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Introduction

Beginning Blockchain is a book for those willing to learn about the 

technical fundamentals of Blockchain, practical implications, and hands-

on development aspects of Blockchain applications. Adequate history, 

background, and theoretical aspects are covered to help you build a solid 

foundation for your Blockchain journey, and appropriate development 

aspects are covered with coding examples to help you jumpstart 

on Blockchain assignments. The first chapter introduces you to the 

Blockchain world and sets the context. The second chapter dives deeper 

into the core components of Blockchain. The third chapter is focused on 

Bitcoin’s technical concepts so what was discussed in the second chapter 

could be demonstrated with Bitcoin as a cryptocurrency use case of 

Blockchain. The fourth chapter is dedicated to the Ethereum Blockchain in 

an effort to demonstrate how Blockchain could be programmed for many 

more use cases and not limited to just cryptocurrencies. The fifth chapter 

is where you get the hang of Blockchain development with examples 

on basic transactions in both Bitcoin and Ethereum. The sixth chapter, 

as the final chapter, demonstrates the end-to-end development of a 

decentralized application (DApp). By the end of this chapter, you will have 

been equipped with enough tools and techniques to address many real-

world business problems with applicable Blockchain solutions. Start your 

journey toward limitless possibilities.



1© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_1

CHAPTER 1

Introduction to 
Blockchain
Blockchain is the new wave of disruption that has already started to 

redesign business, social and political interactions, and any other way of 

value exchange. Again, it is not just a change, but a rapid phenomenon 

that is already in motion. As of this writing, more than 40 top financial 

institutions and many different firms across industries have started to 

explore blockchain to lower transaction cost, speed up transaction time, 

reduce the risk of fraud, and eliminate the middleman or intermediary 

services. Some are trying to reimagine legacy systems and services to take 

them to a new level and also come up with new kinds of service offerings.

We will cover blockchain in greater detail throughout the book.  

You can follow through the chapters in the order presented if you are new 

to blockchain or pick only the ones relevant to you. This chapter explains 

what blockchain is all about, how it has evolved, and its importance 

in today’s world with some uses and use cases. It gives an outside-in 

perspective to you to be able to delve deeper into blockchain.
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�Backstory of Blockchain
One of the first known digital disruptions that laid the foundation of the 

Internet was TCP/IP (Transmission Control Protocol/Internet Protocol) 

back in the 1970s. Prior to TCP/IP, it was the era of circuit switching, which 

required dedicated connection between two parties for communication 

to happen. TCP/IP came up with its packet switching design, which was 

more open and peer-to-peer with no need to preestablish a dedicated line 

between parties.

When the Internet was made accessible to the public through the 

World Wide Web (WWW) in the early 1990s, it was supposed to be 

more open and peer-to- peer. This is because it was built atop the open 

and decentralized TCP/IP. When any new technology, especially the 

revolutionary ones, hits the market, either they fade away on their own, or 

they create such an impact that they become the accepted norm. People 

adapted to the WWW revolution and leveraged the benefits it had to offer 

in every possible way. As a result, the World Wide Web started shaping up 

in a way that might not have been the exact way it was imagined. It could 

have been more open, more accessible, and more peer-to-peer. Many new 

technologies and businesses started to build on top of it and it became 

what it is today—more centralized. Slowly and gradually, people get used to 

what technology offers. People are just fine if an international transaction 

takes days to settle, or it is too expensive, or it is less reliable.

Let us take a closer look at the banking system and its evolution. 

Starting from the olden days of barter system till fiat currencies, there 

was no real difference between a transaction and its settlement because 

they were not two separate entities. As an example, if Alice had to pay $10 

to Bob, she would just hand over a $10 note to Bob and the transaction 

would just get settled there. No bank was needed to debit $10 from Alice’s 

account and credit the same to Bob’s account or to serve as a system of 

trust to ensure Alice does not cheat Bob. However, transacting directly  
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with someone who is physically not present close by was difficult.  

So, banking systems evolved with many more service offerings and enabled 

transactions from every corner of the world. With the help of the Internet, 

geography was no more a limitation and banking became easier than ever. 

Not just banking for that matter: the Internet facilitated many different 

kinds of value exchange over the web.

Technology enabled someone from India to make a monetary 

transaction with someone in the United Kingdom, but with some cost.  

It takes days to settle such transactions and is expensive as well. A bank was 

always needed to impose trust and ensure security for such transactions 

between two or more parties. What if technology could enable trust and 

security without these intermediary and centralized systems? Somehow, this 

part (of technology imposing trust) was missing all through, which resulted 

in development of centralized systems such as banks, escrow services, 

clearing houses, registrars and many other such institutions. Blockchain 

proves to be that missing piece of the Internet revolution puzzle that 

facilitates a trustless system in a cryptographically secured way.

Satoshi Nakamoto, the pseudonymous name by which the world 

knows him, must have felt that the monetary systems were not touched 

by the technological revolution since the 1980s. Banks formed the 

centralized institutions that maintained the transaction records, governed 

interactions, enforced trust and security, and regulated the whole system. 

The whole of commerce relies on these financial institutions, which 

serve as the trusted third parties to process payments. The mediation 

of financial institutions increases cost and time to settle a transaction, 

and also limits the transaction sizes. The mediation was needed to settle 

disputes, but that meant that completely nonreversible transaction was 

never possible. This resulted in a situation where trust was needed for 

someone to transact with another. Certainly, this bureaucratic system had 

to change to keep up with the economy’s expected digital transformation. 

So, Satoshi invented a cryptocurrency called Bitcoin that was enabled by 

the underlying technology— blockchain. Bitcoin is just one monetary use 

Chapter 1  Introduction to Blockchain



4

case of blockchain that addresses the inherent weakness of trust-based 

models. We will delve deeper into the fundamentals of both Bitcoins and 

blockchain in this book.

�What is Blockchain?
The Internet has revolutionized many aspects of life, society, and 

business. However, we learned in the previous section that how people 

and organizations execute transactions with one another has not changed 

much in the past couple of decades. Blockchain is believed to be the 

component that completes the Internet puzzle and makes it more open, 

more accessible, and more reliable.

To understand blockchain, you have to understand it from both a 

business perspective and technical perspective. Let us first understand it 

in a business transaction context to get the “what” of it, and then look into 

the technicality to understand the “how” of it in the following chapters.

Blockchain is a system of records to transact value (not just money!) in 

a peer-to-peer fashion. What it means is that there is no need for a trusted 

intermediary such as banks, brokers, or other escrow services to serve as a 

trusted third party. For example, if Alice pays to Bob $10, why would it go 

through a bank? Take a look at Figure 1-1.
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Let us look at a different example now. A typical stock transaction 

happens in seconds, but its settlement takes weeks. Is it desirable in this 

digital age? Certainly not! Figure 1-2 demonstrates the current situation.

Figure 1-1.  Transaction through an intermediary vs. peer-to-peer 
transaction
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If someone wants to buy some stocks from a company or a person, 

they can just directly buy it from them with instant settlement, with 

no need for brokers, clearing houses, or other financial institutions in 

between. A decentralized and peer-to-peer solution to such a situation can 

be represented as in Figure 1-3.

Figure 1-2.  Stocks trading through an intermediary clearing house
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Please note that transaction and settlement are not two different 

entities in a blockchain setting! The transactions are analogous to, say, fiat 

currency transactions where if someone pays another a $10 note, they do 

not own it anymore and that $10 note is physically transferred to the new 

owner.

Now that you understand blockchain from a functional perspective, at 

a high level, let us look into it a little technically, and the reason for naming 

it “blockchain” becomes clearer. We will see “What” it is technically and 

leave the “How” it works to Chapter 2.

Figure 1-3.  Peer-to-peer stock trading
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Read the following statements and do not worry if the concepts do not 

fit together well for your complete understanding. You may want to revisit 

it, but be patient till you finish reading this book.

•	 Blockchain is a peer-to-peer system of transacting 

values with no trusted third parties in between.

•	 It is a shared, decentralized, and open ledger of 

transactions. This ledger database is replicated across a 

large number of nodes.

•	 This ledger database is an append-only database and 

cannot be changed or altered. It means that every entry 

is a permanent entry. Any new entry on it gets reflected 

on all copies of the databases hosted on different 

nodes.

•	 There is no need for trusted third parties to serve 

as intermediaries to verify, secure, and settle the 

transactions.

•	 It is another layer on top of the Internet and can coexist 

with other Internet technologies.

•	 Just the way TCP/IP was designed to achieve an open 

system, blockchain technology was designed to enable 

true decentralization. In an effort to do so, the creators 

of Bitcoin open-sourced it so it could inspire many 

decentralized applications.

Chapter 1  Introduction to Blockchain



9

Every node on the blockchain network has an identical copy of the 

blockchain shown in Figure 1-4, where every block is a collection of 

transactions, hence the name. As you can see, there are two major parts 

in every block. The “header” part links back to the previous block in the 

chain. What it means is that every block header contains the hash of the 

previous block so that no one can alter any transaction in the previous 

block. We will look into further details of this concept in the following 

chapters. The other part of a block is the “body content” that has a 

validated list of transactions, their amounts, the addresses of the parties 

involved, and some more details. So, given the latest block, it is feasible to 

access all the previous blocks in a blockchain.

Let us consider a practical example and see how the transactions take 

place and the ledger gets updated across the network, to see how this 

system works:

Assume that there are three candidates—Alice, Bob, and Charlie—who 

are doing some monetary transactions among each other on a blockchain 

network. Let us go through the transactions step by step to understand 

blockchain’s open and decentralized features.

Step-1:
Let us assume that Alice had $50 with her, which is the genesis of all 

transactions and every node is aware of it, as shown in Figure 1-5.

Figure 1-4.  The blockchain data structure

A typical blockchain may look as shown in Figure 1-4.
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Step-2:
Alice makes a transaction by paying $20 to Bob. Observe how the 

blockchain gets updated at each node, as shown in Figure 1-6.

Step-3:
Bob makes another transaction by paying $10 to Charlie and the 

blockchain gets updated as shown in Figure 1-7.

Figure 1-6.  The first transaction

Figure 1-5.  The genesis block
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Please note that the transaction data in the blocks is immutable. 

All transactions are fully irreversible. Any change would result in a new 

transaction, which would get validated by all contributing nodes. Every 

node has its own copy of blockchain.

If there are many questions popping up in your mind, such as “What 

if Alice pays the same amount to Dave to double-spend the same amount, 

or what if she is making a payment without having enough funds in her 

account?,” “How is the security ensured?,” and so on, that is wonderful! We 

are going to cover those details in the following chapters.

�Centralized vs. Decentralized Systems
The very reason we are looking into the debate on centralization vs. 

decentralization is because blockchain is designed to be decentralized, 

defying the centralized design. However, the terns decentralized and 

centralized are not always clear. They are very poorly defined and 

misleading in many places. The reason is that there is almost no system 

that is purely centralized or decentralized. Most of the concepts and 

examples in this section are inspired from the notes of Mr. Vitalik Buterin, 

the founder of Ethereum blockchain.

Figure 1-7.  The second transaction
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What is a distributed system then? Just so it does not mess with the 

current discussion, let us understand it first and take it off the list. Please 

note that whether a system is centralized or decentralized, it can still be 

distributed. A centralized distributed system is one in which there is, 

say, a master node responsible for breaking down the tasks or data and 

distribute the load across nodes. On the other hand, a decentralized 

distributed system is one where there is no “master” node as such and yet 

the computation may be distributed. Blockchain is one such example, and 

we will look at many diagrammatic representations of it later in this book. 

Figure 1-8 is a pictorial representation of how a centralized distributed 

system may look.

This representation is similar to Hadoop implementation, as an 

example. Though the computation is faster in such designs because 

of distributed computing, it also suffers from limitations due to 

centralization.

Let us resume our discussion on centralization vs. decentralization. It is 

extremely important to note that for a system to be centralized/decentralized  

is not just limited to the technical architecture. What we intend to say is 

Figure 1-8.  A distributed system with centralized control
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that a system can be centralized or decentralized technically, but may 

not be so logically or politically. Let us take a look at these different 

perspectives to be able to design a system correctly based on the 

requirement:

Technical Architecture: A system can be centralized or decentralized 

from a technical architecture point of view. What we consider is how many 

physical computers (or nodes) are used to design a system, how many 

node failures it can sustain before the whole system goes down, etc.

Political perspective: This perspective indicates the control that an 

individual, or a group of people, or an organization as a whole has on a 

system. If the computers of the system are controlled by them, then the 

system is naturally centralized. However, if no specific individual or groups 

control the system and everyone has equal rights on the system, then it is a 

decentralized system in a political sense!

Logical perspective: A system can be logically centralized or 

decentralized based on how it appears to be, irrespective of whether it 

is centralized or decentralized technically or politically. An alternative 

analogy could be that if you vertically cut a system (say of computing 

devices) in half with every half having service providers and consumers, 

if they can operate as independent units they are decentralized and 

centralized otherwise.

All the aforementioned perspectives are crucial in designing a real-

life system and calling it centralized or decentralized. Let us discuss some 

of the examples mixing these perspectives to clear up any confusion you 

might have:

•	 If you look at the corporates, they are architecturally 

centralized (one head office), they are politically 

centralized (governed by a CEO or the board), and they 

are logically centralized as well. (You can’t really split 

them in halves.)
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•	 Our language of communication is decentralized from 

every perspective—architecturally, politically, as well 

as logically. For two people to communicate with each 

other, in general, their language is neither politically 

influenced nor logically dependent on the language of 

communication of other people.

•	 The torrent systems such as BitTorrent are also 

decentralized from every perspective. Any node can be 

a provider or a consumer, so even if you cut the system 

into halves, it still sustains.

•	 The Content Delivery Network on the other hand 

is architecturally decentralized, logically also 

decentralized, but is politically centralized because 

it is owned by corporates. An example is Amazon 

CloudFront.

•	 Let us consider blockchain now. The objective of 

blockchain was to enable decentralization. So, it is 

architecturally decentralized by design. Also, it is 

decentralized from a political viewpoint, as nobody 

controls it. However, it is logically centralized, as there 

is one common agreed state and the whole system 

behaves like a single global computer.

Let us explore these terms separately and have a comparative view to 

be able to appreciate why blockchain is decentralized by design.

�Centralized Systems
As the name suggests, a centralized system has a centralized control with 

all administrative authority. Such systems are easy to design, maintain, 

impose trust, and govern, but suffer from many inherent limitations, as 

follows:
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•	 They have a central point of failure, so are less stable.

•	 They are more vulnerable to attack and hence less 

secured.

•	 Centralization of power can lead to unethical 

operations.

•	 Scalability is difficult most of the time.

A typical centralized system may appear as shown in Figure 1-9.

�Decentralized Systems
As the name suggests, a decentralized system does not have a centralized 

control and every node has equal authority. Such systems are difficult to 

design, maintain, govern, or impose trust. However, they do not suffer 

from the limitations of conventional centralized systems. Decentralized 

systems offer the following advantages:

•	 They do not have a central point of failure, so more 

stable and fault tolerant

Figure 1-9.  A centralized system
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•	 Attack resistant, as no central point to easily attack and 

hence more secured

•	 Symmetric system with equal authority to all, so less 

scope of unethical operations and usually democratic 

in nature

A typical decentralized system may appear as shown in Figure 1-10.

Please note that a distributed system can also be decentralized.  

An example would be blockchain! However, unlike common distributed 

systems, the task is not subdivided and delegated to nodes, as there is no 

master who would do that in blockchain. The contributing nodes do not 

work on a portion of the work, rather, the interested nodes (or the ones 

chosen at random) perform the entire work. A typical decentralized and 

distributed system, which is effectively a peer-to-peer system, may appear 

as shown in Figure 1-11.

Figure 1-10.  A decentralized system
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�Layers of Blockchain
As of this writing, the public blockchain variants such as Ethereum are 

in the process of maturing, and building complex applications on top of 

these blockchains may not be a good idea. Keep in mind that blockchain is 

never just a piece of technology, but a combination of business principles, 

economics, game theory, cryptography, and computer science engineering. 

Most of the real-world applications are quite complex in nature, and it is 

advisable to build blockchain solutions from the ground up.

The purpose of this section is only to provide you with a bird’s eye view 

of various blockchain layers, and delve deeper into the core fundamentals 

in the following chapters. To start with, let us just recollect our basic 

understanding of the TCP/IP protocol stack. The layered approach in the 

TCP/IP stack is actually a standard to achieve an open system. Having 

abstraction layers not only helps in understanding the stack better, but also 

helps in building products that are compliant to the stack to achieve an 

open system. Also, having the layers abstract from each other makes the 

system more robust and easy to maintain. Any change to any of the layers 

doesn’t impact the other layers. Again, the TCP/IP analogy is not to be 

Figure 1-11.  A decentralized and peer-to-peer system
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confused with the blockchain layers. TCP/IP is a communication protocol 

that every Internet application uses, and so is blockchain.

Enter the blockchain. There are no agreed global standards yet that 

would clearly segregate the blockchain components into distinct layers. 

A layered heterogeneous architecture is needed, but for now that is still 

in the future. So, we will try to formulate blockchain layers to be able 

to understand the technology better and build a comparative analogy 

between hundreds of blockchain/Cryptocurrency variants out there in the 

market. Take a look at the high-level, layered representation of blockchain 

in Figure 1-12.

You may be wondering why five layers and why not more granular 

layers, or fewer layers. Obviously, there cannot be too many or too few 

layers; it is going to be a trade-off driven among complexity, robustness, 

adaptability, etc., to name a few. The purpose again is not really to 

standardize blockchain technology, but to build a better understanding. 

Please keep in mind that all these layers are present on all the nodes.

Figure 1-12.  Various layers of blockchain
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In Chapter 6 of this book, we will be building a decentralized 

application from scratch and learning how blockchain functions on all 

these layers with a practical use case.

�Application Layer
Because of the characteristics of blockchain, such as immutability of data, 

transparency among participants, resilience against adversarial attacks 

etc., there are multiple applications being built. Certain applications are 

just built in the application layer, taking for granted any available “flavor” 

of blockchain, and some applications are built in the application layer 

and are interwoven with other layers in blockchain. This is the reason the 

application layer should be considered a part of blockchain.

This is the layer where you code up the desired functionalities 

and make an application out of it for the end users. It usually involves 

a traditional tech stack for software development such as client-side 

programming constructs, scripting, APIs, development frameworks, etc. 

For the applications that treat blockchain as a backend, those applications 

might need to be hosted on some web servers and that might require web 

application development, server-side programming, and APIs, etc. Ideally, 

good blockchain applications do not have a client–server model, and there 

are no centralized servers that the clients access, which is just the way 

Bitcoin works.

You probably have heard or already learned about the off-chain 

networks. The idea is to build applications that wouldn’t use blockchain 

for anything and everything, but use it wisely. In other words, this concept 

is to ensure that the heavy lifting is done at the application layer, or bulky 

storage requirements are taken care of off the chain so that the core 

blockchain is light and effective and the network traffic is not too much.
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�Execution Layer
The Execution Layer is where the executions of instructions ordered by the 

Application Layer take place on all the nodes in a blockchain network. The 

instructions could be simple instructions or a set of multiple instructions 

in the form of a smart contract. In either case, a program or a script needs 

to be executed to ensure the correct execution of the transaction. All the 

nodes in a blockchain network have to execute the programs/scripts 

independently. Deterministic execution of programs/scripts on the same 

set of inputs and conditions always produces the same output on all the 

nodes, which helps avoid inconsistencies.

In the case of Bitcoins, these are simple scripts that are not Turing-

complete and allow only a few set of instructions. Ethereum and 

Hyperledger, on the other hand, allow complex executions. Ethereum’s 

code or its smart contracts written in solidity gets compiled to Bytecode or 

Machine Code that gets executed on its own Ethereum Virtual Machine. 

Hyperledger has a much simpler approach for its chaincode smart 

contracts. It supports running of compiled machine codes inside docker 

images, and supports multiple high-level lanuages such as Java and Go.

�Semantic Layer
The Semantic Layer is a logical layer because there is an orderliness in the 

transactions and blocks. A transaction, whether valid or invalid, has a set 

of instructions that gets through the Execution Layer but gets validated 

in the Semantic Layer. If it is Bitcoin, then whether one is spending a 

legitimate transaction, whether it is a double-spend attack, whether one 

is authorized to make this transaction, etc., are validated in this layer.  

You will learn in the following chapters that Bitcoins are actually present as 

transactions that represent the system state. To be able to spend a Bitcoin, 

you have to consume one or more previous transactions and there is no 

notion of Accounts. This means that when someone makes a transaction, 

Chapter 1  Introduction to Blockchain



21

they use one of the previous transactions where they had received at least 

the amount they are spending now. This transaction must be validated by 

all the nodes by traversing previous transactions to see if it is a legitimate 

transaction. Ethereum, on the other hand, has the system of Accounts. 

This means that the account of the one making the transaction and that 

of the one receiving it both get updated.

In this layer, the rules of the system can be defined, such as data 

models and structures. There could be situations that are a little more 

complex compared with simple transactions. Complex instruction sets are 

often coded into smart contracts. The system’s state gets updated when a 

smart contract is invoked upon receiving a transaction. A smart contract 

is a special type of account that has executable code and private states.  

A block usually contains a bunch of transactions and some smart 

contracts. The data structures such as the Merkle tree are defined in this 

layer with the Merkle root in the block header to maintain a relation 

between the block headers and the set of transactions in a block (usually 

Key-Value storage on disk). Also, the data models, storage modes, in-

memory/disk based processing, etc. can be defined in this logical layer.

Apart from the aforementioned, it is the semantic layer that defines 

how the blocks are linked with each other. Every block in a blockchain 

contains the hash of the previous block, all the way to the genesis block. 

Though the final state of the blockchain is achieved by the contributions 

from all the layers, the linking of blocks with each other needs to be 

defined in this layer. Depending on the use case, you might want to code 

up an additional functionality in this layer.

�Propagation Layer
The previous layers were more of an individual phenomenon: not much 

coordination with other nodes in the system. The Propagation Layer is the 

peer-to-peer communication layer that allows the nodes to discover each 

other, and talk and sync with each other with respect to the current state of 
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the network. When a transaction is made, we know that it gets broadcast to 

the entire network. Similarly, when a node wants to propose a valid block, 

it gets immediately propagated to the entire network so that other nodes 

could build on it, considering it as the latest block. So, transaction/block 

propagation in the network is defined in this layer, which ensures stability 

of the whole network. By design, most of the blockchains are designed such 

that they forward a transaction/block immediately to all the nodes they are 

directly connected to, when they get to know of a new transaction/block.

In the asynchronous Internet network, there are often latency issues 

for transaction or block propagation. Some propagations occur within 

seconds and some take more time, depending on the capacity of the 

nodes, network bandwidth, and a few more factors.

�Consensus Layer
The Consensus Layer is usually the base layer for most of the blockchain 

systems. The primary purpose of this layer is to get all the nodes to agree 

on one consistent state of the ledger. There could be different ways of 

achieving consensus among the nodes, depending on the use case. Safety 

and security of the blockchain is accertained in this layer. In Bitcoin or 

Ethereum, the consensus is achieved through proper incentive techniques 

called “mining.” For a public blockchain to be self-sustainable, there has to 

be some sort of incentivization mechanisms that not only helps in keeping 

the network alive, but also enforces consensus. Bitcoin and Ethereum use a 

Proof of Work (PoW) consensus mechanism to randomly select a node that 

can propose a block. Once that block is proposed and propagated to all the 

nodes, they check to see if it a valid block with all legitimate transactions 

and that the PoW puzzle was solved properly; they add this block to their 

own copy of blockchain and build further on it. There are many different 

variants of consensus protocols such as Proof of Stake (PoS), deligated PoS 

(dPoS), Practical Byzantine Fault Tolerance (PBFT), etc., which we will 

cover in great detail in the following chapters.
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�Why is Blockchain Important?
We looked at the design aspects of centralized and decentralized systems 

and got some idea of the technical benefits of decentralized systems over 

centralized ones. We also learned about different layers of blockchain. 

Blockchain, being a decentralized peer-to-peer system, has some inherent 

benefits and complexities. Keep in mind that it is not a silver bullet that 

can address all the problem areas in the world, but there are specific 

cases where it is the need of the hour. There are also scenarios where 

blockchainizing the existing solution makes it more robust, transparent, 

and secured. However, it can as well lead to disaster if not done the right 

way! Let us now keep a business and functional perspective in mind and 

analyze blockchain.

�Limitations of Centralized Systems
If you take a quick glance at the software evolution landscape, you will 

see that many software solutions have a centralized design. The reason is 

not just because they are easy to develop and maintain, but because we 

are used to such a design to be able to trust the system. We always need a 

trusted third party who can assure we are not being cheated or becoming 

victims of a scam. Without a prior business relationship, it is difficult to 

trade with someone or even scale up. One would probably not do business 

with someone they have never known.

Let us take an example to understand it better. Today when we order 

something from Amazon, we feel safe and assured of the item’s delivery. 

The producer of the item is someone and the buyer is someone else. 

Then what role is being played by Amazon here? It is there as an enabler 

functioning as a trusted intermediary, and also to take some cut of the 

transaction. The buyer trusts the seller where the trust relation is actually 

imposed by such trusted third parties. What blockchain proposes is that, 

in the modern digital era, we do not really need a third party in between 
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to impose trust, and the technology has matured enough to handle it. In 

blockchain, trust is an inherent part of the network by default, which we 

will explore more in upcoming chapters.

Let us quickly learn a few downsides of a conventional centralized 

system:

•	 Trust issues

•	 Security issue

•	 Privacy issue—data sale privacy is being undermined

•	 Cost and time factor for transactions

Some of the advantages of decentralized systems over centralized 

systems could be:

•	 Elimination of intermediaries

•	 Easier and genuine verification of transactions

•	 Increased security with lower cost

•	 Greater transparency

•	 Decentralized and immutable

�Blockchain Adoption So Far
Blockchain came along with Bitcoin, a digital cryptocurrency, in 2009 via 

a simple mailing list. Soon after it was launched, people could realize its 

true potential beyond just cryptocurrency. Some companies came up with 

different flavors of blockchain offerings such as Ethereum, Hyperledger, 

etc. Microsoft and IBM came up with SaaS (Software as a Service) offerings 

on their Azure and Bluemix cloud platforms, respectively. Different start-

ups were formed, and many established companies took blockchain 

initiatives that focused on solving some business problems that were not 

easily solved before.
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It is too late now to just say that blockchain has tremendous potential 

to disrupt almost every industry in some way or the other; the revolution 

has already started. It has hugely impacted the financial services market. 

It is difficult to name a global bank or finance entity not exploring 

blockchain. Apart from the financial market, initiatives have already 

been/are already being taken in areas such as media and entertainment, 

energy trading, prediction markets, retail chains, loyalty rewards systems, 

insurance, logistics and supply chains, medical records, and also 

government and military applications.

As of this writing, the current situation is such that many start-ups 

and companies are able to see how a blockchain-based system can really 

address some pain areas and become beneficial in many ways. However, 

designing the right kind of blockchain solution is quite challenging. There 

are some really great ideas for a blockchain-based product or solution, but 

it is equally difficult to either build them or implement them. There are 

some use cases that can only be built on a public blockchain. Designing 

a self-sustainable blockchain with a proper mining ecosystem is difficult, 

and when it comes to the existing public blockchains to build non-

cryptocurrency applications there is none other than Ethereum. Whether 

a blockchain application is to be built in the Application Layer only and 

use the underlying layers as they are, or the application needs to be built 

from the ground up, is something difficult to decide. There are some 

technical challenges, too. Blockchain is still maturing, and it may take 

few more years for mainstream adoption. As of today, there are multiple 

propositions to address the scalability issues of blockchain. We will try to 

build a solid understanding on all these perspectives in this entire book. 

For now, let us see some of the specific uses and use cases in the following 

section.
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�Blockchain Uses and Use Cases
In this section, we will look at some of the initiatives that are already being 

taken across industries such as finance, insurance, banking, healthcare, 

government, supply chains, IoT (Internet of Things), and media and 

entertainment to name a few. The possibilities are limitless, however! 

A true sharing economy, which was difficult to achieve in centralized 

systems, is possible using blockchain technology (e.g., peer-to-peer 

versions of Uber, AirBNB). It is also possible to enable citizens to own their 

identity (Self-Sovereign Digital Identity) and monetize their own data 

using this technology. For now, let us take a look at some of the existing 

use cases.

•	 Any type of property or asset, whether physical or 

digital, such as laptops, mobile phones, diamonds, 

automobiles, real estate, e-registrations, digital files, 

etc. can be registered on blockchain. This can enable 

these asset transactions from one person to another, 

maintain the transaction log, and check validity or 

ownerships. Also, notary services, proof of existence, 

tailored insurance schemes, and many more such use 

cases can be developed.

•	 There are many financial use cases being developed 

on blockchain such as cross-border payments, share 

trading, loyalty and rewards system, Know Your 

Customer (KYC) among banks, etc. Initial Coin Offering 

(ICO) is one of the most trending use cases as of this 

writing. ICO is the best way of crowdsourcing today by 

using cryptocurrency as digital assets. A coin in an ICO 

can be thought of as a digital stock in an enterprise, 

which is very easy to buy and trade.
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•	 Blockchain can be used to enable “The Wisdom 

of Crowds” to take the lead and shape businesses, 

economies, and various other national phenomena 

by using collective wisdom! Financial and economic 

forecasts based on the wisdom of crowds, decentralized 

prediction markets, decentralized voting, as well as 

stocks trading can be possible on blockchain.

•	 The process of determining music royalties has 

always been convoluted. The Internet-enabled 

music streaming services facilitated higher market 

penetration, but made the royalty determination more 

complex. This concern can pretty much be addressed 

by blockchain by maintaining a public ledger of music 

rights ownership information as well as authorised 

distribution of media content.

•	 This is the IoT era, with billions of IoT devices 

everywhere and many more to join the pool. A whole 

bunch of different makes, models, and communication 

protocols makes it difficult to have a centralized 

system to control the devices and provide a common 

data exchange platform. This is also an area where 

blockchain can be used to build a decentralized peer-

to-peer system for the IoT devices to communicate 

with each other. ADEPT (Autonomous Decentralized 

Peer-To-Peer Telemetry) is a joint initiative from IBM 

and Samsung that has developed a platform that uses 

elements of the Bitcoin’s underlying design to build 

a distributed network of devices—a decentralized 

IOT. ADEPT uses three protocols: BitTorrent for file 

sharing, Ethereum for smart contracts, and TeleHash 

for peer-to-peer messaging in the platform. The IOTA 

foundation is another such initiative.
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•	 In the government sectors as well, blockchain has 

gained momentum. There are use cases where 

technical decentralization is necessary, but politically 

should be governed by governments: land registration, 

vehicle registration and management, e-Voting, etc. 

are some of the active use cases. Supply chains are 

another area where there are some great use cases of 

blockchain. Supply chains have always been prone to 

disputes across the globe, as it was always difficult to 

maintain transparency in these systems.

�Summary
In this chapter, we covered the evolution of blockchain, the history of 

it, what it is, the design benefits, and why it is so important with some 

relevant use cases. In this section, we will conclude with its game-changing 

offerings, in line with the technology revolution.

In the 1990s, mass adoption of the Internet changed the way people 

did business. It removed friction from creation and distribution of 

information. This paved the way for new markets, more opportunities, and 

possibilities. Similarly, blockchain is here today to take the Internet to a 

whole new level by removing friction along three key areas: Control, Trust, 

and Value.

Control: Blockchain enabled distribution of the control by making the 

system decentralized.

Trust: Blockchain is an immutable, tamper-resistant ledger. It gives 

a single, shared source of truth to all nodes, making the system trustless. 

What it means is that trust is no longer needed to transact with any 

unknown person or entity and is inherent by design.

Value: Blockchain enables exchange of value in any form. One can 

issue and transfer assets without central entities or intermediaries.
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In Chapter 2, we will take a deep dive into the blockchain 

fundamentals.
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CHAPTER 2

How Blockchain 
Works
We stand at the edge of a new digital revolution. Blockchain probably 

is the biggest invention since the Internet itself! It is the most promising 

technology for the next generation of Internet interaction systems and 

has received extensive attention from many industry sectors as well as 

academia. Today, many organizations have already realized that they 

needed to be blockchain ready to sustain their positions in the market. 

We already looked at a few use cases in Chapter 1, but the possibilities are 

limitless. Though blockchain is not a silver bullet for all business problems, 

it has started to impact most business functions and their technology 

implementations.

To be able to solve some real-world business problems using 

blockchain, we actually need a fine-grained understanding of what it is 

and how it works. For this, it needs to be understood through different 

perspectives such as business, technical, and legal viewpoints. This 

chapter is an effort to get into the nuts and bolts of blockchain technology 

and get a complete understanding of how it works.
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�Laying the Blockchain Foundation
Blockchain is not just a technology, it is mostly coupled with business 

functions and use cases. In its cryptocurrency implementations, it is also 

interwoven with economic principles. In this section, we will mainly 

focus on its technical aspects. Technically, blockchain is a brilliant 

amalgamation of the concepts from cryptography, game theory, and 

computer science engineering, as shown in Figure 2-1.

Let us take a look at what role these components play in the blockchain 

system at a high level and dig deeper into the fundamentals eventually. 

Before that, let us quickly revisit how the traditional centralized systems 

worked. The traditional approach was that there would be a centralized 

entity that would maintain just one transaction/modification history. This 

was to exercise concurrency control over the entire database and inject 

Figure 2-1.  Blockchain at its core
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trust into the system through intermediaries. What was the problem with 

such a stable system then? A centralized system has to be trusted, whether 

those involved are honest or not! Also, cost due to intermediaries and the 

transaction time could be greater for obvious reasons. Now think about the 

centralization of power; having full control of the entire system enables the 

centralized authorities to do almost anything they want.

Now, let us look at how blockchain addresses these issues due to 

centralized intermediaries by using cryptography, game theory, and 

computer science concepts. Irrespective of the use case, the transactions 

are secured using cryptography. Using cryptography, it can be ensured 

that a valid user is initiating the transaction and no one can forge a 

fraudulent transaction. This means, cryptographically it can be ensured 

that Alice in no way can make a transaction on behalf of Bob by forging 

his signature. Now, what if a node or a user tries to launch a double-spend 

attack (e.g., one has just ten bucks and tries to pay the same to multiple 

people)? Pay close attention here—despite not having sufficient funds, one 

can still initiate a double-spend, which is cryptographically correct. The 

only way to prevent double-spend is for every node to be aware of all the 

transactions. Now this leads to another interesting problem. Since every 

node should maintain the transaction database, how can they all agree 

on a common database state? Again, how can the system stay immune 

to situations where one or more computing nodes deliberately attempt 

to subvert the system and try to inject a fraudulent database state? The 

majority of such problems come under the umbrella of the Byzantine 

Generals’ Problem (described later). Well, it gained even more popularity 

because of blockchain, but it has been there for ages. If you look at the 

data center solutions, or distributed database solutions, the Byzantine 

Generals’ Problem is an obvious and common problem that they deal with 

to remain fault tolerant. Such situations and their solution actually come 

from game theory. The field of game theory provides a radically different 

approach to determine how a system will behave. The techniques in 

game theory are arguably the most sophisticated and realistic ones. They 
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usually never consider if a node is honest, malicious, ethical, or has any 

other such characteristics and believe that the participants act according 

to the advantage they get, not by moral values. The sole purpose of game 

theory in blockchain is to ensure that the system is stable (i.e., in Nash 

Equilibrium) with consensus among the participants.

There are different kinds of business problems and situations with 

varying degrees of complexities. So, the underlying crypto and game 

theoretic consensus protocols could be different in different use cases. 

However, the general principle of maintaining a consistent log or database 

of verified transactions is the same. Though the concepts of cryptography 

and game theory have been around for quite some time now, it is the 

computer science piece that stitches these bits and pieces together 

through data structures and peer-to-peer network communication 

technique. Obviously, it is the “smart software engineering” that is needed 

to realize any logical or mathematical concepts in the digital world. It 

is then the computer science engineering techniques that incorporate 

cryptography and game theoretic concepts into an application, enabling 

decentralized and distributed computing among the nodes with data 

structure and network communication components.

�Cryptography
Cryptography is the most important component of blockchain. It is 

certainly a research field in itself and is based on advanced mathematical 

techniques that are quite complex to understand. We will try to develop 

a solid understanding of some of the cryptographic concepts in this 

section, because different problems may require different cryptographic 

solutions; one size never fits all. You may skip some of the details or refer 

to them as and when needed, but it is the most important component 

to ensure security in the system. There have been many hacks reported 

on wallets and exchanges due to weaker design or poor cryptographic 

implementations.
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Cryptography has been around for more than two thousand years 

now. It is the science of keeping things confidential using encryption 

techniques. However, confidentiality is not the only objective. There are 

various other usages of cryptography as mentioned in the following list, 

which we will explore later:

•	 Confidentiality: Only the intended or authorized 

recipient can understand the message. It can also be 

referred to as privacy or secrecy.

•	 Data Integrity: Data cannot be forged or modified by 

an adversary intentionally or by unintended/accidental 

errors. Though data integrity cannot prevent the 

alteration of data, it can provide a means of detecting 

whether the data was modified.

•	 Authentication: The authenticity of the sender is 

assured and verifiable by the receiver.

•	 Non-repudiation: The sender, after sending a message, 

cannot deny later that they sent the message. This 

means that an entity (a person or a system) cannot 

refuse the ownership of a previous commitment or an 

action.

Any information in the form of a text message, numeric data, or a 

computer program can be called plaintext. The idea is to encrypt the 

plaintext using an encryption algorithm and a key that produces the 

ciphertext. The ciphertext can then be transmitted to the intended 

recipient, who decrypts it using the decryption algorithm and the key to 

get the plaintext.

Let us take an example. Alice wants to send a message (m) to Bob. 

If she just sends the message as is, any adversary, say, Eve can easily 

intercept the message and the confidentiality gets compromised. So, Alice 

wants to encrypt the message using an encryption algorithm (E) and a 
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secret key (k) to produce the encrypted message called “ciphertext.” An 

adversary has to be aware of both the algorithm (E) and key (k) to intercept 

the message. The stronger the algorithm and the key, the more difficult it is 

for the adversary to attack. Note that it would always be desirable to design 

blockchain systems that are at least provably secure. What this means is 

that a system must resist certain types of feasible attacks by adversaries.

The common set of steps for this approach can be represented as 

shown in Figure 2-2.

Broadly, there are two kinds of cryptography: symmetric key and 

asymmetric key (a.k.a. public key) cryptography. Let us look into these 

individually in the following sections.

Figure 2-2.  How Cryptography works in general
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�Symmetric Key Cryptography
In the previous section we looked at how Alice can encrypt a message 

and send the ciphertext to Bob. Bob can then decrypt the ciphertext to 

get the original message. If the same key is used for both encryption and 

decryption, it is called symmetric key cryptography. This means that both 

Alice and Bob have to agree on a key (k) called “shared secret” before they 

exchange the ciphertext. So, the process is as follows:

Alice—the Sender:

•	 Encrypt the plaintext message m using encryption 

algorithm E and key k to prepare the ciphertext c

•	 c = E(k, m)

•	 Send the ciphertext c to Bob

Bob—the Receiver:

•	 Decrypt the ciphertext c using decryption algorithm D 

and the same key k to get the plaintext m

•	 m = D( k, c )

Did you just notice that the sender and receiver used the same key 

(k)? How do they agree on the same key and share it with each other? 

Obviously, they need a secure distribution channel to share the key. It 

typically looks as shown in Figure 2-3.

Figure 2-3.  Symmetric cryptography
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Symmetric key cryptography is used widely; the most common 

uses are secure file transfer protocols such as HTTPS, SFTP, and 

WebDAVS. Symmetric cryptosystems are usually faster and more useful 

when the data size is huge.

Please note that symmetric key cryptography exists in two variants: 

stream ciphers and block ciphers. We will discuss these in the following 

sections but we will look at Kerchoff’s principle and XOR function before 

that to be able to understand how the cryptosystems really work.

�Kerckhoff’s Principle and XOR Function

Kerckhoff’s principle states that a cryptosystem should be secured even if 

everything about the system is publicly known, except the key. Also, the 

general assumption is that the message transmission channel is never 

secure, and messages could easily be intercepted during transmission. 

This means that even if the encryption algorithm E and decryption 

algorithm D are public, and there is a chance that the message could be 

intercepted during transmission, the message is still secure due to a shared 

secret. So, the keys must be kept secret in a symmetric cryptosystem.

The XOR function is the basic building block for many encryption and 

decryption algorithms. Let us take a look at it to understand how it enables 

cryptography. The XOR, otherwise known as “Exclusive OR” and denoted 

by the symbol ⊕, can be represented by the following truth table (Table 2-1).

Table 2-1.  XOR Truth Table

A B A ⊕ B

0 0 0

1 0 1

0 1 1

1 1 0
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The XOR function has the following properties, which are important to 

understand the math behind cryptography:

•	 Associative: A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

•	 Commutative: A ⊕ B = B ⊕ A

•	 Negation: A ⊕ 1 = Ā

•	 Identity: A ⊕ A = 0

Using these properties, it would now make sense how to compute the 

ciphertext “c” using plaintext “m” and the key “k,” and then decrypt the 

ciphertext “c” with the same key “k” to get the plaintext “m.” The same 

XOR function is used for both encryption and decryption.

m ⊕ k = c and c ⊕ k = m

The previous example is in its simplest form to get the hang of 

encryption and decryption. Notice that it is very simple to get the original 

plaintext message just by XORing with the key, which is a shared secret 

and only known by the intended parties. Everyone may know that the 

encryption or decryption algorithm here is XOR, but not the key.

�Stream Ciphers vs. Block Cipher

Stream cipher and block cipher algorithms differ in the way the plaintext 

is encoded and decoded.

Stream ciphers convert one symbol of plaintext into one symbol of 

ciphertext. This means that the encryption is carried out one bit or byte of 

plaintext at a time. In a bit by bit encryption scenario, to encrypt every bit of 

plaintext, a different key is generated and used. So, it uses an infinite stream 

of pseudorandom bits as the key and performs the XOR operation with 

input bits of plaintext to generate ciphertext. For such a system to remain 

secure, the pseudorandom keystream generator has to be secure and 

unpredictable. Stream ciphers are an approximation of a proven perfect 

cipher called “the one-time pad,” which we will discuss in a little while.
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How does the pseudorandom keystream get generated in the first 

place? They are typically generated serially from a random seed value 

using digital shift registers. Stream ciphers are quite simple and faster in 

execution. One can generate pseudorandom bits offine and decrypt very 

quickly, but it requires synchronization in most cases.

We saw that the pseudorandom number generator that generates 

the key stream is the central piece here that ensures the quality of 

security—which stands to be its biggest disadvantage. The pseudorandom 

number generator has been attacked many times in the past, which led 

to deprecation of stream ciphers. The most widely used stream cipher is 

RC4 (Rivest Cipher 4) for various protocols such as SSL, TLS, and Wi-Fi 

WEP/WPA etc. It was revealed that there were vulnerabilities in RC4, 

and it was recommended by Mozilla and Microsoft not to use it where 

possible.

Another disadvantage is that all information in one bit of input text is 

contained in its corresponding one bit of ciphertext, which is a problem of 

low diffusion. It could have been more secured if the information of one bit 

was distributed across many bits in the ciphertext output, which is the case 

with block ciphers. Examples of stream ciphers are one-time pad, RC4, 

FISH, SNOW, SEAL, A5/1, etc.

Block cipher on the other hand is based on the idea of partitioning 

the plaintext into relatively larger blocks of fixed-length groups of bits, 

and further encoding each of the blocks separately using the same key. It 

is a deterministic algorithm with an unvarying transformation using the 

symmetric key. This means when you encrypt the same plaintext block 

with the same key, you’ll get the same result.

The usual sizes of each block are 64 bits, 128 bits, and 256 bits called 

block length, and their resulting ciphertext blocks are also of the same 

block length. We select, say, an r bits key k to encrypt every block of length 

n, then notice here that we have restricted the permutations of the key k 

to a very small subset of 2r. This means that the notion of “perfect cipher” 
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does not apply. Still, random selection of the r bits secret key is important, 

in the sense that more randomness implies more secrecy.

To encrypt or decrypt a message in block cipher cryptography, we 

have to put them into a “mode of operation” that defines how to apply a 

cipher’s single-block operation repeatedly to transform amounts of data 

larger than a block. Well, the mode of operation is not just to divide the 

data into fixed sized blocks, it has a bigger purpose. We learned that the 

block cipher is a deterministic algorithm. This means that the blocks with 

the same data, when encrypted using the same key, will produce the same 

ciphertext—quite dangerous! It leaks a lot of information. The idea here is 

to mix the plaintext blocks with the just created ciphertext blocks in some 

way so that for the same input blocks, their corresponding Ciphertext 

outputs are different. This will become clearer when we get to the DES and 

AES algorithms in the following sections.

Note that different modes of operations result in different properties 

being achieved that add to the security of the underlying block cipher. 

Though we will not get into the nitty-gritty of modes of operations, here are 

the names of a few for your reference: Electronic Codebook (ECB), Cipher 

Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), 

and Counter (CTR).

Block ciphers are a little slow to encrypt or decrypt, compared with 

the stream ciphers. Unlike stream ciphers where error propagation is 

much less, here the error in one bit could corrupt the whole block. On the 

contrary, block ciphers have the advantage of high diffusion, which means 

that every input plaintext bit is diffused across several ciphertext symbols. 

Examples of block ciphers are DES, 3DES, AES, etc.

Note A  deterministic algorithm is an algorithm that, given a 
particular input, will always produce the same output.
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�One-Time Pad

It is a symmetric stream cipher where the plaintext, the key, and the 

ciphertext are all bit strings. Also, it is completely based on the assumption 

of a “purely random” key (and not pseudorandom), using which it could 

achieve “perfect secrecy.” Also, as per the design, the key can be used only 

once. The problem with this is that the key should be at least as long as the 

plaintext. It means that if you are encrypting a 1GB file, the key would also 

be 1GB! This gets impractical in many real-world cases.

Example:

You can refer to the XOR truth table in the previous section to find how 

ciphertext is generated by XOR-ing plaintext with the key. Notice that the 

plaintext, the key, and the ciphertext are all 18 bits long.

Here, the receiver upon receipt of the ciphertext can simply XOR again 

with the key and get the plaintext. You can try it on your own with Table 2-2 

and you will get the same plaintext.

The main problem with this one-time pad is more of practicality, 

rather than theory. How do the sender and receiver agree on a secret key 

that they can use? If the sender and the receiver already have a secure 

channel, why do they even need a key? If they do not have a secure 

channel (that is why we use cryptography), then how can they share the 

key securely? This is called the “key distribution problem.”

Table 2-2.  Example Encryption Using XOR Function

PlainText 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0

Key 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1

Ciphertext 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1
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The solution is to approximate the one-time pad by using a 

pseudorandom number generator (PRNG). This is a deterministic 

algorithm that uses a seed value to generate a sequence of random 

numbers that are not truly random; this in itself is an issue. The sender 

and the receiver have to have the same seed value for this system to work. 

Sharing that seed value is way better compared with sharing the entire key; 

just that it has to be secured. It is susceptible to compromise by someone 

who knows the algorithm as well as the seed.

�Data Encryption Standard

The Data Encryption Standard (DES) is a symmetric block cipher 

technique. It uses 64-bit block size with a 64-bit key for encryption and 

decryption. Out of the 64-bit key, 8 bits are reserved for parity checks and 

technically 56 bits is the key length. It has been proven that it is vulnerable 

to brute force attack and could be broken in less than a day. Given Moore’s 

law, it could be broken a lot quicker in the future, so its usage has been 

deprecated quite a bit because of the key length. It was very popular and 

was being used in banking applications, ATMs, and other commercial 

applications, and more so in hardware implementations than software. We 

give a high-level description of the DES encryption in this section.

In symmetric cryptography, a large number of block ciphers use a design 

scheme known as a “Feistel cipher” or “Feistel network.” A Feistel cipher 

consists of multiple rounds to process the plaintext with the key, and every 

round consists of a substitution step followed by a permutation step. The 

more the number of rounds, the more secure it could be but encryption/

decryption gets slower. The DES is based on a Feistel cipher with 16 rounds. 

A general sequence of steps in the DES algorithm is shown in Figure 2-4.
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Let us first talk about the key generator and then we will get into the 

encryption part.

•	 As mentioned before, the key is also 64 bits long. 

Since 8 bits are used as parity bits (more precisely, bit 

number 8, 16, 24, 32, 40, 48, 56, and 64), only 56 bits are 

used for encryption and decryption.

•	 After parity removal, the 56-bit key is divided into 

two blocks, each of 28 bits. They are then bit-wise left 

shifted in every round. We know that the DES uses 16 

rounds of Feistel network. Note here that every round 

Figure 2-4.  DES cryptography
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takes the previous round’s left-shifted bit block and 

then again left shifts by one bit in the current round.

•	 Both the left-shifted 28-bit blocks are then combined 

through a compression mechanism that outputs a 

48-bit key called subkey that gets used for encryption. 

Similarly, in every round, the two 28-bit blocks from the 

previous round get left shifted again by one bit and then 

clubbed and compressed to the 48-bit key. This key is 

then fed to the encryption function of the same round.

Let us now look at how DES uses the Feistel cipher rounds for 

encryption:

•	 First, the plaintext input is divided into 64 bit blocks. If the 

number of bits in the message is not evenly divisible by 

64, then the last block is padded to make it a 64-bit block.

•	 Every 64-bit input data block goes through an initial 

permutation (IP) round. It simply permutes, i.e., 

rearranges all the 64-bit inputs in a specific pattern by 

transposing the input blocks. It has no cryptographic 

significance as such, and its objective is to make it 

easier to load plaintext/ciphertext into DES chips in 

byte-sized format.

•	 After the IP round, the 64-bit block gets divided into 

two 32-bit blocks, a left block (L) and a right block (R). 

In every round, the blocks are represented as Li and 

Ri, where the subscript “I” denotes the round. So, the 

outcomes of IP round are denoted as L0 and R0.
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•	 Now the Feistel rounds start. The first round takes L0 

and R0 as input and follows the following steps:

•	 The right side 32-bit block (R) comes as is to the left 

side and the left side 32-bit block (L) goes through 

an operation with the key k of that round and the 

right side 32-bit block (R) as shown following:

•	 Li = Ri −1

•	 Ri = Li −1 ⊕ F(Ri −1, Ki) where “I” is the round number

•	 The F() is called the “Cipher Function” that is 

actually the core part of every round. There are 

multiple steps or operations that are bundled 

together in this F() operation.

•	 In the first step, operation of the 32-bit R-block is 

expanded and permuted to output a 48-bit block.

•	 In the second step, this 48-bit block is then 

XORed with the 48-bit subkey supplied by the key 

generator of the same round.

•	 In the third step, this 48-bit XORed output is fed to 

the substitution box to reduce the bits back to 32 

bits. The substitution operation in this S-box is the 

only nonlinear operation in DES and contributes 

significantly to the security of this algorithm.

•	 In the fourth step, the 32-bit output of the S-box is 

fed to the permutation box (P-box), which is just a 

permutation operation that outputs a 32-bit block, 

which is actually the final output of F() cipher function.

•	 The output of F() is then XORed with the 32-bit L-block, 

which is input to this round. This XORed output then 

becomes the final R-block output of this round.
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•	 The previously discussed Feistel round gets repeated 16 

times, where the output of one round is fed as the input 

to the following round.

•	 Once all the 16 rounds are over, the output of the 16th 

round is again swapped such that the left becomes the 

right block and vice versa.

•	 Then the two blocks are clubbed to make a 64-bit block 

and passed through a permutation operation, which is 

the inverse of the initial permutation function and that 

results in the 64-bit ciphertext output.

•	 Refer to Figure 2-5 to understand the various 

operations that take place in every round.

Figure 2-5.  Round function of DES
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We looked at how the DES algorithm really works. The decryption also 

works a similar way in the reverse order. We will not get into those details, 

but leave it to you to explore.

Let us conclude with the limitations of the DES. The 56-bit key length 

was susceptible to brute force attack and the S-boxes used for substitution 

in each round were also prone to cryptanalysis attack because of some 

inherent weaknesses. Because of these reasons, the Advanced Encryption 

Standard (AES) has replaced the DES to the extent possible. Many 

applications now choose AES over DES.

�Advanced Encryption Standard

Like DES, the AES algorithm is also a symmetric block cipher but is not based 

on a Feistel network. The AES uses a substitution-permutation network in a 

more general sense. It not only offers greater security, but also offers greater 

speed! As per the AES standards, the block size is fixed at 128 bits and allows 

a choice of three keys: 128 bits, 192 bits, and 256 bits. Depending on the 

choice of the key, AES is named as AES-128, AES-192, and AES-256.

In AES, the number of encryption rounds depend on the key length. 

For AES-128, there are ten rounds; for AES-192, there are 12 rounds; and 

for AES-256, there are 14 rounds. In this section, our discussion is limited 

to key length 128 (i.e., AES-128), as the process is almost the same for other 

variants of AES. The only thing that changes is the “key schedule,” which 

we will look into later in this section.

Unlike DES, AES encryption rounds are iterative and operate an entire 

data block of 128 bits in every round. Also, unlike DES, the decryption is 

not very similar to the encryption process in AES.

To understand the processing steps in every round, consider the 128-

bit block as 16 bytes where individual bytes are arranged in a 4 × 4 matrix 

as shown:
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This 4 × 4 matrix of bytes as shown is referred to as state array. Please 

note that every round consumes an input state array and produces an 

output state array.

The AES also uses another piece of jargon called “word” that needs 

to be defined before we go further. Whereas a byte consists of eight bits, a 

word consists of four bytes, that is, 32 bits. The four bytes in each column 

of the state array form 32-bit words and can be called state words. The 

state array can be shown as follows:

 

Also, every byte can be represented with two hexadecimal numbers. 

Example: if the 8-bit byte is {00111010}, it could be represented as “3A” in 

Hex notation. “3” represents the left four bits “0011” and “A” represents the 

right four bits “1010.”

