)

result = sess.run(multiplication, feed_dict ={X: [5,2,1], Y:

[10,6,1]})

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__

version__).split('.')[0]) < 1: # tensorflow version < 0.12

 writer = tf.train.SummaryWriter('logs/no1', sess.graph)

else: # tensorflow version >= 0.12

 writer = tf.summary.FileWriter("logs/no1", sess.graph)

Figure 5-12 shows the multiplication graph.

Figure 5-12. Multiplication analysis in TensorBoard

Let’s work with a more complex tutorial to see how the TensorBoard

visualization works. You will be using activation function definition shown

previously.

Declare placeholders:

xs = tf.placeholder(tf.float32, [None, 1], name='x_input')

ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

Add a hidden layer with the relu activation function:

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

Chapter 5 Chatbot with tensorFlow

158

Add the output layer:

prediction = add_layer(l1, 10, 1, activation_function=None)

Calculate the error:

with tf.name_scope('loss'):

 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),

 reduction_indices=[1]))

Next you need to train the network. You will be using the gradient

descent optimizer:

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

 Versions of TensorFlow
The current versions of TensorFlow that are available are as follows:

• r1.8

• r1.7

• r1.6

• r1.5

• r1.4

• r1.3

• r1.2

• r1.1

The various versions of TensorFlow are available at the TensorFlow

branch, www.tensorflow.org/versions/.

Chapter 5 Chatbot with tensorFlow

https://www.tensorflow.org/versions/

159

 Keras Overview
This section introduces a front-end wrapper to a deep learning framework

known as Keras. Then we will work along with how we implement Keras

using a Jupyter Notebook and creating chatbots with it.

Keras is front-end wrapper that can be used with lots of deep learning

frameworks at the back end.

Keras has already been built up neural network function that you can

use to get the neural networks easily and fast. It maintains the following:

• Modularity

• Minimalism

• Extensibility

• Python nativeness

As a basic starting point for Keras, you will run a “Hello World”

example. With respect to machine learning and deep learning, a Hello

World example is different.

In this example, you will use the iris dataset. You need to check that

the following libraries are installed:

• seaborn

• numpy

• sklearn

• keras

• tensorflow

TensorFlow will be the background for the Keras wrapper.

You will sync a GitHub project:

https://github.com/fastforwardlabs/keras-hello-world

Chapter 5 Chatbot with tensorFlow

https://github.com/fastforwardlabs/keras-hello-world

160

The important files will be downloaded via a reqirements.txt file.

Let’s open an Anaconda prompt and get inside the Tensorflow-gpu

environment:

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow- gpu

Now you will clone the project files, which will copy the essential files

into the folder and create a local copy in the machine:

 (tensorflow-gpu) F:\>git clone https://github.com/

fastforwardlabs/keras-hello-world.git

Cloning into 'keras-hello-world'...

remote: Counting objects: 94, done.

remote: Total 94 (delta 0), reused 0 (delta 0), pack-reused 94

Unpacking objects: 100% (94/94), done.

Now you install the necessary files by using the following code:

(tensorflow-gpu) F:\keras-hello-world>pip install requirements

You’ll launch the Jupyter Notebook. But first let’s import the libraries,

as shown in Figure 5-13.

Figure 5-13. Importing libraries

Chapter 5 Chatbot with tensorFlow

161

The program starts using TensorFlow back end.

The iris dataset is indeed useful for machine learning, and you

load it first:

iris = sns.load_dataset("iris")

iris.head()

Figure 5-14 shows how the iris dataset is loaded.

Figure 5-14. Using iris dataset

Now you visualize the dataset:

sns.pairplot(iris, hue='species');

In Figure 5-15, you are plotting the species.

Chapter 5 Chatbot with tensorFlow

162

Now you split the data into training and testing datasets.

First pull the raw dataframe:

X = iris.values[:, :4]

y = iris.values[:, 4]

Then split the data:

train_X, test_X, train_y, test_y = train_test_split(X, y,

train_size=0.5, test_size=0.5, random_state=0)

Now you train by using a Scikit classifier, as shown in Figure 5-16.

