
Beginning
Blockchain

A Beginner’s Guide to
Building Blockchain Solutions
—
Bikramaditya Singhal
Gautam Dhameja
Priyansu Sekhar Panda

www.allitebooks.com

http://www.allitebooks.org

Beginning Blockchain
A Beginner’s Guide to Building

Blockchain Solutions

Bikramaditya Singhal
Gautam Dhameja
Priyansu Sekhar Panda

www.allitebooks.com

http://www.allitebooks.org

Beginning Blockchain

ISBN-13 (pbk): 978-1-4842-3443-3		 ISBN-13 (electronic): 978-1-4842-3444-0
https://doi.org/10.1007/978-1-4842-3444-0

Library of Congress Control Number: 2018945613

Copyright © 2018 by Bikramaditya Singhal, Gautam Dhameja,
Priyansu Sekhar Panda

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3443-3.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Bikramaditya Singhal
Bangalore, Karnataka, India

Priyansu Sekhar Panda
Bangalore, Karnataka, India

Gautam Dhameja
Berlin, Berlin, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3444-0
http://www.allitebooks.org

iii

About the Authors���ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Table of Contents

Chapter 1: �Introduction to Blockchain���1

Backstory of Blockchain��2

What is Blockchain?���4

Centralized vs. Decentralized Systems��11

Centralized Systems���14

Decentralized Systems���15

Layers of Blockchain��17

Application Layer��19

Execution Layer��20

Semantic Layer���20

Propagation Layer��21

Consensus Layer��22

Why is Blockchain Important?���23

Limitations of Centralized Systems��23

Blockchain Adoption So Far��24

Blockchain Uses and Use Cases��26

Summary���28

References���29

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: �How Blockchain Works��31

Laying the Blockchain Foundation���32

Cryptography���34

Symmetric Key Cryptography���37

Cryptographic Hash Functions���55

MAC and HMAC��76

Asymmetric Key Cryptography���78

Diffie-Hellman Key Exchange���98

Symmetric vs. Asymmetric Key Cryptography���102

Game Theory��104

Nash Equilibrium��107

Prisoner’s Dilemma��108

Byzantine Generals’ Problem���110

Zero-Sum Games��112

Why to Study Game Theory��113

Computer Science Engineering��114

The Blockchain���114

Merkle Trees���117

Putting It All Together���122

Properties of Blockchain Solutions���124

Blockchain Transactions���127

Distributed Consensus Mechanisms��130

Blockchain Applications���135

Scaling Blockchain���139

Off-Chain Computation���140

Sharding Blockchain State���143

Summary���145

References���146

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 3: �How Bitcoin Works���149

The History of Money���150

Dawn of Bitcoin��153

What Is Bitcoin?��154

Working with Bitcoins���157

The Bitcoin Blockchain��159

Block Structure���161

The Genesis Block��169

The Bitcoin Network���172

Network Discovery for a New Node��174

Bitcoin Transactions���179

Consensus and Block Mining���184

Block Propagation��193

Putting It all Together���195

Bitcoin Scripts��195

Bitcoin Transactions Revisited��196

Scripts��204

Full Nodes vs. SPVs��209

Full Nodes���209

SPVs���210

Bitcoin Wallets���212

Summary���216

References���216

Chapter 4: �How Ethereum Works���219

From Bitcoin to Ethereum��220

Ethereum as a Next-Gen Blockchain��221

Design Philosophy of Ethereum��223

Table of ContentsTable of Contents

vi

Enter the Ethereum Blockchain���224

Ethereum Blockchain���225

Ethereum Accounts��228

Trie Usage���236

Merkle Patricia Tree��237

RLP Encoding��239

Ethereum Transaction and Message Structure���240

Ethereum State Transaction Function���245

Gas and Transaction Cost���248

Ethereum Smart Contracts���253

Contract Creation��256

Ethereum Virtual Machine and Code Execution���257

Ethereum Ecosystem���263

Swarm��264

Whisper��264

DApp���264

Development Components���265

Summary���265

References���266

Chapter 5: �Blockchain Application Development������������������������������267

Decentralized Applications���267

Blockchain Application Development���269

Libraries and Tools���270

Interacting with the Bitcoin Blockchain���272

Setup and Initialize the bitcoinjs Library in a node.js Application����������������273

Create Keypairs for the Sender and Receiver���274

Get Test Bitcoins in the Sender’s Wallet���275

Table of ContentsTable of Contents

vii

Get the Sender’s Unspent Outputs���276

Prepare Bitcoin Transaction��278

Sign Transaction Inputs��280

Create Transaction Hex���280

Broadcast Transaction to the Network���281

Interacting Programmatically with Ethereum—Sending Transactions��������������283

Set Up Library and Connection���284

Set Up Ethereum Accounts���285

Get Test Ether in Sender’s Account���286

Prepare Ethereum Transaction���287

Sign Transaction���288

Send Transaction to the Ethereum Network���290

Interacting Programmatically with Ethereum—Creating a Smart Contract�������292

Prerequisites��292

Program the Smart Contract���293

Compile Contract and Get Details���297

Deploy Contract to Ethereum Network���302

Interacting Programmatically with Ethereum—Executing Smart
Contract Functions���307

Get Reference to the Smart Contract��308

Execute Smart Contract Function���309

Blockchain Concepts Revisited��312

Public vs. Private Blockchains���313

Decentralized Application Architecture��314

Public Nodes vs. Self-Hosted Nodes��315

Decentralized Applications and Servers���316

Summary���317

References���317

Table of ContentsTable of Contents

viii

Chapter 6: �Building an Ethereum DApp���319

The DApp��319

Setting Up a Private Ethereum Network��321

Install go-ethereum (geth)��321

Create geth Data Directory���322

Create a geth Account��323

Create genesis.json Configuration File���324

Run the First Node of the Private Network���325

Run the Second Node of the Network��329

Creating the Smart Contract��334

Deploying the Smart Contract��344

Setting up web3 Library and Connection���345

Deploy the Contract to the Private Network���345

Client Application���359

Summary���375

References���375

Index��377

Table of ContentsTable of Contents

ix

About the Authors

Bikramaditya Singhal is a Blockchain expert

and AI practitioner with experience working

in multiple industries. He is proficient in

Blockchain, Bitcoin, Ethereum, Hyperledger,

cryptography, cyber security, and data science.

He has extensive experience in training and

consulting on Blockchain and has designed

many Blockchain solutions. He worked with

companies such as WISeKey, Tech Mahindra,

Microsoft India, Broadridge, and Chelsio

Communications, and he also cofounded

a company named Mund Consulting that focuses on big data analytics

and artificial intelligence. He is an active speaker at various conferences,

summits, and meetups. He has also authored a book entitled Spark for

Data Science. 

x

Gautam Dhameja is a Blockchain application

consultant based out of Berlin, Germany. For

most of this decade, he has been developing

and delivering enterprise software including

Web and Mobile apps, Cloud-based hyper-

scale IoT solutions, and more recently,

Blockchain-based decentralized applications

(DApps). He possesses a deep understanding

of the decentralized stack, cloud solutions

architecture, and object-oriented design. His

areas of expertise include Blockchain, Cloud-based enterprise solutions,

Internet of Things, distributed systems, and native and hybrid mobile

apps. He is also an active blogger and regularly speaks at tech conferences

and events.

Priyansu Sekhar Panda is a research engineer

at Underwriters Laboratories, Bangalore,

India. He has worked with other IT companies

such as Broadridge, Infosys Limited, and

Tech Mahindra. His areas of expertise include

Blockchain, Bitcoin, Ethereum, Hyperledger,

game theory, IoT, and artificial intelligence.

Priyansu’s current research is on building next-

gen applications leveraging Blockchain, IoT, and

AI. His major research interests include building

Decentralized Autonomous Organizations

(DAO), and the security, scalability, and

consensus of Blockchains.  

About the AuthorsAbout the Authors

xi

About the Technical Reviewer

Navin K Manaswi has been developing AI

solutions/products with the use of cutting-

edge technologies and sciences related to

artificial intelligence for many years. Having

worked for consulting companies in Malaysia,

Singapore, and the Dubai Smart City project,

he has developed a rare skill of delivering

end-to-end artificial intelligence solutions.