Now to generalize each round, processing in each round happens at 

byte level and consists of byte-level substitution followed by word-level 

permutation, hence it is a substitution-permutation network. We will get to 

further details when we discuss the various operations in each round. The 

overall encryption and decryption process of AES can be represented in 

Figure 2-6.
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Figure 2-6.  AES cryptography

If you paid close attention to Figure 2-6, you would have noticed 

that the decryption process is not just the opposite of encryption. The 

operations in the rounds are executed in a different order! All steps of the 

round function—SubBytes, ShiftRows, MixColumns, AddRoundKey—are 

invertible. Also, notice that the rounds are iterative in nature. Round 1 

through round 9 have all four operations, and the last round excludes only 

the “MixColumns” operation. Let us now build a high-level understanding 

of each operation that takes place in a round function.

SubBytes: This is a substitution step. Here, each byte is represented as 

two hexadecimal digits. As an example, take a byte {00111010} represented 

with two hexadecimal digits, say {3A}. To find its substitution values, refer 

to the S-box lookup table (16 × 16 table) to find the corresponding value 
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for 3-row and A-column. So, for {3A}, the corresponding substituted value 

would be {80}. This step provides the nonlinearity in the cipher.

ShiftRows: This is the transformation step and is based upon the 

matrix representation of the state array. It consists of the following shift 

operations:

•	 No circular shifting of the first row, and remains as is

•	 Circularly shifting of the second row by one byte to the 

left

•	 Circularly shifting of the third row by two bytes to the 

left

•	 Circularly shifting of the fourth row (last row) by three 

bytes to the left

It can be represented as shown:

 

MixColumns: It is also a transformation step where all the four 

columns of the state are multiplied with a fixed polynomial (Cx) and get 

transformed to new columns. In this process, each byte of a column is 

mapped to a new value that is a function of all four bytes in the column. 

This is achieved by the matrix multiplication of state as shown:
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The matrix multiplication is as usual, but the AND products are 

XORed. Let us see one of the examples to understand the process. Byte 0’ is 

calculated as shown:

Byte 0’ = (2 . Byte0) ⊕ (3 . Byte1) ⊕ Byte3 ⊕ Byte4
It is important to note that this MixColumns step, along with the 

ShiftRows step, provide the necessary diffusion property (information from 

one byte gets diffused to multiple bytes) to the cipher.

AddRoundKey: This is again a transformation step where the 128-

bit round key is bitwise XORed with 128 bits of state in a column major 

order. So, the operation takes place column-wise, meaning four bytes of 

a word state column with one word of the round key. In the same way we 

represented the 128-bit plaintext block, the 128-bit key should also be 

represented in the same 4 × 4 matrix as shown here:

 

128-bit key

This operation affects every bit of a state. Now, recollect that there 

are ten rounds, and each round has its own round key. Since there is an 

“AddRoundKey” step before the rounds start, effectively there are eleven  

(10 + 1) AddRoundKey operations. In one round, all 128-bits of subkey, that is, 

all four words of subkey, are used to XOR with the 128-bit input data block. So, 

in total, we require 44 key words, w0 through w43. This is why the 128-bit key has 

to go through a key expansion operation, which we will get to in a little while.

Note here that the key word [w0, w1, w2, w3] gets XORed with the initial 

input block before the round-based processing begins. The remaining 40 

word-keys, w4 through w43, get used four words at a time in each of the ten 

rounds.
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AES Key Expansion: The AES key expansion algorithm takes as input 

a 128-bit cipher key (four-word key) and produces a schedule of 44 key 

words from it. The idea is to design this system in such a way that a one-bit 

change in the key would significantly affect all the round keys.

The key expansion operation is designed such that each grouping 

of a four-word key produces the next grouping of a four-word key in a 

four-word to four-word basis. It is easy to explain this with a pictorial 

representation, so here we go:

We will quickly run through the operations that take place for key 

expansion by referring to the diagram:

•	 The initial 128-bit key is [w0, w1, w2, w3] arranged in four 

words.

•	 Take a look at the expanded word now: [w4, w5, w6, w7]. 

Notice that w5 depends on w4 and w1. This means that 

every expanded word depends on the immediately 

preceding word, i.e., wi – 1 and the word that is four 

positions back, i.e., wi – 4 . Test the same for w6 as 

well. As you can see, just a simple XOR operation is 

performed here.

Figure 2-7.  AES key expansion
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•	 Now, what about w4? Or, any other position that is a 

multiple of four, such as w8 or w12? For these words, 

a more complex function denoted as “g” is used. It is 

basically a three-step function. In the first step, the 

input four-word block goes through circular left shift 

by one byte. For example [w0, w1, w2, w3] becomes [w1, 

w2, w3, w0]. In the second step, the four bytes input 

word (e.g., [w1, w2, w3, w0]) is taken as input and byte 

substitution is applied on each byte using S-box. Then, 

in the third step, the result of step 2 is XORed with 

something called round constant denoted as Rcon[ 

]. The round constant is a word in which the right-

most three bytes are always zero. For example, [x, 0, 

0, 0]. This means that the purpose of Rcon[ ] is to just 

perform XOR on the left-most byte of the step 2 output 

key word. Also note that the Rcon[ ] is different for 

each round. This way, the final output of the complex 

function “g” is generated, which is then XORed with 

wi – 4 to get wi where “I” is a multiple of 4.

•	 This is how the key expansion takes place in AES.

The output state array of the last round is rearranged back to form the 

128-bit ciphertext block. Similarly, the decryption process takes place in a 

different order, which we looked at in the AES process diagram. The idea 

was to give you a heads-up on how this algorithm works at a high level, 

and we will restrict our discussion to just the encryption process in this 

section.

The AES algorithm is standardized by the NIST (National Institute 

of Standards and Technology). It had the limitation of long processing 

time. Assume that you are sending just a 1 megabyte file (8388608 bits) 

by encrypting with AES. Using a 128-bit AES algorithm, the number of 

steps required for this encryption will be 8388608/128 = 65536 on this 
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same number of data blocks! Using a parallel processing approach, AES 

efficiency can be increased, but is still not very suitable when you are 

dealing with large data.

�Challenges in Symmetric Key Cryptography

There are some limitations in symmetric key cryptography. A few of them 

are listed as follows:

•	 The key must be shared by the sender and receiver 

before any communication. It requires a secured key 

establishment mechanism in place.

•	 The sender and receiver must trust each other, as they 

use the same symmetric key. If a receiver is hacked by 

an attacker or the receiver deliberately shared the key 

with someone else, the system gets compromised.

•	 A large network of, say, n nodes require key n(n–1)/2 

key pairs to be managed.

•	 It is advisable to keep changing the key for each 

communication session.

•	 Often a trusted third party is needed for effective key 

management, which itself is a big issue.

�Cryptographic Hash Functions
Hash functions are the mathematical functions that are the most 

important cryptographic primitives and are an integral part of blockchain 

data structure. They are widely used in many cryptographic protocols, 

information security applications such as Digital Signatures and 

message authentication codes (MACs). Since it is used in asymmetric 

key cryptography, we will discuss it here prior to getting into asymmetric 
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cryptography. Please note that the concepts covered in this section may 

not be in accordance with the academic text books, and a little biased 

toward the blockchain ecosystem.

Cryptographic hash functions are a special class of hash functions 

that are apt for cryptography, and we will limit our discussion pertaining 

to it only. So, a cryptographic hash function is a one-way function that 

converts input data of arbitrary length and produces a fixed-length output. 

The output is usually termed “hash value” or “message digest.” It can be 

represented as shown Figure 2-8.

Figure 2-8.  Hash function in its basic form

For the hash functions to serve their design purpose and be usable, 

they should have the following core properties:

•	 Input can be any string of any size, but the output is of 

fixed length, say, a 256-bit output or a 512-bit output as 

examples.

•	 The hash value should be efficiently computable for 

any given message.

•	 It is deterministic, in the sense that the same input 

when provided to the same hash function produces the 

same hash value every time.

•	 It is infeasible (though not impossible!) to invert and 

generate the message from its hash value, except trying 

for all possible messages.
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•	 Any small change in the message should greatly 

influence the output hash, just so no one can correlate 

the new hash value with the old one after a small 

change.

Apart from the aforementioned core properties, they should also meet 

the following security properties to be considered as a cryptographic 

protocol:

•	 Collision resistance: It implies that it is infeasible to 

find two different inputs, say, X and Y, that hash to the 

same value.

 

This makes the hash function H() collision resistant 

because no one can find X and Y, such that H(X) = 

H(Y). Note that this hash function is a compression 

function, as it compresses a given input to fixed sized 

output that is shorter than the input. So, the input space 

is too large (anything of any size) compared with the 

output space, which is fixed. If the output is a 256-bit 

hash value, then the output space can have a maximum 

of 2256 values, and not beyond that. This implies that a 

collision must exist. However, it is extremely difficult 

to find that collision. As per the theory of “the birthday 

paradox,” we can infer that it should be possible to find 

a collision by using the square root of the output space. 

So, by taking 2128 + 1 inputs, it is highly likely to find 

a collision; but that is an extremely huge number to 

compute, which is quite infeasible!
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Let us now discuss where this property could be useful. 

In the majority of online storage, cloud file storage, 

blob storage, App Stores, etc., the property “collision 

resistance” is widely used to ensure the integrity of 

the files. Example: someone computes the message 

digest of a file and uploads to cloud storage. Later 

when they download the file, they could just compute 

the message digest again and cross-check with the old 

one they have. This way, it can be ensured if the file 

was corrupted because of some transmission issues 

or possibly due to some deliberate attempts. It is due 

to the property of collision resistance that no one can 

come up with a different file or a modified file that 

would hash to the same value as that of the original file.

•	 Preimage resistance: This property means that it is 

computationally impossible to invert a hash function; 

i.e., finding the input X from the output H(X) is 

infeasible. Therefore, this property can also be called 

“hiding” property. Pay close attention here; there is 

another subtle aspect to this situation. Note that when 

X can be anything in the world, this property is easily 

achieved. However, if there are just a limited number 

of values that X can take, and that is known to the 

adversary, they can easily compute all possible values 

of X and find which one hashes to the outcome.

Example: A laboratory decided to prepare the message 

digests for the successful outcome of an experiment 

so that any adversary who gets access to the results 

database cannot make any sense of it because what 

is stored in the system are hashed outputs. Assume 

that there can only be three possible outcomes of the 
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experiment such as OP111, OP112, and OP113, out 

of which only one is successful, say, OP112. So, the 

laboratory decides to hash it, compute H(OP112), 

and store the hashed values in the system. Though 

an adversary cannot find OP112 from H(OP112), 

they can simply hash all the possible outcomes of the 

experiment, i.e., H(OP111), H(OP112), and H(OP113) 

and see that only H(OP112) is matching with what 

is stored in the system. Such a situation is certainly 

vulnerable! This means that, when the input to a 

hash function comes from a limited space and does 

not come from a spread-out distribution, it is weak. 

However, there is a solution to it as follows:

Let us take an input, say “X” that is not very spread 

out, just like the outcomes of the experiment we 

just discussed with a few possible values. If we can 

concatenate that with another random input, say “r,” 

that comes from a probability distribution with high 

min entropy, then it will be difficult to find X from H(r || 

X). Here, high min entropy means that the distribution 

is very spread out and there is no particular value that 

is likely to occur. Assume that “r” was chosen from 256-

bit distribution. For an adversary to get the exact value 

of “r” that was used along with input, there is a success 

probability of 1/2256, which is almost impossible to 

achieve. The only way is to consider all the possible 

values of this distribution one by one—which is again 

practically impossible. The value “r” is also referred 

to as “nonce.” In cryptography, a nonce is a random 

number that can be used only once.
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Let us now discuss where this property of preimage 

resistance could be useful. It is very useful in 

committing to a value, so “commitment” is the use case 

here. This can be better explained with an example. 

Assume that you have participated in some sort of 

betting or gambling event. Say you have to commit to 

your option, and declare it as well. However, no one 

should be able to figure out what you are betting on, 

and you yourself cannot deny later on what you bet 

on. So, you leverage the preimage resistance property 

of Hash Function. You take a hash of the choice you 

are betting on, and declare it publicly. No one can 

invert the hash function and figure out what you are 

betting on. Also, you cannot later say that your choice 

was different, because if you hash a different choice, 

it will not match what you have declared publicly. It is 

advisable to use a nonce “r” the way we explained in 

the previous paragraph to design such systems.

•	 Second preimage resistance: This property is slightly 

different from “collision resistant.” It implies that given 

an input X and its hash H(X), it is infeasible to find Y, 

such that H(X) = H(Y). Unlike in collision-resistant 

property, here the discussion is for a given X, which is 

fixed. This implies that if a hash function is collision 

resistant already, then it is second preimage resistant 

also.

There is another derived property from the properties mentioned that 

is quite useful in Bitcoin. Let us look into it from a technical point of view 

and learn how Bitcoin leverages it for mining when we hit Chapter 3. The 

name of this property is “puzzle friendliness.” This name implies that there 

is no shortcut to the solution and the only way to get to the solution is to 
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traverse through all the possible options in the input space. We will not try 

to define it here but will directly try to understand what it really means. 

Let us consider this example: H(r || X) = Z, where “r” is chosen from a 

distribution with high min entropy, “X” is the input concatenated with “r,” 

and “Z” is the hashed output value. The property means that it is way too 

hard for an adversary to find a value “Y” that exactly hashes to “Z.” That is, 

H(ŕ  || Y) = Z, where ŕ  is a part of the input chosen in the same randomized 

way as “r.” What this means is that, when a part of the input is substantially 

randomized, it is hard to break the hash function with a quick solution; the 

only way is to test with all possible random values.

In the previous example, if “Z” is an n-bits output, then it has taken just 

one value out of 2n possible values. Note carefully that a part of your input, 

say “r,” is from a high min-entropy distribution, which has to be appended 

with your input X. Now comes the interesting part of designing a search 

puzzle. Let’s say Z is an n-bits output and is a set of 2n possible values, 

not just an exact value. You are asked to find a value of r such that when 

hashed appended with X, it falls within that output set of 2n values; then it 

forms a search puzzle. The idea is to find all possible values of r till it falls 

withing the range of Z. Note here that the size of Z has limited the output 

space to a smaller set of 2n possible values. The smaller the output space, 

the harder is the problem. Obviously, if the range is big, it is easier to find 

a value in it and if the range is quite narrow with just a few possibilities, 

then finding a value within that range is tough. This is the beauty of the “r,” 

called the “nonce” in the input to hash function. Whatever random value 

of r you take, it will be concatenated with “X” and will go through the same 

hash function, again and again, till you get the right nonce value “r” that 

satisfies the required range for Z, and there are absolutely no shortcuts to it 

except for trying all possible values!

Note that for an n-bit hash value output, an average effort of 2n is 

needed to break preimage and second preimage resistance, and 2n/2 for 

collision resistance.
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We discussed various fundamental and security properties of hash 

functions. In the following sections we will see some important hash 

functions and dive deeper as applicable.

�A Heads-up on Different Hash Functions

One of the oldest hash functions or compression function is the MD4 

hash function. It belongs to the message digest (MD) family. Other 

members of the MD family are MD5 and MD6, and there are many other 

variants of MD4 such as RIPEMD. The MD family of algorithms produce 

a 128-bit message digest by consuming 512-bit blocks. They were widely 

used as checksums to verify data integrity. Many file servers or software 

repositories used to provide a precomputed MD5 checksum, which the 

users could check against the file they downloaded. However, there were a 

lot of vulnerabilities found in the MD family and it was deprecated.

Another such hash function family is the Secure Hash Algorithm 

(SHA) family. There are basically four algorithms in this family, such as 

SHA-0, SHA-1, SHA-2, and SHA-3. The first algorithm proposed in this 

family was named SHA, but newer versions were coming with security 

fixes and updates, so a retronym was applied to it and it was made SHA-

0. It was found to have a serious yet undisclosed security flaw and was 

discontinued. Later, SHA-1 was proposed as a replacement to SHA-0. 

SHA-1 had an extra computational step that addressed the problem in 

SHA-0. Both SHA-0 and SHA-1 were 160-bit hash functions that consumed 

512-bit block sizes. SHA-1 was designed by the National Security Agency 

(NSA) to use it in the digital signature algorithm (DSA). It was used quite 

a lot in many security tools and Internet protocols such as SSL, SSH, TSL, 

etc. It was also used in version control systems such as Mercurial, Git, etc. 

for consistency checks, and not really for security. Later, around 2005, 

cryptographic weaknesses were found in it and it was deprecated after 

the year 2010. We will get into SHA-2 and SHA-3 in detail in the following 

sections.
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�SHA-2

It belongs to the SHA family of hash functions, but itself is a family of hash 

functions. It has many SHA variants such as SHA-224, SHA-256, SHA-384, 

SHA-512, SHA-512/224, and SHA-512/256. SHA-256 and SHA-512 are the 

primitive hash functions and the other variants are derived from them. 

The SHA-2 family of hash functions are widely used in applications such as 

SSL, SSH, TSL, PGP, MIME, etc.

SHA-224 is a truncated version of SHA-256 with a different initial 

value or initialization vector (IV). Note that the SHA variants with different 

truncations applied can produce the same bit length hash outputs, hence 

different initialization vectors are applied in different SHA variants to be 

able to properly differentiate them. Now coming back to the SHA-224 

computation, it is a two-step process. First, SHA-256 value is computed 

with a different IV compared with the default one used in SHA-256. 

Second, the resulting 256-bit hash value is truncated to 224-bit; usually the 

224 bits from left are kept, but the choice is all yours.

SHA-384 is a truncated version of SHA-512, just the way SHA-224 is a 

truncated version of SHA-256. Similarly, both 512/224 and SHA-512/256 

are truncated versions of SHA-512. Are you wondering why this concept 

of “truncation” exists? Note that truncation is not just limited to the ones 

we just mentioned, and there can be various other variants as well. The 

primary reasons for truncation could be as follows:

•	 Some applications require a message digest with a 

certain length that is different from the default ones.

•	 Irrespective of the SHA-2 variant we are using, we can 

select a truncation level depending on what security 

property we want to sustain. Example: Considering 

today’s state of computing power, when collision 

resistance is necessary, we should keep at least 160 

bits and when only preimage-resistance is necessary, 
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we should keep at least 80 bits. The security property 

such as collision resistance decreases with truncation, 

but it should be chosen such that it would be 

computationally infeasible to find a collision.

•	 Truncation also helps maintain the backward 

compatibility with older applications. Example: SHA-

224 provides 112-bit security that can match the key 

length of triple-DES (3DES).

Talking about efficiency, SHA-256 is based on a 32-bit word and SHA-

512 is based on a 64-bit word. So, on a 64-bit architecture, SHA-512 and all 

its truncated variants can be computed faster with a better level of security 

compared with SHA-1 or other SHA-256 variants.

Table 2-3 is a tabular representation taken from the NIST paper that 

represents SHA-1 and different SHA-2 algorithms properties in a nutshell.

Table 2-3.  SHA-1 & SHA-2 Hash Function in a Nutshell

 

As a rule of thumb, it is advisable not to truncate when not necessary. 

Certain hash functions tolerate truncation and some don’t, and it also 

depends on how you are using it and in what context.
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�SHA-256 and SHA-512

As mentioned already, SHA-256 belongs to the SHA-2 family of hash 

functions, and this is the one used in Bitcoins! As the name suggests, it 

produces a 256-bit hash value, hence the name. So, it can provide 2128-bit 

security as per the birthday paradox.

Recall that the hash functions take arbitrary length input and produce 

a fixed size output. The arbitrary length input is not fed as is to the 

compression function and is broken into fixed length blocks before it is fed 

to the compression function. This means that a construction method is 

needed that can iterate through the compression function by constructing 

fixed-sized input blocks from arbitrary length input data and produce 

a fixed length output. There are various types of construction methods 

such as Merkle-Damgård construction, tree construction, and sponge 

construction. It is proven that if the underlying compression function is 

collision resistant, then the overall hash function with any construction 

method should also be collision resistant.

The construction method that SHA-256 uses is the Merkle-Damgård 

construction, so let us see how it works in Figure 2-9.

Figure 2-9.  Merkle-Damgård construction for SHA-256
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Referring to the diagram, the following steps (presented at a high level) 

are executed in the order specified to compute the final hash value:

•	 As you can see in the diagram, the message is first 

divided into 512-bit blocks. When the message is not 

an exact multiple of 512 bits (which is usually the case), 

the last block falls short of bits, hence it is padded to 

make it 512 bits.

•	 The 512-bit blocks are further divided into 16 blocks of 

32-bit words (16 × 32 = 512).

•	 Each block goes through 64 rounds of round function 

where each 32-bit word goes through a series of 

operations. The round functions are a combination of 

some common functions such as XOR, AND, OR, NOT, 

Bit-wise Left/Right Shift, etc. and we will not get into 

those details in this book.

Similar to SHA-256, the steps and the operations are quite similar in 

SHA-512, as SHA-512 also uses Merkle-Damgård construction. The major 

difference is that there are 80 rounds of round functions in SHA-512 and 

the word length is 64 bits. The block size in SHA-512 is 1024 bits, which 

gets further divided into 16 blocks of 64-bit words The output message 

digest is 512 bits in length, that is, eight blocks of 64-bit words. While SHA-

512 was gaining momentum, and started being used in many applications, 

a few people turned to the SHA-3 algorithm to be future ready. SHA-3 is 

just a different approach to hashing and not a real replacement to SHA-256 

or SHA-512, though it allows tuning. We will learn a few more details about 

SHA-3 in the following sections.
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�RIPEMD

RACE Integrity Primitives Evaluation Message Digest (RIPEMD) hash 

function is a variant of the MD4 hash function with almost the same design 

considerations. Since it is used in Bitcoins, we will have a brief discussion 

on it.

The original RIPEMD was of 128 bits, later RIPEMD-160 was 

developed. There exist 128-, 256-, and 320-bit versions of this algorithm, 

called RIPEMD-128, RIPEMD-256, and RIPEMD-320, respectively, 

but we will limit our discussion to the most popular and widely used 

RIPEMD-160.

RIPEMD-160 is a cryptographic hash function whose compression 

function is based on the Merkle–Damgård construction. The input is 

broken into 512-bit blocks and padding is applied when the input bits are 

not a multiple of 512. The 160-bit hash value output is usually represented 

as 40-digit hexadecimal numbers.

The compression function is made up of 80 stages, made up of two 

parallel lines of five rounds of 16 steps each (5 × 16 = 80). The compression 

function works on sixteen 32-bit words (512-bit blocks).

Note  Bitcoin uses both SHA-256 and RIPEMD-160 hashes together 
for address generation. RIPEMD-160 is used to further shorten the 
hash value output of SHA-256 to 160 bits.

�SHA-3

In 2015, the Keccak (pronounced as “ket-chak”) algorithm was 

standardized by the NIST as the SHA-3. Note that the purpose was not 

really to replace the SHA-2 standard, but to complement and coexist with 

it, though one can choose SHA-3 over SHA-2 in some situations.

Chapter 2  How Blockchain Works



68

Since both SHA-1 and SHA-2 were based on Merkle-Damgård 

construction, a different approach to hash function was desirable. So, 

not using Merkle-Damgård construction was one of the criteria set by 

the NIST. This was because the new design should not suffer from the 

limitations of Merkle-Damgård construction such as multicollision. 

Keccak, which became SHA-3, used a different construction method called 

sponge construction.

In order to make it backward compatible, it was required that SHA-

3 should be able to produce variable length outputs such as 224, 256, 

384, and 512 bits and also other arbitrary length outputs. This way SHA-

3 became a family of cryptographic hash functions such as SHA3-224, 

SHA3-256, SHA3-384, SHA3 -512, and two extendable-output functions 

(XOFs), called SHAKE128 and SHAKE256. Also, SHA-3 had to have a 

tunable parameter (capacity) to allow a tradeoff between security and 

performance. Since SHAKE128 and SHAKE256 are XOFs, their output can 

be extended to any desired length, hence the name.

The following diagram (Figure 2-10) shows how SHA-3 (Keccak 

algorithm) is designed at a high level.

Figure 2-10.  Sponge construction for SHA-3
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A series of steps that take place for SHA-3 are as follows:

•	 As you can see in Figure 2-10, the message is first 

divided into blocks (xi) of size r bits. If the input data is 

not a multiple of r bits, then padding is required. If you 

are wondering about this r, do not worry, we will get to 

it in a little while. Now, let us focus on how this padding 

happens. For a message block xi which is not a multiple 

of r and has some message m in it, padding happens as 

shown in the following:

xi = m || P 1 {0}* 1

“P” is a predetermined bit string followed by 1 {0}* 1, 

which means a leading and trailing 1 and some number 

of zeros (could be no zero bits also) that can make xi a 

multiple of r. Table 2-4 shows the various values of P.

Table 2-4.  Padding in SHA-3 variants

 

•	 As you can see in Figure 2-10, there are broadly two 

phases to SHA-3 sponge construction: the first one is 

the “Absorbing” phase for input, and the second one 

is the “Squeezing” phase for output. In the Absorbing 

phase, the message blocks (xi) go through various 

operations of the algorithm and in the Squeezing 
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phase, the output of configurable length is computed. 

Notice that for both of these phases, the same function 

called “Kecaak-f” is used.

•	 For the computation of SHA3-224, SHA3-256, SHA3-

384, SHA3 -512, which is effectively a replacement of 

SHA-2, only the first bits of the first output block y0 are 

used with required level of truncation.

•	 The SHA-3 is designed to be tunable for its security 

strength, input, and output sizes with the help of tuning 

parameters.

•	 As you can see in the diagram, “b” represents the width 

of the state and requires that r + c = b. Also, “b” depends 

on the exponent “ℓ” such that b = 25 × 2ℓ

•	 Since “ℓ” can take on values between 0 and 6, “b”can 

have widths {25, 50, 100, 200, 400, 800 and 1600}. It is 

advisable not to use the smallest two values of “b” in 

practice as they are just there to analyze and perform 

cryptanalysis on the algorithm.

•	 In the equation r + c = b, the “r” that we see is what 

we used to preprocess the message and divided into 

blocks of length “r.” This is called the “bit rate.” Also, the 

parameter “c” is called the capacity that just has to satisfy 

the condition r + c = b ∈ {25, 50, 100, 200, 400, 800, 1600} 

and get computed. This way “r” and “c” are used as tuning 

parameters to trade off between security and performance.

•	 For SHA-3, the exponent value ℓ is fixed to be “6,” so the 

value of b is 1600 bits. For this given b = 1600, two  

bit-rate values are permissible: r = 1344 and r = 1088. 

This leads to two distinct values of “c.” So, for r = 1344,  

c = 256 and for r = 1088, c = 512.
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•	 Let us now look at the core engine of this algorithm, i.e. 

Keccak-f, which is also called “Keccak-f Permutation.” 

There are “n” rounds in each Keccak-f, where “n” is 

computed as: n = 12 + 2ℓ. Since the value of ℓ is 6 for 

SHA-3, there will be 24 rounds in each Keccak-f. Every 

round takes “b” bits (r + c) input and produces the 

same number of “b” bits as output.

•	 In each round, the input “b” is called a state. This state 

array “b” can be represented as a three-dimensional  

(3-D) array b = (5 x 5 × w), where word size w = 2ℓ. So,  

w = 64 bits, which means 5 × 5 = 25 words of 64 bits 

each. Recall that ℓ = 6 for SHA-3, so b = 5 × 5 x 64 = 1600. 

The 3-D array can be shown as in Figure 2-11.

Figure 2-11.  State array representationin SHA-3
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•	 Without getting into much detail into each of the five 

steps, let us quickly learn what they do at a high level:

•	 Theta (θ) step: It performs the XOR operation to 

provide minor diffusion.

•	 Rho (ρ) step: It performs bitwise rotation of each of 

the 25 words.

•	 Pi (π) step: It performs permutation of each of the 

25 words.

•	 Chi (χ) step: In this step, bits are replaced by 

combining those with their two subsequent bits in 

their rows.

•	 Iota (ι) step: It XORs a round constant into one 

word of the state to break the symmetry.

•	 The last round of Keccak-f produces the y0 output, 

which is enough for SHA-2 replacement mode, i.e., the 

output with 224, 256, 384, and 512 bits. Note that the 

least significant bits of y0 are used for the desired length 

output. In case of variable length output, along with y0, 

other output bits of y1, y2, y3… can also be used.

•	 Each round consists of a sequence of five steps and the 

state array gets manipulated in each of those steps as 

shown in Figure 2-12.

Figure 2-12.  The five steps in each SHA-3 round
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When it comes to the real-life implementation of SHA-3, it is found that 

its performance is good in software (though not as good as SHA-2) and is 

excellent in hardware (better than SHA-2).

�Applications of Hash Functions

The cryptographic hash functions have many different usages in different 

situations. Following are a few example use cases:

•	 Hash functions are used in verifying the integrity and 

authenticity of information.

•	 Hash functions can also be used to index data in hash 

tables. This can speed up the process of searching. 

Instead of the whole data, if we search based on 

the hashes (assuming the much shorter hash value 

compared with the whole data), then it should 

obviously be faster.

•	 They can be used to securely authenticate the users 

without storing the passwords locally. Imagine a 

situation where you do not want to store passwords on 

the server, obviously because if an adversary hacks on 

to the server, they cannot get the password from their 

stored hashes. Every time a user tries to log in, hash of 

the punched in password is calculated and matched 

against the stored hash. Secured, isn’t it?

•	 Since hash functions are one-way functions, they can 

be used to implement PRNG.

•	 Bitcoin uses hash functions as a proof of work (PoW) 

algorithm. We will get into the details of it when we hit 

the Bitcoin chapter.
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•	 Bitcoin also uses hash functions to generate addresses 

to improve security and privacy.

•	 The two most important applications are digital 

signatures and in MACs such as hash-based message 

authentication codes (HMACs).

Understanding the working and the properties of the hash functions, 

there can be various other use cases where hash functions can be used.

Note T he Internet Engineering Task Force (IETF) adopted version 
3.0 of the SSL (SSLv3) protocol in 1999, renamed it to Transport 
Layer Security (TLS) version 1.0 (TLSv1) protocol and defined it in 
RFC 2246. SSLv3 and TLSv1 are compatible as far as the basic 
operations are concerned.

�Code Examples of Hash Functions

Following are some code examples of different hash functions. This section 

is just intended to give you a heads-up on how to use the hash functions 

programatically. Code examples are in Python but would be quite similar in 

different languages; you just have to find the right library functions to use.

# -*- coding: utf-8 -*-

import hashlib

# hashlib module is a popular module to do hashing in python

#Constructors of md5(), sha1(), sha224(), sha256(), sha384(), 

and sha512() present in hashlib

md=hashlib.md5()

md.update("The quick brown fox jumps over the lazy dog")

print md.digest()
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print "Digest Size:", md.digest_size, "\n", "Block Size: ", 

md.block_size

# Comparing digest of SHA224, SHA256,SHA384,SHA512

print "Digest SHA224", hashlib.sha224("The quick brown fox 

jumps over the lazy dog").hexdigest()

print "Digest SHA256", hashlib.sha256("The quick brown fox 

jumps over the lazy dog").hexdigest()

print "Digest SHA384", hashlib.sha384("The quick brown fox 

jumps over the lazy dog").hexdigest()

print "Digest SHA512", hashlib.sha512("The quick brown fox 

jumps over the lazy dog").hexdigest()

# All hashoutputs are unique

# RIPEMD160 160 bit hashing example

h = hashlib.new('ripemd160')

h.update("The quick brown fox jumps over the lazy dog")

h.hexdigest()

#Key derivation Alogithm:

#Native hashing algorithms are not resistant against brutefore 

attack.

#Key deviation algorithms are used for securing password 

hashing.

import hashlib, binascii

algorithm='sha256'

password='HomeWifi'

salt='salt' # salt is random data that can be used as an 

additional input to a one-way function

nu_rounds=1000

key_length=64 #dklen is the length of the derived key

dk = hashlib.pbkdf2_hmac(algorithm,password, salt, nu_rounds, 

dklen=key_length)
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print 'derieved key: ',dk

print 'derieved key in hexadeximal :', binascii.hexlify(dk)

# Check properties for hash

import hashlib

input = "Sample Input Text"

for i in xrange(20):

    # add the iterator to the end of the text

    input_text = input + str(i)    

    # show the input and hash result

    �print input_text, ':',  hashlib.sha256(input_text).

hexdigest()

�MAC and HMAC
HMAC is a type of MAC (message authentication code). As the name 

suggests, a MAC’s purpose is to provide message authentication using 

Symmetric Key and message integrity using hash functions. So, the sender 

sends the MAC along with the message for the receiver to verify and trust 

it. The receiver already has the key K (as symmetric key cryptography is 

being used, so both sender and receiver have agreed on it already); they 

just use it to compute the MAC of the message and check it against the 

MAC that was sent along with the message.

In its simplest form, MAC = H(key || message). HMAC is actually a 

technique to turn the hash functions into MACs. In HMAC, the hash 

functions can be applied multiple times along with the key and its derived 

keys. HMACs are widely used in RFID-based systems, TLS, etc. In SSL/TLS 

(HTTPS is TTP within SSL/TLS), HMAC is used to allow client and server 

to verify and ensure that the exchanged data has not been altered during 

transmission. Let us take a look at a few of the important MAC strategies 

that are widely used:
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•	 MAC-then-Encrypt: This technique requires the 

computation of MAC on the cleartext, appending it to 

the data, and then encrypting all of that together. This 

scheme does not provide integrity of the ciphertext. 

At the receiving end, the message decryption has to 

happen first to be able to check the integrity of the 

message. It ensures the integrity of the plaintext, 

however. TLS uses this scheme of MAC to ensure that 

the client-server communication session is secured.

•	 Encrypt-and-MAC: This technique requires the 

encryption and MAC computation of the message 

or the cleartext, and then appending the MAC at the 

end of the encrypted message or ciphertext. Notice 

that MAC is computed on the cleartext, so integrity of 

the cleartext can be assured but not of the ciphertext, 

which leaves scope for some attacks. Unlike the 

previous scheme, integrity of the cleartext can be 

verified. SSH (Secure Shell)uses this MAC scheme.

•	 Encrypt-then-MAC: This technique requires that the 

cleartext needs to be encrypted first, and then compute 

the MAC on the ciphertext. This MAC of the ciphertext 

is then appended to the ciphertext itself. This scheme 

ensures integrity of the ciphertext, so it is possible 

to first check the integrity and if valid then decrypt 

it. It easily filters out the invalid ciphertexts, which 

makes it efficient in many cases. Also, since MAC is in 

ciphertext, in no way does it reveal information about 

the plaintext. It is usually the most ideal of all schemes 

and has wider implementations. It is used in IPsec.
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�Asymmetric Key Cryptography
Asymmetric key cryptography, also known as “public key cryptography,” 

is a revolutionary concept introduced by Diffie and Hellman. With this 

technique, they solved the problem of key distribution in a symmetric 

cryptography system by introducing digital signatures. Note that 

asymmetric key cryptography does not eliminate the need for symmetric 

key cryptography. They usually complement each other; the advantages of 

one can compensate for the disadvantages of the other.

Let us see a practical scenario to understand how such a system would 

work. Assume that Alice wants to send a message to Bob confidentially so 

that no one other than Bob can make sense of the message, then it would 

require the following steps:

Alice—The Sender:

•	 Encrypt the plaintext message m using encryption 

algorithm E and the public key PukBob to prepare the 

ciphertext c.

•	 c = E(PukBob, m )

•	 Send the ciphertext c to Bob.

Bob—The Receiver:

•	 Decrypt the ciphertext c using decryption algorithm D 

and its private key PrkBob to get the original plaintext m.

•	 m = D(PrkBob, c)

Such a system can be represented as shown in Figure 2-13.
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Notice that the public key should be kept in a public repository 

accessible to everyone and the private key should be kept as a well-

guarded secret. Public key cryptography also provides a way of 

authentication. The receiver, Bob, can verify the authenticity of the origin 

of the message m in the same way.

Figure 2-13.  Asymmetric cryptography for confidentiality

Figure 2-14.  Asymmetric cryptography for authentication
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In the example in Figure 2-14, the message was prepared using Alice’s 

private key, so it could be ensured that it only came from Alice. So, the 

entire message served as a digital signature. Note that both confidentiality 

and authentication are desirable. To facilitate this, public key encryption 

has to be used twice. The message should first be encrypted with the 

sender’s private key to provide a digital signature. Then it should be 

encrypted with the receiver’s public key to provide confidentiality. It can 

be represented as:

•	 c = E[PukBob, E(PrkAlice, m)]

•	 m = D[PukAlice, D(PrkBob, c)]

As you can see, the decryption happens in just its reverse order. 

Notice that the public key cryptography is used four times here: twice for 

encryption and twice for decryption. It is also possible that the sender may 

sign the message by applying the private key to just a small block of data 

derived from the message to be sent, and not to the whole message. In the 

real world, App stores such as Google Play or Apple App Store require that 

the software apps should be digitally signed before they get published.

We looked at the uses of the two keys in asymmetric cryptography, 

which can be summarized as follows:

•	 Public keys are known and accessible to everyone. 

They can be used to encrypt the message or to verify 

the signatures.

•	 Private keys are extremely private to individuals. They 

are used to decrypt the message or to create signatures.

In asymmetric or public key cryptography, there is no key distribution 

problem, as exchanging the agreed upon key is no longer needed. 

However, there is a significant challenge with this approach. How would 

one ensure that the public key they are using to encrypt the message is 

really the public key of the intended recipient and not of an intruder or 

eavesdropper? To solve this, the notion of a trusted third party called public 
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key infrastructure (PKI) is introduced. Through PKIs, the authenticity of 

public keys is assured by the process of attestation or notarization of user 

identity. The way PKIs operate is that they provide verified public keys by 

embedding them in a security certificate by digitally signing them.

The public key encryption scheme can also be called one-way function 

or a trapdoor function. This is because encrypting a plaintext using the 

public key “Puk” is easy, but the other direction is practically impossible. 

No one really can deduce the original plaintext from the encrypted 

ciphertext without knowing the secret or private key “Prk,” which is 

actually the trapdoor information. Also, in the context of just the keys, they 

are mathematically related but it is computationally not feasible to find 

one from the other.

We discussed the important objectives of public key cryptography 

such as key establishment, authentication and non-repudiation through 

digital signatures, and confidentiality through encryption. However, 

not all public key cryptography algorithms may provide all these three 

characteristics. Also, the algorithms are different in terms of their 

underlying computational problem and are classified accordingly. Certain 

algorithms such as RSA are based on integer factorization scheme because 

it is difficult to factor large numbers. Certain algorithms are based on 

the discrete logarithm problems in finite fields such as Diffie–Hellman 

key exchange (DH) and DSA. A generalized version of discrete logarithm 

problems is elliptic curve (EC) public key schemes. The Elliptic Curve 

Digital Signature Algorithm (ECDSA) is an example of it. We will cover 

most of these algorithms in the following section.

�RSA

RSA algorithm, named after Ron Rivest, Adi Shamir, and Leonard Adleman 

is possibly one of the most widely used cryptographic algorithms. It is 

based on the practical difficulty of factoring very large numbers. In RSA, 

plaintext and ciphertext are integers between 0 and n − 1 for some n.
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We will discuss the RSA scheme from two aspects. First is generation 

of key pairs and second, how the encryption and decryption works. Since 

modular arithmetic provides the mechanism for key generation, let us 

quickly look at it.

Modular Arithmetic

Let m be a positive integer called modulus. Two integers a and b are 

congruent modulo m if:

a ≡ b (mod m), which implies a − b = m . k for some integer k.

Example: if a ≡ 16 (mod 10) then a can have the following solutions:

a = . . ., −24, − 14, −4, 6, 16, 26, 36, 46

Any of these numbers subtracted by 16 is divisible by 10. For example, 

−24 −16 = −40, which is divisible by 10. Note that a ≡ 36 (mod 10) can also 

have the same solutions of a.

As per the Quotient-Remainder theorem, only a unique solution of “a” 

exists that satisfies the condition: 0 ≤ a < m. In the example a ≡ 16 (mod 10), 

only the value 6 satisfies the condition 0 ≤ 6 < 10. This is what will be used 

in the encryption/decryption process of RSA algorithm.

Let us now look at the Inverse Midulus. If b is an inverse to a modulo m, 

then it can be represented as:

a b ≡ 1 (mod m), which implies that a b − 1 = m . k for some integer k.

Example: 3 has inverse 7 modulo 10 since

3 · 7 = 1 (mod 10) => 21 − 1 = 20, which is divisible by 10.

Generation of Key Pairs

As discussed already, a key pair of private and public keys is needed for 

any party to participate in asymmetric crypto-communication. In the RSA 

scheme, the public key consists of (e, n) where n is called the modulus and 

e is called the public exponent. Similarly, the private key consists of (d, n), 

where n is the same modulus and d is the private exponent.
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Let us see how these keys get generated along with an example:

•	 Generate a pair of two large prime numbers p and q. 

Let us take two small prime numbers as an example 

here for the sake of easy understanding. So, let the two 

primes be p = 7 and q = 17.

•	 Compute the RSA modulus (n) as n = pq. This n should 

be a large number, typically a minimum of 512 bits. In 

our example, the modulus (n) = pq = 119.

•	 Find a public exponent e such that 1 < e < (p − 1) (q − 1) 

and there must be no common factor for e and (p − 1) 

(q − 1) except 1. It implies that e and (p − 1) (q − 1) are 

coprime. Note that there can be multiple values that 

satisfy this condition and can be taken as e, but any one 

should be taken.

•	 In our example, (p − 1) (q − 1) = 6 × 16 = 96. So, e can be 

relatively prime to and less than 96. Let us take e to be 5.

•	 Now the pair of numbers (e, n) form the public key and 

should be made public. So, in our example, the public 

key is (5, 119).

•	 Calculate the private exponent d using p, q, and e 

considering the number d is the inverse of e modulo  

(p − 1) (q − 1). This implies that d when multiplied by  

e is equal to 1 modulo (p − 1) (q − 1) and d < (p − 1) (q − 1). 

It can be represented as:

e d = 1 mod (p − 1) (q − 1)

•	 Note that this multiplicative inverse is the link between 

the private key and the public key. Though the keys are 

not derived from each other, there is a relation between 

them.

Chapter 2  How Blockchain Works



84

•	 In our example, we have to find d such that the above 

equation is satisfied. Which means, 5 d = 1 mod 96 and 

also d < 96.

•	 Solving for multiple values of d (can be calculated using 

the extended version of Euclid’s algorithm), we can see 

that d = 77 satisfies our condition. See the math:  

77 × 5 = 385 and 385 − 1 = 384 is divisible by 96 because 

4 × 96 + 1 = 385

•	 We can conclude that the in our example, the private 

key will be (77, 119).

•	 Now you have got your key pairs!

Encryption/Decryption Using Key Pair

Once the keys are generated, the process of encryption and decryption are 

fairly simple. The math behind them is as follows:

Encrypting the plaintext message m to get the ciphertext message c is 

as follows:

c = m . e (mod n) given the public key (e, n) and the plaintext  

message m.

Decrypting the ciphertext message c to get the plaintext message m is 

as follows:

m = c . d (mod n) given the private key (d, n) and the ciphertext c.

Note that RSA scheme is a block cipher where the input is divided 

into small blocks that the RSA algorithm can consume. Also, the plaintext 

and the ciphertext are all integers from 0 to n − 1 for some integer n that 

is known to both sender and receiver. This means that the input plaintext 

is represented as integer, and when that goes through RSA and becomes 

ciphertext, they are again integers but not the same ones as input; we 

encrypted them remember? Now, considering the same key pairs from the 
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previous example, let us go through the steps to understand how it works 

practically:

•	 The sender wants to send a text message to the receiver 

whose public key is known and is say (e, n).

•	 The sender breaks the text message into blocks that can 

be represented as a series of numbers less than n.

•	 The ciphertext equivalents of plaintext can be found 

using c = m e (mod n). If the plaintext (m) is 19 and the 

public key is (5, 119) with e = 5 and n = 119, then the 

ciphertext c will be 195(mod 119) = 2, 476, 099  

(mod 119) = 66, which is the remainder and 20,807 is 

the quotient, which we do not use. So, c = 66

•	 When the ciphertext 66 is received at the receiver’s end, 

it needs to be decrypted to get the plaintext using m = c 
d (mod n).

•	 The receiver already has the private key (d, n) with  

d = 77 and n = 119, and received the ciphertext c = 66 

by the sender. So, the receiver can easily retrieve the 

plaintext using these values as m = 6,677(mod 119) = 19

•	 For the modular arithmetic calculations, there are 

many online calculators that you can play around with, 

such as: http://comnuan.com/cmnn02/cmnn02008/

We looked at the math behind RSA algorithm. Now we know that n 

(supposed to be a very large number) is publicly available. Though it is 

public, factoring this large number to get the prime numbers p and q is 

extremely difficult. The RSA scheme is based on this practical difficulty 

of factoring large numbers. If p and q are not large enough, or the public 

key e is small, then the strength of RSA goes down. Currently, RSA keys are 

typically between 1024 and 2048 bits long. Note that the computational 

overhead of the RSA cryptography increases with the size of the keys.
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In situations where the amount of data is huge, it is advisable to use a 

symmetric encryption technique and share the key using an asymmetric 

encryption technique such as RSA. Also, we looked at one of the aspects 

of RSA, that is, for encryption and decryption. However, it can also be 

used for authentication through digital signature. Just to give a high-level 

idea, one can take the hash of the data, sign it using their own private key, 

and share it along with the data. The receiver can check with the sender’s 

public key and ensure that it was the sender who sent the data, and not 

someone else. This way, in addition to secure key transport, the public key 

encryption method RSA also offers authentication using a digital signature. 

Note here that a different algorithm called digital signature algorithm 

(DSA) can also be used in such situations that we will learn about in the 

following section.

RSA is widely being used with HTTPS on web browsers, emails, 

VPNs, and satellite TV. Also, many commercial applications or the apps 

in app stores are also digitally signed using RSA. SSH also uses public key 

cryptography; when you connect to an SSH server, it broadcasts a public 

key that can be used to encrypt data to be sent to that server. The server 

can then decrypt the data using its private key.

�Digital Signature Algorithm

The DSA was designed by the NSA as part of the Digital Signature Standard 

(DSS) and standardized by the NIST. Note that its primary objective is 

to sign messages digitally, and not encryption. Just to paraphrase, RSA 

is for both key management and authentication whereas DSA is only 

for authentication. Also, unlike RSA, which is based on large-number 

factorization, DSA is based on discrete logarithms. At a high level, DSA is 

used as shown in Figure 2-15.
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As you can see in Figure 2-15, the message is first hashed and then signed 

because it is more secured compared with signing and then hashing it. Ideally, 

you would like to verify the authenticity before doing any other operation. So, 

after the message is signed, the signed hash is tagged with the message and 

sent to the receiver. The receiver can then check the authenticity and find the 

hash. Also, hash the message to get the hash again and check if the two hashes 

match. This way, DSA provides the following security properties:

•	 Authenticity: Signed by private key and verified by 

public key

•	 Data integrity: Hashes will not match if the data is 

altered.

•	 Non-repudiation: Since the sender signed it, they 

cannot deny later that they did not send the message. 

Non-repudiation is a property that is most desirable in 

situations where there are chances of a dispute over the 

exchange of data. For example, once an order is placed 

electronically, a purchaser cannot deny the purchase 

order if non-repudiation is enabled in such a situation.

Figure 2-15.  Digital Signature Algorithm (DSA) 
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A typical DSA scheme consists of three algorithms: (1) key generation, 

(3) signature generation, and (3) signature verification.

�Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) actually evolved from Diffie-Hellman 

cryptography. It was discovered as an alternative mechanism for 

implementing public key cryptography. It actually refers to a suite of 

cryptographic protocols and is based on the discrete logarithm problem, 

as in DSA. However, it is believed that the discrete logarithmic problem 

is even harder when applied to the points on an elliptic curve. So, ECC 

offers greater security for a given key size. A 160-bit ECC key is considered 

to be as secured as a 1024-bit RSA key. Since smaller key sizes in ECC can 

provide greater security and performance compared with other public 

key algorithms, it is widely used in small embedded devices, sensors, 

and other IoT devices, etc. There are extremely efficient hardware 

implementations available for ECC.

ECC is based on a mathematically related set of numbers on an 

elliptic curve over finite fields. Also, it has nothing to do with ellipses! 

Mathematically, an elliptic curve satisfies the following mathematical 

equation:

y2 = x3 + ax + b, where 4 a3 + 27 b2 ≠ 0

With different values of “a” and “b”, the curve takes different shapes as 

shown in the following diagram:
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There are several important characteristics of elliptic curves that are 

used in cryptography, such as:

•	 They are horizontally symmetrical. i.e., what is below 

the X-axis is a mirror image of what is above the X-axis. 

So, any point on the curve when reflected over the 

X-axis still remains on the curve.

•	 Any nonvertical line can intersect the curve in at most 

three places.

•	 If you consider two points P and Q on the elliptic curve 

and draw a line through them, the line may exactly 

cross the curve at one more places. Let us call it (− R). 

If you draw a vertical line through (− R), it will cross the 

curve at, say, R, which is a reflection of the point (− R). 

Now, the third property implies that P + Q = R. This is 

called “point addition,” which means adding two points 

on an elliptic curve will lead you to another point on 

the curve. Refer to the following diagram for a pictorial 

representation of these three properties.
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•	 So, you can apply point addition to any two points on 

the curve. Now, in the previous bullet-point, we did 

point addition of P and Q (P + Q) and found − R and 

then ultimately arrived at R. Once we arrive at R, we 

can then draw a line from P to R and see that the line 

intersects the graph again at a third point. We can then 

take that point and move along a vertical line until 

it intersect the graph again. This becomes the point 

addition for points P and R. This process with a fixed 

P and the resulting point can continue as long as we 

want, and we will keep getting new points on the curve.

•	 Now, instead of two points P and Q, what if we apply 

the operation to the same point P, i.e., P and P (called 

“point doubling”). Obviously, infinite numbers of lines 

are possible through P, so we will only consider the 

tangential line. The tangent line will cross the curve in 

one more point and a vertical line from there will cross 

the curve again to get to the final value. It can be shown 

as follows:
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•	 It is evident that we can apply point doubling “n” 

number of times to the initial point and every time 

it will lead us to a different point on the curve. The 

first time we applied point doubling to the point P, it 

took us to the resulting point 2P as you can see in the 

diagram. Now, if the same is repeated “n” number of 

times, we will reach a point on the curve as shown in 

the following diagram:

 

•	 In the aforementioned scenario, when the initial and 

final point is given, there is no way one can say that 

the point doubling was applied “n” number of times 

to reach the final resulting point except trying for all 

possible “n” one by one. This is the discrete logarithm 

problem for ECC, where it states that given a point G 

and Q, where Q is a multiple of G, find “d” such that  

Q = d G. This forms the one-way function with no 

shortcuts. Here, Q is the public key and d is the private 

key. Can you extract private key d from public key Q? 

This is the elliptic curve discrete logarithm problem, 

which is computationally difficult to solve.
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•	 Further to this, the curve should be defined over a finite 

field and not take us to infinity! This means the “max” 

value on the X-axis has to be limited to some value, so 

just roll the values over when we hit the maximum. This 

value is represented as P (not the P used in the graphs 

here) in the ECC cryptosystem and is called "modulo” 

value, and it also defines the key size, hence the finite 

field. In many implementations of ECC, a prime number 

for “P” is chosen.

•	 Increased size of “P” results in more usable values on 

the curve, hence more security.

•	 We observed that point addition and point doubling 

form the basis for finding the values that are used for 

encryption and decryption.

So, in order to define an ECC, the following domain parameters need 

to be defined:

•	 The Curve Equation: y2 = x3 + ax + b, where 4 a3 + 27 b2 ≠ 0

•	 P: The prime number, which specifies the finite field 

that the curve will be defined over (modulo value)

•	 a and b: Coefficients that define the elliptic curve

•	 G: Base point or the generator point on the curve. This 

is the point where all the point operations begin and it 

defines the cyclic subgroup.

•	 n: The number of point operations on the curve until 

the resultant line is vertical. So, it is the order of G, i.e., 

the smallest positive number such that nG = ∞. It is 

normally prime.

•	 h: It is called “cofactor,” which is equal to the order of 

the curve divided by n. It is an integer value and usually 

close to 1.
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Note that ECC is a great technique to generate the keys, but is used 

alongside other techniques for digital signatures and key exchange. For 

example, Elliptic Curve Diffie-Hellman (ECDH) is quite popularly used for 

key exchange and ECDSA is used for digital signatures.

�Elliptic Curve Digital Signature Algorithm

The ECDSA is a type of DSA that uses ECC for key generation. As the name 

suggests, its purpose is digital signature, and not encryption. ECDSA can 

be a better alternative to RSA in terms of smaller key size, better security, 

and higher performance. It is one of the most important cryptographic 

components used in Bitcoins!

We already looked at how digital signatures are used to establish trust 

between the sender and receiver. Since authenticity of the sender and 

integrity of the message can be verified through digital signatures, two 

unknown parties can transact with each other. Note that the sender and 

the receiver have to agree on the domain parameters before engaging in 

the communication.

There are broadly three steps to ECDSA: key generation, signature 

generation, and signature verification.

Key Generation

Since the domain parameters (P, a, b, G, n, h) are preestablished, the curve 

and the base point are known by both parties. Also, the prime P that makes 

it a finite field is also known (P is usually 160 bits and can be greater as 

well). So, the sender, say, Alice does the following to generate the keys:

•	 Select a random integer d in the interval [1, n − 1]

•	 Compute Q = d G

•	 Declare Q is the public key and keep d as the private 

key.
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Signature Generation

Once the keys are generated, Alice, the sender, would use the private key 

“d” to sign the message (m). So, she would perform the following steps in 

the order specified to generate the signature:

•	 Select a random number k in the interval [1, n − 1]

•	 Compute k.G and find the new coordinates (x1, y1) and 

find r = x1 mod n

If r = 0, then start all over again

•	 Compute e = SHA-1 (m)

•	 Compute s = k −1 (e + d . r) mod n

If s = 0, then start all over again from the first step

•	 Alice’s signature for the message (m) would now be (r, s)

Signature Verification

Let us say Bob is the receiver here and has access to the domain 

parameters and the public key Q of the sender Alice. As a security 

measure, Bob should first verify that the data he has, which is the domain 

parameters, the signature, and Alice’s public key Q are all valid. To verify 

Alice’s signature on the message (m), Bob would perform the following 

operations in the order specified:

•	 Verify that r and s are integers in the interval [1, n − 1]

•	 Compute e = SHA-1 (m)

•	 Compute w = s −1 mod n

•	 Compute u1 = e w mod n, and u2 = r w mod n

•	 Compute X = u1 G + u2 G, where X represents the 

coordinates, say (x2, y2)
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•	 Compute v = x1 mod n

•	 Accept the signature if r = v, otherwise reject it

In this section, we looked at the math behind ECDSA. Recollect that 

we used a random number while generating the key and the signature. It 

is extremely important to ensure that the random numbers generated are 

actually cryptographically random. In many use cases, 160-bit ECDSA is 

used because it has to match with the SHA-1 hash function.