Figure 5-15. Plotting the species

Chapter 5 Chatbot with tensorFlow

163

Figure 5-16. Using logistic regression

Now you check the classifier accuracy:

print("Accuracy = {:.2f}".format(lr.score(test_X, test_y)))

 Getting Started with a Keras Chatbot
In this section, you will create a chatbot with Keras. Download the repo

and perform the following steps:

 1. Create a data folder in your project directory, and

download the Cornell Movie-Dialogs Corpus from

the following site:

www.cs.cornell.edu/~cristian/Cornell_Movie-

Dialogs_Corpus.html

 2. Unzip the file and update config.py file
.

Change DATA_PATH to indicate the location where

you store your data.

 3. python3 data.py
s will do all the preprocessing

for the Cornell dataset. Download Keras by using

the following, as shown in Figure 5- 17:

Pip install keras

Chapter 5 Chatbot with tensorFlow

http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

164

Now you prepare the training set and the testing set. In Figure 5-18 you

are accumulating data for the bot.

Figure 5-18. Accumulating data

Figure 5-17. Downloading Keras

 4. Type the following:

python3 chatbot.py --mode [train/chat]

In Figure 5-19, we are training the data.

Chapter 5 Chatbot with tensorFlow

165

If the mode is train, you train the chatbot. By default, the model will

restore the previously trained weights (if there are any) and continue

training up on that. Creating the optimizer is shown in Figure 5-20.

Figure 5-19. Training the data

Figure 5-20. Creating the optimizer

Chapter 5 Chatbot with tensorFlow

166

Now let’s test the bot with the chat option, as shown in Figure 5-21.

(idpFull) F:\ManishaBot\stanford-tensorflow-tutorials\

assignments\chatbot>python chatbot.py --mode chat

Figure 5-21. We are enabling the chat mode

Now the bot will use the optimizer. Figure 5-22 shows how you are

interacting with the bot.

Figure 5-22. Interacting with the chatbot

you have created a chatbot using Keras. You have seen how the interaction

happens with the chatbot. In the next section, you will work on another

chatbot application.

 Introducing nmt-chatbot
This section introduces nmt-chatbot. This chatbot works in this order:

 1. Use translation with input and output encoders.

 2. The NMT-Bot first reads the sentence through the

encoder.

Chapter 5 Chatbot with tensorFlow

167

 3. A decoder processes the sentence vector.

 4. The Chatbot uses LSTM approach.

 5. Tokenize the input.

You will use Anaconda to create an environment, so let’s get Anaconda

first. Anaconda is an open source distribution for Python that is generally

used for managing different packages.

Let’s create an environment for Anaconda and name it Manisha.

Anaconda is available from www.anaconda.com/download/.

Figure 5-23 shows the different versions of Anaconda.

Figure 5-23. Different Anaconda versions available

After downloading Anaconda, you’re ready to create the environment.

In Windows, the process for creating an environment is as follows:

conda create -n yourenvname python=x.x anaconda

You then get inside the environment and install the GPU version of

TensorFlow, as shown in Figure 5-24.

Chapter 5 Chatbot with tensorFlow

https://www.anaconda.com/download/

168

Import TensorFlow to check that everything is perfect and then start

cloning the repo (a local copy of nmt-chatbot):

git clone --recursive https://github.com/daniel-kukiela/nmt- chatbot

Figure 5-25 shows cloning the repo.

Figure 5-24. Installing Tensorflow-gpu

Figure 5-25. Cloning the repo

Chapter 5 Chatbot with tensorFlow

169

Use the following command in the command windows to get inside

the local copy copied folder that is the github copy that you cloned:

cd nmt-chatbot

In Figure 5-26, you are installing the requirements.