He built solutions for video intelligence,

document intelligence, and human-like

chatbots in his own company. Currently, he solves B2B problems in

verticals of healthcare, enterprise applications, industrial IoT, and retail

in the Symphony AI incubator as Deep Learning-AI Architect. Through

this book, he wants to democratize cognitive computing and services

for everyone, especially developers, data scientists, software engineers,

database engineers, data analysts, and CXOs.  

xiii

Acknowledgments

We’d like to thank Nikhil and Divya for their cooperation and support all

through and many thanks to Navin for his thorough technical review of this

book. We also thank all who have directly or indirectly contributed to this

book.

xv

Introduction

Beginning Blockchain is a book for those willing to learn about the

technical fundamentals of Blockchain, practical implications, and hands-

on development aspects of Blockchain applications. Adequate history,

background, and theoretical aspects are covered to help you build a solid

foundation for your Blockchain journey, and appropriate development

aspects are covered with coding examples to help you jumpstart

on Blockchain assignments. The first chapter introduces you to the

Blockchain world and sets the context. The second chapter dives deeper

into the core components of Blockchain. The third chapter is focused on

Bitcoin’s technical concepts so what was discussed in the second chapter

could be demonstrated with Bitcoin as a cryptocurrency use case of

Blockchain. The fourth chapter is dedicated to the Ethereum Blockchain in

an effort to demonstrate how Blockchain could be programmed for many

more use cases and not limited to just cryptocurrencies. The fifth chapter

is where you get the hang of Blockchain development with examples

on basic transactions in both Bitcoin and Ethereum. The sixth chapter,

as the final chapter, demonstrates the end-to-end development of a

decentralized application (DApp). By the end of this chapter, you will have

been equipped with enough tools and techniques to address many real-

world business problems with applicable Blockchain solutions. Start your

journey toward limitless possibilities.

1© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_1

CHAPTER 1

Introduction to
Blockchain
Blockchain is the new wave of disruption that has already started to

redesign business, social and political interactions, and any other way of

value exchange. Again, it is not just a change, but a rapid phenomenon

that is already in motion. As of this writing, more than 40 top financial

institutions and many different firms across industries have started to

explore blockchain to lower transaction cost, speed up transaction time,

reduce the risk of fraud, and eliminate the middleman or intermediary

services. Some are trying to reimagine legacy systems and services to take

them to a new level and also come up with new kinds of service offerings.

We will cover blockchain in greater detail throughout the book.

You can follow through the chapters in the order presented if you are new

to blockchain or pick only the ones relevant to you. This chapter explains

what blockchain is all about, how it has evolved, and its importance

in today’s world with some uses and use cases. It gives an outside-in

perspective to you to be able to delve deeper into blockchain.

2

�Backstory of Blockchain
One of the first known digital disruptions that laid the foundation of the

Internet was TCP/IP (Transmission Control Protocol/Internet Protocol)

back in the 1970s. Prior to TCP/IP, it was the era of circuit switching, which

required dedicated connection between two parties for communication

to happen. TCP/IP came up with its packet switching design, which was

more open and peer-to-peer with no need to preestablish a dedicated line

between parties.

When the Internet was made accessible to the public through the

World Wide Web (WWW) in the early 1990s, it was supposed to be

more open and peer-to- peer. This is because it was built atop the open

and decentralized TCP/IP. When any new technology, especially the

revolutionary ones, hits the market, either they fade away on their own, or

they create such an impact that they become the accepted norm. People

adapted to the WWW revolution and leveraged the benefits it had to offer

in every possible way. As a result, the World Wide Web started shaping up

in a way that might not have been the exact way it was imagined. It could

have been more open, more accessible, and more peer-to-peer. Many new

technologies and businesses started to build on top of it and it became

what it is today—more centralized. Slowly and gradually, people get used to

what technology offers. People are just fine if an international transaction

takes days to settle, or it is too expensive, or it is less reliable.

Let us take a closer look at the banking system and its evolution.

Starting from the olden days of barter system till fiat currencies, there

was no real difference between a transaction and its settlement because

they were not two separate entities. As an example, if Alice had to pay $10

to Bob, she would just hand over a $10 note to Bob and the transaction

would just get settled there. No bank was needed to debit $10 from Alice’s

account and credit the same to Bob’s account or to serve as a system of

trust to ensure Alice does not cheat Bob. However, transacting directly

Chapter 1 Introduction to Blockchain

3

with someone who is physically not present close by was difficult.

So, banking systems evolved with many more service offerings and enabled

transactions from every corner of the world. With the help of the Internet,

geography was no more a limitation and banking became easier than ever.

Not just banking for that matter: the Internet facilitated many different

kinds of value exchange over the web.

Technology enabled someone from India to make a monetary

transaction with someone in the United Kingdom, but with some cost.

It takes days to settle such transactions and is expensive as well. A bank was

always needed to impose trust and ensure security for such transactions

between two or more parties. What if technology could enable trust and

security without these intermediary and centralized systems? Somehow, this

part (of technology imposing trust) was missing all through, which resulted

in development of centralized systems such as banks, escrow services,

clearing houses, registrars and many other such institutions. Blockchain

proves to be that missing piece of the Internet revolution puzzle that

facilitates a trustless system in a cryptographically secured way.

Satoshi Nakamoto, the pseudonymous name by which the world

knows him, must have felt that the monetary systems were not touched

by the technological revolution since the 1980s. Banks formed the

centralized institutions that maintained the transaction records, governed

interactions, enforced trust and security, and regulated the whole system.

The whole of commerce relies on these financial institutions, which

serve as the trusted third parties to process payments. The mediation

of financial institutions increases cost and time to settle a transaction,

and also limits the transaction sizes. The mediation was needed to settle

disputes, but that meant that completely nonreversible transaction was

never possible. This resulted in a situation where trust was needed for

someone to transact with another. Certainly, this bureaucratic system had

to change to keep up with the economy’s expected digital transformation.

So, Satoshi invented a cryptocurrency called Bitcoin that was enabled by

the underlying technology— blockchain. Bitcoin is just one monetary use

Chapter 1 Introduction to Blockchain

4

case of blockchain that addresses the inherent weakness of trust-based

models. We will delve deeper into the fundamentals of both Bitcoins and

blockchain in this book.

�What is Blockchain?
The Internet has revolutionized many aspects of life, society, and

business. However, we learned in the previous section that how people

and organizations execute transactions with one another has not changed

much in the past couple of decades. Blockchain is believed to be the

component that completes the Internet puzzle and makes it more open,

more accessible, and more reliable.

To understand blockchain, you have to understand it from both a

business perspective and technical perspective. Let us first understand it

in a business transaction context to get the “what” of it, and then look into

the technicality to understand the “how” of it in the following chapters.

Blockchain is a system of records to transact value (not just money!) in

a peer-to-peer fashion. What it means is that there is no need for a trusted

intermediary such as banks, brokers, or other escrow services to serve as a

trusted third party. For example, if Alice pays to Bob $10, why would it go

through a bank? Take a look at Figure 1-1.

Chapter 1 Introduction to Blockchain

5

Let us look at a different example now. A typical stock transaction

happens in seconds, but its settlement takes weeks. Is it desirable in this

digital age? Certainly not! Figure 1-2 demonstrates the current situation.

Figure 1-1.  Transaction through an intermediary vs. peer-to-peer
transaction

Chapter 1 Introduction to Blockchain

6

If someone wants to buy some stocks from a company or a person,

they can just directly buy it from them with instant settlement, with

no need for brokers, clearing houses, or other financial institutions in

between. A decentralized and peer-to-peer solution to such a situation can

be represented as in Figure 1-3.

Figure 1-2.  Stocks trading through an intermediary clearing house

Chapter 1 Introduction to Blockchain

7

Please note that transaction and settlement are not two different

entities in a blockchain setting! The transactions are analogous to, say, fiat

currency transactions where if someone pays another a $10 note, they do

not own it anymore and that $10 note is physically transferred to the new

owner.

Now that you understand blockchain from a functional perspective, at

a high level, let us look into it a little technically, and the reason for naming

it “blockchain” becomes clearer. We will see “What” it is technically and

leave the “How” it works to Chapter 2.