Out of so many use cases, ECDSA is used in digital certificates. In its 

simplest form, a digital certificate is a public key, bundled with the device 

ID and the certificate expiration date. This way, certificates enable us to 

check and confirm to whom the public key belongs and the device is a 

legitimate member of the network under consideration. These certificates 

are very important to prevent “impersonation attack” in key establishment 

protocols. Many TLS certificates are based on ECDSA key pair and this 

usage continues to grow.

�Code Examples of Assymetric Key Cryptography

Following are some code examples of different public ley algorithms. This 

section is just intended to give you a heads-up on how to use different 

algorithms programatically. Code examples are in Python but would be 

quite similar in different languages; you just have to find the right library 

functions to use.

# -*- coding: utf-8 -*-

import Crypto

from Crypto.PublicKey import RSA

from Crypto import Random

from hashlib import sha256
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# Function to generate keys with default lenght 1024

def generate_key(KEY_LENGTH=1024):

    random_value= Random.new().read

    keyPair=RSA.generate(KEY_LENGTH,random_value)

    return keyPair

#Generate Key for ALICE and BOB

bobKey=generate_key()

aliceKey=generate_key()

#Print Public Key of Alice and Bob. This key could shared

alicePK=aliceKey.publickey()

bobPK=bobKey.publickey()

print "Alice's Public Key:", alicePK

print "Bob's Public Key:", bobPK

#Alice wants to send a secret message to Bob. Lets create a 

dummy message for Alice

secret_message="Alice's secret message to Bob"

print "Message",  secret_message

# Function to generate a signature

def generate_signature(key,message):

    message_hash=sha256(message).digest()

    signature=key.sign(message_hash,'')

    return signature

# Lets generate a signature for secret message

alice_sign=generate_signature(aliceKey,secret_message)

# Before sending message in network, encrypt message using the 

Bob's public key...

encrypted_for_bob  = bobPK.encrypt(secret_message, 32)  
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# Bob decrypts secret message using his own private key...

decrypted_message   = bobKey.decrypt(encrypted_for_bob)

print "Decrypted message:", decrypted_message

# Bob will use the following function to verify the signature 

from Alice using her public key

def verify_signature(message,PublicKey,signature):

    message_hash=sha256(message).digest()

    verify = PublicKey.verify(message_hash,signature)

    return verify

# bob is verifying using decrypted message and alice's public 

key

print "Is alice's signature for decrypted message valid?", 

verify_signature(decrypted_message,alicePK, alice_sign)

The ECDSA Algorithm

import ecdsa

# SECP256k1 is the Bitcoin elliptic curve

signingKey = ecdsa.SigningKey.generate(curve=ecdsa.SECP256k1)

# Get the verifying key

verifyingKey = signingKey.get_verifying_key()

# Generate The signature of a message

signature = signingKey.sign(b"signed message")

# Verify the signature is valid or invalid for a message

verifyingKey.verify(signature, b"signed message") # True. 

Signature is valid

# Verify the signature is valid or invalid for a message

assert verifyingKey.verify(signature, b"message") # Throws an 

error. Signature is invalid for message
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�Diffie-Hellman Key Exchange
We already looked at symmetric key cryptography in the previous sections. 

Recollect that sharing the secret between the sender and the receiver is 

a very big challenge. As a rule of thumb, we are now aware that the the 

communication channel is always insecure. There could always be an 

Eve trying to intercept your message while it is being transmitted by using 

various different kinds of attacks. So, the technique of DH was developed 

for securely exchanging the cryptographic keys. Obviously, you must be 

wondering how secure key exchange is possible when the communication 

channel itself is insecured. Well, later in this section you will see that 

the DH technique is not really sharing the entire secret key between two 

parties, rather it is about creating the key together. At the end of the day, 

what is important is that the sender and the receiver both have the same 

key. However, keep in mind that it is not asymmetric key cryptography, as 

encryption/decrytion does not take place during the exchange. In fact, it 

was the base upon which asymmetric key cryptography was later designed. 

The reason we are looking at this technique now is because a lot of math 

that we already studied in the previous section is useful here.

Let us first try to understand the concept at a high level before getting 

into the mathematical explanation. Take a look at the following (Figure 2-16), 

where a simple explanation of DH algorithm is presented with colors.
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Notice that only the yellow color was shared between the two parties 

in the first step, which may represent any other color or a randon number. 

Both parties then add their own secret to it and make a mixture. That 

mixture is again shared through the same insecured channel. Respective 

parties then add their secret to it and form their final common secret. 

In this example with colors, observe that the common secrets are 

the combination of same sets of colors. Let us now look at the actual 

mathematical steps that take place for the generation of keys:

•	 Alice and Bob agree on P = 23 and G = 9

•	 Alice chooses private key a = 4, computes 94 mod 23 = 6 

and sends it to Bob

Figure 2-16.  Diffie-Hellman key exchange illustration
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•	 Bob chooses private key b = 3, computes 93 mod 23 = 16 

and sends it to Alice

•	 Alice computes 164 mod 23 = 9

•	 Bob computes 63 mod 23 = 9

If you follow through these steps, you will find that both Alice and Bob 

are able to generate the same secret key at their ends that can be used for 

encryption/decryption. We used small numbers in this example for easy 

understanding, but large prime numbers are used in real-world use cases. 

To understand it better, let us go through the following code snippet and 

see how DH algorithm can be implemented in a simple way:

/* Program to calculate the Keys for two parties using Diffie-

Hellman Key exchange algorithm */

// function to return value of a ^ b mod P

long long int power(long long int a, long long int b, long long 

int P)

{

    if (b == 1)

        return a;

    else

        return (((long long int)pow(a, b)) % P);

}

//Main program for DH Key computation

int main()

{

    long long int P, G, x, a, y, b, ka, kb;

    // Both the parties agree upon the public keys G and P

    P = 23; // A prime number P is taken

    printf("The value of P : %lld\n", P);
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    G = 9; // A primitve root for P, G is taken

    printf("The value of G : %lld\n\n", G);

    // Alice will choose the private key a

    a = 4; // a is the chosen private key

    printf("The private key a for Alice : %lld\n", a);

    x = power(G, a, P); // gets the generated key

    // Bob will choose the private key b

    b = 3; // b is the chosen private key

    printf("The private key b for Bob : %lld\n\n", b);

    y = power(G, b, P); // gets the generated key

    // Generating the secret key after the exchange of keys

    ka = power(y, a, P); // Secret key for Alice

    kb = power(x, b, P); // Secret key for Bob

     

    printf("Secret key for the Alice is : %lld\n", ka);

    printf("Secret Key for the Bob is : %lld\n", kb);

    return 0;

}

Note W hile the discrete logarithm problem is traditionally used (the 
xy mod p), the general process can be modified to use elliptic curve 
cryptography as well.
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�Symmetric vs. Asymmetric Key Cryptography
We looked at various aspects and types of both symmetric and asymmetric 

key algorithms. Obviously, their design goals and implications are 

different. Let us have a comparative analysis so that we use the right one at 

the right place.

•	 Symmetric key cryptography is also referred to as 

private key cryptography. Similarly, asymmetric key 

cryptography is also called public key cryptography.

•	 Key exchange or distribution in symmetric key 

cryptography is a big headache, unlike asymmetric key 

cryptography.

•	 Asymmetric encryption is quite compute-intensive 

because the length of the keys is usually large. Hence, 

the process of encryption and decryption is slower. On 

the contrary, symmetric encryption is faster.

•	 Symmetric key cryptography is appropriate for long 

messages because the speed of encryption/decryption 

is fast. Asymmetric key cryptography is appropriate 

for short messages, and the speed of encryption/

decryption is slow.

•	 In symmetric key cryptography, symbols in plaintext 

and ciphertext are permuted or substituted. In 

asymmetric key cryptography, plaintext and ciphertext 

are treated as integers.

•	 In many situations, when symmetric key is used for 

encryption and decryption, asymmetric key technique 

is used to share and agree upon the key used in 

encryption.
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•	 Asymmetric key cryptography finds its strongest 

application in untrusted environments, when parties 

involved have no prior relationship. Since the unknown 

parties do not get any prior opportunity to establish 

shared secret keys with each other, sharing of sensitive 

data is secured through public key cryptography.

•	 Symmetric cryptographic techniques do not provide 

a way for digital signatures, which are only possible 

through asymmetric cryptography.

•	 Another good case is the number of keys required 

among a group of nodes to communicate with each 

other. How many keys do you think would be needed 

among, say, 100 participants when symmetric key 

cryptography is needed? This problem of finding the 

keys needed can be approached as a complete graph 

problem with order 100. Like each vertex requires 

99 connected edges to connect with everyone, every 

participant would need 99 keys to establish secured 

connections with all other nodes.

So, in total, the keys needed would be  

100 * (100 − 1)/2 = 4,950. It can be generalized for “n” 

number of participants as n * (n − 1)/2 keys in total. 

With an increased number of participant, it becomes 

a nightmare! However, in the case of asymmetric key 

cryptography, each participant would just need two 

keys (one private and one public). For a network of 

100 participants, total keys needed would be just 200. 

Table 2-5 shows some sample data to give you an 

analogy on the increased number of keys needed when 

the number of participants increases.
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�Game Theory
Game Theory is a certainly quite an old concept and is being used in many 

real-life situations to solve complex problems. The reason we are covering 

this topic at a high level is because it is used in Bitcoins and many other 

blockchain solutions. It was formally introduced by John von Neumann to 

study economic decisions. Later, it was more popularized by John Forbes 

Nash Jr because of his theory of “Nash Equilibrium,” which we will look 

into shortly. Let us first understand what game theory is.

Game theory is a theory on games, where the games are not just what 

children play. Most are situations where two or more parties are involved 

with some strategic behavior. Examples: A cricket tournament is a game, 

two conflicting parties in a court of law with lawyers and juries is a game, 

two siblings fighting over an ice cream is a game, a political election is a 

game, a traffic signal is also a game. Another example: Say you applied 

for a blockchain job and you are selected and offered a job offer with 

some salary, but you reject the offer, thinking there is a huge gap in the 

demand and supply and chances are good they will revise the offer with a 

higher salary. You must be thinking now, what is not a game? Well, in real 

situations, almost everything is a game. So, a “game” can be defined as a 

situation involving a “correlated rational choice.” What it means is that the 

Table 2-5.  Key Requirements Comparison for Symmetric and 

Asymmetric Key Techniques
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prospects available for any player are dependent not only on their own 

choices, but also on the choices that others make in a given situation. In 

other words, if your fate is impacted by the actions of others, then you are 

in a game. So what is game theory?

Game theory is a study of strategies involved in complex games. It is 

the art of making the best move, or opting for a best strategy in a given 

situation based on the objective. To do so, one must understand the 

strategy of the opponent and also what the opponent thinks your move is 

going to be. Let us take a simple example: There are two siblings, one elder 

and the other younger. Now, there are two ice creams in the fridge, one is 

orange flavor and the other is mango flavor. The elder one wants to eat the 

orange flavor, but knows if he opts for that, then the younger one would 

cry for the same orange. So, he opts for the mango flavored ice cream and 

it turns out as expected, the younger one wants the same. Now, the elder 

one pretends to have sacrificed the mango flavored ice cream and gives it 

to the younger one and eats the orange one himself. Look at the situation: 

this is a win-win for both the parties, as this was the objective of the elder 

one. If the elder one wanted, he could simply have fought with the younger 

kid and got the orange one if that was his objective. In the second case, 

the elder one would strategize where to hit so that the younger kid is not 

injured much but enough so that he gives up on the orange flavored ice 

cream. This is game theory: what is your objective and what should be 

your best move?

One more example: more on a business side this time. Imagine that 

you are a vendor supplying vegetables to a town. There are, say, three 

ways to get to the town, out of which one is a regular route in the sense 

that everyone goes by that route, maybe because it is shorter and better. 

One day, you see that the regular route has been blocked because of 

some repair activity and in no way can you go by that route. You are now 

left with two other routes. One of those is a short route to the destination 

town but is a little narrow. The other one is a little longer route but wide 

enough. Here, you have to make a strategy as to which route of the two you 
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need to go by. The situation may be such that there is heavy traffic on the 

roads and many people would try to get through the shortest route. This 

can lead to heavy congestion on that route and can cause a huge delay. 

So, you decided to take the longer route to reach the town on time, but at 

the cost of few extra dollars spent on fuel. You are sure you can easily get 

compensated for that if you arrive on time and sell your vegetables early at 

a good price. This is game theory: what is your best move for the objective 

you have in mind, which is usually finding an optimal solution.

In many situations, the role that you play and your objective both play 

a vital role in formulating the strategy. Example: If you are an organizer of 

a sport event, and not a participant in the competition, then you would 

formulate a strategy where your objective could be that you want the 

participants to play by the rules and follow the protocol. This is because 

you do not care who wins at the end, you are just an organizer. On the 

other hand, a participant would strategize the winning moves by taking 

into account the strengths and weaknesses of the opponent, and the rules 

imposed by the organizer because there could be penalties if you break 

the rules. Now, let us consider this situation with you playing the role of 

the organizer. You should consider if there could be a situation where a 

participant breaks a rule and loses one point but injures the opponent 

so much that they cannot compete any longer. So, you have to take into 

account what the participants can think and set your rules accordingly.

Let us try to define game theory once again based on what we learned 

from the previous examples. It is the method of modeling real-life 

situations in the form of a game and analyzing what the best strategy or 

move of a person or an entity could be in a given situation for a desired 

outcome. Concepts from game theory are widely used in almost every 

aspect of life, such as politics, social media, city planning, bidding, betting, 

marketing, distributed storage, distributed computing, supply chains, and 

finance, just to name a few. Using game theoretic concepts, it is possible to 

design systems where the participants play by the rules without assuming 

emotional or moral values of them. If you want to go beyond just building 
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a proof of concept and get your product or solution to production, then 

you should prioritize game theory as one of the most important elements. 

It can help you build robust solutions and lets you test those with different 

interesting scenarios. Well, many people already think in game theoretic 

perspectives without knowing it is game theory. However, if you are 

equipped with the many tools and techniques from game theory, it 

definitely helps.

�Nash Equilibrium
In the previous section, we looked at different examples of games. There 

are many ways to classify games, such as cooperative/noncooperative 

games, symmetric/asymmetric games, zero-sum/non-zero-sum games, 

simultaneous/sequential games, etc. More generally, let us focus on the 

cooperative/noncooperative perspective here, because it is related to the 

Nash equilibrium.

As the name suggests, the players cooperate with each other and can 

work together to form an alliance in cooperative games. Also, there can 

be some external force applied to ensure cooperative behavior among the 

players. On the other hand, in noncooperative games, the players compete 

as individuals with no scope to form an alliance. The participants just 

look after their own interests. Also, no external force is available to enforce 

cooperative behavior.

Nash equilibrium states that, in any noncooperative games where 

the players know the strategies of each other, there exists at least one 

equilibrium where all the players play their best strategies to get the 

maximum profits and no side would benefit by changing their strategies. If 

you know the strategies of other players and you have your own strategy as 

well, if you cannot benefit by changing your own strategy, then this is the 

state of Nash equilibrium. Thus, each strategy in a Nash equilibrium is a 

best response to all other strategies in that equilibrium.

Chapter 2  How Blockchain Works



108

Note that a player may strategize to win as an individual player, but 

not to defeat the opponent by ensuring the worst for the opponents. 

Also, any game when played repeatedly may eventually fall into the Nash 

equilibrium.

In the following section, we will look at the “prisoner”s dilemma” to get 

a concrete understanding of the Nash equilibrium.

�Prisoner’s Dilemma
Many games in real life can also be non-zero-sum games. Prisoner’s 

dilemma is one such example, which can be broadly categorized as a 

symmetric game. This is because, if you change the identities of the players 

(e.g., if two players “A” and “B” are playing, then “A” becomes “B” and 

“B” becomes “A”), and also the strategies do not change, then the payoff 

remains the same. This is what a symmetric game is.

Let us start directly with an example. Assume that there are two 

guys, Bob and Charlie, who are caught by the cops for selling drugs 

independently, say in different locations. They are kept in two different 

cells for interrogation. They were then toldd that they would be sentenced 

to jail for two years for this crime. Now, the cops somehow suspect 

that these two guys could also be involved in the robbery that just 

happened last week. If they did not do the robbery, then it is two years of 

imprisonment anyway. So, the cops have to strategize a way to get to the 

truth. So here is what they do.

The cops go to Bob and give him a choice, a good choice that goes like 

this. If Bob confesses his crime and Charlie does not, then his punishment 

would go down from two years to just one year and Bob gets five years. 

However, if Bob denies and Charlie confesses, then Bob gets five years and 

Charlie gets just one year. Also, if both confess, then both get three years of 

imprisonment. Similarly, the same choice is given to Charlie as well. What 

do you think they are going to do? This situation is called the prisoner’s 

dilemma.
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Both Bob and Charlie are in two different cells. They cannot talk to 

each other and conclude with the situation where they both deny and get 

two years in jail (just for the drug dealing case), which seems to be the 

global optimum in this situation. Well, even if they could talk to each other, 

they may not really trust each other.

What would go through Bob’s mind now? He has two choices, confess 

or deny. He knows that Charlie would choose what is best for him, and 

he himself is no different. If he denies and Charlie confesses, then he is in 

trouble by getting five years of jail and Charlie gets just one year of jail. He 

certainly does not want to get into this situation.

If Bob confesses, then Charlie has two choices: confess or deny. Now 

Bob thinks that if he confesses, then whatever Charlie does, he is not 

getting more than three years. Let us state these scenarios for Bob.

•	 Bob confesses and Charlie denies—Bob gets one year, 

Charlie gets five years (best case given Bob confesses)

•	 Bob confesses and Charlie also confesses—Both Bob 

and Charlie get three years (worst case given Bob 

confesses)

This situation is called Nash equilibrium where each party has taken 

the best move, given the choices of the other party. This is definitely not 

the global optimum, but represents the best move as an individual. Now, 

if you look at this situation as an outsider, you would say both should deny 

and get two years. But when you play as a participant in the game, Nash 

equilibrium is what you would eventually fall into. Note that this is the 

most stable stage where you changing your decision does not benefit you 

at all. It can be pictorially represented as shown in Figure 2-17.
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�Byzantine Generals’ Problem
In the previous section, we looked at different examples of games and 

learned a few game theory concepts. Now we will discuss a specific 

problem from the olden days that is still widely used to solve many 

computer science as well as real-life problems.

The Byzantine Generals’ Problem was a problem faced by the 

Byzantine army while attacking a city. The situation was straightforward 

yet very difficult to deal with. To put it simply, the situation was that several 

army factions commanded by separate generals surrounded a city to win 

over it. The only chance of victory is when all the generals attack the city 

together. However, the problem is how to reach a consensus. This implies 

that either all the generals should attack or all of them should retreat. 

If some of them attack and some retreat, then chances are greater they 

would lose the battle. Let us take an example with numbers to be able to 

understand the situation better.

Let us assume a situation where there are five factions of the Byzantine 

army surrounding a city. They would attack the city if at least three out of 

five generals are willing to attack, but retreat otherwise. If there is a traitor 

among the generals, what he can do is vote for attack with the generals 

willing to attack and vote for retreat with the generals willing to retreat. 

He can do so because the army is dispersed in factions, which makes 

Figure 2-17.  Prisoner’s dilemma—payoff matrix
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centralized coordination difficult. This can result in two generals attacking 

the city and getting outnumbered and defeated. There could be more 

complicated issues with such a situation:

•	 What if there is more than one traitor?

•	 How would the message coordination between 

generals take place?

•	 What if a messenger is caught/killed/bribed by the city 

commander?

•	 What if a traitor general forges a different message and 

fools other generals?

•	 How to find the generals who are honest and who are 

traitors?

As you can see, there are so many challenges that need to be addressed 

for a coordinated attack on the city. It can be pictorially represented as in 

Figure 2-18.

Figure 2-18.  Byzantine army attacking the city
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There are numerous scenarios in real life that are analogous to the 

Byzantine Generals’ Problem. How a group of people reach consensus 

on some voting agenda or how to maintain the consistent state of a 

distributed or decentralized database, or maintaining the consistent state 

of blockchain copies across nodes in a network are a few examples similar 

to the Byzantine Generals’ Problem. Note, however, that the solutions to 

these different problems could be quite different in different situations. We 

will look at how Bitcoin solves the Byzantine Generals’ Problem later in 

this book.

�Zero-Sum Games
A zero-sum game in game theory is quite straightforward. In such games, 

one player’s gain is equivalent to another player’s loss. Example: One wins 

exactly the same amount as the opponent loses, which means choices by 

players can neither increase nor decrease the available resources in a given 

situation.

Poker, Chess, Go, etc. are a few examples of zero-sum games. To 

generalize even more, the games where only one person wins and the 

opponent loses, such as tennis, badminton, etc. are also zero-sum games. 

Many financial instruments such as swaps, forwards, and options can also 

be described as zero-sum instruments.

In many real-life situations, gains and losses are difficult to quantify. 

So, zero-sum games are less common compared with non-zero-sum 

games. Most financial transactions or trades and the stock market are 

non-zero-sum games. Insurance, however, is a field where a zero-sum 

game plays an important role. Just think about how the insurance schemes 

might work. We pay an insurance premium to the insurance companies to 

guard against some difficult situations such as accidents, hospitalization, 

death, etc. Thinking that we are insured, we live a peaceful life and we 

are fairly compensated by the insurance companies when we face such 

tough situations. There is certainly a financial backup that helps us survive. 
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Note that everyone who pays the premium does not meet with accident 

or get hospitalized, and the ones who do need a lot of money compared 

with the premium they pay. You see, things are quite balanced here, even 

considering the operational expenses of the insurance company. Again, 

the insurance company may invest the premium we pay and get some 

return on that. Still, this is a zero-sum game.

Just to give you a different example, if there is one open position for 

which an interview drive is happening, then the candidate who qualifies 

actually does it at the cost of others’ disqualification. This is also a zero-

sum game.

You may ask if there is any use in studying about zero-sum games. Just 

being aware of a zero-sum situation is quite useful in understanding and 

devising a strategy for any complex problem. We can analyze if we can 

practically gain in a given situation in which the transactions are taking 

place.

�Why to Study Game Theory
Game theory is a revolutionary interdisciplinary phenomenon bringing 

together psychology, economics, mathematics, philosophy, and an 

extensive mix of various other academic areas.

We say that game theory is related to real-world problems. However, 

the problems are limitless. Are the game theoretic concepts limitless as 

well? Certainly! We use game theory every day, knowingly or unknowingly, 

because we always use our brains to take the best strategic action, given a 

situation. Don’t we? If that is so, why study game theory?

Well, there are numerous examples in game theory that help us think 

differently. There are some theories developed such as Nash Equilibrium 

that relate to many real-life situations. In many real-world situations, the 

participants or the players are faced with a decision matrix similar to that 

of a “prisoner’s dilemma.” So, learning these concepts not only helps us 

formulate the problems in a more mathematical way, but also enables 
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us to make the best move. It lets us identify aspects that each participant 

should consider before choosing a strategic action in any given interaction. 

It tells us to identify the type of game first; who are the players, what are 

their objectives or goals, what could be their actions, etc., to be able to 

take the best action. Much decision-making in real life involves different 

parties; game theory provides the basis for rational decision-making.

The Byzantine Generals’ Problem that we studied in the previou 

section is widely used in distributed storage solutions and data centers to 

maintain data consistency across computing nodes.

�Computer Science Engineering
As mentioned already, it is clever engineering with the concepts from 

computer science that stitches the components of cryptography, game 

theory, and many others to build a blockchain. In this section, we will 

learn some of the important computer science components that are used 

in blockchain.

�The Blockchain
As we will see, a blockchain is actually a blockchain data structure; in the 

sense that it is a chain of blocks linked together. When we say a block, 

it can mean just a single transaction or multiple transactions clubbed 

together. We will start our discussion with hash pointers, which is the basic 

building block of blockchain data structure.

A hash pointer is a cryptographic hash pointing to a data block, where 

the hash pointer is the hash of the data block itself (Figure 2-19). Unlike 

linked lists that point to the next block so you can get to it, hash pointers 

point to the previous data block and provide a way to verify that the data 

has not been tampered with.
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The purpose of the hash pointer is to build a tamper resistant 

blockchain that can be considered as a single source of truth. How does 

blockchain achieve this objective? The way it works is that the hash of 

the previous block is stored in the current block header, and the hash of 

the current block with its block header will be stored in the next block’s 

header. This creates the blockchain as we can see in Figure 2-20.

Figure 2-19.  Hash pointer for a block of transactions

Figure 2-20.  Blocks in a blockchain linked through hash pointers

As we can observe, every block points to its previous block, known as 

“the parent block.” Every new block that gets added to the chain becomes 

the parent block for the next block to be added. It goes all the way to the 

first block that gets created in the blockchain, which is called “the genesis 

block.” In such a design where blocks are linked back with hashes, it is 

practically infeasible for someone to alter data in any block. We already 

looked at the properties of hash functions, so we understand that the 

hashes will not match if the data is altered. What if someone changes 

the hash as well? Let us focus on Figure 2-21 to understand how it is not 

possible to alter the data in any way.
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•	 What if you also change the hash stored in the block 

header of block-1235 so that it perfectly matches 

the altered data. In other words, you hash the data 

block-1234 after you alter it and replace that new hash 

with the one stored in block header of block-1235. 

After you do this, the hash of the block-1235 changes 

(because block-1235 means the data and the header 

together) and it does not match with the one stored in 

the block header of block-1236.

•	 One has to keep doing this all the way till the final or 

the most recent hash. Since everyone or many in the 

network already have a copy of the blockchain along 

with the most recent hash, in no way is it possible to 

hack into the majority of the systems and change all the 

hashes at a time.

•	 This makes it a tamper-proof blockchain data structure.

This clearly means that each block can be uniquely identified by its 

hash. To calculate this hash, you can use either the SHA2 or SHA3 family 

of hash functions that we discussed in the cryptography section. If you use 

SHA-256 to hash the blocks, it would produce a 256-bit hash output such as:

000000000000000a73b6a2af7bad40ec3fc2a83dafd76ef15f3d1b71a7132765

Figure 2-21.  Any attempt in changing Header or Block content 
breaks the entire chain. Assume that you altered the data in 
block-1234. If you do so, the hash that is stored in the block header of 
block-1235 would not match.

Chapter 2  How Blockchain Works



117

Notice that there are only 64 characters in it. Since the hashed output 

is represented using hexadecimal characters, and every hex digit can 

be represented using four bits, the output is 64 × 4 = 256 bits. You would 

usually see that the 256-bit hashed output is represented using the 64 hex 

characters in many places.

The structure of a block, that is, block size, the data and header 

sections, number of transactions in a block, etc., is something that 

you should decide while designing a blockchain solution. For existing 

blockchains such as Bitcoin, Ethereum, or Hyperledger, the structure 

is already defined and you have to understand that to build on top of 

these platforms. We will take a closer look at the Bitcoin and Ethereum 

blockchains later in this book.

�Merkle Trees
A Merkle tree is a binary tree of cryptographic hash pointers, hence it 

is a binary hash tree. It is named so after its inventor Ralph Merkle. It is 

another useful data structure being used in blockchain solutions such 

as Bitcoin. Merkle trees are constructed by hashing paired data (usually 

transactions at the leaf level), then again hashing the hashed outputs all 

the way up to the root node, called the Merkle root. Like any other tree, it is 

constructed bottom-up. In Bitcoin, the leaves are always transactions of a 

single block in a blockchain. We will discuss in a little while the advantages 

of using Merkle trees, so you can decide for yourself if the leaves would be 

transactions or a group of transactions in blocks. A typical Merkle tree can 

be represented as in Figure 2-22.
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Figure 2-22.  Merkle tree representation

Similar to the hash pointer data structure, the Merkle tree is also 

tamper-proof. Tampering at any level in the tree would not match with the 

hash stored at one level up in the hierarchy, and also till the root node. It is 

really difficult for an adversary to change all the hashes in the entire tree. 

It also ensures the integrity of the order of transactions. If you change just 

the order of the transactions, then also the hashes in the tree till the Merkle 

root will change.

Here is a situation. The Merkle tree is a binary tree and there should be 

an even number of items at the leaf level. What if there are an odd number 

of items? One good solution would be to duplicate the last transaction 

hash. Since it is the hash we are duplicating, it would mean just the same 

transaction and not create any issue such as double-spend or repeated 

transactions. That way, it is possible to balance the tree.

In the blockchain we discussed, if we were to find a transaction 

through its hash, or check if a transaction had happened in the past, how 

would we get to that transaction? The only way is to keep traversing till you 

encounter the exact block that matches the hash of the transaction. This is 

a case where a Merkle tree can help a great deal.
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Merkle trees provide a very efficient way to verify if a specific 

transaction belongs to a particular block. If there are “n” transactions in 

a Merkle tree (leaf items), then this verification takes just Log (n) time as 

shown in Figure 2-23.

Figure 2-23.  Verification in Merkle tree

To verify if a transaction or any other leaf item belongs to a Merkle 

tree, we do not need all items and the whole tree. Rather, a subset of it is 

needed as we can see in the diagram in Figure 2-23. One can just start with 

the transaction to verify along with its sibling (it is a binary tree so there 

would be one sibling leaf item), calculate the hash of those two, and see 

if it matches their parent hash. Then continue with that parent hash and 

its sibling at that level and hash them together to get their parent hash. 

Continuing this process all the way to the top root hash is the quickest 

possible way for transaction verification (just Log (n) time for n items). In 

the figure, only the solid rectangles are required and the dotted rectangles 

can be just computed, provided the solid rectangle data. Since there are 

eight transaction elements (n = 8), only three computations (log2 8 = 3) 

would be required for verification.
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Now, how about a hybrid of both blockchain data structure and 

Merkle tree? Imagine a situation in a blockchain where each block has a 

lot of transactions. Since it is a blockchain, the hash of the previous block 

is already there; now, including the Merkle root of all the transactions in 

a block can help in quicker verification of the transactions. If we have to 

verify a transaction that is claimed to be from, say, block-22456, we can get 

the transactions of that block, verify the Merkle tree, and confirm quickly 

if that transaction is valid. We already saw that verifying a transaction is 

quite easy and fast with Merkle trees. Though blocks in the blockchain 

are tamper resistant and do not provide even the slightest scope to 

change anything in a block, the Merkle tree also ensures that the order of 

transactions is preserved.

In a typical blockchain setting, there could be many situations where 

a node (for simplicity sake, assume any node that does not have the full 

blockchain data, i.e., a light node) has to verify if a certain transaction took 

place in the past. There are actually two things that need verification here: 

transaction as part of the block, and block as part of the blockchain. To 

do so, a node does not have to download all the transactions of a block, it 

can simply ask the network for the information pertaining to the hash of 

the block and the hash of the transaction. The peers in the network who 

have the relevant information can respond with the Merkle path to that 

transaction. Well, you might ask how to trust the data that an unknown 

peer in the network is sharing with you. You already know that the hash 

functions are one-way. So in no way can an adversarial node forge 

transactions that would match a given hash value; it is even difficult to do 

so from transaction level till the Merkle root.

The use of Merkle trees is not limited to just blockchains: they are 

widely used in many other applications such as BitTorrent, Cassandra—an 

NoSQL database, Apache Wave, etc.
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�Example Code Snippet for Merkletree

This section is just intended to give you a heads-up on how to code up a 

Merkle tree at its most basic level. Code examples are in Python but would 

be quite similar in different languages; you just have to find the right 

library functions to use.

# -*- coding: utf-8 -*-

from hashlib import sha256

class MerkelTree(object):

    def __init__(self):

        pass        

    def chunks(self,transaction,n):

        #This function yeilds "n" number of transaction at time

        for i in range (0, len(transaction),number):

            yield transaction[i:i+2]

    def merkel_tree(self,transactions):

        �#Here we will find the merkel tree hash of all 

transactions passed to this fuction

        #Problem is solved using recursion techqiue

        �# Given a list of transactions, we concatinate the 

hashes in groups of two and compute

        �# the hash of the group, then keep the hash of group. 

We repeat this step till

        # we reach a single hash

        sub_tree=[]

        for i in chunks(transactions,2):

            if len(i)==2:

                hash = sha256(str(i[0]+i[1])).hexdigest()

            else:
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                hash = sha256(str(i[0]+i[0])).hexdigest()

            sub_tree.append(hash)

        �# When the sub_tree has only one hash then we reached 

our merkel tree hash.

        #Otherwise, we call this fuction recursively

        if len(sub_tree) == 1:

            return sub_tree[0]

        else:

            return self.merkel_tree(sub_tree)

if __name__=='__main__':

    mk=MerkelTree()

    �merkel_hash= mk.merkel_tree(["TX1","TX2","TX3","TX4","TX5",

"TX6"])

    print merkel_hash

�Putting It All Together
To get to this section, we covered all the necessary components of 

blockchain that can help us understand how it really works. After going 

through them, namely cryptography, game theory, and computer 

science engineering concepts, we must have developed a notion of how 

blockchains might work. Though these concepts have been around for 

ages, no one could ever imagine how the same old stuff can be used to 

build a transforming technology such as blockchain. Let us have a quick 

recap of some fundamentals we covered so far, and we will build further 

understanding on those concepts. So here they are:

•	 Cryptographic functions are one-way and cannot be 

inverted. They are deterministic and produce the same 

output for a given input. Any changes to the input 

would produce a completely different output when 

hashed again.
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•	 Using public key cryptography, digital signatures are 

possible. It helps in verifying the authenticity of the 

person/entity that has signed. Considering the private 

key is kept confidential, it is not feasible to forge a 

signature with someone else’s identity. Also, if someone 

has signed on any document or a transaction, they 

cannot later deny they did not.

•	 Using game theoretic principles and best practices, 

robust systems can be designed that can sustain in 

most of the odd situations. Systems that can face the 

Byzantine Generals’ Problem need to be handled 

properly. Our approach to any system design should 

be such that the participants play by the rules to get the 

maximum payoff; deviating from the protocol should 

not really benefit them.

•	 The blockchain data structure, by using the 

cryptographic hashes, provides a tamper resistant 

chain of blocks. The usage of Merkle trees makes the 

transaction verification easier and faster.

With all these concepts in mind, let us now think of a real blockchain 

implementation. What problems can you think of that need to be 

addressed for such a decentralized system to work properly? Well, there 

are loads of them; some would be generic to most of the blockchain use 

cases and some would be specific to a few. Let us discuss at least some of 

the scenarios that need to be addressed:

•	 Who would maintain the distributed ledger of 

transactions? Should all the participants maintain, or 

only a few would do? How about the computing nodes 

that are not powerful enough to process transactions or 

do not have enough storage space to accommodate the 

entire history of transactions?
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•	 How is it possible to maintain a single consistent state 

of the distributed ledger? Network latency, packet 

drops, deliberate hacking attempts, etc. are inevitable. 

How would the system survive all these?

•	 Who would validate or invalidate the transactions? 

Would only a few authorized nodes validate, or all the 

nodes together would reach a consensus? What if some 

of the nodes are not available at a given time?

•	 What if some computing nodes deliberately want 

to subvert the system or try to reject some of the 

transactions?

•	 How would you upgrade the system when there is 

no centralized entity to take the responsibility? In a 

decentralized network, what if a few computing nodes 

upgrade themselves and the rest don’t?

There are in fact a lot more concerns that need to be addressed apart 

from the ones just mentioned. For now we will leave you with those 

thoughts, but most of those queries should be clarified by the end of this 

chapter.

Let us start with some basic building blocks of a blockchain system 

that may be required to design any decentralized solution.

�Properties of Blockchain Solutions
So far, we have only learned the technical aspects of blockchain solutions 

to understand how blockchains might work. In this section, we will learn 

some of the desired properties of blockchains.
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�Immutability

It is the most desired property to maintain the atomicity of the blockchain 

transactions. Once a transaction is recorded, it cannot be altered. If the  

transactions are broadcast to the network, then almost everyone has a  

copy of it. With time, when more and more blocks are added to the 

blockchain, the immutability increases and after a certain time, it becomes 

completely immutable. For someone to alter the data of so many blocks 

in a series is not practically feasible because they are cryptographically 

secured. So, any transaction that gets logged remains forever in the 

system.

�Forgery Resistant

A decentralized solution where the transactions are public is prone to 

different kinds of attacks. Attempts at forgery are the most obvious of all, 

especially when you are transacting anything of value. Cryptographic hash 

and digital signatures can be used to ensure the system is forgery resistant. 

We already learned that it is computationally infeasible to forge someone 

else’s signature. If you make a transaction and sign a hash of it, no one can 

alter the transaction later and say you signed a different transaction. Also, 

you cannot later claim you never did the transaction, because it is you who 

signed it.

�Democratic

Any peer-to-peer decentralized system should be democratic by design 

(may not be fully applicable to the private blockchain, which we will 

park for later). There should not be any entity in the system that is more 

powerful than the others. Every participant should have equal rights 

in any situation, and decisions are made when the majority reaches a 

consensus.
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�Double-Spend Resistant

Double-spend attacks are quite common in monetary as well as 

nonmonetary transactions. In a cryptocurrency setting, a double-spend 

attempt is when you try to spend the same amount to multiple people. 

Example: You have $100 in your account and you pay $90 to two or more 

parties is a type of double-spend. This is a little different when it comes 

to cryptocurrency such as Bitcoin where there is no notion of a closing 

balance. Input to a transaction (when you are paying to someone) is 

the output of another transaction where you have received at least 

the amount you are paying through this transaction. Assume Bob 

received $10 from Alice some time back in a transaction. Today if Bob 

wants to pay Charlie $8, then the transaction in which he received $10 

from Alice would be the input to transact with Charlie. So, Bob cannot 

use the same input (Alice’s $10 paid to him) multiple times to pay to 

other people and double-spend. Just to give you a different example: 

if someone owns some land and sells the same piece of land to two 

people.

In a centralized system it is quite easy to prevent double-spend 

because the central authority is aware of all the transactions. A blockchain 

solution should also be immune to such double-spend attacks. While 

cryptography ensures authenticity of a transaction, it cannot help prevent 

double-spend. Because, technically, both a normal transaction and a 

double-spend transaction are genuine. So, the only way possible to prevent 

double-spend is to be aware of all the transactions. If we are aware of all 

transactions that happened in the past, we can figure out if a transaction 

is an attempt to double-spend. So, the nodes that would validate the 

transactions should definitely be accessible to the whole blockchain data 

since the genesis block.
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�Consistent State of the Ledger

The properties we just discussed ensure that the ledger is consistent 

throughout, to some extent. Imagine a situation when some nodes 

deliberately want a transaction to not go through and to get rejected. Or, if 

somehow some nodes are not in sync with the ledger and hence not aware 

of a few transactions that took place while they were offline, then to them a 

transaction may look like fraudulent. So, how to ensure consensus among 

the participants is something that needs to be handled very carefully. 

Recollect the Byzantine Generals’ Problem. The right kind of consensus 

suitable for a given situation plays the most important role to ensure 

stability of a decentralized solution. We will learn different consensus 

mechanisms later in this book.

�Resilient

The network should be resilient enough to withstand temporary node 

failures, unavailability of some computing nodes at times, network latency 

and packet drops, etc.

�Auditable

A blockchain is a chain of blocks that are linked together through hashes. 

Since the transaction blocks are linked back till the genesis block, 

auditability already exists and we have to ensure that it does not break at 

any cost. Also, if one wants to verify whether a transaction took place in the 

past, then such verification should be quicker.

�Blockchain Transactions
When we say blockchain, we mean a blockchain of transactions, right? So 

it starts from a transaction and then the transaction goes through a series 

of steps and ultimately resides in the blockchain. Since blockchain is a 
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peer-to-peer phenomenon, if you are dealing with a use case that has a 

lot of transactions taking place every second, you may not want to flood 

the whole network with all transactions. Obviously when an individual 

or an entity is making a transaction, they just have to broadcast it to the 

whole network. Once that happens, it has to be validated by multiple 

nodes. Upon validation, it has to again get broadcast to the whole 

network for the transaction to get included in the blockchain. Now, why 

not a transaction chain instead of a blockchain? It may make sense to 

some extent if your business case does not involve a lot of transactions. 

However, if there are a huge number of transactions every second, then 

hashing them at transaction level, keeping a trail of it, and broadcasting 

that to the network can make the system unstable. You may want a certain 

number of transactions to be grouped in a block and broadcast that block. 

Broadcasting individual transactions can become a costly affair. Another 

good reason for a blockchain instead of a transaction chain is to prevent 

Sybil Attack. In Chapter 3, you will learn in more detail how the PoW 

mining algorithm is used and one node is chosen at random that could 

propose a block. If it was not the case, people might create replicas of their 

own node to subvert the system.

In its most simplified form, the blockchain transactions go through the 

following steps to get into the blockchain:

•	 Every new transaction gets broadcast to the network so 

that all the computing nodes are aware of that fact at 

the time it took place (to ensure the system is double-

spend resistant) .

•	 Transactions may get validated by the nodes to accept 

or reject by checking the authenticity.

•	 The nodes may then group multiple transactions into 

blocks to share with the other nodes in the network.
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•	 Here comes the difficult situation. Who would propose 

the block of transactions that they have grouped 

individually? Broadly speaking, the generation of new 

blocks should be controlled but not in a centralized 

fashion, and the mechanism should be such that every 

node is given equal priority. Every node agreeing upon 

a block is called the consensus, but there are different 

algorithms to achieve the same objective, depending 

on your use case. We will discuss different consensus 

mechanisms in the following section.

•	 Though there is no notion of a global time due to 

network latency, packet drops, and geographic 

locations, such a system still works because the blocks 

are added one after another in an order. So, we can 

consider that the blocks are time stamped in the order 

they arrive and get added in the blockchain.

•	 Once the nodes in the network unanimously accept a 

block, then that block gets into the blockchain and it 

includes the hash of the block that was created right 

before it. So this extends the blockchain by one block.

We already discussed the blockchain data structure and the Merkle 

trees, so we understand their value now. Recollect that when a node would 

like to validate a transaction, it can do so more efficiently by the Merkle 

path. The other nodes in the network do not have to share the full block of 

data to justify proof of membership of a transaction in a block. Technically 

speaking, memory efficient and computer-friendly data structures such as 

“Bloom filters” are widely used in such scenarios to test the membership.

Also, note that for a node to be able to validate a transaction, it should 

ideally have the whole blockchain data (transactions along with their 

metadata) locally. You should select an efficient storage mechanism that 

the nodes will adopt based on your use case.
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�Distributed Consensus Mechanisms
When the nodes are aware of the entire history of transactions by having 

a local copy of the full blockchain data to prevent double-spend, and they 

can verify the authenticity of a transaction through digital signatures, what 

is the use of consensus? Imagine the presence of one or more malicious 

nodes. Can’t they say an invalid transaction is a valid one, or vice versa? 

Recollect the Byzantine Generals’ Problem, which is most likely to occur in 

many decentralized systems. To overcome such issues, we need a proper 

consensus mechanism in place.

So far in our discussion, the one thing that is not clear yet is who 

proposes the block. Obviously, not every node should propose a block to 

the rest of the nodes at the same time because it is only going to create a 

mess; forget about the consistent state of the ledger. On the other hand, 

had it been the case with just transactions without grouping them into 

blocks, you could argue that if every transaction gets broadcast to the 

whole network and every node in the network casts a vote on those 

individual transactions, it would only complicate the system and lead to 

poor performance.

So, grouping transactions into blocks is important for obvious reasons 

and consensus is required on a block by block basis. The best strategy for this 

problem is that only one block should propose a block at a time and the rest 

of the nodes should validate the transactions in the block and add to their 

blockchains if transactions are valid. We know that every node maintains its 

own copy of the ledger and there is no centralized source to sync from. So, if 

any one node proposes a block and the rest of the nodes agree on it, then all 

those nodes add that block to their respective blockchains. In such a design, 

you would prefer that there are at least a few minutes of gap in block creation 

and it should not be the case where multiple blocks arrive at the same time. 

Now the question is: who might be that lucky node to propose a block? This 

is the trickiest part and can lead to proper consensus; we will discuss this 

aspect under different consensus mechanisms.
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These consensus mechanisms actually come from game theory. Your 

system should be designed such that the nodes get the most benefit if they 

play by the rules. One of the aspects to ensure the nodes behave honestly 

is to reward for honest behavior and punish for fraudulent activities. 

However, there is a catch here. In a public blockchain such as Bitcoin, one 

can have many different public identities and they are quite anonymous. 

It gets really difficult to punish such identities because they have a choice 

to avoid that punishment by creating new identities for themselves. On 

the other hand, rewarding them works great, because even if someone 

has multiple identities, they can happily reap the rewards given to them. 

So, it depends on your business case: if the identities are anonymous, 

then punishing them may not work, but may work well if the identities 

are not anonymous. You may want to consider this reward/punish aspect 

despite having a great mechanism to select a node that would propose 

the next block. This is because you would never know in advance if the 

node selected is a malicious node or an honest one. Keep in mind the term 

mining that we may be using quite often, and it would mean generating 

new blocks.

The goal of consensus is also to ensure that the network is robust 

enough to sustain various types of attacks. Irrespective of the types of 

consensus algorithms one may choose depending on the use case, it has 

to fall into the Byzantine fault tolerant consensus mold to be able to get 

accepted. Let us now learn some of the consensus mechanisms pertaining 

to the blockchain scenarios that we may be able to use in different 

situations.

�Proof of Work

The PoW consensus mechanism has been around for a long time now. 

However, the way it was used in Bitcoin along with other concepts made it 

even more popular. We will discuss this consensus mechanism at its basic 

level and look at how it is implemented in Bitcoin in Chapter 3.
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The idea behind the PoW algorithm is that certain work is done for 

a block of transactions before it gets proposed to the whole network. 

A PoW is actually a piece of data that is difficult to produce in terms of 

computation and time, but easy to verify. One of the old usages of PoW was 

to prevent email spams. If a certain amount of work is to be done before 

one can send an email, then spamming a lot of people would require a 

lot of computation to be performed. This can help prevent email spams. 

Similarly, in blockchain as well, if some amount of compute-intensive 

work is to be performed before producing a block, then it can help in two 

ways: one is that it will definitely take some time and the second is, if a 

node is trying to inject a fraudulent transaction in a block, then rejection of 

that block by the rest of the nodes will be very costly for the one proposing 

the block. This is because the computation performed to get the PoW will 

have no value.

Just think about proposing a block without much of effort vs. doing 

some hard work to be able to propose a block. If it was with almost no 

effort, then proposing a node with a fraudulent transaction and getting 

rejected would not have been a big concern. People may just keep 

proposing such blocks with a hope that one may get through and make it 

to the blockchain sometime. On the contrary, doing some hard work to 

propose a block prevents a node from injecting a fraudulent transaction in 

a subtle way.

Also, the difficulty of the work should be adjustable so that there is a 

control over how fast the blocks can get generated. You must be thinking, if 

we are talking about some work that requires some computation and time, 

what kind of work must it be? It is very simple yet tricky work. An example 

would help here. Imagine a problem where you have to find a number 

which, if you hash, the hashed output would start with the alphabet “a.” 

How would you do it? We have learned about the hash functions and know 

that there are no shortcuts to it. So you would just keep guessing (maybe 

take any number and keep incrementing by one) the numbers and keep 

hashing them to see if that fits the bill. If the difficulty level needs to be 
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increased, then one can say it starts with three consecutive “a”s. Obviously, 

finding a solution for something like “axxxxxxx” is easier to find compared 

with “aaaxxxxx” because the latter is more constrained.

In the example just given, if multiple different nodes are working to 

solve such a computational puzzle, then you will never know which node 

would solve it first. This can be leveraged to select a random node (this 

time it is truly random because there is no algorithm behind it) that solves 

the puzzle and proposes the block. It is extremely important to note that 

in case of public blockchains, the nodes that are investing their computing 

resources have to be rewarded for honest behavior, else it would be 

difficult to sustain such a system.

�Proof of Stake

The Proof of Stake (PoS) algorithm is another consensus algorithm that is 

quite popular for distributed consensus. However, what is tricky about it 

is that it isn’t about mining, but is about validating blocks of transactions. 

There are no mining rewards due to generation of new coins, there are only 

transaction fees for the miners (more accurately validators, but we will 

keep using ‘miners’ so it gets easier to explain).

In PoS systems, the validators have to bond their stake (mortgage the 

amount of cryptocurrency thay would like to keep at stake) to be able to 

participate in validating the transactions. The probability of a validator 

producing a block is proportional to their stake; the more the amount at 

stake, the greater is their chance to validate a new block of transactions. 

A miner only needs to prove they own a certain percentage of all coins 

available at a certain time in a given currency system. For example, if a 

miner owns 2% of all Ether (ETH) in the Ethereum network, they would be 

able to mine 2% of all transactions across Ethereum. Accordingly, who gets 

to create the new block of transaction is decided, and it varies based on the 

PoS algorithm you are using. Yes, there are variants of PoS algorithm such 

as naive PoS, delegated PoS, chain-based PoS, BFT-style PoS, and Casper 
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PoS, to name a few. Delegated PoS (DPOS) is used by Bitshares and Casper 

PoS is being developed to be used in Ethereum.

Since the creator of a block in a PoS system is deterministic (based on 

the amount at stake), it works much faster compared with PoW systems. 

Also, since there are no block rewards and just transaction fees, all the 

digital currencies need to be created in the beginning and their total 

amount is fixed all through.

The PoS systems may provide better protection against malicious 

attacks because executing an attack would risk the entire amount at stake. 

Also, since it does not require burning a lot of electricity and consuming 

CPU cycles, it gets priority over PoW systems where applicable.

�PBFT

PBFT is the acronym for the Practical Byzantine Fault Tollerance 

algorithm, one of the many consensus algorithms that one can consider 

for their blockchain use case. Out of so many blockchain initiatives, 

Hyperledger, Stellar, and Ripple are the ones that use PBFT consensus.

PBFT is also an algorithm that is not used to generate mining rewards, 

similar to PoS algorithms. However, the technicalities in their respective 

implementations are different. The inner working of PBFT is beyond 

the scope of this book, but at a high level, requests are broadcast to all 

participating nodes that have their own replicas or internal states. When 

nodes receive a request, they perform the computation based on their 

internal states. The outcome of the computation is then shared with all 

other nodes in the system. So, every node is aware of what other nodes 

are computing. Considering their own computation results along with 

the ones received from ther nodes, they make a decision and commit to a 

final value, which is again shared across the nodes. At this moment, every 

node is aware of the final decision of all other nodes. Then they all respond 

with their final decisions and, based on the majority, the final consensus is 

achieved. This is demonstrated in Figure 2-24.
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PBFT can be efficient compared with other consensus algorithms, 

based on the effort required. However, anonymity in the system may be 

compromised because of the way this algorithm is designed. It is one of 

the most widely used algorithms for consensus even in non-blockchain 

environments.

�Blockchain Applications
While we looked at the nuts and bolts of blockchain throughout this 

chapter, it is also important that we look at how it is being used in 

building blockchain solutions. There are applications being built that 

treat blockchain as a backend database behind a web server, and there are 

applications that are completely decentralized with no centralized server. 

Bitcoin blockchain, for example, is a blockchain application where there is 

no server to send a request to! Every transaction is broadcast to the entire 

network. However, it is possible that a web application is built and hosted 

in a centralized web server, and that makes Bitcoin blockchain updates 

when required. Take a look at Figure 2-25 where a Bitcoin node broadcasts 

the transactions to the nodes that are reachable at a given point in time.

Figure 2-24.  PBFT consensus approach
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From a software application perspective, every node is self-sufficient 

and maintains its own copies of the blockchain database. Considering 

Bitcoin blockchain as a benchmark, the blockchain applications with no 

centralized servers appear to be the purest decentralized applications 

and most of them fall under the “public blockchain” category. Usually for 

such public blockchains, usage of resources from cloud service providers 

such as Microsoft Azure, IBM Bluemix, etc. are not quite popular yet. For 

most of the private blockchains, however, the cloud service providers have 

started to gain popularity. To give you an analogy, there could be one or 

more web applications for different departments or actors, all of them 

having their own Blockchin backends and still the blockchains are in sync 

with each other. In such a setting, though technical decentralization is 

achieved, politically it could still be centralized. Even though control or 

governance is enforced, the system is still able to maintain transparency 

and trust because of the accessibility to single source of truth. Take a 

look at Figure 2-26, which may resemble most of the blockchain POCs or 

applications being built on blockchain where blockchains are hosted by 

some cloud service provider by consuming their blockchain-as-a-Service 

(BaaS) offering.

Figure 2-25.  Bitcoin blockchain nodes
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It may not be necessary that all the departments have their own 

different web application. One web application can handle requests 

from multiple different actors in the system with proper access controm 

mechanisms. It might be a good idea that all the actors in the system have 

their own copies of blockchains. Having a local copy of blockchain not only 

helps maintain transparency in the system, but also may help generate 

data-driven insights with ready access to data all the time. The different 

“blockchains” maintained by different actors in the system are consistent 

by design, thanks to consensus algorithms such as PoW, PoS, etc. Most of 

the private blockchains prefer any consensus algorithm other than PoW to 

mitigate heavy resource consumption, and save electricity and computing 

power as much possible. The PoS consensus mechanism is quite common 

when it comes to private or consortium blockchains. Since blockchain 

is disrupting many aspects of businesses, and there was no better way of 

enabling transparency among them, creating a blockchain solution in the 
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cloud with a “pay as you use” model is gaining momentum. Cloud services 

are helping businesses leapfrog in their blockchain-enabled digital 

transformation journey with minimal upfront investments.