Figure 5-26. Installing the requirements

You also need to manage the requirements:

pip install -r requirements.txt

Now you open the set up folder:

cd setup

Then start preparing the data:

python prepare_data.py

After preparing the data, you will get one level closer to the root in the

folder:

cd ..

Chapter 5 Chatbot with tensorFlow

170

Now you start training:

python train.py

Figure 5-27 shows the training process.

Figure 5-27. Training process

Chapter 5 Chatbot with tensorFlow

171

After training is finished, you will get a message. Figure 5-28 shows that

the training process is complete.

Figure 5-28. The training process is complete

Figure 5-29. Inference models

Use inference.py to interact directly with the bot:

python inference.py

Figure 5-29 shows the inference models.

Chapter 5 Chatbot with tensorFlow

172

 End-to-End Systems
End-to-end machine learning is the best approach for chatbots as we

ingest the data through the chatbot and then score the test data. This type

of machine learning helps in taking the decisions very faster for response

that is very swift to communicate between user and the bot. One system

is trained on one dataset. The chatbot makes no assumptions of the use

cases and the dialogue and trains it on relevant data and have conversation

of the data with user. Use Feed Forward Neural Network to implement it in

Deep Learning.

Before explaining further, you need to know about recurrent neural

networks.

 Recurrent Neural Network
Recurrent neural networks (RNNs) are useful in learning scenarios based

on natural language processing.

Predicting the next word in a sequence is tough. That’s why we need to

know the sequence of words prior to making a prediction.

RNNs are called recurrent because the same principle is applied to

every element (phrase or a word) in a sequence, where the output is based

upon previous computations.

To better understand RNNs, consider this example. Say you have

a sentence of seven words. In an RNN, you’d have to break the neural

network into seven different layers, with one layer for each word.

The most common RNNs are Long short-term memory networks (LSTMs).

 LSTMs

To resolve long-term dependencies in RNNs, you need LSTMs. These

networks are capable of learning long short-term dependencies in a

sequence for better predictions of the output. Figure 5-30 shows a standard

RNN with one layer.

Chapter 5 Chatbot with tensorFlow

173

LSTMs contain four neural network layers in a network, as illustrated

in Figure 5-31.

Figure 5-30. RNN

Figure 5-31. LSTM with neural network layers

The key concept behind LSTMs are the cell states. Figure 5-32 shows

the usage of cells.

Chapter 5 Chatbot with tensorFlow

174

The Sigmoid layer in the LSTM outputs a value between 0 and 1. A

value of 1 means you let all information go through it. A value of 0 means

that nothing goes through it. Knowing these concepts, you can move along

to the Seq2seq model.

Seq2seq model has

i)Encoder

ii)Decoder

iii)Intermediate State

The flow is shown in Figure 5-33.

Figure 5-32. Using the cells. The cell states formulate the way the
communication works

Chapter 5 Chatbot with tensorFlow

175

We generally use embeddings. So to recognize a sentence after that for

doing prediction we have to make a vocabulary of words that are to be fed

to the model to be read. Figure 5-34 shows the message process.

Figure 5-33. Encoder-Decoder model

Figure 5-34. Message output process

Chapter 5 Chatbot with tensorFlow

176

Seq2seq vocabulary works in the following way:

• <PAD>: During training, you need to feed your examples

to the network in batches. The inputs in these batches

all need to be the same width for the network to do

its calculation. Our examples, however, are not of the

same length. That’s why you’ll need to pad shorter

inputs to bring them to the same width of the batch.

• <EOS>: This is another necessity of batching as well,

but more on the decoder side. It allows us to tell the

decoder where a sentence ends, and it allows the

decoder to indicate the same thing in its outputs.

• <UNK>: If you’re training your model on real data, you’ll

find you can vastly improve the resource efficiency of

your model by ignoring words that don’t show up often

enough in your vocabulary to warrant consideration.

We replace those with <UNK>.

• <GO>: This is the input to the first time-step of the

decoder to let the decoder know when to start

generating output.

