
Beginning Backup
and Restore for
SQL Server

Data Loss Management and
Prevention Techniques
—
Practical Application of
Data Protection Principles
—
Bradley Beard

www.allitebooks.com

http://www.allitebooks.org

Beginning Backup
and Restore for

SQL Server
Data Loss Management and

Prevention Techniques

Bradley Beard

www.allitebooks.com

http://www.allitebooks.org

Beginning Backup and Restore for SQL Server

ISBN-13 (pbk): 978-1-4842-3455-6 ISBN-13 (electronic): 978-1-4842-3456-3
https://doi.org/10.1007/978-1-4842-3456-3

Library of Congress Control Number: 2018947418

Copyright © 2018 by Bradley Beard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484234556.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bradley Beard
Palm Bay, Florida, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3456-3
http://www.allitebooks.org

For Kim and Zaria, Melissa and Blake,
all my family and friends, and

most importantly… you.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction to Backup and Restore Methodologies ������������������������xvii

Table of Contents

Part I: Backups ��1

Chapter 1: Full Backups ���3

What Is a Full Backup? ���4

Recovery Models ���5

Backup Types ���7

How Do Recovery Models Affect the Backup Types? ���������������������������������������8

Preparing for a Full Backup ��9

Back Up Database: General Tab ���14

Summary���20

Chapter 2: Differential Backups ��23

What Is a Differential Backup? ��23

Differential Backup Dependency ���24

Why Use Differential Backups? ���24

Scenario Without Differential Backups ��25

Scenario Running Differential Backups ���26

Adding Differential Backups to a Backup Solution��28

www.allitebooks.com

http://www.allitebooks.org

vi

Preparing for a Differential Backup ���30

Running a Differential Backup ��31

Taking a Backup via the GUI in SSMS ��32

Validating a Backup via the GUI in SSMS ��34

Taking a Differential Backup via T-SQL ��35

Summary���36

Chapter 3: Transaction Log Backups ��39

What Is a Transaction Log? ���40

Viewing Transaction Log Status ���41

Backing Up a Transaction Log ���44

Transaction Log Backups via Script���45

Transaction Log Backups via SSMS ��46

Summary���57

Chapter 4: Backup Solution Examples ��59

Setting Up the Maintenance Plan ��59

Full Backup Configuration ���59

Differential Backup Configuration ���71

Transaction Log Backup Configuration ��75

Configuring the Jobs ���82

Summary���90

Part II: Restores ���91

Chapter 5: Full Restores ���93

What Is a Full Restore? ���94

Restoring the Master Database ��95

Start SQL Server in Single-User Mode ��96

Restore SQL Server to Multiuser Mode ���106

Table of ConTenTsTable of ConTenTs

vii

Restoring from a Full Backup ��107

Full Restores with SSMS ���108

Restoring to a Point in Time ��118

Emergency Full Restore Example ���124

Summary���126

Chapter 6: Differential Restores ���127

What Is a Differential Restore? ���129

Restoring Using SSMS ��129

Restoring Using T-SQL ��133

Summary���135

Chapter 7: Transaction Log Restores ��137

Transaction Log Restore Fundamentals ��138

Restoring Using SSMS ��139

Restore Files and Filegroups—General ���143

Restore Files and Filegroups—Options ���147

Point-in-Time Restore/Recovery ���151

Restoring Using Transact-SQL���159

Restore File and Filegroups Template ���159

Summary���162

Chapter 8: Restore Solution Examples ���163

Page Restores ���165

Querying msdb��suspect_pages ��166

Complete Database Restore Using T-SQL ���167

Complete Database Restore Using SSMS ���172

Table of ConTenTsTable of ConTenTs

viii

Database Snapshots ���186

How Does a Database Snapshot Work? ���188

Viewing Backup and Restore History ��192

Summary���194

Part III: Complete Solutions ���195

Chapter 9: Full Backup and Restore Solutions ���������������������������������197

Full Backup Plan in SSMS ���199

Defining the Back Up Database Task Options ���203

Scheduling the Full Backup ��215

Updating the SQL Server Agent Job ��221

General Tab ��222

Steps Tab ���224

Schedules Tab ���233

Alerts Tab ���233

Notifications Tab ��233

Testing the Full Backup Plan ���240

Full Restore Plan in SSMS ���242

T-SQL Restore Command ���243

SQL Server Agent Restore Job ��243

Copy and Rename Current Backup File ���253

Restore Data ��254

Summary���255

Chapter 10: Differential Backup and Restore Solutions �������������������257

Adding a Differential Backup in SSMS ��258

Scheduling the Differential Backup ��267

Updating the SQL Server Agent Job ��269

Table of ConTenTsTable of ConTenTs

ix

General Tab ��269

Steps Tab ���270

Schedules Tab ���271

Alerts Tab ���272

Notifications Tab ��272

Testing the Differential Backup Plan ���273

Differential Restore Plan in SSMS ���275

T-SQL Restore Command ���276

SQL Server Agent Restore Job ��277

Copy and Rename Current Backup ��283

Restore Data ��284

Summary���285

Chapter 11: Transaction Log Backup and Restore Solutions ������������287

Adding a Transaction Log Backup in SSMS���289

Scheduling the Transaction Log Backup ���296

Updating the SQL Server Agent Job ��297

General Tab ��298

Steps Tab ���299

Notifications Tab ��300

Testing the Transaction Log Backup Plan��301

Transaction Log Restore in SSMS ���302

Creating Test Data ���303

Back Up the Transaction Log ���304

Copy and Rename Backup Files ��304

T-SQL Restore Command ���305

Summary���309

 Index ���311

Table of ConTenTsTable of ConTenTs

xi

About the Author

Bradley Beard is a professional software

developer in Palm Bay, Florida. He started off

designing websites using PHP and MySQL

in the late 90s, and gradually moved to

ColdFusion and SQL Server. He earned his

MCSA: SQL Server 2012 certification in July

2013, and his MCSE: Business Intelligence

certification in February 2016. He was the

Technical Reviewer for Mike McQuillan’s book,

Introducing SQL Server, as well as the author of his own book, Practical

Maintenance Plans in SQL Server, both available from Apress. He then

went on to write his second book, Beginning SQL Server R Services, also

available from Apress.

xiii

About the Technical Reviewer

Rodney Landrum went to school to be a poet

and a writer. And then he graduated, so that

dream was crushed. He followed another path,

which was to become a professional in the

fun-filled world of information technology. He

has worked as a systems engineer, UNIX and

network admin, data analyst, client services

director, and finally database administrator.

The old hankering to put words on paper,

while paper still existed, got the best of him,

and in 2000, he began writing technical

articles—some creative and humorous, some quite the opposite. In 2010

he wrote The SQL Server Tacklebox, a title his editor disdained but a book

closest to the true creative potential he sought; he wanted to do a full book

without a single screenshot. He promises his next book will be fiction or a

collection of poetry, but that has yet to transpire.

xv

Acknowledgments

Thanks to Jonathan and Jill at Apress for letting me write another book.

Thanks to my “newly retired” parents for everything.

Finally, thanks to my wife and kids for understanding.

xvii

Introduction to Backup and
Restore Methodologies

As database administrators, our primary duty is to protect the data in

the databases we are responsible for. This data represents the heart and

soul of the company employing us, and could destroy a business if not

maintained properly. In this context, the proper application of a sound

backup and restore solution is absolutely necessary to provide another

level of data security in the event of a catastrophe. We need to be able to

ensure that data can be restored in the case of an emergency, and the only

way to ensure a smooth restoration of data is to ensure that there has been

a correct backup of the data needing to be restored.

There is no way to restore data that has not been backed up in some

fashion. Luckily, there are quite a few ways that data can be backed

up, both inside of and outside of SQL Server. For this book, we will be

dealing strictly with the SQL Server administrator aspect of backing up

and restoring data, and not viewing this topic from the Windows Server

administrator point of view. Additionally, we will not be getting very

deeply into advanced practices beyond SQL Server Management Studio.

The reason for this is because I want to keep as much attention on the

actual tool used for development and maintenance as possible. In order

to do that, I need to make as much of the book as possible directly related

to SSMS. Please note that this does not mean that you are forever married

to the concept of only using SQL Server Management Studio to manage

your database backups; that is not the case. Rather, I want to introduce

concepts in this book that will hopefully expand your understanding of

what backups and restores are and how they can be properly maintained

xviii

in the context of SQL Server. This does mean, however, that we are going

to stay well within the confines of SQL Server. To be absolutely clear,

we are not going to get into different storage techniques separate from

how SQL Server prepares and delivers a backup solution to a predefined

storage location, and then how SQL Server retrieves that backup solution

in order to restore damaged, missing, or corrupted data. Instead, we are

going to focus on the myriad of different settings and techniques that can

be employed to make sure that the backup set you get is what is expected.

Consequently, we will also be looking at various different restoration

techniques available within SQL Server as well.

Note When a backup is created by sQl server, you can choose
from a variety of options to detail exactly what data to include
in a backup. When a backup is created by Windows, the entire
database file is backed up along with the file system. This can
be advantageous, but it is also a waste of space and sometimes
impossible to restore, if encrypted.

Specifically, this book will address the following items, among many

other topics:

• Advantages/disadvantages and proper usage of the

three main backup types

• Full: a backup of the entire database

• Differential: a backup of the changed information

since the last full backup

• Transaction log: the log of transactions since the

last backup

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

xix

• Different backup methodologies used for different-

sized organizations

• Onsite vs. offsite storage

• Data retention periods

• Storage mediums and inherent differences

(tapes vs. USB vs. DVD)

• Compression types for backups

• Encryption types for backups

It is important to note that we will be preparing many backup solutions

in the course of this book, and the solutions we create will be on a single

physical hard drive partitioned into multiple logical hard drives. If you

have read any of my other books, you will know that I have a specific way

of setting up my SQL Server file locations, as shown in Listing 1. To me, this

helps to organize the folder structure logically, as opposed to diving into

the quagmire of nested folders to reach the default file and folder locations.

Listing 1. File Locations

Folder Location Purpose

E:\SQL Server\Backups Backup (.bak) files

E:\SQL Server\Data Data (.mdf) files

E:\SQL Server\Logs Log (.ldf and .trn) files

E:\SQL Server\Temp Any other file type

You are free to have your system set up however you would like,

of course.

For the purposes of this book, we are going to concentrate on various

backup types, different restore procedures (point in time using transaction

logs vs. loading a complete backup), and what components make up

each procedure. We are not going to get into saving the backup files to

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

xx

any location other than the backups folder specified in Listing 1. Your

specific scenario can be adjusted to fit your need, but the instructions in

these chapters will provide you with a step-by-step instruction guide to a

workable backup and restore solution. In short, this book will hopefully

address nearly every issue related to backing up or restoring data, and if

it doesn’t completely answer the question, then it will possibly be able to

point you in the right direction for your own solution.

We are going to start with a completely fresh installation of SQL Server

2016 and SQL Server Management Studio. I am not going to include SQL

Server or SSMS installation instructions, since it is assumed that you

already have a database up and running and that you would like to either

start a backup/restore solution for it, or enhance your current backup/

restore scenario.

As always, I strongly recommend setting up a development

environment that you can use to test with. SQL Server Express is free for

developers, so that’s a great option. Microsoft also has some fantastic deals

on Azure storage, if you don’t have a local database to play with, and they

are really well priced for what you get. The newest release of SQL Server

Management Studio will only connect to the most “modern” version of the

SQL Server engine, so keep in mind that you can connect to any previous

version of SQL Server shown:

• SQL Server 2008

• SQL Server 2008 R2

• SQL Server 2012

• SQL Server 2014

• SQL Server 2016

• SQL Server 2017

• Microsoft Azure

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

xxi

Just about any Open Database Connectivity (ODBC) data source can

be accessed through SSMS, but I would stick with Microsoft if I were you.

For the sake of the exercises and the large part of the content in this book,

if you decide to use something other than SQL Server or Azure, it’s going to

be difficult for you to follow along with exactly what is being shown.

 Backup Fundamentals
Before we get started with learning about the types of backup and restore

methodologies available within SQL Server, we need to understand the

various parts of a backup and restore, separately and conjoined, in order to

really know what we want to achieve from a backup/restore solution. It is

entirely possible that your database could run smoothly for its entire life, and

you will never need to restore a backup. I believe this would be the utopia

for most database administrators, and I can’t think of a single person that

has ever had this happen for them. Most times, Murphy’s Law steps in and

makes sure that you either have a readily available backup to restore from,

or you learn a very hard lesson in why you should have a reliable backup

solution. Most of us, unfortunately, fall into this group; those database

administrators that have maybe forgone the luxury of a backup solution due

to time constraints or laziness, and have suffered the consequences later. If

this is you, please understand that you are in good company. It is very easy

to make rookie mistakes early on in your career as a database administrator,

but it is expected that you learn from those mistakes so they don’t happen

again. That’s where I would like to think that this book comes in.

When dealing with recovery of data, it is very easy to say that backups

should always be available, but it is another thing altogether to know how

to actually build the backup solution that you need, and have that solution

available when needed. For this reason, Microsoft offers different ways of

backing up data within the context of SQL Server. Let’s take a look at the

various pieces of backup and restore methodologies, and how they relate

to each other.

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

xxii

 Recovery Models
In SQL Server, there are three different recovery models available:

• Full

• Bulk-logged

• Simple

The purpose of these models is to give you, the database administrator,

different options for how you want the backup data to be delivered. You

cannot choose more than one option for one database, and you are

confined to what backup type is available for each recovery model. For this

reason, a recovery model should be chosen very carefully.

Think of a recovery model as the container in which the backup type,

and the subsequent backup, reside. If the recovery model does not fit your

needs, then you will never get the backup and restore solution you need.

Picking a recovery model is actually very simple; just decide how much

data loss is acceptable for your situation, and the scenario basically builds

itself. If you want very little data loss, then the simple recovery model option

is discarded. This leaves the full and bulk-logged recovery models. What is

the difference between these two models? Basically, the full recovery model

allows for point-in-time restores, which the bulk- logged recovery model

allows for backups of data only from the last restore point. Decide between

those two options, and that is your desired recovery model.

The three different recovery models are discussed at length in

Chapter 1.

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

xxiii

 Backup Types
Separate from recovery models are the three different backup types. Those

types are as follows:

• Full: a backup of the entire database

• Differential: a backup of the changed information since

the last full backup

• Transaction log: the log of transactions since the last

backup

These backup types were introduced earlier in this chapter as well,

and are discussed at length throughout the entirety of this book. For that

reason, I won’t get into the specifics of the backup types just yet, and will

let the individual chapters for these areas detail the relevant information

about the different types.

Note The main idea of recovery models and backup types is that
certain recovery models can only work with certain backup types,
so the choice of the recovery model is the first step in designing an
effective backup solution.

Keeping in mind the relationship between recovery models and

backup types is important, as you can tell. The focus of this book is to

reinforce that knowledge, and build on it to create a greater understanding

of what we can do to create an effective backup strategy that will help

mitigate disaster in the future.

InTroduCTIon To baCkup and resTore MeThodologIesInTroduCTIon To baCkup and resTore MeThodologIes

PART I

Backups

3© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_1

CHAPTER 1

Full Backups
The concept of backing up data is one of those things that should be

extremely intuitive, but is often implemented poorly, if at all. I know quite

a few database administrators (DBAs) that don’t worry about regular,

structured backups because their database server is on a SAN (storage area

network) and the data is therefore backed up regularly. To me, this makes

no sense at all, since there is absolutely no contingency for point-in-time

restoration of data, outside of what happened to have been backed up as

part of a complete Windows backup solution. If there were a catastrophic

failure, and the DBA had to rebuild the database to the point of failure, it

could not be easily done. The reason is because the entire Windows image

would have to be rebuilt from the last Windows backup, which means

that the database will only be current to that particular point of time, and

not the desired point of time. For example, if the Windows image is run

nightly, but the database backups are run hourly, then you will have a

perfect set of hourly backups up to the point where the Windows backup is

run. If Windows fails at 11:59 pm, then that entire days’ worth of database

backups has been lost. The rule of thumb, generally, is to put backup files

on a separate drive than the OS. This alleviates the issue outlined in the

preceding, as long as the backup drive is not corrupted.

In the realm of database administration, I think it is best to imagine

that your database server is a stand-alone system. This means to imagine

that there is no SAN, no Windows backup solution, nothing like that at all.

You must be able to manage the entire universe of your data as it pertains

4

to your server. What does this entail, exactly? That’s what this book will

address; how to back up and restore your most important asset—the data

you are responsible for.

Note We will also briefly cover data storage techniques in this book,
although that will not be a main focus. This is because, although we
will highlight specific techniques for storage, it is ultimately your
decision whether or not to implement storage techniques outside of
what is available from your local file system.

 What Is a Full Backup?
A full backup is the entirety of the data within a database from the point

in time that the backup was run. Part of the transaction log is also backed

up in a full backup; this is done so a successful restore can eventually be

run using the backed-up data. A backup can be saved to local disk, an

available network share, or even in Windows Azure blob storage (if you’re

running SQL Server 2012 or later). The full backup type provides the

starting point for a full restore, and also the starting point for a differential

restore (covered in Chapter 6) and a transaction log restore (covered in

Chapter 7). In other words, without a full backup, neither a differential nor

a transaction log backup can be successfully restored.

In my first book, Practical Maintenance Plans in SQL Server (available

from Apress), I briefly discussed the concept of backups in Chapter 1, titled

“Backing Up a Database.” In that chapter, I went over recovery models and

backup types, and then explained how to set up the maintenance task to

perform these jobs automatically. For the purpose of this book, I don’t

think we need to go over the job creation part, but we will go over recovery

models and backup types.

ChapTer 1 Full BaCkups

5

 Recovery Models
A recovery model is how SQL Server is told to recover data. Figure 1-1

shows where to look to find the recovery model configuration area. This is

found by right-clicking an existing database and choosing Properties, then

selecting Options from the left menu. In the example shown, I have chosen

to create a new database, so the screen you see in the figure is the New

Database screen.

I am going to name this database backrecTestDB, and this is the

database that we will be using throughout this book. Obviously, you will

have your own databases that you will maintain separately, but this is what

we will use as a reference.

Figure 1-1. Recovery models location in New Database screen

ChapTer 1 Full BaCkups

6

Notice that we are on the General tab, as shown in the left pane of

the preceding figure. Click Options, and you should see what is shown in

Figure 1-2.

The initial interface for the Options area is now visible.

Note recall that I am using sQl server Management studio (ssMs),
which is available as a separate download from Microsoft, to administer
my sQl server 2016 instance.

At the very top of this screen, the second option down is for recovery

model. You have three options for recovery models. Those options are as

follows:

• Full: This option lets the database recover to nearly any

point in time, and is the clear choice of many DBAs.

Figure 1-2. Options

ChapTer 1 Full BaCkups

7

• Bulk-logged: Similar to full recovery, but this scenario

allows for logging to be minimized for bulk operations

(copying, specifically).

• Simple: This is the choice for smaller, non–mission-

critical databases. It does not allow for point-in-time

restores like full, or bulk operations like bulk-logged.

It simply allows for recovery using the last backup.

We are going to keep the full option selected here, because we want to

be able to look at point-in-time restores later on in this book.

 Backup Types
SQL Server has three unique backup types, which are discussed in later

chapters. They each perform differently, and they can either work together

or separately to provide a backup solution for your data. The backup types

that are available to you are also entirely dependent upon the recovery

model used for your database. We will get more into this shortly. For now,

let’s take a look at Listing 1-1, which outlines the different backup types.

Listing 1-1. Backup Types

• Full backups

• A full backup will back up the entire database,

which includes the transaction log. Using this

method, anything can be restored up to the point in

time when the backup was run.

• Differential backups

• A differential backup contains any data not backed

up since the last full backup.

ChapTer 1 Full BaCkups

8

• Transaction log backups

• A transaction log backup will contain the individual

transactions that affect the current state of the

database since the last backup.

There are a few things to note about these different yet similar backup

types.

First, a full backup is different from a transaction log backup, in that

the full backup type has the entirety of the actual data within the database,

while the transaction log backup only has the individual transactions

through time that affected the data contained within the database.

Second, a differential backup is useless without the last full backup.

The differential backup is applied to the full backup, which creates the

point-in-time restore for that particular differential backup set. One

important thing to remember about differential backups is that they do not

contain the transaction log, so any data beyond the differential backup will

not be restored without restoring the transaction log backups.

Finally, it is important to remember that when backing up the

transaction log, this releases a large chunk of memory back to the

operating system, and keeps your log running smoothly. If the transaction

log were never backed up, it is possible that you could have one log file that

is the entire size of the hard drive the log is located on. For this reason, we

can easily see that backing up the transaction log is obviously important.

 How Do Recovery Models Affect the Backup
Types?
Recovery models and backup types are very closely related, meaning that

the choice of recovery model will determine your available options for

backup types. Consider the information shown in Table 1-1.

ChapTer 1 Full BaCkups

9

Table 1-1. Recovery Models and Backup Types

Full Recovery Model Bulk-Logged
Recovery Model

Simple Recovery
Model

Backup Types Full

Differential

Transaction log

Full

Differential

Transaction log

Full

Data Restore specific point in time end of any backup end of any backup

Data Loss Next to none Next to none since last backup

The essence here is that the full and bulk-logged recovery models

can use any backup type, while the simple recovery model can only use

a full backup type. The reason for this is because the simple recovery

model does not support transaction log backups, which are necessary for

differential backups. This obviously negates the other two backup types,

leaving only the full backup type for the simple recovery model.

In terms of data restoration, the full recovery model gives the greatest

level of granularity, while bulk-logged and simple both offer restoration to

the end of any full or differential backup.

Finally, when dealing with data loss, we can see that full and bulk-

logged recovery models offer the lowest possible loss, while simple will

include data loss since the last backup.

 Preparing for a Full Backup
Going back to what we saw in Figure 1-2 earlier, we can see that we have kept

the recovery model at full. The rest of the settings on this page are fine to keep

how they are for now, unless your particular circumstance dictates otherwise.

Since this is a new database, we don’t have any tables that we can

back up yet. Not to worry! Let’s create some dummy data that we can use

for demonstration purposes in showing how to back up data. It is safe

ChapTer 1 Full BaCkups

10

to say that this is going to be different from your environment, because

these tables and data we are going to create are not going to be business

essential.

What we want to do is in four steps:

• Create tables for small bits of data

• Insert dummy data into those tables

• Use the SELECT * INTO statement to insert the data

from the tables into a different table using CROSS JOIN

• Delete the original tables that held the small bits of data

and just keep the master table

To create the tables, use the following script:

CREATE TABLE [fname] (fname [varchar](10));

CREATE TABLE [lname] (lname [varchar](10));

CREATE TABLE [animal] (animal [varchar](10));

CREATE TABLE [language] ([language] [varchar](10));

CREATE TABLE [users1] ([fname] [varchar](10), [lname] [varchar]

(10), [animal] [varchar](10), [language] [varchar](10));

CREATE TABLE [users2] ([fname] [varchar](10), [lname] [varchar]

(10), [animal] [varchar](10), [language] [varchar](10));

Note that we are creating two users tables here. I will get into why I am

doing it like this very shortly.

Next, we want to populate those tables with dummy data. This is fairly

easy, so if you have a preferred method of doing this, or are working from

a backup of regular data, that is perfectly fine. We need to have ten rows of

data in each table in order for this generate a decent set of data, so you can

use the following code, or you can use your own.

ChapTer 1 Full BaCkups

11

INSERT INTO [fname] VALUES ('Bradley');

INSERT INTO [fname] VALUES ('Jessica');

INSERT INTO [fname] VALUES ('Josh');

INSERT INTO [fname] VALUES ('Kaylee');

INSERT INTO [fname] VALUES ('Matthew');

INSERT INTO [fname] VALUES ('Emma');

INSERT INTO [fname] VALUES ('Sommer');

INSERT INTO [fname] VALUES ('Tommy');

INSERT INTO [fname] VALUES ('Emily');

INSERT INTO [fname] VALUES ('Courtney');

INSERT INTO [lname] VALUES ('Beard');

INSERT INTO [lname] VALUES ('Jackson');

INSERT INTO [lname] VALUES ('Joseph');

INSERT INTO [lname] VALUES ('Dun');

INSERT INTO [lname] VALUES ('Hexum');

INSERT INTO [lname] VALUES ('Martinez');

INSERT INTO [lname] VALUES ('Mercury');

INSERT INTO [lname] VALUES ('May');

INSERT INTO [lname] VALUES ('Taylor');

INSERT INTO [lname] VALUES ('Deacon');

INSERT INTO [animal] VALUES ('Cat');

INSERT INTO [animal] VALUES ('Dog');

INSERT INTO [animal] VALUES ('Fish');

INSERT INTO [animal] VALUES ('Horse');

INSERT INTO [animal] VALUES ('Pig');

INSERT INTO [animal] VALUES ('Turtle');

INSERT INTO [animal] VALUES ('Guinea Pig');

INSERT INTO [animal] VALUES ('Hamster');

INSERT INTO [animal] VALUES ('Rat');

INSERT INTO [animal] VALUES ('Mouse');

ChapTer 1 Full BaCkups

12

INSERT INTO [language] VALUES ('English');

INSERT INTO [language] VALUES ('Spanish');

INSERT INTO [language] VALUES ('French');

INSERT INTO [language] VALUES ('Portuguese');

INSERT INTO [language] VALUES ('German');

INSERT INTO [language] VALUES ('Russian');

INSERT INTO [language] VALUES ('Slovakian');

INSERT INTO [language] VALUES ('Afrikaans');

INSERT INTO [language] VALUES ('Hindi');

INSERT INTO [language] VALUES ('Urdu');

That gives us four tables populated with ten rows of data in each table.

Simple math tells us that, with a CROSS JOIN, we will end up with 10,000

records fairly quickly. Yes, we are breaking one of the cardinal rules of

database administration and intentionally creating a Cartesian product,

but it is for the purposes of creating this test data. Surely the DBA overseers

will let it slide just this once.

Now that we have our data, we need to combine it into our users tables

we created earlier. To do this, simply run these statements:

INSERT INTO users1 SELECT * FROM [fname] CROSS JOIN [lname]

CROSS JOIN [animal] CROSS JOIN [language];

INSERT INTO users2 SELECT * FROM [fname] CROSS JOIN [lname]

CROSS JOIN [animal] CROSS JOIN [language];

That will insert 10,000 records into each table.

To clean up (delete) the original tables, run the following code:

DROP TABLE [fname];

DROP TABLE [lname];

DROP TABLE [animal];

DROP TABLE [language];

ChapTer 1 Full BaCkups

13

That leaves us with just the users table left now. The next bit of code is

going to run a WHILE loop 100 times and insert the values of users2 into

users1 during each pass of the loop. The code looks like this:

DECLARE @cnt INT;

SET @cnt = 0;

WHILE @cnt <= 1000

BEGIN

 INSERT INTO users1 SELECT * FROM users2;

 SET @cnt = @cnt + 1;

END;

Basically, we are declaring a variable @cnt, then immediately setting

it to 0. Then we set up our WHILE loop and say that as long as @cnt is less

than or equal to 1000, we want to insert the values of users2 into users1

and then increment our counter. This is going to give us a ton of fake data,

as you will see shortly.

Once that is complete, and it takes a few seconds to run, we need to

verify that we actually have data in there that we can use, so you can easily

get the count of the table by running the following script:

SELECT count(*) as cnt FROM users1;

That should show you that there are 10,020,000 records in the table now.

Note The entire procedure for creating test data is available as a
download with this book, and is titled CreateTestData.sql.

Now that we have a nice, big table to deal with, let’s look at how we

want to set up the full backup of the data.

ChapTer 1 Full BaCkups

14

Right-click the database name, hover over Tasks, and select Back Up, as

shown in Figure 1-3.

Another screen opens which will allow you to manually back up a

database. This screen is fairly important, so let’s go over the features on

each of the screens in this area.

 Back Up Database: General Tab
Initially, the General tab is shown when selecting the Back Up option,

as shown in Figure 1-3. This tab has selections that can be made at the

highest level, with each subsequent tab from the leftmost menu drilling

further into the options with more detail. Figure 1-4 shows the default

settings of the General tab in my database.

Figure 1-3. Location of Back Up option

ChapTer 1 Full BaCkups

15

First, let’s take a look at how our transaction log is running. A full

transaction log is one of those things that will bring a database screeching

to a halt, and the cause may be hard to determine unless you know what to

look for. Periodic backups will keep your database running smoothly, from

the point of view of the transaction log, and will also allow you to provide a

heightened level of data integrity and security, which is never a bad thing.

 Transaction Log Examination

Right-click the database again and select Tasks, then hover over Shrink,

and finally, select the Files option. This is shown in Figure 1-5.

Figure 1-4. General tab

Figure 1-5. Shrink Files option

ChapTer 1 Full BaCkups

16

Initially, you should see what is shown in Figure 1-6.

This page shows us that we can select the file type, the filegroup,

and the file name for our backup. What is important is that this isn’t the

transaction log though; this is for the .mdf file, which is the master data file.

Pull down the File type menu and select Log from the options. The

interface changes slightly and you are then shown what is in Figure 1-7.

Figure 1-6. Shrink File (Data)

ChapTer 1 Full BaCkups

17

Now, we can see that this is the transaction log. This interface tells

us that we have 584MB currently allocated for the transaction log, with

178.11MB available. That means that around 406MB is being used by the

transaction log right now. That’s not enormous, but it does leave only 30%

of the currently allocated space for the transaction log to grow.

At this point, we can do one of two things: we could run a full backup,

which will shrink the transaction log, or we could run a transaction log

backup, which will also obviously back up the transaction log. For the

purpose of this demonstration, I am going to run a full backup on the

database and show what happens to the size of this transaction log.

Figure 1-7. Shrink File (Log)

ChapTer 1 Full BaCkups

18

 Manually Backing Up the Database

Keep the screen shown in Figure 1-7 open for now, but switch back to the

Back Up Database screen last shown in Figure 1-4. Here, we can see that

the full backup type is selected, and the recovery model is set to FULL

as well, with this option unavailable to change. We also have the backup

component option, which lets us choose between backing up the database

or just the files or filegroups. Leave the default option of Database selected

here. Next, we have the option to back up to either disk or URL.

Note The Back up to url option is new in sQl server 2016, and is
specifically for connectivity either to an azure instance or to a remote
url for backup storage.

Note that the Disk option is selected by default, and the default

location is automatically filled in for us here. That’s because, when I

installed SQL Server 2016, I defined the locations for the logs and backups.

Take the time during installation to take care of all that, and it works out

much better for you in the long run. The location specified in the location

window is a valid location, and there is not a backup with that name in

the file location, so this is going to be a brand-new backup; we aren’t

appending to an existing backup, in other words. You could click the Add

button and choose another name, or click the Remove button to clear out

the current option, but we’ll keep it just like it is now and click OK. The

options on the other tabs here aren’t particularly relevant at this point,

but they could be used later on for specific purposes as needed for your

installation.

ChapTer 1 Full BaCkups

19

Once you click OK, a progress bar gives a percent status until we finally

see what is shown in Figure 1-8.

Now, let’s go back to the Shrink File screen we had up a bit ago, as

shown in Figure 1-7. Click the File type menu again, choose Data, and then

choose Log from the same menu again. This basically refreshes the data;

I suppose you could accomplish this same result by closing and reopening

this window. Once the interface refreshes, we can see what is shown in

Figure 1-9.

Figure 1-8. Backup successful

ChapTer 1 Full BaCkups

20

The value for available free space has gone up to 569.27MB, or 97%

available. That means that this single backup operation freed up 67% of

our available space for the transaction log.

 Summary
This chapter walked us through an introduction to full backups, and then

gave a brief demonstration of how to manually run a full backup of a

database.

Figure 1-9. Transaction log shrunk

ChapTer 1 Full BaCkups

21

We can clearly see the advantage that the full backup gives us; not only

does it give us an expected backup solution, but it also gives us a (mostly)

fresh transaction log to work with as well. We saw how a full backup affects

not only the backup being created, but also how it helps maintain the size

of the transaction log so the transaction log doesn’t grow out of control.