There are also decentralized applications (DApps) being built on 

Ethereum blockchain networks. These applications could be permissioned 

on private Ethereum or could be permissionless on a public Ethereum 

network. Also, these applications could be for different use cases on the 

same public Ethereum network. Though we will cover the Ethereum-

specific details later in this book, just look at Figure 2-27 for a high-level 

understanding of how those applications might look.

Figure 2-27.  DApps on Ethereum network

As discussed already in previous sections, developing blockchain 

applications is only limited by your imagination. Pure blockchain native 

applications could be built. Applications that treat blockchain as just a 

backend are also being built, and there are hybrid applications that are 

also being built that use the legacy applications and use blockchain for 
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some specific purpose only. So far, blockchain scalability is one of the 

biggest concerns. Though the scalability itself is in research, let us learn 

some of the scalability techniques.

�Scaling Blockchain
We looked at blockchain from a historic perspective and how it proves to 

be one of the most disruptive technologies as of today. While exploring it 

technically in this chapter, we learned about the scalability issues inherent 

to most of the Blockchin flavors. By design, blockchains are difficult to 

scale and thus a research area in academia and for some innovation-

driven corporates. If you look at the Bitcoin adoption, it is not being used 

to replace fiat currencies due to the inherent scalability challenges. You 

cannot buy a coffee using Bitcoin and wait for an hour for the transaction 

to settle. So, Bitcoins are being used as an asset class for investers to invest 

in. A Bitcoin blockchain network is not capable of accommodating as 

many transactions as that of Visa or MasterCard, as of today.

Recollect the consensus protocols we have studied so far, such as 

PoW of Bitcoins or Ethereum, or PoS and other BFT consensus of some 

other blockchain flavors such as Multichain, Hyperledger, Ripple, or 

Tendermint. All of these consensus algorithms’ primary objective is 

Byzantine fault tolerance. By design, every node (at least the full nodes) 

in a blockchain network maintains its own copy of the entire blockchain, 

validates all transactions and blocks, serves requests from other nodes in 

the network, etc. to achieve decentralization, which becomes a bottleneck 

for scalability. Look at the irony here—we add more servers in a centralized 

system for scalability, but the same does not apply in a decentralized 

system because with more number of nodes, the latency only increases. 

While the level of decentralization could increase with a greater number 

of nodes in a decentralized network, the number of transactions in 

the network also increases, which leads to increased requirements of 
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computing and storage resources. Keep in mind that this situation is 

applicable more on public blockchains and less so for private blockchains. 

Private blockchains could easily scale compared with the public ones 

because the controlling entities could define and set node specifications 

with high computation power and more bandwidth. Also, there could 

be certain tasks offloaded from blockchain and computed off-chain that 

could help the system scale well.

In this chapter, we will learn some of the generic scaling techniques, 

and discuss Bitcoin- and Ethereum-specific scaling techniques in their 

respective chapters. Please keep in mind that all scaling techniques may 

not apply to all kinds of blockchain flavors or use cases. The best way is to 

understand the techniques technically and use the best possible one in a 

given situation.

�Off-Chain Computation
Off-chain computation is one of the most promising techniques to scale 

blockchain solutions. The idea is to limit the usage of blockchain and do 

the heavy lifting outside of it, and only store the outcomes on blockchain. 

Keep in mind that there is no standard definition of how the off-chain 

computation should happen. It is heavily dependent on the situation 

and the people trying to address it. Also, different blockchain flavors may 

require different approaches for off-chain computation. At a high level, it is 

like another layer on top of blockchain that does heavy, compute-intensive 

work and wisely uses the blockchain. Obviously, you may not be able to 

retain all the characteristics of blockchain by doing computations off-

chain, but it is also true that you may not need blockchain for all kinds of 

computing requirements and may use it only for specific pain points.

The off-chain computations could be on a sidechain, could be 

distributed among a random group of nodes, or could be centralized as 

well. The side chains are independent of the main blockchain. It not only 

helps scale the blockchain well, it also isolates damages to the sidechain 
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and prevents the main blockchain from any damages from a sidechain. 

One such example sidechain is the “Lightning Network” for Bitcoins that 

should help in faster execution of transactions with minimal fee; that 

will support micropayments as well. Another example of a sidechain for 

Bitcoins is “Zerocash,” whose primary objective is not really scalability, 

but privacy. If you are using Zerocash for Bitcoin transactions, you cannot 

be tracked and your privacy is preserved. We will limit our discussion to 

the generic scalability techniques and not get into a detailed discussion of 

Bitcoin scalability in this book.

One obvious question that might come up at the moment is how 

people would check the authenticity of the transactions if they are sent 

off-chain. First, to create a valid transaction, you do not need a blockchain. 

We learned in the “Cryptography” section in this chapter about the 

assymetric key cryptography that is used by the blockchain system. To 

make a transaction, you have to be the owner of a private key so you can 

sign the transaction. Once the transaction is created, there are advantages 

when it gets into the blockchain. Double-spend is not possible with 

Bitcoin blockchain, and there are other advantages, too. For now, the 

only objective is to get you on board with the fact that you can create a 

transaction as long as you own the private key for your account.

Bitcoin blockchains are a stateless blockchain, in the sense that they do 

not maintain the state of an account. Everything in Bitcoin blockchain is 

present in the form of a transaction. To be able to make a transaction, you 

have to consume a previous transaction and there is no notion of “closing 

balance” for an account, as such. On the contrary, Ethereum blockchain is 

a “stateful” one! The blocks in Ethereum blockchain contain information 

regaring the state of the entire block where account balance is also a part. 

The state information takes up significant space when every node in the 

network maintains it. This situation is valid for other blockchains as well 

that are stateful.
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Let’s take an example to understand this better. Alice and Bob are two 

parties having multiple transactions between each other. Let’s say they 

usually have 50 monetary transactions in a month. In a stateful blockchain, 

all these individual transactions would have their state information, 

and that will be maintained by all the nodes. To address this challenge, 

the concept of “state channels” is introduced. The idea is to update the 

blockchain with the final outcome, say, at the end of the month or when 

a certain transaction threshold is reached, and not with each and every 

transaction.

State channels are essentially a two-way communication channel 

between users, objects, or services. This is done with absolute security by 

using cryptographic techniques. Just to get a heads-up on how it works, 

take a look at Figure 2-28.

Figure 2-28.  State channels for off-chain computation

Notice that the off-chain state channels are mostly private and 

confined among a group of participants. Keep in mind that the state of 

blockchain for the participants needs to be locked as the first step. Either 

it could be a MultiSig scheme or a smart contract-based locking. After 

locking, the participants make transactions among each other that are 

cryptographically secured. All transactions are cryptographically signed, 

which makes them verifiable and these transactions are not immediately 
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submitted to the blockchain. As discussed, these state channels could have 

a predefined lifespan, or could be bound to the amount of transactions 

being carried out in terms of volume/quantity or any other quantifiable 

measure. So, the final outcome of the transactions gets settled on the 

blockchain and that unlocks the state as the final step.

State channels could be very differently implemented in different 

use cases, and their implementations are actually left to the developers. 

It is certainly a way forward and is one of the most critical components 

for mainstream adoption of blockchain applications. For Bitcoin, the 

Lightning Network was designed for off-chain computation and to 

make the payments transaction faster. Similarly, the “Raiden Network” 

was designed for Ethereum blockchain. There are many other such 

developments to make micropayments faster and more feasible on 

blockchain networks.

�Sharding Blockchain State
Sharding is one of the scalability techniques that has been there for ages 

and has been a more sought-after topic for databases. People used this 

technique differently in different use cases to address specific scalability 

challenges. Before we understand how it could be used in scaling 

blockchain as well, let us first understand what it means.

Disk read/write has always been a bottleneck when dealing with huge 

data sets. When the data is partitioned across multiple disks, the read/

write could be performed in parallel and latency decreases significantly. 

This technique is called sharding. Take a look at Figure 2-29.
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Notice in Figure 2-29 how horizontal partitioning is done to distribute 

a 300GB database table into three shards of 100GB each and stored 

on separate server instances. The same concept is also applicable for 

blockchain, where the overall blockchain state is divided into different 

shards that contain their own substates. Well, it is definitely not as easy as 

sharding a database with just doing horizontal partitioning.

So, how does sharding really work in the context of blockchain? The 

idea is that the nodes wouln’t be required to download and keep a copy 

of the entire blockchain. Instead, they would download and keep the 

portions (shards) relevant to them. By doing so, they get to process only 

those transactions that are relevant to the data they store, and parallel 

execution of transactions is possible. So, when a transaction occurs, it is 

routed to only specific nodes depending on which shards they affect. If 

you look at it from a different lens, all the nodes are not required to do all 

sorts of calculations and verifications for each and every transaction. A 

mechanism or a protocol could be defined for communication between 

shards when more than one shard is required to process any specific 

Figure 2-29.  Database sharding example
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transactions. Please keep in mind that different blockchains might have 

different variants of sharding.

To give you an example, you might choose a specific sharding 

technique for a given situation. One example could be where shards 

are required to have multiple unique accounts in them. In other words, 

each unique account is in one shard (more applicable for Ethereum style 

blockchains that are stateful), and it is very easy for the accounts in one 

shard to transact among themselves. Obviously, one more level extraction 

at a shard level is required for sharding to work, and the nodes could keep 

only a subset of the information.

�Summary
In this chapter, we took a deep dive into the core fundamentals of 

cryptography, game theory, and computer science engineering. The 

concepts learned would help you design your own blockchain solution 

that may have some specific needs. Blockchain is definitely not a silver 

bullet for all sorts of problems. However, for the ones where blockchain 

is required, it is highly likely that different flavors of blockchain solutions 

would be needed with different design constructs.

We learned different cryptographic techniques to secure transactions 

and the usefulness of hash functions. We looked at how game theory 

could be used to design robust solutions. We also learned some of the core 

computer science fundamentals such as blockchain data structure and 

Merkle trees. Some of the concepts were supplimented with example code 

snippets to give you a jump start on your blockchain assignments.

In the next chapter, we will learn about Bitcoin as a blockchain use 

case, and how exactly it works.

Chapter 2  How Blockchain Works



146

�References
New Directions in Cryptography

Diffie, Whitfield; Hellman, Martin E., “New Directions in 

Cryptography,” IEEE Transactions on Information Theory, Vol IT-22, No 6, 

https://ee.stanford.edu/~hellman/publications/24.pdf, November, 

1976.

Kerckhoff ’s Principle
Crypto-IT Blog, “Kerckhoff’s Principle,” www.crypto-it.net/eng/

theory/kerckhoffs.html.

Block Cipher, Stream Cipher and Feistel Cipher
http://kodu.ut.ee/~peeter_l/teaching/kryptoi05s/streamkil.pdf.

www.cs.utexas.edu/~byoung/cs361/lecture45.pdf.

�www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/

Wk2.1.DES.pdf.

�https://engineering.purdue.edu/kak/compsec/NewLectures/

Lecture3.pdf.

Digital Encryption Standard (DES)
www.facweb.iitkgp.ernet.in/~sourav/DES.pdf.

Advanced Encryption Standard (AES)
www.facweb.iitkgp.ernet.in/~sourav/AES.pdf.

AES Standard Reference
National Institute of Standards and Technology (NIST), “Announcing 

the Advanced Encryption Standard (AES),” Federal Information Processing 

Standards Publication 197, http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.197.pdf, November 26, 2001.

Chapter 2  How Blockchain Works

https://ee.stanford.edu/~hellman/publications/24.pdf
http://www.crypto-it.net/eng/theory/kerckhoffs.html
http://www.crypto-it.net/eng/theory/kerckhoffs.html
http://kodu.ut.ee/~peeter_l/teaching/kryptoi05s/streamkil.pdf
http://www.cs.utexas.edu/~byoung/cs361/lecture45.pdf
http://www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/Wk2.1.DES.pdf
http://www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/Wk2.1.DES.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf
http://www.facweb.iitkgp.ernet.in/~sourav/DES.pdf
http://www.facweb.iitkgp.ernet.in/~sourav/AES.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf


147

Secured Hash Standard
National Institute of Standards and Technology (NIST), “Announcing 

the Advanced Encryption Standard (AES),” Federal Information Processing 

Standards Publication 197, http://csrc.nist.gov/publications/fips/

fips180-4/fips-180-4.pdf, November 26, 2001.

SHA-3 Standard: Permutation-Based Hash and Extendable-Output 
Functions

NIST, “Announcing DraftFederl Information Processing Standard 

(FIPS) 202, SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions, and Draft Revision of the Applicability Clause of FIPS 

180-4, Secure Hash Standard, and Request for Comments,” https://csrc.

nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-

for-Com, May 28, 2014.

SHA-3
Paar, Christof, Pelzl, Jan, “SHA-3 and the Hash Function Keccak,” 

Understanding Cryptography—A Textbook for Students and Practitioners, 

(Springer, 2010), https://pdfs.semanticscholar.org/8450/06456ff132a

406444fa85aa7b5636266a8d0.pdf.

RSA Algorithm
Kaliski, Burt, “The Mathematics of the RSA Public-Key Cyptosystem,” 

RSA Laboratories, www.mathaware.org/mam/06/Kaliski.pdf.

Milanov, Evgeny, “The RSA Algorithm,” https://sites.math.

washington.edu/~morrow/336_09/papers/Yevgeny.pdf. June 3, 2009.

Game Theory
Pinkasovitch, Arthur, “Why Is Game Theory Useful in Business?,” 

Investopedia, www.investopedia.com/ask/answers/09/game-theory-

business.asp, December 19, 2017.

Chapter 2  How Blockchain Works

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://pdfs.semanticscholar.org/8450/06456ff132a406444fa85aa7b5636266a8d0.pdf
https://pdfs.semanticscholar.org/8450/06456ff132a406444fa85aa7b5636266a8d0.pdf
http://www.mathaware.org/mam/06/Kaliski.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
http://www.investopedia.com/ask/answers/09/game-theory-business.asp
http://www.investopedia.com/ask/answers/09/game-theory-business.asp


148

Proof of Stake Algorithm
Buterin, Vitalik, “A Proof of Stake Design Philosophy,” Medium, 

https://medium.com/@VitalikButerin/a-proof-of-stake-design-

philosophy-506585978d51, December 30, 2016.

Ray, James, “Proof of Stake FAQ,” Ethereum Wiki, https://github.

com/ethereum/wiki/wiki/Proof-of-Stake-FAQ.

Enabling blockchain Innovations with Pegged Sidechains
Back, Adam, Corallo, Matt, Dash Jr, Luke, et al., “Enabling blockchain 

Innovations with Pegged Sidechains,” https://blockstream.com/

sidechains.pdf.

Chapter 2  How Blockchain Works

https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf


149© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_3

CHAPTER 3

How Bitcoin Works
Blockchain technology is all the rage these days, thanks to Bitcoin! 

blockchain as we know it is a gift of Bitcoin and its inventor, Satoshi 

Nakamoto, to the whole world. If you are wondering who Satoshi 

Nakamoto is, it is the name used by the unknown person or persons who 

originated Bitcoin. We suggest that you understand and appreciate the 

wonderful technology behind Bitcoin without searching for the inventor. 

Learning the technical fundamentals of Bitcoin will enable you to 

understand the other blockchain applications that are there in the market.

Since Bitcoin testified to the robustness of blockchain technology for 

years, people now believe in it and have started exploring other possible 

ways to use it. In the previous chapter, we already got the hang of how 

blockchain works at a technical level, but learning Bitcoin can give 

you the real taste of blockchain. You may want to consider Bitcoin as a 

cryptocurrency use case of blockchain technology. So, this chapter will not 

only help you understand how Bitcoin works in particular, but also give 

you a perspective of how different use cases can be built using blockchain 

technology, the way Bitcoin is built.

We will cover Bitcoin in greater detail throughout this chapter and 

while doing so, a lot of blockchain fundamentals will also be clarified 

with more practical insights. If you are already familiar with the Bitcoin 

fundamentals, you may skip this chapter. Otherwise, we advise you to 

follow through the concepts in the order presented. This chapter explains 

what Bitcoin is, how it is designed technically, and provides an analysis of 

some inherent strengths and weaknesses of Bitcoin.
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�The History of Money
Ever wonder what money is and why it even exists? Money is primarily the 

medium of exchange for exchanging value, that is anything of value. It has 

a history to it. We will quickly recap the history to be able to understand 

how money has eveolved to how we know it today, and how Bitcoin 

furthers it to the next level.

Not everyone has everything. In the good old days when there were 

no notions of currency or money, people still figured out how they could 

exchange what they had in surplus for what they needed from someone 

else. Those were the days of the barter system. Wheat in exchange for 

peddy or oranges for lemons was the system. This was all good, but what 

if someone having wheat needs medicine that the other person does not 

have? Example: Alice has wheat and needs medicine, but Bob knows 

she has access to someone who has oranges, and Bob needs wheat. In 

this situation, the exchange is not working out. So, they have to find a 

third person, Charlie, who might need oranges and as well has surplus 

medicine. A pictorial representation of this scenario is shown in Figure 3-1.

Figure 3-1.  The primitive barter system
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It was always tough to find a person such as Charlie in the previous 

example who could fit in the puzzle so easily; this problem had to be 

solved. So, people started thinking of a commoditized system of value 

exchange. There were a few items that everyone would need, such as 

milk, salt, seeds, sheep, etc. This system almost worked out! Soon after, 

people realized that it was quite inconvenient and difficult to store such 

commodities.

Eventually, better techniques were found to be used as financial 

instruments, such as metal pieces. People valued the rare metals more 

than the usual ones. Gold and silver metals topped the list as they wouldn’t 

corrode. Then countries started minting their own currency (metal coins 

with different weights) with their official seal in them. Though the metal 

pieces and coins were better than the previous system, as one could 

easily store and carry them, they were vulnerable to theft. Temples came 

into rescue as people trusted in them and had a strong belief that no one 

would steal from temples. The priests would give a receipt to the person 

depositing gold that would mention the amount of gold/silver received, as 

a promise to acknowledge their deposit and give back to the bearer of the 

receipt the same when they returned. The person bearing the receipt could 

circulate the receipt in the market to get what they wanted. This was the 

beginning of our banking system. The receipt worked, as the fiat currency 

and the temples played the role of centralized banks that people trusted. 

Refer to Figure 3-2 to understand how this system appeared back then.
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In the system just mentioned, currency was always backed by some 

precious metal such as gold or silver. This system continued even after the 

goverenments and banks replaced the temples. This is how the commodity 

currency came up in the market to enable a universal medium of value 

exchange for the goods and services. Whatever currency was there in those 

days was all backed by gold/silver.

Slowly, “fiat currency” was introduced by the governments as legal 

tender, which was no longer backed by gold or silver. It was purely trust 

based, in the sense that people did not have a choice but to trust the 

government. Fiat currency does not have any intrinsic value, it is just 

backed by the government. Today, the money that we know of is all fiat 

currencies. So, the value of money today depends on the stability and 

performance of the governments in whose jurisdiction the currency 

is being issued and used. Those paper currencies were the money 

themselves and there was nothing more valubale in the banks. This was 

the state of banking systems and at the same time the digital world was just 

forming up.

Figure 3-2.  The beginning of the banking era
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Around the 1990s, the Internet world was gaining momentum and the 

banking systems were getting digitized. Since some level of discomfort was 

still there with fiat currencies, since they were perishable and vulnerable 

to theft, banks assured that people could just go digital! This was the era 

when even the paper notes weren’t required to be printed. Money became 

the digital numbers in the computer systems of banks. Today, if every 

account holder went to their respectve bank and demanded the currency 

notes for the amount of money they hold in their accounts, the banks 

would be in big trouble! The total real money in circulation is extremely 

marginal compared with the amount of digital money worldwide.

�Dawn of Bitcoin
In the first chapter we looked at the technology aspects of the Internet 

revolution, and in the previous section of this chapter we looked at 

the evolution of money. We should now look at them side by side to 

understand Satoshi Nakamoto’s perspective behind designing Bitcoin—a 

cryptocurrency. In this section and elsewhere in this text, we will try to 

elaborate on Satoshi’s statements in the paper he wrote on Bitcoin.

We learned about temples and then governments and banks for the 

role they played in the currency systems that eveolved from barter systems. 

Even today, the situation is just the same. If you zoom in a bit on these 

systems, you will find that the one pivotal thing that makes these systems 

stable is the “trust” element. People trusted temples, and then they trusted 

governments and banks. The entire commerce on the Internet today relies on 

the centralized, trusted third parties to process payments. Though the Internet 

was designed to be peer-to-peer, people build centralized systems on it to 

reflect the same old practice. Well, technically building a peer-to-peer system 

back in the 2000s was quite tough considering the maturity of technology 

during that time. Consequently, the cost of transactions, time taken for a 

transaction to settle, and other issues due to centralization were obvious. This 

wasn’t the case with physical currencies, as transactions meant settlement.
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Could there be a digital currency backed by computing power, the 

same way gold was used to back the money in circulation? The answer 

is “Yes,” thanks to Satoshi’s Bitcoins. Bitcoins are designed to enable 

electronic payments between two parties based on cryptographic proof, 

and not based on trust due to intermediary third parties. It is possible 

today because of the technological advancements. In this chapter, we will 

see how Satoshi Nakamoto combined cryptography, game theory, and 

computer science engineering fundamentas to design the Bitcoin system 

in 2008. After it went live in 2009 and till today, the system is quite stable 

and robust enough to sustain any kind of cyber attacks. It stood the test of 

time and positioned itself as a global currency.

�What Is Bitcoin?
Blockchain offers cryptocurrency: digital money! Just as we can transact 

with physical currency without banks or other centralized entities, Bitcoin 

is designed to facilitate peer-to-peer monetary transactions without 

trusted intermediaries. Let us look at what it is and then learn later in the 

chapter how it really works. Bitcoin is a decentralized cryptocurrency that 

is not limited to any nation and is a global currency. It is decentralized 

in every aspect—technical, logical, as well as political. As and when the 

transactions are validated, new Bitcoins get mined and a maximum of 

21 million Bitcoins can ever be produced. Approximately, to reach 21 

million Bitcoins, it would be take until the year 2140. Anyone with good 

computing power can participate in mining and generate new Bitcoins. 

After all the Bitcoins get generated, no new coins can be minted and only 

the ones in circulation would be used. Note that Bitcoins do not have fixed 

denominations such as the national fiat currencies. As per design, the 

Bitcoins can have any value with eight decimal places of precision. So, the 

smallest value in Bitcoin is 0.00000001 BTC, which is called 1 Satoshi.
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The miners mine the transactions to mint new coins and also consume 

the transaction fee that the person willing to make a transaction is ready 

to pay. When the total number of coins reaches 21 million, the miners 

would validate the transactions solely for the transaction fees. If someone 

tries to make a transaction without a transaction fee, it may still get mined 

because it is a valid transaction (if at all it is) and also the miner is more 

interested in the mining reward that lets him generate new coins.

Are you wondering what decides the value of Bitcoins? When currency 

was backed by gold, it had great significance and was easy to assess 

the value based on gold standards. When we say Bitcoin is backed by 

the computing power that people use for mining, that is not enough to 

understand how it attains its value. Here is a litle bit of economics required 

to understand it.

When fiat currency was launched for the first time, it was backed by 

gold. Since people believed in gold, they believed in currency as well. 

After a few decades, currency was no longer backed by gold and was 

totally dependent on the governments. People continued believing in it 

because they themselves form or contribute to the formation of their own 

government. Since the governments ensure its value, and people trust it, 

so it attains that value. In an international setting, the value of currency of 

specific countries depends on various factors and the most important of 

them is “supply and demand.” Please keep in mind that some countries 

that printed a lot of fiat currency notes went bankrupt; their economy went 

down! There has to be a balance and to understand this, more economics 

is needed, which is beyond the scope of this book. So, let us get back to 

Bitcoins for now.

When Bitcoin was first launched, it did not have any official price or 

value that people would believe. If one would sell it for some US dollars 

(USD), I would never have bought those initially. Gradually when the 

exchange started taking place, it developed a price and one Bitcoin was 
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not even one USD then. Since Bitcoins are generated by a competitive and 

decentralized process called “mining,” and they are generated at a fixed 

rate with an upper cap of 21 million Bitcoins in total that can ever exist, 

this makes Bitcoin a scarce resource. Now relating this context back to the 

game of “supply and demand,” the value of Bitcoin started inflating. Slowly, 

when the entire globe started believing in it, its price even skyrocketed 

from a few USDs to thousands of USDs. Bitcoin adoption among the users, 

merchants, start-ups, big businesses, and many others is growing like 

never before because they are being used in the form of money. So, the 

value of Bitcoin is highly influenced by “trust,” “adoption,” and “supply and 

demand” and its price is set by the market.

Now, the question is why the value of Bitcoin is so volatile as of this 

writing and fluctuates quite a lot. One obvious reason is supply and 

demand. We learned that there can only be a limited number of Bitcoins 

in circulation, which is 21 million, and the rate at which they get generated 

is decreeasing with time. Because of this design, there is always a gap in 

supply and demand, which results in this volatility. Another reason is 

that Bitcoins are never traded in one place. There are so many exchanges 

in so many places across the globe, and all those exchanges have their 

own exchange prices. The indexes that you see gather Bitcoin exchange 

prices from several exchanges and then average them out. Again, since 

all these indexes do not collect data from the same set of exchanges, 

even they do not match. Similarly, the liquidity factor that implies the 

amount of Bitcoins flowing through the entire market at any given time 

also influences the volatility in Bitcoin price. As of now, it is definitely a 

high-risk asset but may get stabilized with time. Let us take a look at the 

following list of factors that may influence the supply and demand of 

Bitcoins, and hence their price:

•	 Confidence of people in Bitcoin and fear of uncertainty

•	 Press coverage with good and bad news on Bitcoin
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•	 Some people own Bitcoins and do not allow them to 

flow through the market and some people keep buying 

and selling to minimize risk. This is why the liquidity 

level of Bitcoin keeps on changing.

•	 Acceptance of Bitcoins by big ecommerce giants

•	 Banning of Bitcoins in specific countries

If you are now wondering if there is any possibility of Bitcoin to 

crash completely, then the answer is “Yes.” There are many examples of 

countries whose currency systems have crashed. Well, there were political 

and economic reasons for them to crash such as hyperinflation, which is 

not the case with Bitcoins because one cannot generate as many Bitcoins 

as they want and the total number of Bitcoins is fixed. However, there is 

a possibility of technical or cryptographic failure of Bitcoins. Please note 

that Bitcoin has stood the test of time since its inception in 2008 and there 

is a possibility that it will grow much bigger with time, but it cannot be 

guaranteed!

�Working with Bitcoins
In order to get started with Bitcoins, no technicality is needed. You just 

have to download a Bitcoin wallet and get started with it. When you 

download and install a wallet on your laptop or mobile, it generates your 

first Bitcoin address (public key). You can generate many more, however, 

and you should. It is a best practice to use the Bitcoin addresses only 

once. Address reuse is an unintended practice in Bitcoin, though it works. 

Address reuse can harm privacy and confidentiality. As an example, if you 

are reusing the same address, signing a transaction with the same private 

key, the recipient can easily and reliably determine that the address being 

reused is yours. If the same address is used with multiple transactions,  

they can all be tracked and finding who you are gets even easier. 
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Remember that Bitcoin is not fully anonymous; it is said to be 

pseudonymous and there are ways to trace the transaction origins that can 

reveal the owners.

You have to disclose your Bitcoin address to the person willing to 

transfer Bitcoins to you. This is very safe because the public key is public 

anyway. We know that there is no notion of a closing balance in Bitcoin 

and all records are there as transactions. Bitcoin wallets can easily 

calculate their spendable balance, as they have the private keys of the 

corresponding public keys on which transactions are received. There are 

a variety of Bitcoin wallets available from so many wallet providers. There 

are mobile wallets, desktop wallets, browser-based web wallets, hardware 

wallets, etc., with varying levels of security. You need to be extremely 

careful in the wallet security aspect while working with Bitcoins. The 

Bitcoin payments are irreversible.

You must be wondering how secured are these wallets. Well, different 

wallet types have different leves of security and it depends on how you 

want to use it. Many online wallet services suffered from security breaches. 

It is always a good practice to enable two-factor authentication whenever 

applicable. If you are a regular user of Bitcoins, it may be a good idea to 

use small amounts in your wallets and keep the remainder separately in a 

safe environment. An offline wallet or cold wallet that is not connected to 

the network provides the highest level of security for savings. Also, there 

should be proper backup mechanisms for your wallet in case you lose your 

computer/mobile. Remember that if you lose your private key, you lose all 

the money associated with it.

If you have not joined Bitcoin as a miner running a full node, then 

you can just be a user or a trader of Bitcoins. You will definitely need an 

exchange from where you can buy some Bitcoins with your US dollars or 

other currencies as accepted by the exchanges. You should prefer buying 

Bitcoins from a legitimate and secured exchange. There have been many 

examples of exchanges that suffered from security breaches.
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�The Bitcoin Blockchain
We already looked at the basic blockchain data structure in the previous 

chapter and also covered the basic building blocks of a blockchain data 

structure such as hashing techniques and asymmetric cryptography.  

We will learn the specifics of Bitcoin blockchain in this section.

The Bitcoin blockchain, like any other blockchain, has a similar 

blockchain data structure. The Bitcoin Core client uses the LevelDB 

database of Google to store the blockchain datastructure internally. Each 

block is identified by its hash (Bitcoin uses the SHA256 hashing algorithm). 

Every block contains the hash of the previous block in its header section. 

Remember that this hash is not just the hash of the previous header but the 

entire block including header, and it continues all the way to the genesis 

block. The genesis block is the beginning of any blockchain. Typically, a 

Bitcoin blockchain looks as shown in Figure 3-3.

As you can see in this blockchain, there is a block header part that 

contains the header information and there is a body part where the 

transactions are bundled in every block. Every block’s header contains the 

hash of the previous block. So, any change in any block in the chain will 

not be so easy; all the subsequent blocks have to be changed accordingly. 

Example: If someone tries to change a previous transaction that was 

captured in, say, block number 441, after changing the transaction,  

Figure 3-3.  The Bitcoin blockchain
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the hash of this block that is in the header of block number 442 will not 

match, so it has to be changed as well. Changing the header with the new 

hash will then require you to update the hash in the block header of the 

next block in the sequence, which is block number 443, and this will go 

on till the current block and this is tough work to do. It beccomes almost 

impossible when we know that every node has it’s own copy and hacking 

into all the nodes, or at least 51% of them, is infeasible.

In the blockchain, there is only one true path to the genesis block. 

However, if you start from the genesis block, then there can be forks. When 

two blocks are proposed at the same time and both of them are valid, only 

one of them would become a part of the true chain and the other gets 

orphaned. Every node builds on the longest chain, and whichever it hears 

first and whichever becomes the longest chain will be the one to build on. 

Such a scenario can be represented as shown in Figure 3-4.

Observe in Figure 3-4 that at block height-3, two blocks are proposed to 

become block-3, but only one of them could make it to the final blockchain 

and the rest got orphaned out. It is evident that at a certain block height, 

there is a possibility of one or more blocks because there can as well be 

some orphaned blocks at this height, so block height is not the best way to 

uniquely identify a block and block hash is the right way to do so.

Figure 3-4.  Orphan blocks in true blockchain
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�Block Structure
The block structure of a Bitcoin blockchain is fixed for all blocks and 

has specific fields with their corresponding required data. Take a look at 

Figure 3-5, a birds-eye view of the entire block structure, and then we will 

learn more about the individual fields later in this chapter.

A typical block structure appears as shown in Table 3-1.

Figure 3-5.  Block structure of Bitcoin blockchain

Table 3-1.  Block Structure

Field Size Description

Magic Number 4 bytes It has a fixed value 0xD9B4BEF9, which indicates 

the start of the block and also that the block is from 

the mainnet or the production network.

Block Size 4 bytes This indicates the size of the block. The original 

Bitcoin blocks are of 1MB and there is a newer 

version of Bitcoin called “Bitcoin Cash” whose block 

size is 2MB.

Block Header 80 bytes It comprises much information such as Previous 

Block’s hash, Nonce, Merkle Root, and many more.

(continued)
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Let us now zoom in (Table 3-2) to the “Block Header” section of the 

blocks and learn the various different fields that it maintains.

Field Size Description

Transaction 
Counter

1–9 bytes 

(variable 

length)

It indicates total number of transactions that are 

included within the block. Not every transaction is 

of the same size, and there is a variable number of 

transactions in every block.

Transaction 
List

Variable in 

number but 

fixed in size

It lists all the transactions that are taking place in a 

given block. Depending on block size (whether 1MB 

or 2MB), this field occupies the remaining space in 

a block.

Table 3-1.  (continued)

Table 3-2.  Block Header Components

Field Size Description

Version 4 bytes It indicates the version number of Bitcoin protocol. 

Ideally each node running Bitcoin protocol should 

have the same version number.

Previous Block 
Hash

32 bytes It contains the hash of the block header of the 

previous block in the chain. When all the fields in the 

previous block header are combined and hashed with 

SHA256 algorithm, it produces a 256-bit result, which 

is 32 bytes.

(continued)
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The block fields and their corresponding explanations as presented in 

the previous tables are good enough to start with, and we will explore more 

of only a few fields that require a more detailed explanation.

�Merkle Tree

We have covered the concept of Merkle trees in the previous chapter.  

In this section, we will just take a look at how Bitcoin uses Merkle trees.  

Each block in a Bitcoin blockchain contains the hash of all the transactions, 

and the Merkle root of all these transactions is included in the header of 

Field Size Description

Merkle Root 32 bytes Hashes of the transactions in a block form a Merkle 

tree by design, and Merkle root is the root hash of 

this Merkle tree. If a transaction is modified in the 

block, then it won’t match with the Merkle root when 

computed. This way it ensures that keeping the hash 

of the previous block’s header is enough to maintain 

the secured blockchain. Also, Merkle trees help 

determine if a transaction was a part of the block in 

O(n) time, and are quite fast!

Timestamp 4 bytes There is no notion of a global time in the Bitcoin 

network. So, this field indicates an approximate time 

of block creation in Unix time format.

Difficulty 
Target

4 bytes The proof-of-work (PoW) difficulty level that was set 

for this block when it was mined

Nonce 4 bytes This is the random number that satisfied the PoW 

puzzle during mining.

Table 3-2.  (continued)
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that block. In a true sense, when we say that each block header contains 

the hash of the entire previous block, the trust is that it just contains the 

hash of the previous block’s header. Nonetheless, it is enough, because 

the header already contains the Merkle root. If a transaction in the block 

is altered, the Merkle root will not match anymore and such a design still 

preserves the integrity of the blockchain.

The Merkle tree is a tree data structure of the hash of the transactions. 

The “Leaf Nodes” in the Merkle tree actually represent the hash of the 

transactions, whereas the root of the tree is the Merkle root. Refer to 

Figure 3-6.

Notice that the hash of the seven transactions A, B, C, D, E, F, and G 

form the leaf of the tree. Since there are seven transactions but the total 

leaf nodes should be even in a binary tree, the last leaf node gets repeated. 

Each transaction hash of 32 bytes (i.e., 256 bits) is calculated by applying 

SHA256 twice to the transactions. Similarly, the hash of two transactions 

are concatenated (62 bytes) and then hashed twice with SHA256 to get the 

parent hash of 32 bytes.

Figure 3-6.  Merkle-tree representation
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Only the Merkle path to a transaction is enough to verify if a 

transaction was a part of any block and is quite efficient therefore. So, the 

actual blockchain can be represented as shown in Figure 3-7.

�Difficulty Target

The difficulty target is the one that drives the PoW in Bitcoin. The idea is 

that once a block is filled with valid transactions, the hash of that block’s 

header needs to be calculated to be less than the difficulty target in the 

same header. The nonce in the header starts from zero. The miner has 

to keep on incrementing this nonce and hashing the header till the hash 

value is less than the target.

The difficulty bits of four bytes (32 bits) in the headers define what 

would be the target value (256 bits) for that block to be mined. The nonce 

should be found such that the hash of the entire header should be less 

than the target value. Remember that the lower the target value, the more 

difficult it would be to find a header hash that would be less than the 

target. Since Bitcoin uses SHA256, every time you hash a block header,  

the output is any number between 0 and 2256, which is quite a big number.  

Figure 3-7.  Merkle tree representation
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If with your nonce the hash is less than the target, the block will be 

accepted by the entire network, else you have to try with a different nonce 

till it satisfies the condition. At this point, it is still not clear how the 

difficulty target is calculated with the difficulty bits in each header.

The target can be derived from the four-byte (8 hexadecimal numbers) 

difficulty bits in the header using a predefined formula that every node has 

by default, as it came along with the binaries during installation. Following 

is the formula to compute the difficulty:

target = coefficient * 2(8 * (exponent – 3))

Notice that there is a “coefficient” and there is also an “exponent” term 

in this formula, which are present as a part of the four-byte difficulty bits. 

Let us take an example to explain this better. If the four-byte difficulty bits 

in hex form are 0x1b0404cb, then the first two hex digits form the exponent 

term, which is (0x1b), and the remaining form the coefficient term, which 

is (0x0404cb) in this case. Solving for the target formula with these values:

target = 0x0404cb * 2(0x08 * (0x1b – 0x03))

target = 0x00000000000404

CB000000000000000000000000000000000000000000000000

Bitcoin is designed such that every 2,016 blocks should take two weeks 

to be generated and if you do the math, it would be around ten minutes 

for every block. In this asynchronous network, it is difficult to program 

like this where every block takes exactly ten minutes with the kind of PoW 

mechanism in place. In reality, it is the average time for a block, and there 

is a possibility that a Bitcoin block gets generated within a minute or it may 

very well take 15 minutes to be generated. So, the difficulty is designed to 

increase or decrease depending on whether it took less or more than two 

weeks to find 2,016 blocks. This time taken for 2,016 blocks can be found 

using the time present in the timestamp fields of every block header.  

If it took, say, T amount of time for 2,016 blocks, which is never exactly  
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two weeks, the difficulty target in every block is multiplied by (T / 2 weeks). 

So, the result of [difficulty target × (T / 2 weeks)] will be increased if T was 

less and decreased otherwise.

It is evident by now that the difficulty target is adjustable; it could 

be set more difficult or easier depending on the situation we explained 

before. You must be wondering, who adjusts this difficulty when the 

system is decentralized? One rule of thumb that you must always keep 

in mind is that whatever happens in such a decentralized design has to 

happen individually at every node. After every 2,016 blocks, all the nodes 

individually compute the new difficulty target value and they all conclude 

on the same one because there is already a formula defined for it. To have 

this formula handy, here it is once again:

    New Target= Old Target * (T / 2 weeks)

⇨  �New Target= Old Target * (Time taken for 2016 Blocks in 

Seconds / 12,09,600 seconds)

Note T he parameters such as 2,016 blocks and TargetTimespan of 
two weeks (12,09,600 seconds) are defined in chainparams.cpp as 
shown following:

consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; // two weeks

consensus.nPowTargetSpacing = 10 * 60;

consensus.nMinerConfirmationWindow = 2016; // 

nPowTargetTimespan / nPowTargetSpacing

Note here that it is (T / 2 weeks) and not (2 weeks / T). The idea is to 

decrease the difficulty target when it is required to increase the complexity, 

so it takes more time. The lesser the target hash, the more difficult it gets 

to find a hash that is less than this target hash. Example: If it took ten days 

to mine 2,016 blocks, then (T / 2 weeks) would be a fraction, which when 
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multiplied by “Old Target” further reduces it and “New Target” would be 

a value less than the old one. This would make it difficult to find a hash 

and would require more time. This is how the time between blocks is 

maintained at ten minutes on average. Imagine that the difficulty target 

was fixed and not adjustable; what do you think the problem would be? 

Remember that the computation power of the hardware increases with 

time as more powerful computers are introduced for block mining.  

A situation where 10s or 100s or even 1,000s of blocks are proposed at the  

same time is not desirable for the network to function properly. So, the 

idea is that, even when more and more powerful computing nodes enter 

into the Bitcoin network, avrage time required to propose a block should 

still be ten minutes by adjusting the difficulty target. Also, a miner’s 

chances of proposing a block depends on how much hash power they have 

compared with the global hash power of all miners included.

Are you thinking why ten minutes, and why not 12 minutes? Or why 

not six minutes? Just keep in mind that there has to be some time gap for 

all the nodes in a decentralized asynchronous system to agree on it.  

If there was no time gap, so many blocks would arrive with just fractional 

delays and there wouldn’t be any optimization benefit of blockchain as 

compared with transaction chain. Every transaction is a broadcast and 

every new block is also a broadcast. Also, the orderliness that a blockchain 

brings to the system is quite infeasible by the transaction chain. With the 

concept of blocks, it is possible to include the unrelated transactions from 

any sender to any receiver in blocks, which is not easy to maintain with the 

transaction chain. One valid block broadcast is more efficient compared 

with individual transaction broadcast after validation. Now, coming back 

to the discussion of ten minutes, it can very well be a little less or a little 

more but there should certainly be some gap between two consecutive 

blocks. Imagine that you are a miner and mining block number 4567, but 

some other miner got lucky and proposed block number 4567, which you 

just received while solving the cryptographic puzzle. What you would do 

now is validate this block and if it is valid, add it to your local copy of the 
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blockchain and immediately start on mining the 4568. You wouldn’t want 

someone else to propose 4568 already while you just finished validating 

block 4567, which you received a little later compared with other miners 

due to network latency. Now the question is: is this 10 minutes the best 

possible option? Well, it is difficult to explain this in one word, but a ten-

minute gap addresses a lot of issues due to an asynchronous network, time 

delays, packet drops, system capacity, and more. There is a possibility that 

it could be optimized further to, say, five minutes or so, which you can see 

in many new cryptocurrencies and other blockchain use cases.

�The Genesis Block
The very first block as you can see in the following code, the block-0, is called 

the genesis block. Remember that the genesis block has to be hardcoded 

into the blockchain applications and so is the case with Bitcoin. You can 

consider it as a special block because it does not contain any reference to the 

previous blocks. The Bitcoin’s genesis block was created in 2009 when it 

was launched. If you open the Bitcoin Core, specifically the file chainparams.

cpp, you will see how the genesis block is statically encoded. Using a 

command line reference to Bitcoin Core, you can get the same information 

by querying with the hash of the genesis block as shown below:

$ bitcoin-cli getblock 000000000019d6689c085ae165831e934 

ff763ae46a2a6c172b3f1b60a8ce26f

Output of the preceding command:

{

    �"hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6 

c172b3f1b60a8ce26f",

    "confirmations" : 308321,

    "size" : 285,

    "height" : 0,
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    "version" : 1,

    �"merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618 

f76673e2cc77ab2127b7afdeda33b",

    �"tx" : ["4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc 

77ab2127b7afdeda33b"],

    "time" : 1231006505,

    "nonce" : 2083236893,

    "bits" : "1d00ffff",

    "difficulty" : 1.00000000,

    �"nextblockhash" : "00000000839a8e6886ab5951d76 

f411475428afc90947ee320161bbf18eb6048"

}

If you convert the Unix time stamp as shown in the previous output, you 

will find this date-time information: Saturday 3rd January 2009 11:45:05 PM.  

You can as well get the same information from the website https://

blockchain.info. Just navigate to this site and paste the hash value in the 

right top search box and hit “Enter.” Here is what you will find (Table 3-3)

Table 3-3.  Transaction Information

Summary

Number Of Transactions 1

Output Total 50 BTC

Estimated Transaction Volume 0 BTC

Transaction Fees 0 BTC

Height 0 (Main Chain)

Timestamp 2009-01-03 18:15:05

Received Time 2009-01-03 18:15:05

(continued)
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In this Block-0, there is just one transaction, which is a coinbase 

transaction. Coinbase transactions are the ones that the miners get. 

There are no inputs to such transactions and they can only generate new 

Bitcoins. If you explored the transactions associated in this block, here is 

how it would look (Figure 3-8).

Table 3-4.  Hash Information

Hashes

Hash 000000000019d6689c085ae165831e934ff763ae46a 

2a6c172b3f1b60a8ce26f

Previous Block 00000000000000000000000000000000000000000 

00000000000000000000000

Next Block(s) 00000000839a8e6886ab5951d76f411475428afc 

90947ee320161bbf18eb6048

Merkle Root 4a5e1e4baab89f3a32518a88c31bc87f618f76673e 

2cc77ab2127b7afdeda33b

Summary

Relayed By Unknown

Difficulty 1

Bits 486604799

Size 0.285 kB

Weight 0.896 kWU

Version 1

Nonce 2083236893

Block Reward 50 BTC

Table 3-3.  (continued)

Chapter 3  How Bitcoin Works

https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/block/0000000000000000000000000000000000000000000000000000000000000000
https://blockchain.info/block/0000000000000000000000000000000000000000000000000000000000000000
https://blockchain.info/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
https://blockchain.info/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
https://blockchain.info/blocks/Unknown


172

�The Bitcoin Network
The Bitcoin network is a peer-to-peer network, as discussed already. There 

is no centralized server in such a system and every node is treated equally. 

There are no master–slave phenomena and no hierarchy as well in such 

a system. Since this runs on the Internet itself, it uses the same TCP/IP 

protocol stack as shown in Figure 3-9.

The above diagram shows how Bitcoin networks coexist on the same 

Internet stack. The Bitcoin network is quite dynamic in the sense that 

nodes can join and leave the netwrk at will and the system still works. Also, 

despite being asynchronous in nature and with network delays and packet 

drops, the system is very robust—thanks to the design of Bitcoin!

Figure 3-9.  The Bitcoin blockchain network on the Internet

Figure 3-8.  Coinbase transaction in Block-0
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The Bitcoin network is a decentralized network with no central point of 

failure and as well no central authority. With such a design, how would you 

assess how big the Bitcoin network is? There is no proper way of estimating 

this as the nodes can join and leave at will. However, there are some 

attempts at researching the Bitcoin network, and some claim that there are 

close to 10,000 nodes that are mostly connected to the network all the time 

and there can be millions of nodes at a time.

Every node in the Bitcoin network is equal in terms of authority and 

has a flat structure, but the nodes can be full nodes or lightweight nodes. 

The full nodes can do almost every permissible activity in the Bitcoin 

system, such as mining transactions and broadcasting transactions, 

and can provide wallet services. The full nodes also provide the routing 

function to participate in and maintain the Bitcoin network. To become 

a full node, you have to download the entire blockchain database that 

containss the entire transactions taken place till now. Also, the node 

must stay permanently connected to the Bitcoin network and hear all 

transactions taking place. It is important that you have a good network 

connection, good storage (at least 200GB), and at least 2GB RAM dedicated 

to it. This requirement may further change and require more resources 

with time.

On the other hand, lightweight nodes cannot mine new blocks but can 

verify transactions by using Simplified Payment Verification (SPV). They 

are otherwse termed “thin clients.” A vast majority of nodes in the Bitcoin 

network are SPVs. They can as well participate in pool mining where there 

are many nodes trying to mine new blocks together. Lightweight nodes can 

help verify the transactions for the full nodes. A good example of an SPV is 

a wallet (the client). If you are running a wallet and someone sends money 

to you, you can act as a node in the Bitcoin network and download the 

relevant transactions to the one made to you so you can check if the person 

sending you Bitcoins actually owned them.
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It is important to note that an SPV is not as secured as a fully validating 

node because it usually contains the block headers and not the entire 

blocks. As a result, SPVs cannot validate transactions since they don’t 

have them for a block and also because they do not have all the unspent 

transaction outputs (UTXOs) except for their own.

�Network Discovery for a New Node
Now think about, when a new node wants to join the network, how would 

it contact the network? It is not an intranet with a 192.168.1.X network 

where you can broadcast to the IP 192.168.1.255 so that whichever 

computer is a part of the 192.168.1.X network gets the broadcast message. 

The network switches are designed to allow such broadcast packets. 

However, remember that we are talking about the Internet, which Bitcoin 

is sitting on. If you are running a node in London, there is a possibility that 

there are other nodes in London, Russia, Ireland, the United States, and 

India and all of them are connected through the Internet with some public 

facing IP address.

The question here is that when a fresh node joins the network, how 

does it figure out the peer nodes? There is no central server somewhere to 

respond to their request the way a typical Internet-based web application 

works. Blockchain is decentralized, remember? When started for the first 

time, a Bitcoin Core or BitcoinJ program does not have the IP address of 

any full node. So, they are equipped with several methods to find the peers. 

One of them is DNS seeds. Several DNS seeds are hardcoded in them. 

Also, several host names are maintained in the DNS system that resolve 

to a list of IP addresses that are running the Bitcoin nodes. DNS seeds are 

maintained by Bitcoin community members. Some community members 

provide static DNS seeds by manually entering the IP addresses and port 

numbers. Also, some community members provide dynamic DNS seed 

servers that can automatically get the IP addresses of active Bitcoin nodes 

that are running on default Bitcoin ports (8333 for mainnet and 18333 
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for testnet). If you perform NSLOOKUPs on the DNS seeds, you will get a 

bunch of IP addresses running Bitcoin nodes.

The clients (Bitcoin Core or BitcoinJ) also maintain a hardcoded 

list of IP addresses that point to some (not one!) stable Bitcoin nodes. 

Such nodes can be called bootstrap nodes whose endpoints are already 

available with the source code itself. Every time one downloads the 

binaries, a fresh list of active nodes get downloaded along with the 

binaries. Once a Bitcoin node connection is established, it is very easy to 

pull the list of other Bitcoin nodes active at that point in time. A pictorial 

representation of how a new node becomes a part of the network can be 

found in the following figures.

Step-1:
Imagine that there were six nodes active at some point in time in the 

Bitcoin network. Refer to Figure 3-10.

Step-2:
There is a new node, say, a seventh node that just showed up and 

is trying to join the existing Bitcoin network, but does not have any 

connection yet. Refer to Figure 3-11.

Figure 3-10.  Bitcoin network in general
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Step-3:
The seventh node will try to reach out to as many nodes as it can either 

using DNS seeds or using the list of stable Bitcoin nodes in the list that it 

has—as shown in Figure 3-12.

In the diagram, we have skipped the DNS resolution part. It is the 

same as when you browse any website with its name and post DNS 

resolution the IP address is retrieved, which is then used as the destination 

Figure 3-12.  New Bitcoin node contacts some peers

Figure 3-11.  A new node trying to join the network
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webserver’s address to send TCP packets to. To connect to a new peer, 

the node establishes a TCP connection on port 8333 (port 8333 is well 

known for Bitcoins but could be different). Then the two nodes handshake 

with information such as version number, time, IP addresses, height of 

blockchain, etc. The actual Bitcoin code for “Version” message defined in 

net.cpp is as shown in the following:

PushMessage( "version", PROTOCOL_VERSION, nLocalServices, 

nTime, addrYou, addrMe,

              �nLocalHostNonce, FormatSubVersion(CLIENT_NAME, 

CLIENT_VERSION,

              std::vector<string>()), nBestHeight, true );

Through this Version message, the compatibility between the two 

nodes is checked as the first step toward further communication.

Step-4:
In the fourth step, the requested nodes will respond with the list of 

IP addresses and corresponding port numbers of the other active Bitcoin 

nodes that they are aware of. Please note that it is possible for some of 

active nodes to not be aware of each and every Bitcoin node in the network 

at any time. The port number is important because once the TCP packets 

reach the destination node, it is the port number that is used by the 

operating system to direct the message to the correct application/process 

running on the system. Please refer to Figure 3-13.
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Note that, only one peer may be enough to bootstrap the connection 

of a node to the Bitcoin network; the node must continue to discover and 

connect to new peers. This is because nodes come and go at will and no 

connection is reliable.

Step-5:
In the fifth step, the new seventh node establishes connection with 

all the reachable Bitcoin nodes, depending on the list it received from the 

nodes contacted in the previous step. Figure 3-14 represents this.

Figure 3-13.  Peer Bitcoin nodes respond to the network request by a 
new node
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�Bitcoin Transactions
Bitcoin transactions are the fundamental building blocks of the Bitcoin 

system. There are basically two broader categories of Bitcoin transactions:

•	 Coinbase transaction: Every block in Bitcoin 

blockchain contains one coinbase transaction included 

by the miners themselves to be able to mine new coins. 

They do not have control of how many coins they can 

mine in every block because it is controlled by the 

network itself. It started with 50 BTC in the beginning 

and keeps halving till it reaches 21 Million Bitcoins in 

total.

•	 Regular transactions: The regular transactions are 

very similar to currency exchanges in general, where 

one is trying to transact some amount of money that 

they own with another. Typically, in Bitcoin, everything 

is present as transactions. To spend some amount, one 

has to consume previous transaction(s) where they 

Figure 3-14.  A new node becomes a part of the Bitcoin network
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received that amount—these are regular transactions in 

Bitcoin. Our main focus in this chapter will be on these 

regular transactions.

Each owner of a Bitcoin can transfer the coin to someone else by 

digitally signing a hash of the previous transaction where they had 

received the Bitcoin along with the public key of the recipient. The payee 

or the recipient already has the public key of the payer so they can verify 

the transaction. The following figure (Figure 3-15) is from the white paper 

of Satoshi Nakamoto that pictorially demonstrates how it works.

Figure 3-15.  Bitcoin transaction

Notice only the highlighted Owner-2 section in the diagram. Since 

Owner-1 is initiating this transaction, he is using his private key for signing 

the hash of two items: one is the the previous transaction where he 

himself received the amount and the second is Owner-2’s public key. This 

signature can be easily verified using the public key of Owner-1 to ensure 

that it is a legitimate transaction. Similarly, when Owner-2 will initiate 
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a transfer to Owner-3, he will use his private key to sign the hash of the 

previous transaction (the one he received from Owner-1) along with the 

public key of Owner-3. Such a transaction can be, and will be, verified by 

anyone who is a part of the network. Obviously because every transaction 

is broadcast, most of the nodes will have the entire history of transactions 

to be able to prevent double-spend attempts.