Figure 1-3.  Peer-to-peer stock trading

Chapter 1 Introduction to Blockchain

8

Read the following statements and do not worry if the concepts do not

fit together well for your complete understanding. You may want to revisit

it, but be patient till you finish reading this book.

•	 Blockchain is a peer-to-peer system of transacting

values with no trusted third parties in between.

•	 It is a shared, decentralized, and open ledger of

transactions. This ledger database is replicated across a

large number of nodes.

•	 This ledger database is an append-only database and

cannot be changed or altered. It means that every entry

is a permanent entry. Any new entry on it gets reflected

on all copies of the databases hosted on different

nodes.

•	 There is no need for trusted third parties to serve

as intermediaries to verify, secure, and settle the

transactions.

•	 It is another layer on top of the Internet and can coexist

with other Internet technologies.

•	 Just the way TCP/IP was designed to achieve an open

system, blockchain technology was designed to enable

true decentralization. In an effort to do so, the creators

of Bitcoin open-sourced it so it could inspire many

decentralized applications.

Chapter 1 Introduction to Blockchain

9

Every node on the blockchain network has an identical copy of the

blockchain shown in Figure 1-4, where every block is a collection of

transactions, hence the name. As you can see, there are two major parts

in every block. The “header” part links back to the previous block in the

chain. What it means is that every block header contains the hash of the

previous block so that no one can alter any transaction in the previous

block. We will look into further details of this concept in the following

chapters. The other part of a block is the “body content” that has a

validated list of transactions, their amounts, the addresses of the parties

involved, and some more details. So, given the latest block, it is feasible to

access all the previous blocks in a blockchain.

Let us consider a practical example and see how the transactions take

place and the ledger gets updated across the network, to see how this

system works:

Assume that there are three candidates—Alice, Bob, and Charlie—who

are doing some monetary transactions among each other on a blockchain

network. Let us go through the transactions step by step to understand

blockchain’s open and decentralized features.

Step-1:
Let us assume that Alice had $50 with her, which is the genesis of all

transactions and every node is aware of it, as shown in Figure 1-5.

Figure 1-4.  The blockchain data structure

A typical blockchain may look as shown in Figure 1-4.

Chapter 1 Introduction to Blockchain

10

Step-2:
Alice makes a transaction by paying $20 to Bob. Observe how the

blockchain gets updated at each node, as shown in Figure 1-6.

Step-3:
Bob makes another transaction by paying $10 to Charlie and the

blockchain gets updated as shown in Figure 1-7.

Figure 1-6.  The first transaction

Figure 1-5.  The genesis block

Chapter 1 Introduction to Blockchain

11

Please note that the transaction data in the blocks is immutable.

All transactions are fully irreversible. Any change would result in a new

transaction, which would get validated by all contributing nodes. Every

node has its own copy of blockchain.

If there are many questions popping up in your mind, such as “What

if Alice pays the same amount to Dave to double-spend the same amount,

or what if she is making a payment without having enough funds in her

account?,” “How is the security ensured?,” and so on, that is wonderful! We

are going to cover those details in the following chapters.

�Centralized vs. Decentralized Systems
The very reason we are looking into the debate on centralization vs.

decentralization is because blockchain is designed to be decentralized,

defying the centralized design. However, the terns decentralized and

centralized are not always clear. They are very poorly defined and

misleading in many places. The reason is that there is almost no system

that is purely centralized or decentralized. Most of the concepts and

examples in this section are inspired from the notes of Mr. Vitalik Buterin,

the founder of Ethereum blockchain.

Figure 1-7.  The second transaction

Chapter 1 Introduction to Blockchain

12

What is a distributed system then? Just so it does not mess with the

current discussion, let us understand it first and take it off the list. Please

note that whether a system is centralized or decentralized, it can still be

distributed. A centralized distributed system is one in which there is,

say, a master node responsible for breaking down the tasks or data and

distribute the load across nodes. On the other hand, a decentralized

distributed system is one where there is no “master” node as such and yet

the computation may be distributed. Blockchain is one such example, and

we will look at many diagrammatic representations of it later in this book.

Figure 1-8 is a pictorial representation of how a centralized distributed

system may look.

This representation is similar to Hadoop implementation, as an

example. Though the computation is faster in such designs because

of distributed computing, it also suffers from limitations due to

centralization.

Let us resume our discussion on centralization vs. decentralization. It is

extremely important to note that for a system to be centralized/decentralized

is not just limited to the technical architecture. What we intend to say is

Figure 1-8.  A distributed system with centralized control

Chapter 1 Introduction to Blockchain

13

that a system can be centralized or decentralized technically, but may

not be so logically or politically. Let us take a look at these different

perspectives to be able to design a system correctly based on the

requirement:

Technical Architecture: A system can be centralized or decentralized

from a technical architecture point of view. What we consider is how many

physical computers (or nodes) are used to design a system, how many

node failures it can sustain before the whole system goes down, etc.

Political perspective: This perspective indicates the control that an

individual, or a group of people, or an organization as a whole has on a

system. If the computers of the system are controlled by them, then the

system is naturally centralized. However, if no specific individual or groups

control the system and everyone has equal rights on the system, then it is a

decentralized system in a political sense!

Logical perspective: A system can be logically centralized or

decentralized based on how it appears to be, irrespective of whether it

is centralized or decentralized technically or politically. An alternative

analogy could be that if you vertically cut a system (say of computing

devices) in half with every half having service providers and consumers,

if they can operate as independent units they are decentralized and

centralized otherwise.

All the aforementioned perspectives are crucial in designing a real-

life system and calling it centralized or decentralized. Let us discuss some

of the examples mixing these perspectives to clear up any confusion you

might have:

•	 If you look at the corporates, they are architecturally

centralized (one head office), they are politically

centralized (governed by a CEO or the board), and they

are logically centralized as well. (You can’t really split

them in halves.)

Chapter 1 Introduction to Blockchain

14

•	 Our language of communication is decentralized from

every perspective—architecturally, politically, as well

as logically. For two people to communicate with each

other, in general, their language is neither politically

influenced nor logically dependent on the language of

communication of other people.

•	 The torrent systems such as BitTorrent are also

decentralized from every perspective. Any node can be

a provider or a consumer, so even if you cut the system

into halves, it still sustains.

•	 The Content Delivery Network on the other hand

is architecturally decentralized, logically also

decentralized, but is politically centralized because

it is owned by corporates. An example is Amazon

CloudFront.

•	 Let us consider blockchain now. The objective of

blockchain was to enable decentralization. So, it is

architecturally decentralized by design. Also, it is

decentralized from a political viewpoint, as nobody

controls it. However, it is logically centralized, as there

is one common agreed state and the whole system

behaves like a single global computer.

Let us explore these terms separately and have a comparative view to

be able to appreciate why blockchain is decentralized by design.

�Centralized Systems
As the name suggests, a centralized system has a centralized control with

all administrative authority. Such systems are easy to design, maintain,

impose trust, and govern, but suffer from many inherent limitations, as

follows:

Chapter 1 Introduction to Blockchain

15

•	 They have a central point of failure, so are less stable.

•	 They are more vulnerable to attack and hence less

secured.

•	 Centralization of power can lead to unethical

operations.

•	 Scalability is difficult most of the time.

A typical centralized system may appear as shown in Figure 1-9.

�Decentralized Systems
As the name suggests, a decentralized system does not have a centralized

control and every node has equal authority. Such systems are difficult to

design, maintain, govern, or impose trust. However, they do not suffer

from the limitations of conventional centralized systems. Decentralized

systems offer the following advantages:

•	 They do not have a central point of failure, so more

stable and fault tolerant

Figure 1-9.  A centralized system

Chapter 1 Introduction to Blockchain

16

•	 Attack resistant, as no central point to easily attack and

hence more secured

•	 Symmetric system with equal authority to all, so less

scope of unethical operations and usually democratic

in nature

A typical decentralized system may appear as shown in Figure 1-10.

Please note that a distributed system can also be decentralized.