If you don’t currently have a backup solution in place in your

environment, these first four chapters will hopefully play an integral and

essential role in your successful implementation of an extremely powerful

and reliable backup system.

ChapTer 1 Full BaCkups

23© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_2

CHAPTER 2

Differential Backups
Setting up a structured, recurring backup does not stop with just a

scheduled full backup. That is only half the battle; to be honest, a third

of the battle. A good backup strategy reduces the overall risk to the data

stored in the database. One of the most effective ways to reduce risk is by

decreasing the total number of “links” in your backup chain (i.e., the total

number of files you have to restore in the case of a disaster). Every file that

gets created during a backup has a chance of being corrupted. If you have

a large number of backups in a restoration, you run a greater risk of having

corrupted data somewhere for that restoration cycle; the longer the chain,

the greater the risk. This is where differential backups enter the backup

strategy.

 What Is a Differential Backup?
A differential backup captures all data residing in the database that has

changed since the last full backup (also known as the differential base) was

taken. Like the full backup, the differential backup contains transaction

log data, and can back up the database as whole or specific files and

filegroups. Unlike the full backup, for a differential backup to successfully

execute, dependencies on other backup types have to be met.

Over the years, I have had a number of coworkers refer to differential

backups synonymously as incremental backups; this is a common

misconception, and one that can cause a DBA some trouble. In general,

24

incremental backups are backups of changed data since the last backup

of any type (full or differential). Differential backups are backups of

changed data since the last base. What is the difference? The word “base,”

in this context, makes all the difference. An incremental backup will back

up any data that changed since the last backup, whether it is a full or an

incremental backup. The differential backup will continue to grab any

data that has changed since the last full backup, regardless of how many

differential backups have run. With this in mind, let’s look at differential

backup dependency.

 Differential Backup Dependency
A differential backup has one primary dependency—a full backup. If a full

backup is not successfully executed before a differential backup, then the

differential backup will fail to execute.

Note The full backup dependency will not be met by the execution
of a COPY_ONLY backup. Only a traditional full backup prior to a
differential backup will work. This is not to say you cannot take a
COPY_ONLY backup once the traditional back is complete, only that
the traditional is required.

 Why Use Differential Backups?
The first question I will usually get asked when I implement a backup

strategy that uses differential backups is, “What is the point of a differential

when you have transactional backups? Isn’t it just using more disk space?”

This question often comes from someone on the infrastructure team;

typically, a SAN administrator. I am not saying this to give them a hard

time, as it is their job to ask these questions; I mention this to demonstrate

ChaPTer 2 DiffereNTiaL BaCkuPs

25

that you will get questioned at some point on your backup strategy and

why you went down the path you did.

Again, though, the question is why use differentials and not rely

completely on transaction log backups. The answer can be summed up in

a single word… risk.

It is my belief that the single most important responsibility a DBA

has is protecting the data. Sure, performance, security, and maintenance

are all very important and should not be overlooked. Nevertheless,

the integrity and recoverability of data are paramount to any modern

organization’s success. This is where differentials offer their greatest value,

risk mitigation for data recovery. I have stressed this point throughout

each of my books, simply because there is no greater assignment that we

have as DBA; without proper adherence to backup and restore practices,

our data is completely vulnerable and exposed. This is not an acceptable

methodology. To mitigate that risk, we need to prepare for the inevitable,

and the best way to do that is to have a solid backup and Restore plan in

place.

Differential backups reduce risk by simplifying the backup chain.

Every time you execute a differential backup, you remove the need for all

transaction log backups taken between the time the last full was taken and

the time the differential was taken. Every file that is required for a restore in

order to bring a database back online is another opportunity for something

to go wrong.

 Scenario Without Differential Backups
Let’s review a scenario where you do not have differential backups in place.

In this scenario, you are a DBA in an environment that has a maximum

data loss acceptance of 30 minutes. The easiest way to handle this is to set

up a transactional log backup (covered in detail in Chapter 3) that occurs

every 30 minutes after a nightly full, as shown in Figure 2-1.

ChaPTer 2 DiffereNTiaL BaCkuPs

26

Continuing with the preceding scenario, imagine the database server

crashed at 11:47 pm after the last transaction log backup completed for the

day. After a reboot, the SQL instance is up and running, but you find the

database is in an unrecoverable state and the only option left is to recover the

database from a backup. Easy enough, right? You first restore the full backup

and begin restoring the 47 transaction log backup files. But you hit an error

at file number 27, the 1:31 pm backup; it is corrupt and will not restore. This

results in more than ten hours of data that is unrecoverable and now lost.

 Scenario Running Differential Backups
Now let’s review a scenario where you have differential backups in place,

using the same scenario as before. With this same scenario in mind,

and using differential backups, you setup a transactional log backup

Full Backup
• 12:01AM

T-Log
• 12:31AM

T-Log
• 1:01AM

Repeat
Cycle

T-Log
• 11:31PM

Figure 2-1. Backup strategy without differential backups

ChaPTer 2 DiffereNTiaL BaCkuPs

27

(again, covered in detail in Chapter 3) that occurs every 30 minutes after a

nightly full. In addition, you add in a differential backup that occurs every

three hours, as shown in Figure 2-2.

Following the same scenario, the database server crashed at 11:47

pm after the last transaction log backup completed for the day. After a

reboot, the SQL instance is up and running but you find the database is in

an unrecoverable state and the only option left is to recover the database

from a backup. This time, your job is much easier, you first restore the full

backup, then the differential taken at 9:01 pm, and followed by only five

transaction log backup files. The outcome results in a completely restored

database with only two minutes of lost data. This is due to being able to

skip the entire transaction log file prior to the 9:01 pm differential.

Full Backup
•12:01AM

T-Log Backups
•12:15AM -

2:45AM

Diff Backup
•3:01AM

T-Log Backups
•3:15AM - 5:45AM

Diff Backup
•6:01AM

Repeat Cycle

T-Log Backup
•9:15PM -

11:45PM

Figure 2-2. Backup strategy with differential backups

ChaPTer 2 DiffereNTiaL BaCkuPs

28

This means that the corrupted data was left out, and we are left with a fresh

copy of the database, and more importantly, that the database is free from

corruption with a much smaller amount of data loss.

Note We will cover restoring a database in detail in Chapters 5, 6,
and 7.

 Adding Differential Backups to a Backup
Solution
Adding differential backups to an existing backup solution is as easy

as adding a single additional step to an existing backup solution. The

frequency of the differential backup will depend on a number of factors;

examples of such factors include how much your database relies on

transactional data, whether these transactions contain changes to data,

the frequency of your transaction log backups, and the frequency of your

full backups. As you can see, this is a fairly complex topic, and will be

covered in Part III of this book; however, for the sake of simplicity, we will

use the scenarios in the previous section as the basis for sample backup

strategies highlighting the difference between having differential backups

in a backup solution. Table 2-1 shows the breakdown of a simple backup

strategy without differentials, and Table 2-2 shows the same time frame

with differentials.

Table 2-1. Sample Backup Strategy without Differentials

Start Time Frequency Total Files (24 hours)

full Backup every 24 hours every 24 hours 1

T-Log Backup 12:30 am every 30 minutes 47

ChaPTer 2 DiffereNTiaL BaCkuPs

29

As I stressed previously, adding differential backups to a backup

strategy reduces risk at the expense of disk space. Let’s look at some file

and data loss comparisons using the two preceding solutions.

Table 2-3 shows a comparison of the two basic backup solutions

detailed previously. This figure compares the number of files required

to restore the database to the latest point in time possible, in addition to

giving the amount of data loss in minutes.

Table 2-2. Sample Backup Strategy with Differentials

Start Time Frequency Total Files (24 hours)

full Backup every 24 hours every 24 hours 1

Diff Backup 3:01 am every 3 hours 7

T-Log Backup 12:15 am every 30 minutes 48

Table 2-3. Required Files for Restore

Differential Backups without Differentials

Outage Time Full File(s) Diff File(s) T-Log File(s) Total Files Data Loss (m)

2:00 am 1 0 3 4 29

6:00 am 1 0 11 12 29

12:30 pm 1 0 24 25 29

11:57 pm 1 0 47 48 26

Differential Backups with Differentials

Outage Time Full File(s) Diff File(s) T-Log File(s) Total Files Data Loss (m)

2:00 am 1 0 4 5 15

6:00 am 1 1 6 8 15

12:30 pm 1 1 1 3 15

11:57 pm 1 1 6 8 12

ChaPTer 2 DiffereNTiaL BaCkuPs

30

As you can see, by adding differentials into the backup solution,

the number of files required will never exceed eight (one full, one diff,

and six transaction logs). So an outage late in the day would have an

83% reduction in require files for a restore, reducing your overall risk

significantly.

It is important to note that if one of the differential backups becomes

corrupted at this point, we can still use the transaction logs to restore to the

same point in time.

 Preparing for a Differential Backup
Continuing to use the database we created in Chapter 1, backrecTestDB,

lets prepare for a differential backup. Because this is a test database and

has had no data change for quite a while, kicking off a differential backup

right now will have very little effect. It would create a 1KB backup file that

could be restored; however, for testing purposes, that is not very useful. So

instead, let’s create a quick script that creates a new table and copies a few

rows into it.

The new table can be created by running the following script:

SELECT TOP 500000 * INTO [users_DiffTestData]

FROM [users1]

When the script completes, you should see the following output:

(500000 row(s) affected)

Finally, the last thing we want to do is validate that the table we created

is correct. Of course, we could have specified the database in the SELECT

INTO script; however, for this test, I would rather us check by hand.

In the object viewer panel, right-click the backrecTestDB and select

Refresh. Next, expand the database, followed by expanding tables. You

should see three tables listed, as shown in Figure 2-3.

ChaPTer 2 DiffereNTiaL BaCkuPs

31

Note The previous step assumes you followed the steps in
Chapter 1: created the test database, built the tables and inserted
data, and took a full backup. if any of those steps were skipped,
you must turn back to Chapter 1 and complete them prior to running
the preceding script.

Once this script is complete and we have validated that the new table

exists, we are ready to kick off a differential backup.

 Running a Differential Backup
Like most things in Microsoft’s world, there are numerous ways you can

execute a differential backup. If the backup was part of your backup strategy,

the execution of the differential backup would be part of the solution (e.g.,

part of the SQL maintenance plan or a separate stand-alone SQL Server

Agent job). If you were manually executing the backup, you could fire it off

Figure 2-3. Object Explorer showing tables

ChaPTer 2 DiffereNTiaL BaCkuPs

32

from within the GUI of SQL Server Management Studio (SSMS), use T-SQL

and script it out, or even use PowerShell to start the backup.

In this chapter, I am going to walk you through using the GUI in SSMS

and using T-SQL. The end result will be the same in both cases: we will

end up with a differential backup that can be restored to the database

successfully. Using PowerShell here would be a great idea; however, it is a

topic of its own and deserves far more attention than I can give it here.

 Taking a Backup via the GUI in SSMS
Taking a differential backup with SSMS via the GUI is identical to taking

a full backup. Because of this, I will not go over all the options in the GUI;

instead I will cover just the differences required to change the backup from

a full to a differential.

A differential backup can be completed in six easy steps:

• Right-click backrecTestDB

• Hover over Tasks and click Back Up…

• On the General screen click, the Backup Type drop-

down and select Differential

• Under Destination, click Remove, then Add

• In the File Name text box, enter “E:\SQL Server\

Backup\backrecTestDB_diff.bak” and click OK

• Back on the General tab, click OK

Figure 2-4 shows the backup General tab configured for a differential

backup set with the correct configuration.

ChaPTer 2 DiffereNTiaL BaCkuPs

33

Once the final OK is pressed, you will see a progress percentage on

the bottom left of the “Back Up Database” window. Because we only

duplicated 500,000 rows into the new table, the backup will complete in

a few seconds. A completion window will pop up, confirming that the

backup was successful, as in Figure 2-5.

Figure 2-4. Differential backup settings

Figure 2-5. Backup complete window

ChaPTer 2 DiffereNTiaL BaCkuPs

34

 Validating a Backup via the GUI in SSMS
Validating the backup in SSMS via the GUI can be accomplished in

numerous places. The easiest place to see your active backups is in the

Restore Database screen. As this chapter is intended to review executing

differential backups and not restoring them, I am only going to skim over

how to check the backup status of a database. We will cover restoring

databases in detail in Part II of this book.

To access the Restore Database screen, you will follow similar steps

you would use to get into the Backup screen.

• Right-click backrecTestDB

• Hover over Tasks, followed by Restore, and click

Database

Once the Restore Database screen loads, look at the Restore Plan

window: you should see two database backups. Under the Type column,

you should see a backup listed as a full and differential, as shown in

Figure 2-6.

ChaPTer 2 DiffereNTiaL BaCkuPs

35

This can be considered “proof of life” that the backup proceeded as

intended, and is ready for recovery from this interface. Again, we will get

into the restoring aspect of this operation later in this book. For now, you

can be assured that the backups are ready to be restored though.

 Taking a Differential Backup via T-SQL
Executing a differential backup via T-SQL is quite easy. There are a number

of arguments that can be passed with the script; however, for this example,

we are going to keep this script simple.

Figure 2-6. Restore Database window

ChaPTer 2 DiffereNTiaL BaCkuPs

36

In SQL Studio Manager, run the following script:

BACKUP DATABASE [backrecTestDB]

TO DISK = N'E:\SQL Server\Backup\backrecTestDB_diff.bak'

WITH DIFFERENTIAL

If you are familiar with the BACKUP DATABASE command, you

will notice that there is only one difference for a differential backup, the

addition of “WITH DIFFERENTIAL.”

When the script completes, you will see an output similar to this:

Processed 52688 pages for database 'backrecTestDB',

file 'backrecTestDB' on file 1.

Processed 2 pages for database 'backrecTestDB',

file 'backrecTestDB_log' on file 1.

BACKUP DATABASE WITH DIFFERENTIAL successfully processed

52690 pages in 9.620 seconds (42.790 MB/sec).

That’s it! You now have a differential backup of the backrecTestDB.

 Summary
This chapter walked us though the basics of differential backups and why

they are important. It showed us how differential backups can reduce

overall risk to data recovery by reducing the number of files required for a

database recovery.

Chapter 3 will cover transaction logs, the last backup type. Chapter 4

will walk you through setting up a complete backup solution and review

in detail the applicable industry standards or best practices regarding

backups.

ChaPTer 2 DiffereNTiaL BaCkuPs

37

After Chapter 4 is complete, Part I will be complete as well. At that

point, you should have a cursory understanding of how the different

parts of the backup work, together and separately. We will then use that

knowledge to build the second part of the backup/restore procedure in

Part II, where we focus on restoring data that has been backed up. Finally,

Part III will have us tie the parts together into one interface, and then

automate it using SQL Server Agent.

ChaPTer 2 DiffereNTiaL BaCkuPs

39© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_3

CHAPTER 3

Transaction Log
Backups
In this chapter, we will be focusing on the different techniques behind

backing up transaction logs. This is the last piece of the puzzle as far

as a complete backup solution, which consists of full, differential, and

transaction log backups. This particular piece is important because,

without transaction log backups, there can be no point-in-time

restorations. In fact, there can be no restorations beyond what was in the

last differential backup, and any data committed to the database since the

last differential backup will be permanently lost since this data is resident

only in the transaction log. For this reason, transaction logs are often

viewed as the single most important piece of disaster recovery since they

provide the missing pieces of data since the last differential backup.

Without the transaction log backups, we would not be able to perform

any backups outside of full or differential backups (not taking into account

the backup types not discussed in this book, including file and filegroup

backups, mirror backups, partial backups, and copy-only backups).

While this may not seem too bad, it is important to remember that the

transaction log must be backed up regularly in order to keep the database

running optimally.

40

 What Is a Transaction Log?
The transaction log is a file that contains a log of all of the changed or

updated data from all database transactions. Every time the database

state changes because of a modification to the data, the interaction with

the database is kept in a log. The transactions in the log are written in the

order they are received, so the transactions are all sequential. With this

in mind, it is possible to “rewind” the state of the database transaction by

transaction according to a specific timeframe, until reaching the desired

state. This is known as a point-in-time restore.

Note A point-in-time restore can be extremely time-consuming, but
the advantage is that the granularity of the transaction log is such
that individual transactions can be targeted to achieve the desired
results.

Transaction logs also have the unique characteristic of growing

extremely large over a relatively short period of time. For example, once

a differential backup is run, that backup does not continue to grow.

Similarly, a transaction log will continue to grow until it is backed up.

These transaction log backups will then continue in the specified backup

intervals for as long as there is disk space or until they are turned off.

Each of these transaction logs will be able to restore to the last differential

backup, and they cannot restore to any other backup. For this reason, all of

the backups—full, differential, and transaction log—must be functioning

100% correctly in order for there to be the minimal amount of data loss.

Without verifying that our transaction log backups are running correctly,

the transaction log, over time, will eventually take over the entire disk.

Obviously, allowing a transaction log to take over the entirety of a storage

volume is not what anyone would call an ideal solution, and for that

ChApter 3 trAnsACtion Log BACkups

41

reason, we need to ensure that our backups are running smoothly and

correctly. To help facilitate that goal, the next section will show us how to

properly view the status of the transaction logs resident in SQL Server.

 Viewing Transaction Log Status
There are a few different ways that you can view the status, or size, of the

transaction log for each database in your system. The most common way

of viewing the status is to run a simple query. Open up a new query in

SSMS and type in this query:

DBCC SQLPERF(LOGSPACE);

Running that query will return what is shown in Figure 3-1.

The columns returned from this query are as follows:

• Database Name: the name of the database being

analyzed

• Log Size (MB): the size of the transaction log

Figure 3-1. SQLPERF results

ChApter 3 trAnsACtion Log BACkups

42

• Log Space Used (%): percentage of allocated space

being used by the log

• Status: this column always returns 0

Another way to view the current size of the transaction log is to right-

click the database name in SSMS and select Properties, and then choose

Files from the left menu. A screen opens, which is shown in Figure 3-2.

From here, we can see that the Initial Size column is the same size

as the value from the query in Figure 3-1. This is because I have not yet

backed up my transaction log, so the initial size is shown to be the current

value. Once I back up the log, I will be able to go back to this screen and

see a much smaller initial value.

Consequently, we could also just look in the file system for an

approximation of size for the transaction log. Simply navigate to where

you are saving your logs (E:\SQL Server\Logs for me) and you should see

something similar to what is shown in Figure 3-3.

Figure 3-2. Files options

ChApter 3 trAnsACtion Log BACkups

43

Like I said, that’s more of an approximation because there is some

overhead in the file size, as you can see.

Recall that the purpose of a backup, whether a full, differential, or

transaction log, is to be able to restore data to a previous state. At its

most basic level, a proper backup strategy is accomplished through the

following steps:

• Planning a backup strategy

• Implementing the backup strategy

• Verifying the backup strategy

In other words, first you must plan the strategy for the backup by

determining what level of data availability you would like. Then, you

must implement that strategy in SQL Server. Finally, you must verify that

the backup strategy is functioning correctly and that the backups can be

restored as expected in the case of emergency.

In the case of transaction log backups, the principle of verification

becomes highlighted somewhat more than in full or differential backups,

because the transaction log is the key to disaster recovery. For this reason,

I personally tend to focus slightly more on transaction logs than on full

or differential backups. Not to diminish the importance of the full or

differential backups at all, but the transaction log, being the literal log of

transactions in the database, seems much more important in my mind.

Figure 3-3. File system view

ChApter 3 trAnsACtion Log BACkups

44

 Backing Up a Transaction Log
As to be expected, there are a few ways that we can run backups of the

transaction log: either by writing a custom SQL script, or by using the

familiar SSMS interface. In this section, I will detail the different pieces

of each of these two scenarios, and leave it as an exercise to the student

to decide which method works for their particular application. What is

important to remember is that these techniques can be used either as part

of a maintenance plan or as bespoke methods to provide a heightened

level of data security. I will always recommend using SQL Server Agent to

manage your backups through the use of a properly planned and managed

maintenance plan though.

Figure 3-2 showed the initial size of the transaction log as 584MB. After

a regularly scheduled transaction log backup, the initial size is now 24MB,

as shown in Figure 3-4.

Let’s look at the different ways of getting our transaction log backed up.

Figure 3-4. Initial size changed

ChApter 3 trAnsACtion Log BACkups

45

 Transaction Log Backups via Script
If we didn’t have a backup scheduled in a maintenance plan, or even if we

did and we just wanted another backup of the transaction log, we could

have run a backup of the transaction log manually by using the following

script:

BACKUP LOG backrecTestDB

TO DISK = 'E:\SQL Server\Logs\backrecTestDB.trn'

Just fill in your database name in the first and last parts of that script,

and you can issue your own backup command manually. This script is

particularly useful if you ever come across an issue where the transaction

log has somehow filled up before it has been scheduled to back up

automatically.

With this script, there are attributes that can be added after TO DISK.

Those are

• WITH PASSWORD = 'password'

• Replace password with a password of your choice.

This password must be entered in order to restore

this backup.

• WITH STATS = X

• Replace X with an integer of your choice. This is the

interval in percent that has been completed. For

example, WITH STATS = 5 will show progress after

every 5% of completion.

• WITH DESCRIPTION = 'text'

• Replace text with whatever you want the

description to be.

ChApter 3 trAnsACtion Log BACkups

46

 Transaction Log Backups via SSMS
Backing up the transaction log via SSMS is a bit more involved of a process,

but ultimately gives us the same result. There isn’t a major fundamental

difference in these methods, since they accomplish the same goal of a

transaction log backup, so it really is going to come down to what you

prefer and what is ideal for your environment according to any business

rules you have in place.

To start a transaction log backup in SSMS, first you need to right-click

the database name and hover on Tasks, and drill down into the Backup

option, as shown in Figure 3-5.

The initial screen, as shown in Figure 3-6, is titled General. There are

two more options on this page in the left-hand menu titled Media Options

and Backup Options. Let’s take a quick look at these menu options and

what choices they have within their respective areas.

Figure 3-5. Back Up option

ChApter 3 trAnsACtion Log BACkups

47

 Back Up Database—General

Selecting this menu option opens up the General page of the Back Up

Database window, as shown in Figure 3-6.

This interface allows us to define the various “general” pieces of the

puzzle for transaction log backups. The options available here are

• Source

• Database: This option allows you to choose which

database you would like to back up from your

available databases.

Figure 3-6. General window

ChApter 3 trAnsACtion Log BACkups

48

• Recovery model: This option will always default to

the recovery model currently in use by the selected

database. To test this, select the master database

and you will see the recovery model change from

FULL to SIMPLE.

• Backup type: This option allows you to choose what

you want to back up. You can choose from a full,

differential, or transaction log backup when the

recovery model is set to FULL, or whichever backup

types relate to your particular recovery model. You

also have the copy-only backup check box here.

What is this? A copy-only backup is useful when you

want a backup of the data in the database, but you

don’t want to interrupt the normal backup schedule

and you also don’t want to use the latest backup; it

may be a differential backup, for example, and you

don’t want to take the time to run a full and then

the differential. This option is particularly useful

when you want to have a backup of current data for

the developers to use in the development network.

Think of it as an out-of- sequence complete backup.

• Backup component

• Database

• Files and filegroups

• Destination

• Back up to: The options in this area are currently

disk or URL. Select the disk option to save the

backup in a physical drive somewhere on your

connected network, and use the URL option to save

ChApter 3 trAnsACtion Log BACkups

49

to an online storage system or an Azure instance.

Choosing one of these options gives you the ability

to select the location by clicking the Add or Remove

buttons on the bottom right-hand side of this

window.

For this example, we want to choose transaction log from the Backup

type drop-down menu before moving to the Media Options submenu. The

final state of the interface is shown in Figure 3-7.

Figure 3-7. General window, updated

ChApter 3 trAnsACtion Log BACkups

50

 Back Up Database—Media Options

Choosing this option will show the following interface, as shown in

Figure 3-8.

This screen lets you choose the options that deal with how the physical

storage of the backup is to be handled. Included in this screen are the

following options:

• Overwrite media

• Back up to the existing media set: This option lets

you add a backup to an existing backup, which will

then let you decide which backup want to restore,

in the case of restoration.

Figure 3-8. Media Options window

ChApter 3 trAnsACtion Log BACkups

51

• Append to the existing backup set: If you

want to add it to the set as mentioned in the

preceding, select this option.

• Overwrite all existing backup sets: If you would

rather overwrite the selected backup set with

the new backup you are about to run, select this

option.

• Check media set name and backup set

expiration: This isn’t necessary, and isn’t used

often in my experience, but it can be selected if

you want to verify the name and expiration of

the backup set.

• Media set name

• Back up to a new media set, and erase all existing

backup sets: This is different from the previous

option. The previous option would back up to the

existing backup set; this option lets you create an

entirely new backup set, and then save the backup

to that backup set. Also, this option deletes any

previous backup sets, so use this option carefully.

• New media set name: The name of the new

backup set.

• New media set description: An optional

description of the backup set.

• Reliability

• Verify backup when finished

• Perform checksum before writing to media

• Continue on error

ChApter 3 trAnsACtion Log BACkups

52

• Transaction log

• Truncate the transaction log

• Back up the tail of the log, and leave the database in

the restoring state

• Tape drive

• Unload the tape after backup

• Rewind the tape before unloading

Let’s stop for a moment and go over the differences between the two

transaction log options just introduced. When referencing the backup

of a transaction log, two things are important: the transaction log can be

truncated, or the tail of the transaction log can be backed up. So what’s the

difference?

The first option, Truncate the transaction log, deals specifically with

truncating the log and that’s it. Truncating the transaction log does not

reduce the size of the physical transaction log file. This concept seemed

counterintuitive to me at first, but then I realized that in order to reduce

the size of the log file, you have to shrink the log file. Truncation simply

removes the parts of the log file that aren’t being used; shrinking the log

file is what actually makes the log smaller. Also important to remember

is that truncation automatically happens after a checkpoint (in the

simple recovery model) and after a log backup (in the full or bulk-logged

recovery model). This means that truncation will automatically happen

as part of the regular backup procedure, if a procedure has been properly

established. If a procedure has not been properly established, then

your transaction log will never be truncated (unless manually) and will

eventually grow to the entire size of the storage media.

The second option, Back up the tail of the log, and leave the database

in the restoring state, is the more robust and useful of the two options.

This option allows you to back up the latest transactions that haven’t been

ChApter 3 trAnsACtion Log BACkups

53

backed up, and then leave the database ready to immediately restore,

if necessary. This is known as the tail-log backup.

For the purpose of this example, make sure that this first option,

Truncate the transaction log, is selected, along with Verify backup when

finished.

The final interface is shown in Figure 3-9.

 Back Up Database—Backup Options

Choosing this option will show the following interface, as shown in

Figure 3-10.

Figure 3-9. Media Options window, updated

ChApter 3 trAnsACtion Log BACkups

54

This screen lets you define the actual criteria of the media sets defined

in the previous menu option. The options on this screen are

• Backup set

• Name: The name of the backup set.

• Description: The optional description of the

backup set.

• Backup set will expire:

• After: The number of days that the backup will

stay “fresh”; after this value has passed, the

backup expires and is no longer valid.

• On: The date that the data expires.

Figure 3-10. Backup Options

ChApter 3 trAnsACtion Log BACkups

55

• Compression

• Set backup compression: If you want to compress

the backup, choose this option. Compression is

not necessary in all cases, but is generally a good

idea just to save on space constraints when you

are dealing with very large databases. Note that

compression is only available on SQL Server 2016

Enterprise, Standard, and Developer versions.

• Encryption

• Encrypt backup

• Algorithm

• Certificate or asymmetric key

We aren’t going to change anything on this screen, since these

default options are what we need. Note that the Encryption option is only

available when the Back up to a new media set option is selected in the

Media Options submenu. This is also explained on the actual interface

shown in Figure 3-8.

Once you get to this final screen and are ready to begin your backup,

click the OK button. Hopefully, you will see a window which opens after a

very short time and explains that the backup was successful. This window

is shown in Figure 3-11.

Figure 3-11. Backup successful

ChApter 3 trAnsACtion Log BACkups

56

When I view the properties on the created backup file, I see what is

shown in Figure 3-12.

The fields I want to check are the Created and Modified fields. Created

shows that the file was created 50 minutes ago; that is correct, because the

time I ran this backup was 11:50 am, and the log was created at 11:00 am

as part of my regular backup sequence. It was modified 3 minutes ago,

which was when the backed-up log was added to the current backup set.

We could also look at the size of the backup, and estimate that it should

be roughly twice as big since it is nearly time for the automated backup

sequence to run.

At this point, we can assume that the transaction log has been safely

and correctly backed up. Now, if something were to happen to the

database and we need to restore, we can at least restore to this point,

considering that we have the differential and full backups. From a

transaction log point of view, we are all set up though.

Figure 3-12. Transaction log properties

ChApter 3 trAnsACtion Log BACkups

57

 Summary
In this chapter, we learned a bit about what transaction logs are, how they

work, how they relate to the database, and how to actually back them up

from script and from a GUI. In the next chapter, I will tie these first three

chapters together into a complete solution for backing up a database.

ChApter 3 trAnsACtion Log BACkups

59© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_4

CHAPTER 4

Backup Solution
Examples
This chapter is going to serve as the culmination of Chapter 1 (on full

backups), Chapter 2 (on differential backups), and Chapter 3 (on

transaction log backups). We will first get into the creation of a sustainable

maintenance plan to manage our backups all together in one main area

using a set schedule, as opposed to manually running backups or having

full, differential, or transaction log backups running at different times, and

then we will run that plan and review.

 Setting Up the Maintenance Plan
In order to automate the backups, we need to have SQL Server Agent

aware of the routines that need to be run, and when to run them. This is

accomplished through the use of maintenance plans. Every aspect of an

automated backup plan can be configured within a maintenance plan, so

let’s step through the various inner workings of a solid backup plan.

 Full Backup Configuration
To start, go to SSMS and expand the Management node. Next, right- click

Maintenance Plans and choose Maintenance Plan Wizard. The first

interface we see is titled Select Plan Properties. Enter a name of Backup

60

Maintenance Plan in the Name box, and a brief description as well. Click

the radio button for Separate schedules for each task also. Figure 4-1 shows

what you should see. When you are ready, click Next to continue.

The next screen lets us select which maintenance tasks we want to

run in this plan. We want to choose the three tasks related to backups:

specifically, Back Up Database (Full), Back Up Database (Differential), and

Back Up Database (Transaction Log). These selections are shown as part of

Figure 4-2.

Figure 4-1. Select Plan Properties

Chapter 4 BaCkup Solution exampleS

61

Now, click Next and we will choose the order of the three parts of the

backup, as shown in Figure 4-3. Since we are going to be executing these

on different schedules and not chaining them together in the same plan

(i.e., we are not going to run all three at the same time under the heading

of full, differential, or transaction log), we can bypass this page. Click the

Next button when you are ready to proceed.

Figure 4-2. Select Maintenance Tasks

Chapter 4 BaCkup Solution exampleS

62

Because we left the default order in place on the previous screen, the

first interface that comes up is the Define Back Up Database (Full) Task

screen. There are three tabs on this screen titled General, Destination,

and Options, with the default screen being General. Figure 4-4 shows this

initial interface.

Figure 4-3. Select Maintenance Task

Chapter 4 BaCkup Solution exampleS

63

Pull down the Database(s) menu and select the databases you would

like to back up. It can be any database you like, as long as it has been set up

with the full recovery model. Once a database is selected, Figure 4-5 shows

what should be seen in the main screen.

Figure 4-4. Define Back Up Database (Full) Task, General tab

Chapter 4 BaCkup Solution exampleS

64

Note that the Database radio button is now selected. This is because

a database has been detected and is now the subject of this task.

Consequently, you could also choose the Files and filegroups radio button

if you want to run backups of individual files.

On this screen, there is also an option labeled Back up to: that is new

for SQL Server 2016. Previously, we did not have the option to back up to

a URL, but we do now, thanks to the innovations that Microsoft has made

with the integration of SQL Server into cloud-based infrastructure such as

Microsoft Azure. Getting into the specifics of Azure is out of the scope of

Figure 4-5. Define Back Up Database (Full) Task, General tab
(updated)

Chapter 4 BaCkup Solution exampleS

65

this book, but this is a fantastic addition to an already powerful platform.