There is no principle of closing balance in a Bitcoin network, and the 

total amount one holds is the summation of all incoming transactions to 

the public addresses you own. You can create as many public addresses 

as you want. If you have ten public addresses, then whatever transactions 

were made to that public address, you can spend those transactions 

(unspent transactions or UTXOs) using your private key. If you have to 

spend, say, five Bitcoins, you have a coupe of choices:

•	 Use one of the previous transactions where you 

received five or more Bitcoins. Transfer five Bitcoins to 

the recepient, some amount as transaction fee and the 

remainder to yourself. Refer to Figure 3-16.

•	 Use multiple previous transactions that you had 

received that would sum up to more than five Bitcoins. 

Transfer five Bitcoins to the recepient, some amount as 

transaction fee and the remainder to yourself. Refer to 

Figure 3-17.

Figure 3-16.  Bitcoin transaction with one transaction input
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As you can see, every transaction takes as input the previous 

transaction(s). There is no account maintained that says you have eight 

BTC, and you can spend anything below this amount; if you spend five 

BTC, the remaining balance would be three BTC. In Bitcoin, everything 

is a transaction where there are inputs and outputs. If the outputs are not 

spent yet, they are the UTXOs.

We are aware that every transaction in the network is broadcast to 

the entire network. Whether someone is maintaining a node or not, 

they can still make a transaction and that transaction is published to all 

the accessible Bitcoin nodes. The receiver Bitcoin nodes then further 

broadcast the transactions to other nodes and the entire network is usually 

flodded with transactions. This is sometimes referred to as the gossip 

protocol and plays an important role in preventing double-spend attacks. 

Recollect from Chapter 2 that the only way to prevent double-spend is to 

be aware of all transactions.

Each node maintains a set of all the transactions that they hear about 

and broadcasts only the new ones, which were not a part of the list already. 

Nodes maintain the transactions in the list till the time the transaction 

gets into a block and is a part of the blockchain. This is because there is 

a chance that even if a block has all valid transactions and is proposed as 

a valid block, it can still get orphaned by not being a part of the longest 

chain. Once it is confirmed that the block is now a part of the longest 

chain, the transactions that are there in that block are taken off from the 

Figure 3-17.  Bitcoin transaction with multiple transactions input
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list of transactions. Each full node in the Bitcoin network must maintain 

the entire list of unspent transactions (UTXOs) even though they are in 

the millions. If a transaction is in the list of UTXOs, then it may not be a 

double-spend attempt. Upon confirming a transaction is not a double-

spend attack and also validating the transactions from other perspectives, 

a node broadcasts such transactions. If you are wondering how fast it 

would be to search millions of UTXOs to check for double-spend, you 

are on track. Since the transaction outputs are ordered by their hashes, 

searching for an item in an ordered hash list is quite fast.

Let us now think and dig deeper into a double-spend scenario. It is 

very possible that Alice (A) tries to pay Bob (B) and Charlie (C) the same 

transaction (input to a transaction is a previous transaction and there is 

no concept of closing balance). Such a scenario would appear as shown in 

Figure 3-18.

Notice in the figure the following scenarios:

•	 A is trying to spend the same transaction to B and C.

•	 Node-2 received the transaction A Tx(1234) --> B and 

Node-3 received the transaction A Tx(1234) --> C.

Figure 3-18.  A double-spend transaction scenario in Bitcoin network
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•	 For Node-2 and Node-3, their respective transactions 

received were legitimate transactions.

•	 When Node-3 tries to broadcast the transaction  

A Tx(1234) --> C to Node-2 (every node broadcasts new 

transactions), Node-2 would refuse this transaction 

because it already has a transaction A Tx(1234) --> B 

with the same input transaction Tx(1234).

•	 Similar things happen with other nodes as well, and 

they may have either the transaction “A Tx(1234) --> B” 

or “A Tx(1234) --> C”, whichever reached them faster, 

but not both.

•	 During mining, whichever node gets to propose 

the block will include the transaction it has. This 

transaction would be a part of the blockchain and the 

rest of the nodes that are holding the other transaction 

would simply drop the transaction with Tx(1234) 

because it will no longer be a UTXO.

�Consensus and Block Mining
In the previous section we looked at granular transactions. We will 

learn how the transactions are bundled together to form a block and 

a consensus is achieved among nodes, so the entire network accepts 

that block to extend the blockchain. Note that “block mining” refers to 

successfully creating a new block in the blockchain. In Bitcoin, it is the 

distributed PoW consensus algorithm that helps mine new blocks by 

maintaining decentralization. Achieving distributed consensus in such 

a network is very difficult. Though it has been around for decades for 

distributed systems such as Facebook, Google, Amazon, and many more 

because they have millions of servers that require consistency in the 
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data they store, the term consensus is very much popularized because of 

Bitcoins. We will get into the nuts and bolts of consensus and mining in 

this chapter.

First, just keep in mind that everything in a Bitcoin network is 

represented as transactions. If you want to make a transaction, you 

have to consume one or more previous transactions as input and make 

another transaction. We already know that one has to sign a transaction 

using their private key to ensure that the right person is making the 

transaction. Despite such cryptographic security, can’t that person sign a 

transaction that they already spent? Example: Alice received ten Bitcoins 

in a transaction with transaction number 1234. She can very well spend 

the same transaction 1234 and give away those ten Bitcoins to Bob and 

Charlie. Since she will sign with her private key, which means it is an 

authentic transaction, what do you think can prevent her from double-

spending? Please note that there is no way in Bitcoin that you can prevent 

her from attempting to make a double-spend, but the system is designed 

so that such an attempt will not be successful. The only way to prevent 

such attempts is to be aware of all the transactions that are taing place. 

This is why all transactions in Bitcoin are broadcast to the entire network. 

Once a transaction is spent, it is no longer a part of the UTXOs and a new 

transaction number is generated to be a part of the UTXO, which only the 

recipient can spend. This is the way nodes can validate transactions.

Also, the only way you can prevent a double-spend attack is by 

knowing all the transactions. When you are aware of all transactions, you 

would know the spend and the UTXOs. When a new block is proposed 

by a miner, it is required that all the transactions in the block are valid. 

Does it mean that the node proposing a block cannot include a invalid 

transaction? The answer is “Yes.” They can certainly inject a fraudulent 

transaction but the rest of the nodes will reject it. The PoW that the 

node would have done (we will get into the details shortly) by spending 

computer resources and electricity would be in vain! So, a node would 

never want to propose an invalid block, thanks to the PoW consensus. 
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Despite not having a notion of global time, observe that the transactions 

are clubbed together to form a block that becomes a part of blockchain, 

more blocks get added to the chain one by one, and there is an order! Note 

carefully that the order in which the transactions took place is preserved 

by the blockchain. This way, consensus happens at block level, which 

propagates all the way to granular transactions.

Based on what we have understood so far, now we know that every 

node in the Bitcoin network has its own copy of blockchain, and there is 

no “global blockchain” as such; it is a decentralized network after all. Each 

node in all those copies of blockchains comprises many transactions. It 

is also true that every node maintains a list of UTXOs and when given 

a chance (A node is randomly selected—we will see how) to propose a 

block, they include as many transactions as possible up to the block limit 

of 1MB or 2MB. If the block successfully makes it to the blockchain, they 

are removed from the list of UTXOs. Note here that every node may have 

different outstanding transactions lists because there is a possibility that 

some transactions are not heard by some of the nodes.

It’s time now to see how the PoW algorithm really works. We learned 

about the difficulty target field in the header of each block. Every mining 

node tries to solve the cryptographic puzzle with an expectation to get 

lucky and propose a block. The reason they are so desperate in proposing 

a block is because they get great benefits when their proposed block 

becomes a part of the blockchain. Every transaction that an individual 

makes, they can set aside some transaction fee for the miners. We know 

that all nodes maintain the list of transactions that are not yet a part of  

the blockchain and when they get a chance to propose a block, they take 

as many transactions as they can and form a block. It is obvious that they 

will take all those transactions that would give them the highest profit and 

leave the ones with minimum or no transaction fees. It may take some time 

for the transactions with low transaction fee to get into the blocks, and 

Chapter 3  How Bitcoin Works



187

chances are less for the ones with no transaction fee at all. Apart from the 

transaction fee, the nodes that propose a new block are rewarded with new 

Bitcoins. With every successful block, new Bitcoins get generated and the 

miner who proposed the block gets all of those; this is the only way new 

Bitcoins get created in the Bitcoin system. This is called “block reward.” 

Technically, the node that proposes a block includes a special transaction 

called “coin creation” in the proposed block where the recipient address 

is the one that the miner owns. When the Bitcoin was first launched, 

the block reward was 50 Bitcoins (BTC). By design, there can only be 

21,000,000 BTCs in total, so the block reward gets halved every 210,000 

blocks. It started at 50, then it became 25, then 12.5, and it goes on this 

way till at some point in time (when it reaches 21,000,000 BTCs) it trends 

to zero. Following is the code snippet from Bitcoin Core (main.cpp) that 

shows this halving process:

int64_t GetBlockValue(int nHeight, int64_t nFees)

{

    int64_t nSubsidy = 50 * COIN;

    int halvings = nHeight / Params().SubsidyHalvingInterval();

    // Force block reward to zero when right shift is undefined.

    if (halvings >= 64)

        return nFees;

    �// Subsidy is cut in half every 210,000 blocks which will 

occur approximately every 4 years.

    nSubsidy >>= halvings;

    return nSubsidy + nFees;

}
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Notice in the previous code snippet how the block reward gets halved. 

The following explanation gives a better picture of this design:

//Block reward reduced by half, remains at 50%

BlockReward = BlockReward >> 1;     

//Block reward further reduced by half, remains at 25%

BlockReward = BlockReward-(BlockReward>>2);     

//Block reward further reduced by half, remains at 12.5%

BlockReward = BlockReward - (BlockReward>>3);

Even though the rewards look lucrative, it is not so easy to get lucky 

and be the node that gets to propose a block. If you are not lucky enough, 

all the work you did would be in vain; that’s a disadvantage! So, what is 

it that the nodes do as a PoW? Let’s get back to the difficulty puzzle now. 

Every mining node at all times is working to propose a block, but only one 

succeeds at a given point in time. Assume that a block is proposed already, 

and now all mining nodes are working to propose a new block. Let us go 

through the process step by step and understand the whole flow:

Step-1:
The miners use a software to keep track of the transactions, eliminate 

the ones that already made it to a successful block in blockchain, reject the 

fraudulent transactions, and solve the cryptographic puzzle to propose a 

new block and relay that to the entire network. The best software to mine 

is the official Bitcoin Core but there have been many other variants that 

people have come up with. If you log into this link (https://bitcoin.org/

en/download) you will find that the official Bitcoin Core is supported in 

Windows, Linux, Mac OS, Ubuntu, and ARM Linux. So, when we say that 

the mining node selects all the transactions (maybe the ones that give the 

miner the highest profit) till the block limit of 1MB (2MB for Bitcoin Cash), 

they also hash those transactions and generate the Merkle root that would 

become a part of this new block’s header. This Merkle root represents all 

the transactions.
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Step-2:
They prepare the block header. Apart from the nonce, the rest is all 

available at this step. It is the work of the mining node to find the nonce 

by hashing the block header twice and comparing it against the difficulty 

target to see if it is less than that. They keep changing the nonce till it 

satisfies this condition, and there is no shortcut to find a nonce quickly; 

one must try out every possible option. We already looked at how to 

compute the difficult target using the four bytes of data present in the 

header itself, and we learned how it changes every two weeks. See the 

following for how this process looks:

H [ H (Version | Previous Block Hash | Merkle Root | Time Stamp 

| Difficulty Target |  Nonce) ]

< [ Difficulty Target ]

Step-3:
The miner keeps on changing the nonce field in step-2, by 

incrementing it by “1” till it satisfies the condition—it is a recursive 

phenomenon. The difficulty target for every node is the same and all of 

them are trying to solve the same problem, but remember that they may 

have different variants of transaction pools and hence the Merkle root for 

them would be different. Since every node is trying to extend the longest 

and main blockchain, so the previous block hash would be the same.

So, ultimately the Sha256 hash twice for the block header should be 

less than the target to be able to propose the block to the entire network. 

See the following example for a better understanding:

Target   : �0000000000000074cd0000000000000000000000000000000000

0000000000000

Hash     : �0000000000000074cc4471deff052ced7f07347e4eda86c84 

5a2fcf0553ed7f0
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Notice that the hash value and the target value have the same number 

of leading zeros (i.e., 14) and “74cc” is less than “74cd,” so it satisfies 

the condition and this block can now be proposed. In many places, you 

would find that this explanation is simplified with ballpark values of both 

the target and the hash, and counting only the leading zeros. If the hash 

has more leading zeros than the target, then it satisfies the condition. 

Remember again that the more zeros in the target, the more difficult it gets 

in finding the hash that can satisfy the condition.

Let us connect this learning so far with the real Bitcoin 

implementation. We know that block creation time is set to ten minutes—it 

is coded up in Bitcoin binaries for 2,016 blocks in two weeks, as we 

discussed already, and does not change till a hard fork happens. You can 

browse blocks proposed and see the hashes that satisfied the difficulty 

target at the website https://blockchain.info and see for yourself that 

the hashes for different blocks would have different leading zeros, just to 

set the block creation time to ten minutes on average. In the initial days, 

the number of leading zeros was around nine or ten, and today it has 

increased to around 18 to 20 zeros. It may increase even further as and 

when more powerful computing nodes capable of more hash rates join the 

network.

Step-4:
Once a miner finds the valid block, they immediately publish the block 

to the entire network. Every node that receives this block individually 

checks again if the miner who proposed the block actually solved the 

mining puzzle. For these nodes to validate this, it is just one step, as shown 

below:

H [H (Version| PreviousBlock Hash | Merkle Root | Time Stamp | 

Difficulty Target | Found Nonce)]

< [ Difficulty Target ]
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Notice that they just use the block header that includes the nonce 

found by the proposing miner to see if the hash is less than the target and 

is valid. If it was a valid nonce and the condition satisfied, then they check 

for individual transactions proposed in the block with its Merkle root in the 

block header. If all transactions are valid, then they add this block to the 

local copy of their blockchain. This new block has the coinbase transaction 

that generates new coins (it started with 50 BTC, then 25, then 12.5, and 

keeps halving as discussed) as an award for the miner who proposed the 

valid block.

Note here that block mining is not an easy job, thanks to the PoW 

mining algorithm. For a node to propose an invalid block, it has to burn a 

lot of electricity and CPU cycles to find the nonce and propose the block 

that would ultimately get rejected by nodes in the network. Had it been an 

easy task, many nodes would just keep trying for it and flood the network 

with bad blocks. You must understand and appreciate by now how Bitcoin 

prevents such situations in a game theoretic way! It is always profitable for 

the miners to play by the rules and they do not gain any extra benefits by 

not following the rules.

In the previous steps, we learned the PoW mining procedure that 

is implemented in Bitcoins. One of the best things in this design is the 

random selection of a mining node that gets to propose a block. No one 

knows who would get lucky to find the right nonce and propose a block, it 

is purely a random phenomenon. We already know that generating a true 

random number is quite difficult and this is something that is the most 

vulnerable surface of attack for most cryptographic implementations. With 

such a design as Bitcoin’s, random selection of a node to propose a block is 

truly random.

The next best thing in Bitcoin mining is the block reward. It is 

something that a miner who successfully proposes a new block gets, 

using the coinbase transaction in the same block. The miners also get the 

transaction fees associated with all the transactions they have included in 
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the block. So, mining reward for a block is a combination of block reward 

and transaction fee as shown below:

Mining Reward = Block Reward + Total transaction fees of all 

transactions in the Block

We know that mining is the only way new Bitcoins are created in the 

Bitcoin system, but is that the purpose of mining? No! The purpose of 

mining is to mine new blocks, and generation of new Bitcoins and also 

the transaction fee is to incentivize the miners so that more and more 

miners are interested in mining. Obviously though, why would you mine 

if you are not making good money? This is again game theory. A proper 

incentivization mechanism is the key to make a sytem decentralized and 

self-sustainable. Notice that the Bitcoin system does not have a way to 

penalize nodes that do not play honestly, it only rewards honest behavior. 

Actors in the Bitcoin blockchain network such as individuals who just use 

Bitcoin or the miners are all identified using their public keys. It is possible 

for them to generate as many key pairs as possible and this makes it a 

psydonemous system. A node cannot be uniquely identified with its public 

key that it has used in the coinbase transaction, as in the very next moment 

it can create a new key pair and expose itself with a new network address. 

So, proper incentivization stands to be the best way to ensure the actors in 

the system play honestly—again the beauty of game theory!

Here is a question for you now. After a block was broadcast, let’s 

say a node verified it, found the nonce and transactions and everything 

else to be valid, and included it in its local copy of blockchain. Does this 

mean that the transactions that were there in the block are all settled and 

confirmed now? Well, not really! There is a chance that two blocks came 

in at the same time and while one node started extending one of them, 

there is a chance that a majority of the nodes are extending on the other 

block. Eventually, the longest blockchain becomes the original chain. 

This is a scenario when a block that is absolutely valid, with all legitimate 

transactions and a proper nonce value that satisfied the mining puzzle, 

can still get abandoned by the Bitcoin network. Such blocks that do not 
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become a part of the final blockchain are called orphaned blocks. Now, 

this explanation indicates that there is a certain possibility of one or more 

blocks getting orphaned out at any time. So, the best strategy would be 

to wait untill many blocks are added to the chain. In other words, when 

a transaction receives multiple confirmations, it is safe to think that it 

is a part of the final consensus chain and will not get orphaned out. As 

any number of blocks get added after a certain block, that many number 

of confirmations are received by the transactions in that block. Though 

there are no rules as such that define how many confirmations one 

should get before accepting a transaction, six confirmations has been 

the best practice. Even with four confirmations, it is quite safe to assume 

a transaction has been confirmed, but six is the best practice because 

with more confirmations, the chances of a block getting orphaned out 

decreases exponentially.

�Block Propagation
Bitcoin uses PoW mining to randomly select a node that can propose 

a valid block. Once the miner finds a valid block, they broadcast that 

block to the entire network. Block propagation in the network happens 

the same way as transactions. Every node that receives the new block 

further broadcasts it so that eventually the block reaches every node in 

the network. Please note that a node does not broadcast a block unless it 

is a part of the longest chain from its perspective. Once the nodes receive 

the new block that is proposed, they not only verify the header and check 

the hash value in acceptable range, but also validate each and every 

transaction that was included in that block. It is clear by now that for a 

node in the Bitcoin network, validating a block is a little more complex 

compared with validating transactions. Similar to transactions, there is a 

possibility that two valid blocks are proposed at the same time. In such a 

scenario, the node will keep both the blocks and start building on the one 

that comes from the longest chain.
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We must understand that there is always a latency involved for a 

block to propagate through the entire network and reach every node. The 

relation between the block size and the time taken is linearly proportional, 

in the sense that for each kB added to the block size, the latency increases 

linearly. It is obvious that such network latency would impact the rate of 

growth of the blockchain. A measurement study that was conducted by 

Decker and Wattenhofer addresses this situation. Refer to Figure 3-19, 

which shows the relation between block size and the time it took to reach 

25% (Line-1), 50% (Line-2), and 75% (Line-3) of monitored nodes.

The network bandwidth is the primary reason for such network 

latencies and it is never consistent in all areas of the globe. On top of 

this, we know that the broadcast packets of blocks go through many hops 

to finally reach all nodes. A typical Bitcoin block is of 1MB and the new 

variant of Bitcoin with a hard fork that has come up (Bitcoin Cash) is of 

2MB block size; you can imagine the inherent limitations due to latency. 

Figure 3-19.  Block propagation time with respect to block size
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As per the network research, there are more than a million Bitcoin nodes 

that are connected to the Bitcoin network in a month and there are 

thousands of full nodes that are almost always connected to the network 

permanently.

�Putting It all Together
At a high level, if we just put down the events in the order they take place, 

then here is how it may look:

•	 All new transactions are broadcast to all nodes.

•	 Each node that hears the new transactions collects 

them into a block.

•	 Each mining node works on finding a difficult PoW for 

its block to be able to propose it to the network.

•	 When a node gets lucky and finds a correct nonce to 

the PoW puzzle, it broadcasts the block to all nodes.

•	 Nodes accept the proposed block only if the nonce and 

all transactions in it are valid and not already spent.

•	 Bitcoin network nodes express their acceptance of 

the block by working on creating the next block in 

the chain, using the hash of the accepted block as the 

previous hash for the new block they would be mining.

�Bitcoin Scripts
We learned about Bitcoin transactions in previous sections at a high level. 

In this section we will delve deep into the actual programming constructs 

that make the transactions happen. Every Bitcoin transactions’ input 

and output are embedded with scripts. Bitcoin scripts are stack based, 
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which we will see shortly, and are evaluated from left to right. Remember 

that Bitcoin scripts are not Turing-complete, so you cannot really do 

anything and everything that is possible through other Turing-complete 

languages such as C, C++, or Java, etc. There are no concepts of loops in 

Bitcoin script, hence the execution time for scripts is not variable and is 

proportional to the number of instructions. This means that the scripts 

execute in a limited amount of time and there is no possibility for them 

to get stuck inside a loop. Also, most importantly, the scripts definitely 

terminate. Now that we know a little about the scripts, where do they run? 

Whenever transactions are made, whether programmatically, or through 

a wallet software or any other program, the scripts are injected inside the 

transactions and it is the work of the miners to run those scripts while 

mining. The purpose of Bitcoin scripts is to enable the network nodes 

to ensure the available funds are claimed and spent only by the entitled 

parties that really own them.

�Bitcoin Transactions Revisited
A transaction in the Bitcoin network is a tranfer of value, which is a 

broadcast to the entire network and ends up in some block in the 

blockchain. Typically, it appears that Bitcoins get transferred from one 

account or wallet to another, but in reality, it is from one transaction to 

another. Well, before getting into further details, keep in mind that the 

Bitcoin addresses are basically the double-hashed output of the public 

key of the participants. The public key is first hashed using SHA256 and 

then by RIPEMD160 hashing algorithms, respectively, to generate 160-

bit Bitcoin addresses. We have already covered these hashing techniques 

in the previous chapter. Let us zoom in a bit more into the transactions 

now. Take a look at the following transaction tree (Figure 3-20), the way it 

happens in Bitcoin.
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Observe that the output of previous transactions become input to new 

transactions and this process continues forever. In the previous figure, if 

it was you who got the 100K from some previous output, it became the 

spendable input to a new transaction. Notice that in Tx 0, you spent 40K 

and 50K and paid up those amounts, and the remaining amount (10K) 

became the fee to the miner. By default, the remaining amount is paid 

to the miner, so you need to be careful not to ignore such situations, 

which are always the case. In this same situation, out of the remaining 

10K amount, you could transfer say 9K to your own address and leave 

aside 1K for the mining fee. When an amount is not spent, in the sense 

that a transaction is not used as an input to a new transaction, it remains 

a UTXO, which can be spent later. Obviously, the ones previous to it are 

already spent. So, all the UTXOs combined for all the accounts (public 

keys) that you hold are your wallet balance.

Figure 3-20.  A typical Bitcoin transaction structure
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Pause for a moment here, and think about how it must have been 

programmed. Remember that both the inputs and outputs of transactions 

are equipped with relevant scripts to make it possible. It is only through 

the scripts that it can be ensured that you are the authorized user to make 

a transaction and you have the necessary amount that you have received 

from a previous transaction. This means that both the inputs and outputs 

are equally important. Here is how the transaction’s contents look:

Transaction Output = Amount of Bitcoins to transfer + Output 

Script

Transaction Input = Reference to previous transaction output + 

Input Script

Whether to look into the output script first or the input script first is 

actually an egg-chicken problem. But we will see the output script first 

because it is the one that is being consumed by the input script of the 

next transaction. Let us repeat and get this right, that while making a 

transaction, the output script of the current transaction is there just to 

enable the future transaction that can consume this as input, but for this 

current transaction, it is the previous transaction’s output script that lets 

you spend it. This is why the output scripts have the public key of the 

recipient and the value (amount of Bitcoins) being transferred. When the 

output scripts are being used as inputs, their primary purpose is to check 

the signature against the public key. The output scripts are also called 

ScriptPubKey. Unless this output is spent, it remains a UTXO waiting to be 

spent.

The input script in the transaction input data structure has the 

mechanism of how to consume the previous transaction that you are trying 

to spend. So, it has to have the reference to that previous transaction. 

The hash of the previous transaction and the index number {hash, index} 

pinpoints the exact place where you had received the amount that you 

are now spending. The purpose of the “index” is to identify the intended 

output in the previous transaction. If you were the recipient of the previous 
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transaction, you have to provide your signature to claim that you are the 

rightful owner of the public key to which the transaction was made. This 

will let you spend that transaction. Also, you have to provide your public 

key, which will hash to the one used as destination address in previous 

transaction. Input scripts are also known as ScriptSigs. The ultimate 

objective of the script is to push the signatures and keys onto the stack.

A typical Bitcoin transaction has the following fields (Table 3-5).

Table 3-5.  Bitcoin Transaction Fields

Field Size Description

Version no 4 bytes Currently 1. It tells Bitcoin peers and miners which 

set of rules to use to validate this transaction.

In-counter 1 - 9 bytes Positive integer (VI = VarInt). It indicates total 

number of inputs.

list of inputs Variabe length It lists all the inputs for a transaction.

Out-counter 1 - 9 bytes Positive integer (VI = VarInt). It indicates total 

number of outputs.

list of outputs Variable length It lists all the outputs for a transaction.

lock_time 4 bytes Not being used currently. It indicates if the 

transaction should be included in the blockchain 

block immediately after it is validated by the 

miner or there should be some lock time before it 

gets included in the block.

Let us now take a look at a different representation of the same 

transaction structure that we discussed in the previous section. This is 

to see a more detailed view of the transaction structure and the various 

components of it. Now refer to Figure 3-21.
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As you can see in the previous figure, the data items such as signatures 

or public keys are all embedded inside the scripts and are a part of 

the transaction. Just by looking at the granular components of Bitcoin 

transactions, many of your queries would be answered up front. The 

instructions in the script get pushed onto the stack and executed, which 

we wil explore in detail shortly.

When Bitcoin nodes receive the transaction broadcasts, they all 

validate those transactions individually, by combining the output script 

of the previous transaction with the input script of the current transaction 

following the steps mentioned as follows:

•	 Find the previous transaction whose output is being 

used as input to make this transaction. The “Prev. Txn 

ID (Hash)” field contains the hash of that previous 

transaction.

•	 In the previous transaction output, find the exact 

index where the amount was received. There could 

be multiple receivers in a transaction, so the index is 

used to identify the initiator of this current transaction 

whose address was used as recipient in the previous 

transaction.

Figure 3-21.  Granular components of a Bitcoin transaction
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•	 Consume the output script used in the previous 

transaction using the Unlocking Script called 

“ScriptSig.” Notice in Figure 3-21 that there is a field 

before it that specifies the length of this Unlocking 

Script.

•	 Join this output script with the input script by just 

appending it to form the validation script and execute 

this validation script (remember this is a stack-based 

scripting language).

•	 The amount value is actually present in the Output 

Script, i.e., the “ScriptPubKey.” It is the locking script 

that locks the transaction output with the spending 

conditions and ensures that only the rightful owner 

of the Bitcoin address to which this transaction has 

been made can later claim it. Observe that it also has 

the Locking Script Length field right before it. For 

the current transaction, this output script is only for 

information, and plays its role in the future when the 

owner tries to spend it.

•	 It is the validation script that decides if the current 

transaction input has the right to spend the previous 

UTXO by validating the signatures. If the validation 

script runs successfully, it is confirmed that the 

transaction is valid and the transaction went through.

Let us explore the previous explanation through a diagramatic 

representation to get a better understanding. Assume that Alice is paying 

Bob, say, five BTC. This means that Alice had received 5BTC in one of 

the previous transactions that was locked using ScriptPubKey. Alice can 

claim that she is the rightful owner of that transaction by unlocking it with 

ScriptSig and can spend it to Bob. Similarly, now if Bob tries to spend three 
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BTC to Charlie and two BTC to himself, then here is how it would look 

(Figure 3-22).

When the Bitcoin network, more precisely the miners, receive the 

transaction from Alice, they check and confirm that it is a valid transaction 

and approve it by including it in their blocks (well, the one who proposes a 

block does it). When that happens, the output of this transaction becomes 

a part of the UTXO in the name of Bob, who could later spend it. And this 

is what happens in our example—that Bob also spends it to Charlie. Bob did 

so by consuming the previous transaction, unlocking it with his signature 

and public key, to prove that he is the owner of the Bitcoin address that 

Alice had used. Observe that there are two outputs in Bob’s transaction. 

Since he had received five BTC from Alice and is paying three BTC to 

Figure 3-22.  A practical example of Bitcoin scripts
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Charlie, he must transfer the remainder to himself so that it becomes 

two BTC of UTXO bound to Bob himself and he could spend it in future. 

In Bob’s transaction, the three BTC to Charlie is locked using the locking 

script for only Charlie to spend later.

Are you now thinking about how the scripts are combined and 

executed together? Remember that the unlocking script of current 

transaction is run along with the locking script of the previous transaction. 

As discussed already, running the scripts is a miner’s job and they do not 

happen at the wallet software. In the previous example, when Bob makes 

the transactions, miners execute the ScriptSig unlocking script from Bob’s 

transaction, and then immediately execute the ScriptPubKey locking 

script from Alice’s transaction in order. If the sequential execution in a 

stack-based fashion for the combined validation script runs successfully 

by returning TRUE, then Bob’s transaction is excepted by all the nodes 

validating it. We will take a look at Bitcoin scripts and how a Bitcoin-

scripting virtual machine executes the stack during the execution of the 

combined script commands in more detail in the following section. In this 

section, however, take a look at the following example that represents the 

transaction from a developer’s standpoint:

Example code with just one input and one output

{  

  �"hash": "a320ba8bbe163f26cafb2092306c153f87c1c2609b25db0 

c13664ae1afca78ce",

  "ver": 1,

  "vin_sz": 1,

  "vout_sz": 1,

  "lock_time": 0,

  "size": 51,
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  "in":[  

      {  

         "prev_out":{  

            �"hash":"83cd5e9b704c0a4cb6066e3a1642b483adc8f73a76 

791c82a73dfa381281d32f",

            "n":0

         },

         �"scriptSig":"63883d3d2dea35029d17d25b8a926675def004 

5c397d3df55b0ae145ef80db7849599b930220ab13bd2dda2 

ca0a67e2c5cd28030bb9b7b3dcacf176652dac82fe9d5873 

f3409661281d32f6d35b46906cd562bf8b48f4f938c077bcb 

29d46b0560fa5c61813d3d2d"

      }

   ],

  "out":[  

      {  

         "value":"0.08",

         �"scriptPubKey":"OP_DUP OP_HASH160 b3a2c0d84ec82cff 

932b5c3231567a0d48ab4c78

OP_EQUALVERIFY OP_CHECKSIG"

      }

   ]

}

Note that Bitcoin transactions are not encrypted, so it is possible to 

browse and view every transaction ever collected into blocks.

�Scripts
A script is actually a list of instructions recorded with each transaction that 

describes how the next person can gain access to those Bitcoins received 

and spend them. Bitcoin uses stack-based, non–Turing-complete scripting 
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language where the instructions get processed from left to right. Keep in 

mind that it is non–Turing-complete by design!

We looked at the input and output scripts in the previous section. We 

are now aware that the input script ScriptSig is the unlocking script and has 

two components, the public key and the signature. The public key is used 

because it hashes to the Bitcoin address that the transaction was spent 

to, in the previous transaction. The ECDSA digital signature’s purpose is 

to prove the ownership of the public key, hence the Bitcoin address to be 

able to spend it further. Similarly, the output script ScriptPubKey in the 

previous transaction was to lock the transaction to the rightful owner of 

the Bitcoin address. These two scripts, ScriptSig of current transaction and 

ScriptPubKey of previous transaction, are combined and run. Take a look 

at its appearance after they are combined (Figure 3-23).

Figure 3-23.  Formation of combined validation script

As we learned already, it is important to note that the Bitcoin script 

either runs successfully or it fails. When the transactions are valid, it 

runs successfully without any errors. Bitcoin scripting language is a very 

simplified version of programming languages and is quite small, with 
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just 256 instructions in total. Out of these 256, 15 are disabled and 75 are 

kept reserved maybe for later usage. These basic instructions comprise 

mathematical, logical (if/then), error reporting, and just return statements. 

Apart from these, there are some additional cryptographic instructions 

such as hashing, signature verification, etc. We will not get into all the 

available instruction sets, and focus only on the ones we will use in this 

chapter. Following are a few:

•	 OP_DUP: It just duplicates the top item in the stack.

•	 OP_HASH160: It hashes twice, first with SHA256 and 

then RIPEMD160.

•	 OP_EQUALVERIFY: It returns TRUE if the inputs 

are matched, and FALSE otherwise and marks the 

transaction invalid.

•	 OP_CHECKSIG: Checks if the input signature is a valid 

signature using the input Public Key itself for the hash 

of the current transaction.

To execute these instructions, we just have to push these instructions 

on to the stack and then execute. Apart from the memory that the stack 

takes, there is no extra memory required and this makes the Bitcoin scripts 

efficient. As you have seen, there are two kinds of instructions in the script, 

one is data instruction and the other is opcodes. The previous bullet list 

entries are all opcodes, and the combined validation script that we saw 

before has both of these kinds of instructions. Data instructions are just 

to push data onto the stack and not really to perform any function, and 

the sole purpose of opcodes is to execute some functions on the data in 

the stack and pop out as applicable. Let us discuss how Bob’s transaction 

would get executed with such a stack-based implementation. Recollect 

the combined script where Bob is trying to spend a previously received 

transaction in the current transaction to Charlie (Figure 3-24).
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The corresponding stack-based implemention would be as follows 

(Figure 3-25).

Figure 3-25.  Example of stack-based implementation of Bitcoin script

Figure 3-24.  Combined script of ScriptPubKey and CheckSig
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Though the previous stack-based implementation is self explanatory, 

we will quickly run through what happened here.

•	 First was Bob’s signature–a data instruction and so was 

pushed onto the stack

•	 Then was his public key–again a data instruction and 

was pushed on to the stack

•	 Then it was OP_DUP, an opcode. It duplicates the 

first item in the stack, so the public key of Bob was 

duplicated and became the third item on the stack.

•	 Next was OP_HASH160, an Opcode, which hashed 

Bob’s public key twice, once with SHA256 and then 

with RIPEMD160, and the final 160 bits output replaced 

Bob’s public key and became the top of the stack.

•	 Then it was Bob’s Bitcoin address (160 bits)–a data 

instruction, which was pushed to the stack.

•	 Next was an opcode, OP_EQUALVERIFY, which checks 

the top two items in the stack and if they match, it pops 

them both else an error is thrown and the script would 

terminate.

•	 Then was again an opcode OP_CHECKSIG, which 

checks the public key against the signature to validate 

the authenticity of the owner. This opcode is also 

capable of consuming both inputs and popping them 

off the stack.

You must be wondering what if someone tries to inject some 

fraudulent scripts or tries to misuse them. Please note that Bitcoin scripts 

are standardized and the miners are aware of them. Anything that does not 

follow the standard gets dropped by the miners, as they wouldn’t waste 

their time executing such transactions.
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�Full Nodes vs. SPVs
We already got a heads-up on the full nodes and SPVs in this chapter. It is 

obvious that the notion of full node and lightweight node is implemented 

to ease out the usage of Bitcoins and make them more adaptable. In this 

section, we will zoom in to the technicalities for these variants and understand 

their purpose.

�Full Nodes
The full nodes are the most integral components in a Bitcoin network. 

They are the ones that maintain and run Bitcoin from various places across 

the globe. As discussed already, download the entire blockchain with 

all transactions, starting all the way from the genesis block to the latest 

discovered block. The latest block defines the height of the blockchain.

The full nodes are extremely secure because they have the entire 

chain. For an adversary to be successful in cheating a node, an alternative 

blockchain needs to be presented, which is practically impossible. The 

true chain is the most cumulative PoW chain, and it gets computationally 

infeasible to propose a new fraudulent block. If all transactions are not 

valid in a block, PoW mining performed by the adversary will be in 

vain, because other miners will not mine on top of it. Such a block gets 

orphaned out soon enough. Full nodes build and maintain their own copy 

of blockchain locally. They do not rely on the network for transaction 

validation because they are self-sufficient. They are just interested in 

knowing the new blocks that get proposed by other nodes so that they can 

update their local copy after validating blocks. So, we learned that each full 

node must process all transactions; they must store the entire database, 

every transaction that is currently being brioadcast, every transaction that 

is ever spent, and the list of UTXOs; participate in maintaining the entire 

Bitcoin network; and they also have to serve the SPV clients.
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Note that there are so many varities of Bitcoin software that the 

full nodes use that are quite different in software architecture and 

programmed in different language constructs. However, the most widely 

used one is the “Bitcoin Core” software; more than three fourths of the 

network uses it.

�SPVs
Bitcoin design has this nice concept of Simple Payment Verification(SPV) 

nodes that can be used to verify transactions without running full nodes. 

The way SPVs work is that they download only the header of all the blocks 

during the initial syncing to the Bitcoin network. In Bitcoin, the block 

headers are of 80 bytes each, and downloading all the headers is not much 

and ranges to a few MBs in total.

The purpose of SPVs is to provide a mechanism to verify that a 

particular transaction was in a block in a blockchain without requiring the 

entire blockchain data. Every block header has the Merkle root, which is the 

block hash. We know that every transaction has a hash and that transaction 

hash can be linked to the block hash using the Merkle tree proof which we 

discussed in the previous chapter. All the transactions  

in a block form the Merkle leafs and the block hash forms the Merkle root. 

The beauty of the Merkle tree is that only a small part of the block is needed 

to prove that a transaction was actually a part of the block. So, to confirm a 

transaction an SPV does two things. First, it checks the Merkle tree proof for 

a transaction to accertain it is a part of the block and second, if that block 

is a part of the main chain or not; and there should be at least six more 

blocks created after it to confirm it is a part of the longest chain. Figure 3-26 

depicts this process.
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Let us dig deeper into the technicality of how SPVs really work in 

verifying transactions. At a high level, it takes the following steps:

•	 To the peers an SPV is connected to, it establishes Bloom 

filters with many of them and ideally not just to one peer, 

because there could be a chance for that peer to perform 

denial of service or cheat. The purpose of Bloom filters 

is to match only the transactions an SPV is interested 

in, and not the rest in a block without revealing which 

addresses or keys the SPV is interested in.

•	 Peers send back the relevant transactions in a 

merkleblock message that contains the Merkle root and 

the Merkle path to the transaction of interest as shown 

in the figure above. The merkleblock message sze is in a 

few kB and quite efficient.

•	 It is then easy for the SPVs to verify if a transaction truly 

belongs to a block in the blockchain.

•	 Once the transaction is verified, the next step is to 

check if that Block is actually a part of the true longest 

blockchain.

Figure 3-26.  Merkle root in block header of SPV
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The following (Figure 3-27) represents this SPV communication steps 

with its peers.

�Bitcoin Wallets
Bitcoin wallets are very similar to the wallet you use in your daily life, in 

the sense you have access to it and you can spend when you want. Bitcoin 

wallets, however, are a digital phenomenon. Recollect the example we 

used in the previous section, where Alice paid some amount to Bob. How 

would she do it if Bob did not have an account? In the Bitcoin setting, 

the accounts or wallets are represented by the Bitcoin address. Bob must 

first generate a key pair (private/public keys). Bitcoin uses the ECDSA 

algorithm with secp256k1 curve (don’t worry, it is just the curve type—a 

standard recommendation). First a random bit string is generated to 

serve as private key, which is then deterministically transformed to 

public key. As we learned before in Chapter 2, the private/public keys 

are mathematically related and the public key can be generated from the 

private key any time (deterministic). So, it is not really a requirement to 

save the public keys. as such. True randomness is not possible through 

Figure 3-27.  SPV communication mechanism with the Bitcoin 
network
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software implementations, so many servers or applications use hardware 

security modules (HSMs) to generate true random bits and also to protect 

the private keys. Unlike public keys, private keys definitely require saving 

them with maximum security. If you lose them, you cannot generate a 

signature that would justify the ownership of the public key (or Bitcoin 

address) that received some amount in any transaction. The public keys 

are hashed twice to generate the Bitcoin adress, first with SHA256 and then 

with RIPEMD160. This is also deterministic, so given a public key, it is just 

a matter of a couple of hashes to generate the Bitcoin address.

Note carefully that the Bitcoin address does not really reveal the public 

key. This is because the addresses are double-hashed public keys and it’s 

quite infeasible to find the public key given the Bitcoin address. However, 

for someone with a public key, it is easy to claim the ownership of a Bitcoin 

address. The hashing technique in Bitcoin shortens and obfuscates the 

public key. While it makes the manual transcription easier, it also provides 

security against unanticipated problems that might allow reconstruction of 

private keys from public keys. This is possibly the safest implementation! 

Public keys are revealed only when the transaction output is being claimed 

by the owner, not when it was transacted to them, as you can see in 

Figure 3-28.
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Bitcoin wallets are nothing but the SPVs and are served by the full 

nodes. We already looked at the functioning of SPVs, so in this section we 

will take a look at some wallet-specific activities. We all understand that to 

make a transaction, or to receive a transaction, you need not be running a 

full node. All you want is a wallet to be able to save your private/public key 

pair, to be able to make and receive transactions (actually view and verify 

the ones made to you). We already learned the verification part while going 

through the SPVs section. Let us take a look at how to initiate a transaction 

using a wallet.

It is advisible that you run your own full node and connect your wallet 

to it, as it would be the most secured way of working on Bitcoin. However, 

it is not a mandate and you can still work without maintaining your own 

node. Keep in mind that when you query a node, you have to mention 

your public address to get the list of UTXOs, and the full node is becoming 

aware of your public address, which is a privacy leak! All a wallet has to do 

is get the list of UTXOs so it can spend a transaction by signing it with its 

private key and publish that transaction into the Bitcoin network. This can 

be done by creating your own wallet software or by using a third-party  

Figure 3-28.  Revealing public key to claim a transaction
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wallet service. However, be careful with the wallet service providers 

because you are allowing them to take control of your private key. Whether 

they deliberately take your Bitcoins or they themselves are hacked, which 

has been the case with many wallet services, you lose your Bitcoins. At 

the end of the day, all wallet-service providers are centralized, though 

the Bitcoin network is decentralized. A typical pictorial representation 

of initiating a Bitcoin transaction through the wallet software can be 

represented as shown in the following (Figure 3-29).

An example of an SPV client that can serve as a Bitcoin wallet is 

“BitcoinJ.” BitcoinJ is actually a library to work with the Bitcoin protocol, 

maintain a wallet, and initiate/validate transactions. It does not require 

a full node such as a Bitcoin Core node locally and can function as a thin 

client node. Though it is implemented in Java, it can be used from any 

JVM-compatible language such as JavaScript and Python.

Figure 3-29.  A wallet application interacting with the Bitcoin network
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�Summary
In this chapter, we learned how blockchain concepts we discussed in the 

previous chapter were put together to build Bitcoin as a cryptocurrency 

use case of blockchain technology. We covered the evolution of 

Bitcoin, the history of it, what it is, the design benefits, and why it is so 

important. We got to know about granular details on the Bitcoin network, 

transactions, blocks, the blockchain, consensus, and how all these are 

stitched together. Then we learned about the requirement of a wallet 

solution to interact with the Bitcoin blockchain system.

In the 1990s, mass adoption of the Internet changed the way people 

did business. It removed friction from creation and distribution of 

information. This paved the way for new markets, more opportunities, 

and possibilities. Similarly, blockchain is here today to take the Internet 

to a whole new level. Bitcoin is just one cryptocurrency application of 

blockchain, and the possibilities are limitless. In the next chapter, we 

will learn about how Ethereum works and how it has become a defacto 

standard for various decentralized applications on one public blockchain 

network.
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CHAPTER 4

How Ethereum Works
The era of blockchain applications has just begun. Ethereum is here to be 

the defacto blockchain platform for building decentralized applications. 

We already learned in the previous chapters that public blockchain use 

cases are not just limited to cryptocurrencies, and the possibilities are 

only limited by your imagination! Ethereum has already made inroads in 

many business sectors and works best not only for public blockchain use 

cases, but also for the private ones. Ethereum has already set a benchmark 

for blockchain platforms and must be studied well to be able to envision 

how usable decentralized applications can be built with or without 

using Ethereum. Today, it is possible to build blockchain applications 

with minimal knowledge of cryptography, game theory, mathematics 

or complex coding, and computer science fundamentals, thanks to 

Ethereum.

In Chapter 3, we learned how Bitcoin works by taking a deep dive 

into the protocol as well as the Bitcoin application. We witnessed how 

the cryptocurrency aspect is so much interwoven into the Bitcoin 

protocol. We learned that Bitcoin is not Bitcoin on blockchain, rather 

a Bitcoin blockchain. In this chapter, we will learn how Ethereum 

has successfully built an abstract foundation layer that is capable 

of empowering various different blockchain use cases on the same 

blockchain platform.
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�From Bitcoin to Ethereum
Obviously, blockchain technology came along with Bitcoin back in 2009. 

After Bitcoin stood the test of time, people believed in the potential of 

blockchain. The use cases now have gone beyond banking and finance 

sectors and have enveloped other industries such as supply chain, retail, 

e-commerce, healthcare, energy, and government sectors as well. This is 

because different flavors of blockchain have come up and address specific 

business problems. Nonetheless, there are public blockchain platforms 

such as Ethereum that allow different decentralized use cases to be built 

on the same public Ethereum platform.

With Bitcoins, decentralized peer-to-peer transaction of 

cryptocurrency was possible. People realized that blockchain could 

be used to transact and keep track of anything of value, not just 

cryptocurrency. People started exploring if the same Bitcoin network 

could be used for any other use case. To give you an example, “proof of 

existence” is one such use case where the hash of a document was injected 

in the Bitcoin blockchain network so that anyone could later verify that 

such a ducument was existant in so and so point in time. Vitalik Buterin 

introduced the Ethereum blockchain platform that could facilitate 

transactions of not just money, but also shares, lands, digital content, 

vehicles, and many others that have some intrinsic value. Take a look at 

Figure 4-1.
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Like Bitcoin, Ethereum is a public blockchain platform with a different 

design philosophy. The most innovative approach was to build an abstraction 

layer so that transactions from different applications are generalized to the 

program code that can run on all the Ethereum nodes. Even in Ethereum, 

the miners generate Ether, a tradeable cryptocurrency because of which the 

public blockchain network is self-sustainable. Any application that is running 

on Ethereum has to pay transaction fees that eventually the miners get for 

running the nodes and sustaining the whole network.

�Ethereum as a Next-Gen Blockchain
With the Bitcoin blockchain, the developer community tried building 

different decentralized applications with a completely new blockchain, 

or were trying to modify Bitcoin Core to increase the set of functionalities. 

Figure 4-1.  Multiple decentralized applications on one Ethereum 
platform
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Either way, it was complicated as well as time consuming. A different 

design with an alternative protocol was probably the need of the hour 

then, which is why the Ethereum blockchain platform! The purpose was to 

facilitate development of many blockchain applications on one Ethereum 

platform rather than building dedicated blockchains for each application 

separately. Ethereum enabled rapid development of decentralized 

applications that could interact among themselves, ensuring adequate 

security. As mentioned in the previous section, Ethereum does this by 

building an abstract foundation layer. Unlike Bitcoin, Ethereum supported 

Turing-complete language so anyone could write smart contracts that 

could virtually do anything and everything on a programming perspective. 

Also, Ethereum is stateful by design and keeps track of the acount states, 

which is very different from Bitcoin where everything remains as a 

transaction and there is no internal persistent memory for scripts. With 

the help of an abstract foundation layer, the underlying complexities 

are hidden from the developers and not just that; the developers get 

the flexibility of designing their own state transition functions for direct 

transfer of value and information, and transaction formats.

In an effort to meet the objective, the core innovation of Ethereum was 

the Ethereum Virtual Machine (EVM). The support for Turing-complete 

languages through the EVM makes it easy for the developers to create 

blockchain applications. Just the way a Java Virtual Machine (JVM) is 

required to run Java code, EVM is required to run the smart contracts. 

For now, just keep in mind that smart contracts are the Ethereum scripts 

written in a Turing-complete language that automatically gets executed 

in case a predefined event occurs. The “ScriptSig” and “ScriptPubKey” 

in Bitcoins are the basic versions of smart contracts so to speak. We 

learned in the previous chapter that in Bitcoins, the instruction set was 

very limited. In Ethereum, however, one could code almost any program 

that would run on the EVM on each and every node in the Ethereum 

blockchain network. The decentralized applications in Ethereum are 

called DApps. Ethereum being a global decentralized computer system 
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with no centralized server, DApps are the applications that run without 

downtime, fraud, or any sort of regulations. A peer-to-peer electronic 

cash system such as Bitcoin is very easy to build on Ethereum as a DApp. 

Similarly, any other asset with some intrinsic value, such as land, cars, 

houses, votes, etc., could easily be transacted through their respective 

DAaps on Ethereum in the form of tokens.

Unlike traditional software development and deployment, DApps do 

not need to be hosted on a back-end server. The “code” is embedded as 

payload in transactions, so to speak, that are then sent to the mining nodes 

in the Ethereum network. Such transactions would be considered by the 

mining ecosystem because of the ETH (Ether) paid as “gas Price.” Like in 

Bitcoin, these transactions get broadcast to other miners in the network 

that they are accessible to. The transaction then eventually gets into a 

block and becomes an eternal part of the blockchain when consensus is 

reached. Developers have the liberty to code up any solution and deploy 

that in the Ethereum network. The network executes that, all by itself, and 

validates and produces the outputs as well. Well, had it been without any 

cost, the network wouldn’t have been sustainable. There is a gas Price 

associated with each blockchain transaction, and writing some garbage 

code and deploying that into the Ethereum network could be an expensive 

affair!

�Design Philosophy of Ethereum
Ethereum borrows many concepts from Bitcoin Core as it stood the test of 

time, but is designed with a different philosophy. Ethereum development 

has been done following certain principles as follows:

•	 Simplistic design: The Ethereum blockchain is 

designed to be as simple as possible so that it is easy 

to understand and develop decentralized applications 

on. The complexities in the implementation are kept 
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to a bare minimum at the consensus level and are 

managed at a level above it. As a result, high-level 

language compilation or serialization/deserialization 

of arguments, etc. are not a concern for the developers.

•	 Freedom of development: The Ethereum platform is 

designed to encourage any sort of decentralization on 

its blockchain platform and does not discremenate 

or favor any specific kinds of use cases. This freedom 

is given to an extent that a developer can code up 

an infinite loop in a smart contract and deploy it. 

Obviously, the loop will run as long as they are paying 

the transaction fee (gas Price), and the loop eventually 

terminates when it runs out of gas.

•	 No notion of features: In an effort to make the system 

more generalized, Ethereum does not have built-in 

features for the developers to use. Instead, Ethereum 

provides support for Turing-complete language and 

lets the users develop their own features the way they 

want to. Starting from basic features such as “locktime,” 

as in Bitcoin till full blown use cases, everything can be 

coded up in Ethereum.

�Enter the Ethereum Blockchain
We learned about the objective behind Ethereum blockchain and its 

design philosophy. To be able to understand and appreciate this next-gen 

blockchain and build decentralized applications on it, we will learn about 

the core components of Ethereum in great detail in this section.
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�Ethereum Blockchain
The Ethereum blockchain data structure is pretty similar to that of 

Bitcoin’s, except that there is a lot more information contained in the block 

header to make it more robust and help maintain the state properly. We 

will learn more about the Ethereum states in the following sections. Let us 

focus more on the blockchain data structure and the header in this section. 

In Bitcoins, there was only one Merkle root in the block header for all the 

transactions in a block. In Ethereum, there are two more Merkle roots, so 

there are three Merkle roots in total as follows:

•	 stateRoot: It helps maintain the global state.

•	 transactionsRoot: It is to track and ensure integrity 

of all the transactions in a block, similar to Bitcoin’s 

Merkle root.

•	 receiptsRoot: It is the root hash of the receipts trie 

corresponding to the transactions in a block

We will take a look at these Merkle roots in their respective sections 

of block header information. For better comprehension, take a look at 

Figure 4-2.

Figure 4-2.  The blockchain data structure of Ethereum
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Every block usually comprises block header, transactions list, uncles 

list, and optional extraData. Let us now take a look at the header fields to 

understand what they mean and their purpose for being in the header. 

While you do so, keep in mind that there could be slight variants of these 

names in different places, or the order in which they are presenbted 

could be different in different places. We suggest that you build a proper 

understanding of these fields so that any different terminology that you 

might come across won’t bother you much.

Section-1: Block metadata

•	 parentHash: Keccak 256-bit hash of the parent block’s 

header, like that of Bitcoin’s style

•	 timestamp: The Unix timestamp current block

•	 number: Block number of the current block

•	 Beneficiary: The 160-bit address of “author” account 

responsible for creating the current block to which all 

the fees from successfully mining a block are collected

Section-2: Data references

•	 transactionsRoot: The Keccak 256-bit root hash 

(Merkle root) of the transactions trie populated with all 

the transactions in this block

•	 ommersHash: It is otherwise known as “uncleHash.” 

It is the hash of the uncles segment of the block, i.e., 

Keccak 256-bit hash of the ommers list portion of this 

block (blocks that are known to have a parent equal to 

the present block’s parent’s parent).

•	 extraData: Arbitrary byte array containing data relevant 

to this block. The size of this data is limited to 32 bytes 

(256-bits). As of this writing, there is a possibility that 

Chapter 4  How Ethereum Works



227

this field might become “extraDataHash”, which will 

point to the “extraData” contained inside the block. 

extraData could be raw data, charged at the same 

amount of gas as that of transaction data.