 Working with a Seq2seq Bot
In this section, you will see how to work with a Seq2seq bot. We will clone

or copy one of the GitHub repo locally and then run the bot accordingly.

First you need to clone the repo to get inside the folder:

https://github.com/llSourcell/tensorflow_chatbot

Chapter 5 Chatbot with tensorFlow

https://github.com/llSourcell/tensorflow_chatbot

177

Use this command to prepare the data:

Python prepare_data.py

Then open the seq2seq.ini file and change the mode to training as.

Use this command:

python execute.py

Figure 5-35 shows the training process.

Figure 5-35. Training process

After training, go back into the seq2seq.ini file and update the

mode to testing.

When you start testing, The bot will workaround find the checkpoints

from training and start communicating, as shown here and in Figure 5-36:

>> Mode : test

2018-04-20 00:15:14.408168: I C:\tf_jenkins\workspace\rel-

win\M\windows\PY\36\tensorflow\core\platform\cpu_feature_guard.

cc:137] Your CPU supports instructions that this TensorFlow

binary was not compiled to use: AVX AVX2

WARNING:tensorflow:From C:\Users\abhis\Anaconda3\envs\idpFull\

lib\site-packages\tensorflow\python\ops\nn_impl.py:1310:

softmax_cross_entropy_with_logits (from tensorflow.python.ops.

nn_ops) is deprecated and will be removed in a future version.

Chapter 5 Chatbot with tensorFlow

178

 Instructions for Updating
Future major versions of TensorFlow will allow gradients to flow into the

labels input on backprop by default. There are some expected changes in

the later version of Tensorflow.

See tf.nn.softmax_cross_entropy_with_logits_v2.

Reading model parameters from working_dir/seq2seq.ckpt-4200.

We are using the ckpt file created after training to see how the trained

model works

> hello

Install NVIDIA’s card on your computer along with drivers.

 1. Download and install CUDA.

 2. Download and “install” cuDNN.

 3. Uninstall TensorFlow, and install Tensorflow GPU.

 4. Update the %PATH% on the system.

 5. Verify installation.

 Download and Install CUDA
CUDA has different versions. You need CUDA version 8.0. I have 8.0, 9.0,

and 9.1 installed and set up identically to this guide for each version. Stick

with 8.0 for now to get that working. I set up the other versions to prepare

for the possibility of TensorFlow GPU supporting other CUDA versions.

Figure 5-36. Testing the bot

Chapter 5 Chatbot with tensorFlow

179

Here are the steps to download and install CUDA:

Go to CUDA Toolkit downloads.

 1. Scroll down to Legacy Releases.

 2. Click the version you want (CUDA Toolkit X.Y):

• For 8.0, you'll see CUDA Toolkit 8.0 GA, so

replace *<Z>* with the highest number available.

Z is the version that is available. I downloaded

CUDA Toolkit 8.0 GA2.

• For 9.0, the file is CUDA Toolkit 9.0

• For 9.1, the file is CUDA Toolkit 9.1.

 3. Select your operating system. Mine is as follows:

OS: Windows

Architecture: x86_64

Version: 10

 4. After CUDA downloads, run the downloaded file

and install it with Express Settings. This might take a

while and flicker the screen (because of the graphics

card).

 5. Verify that you have the following path on your system:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

Chapter 5 Chatbot with tensorFlow

https://developer.nvidia.com/cuda-downloads

180

 Download and Install cuDNN
To install the Cuda Deep Neural Network library (cuDNN), you need an

NVIDIA developer account. It’s free.

Create a free NVIDIA Developer Membership here:

After you sign up, go to https://developer.nvidia.com/cudnn. Then

follow these steps:

 1. Click the Download cuDNN button (ignore the

current listed version for now). Agree to the Terms.

 2. Remember how above we need cuDNN v6.0 from

above? You might see this listed here, or you might

not. If you don’t, just select Archived cuDNN

Releases.

 3. Click the version you need as well as the system you

need.