An example would be blockchain! However, unlike common distributed

systems, the task is not subdivided and delegated to nodes, as there is no

master who would do that in blockchain. The contributing nodes do not

work on a portion of the work, rather, the interested nodes (or the ones

chosen at random) perform the entire work. A typical decentralized and

distributed system, which is effectively a peer-to-peer system, may appear

as shown in Figure 1-11.

Figure 1-10.  A decentralized system

Chapter 1 Introduction to Blockchain

17

�Layers of Blockchain
As of this writing, the public blockchain variants such as Ethereum are

in the process of maturing, and building complex applications on top of

these blockchains may not be a good idea. Keep in mind that blockchain is

never just a piece of technology, but a combination of business principles,

economics, game theory, cryptography, and computer science engineering.

Most of the real-world applications are quite complex in nature, and it is

advisable to build blockchain solutions from the ground up.

The purpose of this section is only to provide you with a bird’s eye view

of various blockchain layers, and delve deeper into the core fundamentals

in the following chapters. To start with, let us just recollect our basic

understanding of the TCP/IP protocol stack. The layered approach in the

TCP/IP stack is actually a standard to achieve an open system. Having

abstraction layers not only helps in understanding the stack better, but also

helps in building products that are compliant to the stack to achieve an

open system. Also, having the layers abstract from each other makes the

system more robust and easy to maintain. Any change to any of the layers

doesn’t impact the other layers. Again, the TCP/IP analogy is not to be

Figure 1-11.  A decentralized and peer-to-peer system

Chapter 1 Introduction to Blockchain

18

confused with the blockchain layers. TCP/IP is a communication protocol

that every Internet application uses, and so is blockchain.

Enter the blockchain. There are no agreed global standards yet that

would clearly segregate the blockchain components into distinct layers.

A layered heterogeneous architecture is needed, but for now that is still

in the future. So, we will try to formulate blockchain layers to be able

to understand the technology better and build a comparative analogy

between hundreds of blockchain/Cryptocurrency variants out there in the

market. Take a look at the high-level, layered representation of blockchain

in Figure 1-12.

You may be wondering why five layers and why not more granular

layers, or fewer layers. Obviously, there cannot be too many or too few

layers; it is going to be a trade-off driven among complexity, robustness,

adaptability, etc., to name a few. The purpose again is not really to

standardize blockchain technology, but to build a better understanding.

Please keep in mind that all these layers are present on all the nodes.

Figure 1-12.  Various layers of blockchain

Chapter 1 Introduction to Blockchain

19

In Chapter 6 of this book, we will be building a decentralized

application from scratch and learning how blockchain functions on all

these layers with a practical use case.

�Application Layer
Because of the characteristics of blockchain, such as immutability of data,

transparency among participants, resilience against adversarial attacks

etc., there are multiple applications being built. Certain applications are

just built in the application layer, taking for granted any available “flavor”

of blockchain, and some applications are built in the application layer

and are interwoven with other layers in blockchain. This is the reason the

application layer should be considered a part of blockchain.

This is the layer where you code up the desired functionalities

and make an application out of it for the end users. It usually involves

a traditional tech stack for software development such as client-side

programming constructs, scripting, APIs, development frameworks, etc.

For the applications that treat blockchain as a backend, those applications

might need to be hosted on some web servers and that might require web

application development, server-side programming, and APIs, etc. Ideally,

good blockchain applications do not have a client–server model, and there

are no centralized servers that the clients access, which is just the way

Bitcoin works.

You probably have heard or already learned about the off-chain

networks. The idea is to build applications that wouldn’t use blockchain

for anything and everything, but use it wisely. In other words, this concept

is to ensure that the heavy lifting is done at the application layer, or bulky

storage requirements are taken care of off the chain so that the core

blockchain is light and effective and the network traffic is not too much.

Chapter 1 Introduction to Blockchain

20

�Execution Layer
The Execution Layer is where the executions of instructions ordered by the

Application Layer take place on all the nodes in a blockchain network. The

instructions could be simple instructions or a set of multiple instructions

in the form of a smart contract. In either case, a program or a script needs

to be executed to ensure the correct execution of the transaction. All the

nodes in a blockchain network have to execute the programs/scripts

independently. Deterministic execution of programs/scripts on the same

set of inputs and conditions always produces the same output on all the

nodes, which helps avoid inconsistencies.

In the case of Bitcoins, these are simple scripts that are not Turing-

complete and allow only a few set of instructions. Ethereum and

Hyperledger, on the other hand, allow complex executions. Ethereum’s

code or its smart contracts written in solidity gets compiled to Bytecode or

Machine Code that gets executed on its own Ethereum Virtual Machine.

Hyperledger has a much simpler approach for its chaincode smart

contracts. It supports running of compiled machine codes inside docker

images, and supports multiple high-level lanuages such as Java and Go.

�Semantic Layer
The Semantic Layer is a logical layer because there is an orderliness in the

transactions and blocks. A transaction, whether valid or invalid, has a set

of instructions that gets through the Execution Layer but gets validated

in the Semantic Layer. If it is Bitcoin, then whether one is spending a

legitimate transaction, whether it is a double-spend attack, whether one

is authorized to make this transaction, etc., are validated in this layer.

You will learn in the following chapters that Bitcoins are actually present as

transactions that represent the system state. To be able to spend a Bitcoin,

you have to consume one or more previous transactions and there is no

notion of Accounts. This means that when someone makes a transaction,

Chapter 1 Introduction to Blockchain

21

they use one of the previous transactions where they had received at least

the amount they are spending now. This transaction must be validated by

all the nodes by traversing previous transactions to see if it is a legitimate

transaction. Ethereum, on the other hand, has the system of Accounts.

This means that the account of the one making the transaction and that

of the one receiving it both get updated.

In this layer, the rules of the system can be defined, such as data

models and structures. There could be situations that are a little more

complex compared with simple transactions. Complex instruction sets are

often coded into smart contracts. The system’s state gets updated when a

smart contract is invoked upon receiving a transaction. A smart contract

is a special type of account that has executable code and private states.

A block usually contains a bunch of transactions and some smart

contracts. The data structures such as the Merkle tree are defined in this

layer with the Merkle root in the block header to maintain a relation

between the block headers and the set of transactions in a block (usually

Key-Value storage on disk). Also, the data models, storage modes, in-

memory/disk based processing, etc. can be defined in this logical layer.

Apart from the aforementioned, it is the semantic layer that defines

how the blocks are linked with each other. Every block in a blockchain

contains the hash of the previous block, all the way to the genesis block.

Though the final state of the blockchain is achieved by the contributions

from all the layers, the linking of blocks with each other needs to be

defined in this layer. Depending on the use case, you might want to code

up an additional functionality in this layer.

�Propagation Layer
The previous layers were more of an individual phenomenon: not much

coordination with other nodes in the system. The Propagation Layer is the

peer-to-peer communication layer that allows the nodes to discover each

other, and talk and sync with each other with respect to the current state of

Chapter 1 Introduction to Blockchain

22

the network. When a transaction is made, we know that it gets broadcast to

the entire network. Similarly, when a node wants to propose a valid block,

it gets immediately propagated to the entire network so that other nodes

could build on it, considering it as the latest block. So, transaction/block

propagation in the network is defined in this layer, which ensures stability

of the whole network. By design, most of the blockchains are designed such

that they forward a transaction/block immediately to all the nodes they are

directly connected to, when they get to know of a new transaction/block.

In the asynchronous Internet network, there are often latency issues

for transaction or block propagation. Some propagations occur within

seconds and some take more time, depending on the capacity of the

nodes, network bandwidth, and a few more factors.

�Consensus Layer
The Consensus Layer is usually the base layer for most of the blockchain

systems. The primary purpose of this layer is to get all the nodes to agree

on one consistent state of the ledger. There could be different ways of

achieving consensus among the nodes, depending on the use case. Safety

and security of the blockchain is accertained in this layer. In Bitcoin or

Ethereum, the consensus is achieved through proper incentive techniques

called “mining.” For a public blockchain to be self-sustainable, there has to

be some sort of incentivization mechanisms that not only helps in keeping

the network alive, but also enforces consensus. Bitcoin and Ethereum use a

Proof of Work (PoW) consensus mechanism to randomly select a node that

can propose a block. Once that block is proposed and propagated to all the

nodes, they check to see if it a valid block with all legitimate transactions

and that the PoW puzzle was solved properly; they add this block to their

own copy of blockchain and build further on it. There are many different

variants of consensus protocols such as Proof of Stake (PoS), deligated PoS

(dPoS), Practical Byzantine Fault Tolerance (PBFT), etc., which we will

cover in great detail in the following chapters.