Section-3: Transaction execution information

•	 stateRoot: The Keccak 256-bit root hash (Merkle root) 

of the final state after validating and executing all 

transactions of this block

•	 receiptsRoot: The Keccak 256-bit root hash (Merkle 

root) of the receipts trie populated with the recipients 

of each transaction in this block

•	 logBloom: The accumulated Bloom filter for each of the 

transactions’ receipts’ Blooms, i.e., the “OR” of all of the 

Blooms for the transactions in the block

•	 gasUsed: The total amount of gas used through each of 

the transactions in this block

•	 gasLimit: The maximum amount of gas that this block 

may utilise (dynamic value depending on the activity in 

the network)

Section-4: Consensus-subsystem information

•	 difficulty: The difficulty limit for this block calculated 

from the previous block’s difficulty and timestamp

•	 mixHash: The 256-bits mix hash combined with the 

‘nonce’ for the PoW of this block

•	 nonce: The nonce is a 64-bit hash that is combined with 

mixHash and can be used as a PoW verification.
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�Ethereum Accounts
The Ethereum accounts, unlike Bitcoins, are not in the form of unspent 

transaction outputs (UTXOs). In the Bitcoin chapter, we learned that 

Bitcoins are actually present in the form of transactions that have an owner 

(owner’s public key, 20-byte address) and a value. The owner can spend 

the transaction if they have the valid private key for the transaction they 

are trying to spend. Bitcoin therefore is a state transition system where 

“state” refers to the collection of all UTXOs. Every time a block is mined, a 

state change happens because each block contains a bunch of transactions 

where each transaction cosumes UTXO(s) and produces UTXO(s). Note 

here that the state is not encoded inside the blocks. So, there is no notion 

of an account balance as such in Bitcoin’s design. Ethereum on the other 

hand is stateful, and its basic unit is the account. Each account has a state 

associated with it and also has a 20-byte (160 bits) address through which 

it gets identified and referenced. The purpose of blockchain in Ethereum is 

to keep track of the state changes. There are broadly two types of Ethereum 

accounts:

•	 Externally Owned Accounts (EOAs): These accounts 

are also known as “simple accounts” that are usually 

owned by users or devices who control these accounts 

using Private Keys. The EOAs can send transactions 

to other EOAs or Contract Accounts by signing with 

a private key. The transaction between two EOAs is 

usually to transfer any form of value. On the other 

hand, when an EOA makes a transaction to a Contract 

Account, the purpose is to activate the “code” inside the 

Contract Account.

•	 Contract Accounts: These are controlled only by 

the code contained in them. This code inside the 

Contract Accounts is referred to as “smart contracts.” 
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They are usually activated when a transaction is sent 

to the Contract Account by the EOAs or by other 

Contract Accounts. Even though the Contract Accounts 

are capable of executing complex business logics 

through the code they contain, they can’t initiate new 

transactions on their own and always depend on the 

EOAs. All they can do is respond to other transactions 

(obviously by making transactions) as per the logic 

coded in their “code.”

Take a look at the following three scenarios (Figures 4-3 to 4-5) to get 

a better understanding on the communication between the EOAs and 

Contract Accounts.

EOA to EOA transaction:

Figure 4-3.  EOA to EOA transaction

Chapter 4  How Ethereum Works



230

EOA to Contract Account Transaction:

Figure 4-4.  EOA to Contract Account transaction
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EOA to Contract Account to other Contract Account transaction:

Just so the previous representations are not confusing, please be aware 

that the Contract Accounts are internal and the communications between 

them, too. Unlike EOA accounts where EOAs make a transaction that 

gets injected in the blockchain, Contract Accounts and the transactions 

between them are internal phenomena.

�Advantages of UTXOs

We must understand that Bitcoin’s design perspective was to maintain 

anonymity to an extent possible. When we compare it with Ethereum, the 

following advantages of UTXOs seem to have a lot of significance:

•	 Better privacy: In Bitcoins, it is advisible to use a new 

address while receiving transactions, which helps 

reinforce anonymity. Even with sophisticated statistical 

or machine learning techniques, it is difficult to link the 

accounts together, though not impossible.

Figure 4-5.  EOA to Contract Account to Contract Account transaction
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•	 Potentially more scalable: The discussion pertaining 

to scalability is usually very subjective and depends 

on the context, use case at hand, and many other 

factors. The intention here is to just mention UTXO’s 

inherent potential to scale. It is very easy to execute 

the transactions in parallel. Also, when an owner or 

other nodes maintaining the Merkle proof of ownership 

data for some coins lose this data, only the owner is 

impacted. On the contrary, when Merkle tree data 

for some account is lost, then any operation on that 

account would not be feasible, even sending to it.

�Advantages of Accounts

Even though Ethereum in a way is an extention to Bitcoin, it is imagined 

with a whole new design with its own set of pros–cons tradeoff. Let us take 

a look at the following advantages of Ethereum accounts compared with 

Bitcoin design:

•	 Significant space saving: In Bitcoins, when 

multiple transactions are clubbed together to make 

one transaction (e.g., if you have to make a 5BTC 

transaction and you never received one transaction 

with at least 5BTC that you could use in this case, 

then you have to bundle multiple transactions so the 

total exceeds 5BTC), that many references to those 

individual transactions must be made. Also, all those 

transactions must have different addresses, so as many 

transactions, that many addresses also! In Ethereum 

accounts, however, just one reference to an account 

is good enough. Even though Ethereum uses Merkle 
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Patricia tree (MPT), which is a bit more space intensive 

than Merkle tree, you end up saving a significant 

amount of space for complex transactions.

•	 Simple to code: Along with UTXOs and scripts that are 

not Turing-complete, it is difficult to design complex 

systems. UTXOs can either be spent or unspent; there 

is no other state possible in between. Which makes 

it difficult to code up complex business logics. Even 

if the scripts are empowered to do more, it gets more 

complicated as compared with just using accounts. 

Since the objective of Ethereum is to go beyond 

cryptocurrency and accommodate different kinds of 

use cases (through DApps), an accounts-based system 

is almost inevitable.

•	 Lightweight client reference: Unlike Bitcoin clients, 

Ethereum client applications can easily and quickly 

access all the data related to an account by scanning 

down the state tree in a specific direction. In the UTXO 

model, there are usually multiple references to multiple 

transactions associated to any specific transaction 

under consideration.

�Account State

We learned that every account has a state associated with it. We also 

looked at the two kinds of accounts that exist with Ethereum, one is 

a Contract Account and the other is an Externally Owned Account or 

EOA. Regardless of the account type, they are tracked by the “stateRoot” 

Merkle root in the block header and may appear as shown in Figure 4-6.
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As you can see in the figure, irrespective of whether the account is an 

EOA or or a Contract Account, it has the following four components:

•	 Account balance: Total “Ether” balance in the account. 

More precisely, number of Wei owned by the address 

(1ETH = 1018 Wei)

•	 CodeHash: This is the hash of the “code.” Every 

Contract Account has “code” in it that gets executed 

on the EVM. The hash of this code is stored in this 

CodeHash field. For the EOA accounts, however, there 

is no “code,” so the CodeHash field contains the hash of 

empty string.

•	 StorageRoot: It is the 256-bit root hash of Merkle tree 

that encodes the storage contents of an account. The 

MPT encodes the hash of the storage content. Keeping 

the root hash of this tree in the StorageRoot field helps 

track the content of an account and also helps ensure 

its integrity.

Figure 4-6.  Zooming in to account state representation
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•	 Nonce: It is a counter that ensures each transaction is 

processed only once. For EOAs, this number represents 

the number of transactions from the account’s address. 

For Contract Accounts, it represents the number of 

contracts created by this account.

So, it is the “state” trie that is responsible to keep track of the state 

changes of Ethereum blockchain. However, what is a bit tricky is that the 

state is not directly stored in each block, rather in the form of Recursive 

Length Prefix (RLP)-encoded state data in MPT at every Ethereum node. 

So, to maintain the global state, the Ethereum blockchain includes “state 

roots” in each and every block that store the root hash of the hash tree 

(Merkle root) representing the system state at the time the block was 

created.

As per the Ethereum Yellow Paper, the “World State” is a mapping 

between addresses (160-bit identifiers) and account states. So, the World 

State has the information of all the accounts in blockchain, but is not 

stored in each block. Each block only modifies parts of the state. In a way, 

the World State is generated processing each block since the genesis block. 

Certain Ethereum nodes can choose to maintain all historical states by 

keeping all the historical transactions, that is, state transitions and their 

outputs. This allows clients to query the state of the blockchain at any time, 

even for the historic ones, without having to recalculate everything from 

the beginning. Retrieving the state information is similar to an aggregate 

query in SQL where data is readily available; just aggregation is required. 

So, old state data can easily be discarded (this is known as “pruning”) 

because they can be computed back when required. Well, the state data 

by design is implicit dada, which means state information should only be 

calculated.
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�Trie Usage
We learned the three types of tries that have their roots in the block header. 

These roots are basically the pointers to those three tries. Though we 

looked at the one-liner explanations of these tries in previous sections, let 

us just revisit them with a slightly different choice of words

•	 State trie: It represents the entire state (the global state) 

after accessing the block.

•	 Transaction trie: It represents all the transactions in a 

block keyed by index (i.e., key:0 for the first transaction 

to execute, key:1 for the second transaction, etc.). 

Recollect the MPT fundamentals we covered earlier 

and try to correlate.

•	 Receipt trie: It represents the "receipts" corresponding 

to each transaction. A receipt for a transaction is an 

RLP-encoded data structure as shown following:

        [ medstate, gas_used, logbloom, logs ]

Let’s now dig deeper into the Receipt trie as we havn’t covered the 

basics yet on this. Take a look at all the fields in the Receipt trie’s  

RLP-encoded data structure and follow through the following descriptions 

for those fields:

•	 medstate: It is the State trie root after processing the 

transaction. A successful transaction updates the 

Ethereum state.

•	 gas_used: It is the total amount of gas used for 

processing the transaction.

•	 logs: It is a list of items of the form-

[address, [topic1, topic2...], data]
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•	 These list items are produced by the LOG0, LOG1… 

opcodes during the execution of the transaction. The 

“address” field is the address of the contract that 

produced the log, the “topic” fields are up to four  

32-byte values, and the “data” field is an arbitrarily 

sized byte array.

•	 Logbloom: It is a Bloom filter made up of the addresses 

and topics of all logs in the transaction. This is different 

from the one present in the block header.

�Merkle Patricia Tree
In Ethereum, the accounts are mapped with their respective states. 

The mapping between all the Ethereum accounts, including EOAs and 

Contract Accounts with their states, is collectively referred to as World 

States. To store this mapping data, the datastructure used in Ethereum is 

the MPT. So, MPT is the principal data structure used in Ethereum which 

is otherwise known as Merkle Patricia trie. We learned about the Merkle 

trees in the Bitcoin chapter, which already takes us half way through in 

understanding MPT. MPT is actually derived by taking elements from both 

Merkle tree and Patricia tree.

Recollect from the Bitcoin chapter that Merkle trees are the binary 

hash trees where the leaf nodes contain the hash of the data blocks and 

every nonleaf node contains the hashes of their child nodes. When such 

a data structure is implemented, it becomes easy to check if a certain 

transaction was a part of a block. Only by using very little information from 

the entire block, that is, by using just the Merkle branch instead of the 

entire tree, providing proof of membership was quite easy. Merkle trees 

facilitate efficient and secure verification of the contents in decentralized 

systems. Instead of downloading every transaction and every block, the 

light clients can only download the chain of block headers, that is, 80-byte  
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chunks of data for each block that contain only five things: hash of the 

previous block header, timestamp, mining difficulty, nonce value that 

satisfied PoW, and the root hash of the Merkle tree containing all the 

transactions for that block. While it is quite useful and interesting, note 

here that apart from validating the proof of membership for a transaction 

in a block, there is nothing much you could do. One particular limitation is 

that no information can be proved about the current state (e.g., total digital 

asset holdings, name registrations, status of financial contracts). Even to 

check how many Bitcoins you hold, quite a lot of querying and validating is 

involved.

Patricia trees on the other hand are a form of Radix trees. The name 

PATRICIA stands for “Practical Algorithm to Retrieve Information Coded In 

Alphanumeric.” A Patricia tree facilitates efficient insert/delete operations. 

The key-value lookups in the Patricia tree are very efficient. Keys are always 

encoded in the path. So, “key” is the path that you take from the root till the 

leaf node where the “value” is stored. Keys are usually the strings that help 

descend down the path where each character indicates which child node 

to follow to reach the leaf node and find the value stored in it.

So, the MPTs provide a cryptographically authenticated data structure 

used to store all (key, value) bindings in Ethereum. They are fully 

deterministic, meaning that a Patricia tree with the same (key, value) 

bindings will surely be the same down to the last byte. The insert, lookup, 

and delete operations are quite efficient with O(log(n)) complexity. Due to 

the Merkle part in MPT, hash of a node is used as the pointer to the node 

and the MPT is constructed accordingly, where

Key == SHA3(RLP(value))

While the Merkle part provides a tamperproof and deterministic tree 

structure, the Patricia part provides an efficient information retrieval 

feature. So, if you notice carefully, the root node in MPT becomes a 

cryptographic fingerprint of the entire data structure. In the Ethereum 

P2P network, when transactions are broadcast over the wire, they are 

assembled by every mining node that received them. The nodes then 
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form a Tree (a.k.a. trie) and compute the root hash to include in the Block 

header. While the transactions are stored locally in the tree, they are sent 

to other nodes or clients after they are serialized to lists. The receiving 

parties have to deserialize them back to form the transaction tree to 

verify against the root hash. Also note that in Ethereum, MPTs are a little 

modified for better fitment with Ethereum implementation. Instead of 

binary, hexadecimal is used—X characters from a 16 character “alphabet.” 

Hence nodes in the tree or trie have 16 child nodes (the 16 character hex 

alphabet) and a maximum depth of X. Just to let you know, a hex character 

is referred to as a “nibble” in many places.

The basic idea of an MPT in Ethereum is that for a single operation, 

it will only modify the minimum amount of nodes to recalculate the root 

hash. This way the storage and complexities are kept minimal.

�RLP Encoding
You must have noticed that we mentioned RLP encoding in previous 

sections. We will give you a heads-up on what it is all about in this section. 

RLP stands for Recursive Length Prefix. It is a serialization method used 

in Ethereum for blocks, transactions, and wire protocol messages while 

sending data over the wire and also for account state data while saving the 

state in Patricia tree. In general, when complex data structures need to 

be stored or transmitted and then get reconstructed at the receiving end 

for processing, object serialization is a good practice. RLP in that sense 

is similar to JSON and XML, but RLP is believed to be more minimalistic, 

space efficient, simple to implement, and guarantees absolute byte-perfect 

consistency. This is why RLP was chosen to be the main serialization 

technique for Ethereum. Its sole purpose is to store nested arrays of 

raw bytes. It does not try to define any specific data types either, such 

as Booleans, floats, doubles, integers, etc., and is only designed to store 

structure in the form of nested arrays. Key/value maps are not explicitly 
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supported by RLP. So, it is advisible to represent such maps as [[k1, v1], 

[k2, v2], …], where k1, k2… are in lexicographic order (sorted using the 

standard ordering for strings). Alternatively, use the higher-level Patricia 

tree encoding that has an inherent RLP encoding scheme.

Please keep in mind that RLP is used only to encode the structure of 

the data and is completely unaware of the type of object being encoded. 

While it helps reduce the size of the encoding array of raw bytes, the 

decoding end must be aware of the type of object it is trying to decode.

�Ethereum Transaction and Message Structure
In the previous section, we looked at the block structure and the different 

fields in the block’s header. For a transaction to be qualified by the miners 

or Ethereum nodes, it has to have a standardized structure. A typical 

Ethereum transaction (e.g., what you pass through sendRawTransaction()

that we will see later in this book) consists of the following fields:

•	 nonce: It is an integer, just a counter equal to the 

number of transactions sent by the sender account,  

i.e., transaction sequence number.

•	 gasPrice: Price you are willing to pay in terms of the 

number of Wei to be paid per unit of gas

•	 gasLimit: The maximum amount of gas that should be 

used in executing this transaction, which also limits 

the maximum number of computational steps the 

transaction execution is allowed to take

•	 To: Recipient’s 160-bits address or Contract’s address. 

For the transaction that is used to create a contract  

(it means contract’s address does not exist yet), it is 

kept empty.
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•	 Value: Total Ether (number of Wei) to be transferred to 

the recipient by the transaction sender

•	 V, r, s: values corresponding to the ECDSA signature 

of the transaction; also represent the sender of this 

transaction

•	 init: This is not really an optional field, only used with 

transactions used for creating contracts. This field can 

contain an unlimited size byte array specifying the 

EVM-code for the account initialisation procedure.

•	 The opcode “init” is used only once for initializing the 

new Contract Account and gets discarded after that. It 

returns the body of the account code after associating 

it with the Contract Account. Keep in mind that this 

association is a permanent phenomenon and never 

changes.

•	 Data: An optional field that can contain a message to be 

sent to a contract or simple account. It has no special 

function as such by default, but the EVM has an opcode 

—using which, a contract can access this data field and 

perform necessary computations and place them in 

storage.

Note carefully that the aforementioned fields are supplied in the 

order specified and are all RLP encoded, except for the field names. So, an 

Ethereum transaction actually means a signed data package with these 

fields. The gasPrice and gasLimit fields are important to prevent denial 

of service attack. In order to prevent accidental or deliberate attempts of 

infinite loops or other computational wastage in code, each transaction 

is required to set a limit on how many computational steps for code 

execution it can use.
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Ethereum transactions are actually the "state transition functions" 

because a successful transaction changes the state. Also, the result of these 

transactions can be stored, as we already looked at in the “Account State” 

section previously.

Ethereum messages on the other hand are like transactions, but are 

triggered only by Contract Accounts and not by EOAs. Also, messages are 

only meant to be between the Contract Accounts, due to which they are 

also referred to as "internal transactions." So, contracts have the ability to 

send messages to other contracts.

Typically, a message is produced when a contract, while executing 

its code, encounters the “CALL” or “DELEGATECALL” opcodes. So, 

messages are more like function calls that exist in the Ethereum execution 

environment. It is also important to note that messages are always raw and 

never serialized or deserialized. A message contains the following fields:

•	 Sender: The sender of the message as an implicit 

option

•	 Recipient: The recipient contract address to send to

•	 Value: The amount of Wei to transfer to the contract 

address along with the message

•	 Data: Optional field, but can contain input data for the 

recipient contract provided by the sender

•	 gasLimit: The value that limits the maximum amount of 

gas the code execution can consume when triggered by 

the message. It is also termed “startGas.”

We looked at the transaction and messages. An Ethereum transaction 

can be from an EOA to an EOA, or from an EOA to a Contract Account. 

There exists another situation where a transaction from an EOA is initiated 

to create a Contract Account (recollect the “init” field that we just covered). 
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Now, just think about what exactly a transaction is? It is definitely the 

bridge between the external world and the Ethereum blockchain, but what 

more? If you zoom in to a transaction, you will see that it is an instruction, 

initiated by the EOA by signing it, which gets serialized and submitted to 

the blockchain. Take a look at Figure 4-7.

Now what happens after a transaction is injected into the blockchain? 

Well, it starts executing at every Ethereum node if found valid. While 

this transaction is undergoing execution, Ethereum is designed to keep 

tabs on the “substate” to track the flow of execution. This is because, if a 

transaction does not complete due to “running out of gas,” then the entire 

execution so far has to be reverted. Also, information collected during the 

execution is required immediately after the transaction completion. So, the 

substate contains the following:

•	 Self-destruct set: a set of accounts (if any) that will be 

discarded after the transaction completion

•	 Log series: archived and indexable “checkpoints” of the 

EVM’s code execution to track the contract calls

Figure 4-7.  Transaction initiation—zoomed in
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•	 Refund balance: It is the amount to be refunded to the 

sender account post transaction execution. Storage in 

Ethereum is quite expensive, so there is an SSTORE 

instruction in Ethereum that is used as a refund 

counter. The refund counter starts at zero (no refund 

state) and gets incremented every time the transaction 

or contract deletes something from the storage. 

Please note that this refund amount is different and in 

addition to the unused gas that gets refunded to the 

sender.

In the earlier versions of Ethereum, whether a transaction or contract 

executes successfully or fails in between, the entire gas used to get 

consumed. This was not always making sense. If an execution stopped 

due to some authorization/permission issue or any other issue, the 

execution would stop and the remaining gas would still be consumed. 

The last Byzantium update introduced the “revert” code like an exception 

handling. In case a contract has to stop, “revert” could be used to revert 

state changes, return a reason for failure, and credit the remaining gas back 

to the sender. Post successful execution of the transactions or contracts, 

a state transition happens that we will dive deeper into in the followiung 

section.

Just the way we looked at blockchaininfo to see a live Bitcoin 

transaction, if you take a look at https://etherscan.io for Ethereum you 

will find the following information:
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�Ethereum State Transaction Function
In the previous section, we learned about Ethereum transactions and 

messages. We are now aware that a state transition happens whenever a 

transaction is through—successfully. So, the state transition function in 

Ethereum is:

APPLY(S,Tx) -> S'    \\where S is old state and S' is the new 

state

Take a look at Figure 4-8.
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So, the state transition function when Tx is applied to state S to result 

in changed state S’ can be defined as follows:

•	 Validate the transaction to see if it is well formed.

•	 Has the right number of values

•	 The signature is valid.

•	 The nonce matches the nonce in the sender’s 

account.

If any of preceding points is not valid, return an error.

•	 Calculate the fee and settle the accounts.

•	 Compute the transaction fee as gasLimit * gasPrice.

•	 Determine the sending address from the signature.

•	 Subtract the fee from the sender’s account balance 

and increment the sender’s nonce.

Figure 4-8.  Ethereum state transition function
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If there is not enough balance to spend, return an error.

•	 Initialize GAS = gasLimit, and take off a certain quantity 

of gas per byte to pay for the bytes as a transaction fee.

•	 Transfer the transaction value (could be anything 

of value) from the sender’s account to the receiving 

account. Note here that the transaction could be for 

anything of some intrinsic value such as land, vehicle, 

ERC20 tokens, etc., but the gas Price has to be in Ether 

so that the miners would accept the transaction. If the 

receiving account does not yet exist, create it.

	 If the receiving account is a contract and not an EOA, 

then run the contract’s code either to completion or 

until the execution runs out of gas. Note here that the 

contract code gets executed on every node’s EVM as 

part of the block validation process so that the block, 

hence the contract’s output post execution, becomes a 

part of the main blockchain.

•	 If the value transfer failed because the sender did 

not have enough money, or the code execution ran 

out of gas, revert all state changes (thanks to MPT 

implementation) except the payment of the fees, and 

add the fees to the miner’s account.

•	 Otherwise, refund the fees for all remaining gas back 

to the sender, and send the fees paid already for gas 

consumed to the miner.
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�Gas and Transaction Cost
Transactions on Ethereum run on “gas,” the fundamental unit of 

computation in Ethereum. Every transaction, whether to an EOA or to a 

contract, must have the gasLimit and gasPrice to compute the fee. This fee 

is paid to the miners to compensate them for their resource contributions 

and work they perform. Obviously, miners have the choice of including the 

transaction and collecting the fee, similar to that of Bitcoin.

Usually, a computational step costs just one gas, but some of the 

compute- or storage-intensive operations cost more. For every byte of 

transaction data, around five gas is required. Take a look at these sample 

examples: adding two numbers (with EVM opcode ADD) requires 

approximately three gas; multiplying two numbers (with EVM opcode 

MUL) requires approximately five gas; calculating a hash (SHA3) requires 

around 30 gas (compute-intensive, you see). Storage cost is also computed 

in similar fashion, but quite expensive for good reasons. As per the design, 

a transaction can include an unlimited amount of data. It costs 68 gas per 

byte of nonzero transaction data. To store a 256-bit word in a “Contract,” 

approximately 20,000 gas is required. You could find more opcodes 

and their corresponding prices in the Ethereum yellow paper. The cost 

then would be to just multiply the gas required with the gasPrice. Unlike 

Bitcoin, Ethereum cost computation is more complex. It takes into account 

the costs of bandwidth, storage, and computation. Having such a fee 

computation mechanism prevents the Ethereum network from an attacker 

who might just want to inject an infinite loop for computation (leading 

to denial-of-service attacks) or consume more and more space by storing 

meaningless data.

The total Ether a transaction would cost actually depends on the 

amount of gas consumed by the transaction, multiplied by the price of 

one unit of gas specified in the transaction by the transaction initiator. 

Miners on the other hand have a strategy for calculating the gas Price to 

charge, which should be the least amount the sender of a transaction must 
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specify so that the transaction does not get rejected by the miner. So, how 

do you calculate the total cost of a transaction? Not the approximate one, 

but the actual cost? The total “Ether” cost of a transaction is based on two 

factors: gasUsed and gasPrice. Total cost = gasUsed * gasPrice. The gasUsed 

component is the total gas consumed while excuting the EVM opcodes for 

the instructions, and gasPrice is the one specified by the user.

If the total amount of gas used by the computational steps (including 

the transaction, the message, and any submessages that may be triggered) 

is less than or equal to the gasLimit, then the transaction is processed by 

the miner. However, if the total gas exceeds the gasLimit, then all changes 

are reverted (though it is a valid transaction), except that the fee can still 

be collected by the miner. So, what happens to the excess gas? All the 

unused gas after transaction execution is reimbursed to the sender as 

Ether. Senders do not need to worry about overspending, as they are only 

charged for the gas consumed. This definitely means that it is important as 

well as safe to send transactions with a gas limit well above the estimates. 

It is also recommended not to pay very high gas Price and use the average 

gas price from https://ethgasstation.info/.

Let us go through each and every step when a transaction is made in 

an Ethereun network to build a concrete understanding of the flow:

•	 Every transaction must define a “gasLimit” that it is 

willing to spend (gasLimit is also termed “startGas”), 

and the fee that it is willing to pay per unit of gas 

(gasPrice). At the start of execution, Ether worth of 

gasLimit * gasPrice is removed from the transaction 

sender’s account. Remember that this is not really the 

total cost of a transaction (should be a bit more than 

that in an ideal case). Only after the transaction, its 

actual cost is concluded (gasUsed * gasPrice) that’s 

adjusted from this (gasLimit * gasPrice), which was 

initially deducted from sender’s account and the 
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balance amount is credited back to the sender. In the 

beginning of a transaction itself, the amount (gasLimit 

* gasPrice) is deducted because there could be a 

possibility that the sender could go bankrupt while the 

transaction they initiated is midway through.

•	 All operations during transaction execution, including 

database reads and writes, messages, and every 

computational step taken by the E VM such as addition, 

subtraction, hash, etc. consume a certain quantity of 

gas that is predefined.

•	 A normal transaction is one that executes successfully 

without exceeding the gasLimit specified. For such 

transactions, there should be some gas remaining, say, 

“gas_rem”. After a successful transaction execution, 

the transaction sender receives a refund of “gas_rem * 

gasPrice” and the miner of the block receives a reward 

of “(gasLimit - gas_rem) * gasPrice”.

•	 If a transaction runs out of gas before successful 

completion, then all executions revert, but the 

transaction is nevertheless valid. In such situations, 

the only outcome of the transaction is that the entire 

amount “gasLimit * gasPrice” is allocated to the miner.

•	 In the case of Contract Accounts, when a contract 

sends a message to the other contract for subexecution, 

it also has the option to set a gasLimit. This option is 

specifically intended for the subexecution arising out 

of that message, because there is a possibility that the 

called contract has an infinite loop. If the subexecution 

runs out of gas, then the subexecution is reverted, 

which protects against such infinite loops or deliberate 
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attempts of DoS attacks. The gas is consumed anyway 

and allocated to the miner. Also note that when a 

message is triggered by a contract, only the instructions 

cost gas, but data in a message do not cost any gas. This 

is because the data from the parent contract need not 

be copied again, and could be just referrenced through 

a pointer.

The first Ethereum release (Frontier) had a default gas Price of 0.05e12 

WEI (i.e., smallest denomination of Ether). In the second Ethereum release 

(Homestead), default gas Price was reduced to 0.02e12 WEI. You must 

be wondering why gas and Ether are decoupled from each other and not 

a single unit of measurement, which would have made it much simpler. 

Well, it is deliberately designed this way because units of gas align well 

with computation units having a natural cost (e.g., cost per computation), 

while the price of Ether generally fluctuates as a result of market forces.

We already know that every Ethereum node participating in the 

network runs the EVM as part of the block verification protocol. This 

means that all the nodes execute the same set of transactions and 

contracts (redundantly parallel, but essential for consensus). While this 

redundency naturally makes it expensive, there is an incentive not to use 

the blockchain for computation that can be done offchain (Game Theory!).

Typically, 21,000 gas is charged for any transaction as a "base fee" 

to cover the cost of an elliptic curve operation to compute the sender 

address from the signature, and also for the disk space of storing the 

transaction. There are ways to estimate gas requirements for transactions 

and contracts. Example: “estimateGas” is a Web3 function to estimate gas 

requirement for a given function. Also, to estimate the total cost, gas price 

oracle is a helper function in “geth” client and “web3.eth.getGasPrice” is 

a Web3 native function to find an approximate gas Price. Following is an 

example code that can be used in “Truffle”:

Chapter 4  How Ethereum Works



252

Example code for transaction cost estimation

var MyContract = artifacts.require("./MyTest.sol");

// getGasPrice returns the gas price in Wei

MyContract.web3.eth.getGasPrice(function(error, result){

    var gasPrice = Number(result);

    console.log("Current gasPrice is " + gasPrice + " wei");

    // Get the Contract instance

    MyContract.deployed().then(function(instance) {

        �// Retrieve gas estimation for the function 

giveAwayDividend()

        return instance.giveAwayDividend.estimateGas(1);

    }).then(function(result) {

        var gas = Number(result);

        �console.log("Total gas estimation = " + gas + " units");

        �console.log("Total Transaction Cost estimation in Wei = 

" + (gas * gasPrice) + " wei");

        �console.log("Total Transaction Cost estimation in 

Ether = " + MyContract.web3.fromWei((gas * gasPrice), 

'ether') + " Ether");

    });

});

While writing smart contracts in Solidity, many prefer to use “constant” 

functions to compute certain things offchain or just make an RPC query 

to your local blockchain. Since such constant functions do not change the 

blockchain state, they are in a way free of cost as they do not consume gas. 

If the constant functions are used inside of any transaction, then it is highly 

likely that gas expense would be required.
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Let us now learn about the block’s gas limit. Recollect that Bitcoin 

had a predefined limit of 1MB block size and Bitcoin cash had a 2MB 

block size. Miners would accumulate as many transactions as could fit in 

those blocks. Ethereum, however, has a very different way of limiting the 

block size. In Ethereum, the block size is controlled by the block gas limit. 

Different transactions have different gas limits; so, depending on the block 

gas limit, a certain number of transactions are clubbed together so that 

total transactions gas limit is less than the block gas limit. Different miners 

can have different sets of transactions that they are willing to put in a block. 

The block gas limit is dynamically calculated. The Ethereum protocol 

allows the miner of a block to adjust the block gas limit by a factor of 

1/1024 (0.0976%) in either direction. Miners on the Ethereum network use 

a mining program, such as “ethminer.” The ethminer is an Ethereum GPU 

mining worker, which connects to either geth or Parity Ethereum client 

node. Both geth and Parity have options that miners can change.

�Ethereum Smart Contracts
Unlike Bitcoin, which is just a cryptocurrency, Ethereum is so much more–

thanks to the smart contracts. We got a glimpse of what a smart contract 

might be in the previous sections while learning about Contract Accounts. 

While we will get into the development aspects of smart contracts in the 

following chapters, we will have a detailed exploration of what they really 

are in this section.

Let us start with why it is named so? Please be aware that there is nothing 

“smart” in a smart contract that is out-of-the-box. It is smart when you code 

smart logic into it, and it is the beauty of Ethereum that enables you to do so. 

Let us just summarize our learning so far on the Ethereum smart contracts:

•	 Smart contracts reside inside the Ethereum blockchain.

•	 They have their own account, hence address and 

balance.
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•	 They are capable of sending messages and receiving 

transactions.

•	 They get activated when they receive a transaction, and 

can be deactivated as well.

•	 Like other transactions, an execution fee and storage 

fee are applicable for them as well.

All the code in Ethereum, including the smart contracts, is compiled 

to a low level, stack-based bytecode language, referred to as EVM code, 

that runs on EVM. The popular high-level languages used to write smart 

contracts are Solidity, Serpent, and LLL, where their respective compilers 

convert the high-level code into the EVM byte code. We looked at how 

contracts could be added into the blockchain by any external agent such 

as EOA. Since computation and storage in Ethereum are very expensive, 

it is advisible that the logic should be written in as simple and optimized 

fashion as possible. When a smart contract is deployed to the Ethereum 

blockchain network, it is possible for anyone to call the functions of the 

smart contract. The functions usually have security features coded up that 

prevent unauthorized access; nevertheless, attempts can be made though 

they won’t succeed.

If you try to imagine a smart contract inside of a block in an Ethereum 

blockchain, it might appear as in Figure 4-9.
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Let us now take an example of a voting application. A smart contract 

is written that has an address (Contract Account address) and is a part 

of some block in the blockchain, depending on when it was created. The 

voters can make transactions to that address (votes). The contract code is 

written such that it will increment the vote count with every transaction 

received and terminates itself after some time, publishing the voting result 

(Ethereum state change). Take a look at Figure 4-10 to have a diagramatic 

representation for a high-level understanding.

Figure 4-9.  Ethereum smart contract with respect to blocks
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�Contract Creation
Recollect that we learned about the contract creation transaction, whose 

only purpose is to create a contract. It is a bit different kind of transaction 

compared with the other types. So, before the contract creation transaction 

is fired up to create a Contract Account, it must first initialize the four 

properties that all types of accounts have:

•	 The “nonce” should be set to zero initially.

•	 The “Account Balance” should be set with the value 

(amount of Ether) transferred by the sender, and the 

same amount must be deducted from the sender’s 

account.

Figure 4-10.  An application with smart contract logic
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•	 The “StorageRoot” should be empty.

•	 The contract’s “codeHash” should be set with the 

Keccak 256-bit hash of an empty string.

After initializing the account, the account can be created using the init 

code sent with the transaction that does the real work. There could be a 

whole bunch of actions defined in init code, and it’s execution can effect 

several events that are not internal to the execution state, such as:

•	 The account’s ‘storage’ can be altered.

•	 Further accounts can be created.

•	 Further message calls can be triggered.

�Ethereum Virtual Machine and Code 
Execution
Ethereum is a programmable blockchain that allows users to create their 

own operations of any arbitrary complexity through Turing-complete 

languages. The EVM is the execution engine of Ethereum that serves as 

the runtime environment for smart contracts. It is the primary innovation 

of Ethereum that makes it unique compared with other blockchain 

systems. It is the EVM on the basis of which the smart contract technology 

is supposed to get to the next level of innovation, and the game is on. 

EVM also plays a critical role in transaction execution, changing the state 

of Ethereum, and achieving consensus. The design goals of EVM are as 

follows:

•	 Simplicity: The idea was to make EVM as simple as 

possible with the low-level constructs. This is why the 

number of low-level opcodes is kept to a minimum, 

and so are the data types to the extent that complex 
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logics could still be written conveniently using these 

constructs. Total 160 instructions, out of which 65 are 

logically distinct

•	 Absolute determinism: Ensuring that the execution 

of instructions with the same set of inputs should 

produce the same set of outputs (deterministic!) 

helps maintain the integrity of the EVM without any 

ambiguity. Determinism along with the concept of 

“computational step” helps estimate gas expense with 

close approximation.

•	 Space optimization: In decentralized systems, space 

saving is a biggest concern. This is why the EVM 

assembly is kept as compact as possible.

•	 Tuned for native operations: EVM is tuned for 

some native operations such as the specific types of 

arithmatic operations used for cryptography (modular 

arithmatic), reading blocks or transaction data, 

interacting with “states,” etc. Another such example is: 

256-bit (32 bytes) word length to store cryptographic 

hashes, where EVM operates on the same 256-bits 

integer.

•	 Easy security: In a way, gas Price helps ensure that the 

EVM is nonexploitable. If there was no cost, attackers 

could just keep attacking the system in every possible 

way. While almost every operation on EVM requires 

some gas cost, it should be easy to come up with good 

gas cost model on EVM

We learned that every participating node in the Ethereum network 

runs EVM locally, executes all transactions and smart contracts, and saves 

the final state locally. It is the EVM that writes code (smart contracts) and 
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data to blockchain and executes instructions (opcodes) of transaction code 

and smart contract code written in a Turing-complete language. That is 

to say, EVM serves as a runtime environment (RTE) for Ethereum smart 

contracts and ensures secured execution of the code. Obviously, when 

the code or transactions are validated through their respective digital 

signatures, they are executed on EVM. So, only after successful execution 

of instructions through EVM, the Ethereum state can change.

Unless one connects the EVM with the rest of the network to 

participate in the P2P network, it can be isolated from the main network. 

In an isolated and sandboxed environment, EVM could be used to test 

smart contracts. It facilitates in building better, robust, and production 

ready-smart contracts.

To build a better understanding of how smart contracts work 

leveraging the EVM, we should understand how data is organized, stored, 

and manipulated in any EVM language such as Solidity, Serpent, and 

ones that might come in future. You might want to consider EVM more 

like a database engine. Though we will not get deeper into the Solidity 

programming fundamentals, we will see how it interacts with the EVM in 

this section. Take a look at Figure 4-11.
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Let us now understand memory management with EVM. Take a look at 

the following three strategies that the EVM follows:

•	 Storage (persistent)

•	 Key-value storage mapping (i.e., 256- bit to 256-bit 

word mapping). This means both keys and values 

are 256 bits (i.e., 32 bytes).

•	 From within a contract, it is not possible to 

enumarate storage.

•	 At any given point in time, the state of the contract 

can be determined by the contract level variables 

called “state variables” that are always in “storage,” 

and it cannot be updated at runtime. This means 

that the structure of the storage is set only once 

during the contract creation and cannot be altered. 

Figure 4-11.  Smart contract deployment and usage
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However, their content can be changed with 

“sendTransaction” calls.

•	 Read/update of storage is an expensive affair.

•	 Contracts cannot read, write, or update to any other 

storage that is not owned by them.

•	 SSTORE/SLOAD are the frequently used 

instructions. Example: SSTORE instruction pops 

the top two items off the stack, considers the first 

item as the index, and inserts the second item into 

the contract’s storage at that index location.

•	 Memory (volatile)

•	 It is similar to RAM requirement in a general 

computer system for any code or application 

execution and used to store temporary values.

•	 A contract can use any amount of memory during 

execution by paying for it, and that memory space 

is cleaned up after execution completes. The 

outputs during execution could be pushed to the 

persistent storage that can be reused in future 

executions.

•	 Memory is actually a byte-array that is contiguous, 

unlike storage. It is allocated in 256-bit (32 bytes) 

chunks.

•	 Starts with no space and takes on space in the units 

of 32-byte chunks.

•	 Without the “memory” keyword, smart contract 

languages such as Solidity are expected to declare 

variables in storage for persistence.
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•	 Memory cannot be used at the smart contract level; 

it can only be used in methods.

•	 Function arguments are almost always in memory.

•	 MSTORE/MLOAD are the frequently used 

instructions.

•	 Stack

•	 EVM is stack based, hence follows LIFO (Last-

in, First-Out), where stack is used to perform 

computations.

•	 Stack entries are also 256-bit words used to 

mimic 256-bit pseudo registers. They are used to 

hold local variables of “value” type and to pass 

parameters to instructions or functions, memory 

operations, and other algorithmic operations.

•	 Allows a maximum of 1024 element and is almost 

free to use.

•	 Most of the stack operations are limited to top of 

the stacks. The execution is pretty similar to the way 

Bitcoin script was executed.

When EVM is running and the byte code is injected with a transaction 

for execution, its full computational state can be defined by the following 

tuple: [block_state, transaction, message, code, memory, stack, pc, gas].

You must be able to make out all these fields now. They have the three 

kinds of memory we discussed (the block_state field represents the global 

state and is for storage). The PC field is like a pointer for an instruction in 

the stack to be executed.

In Ethereum, an Application Binary Interface (ABI) is an abstraction 

that is not part of the core Ethereum protocol, but is used to access the 

byte code in a smart contract as standard practice. Though it is possible 
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for anyone to define their own ABI for their contracts and comply with it to 

get the desired output, it is easier to use Solidity. The purpose of ABI is as 

follows:

•	 How and what functions inside smart contracts should 

be called

•	 The Binary format in which information should be 

passed to smart contract functions as inputs

•	 The Binary format in which you expect the output of 

function execution after calling that function

With ABI specifications, it is easy (though may not be necessary) for 

two programs written in two different languages to interact with each other.

�Ethereum Ecosystem
We learned the core components to understand how Ethereum really 

works. There are some inherent limitations to Ethereum such as the 

following:

•	 The EVM is slow; it is not advisible to be used for large 

computations.

•	 Computation and storage on the blockchain is 

expensive; it is advisible to use offchain computations 

and use IPFS/Swarm for storage.

•	 Scalability is an issue; there are different techniques to 

address it, but they are subjective to the business case 

you are dealing with.

•	 Private blockchains are more likely to flourish.

Now let us take a look at the Ethereum tech stack to understand at a 

high-level the Ethereum ecosystem.
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�Swarm
It is not only a distributed storage platform of static files in a P2P fashion, 

but also a distribution service. Swarm ensures adequate decentralization 

and redundant storage of Ethereum’s blockchain data, DApp code, etc. 

Unlike WWW, the uploads to Swarm are not centralized to one web server. 

It is designed to have zero downtime and is DDOS resistant and fault 

tolerant.

�Whisper
It is a communications protocol that allows DApps to communicate with 

each other. It provides a distributed yet private messaging functionality. It 

supports singlecast, multicast, and broadcast of messages.

�DApp
A DApp usually has two components, a front-end and a back-end 

component. The back-end code runs on the actual blockchain coded 

up in smart contracts. The front-end code and user interfaces could be 

written in any language such as HTML, CSS, and JavaScript, as long as 

it can make calls to its back end. Also, the front end can be hosted in a 

decentralized storage like SWARM or IPFS instead of a centralized web 

server.

User interface components will be cached on some kind of 

decentralized BitTorrent-like cloud and pulled in by the ÐApp Browser as 

needed. Like any App store, it is possible to browse the distributed DApps 

catalog in the browser. The end user can install any DApp of interest in 

their browser.
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�Development Components
There are so many development components used to develop 

decentralized applications on Ethereum and interact with them. Following 

are a few popular ones, but there are many more such for you to explore. 

We will just take a look at what they are and dive deeper into these topics 

in the following chapters.

�Web3.js

This is a very important element in developing DApps.

�Truffle

Truffle provides the building blocks to create, compile, deploy, and test 

blockchain applications.

�Mist Wallet

We learned in the previous chapters that a wallet is required to interact 

with blockchain applications and the same applies to Ethereum as well. 

To store, accept, and send Ether, the users need a wallet. Mist Wallet is a 

UI-based solution that can be used to connect to the Ethereum blockchain. 

Using Mist wallet, one can create accounts, design and deploy contracts, 

transfer Ether across accounts, and view transaction details.

Internally, Mist is dependent on the “geth” client (i.e., GoEthereum 

Client) to perform all the operations seamlessly.

�Summary
In this chapter, we covered the core components of Ethereum blockchain 

and understood the design considerations. We were able to differentiate 

Ethereum design with that of the Bitcoin blockchain and understood how 
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Ethereum blockchain facilitates development of different use cases on a 

single platform. We took a deep dive into the smart contracts and how the 

Ethereum Virtual Machine (EVM) executes it in a decentralized fashion.

We will explore more into the development aspect of blockchain in 

general in Chapter 5 and then build a solid understanding of Ethereum 

development in Chapter 6.
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CHAPTER 5

Blockchain 
Application 
Development
In the previous chapters we went into theoretical details about what 

blockchain is and how the Bitcoin and Ethereum blockchains work. We 

also looked at the different cryptographic and mathematical algorithms, 

theorems, and proofs that go into making the blockchain technology.

In this chapter, we will start with how blockchain applications are 

different than the conventional applications, and then we will dive into 

how to build applications on blockchains. We will also look at setting up 

the necessary infrastructure needed to start developing decentralized 

applications.

�Decentralized Applications
The popularity of blockchain technology is mostly driven by the fact that 

it can potentially solve various real-world problems because it provides 

more transparency and security (tamper-proof) than conventional 

technologies. There are a lot of blockchain use cases identified by several 

startups and community members aimed at solving these problems.  
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To implement these use cases, we create applications that work on top 

of blockchains. In general, applications that interact with blockchains 

are referred to as “decentralized applications” or, in short, just DApps or 

dApps.

To understand DApps better, let’s first revisit what a blockchain is.  

A blockchain or a distributed ledger is basically a special kind of database 

where the data is not stored at a centralized server, but it is copied at all 

the participating nodes in the network. Also, the data on blockchains is 

cryptographically signed, which proves the identity of the entity who wrote 

that data on the blockchain. To make use of this database to store and 

retrieve data, we create applications that are called DApps because these 

applications do not rely on a centralized database but on a blockchain-

based decentralized data store. There is no single point of failure or control 

for these applications.

Let’s take an example of a DApp. Let’s take a scenario of supply chain 

where several vendors and logistics partners are involved in the supply 

chain process of manufactured goods. To use blockchain technology for 

this supply chain use case, here’s what we would do:

•	 We would need to set up blockchain nodes at each 

of these vendors so that they can participate in the 

consensus process on the data shared.

•	 We would need an interface so that all the participants 

and users can store, retrieve, verify, and evaluate 

data on the blockchain. This interface would be used 

by the manufacturer to enter the information about 

the goods manufactured; by the logistics partner to 

enter information about the transfer of goods; by the 

warehousing vendor to verify if the goods manufactured 

and the goods transferred are in sync, etc., etc. This 

interface would be our supply chain DApp.
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Another example of a DApp would be a voting system based on 

blockchains. Using blockchain for voting, we would be able to make 

the whole process much more transparent and secure because each 

vote would be cryptographically signed. We would need to create an 

application that could get a list of candidates for whom voters could vote, 

and this application would also provide a simple interface to submit and 

record the votes.

�Blockchain Application Development
Before we jump into code, let’s first understand some basic concepts 

around blockchain application development. Generally, we are used 

to concepts like objects, classes, functions, etc. when we develop 

conventional software applications. However, when it comes to blockchain 

applications, we need to understand a few more concepts like transactions, 

accounts and addresses, tokens and wallets, inputs, and outputs and 

balances. The handshake and request/response mechanism between a 

decentralized application and a blockchain are driven by these concepts.

First, when developing an application based on blockchain, we 

need to identify how the application data would map to the blockchain 

data model. For example, when developing a DApp on the Ethereum 

blockchain, we need to understand how the application state can be 

represented in terms of Solidity data structures and how the application’s 

behavior can be expressed in terms of Ethereum smart contracts. As we 

know that all data on a blockchain is cryptographically signed by private 

keys of the users, we need to identify which entities in our application 

would have identities or addresses represented on the blockchain. In 

conventional applications this is generally not the case, because the data 

is not always signed. For blockchain application we need to define who 

would be the signers and what data they would sign. For example, in 

a voting DApp in which every voter cryptographically signs their vote, 
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this is easy to identify. However, imagine a scenario where we need to 

migrate an existing conventional distributed systems application, having 

its data stored across multiple SQL tables and databases, to a DApp based 

on Ethereum blockchain. In this case we need to identify which entities 

in which table would have their identities and which entities would be 

attached to other identities.

In the next few sections, we will explore Bitcoin and Ethereum 

application programming using simple code snippets to send some 

transactions. The purpose of this exercise is to become familiar with the 

blockchain APIs and common programming practices. For simplicity, we 

will be using public test networks for these blockchains and we will write 

code in JavaScript. The reason for selecting JavaScript is, at the time of this 

writing, we have stable JavaScript libraries available for both blockchains 

and it will be easier to understand the similarities and differences in the 

approaches we take while writing code. The code snippets are explained 

in detail after every logical step and can be understood even if the reader is 

not familiar with JavaScript programming.

�Libraries and Tools
Recall from Chapter 2, that there are a lot of cryptographic algorithms 

and mathematics used in blockchain technology. Before we send our 

transactions to blockchains from an application, we need to prepare 

them. The transaction preparation includes defining accounts and 

addresses, adding required parameters and values to the transaction 

objects, and signing using private keys, among a few other things. When 

developing applications, it’s better to use verified and tested libraries for 

transaction preparation instead of writing code from scratch. Some of the 

stable libraries for both Bitcoin and Ethereum are available open source, 

which can be used to prepare and sign transactions and to send them to 

the blockchain nodes/network. For the purpose of our code exercises, 

we will be using the bitcoinjs JavaScript library for interacting with the 
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Bitcoin blockchain and the web3.js JavaScript library for interacting with 

the Ethereum blockchain. Both these libraries are available as node.js  

packages and can be downloaded and integrated using the npm 

commands.

Important Note T he code exercises in this chapter are based on 
node.js applications. This is to make sure that the code we write as 
part of this exercise has a container in which it can run and interact 
with the other prepackaged libraries (node modules) mentioned. It is 
nice to have some knowledge about node.js application development, 
and the reader is encouraged to follow a getting started tutorial on 
node.js and npm.

Figure 5-1 shows how a DApp interacts with a blockchain.

Figure 5-1.  Blockchain application interaction
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�Interacting with the Bitcoin Blockchain
In this section we will send a transaction to the Bitcoin public test network 

from one address to another. Consider this a “Hello World” application 

for the Bitcoin blockchain. As mentioned before, we will be using the 

bitcoinjs JavaScript library for preparing and signing transactions. And 

for simplicity, instead of hosting a local Bitcoin node, we will use a public 

Bitcoin test network node hosted by a third-party provider block-explorer. 

Note that you can use any provider for your application and you can also 

host a local node. All you need to do is to point your application code to 

connect to your preferred node.

Recall from previous chapters that the Bitcoin blockchain is primarily 

for enabling peer to peer payments. A Bitcoin transaction is mostly just 

a transfer of Bitcoins from one address to another. Here’s how we do this 

programmatically.

The following (Figure 5-2) shows how this code interacts with the 

Bitcoin blockchain. Note: The figure is just a rough sketch and does not 

show the Block Explorer service architecture in detail.

Figure 5-2.  Application interacting with the Bitcoin blockchain using 
the Block Explorer API
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The following subheadings of this section are steps to follow, in that 

order, to send a transaction to the Bitcoin test network using JavaScript.

�Setup and Initialize the bitcoinjs Library 
in a node.js  Application
Before we call the library-specific code for Bitcoin transactions, we will 

install and initialize the bitcoinjs library.

After initializing a node.js applicaion using the npm init command, 

let’s create an entry point for our application, index.js, and custom 

JavaScript module to call the bitcoinjs library functions btc.js. Import btc.js 

in the index.js. Now, we are ready to follow the next steps.

First, let’s install the node module for bitcoinjs:

npm install --save bitcoinjs-lib

Then, in our Bitcoin module btc.js, we will initialize the bitcoinjs 

library using the require keyword:

var btc = require('bitcoinjs-lib');

Now we can use this btc variable to call library functions on the 

bitcoinjs library. Also, as part of the initialization process, we are 

initializing a couple of more variables:

•	 The network to target : We are using the Bitcoin test 

network.

var network = btc.networks.testnet;

•	 The public node API endpoint to get and post 

transactions : We are using the Block Explorer API for 

Bitcoin test network. Note that you can replace this API 

endpoint with your preferred one.

var blockExplorerTestnetApiEndpoint =  

'https://testnet.blockexplorer.com/api/';
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At this point, we are all set up to create a Bitcoin transaction using a 

node.js application.

�Create Keypairs for the Sender and Receiver
The first thing that we will need are the keypairs for the sender and 

the receivers. These are like user accounts identifying the users on the 

blockchain. So, let’s first create two keypairs for Alice and Bob.

var getKeys = function () {

    var aliceKeys = btc.ECPair.makeRandom({

        network: network

    });

    var bobKeys = btc.ECPair.makeRandom({

        network: network

    });

    var alicePublic = aliceKeys.getAddress();

    var alicePrivate = aliceKeys.toWIF();

    var bobPublic = bobKeys.getAddress();

    var bobPrivate = bobKeys.toWIF();

    �console.log(alicePublic, alicePrivate, bobPublic, 

bobPrivate);

};

What we did in the previous code snippet is, we used the ECPair class 

of the bitcoinjs library and called the makeRandom method on it to create 

random keypairs for the test network; note the parameter passed for 

network type.

Now that we have created a couple of keypairs, let’s use them to send 

Bitcoins from one to the other. In almost all the cryptography examples, 

Alice and Bob have been the favorite characters, as seen in the preceding 

keypair variables. However, every time we see a cryptography example, 

generally Alice is the one who encrypts/signs something and sends to Bob. 
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For that reason, we feel Bob is under a lot of debt from Alice, so in our case 

we will help Bob repay some of that debt. We will do this example Bitcoin 

transaction from Bob to Alice.

�Get Test Bitcoins in the Sender’s Wallet
We have identified that Bob is going to be acting as the sender in this 

example Bitcoin transaction. Before he sends any Bitcoins to Alice, he 

needs to own them. As we know that this example transaction is targeting 

the Bitcoin test network, there is no real money involved but we still need 

some test Bitcoins in Bob’s wallet. A simple way to get test network Bitcoins 

is to ask on the Internet. There are a lot of websites on the Internet that 

host a simple web form to take the Bitcoin testnet addresses and then 

send test net Bitcoins to those. These services are called Bitcoin testnet 

faucets, and if you search online for that term you will get a lot of those in 

the search results. We are not listing or recommending any specific testnet 

faucet because they are generally not permanent. As soon as a faucet 

service provider has exhausted their test coins, or they don’t want to host 

the service anymore, they shut it down. But then new ones keep coming up 

all the time. A list of some of these faucet services is also available on the 

Bitcoin wiki testnet page.

Another way of getting test net Bitcoins is to host a local Bitcoin node 

pointing to the test net and mine some. The block mining on the Bitcoin 

test network is not as difficult as that on the main network. This approach 

could well be the next level approach when you are building a production 

Bitcoin application and you need to test it frequently. Instead of asking for 

test coins every time you want to test your application, you can just mine 

them yourself.