 4. Download cuDNN v6.0 (April 27, 2017) for CUDA

8.0, and then download cuDNN v6.0 Library for

Windows 10. Unzip your recent downloaded zip file,

such as:

C:\Users\teamcfe\Downloads\cudnn-8.0-windows10-x64-

v6.0.zip

 5. Open cuda and you should see the following:

bin/

include/

lib/

 6. Copy and paste the three folders from C:\Users\j\

Downloads\cudnn-8.0-windows10-x64-v6.0.zip\

cuda to C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v8.0.

Chapter 5 Chatbot with tensorFlow

https://developer.nvidia.com/developer-program/signup
https://developer.nvidia.com/cudnn

181

Note that dragging and dropping will merge the folders and not replace

them; I don't believe the same is true for Mac/Linux. If Cuda asks you to

replace anything, say No and just drag and drop each folder's contents

from cuDNN to Cuda. Cuda might as about admin privileges, in which

case, you should just say Yes.

 7. Verify that you did the last step correctly. If you did,

you should be able to find this path:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\

v8.0\lib\x64\cudnn.lib

 Uninstall TensorFlow, Install TensorFlow GPU
You can remove TensorFlow from your system if it’s currently installed by

using this command:

pip uninstall tensorflow

You want to use TensorFlow with GPU support, and doing that is easy:

pip install tensorflow-gpu

I’m glad that was easy. :)

 Update the %PATH% on the System
Update your system environment variables’ PATH to have the following:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\libnvvp

Chapter 5 Chatbot with tensorFlow

182

 Conclusion
In this chapter, you used TensorFlow to create chatbots. You found out

that for deep learning chatbots, LSTM is the best technique. This chapter

also introduced Keras, and you built a chatbot with the Keras wrapper and

TensorFlow as the back end. Finally, you looked at some common chatbots

and reviewed a Seq2seq model approach to creating chatbots.

Chapter 5 Chatbot with tensorFlow

183© Manisha Biswas 2018
M. Biswas, Beginning AI Bot Frameworks, https://doi.org/10.1007/978-1-4842-3754-0

Index

A
Artificial intelligence (AI)

chatbots (see Chatbots)
computer vision, 2
definition, 1
DL, 4, 12
image processing, 2
ML (see Machine learning (ML))
neural networks, 4, 12–13
NLP, 1
pattern recognition, 2
robotics, 2
sales vs. advertisement data, 5, 6
speech recognition, 1
symbolic-based and data-based

approaches, 4–5

B
Bot code logic, 44

C
Chatbots, 14

applications
Botnets, 20
CNN bot, 19
Facebook Messenger, 19

Poncho, 19
reinforcement

learning bots, 20–21
Telegram, 19
Twitter, 20
web spiders bots, 19–20
WhatsApp, 19

conversational commerce, 17–18
dialog flow/form flow, 22
digital brain, 15–17
entities, 22
frameworks, 23
generative, 14–15
parts, 15
retrieval-based model, 14
structure, 21–22
Turing test, 14

CNN bot, 19
CoffeeBot

dialogs
adding, 129
BuyCoffee, 130–132
Suggestion node, 132–133
workspace, 129–130

entities
adding, 126–127
CoffeeOptions, 128
CoffeeSize, 127–128

https://doi.org/10.1007/978-1-4842-3754-0

184

intents
BuyCoffee, 121–122
Cancel, 126
creating, 118–119
Greetings, 119
Suggestion, 122–123
ThankYou, 125
user examples, 120
Yes, 124

nested intents
adding, 134
canceling order, 135
child node, 133–134
options for small, medium,

and large, 135
workflow, 136

workspace
creating, 117
naming, 118

Cognitive computing, 4
Conversational commerce, 17–18
Convolution neural network, 4
Cuda Deep Neural Network library