Chapter 1 Introduction to Blockchain

23

�Why is Blockchain Important?
We looked at the design aspects of centralized and decentralized systems

and got some idea of the technical benefits of decentralized systems over

centralized ones. We also learned about different layers of blockchain.

Blockchain, being a decentralized peer-to-peer system, has some inherent

benefits and complexities. Keep in mind that it is not a silver bullet that

can address all the problem areas in the world, but there are specific

cases where it is the need of the hour. There are also scenarios where

blockchainizing the existing solution makes it more robust, transparent,

and secured. However, it can as well lead to disaster if not done the right

way! Let us now keep a business and functional perspective in mind and

analyze blockchain.

�Limitations of Centralized Systems
If you take a quick glance at the software evolution landscape, you will

see that many software solutions have a centralized design. The reason is

not just because they are easy to develop and maintain, but because we

are used to such a design to be able to trust the system. We always need a

trusted third party who can assure we are not being cheated or becoming

victims of a scam. Without a prior business relationship, it is difficult to

trade with someone or even scale up. One would probably not do business

with someone they have never known.

Let us take an example to understand it better. Today when we order

something from Amazon, we feel safe and assured of the item’s delivery.

The producer of the item is someone and the buyer is someone else.

Then what role is being played by Amazon here? It is there as an enabler

functioning as a trusted intermediary, and also to take some cut of the

transaction. The buyer trusts the seller where the trust relation is actually

imposed by such trusted third parties. What blockchain proposes is that,

in the modern digital era, we do not really need a third party in between

Chapter 1 Introduction to Blockchain

24

to impose trust, and the technology has matured enough to handle it. In

blockchain, trust is an inherent part of the network by default, which we

will explore more in upcoming chapters.

Let us quickly learn a few downsides of a conventional centralized

system:

•	 Trust issues

•	 Security issue

•	 Privacy issue—data sale privacy is being undermined

•	 Cost and time factor for transactions

Some of the advantages of decentralized systems over centralized

systems could be:

•	 Elimination of intermediaries

•	 Easier and genuine verification of transactions

•	 Increased security with lower cost

•	 Greater transparency

•	 Decentralized and immutable

�Blockchain Adoption So Far
Blockchain came along with Bitcoin, a digital cryptocurrency, in 2009 via

a simple mailing list. Soon after it was launched, people could realize its

true potential beyond just cryptocurrency. Some companies came up with

different flavors of blockchain offerings such as Ethereum, Hyperledger,

etc. Microsoft and IBM came up with SaaS (Software as a Service) offerings

on their Azure and Bluemix cloud platforms, respectively. Different start-

ups were formed, and many established companies took blockchain

initiatives that focused on solving some business problems that were not

easily solved before.

Chapter 1 Introduction to Blockchain

25

It is too late now to just say that blockchain has tremendous potential

to disrupt almost every industry in some way or the other; the revolution

has already started. It has hugely impacted the financial services market.

It is difficult to name a global bank or finance entity not exploring

blockchain. Apart from the financial market, initiatives have already

been/are already being taken in areas such as media and entertainment,

energy trading, prediction markets, retail chains, loyalty rewards systems,

insurance, logistics and supply chains, medical records, and also

government and military applications.

As of this writing, the current situation is such that many start-ups

and companies are able to see how a blockchain-based system can really

address some pain areas and become beneficial in many ways. However,

designing the right kind of blockchain solution is quite challenging. There

are some really great ideas for a blockchain-based product or solution, but

it is equally difficult to either build them or implement them. There are

some use cases that can only be built on a public blockchain. Designing

a self-sustainable blockchain with a proper mining ecosystem is difficult,

and when it comes to the existing public blockchains to build non-

cryptocurrency applications there is none other than Ethereum. Whether

a blockchain application is to be built in the Application Layer only and

use the underlying layers as they are, or the application needs to be built

from the ground up, is something difficult to decide. There are some

technical challenges, too. Blockchain is still maturing, and it may take

few more years for mainstream adoption. As of today, there are multiple

propositions to address the scalability issues of blockchain. We will try to

build a solid understanding on all these perspectives in this entire book.

For now, let us see some of the specific uses and use cases in the following

section.

Chapter 1 Introduction to Blockchain

26

�Blockchain Uses and Use Cases
In this section, we will look at some of the initiatives that are already being

taken across industries such as finance, insurance, banking, healthcare,

government, supply chains, IoT (Internet of Things), and media and

entertainment to name a few. The possibilities are limitless, however!

A true sharing economy, which was difficult to achieve in centralized

systems, is possible using blockchain technology (e.g., peer-to-peer

versions of Uber, AirBNB). It is also possible to enable citizens to own their

identity (Self-Sovereign Digital Identity) and monetize their own data

using this technology. For now, let us take a look at some of the existing

use cases.

•	 Any type of property or asset, whether physical or

digital, such as laptops, mobile phones, diamonds,

automobiles, real estate, e-registrations, digital files,

etc. can be registered on blockchain. This can enable

these asset transactions from one person to another,

maintain the transaction log, and check validity or

ownerships. Also, notary services, proof of existence,

tailored insurance schemes, and many more such use

cases can be developed.

•	 There are many financial use cases being developed

on blockchain such as cross-border payments, share

trading, loyalty and rewards system, Know Your

Customer (KYC) among banks, etc. Initial Coin Offering

(ICO) is one of the most trending use cases as of this

writing. ICO is the best way of crowdsourcing today by

using cryptocurrency as digital assets. A coin in an ICO

can be thought of as a digital stock in an enterprise,

which is very easy to buy and trade.

Chapter 1 Introduction to Blockchain

27

•	 Blockchain can be used to enable “The Wisdom

of Crowds” to take the lead and shape businesses,

economies, and various other national phenomena

by using collective wisdom! Financial and economic

forecasts based on the wisdom of crowds, decentralized

prediction markets, decentralized voting, as well as

stocks trading can be possible on blockchain.

•	 The process of determining music royalties has

always been convoluted. The Internet-enabled

music streaming services facilitated higher market

penetration, but made the royalty determination more

complex. This concern can pretty much be addressed

by blockchain by maintaining a public ledger of music

rights ownership information as well as authorised

distribution of media content.

•	 This is the IoT era, with billions of IoT devices

everywhere and many more to join the pool. A whole

bunch of different makes, models, and communication

protocols makes it difficult to have a centralized

system to control the devices and provide a common

data exchange platform. This is also an area where

blockchain can be used to build a decentralized peer-

to-peer system for the IoT devices to communicate

with each other. ADEPT (Autonomous Decentralized

Peer-To-Peer Telemetry) is a joint initiative from IBM

and Samsung that has developed a platform that uses

elements of the Bitcoin’s underlying design to build

a distributed network of devices—a decentralized

IOT. ADEPT uses three protocols: BitTorrent for file

sharing, Ethereum for smart contracts, and TeleHash

for peer-to-peer messaging in the platform. The IOTA

foundation is another such initiative.

Chapter 1 Introduction to Blockchain

28

•	 In the government sectors as well, blockchain has

gained momentum. There are use cases where

technical decentralization is necessary, but politically

should be governed by governments: land registration,

vehicle registration and management, e-Voting, etc.

are some of the active use cases. Supply chains are

another area where there are some great use cases of

blockchain. Supply chains have always been prone to

disputes across the globe, as it was always difficult to

maintain transparency in these systems.

�Summary
In this chapter, we covered the evolution of blockchain, the history of

it, what it is, the design benefits, and why it is so important with some

relevant use cases. In this section, we will conclude with its game-changing

offerings, in line with the technology revolution.

In the 1990s, mass adoption of the Internet changed the way people

did business. It removed friction from creation and distribution of

information. This paved the way for new markets, more opportunities, and

possibilities. Similarly, blockchain is here today to take the Internet to a

whole new level by removing friction along three key areas: Control, Trust,

and Value.