For most purposes, this can be kept at Disk, although it can change for

your particular situation.

The bottom of this screen has the Schedule option. We won’t worry

about this until we have set all of the options in the three different tabs

first, so don’t worry about that just yet. Click the Destination tab when you

are ready to continue.

Figure 4-6 shows the initial view of the Destination tab. This tab lets us

define where the backups should be stored.

Figure 4-6. Define Back Up Database (Full) Task, Destination tab

Chapter 4 BaCkup Solution exampleS

66

It is important to note that this interface changes depending on the

selection of the Back up to: field in the General tab.

Notice the radio button labeled Create a backup file for every database.

Since we are using this specifically for configuring the setting for a full

backup of the database, click the check box under this option for Create a

sub-directory for each database. This means that, for every database you

choose to back up, those backups are going to be kept in a directory with

the name of the database as the name of the directory.

When you’re ready to move on, click the Options tab. Figure 4-7 will be

what you see next.

Figure 4-7. Define Back Up Database (Full) Task, Options tab

Chapter 4 BaCkup Solution exampleS

67

This is where we can set the other various settings for the task. From

the figure, you can see that we have options for compression, backup

expiration, and encryption. For this demonstration, we are going to keep

these options just as they are without compression or encryption. The only

thing I want to change on this screen is to check the check box for Verify

backup integrity. This isn’t 100% necessary if your database has already

had integrity checks run against it, but just in case, I want to make sure that

this option is selected. Better safe than sorry, especially when you are on

the receiving end of a failed backup that might have been avoided if this

option were selected.

At the bottom of the screen, click the Change… button to set up the

schedule for this task.

Let’s take a minute and define what our backup schedule should

look like and when it should run. Let’s assume that we want our backups to

run in a 24-hour window, so there is minimal interruption of data.

If the full backup is set at midnight, then the first differential would be

set at midnight also, followed by the first transaction log backup as well.

Then every six hours, a new differential backup will run. Inside of those,

transaction log backups will run every hour. Table 4-1 is a fairly accurate

representation of the time block I am describing.

Table 4-1. 24-Hour Backup Schedule Example

Time Full? Differential? Transaction Log?

12:00 am x x x

1:00 am x

2:00 am x

3:00 am x

4:00 am x

5:00 am x

(continued)

Chapter 4 BaCkup Solution exampleS

68

Time Full? Differential? Transaction Log?

6:00 am x x

7:00 am x

8:00 am x

9:00 am x

10:00 am x

11:00 am x

12:00 pm x x

1:00 pm x

2:00 pm x

3:00 pm x

4:00 pm x

5:00 pm x

6:00 pm x x

7:00 pm x

8:00 pm x

9:00 pm x

10:00 pm x

11:00 pm x

Table 4-1. (continued)

Using this model, we can restore to any hour in a given day, meaning

that the most data we will lose is 1 hour. If this is acceptable, we can move

on. If not, then we can adjust the time between backups. We will stay with

this schedule for now though. Figure 4-8 shows what the updated interface

should look like.

Chapter 4 BaCkup Solution exampleS

69

All you need to do is to pull down the Occurs menu and choose Daily.

That’s it. Notice the text in the Summary field now reads Occurs every day

at 12:00:00 am. Schedule will be used starting on [DATE]. Click OK here

to save this schedule, and notice that the same summary we just read

has been transferred to the Schedule block on the interface, as shown in

Figure 4-9.

Figure 4-8. New Job Schedule

Figure 4-9. Updated schedule information

Chapter 4 BaCkup Solution exampleS

70

Now that we are done setting up the full backup portion of the plan,

let’s move on to the differential portion. Click the Next button to move on.

Figure 4-10 shows the next screen.

Click Next to continue setting up the plan.

Figure 4-10. Define Back Up Database (Differential) Task

Chapter 4 BaCkup Solution exampleS

71

 Differential Backup Configuration
Next, the Define Back Up Database (Differential) Task interface is

displayed. Figure 4-11 shows that the initial interface is nearly exactly like

the previous interface, complete with the same three tabs for different

menu options. The first tab that we are on now is titled General, so let’s

look at those options now.

Figure 4-11. Define Back Up Database (Differential) Task,
General tab

Chapter 4 BaCkup Solution exampleS

72

Just like we did for the full backup section, we are going to choose our

database from the drop-down menu labeled Database(s), and click the

Destination tab. Figure 4-12 shows the initial view of this tab.

Remember that we need to check the Create a sub-directory for each

database check box before moving on. Also note that the backup location

is set to our default backup location, which was originally defined when I

installed SQL Server.

Figure 4-12. Define Back Up Database (Differential) Task,
Destination tab

Chapter 4 BaCkup Solution exampleS

73

Clicking the Options tab shows you what is shown in Figure 4-13.

Again, this is identical to what was originally seen. Just be sure to check the

Verify backup integrity check box before moving on.

Once everything looks good, you want to click the Change… button on

the bottom of this screen so that we can define the schedule for this task.

Figure 4-14 shows the initial interface for the schedule.

Figure 4-13. Define Back Up Database (Differential) Task,
Options tab

Chapter 4 BaCkup Solution exampleS

74

The Occurs value should be changed to Daily, and the Occurs every

radio button should be selected with 6 hours being the chosen value. It

should look like Figure 4-15 when you are done.

Figure 4-14. New Job Schedule

Chapter 4 BaCkup Solution exampleS

75

This means that our differential backup will now run every six hours

every day. Click OK when you are done, and then click Next.

 Transaction Log Backup Configuration
The next screen that opens up is the Define Back Up Database

(Transaction Log) Task screen, as shown in Figure 4-16.

Figure 4-15. New Job Schedule, updated

Chapter 4 BaCkup Solution exampleS

76

This area has the same basic setting as the two previous General tabs:

pick the database from the Database(s) menu and ensure that Disk is

selected in the Back up to: drop-down menu. Notice that, in this interface,

the Database radio button is disabled? This is because we aren’t backing

up the database, but we are backing up the transaction log. On the other

interfaces, this option was selectable, and you could choose between

backing up the database or the files and filegroups.

Click the Destination tab when you are done, and you should then see

what is shown in Figure 4-17.

Figure 4-16. Define Back Up Database (Transaction Log) Task,
General tab

Chapter 4 BaCkup Solution exampleS

77

Make sure that the Create a sub-directory for each database option is

checked, and this screen is done. Click the Options tab when you’re ready,

and Figure 4-18 will be shown.

Figure 4-17. Define Back Up Database (Transaction Log) Task,
Destination tab

Chapter 4 BaCkup Solution exampleS

78

Ensure that the Verify backup integrity check box is checked here, and

click the Change… button at the bottom of the screen so we can set up our

schedule for transaction log backups. Figure 4-19 shows what your screen

should look like after updating the schedule.

Figure 4-18. Define Back Up Database (Transaction Log) Task,
Options tab

Chapter 4 BaCkup Solution exampleS

79

When you are ready to move on, click the OK button to close the

Schedule window, and then click the Next button on the interface.

Next comes the screen shown in Figure 4-20, Select Report Options.

Figure 4-19. New Job Schedule

Chapter 4 BaCkup Solution exampleS

80

Now, this is fairly self-explanatory. If you want a report written to

text file and popped into the file system, click the box. Notice that I have

chosen the Backup directory, and not the Logs directory? This is because

I want to keep the Logs directory for my transaction logs. The Backup

directory can be used to store the maintenance text files, while the

individual folders inside of the Backup directory will store the actual .bak

files in case we ever need to restore the database.

You can also get the report e-mailed to you, but you have to have an

Operator defined. If you have an Operator defined, select it here to receive

the e-mail. This will let you know, by e-mail, when the maintenance

plan runs and what the result was. For now, we will leave only the report

selection. Click Next to move on.

On the screen shown in Figure 4-21, titled Complete the Wizard, you

will see a summary of what we did. Expanding the options in the interface

will show the complete details of what we did, as shown in Figure 4-21.

Figure 4-20. Select Report Options

Chapter 4 BaCkup Solution exampleS

81

Note that these options have not been saved yet. You could click

Cancel right here and destroy all of the work we did thus far, but let’s not

do that. Instead, review what we did and, when you’re ready, click Finish.

Figure 4-22 shows what you should see as the maintenance plan is being

created.

Figure 4-21. Complete the Wizard

Chapter 4 BaCkup Solution exampleS

82

Always a good sign! Click Close when you are ready, and notice that

Backup Maintenance Plan now appears in the Maintenance Plans area of

SSMS. It is now enabled, and will run on the schedule we defined.

 Configuring the Jobs
Notice that there are now jobs in the Jobs folder inside of SQL Server

Agent. These aren’t very descriptive, are they? Which is which? Let’s fix this

right now. Double-click Subplan_1 and update your information to match

generally what is shown in Figure 4-23. You are going to want to have

something in the Name field which generally matches the task at hand, so

try not to put something random in that field. Instead, give it a descriptive

name. Notice that I have named mine “backrecTestDB.Full Backup.”

Figure 4-22. Maintenance Plan Wizard Progress

Chapter 4 BaCkup Solution exampleS

83

Notice that the job is set to Database Maintenance in the Category

option. This is great, because this is what we are doing. Ensure that the

Enabled check box is checked, and this screen is all set.

One thing I skipped over is the Owner selection. This typically should

be set to the owner of the database, although we are specifically referring

to the owner of the task, and not the owner of the database. For that

reason, it should be set to any user with heightened permissions in the

database.

Also notice that on the left, there are menu options. You are currently

on the General option. If you click the Steps option, you will see what is

shown in Figure 4-24.

Figure 4-23. Job Properties, General tab

Chapter 4 BaCkup Solution exampleS

84

If you’re setting this up for the first time, you will notice that the menu

bar does not show your new name yet. Mine is updating because I’m

showing the result of the operation. To update your plan name, double-

click the text Subplan_1 (as opposed to what I show as full backup in

Figure 4-24). The Job Step Properties window opens, so change the Step

name box to “Full Backup,” as shown in Figure 4-25.

Figure 4-24. Job Properties, Steps tab

Chapter 4 BaCkup Solution exampleS

85

Don’t touch anything else on this screen just yet, except for clicking

the Advanced option on the left. Adjust this screen to the settings shown in

Figure 4-26.

Figure 4-25. Job Properties, Steps tab, General option

Chapter 4 BaCkup Solution exampleS

86

All I did here was click the Include step output in history check box. If

you have a table set up to log maintenance plan results to a table in your

database, then you could select the Log to table check box. Additionally,

you could also output the results of the operation to a file by entering in a

file location to the Output file box.

Click OK when this is done, and you will go back to the Job Properties

screen, with the text “Full Backup” now replacing Subplan_1. Figure 4-27 is

what you should see now.

Figure 4-26. Job Properties, Steps tab, Advanced option

Chapter 4 BaCkup Solution exampleS

87

Click the Schedules option on the left and notice that our schedule is

in there, and that it is enabled, as shown in Figure 4-28.

Figure 4-27. Job Properties, Steps tab

Chapter 4 BaCkup Solution exampleS

88

Click the Alerts option, and you will see a blank screen. This is fine,

for now.

Click the Notifications option, and you will see what is shown in

Figure 4-29.

Figure 4-28. Job Properties, Schedules tab

Chapter 4 BaCkup Solution exampleS

89

If you have an Operator set up and have previously configured

Database Mail already, select the Operator in the E-mail box. For the time

being, we are going to keep the Write to the Windows Application event log

option selected, but we are going to change the drop-down to When the job

completes; that way we will always know what happened with our job.

Clicking the Targets option will show a blank screen as well. This is

fine, since we haven’t defined any targets.

Click OK when you are through with the Targets option, and have

followed the directions for this area.

If you look in the Jobs folder of SQL Server Agent, you will see that

this job is renamed and saved as full backup. Do the same things listed

previously for the other two and label them accordingly. Remember that

we defined the full backup as the first task, differential backup as the

Figure 4-29. Job Properties, Notifications tab

Chapter 4 BaCkup Solution exampleS

90

second task, and the transaction log as the third task. Those line up with

the subplan designations here. You should end up with what is shown in

Figure 4-30 when you are finished.

It’s okay that syspolicy_purge_history is in there too. That’s a job that

SQL Server does on its own.

 Summary
In this chapter, we went over the culmination of setting up a backup plan

for full, differential, and transaction log backups. These backup plans are

entirely dependent upon the recovery model of the database in question,

and must be set to either full or bulk-logged models, since simple does not

allow for transaction log backups.

We learned the importance of running backups that have verified

integrity, and the possible risk we run when not having the backup

integrity verified each time it is created.

We clearly and properly defined our backup schedule, based on the

needs of a particular environment, and translated those needs into a

quantifiable time schedule that creates backups as expected.

Finally, we learned how to make the final backup maintenance plan more

easily readable to humans, while maintaining the complexity of the tasks.

We are going to continue into Chapter 5 with the restore equivalent

to the backup scenario that we created in Chapter 1. This is the logical

extension of the backup scenario, since there is no point in having a

backup if you have no means of restoring that backup.

Figure 4-30. Completed SQL Server Agent jobs

Chapter 4 BaCkup Solution exampleS

Restores

PART II

93© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_5

CHAPTER 5

Full Restores
Following the format of the previous chapters, we are going to continue on

in the journey of backups and restores by delving into the second section

of this book. The first section, comprised of Chapters 1–4, covered the

backup portion; this second section, comprised of Chapters 5–8, is going to

cover the restore portion.

At this point, we realize that a database backup is fundamental to the

entire data recovery process. Without a backup, there can be no restore.

For that reason, it is vital that the backups taken are correct, which we

covered earlier. Now, going further with that rudimentary knowledge, we

are going to look at various ways to do a restore of a full database backup.

It is important to point out that database restores are mostly done

within SQL Server Management Studio. I would like to stress the term

“mostly” here, because it is not the only way to restore data. For example,

if your master database has become corrupted, then it must be restored

from a full backup before SQL Server will start correctly. This is because

master holds all of the configuration information for SQL Server. A major

problem with a corrupt master database, beyond the obvious issue of SQL

Server not starting, is that all the other system databases (msdb and model)

depend on master to function correctly. If master is corrupted badly

enough, then the system tables will need to be rebuilt individually, and

that is a major headache.

94

 What Is a Full Restore?
Simply put, a full restore is exactly what it sounds like, and yet not what it

sounds like at all; it restores all of the data contained in a previously run

full database backup, but it does not restore the entire database. Recall

that the full database backup only backs up the data, and not the system

settings. Only the table data for the specified database will be contained in

the database backup.

Note If you need a backup of the system settings as related to the
installation of SQL Server, you must have a current backup of the
master, msdb, and model databases. These are system databases
and are extremely important to the smooth operation of SQL Server.

When I first started working in SQL Server, it was between SQL

Server 7 and SQL Server 2000. I was sort of used to how MySQL worked

as far as interface and usability, so the switch was a little hard at first,

but I gradually got the hang of it. One of the things about MySQL that I

really liked was that their “backups” were just huge .sql files with a ton of

INSERT commands. That’s right, the entirety of the database was dumped

in sequence; first, the DROP and CREATE commands for a table, then the

individual INSERT statements for all the data in that table. This may seem

like a waste of space to some, but the brilliance is in the detail, if you ask

me. A DBA with enough time on their hands could then pick through that

backup and literally control the insertion of data at a granular level not

seen in SQL Server. What I mean by that is that SQL Server does not make

backups in this format; backups in SQL Server are made specifically for

the SQL Server engine to execute, not for human readability. Yes, in a SQL

Server backup, the data is there (obviously), but it can’t be read by opening

it in Notepad, for example.

ChapTer 5 FuLL reSToreS

95

Another aspect of full restores is that they can be used to create perfect

copies of existing databases. Being able to have this sort of functionality

available to me in a development environment is absolutely invaluable,

because I can easily create an entire development database based on

a production database that I use primarily for testing. I can then create

another database, an exact duplicate of the development database, but

name it something different. Then, if I ever need to restore the data, I

can easily TRUNCATE any table in the first development database and

replace the data quickly with an INSERT INTO statement using the second

development database as the source and the first development database as

the destination. I will show exactly how this is done later in this chapter.

First, let’s switch our focus momentarily to the system databases. There

are three main system databases, named master, msdb, and model. These

three databases carry the configuration information for your SQL Server

installation, so they are extremely important to the overall health of your

entire installation. Technically, there is a fourth system database named

tempdb, but this database is destroyed and created every time an instance

of SQL Server is created for that particular instance of SQL Server, so it’s

not necessary to worry about backing it up.

 Restoring the Master Database
If you ever have to restore the master database, or any of the system

databases, I sincerely hope it is not because of a major corruption issue.

I can tell you first-hand that this is a major undertaking, and must be done

with the utmost care and attention to detail. This section will show the

individual steps and instructions for restoring the master database from

a full database backup. The steps can be applied to restore any system

database, but for now, I will only focus on the master database.

ChapTer 5 FuLL reSToreS

96

This section is dependent on the presence of a current backup of the

master database. It is usually best to make a backup of the master database

every time that a change is made to the structure of the tables or to the

underlying architecture of the database. Backing up the master database

and having it available in case of emergency will alleviate a lot of problems

in the future, and I would recommend backing up these system databases

as part of your normal backup maintenance plan. I didn’t cover this in

the previous chapters dealing with backups because the content for this

book is based on your individual database backups, and not the next level

of database administration, where we would be dealing with the backups

of the system databases as well. To continue, run a quick backup of the

master database, or use one that you have already prepared.

The first thing that we have to do to restore the master database is start

SQL Server in single-user mode. For those that are new to this operation,

single-user mode starts SQL Server with a limited number of connections

(one) so that emergency work can be done without additional burden to

the server.

 Start SQL Server in Single-User Mode
Step-by-step instructions to put SQL Server into single-user mode are as

follows.

• Open up SQL Server Configuration Manager or, if

you’re on Windows 10, open the Start menu and type

sqlservermanager13.msc, press Enter, and look for the

SQL Server (MSSQLSERVER) item in the right pane.

• Right-click and select Properties, then select the

Startup Parameters tab.

• Type –m in the Specify a startup parameter field.

• Click the Add button.

ChapTer 5 FuLL reSToreS

97

• Click Apply and notice that a message appears that tells

us that our changes will not take effect until you restart

the service. We will restart the service momentarily.

Click OK on this message, and then click OK on the

SQL Server (MSSQLSERVER) Properties window to

close it.

• Click the SQL Server Agent item and press the Stop

Service button in the toolbar.

• Restart the SQL Server (MSSQLSERVER) service.

These directions set our instance of SQL Server to single-user mode.

Let’s get into the details of these directions a lot deeper though, so we

really know what we’re working toward.

To get SQL Server started in single-user mode, we have to open up our

SQL Server Configuration Manager. This is somewhat hard to find, but if

you’re on SQL Server 2016 and Windows 10, just open the Start menu and

type sqlservermanager13.msc and press Enter. Figure 5-1 shows the screen

you should see at this point.

Figure 5-1. User Account Control

ChapTer 5 FuLL reSToreS

98

We want to click Yes here in order to proceed. The next screen that

opens is the SQL Server Configuration Manager, as shown in Figure 5-2.

If you aren’t familiar with the SQL Server Configuration Manager

interface, I would spend a little time in here. There are an awful lot of

configuration options in this section.

To proceed, we want to right-click the SQL Server (MSSQLSERVER)

instance, or whichever instance you want to start in single-user mode, and

select Properties. The default interface is shown in Figure 5-3.

Figure 5-2. SQL Server Configuration Manager

ChapTer 5 FuLL reSToreS

99

Note that the default tab selected is named Log On. We want to click

the Startup Parameters tab at the top of the screen to open the screen

shown in Figure 5-4.

Figure 5-3. SQL Server (MSSQLSERVER) Properties, Log On tab

ChapTer 5 FuLL reSToreS

100

The text box labeled Specify a startup parameter is where we are going

to enter the text –m. That is the startup parameter needed to start SQL

Server in single-user mode. Enter that value and click the Add button,

which will become enabled once a parameter has been entered into the

parameter field. Figure 5-5 shows what you should see after entering –m in

the startup parameter field.

Figure 5-4. SQL Server (MSSQLSERVER) Properties, Startup
Parameters tab

ChapTer 5 FuLL reSToreS

101

At this point, we want to click Apply to save the changes, and we are

immediately presented with the dialog box shown in Figure 5-6.

Figure 5-5. -m startup parameter entered

Figure 5-6. Warning

That message is telling us that we need to bounce the SQL

Server service, so click OK here, and then click OK on the SQL Server

(MSSQLSERVER) Properties window. That should bring us back to the SQL

Server Configuration Manager interface we saw in Figure 5-2.

ChapTer 5 FuLL reSToreS

102

In the SQL Server Configuration Manager interface, make sure that you

are in the SQL Server Services section on the left-hand side and right-click

the SQL Server (MSSQLSERVER) item in the right-hand panel and select

Restart.

Next, we want to stop the SQL Server Agent service, so right-click SQL

Server Agent and select Stop. The reason for this is because SQL Server

Agent will take the single connection that is available to the database if it is

running.

At this point, our instance of SQL Server is running in single-user

mode without an active connection. Start SSMS and you will see your

regular login screen. Connect as normal here, and you should proceed to

the regular interface you see once starting SSMS. My interface is shown in

Figure 5-7.

There are two things that I want to bring up about this initial screen:

first, there isn’t an obvious indication that I am in single-user mode, and

second, the SQL Server Agent is shown as disabled. So how do we know

that we are in single-user mode? Simple. We know that single-user mode

means that only a single user can log in to the database engine at a time,

right? So what do you think would happen if we were to log in again using

the same account we are already logged in with?

Figure 5-7. My SSMS interface

ChapTer 5 FuLL reSToreS

103

Click the Connect drop-down in the Object Explorer pane. Choose

Database Engine… and you will see the normal login screen. Log in

normally, and what do you see? Figure 5-8 details my response from SQL

Server.

Right there in black and light gray is the explanation that we are

currently in single-user mode. Click OK and then click Cancel to get back

to the regular SSMS screen. Open up a New Query window and notice

that you are connected to the master database. We could begin to work

normally here, with the obvious exception that SQL Server Agent will

not be running, so we can’t do anything that requires SQL Server Agent.

A simple script to create a backup of the system databases is shown in

Listing 5-1.

Listing 5-1. Backup Script for System Databases

USE master

GO

-- Back up the model database

BACKUP DATABASE Model

TO DISK = 'E:\SQL Server\Backup\Model.BAK'

WITH INIT

GO

-- Back up the master database

BACKUP DATABASE Master

Figure 5-8. Connect to Server

ChapTer 5 FuLL reSToreS

104

TO DISK = 'E:\SQL Server\Backup\Master.BAK'

WITH INIT

GO

-- Back up the msdb database

BACKUP DATABASE MSDB

TO DISK = 'E:\SQL Server\Backup\MSDB.BAK'

WITH INIT

GO

That will give us a good starting point for restoring those databases.

The script to restore the system databases is shown in Listing 5-2.

Listing 5-2. Restore Script for System Databases

RESTORE DATABASE master FROM DISK = 'E:\SQL Server\Backup\

Master.BAK' WITH REPLACE;

RESTORE DATABASE model FROM DISK = 'E:\SQL Server\Backup\Model.

BAK' WITH REPLACE;

RESTORE DATABASE msdb FROM DISK = 'E:\SQL Server\Backup\MSDB.

BAK' WITH REPLACE;

Microsoft generally recommends that the sqlcmd utility is used for

restoring system databases, so let’s open a command prompt, type sqlcmd,

and press Enter. Figure 5-9 shows what happened what I tried to start

sqlcmd.

ChapTer 5 FuLL reSToreS

105

There’s our “error” again. It’s not really an error, but more of an

annoying reminder that we are in single-user mode. Not a problem

though; we just need to close SSMS and rerun the sqlcmd command. It

should work for you now; if it doesn’t, restart the SQL Server service and

rerun the command. We will then see what is shown in Figure 5-10.

Figure 5-9. Trying to start sqlcmd

Figure 5-10. sqlcmd

ChapTer 5 FuLL reSToreS

106

We can see that the sqlcmd utility has started because we now have

the first line under the sqlcmd command showing a prompt of 1>. This

means that sqlcmd is awaiting a command. At this prompt, type RESTORE

DATABASE master FROM DISK = 'E:\SQL Server\Backup\Master.BAK'

WITH REPLACE; and press Enter. You will then have a prompt of 2>. All

you need to type here is GO and press Enter. Your screen should closely

resemble what is shown in Figure 5-11.

That shows us that the master database was successfully restored, and

that the process was terminated normally. Before we are done, we need to

bounce the SQL Server service, so open up Services and restart the SQL

Server (MSSQLSERVER) service (or whichever named instance you are

working in). You will not be able to reconnect to the database instance

until the server is rebooted or the service is bounced.

 Restore SQL Server to Multiuser Mode
In my opinion, restoring access to SQL Server is easier than restricting

access. Step-by-step instructions to restore SQL Server back to its original

state (i.e., multiuser mode) are as follows:

Figure 5-11. Operation complete

ChapTer 5 FuLL reSToreS

107

• Open up sqlservermanager13.msc again and look for

the SQL Server (MSSQLSERVER) item in the right pane.

• Right-click and select Properties, then select the

Startup Parameters tab.

• Highlight the –m entry and click the Remove button.

• Click Apply and notice that a message appears that

prompts us to restart the SQL Server service. Click OK

on this message, and then click OK on the SQL Server

(MSSQLSERVER) Properties window to close it.

• Click the SQL Server Agent item and press the Start

Service button in the toolbar.

• Click the SQL Server (MSSQLSERVER) item again and

press the Restart Service button in the toolbar.

These directions set our instance of SQL Server back to multiuser

mode. Congratulations! You have just set SQL Server to single-user mode,

restored the master database, and restored SQL Server to multiuser mode.

 Restoring from a Full Backup
By now in this chapter, you’ve probably gotten a pretty good idea of how

to restore a database from a full backup. Every single DBA that I know has

had to run a restore at one point or another, so this shouldn’t be anything

new. In case this is new territory, this section will cover not only how to

restore from a full backup using SSMS and T-SQL, but also some of the

finer points of restoring data, such as restoring to a specific point within a

log backup (called a point-in-time restore).

ChapTer 5 FuLL reSToreS

108

 Full Restores with SSMS
The most common way to restore a database is by using the graphical

interface that is most commonly associated with SQL Server. SQL Server

Management Studio offers a vast array of tools that can be used to

manipulate and administer a database, and for this reason, it is easily the

go-to choice for nearly every SQL Server administrator. Notice that I say

“nearly” here; that’s because there are obvious exceptions to every rule,

and this is not an insult or derision in any way. I have seen SQL Server

administrators using legacy SSDT, for example, because they got (most)

of the same interaction with the database, with the added value of having

the interface for Visual Studio available to them for writing DTSX packages

or whatever else they would have needed the enhanced interface to

accomplish.

The first thing we want to do is locate our latest backup set. If you have

your directories set up like mine, then they are in E:\SQL Server\Backup.

Next, fire up SSMS and expand Databases. Inside of the Databases

menu, you will find your user databases, along with ReportServer and

ReportServerTempDB, if you have installed SQL Server reporting services.

Find the database you want to work with (in this case, backrecTestDB),

right-click it, hover over Tasks, then hover over Restore, and look at the

options available to us. Figure 5-12 shows the interface at this point.

ChapTer 5 FuLL reSToreS

109

Inside the Restore menu, we can see four options listed. Those

options are

• Database

• Files and filegroups

• Transaction log

• Page

First off, why is the transaction log option disabled? It can only be

enabled when the database was restored using a full backup and RESTORE

WITH STANDBY was enabled at the point of restore. The database

would then be standing by (in RecoveryPending mode), waiting for

the restoration of the tail of the transaction log. If you were to recover a

database using RESTORE WITH STANDBY, and then want to restore the

transaction log, the transaction log option would be the only available

option, and the other three options would be disabled.

Figure 5-12. SSMS Restore menu

ChapTer 5 FuLL reSToreS

110

We want to select the database option, so click this and you will see

something similar to what is shown in Figure 5-13.

Notice that the Backup sets to restore: section already has the latest

backup sets enabled and ready to be restored. From top to bottom, we can

see that there is one full, one differential, and four transaction log backups

that we can use to restore our database. Also note that there are check

boxes to the left so we can choose which set of data to restore. You can see

how deselecting the differential option will not deselect the transaction log

options, and selecting a transaction log option automatically selects the

differential option.

The exact combination of files you will need to restore to the point you

are looking for is entirely up to you. You can use as many or as few backup

sets as you would like.

Figure 5-13. Restore Database window, General tab

ChapTer 5 FuLL reSToreS

111

For this example, referring to Figure 5-13, we can see that there are

only a few files selected for the restore to the last transaction log backup.

To restore to this point, we need to restore the latest full and differential

backups, then the transaction logs, in order. Let’s say that we want to restore

back to the previous day though. The way that I have my backups set up is

such that I will only ever need to restore up to seven files. The reason for

this is explained in Table 5-1, which is referenced from Chapter 4.

Table 5-1. My 24-Hour Backup Schedule

Time Full? Differential? Transaction Log?

12:00 am X X X

1:00 am X

2:00 am X

3:00 am X

4:00 am X

5:00 am X

6:00 am X X

7:00 am X

8:00 am X

9:00 am X

10:00 am X

11:00 am X

12:00 pm X X

1:00 pm X

2:00 pm X

(continued)

ChapTer 5 FuLL reSToreS

112

You can see from this schedule that, as I said earlier, I will only ever

need to restore a maximum of seven files; one full backup, one differential

backup, and five transaction log backups. This schedule also implies that

I will only lose, at a maximum, one hour’s worth of data. That will only be

the case when data loss occurs immediately after a transaction log is run,

so the transactions for the next hour are deemed suspect, because the

transaction log may not restore correctly.

Going back to what we see in Figure 5-13, that tells me that I am

restoring from the latest database backup available. This is probably the

most common restore, since we want to recover to a certain point in the

recent past. This isn’t always the case though, and we can specify whether

we want to use the default, latest backups presented to us from within

the Source section of Figure 5-13 or whether we want to choose a set of

Time Full? Differential? Transaction Log?

3:00 pm X

4:00 pm X

5:00 pm X

6:00 pm X X

7:00 pm X

8:00 pm X

9:00 pm X

10:00 pm X

11:00 pm X

Table 5-1. (continued)

ChapTer 5 FuLL reSToreS

113

backups from the past that are not shown in the Backup sets to restore:

section at the bottom of Figure 5-13. The top section, labeled Source, has

two options:

• Database: Allows you to restore to the latest backup

set consisting of full, differential, and any applicable

transaction log backups, depending on the time the

restore is started.

• Device: Allows you to pick any backup set from the file

system to restore from. SQL Server will let you know if

the backup set selected in this section is unable to be

restored for some reason.

The database option is selected in the Source section. Beneath the

Source is the Destination section. This section lets you pick the database

to restore to, and a point in time to restore to as well. We will get into

point-in-time restores more deeply in the next section. The applicable full,

differential, and transaction log backups are shown in the Restore plan

section of the interface. On the left side of the Restore Database window,

we can see that there are three menu options: General, Files, and Options.

For now, let’s leave the General tab alone and click the Files menu section

on the left. Figure 5-14 shows the Files section.

ChapTer 5 FuLL reSToreS

114

This information comes from the default settings for your installation.

Notice that my default file locations are already selected for me. As you can

see, the restore process is going to write new files to the locations specified,

unless new locations are entered in the Restore As field (the rightmost field

in the lower part of the interface). Select the Options menu item on the left

to move to the next section. Figure 5-15 shows what this default interface

looks like.

Figure 5-14. Restore Database window, Files tab

ChapTer 5 FuLL reSToreS

115

For a general restore, I usually select the Overwrite the existing

database (WITH REPLACE) and deselect the Leave source database in the

restoring state (WITH NORECOVERY) option and leave the rest as default.

This lets me overwrite everything in the database up to the point of failure,

and does not keep my database locked and unable to be recovered, just in

case of another catastrophic event. When you have chosen the options that

you need for your scenario, press the OK button. Figure 5-16 shows what

you should see after clicking OK.