For the purposes of this simple example, we will just get some 

Bitcoins from a testnet faucet. In the previous code snippet, the value in 

the bobPublic variable is Bob’s Bitcoin testnet address. When we ran this 

snippet, it generated “msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2” as Bob’s 
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address. It is also Bob’s base 58 encoded public key. We will submit this 

value in one of the testnet faucet web forms and in return we will receive 

a transaction ID. If we look up that transaction ID on any of the Bitcoin 

testnet explorers, we will see that some other address has sent some test 

Bitcoins to Bob’s address we submitted in the form.

�Get the Sender’s Unspent Outputs
Now that we know that we have some test Bitcoins in Bob’s wallet, we can 

spend them and give them to Alice through a Bitcoin transaction. Let’s 

recall from Chapter 3 how the Bitcoin transactions are made of inputs and 

outputs. You can spend your unspent outputs by adding them as inputs 

to the transactions where you want to spend them. To do that, first you 

need to query the network about the sender’s unspent outputs. Here’s how 

we will do that for Bob’s Bitcoin testnet address using the block explorer 

API. To get the unspent outputs, we will send an HTTP request to the UTXO 

endpoint with Bob’s address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2".

var getOutputs = function () {

    �var url = blockExplorerTestnetApiEndpoint + 'addr/' + 

msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2 + '/utxo';

    return new Promise(function (resolve, reject) {

        request.get(url, function (err, res, body) {

            if (err) {

                reject(err);

            }

            resolve(body);

        });

    });

};
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In the previous code snippet, we have used the node.js request 

module to send http requests using a node.js application. Feel free to use 

your favorite http library/module. This snippet is a JavaScript function 

that returns a promise that resolves into the response body from the API 

method. Here’s how the response looks:

[

    {

        address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

        �txid: 'db2e5966c5139c6e937203d567403867643482bbd9a6624 

752bbc583ca259958',

        vout: 0,

        �scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad 

c51dc02d6888ac',

        amount: 0.99992,

        satoshis: 99992000,

        height: 1258815,

        confirmations: 1011

    },

    {

      address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

        �txid: '5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7 

453e3afeb4934e6d1d928e',

        vout: 1,

        �scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad 

c51dc02d6888ac',

        amount: 0.99998,

        satoshis: 99998000,

        height: 1258814,

        confirmations: 1012

    }

]
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The response body returned by the call is a JSON array with two 

objects. Each of these objects represents an unspent output for Bob. Each 

output has txid, which is the transaction ID where this output is listed, the 

amount associated with output, and the vout, which means the sequence 

or index number of the output in that transaction. There is some other 

information in the JSON objects too, but that will not be used in the 

transaction preparation process.

If we take the first object in the array, it basically says that the 

Bitcoin testnet address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2" 

has `99992000` unspent satoshis coming from the transaction 

`db2e5966c5139c6e937203d567403867643482bbd9a6624752bbc583c 

a259958` at the index `0`. Similarly, the second object represents 

`99998000` unspent satoshis coming from the transaction 

`5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7453e3afeb4934 

e6d1d928e` at the index `1`.

Don’t forget that "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2" is Bob’s 

Bitcoin testnet, which we created in step 2 earlier. Now we know that Bob 

has this many satoshis, which he can spend in a new transaction.

�Prepare Bitcoin Transaction
The next step is to prepare a Bitcoin transaction in which Bob can send the 

test coins to Alice. Preparing the transaction is basically defining its inputs, 

outputs, and amount.

As we know from the previous step that Bob has two unspent outputs 

under his Bitcoin testnet address, let’s spend the first element of the 

outputs array. Let’s add this as an input to our transaction.

var utxo = JSON.parse(body.toString());

var transaction = new btc.TransactionBuilder(network);

transaction.addInput(utxo[0].txid, utxo[0].vout);

Chapter 5  Blockchain Application Development



279

In the prceding code snippet, first we have parsed the response we 

received from the previous API call to get Bob’s unspent outputs.

Then we have created a transaction builder object for the Bitcoin test 

network using the bitcoinjs library.

In the last line, we have defined a transaction input. Note that this input 

is referring to the element at 0 index of the utxo array, which we received 

in the API call from the previous step. We have passed the transaction ID 

(txid) and vout from the unspent to the transaction.addInput method as 

input parameters.

Basically, we are defining what we want to spend and where we got it 

from.

Next, we add the transaction outputs. This is where we say how we 

want to spend what we added in the input. In the line following, we 

have added a transaction output by calling the addOutput method on 

the transaction builder object and passed in the target address and the 

amount. Bob wants to send 99990000 satoshis to Alice. Notice that we have 

used Alice’s Bitcoin testnet address as the function’s first parameter.

transaction.addOutput(alicePublic, 99990000);

While we have used only one input and one output in this example 

transaction, a transaction can have multiple inputs and outputs. An 

important thing to note is that the total amount in inputs should not be 

less than the total amount in outputs. Most of the time, the amount in 

inputs is slightly more than the amount in outputs, and the difference is 

the transaction fee offered to the miners to include this transaction when 

they mine the next block.

In this transaction, we have 2,000 satoshis as the transaction fee, 

which is the difference between input amount (99992000) and the output 

amount (99990000). Note that we don’t have to create any outputs for the 

transaction fee; the difference between the input and output total amounts 

is automatically taken as the transaction fee.
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Also, note that we cannot spend partial unspent outputs. If an unspent 

output has x amount of Bitcoins associated with it then we must spend 

all of the x Bitcoins when adding this unspent output as an input in a 

transaction. So, in case Bob doesn’t want to give all the 99,990,000 satoshis 

associated with his unspent output to Alice, then we need to give it back to 

Bob by adding another output to the transaction with an amount equal to 

the difference of total unspent amount and the amount Bob wants to give 

to Alice.

�Sign Transaction Inputs
Now, that we have defined the inputs and outputs in the transaction, we 

need to sign the inputs using Bob’s keys. The following line of code calls 

the sign function on the transaction builder object to cryptographically 

sign the transaction using Bob’s private key, but it takes the whole key pair 

object as an input parameter.

transaction.sign(0, bobKeys);

Note that the transaction.sign function takes the index of the input 

and the full key pair as input parameters. In this transaction, because we 

have only one input, the index we have passed is 0.

At this stage, our transaction is prepared and signed.

�Create Transaction Hex
Now we will create a hex string from the transaction object.

var transactionHex = transaction.build().toHex();

The output of this line of code is the following string, which represents 

our prepared transaction; this step is needed because the send transaction 

API accepts the raw transaction as a string.
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�Broadcast Transaction to the Network
Finally, we use the hex string value we generated in the last step and send 

it to the block explorer public testnet node using the API,

var txPushUrl = blockExplorerTestnetApiEndpoint + 'tx/send';

request.post({

    url: txPushUrl,

        json: {

            rawtx: transactionHex

        }

    }, function (err, res, body) {

        if (err) console.log(err);

        console.log(res);

        console.log(body);

    });

If the transaction is accepted by the block explorer public node, we will 

receive a transaction ID as the response of this API call,

{

    �txid: "db2e5966c5139c6e937203d567403867643482bbd 

9a6624752bbc583ca259958"

}

Now that we have the transaction ID of our transaction, we can look it 

up on any of the online testnet explorers to see if and when it gets mined 

and how many confirmations it has.

Putting it all together, here’s the complete code for sending a Bitcoin 

testnet transaction using JavaScript. The input parameters are the Bitcoin 

testnet keypairs we created in step 1.
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var createTransaction = function (aliceKeys, bobKeys) {

    getOutputs(bobKeys.getAddress()).then(function (res) {

        var utxo = JSON.parse(res.toString());

        var transaction = new btc.TransactionBuilder(network);

        transaction.addInput(utxo[0].txid, utxo[0].vout);

        �transaction.addOutput(alicekeys.getAddress(), 

99990000);

        transaction.sign(0, bobKeys);

        var transactionHex = transaction.build().toHex();

        �var txPushUrl = blockExplorerTestnetApiEndpoint +  

'tx/send';

        request.post({

            url: txPushUrl,

            json: {

                rawtx: transactionHex

            }

        }, function (err, res, body) {

            if (err) console.log(err);

            console.log(res);

            console.log(body);

        });

    });

};

In this section we learned how we can programmatically send a 

transaction to the Bitcoin test network. Similarly, we can send transactions 

to the Bitcoin main network by using the main network as the target in the 

library functions and in the API endpoints. We also used the query APIs 

to get unspent outputs of a Bitcoin address. These functions can be used 

to create a simple Bitcoin wallet application to query and manage Bitcoin 

addresses and transactions.
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�Interacting Programmatically with 
Ethereum—Sending Transactions
The Ethereum blockchain has much more to offer in terms of blockchain 

application development as compared with the Bitcoin blockchain. 

The ability to execute logic on the blockchain using smart contracts 

is the key feature of Ethereum blockchain that allows developers to 

create decentralized applications. In this section we will learn how to 

programmatically interact with the Ethereum blockchain using JavaScript. 

We will look at the main aspects of Ethereum application programming 

from simple transactions to creating and calling smart contracts.

As we did for interacting with the Bitcoin blockchain in the previous 

section, we will be using a JavaScript library and test network for 

interacting with Ethereum as well. We will use the web3 JavaScript library 

for Ethereum. This library wraps a lot of Ethereum JSON RPC APIs and 

provides easy to use functions to create Ethereum DApps using JavaScript. 

At the time of this writing, we are using a version greater than and 

compatible with version 1.0.0-beta.28 of the web3 JavaScript library.

For the test network, we will be using the Ropsten test network for 

Ethereum blockchain.

For simplicity, we will again use a public-hosted test network node for 

Ethereum so that we don’t have to host a local node while running these 

code snippets. However, all snippets should work with a locally hosted 

node as well. We are using the Ethereum APIs provided by the Infura 

service. Infura is a service that provides public-hosted Ethereum nodes so 

that developers can easily test their Ethereum apps. There is a small and 

free registration step needed before we can use the Infura API, so we will 

go to https://infura.io and do a registration. We will get an API key after 

registration. Using this API key, we can now call the Infura API.
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The following (Figure 5-3) shows how this code interacts with the 

Ethereum blockchain. Note: The figure is just a rough sketch and does not 

show the Infura service architecture in detail.

The following subsections of this section are steps to follow, in that 

order, to send a transaction to the Ethereum Ropsten test network using 

JavaScript.

�Set Up Library and Connection
First, we install the web3 library in our node.js application. Note the 

specific version of library mentioned in the installation command. This 

is because version 1.0.0 of the library has some more APIs and functions 

available and they reduce dependency on other external packages.

npm install web3@1.0.0-beta.28

Then, we initialize the library in our nodejs Ethereum module using 

the require keyword,

var Web3 = require('web3');

Figure 5-3.  Application interacting with Ethereum blockchain using 
Infura API service
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Now, we have a reference of the web3 library, but we need to 

instantiate it before we can use it. The following line of code creates a 

new instance of the Web3 object and it sets the Infura-hosted Ethereum 

Ropsten test network node as the provider for this Web3 instance.

var web3 = new Web3(new Web3.providers.HttpProvider('https://

ropsten.infura.io/<your Infura API key>'));

�Set Up Ethereum Accounts
Now that we are all set up, let’s send a transaction to the Ethereum 

blockchain. In this transaction, we will send some Ether from one account 

to another. Recall from Chapter 4 that Ethereum does not use the UTXO 

model but it uses an account and balances model.

Basically, the Ethereum blockchain manages state and assets in terms 

of accounts and balances just like banks do. There are no inputs and 

outputs here. You can simply send Ether from one account to another and 

Ethereum will make sure that the states are updated for these accounts on 

all nodes.

To send a transaction to Ethereum that transfers Ether from one 

account to others, we will first need a couple of Ethereum accounts. Let’s 

start with creating two accounts for Alice and Bob.

The following code snippet calls the account creation function of web3 

library and creates two accounts.

var createAccounts = function () {

    var aliceKeys = web3.eth.accounts.create();

    console.log(aliceKeys);

    var bobKeys = web3.eth.accounts.create();

    console.log(bobKeys);

};
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And here’s the output that we get in the console window after running 

the previous snippet.

{

    address: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

    �privateKey: '0x9fb71152b32cb90982f95e2b1bf2a5b6b2a5385 

5eacf59d132a2b7f043cfddf5',

    signTransaction: [Function: signTransaction],

    sign: [Function: sign],

    encrypt: [Function: encrypt]

}

{

    address: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

    �privateKey: '0xc6676b7262dab1a3a28a781c77110b63ab8cd5 

eae2a5a828ba3b1ad28e9f5a9b',

    signTransaction: [Function: signTransaction],

    sign: [Function: sign],

    encrypt: [Function: encrypt]

}

As you can see, along with the addresses and private keys, the output for 

each account creation function call also includes a few functions. For now, 

we will focus on the address and private key of the returned objects. The 

address is the Keccak-256 hash of the ECDSA public key of the generated 

private key. This address and private key combination represents an account 

on the Ethereum blockchain. You can send Ether to the address and you can 

spend that Ether using the private key of the corresponding address.

�Get Test Ether in Sender’s Account
Now, to create an Ethereum transaction which transfers Ether from one 

account to another, we first need some Ether in one of the accounts. Recall 

from the Bitcoin programming section that we used testnet faucets to get 
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some test Bitcoins on the address we generated. We will do the same for 

Ethereum also. Remember that we are targeting the Ropsten test network 

for Ethereum, so we will search for a Ropsten faucet on the Internet. 

For this example, we submitted Alice’s address that we generated in the 

previous code snippet to an Ethereum Ropsten test network faucet and we 

received three ethers on that address.

After receiving Ether on Alice’s address, let’s check the balance of this 

address to confirm if we really have the Ether or not. Though we can check 

the balance of this address using any of the Ethereum explorers online, 

let’s do it using code. The following code snippet calls the getBalance 

function passing Alice’s address as input parameter.

var getBalance = function () {

    �web3.eth.getBalance('0xAff9d328E8181aE831Bc426347949 

EB7946A88DA').then(console.log);

};

And we get the following output as the balance of Alice’s address. That’s 

a huge number but that’s actually the value of the balance in wei. Wei is the 

smallest unit of Ether. One Ether equals 10^18 wei. So, the following value 

equals three Ether, which is what we received from the test network faucet.

3000000000000000000

�Prepare Ethereum Transaction
Now that we have some test Ether with Alice, let’s create an Ethereum 

transaction to send some of this Ether to Bob. Recall that there are no 

inputs and outputs and UTXO queries to be done in the case of Ethereum 

because it uses an account and balances-based system. So, all that we 

need to do in the transaction is to specify the “from” address (the sender’s 

address), the “to” address (the recipient address), and the amount of Ether 

to be sent, among a few other things.
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Also, recall that in the case of a Bitcoin transaction we did not have 

to specify the transaction fee; however, in the case of an Ethereum 

transaction we need to specify two related fields. One is gas limit and the 

other is gas Price. Recall from Chapter 4 that gas is the unit of transaction 

fee we need to pay to the Ethereum network to get our transactions 

confirmed and added to blocks. gas Price is the amount of Ether (in gwei) 

we want to pay per unit of gas. The maximum fee that we allow to be used 

for a transaction is the product of gas and gas Price.

So, for this example transaction, we define a JSON object with the 

following fields. Here, “from” has Alice’s address and “to” has Bob’s 

address, and value is one Ether in wei. The gas Price we choose is 20 gwei 

and the maximum amount of gas we want to pay for this transaction is 

42,000.

Also, note that we have left the data field empty. We will come back to 

this later in the smart contract section.

{

    from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

    gasPrice: "20000000000",

    gas: "42000",

    to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

    value: "1000000000000000000",

    data: ""

}

�Sign Transaction
Now that we have created a transaction object with the required fields 

and values, we need to sign it using the private key of the account that is 

sending the Ether. In this case, the sender is Alice, so we will use Alice’s 

private key to sign the transaction. This is to cryptographically prove that it 

is actually Alice who is spending the Ether in her account.
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var signTransaction = function () {

    var tx = {

        from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

        gasPrice: "20000000000",

        gas: "42000",

        to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

        value: "1000000000000000000",

        data: ""

    };

    �web3.eth.accounts.signTransaction(tx, '0x9fb71152b32cb 

90982f95e2b1bf2a5b6b2a53855eacf59d132a2b7f043cfddf5')

    .then(function(signedTx){

        console.log(signedTx.rawTransaction);

    });

};

The preceding code snippet calls the signTransaction function with 

the transaction object we created in the step before and Alice’s private key 

that we got when we generated Alice’s account. Following is the output we 

get when we run the prceding code snippet.

{

    �messageHash: '0x91b345a38dc728dc06a43c49b92a6ac1e0e6d 

614c432a6dd37d809290a25aa6b',

    v: '0x2a',

    �r: '0x14c20901a060834972a539d7b8ad1f23161 

c2144a2b66fbf567e37e963d64537',

    �s: '0x3d2a0a818633a11832a5c48708a198af909 

eaf4884a7856c9ac9ed216d9b029c',

Chapter 5  Blockchain Application Development



290

    �rawTransaction: '0xf86c018504a817c80082a4109422013fff98c 

2909bbfccdabb411d3715fdb341ea880de0b6b3a76400 

00802aa014c20901a060834972a539d7b8ad1f23161c2144a2b66fbf5 

67e37e963d64537a03d2a0a818633a11832a5c48708a198af909ea 

f4884a7856c9ac9ed216d9b029c'

}

In the output of the signTransaction function we receive a 

JSON object with a few properties. The important value for us is the 

rawTransaction value. This is the hex string representation of the signed 

transaction. This is very similar to how we created a hex string of the 

Bitcoin transaction in the Bitcoin section.

�Send Transaction to the Ethereum Network
The final step is to just send this signed raw transaction to the public-

hosted Ethereum test network node, which we have set as the provider of 

our web3 object.

The following code calls the sendSignedTransaction function to send 

the raw transaction to the Ethereum test network. The input parameter is 

the value of the rawTransaction string that we got in the previous step as 

part of signing the transaction.

web3.eth.sendSignedTransaction(signedTx.rawTransaction).

then(console.log);

Notice the use of “then” in the prceding code snippet. This is 

interesting because the web3 library provides different levels of finality 

when working with Ethereum transactions, because an Ethereum 

transaction goes through several states after being submitted. In this 

function, call of sending a transaction to the network, then, is hit when the 

transaction receipt is created, and the transaction is complete.
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After a few seconds, when the JavaScript promise resolves, the 

following is what we get as an output.

{

    �blockHash: '0x26f1e1374d11d4524f692cdf1ce3aa6e085dcc1810 

84642293429eda3954d30e',

    blockNumber: 2514764,

    contractAddress: null,

    cumulativeGasUsed: 125030,

    from: '0xaff9d328e8181ae831bc426347949eb7946a88da',

    gasUsed: 21000,

    logs: [],

    �logsBloom: '0x0000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

0000000000000',

    status: '0x1',

    to: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

    �transactionHash: '0xd3f45394ac038c44c4fe6e0cdb7021fdbd 

672eb1abaa93eb6a1828df5edb6253',

    transactionIndex: 3

}

The output has a lot of information, as we can see. The most important 

part is the transactionHash, which is the ID of the transaction on the 

network. It also gives us the blockHash, which is the ID of the block 

in which this transaction was included. Along with this, we also get 

information about how much gas was used for this transaction, among 
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other details. If the gas used is less than the maximum gas we specified 

during transaction creation, the remaining gas is sent back to the sender’s 

address.

In this section, we sent a simple transaction to the Ethereum 

blockchain using JavaScript. But this is just the beginning of Ethereum 

application programming. In the next section, we will also look at how to 

create and call smart contracts programmatically.

�Interacting Programmatically with 
Ethereum—Creating a Smart Contract
In this section, we will continue our Ethereum programming exercise, and 

we will create a simple smart contract on the Ethereum blockchain using 

the same web3 JavaScript library and the Infura service API.

Because, no computer programming beginners’ tutorial is complete 

without a “Hello World” program, the smart contract we are going to create 

will be a simple smart contract returning the string “Hello World” when called.

The contract creation process will be a special kind of transaction sent 

to the Ethereum blockchain, and these types of transactions are called 

“contract creation transactions.” These transactions do not mention a 

“to” address and the owner of the smart contract is the “from” address 

mentioned in the transaction.

�Prerequisites
In this code exercise to create a smart contract, we will continue with the 

assumption that the web3 JavaScript library is installed and instantiated in 

a node.js app and we have registered for the Infura service, just like we did 

in the previous section.

Following are the steps to create a smart contract on Ethereum using 

JavaScript.
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�Program the Smart Contract
Recall from Chapter 4 that the Ethereum smart contracts are written in 

Solidity programming language. While the web3 JavaScript library will 

help us deploy our contract on the Ethereum blockchain, we will still have 

to write and compile our smart contract in Solidity before we send it to the 

Ethereum network using web3. So, let’s first create a sample contract using 

Solidity.

There are a variety of tools available to code in Solidity. Most of the 

major IDEs and code editors have Solidity plugins for editing and compiling 

smart contracts. There is also a web-based Solidity editor called Remix. It’s 

available for free to use at https://remix.ethereum.org/. Remix provides 

a very simple interface to code and compile smart contracts within your 

browser. In this exercise we will be using Remix to code and test our smart 

contract and then we will send the same contract to the Ethereum network 

using the web3 JavaScript library and the Infura API service.

The following code snippet is written in the Solidity programming 

language and it is a simple smart contract that returns the string “Hello 

World” from its function Hello. It also has a constructor that sets the value 

of the message returned.

pragma solidity ^0.4.0;

contract HelloWorld {

    string message;

    function HelloWorld(){

        message = "Hello World!";

    }

    function Hello() constant returns (string) {

        return message;

    }

}
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Let’s head to Remix and paste this code in the editor window. The 

following images (Figures 5-4 and 5-5) show how our sample smart 

contract looks in the Remix editor and what the output looks like when 

we clickeded the Create button on the right-side menu, under the Run 

tab. Also, note that by default, the Remix editor targets a JavaScript VM 

environment for smart contract compilation and it uses a test account with 

some ETH balance, for testing purposes. When we click the Create button, 

this contract is created using the selected account in the JavaScript VM 

environment.

Figure 5-4.  Editing smart contracts in Remix IDE
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Following is the output generated by the create operation, and it shows 

us that the contract has been created because it has a contract address.  

The “from” value is the account address that was used to create the 

contract. It also shows us the hash of the contract creation transaction.

status     0x1 Transaction mined and execution succeed

contractAddress    0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

from   0xca35b7d915458ef540ade6068dfe2f44e8fa733c

to     HelloWorld.(constructor)

gas    3000000 gas

transaction cost   205547 gas

execution cost     109539 gas

hash   0x9f3c21c21f263084b9f031966858a5d8e0648ed19c77d4d2291 

875b01d89a141

Figure 5-5.  Smart contract creation output in Remix IDE
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input  0x6060604052341561000f57600080fd5b6040805190810160405 

280600c81526020017f48656c6c6f20576f726c642100000000000000000 

000000000000000000000008152506000908051906020019061005a92919 

0610060565b50610105565b8280546001816001161561010002031660029 

00490600052602060002090601f016020900481019282601f106100a1578 

05160ff19168380011785556100cf565b828001600101855582156100cf5 

79182015b828111156100ce5782518255916020019190600101906100b35 

65b5b5090506100dc91906100e0565b5090565b61010291905b808211156 

100fe5760008160009055506001016100e6565b5090565b90565b6101bc8 

06101146000396000f300606060405260043610610041576000357c01000 

00000000000000000000000000000000000000000000000000000900463f 

fffffff168063bcdfe0d514610046575b600080fd5b34156100515760008 

0fd5b6100596100d4565b604051808060200182810382528381815181526 

0200191508051906020019080838360005b8381101561009957808201518 

184015260208101905061007e565b50505050905090810190601f1680156 

100c65780820380516001836020036101000a031916815260200191505b5 

09250505060405180910390f35b6100dc61017c565b60008054600181600 

116156101000203166002900480601f01602080910402602001604051908 

101604052809291908181526020018280546001816001161561010002031 

66002900480156101725780601f106101475761010080835404028352916 

0200191610172565b820191906000526020600020905b815481529060010 

19060200180831161015557829003601f168201915b50505050509050905 

65b6020604051908101604052806000815250905600a165627a7a7230582 

0d6796e48540eced3646ea52c632364666e64094479451066317789a712 

aef4da0029

 decoded input  {}

 decoded output      -

 logs   []

 value  0 wei
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At this point, we have a simple “Hello World” smart contract ready, 

and now the next step is to deploy it programmatically to the Ethereum 

blockchain.

�Compile Contract and Get Details
Let’s first get some details about our smart contract from Remix, which will 

be needed to deploy the contract to the Ethereum network using the web3 

library. Click on the Compile tab in the right-side menu and then click the 

Details button. This pops up a new child window with details of the smart 

contract. What’s important for us are the ABI and the BYTECODE sections 

on the details popup window.

Let’s copy the details in the ABI section using the copy value to 

clipboard button available next to the ABI header. Following is the value of 

the ABI data for our smart contract.

[

    {

        "constant": true,

        "inputs": [],

        "name": "Hello",

        "outputs": [

            {

                "name": "",

                "type": "string"

            }

        ],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    },
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    {

        "inputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "constructor"

    }

]

This is a JSON array and if we closely look at it, we see that it has JSON 

objects for each function in our contract including its constructor. These 

JSON objects have details about a function and its input and output. This 

array describes the smart contract interface.

When we call this smart contract after it is deployed to the network, 

we will need this information to find out what functions the contract is 

exposing and what do we need to pass as an input to the function we wish 

to call.

Now let’s get the data in the BYTECODE section of the details popup. 

Following is the data we copied for our contract.

{

    "linkReferences": {},

    �"object": "6060604052341561000f57600080fd5b6040805190810 

160405280600c81526020017f48656c6c6f20576f726c64210000000 

00000000000000000000000000000000081525060009080519060200 

19061005a929190610060565b50610105565b8280546001816001161 

56101000203166002900490600052602060002090601f01602090048 

1019282601f106100a157805160ff19168380011785556100cf565b8 

28001600101855582156100cf579182015b828111156100ce5782518 

255916020019190600101906100b3565b5b5090506100dc91906100e 

0565b5090565b61010291905b808211156100fe57600081600090555 

06001016100e6565b5090565b90565b6101bc806101146000396000f 

300606060405260043610610041576000357c0100000000000000000 

000000000000000000000000000000000000000900463ffffffff168 
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063bcdfe0d514610046575b600080fd5b341561005157600080fd5b6 

100596100d4565b60405180806020018281038252838181518152602 

00191508051906020019080838360005b83811015610099578082015 

18184015260208101905061007e565b50505050905090810190601f1 

680156100c65780820380516001836020036101000a0319168152602 

00191505b509250505060405180910390f35b6100dc61017c565b600 

08054600181600116156101000203166002900480601f01602080910 

40260200160405190810160405280929190818152602001828054600 

181600116156101000203166002900480156101725780601f1061014 

757610100808354040283529160200191610172565b8201919060005 

26020600020905b81548152906001019060200180831161015557829 

003601f168201915b5050505050905090565b6020604051908101604 

052806000815250905600a165627a7a72305820877a5da4f7e05c4ad 

9b45dd10fb6c133a523541ed06db6dd31d59b35d51768a30029",

"opcodes": "PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE 

ISZERO PUSH2 0xF JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST 

PUSH1 0x40 DUP1 MLOAD SWAP1 DUP2 ADD PUSH1 0x40 MSTORE 

DUP1 PUSH1 0xC DUP2 MSTORE PUSH1 0x20 ADD PUSH32 

0x48656C6C6F20576F726C64210000000000000000000000000000000000 

000000 DUP2 MSTORE POP PUSH1 0x0 SWAP1 DUP1 MLOAD SWAP1 PUSH1 

0x20 ADD SWAP1 PUSH2 0x5A SWAP3 SWAP2 SWAP1 PUSH2 0x60 JUMP 

JUMPDEST POP PUSH2 0x105 JUMP JUMPDEST DUP3 DUP1 SLOAD PUSH1 

0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 

0x2 SWAP1 DIV SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 

KECCAK256 SWAP1 PUSH1 0x1F ADD PUSH1 0x20 SWAP1 DIV DUP2 ADD 

SWAP3 DUP3 PUSH1 0x1F LT PUSH2 0xA1 JUMPI DUP1 MLOAD PUSH1 0xFF 

NOT AND DUP4 DUP1 ADD OR DUP6 SSTORE PUSH2 0xCF JUMP JUMPDEST 

DUP3 DUP1 ADD PUSH1 0x1 ADD DUP6 SSTORE DUP3 ISZERO PUSH2 

0xCF JUMPI SWAP2 DUP3 ADD JUMPDEST DUP3 DUP2 GT ISZERO PUSH2 

0xCE JUMPI DUP3 MLOAD DUP3 SSTORE SWAP2 PUSH1 0x20 ADD SWAP2 

SWAP1 PUSH1 0x1 ADD SWAP1 PUSH2 0xB3 JUMP JUMPDEST JUMPDEST 
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POP SWAP1 POP PUSH2 0xDC SWAP2 SWAP1 PUSH2 0xE0 JUMP JUMPDEST 

POP SWAP1 JUMP JUMPDEST PUSH2 0x102 SWAP2 SWAP1 JUMPDEST DUP1 

DUP3 GT ISZERO PUSH2 0xFE JUMPI PUSH1 0x0 DUP2 PUSH1 0x0 SWAP1 

SSTORE POP PUSH1 0x1 ADD PUSH2 0xE6 JUMP JUMPDEST POP SWAP1 

JUMP JUMPDEST SWAP1 JUMP JUMPDEST PUSH2 0x1BC DUP1 PUSH2 

0x114 PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60 

PUSH1 0x40 MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH2 0x41 JUMPI 

PUSH1 0x0 CALLDATALOAD PUSH29 0x1000000000000000000000000000

00000000000000000000000000000 SWAP1 DIV PUSH4 0xFFFFFFFF AND 

DUP1 PUSH4 0xBCDFE0D5 EQ PUSH2 0x46 JUMPI JUMPDEST PUSH1 0x0 

DUP1 REVERT JUMPDEST CALLVALUE ISZERO PUSH2 0x51 JUMPI PUSH1 

0x0 DUP1 REVERT JUMPDEST PUSH2 0x59 PUSH2 0xD4 JUMP JUMPDEST 

PUSH1 0x40 MLOAD DUP1 DUP1 PUSH1 0x20 ADD DUP3 DUP2 SUB DUP3 

MSTORE DUP4 DUP2 DUP2 MLOAD DUP2 MSTORE PUSH1 0x20 ADD SWAP2 

POP DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 DUP1 DUP4 DUP4 PUSH1 

0x0 JUMPDEST DUP4 DUP2 LT ISZERO PUSH2 0x99 JUMPI DUP1 DUP3 

ADD MLOAD DUP2 DUP5 ADD MSTORE PUSH1 0x20 DUP2 ADD SWAP1 POP 

PUSH2 0x7E JUMP JUMPDEST POP POP POP POP SWAP1 POP SWAP1 DUP2 

ADD SWAP1 PUSH1 0x1F AND DUP1 ISZERO PUSH2 0xC6 JUMPI DUP1 

DUP3 SUB DUP1 MLOAD PUSH1 0x1 DUP4 PUSH1 0x20 SUB PUSH2 0x100 

EXP SUB NOT AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP JUMPDEST 

POP SWAP3 POP POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 

RETURN JUMPDEST PUSH2 0xDC PUSH2 0x17C JUMP JUMPDEST PUSH1 0x0 

DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100 

MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1 PUSH1 0x1F ADD PUSH1 

0x20 DUP1 SWAP2 DIV MUL PUSH1 0x20 ADD PUSH1 0x40 MLOAD SWAP1 

DUP2 ADD PUSH1 0x40 MSTORE DUP1 SWAP3 SWAP2 SWAP1 DUP2 DUP2 

MSTORE PUSH1 0x20 ADD DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 

AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1 

ISZERO PUSH2 0x172 JUMPI DUP1 PUSH1 0x1F LT PUSH2 0x147 JUMPI 
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PUSH2 0x100 DUP1 DUP4 SLOAD DIV MUL DUP4 MSTORE SWAP2 PUSH1 

0x20 ADD SWAP2 PUSH2 0x172 JUMP JUMPDEST DUP3 ADD SWAP2 SWAP1 

PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 SWAP1 JUMPDEST 

DUP2 SLOAD DUP2 MSTORE SWAP1 PUSH1 0x1 ADD SWAP1 PUSH1 0x20 

ADD DUP1 DUP4 GT PUSH2 0x155 JUMPI DUP3 SWAP1 SUB PUSH1 0x1F 

AND DUP3 ADD SWAP2 JUMPDEST POP POP POP POP POP SWAP1 POP 

SWAP1 JUMP JUMPDEST PUSH1 0x20 PUSH1 0x40 MLOAD SWAP1 DUP2 

ADD PUSH1 0x40 MSTORE DUP1 PUSH1 0x0 DUP2 MSTORE POP SWAP1 

JUMP STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 DUP8 PUSH27 

0x5DA4F7E05C4AD9B45DD10FB6C133A523541ED0 

6DB6DD31D59B35D5 OR PUSH9 0xA30029000000000000 ",

    �"sourceMap": "24:199:0:-;;;75:62;;;;;;;;106:24;;;;;;;;;;;; 

;;;;;;:7;:24;;;;;;;;;;;;:::i;:::-;;24:199;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;; 

;;;;;;;;;;;:::o;:::-;;;;;;;"

}

As we can see, the data in the BYTECODE section is a JSON object. 

This is basically the output of the compilation of the smart contract. Remix 

compiled our smart contract using the Solidity compiler and as a result 

we got the solidity byte code. Now closely examine this JSON and look at 

the “object” property and its value. This is a hex string that contains the 

byte code for our smart contract, and we will be sending it in the contract 

creation transaction in the data field—the same data field that we left blank 

in the previous example Ethereum transaction between Alice and Bob.

Now we have all the details for our smart contract and we are ready to 

send it to the Ethereum network.
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�Deploy Contract to Ethereum Network
Now that we have our smart contract and its details, we need to prepare a 

transaction that can deploy this contract to the Ethereum blockchain. This 

transaction preparation will be very similar to the transaction we prepared 

in the previous section, but it will have a few more properties that are 

needed to create contracts.

First, we need to create an object of the web3.eth.Contract class, 

which can represent our contract. The following code snippet creates an 

instance for the said class with a JSON array as an input parameter. This 

is the same JSON array that we copied from the ABI section of the Remix 

popup window, showing the details about our smart contract.

var helloworldContract = new web3.eth.Contract([{

        "constant": true,

        "inputs": [],

        "name": "Hello",

        "outputs": [{

            "name": "",

            "type": "string"

        }],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    }, {

        "inputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "constructor"

    }]);
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Now we need to send this contract to the Ethereum network using the 

Contract.deploy method of the web3 library. The following code snippet 

shows how to do this.

helloworldContract

.deploy({

        �data: '0x6060604052341561000f57600080fd5b604080519081 

0160405280600c81526020017f48656c6c6f20576f726c6421000 

00000000000000000000000000000000000008152506000908051 

906020019061005a929190610060565b50610105565b828054600 

18160011615610100020316600290049060005260206000209060 

1f016020900481019282601f106100a157805160ff19168380011 

785556100cf565b828001600101855582156100cf579182015b82 

8111156100ce5782518255916020019190600101906100b3565b5 

b5090506100dc91906100e0565b5090565b61010291905b808211 

156100fe5760008160009055506001016100e6565b5090565b905 

65b6101bc806101146000396000f3006060604052600436106100 

41576000357c01000000000000000000000000000000000000000 

00000000000000000900463ffffffff168063bcdfe0d514610046 

575b600080fd5b341561005157600080fd5b6100596100d4565b6 

04051808060200182810382528381815181526020019150805190 

6020019080838360005b838110156100995780820151818401526 

0208101905061007e565b50505050905090810190601f16801561 

00c65780820380516001836020036101000a03191681526020019 

1505b509250505060405180910390f35b6100dc61017c565b6000 

8054600181600116156101000203166002900480601f016020809 

10402602001604051908101604052809291908181526020018280 

54600181600116156101000203166002900480156101725780601 

f1061014757610100808354040283529160200191610172565b82 

0191906000526020600020905b815481529060010190602001808 
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31161015557829003601f168201915b5050505050905090565b60 

20604051908101604052806000815250905600a165627a7a72305 

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31 

d59b35d51768a30029'

    })

    .send({

        from: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

        gas: 4700000,

        gasPrice: '20000000000000'

    },

    function(error, transactionHash){

        console.log(error);

        console.log(transactionHash);

    })

    .then(function(contract){

        console.log(contract);

    });

Note that the value of the field data inside the deploy function 

parameter object is the same value we received in the object field of the 

BYTECODE details in the previous step. Also notice that the string “0x” 

is added to this value in the beginning. So, the data passed in the deploy 

function is ‘0x’ + byte code of the contract.

Inside the send function after the deploy, we have added the “from” 

address, which will be the owner of the contract and the transaction fee 

details of gas limit and gas Price. Finally, when the call is complete, the 

contract object is returned. This contract object will have the contract 

details along with the address of the contract, which can be used to call the 

function on the contract.

Another way of sending the contract to the network would be to wrap 

the contract inside a transaction and send it directly. The following code 

snippet creates a transaction object with data as the contract bytecode, 
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signs it using the private key of the address in the “from” field, and then 

sends it to the Ethereum blockchain.

Note that we have not assigned a “to” address in this transaction 

object, as the address of the contract is unknown before the contract is 

deployed.

var tx = {

        from: "0x22013fff98c2909bbFCcdABb411D3715fDB341eA",

        gasPrice: "20000000000",

        gas: "4900000",

        �data: "0x6060604052341561000f57600080fd5b604080519081 

0160405280600c81526020017f48656c6c6f20576f726c6421000 

00000000000000000000000000000000000008152506000908051 

906020019061005a929190610060565b50610105565b828054600 

18160011615610100020316600290049060005260206000209060 

1f016020900481019282601f106100a157805160ff19168380011 

785556100cf565b828001600101855582156100cf579182015b82 

8111156100ce5782518255916020019190600101906100b3565b5 

b5090506100dc91906100e0565b5090565b61010291905b808211 

156100fe5760008160009055506001016100e6565b5090565b905 

65b6101bc806101146000396000f3006060604052600436106100 

41576000357c01000000000000000000000000000000000000000 

00000000000000000900463ffffffff168063bcdfe0d514610046 

575b600080fd5b341561005157600080fd5b6100596100d4565b6 

04051808060200182810382528381815181526020019150805190 

6020019080838360005b838110156100995780820151818401526 

0208101905061007e565b50505050905090810190601f16801561 

00c65780820380516001836020036101000a03191681526020019 

1505b509250505060405180910390f35b6100dc61017c565b6000 

8054600181600116156101000203166002900480601f016020809 

10402602001604051908101604052809291908181526020018280 

54600181600116156101000203166002900480156101725780601 
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f1061014757610100808354040283529160200191610172565b82 

0191906000526020600020905b815481529060010190602001808 

31161015557829003601f168201915b5050505050905090565b60 

20604051908101604052806000815250905600a165627a7a72305 

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31 

d59b35d51768a30029"

    };

    �web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3 

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

    .then(function (signedTx) {

        web3.eth.sendSignedTransaction(signedTx.rawTransaction)

        .then(console.log);

    });

When we execute this code snippet, we get the following output, which 

is the receipt of this transaction.

{

    �blockHash: '0xaba93b4561fc35e062a1ad72460e0b677603331bbee 

3379ce6c74fa5cf505d82',

    blockNumber: 2539889,

    �contractAddress: '0xd5a2d13723A34522EF79bE0f1E7806E86a45 

78E9',

    cumulativeGasUsed: 205547,

    from: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

    gasUsed: 205547,

    logs: [],

    �logsBloom: '0x0000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 
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000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000 

0000000000000',

    status: '0x1',

    to: null,

    �transactionHash: '0xc333cbc5fc93b52871689aab22c48b910cb19 

2b4875bea69212363030d36565a',

    transactionIndex: 0

}

Notice the properties of the transaction receipt object. It has a 

value assigned to the contractAddress property, while the value of 

the “to” property is null. This means that this was a contract creation 

transaction that was successfully mined on the network and the 

contract created as part of this transaction is deployed at the address 

`0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9`.

We have successfully created an Ethereum smart contract 

programmatically.

�Interacting Programmatically with 
Ethereum—Executing Smart Contract 
Functions
Now that we have deployed our smart contract to the Ethereum network, 

we can call its member functions. Following are the steps to call an 

Ethereum smart contract programmatically.
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�Get Reference to the Smart Contract
To execute a function of the smart contract, first we need to create an 

instance of the web3.eth.Contract class with the ABI and address of our 

deployed contract. The following code snippet shows how to do that.

var helloworldContract = new web3.eth.Contract([{

        "constant": true,

        "inputs": [],

        "name": "Hello",

        "outputs": [{

            "name": "",

            "type": "string"

        }],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    }, {

        "inputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "constructor"

    }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

In the prceding code snippet, we have created an instance of the  

web3.eth.Contract class by passing the ABI of the contract we created in 

the previous section, and we have also passed the address of the contract 

that we received after deploying the contract.

This object can now be used to call functions on our contract.
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�Execute Smart Contract Function
Recall that we have only one public function in our contract. This method 

is named Hello and it returns the string "Hello World!" when executed.

To execute this method, we will call it using the contract.methods 

class in the web3 library. The follwing code snippet shows this.

helloworldContract.methods.Hello().send({

        from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

    }).then(console.log);

In the prceding code snippet, we have added a value to the “from” 

address in the send function, and this address will be used to send the 

transaction that will in turn execute the function Hello on our smart contract.

The full code for calling a smart contract is in the follwing code snippet.

var callContract = function () {

    var helloworldContract = new web3.eth.Contract([{

        "constant": true,

        "inputs": [],

        "name": "Hello",

        "outputs": [{

            "name": "",

            "type": "string"

        }],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    }, {

        "inputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "constructor"

    }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');
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    helloworldContract.methods.Hello().send({

        from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

    }).then(console.log);

};

Another way of executing this contract function will be by sending a 

raw transaction by signing it. It is similar to how we sent a raw Ethereum 

transaction to send Ether and to create a contract in the previous sections. 

In this case all we need to do is provide the contract address in the “to” 

field of the transaction object and the encoded ABI value of the function 

call in the data field.

The following code snippet first creates a contract object and then 

gets the encoded ABI value of the smart contract function to be called. It 

then creates a transaction object based on these values and then signs and 

sends it to the network. Note that we have used the encodeABI function on 

the contract function to get the data payload value for the transaction. This 

is the input for the smart contract.

var callContract = function () {

    var helloworldContract = new web3.eth.Contract([{

        "constant": true,

        "inputs": [],

        "name": "Hello",

        "outputs": [{

            "name": "",

            "type": "string"

        }],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    }, {

        "inputs": [],

        "payable": false,
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        "stateMutability": "nonpayable",

        "type": "constructor"

    }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

    �var payload = helloworldContract.methods.Hello().

encodeABI();

    var tx = {

        from: "0xF68b93AE6120aF1e2311b30055976d62D7dBf531",

        gasPrice: "20000000000",

        gas: "4700000",

        data: payload

    };

    �web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3 

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

        .then(function (signedTx) {

            �web3.eth.sendSignedTransaction(signedTx.raw 

Transaction)

            .then(console.log);

    });

};

Important Note  When using a public-hosted node for Ethereum, 
we should use the raw transaction method for creating and executing 
smart contracts because the web3.eth.Contract submodule of the 
library uses either an unlocked or default account associated with the 
provider Ethereum node, but this is not supported by the public nodes 
(at the time of this writing).
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�Blockchain Concepts Revisited
In the previous sections we programmatically sent transactions to both 

Bitcoin and Ethereum blockchains using JavaScript. Here are some of 

the common concepts that we can now revisit, looking at the process of 

handcrafting transactions using code.

•	 Transactions: Looking at the code we wrote and the 

output we got for sending transactions to Ethereum and 

Bitcoin, we can now say that blockchain transactions 

are the operations initiated from an account owner, 

which, if completed successfully, update the state of the 

blockchain. For example, in our transactions between 

Alice and Bob, we saw that the ownership of a certain 

amount of Bitcoins and Ether changed from Alice to 

Bob and vice versa, and this change of ownership was 

recorded in the blockchain, hence bringing it into a 

new state. In the case of Ethereum, transactions go 

further into contract creation and execution and these 

transactions also update the state of the blockchain. 

We created a transaction that in turn deployed a smart 

contract on the Ethereum blockchain. The state of the 

blockchain was updated because now we have a new 

contract account created in the blockchain.

•	 Inputs, Outputs, Accounts and Balances: We also 

saw how Bitcoin and Ethereum are different from each 

other in terms of managing the state. While Bitcoin 

uses the UTXO model, Ethereum uses the accounts 

and balances model. However, the underlying idea is 

both the blockchains record the ownership of assets, 

and transactions are used to change ownership of these 

assets.
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•	 Transaction Fee: For every transaction we do on 

public blockchain networks, we must pay a transaction 

fee for our transactions to be confirmed by the miners. 

In Bitcoin this is automatically calculated, while in 

Ethereum we should mention the maximum fee we are 

willing to pay in terms of gas Price and gas limit.

•	 Signing: In both cases, we also saw that after creating a 

transaction object with the required values, we signed it 

using the sender’s public key. Cryptographic signing is a 

way of proving ownership of the assets. If the signature 

is incorrect, then the transaction becomes invalid.

•	 Transaction broadcasting: After creating and signing 

the transactions, we sent them to the blockchain nodes. 

While we sent our example transactions to publicly 

hosted Bitcoin and Ethereum test network nodes, we 

are free to send our transactions to multiple nodes if we 

don’t trust all of them to process our transactions. This 

is called transaction broadcasting.

To summarize, when interacting with blockchains, if we intend to 

update the state of the blockchain, we submit signed transactions; and to 

get these transactions confirmed, we need to pay some fee to the network.

�Public vs. Private Blockchains
Based on access control, blockchains can be classified as public and 

private. Public blockchains are also called permissionless blockchain and 

private blockchains are also called permissioned blockchains. The primary 

difference between the two is access control. Public or permissionless 

blockchains do not restrict addition of new nodes to the network and 

anyone can join the network. Private blockchains have a limited number 
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of nodes in the network and not everyone can join the network. Examples 

of public blockchains are Bitcoin and Ethereum main nets. An example of 

a private blockchain can be a network of a few Ethereum nodes connected 

to each other but not connected to the main net. These nodes would be 

collectively called a private blockchain.

Private blockchains are generally used by enterprises to exchange 

data among themselves and their partners and/or among their 

suborganizations.

When we develop applications for blockchains, the type of blockchain, 

public or private, makes a difference because the rules of interaction with 

the blockchain may or may not be the same. This is called blockchain 

governance. The public blockchains have a predefined set of rules and 

the private ones can have a different set of rules per blockchain. A private 

blockchain for a supply chain may have different governance rules, while 

a private blockchain for protocol governance may have different rules. For 

example, the token, gas Price, transaction fee, endpoints, etc. may or may 

not be the same in the aforementioned private Ethereum ledger and the 

Ethereum main net. This can impact our applications too.

In our code samples, we primarily focused on the public test networks 

of Bitcoin and Ethereum. While the basic concepts of interacting with 

private deployments of these blockchains will still be the same, there will be 

differences in how we configure our code to point to the private networks.

�Decentralized Application Architecture
In general, the decentralized applications are meant to directly interact 

with the blockchain nodes without the need for any centralized 

components coming into picture. However, in practical scenarios, with 

legacy systems integrations and limited functionality and scaling of the 

current blockchain networks, sometimes we must make choices between 

full decentralization and scalability while designing our DApps.
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�Public Nodes vs. Self-Hosted Nodes
Blockchains are decentralized networks of nodes. All nodes have the same 

copy of data and they agree on the state of data always. When we develop 

applications for blockchains, we can make our application talk to any of 

the nodes of the target network. There can be mainly two set-ups for this:

•	 Application and node both run locally: The 

application and the node both run on the local 

machine. This means we will need our application 

users to run a local blockchain node and point the 

application to connect with it. This model would be a 

purely decentralized model of running an application. 

An example of this model is the Ethereum-based Mist 

browser, which uses a local geth node.

	 Figure 5-6 shows this setup.

•	 Public node: The application talks to a public node 

hosted by a third party. This way our users don’t have 

to host a local node. There are several advantages and 

disadvantages of this approach. While the users don’t 

have to pay for power and storage for running a local 

Figure 5-6.  DApp connets to local node
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node, they need to trust a third party to broadcast their 

transactions to the blockchain. The Ethereum browser 

plugin metamask uses this model and connects with 

public hosted Ethereum nodes.

	 Figure 5-7 shows this setup.

�Decentralized Applications and Servers
Apart from the previously mentioned scenarios, there can be other setups 

too, depending upon specific use cases and requirements. There are a lot 

of scenarios when a server is needed between an app and the blockchain. 

For example: When you need to maintain a cache of the blockchain state 

for faster queries; when the app needs to send notifications (emails, push, 

SMS, etc.) to the users based on state updates on the blockchain; and when 

multiple ledgers are involved, and you need to run a back-end logic to 

transform data between the ledgers. Imagine the infrastructure being used 

by some of the big cryptocurrency exchanges where we get all the services 

like two-factor authentication, notifications, and payment gateways, 

among other things, and none of these services are available directly in any 

of the blockchains. In a broader sense, blockchains simply make sure of 

keeping the data layer tamper resistant and auditable.

Figure 5-7.  DApp connets to public node
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�Summary
In this chapter we learned about decentralized application development 

along with some code exercises about interacting programmatically with 

the Bitcoin and Ethereum blockchains. We also looked at some of the 

DApp architecture models and how they differ based on the use cases.

In the next chapter we will set up a private Ethereum network and then 

we will develop a full-fledged DApp interacting with this private network, 

which will also use smart contracts for business logic.
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CHAPTER 6

Building an Ethereum 
DApp
In the previous chapter we learned how to programmatically interact with 

Bitcoin and Ethereum blockchains using JavaScript. We also touched on 

how to create and deploy Ethereum smart contracts. In this chapter we will 

take our blockchain application programming to the next level by learning 

how to develop and deploy a DApp based on the Ethereum blockchain. 

As part of creating this DApp, we will be setting up a private Ethereum 

network and then we will use this network as the underlying blockchain 

for our DApp. This DApp will have its business logic in an Ethereum 

smart contract, and this logic will be executed using a web application 

connecting to private Ethereum network. This way, we intend to cover all 

aspects of Ethereum application development—from setting up nodes and 

networks, to creating and deploying a smart contract, to executing smart 

contract functions using client applications.

�The DApp
Before we jump into developing the DApp, we need to define the use case 

for the DApp. We also need to define the various components that will be 

part of our DApp. So, let’s first do this.
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The use case for our DApp is a polling application that can allow voters 

to vote on a poll published in the public domain. Voting using a centralized 

system is not very reliable, as it exposes a single point of data corruption 

and failure. So, the goal of our DApp is to enable decentralized polling. 

This way every voter is in control of their vote and each vote is processed 

on every node on the blockchain so there is no way to tamper with the vote 

data. While this can be easily done using the public Ethereum blockchain, 

to make our exercise interesting we will deploy our polling DApp on a 

private Ethereum network, and for that we will set up the private network 

too. Sounds interesting? Let’s do this.

The first step will be to set up a private Ethereum network. Then, for 

hosting the business logic and poll results, we will create a smart contract 

that will be deployed on this private Ethereum network. To interact with 

this smart contract, we will create a front-end web application using the 

web3 library. That’s it.

As per the plan just described, our DApp development exercise will 

have the following steps:

	 1.	 Setting up a private Ethereum network

	 2.	 Creating a smart contract for polling functionality

	 3.	 Deploying the smart contract to the private network

	 4.	 Creating a front-end web app to interact with the 

smart contract

In the following sections, we will be looking, in detail, at each of the 

steps mentioned.
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Note A s mentioned, we can also use the public Ethereum network 
for this DApp development. In addition to that, we can also use several 
tools like Metamask and Truffle framework to expedite the development 
of an Ethereum DApp. These tools, along with various others, allow 
us to manage our code and deployments in a better way. The reader 
is encouraged to explore these and other tools to try to find the best 
combination to create a comfortable and productive development 
environment for their DApp development. This text is primarily focussed 
on making the reader understand what goes under the hood when 
creating an Ethereum DApp, hence all tools providing abstractions on 
top of the DApp development process are kept out of scope.

�Setting Up a Private Ethereum Network
To set up a private Ethereum network, we will need one of the many 

Ethereum clients available. In simple terms, an Ethereum client is an 

application that implements the Ethereum blockchain protocol. There are 

many Ethereum clients available on the Internet today; one of the popular 

ones is go-ethereum, also known as geth. We will be using geth for our 

private network set-up. For this exercise, we are using a virtual machine 

running Ubuntu Linux version 16.04.

�Install go-ethereum (geth)
The first step is to install geth on our local machine. To install geth, we will 

get the geth executable installer from the official source https://geth.

ethereum.org/downloads/. This download page at the official geth website 

lists the installer packages for all major platforms (Windows, macOS, 

Linux).
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Download the installer package for your platform and install geth on 

your local machine. You can also choose to install geth on a remote (cloud-

hosted) server/virtual machine if you do not want to install it on your local 

machine.

Once geth is successfully installed on your local machine, you 

can check the installation by running the following command in your 

terminal/command prompt.

geth version

Depending on your platform OS and the geth version you have 

installed, this command should give an output similar to the following:

Geth

Version: 1.7.3-stable

Git Commit: 4bb3c89d44e372e6a9ab85a8be0c9345265c763a

Architecture: amd64

Protocol Versions: [63 62]

Network Id: 1

Go Version: go1.9

Operating System: linux

GOPATH=

GOROOT=/usr/lib/go-1.9

�Create geth Data Directory
By default, geth will have its working directory but we will create a custom 

one so that we can track it easily. Simply create a directory and keep the 

path to this directory handy.

mkdir mygeth
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�Create a geth Account
The first thing we need is an Ethereum account that can hold Ether. We will 

need this account to create our smart contracts and transactions later in 

the DApp development. We can create a new account using the following 

command.

sudo geth account new --datadir <path to the data directory we 

created in the previous step>

sudo geth account new --datadir /mygeth

Note  We are using sudo to avoid any permission issues.