Control: Blockchain enabled distribution of the control by making the

system decentralized.

Trust: Blockchain is an immutable, tamper-resistant ledger. It gives

a single, shared source of truth to all nodes, making the system trustless.

What it means is that trust is no longer needed to transact with any

unknown person or entity and is inherent by design.

Value: Blockchain enables exchange of value in any form. One can

issue and transfer assets without central entities or intermediaries.

Chapter 1 Introduction to Blockchain

29

In Chapter 2, we will take a deep dive into the blockchain

fundamentals.

�References
The Meaning of Decentralization

Buterin, Vitalik, “The Meaning of Decentralization,” Medium,

https://medium.com/@VitalikButerin/the-meaning-of-decentralization-

a0c92b76a274, February 6, 2017.

BlockChain Technology
Crosby, Michael; Nachiappan; Pattanayak, Pradhan; Verma, Sanjeev;

Kalyanaraman, Vignesh, “BlockChain Technology: Beyond Bitcoin,”

Berkeley, CA: Sutardja Center for Entrepreneurship & Technology,

University of California, http://scet.berkeley.edu/wp-content/uploads/

BlockchainPaper.pdf, October 16, 2015.

Torpey, Kyle, “Eric Lombrozo: Bitcoin Needs Protocol Layers Similar

to the Internet,” CoinJournal, https://coinjournal.net/eric-lombrozo-

bitcoin-needs-protocol-layers-similar-to-the-internet/,

January 28, 2016.

Blockbench: A Framework for Analyzing Private blockchains
Dinh, Tien Tuan Anh; Wang, Ji; Chen, Gang; Liu, Rui; Ooi, Beng

Chin; Tan, Kian-Lee, “Blockbench: A Framework for Analyzing Private

blockchains,” https://arxiv.org/pdf/1703.04057.pdf, March 12, 2017.

Chapter 1 Introduction to Blockchain

https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
http://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
http://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
https://coinjournal.net/eric-lombrozo-bitcoin-needs-protocol-layers-similar-to-the-internet/
https://coinjournal.net/eric-lombrozo-bitcoin-needs-protocol-layers-similar-to-the-internet/
https://arxiv.org/pdf/1703.04057.pdf

31© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_2

CHAPTER 2

How Blockchain
Works
We stand at the edge of a new digital revolution. Blockchain probably

is the biggest invention since the Internet itself! It is the most promising

technology for the next generation of Internet interaction systems and

has received extensive attention from many industry sectors as well as

academia. Today, many organizations have already realized that they

needed to be blockchain ready to sustain their positions in the market.

We already looked at a few use cases in Chapter 1, but the possibilities are

limitless. Though blockchain is not a silver bullet for all business problems,

it has started to impact most business functions and their technology

implementations.

To be able to solve some real-world business problems using

blockchain, we actually need a fine-grained understanding of what it is

and how it works. For this, it needs to be understood through different

perspectives such as business, technical, and legal viewpoints. This

chapter is an effort to get into the nuts and bolts of blockchain technology

and get a complete understanding of how it works.

32

�Laying the Blockchain Foundation
Blockchain is not just a technology, it is mostly coupled with business

functions and use cases. In its cryptocurrency implementations, it is also

interwoven with economic principles. In this section, we will mainly

focus on its technical aspects. Technically, blockchain is a brilliant

amalgamation of the concepts from cryptography, game theory, and

computer science engineering, as shown in Figure 2-1.

Let us take a look at what role these components play in the blockchain

system at a high level and dig deeper into the fundamentals eventually.

Before that, let us quickly revisit how the traditional centralized systems

worked. The traditional approach was that there would be a centralized

entity that would maintain just one transaction/modification history. This

was to exercise concurrency control over the entire database and inject

Figure 2-1.  Blockchain at its core

Chapter 2 How Blockchain Works

33

trust into the system through intermediaries. What was the problem with

such a stable system then? A centralized system has to be trusted, whether

those involved are honest or not! Also, cost due to intermediaries and the

transaction time could be greater for obvious reasons. Now think about the

centralization of power; having full control of the entire system enables the

centralized authorities to do almost anything they want.

Now, let us look at how blockchain addresses these issues due to

centralized intermediaries by using cryptography, game theory, and

computer science concepts. Irrespective of the use case, the transactions

are secured using cryptography. Using cryptography, it can be ensured

that a valid user is initiating the transaction and no one can forge a

fraudulent transaction. This means, cryptographically it can be ensured

that Alice in no way can make a transaction on behalf of Bob by forging

his signature. Now, what if a node or a user tries to launch a double-spend

attack (e.g., one has just ten bucks and tries to pay the same to multiple

people)? Pay close attention here—despite not having sufficient funds, one

can still initiate a double-spend, which is cryptographically correct. The

only way to prevent double-spend is for every node to be aware of all the

transactions. Now this leads to another interesting problem. Since every

node should maintain the transaction database, how can they all agree

on a common database state? Again, how can the system stay immune

to situations where one or more computing nodes deliberately attempt

to subvert the system and try to inject a fraudulent database state? The

majority of such problems come under the umbrella of the Byzantine

Generals’ Problem (described later). Well, it gained even more popularity

because of blockchain, but it has been there for ages. If you look at the

data center solutions, or distributed database solutions, the Byzantine

Generals’ Problem is an obvious and common problem that they deal with

to remain fault tolerant. Such situations and their solution actually come

from game theory. The field of game theory provides a radically different

approach to determine how a system will behave. The techniques in

game theory are arguably the most sophisticated and realistic ones. They

Chapter 2 How Blockchain Works

34

usually never consider if a node is honest, malicious, ethical, or has any

other such characteristics and believe that the participants act according

to the advantage they get, not by moral values. The sole purpose of game

theory in blockchain is to ensure that the system is stable (i.e., in Nash

Equilibrium) with consensus among the participants.

There are different kinds of business problems and situations with

varying degrees of complexities. So, the underlying crypto and game

theoretic consensus protocols could be different in different use cases.

However, the general principle of maintaining a consistent log or database

of verified transactions is the same. Though the concepts of cryptography

and game theory have been around for quite some time now, it is the

computer science piece that stitches these bits and pieces together

through data structures and peer-to-peer network communication

technique. Obviously, it is the “smart software engineering” that is needed

to realize any logical or mathematical concepts in the digital world. It

is then the computer science engineering techniques that incorporate

cryptography and game theoretic concepts into an application, enabling

decentralized and distributed computing among the nodes with data

structure and network communication components.

�Cryptography
Cryptography is the most important component of blockchain. It is

certainly a research field in itself and is based on advanced mathematical

techniques that are quite complex to understand. We will try to develop

a solid understanding of some of the cryptographic concepts in this

section, because different problems may require different cryptographic

solutions; one size never fits all. You may skip some of the details or refer

to them as and when needed, but it is the most important component

to ensure security in the system. There have been many hacks reported

on wallets and exchanges due to weaker design or poor cryptographic

implementations.

Chapter 2 How Blockchain Works

35

Cryptography has been around for more than two thousand years

now. It is the science of keeping things confidential using encryption

techniques. However, confidentiality is not the only objective. There are

various other usages of cryptography as mentioned in the following list,

which we will explore later:

•	 Confidentiality: Only the intended or authorized

recipient can understand the message. It can also be

referred to as privacy or secrecy.

•	 Data Integrity: Data cannot be forged or modified by

an adversary intentionally or by unintended/accidental

errors. Though data integrity cannot prevent the

alteration of data, it can provide a means of detecting

whether the data was modified.

•	 Authentication: The authenticity of the sender is

assured and verifiable by the receiver.

•	 Non-repudiation: The sender, after sending a message,

cannot deny later that they sent the message. This

means that an entity (a person or a system) cannot

refuse the ownership of a previous commitment or an

action.

Any information in the form of a text message, numeric data, or a

computer program can be called plaintext. The idea is to encrypt the

plaintext using an encryption algorithm and a key that produces the

ciphertext. The ciphertext can then be transmitted to the intended

recipient, who decrypts it using the decryption algorithm and the key to

get the plaintext.

Let us take an example. Alice wants to send a message (m) to Bob.