Figure 5-15. Restore Database window, Options tab

ChapTer 5 FuLL reSToreS

116

This will take a little while to run, depending on the size of your

backups. Mine took about 20 seconds to complete, since I didn’t have a

huge amount of data to restore. Eventually, you should see what is shown

in Figure 5-17.

Success! This message obviously means that our database was restored

successfully. To check that this operation was successful (employ the

adage of “Trust, but Verify”), simply run the code in Listing 5-3.

Figure 5-17. Restore successful

Figure 5-16. Restore Database, Restoring action

ChapTer 5 FuLL reSToreS

117

Listing 5-3. Trust, but Verify

SELECT RH.[destination_database_name] as 'Database',

RH.[restore_date] as 'Restore Date',

BS.[backup_start_date] as 'Backup Start Date',

BS.[backup_finish_date] as 'Backup Finish Date',

BS.[database_name] as 'Source Database',

BMF.[physical_device_name] as 'Backup Filename'

FROM [msdb].[dbo].[restorehistory] RH

INNER JOIN [msdb].[dbo].[backupset] BS

ON RH.[backup_set_id] = BS.[backup_set_id]

INNER JOIN [msdb].[dbo].[backupmediafamily] BMF

ON BS.[media_set_id] = BMF.[media_set_id]

WHERE(MONTH([restore_date]) = MONTH(getDate())

AND DAY([restore_date]) = DAY(getDate())

AND YEAR([restore_date]) = YEAR(getDate()))

ORDER BY RH.[restore_date]

Running this code will show us what is shown in Figure 5-18. Note

that your results may vary, depending on the restore dates, file names, and

database name.

ChapTer 5 FuLL reSToreS

118

There is proof that our backup was complete, and the restore was

successful. Also note that there are the same six files listed, in order, that

we previously saw in the General tab in Figure 5-1. Go ahead and flip back

to that figure and check the file name in Figure 5-13 against the file name

in Figure 5-18. They are identical, which again proves that our operation

was a success.

 Restoring to a Point in Time
You can consider yourself extremely fortunate if you have not had a

catastrophic failure in your database. I can count on one hand the number

of times that I have had to spend a day searching for log files and applying

backups, and sometimes, those backups were either outdated or corrupt.

“Frustrating” doesn’t really begin to describe how I felt at those times; I

think “enraged” is probably a more apt description.

More than likely, there will come a time when you will need to restore

to a particular point in time, and you are going to need to act quickly to

restore the necessary data. In situations like this, there are a few different

Figure 5-18. Trust, but Verify results

ChapTer 5 FuLL reSToreS

119

ways that you can approach the situation: one way is to follow these

directions for a point-in-time restore, and another is to fully restore the

database to another database instance and restore the data you need from

the restored tables in the secondary database. I describe this at length in

the section titled “Emergency Full Restore Example” in this chapter. For

now, we will focus on point-in-time restores.

Let’s start by really messing up our database, shall we? Let’s drop our

users1 table. That should let us generate a fairly sizeable transaction in

the tail of our transaction log to recover from. Our starting record count is

20030001 rows, just for comparison purposes after the restore operation is

complete. Simply type DROP TABLE users1; in a New Query window and

press F5 or the Execute button in the toolbar to execute the query. Next,

execute the statement SELECT count(*) as cnt FROM users1; and you

will get the message Invalid object name 'users1'. We can also refresh

our Tables in Object Explorer and verify that users1 is definitely gone now.

To continue, right-click your database (backrecTestDB, in my case),

expand Tasks, and then expand Restore, and you should see what is shown

in Figure 5-19.

Figure 5-19. Location of Restore menu items

ChapTer 5 FuLL reSToreS

120

Click Database, and you will be shown an interface similar to Figure 5- 20.

This is also similar to what we saw earlier in Figure 5-13.

This page should be familiar to you by now. We are going to press

the Timeline button on the right side of the interface to continue. After

pressing the Timeline button, you will see what is shown in Figure 5-21.

Figure 5-20. Restore Database screen

ChapTer 5 FuLL reSToreS

121

The default option is Last backup taken. This is exactly the same as

just pressing OK on the previous screen; it restores based on what files are

available to be restored, and that’s all.

We want to click the Specific date and time radio button in order to see

what we can restore. Notice how the interface changes to what is shown in

Figure 5-22.

Figure 5-21. Backup Timeline, Last backup taken

Figure 5-22. Backup Timeline, Specific date and time

ChapTer 5 FuLL reSToreS

122

See how the Timeline Interval value has changed to include the tail

of the transaction log? That is because we are including the part of the

transaction log that has not been backed up yet. Normally, the cutoff

time would be the end of that transaction log, and because I have my

transaction log backups running every hour, I can only lose an hour’s

worth of data (with a corrupted transaction log). Feel free to look around

in here without pressing the OK button. For example, you can change the

Timeline Interval from Day to Hour, Six Hour, or Week and see how that

affects the data that you can restore. There is an extremely small degree of

granularity in this area, which can be expanded to a very high degree with

a simple drop-down selection.

Once you are ready to continue on, move the slider bar under the

Timeline Interval to the desired point in time you wish to restore to,

and press OK. For this example, I am going to restore to 6:40:31 pm on

10/9/2017, since I know that was before I dropped my users1 table. I do

not need to do anything else on the General tab, and the Files tab is okay

as well. Skip over to the Options tab, where we want to check the Overwrite

the existing database (WITH REPLACE) option and uncheck the Leave

source database in the restoring state (WITH NORECOVERY) check box

before pressing OK to begin the restore process. I would want to leave

the Leave source database in the restoring state (WITH NORECOVERY)

check box checked if I wanted to restore more files after this set of restore

operations, but since I don’t want to restore anything else, I am going to

leave this unchecked. Note that a tail-log backup will be taken unless the

Take tail-log backup before restore check box is unchecked. In this case, I

am going to leave the Take tail-log backup before restore option selected.

Once all my settings are how I want them, I am going to click OK. After

I press OK, I am presented with what is shown in Figure 5-23, and after

about a minute, I am presented with what is shown in Figure 5-24.

ChapTer 5 FuLL reSToreS

123

At this point, I know that my database has restored successfully.

However, I still want to verify that SQL Server actually did what it was

supposed to do (remember, Trust but Verify). Let’s run the simple script we

ran before, SELECT count(*) as cnt FROM users1;, and view the results.

The query runs for a few seconds, and then returns the value 20030001.

Exactly as we had initially! Therefore, we can safely assume that this

database has been completely restored as of the time that we selected in

the Timeline area.

Figure 5-23. Restore Database

Figure 5-24. Restore successful

ChapTer 5 FuLL reSToreS

124

 Emergency Full Restore Example
Recently, I had a specific instance where I had to restore production data

because of an error in a script. Let’s assume that you have a table with

hundreds of records, each with a unique identifier. Each of these records

dealt with a specific set of data that was vital to the normal operation of

particular items through a workflow. Let’s further assume that the update

script that was run on the production instance did not have a WHERE

clause defined. I’m sure you can see where everything went sideways… I

updated a table to a specific value for all rows instead of just the one row

that I needed to update. Now, in this instance, there are lot of different

ways that I could have recovered the data, but I chose the quickest and not

necessarily the cleanest way. That method consisted of the following steps:

• Locate the latest backup set (full, differential, and

transaction log)

• Restore the latest full backup to a new database called

fixYourMistake

• Restore the latest differential backup to the

fixYourMistake database

• Restore the transaction log backups since the

differential back to the fixYourMistake database

• Create an alternate table in the production database

called (tablename)_archive, where (tablename) is the

name of my table

• Write an INSERT INTO…SELECT statement to write the

contents of the original (tablename) into the archive

table

ChapTer 5 FuLL reSToreS

125

• Write a TRUNCATE statement to clear the original table

• Write an INSERT INTO…SELECT statement to insert the

restored data from the fixYourMistake database into

the production database

You may be asking yourself why I didn’t just restore the latest

transaction log to the production database to complete the operation

quicker. I didn’t do this because I wasn’t sure if there was going to be

any other residual damage to the database, so I wanted to have a solid

backup to restore from, just in case. I also did not want to restore the entire

database since there were critical operations being entered as this was

going on. After I restored the table in question and verified that the data

recovery was correct with no other corruption, I had a small amount of

cleanup to do on the database server. To clean up after this recovery, I just

had to DROP the fixYourMistake database and DROP the archive table

that I created earlier. After that, the database was humming along happily,

and believe it or not, no one except me was even aware that there was a

problem with the database.

I would like to point out that this would not have been possible

without a solid backup and restore structure in place. I could not have

restored to the last transaction log without a previous backup to recover

the data to, and that means that I would have lost data—in a production

environment—since the last full backup. That is very, very bad news and I

think it goes without saying that scripts being executed on the production

environment have been much more highly scrutinized since then. So, I

guess you could say that, when this was going on, I was both my own worst

enemy and my own best friend at the same time. In the future, I think

fewer enemies would be a good thing.

ChapTer 5 FuLL reSToreS

126

 Summary
In this chapter, we learned about the essence of restoring a full backup to

a database. We reviewed the importance of having the full recovery model

in our databases so that we have access to the full range of backup and

restore functionality available within SQL Server.

We looked at point-in-time restores, and covered the basics of the

various interfaces in the Restore section of SSMS. There is a wealth of

information in these various sections, and I encourage you to create a

spare database in SSMS, restore to this new database, and play with the

settings until you are comfortable with what the various settings and

options are really doing behind the scenes.

The principles we have picked up here can be mostly transferred to

the differential and transaction log restore areas, with slight changes due

to the nature of the backups themselves. For example, the process to select

a differential backup is similar as far as the interface is concerned, but

the functionality and purpose are completely different from the other two

restore types.

ChapTer 5 FuLL reSToreS

127© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_6

CHAPTER 6

Differential Restores
Back in Chapter 2, we went over the fundamentals of differential backups

and how important the differential base is to the overall recovery strategy.

Those same principals apply to differential restores, except that we are

now dealing with the other end of the transaction, so to speak. The choice

of recovery models is the single most important aspect to determining

the efficacy of the restore methods that are available to you. Recall that

we used the full recovery model for our test database; this means that

we have access to the full range of backup and restore functionality for

our database. Had we chosen the bulk-logged recovery model, we would

have gotten most of the same functionality, but if we had bulk-logged

transactions in the transaction log, we would have sacrificed the capability

to restore to a point in time as we did in Chapter 5. A bulk-logged recovery

model would allow us to recover only to the end of a backup; in other

words, every backup must be fully recovered, or no data restore will take

place at all.

Restoring data in SQL Server from a differential backup is almost the

same as restoring data from a full backup, with a few obvious differences.

First, the most obvious point to make is that a differential backup can

only be restored to the corresponding full backup. This is because the

differential backup is the last set of data taken from the backed-up

transaction logs and changed data since the last full backup, referred to as

the “base” back in Chapter 2. So, if you try to restore a differential backup

out of sequence, it will fail. The sequence of data will not line up, and

SQL Server will halt the restore operation. Second, the database must be

128

in the NORECOVERY or STANDBY mode to restore a differential backup.

The reason for this is because the database can only restore a differential

backup to a full backup; it cannot restore just a differential backup without

first restoring the full backup. Once the full backup is restored, then the

database can be placed into NORECOVERY or STANDBY mode.

Let’s briefly go over the recovery state options that are available when

restoring a database. These options control the state of the database after

the restore has completed and can change with each restore type.

• RESTORE WITH RECOVERY: This is the default and

means that the database is ready for use immediately

after the recovery process is complete. The implication

is that the entire database restore operation is

complete, meaning that additional transaction logs

cannot be restored.

• RESTORE WITH NORECOVERY: This option does not

leave the database in a ready state, which means it is

not operational after the restore operation is complete.

With this option, transaction logs can continue to be

restored normally. The database cannot be put into

the ready state until a final command using the WITH

RECOVERY option is executed against the database.

• RESTORE WITH STANDBY: Finally, this option

leaves the database in the standby mode, which is

essentially read-only. Any transaction that has not been

committed to the transaction log is undone, and the

undo actions are saved in a standby file.

Remember in Chapter 5 how we checked the Leave source database in

the restoring state (WITH NORECOVERY) option checked? That allowed us to

still have the option to restore more backups, specifically the differential and

any subsequent transaction log backups, which we will get to in Chapter 7.

Chapter 6 Differential restores

129

 What Is a Differential Restore?
Simply put, a differential restore is the restoration of data from a

differential backup. We know that a differential backup is only the changed

data since the last full backup, so it is a smaller file than a full backup.

So how does this fit into our backup strategy? Our full backups

run every morning at 12:00 am, our differential backups run every six

hours, and our transaction log backups run every hour. In other words, I

personally think it is a pretty solid backup schedule. The usage of the full

or simple recovery models, and of implementing differential backups and

restores, has a few very distinct implications:

• We can have fewer transaction logs and therefore fewer

overall files in our backup plan, since we can delete all

transaction logs before the last full backup was taken,

assuming that the data from these transaction logs is

already resident in the differential backups.

• We have a lot more recovery points, or places that we

can restore to, available to us.

• Backups can take place during the day without having

to run a full backup every time. This will cut down on

server CPU time and require less space.

We can see that using differential backups and restores as part of our

normal database recovery plan is the best way to go for what we decided

was our ideal recovery scenario.

 Restoring Using SSMS
I hope that by now, we all have a little bit of experience doing database

restores using SQL Server Management Studio. If you read my first book,

I relied heavily on maintenance plan creation to handle the entirety of

Chapter 6 Differential restores

130

daily database maintenance. This included a backup method that could

eventually be used for restoring data, complete with full, differential, and

transaction log backups. We don’t want to go quite that far yet, since that

is what we will cover in later chapters once we tie everything together, but

we do want to look at how differential restores are handled in SQL Server

Management Studio.

Go ahead and start SSMS, if you haven’t already. You should see

the interface with Object Explorer to the left and nothing in the stage.

I generally keep a New Query window open in the main stage, but it’s not

necessary. Once you have SSMS open and are ready to move on, expand

Databases, right-click your test database name (mine is backrecTestDB),

and hover over Tasks, then Restore, and finally, select Database… to

continue. Figure 6-1 shows the location of this menu item.

After selecting Database as shown in Figure 6-1, you will see the screen

shown in Figure 6-2.

Figure 6-1. Database menu item location

Chapter 6 Differential restores

131

This is the regular screen that we have seen before each time we want

to restore our database. Note that all available backups for this database

are available as shown in Figure 6-2, and I have deleted a few backups from

the file system to make the interface a bit cleaner.

Verify in your interface that all check boxes next to the three backups

listed (or however many you have and want to restore) are checked. Since

we want to restore our differential backup, we must restore the full backup

first, and we must keep the database in the restoring state in order to

continue restoring our differential backups and our transaction logs. If you

were to uncheck all the recovery options, you would view the available

combinations of restorations that can be done within the database. Those

combinations are as follows:

• Full

• Full + differential

Figure 6-2. Restore Database

Chapter 6 Differential restores

132

• Full + transaction log

• Full + differential + transaction log

In other words, when we’re dealing with SSMS, we must start with a

full backup every single time we want to run a restore operation. Think of it

like this: if you have an error in your database at 3:05 pm, under my current

backup schedule, then you would need to restore the last full backup from

that morning, then the 12:00 pm differential backup, and finally, each

hourly transaction log until you recover the data you need.

Notice that we are on the General tab of the Restore Database screen.

We have already gone through the various options in these tabs, so we

don’t need to go through them again. Note that we will be taking a backup

of the tail of the transaction log as well, which is a default option so that the

transaction to run the restore procedure is kept in a fresh transaction log,

and the previous transactions are kept in the newly backed-up transaction

log tail.

Since we are restoring the differential backup, we just need to make

sure that the full and differential backup options are selected on the

General tab, and then press OK. We will then wait for a few seconds, or

possibly longer, and see what is shown in Figure 6-3.

Chapter 6 Differential restores

133

Hopefully, we will see a success message eventually. Click OK on this

message, and the Restore Database screen goes away. This signifies that

our database has been restored to the data relevant to the differential

backup.

 Restoring Using T-SQL
The process for restoring a differential backup using T-SQL is surprisingly

easy. Up until this point, I didn’t include a whole lot of SQL because I

wanted to make these books geared more toward the visual aspect of

database administration, but I think that this warrants a bit of time.

The real strength of using T-SQL, apart from automation purposes, is

that you can use sqlcmd to execute the SQL statements if you cannot get to

the interface for SQL but still have access to the database server.

Figure 6-3. Restore Database in progress

Chapter 6 Differential restores

134

The basic syntax for a differential restore with a logical backup device

and no other files to restore is shown in Listing 6-1.

Listing 6-1. RESTORE DATABASE SQL Script

RESTORE DATABASE backrecTestDB

FROM backrecTestDB

WITH NORECOVERY

The basic syntax for a differential restore without a defined backup

device, or when you need to restore from the file system and not a logical

backup device and there are no other files to restore, is shown in

Listing 6-2.

Listing 6-2. RESTORE DATABASE SQL Script

RESTORE DATABASE backrecTestDB

FROM DISK = 'E:\SQL Server\Backup\backrecTestDB\backrecTestDB_

DIFF.bak'

WITH NORECOVERY

Keep in mind that when restoring a differential backup, when we

specify NORECOVERY, what we are saying is that we want to restore the

last full backup, and then the differential backup. The reason for this is

because, as we discussed earlier, we must have a logical starting point for

all restores, and the only place to do that is with the last full backup, which

is the highest level of restore for the period. From that point, we can then

filter down the differential backups, and finally, into the transaction logs to

get to the precise location of the data restoration. We also want to specify

NORECOVERY if we have additional transaction logs to restore; otherwise,

we would specify RECOVERY instead.

If you were to execute the code in Listing 6-1, considering that you had

a logical backup device defined and didn’t have any other files to restore

(i.e., additional transaction logs), you would end up with the same result as

Chapter 6 Differential restores

135

executing a differential restore as we did previously. The same result would

happen with Listing 6-2, if you needed to restore from the file system and

not from a logical backup device.

 Summary
This is the shortest chapter in this book, simply because the concept of

differential restores is based on the preceding full backup. In other words,

if you have the full backup, then you can hopefully start restoring the data

that you need whether that data resides in the differential backup or the

transaction logs. Restoring the differential backup could be thought of as

a logical extension of restoring the full backup, since the existence of the

differential restore is predicated on the existence of the full backup already

having been restored, but as we noted before, you could always restore

from the transaction log instead, if that is the data that you need.

We went over how to restore a differential backup from both SSMS

and straight SQL, and briefly went over the different options relevant to

this type of restore. Be sure to include the syntax that we went over in

Listing 6-1 and Listing 6-2 for your situation in the restore script that you

need to write.

In the next chapter, we will go over how to restore transaction logs and

the different options that can be enabled or disabled in this area.

Chapter 6 Differential restores

137© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_7

CHAPTER 7

Transaction Log
Restores
Restoring a transaction log in SQL Server can be surprisingly painless.

There are a few things to consider before you attempt to restore your

transaction log though, such as the following:

• Do you need to restore to a specific point in time?

• Are you attempting to recover from a catastrophic

database failure?

• Do you even have transaction logs to restore?

These questions, and sometimes many more, need to be addressed

in order to lead you down the correct path of transaction log restoration.

There have been lots of times that I was alerted to an incident within one

of my databases, and I didn’t stop to consider which route I needed to take:

I just took off down the ill-lighted path of “restore something or other.” In

other words, I knew that I needed to restore some data, but I didn’t really

know specifically what data needed to be restored. I didn’t know which

tables were affected, if any, or if everything after a certain point in time was

affected.

For this reason, it is always best to consider the following bit of free

advice: take as much time as you need to gather the correct information

138

and formulate a workable plan before attempting to restore your

transaction logs. You can make your situation a whole lot worse by

restoring the “wrong” data, trust me.

Tip Your database must have either full recovery model or
bulk- logged recovery model enabled in order to have transaction
logs to restore.

 Transaction Log Restore Fundamentals
There are a few basic things that we need to get out of the way when

dealing with transaction log restores in the context of this chapter. First

of all, I am not going to get into the weeds of what transaction logs are

and how they work or what data is present at which bit and why that is

important. To me, that is a subject is probably best left out of this particular

book, because I want this book to be more closely related to solving

a problem as opposed to learning the subtleties of a problem. Having

said that, let’s just go over a few small topics that I feel are important

(and maybe a few that aren’t but could still relate to the overall issue of

transaction log restorations).

There are two ways to restore a transaction log: either using SSMS, or

using Transact-SQL. Yes, it could be argued that both ways use Transact-

SQL, since that is the language of SQL Server, but I am referring specifically

to using SQL Server Management Studio to create a SQL Server Agent job

to automate the restoration, or manually using Transact-SQL either from a

CLI or also within SSMS.

For the next section, I executed what is shown in Listing 7-1 in SSMS.

Chapter 7 transaCtion Log restores

139

Listing 7-1. Create More Data for the Database

DECLARE @cnt INT;

SET @cnt = 0;

WHILE @cnt <= 1000

BEGIN

 INSERT INTO users1 SELECT * FROM users2;

 SET @cnt = @cnt + 1;

END;

SELECT count(*) as cnt FROM users1;

This is an excerpt of CreateTestData.sql that we created back in

Chapter 1. My record count before I ran this excerpt was 10,020,000, and

the record count after I ran this excerpt was 20,030,000. That should make

for a pretty substantial difference in size of the transaction log.

What I want to do is restore to the previous version of the database,

where the record count was 10,020,000. The next section will detail how to

do this in SQL Server Management Studio using the Files and Filegroups

interface, and then a point-in-time restore using the Restore Database

interface.

 Restoring Using SSMS
The simplest way to run a restoration is probably graphically. I’m sure

there will be some old-school command-line gurus that will point out the

error in my ways, and to them I simply say, “Hey, wow, you did essentially

the same thing in a console that I did in a GUI… sweet.” And that’s about it.

I’m not one of those developers that prescribes to a specific methodology,

whether GUI (in SSMS) or CLI (using Transact-SQL). I prefer to use

whatever tool is available and I don’t really care to get too far into the

dichotomy of “you should use this tool because it’s so fantastic and any

Chapter 7 transaCtion Log restores

140

other way is terrible.” For example, I write ColdFusion in Dreamweaver.

I don’t use ColdFusion Builder, the IDE specifically built for ColdFusion

development. Why? Because I initially preferred the layout and structure

of Dreamweaver over CF Builder, and even after all these years, I still do.

That doesn’t mean that ColdFusion Builder is any worse or better than

Dreamweaver; it just means that my personal preference is for one over the

other, and I am sure I am not alone when having preferences for certain

software tools over others.

If you were to go straight into the menu structure with the thought in

mind that “I want to restore a transaction log,” you may start with the Tasks

menu option after right-clicking the database name. Figure 7-1 shows this

starting point.

From here, it is a logical assumption that you would point to the

Restore area to the right, and proceed from there. This is correct, but the

next part is where it could be confusing. Figure 7-2 shows the expanded

menu of the Restore selection.

Figure 7-1. Tasks submenu

Chapter 7 transaCtion Log restores

141

This menu has four options. Those options are as follows:

• Database: This option will allow you to restore a

database from either a full or a differential backup. This

option will not allow you to restore a transaction log.

• Files and Filegroups: This option will allow you to

restore a group of files to a new or existing database.

You have the option of selecting a full or differential

backup, and the corresponding transaction logs will be

selected for the restore operation. Consequently, you

can choose an individual transaction log to restore,

and your selection will automatically include every

transaction log since the last full or differential backup.

Note that all current backups are included in this

interface, so be very careful when restoring data.

Figure 7-2. Restore menu selections

Chapter 7 transaCtion Log restores

142

• Transaction Log: This option is generally unavailable,

except in a few certain situations. When a database has

been restored using a full backup and RESTORE WITH

STANDBY was selected as an option for the restoration,

the database will stay in RecoveryPending mode until

the tail of the transaction log is restored. It is interesting

to note that, when this option is enabled, meaning

that the database is currently in a state awaiting

restoration of the tail of the transaction log, all three

remaining options in this area are disabled. Also, when

a database has been restored with NORECOVERY and

the database is currently in the Restoring… mode, this

option is available and means that you can continue to

restore transaction logs.

• Page: This option will let you check your database

pages for possible corruption, and also let you restore

from the most current backup set of full, differential,

and transaction log backups. Your selection must

comprise a complete backup set, which will represent a

complete restore solution.

For the purpose of this demonstration, we are going to choose the Files

and Filegroups option. This will give us some options we need to restore

our transaction log. You can open the Files and Filegroups window by

right-clicking the database you want to work with and navigating to

Tasks ➤ Restore ➤ File and Filegroups. Figure 7-3 shows the location of

this menu option.

Chapter 7 transaCtion Log restores

143

 Restore Files and Filegroups—General
Figure 7-4 shows the initial interface for the Restore Files and Filegroups

section. Notice that, by default, the selected page is General, as indicated

on the left of the interface.

Figure 7-3. Files and Filegroups menu location

Chapter 7 transaCtion Log restores

144

Let’s take a minute to get familiar with this screen. The general

interface is nearly the same as quite a few other general screens in SQL

Server, meaning that there is a destination field along with a source field.

This tells the user that there are generally both sides of the equation to fill

in, and both sets of data have to be filled out and correct if the equation is

going to balance out and render the expected results.

The first section, Destination to restore, carries the names of the

databases with full or bulk-logged recovery models. Your database should

be selected by default.

The second section, Source for restore, carries the names of the

databases that have viable backups available for restoring.

Figure 7-4. Restore Files and Filegroups, General page

Chapter 7 transaCtion Log restores

145

Underneath these two options, the backup sets are shown. The initial

layout has the following columns shown:

• Restore: Check box value for yes or no; checked for yes,

unchecked for no.

• Name: The name of the backup file. Note that the file

extension is not included in this view.

• File Type: This value is “Rows Data” for either full

or differential backups, or blank for transaction log

backups.

• Type: The type of the backup; values are full,

differential, or transaction log.

• File Logical Name: The logical name of the file, apart

from the Name field.

• Server: This is the name of the SQL Server instance the

backup was run from.

• Database: This is the name of the SQL Server database

that the backup originated from.

• Start Date: The date and time when the backup

operation started.

• Finish Date: The date and time the backup operation

finished.

• Size: The size of the backup.

• Username: The username of the account used to

generate the backup.

You will use these columns to determine exactly which backups to

restore and the order in which to restore them. Luckily, SSMS makes this

easy for you.

Chapter 7 transaCtion Log restores

146

Scroll down to the bottom of the Select the backup sets to restore: area.

The last item listed in this area should be a transaction log backup. If a

transaction log isn’t listed last, then move up the list, or earlier in time, to

the last transaction log backup. Check the Restore check box and notice

that all the other transaction logs since the last differential backup become

selected, along with the last differential backup. This is because SQL Server

is aware that it needs to restore a full backup first, then the differential

backup, and then the transaction logs, in the correct time order, in order

to successfully restore the database to the point in time. You should see

something similar to what is shown in Figure 7-5 at this point.

Notice that the options selected are four transaction log backups and

one differential backup, as indicated by the Type column.

Figure 7-5. Last transaction log selected

Chapter 7 transaCtion Log restores

147

 Restore Files and Filegroups—Options
The second page, referenced from the left of the interface shown in

Figure 7-6, is titled Options.

In this area, we see a few options that can be a bit offputting if you

aren’t already familiar with them. Let’s go over them before we move on.

There are two main sections of this interface: Restore options and

Recovery state. The Restore options section allows you to customize the

various options available to you, the DBA, before the data restore process

begins and while the process executes, while the Recovery state section

allows you to define what happens after the data has been restored.

Figure 7-6. Restore Files and Filegroups, Options page

Chapter 7 transaCtion Log restores

148

In the Restore options section, there are three check boxes, titled as

follows:

• Overwrite the existing database (WITH REPLACE)

• Prompt before restoring each backup

• Restrict access to the restored database (WITH

RESTRICTED_USER)

It is important to note that the parts in the parentheses are the pieces

to remember if you ever restore a backup using Transact-SQL, which is

discussed in the next section.

In the Recovery state section, there are three radio buttons, titled as

follows:

• Leave the database ready for use by rolling back the

uncommitted transactions. Additional transaction logs

cannot be restored. (RESTORE WITH RECOVERY)

• This option is selected by default. The reason is

because this is the most common use for backup

recovery; to leave the database ready to run

immediately by rolling back any uncommitted

transactions.

• Leave the database nonoperational and don’t roll

back the uncommitted transactions. Additional

transaction logs can be restored. (RESTORE WITH

NONRECOVERY)

• This is the most destructive option. I honestly

can’t imagine a scenario where I would want

a production database nonoperational, unless

we’re dealing with failovers or load balancing. In

that case, yes, I could imagine this being useful to

repair the database instance, but other than that,

Chapter 7 transaCtion Log restores

149

like I said, it’s destructive because the database is

left nonoperational until the database is explicitly

brought back online.

• Leave the database in read-only mode. Roll back

the uncommitted transactions but save the rollback

operation in a file so the recovery effects can be

undone. (RECOVERY WITH STANDBY)

• This option lets you essentially “pause” the

database and put it in read-only mode. The

uncommitted transactions get rolled back, but the

rollbacks are saved so that they can be undone

later, if needed. This would be a good option for

ensuring that everything is working as intended in

the database, for example.

• Choosing this option lets you select a location for a

rollback undo file.

For a “regular” backup, meaning that you just want to restore data

to the last transaction log backup, all you need to restore is the last

differential backup, and then the transaction logs, in order, up to the point

in time that you need to access data from. For the large majority of restores,

this is the case.

It is very rare that you will want to restore to a specific point in time

many days ago, and run the risk of losing all data accumulated after that

point, in other words. There have been specific instances where this is

exactly the case though, and in this case, I would strongly recommend

running a current backup of the database before doing anything to a

production or development database. After a backup has run and has been

verified, then proceed with whatever path you want to take to restore the

database. In my experience, I have found that it is beneficial to restore the

full, differential, and transaction log backups to a secondary database for

Chapter 7 transaCtion Log restores

150

verification of the data being sought. Once the data is found, I then create

INSERT INTO… SELECT scripts to update my primary database from

my secondary database. Once the update is complete and I have verified

that my data has been recovered successfully, I can drop the secondary

database and continue on with my day. The only caveat I have to stress is

to ensure that the INSERT INTO… SELECT statements are properly written

to update the primary database from the secondary database correctly;

otherwise, you’re just creating more work for yourself.

I find this to be a fantastic method to ensure that the data between the

primary and secondary database tables being restored is correct, since

I am outside of the current primary database but working on an exact

duplicate in the secondary database from a point in time.

To continue, just ensure that the Overwrite the existing database

(WITH REPLACE) option is checked and that the transaction log (roll up to

the previous full backup) before the data update is selected, and click the

OK button. Figure 7-7 shows the window that tells us that our database was

successfully restored.

Click OK on this window and notice that our main Restore Files

and Filegroups window has closed. Go back over to SSMS and run the

following query:

SELECT count(*) as cnt FROM users1

Your result should be 10,020,000. Congratulations!

Figure 7-7. Database restored successfully

Chapter 7 transaCtion Log restores

151

 Point-in-Time Restore/Recovery
In order to restore a transaction log, we first need to restore a full backup

and optionally a differential backup. Have you ever seen the state of a

database in SSMS when a database is stuck in Restoring mode? As I noted

earlier in this chapter, that happens when a database has been restored

with a full or differential backup with the RESTORE WITH STANDBY

or RESTORE WITH NORECOVERY option selected. It will stay in the

Restoring state until the tail of the transaction log is restored or the

RESTORE WITH RECOVERY statement is executed as part of a restore

process. Let’s take a look at this in practice.

In SQL Server Management Studio, right-click your database (mine is

named backrecTestDB) and navigate to Tasks ➤ Restore ➤ Database… to

continue. Figure 7-8 shows the location of this menu item.

Figure 7-8. Restore Database menu location

Chapter 7 transaCtion Log restores

152

The interface that opens is titled Restore Database. Note that there are

three tabs on the left titled General, Files, and Options for different pages

within this interface. The default selection is General, which is what we see

in Figure 7-9.