When you run this command, the prompt will ask for a passphrase 

to lock this account. Enter and confirm the passphrase and then 

your geth account will be created. Make sure to remember the 

passphrase you entered; it will be needed to unlock the account 

later to sign transactions. The address of this account will be shown 

on the screen. For us, the address of the generated account is 

baf735f889d603f0ec6b1030c91d9033e60525c3. The following screenshot 

(Figure 6-1) shows this process.

Notice that we have passed the data directory as the parameter for 

the create account command. This is to make sure that the file containing 

the account details is created inside our data directory so that it is easy to 

Figure 6-1.  Ethereum account setup with geth
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access the account from the context of this directory. If we do not pass the 

data directory parameter to the geth commands, then it will automatically 

take the default location of the data directory (which can be different 

depending on the platform).

�Create genesis.json Configuration File
After installing geth and creating a new account, the next step is to define the 

genesis configuration for our private network. As we have seen in the previous 

chapters, blockchains have a genesis block that acts as the starting point 

of the blockchain, and all transactions and blocks are validated against the 

genesis block. For our private network, we will have a custom genesis block 

and hence a custom genesis configuration. This configuration defines some 

key values for the blockchain like difficulty level, gas limit for blocks, etc.

The genesis configuration for Ethereum has the following format as 

a JSON object. Each of the keys of this object is a configuration value that 

drives the network.

{

    "config": {

        "chainId": 3792,

        "homesteadBlock": 0,

        "eip155Block": 0,

        "eip158Block": 0

    },

    "difficulty": "2000",

    "gasLimit": "2100000",

    "alloc": {

        �"baf735f889d603f0ec6b1030c91d9033e60525c3":  

{ "balance": "9000000000000000000" }

    }

}
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The JSON object is primarily constituted by a config section having 

values specific to chainId and block numbers related to some of the forks 

that have taken place. The important parameter to note here is the chainId, 

which represents the identifier of the blockchain and helps prevent replay 

attacks. For our private chain, we have opted for a random chainId 3792. 

You can choose any number here different from the numbers used by main 

net (1) and the test nets (2, 3, and 4).

The next important parameter is the difficulty. This value defines 

how difficult it will be to mine a new block. This value is much higher in 

the Ethereum main network, but for private networks we can choose a 

relatively smaller value.

Then there is gasLimit. This is the total gas limit for a block and not 

a transaction. A higher value generally means more transactions in each 

block.

Finally, we have the alloc section. Using this configuration, we can 

prefund Ethereum accounts with the value in wei. As we can see, we have 

funded the same Ethereum account that we created in the last step, with 9 

Ether.

�Run the First Node of the Private Network
To run the first node of the private blockchain, let’s first copy the JSON 

from the previous step and save it as a file named genesis.json. For 

simplicity, we are saving this file in the same directory that we are using as 

the data directory for geth.

First, we need to initialize geth with the genesis.json. This initialization 

is needed to set the custom genesis configuration for our private network.

CD to the directory where we have saved the genesis.json file is

cd mygeth

Chapter 6  Building an Ethereum DApp



326

The following command will initialize geth with the custom 

configuration we have defined.

sudo geth --datadir "/mygeth" init genesis.json

geth will confirm the custom genesis configuration set-up with the output 

in the following screen-shot (Figure 6-2).

Next, we need to run geth using the following command and the 

parameters. We will look into each of these parameters in detail.

sudo geth --datadir "/mygeth" --networkid 8956 --ipcdisable 

--port 30307 --rpc --rpcapi "eth,web3,personal,net,miner,admin,

debug" --rpcport 8507 --mine --minerthreads=1 --etherbase=0xbaf

735f889d603f0ec6b1030c91d9033e60525c3

Let’s look at each of the parameters that we gave to the geth command.

datadir: This is to specify the data directory just like 

we did in the previous steps.

networkid: This is the identifier of the network, 

which differentiates our private blockchain with 

other Ethereum networks. This is similar to the 

chainId we defined in the genesis.json file but 

provides another layer of differentiation among 

networks. As we can see, we have used another 

custom number for this value.

Figure 6-2.  Initialize geth with configuration in genesis.json
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ipcdisable: With this parameter we have disabled 

the interprocess communication port for geth so 

that while running multiple geth instances (nodes) 

on the same local machine we should not encounter 

any conflicting issues.

port: We have selected a custom value for the port 

to interact with geth.

rpc, --rpcapi, --rpcport: These three parameters 

define the configuration for the RPC API exposed by 

geth. We want to enable it; we want eth,web3,perso

nal,net,miner,admin,debug geth APIs exposed over 

RPC; and we want to run it on a custom port 8507.

mine – minerthreads – etherbase: With these 

three parameters we are instructing geth to start 

this node as a miner node, limit the miner process 

threads to only one (so that we do not consume a lot 

of CPU power), and send the mining rewards to the 

Ethereum account that we created in the first step.

That’s all the configuration we need at this time to run our first geth 

node for the private network.

When we run this command with all the parameters, geth will give the 

following output (as in the screenshot shown in Figure 6-3).
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Note the UDP listener up log statement in the output.

INFO [02-11|18:00:57] UDP listener up 

self=enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e 

225c1d1cb1a765195474d7418f3e8fbfeefd55bd85722973d1762 

6f0e53208c62e38d1099bb583e702b3b48@[::]:30307

This contains the address of the node we just started. To connect other 

nodes to this node we will need this address. Let’s keep it noted at some 

place. The following line has the extracted address from the previous log 

statement.

enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e225c1d1cb1a7 

65195474d7418f3e8fbfeefd55bd85722973d17626f0e53208c62e38d1099 

bb583e702b3b48@[::]:30307

Note the [::] before the port number we defined in the command. Let’s 

replace this with the local host IP address if we are running the other node 

on the same machine, or else replace it with the external IP address of 

the machine. As we are going to run the other network node on the same 

Figure 6-3.  Geth run first node
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machine (for development purposes), we will replace it with the localhost 

IP address. So, the address of the first node will finally be

enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e225c1d1cb1a 

765195474d7418f3e8fbfeefd55bd85722973d17626f0e53208c62e38d10 

99bb583e702b3b48@127.0.0.1:30307

�Run the Second Node of the Network
There is no network with just one node; it should at least have two nodes. 

So, let’s run another geth instance on the same machine, which will 

interact with the node we just started, and both these nodes together will 

form our Ethereum private network.

To run another node, first of all we need another directory that can be 

set as the data directory of the second node. Let us create one.

mkdir mygeth2

Now, we will initialize this node also with the same genesis.json 

configuration we created for the first node. Let’s create another copy of this 

genesis.json file and save it in the new directory we created earlier. Let’s 

also CD to this directory. Now, let’s initialize the genesis configuration for 

the second node.

sudo geth --datadir "/mygeth2" init genesis.json

And, we will get a similar output as we got for the first node. See the 

screenshot below (Figure 6-4).

Figure 6-4.  Geth initialize configuration for second node
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Now our second node is also initialized with the genesis configuration. 

Let’s run it.

For running the second node, we will pass a few different parameters 

to the geth command. This second node will not run as a miner, so we will 

skip the last three parameters from the command that we gave to the first 

node. Also, we want to expose the geth console while running this node, 

so we will add a parameter for that. The command for running the second 

node will be

sudo geth --datadir "/mygeth2" --networkid 8956 --ipcdisable 

--port 30308 --rpc --rpcapi "eth,web3,personal,net,miner,admin,

debug" --rpcport 8508 console

As we can see, the data directory and ports have been changed for the 

second node. We also have added the console flag to the command so we 

can get the geth console for this node.

When we run this command, the second node will also start running 

and we will see the following output in the terminal (Figure 6-5).

Figure 6-5.  Geth run second node

Chapter 6  Building an Ethereum DApp



331

At this time, both our geth nodes are running but they do not know 

about each other. If we run the admin.peers command on the geth console 

of the second node, we will get an empty array as the result (Figure 6-6).

This means that the nodes are not connected to each other. Let’s 

connect the nodes. To do this, we will send the admin.addPeer() 

command on the geth console of the second node with the node address 

of the first node as the parameter. Remember we noted the address of the 

first node after running it. Let’s run this command in the second node’s 

geth console.

admin.addPeer("enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4e 

b2e225c1d1cb1a765195474d7418f3e8fbfeefd55bd85722973d17626f0e5 

3208c62e38d1099bb583e702b3b48@127.0.0.1:30307")

And as soon as we run this command on the second node, it returns 

true. Also, after a few seconds it starts synchronization with the first node. 

The following screen shot (Figure 6-7) shows this output from the console 

of the second node.

Figure 6-6.  Geth console—check for peers
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Both our nodes are now connected and our private Ethereum network 

is up. To further verify this, we will run the admin.peers command again 

on the second node and this time we will see the JSON array with an object 

showing the first node as the peer (Figure 6-8).

The following screen shot shows the terminal windows of both the 

nodes we’ve set up. On the left is the first node, which is also a miner 

node, and as we can see it is constantly mining new blocks. The second 

node is on the right and we can see it is synchronizing with the first 

node. The screenshot (Figure 6-9) is too small to read because of too 

Figure 6-8.  Geth console—check for peers (again) 

Figure 6-7.  Geth console—add peer node
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much information in it, but it just captures and shows the logs from both 

Ethereum nodes side by side.

Now that both nodes are peers to each other in the network, we have 

a working private Ethereum blockchain with two nodes. We also have an 

Ethereum account that is set as a miner and also is prefunded by some 

Ether amount. We can now create more accounts and pass Ether among 

them on this private blockchain.

In this section we learned how to set up a private Ethereum network 

with two nodes. This can be any number of nodes; we just need to follow 

the same process for each new node. In case of remote nodes, we should 

be careful about specifying the right IP addresses of the remote machines 

and we should also make sure that the required ports are opened if there is 

a firewall preventing traffic to the machines.

Figure 6-9.  Geth logs from both Ethereum nodes
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�Creating the Smart Contract
Now that we have the private Ethereum network set up and working, we 

can move on to the next step of creating a smart contract for the polling 

functionality of our DApp. We will then deploy this contract to our private 

network. We will follow the same steps of creating and deploying a smart 

contract as we did in the last chapter.

Let’s fire up the Remix online IDE and code our smart contract in Solidity.

The following Solidity code snippet shows the smart contract we have 

coded for the polling functionality.

pragma solidity ^0.4.19;

contract Poll {

    event Voted(

        address _voter,

        uint _value

    );

    mapping(address => uint) public votes;

    �string pollSubject = "Should coffee be made tax free? Pass 

1 for yes OR 2 for no in the vote function.";

    function getPoll() constant public returns (string) {

        return pollSubject;

    }

    function vote(uint selection) public {

        Voted(msg.sender, selection);

        require (votes[msg.sender] == 0);

        require (selection > 0 && selection < 3);

        votes[msg.sender] = selection;

    }

}
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Now, let’s analyze this contract source code to understand what we 

have done here. As we can see, the name of the contract is Poll.

The next line of code is

event Voted(

    address _voter,

    uint _value

);

The preceding code snippet is basically declaring a smart contract 

event that takes two parameters: one is of the type of Ethereum address 

and another is of the type of unsigned integer. We have created this event 

so that we can capture who has voted what in the poll. We will come back 

to this later.

Next, we have

mapping(address => uint) public votes;

The preceding line of code declares a mapping of Ethereum addresses 

and unsigned integers. This is the data store where we will be storing the 

voters’ addresses and their chosen value for the vote.

Then we have the following:

string pollSubject = "Should coffee be made tax free? Pass 1 

for yes OR 2 for no in the vote function.";

function getPoll() constant public returns (string) {

    return pollSubject;

}

The preceding code snippet first declares a string for the polling 

subject. In this we are asking a question of the voters. And then we have 

a function that can return the value of this string so that voters can query 

what the poll is about.
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And finally, we have the function that implements the voting 

functionality.

function vote(uint selection) public {

    Voted(msg.sender, selection);

    require (votes[msg.sender] == 0);

    require (selection > 0 && selection < 3);

    votes[msg.sender] = selection;

}

Examine closely each line of the preceding snippet.

First, as soon as we enter this function, we are raising the voted event 

we created with the values of the sender’s address (voter) and the value he 

has chosen.

Next, we are limiting one vote per voter by checking if the value of the 

vote is zero for the corresponding address in the mapping. The require 

statement is used to check conditions based on user inputs.

And then we are also limiting, by using the require statement, the value of 

the selection to either 1 or 2. 1 is a yes and 2 is a no. And we have passed these 

instructions in the pollSubject string so that the voters know what to do.

The screenshot in Figure 6-10 shows the smart contract in Remix,

We compiled this contract code using Remix and we took the ABI and 

byte code for the contract so that we can deploy it to our private network. 

We copied the bytecode and ABI from the respective sections in the details 

popup of the Remix compile tab—exactly how we did this in the previous 

chapter.
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The ABI of the contract is

[

    {

        "constant": true,

        "inputs": [

            {

                "name": "",

                "type": "address"

            }

        ],

        "name": "votes",

        "outputs": [

            {

                "name": "",

                "type": "uint256"

            }

        ],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    },

Figure 6-10.  Smart contract editing in Remix online Solidity editor
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    {

        "constant": true,

        "inputs": [],

        "name": "getPoll",

        "outputs": [

            {

                "name": "",

                "type": "string"

            }

        ],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    },

    {

        "anonymous": false,

        "inputs": [

            {

                "indexed": false,

                "name": "_voter",

                "type": "address"

            },

            {

                "indexed": false,

                "name": "_value",

                "type": "uint256"

            }

        ],

        "name": "Voted",

        "type": "event"

    },
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    {

        "constant": false,

        "inputs": [

            {

                "name": "selection",

                "type": "uint256"

            }

        ],

        "name": "vote",

        "outputs": [],

        "payable": false,

        "stateMutability": "nonpayable",

        "type": "function"

    }

]

And the byte code for the contract is

{

    "linkReferences": {},

    �"object": "606060405260806040519081016040528060508152602 

0017f53686f756c6420636f66666565206265206d616465207461782 

0667265653f2081526020017f53656e64203120666f7220796573204 

f52203220666f72206e6f20696e20746881526020017f6520766f746 

52066756e6374696f6e2e00000000000000000000000000000000815 

2506001908051906020019061009c9291906100ad565b5034156100a 

857600080fd5b610152565b828054600181600116156101000203166 

002900490600052602060002090601f016020900481019282601f106 

100ee57805160ff191683800117855561011c565b828001600101855 

5821561011c579182015b8281111561011b578251825591602001919 

060010190610100565b5b509050610129919061012d565b5090565b6 

1014f91905b8082111561014b5760008160009055506001016101335 

65b5090565b90565b610373806101616000396000f30060606040526 
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0043610610057576000357c010000000000000000000000000000000 

0000000000000000000000000900463ffffffff1680630121b93f146 

1005c57806303c322781461007f578063d8bff5a51461010d575b600 

080fd5b341561006757600080fd5b61007d600480803590602001909 

190505061015a565b005b341561008a57600080fd5b6100926102735 

65b60405180806020018281038252838181518152602001915080519 

06020019080838360005b838110156100d2578082015181840152602 

0810190506100b7565b50505050905090810190601f1680156100ff5 

780820380516001836020036101000a031916815260200191505b509 

250505060405180910390f35b341561011857600080fd5b610144600 

480803573ffffffffffffffffffffffffffffffffffffffff1690602 

001909190505061031b565b604051808281526020019150506040518 

0910390f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db2 

8a91436490b7d53870ca43382604051808373fffffffffffffffffff 

fffffffffffffffffffff1673fffffffffffffffffffffffffffffff 

fffffffff1681526020018281526020019250505060405180910390a 

160008060003373ffffffffffffffffffffffffffffffffffffffff1 

673ffffffffffffffffffffffffffffffffffffffff1681526020019 

081526020016000205414151561021257600080fd5b6000811180156 

102225750600381105b151561022d57600080fd5b806000803373fff 

fffffffffffffffffffffffffffffffffffff1673fffffffffffffff 

fffffffffffffffffffffffff1681526020019081526020016000208 

190555050565b61027b610333565b600180546001816001161561010 

00203166002900480601f01602080910402602001604051908101604 

05280929190818152602001828054600181600116156101000203166 

002900480156103115780601f106102e657610100808354040283529 

160200191610311565b820191906000526020600020905b815481529 

0600101906020018083116102f457829003601f168201915b5050505 

050905090565b6000602052806000526040600020600091509050548 

1565b6020604051908101604052806000815250905600a165627a7a7 

2305820ec7d3e1dae8412ec85045a8eafc248e37ae506802cc008ead 

300df1ac81aab490029",
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    �"opcodes": "PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x80 PUSH1 

0x40 MLOAD SWAP1 DUP2 ADD PUSH1 0x40 MSTORE DUP1 PUSH1 0x50 

DUP2 MSTORE PUSH1 0x20 ADD PUSH32 0x53686F756C6420636F666 

66565206265206D6164652074617820667265653F20 DUP2 MSTORE 

PUSH1 0x20 ADD PUSH32 0x53656E64203120666F7220796573204F52 

203220666F72206E6F20696E207468 DUP2 MSTORE PUSH1 0x20  

ADD PUSH32 0x6520766F74652066756E6374696F6E2E00000000 

000000000000000000000000 DUP2 MSTORE POP PUSH1 0x1 SWAP1 

DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 PUSH2 0x9C SWAP3 

SWAP2 SWAP1 PUSH2 0xAD JUMP JUMPDEST POP CALLVALUE ISZERO 

PUSH2 0xA8 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 

0x152 JUMP JUMPDEST DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 

0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 

DIV SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 

SWAP1 PUSH1 0x1F ADD PUSH1 0x20 SWAP1 DIV DUP2 ADD SWAP3 

DUP3 PUSH1 0x1F LT PUSH2 0xEE JUMPI DUP1 MLOAD PUSH1 0xFF 

NOT AND DUP4 DUP1 ADD OR DUP6 SSTORE PUSH2 0x11C JUMP 

JUMPDEST DUP3 DUP1 ADD PUSH1 0x1 ADD DUP6 SSTORE DUP3 

ISZERO PUSH2 0x11C JUMPI SWAP2 DUP3 ADD JUMPDEST DUP3 DUP2 

GT ISZERO PUSH2 0x11B JUMPI DUP3 MLOAD DUP3 SSTORE SWAP2 

PUSH1 0x20 ADD SWAP2 SWAP1 PUSH1 0x1 ADD SWAP1 PUSH2 0x100 

JUMP JUMPDEST JUMPDEST POP SWAP1 POP PUSH2 0x129 SWAP2 

SWAP1 PUSH2 0x12D JUMP JUMPDEST POP SWAP1 JUMP JUMPDEST 

PUSH2 0x14F SWAP2 SWAP1 JUMPDEST DUP1 DUP3 GT ISZERO PUSH2 

0x14B JUMPI PUSH1 0x0 DUP2 PUSH1 0x0 SWAP1 SSTORE POP PUSH1 

0x1 ADD PUSH2 0x133 JUMP JUMPDEST POP SWAP1 JUMP JUMPDEST 

SWAP1 JUMP JUMPDEST PUSH2 0x373 DUP1 PUSH2 0x161 PUSH1 

0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60 PUSH1 0x40 

MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH2 0x57 JUMPI PUSH1 

0x0 CALLDATALOAD PUSH29 0x10000000000000000000000000000

0000000000000000000000000000 SWAP1 DIV PUSH4 0xFFFFFFFF 
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AND DUP1 PUSH4 0x121B93F EQ PUSH2 0x5C JUMPI DUP1 PUSH4 

0x3C32278 EQ PUSH2 0x7F JUMPI DUP1 PUSH4 0xD8BFF5A5 EQ 

PUSH2 0x10D JUMPI JUMPDEST PUSH1 0x0 DUP1 REVERT JUMPDEST 

CALLVALUE ISZERO PUSH2 0x67 JUMPI PUSH1 0x0 DUP1 REVERT 

JUMPDEST PUSH2 0x7D PUSH1 0x4 DUP1 DUP1 CALLDATALOAD 

SWAP1 PUSH1 0x20 ADD SWAP1 SWAP2 SWAP1 POP POP PUSH2 0x15A 

JUMP JUMPDEST STOP JUMPDEST CALLVALUE ISZERO PUSH2 0x8A 

JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x92 PUSH2 

0x273 JUMP JUMPDEST PUSH1 0x40 MLOAD DUP1 DUP1 PUSH1 0x20 

ADD DUP3 DUP2 SUB DUP3 MSTORE DUP4 DUP2 DUP2 MLOAD DUP2 

MSTORE PUSH1 0x20 ADD SWAP2 POP DUP1 MLOAD SWAP1 PUSH1 

0x20 ADD SWAP1 DUP1 DUP4 DUP4 PUSH1 0x0 JUMPDEST DUP4 

DUP2 LT ISZERO PUSH2 0xD2 JUMPI DUP1 DUP3 ADD MLOAD DUP2 

DUP5 ADD MSTORE PUSH1 0x20 DUP2 ADD SWAP1 POP PUSH2 0xB7 

JUMP JUMPDEST POP POP POP POP SWAP1 POP SWAP1 DUP2 ADD 

SWAP1 PUSH1 0x1F AND DUP1 ISZERO PUSH2 0xFF JUMPI DUP1 

DUP3 SUB DUP1 MLOAD PUSH1 0x1 DUP4 PUSH1 0x20 SUB PUSH2 

0x100 EXP SUB NOT AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP 

JUMPDEST POP SWAP3 POP POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 

SUB SWAP1 RETURN JUMPDEST CALLVALUE ISZERO PUSH2 0x118 

JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x144 PUSH1 

0x4 DUP1 DUP1 CALLDATALOAD PUSH20 0xFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP2 

SWAP1 POP POP PUSH2 0x31B JUMP JUMPDEST PUSH1 0x40 MLOAD 

DUP1 DUP3 DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP POP PUSH1 

0x40 MLOAD DUP1 SWAP2 SUB SWAP1 RETURN JUMPDEST PUSH32 

0x4D99B957A2BC29A30EBD96A7BE8E68FE50A3C701DB28A91436490B7 

D53870CA4 CALLER DUP3 PUSH1 0x40 MLOAD DUP1 DUP4 PUSH20 0xF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND PUSH20 0xFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND DUP2 MSTORE PUSH1 

0x20 ADD DUP3 DUP2 MSTORE PUSH1 0x20 ADD SWAP3 POP POP POP 
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PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 LOG1 PUSH1 0x0 DUP1 

PUSH1 0x0 CALLER PUSH20 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFF AND PUSH20 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE 

PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SLOAD EQ ISZERO ISZERO 

PUSH2 0x212 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH1 0x0 

DUP2 GT DUP1 ISZERO PUSH2 0x222 JUMPI POP PUSH1 0x3 DUP2 

LT JUMPDEST ISZERO ISZERO PUSH2 0x22D JUMPI PUSH1 0x0 DUP1 

REVERT JUMPDEST DUP1 PUSH1 0x0 DUP1 CALLER PUSH20 0xFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND PUSH20 0xFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND DUP2 MSTORE PUSH1 0x20 

ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 

DUP2 SWAP1 SSTORE POP POP JUMP JUMPDEST PUSH2 0x27B PUSH2 

0x333 JUMP JUMPDEST PUSH1 0x1 DUP1 SLOAD PUSH1 0x1 DUP2 

PUSH1 0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 

SWAP1 DIV DUP1 PUSH1 0x1F ADD PUSH1 0x20 DUP1 SWAP2 DIV 

MUL PUSH1 0x20 ADD PUSH1 0x40 MLOAD SWAP1 DUP2 ADD PUSH1 

0x40 MSTORE DUP1 SWAP3 SWAP2 SWAP1 DUP2 DUP2 MSTORE PUSH1 

0x20 ADD DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 AND 

ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1 

ISZERO PUSH2 0x311 JUMPI DUP1 PUSH1 0x1F LT PUSH2 0x2E6 

JUMPI PUSH2 0x100 DUP1 DUP4 SLOAD DIV MUL DUP4 MSTORE SWAP2 

PUSH1 0x20 ADD SWAP2 PUSH2 0x311 JUMP JUMPDEST DUP3 ADD 

SWAP2 SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 

SWAP1 JUMPDEST DUP2 SLOAD DUP2 MSTORE SWAP1 PUSH1 0x1 

ADD SWAP1 PUSH1 0x20 ADD DUP1 DUP4 GT PUSH2 0x2F4 JUMPI 

DUP3 SWAP1 SUB PUSH1 0x1F AND DUP3 ADD SWAP2 JUMPDEST POP 

POP POP POP POP SWAP1 POP SWAP1 JUMP JUMPDEST PUSH1 0x0 

PUSH1 0x20 MSTORE DUP1 PUSH1 0x0 MSTORE PUSH1 0x40 PUSH1 

0x0 KECCAK256 PUSH1 0x0 SWAP2 POP SWAP1 POP SLOAD DUP2 

JUMP JUMPDEST PUSH1 0x20 PUSH1 0x40 MLOAD SWAP1 DUP2 ADD 
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PUSH1 0x40 MSTORE DUP1 PUSH1 0x0 DUP2 MSTORE POP SWAP1 

JUMP STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 0xec PUSH30 

0x3E1DAE8412EC85045A8EAFC248E37AE506802CC008EAD300DF1AC81A 

AB49 STOP 0x29 ",

    �"sourceMap": "26:576:0:-;;;167:103;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;:::i;:::-;;26:576;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;; 

;;;;;;;;;;;;:::o;:::-;;;;;;;"

}

With these values our smart contract is ready to be deployed.

Important Note T here may be some improvements that can be 
done to make this contract more secure and performance (gas) 
friendly. The Solidity code should not be taken as reference. Detailed 
discussion on Solidity best practices is out of scope for this text. For 
Solidity best practices, we recommend following the official solidity 
documentation and Solidity-specific texts.

�Deploying the Smart Contract
In this section we will deploy the smart contract we developed in the last 

section to the private Ethereum network we have created. The process of 

deploying the smart contract is the same as what we did in the previous 

chapter. The only difference is that this time we are deploying the 

contract to a private network instead of a public one. In this chapter too, 

we are using the same web3.js library for Ethereum programming using 

JavaScript. We recommend the reader to go through the previous chapter if 

they have not already done that.
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�Setting up web3 Library and Connection
First of all, we will install the web3 library in a node.js application. This is 

exactly how we did it in the last chapter. This node.js application will be 

used to deploy the smart contract.

npm install web3@1.0.0-beta.28

After installation, let’s first initialize and instantiate the web3 instance.

var Web3 = require('web3');

var web3 = new Web3(new Web3.providers.HttpProvider('ht

tp://127.0.0.1:8507'));

Note that this time, our HTTP provider for the web3 instance has 

changed to a local endpoint instead of a public INFURA endpoint, which 

we used in the last chapter. This is because we are now connecting to our 

local private network. Also note that the port we are using is 8507, which 

is what we provided in the --rpcport parameter when we set up the first 

node of our private network. This means we are connecting to the first 

node of the network from our web3 instance.

�Deploy the Contract to the Private Network
Now that we have our smart contract and its details, we will prepare a web3 

contract object with the details of this contract, and then we will deploy 

this contract to the Ethereum blockchain by calling the deploy method on 

the contract object.

We need to create an object of the web3.eth.Contract class that can 

represent our contract. The following code snippet creates a contract 

instance with the ABI of our contract as an input to the constructor.
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var pollingContract = new web3.eth.Contract([

    {

        "constant": true,

        "inputs": [

            {

                "name": "",

                "type": "address"

            }

        ],

        "name": "votes",

        "outputs": [

            {

                "name": "",

                "type": "uint256"

            }

        ],

        "payable": false,

        "stateMutability": "view",

        "type": "function"

    },

    {

        "constant": true,

        "inputs": [],

        "name": "getPoll",

        "outputs": [

            {

                "name": "",

                "type": "string"

            }

        ],
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        "payable": false,

        "stateMutability": "view",

        "type": "function"

    },

    {

        "anonymous": false,

        "inputs": [

            {

                "indexed": false,

                "name": "_voter",

                "type": "address"

            },

            {

                "indexed": false,

                "name": "_value",

                "type": "uint256"

            }

        ],

        "name": "Voted",

        "type": "event"

    },

    {

        "constant": false,

        "inputs": [

            {

                "name": "selection",

                "type": "uint256"

            }

        ],

        "name": "vote",

        "outputs": [],
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        "payable": false,

        "stateMutability": "nonpayable",

        "type": "function"

    }

]);

Now we need to deploy this contract to the Ethereum network using 

the web3 library’s deploy method. The following code snippet shows how 

to do this. In this snippet we have added the byte code in the data field of 

the object passed to the deploy method.

pollingContract

    .deploy({

        �data: '0x606060405260806040519081016040528060508152602 

0017f53686f756c6420636f66666565206265206d6164652074617 

820667265653f2081526020017f53656e64203120666f722079657 

3204f52203220666f72206e6f20696e20746881526020017f65207 

66f74652066756e6374696f6e2e000000000000000000000000000 

000008152506001908051906020019061009c9291906100ad565b5 

034156100a857600080fd5b610152565b828054600181600116156 

101000203166002900490600052602060002090601f01602090048 

1019282601f106100ee57805160ff191683800117855561011c565 

b8280016001018555821561011c579182015b8281111561011b578 

251825591602001919060010190610100565b5b509050610129919 

061012d565b5090565b61014f91905b8082111561014b576000816 

000905550600101610133565b5090565b90565b610373806101616 

000396000f300606060405260043610610057576000357c0100000 

000000000000000000000000000000000000000000000000000900 

463ffffffff1680630121b93f1461005c57806303c322781461007 

f578063d8bff5a51461010d575b600080fd5b34156100675760008 

0fd5b61007d600480803590602001909190505061015a565b005b3 

41561008a57600080fd5b610092610273565b60405180806020018 

281038252838181518152602001915080519060200190808383600 
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05b838110156100d25780820151818401526020810190506100b75 

65b50505050905090810190601f1680156100ff578082038051600 

1836020036101000a031916815260200191505b509250505060405 

180910390f35b341561011857600080fd5b610144600480803573f 

fffffffffffffffffffffffffffffffffffffff169060200190919 

0505061031b565b604051808281526020019150506040518091039 

0f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db28a91 

436490b7d53870ca43382604051808373fffffffffffffffffffff 

fffffffffffffffffff1673fffffffffffffffffffffffffffffff 

fffffffff168152602001828152602001925050506040518091039 

0a160008060003373fffffffffffffffffffffffffffffffffffff 

fff1673ffffffffffffffffffffffffffffffffffffffff1681526 

020019081526020016000205414151561021257600080fd5b60008 

11180156102225750600381105b151561022d57600080fd5b80600 

0803373ffffffffffffffffffffffffffffffffffffffff1673fff 

fffffffffffffffffffffffffffffffffffff16815260200190815 

26020016000208190555050565b61027b610333565b60018054600 

181600116156101000203166002900480601f01602080910402602 

001604051908101604052809291908181526020018280546001816 

00116156101000203166002900480156103115780601f106102e65 

7610100808354040283529160200191610311565b8201919060005 

26020600020905b8154815290600101906020018083116102f4578 

29003601f168201915b5050505050905090565b600060205280600 

05260406000206000915090505481565b602060405190810160405 

2806000815250905600a165627a7a72305820ec7d3e1dae8412ec8 

5045a8eafc248e37ae506802cc008ead300df1ac81aab490029'

    })

    .send({

        from: '0xbaf735f889d603f0ec6b1030c91d9033e60525c3',

        gas: 4700000,

        gasPrice: '20000000000000'

    },
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    function(error, transactionHash){

        console.log(error);

        console.log(transactionHash);

    })

    .then(function(contract){

        console.log(contract);

    });

Note that we have also used the account that we created during the 

network setup in the “from” field of the send function. As this account was 

prefunded with nine Ether and it’s also added as the etherbase account for 

the mining rewards, it has enough Ether to deploy a contract.

The full function to deploy the contract will be

var deployContract = function () {

    var pollingContract = new web3.eth.Contract([{

            "constant": true,

            "inputs": [{

                "name": "",

                "type": "address"

            }],

            "name": "votes",

            "outputs": [{

                "name": "",

                "type": "uint256"

            }],

            "payable": false,

            "stateMutability": "view",

            "type": "function"

        },

        {

            "constant": true,

            "inputs": [],
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            "name": "getPoll",

            "outputs": [{

                "name": "",

                "type": "string"

            }],

            "payable": false,

            "stateMutability": "view",

            "type": "function"

        },

        {

            "anonymous": false,

            "inputs": [{

                    "indexed": false,

                    "name": "_voter",

                    "type": "address"

                },

                {

                    "indexed": false,

                    "name": "_value",

                    "type": "uint256"

                }

            ],

            "name": "Voted",

            "type": "event"

        },

        {

            "constant": false,

            "inputs": [{

                "name": "selection",

                "type": "uint256"

            }],
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            "name": "vote",

            "outputs": [],

            "payable": false,

            "stateMutability": "nonpayable",

            "type": "function"

        }

    ]);

    pollingContract

        .deploy({

            �data: '0x60606040526080604051908101604052806050815 

26020017f53686f756c6420636f66666565206265206d61646 

52074617820667265653f2081526020017f53656e642031206 

66f7220796573204f52203220666f72206e6f20696e2074688 

1526020017f6520766f74652066756e6374696f6e2e0000000 

00000000000000000000000008152506001908051906020019 

061009c9291906100ad565b5034156100a857600080fd5b610 

152565b8280546001816001161561010002031660029004906 

00052602060002090601f016020900481019282601f106100e 

e57805160ff191683800117855561011c565b8280016001018 

555821561011c579182015b8281111561011b5782518255916 

02001919060010190610100565b5b509050610129919061012 

d565b5090565b61014f91905b8082111561014b57600081600 

0905550600101610133565b5090565b90565b6103738061016 

16000396000f300606060405260043610610057576000357c0 

10000000000000000000000000000000000000000000000000 

0000000900463ffffffff1680630121b93f1461005c5780630 

3c322781461007f578063d8bff5a51461010d575b600080fd5 

b341561006757600080fd5b61007d600480803590602001909 

190505061015a565b005b341561008a57600080fd5b6100926 

10273565b60405180806020018281038252838181518152602 
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00191508051906020019080838360005b838110156100d2578 

0820151818401526020810190506100b7565b5050505090509 

0810190601f1680156100ff578082038051600183602003610 

1000a031916815260200191505b50925050506040518091039 

0f35b341561011857600080fd5b610144600480803573fffff 

fffffffffffffffffffffffffffffffffff169060200190919 

0505061031b565b60405180828152602001915050604051809 

10390f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c70 

1db28a91436490b7d53870ca43382604051808373fffffffff 

fffffffffffffffffffffffffffffff1673fffffffffffffff 

fffffffffffffffffffffffff1681526020018281526020019 

250505060405180910390a160008060003373fffffffffffff 

fffffffffffffffffffffffffff1673fffffffffffffffffff 

fffffffffffffffffffff16815260200190815260200160002 

05414151561021257600080fd5b60008111801561022257506 

00381105b151561022d57600080fd5b806000803373fffffff 

fffffffffffffffffffffffffffffffff1673fffffffffffff 

fffffffffffffffffffffffffff16815260200190815260200 

16000208190555050565b61027b610333565b6001805460018 

1600116156101000203166002900480601f016020809104026 

02001604051908101604052809291908181526020018280546 

00181600116156101000203166002900480156103115780601 

f106102e657610100808354040283529160200191610311565 

b820191906000526020600020905b815481529060010190602 

0018083116102f457829003601f168201915b5050505050905 

090565b6000602052806000526040600020600091509050548 

1565b6020604051908101604052806000815250905600a1656 

27a7a72305820ec7d3e1dae8412ec85045a8eafc248e37ae50 

6802cc008ead300df1ac81aab490029'

        })
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        .send({

                �from: '0xbaf735f889d603f0ec6b1030c91d9033e6 

0525c3',

                gas: 4700000,

                gasPrice: '20000000000000'

            },

            function (error, transactionHash) {

                console.log(error);

                console.log(transactionHash);

            })

        .then(function (contract) {

            console.log(contract);

        });

};

After executing this function from our node.js application, we received 

the following output:

Contract {

  currentProvider: [Getter/Setter],

  _requestManager:

   RequestManager {

     provider: null,

     providers:

      { WebsocketProvider: [Function: WebsocketProvider],

        HttpProvider: [Function: HttpProvider],

        IpcProvider: [Function: IpcProvider] },

     subscriptions: {} },

  givenProvider: null,

  providers:

   { WebsocketProvider: [Function: WebsocketProvider],

     HttpProvider: [Function: HttpProvider],

     IpcProvider: [Function: IpcProvider] },
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  _provider: null,

  setProvider: [Function],

  BatchRequest: [Function: bound Batch],

  extend:

   { [Function: ex]

     formatters:

      �{ inputDefaultBlockNumberFormatter: [Function: 

inputDefaultBlockNumberFormatter],

        �inputBlockNumberFormatter: [Function: 

inputBlockNumberFormatter],

        inputCallFormatter: [Function: inputCallFormatter],

        �inputTransactionFormatter: [Function: 

inputTransactionFormatter],

        �inputAddressFormatter: [Function: 

inputAddressFormatter],

        inputPostFormatter: [Function: inputPostFormatter],

        inputLogFormatter: [Function: inputLogFormatter],

        inputSignFormatter: [Function: inputSignFormatter],

        �outputBigNumberFormatter: [Function: 

outputBigNumberFormatter],

        �outputTransactionFormatter: [Function: 

outputTransactionFormatter],

        �outputTransactionReceiptFormatter: [Function: 

outputTransactionReceiptFormatter],

        outputBlockFormatter: [Function: outputBlockFormatter],

        outputLogFormatter: [Function: outputLogFormatter],

        outputPostFormatter: [Function: outputPostFormatter],

        �outputSyncingFormatter: [Function: 

outputSyncingFormatter] },

Chapter 6  Building an Ethereum DApp



356

     utils:

      { _fireError: [Function: _fireError],

        �_jsonInterfaceMethodToString: [Function:  

_jsonInterfaceMethodToString],

        randomHex: [Function: randomHex],

        _: [Function],

        BN: [Function],

        isBN: [Function: isBN],

        isBigNumber: [Function: isBigNumber],

        isHex: [Function: isHex],

        isHexStrict: [Function: isHexStrict],

        sha3: [Function],

        keccak256: [Function],

        soliditySha3: [Function: soliditySha3],

        isAddress: [Function: isAddress],

        checkAddressChecksum: [Function: checkAddressChecksum],

        toChecksumAddress: [Function: toChecksumAddress],

        toHex: [Function: toHex],

        toBN: [Function: toBN],

        bytesToHex: [Function: bytesToHex],

        hexToBytes: [Function: hexToBytes],

        hexToNumberString: [Function: hexToNumberString],

        hexToNumber: [Function: hexToNumber],

        toDecimal: [Function: hexToNumber],

        numberToHex: [Function: numberToHex],

        fromDecimal: [Function: numberToHex],

        hexToUtf8: [Function: hexToUtf8],

        hexToString: [Function: hexToUtf8],

        toUtf8: [Function: hexToUtf8],

        utf8ToHex: [Function: utf8ToHex],

        stringToHex: [Function: utf8ToHex],
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        fromUtf8: [Function: utf8ToHex],

        hexToAscii: [Function: hexToAscii],

        toAscii: [Function: hexToAscii],

        asciiToHex: [Function: asciiToHex],

        fromAscii: [Function: asciiToHex],

        unitMap: [Object],

        toWei: [Function: toWei],

        fromWei: [Function: fromWei],

        padLeft: [Function: leftPad],

        leftPad: [Function: leftPad],

        padRight: [Function: rightPad],

        rightPad: [Function: rightPad],

        toTwosComplement: [Function: toTwosComplement] },

     Method: [Function: Method] },

  clearSubscriptions: [Function],

  options:

   { address: [Getter/Setter],

     jsonInterface: [Getter/Setter],

     data: undefined,

     from: undefined,

     gasPrice: undefined,

     gas: undefined },

  defaultAccount: [Getter/Setter],

  defaultBlock: [Getter/Setter],

  methods:

   { votes: [Function: bound _createTxObject],

     '0xd8bff5a5': [Function: bound _createTxObject],

     'votes(address)': [Function: bound _createTxObject],

     getPoll: [Function: bound _createTxObject],

     '0x03c32278': [Function: bound _createTxObject],

     'getPoll()': [Function: bound _createTxObject],
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     vote: [Function: bound _createTxObject],

     '0x0121b93f': [Function: bound _createTxObject],

     'vote(uint256)': [Function: bound _createTxObject] },

  events:

   { Voted: [Function: bound ],

     �'0x4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db28a91436 

490b7d53870ca4': [Function: bound ],

     'Voted(address,uint256)': [Function: bound ],

     allEvents: [Function: bound ] },

  _address: '0x59E7161646C3436DFdF5eBE617B4A172974B481e',

  _jsonInterface:

   [ { constant: true,

       inputs: [Array],

       name: 'votes',

       outputs: [Array],

       payable: false,

       stateMutability: 'view',

       type: 'function',

       signature: '0xd8bff5a5' },

     { constant: true,

       inputs: [],

       name: 'getPoll',

       outputs: [Array],

       payable: false,

       stateMutability: 'view',

       type: 'function',

       signature: '0x03c32278' },

     { anonymous: false,

       inputs: [Array],

       name: 'Voted',

       type: 'event',
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       �signature: '0x4d99b957a2bc29a30ebd96a7be8e68fe50a3c70 

1db28a91436490b7d53870ca4' },

     { constant: false,

       inputs: [Array],

       name: 'vote',

       outputs: [],

       payable: false,

       stateMutability: 'nonpayable',

       type: 'function',

       signature: '0x0121b93f' } ] }

The output shows the various properties of the contract we 

deployed to our private network. The most important one is 

the contract address at which the contract is deployed, which is 

0x59E7161646C3436DFdF5eBE617B4A172974B481e.

The contract ABI and address can be used to call a function on the 

contract. In the next section we will build a simple web app that will call 

the vote function of this contract, showcasing how the polling can be done 

from the front end.

�Client Application
As we did in the last chapter, we can use the web3 library to call a function 

on a smart contract. But, in the last chapter we did that using a node.js 

application and not in a browser application. In this section, we will be 

using web3 in a browser application to call our deployed smart contract’s 

vote function.

The simplest web application we can create for this DApp is a single 

web page with a few text and button controls. For the web page, we can use 

the following code inside an html file and then run it from a local server. 

Note that running from a local server and not directly opening the file from 

the browser is important to load the scripts properly, without facing any 

browser security issues.
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<html>

<c>

    <meta charset="UTF-8">

    <title>Beginning Blockchain - DApp demo</title>

    �<script src="<source of web3 library from any CDN or local 

file>"></script>

</head>

<body>

    <div>

        <p>

            <strong>Beginning Blockchain</strong>

        </p>

        <p>Hi, Welcome to the Polling DApp!</p>

        <p>&nbsp;</p>

        <p>Get latest poll:&nbsp;

            <button onclick="getPoll()">Get Poll</button>

        </p>

        <p>

            <div id="pollSubject"></div>

        </p>

        <p>Vote: Yes:

            <input type="radio" id="yes"> No:

            <input type="radio" id="no">

        </p>

        <p>Submit:&nbsp;

            <button onclick="submitVote()">Submit Vote</button>

        </p>

        </p>

    </div>
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    <script>

        if (typeof web3 !== 'undefined') {

            web3 = new Web3(web3.currentProvider);

        } else {

            �web3 = new Web3(new Web3.providers.HttpProvider 

('http://127.0.0.1:8507'));

        }

        function getPoll() {

            var pollingContract = new web3.eth.Contract([{

                    "constant": true,

                    "inputs": [{

                        "name": "",

                        "type": "address"

                    }],

                    "name": "votes",

                    "outputs": [{

                        "name": "",

                        "type": "uint256"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "constant": true,

                    "inputs": [],

                    "name": "getPoll",

                    "outputs": [{

                        "name": "",

                        "type": "string"

                    }],
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                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "anonymous": false,

                    "inputs": [{

                            "indexed": false,

                            "name": "_voter",

                            "type": "address"

                        },

                        {

                            "indexed": false,

                            "name": "_value",

                            "type": "uint256"

                        }

                    ],

                    "name": "Voted",

                    "type": "event"

                },

                {

                    "constant": false,

                    "inputs": [{

                        "name": "selection",

                        "type": "uint256"

                    }],

                    "name": "vote",

                    "outputs": [],

                    "payable": false,

                    "stateMutability": "nonpayable",

                    "type": "function"

                }
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            ], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

            �pollingContract.methods.getPoll().call().

then(function (value) {

                �document.getElementById('pollSubject').

textContent = value;

            });

        };

        function submitVote() {

            var value = 0

            var yes = document.getElementById('yes').checked;

            var no = document.getElementById('no').checked;

            if (yes) {

                value = 1

            } else if (no) {

                value = 2

            } else {

                return;

            }

            var pollingContract = new web3.eth.Contract([{

                    "constant": true,

                    "inputs": [{

                        "name": "",

                        "type": "address"

                    }],

                    "name": "votes",

                    "outputs": [{

                        "name": "",

                        "type": "uint256"

                    }],
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                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "constant": true,

                    "inputs": [],

                    "name": "getPoll",

                    "outputs": [{

                        "name": "",

                        "type": "string"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "anonymous": false,

                    "inputs": [{

                            "indexed": false,

                            "name": "_voter",

                            "type": "address"

                        },

                        {

                            "indexed": false,

                            "name": "_value",

                            "type": "uint256"

                        }

                    ],

                    "name": "Voted",

                    "type": "event"

                },
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                {

                    "constant": false,

                    "inputs": [{

                        "name": "selection",

                        "type": "uint256"

                    }],

                    "name": "vote",

                    "outputs": [],

                    "payable": false,

                    "stateMutability": "nonpayable",

                    "type": "function"

                }

            ], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

            pollingContract.methods.vote(value).send({

                �from: '0xbaf735f889d603f0ec6b1030c91d9033e 

60525c3'

            }).then(function (result) {

                console.log(result);

            });

        };

    </script>

</body>

</html>

Let’s now analyze each of the sections of this HTML file.

In the head section of the HTML document, we have loaded the web3 

script from either a CDN source or a local source. This is just like we refer 

to any other third-party JavaScript library in our web pages (JQuery, etc.)

Then in the body section of the HTML, we have the controls for 

showing the poll subject and radio and submit buttons to capture user 

input. The overall web page looks like this (Figure 6-11).
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What is important is the script section in the body. That’s where we are 

calling the smart contract interaction code. Let’s look at it in detail.

<script>

        if (typeof web3 !== 'undefined') {

            web3 = new Web3(web3.currentProvider);

        } else {

            �web3 = new Web3(new Web3.providers.HttpProvider 

('http://127.0.0.1:8507'));

        }

        function getPoll() {

            var pollingContract = new web3.eth.Contract([{

                    "constant": true,

                    "inputs": [{

                        "name": "",

                        "type": "address"

                    }],

Figure 6-11.  Polling web application view
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                    "name": "votes",

                    "outputs": [{

                        "name": "",

                        "type": "uint256"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "constant": true,

                    "inputs": [],

                    "name": "getPoll",

                    "outputs": [{

                        "name": "",

                        "type": "string"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "anonymous": false,

                    "inputs": [{

                            "indexed": false,

                            "name": "_voter",

                            "type": "address"

                        },
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                        {

                            "indexed": false,

                            "name": "_value",

                            "type": "uint256"

                        }

                    ],

                    "name": "Voted",

                    "type": "event"

                },

                {

                    "constant": false,

                    "inputs": [{

                        "name": "selection",

                        "type": "uint256"

                    }],

                    "name": "vote",

                    "outputs": [],

                    "payable": false,

                    "stateMutability": "nonpayable",

                    "type": "function"

                }

            ], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

            �pollingContract.methods.getPoll().call().

then(function (value) {

                �document.getElementById('pollSubject').

textContent = value;

            });

        };
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        function submitVote() {

            var value = 0

            var yes = document.getElementById('yes').checked;

            var no = document.getElementById('no').checked;

            if (yes) {

                value = 1

            } else if (no) {

                value = 2

            } else {

                return;

            }

            var pollingContract = new web3.eth.Contract([{

                    "constant": true,

                    "inputs": [{

                        "name": "",

                        "type": "address"

                    }],

                    "name": "votes",

                    "outputs": [{

                        "name": "",

                        "type": "uint256"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "constant": true,

                    "inputs": [],

                    "name": "getPoll",
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                    "outputs": [{

                        "name": "",

                        "type": "string"

                    }],

                    "payable": false,

                    "stateMutability": "view",

                    "type": "function"

                },

                {

                    "anonymous": false,

                    "inputs": [{

                            "indexed": false,

                            "name": "_voter",

                            "type": "address"

                        },

                        {

                            "indexed": false,

                            "name": "_value",

                            "type": "uint256"

                        }

                    ],

                    "name": "Voted",

                    "type": "event"

                },

                {

                    "constant": false,

                    "inputs": [{

                        "name": "selection",

                        "type": "uint256"

                    }],

                    "name": "vote",

                    "outputs": [],
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                    "payable": false,

                    "stateMutability": "nonpayable",

                    "type": "function"

                }

            ], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

            pollingContract.methods.vote(value).send({

                �from: '0xbaf735f889d603f0ec6b1030c91d9033 

e60525c3'

            }).then(function (result) {

                console.log(result);

            });

        };

    </script>

In the previous script section, first we are initializing the web3 object 

with the HTTP provider of the local Ethereum node (if it is not already 

initialized).

Then, we have two JavaScript functions. One for getting the value of 

the pollSubject string from the smart contract and another for calling the 

vote function of the contract.

The calling of smart contract functions is exactly how we did it in the 

previous chapter using the web3.eth.Contract submodule of the web3 

library.

Note that in the first function getPoll we are calling the call function 

on the smart contract instance, while in the second function submitVote 

we are calling send on the smart contract instance. That’s primarily the 

difference in the two function calls.

Using the call on the getPoll function of the smart contract, we 

are getting the return value of the getPoll function without sending any 

transaction to the network. We are then showing this value on the UI by 

assigning it as the text of a UI element.
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Next, using send on the vote function, we are sending a transaction 

to execute this function on the network and so we have to also define an 

account that will be used to execute the smart contract function. Following 

is the output obtained from the submitVote function shown previously, 

which is basically a transaction receipt.

{

        �blockHash: '0x04a02dd56c037569eb6abe25e003a65d3366407 

134c90a056f64b62c2d23eb84',

        blockNumber: 4257,

        contractAddress: null,

        cumulativeGasUsed: 43463,

        from: '0xbaf735f889d603f0ec6b1030c91d9033e60525c3',

        gasUsed: 43463,

        �logsBloom: '0x000000000000000000000000000000800000000 

00000040000000000000000000200000000000000000000000000 

00000000000000000000000000000000000000000000000000000 

00000000000200000000002000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000002000000000000000 

00000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000',

        �root: '0x58bc4ee0a3025ca3f303df9bb243d052a123026519637 

30c52c88aafe92ebeee',

        to: '0x59e7161646c3436dfdf5ebe617b4a172974b481e',

        �transactionHash: '0x434aa9c0037af3367a0d3d92985781c50 

774241ace1d382a8723985efcea73b3',

        transactionIndex: 0,

Chapter 6  Building an Ethereum DApp



373

        events: {

            Voted: {

                �address: '0x59E7161646C3436DFdF5eBE617B4A17 

2974B481e',

                blockNumber: 4257,

                �transactionHash: '0x434aa9c0037af3367a0d3d929 

85781c50774241ace1d382a8723985efcea73b3',

                transactionIndex: 0,

                �blockHash: '0x04a02dd56c037569eb6abe25e003a65 

d3366407134c90a056f64b62c2d23eb84',

                logIndex: 0,

                removed: false,

                id: 'log_980a1744',

                returnValues: [Result],

                event: 'Voted',

                �signature: '0x4d99b957a2bc29a30ebd96a7be8e68f 

e50a3c701db28a91436490b7d53870ca4',

                raw: [Object]

        }

    }

}

If we look closely at this output, we see that this also has an events 

section and it shows the triggering of the Voted event that we created in 

our smart contract.

events: {

            Voted: {

                �address: '0x59E7161646C3436DFdF5eBE617B4A172 

974B481e',

                blockNumber: 4257,

                �transactionHash: '0x434aa9c0037af3367a0d3d929 

85781c50774241ace1d382a8723985efcea73b3',
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                transactionIndex: 0,

                �blockHash: '0x04a02dd56c037569eb6abe25e003a6 

5d3366407134c90a056f64b62c2d23eb84',

                logIndex: 0,

                removed: false,

                id: 'log_980a1744',

                returnValues: [Result],

                event: 'Voted',

                �signature: '0x4d99b957a2bc29a30ebd96a7be8e68fe 

50a3c701db28a91436490b7d53870ca4',

                raw: [Object]

        }

    }

In the preceding code snippet, we’ve extracted out the events section 

from the transaction receipt we received in the response of the send 

transaction to the vote function of our smart contract. As we can see, the 

events section also shows the return values and the raw values from the 

function call.

We have now come to the end of our DApp programming exercise. 

In the previous sections of this chapter, we developed an end-to-end 

decentralized application on the Ethereum blockchain and we also 

deployed a private blockchain for our DApp.

The DApp can be used with the public Ethereum network too—a voter 

has to host a node and they can vote using their existing Ethereum accounts 

on the public (main) network.

There can be several ways in which the business logic in the smart 

contract can be enhanced by using different checks and rules.

This programming exercise gives us a basic idea about how to 

approach development of decentralized applications and the components 
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that come into the picture during the process. This exercise can be treated 

as a starting point for Ethereum application development, and the reader 

is encouraged to explore best practices and more complex scenarios on the 

subject.

�Summary
In this chapter we compiled a programming exercise of developing a 

decentralized application based on the Ethereum blockchain. We also 

learned how to set up a private Ethereum network and how to interact with 

it using the DApp.
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