If she just sends the message as is, any adversary, say, Eve can easily

intercept the message and the confidentiality gets compromised. So, Alice

wants to encrypt the message using an encryption algorithm (E) and a

Chapter 2 How Blockchain Works

36

secret key (k) to produce the encrypted message called “ciphertext.” An

adversary has to be aware of both the algorithm (E) and key (k) to intercept

the message. The stronger the algorithm and the key, the more difficult it is

for the adversary to attack. Note that it would always be desirable to design

blockchain systems that are at least provably secure. What this means is

that a system must resist certain types of feasible attacks by adversaries.

The common set of steps for this approach can be represented as

shown in Figure 2-2.

Broadly, there are two kinds of cryptography: symmetric key and

asymmetric key (a.k.a. public key) cryptography. Let us look into these

individually in the following sections.

Figure 2-2.  How Cryptography works in general

Chapter 2 How Blockchain Works

37

�Symmetric Key Cryptography
In the previous section we looked at how Alice can encrypt a message

and send the ciphertext to Bob. Bob can then decrypt the ciphertext to

get the original message. If the same key is used for both encryption and

decryption, it is called symmetric key cryptography. This means that both

Alice and Bob have to agree on a key (k) called “shared secret” before they

exchange the ciphertext. So, the process is as follows:

Alice—the Sender:

•	 Encrypt the plaintext message m using encryption

algorithm E and key k to prepare the ciphertext c

•	 c = E(k, m)

•	 Send the ciphertext c to Bob

Bob—the Receiver:

•	 Decrypt the ciphertext c using decryption algorithm D

and the same key k to get the plaintext m

•	 m = D(k, c)

Did you just notice that the sender and receiver used the same key

(k)? How do they agree on the same key and share it with each other?

Obviously, they need a secure distribution channel to share the key. It

typically looks as shown in Figure 2-3.

Figure 2-3.  Symmetric cryptography

Chapter 2 How Blockchain Works

38

Symmetric key cryptography is used widely; the most common

uses are secure file transfer protocols such as HTTPS, SFTP, and

WebDAVS. Symmetric cryptosystems are usually faster and more useful

when the data size is huge.

Please note that symmetric key cryptography exists in two variants:

stream ciphers and block ciphers. We will discuss these in the following

sections but we will look at Kerchoff’s principle and XOR function before

that to be able to understand how the cryptosystems really work.

�Kerckhoff’s Principle and XOR Function

Kerckhoff’s principle states that a cryptosystem should be secured even if

everything about the system is publicly known, except the key. Also, the

general assumption is that the message transmission channel is never

secure, and messages could easily be intercepted during transmission.

This means that even if the encryption algorithm E and decryption

algorithm D are public, and there is a chance that the message could be

intercepted during transmission, the message is still secure due to a shared

secret. So, the keys must be kept secret in a symmetric cryptosystem.

The XOR function is the basic building block for many encryption and

decryption algorithms. Let us take a look at it to understand how it enables

cryptography. The XOR, otherwise known as “Exclusive OR” and denoted

by the symbol ⊕, can be represented by the following truth table (Table 2-1).

Table 2-1.  XOR Truth Table

A B A ⊕ B

0 0 0

1 0 1

0 1 1

1 1 0

Chapter 2 How Blockchain Works

39

The XOR function has the following properties, which are important to

understand the math behind cryptography:

•	 Associative: A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

•	 Commutative: A ⊕ B = B ⊕ A

•	 Negation: A ⊕ 1 = Ā

•	 Identity: A ⊕ A = 0

Using these properties, it would now make sense how to compute the

ciphertext “c” using plaintext “m” and the key “k,” and then decrypt the

ciphertext “c” with the same key “k” to get the plaintext “m.” The same

XOR function is used for both encryption and decryption.

m ⊕ k = c and c ⊕ k = m

The previous example is in its simplest form to get the hang of

encryption and decryption. Notice that it is very simple to get the original

plaintext message just by XORing with the key, which is a shared secret

and only known by the intended parties. Everyone may know that the

encryption or decryption algorithm here is XOR, but not the key.

�Stream Ciphers vs. Block Cipher

Stream cipher and block cipher algorithms differ in the way the plaintext

is encoded and decoded.

Stream ciphers convert one symbol of plaintext into one symbol of

ciphertext. This means that the encryption is carried out one bit or byte of

plaintext at a time. In a bit by bit encryption scenario, to encrypt every bit of

plaintext, a different key is generated and used. So, it uses an infinite stream

of pseudorandom bits as the key and performs the XOR operation with

input bits of plaintext to generate ciphertext. For such a system to remain

secure, the pseudorandom keystream generator has to be secure and

unpredictable. Stream ciphers are an approximation of a proven perfect

cipher called “the one-time pad,” which we will discuss in a little while.

Chapter 2 How Blockchain Works

40

How does the pseudorandom keystream get generated in the first

place? They are typically generated serially from a random seed value

using digital shift registers. Stream ciphers are quite simple and faster in

execution. One can generate pseudorandom bits offine and decrypt very

quickly, but it requires synchronization in most cases.

We saw that the pseudorandom number generator that generates

the key stream is the central piece here that ensures the quality of

security—which stands to be its biggest disadvantage. The pseudorandom

number generator has been attacked many times in the past, which led

to deprecation of stream ciphers. The most widely used stream cipher is

RC4 (Rivest Cipher 4) for various protocols such as SSL, TLS, and Wi-Fi

WEP/WPA etc. It was revealed that there were vulnerabilities in RC4,

and it was recommended by Mozilla and Microsoft not to use it where

possible.

Another disadvantage is that all information in one bit of input text is

contained in its corresponding one bit of ciphertext, which is a problem of

low diffusion. It could have been more secured if the information of one bit

was distributed across many bits in the ciphertext output, which is the case

with block ciphers. Examples of stream ciphers are one-time pad, RC4,

FISH, SNOW, SEAL, A5/1, etc.

Block cipher on the other hand is based on the idea of partitioning

the plaintext into relatively larger blocks of fixed-length groups of bits,

and further encoding each of the blocks separately using the same key. It

is a deterministic algorithm with an unvarying transformation using the

symmetric key. This means when you encrypt the same plaintext block

with the same key, you’ll get the same result.

The usual sizes of each block are 64 bits, 128 bits, and 256 bits called

block length, and their resulting ciphertext blocks are also of the same

block length. We select, say, an r bits key k to encrypt every block of length

n, then notice here that we have restricted the permutations of the key k

to a very small subset of 2r. This means that the notion of “perfect cipher”

Chapter 2 How Blockchain Works

41

does not apply. Still, random selection of the r bits secret key is important,

in the sense that more randomness implies more secrecy.

To encrypt or decrypt a message in block cipher cryptography, we

have to put them into a “mode of operation” that defines how to apply a

cipher’s single-block operation repeatedly to transform amounts of data

larger than a block. Well, the mode of operation is not just to divide the

data into fixed sized blocks, it has a bigger purpose. We learned that the

block cipher is a deterministic algorithm. This means that the blocks with

the same data, when encrypted using the same key, will produce the same

ciphertext—quite dangerous! It leaks a lot of information. The idea here is

to mix the plaintext blocks with the just created ciphertext blocks in some

way so that for the same input blocks, their corresponding Ciphertext

outputs are different. This will become clearer when we get to the DES and

AES algorithms in the following sections.

Note that different modes of operations result in different properties

being achieved that add to the security of the underlying block cipher.

Though we will not get into the nitty-gritty of modes of operations, here are

the names of a few for your reference: Electronic Codebook (ECB), Cipher

Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB),

and Counter (CTR).

Block ciphers are a little slow to encrypt or decrypt, compared with

the stream ciphers. Unlike stream ciphers where error propagation is

much less, here the error in one bit could corrupt the whole block. On the

contrary, block ciphers have the advantage of high diffusion, which means

that every input plaintext bit is diffused across several ciphertext symbols.

Examples of block ciphers are DES, 3DES, AES, etc.

Note A deterministic algorithm is an algorithm that, given a
particular input, will always produce the same output.