This page shows us a Source, a Destination, and a Restore plan section.

These sections are defined as follows:

• Source: The location of the source files to restore from.

This can be either an existing database with backup

files or a local or network storage location containing

backup files.

• Destination: The location of the database to restore to.

The default for the Restore to field here is for the last

backup set, but that can be adjusted by clicking the

Timeline… button and choosing a timeframe to restore

from. This is referred to as a point-in-time restore.

Figure 7-9. Restore Database interface

Chapter 7 transaCtion Log restores

153

• Restore plan: The section details the files that will be

restored, and the Backup sets to restore: section, which

is covered shortly.

Let’s say that I wanted to restore my database to the state it was in at

8:00 this morning. This section of the interface is where you want to go for

that, because this section allows you to pinpoint a specific time and data to

restore data from.

Click the Timeline button shown in the Destination section of the

interface shown in Figure 7-9. A screen opens as shown in Figure 7-10 that

is titled Backup Timeline: backrecTestDB (or whatever your database is

named).

Notice that the initial configuration is for Last backup taken. In this

case, the time of the last backup taken was 7:00 pm. This might be ideal for

you, but I want to restore to 8:00 am, remember? Click the radio button for

Specific date and time and select the date you want to restore to. Figure 7- 11

shows my updated interface.

Figure 7-10. Backup Timeline: backrecTestDB

Chapter 7 transaCtion Log restores

154

Notice that the Timeline Interval field is set to Day. There are other

options in this drop-down menu with the values Hour, Six hour, and Week

as well. Feel free to select any of these options, if you would like, but the

value of the selection you just made will probably change. You can also

move the slider at the bottom of the timeline view but above the legend for

a more precise timeline location. When you have selected the right time

you would like to restore to, click the OK button to return to the Restore

Database screen.

Once you return to the Restore Database, notice that the Backup sets

to restore: section has updated to show the relevant backup sets to restore.

Typically, this area will be populated by the full and differential backups

which relate to the selected timeframe of the transactions needing to be

restored. Figure 7-12 shows my screen after the Backup sets to restore:

section has been repopulated.

Figure 7-11. Backup Timeline: backrecTestDB, updated

Chapter 7 transaCtion Log restores

155

At this point, we can see the full backup at the top of the list, followed

by the differential backup, and the two transaction log backups at the

bottom. Click the Verify Backup Media button if you would like to verify the

media; I generally click this button anytime I see it, just in case.

The Files tab on the left can be left alone for now. This is where you

would normally define where the restored files will be stored and what

their names will be, but we are not going to change this setting.

The Options tab needs some explanation. Go ahead and navigate

there, and notice that the interface has the following sections and

selections:

• Restore options

• Overwrite the existing database (WITH REPLACE):

This option overwrites the database files for the

selected database. This is a very destructive option,

so use it at your own risk.

Figure 7-12. Restore Database, updated

Chapter 7 transaCtion Log restores

156

• Preserve the replication settings (WITH KEEP_

REPLICATION): If there are replication settings

defined for the database, then keep them. This

option specifically addresses the instance when

you need to restore a database which has been

published to a different server than the server the

database was backed up on.

• Restrict access to the restored database (WITH

RESTRICTED_USER): Once the database is

restored, only the members of db_owner, dbcreator,

and sysadmin can access.

• Recovery state

• RESTORE WITH RECOVERY: This option will

restore all the backup sets as the default.

• RESTORE WITH NORECOVERY: This option

will leave the database in the Restoring… state

discussed earlier. Once the tail of the transaction

log has been restored, the database will then move

to a normal state.

• RESTORE WITH STANDBY: This option will leave

the database in a read-only state. If this option is

chosen, you must specify a Standby file.

• Standby file: This file will reverse the recovery

effort.

• Tail-log backup (a backup that contains the portion of

the transaction log not previously backed up, or the

active portion of the transaction log)

• Take tail-log backup before restore: Specifies that you

would like to back up the tail of the transaction log.

Chapter 7 transaCtion Log restores

157

• Leave source database in the restoring state

(WITH NORECOVERY): Same as the option

listed previously; the database will be left in the

Restoring… state.

• Backup file: The location of the backup file for the

tail of the transaction log.

• Server connections

• Close existing connections to destination database:

Basically, this option puts the database into

single- user mode and closes all connections to

the database engine from SSMS. Once the restore

process is complete, the database is put back

to multiuser mode and connections are made

available again.

• Prompt

• Prompt before restoring each backup: This option

will show a pop-up window asking if you want to

proceed with each restore.

For this Options tab, I only want to check Overwrite the existing

database and uncheck Leave source database in the restoring state.

Everything else can stay the same on this screen (Figure 7-13).

Chapter 7 transaCtion Log restores

158

Fi
gu

re
 7

-1
3.

 R
es

to
re

 D
at

ab
as

e,
 O

pt
io

n
s

ta
b

Chapter 7 transaCtion Log restores

159

When you are ready, click the OK button at the bottom of the screen.

You should see the standard “Restoring” section at the top of the interface

and a progressive percentage going up to 100% until it successfully

completes.

Next, go back over to SSMS and run the following query:

SELECT count(*) as cnt FROM users1

Your result should be 20030000. Congratulations!

In this first section, we have successfully restored transaction logs two

different ways within SQL Server Management Studio.

 Restoring Using Transact-SQL
This method is a bit easier. In the download of SQL Server Management

Studio, there is a sidebar available titled Template Browser. If you don’t

see it immediately available, press Ctrl+Alt+T, or go to View ➤ Template

Explorer in SSMS. The sidebar should open to the right of the main

window. Scroll down to the Restore submenu and expand it. You should

see Restore Database and Restore Files and Filegroups as files under the

Restore submenu. This should look familiar, because we just dealt with

these interfaces in the previous section.

The general idea goes like this: you double-click whichever template

you want to edit, and the template opens up as a new query in the main

SSMS window. You can then make whatever changes you want to this file

and save it to your local file system as a brand-new script.

 Restore File and Filegroups Template
This template is a bit more involved than the Restore Database template

introduced shortly, and for good reason. This template deals with restoring

individual files, whereas the Restore Database template simply restores

Chapter 7 transaCtion Log restores

160

the database and that’s it. First things first; we need to delete the portion of

the template that wants us to create a database, back up the database, and

back up the transaction log. This essentially means that we are going to

delete lines 5 through 41, inclusive. That means we should be left with four

statements, each beginning with RESTORE. Next, we want to delete one of

these RESTORE statements. The reason for this is because we are assuming

that we are going to restore a full backup, then a differential backup, and

then the transaction log.

Before we go any further, let’s add some more data to the database by

running the script shown in Listing 7-2. Note that this is exactly the same

script as Listing 7-1.

Listing 7-2. Create More Data for the Database

DECLARE @cnt INT;

SET @cnt = 0;

WHILE @cnt <= 1000

BEGIN

 INSERT INTO users1 SELECT * FROM users2;

 SET @cnt = @cnt + 1;

END;

The record count before running this script was 20030000, and the

record count after running the script is 30040000. Now that this data is in

the table, go ahead and run a full backup and a differential backup using

the SQL Server Agent jobs you should have created in Chapter 1.

Next, you should modify your script to look like what is shown in

Listing 7-3.

Chapter 7 transaCtion Log restores

161

Listing 7-3. Restore Script

USE master

-- full database restore

RESTORE DATABASE backrecTestDB

 FROM DISK = N'E:\SQL Server\Backup\backrecTestDB_FULL.bak'

 WITH NORECOVERY, REPLACE

-- differential database restore

RESTORE DATABASE backrecTestDB

 FROM DISK = N'E:\SQL Server\Backup\backrecTestDB_

DIFFERENTIAL.bak'

 WITH NORECOVERY

-- Restore logs

-- restore 7 AM log

RESTORE LOG backrecTestDB

 FROM DISK = N'E:\SQL Server\Logs\backrecTestDB_7AM.trn'

 WITH NORECOVERY

-- restore 8 AM log

RESTORE LOG backrecTestDB

 FROM DISK = N'E:\SQL Server\Logs\backrecTestDB_8AM.trn'

 WITH NORECOVERY

RESTORE DATABASE backrecTestDB WITH RECOVERY

Executing the script shown in Listing 7-2 in SQL Server Management

Studio will render what is shown in Figure 7-14.

Chapter 7 transaCtion Log restores

162

We can see there that the full, differential, and transaction log backups

have been successfully restored. The record count before running this

script was 30,040,000, and the record count after running the script is

20,030,000.

So there we have it! We have successfully restored transaction logs

using SQL Server Management Studio and Transact-SQL.

 Summary
In this chapter, we have learned how the various parts of the restoration

process within SQL Server work together to create a viable solution for

restoring data. We looked at the different parts of the interfaces necessary

within SQL Server Management Studio to complete the task.

The final script for the transaction log restore is available as

TransactionLogRestore.sql in the download for this book.

In the next chapter, we are going to tie together all of the restoration

principles we have learned in Chapters 5 through 8 into one giant

restoration script.

Figure 7-14. Script results

Chapter 7 transaCtion Log restores

163© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_8

CHAPTER 8

Restore Solution
Examples
In this chapter, we will tie together what we have learned from Chapters 5

through 7 into a cohesive structure that we can use to create a typical

restore scenario. Note that we have not yet touched on all concepts of

restoring data in the previous chapters; that will be remedied in this

chapter, since I will focus more on the various conditions and options

that are shown on the various screens in SSMS and that are available from

using sqlcmd. This chapter will therefore be more of an all-encompassing

look at every angle of restoring data within SQL Server, from the basic full

restore to the exact point in time of the transaction log restore.

One of the most important things to keep in mind when setting up

a restore scenario is that you need to practice implementing it before it

gets put into a production environment. You should have step-by-step

instructions on how to execute the restore, and they should be simple

enough that a non-DBA will be able to sit down at a server console and

successfully execute the restore scenario. I know that this seems like a

daunting task, but I will help you write this procedure at the end of this

chapter.

The first thing that we must do to enforce a restore scenario is define the

criteria for restoration. We need to come up with a set of situations which

would require a restore, and then define which type of restore would be

164

best suited to that situation. It’s very easy to just say to restore to the latest

point in the transaction log, because this is probably true for 99% of the

situations that we will encounter as DBAs. There are situations when this is

not the best approach though, and that is what we need to prepare for.

Let’s define a few situations and then the appropriate restore types that

we need for each situation. In these scenarios, we want to

• transfer the production database to the development

environment for testing

• recover from a catastrophic error at an unknown point

in the previous evening

• recover data that was overwritten 15 minutes ago

• make a backup outside of the regular backup schedule

that we can use as a “known good starting point”

As you can see, for at least half of these, we can just restore from the

last transaction log and be done with it. That is the advantage of restoring

data (besides actually getting your data restored); for the most part, there

really isn’t a lot of forethought required to restore data. You know that the

data resides in the backups, so restore the backups. Pretty straightforward,

and from there, we can keep it as simple or make it as complicated as we

need it to be.

Before we get into building a complete restore scenario, let’s go over

some topics that didn’t really fit into the previous chapters and certainly

deserve a spot when discussing restoration of data. Not all restorations are

done from the database option in Object Explorer, when we would right-

click the database name, hover over Tasks, then Restore, then select the

database option. There are two other options in this menu that we haven’t

discussed, and those options are “Files and Filegroups” and “Page.” What

this means is that we can not only restore from the database, but also

restore the individual files and filegroups, or down to the page level.

Chapter 8 restore solution examples

165

 Page Restores
With page restores, the important thing to remember is that the suspect_

pages table in the msdb database is where the possible corruption

information lives. The structure of this table is shown in Table 8-1.

Table 8-1. msdb..suspect_pages Structure

Column Name Description

database_id iD of the database with the corruption.

file_id iD of the file in the corrupted database.

page_id iD of the page that is suspected to be corrupted.

event_type number which represents the type of error. possible values are

as follows:

1. this is the “catch-all” of error values. this means either an

823 (due to hardware fault) or 824 error (other database

corruption) has occurred.

2. incorrect checksum.

3. torn page.

4. restored page (after being flagged as suspect).

5. repaired by DBCC (after being flagged as suspect).

6. Deallocated by DBCC (after being flagged as suspect)

error_count Count of the times that the error occurred.

last_update_date Date and time of the entry.

Chapter 8 restore solution examples

166

There are a few things to keep in mind when wanting to perform page

restores. For example, you can only restore database pages. That may seem

obvious, but the implication is that you cannot restore transaction logs or

any of the “special” pages: specifically, allocation pages, global allocation

map pages, shared global allocation map pages, and page free space pages.

Microsoft uses very precise language when they say “only database pages”

at https://docs.microsoft.com/en-us/sql/relational-databases/

backup- restore/restore-pages-sql-server, in other words.

 Querying msdb..suspect_pages
The msdb..suspect_pages table holds the key to telling you which pages

are suspected to be corrupt, which will hopefully lead you to a solid

plan to restore those corrupted pages. There probably isn’t anything really

damaging yet, but there could be in the future, in other words.

A lot of times, the database can be repaired by general database restore

operations, which overwrite pages by default. In the case of a database

being restored, it is important to realize that, if the corrupted page has

been backed up to the backup set being restored, then the corrupted data

will remain until it is fixed.

Open up a New Query window and type SELECT * FROM msdb..

suspect_pages; and press F5 on your keyboard. When I run this query,

I get zero results returned, which is a good thing. If I had gotten any results,

I would take immediate action as shown in Table 8-2.

Chapter 8 restore solution examples

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-pages-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-pages-sql-server

167

Following those steps will let you restore the page safely within T-SQL.

 Complete Database Restore Using T-SQL
Recall that since we are working in the full recovery model, we have a

lot more functionality at our disposal for backing up and restoring data.

Particularly, we have granular control over how much or how little data

we want to restore based on the current situation. The full recovery model

allows us to restore the entire database, if needed, and more importantly, it

can be restored to a specific point in time, as we saw in Chapter 5.

Table 8-2. Page Restore Actions

Step Description

1 Get the page_id of the corrupted pages from the msdb..suspect_pages

query output.

2 start a page restore using a full backup, file backup, or filegroup backup

which contains the corresponding corrupted page.

if running from t-sQl and not ssms, use the following syntax:

RESTORE DATABASE <database_id>

PAGE = '<file_id: page_id>'

FROM <backup device or file>

WITH NORECOVERY

note that the database_id, file_id, and page_id values all come from the

msdb..suspect_pages query run earlier.

3 restore the latest differential backup.

4 restore the relevant transaction log backups.

5 Back up the tail of the transaction log.

6 restore the transaction log from step 5.

Chapter 8 restore solution examples

168

There is a basic set of instructions to follow when restoring a database

in the full recovery model. The general set of instructions is shown in

Listing 8-1.

Listing 8-1. Databasve Restore Instructions

• Switch to the master database

• Create a tail-log backup using BACKUP LOG

backrecTestDB TO DISK = 'E:\SQL Server\Logs\

backrecTestDB_TLOG_TAIL.bak' WITH NORECOVERY;

• SSMS Response: Processed 18 pages

for database 'backrecTestDB', file

'backrecTestDB_log' on file 1. BACKUP LOG

successfully processed 18 pages in 0.069

seconds (1.981 MB/sec).

• Restore the latest full backup using RESTORE DATABASE

backrecTestDB FROM DISK = 'E:\SQL Server\

Backup\backrecTestDB_FULL.BAK' WITH NORECOVERY;

• SSMS Response: Processed 107968 pages

for database 'backrecTestDB', file

'backrecTestDB' on file 1. Processed 2

pages for database 'backrecTestDB', file

'backrecTestDB_log' on file 1. RESTORE

DATABASE successfully processed 107970 pages

in 21.669 seconds (38.927 MB/sec).

• Restore the latest differential backup using RESTORE

DATABASE backrecTestDB FROM DISK = 'E:\SQL

Server\Backup\backrecTestDB_DIFF.BAK' WITH

NORECOVERY;

Chapter 8 restore solution examples

169

• SSMS Response: Processed 136 pages

for database 'backrecTestDB', file

'backrecTestDB' on file 1. Processed 2

pages for database 'backrecTestDB', file

'backrecTestDB_log' on file 1. RESTORE

DATABASE successfully processed 138 pages

in 0.283 seconds (3.795 MB/sec).

• Restore the oldest transaction log backup from

the latest differential backup using RESTORE LOG

backrecTestDB FROM DISK = 'E:\SQL Server\Logs\

backrecTestDB_backup_2017_10_16_190004_6842741.

trn' WITH NORECOVERY;

• SSMS Response: Processed 0 pages

for database 'backrecTestDB', file

'backrecTestDB' on file 1. Processed 16

pages for database 'backrecTestDB', file

'backrecTestDB_log' on file 1. RESTORE LOG

successfully processed 16 pages in 0.059

seconds (2.118 MB/sec).

• Continue restoring transaction log backups until you

recover to the point of failure

• SSMS Response: Processed 0 pages

for database 'backrecTestDB', file

'backrecTestDB' on file 1. Processed 8

pages for database 'backrecTestDB', file

'backrecTestDB_log' on file 1. RESTORE LOG

successfully processed 8 pages in 0.047

seconds (1.329 MB/sec).

Chapter 8 restore solution examples

170

• Recover the database using RESTORE DATABASE

backrecTestDB WITH RECOVERY;

• SSMS Response: RESTORE DATABASE successfully

processed 0 pages in 0.873 seconds (0.000 MB/sec).

Note that I am using false names in the DISK attributes of these

instructions. This is so it is easier for you to understand which backup I am

looking for in a set of backups.

If you notice in the SSMS Response bullets in Listing 8-1, in the

transaction log restore portion, I restored the first log after the differential

backup was restored, and then I restored the next log after that, which is

when I got the message that 0 pages were processed, which means that I’m

at the end of the applicable transaction logs. Now, there could be more to

be restored after this log was restored, but in this case, that is the end of the

data that needed to be restored. In a real-world scenario, you would have a

specific time of day that you would need to restore data to so keep in mind

that you may need to restore more logs than are shown in the example.

Simply rewrite the script for the transaction log restores that you need.

With these instructions in mind, a good restore script can be pieced

together as shown in Listing 8-2.

Listing 8-2. Restore Script

-- switch to master database

USE master

GO

-- backup the tail of the log

BACKUP LOG backrecTestDB

TO DISK = 'E:\SQL Server\Logs\backrecTestDB_TLOG_TAIL.bak'

WITH NORECOVERY;

GO

Chapter 8 restore solution examples

171

-- restore the Full backup

RESTORE DATABASE backrecTestDB FROM DISK = 'E:\SQL Server\

Backup\backrecTestDB_backup_2017_10_16_000002_2492163.bak'

WITH NORECOVERY;

GO

-- restore the Differential backup

RESTORE DATABASE backrecTestDB FROM DISK = 'E:\SQL Server\

Backup\backrecTestDB_backup_2017_10_16_180001_7394135.bak'

WITH NORECOVERY;

GO

-- restore the Transaction Log backups

RESTORE LOG backrecTestDB FROM DISK = 'E:\SQL Server\Logs\

backrecTestDB_backup_2017_10_16_190004_6842741.trn'

WITH NORECOVERY;

GO

RESTORE LOG backrecTestDB FROM DISK = 'E:\SQL Server\Logs\

backrecTestDB_backup_2017_10_16_200001_9609626.trn'

WITH NORECOVERY;

GO

RESTORE DATABASE backrecTestDB WITH RECOVERY;

GO

Once you have run the script shown in Listing 8-2, you can always run

the script shown in Listing 8-3 to verify that your database is back online.

Listing 8-3. Database Status Verification

SELECT databasepropertyex ('backrecTestDB', 'Status');

Chapter 8 restore solution examples

172

That should return just the value ONLINE in the Results page of

SSMS. Once you see this, then you can be assured that everything has been

restored successfully and your database is running smoothly.

 Complete Database Restore Using SSMS
The process for restoring a database using SSMS is exactly the same as

using T-SQL; we just aren’t going to write the code to do it. We are going to

let the interface do the work for us.

Figure 8-1 shows what my tables look like in Object Explorer pane

before we do anything.

What we want to do is create a situation where I need to restore

the entire database, and then walk through the process of restoring the

backups in order from full to differential to transaction logs. A fun way

to do this is to just drop a table or two. That’s pretty much a great reason

to run a restore operation, right? When you’re ready, first verify that you

have a current set of database backups that you can definitely restore from.

Next, right-click a table or two and select Delete. This window is shown in

Figure 8-2.

Figure 8-1. Current tables

Chapter 8 restore solution examples

173

There is only the one tab labeled General in this window. In the center

pane, we can see that I have selected the users1 table to be deleted. When

ready, just click OK and the table will be deleted.

Notice how my Object Explorer window no longer shows the users1

table, and I cannot query the table as well. Figure 8-3 shows my updated

Object Explorer.

Figure 8-2. Delete Object window

Chapter 8 restore solution examples

174

We are going to use the same sequence of events as when we restored

using T-SQL. That sequence is shown in Listing 8-1 and an abbreviated

version is repeated in Listing 8-4.

Listing 8-4. Restore Sequence

• Switch to the master database

• Create a tail-log backup

• Restore the latest full backup

• Restore the latest differential backup

• Restore the oldest transaction log backup from the

latest differential backup

• Continue restoring transaction log backups until you

recover to the point of failure

• Recover the database

Note that I have left out the specific SQL statements, since we won’t

need them in SSMS.

Figure 8-3. Object Explorer, updated

Chapter 8 restore solution examples

175

We need to connect to the master database to continue. We can either

open a New Query window and select master from the Available Databases

menu (or press Ctrl+U and the up and down arrow keys), or we can verify

that we are connecting to the master database when we log in. If you are

not connecting to master when you log in, you probably should consider

changing. You can change your default database in the Connect to Server

dialog shown in Figure 8-4.

Click the Options ➤ button and you will get an expanded interface, as

shown in Figure 8-5.

Figure 8-4. Connect to Server

Chapter 8 restore solution examples

176

Pull down the drop-down menu next to Connect to database and select

Browse server. A brief message pops up asking to connect to the server, so

click the Yes button when you see this message. You are then shown the

Browse Server for Database window, as shown in Figure 8-6.

Figure 8-5. Connect to server, expanded

Chapter 8 restore solution examples

177

All we need to do here is select master and click OK, and master then

shows instead of default in the Connect to Server window. Figure 8-7

shows my updated interface after choosing master.

Figure 8-6. Browse Server for Database

Chapter 8 restore solution examples

178

I have kept the rest of values in this and the other tabs at their default

values. Once I press connect, I am then connected to the master database

by default.

The next step is to take a backup of the transaction log. This is done by

right-clicking the database name, hovering over Tasks, and then selecting

Back Up. The location of this menu item is shown in Figure 8-8.

Figure 8-7. Connect to Server, updated

Chapter 8 restore solution examples

179

This opens up the Back Up Database screen, as shown in Figure 8- 9.

This default screen would be ideal if I wanted to run a full backup, as

indicated by the backup type option of full, but I do not want to do this at

this time.

Figure 8-8. Back Up location

Chapter 8 restore solution examples

180

Since I don’t want to run a full backup, I need to pull that menu down

and select transaction log instead. Once you make this change, you will see

what is shown in Figure 8-10.

Figure 8-9. Back Up Database

Chapter 8 restore solution examples

181

This sets us up to back up our transaction log, but we aren’t done yet.

If we were to press OK here, we would be selecting the default values on

the other tabs, and we haven’t looked at those options yet.

Click the Media Options label on the left to show the Media Options

screen. Figure 8-11 shows the default values for this screen.

Figure 8-10. Transaction Log selected

Chapter 8 restore solution examples

182

Note that the Truncate the transaction log radio button is selected in

the transaction log section. This means that the default option is just to

truncate and leave that ragged edge as the new tail of the transaction log.

We want to leave this option as is. This is because we want to leave the

database online and not in the restoring state. Select the specified option

and press OK to continue. We don’t need to worry about the default values

in the Backup Options tab, since those default values are what we need.

A success message should quickly appear, letting us know that our

backup has completed successfully. Click OK when you see this, and the

Back Up Database screen will close.

Figure 8-11. Back Up Database, Media Options tab

Chapter 8 restore solution examples

183

Now, our database is shown in Figure 8-12 as back online, as expected.

Once we get here, we are ready to move to the next step in the

operation and start the restoration of the data.

To begin a full database restore, we start much like before except with a

slightly different menu location, as shown in Figure 8-13.

Figure 8-12. Database is online

Chapter 8 restore solution examples

184

We are going to right-click our database and hover over Tasks, then

Restore, and finally, select Database.

The default screen is shown in Figure 8-14. Note that this screen will

automatically populate with a Restore Plan based on the latest backups of

the selected database.

Figure 8-13. Database menu location

Chapter 8 restore solution examples

185

You can freely choose any of the options in the Database drop-down

menu and watch how the backup sets values change with each selection.

Note notice how the name field automatically defaults to show the
full backup, then the differential backup, and then the transaction log
backups since the last differential backup.

We want to choose the options in this area by default, since we want to

restore the full, differential, and transaction log backups in the order they

are shown in the interface. We want to be sure that we both wind back the

transaction log and choose a point in time in the Timeline area or discount

an entire transaction log. I am going to restore to the previous transaction

log, since I know the data is resident in that backup.

Figure 8-14. Restore Database

Chapter 8 restore solution examples

186

The values in the Files tab are fine by default, since we don’t want to

rename any files. They are staying where they are going by default, in other

words.

Over on the Options tab, we want to be sure that the tail-log backup

section has both options selected (as is the default), and when we are ready,

press the OK button. After a minute or so, you should get the message

showing that the database was successfully restored. Click OK here to

complete this operation, and then press F5 to refresh the SSMS interface.

Trust but verify, right? Go ahead and expand Tables under our

database, and you should see what is shown in Figure 8-15.

So there you have it: a complete restore of a database using SSMS.

 Database Snapshots
A great way to restore an entire database quickly is with database

snapshots. This is a literal snapshot of a database at a particular moment in

time, and is consistent with the actual database as of that moment in time.

This means that the snapshot acts as a sort of duplicated database, because

Figure 8-15. users1 returns!

Chapter 8 restore solution examples

187

as the source database is updated, so is the snapshot. From the moment

that the snapshot is taken, every subsequent transaction is captured in

the snapshot as well as in the source database. You can also have multiple

snapshots of the same database, which is a particularly good idea. This

can be a great way to manage restoration of data, if managed correctly. For

example, if the snapshot exists for a long time and is not dropped, it will

continue to grow until it consumes the disk it resides on. This is clearly not

ideal, and for this reason, snapshots must be maintained.

Let me pause here and mention that database snapshots are never to

be used in place of a backup and restore scenario. If we aren’t supposed

to use them for backup or recovery, then what is their purpose? The main

purpose for using database snapshots is for the DBA that wants to take a

quick snapshot of their database, do something to the database that might

mess up, and then test to make sure that the database change actually

works. If it doesn’t, then the DBA just restores the snapshot, and they

are right back where they were a few minutes ago. The time to do this is

generally much less than planning a restore operation and having to go

through all the restore steps and figuring out which transaction logs to

recover. Instead, just restore the snapshot and the job is complete.

Another good use for database snapshots is for reporting. With our

naming convention, we can create a standard report that is based on

data from the different snapshots taken during the day. This could be

used for such purposes as tracking volume in sales, or monitoring the

various transactions in dollars being recorded in the database throughout

time. A rolling 24-hour window of data will be available to the reporting

service, and quantifying this data into a dashboard for easy readability

by management is a fantastic use of database snapshots. The topic of

reporting in SQL Server is slightly outside of the scope of this book, so

I recommend picking up Kathi Kellenberger’s Beginning SQL Server

Reporting Services, available at www.apress.com/us/book/9781484219898.

This is an absolute necessity for those DBAs that are branching out into the

world of SQL Server reporting services and don’t quite know where to start.

Chapter 8 restore solution examples

http://www.apress.com/us/book/9781484219898

188

 How Does a Database Snapshot Work?
The concept of database snapshots can be somewhat intimidating to an

unfamiliar user. The best way that I’ve heard it explained was that they are

most closely related, in theory, to a static full database backup. The entire

database as it existed at the time of creation resides as a read-only copy

in this snapshot, and that one snapshot remains a read-only copy of the

source database, up to the point that the snapshot is dropped.

 Creating a Database Snapshot

Let’s say that you have a SQL Server Agent job that will create a database

snapshot every hour, and the oldest snapshot will be deleted after a certain

number of snapshots is created. This is probably the most common usage

scenario, because it limits the amount of data that is being stored in the

snapshots, while still providing a reliable snapshot structure.

The syntax to create a database snapshot will be familiar to you, since

it is essentially a CREATE DATABASE statement as shown in Listing 8-5.

Listing 8-5. Create Database Snapshot Syntax

CREATE DATABASE backrecTestDB_snapshot_12AM ON (

NAME = backrecTestDB,

FILENAME = 'E:\SQL Server\Data\backrecTestDB_data_12AM')

AS SNAPSHOT OF backrecTestDB;

The statement CREATE DATABASE backrecTestDB_snapshot_12AM

ON (is saying that we want to create a new database snapshot called

backrecTestDB_snapshot_12AM. This is also the name of the snapshot

when viewed within SSMS. The presence of the ON keyword means that it is

based on an existing file. In this case, the NAME = attribute holds the logical

name of the database file as found in your Database Properties window, as

shown in Figure 8-16. You can find this information by right-clicking your

Chapter 8 restore solution examples

189

database name, choosing Properties, and then clicking the Files menu

option on the left to open the Files tab.

The line FILENAME = 'E:\SQL Server\Data\backrecTestDB_

data_12AM' lets us declare the name of the file to be saved in the file

system. Finally, the line) AS SNAPSHOT OF backrecTestDB; lets us

specifically define that we want to create a snapshot, and not a “regular”

database. Copy Listing 8-5 into a New Query window and press F5 to

run the script, after you have updated your database name for what I

have. Next, switch over to Object Explorer and press the Refresh button

in the toolbar and expand the Database Snapshots option underneath

Databases. If the script in Listing 8-5 runs correctly, and the database

snapshot was created, you will see what is shown in Figure 8-17.

Figure 8-16. Logical Name location

Chapter 8 restore solution examples

190

Good job! So now we can see that we have a snapshot, and if you were

to expand the backrecTestDB_snapshot_12AM option, you would see the

exact contents of the backrecTestDB database at the time that the snapshot

was taken.

 Querying a Database Snapshot

You would query a database snapshot the same way you would query the

source database. Listing 8-6 shows both syntaxes.

Listing 8-6. Querying Source Databases and Snapshots

SELECT count(*) as cnt FROM [backrecTestDB_snapshot_12AM].dbo.

users2

SELECT count(*) as cnt FROM [backrecTestDB].dbo.users2

Once we run that, we see that we are at 10,000 rows in each table. This

is to be expected, and is good because it shows that our data is consistent

so far. What we want to do now is delete some data out of the source

database and compare the two row counts again. The query I used is in

Listing 8-7.

Listing 8-7. DELETE Snippet

DELETE FROM [backrecTestDB].dbo.users2 WHERE fname = 'Bradley'

Executing this code deletes 1000 rows out of the users2 table in the

backrecTestDB database.

If we execute the code shown in Listing 8-6, we see there are 10,000

rows in the snapshot, and 9000 rows in the source database.

Figure 8-17. Database snapshot created successfully

Chapter 8 restore solution examples

191

If we were to take another snapshot at this point, and then delete

another set of data from the users2 table or make any other arbitrary

change, then we would have three separate and distinct sets of data that

we could restore from.

Using this example, you can see why I mentioned earlier about using

snapshots as sources for reporting. Utilizing the data as a frozen point in

time can open up a lot of possibilities within reporting.

 Restoring a Database Snapshot

Now that we can see that I have two different databases with two sets of

data that are not exactly the same, we can begin the process of restoring

the snapshot on top of the source database, essentially undoing any

operations done since the snapshot was taken.

In order to restore the database snapshot, we have to execute a

RESTORE DATABASE command similar to what is shown in Listing 8-8.