(cuDNN), 180–181

D, E
Deep learning (DL), 4, 12
DeepMind’s algorithm, 20
Dialogflow

access Goggle Assistant, 86
creating, PizzaBot, 87
entities, 92–94

integrations, 98–100
intents, 91
linking to Google project, 90–91
logging in, Google account, 85
parameters, 92
Questionbot

copy intents, 95–96
prebuilt agents, 94
questions and answers,

96–97
select all the intents, 95

Small Talk, 88–90
web site, 85
welcome page, 86–87

Dialogs
adding new item, 49–50
creating folder, 48–49
ManishaBot, 47
RandomFactDialog class

chaining messages, 51–52
chaining process, 54–56
referencing, 51
response for bot, 52
series of messages, 53–54

Digital brain, 15–17

F
FAQ bot

creating workspace, 106–107
dialog flow, 112–113
intent

adding description, 109
Capabilities, 110

CoffeeBot (cont.)

Index

185

creating, 108
listed, 112
Migration, 110, 114
naming, 109
SSO, 111, 115
User, 111, 114–115

Try It Out link, 115–117
workspace name, 107–108

G, H
Generative chatbot model, 14–15

I, J
IBM Cloud

create resource, 104
login window, 102–103
main console window, 103
main page, 102
Watson Assistant

service, 104–105
IBM Watson Assistant

CoffeeBot, 117–136
FAQ Bot, 106

Image processing, 2

K
Keras

chatbot
accumulating data, 164
chat option, 166
Cornell Movie-Dialogs

Corpus, 163

downloading keras, 164
interaction, 166
optimizer, 165
training data, 164–165

iris dataset, 161
libraries, 159–160
logistic regression, 162–163
neural networks, 159
plotting species, 161–162
Scikit classifier, 162–163
training and testing datasets, 162

L
Language Understanding and

Intelligent
Service (LUIS), 25

Long-short term memory (LSTM)
cell states, 173–174
encoder-decoder model, 175
message process, 175
neural network layers, 173
Seq2seq model, 174–176

M
Machine learning (ML)

AI and DL, 10
automation, 11
classification, 8
computational tipping point, 11
dataset, 2
definition, 4
flows, 2, 3

Index

186

high-dimensional space, 7
patterns, 6
reinforcement learning, 9
supervised learning, 9
unsupervised learning, 9

Managing states, 46–47
Microsoft Bot Framework

Bot Builder, 27–28
dialogs (see Dialogs)
emulator

download page, 28–29
EXE file, 29–30

managing states, 46–47
publishing, Azure

Cloud, 56–65
running the application, 42–43
template

creating new project, 31
parameters, 32
Visual Studio IDE

screen, 30–32
testing, 44–46
Visual Studio, 26
Windows 10, 27
working with code

BotId, MicrosoftAppId, and
MicrosoftApp Password
values, 37

Configuration tab, 37
files, 33
length of characters, 38
MessageController.cs file,

38–42

reply message code block, 38
web.config

XML file, 34–35, 37

N, O
Natural language processing

(NLP), 1
Neural networks, 4, 12–13
nmt-chatbot

Anaconda versions, 167
cloning repo, 168
inference models, 171
requirements, 169
Tensorflow-gpu, 167–168
training process, 170–171

P, Q
Pattern recognition, 2
Poncho, 19
Publishing bot, Azure Cloud

App Service screen, 63
Azure web page, 64
Bot Builder option, 58–59
configuration option, adding

details, 65
creating bot, 57–58
details, 59
framework page, 56–57
generating App ID and

password, 60–61
My Bots option, 57
preparing, 61–62
validation, 63–64

Machine learning (ML) (cont.)