Listing 8-8. RESTORE DATABASE Syntax

RESTORE DATABASE backrecTestDB

FROM DATABASE_SNAPSHOT = 'backrecTestDB_snapshot_12AM'

Before we run this, let’s go over a couple of caveats about this

operation.

• The code will run as long as there are no open

connections to the database instance. If there are

open connections, run the following code to close the

connections before running the code in Listing 8-8:

ALTER DATABASE backrecTestDB

SET SINGLE_USER WITH

ROLLBACK IMMEDIATE

Chapter 8 restore solution examples

192

• We have to know that what we are restoring is the

correct version of the data. Yes, that is why we created

the naming convention, but it takes just a minute to

query the snapshot and ensure that the data we need

is definitely there. Unless, of course, you only have a

single snapshot and you just made it specifically to

restore from.

• When you have verified that the data is correct, then

you must drop any other snapshots of the source

database. The restore operation will not continue

unless there is only a single snapshot.

• We cannot do point-in-time restores with snapshots.

You get what is in the database, and that’s it. For this

reason, you must ensure that you are restoring the

correct version of the data to be restored.

Go ahead and execute the code in Listing 8-8, and then immediately

execute the code in Listing 8-6. Look at that; we are back to 10000 rows

in the users2 database because we successfully restored the database

snapshot.

 Viewing Backup and Restore History
Ever wanted to see what is happening under the covers with your

backup and restore operations? Poring through database tables can be

monotonous, trust me. Luckily, SQL Server has quite a few reports built

in, and one specifically that can help you with viewing backup and restore

events is called Backup and Restore Events; how convenient! This report

can be extremely useful in pinpointing any errors that may happen during

backup and restore operations.

Chapter 8 restore solution examples

193

To run this report, right-click your database name (backrecTestDB,

for me) and hover over Reports, then hover over Standard Reports, and

select Backup and Restore Events. Figure 8-18 shows what the initial report

screen looks like.

There are four main headings in this report. They are as follows:

• Average Time Taken for Backup Operations

• The average duration is calculated using the history

of various types of backup operations performed on

this database.

• Successful Backup Operations

• Shows details of the successful backup operations

performed on this database in the past.

• Backup Operation Errors

• Shows details of the errors which caused the

backup operations failure in the past.

Figure 8-18. Backup and Restore Events report

Chapter 8 restore solution examples

194

• Successful Restore Operations

• Shows details of the successful restore operations

performed on this database in the past.

This report is very easy to navigate. All you need to do is click the little

plus sign to expand the table. Inside, you will see that the table is sorted

with the newest records on top.

 Summary
This chapter saw us finally wrapping up the restore operations and

learning about the different options of restoring data that are vital to the

backup and restore operations.

We learned about restoring pages and the value of msdb..suspect_

pages to find out about suspected corruption of the pages in the database.

We went over restoring from a database snapshot and all that entails.

And finally, we learned about viewing the history of the backup and

restore history.

This chapter concludes this section on the restore aspect of the backup

and restore operation. In the next section, we will start getting everything

put together into a single separate backup and Restore plan.

Chapter 8 restore solution examples

Complete Solutions

PART III

197© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_9

CHAPTER 9

Full Backup and
Restore Solutions
In the “real world,” there is a definite business need to have reliable

backups available at a moment’s notice. The eventuality of data corruption

is almost a guarantee, so the seasoned DBA must know that their database

can be restored quickly and correctly. The availability and reliability of

the backup are of utmost importance, whether backups are stored in a

remote location or they are stored local to the database server. We often

deal with service-level agreements, or SLAs, in our backup and recovery

practices. This sort of document deals with a wide range of specifics, such

as how often the backups are to be run, the conditions for restoring data,

and how to restore the data. You may work in a place that doesn’t deal

with these, and that is fine also. For instance, if you are providing database

storage as a service as part of a web hosting package, then you will more

than likely be bound with an SLA which describes the specifics of the

availability of that system. Whether or not you are bound by an SLA in your

daily responsibilities as a DBA, the one thing that will not change is your

responsibility to the well-being of the database and the data it houses.

I have tried to get one message across in every book I have written so far,

and this book is no different: there is no greater responsibility we have as

DBAs than the protection of our data.

198

In my personal experience, I can think of a grand total of one DBA that

I know that has a complete backup scenario completely in T-SQL. This

person’s justification was that SQL could be run from outside of SSMS, so

having it available outside of SSMS was ideal. While a part of me agrees

with this, another part of me says that we should be leveraging the tools

we have at our disposal, including (and especially) ones that we can use

automate tasks such as backups. To me, it makes sense to have the bulk

of the work done by SSMS, but still have the T-SQL available for the code

hounds like my DBA friend in case we need to back up or restore the

database and SSMS is not available to us for some reason. For this reason,

we are going to focus this chapter on creating a maintenance plan for a

full backup in SQL Server Management Studio, and then working up the

corresponding T-SQL, in case we need it. Understand that this is not to

say that T-SQL does not have its place as the main scripting tool for the

seasoned or beginning DBA; to suggest otherwise makes no sense, since

T-SQL is the underlying language that DBAs use to communicate with the

database. There are many T-SQL solutions available on a simple Google

search, and the one worth really mentioning is Ola Hallengren’s backup

script solution, located at https://ola.hallengren.com/.

Up until now, we have concentrated on the differences between

backups and restores and kept them separated in our minds through

the different chapters. We need to start to join those disparate concepts

together now into a cohesive unit, and the best way that I can think of to

do that is by creating two separate maintenance plans, one for backups

and one for restores, to manage the different parts of the plan. The obvious

implication of having separate maintenance plans is that there will be a

different schedule in place for each backup portion.

For this chapter, we will go through how to create a maintenance plan

for full backups. Now, clearly, we don’t want to have the restore sequence

as part of the backup scenario. The reason for this is because all we would

be doing is running a full database backup, and then restoring that backup

right on top of the database that we just backed up.

Chapter 9 Full BaCkup and restore solutions

https://ola.hallengren.com/

199

Listing 9-1 shows what we will build in this chapter.

Listing 9-1. To-Do List

• Full backup maintenance plan in SSMS

• Based on our previous schedule, one full backup

every 24 hours

• Backups must be on a separate physical disk than

the installation of SQL Server

• Full restore maintenance plan in SSMS

• Not scheduled, but available to SSMS as an SQL

Server Integration Services (SSIS) package

• Full backup maintenance plan in T-SQL

• Not scheduled and can be run from sqlcmd when

necessary

• Full restore maintenance plan in T-SQL

• Not scheduled and can be run from sqlcmd when

necessary

That seems like a pretty good start for this chapter. In the two chapters

following this one, we will essentially build the same thing for our

differential and transaction log backups.

 Full Backup Plan in SSMS
Once we start up SSMS, with the focus on Object Explorer, we need to

expand Management, and then expand Maintenance Plans. If we had any

maintenance plans, they would be in this area. They would also be in the

Jobs menu of SQL Server Agent as individual jobs, but we will take a look at

that area once we create the maintenance plan.

Chapter 9 Full BaCkup and restore solutions

200

Right-click Maintenance Plans and select New Maintenance Plan.

When you see the New Maintenance Plan window shown in Figure 9-1,

give it a name of Backup Plan and press OK.

Once you give it a name, a window titled Backup Plan [Design] is

opened in the main stage area. Figure 9-2 shows the default values for this

window.

Figure 9-1. New Maintenance Plan window

Figure 9-2. Backup Plan [Design] window

Chapter 9 Full BaCkup and restore solutions

201

Next, we need to open up our Toolbox by clicking the Toolbox hovering

menu located to the left of Object Explorer against the side of the interface.

Alternately, you can press Ctrl+Alt+X anywhere within the SQL Server

Management Studio screen and the menu will appear on the left as an

overlay on top of Object Explorer. To hide the Toolbar, just click the Toolbar

hovering menu again and it will disappear, leaving Object Explorer in view.

The toolbox has quite a few items that I explored at great length in my

first book, Practical Maintenance Plans in SQL Server (www.apress.com/

us/book/9781484218945). We can see from a cursory glance at Figure 9- 3

that the option we want is right there on top; we want the Back Up

Database Task.

Figure 9-3. Toolbox

Chapter 9 Full BaCkup and restore solutions

http://www.apress.com/us/book/9781484218945
http://www.apress.com/us/book/9781484218945

202

Click and drag the Back Up Database Task from the Toolbox to the

gray area of the main stage. Figure 9-4 shows approximately where the

task should end up in the stage, but just anywhere inside of the stage

is fine. The stage area acts as the logical container for the pieces of the

maintenance plan, and the order they are in doesn’t matter in the slightest.

The only thing that can interconnect these pieces is the precedence

constraints that we could put on each successive item, so that we can chain

events together and make the maintenance plan a bit more procedural

than just a scheduled lump of tasks.

Once you drag the Back Up Database Task onto the stage, you will see

it appear as shown in Figure 9-4. Note that the red X signifies that this item

needs to be configured.

If you were to mouse over the red X, you would see the message “No

connection manager is specified.” Double-click the task and the Back Up

Database Task window appears, as shown in Figure 9-5.

Figure 9-4. Back Up Database Task

Chapter 9 Full BaCkup and restore solutions

203

For those that are familiar with this area from previous versions of

SQL Server, you will notice that this interface got a slight upgrade in this

version of SQL Server Management Studio. It may even be different once

SQL Server Management Studio is updated again, since SSMS is now a

separate download from SQL Server and therefore subject to an update

cycle outside of the service pack issuance by Microsoft.

 Defining the Back Up Database
Task Options
Note that we are on the General tab. This is where we are going to specify

the items shown in Listing 9-2 in order to get this area prepared.

Figure 9-5. Back Up Database Task window

Chapter 9 Full BaCkup and restore solutions

204

Listing 9-2. To-Do List

• Backup type

• We must choose from full, differential, or

transaction log. In this case, we are going to choose

full.

• Databases

• We must choose at least one database. Note that

simple recovery model databases are removed if

transaction log is chosen from the backup type

option. In this case, we are going to choose the

database we have been working in, backrecTestDB.

• Backup component

• We can choose from database or files and

filegroups. In this case, we are going to choose

database. We could choose files and filegroups if we

had multiple filegroups for our database, but I only

set up the PRIMARY filegroup.

Note if you have multiple filegroups in your scenario, then you can
setup multiple full backup tasks to backup each filegroup in the order
or schedule you desire.

• Back up to

• We must choose from disk, tape, or URL. In this

case, keep it set to disk.

Above the General tab, we can see the Connection drop-down menu.

This defaults to “Local server connection” and it needs to stay there for this

procedure.

Chapter 9 Full BaCkup and restore solutions

205

Once you make the changes noted in Listing 9-2, your window should

look similar to what is shown in Figure 9-6.

Note that the Databases area changes to the text “Specific databases”

when a database is selected.

When you are ready, select the Destination tab to proceed. Figure 9-7

shows the default settings for this tab.

Figure 9-6. Back Up Database Task, updated

Chapter 9 Full BaCkup and restore solutions

206

This tab is slightly more complicated than the General tab. In here, we

have the options detailed in Listing 9-3.

Listing 9-3. Destination Tab Options

• Back up databases across one or more files

• This option exists in case we want to create multiple

backup files of the same database. We can add as

many different file names in this area as we would

like, but note that there will be performance issues

with too many entries.

Figure 9-7. Back Up Database Task, Destination tab

Chapter 9 Full BaCkup and restore solutions

207

• Create a backup file for every database

• This is probably the most common option,

since it lets us have a single backup file of every

selected database. You can also select to create

a subdirectory for each database, which is a very

handy feature as well. The folder location is where

the database backup will be placed, unless the

subdirectory option is checked, in which case, the

database name will become a folder name, and

the backup will be placed inside that folder. We

want to choose this option, and check the Create a

subdirectory for each database check box as well.

Leave the folder value as is, since the default value

for backups is a unique date/time string.

Notice that there is another section under Listing 9-3 options that are

defined as shown in Listing 9-4. These options are only available if you

chose the URL option in the General tab shown in Figure 9-5. Otherwise,

they are disabled by default.

Listing 9-4. Azure Options

• SQL Credential

• This is the SQL Credential account used to connect

to the Azure database.

• Azure storage container

• An Azure storage container is like a block of storage

that you can use for just about anything you want.

In this instance, we are specifically referring to a

database backup, but it isn’t backing up directly to

an Azure instance; instead, it is just backing up the

file to cloud- based storage.

Chapter 9 Full BaCkup and restore solutions

208

• URL prefix

• The URL prefix is unique to each account. You get

a storage account name from Microsoft when you

sign up for Azure, and the storage account name

will be the prefix in the URL.

After these options, the last item is Backup file extension, which is

defaulted to bak. This can be changed to whatever extension you desire,

but I would leave this alone and accept the default value. Figure 9-8 shows

the updated values for the Destination tab.

When you are ready to move on, click the Options tab and you will see

the default values shown in Figure 9-9.

Figure 9-8. Back Up Database Task, Destination tab, updated

Chapter 9 Full BaCkup and restore solutions

209

By default, these options are all okay. However, let’s step through them

in Listing 9-5 so that we understand what we are looking at.

Listing 9-5. Options Tab… Options?

• Set backup compression

• Allows you to set the compression type for the

backup. The three options are as follows:

• Use the default server setting

• Compress backup

• Do not compress backup

Figure 9-9. Back Up Database Task, Options tab

Chapter 9 Full BaCkup and restore solutions

210

• Backup set will expire

• You can choose to set the backup to expire after a

certain number of days or on a specific date.

• Copy-only backup

• This backup type can be thought of as an out-of-

sequence backup. Generally, backups are taken in

a specific sequence, and must be restored in the

order they are taken; this is why you must restore

the transaction logs in the order they were created.

This option allows you to only create a copy of the

database.

• Perform checksum (New)

• A checksum is used to detect errors or

inconsistencies in data. In this context, a checksum

is done on the newly generated backup file to

ensure that it is consistent with what was believed

to be produced.

• Verify backup integrity

• This option is the same as running a RESTORE

VERIFYONLY command on your backup file location.

The simple syntax is RESTORE VERIFYONLY FROM

DISK = <backup file location and name>.

Its purpose is to verify the integrity of the newly

generated backup file (that was redundant!).

• Continue on error (New)

• Simply put, to ignore any errors and keep

hammering away… unless a fatal error occurs,

which would stop the program from executing.

Chapter 9 Full BaCkup and restore solutions

211

• Backup encryption

• In this area, you can choose the algorithm and

certificate or asymmetric key for decryption.

Be very careful with this area, because the same

certificate or asymmetric key must be used

if you ever want to restore the generated backup.

If the certificate or key is lost, the backup cannot

be restored successfully.

• For availability databases, ignore replica priority for

backup and backup on primary settings

• When dealing with AlwaysOn and Availability

Groups, I always default to my good friend

Peter Carter’s excellent book SQL Server

AlwaysOn Revealed (www.apress.com/us/

book/9781484217634). This option allows us to tell

the availability databases to back up the database

instance using the primary settings for the database.

• Block size (New)

• This option allows you to specify the physical block

size in bytes, as opposed to allowing the SQL Server

resource governor to handle the backup using the

default options. Setting this to a lower value would

have an adverse effect on backup operations, but

smaller chunks of data would be written instead of

large chunks.

• Max transfer size (New)

• This option allows you to specify the largest unit

of transfer in bytes to be used between SQL Server

and the backup media.

Chapter 9 Full BaCkup and restore solutions

http://www.apress.com/us/book/9781484217634
http://www.apress.com/us/book/9781484217634

212

The block size and max transfer size options sound very similar, don’t

you think? The difference between them is that the block size option

allows you to say to SQL Server, “I know you usually take a certain number

of bytes, but I want you to take a different number of bytes and put them in

the backup location.” The max transfer size option allows you to say to SQL

Server, “When you move bytes to the backup location, I want that chunk

to be a specific size. You can pack as many blocks into that transfer size

that you want, but once you reach the limit I set, you need to make another

trip.” In other words, think of block size as the individual train car and the

max transfer size as the entire train. Therefore, the max transfer size option

is always larger than the block size option. For example, check the block

size and max transfer size check boxes. Then choose 4096 in the block size

drop-down menu. Next, type in an amount in the max transfer size area;

I chose 512. Finally, press Tab to move out of the max transfer size area.

Did you see the value change back to 65536? Next, click the up arrow on

the max transfer size area, and it will change to 131072. Click the down

arrow twice, and it will default to 65536, but it will not go lower.

Before we continue, make sure you uncheck the block size and max

transfer size check boxes. Leaving them checked probably wouldn’t cause

a lot of headache, but I don’t want to introduce anything into the mix that

would possibly cause an error. The options I selected in here were Verify

backup integrity and Perform checksum. Figure 9-10 shows the updated

interface for the Options tab.

Chapter 9 Full BaCkup and restore solutions

213

That’s all the options in this area that I needed to have for the full

backup option. Before we move on, I want to look at the generated T-SQL

from this plan, so click the View T-SQL button, and you will see something

similar to what is shown in Listing 9-6.

Listing 9-6. Full Backup in T-SQL

EXECUTE master.dbo.xp_create_subdir N'E:\SQL Server\Backup\

backrecTestDB'

GO

BACKUP DATABASE [backrecTestDB] TO DISK = N'E:\SQL Server\

Backup\backrecTestDB\backrecTestDB_backup_2017_10_26_

223559_7118287.bak' WITH NOFORMAT, NOINIT, NAME =

 N'backrecTestDB_backup_2017_10_26_223559_7118287', SKIP,

REWIND, NOUNLOAD, STATS = 10, CHECKSUM

Figure 9-10. Back Up Database Task, Options tab, updated

Chapter 9 Full BaCkup and restore solutions

214

GO

declare @backupSetId as int

select @backupSetId = position from msdb..backupset where

database_name=N'backrecTestDB' and backup_set_id=(select

max(backup_set_id) from msdb..backupset where database_

name=N'backrecTestDB')

if @backupSetId is null begin raiserror(N'Verify failed. Backup

information for database ''backrecTestDB'' not found.', 16, 1)

end

RESTORE VERIFYONLY FROM DISK = N'E:\SQL Server\Backup\

backrecTestDB\backrecTestDB_backup_2017_10_26_223559_7118287.

bak' WITH FILE = @backupSetId, NOUNLOAD, NOREWIND

Note that the names of the backup files will be different from what is

shown here. This is because the file names are automatically generated

based on the current time, so clicking the View T-SQL button one second

apart will generate two different file names. This listing should be used as

a template to paste in the backup name that you want to backup AND what

you want to verify after backup. Do not just save this script and expect it to

run on your machine; I guarantee you that it will fail spectacularly.

When you are ready, click OK to continue. Notice that the red X goes

away now, and we are left with what is shown in Figure 9-11.

Figure 9-11. Backup Plan [Design], updated

Chapter 9 Full BaCkup and restore solutions

215

 Scheduling the Full Backup
Now that we have our plan set up, we need to set up a schedule.

Typically, the schedule I employ at home and at work is almost the same;

a full backup at midnight, a differential backup every six hours, and a

transaction log backup every hour. There are some instances where I

would even run the transaction log backups every half-hour, but this

would introduce a lot more files to have to restore from, while cutting the

maximum time for data loss in half.

Starting from where we left off, we can now see what is shown in

Figure 9-12.

Notice that we now have a subplan named Subplan_1 in the section

above the stage. This is the plan for the full backup, but we need to give it a

better name. Double-click the Subplan, Description, or Schedule column

to open the Subplan Properties window shown in Figure 9-13.

Figure 9-12. Backup Plan [Design] stage

Chapter 9 Full BaCkup and restore solutions

216

We want to change the default values to the values shown in

Listing 9-7.

Listing 9-7. Subplan Properties Values

• Name

• “Full Backup”

• Description

• “This is the full backup portion of the backup

maintenance plan”

• Schedule

• We will set this up in a different area, so ignore this

for now

• Run as

• Keep this as the default

Figure 9-13. Subplan Properties

Chapter 9 Full BaCkup and restore solutions

217

Once you have updated those values, click OK to close that window

and you will be returned to the main stage. Figure 9-14 shows the updated

values in the Subplan Properties window that you should see, and

Figure 9-15 shows the updated stage at this point as well.

Figure 9-14. Subplan Properties, updated

Figure 9-15. Updated stage

Chapter 9 Full BaCkup and restore solutions

218

We can see in Figure 9-15 that our values have been updated in the

Subplan row to the values we entered. For the schedule, we opted to wait

until a bit later, so let’s look at that now.

Click the calendar icon in the row next to the Schedule column.

Figure 9-16 shows the initial interface for the New Job Schedule screen.

Listing 9-8 will step through all the options on this screen so we can

decide what schedule we want to enforce.

Listing 9-8. New Job Schedule Options

• Name

• The name of the scheduled job. The default value is

fine here.

Figure 9-16. New Job Schedule

Chapter 9 Full BaCkup and restore solutions

219

• Schedule type

• Available options are

• Start automatically when SQL Server Agent

starts

• Start whenever the CPUs become idle

• Recurring

• One time

• One-time occurrence

• If the One time option is selected in the Schedule

type drop-down menu, then this option is available.

Otherwise, it is disabled.

• Frequency

• Occurs

• Available options are

• Daily

• Weekly

• Monthly

• Recurs every

• If Daily is selected in the Occurs drop-down

menu, then you can choose any number of

days, up to 100.

• If Weekly is selected in the Occurs drop-down

menu, then you can choose a number of weeks,

up to 100. Additionally, you can choose the day

of the week that the plan is run on; the default

value is Sunday, but any combination of days of

the week can be selected.

Chapter 9 Full BaCkup and restore solutions

220

• If Monthly is selected in the Occurs drop-down

menu, then you can choose to run the plan on

day <number> of every <number> month(s); for

example, you can choose the fourth day of every

second month, or the first day of every month. You

can also choose to run the plan on the <number>

<day of the week> of every <number> month(s); for

example, the second Tuesday of every third month.

• Daily frequency

• Occurs once at

• A set time to run the schedule

• Occurs every

• Run the scheduled task every <number>

hour(s), starting at the starting time and ending

at the ending time selected. If nothing is

selected, the default values are retained.

• Duration

• How long to run the scheduled task for; not the

execution time of the task, meaning the time that

it takes a task to run a single backup operation, but

the availability of the task before it “expires.”

• Summary

• This is a plain-English summary of the selected

options.

The interface in Figure 9-17 shows the updated values for the New

Job Schedule screen. Note that the Enabled check box is checked; this

wouldn’t go very far if that weren’t checked.

Chapter 9 Full BaCkup and restore solutions

221

When you get your schedule set how you would like, press OK to return

to the stage and notice that the Schedule column is updated with the

Summary text from the New Job Schedule interface.

 Updating the SQL Server Agent Job
Now that we have the maintenance plan set up, we could leave it alone

and have it run normally. However, the SQL Server Agent job needs to be

updated. Why? Because for some reason, the job doesn’t inherit all of the

values from the maintenance plan, and we have to go in and backfill the

job values. This will hopefully change in future versions of SSMS.

Expand the SQL Server Agent menu from Object Explorer, and then

expand Jobs. Figure 9-18 shows the location of this menu item.

Figure 9-17. New Job Schedule, updated

Chapter 9 Full BaCkup and restore solutions

222

Notice that we have a defaulted job titled syspolicy_purge_history.

We don’t need it, so it can stay where it is. The job we are concerned about

is the one titled Backup Plan.Subplan_1. We changed this value in the

Subplan Properties window in Figure 9-14, but it did not filter over to this

area, so let’s update that now.

 General Tab
Double-click the job name and the Job Properties window will appear as

shown in Figure 9-19. The purpose of this tab is to give the top-level, or

“General,” settings for the job. Don’t think that this area is not important

though, because a lot can go wrong if it is not filled out correctly. For

example, the Enabled check box needs to stay checked, and the owner

needs to stay as an account with permission to the database, or the

database owner from the Properties window of the database.

Note right-click the database name and select properties. From
here, you can view the owner of the database. this is not to be
confused with the dbo role.

In my experience, those two values need to match. If they don’t, as I

said, then this value needs to be of a user with access to the database.

Figure 9-18. SQL Server Agent, Jobs location

Chapter 9 Full BaCkup and restore solutions

223

As you can see, a few of the options we set in the previous section

didn’t transfer to this job, such as the name and the description. Update

the Name field to say Full Backup and enter a short description to

complete the items on the General tab. Notice that the Category option can

be pulled down and different options can be selected. The purpose of this

is to allow you to segregate different jobs into different categories, and then

use those different categories for log checking or reporting purposes.

It defaults to Database Maintenance though, so it’s best to keep it there.

When you are satisfied with your settings in this area, click the

Steps tab.

Figure 9-19. Job Properties window, General tab

Chapter 9 Full BaCkup and restore solutions

224

 Steps Tab
The next tab (from the pane on the left) is Steps. Figure 9-20 shows the

default settings in this page.

If we had multiple steps in this job, they would be shown here.

Alternately, we could add some jobs in here that are outside of the

maintenance plan creation we did earlier. We don’t want to do that right

now, but it is an option to think about for your own plans, if necessary.

Notice again that the name is different? So, again, we need to double-

click that row and update those values. Figure 9-21 shows the initial values

for the Job Step Properties – Subplan_1 window.

Figure 9-20. Job Properties window, Steps tab

Chapter 9 Full BaCkup and restore solutions

225

 Job Step Properties - Subplan_1 (General Tab)

Be very careful in this area. You could really do some damage in here to

both this job and your database. This area essentially lets you set up the

properties and values for the SSIS package that will be created as a result of

creating this job.

Listing 9-9 shows the available options in this tab.

Listing 9-9. Job Step Properties - Subplan_1 Options

• Step name

• The name of the step.

Figure 9-21. Job Step Properties – Subplan_1, General tab

Chapter 9 Full BaCkup and restore solutions

226

• Type

• The type of job being created. There are quite a few

options in here that have absolutely nothing to do

with what we are creating, so be sure to not change

anything.

• Run as

• The account to use to execute the package. The

default value is always going to be SQL Server Agent

because this account has permission to execute

SSIS packages by default.

• Package

• This subtab lets you define basic package

characteristics, such as

• Package source

• Where the package will be created: SQL

Server, File System, SSIS Package Store, or

SSIS Catalog.

• Server

• The target server for the deployment of the

SSIS package.

• Log on to the server

• Login information for manual execution of

the package.

• Package

• The default location for saving the package.

This value is determined by the value

selected in the Package source drop-down

Chapter 9 Full BaCkup and restore solutions

227

menu. For example, you cannot specify

a Windows folder location and the SQL

Server option, because the SQL Server

option expects the package to reside

within the SQL Server logical tree shown as

Maintenance Plans\Backup Plan.

• Configurations

• If there are any configuration files, they would be

added in this area.

• Command files

• If there are any command files, they would be

added in this area.

• Data sources

• If a data source needs to be added that is separate

and distinct from the current data source, then it

can be added here.

• Execution options

• Depending on the option selected, these options

can be available before or during package

execution. The available options are

• Fail the package on validation warnings

[DURING]: This will fire when the package is

executing in order to fail the package on any

warnings.

Chapter 9 Full BaCkup and restore solutions

228

• Validate package without executing [BEFORE]:

The package will not execute, and only be

validated.

• Override MaxConcurrentExecutables property

[BEFORE]: This option is to make sure that too

many executables aren’t jockeying for CPU

time.

• Enable package checkpoints [DURING]: If

enabled, the package will send status updates at

every step.

• Use 32-bit runtime [BEFORE]: This option

defines whether or not to execute this package

in a 32-bit runtime or the default 64-bit

runtime.

• Logging

• A fantastic option that a lot of people don’t even

know about it the built-in logging available in this

area. SSIS has a default log provider, and those

available options are SSIS log provider for

• SSIS log provider for text files

• SSIS log provider for SQL Server

• SSIS log provider for Windows event log

• SSIS log provider for SQL server profiler

• SSIS log provider for XML files

• Set values

• If you have any values that you want to set for the

package, you can add them here.

Chapter 9 Full BaCkup and restore solutions

229

• Verification

• This is sort of a step beyond the options in the

preceding execution options. This area is more for

the verification of the package from a security point

of view. Available options in here are

• Execute only signed packages

• Verify package build

• Verify package ID

• Verify version ID

• Command line

• Any command-line options can be added here,

and they will be added in the context of the user

executing the package. Make absolutely sure that

if you change this area, the Run as account has

permission to execute the specified commands in

this area.

The only thing you want to update here is the Step name, if required.

All of the other settings are defaulted to where we need them to be. When

you have updated the Step name value, click the Advanced tab.

 Job Step Properties - Subplan_1 (Advanced Tab)

The Advanced tab holds the options for the reporting and logging actions.

Figure 9-22 shows the default values in this area, which are mostly correct

for what we need.

Chapter 9 Full BaCkup and restore solutions

230

Notice that the default options are exactly what you would expect;

when the package executes successfully, it quits the job reporting a success.

If it fails, it quits the job reporting a failure. Let’s take a closer look at these

options and what they really mean. Listing 9-10 breaks down these options.

Listing 9-10. Advanced Tab Options

• On success action

• When the step completes successfully, what should

the package do? Available options here are

• Go to the next step

• If there is another step in this package, go

do that next step.

Figure 9-22. Job Step Properties – Subplan_1, Advanced tab

Chapter 9 Full BaCkup and restore solutions

231

• Quit the job reporting success

• Default.

• Quit the job reporting failure

• It’s sort of a matter of miscommunication to

report a failure for a successfully executed

job, so the only thing I can think that this

option would be for would be if the package

execution was intended to return a failure.

• Retry attempts

• The number of retry attempts that this package is

allowed.

• Retry interval (minutes)

• The amount of time to wait in between package

retries.

• On failure action

• Same options as previously, except the logic for the

Quit the job reporting success option is reversed.

• Output file

• When the SSIS package is executed, then an output

log file is generated. It can be entered here for later

review.

• Log to table

• Checking this option allows you to log the results

of the package execution to the sysjobstepslogs

table in the msdb database.

Chapter 9 Full BaCkup and restore solutions

232

• Include step output in history

• This option allows for greater accuracy in the SQL

Server Agent logs of package execution.

Notice I said that these settings were only mostly correct. We want

to check the Log to table and Include step output in history check boxes,

and that’s the only change we want to make here. Figure 9-23 shows the

updated values for this screen, so update your screen and, when you’re

ready, click the OK button to close this window, save the settings, and

return to the Job Properties window.

Figure 9-23. Job Step Properties – Subplan_1, Advanced tab,
updated

Chapter 9 Full BaCkup and restore solutions

233

Once we get back to the Job Properties window, we can see that the

name of the job has been updated. Note that the Start step value is shown

as Subplan_1 and not Full Backup. The reason for this is because the job

hasn’t been saved yet, although the values are shown in this interface.

Once we click OK on this screen, these values will be updated. We aren’t

going to do that yet though, so go ahead and click the Schedules tab on the left.

 Schedules Tab
When you click the Schedules tab, you should see an empty interface;

there should not be a schedule in this area. This is perfect, because we are

scheduling this through the maintenance plan and not the SSIS package.

Click the Alerts tab to continue.

 Alerts Tab
We don’t have any alerts set up for this job, but if you would like to have an

alert, you can set it up here. An alert in this context means that SQL Server

will alert you when an error or event occurs. SQL Server can also generate

a response from the database, e-mail or page any Operators, and even

send a NET SEND message. We aren’t going to do anything to this area,

because we are going to handle the notifications for this job in the next tab,

coincidentally titled Notifications. Click the Notifications tab to continue.

 Notifications Tab
The initial interface for this screen is shown in Figure 9-24. Note that the

only option selected here is Write to the Windows Application event log.

That is good, but we need more notification than just an entry in a log

somewhere that we have to go and search for, and then try and figure out

the exact cause of the error. Instead, we can use this area to set up real-

time notifications for any failures of this job.

Chapter 9 Full BaCkup and restore solutions

234

Listing 9-11 shows the various options and values in this area. To use

the E-mail, Page, and Net send options, you must already have an Operator

established. I will go into how to set up an Operator in the next section,

since we will be using this functionality.

Listing 9-11. Notifications Options

• E-mail

• This is probably the most used option, since e-mail

is so prevalent. Just select the Operator with a

verified e-mail, and then select the condition from

the drop- down menu.

Figure 9-24. Job Step Properties – Subplan_1, Notifications tab

Chapter 9 Full BaCkup and restore solutions

235

• Page

• For those datacenters that still use pagers, this is

a great way to keep in contact. Alternatively, you

can think of texting someone as the functional

equivalent of paging someone if they do not have a

pager.

• Net send

• If your PC and the database server are on the same

network and your PC has a direct connection to the

database server, then you can use Net send to send

a message directly to your PC from the database

server. This message appears as a modal dialog box

on your PC.

• Write to the Windows Application event log

• The only selected option by default in this area. Not

a bad idea to keep this checked.

• Automatically delete job

• As with before, I can’t imagine an instance when

I would want to delete a job after it finishes,

mainly because the history for the job is either

deleted or obfuscated, and there goes any forensic

information we may need for the job.

For each of these options, the drop-down menu on the right has the

following three options:

• When the job succeeds

• The entire job must be a success.

Chapter 9 Full BaCkup and restore solutions

236

• When the job fails

• The entire job must be a failure.

• When the job completes

• The entire job simply must complete, whether a

success or failure.

This section is complete, so click the OK button to save changes and

return to the stage once again. Notice that the job name is now updated to

Full Backup in the Jobs submenu of the SQL Server Agent menu in Object

Explorer. We will return to this Notifications tab after we finish setting up

an Operator.

 Setting Up an Operator

In my first book, Practical Maintenance Plans in SQL Server, I detailed

how to set up a new Operator using the Alerts tab. There is a method to

add a new Operator in that section, but I wanted to devote this section to

using the Operators submenu from the SQL Server Agent menu in Object

Explorer.

An Operator in this context is a person responsible for receiving

information about the state of the database at the time that events

occur. They may not necessarily be the person that can mitigate the

circumstance, but they are a person that can trigger an action to encourage

the change. For example, an executive might want to be notified when

a backup fails for their own edification, but I seriously doubt that this

executive will be able to fix the issue.

At this point, your SQL Server Agent menu should appear as shown in

Figure 9-25, specifically in regards to the updated job name.

Chapter 9 Full BaCkup and restore solutions

237

Right-click Operators and choose New Operator… to continue. The

initial interface is shown in Figure 9-26.

Figure 9-26. New Operator

Figure 9-25. SQL Server Agent menu

Chapter 9 Full BaCkup and restore solutions

238

We are going to enter the actual name of the person that will be

receiving the notifications in the Name field, and their e-mail in the E-mail

name field. If you have a NET SEND address, you can enter it here. Same

thing with the pager information; if you have this info, enter it here. If you

don’t have this info or don’t need to use it, then you can just leave it blank.

Once you have entered this information, you should have an interface

very similar to what is shown in Figure 9-27.

Next, we want to take a look at the Notifications tab, although there is

nothing we can do in this area since we are creating this user for the first

time. If this user had existed for a while, then there would be information

in here that we can view that would detail the notifications sent to this

user. This would be advantageous if there were an instance when a user

disputed the receipt of a notification, for instance.

Figure 9-27. New Operator, updated

Chapter 9 Full BaCkup and restore solutions

239

Go ahead and click the OK button to proceed with creating this

Operator. Notice that our Operators submenu now has the entry of the

username we just created. This means that this user is now available to be

assigned as an Operator within the job, so double-click Full Backup Job

again and click the Notifications tab. This will bring up the window shown

in Figure 9-24, except we can now add our Operator. Figure 9-28 shows this

option available in the Notifications tab of the Job Properties window.

I chose my new Operator, kept the event drop-down menu set to When

the job fails, and then clicked OK. This added my Operator user to the

Notifications tab, which means that I will be receiving e-mails if this job fails.

Figure 9-28. Operator available

Chapter 9 Full BaCkup and restore solutions

240

That’s all for setting up the maintenance plan. We have defined the

actual parameters of the task, and set up and enabled an Operator to

receive notifications of failure. Next, we need to test this plan to make sure

that it is executing properly.

 Testing the Full Backup Plan
In order to properly determine if our plan is working correctly, we need to

define exit criteria for the plan. In this instance, Listing 9-12 details what

we will be looking for as exit criteria.

Listing 9-12. Exit Criteria

• Job starts correctly and without error

• Backup file is created in the correct location

• Notification sent if an error occurs

• Windows event log keeps a log of the backup operation

• Job exits correctly and without error

The successful completion of these items will determine the overall

success of the plan. I am going to manually start the job instead of

waiting until midnight for it run automatically. I can start the job at any

time by right-clicking the job and selecting the Start Job at Step… option.

Alternatively, if I wanted to run the entire maintenance plan, I could

right-click the maintenance plan name and select the Execute option.

I just want to check the job first, so right-click the job and execute it as

noted previously. It runs for a few seconds, and then we can see that a new

directory was created in E:\SQL Server\Backup named backrecTestDB,

and a new backup file was placed in the directory. We also see a success

message in a dialog window shown in Figure 9-29.

Chapter 9 Full BaCkup and restore solutions

241

If we open up the Windows event log and go to the Application log, we

will see what is shown in Figure 9-30, which is confirmation that Windows

sees our backup action as a successful task.

The only thing we didn’t test at this point is the Notifications option,

which did not fire because it did not fail.

Figure 9-30. Windows Application event log

Figure 9-29. Success message

Chapter 9 Full BaCkup and restore solutions

242

 Full Restore Plan in SSMS
This section will detail how to get a solid Restore plan from available

backup files. The good thing about this section is that it is dependent solely

upon there being a backup set of data to restore; if there is not a backup to

restore from, then we cannot restore any data.

In SSMS, there is not a restore database task that we can run. Instead,

we need to use the T-SQL commands for restoring the database, and wrap

that command inside of a SQL Server Agent job that we can execute on

demand. The basic structure for how we plan to implement this is simple,

as shown in Listing 9-13.

Listing 9-13. Structure for Restoring Data

• Use known-good RESTORE DATABASE command from

Chapter 5 as basis for T-SQL syntax

• Create SQL Server Agent job with T-SQL type

• Create a copy of the current full backup and rename it

backrecTestDB.bak

• Restore data normally

I want to pause right here and make a quick point: the reason that we

are copying and renaming our backup file is because I do not want to break

the restore chain that is in place by the maintenance plan. I want to use the

same data, but the script must have a static file name to reference in the

restore script, which is why I chose to copy and rename the file. I’m sure

there are different ways to handle this aspect, and if you have a different

way of handling this, excellent!

Chapter 9 Full BaCkup and restore solutions

243

 T-SQL Restore Command
Referencing back to Chapter 5, the command that we used to restore the

data was

RESTORE DATABASE backrecTestDB

FROM DISK = 'E:\SQL Server\Backup\backrecTestDB\backrecTestDB.bak'

WITH REPLACE

GO

We will use this same command in our restore job, so make a note of

the FROM DISK location because we will need to use that location when we

rename our file in this section.

 SQL Server Agent Restore Job
To start this section off, we need to create a SQL Server Agent job without

first creating a maintenance plan. Expand SQL Server Agent and right-

click Jobs, then select New Job… to continue. The New Job window opens

as shown in Figure 9-31; note that it is slightly different from the window

we saw earlier that had some of the information referenced from the

maintenance plan.

Chapter 9 Full BaCkup and restore solutions

244

It’s a literal blank slate for us to create whatever we want. On this

screen, we want to update the following values in Listing 9-14.

Listing 9-14. New Job Values

• Name

• Update to full restore

• Owner

• This should either be the sa (main admin) account

in SQL Server, or a custom server agent service

account, not a regular user account

• Category

• Change this to database maintenance

Figure 9-31. New Job window, General tab

Chapter 9 Full BaCkup and restore solutions

245

• Description

• Enter something like “This is the full restore portion

of the full Restore plan”

Also, we want to make sure that the Enabled check box stays checked.

Next, we want to select the Steps tab on the left. A blank window opens as

shown in Figure 9-32.

For this page, we are going to click the New… button on the bottom of

the screen and see the New Job Step screen shown in Figure 9-33.

Figure 9-32. New Job window, Steps tab

Chapter 9 Full BaCkup and restore solutions

246

Again, this is a new interface for us. We may be used to seeing this

screen with information prepopulated from a maintenance plan, but this is

actually very easy. Next, we need to update the values shown in

Listing 9-15.

Listing 9-15. General Tab Options

• Step name

• Full Restore T-SQL Command

• Type

• Transact-SQL script (T-SQL)

Figure 9-33. New Job Step, General tab

Chapter 9 Full BaCkup and restore solutions

247

• Run as

• (This value cannot be updated yet)

• Database

• Master

• Command

• Paste the T-SQL script from the T-SQL Restore

Command section.

Notice that we can’t update the Run as: value yet. This is okay for now,

since we have to save these values and then come back to this screen

again. You should see what is in Figure 9-34 now.

Figure 9-34. New Job Step, General tab (updated)

Chapter 9 Full BaCkup and restore solutions

248

Once this is all filled out, click the OK button to create the preliminary

job. Immediately double-click the job again and you will see that the Run

as: drop-down menu is now enabled. However, there is no selectable

value. We cannot choose to run this job as SQL Server Agent, in other

words.

Click the Advanced tab and you will see the screen shown in Figure 9- 35.

Again, we need to update these options to the values shown in

Listing 9-16.

Figure 9-35. Job Step Properties, Advanced tab

Chapter 9 Full BaCkup and restore solutions

249

Listing 9-16. Advanced Tab Options

• On success action

• Keep this as the default value.

• Retry attempts

• Keep this as the default value.

• Retry interval (minutes)

• Keep this as the default value.

• On failure action

• Keep this as the default value.

• Output file

• Keep this blank, unless you want to create an

output file. I don’t create them because I am

creating the entries in the table and the step output

in history, but you are free to do as you wish.

• Log to table

• Select this option.

• Include step output in history

• Select this option.

• Run as user

• Leave this blank. When we do this, the job is forced

to run as SQL Server Agent service account.

When you are done, your interface should appear as shown in

Figure 9-36.

Chapter 9 Full BaCkup and restore solutions

250

These values are all correct, so go ahead and click the OK button to

save these configuration settings. We are then returned back to the New

Job screen, except with an updated value in the Job step list field. Notice

that the Start step value is also updated with the name of the step we just

created. Figure 9-37 shows this updated interface.

Figure 9-36. Job Step Properties, Advanced tab (updated)

Chapter 9 Full BaCkup and restore solutions

251

We aren’t going to schedule this job, and we don’t need to set an alert

for it either. However, we do want to ensure that the Notifications tab has

Write to Windows Application event log checked, and we want to e-mail

our Operator that the job was completed—not that it failed and not that is

succeeded, but that it completed. This way, we will get the status update

either way. Figure 9-38 shows the updated interface for the Notifications tab.

Figure 9-37. New Job, updated

Chapter 9 Full BaCkup and restore solutions

252

That is all we need to do to configure this job. Click the OK button to

save it and return to the main SSMS screen with the updated job shown

in the Jobs submenu of SQL Server Agent. Figure 9-39 shows this updated

interface.

Figure 9-38. New Job, Notifications tab (updated)

Chapter 9 Full BaCkup and restore solutions

253

So in this section, we created an entire restore job from scratch; again,

the reason we had to do it like this is because SQL Server does not offer us

a restore database tool from the toolbox, so we had to wrap up a RESTORE

DATABASE command inside a SQL Server Agent job. Like I said before, if

you can get to the end result using an alternate method, excellent!

 Copy and Rename Current Backup File
Next, we just need to make a copy of our full backup run previously in this

chapter. My default backup location for this database is E:\SQL Server\

Backup\backrecTestDB, but yours may be different. In any event, select the

backup location and copy and rename the file as shown earlier. In my case,

I am going to rename my file to E:\SQL Server\Backup\backrecTestDB\

backrecTestDB.bak. Once that is done, we can move to the next section.

Figure 9-39. SQL Server Agent, updated

Chapter 9 Full BaCkup and restore solutions

254

 Restore Data
For this section, all we want to do is right-click the Full Restore Job and

select Start Job at Step… to run the job. Note that we need to delete any

database snapshots in order to restore the database, so delete any you may

have from the SSMS interface before trying to proceed.

Once we run the job, it takes a little while to complete, and then we

should see what is shown in Figure 9-40.

Next, you can run the Backup and Restore Events report to view that

the database was actually restored. You could also check the Windows

Application event log for entries, which is shown in Figure 9-41.

Figure 9-40. Successfully restored the database

Chapter 9 Full BaCkup and restore solutions

255

So there you have it. A complete full restore job that we can now use to

restore our database whenever we need. Just follow the directions in this

section and you will be in good shape.

 Summary
In this chapter, we pieced together our full backup maintenance plan from

what we gathered as requirements throughout the course of this book.

We learned about the many various configuration options in the SSMS

maintenance plan area.

We also learned about the configuration options in the SQL Server

Agent job area.

We learned how to set up an Operator to receive e-mails in the event of

a job failure.

Figure 9-41. Windows Application event log entry

Chapter 9 Full BaCkup and restore solutions

256

This is the first part of the three parts needed to create an entire backup

scenario. When we are finished with the scenario, we will test it extensively

to ensure that every event notifies the Operators correctly, so don’t worry

that we didn’t test for the e-mail receipt yet. We will get to this before the

book is through.

We also put together the various pieces of the full Restore plan, tested

the Full Restore SQL Server Agent job, and then verified the results from the

Backup and Restore Events report and the Windows Application event log.

In Chapter 10, we are going to add the differential backups to the

Backup Plan maintenance plan, and configure it like we configured the full

backup plan. We will also create a Differential Restore SQL Server Agent job.

In Chapter 11, we will go over how to add the transaction log backups

to the Backup Plan maintenance plan, and also create a Transaction Log

Restore SQL Server Agent job.

The book will conclude with an entire test plan, a guide on how to test

the plan for success, and troubleshooting hints and tips that we can use to

mitigate harmful situations or errors in our package execution.

Chapter 9 Full BaCkup and restore solutions

257© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_10

CHAPTER 10

Differential Backup
and Restore Solutions
Now that we have functional full backup and full restore SQL Server Agent jobs

detailed in Chapter 9, we need to piece together the differential backup and

differential restore parts. We are going to draw from Chapter 2 and Chapter 6

for this chapter, but we will be looking at adding slightly different functionality

and customization to our existing Backup Plan maintenance plan.

What we want to do is rework the backup plan to include the

differential portion of the backup, and then create a new Differential

Restore SQL Server Agent job to be run manually or in conjunction with the

Full Restore SQL Server Agent job. At the end of this chapter, we will have

created an addition to our existing plan, tested what we have created so far

for that plan, and verified the expected results of the intended operation.

Recently, I was tasked with creating an identical development

environment in my work area. You can probably see where I am going with

this; because of the serendipitous nature of things, I was able to apply what

we are doing now in a real-world scenario, and it worked. I could restore

a full database backup to a completely fresh instance of SQL Server with

zero trouble, and not only that, I was also able to restore the differential

and transaction log backups to the new server as well, so I essentially had

zero data loss when transferring to the development server. I find it very

reassuring to know that I can quickly and correctly back up and restore the

data I am responsible for protecting.

258

Oftentimes, I find myself coming up with “nightmare scenarios”

which would force me to think and act quickly and correctly. Now,

clearly, there are limitations to these scenarios; they must be squarely

rooted in situations where I can influence or control the outcome, for

example. A scenario with a down server, for example, is squarely out of my

responsibility since I rely on someone else to remedy the situation. But, for

instance, if I ran a query on accident and wiped out or dropped a table, or

my database suffered a SQL injection attack (it can’t, but remember this is

a nightmare scenario), or some other SQL Server–related issue arose,

I need to know that I have the technical acumen to answer the questions

that I need to answer. In my mind, there are different steps that we can

take to mitigate these nightmare scenarios, and we will hopefully end up

addressing these in this chapter.

For now, let’s concentrate on adding the differential backup to the

Backup Plan maintenance plan we started in Chapter 9.

 Adding a Differential Backup in SSMS
The first things that we need to do is open our maintenance plan for

editing. In Object Explorer, expand the Management menu and double-

click Backup Plan. This opens the maintenance plan, so we can configure

any options in the plan. Figure 10-1 shows the initial screen you should see

when opening the maintenance plan.

Chapter 10 Differential BaCkup anD restore solutions

259

We need to open up our Toolbox, so either click the Toolbox floating

menu on the left or press Ctrl+Alt+X to open your Toolbox. Next, we want

to drag another Back Up Database Task to the main stage, to the right of

the existing Back Up Database Task. Figure 10-2 shows the approximate

location of the new task.

Figure 10-1. Backup plan main stage

Figure 10-2. New task

Chapter 10 Differential BaCkup anD restore solutions

260

Just anywhere on the stage is fine, but I put mine there so I can draw

the distinction in my mind as a hierarchy; the item to the left is the highest

level, and the item to the right is the next level down from the item to

the left.

Notice that we have another red X on the task that we need to contend

with. We had this same situation in Chapter 9, and we are going to deal

with it just like we did then as well. We can start by double-clicking the

new task we just put down, and Figure 10-3 shows the default interface.

For this area, we need to follow what is shown in Listing 10-1 in order

to set up the various options in this area.

Figure 10-3. Back Up Database Task, General tab

Chapter 10 Differential BaCkup anD restore solutions

261

Listing 10-1. To-Do List

• Backup type

• We must choose from full, differential, or

transaction log. In this case, we are going to choose

differential.

• Databases

• We must choose at least one database. Note that

simple recovery model databases are removed if

transaction log is chosen from the backup type

option. In this case, we are going to choose the

database we have been working in, backrecTestDB.

• Backup component

• We can choose from database or files and

filegroups. In this case, we are going to choose

database.

• Back up to

• We must choose from disk, tape, or URL. In this

case, keep it set to disk.

Notice that these settings are nearly identical to those from Chapter 9.

The only change we made was to select differential instead of full in the

Backup type field. Your screen should now look like Figure 10-4.

Chapter 10 Differential BaCkup anD restore solutions

262

Next, we want to click the Destination tab at the top of the window.

Ensure that the Create a sub-directory for each database check box is

checked, and that is all we need to do to this tab. Figure 10-5 shows the

completed interface.

Figure 10-4. Back Up Database Task, General tab, updated

Chapter 10 Differential BaCkup anD restore solutions

263

Click the Options tab next. Again, much like customizing the Full

Backup portion of the maintenance plan, we are going to select the

Verify backup integrity and Perform checksum check boxes on this tab.

Figure 10- 6 shows the completed interface.

Figure 10-5. Back Up Database Task, Destination tab

Chapter 10 Differential BaCkup anD restore solutions

264

Nicely done! Believe it or not, this is already complete. Next, we need

to schedule this part of the plan (sly reference to Dan Fogelberg there).

Go ahead and click the OK button to add this part of the task, and notice

that the red X has gone away. However, see how we have both tasks in the

same stage? Let’s do that more efficiently. At the top of the stage, there is a

button labeled Add Subplan. Go ahead and click that button, and you will

see what is shown in Figure 10-7.

Figure 10-6. Back Up Database Task, Options tab

Chapter 10 Differential BaCkup anD restore solutions

265

Change the Name field to Differential Backup and add a description

of “This is the Differential Backup portion of the backup maintenance

plan.” Click OK when you are done with this, and you will see an updated

interface as shown in Figure 10-8.

Figure 10-7. Subplan Properties

Figure 10-8. Updated main stage

Chapter 10 Differential BaCkup anD restore solutions

266

Nothing is on the stage right now, because nothing has been added to

the subplan. Click back on the Full Backup subplan from the upper portion

of the screen, click the subplan we just created, press Ctrl+X to cut the task,

select the Differential Backup subplan again, click inside the stage, and

press Ctrl+V to paste the task. This will transfer the entirety of the task from

the Full Backup subplan to the Differential Backup subplan. Figure 10-9

shows what your updated interface should look like at this point.

So there we go; we have our tasks in the correct subplans, where they

belong. You can also long press on the text Back Up Database Task 1 in this

screen to change the name of the task. I did this, and changed the task title

to simply read Differential Backup Task.

One thing I found interesting about this section was that the full

backup schedule did not seem to be retained. Referring back to our

original plan for the backups, we need to set the full backup schedule to

run at 12:00 am, and our differential backups need to run every six hours.

Figure 10-9. Updated main stage

Chapter 10 Differential BaCkup anD restore solutions

267

 Scheduling the Differential Backup
With the Differential Backup subplan selected in the top area, we want to

click either the calendar in the menu bar or the calendar in the Differential

Backup row. Whichever one you pick will open the same interface.

Figure 10-10 shows the initial New Job Schedule window.

I explained these options in detail in Chapter 9, so I don’t need to

repeat them here. Instead, you should update your settings to those shown

in Figure 10-11, which is to run the differential backup every six hours of

every day.

Figure 10-10. New Job Schedule

Chapter 10 Differential BaCkup anD restore solutions

268

When you have these settings complete, click the OK button. Your

Schedule column changes to the summary of the schedule as shown in the

Description box of Figure 10-11. Once you get back to the main stage, save

your work and notice that we have new SQL Server Agent job names, even

for the items we already saved once before. Figure 10-12 shows what this

section looks like now.

Figure 10-11. New Job Schedule, updated

Chapter 10 Differential BaCkup anD restore solutions

269

Let’s keep the given names for now, but we will change them later.

Notice that the Full Restore job was not changed? This is because we

created this job exclusively within SQL Server Agent, and not from the

maintenance plan stage or interface, so this interface did not factor into

the naming process of the SQL Server Agent job.

 Updating the SQL Server Agent Job
Now that we can see our new Differential Backup job, we need to configure

it. We will follow most of the directions from the Full Backup portion of the

job, with some slight changes, as noted in the following sections.

 General Tab
Nothing needs to be changed on this tab. We have the default settings that

carried over from the maintenance plan portion of the job creation, so we

can just use those for now. Figure 10-13 shows the General tab with the

default values.

Figure 10-12. SQL Server Agent, updated

Chapter 10 Differential BaCkup anD restore solutions

270

Click the Steps menu option on the left to continue.

 Steps Tab
The default settings for the Steps tab also are good (Figure 10-14). We can

leave these alone, since they are how we need them to be set. Notice that

we aren’t going to get into the specifics of the step at this point. If you need

more explanation about the various options that this step can perform,

then consult Chapter 9, where I detailed every single option inside this

area.

Figure 10-13. Job Properties, General tab

Chapter 10 Differential BaCkup anD restore solutions

271

Click the Schedules tab to continue.

 Schedules Tab
This tab lets us set up the schedule for the job. Fortunately, this area is

already set up as well! Figure 10-15 shows the default settings for this

screen.

Figure 10-14. Job Properties, Steps tab

Chapter 10 Differential BaCkup anD restore solutions

272

Click the Alerts tab to check those settings next.

 Alerts Tab
This tab is blank, because we aren’t using any alerts for this job. Go ahead

and skip over to the Notifications tab next.

 Notifications Tab
Much like for the full backup plan, I want to be e-mailed if this plan ever fails.

In order to accomplish that, I first need to have an Operator set up, and then

I must have the notifications enabled and configured correctly in this area.

Figure 10-16 shows the updated values that should be present in your area.

Figure 10-15. Job Properties, Schedules tab

Chapter 10 Differential BaCkup anD restore solutions

273

That is the conclusion to this section. We have successfully set up the

Differential Backup job. Go ahead and click OK to continue with the next

section.

 Testing the Differential Backup Plan
Chapter 9 had us create the Full Backup plan, and then test it. If you

followed along, your plan should have tested successfully as well. Next, we

only want to run the Differential Backup portion of the plan, but before we

get to that point, we need to determine the exit criteria for the plan. In this

instance, Listing 10-2 details what we will be looking for as exit criteria.

Figure 10-16. Job Properties, Notifications tab

Chapter 10 Differential BaCkup anD restore solutions

274

Listing 10-2. Exit Criteria

• Job starts correctly and without error

• Backup file is created in the correct location

• Notification sent if an error occurs

• Windows event log keeps a log of the backup operation

• Job exits correctly and without error

With this in mind, go ahead and right-click the Backup Plan.

Differential Backup SQL Server Agent Job (remember, we will change the

names later) and choose Start Job at Step… to run the job. You can also

open your file location, to verify that the file was written as expected, and

also open up the Event Viewer so we can see if a new entry was added to

the Windows event log.

Eventually, a window appears as shown in Figure 10-17, which shows

us that our job was successful.

Figure 10-17. Start Jobs success

I also got an entry in the Application log of Windows Event Viewer, the

details of which can be seen in Figure 10-18.

Chapter 10 Differential BaCkup anD restore solutions

275

I also checked the file location, and the new differential backup was

created. We can therefore safely assume that the plan is working correctly.

 Differential Restore Plan in SSMS
We are going to use SQL Server Agent to create the Differential Restore

plan in SSMS, just like we did with the Full Restore plan we covered in

Chapter 9. We are going to follow the same basic set of instructions, except

where the type of restore is referenced. Listing 10-3 will detail the steps we

need to take to ensure our Differential Restore plan executes correctly.

The basic structure for how we plan to implement this is simple, as

shown in Listing 9-12.

Figure 10-18. Event Properties

Chapter 10 Differential BaCkup anD restore solutions

276

Listing 10-3. Structure for Restoring Data

• Configure RESTORE DATABASE command(s)

• Create SQL Server Agent Job with T-SQL type

• Create a copy of the most recent differential

backup since the last full backup and rename it

backrecTestDB_DIFFERENTIAL.bak

• Restore data normally

Now that we have a plan on how to move forward, let’s get started on

creating this plan.

 T-SQL Restore Command
In this instance, we are going to use the T-SQL command shown in

Listing 10-4.

Listing 10-4. RESTORE DATABASE Commands

RESTORE DATABASE backrecTestDB

FROM DISK = N'E:\SQL Server\Backup\backrecTestDB_FULL.bak'

WITH NORECOVERY, REPLACE;

RESTORE DATABASE backrecTestDB

FROM DISK = N'E:\SQL Server\Backup\backrecTestDB_DIFFERENTIAL.bak'

WITH RECOVERY;

Recall that the NORECOVERY attribute lets us specify that we are

restoring the last full backup and then the differential backup. We cannot

restore a differential backup without first restoring the most recent full

backup, so we need to run a full restore first, and then a differential restore.

For this reason, we are including the full restore syntax shown in

Listing 10-4 along with the differential restore syntax to restore the

Chapter 10 Differential BaCkup anD restore solutions

277

database correctly. Note that these two commands are separated by a

semicolon; this denotes that we are going to use the commands in two

separate SQL Server Agent job steps, as shown in the next section.

 SQL Server Agent Restore Job
For this section, we will start by creating a new SQL Server Agent job.

Expand SQL Server Agent and right-click Jobs, then select New Job… to

continue. Once the New Job window opens, update the window with the

values shown in Figure 10-19.

Figure 10-19. New Job, General tab

Chapter 10 Differential BaCkup anD restore solutions

278

I want to reiterate that your values will be different from mine, as far as

the owner value goes, in this instance. There are probably a lot of instances

where your specific user accounts will be different from mine, so the

instructions I give should be used conceptually and not in the literal sense.

This may be obvious to most, but I wanted to spell that out in case there

was any confusion.

Next, we want to select the Steps tab. In this area, we want to click the

New… button to open the New Job Step screen and create a new step for

the job. The first step that we need to create is the full restore task, and the

second task we need is the differential restore. Update the New Job Step

screen as shown in Figure 10-20 to create the full restore portion of the

plan.

Figure 10-20. New Job Step, General tab

Chapter 10 Differential BaCkup anD restore solutions

279

Next, click the Advanced tab to show the options in that area. We only

want to select the Log to table and Include step output in history check boxes

here; the rest of the options can stay as they are by default. Figure 10- 21

shows the screen as it should look with updated values.

When you have those values set, click the OK button to close this

window and return you to the New Job window. We can now see the full

restore step listed as Step 1.

We need to create the differential restore step now, so click the New…

button again to open a fresh instance of the New Job Step window. On this

screen, we are going to enter the information as shown in Figure 10-22 to

get the differential step set up.

Figure 10-21. New Job Step, Advanced tab

Chapter 10 Differential BaCkup anD restore solutions

280

That is the same T-SQL command that we referenced earlier, so we can

safely assume that it will execute successfully.

Note notice that we are using the With noreCoVerY command
for the full backup step and the With reCoVerY command for the
differential backup step. this is because the full backup step is going
to be immediately followed by the differential backup step, and
we are telling the database that we want to keep the database in
the restoring… state until we restore the differential backup step,
and then put the database back online with the With reCoVerY
command in the differential backup step.

Figure 10-22. New Job Step, General tab

Chapter 10 Differential BaCkup anD restore solutions

281

Click the Advanced tab now, and update it just as we did in Figure 10- 21

earlier. When you have updated the Advanced tab with these options, go

ahead and click the OK button to return to the New Job screen shown in

Figure 10-23.

We can now see that the full restore job is step 1, and the differential

restore is step 2. We can also see that step 1 will move to step 2 on success,

which is what we wanted to do as well. That way, the job continues instead

of relying on human interaction. After all, the point of these exercises is

to increase automation within SQL Server, not to make our jobs more

cumbersome.

We don’t need to access the Schedules or Alerts tabs, so skip over to

the Notifications tab next. We want to select the E-mail and Write to the

Windows Application event log check boxes, and then choose the Operator

Figure 10-23. New Job, updated

Chapter 10 Differential BaCkup anD restore solutions

282

you should have set up in the drop-down menu next to the E-mail check

box. The completed values are shown in Figure 10-24.

When your screen matches what is shown in Figure 10-24, just click the

OK button to return to the main SSMS window. The SQL Server Agent Job

has been successfully created, and the Jobs submenu under SQL Server

Agent in Object Explorer has now been updated as shown in Figure 10-25.

Figure 10-24. New Job, Notifications tab

Chapter 10 Differential BaCkup anD restore solutions

283

We are now ready to move on to the next section.

 Copy and Rename Current Backup
My backup location, E:\SQL Server\Backup, has stayed the same for quite

a few years, and will probably stay the same until I stop using SQL Server. I

suppose the reason for this is because it is never really a good idea to store

backups on the C: drive, and the D drive was usually a CD-ROM or DVD

drive, so the physical storage I had available was the E: drive. However this

works out for you, just be sure that you are not storing your backups on the

boot drive and you’ll be fine.

Navigate to your backup location and find the latest differential backup

taken. We need to make a copy of this file and rename it to backrecTestDB_

DIFFERENTIAL.bak. Once you have copied and renamed that backup, we

are ready to execute the backup and see if it works.

Let’s make a quick change to the database so that we have something

to restore. Remember when we dropped the users1 table? Let’s do that

again. That should give us a decent amount of data to restore. Note that I

would normally recommend that we use transaction log restores to get this

data back, but we aren’t quite there yet, and this method will work for what

we need to have demonstrated.

Figure 10-25. Jobs submenu

Chapter 10 Differential BaCkup anD restore solutions

284

 Restore Data
Right-click the Differential Restore SQL Server Agent job and select Start

Job at Step… to execute the job. We are presented with a window shown in

Figure 10-26.

Select the first step, Full Restore, and click the Start button. Eventually,

we are shown the success message shown in Figure 10-27.

Figure 10-26. Start Job at Step… screen

Figure 10-27. Start Jobs success

Chapter 10 Differential BaCkup anD restore solutions

285

At this point, our database has had the full backup and differential

backup applied. Next, we need to verify that the plan restored data

correctly, so run the Backup and Restore Events report that we ran earlier

to verify. To run this report, right-click your database, go to Reports, and

then click the Backup and Restore Events item. Once there, you should see

the top two items very similar to what is shown in Figure 10-28.

This tells us that the first operation was the bottom one, and the last

operation was the top one. The first operation was the full restore (we can

tell because it says the Mode was “No recovery”) and the second operation

was the differential restore.

Another way that I can tell that the database was restored correctly is

that the users1 table has been restored to the Tables list. The Application

event log also shows the entry, so I am assuming that the differential

restore operation was a success.