Index

187

R
Recurrent neural

networks (RNNs), 4
layer, 172
LSTM (see Long-short term

memory (LSTM))
Reinforcement learning, 9, 20–21

S
Seq2seq bot

testing, 177–178
training process, 177

Small Talk, 88–90
Speech recognition, 1
Statistical learning, 1
Supervised learning, 9

T
TensorBoard

description, 151
enabling Python mode, 154
multiplication analysis, 156–157
output, 155–156
running code, 155
session with

TensorFlow, 151–154
visualization, 157–158

TensorFlow
activation function

enabling environment, 149
layer function, 150
matrix multiplication, 150

TensorBoard
(see TensorBoard)

Anaconda environment
activation, 140
checking version, 141
Intel-optimized Python, 140
working, 141–142

description, 139
Keras (see Keras)
neural network, 143–149
nmt-chatbot, 166–171
updating

CUDA, 178, 179
cuDNN, 180–181
GPU, 181
%PATH%, 181

versions, 158
workflow, 143

Turing test, 14

U, V
Unsupervised learning, 9

W, X, Y, Z
Watson

FAQ bot (see FAQ bot)
IBM Cloud (see IBM Cloud)
IBM web page, 101

Web spiders bots, 19
Wit.ai

adding intent, 70–72
creating app, 69

Index

188

creating entity, 77
Facebook

adding name, 78
developers page, 78–79
downloading ngrok for

Windows, 82
inspect page, 83
Messenger option, 80
new app, 79

ngrok site, 81–82
ngrok status, 83
SampleApp, 80
selecting web page, 81
set up, ngrok environment, 84
Webhooks, 81

logging in, GitHhub, 68
Quick Start option, 67–68
setting details, 69
text and keywords, 73–76

Wit.ai (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: AI and Bot Basics
	Artificial Intelligence
	Classification
	Prediction
	Supervised Learning
	Unsupervised Learning

	Interconnection Between AI, ML, and DL
	Chatbots
	Generative Chatbot Model
	Open Domain
	Closed Domain

	How Do Chatbots Work?
	Rise of the Chatbots—Conversational Commerce
	The Role of Chatbots
	The Role of Humans

	Growth of Chat Apps
	Poncho
	CNN Bot
	Spider Bots
	Twitter Bots
	Botnets
	Reinforcement Learning Bot

	The Structure of a Bot
	Dialog Flow or Form Flow

	Bot Frameworks

	Conclusion

	Chapter 2: Microsoft Bot Framework
	Starting with the Prerequisites
	Visual Studio
	Windows 10
	Bot Builder
	Bot Framework Emulator

	Creating a Simple Bot Framework App
	Using a Template to Create the Project
	Working with the Code
	Running the Application
	Testing the Application

	Managing State
	Understanding the Use of Dialogs
	Publishing the Bot to the Cloud by Using Azure
	Conclusion

	Chapter 3: Wit.ai and Dialogflow
	Getting Started with Wit.ai
	Creating a New App
	Adding Intent
	Adding Text and Keywords
	Creating a New Entity

	Implementing Wit.ai with Facebook
	Working with Dialogflow
	Accessing Dialogflow
	Creating the Pizza Bot
	Using Small Talk
	Linking to a Google Project
	Adding an Intent
	Creating a New Entity
	Deploying the Bot
	Integration with Web Instance

	Conclusion

	Chapter 4: IBM Watson Chatbots
	Implementing Watson
	IBM Cloud
	Watson Assistant Service

	Creating a FAQ Bot
	Creating Intent for the Bot
	The Dialog Flow for the App
	Making Sense of the Flow
	Trying the Bot

	Creating a Coffee Bot
	Creating a Workspace
	Working with Intents
	Working with Entities
	Working with Dialogs
	Nested Intents

	Conclusion

	Chapter 5: Chatbot with TensorFlow
	TensorFlow Basics
	Setting Up the Working Environment

	Creating a Neural Network
	Working with the Activation Function
	TensorBoard
	Versions of TensorFlow

	Keras Overview
	Getting Started with a Keras Chatbot

	Introducing nmt-chatbot
	End-to-End Systems
	Recurrent Neural Network
	LSTMs

	Working with a Seq2seq Bot
	Instructions for Updating
	Download and Install CUDA
	Download and Install cuDNN
	Uninstall TensorFlow, Install TensorFlow GPU
	Update the %PATH% on the System

	Conclusion

	Index