 Summary
In this chapter, we went over the basics of how to back up and restore

differential data from SQL Server Management Studio. We learned the

T-SQL portion of the RESTORE DATABASE command and what the WITH

NORECOVERY and WITH RECOVERY commands do. We went over

the steps to restore differential data using the most current differential

backup, and we also learned how to verify that the differential restore was

completed successfully.

Figure 10-28. Successful restore operations

Chapter 10 Differential BaCkup anD restore solutions

286

In the next chapter, we are going to go over transaction log backup and

restore solutions, which will enhance the Backup Plan maintenance plan

that we have been building throughout this book. At the conclusion of that

chapter, you will have a very good understanding of how to back up data

from SQL Server, and more importantly, how to restore that data to SQL

Server and then verify that the data was restored correctly and as expected.

Chapter 10 Differential BaCkup anD restore solutions

287© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3_11

CHAPTER 11

Transaction Log
Backup and Restore
Solutions
In this section of the book, we have looked at complete backup and restore

solutions for full and differential types. We saw how the differential restore

type used the full restore type as the base for the restore, and then restored

up to the point that the differential backup was taken. In this chapter, we

will go over how to complete the third part of the individual backup and

restore plans, the transaction log.

We looked at transaction logs and how they work in Chapters 3 and 7,

respectively. The obvious purpose of transaction logs is to keep a log of

transactions, but they are also used to define a quantifiable section of time

in which transactions are located. It is more than just a cluttered stash of

random data, in other words; it is a precise record of events as seen by the

database, in chronological order. This is how we can rewind the database

back to a specific transaction, or apply all changes between certain hours

to a differential or full restore operation. This precision is not possible in

any way unless you are extremely lucky and happen to be able to restore

exactly to the point that a full or differential backup is restored. Otherwise,

you will be limited to only the data stored as a part of the full or differential

restore operation, which does not give us the precision that is needed to

288

restore to a specific point in time. The chances of this happening are very,

very low though, and for that reason, we rely on transaction logs to help us

restore important data with great accuracy to the point that is required for

our application or our SLA.

In our previous chapters in this section, we basically restored a huge

chunk of data in the form of either a full restore or a differential restore. I

had an instructor one time tell the class I was in that restore methodologies

are like a birthday cake; lots of layers, but really just two main parts: the

very large majority of the data (the baked cake portion), and the minutiae

of the data (the frosting). In other words, you can certainly have a great

cake without frosting, but frosting is so good and really complements

the cake. It may not be the best analogy, but it makes sense in my mind

because I can visualize a cake without frosting as still a cake, but not really

complete; whereas, a cake with frosting… now that’s a cake!

To begin this chapter, we again need to have a clear understanding

of what we want to accomplish. Typically, we can have a backup routine

ready to go in a very short amount of time. The real difficulty comes when

we have to deal with restoring the transaction log. For this reason, we

need to go about the backup slightly differently than we have in the past

with the full and differential backups. Listing 11-1 shows the steps we are

going to take to create the transaction log backups. This is an easy process,

especially since we have already done most of the steps in Chapter 3, so

now we need to enhance what we learned in that chapter into a workable

solution that we can use with our full backup plan. Back in Chapter 3,

we determined that we want to have transaction log backups run every

Chapter 11 transaCtion Log BaCkup and restore soLutions

289

hour, so that the maximum amount of data that we can lose is minimal.

When we restore the transaction log, remember that we have the option of

backing up the tail of the log, which contains the most recent transactions,

so we could use the point-in-time restore feature to restore up to the exact

point of failure.

 Adding a Transaction Log Backup in SSMS
I can imagine that this is starting to look a bit familiar at this point. We

are going to add the transaction log portion to our existing Backup Plan

maintenance plan. Recall that we already have the full and differential

portions of the maintenance plan, so this will be the last part that needs

to be added in order to complete our backup plan. I have outlined a few

important things in Listing 11-1 to keep in mind for this section.

Listing 11-1. To-Do List

• Transaction log backups are going to be run every hour,

on the hour

• We will only have a maximum of five transaction logs

that can be restored between differential backups

These items I have labeled as our “to-do list” for this section because

we need to ensure that we are meeting these goalposts before we can

accept the section as complete.

Chapter 11 transaCtion Log BaCkup and restore soLutions

290

To add the transaction log portion of the maintenance plan, open up

the Backup Plan maintenance plan in Object Explorer so that the plan is

displayed in the main stage of SQL Server Management Studio, as shown

in Figure 11-1.

Next, we want to click the Add Subplan button shown at the top of the

screen. When the Subplan Properties window appears, add the following

values in the applicable fields:

• Name: Transaction log backup

• Description: This is the transaction log backup portion

of the backup maintenance plan.

We don’t want to alter the schedule or the Run as options at this time,

since we will get to that shortly. You should now see what is shown in

Figure 11-2 in the Subplan Properties window.

Figure 11-1. Backup Plan

Chapter 11 transaCtion Log BaCkup and restore soLutions

291

Click OK after this information is entered. Notice that the main stage

updates as shown in Figure 11-3 to add the transaction log backup as

a new subplan. Also notice that the transaction log backup subplan is

selected and there is nothing in the main stage, since this is an entirely new

portion of the maintenance plan.

Figure 11-2. Subplan Properties

Figure 11-3. Backup Plan, updated

Chapter 11 transaCtion Log BaCkup and restore soLutions

292

Now that we have a blank space to work with, open the Toolbox by

clicking the floating menu on the left or pressing Ctrl+Alt+X and dragging

a Back Up Database Task item to the main stage. We now see the familiar

interface with the red X shown in Figure 11-4, so double-click the task to

edit it.

Once the Back Up Database Task window opens, you will need to

choose transaction log in the backup type drop-down menu. Next, you

need to select backrecTestDB (or your database) from the Database(s)

drop-down menu. You can also choose to select any other databases in

this area as well, but we are dealing specifically with our database at this

point. Once you have selected the databases you need, click the OK button

to return to the main Back Up Database Task window. The last option on

this tab, Back up to, should be left as the default option, which is Disk. The

completed interface is shown in Figure 11-5.

Figure 11-4. Back Up Database Task

Chapter 11 transaCtion Log BaCkup and restore soLutions

293

Did you notice that once you chose a database, the Backup component

selections become disabled? This is because you have selected the

transaction log option, so you clearly cannot select a backup component

other than the transaction log.

Figure 11-5. Back Up Database Task, General tab, completed

Chapter 11 transaCtion Log BaCkup and restore soLutions

294

Select the Destination tab in this window to continue. All we want to

do in this next screen is check the Create a sub-directory for each database

option. The completed interface for this tab is shown in Figure 11-6.

This simple selection tells SQL Server that we do not want our

transaction logs thrown into a single folder; instead, we want them

segregated by the name of the database. This is going to make it easier to

restore and manage, when needed.

Select the Options tab next, and recall that the options we want to

select are as follows:

• Verify integrity

• Perform checksum

Figure 11-6. Back Up Database Task, Destination tab,
completed

Chapter 11 transaCtion Log BaCkup and restore soLutions

295

These options will ensure that we are verifying our backup and making

sure that the backup is going to be checked for errors. Figure 11-7 shows

the completed interface for this tab.

Once you have updated this tab, click the OK button to close this

window and return to the main stage. Notice that the red X disappears

from our Back Up Database Task item on the main stage. This indicates

that this task is free from the basic errors that would have impeded a

successful launch earlier when the red X was present.

Next, we need to set up the schedule for this task.

Figure 11-7. Back Up Database Task, Options tab, completed

Chapter 11 transaCtion Log BaCkup and restore soLutions

296

 Scheduling the Transaction Log Backup
Just like with the previous subplans we set up in Chapters 9 and 10, we

need to click the calendar on the line of the subplan that we want to

update. In this case, we are going to choose the calendar on the transaction

log backup subplan. This opens the New Job Schedule window seen in

previous chapters. To update this interface and set the backup interval to

one hour, ensure that your screen matches what is shown in Figure 11-8.

To complete this interface, I selected the Daily option in the Occurs

drop-down menu, then chose the Occurs every radio button and left the

default to 1 hour(s). That is all that is required to complete this screen.

Figure 11-8. New Job Schedule, completed

Chapter 11 transaCtion Log BaCkup and restore soLutions

297

Once you have updated this interface, click the OK button to close this

window and be taken back to the main stage once again. Figure 11-9 shows

what our updated maintenance plan looks like.

Notice the addition of the Schedule information in the transaction log

backup subplan entry. That indicates that our schedule information has

been entered and retained by the maintenance plan.

 Updating the SQL Server Agent Job
Once we finish setting up the main portion of the maintenance plan in

SSMS, we need to update a few features in the Jobs section of SQL Server

Agent, so expand SQL Server Agent in Object Explorer, then expand Jobs,

then double-click Backup Plan.Transaction Log Backup.

Figure 11-9. Backup Plan, updated

Chapter 11 transaCtion Log BaCkup and restore soLutions

298

 General Tab
We start on the General tab, so update it as shown in Figure 11-10.

All I really did here was update the Description field and verify that the

Enabled check box is checked. That’s all we need to do to complete this

tab. Click the Steps tab to continue.

Figure 11-10. Job Properties, General tab

Chapter 11 transaCtion Log BaCkup and restore soLutions

299

 Steps Tab
This tab already has the transaction log backup job in the job step list area.

We need to update the job though, so double-click the name of the job

and click the Advanced tab. Figure 11-11 shows the updated Advanced

tab; note that the General tab is the default interface, but we don’t need to

update anything on this tab.

On this tab, I checked the bottom three check boxes to enable logging

and collection of historical step information. Everything else stays the

same in this screen, so click OK to continue. You will end up back at the

default view of the Steps tab.

We can bypass the Schedules and Alerts tabs since we aren’t going to

configure these options. Instead, click the Notifications tab to continue.

Figure 11-11. Job Step Properties, Advanced tab

Chapter 11 transaCtion Log BaCkup and restore soLutions

300

 Notifications Tab
The default option selected in this tab is to write to the Windows

Application event log. That is a good start, but we want to be notified by

e-mail if the job fails. To enable this, select the E-mail check box, and then

select the Operator (which should have been set up already). Figure 11-12

shows the updated interface for the Notifications tab.

Setting this tab up like this will let us be notified by e-mail if the job

fails, and also with an entry to Windows Application event log. This will

complete this section, so go ahead and press the OK button to continue on.

We are returned to the main stage, with our completed backup plan in the

stage. Save your work to the maintenance plan now.

Figure 11-12. Job Properties, Notifications tab

Chapter 11 transaCtion Log BaCkup and restore soLutions

301

 Testing the Transaction Log Backup Plan
To test the transaction log backup plan, we want to right-click the Backup

Plan.Transaction Log Backup Job and select Start Job at Step… to fire the

job. It should take a very short amount of time to run, and then show a

completed status window like the one shown in Figure 11-13.

There really isn’t a lot to back up from the transaction log, which is

why it takes a very short amount of time to run. Once you see the screen

shown in Figure 11-13, you can safely assume that the transaction log

backup portion of the Backup Plan maintenance plan has been configured

correctly. Verify that a backup was created by checking your backups folder

(mine is E:\SQL Server\Backup\backrecTestDB) for the .trn files to be

present. If they are in that location, then you are done. If not, then you may

need to go back through this first section of this chapter and verify that you

created the transaction log backups to be placed in the correct directory.

Figure 11-13. Start Jobs Success

Chapter 11 transaCtion Log BaCkup and restore soLutions

302

 Transaction Log Restore in SSMS
We are going to use SQL Server Agent to create the transaction log Restore

plan in SSMS, just like we did with the full Restore plan we covered in

Chapter 9 and the differential Restore plan we covered in Chapter 10.

However, we are going to follow a slightly altered set of instructions for the

transaction log restores. Listing 11-2 will detail the steps we need to take to

ensure our transaction log Restore plan executes correctly.

Listing 11-2. Structure for Restoring Data

• Create a trackable trail of data so that we know what

data was restored

• Run the Backup Plan.Transaction Log Backup SQL

Server Agent job

• Copy and rename backup files

• Configure RESTORE DATABASE command(s)

• Restore the most recent full backup

• Restore the most recent differential backup

• Restore the transaction logs in order, to the desired

point in time

In this scenario, we need to first restore our full backup, then our

differential backup, and finally, our transaction log backups in order. This

will allow us to restore the data that we need and that is contained within the

transaction logs currently backed up. We can use T-SQL to restore to a point in

time using our transaction logs by utilizing the STOPAT attribute in our RESTORE

DATABASE command. We will go over the syntax for this command very shortly.

Given the backup scenario that I have been pushing throughout

this book, it is important to note that we will only ever have to restore

a maximum of five transaction logs for each restore sequence, given

that we run differential backups every six hours. For this reason, as we

Chapter 11 transaCtion Log BaCkup and restore soLutions

303

noted in Listing 11-1, we need to make sure that when we implement

the transaction log backups like we did in the previous section, they are

run in the sequence noted earlier (i.e., one transaction log backup is run

every hour, on the hour). Utilizing this sequence will allow us to have a

maximum of five transaction logs that we can restore without moving to

the next chronological full or differential backup to restore from.

Now that we have a plan on how to move forward, let’s get started on

creating this plan.

 Creating Test Data
What we want to do is make some changes to one of our tables so we can

see what happens when we restore the database to a point in time. To do

this, we need to insert some fake data into our users2 table. Listing 11-3

shows the T-SQL that we will use to accomplish this.

Listing 11-3. Create Test Data

INSERT INTO users2

SELECT TOP 1000 * FROM users2

Keep a close eye on the time when you run the command in Listing 11- 3,

because we are going to run that same code a few more times until we have

successfully added a substantial amount of data. This will ensure that we are

restoring to the correct point in time.

As a point of reference, the row count before running the script in

Listing 11-3 was 10000. After running the script one time, it was 11000.

Running the script each additional time increased the row count by 1000

rows, so just make sure that you keep an eye on the time and your final row

count. When I was done inserting records, I ended up with 29000 records

in my users2 table, up from 10000. I only wanted 16000 records though,

and I know I had this number of records at 9:22 pm, so I need to restore my

transaction logs up to 9:22 pm.

Chapter 11 transaCtion Log BaCkup and restore soLutions

304

 Back Up the Transaction Log
Next, we need to back up the transaction so that the transactions we just

carried out are available to us. The time as of this writing is 9:30 pm, so I

need to restore the 7:00 pm, 8:00 pm, and 9:00 pm transaction logs, along

with the transaction log that we are about to create. Right-click your

Backup Plan.Transaction Log Restore SQL Server Agent Job and select Start

Job at Step… to execute the job. It runs for a second, and then successfully

completes. Click the Close button once it completes, and you are returned

to the main SSMS stage.

 Copy and Rename Backup Files
The purpose of copying and renaming our backup files is so we don’t

overwrite our original backup data. There really is no other reason, to be

honest. I want to be as careful as possible with my backups, so I will always

leave the original file in place and copy and rename when applicable.

Recall that my backup directory is located at E:\SQL Server\Backup\

backrecTestDB, in this situation. When I navigate to that directory, I can

see my backup files, including the transaction log I just backed up. I want

to copy the logs I noted previously and rename them to chronological

names in the format backrecTestDB_1.trn, backrecTestDB_2.trn, and

backrecTestDB_3.trn. These three files will represent our three separate

transaction logs that we need to restore.

Chapter 11 transaCtion Log BaCkup and restore soLutions

305

In the end, I have copied and renamed six files, as shown in Listing 11-4.

Listing 11-4. Copy and Rename Files

• Full backup

• backrecTestDB_FULL.bak

• Differential backup

• backrecTestDB_DIFF.bak

• Transaction log backups

• backrecTestDB_1.trn

• backrecTestDB_2.trn

• backrecTestDB_3.trn

• backrecTestDB_922PM.trn

In Windows Explorer, my files appeared as shown in Figure 11-14.

Note the last transaction log; see how it is much larger than the others?

This is the log with all the changes that we just made from Listing 11-3.

Next, we will put the commands together to restore our data.

 T-SQL Restore Command
Back in Chapter 7, we looked at a T-SQL command in Listing 7-3 that

allowed us to restore a full backup, then a differential backup, and then the

transaction log backups, in chronological order, until completion. The only

Figure 11-14. Windows listing of files

Chapter 11 transaCtion Log BaCkup and restore soLutions

306

real tricky part with restoring data is to keep aware of whether or not you

need to use WITH RECOVERY or WITH NORECOVERY.

So how do you know when to use WITH RECOVERY or WITH NORECOVERY?

You first have to determine what you need to restore.

 Scenario 1: Full Restore

If you’re restoring a single full backup, for example, then you should use

WITH RECOVERY because this command restores the database and then

brings the database out of the restoring state.

 Scenario 2: Full and Differential Restore

If you are restoring a full backup and a differential backup, then you want

to use WITH NORECOVERY on the full restore, which leaves the database

in the restoring state and ready to restore more data, and then use WITH

RECOVERY on the differential restore, which takes the database out of the

restoring database and back ready for regular use.

 Scenario 3: Full, Differential, and Transaction Log
Restore

This is probably the most common scenario. In this situation, you want

to use WITH NORECOVERY on all of the restores: full, differential, and

transaction log. At the end of the T-SQL script, you can either have the line

RESTORE DATABASE backrecTestDB WITH RECOVERY to put the database

back online and take it out of the restoring state, or you can use WITH

RECOVERY in the final transaction log restore statement.

Listing 11-5 shows the basic T-SQL command that we are going to use

to restore the database from the full to the differential and finally to the

transaction log. Note that the code listed in Listing 11-5 is almost identical

to Listing 7-3, and we will be customizing it to better fit our needs shortly.

Chapter 11 transaCtion Log BaCkup and restore soLutions

307

Listing 11-5. Initial RESTORE Script

USE master

-- full database restore

RESTORE DATABASE backrecTestDB

FROM DISK = N'E:\SQL Server\Backup\backrecTestDB\backrecTestDB_

FULL.bak'

WITH NORECOVERY, REPLACE

-- differential database restore

RESTORE DATABASE backrecTestDB

FROM DISK = N'E:\SQL Server\Backup\backrecTestDB\backrecTestDB_

DIFF.bak'

WITH NORECOVERY

-- 7:00PM log restore

RESTORE LOG backrecTestDB

FROM DISK = N'E:\SQL Server\Logs\backrecTestDB\backrecTestDB_1.

trn'

WITH NORECOVERY

-- 8:00PM log restore

RESTORE LOG backrecTestDB

FROM DISK = N'E:\SQL Server\Logs\backrecTestDB\backrecTestDB_2.

trn'

WITH NORECOVERY

-- 9:00PM log restore

RESTORE LOG backrecTestDB

FROM DISK = N'E:\SQL Server\Logs\backrecTestDB\backrecTestDB_3.

trn'

WITH NORECOVERY

Chapter 11 transaCtion Log BaCkup and restore soLutions

308

-- final log restore

RESTORE LOG backrecTestDB

FROM DISK = N'E:\SQL Server\Logs\backrecTestDB\

backrecTestDB_922PM.trn'

WITH RECOVERY,

STOPAT = 'Nov 15, 2017 09:22:00 PM'

With this script, we renamed some files in our backup directory, and

then restored the database successfully using these renamed files. We

utilized the STOPAT attribute in our RESTORE LOG script to successfully

restore to a point in time within our transaction log.

After running the script shown in Listing 11-5 in SSMS, I was indeed left

with 16000 records, just as I intended. Figure 11-15 shows the row count for

the users2 table before the restoration of the data to 9:22 pm, and after.

Figure 11-15. Row count before and after

Success! We have now been able to restore the database to a point in

time from within SSMS without using the wizard. Note that you can use

the script shown in Listing 11-5 for any number of transaction log restores

(up until the next differential restore) by adding the relevant RESTORE LOG

command and ensuring that the WITH RECOVERY statement is only shown in

the last restore statement.

Chapter 11 transaCtion Log BaCkup and restore soLutions

309

 Summary
This chapter brought this section, and the book, to a close. We were able to

successfully restore transaction logs to a point in time using T-SQL within

SQL Server Management Studio, we saw how to create test data, and we

learned about WITH NORECOVERY and WITH RECOVERY.

I sincerely hope that you have followed along in this book and have

learned something new along the way. The lessons in this book are certainly

not the entirety of backing up and restoring data within SQL Server, but I

believe this book gives you an excellent starting point in becoming more

adept at creating an effective backup and restore strategy. There are a lot of

concepts in the realm of backing up or restoring data that I didn’t touch on in

this book; while they are important, I didn’t include them because I believe

that they would have convoluted the topics I was trying to present. I wanted

to make this book the absolute easiest to follow as I could, and I didn’t want

to talk over anybody’s head in the process, so if the content was a bit light, I

do apologize. The concepts in this book can be related to either development

or production environments though, and I thought it was most important to

have a very firm foundation in the rudimentary knowledge of backing up and

restoring data before more advanced topics were introduced. I believe that,

through the course of this book, your knowledge on the topic has grown to

the point where you could continue on comfortably with a more advanced

book on this topic and be able to follow along easily.

I encourage you to take these examples and apply them in your work

development environment, and concentrate on taking what is here and

making it better than it is through automation, for example. There are plenty

of great examples that I mentioned in this book, specifically the maintenance

script from Ola Hallengren. The second edition of this book will have a

comprehensive chapter on this script alone, detailing all the separate pieces

to it, since it does merit its own separate section; it really is pretty spectacular.

Congratulations for finishing this book! Now you get to apply what

you have learned. I wish you, the reader, all the best in your personal and

professional life.

Chapter 11 transaCtion Log BaCkup and restore soLutions

311© Bradley Beard 2018
B. Beard, Beginning Backup and Restore for SQL Server,
https://doi.org/10.1007/978-1-4842-3456-3

Index

A, B, C
Backup

database, 203
destination tab, 65, 206–208
differential task, 70
options tab, 66, 209–214
update, 205, 214

definition, 4
recovery model, 5
and restore, 192–193
script attributes, 45
timeline

backrecTestDB, 153
update backrecTestDB, 154

types, 7

D
Database backup

general tab, 14–15
manual backing up, 18–20
transaction log shrunk, 20

Database restore
instructions, 168–170
restore script, 170–171
SQL Server Management

Studio, 172

status verification, 171–172
T-SQL, 167–172

Database snapshot
creation, 188
frozen point, 191
logical name location, 189
querying source, 190
report, 187
restore, 191–192
SQL Server Agent, 188
subsequent transaction, 187

Data recovery process, 93
Differential backup, 7

adding to backup solution,
28–30

add SSMS, 258
configuration

destination tab, 72
general tab, 71
job schedule, 74
options tab, 73
update job schedule, 75

definition, 23
dependency, 24
job schedule, 267, 268
preparing for, 30–31
Restore plan in SSMS, 275

https://doi.org/10.1007/978-1-4842-3456-3

312

scenarios, 25–28
scheduling, 267
strategy, 24–25
testing, 273–274
via GUI in SSMS, 32–35
via T-SQL, 35–36
update SQL server

agent, 269
Differential base, 23
Differential restoring

definition, 129
SSMS, 129
T-SQL, 133–135

E
Emergency full restore

fixYourMistake
database, 125

restore steps, 124–125

F, G, H
Full backup, 7, 9–10, 12–13

configuration, 59
new job schedule, 69
select plan properties, 60
task selection (see Task)
update schedule

information, 69
design stage, 215
job schedule, 215, 218
location, 14

in SSMS
design window, 200
task window, 203
toolbox, 201

Subplan properties, 216
testing, 240
update job schedule, 221
update stage, 217

Full restore, 94, 95

I
INSERT INTO statement, 95

J, K, L
Job properties

general tab, 83
notification tab, 89
schedules tab, 88
SQL server agent, 90
steps tab, 84

M
Maintenance plans

differential backup
(see Differential backup)

full backup (see Full backup)
SQL server agent job

(see SQL Server)
transaction log backup

(see Transaction log backup)
Master database restore, 95, 96

Differential backup (cont.)

Index

313

N, O
Notifications tab

setting up operator, 236–237
subplan_1, 234–236

P, Q
Page restores, 165–167
Point-in-time restore, 40, 107, 151

backup timeline, 153
database interface, 152
menu location, 151

R
Recovery models, 5–9
Restore

backup timeline, 121
database, 120, 123
date and time, 121
DROP TABLE users1, 119
files and filegroups

general, 143–145
options, 147–150
transaction log selection, 146

menu, 119
operations

catastrophic error, 164
database snapshot

(see Database snapshot)
page restores, 165
production

environment, 163

point-in-time restore, 119
Timeline Interval value, 122
transaction log

copy and rename backup
files, 304–305

test data, creation, 303
T-SQL command, 305

Restoring in SSMS
copy and rename, 283
database option, 110, 113
database restore, 284
device option, 113
DTSX packages, 108
full restore

files tab, 114
general tab, 110, 115
24-hour backup

schedule, 111–112
labeled Source, 113
menu options, 109
options tab, 115
restoring action, 116
verify code, 117–118

operations restore, 285
ReportServer, 108
ReportServerTempDB, 108
restore menu, 109
RESTORE WITH STANDBY, 109
restoring data, 242
SQL server (see Restoring

SQL server)
transaction log option, 110
T-SQL command, 243, 276–277

Index

314

Restoring SQL server
copy and rename, 253
event log entries, 255
general tab, 246, 247
job update, 251
restored database, 254
step properties, 248
update notifications tab, 252
window, general tab, 244
window, steps tab, 245

S
Service level agreements

(SLA), 197
SQL Server, 163

advanced tab, 279
alerts tab, 233
general tab, 222–223, 277,

279, 280
jobs location, 222
job submenu, 283
to multiuser mode, 106–107
notifications tab, 233, 282
schedules tab, 233
single-user mode

instructions, 96–97
server connection, 103
sqlservermanager13.msc, 97
SQL Server (MSSQLSERVER)

properties, 98
SSMS interface, 102
user account control, 97

steps tab, 224

updating
alert tab, 272
general tab, 269, 298
new job, 281
notification tab,

272–273, 300
schedules tab, 271
steps tab, 270, 299

SQL Server Configuration
Manager, 98

SQL Server Management Studio
(SSMS), 93

adding differential backup
subplan properties, 265
task, 259
update main stage, 265–266

adding transaction log
backup plan, 290
subplan properties, 291
update backup plan, 291

back up
database screen, 179–180
media options, 182
menu location, 184
restoring, 185
tail log, 186
transaction log, 181

current tables, 172
database screen, 130–131
database selection, 132
expanded server

connection, 176
menu item, 130
menu location, 143

Index

315

menu selections, 141–142
object explorer, update, 174
object window,

deletion, 173
progress, 133
server connection, 175, 178
server,database, 177
tasks submenu, 140

SQL Server (MSSQLSERVER)
properties, 99–101

Steps tab
advanced tab option, 86–87,

249, 250
general option, 85
subplan_1, advanced tab,

230–232
subplan_1, general tab,

225–229
Storage area network (SAN), 3
System databases

backup script, 103
restore script

process termination, 106
sqlcmd, 104–105

T, U, V, W, X, Y, Z
Tail-log backup, 53, 122
Task

back up database
general tab, 63
update general tab, 64

destination tab, 263
general tab, 260–261

maintenance
selection, 61–62

options tab, 264
update general tab, 262

Testing
event properties, 275
exit criteria, 240
windows event log, 241
windows event

viewer, 274
Transaction log backup, 8

adding in SSMS, 289
backups via script, 45
backups via SSMS, 46

backup options, 53–56
general, 47–49
media options, 50–53

definition, 40
destination tab, 77
file system view, 43
general tab, 76
job schedule, 79
options tab, 78
report options, 80
restore in SSMS, 302–303
scheduling, 296
size of, 44
SQLPERF results, 41
status, 41–43
testing, 301
update plan, 297
updating SQL server, 297
wizard completion, 81
wizard progress, 82

Index

316

Transaction log database, 15
shrink data file, 16
shrink log file, 17

Transaction log restoring, 163, 170
fundamentals, 138–139

SSMS, 139–140, 142
transact-SQL, 159

Transact-SQL (T-SQL),
133–135, 159–161, 306–308

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction to Backup and Restore Methodologies
	Part I: Backups
	Chapter 1: Full Backups
	What Is a Full Backup?
	Recovery Models
	Backup Types
	How Do Recovery Models Affect the Backup Types?

	Preparing for a Full Backup
	Back Up Database: General Tab
	Transaction Log Examination
	Manually Backing Up the Database

	Summary

	Chapter 2: Differential Backups
	What Is a Differential Backup?
	Differential Backup Dependency

	Why Use Differential Backups?
	Scenario Without Differential Backups
	Scenario Running Differential Backups

	Adding Differential Backups to a Backup Solution
	Preparing for a Differential Backup
	Running a Differential Backup
	Taking a Backup via the GUI in SSMS
	Validating a Backup via the GUI in SSMS
	Taking a Differential Backup via T-SQL

	Summary

	Chapter 3: Transaction Log Backups
	What Is a Transaction Log?
	Viewing Transaction Log Status

	Backing Up a Transaction Log
	Transaction Log Backups via Script
	Transaction Log Backups via SSMS
	Back Up Database—General
	Back Up Database—Media Options
	Back Up Database—Backup Options

	Summary

	Chapter 4: Backup Solution Examples
	Setting Up the Maintenance Plan
	Full Backup Configuration
	Differential Backup Configuration
	Transaction Log Backup Configuration

	Configuring the Jobs
	Summary

	Part II: Restores
	Chapter 5: Full Restores
	What Is a Full Restore?
	Restoring the Master Database
	Start SQL Server in Single-User Mode
	Restore SQL Server to Multiuser Mode

	Restoring from a Full Backup
	Full Restores with SSMS
	Restoring to a Point in Time

	Emergency Full Restore Example
	Summary

	Chapter 6: Differential Restores
	What Is a Differential Restore?
	Restoring Using SSMS
	Restoring Using T-SQL
	Summary

	Chapter 7: Transaction Log Restores
	Transaction Log Restore Fundamentals
	Restoring Using SSMS
	Restore Files and Filegroups—General
	Restore Files and Filegroups—Options
	Point-in-Time Restore/Recovery

	Restoring Using Transact-SQL
	Restore File and Filegroups Template

	Summary

	Chapter 8: Restore Solution Examples
	Page Restores
	Querying msdb..suspect_pages

	Complete Database Restore Using T-SQL
	Complete Database Restore Using SSMS
	Database Snapshots
	How Does a Database Snapshot Work?
	Creating a Database Snapshot
	Querying a Database Snapshot
	Restoring a Database Snapshot

	Viewing Backup and Restore History
	Summary

	Part III: Complete Solutions
	Chapter 9: Full Backup and Restore Solutions
	Full Backup Plan in SSMS
	Defining the Back Up Database Task Options
	Scheduling the Full Backup
	Updating the SQL Server Agent Job
	General Tab
	Steps Tab
	Job Step Properties - Subplan_1 (General Tab)
	Job Step Properties - Subplan_1 (Advanced Tab)

	Schedules Tab
	Alerts Tab
	Notifications Tab
	Setting Up an Operator

	Testing the Full Backup Plan
	Full Restore Plan in SSMS
	T-SQL Restore Command
	SQL Server Agent Restore Job
	Copy and Rename Current Backup File
	Restore Data

	Summary

	Chapter 10: Differential Backup and Restore Solutions
	Adding a Differential Backup in SSMS
	Scheduling the Differential Backup
	Updating the SQL Server Agent Job
	General Tab
	Steps Tab
	Schedules Tab
	Alerts Tab
	Notifications Tab

	Testing the Differential Backup Plan
	Differential Restore Plan in SSMS
	T-SQL Restore Command
	SQL Server Agent Restore Job
	Copy and Rename Current Backup
	Restore Data

	Summary

	Chapter 11: Transaction Log Backup and Restore Solutions
	Adding a Transaction Log Backup in SSMS
	Scheduling the Transaction Log Backup
	Updating the SQL Server Agent Job
	General Tab
	Steps Tab
	Notifications Tab

	Testing the Transaction Log Backup Plan
	Transaction Log Restore in SSMS
	Creating Test Data
	Back Up the Transaction Log
	Copy and Rename Backup Files
	T-SQL Restore Command
	Scenario 1: Full Restore
	Scenario 2: Full and Differential Restore
	Scenario 3: Full, Differential, and Transaction Log Restore

	Summary

	Index