Chapter 2 How Blockchain Works

42

�One-Time Pad

It is a symmetric stream cipher where the plaintext, the key, and the

ciphertext are all bit strings. Also, it is completely based on the assumption

of a “purely random” key (and not pseudorandom), using which it could

achieve “perfect secrecy.” Also, as per the design, the key can be used only

once. The problem with this is that the key should be at least as long as the

plaintext. It means that if you are encrypting a 1GB file, the key would also

be 1GB! This gets impractical in many real-world cases.

Example:

You can refer to the XOR truth table in the previous section to find how

ciphertext is generated by XOR-ing plaintext with the key. Notice that the

plaintext, the key, and the ciphertext are all 18 bits long.

Here, the receiver upon receipt of the ciphertext can simply XOR again

with the key and get the plaintext. You can try it on your own with Table 2-2

and you will get the same plaintext.

The main problem with this one-time pad is more of practicality,

rather than theory. How do the sender and receiver agree on a secret key

that they can use? If the sender and the receiver already have a secure

channel, why do they even need a key? If they do not have a secure

channel (that is why we use cryptography), then how can they share the

key securely? This is called the “key distribution problem.”

Table 2-2.  Example Encryption Using XOR Function

PlainText 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0

Key 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1

Ciphertext 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1

Chapter 2 How Blockchain Works

43

The solution is to approximate the one-time pad by using a

pseudorandom number generator (PRNG). This is a deterministic

algorithm that uses a seed value to generate a sequence of random

numbers that are not truly random; this in itself is an issue. The sender

and the receiver have to have the same seed value for this system to work.

Sharing that seed value is way better compared with sharing the entire key;

just that it has to be secured. It is susceptible to compromise by someone

who knows the algorithm as well as the seed.

�Data Encryption Standard

The Data Encryption Standard (DES) is a symmetric block cipher

technique. It uses 64-bit block size with a 64-bit key for encryption and

decryption. Out of the 64-bit key, 8 bits are reserved for parity checks and

technically 56 bits is the key length. It has been proven that it is vulnerable

to brute force attack and could be broken in less than a day. Given Moore’s

law, it could be broken a lot quicker in the future, so its usage has been

deprecated quite a bit because of the key length. It was very popular and

was being used in banking applications, ATMs, and other commercial

applications, and more so in hardware implementations than software. We

give a high-level description of the DES encryption in this section.

In symmetric cryptography, a large number of block ciphers use a design

scheme known as a “Feistel cipher” or “Feistel network.” A Feistel cipher

consists of multiple rounds to process the plaintext with the key, and every

round consists of a substitution step followed by a permutation step. The

more the number of rounds, the more secure it could be but encryption/

decryption gets slower. The DES is based on a Feistel cipher with 16 rounds.

A general sequence of steps in the DES algorithm is shown in Figure 2-4.

Chapter 2 How Blockchain Works

44

Let us first talk about the key generator and then we will get into the

encryption part.

•	 As mentioned before, the key is also 64 bits long.

Since 8 bits are used as parity bits (more precisely, bit

number 8, 16, 24, 32, 40, 48, 56, and 64), only 56 bits are

used for encryption and decryption.

•	 After parity removal, the 56-bit key is divided into

two blocks, each of 28 bits. They are then bit-wise left

shifted in every round. We know that the DES uses 16

rounds of Feistel network. Note here that every round

Figure 2-4.  DES cryptography

Chapter 2 How Blockchain Works

45

takes the previous round’s left-shifted bit block and

then again left shifts by one bit in the current round.

•	 Both the left-shifted 28-bit blocks are then combined

through a compression mechanism that outputs a

48-bit key called subkey that gets used for encryption.

Similarly, in every round, the two 28-bit blocks from the

previous round get left shifted again by one bit and then

clubbed and compressed to the 48-bit key. This key is

then fed to the encryption function of the same round.

Let us now look at how DES uses the Feistel cipher rounds for

encryption:

•	 First, the plaintext input is divided into 64 bit blocks. If the

number of bits in the message is not evenly divisible by

64, then the last block is padded to make it a 64-bit block.

•	 Every 64-bit input data block goes through an initial

permutation (IP) round. It simply permutes, i.e.,

rearranges all the 64-bit inputs in a specific pattern by

transposing the input blocks. It has no cryptographic

significance as such, and its objective is to make it

easier to load plaintext/ciphertext into DES chips in

byte-sized format.

•	 After the IP round, the 64-bit block gets divided into

two 32-bit blocks, a left block (L) and a right block (R).

In every round, the blocks are represented as Li and

Ri, where the subscript “I” denotes the round. So, the

outcomes of IP round are denoted as L0 and R0.

Chapter 2 How Blockchain Works

46

•	 Now the Feistel rounds start. The first round takes L0

and R0 as input and follows the following steps:

•	 The right side 32-bit block (R) comes as is to the left

side and the left side 32-bit block (L) goes through

an operation with the key k of that round and the

right side 32-bit block (R) as shown following:

•	 Li = Ri −1

•	 Ri = Li −1 ⊕ F(Ri −1, Ki) where “I” is the round number

•	 The F() is called the “Cipher Function” that is

actually the core part of every round. There are

multiple steps or operations that are bundled

together in this F() operation.

•	 In the first step, operation of the 32-bit R-block is

expanded and permuted to output a 48-bit block.

•	 In the second step, this 48-bit block is then

XORed with the 48-bit subkey supplied by the key

generator of the same round.

•	 In the third step, this 48-bit XORed output is fed to

the substitution box to reduce the bits back to 32

bits. The substitution operation in this S-box is the

only nonlinear operation in DES and contributes

significantly to the security of this algorithm.

•	 In the fourth step, the 32-bit output of the S-box is

fed to the permutation box (P-box), which is just a

permutation operation that outputs a 32-bit block,

which is actually the final output of F() cipher function.

•	 The output of F() is then XORed with the 32-bit L-block,

which is input to this round. This XORed output then

becomes the final R-block output of this round.

Chapter 2 How Blockchain Works

47

•	 The previously discussed Feistel round gets repeated 16

times, where the output of one round is fed as the input

to the following round.

•	 Once all the 16 rounds are over, the output of the 16th

round is again swapped such that the left becomes the

right block and vice versa.

•	 Then the two blocks are clubbed to make a 64-bit block

and passed through a permutation operation, which is

the inverse of the initial permutation function and that

results in the 64-bit ciphertext output.

•	 Refer to Figure 2-5 to understand the various

operations that take place in every round.

Figure 2-5.  Round function of DES

Chapter 2 How Blockchain Works

48

We looked at how the DES algorithm really works. The decryption also

works a similar way in the reverse order. We will not get into those details,

but leave it to you to explore.

Let us conclude with the limitations of the DES. The 56-bit key length

was susceptible to brute force attack and the S-boxes used for substitution

in each round were also prone to cryptanalysis attack because of some

inherent weaknesses. Because of these reasons, the Advanced Encryption

Standard (AES) has replaced the DES to the extent possible. Many

applications now choose AES over DES.

�Advanced Encryption Standard

Like DES, the AES algorithm is also a symmetric block cipher but is not based

on a Feistel network. The AES uses a substitution-permutation network in a

more general sense. It not only offers greater security, but also offers greater

speed! As per the AES standards, the block size is fixed at 128 bits and allows

a choice of three keys: 128 bits, 192 bits, and 256 bits. Depending on the

choice of the key, AES is named as AES-128, AES-192, and AES-256.

In AES, the number of encryption rounds depend on the key length.

For AES-128, there are ten rounds; for AES-192, there are 12 rounds; and

for AES-256, there are 14 rounds. In this section, our discussion is limited

to key length 128 (i.e., AES-128), as the process is almost the same for other

variants of AES. The only thing that changes is the “key schedule,” which

we will look into later in this section.

Unlike DES, AES encryption rounds are iterative and operate an entire

data block of 128 bits in every round. Also, unlike DES, the decryption is

not very similar to the encryption process in AES.

To understand the processing steps in every round, consider the 128-

bit block as 16 bytes where individual bytes are arranged in a 4 × 4 matrix

as shown:

Chapter 2 How Blockchain Works

49

This 4 × 4 matrix of bytes as shown is referred to as state array. Please

note that every round consumes an input state array and produces an

output state array.

The AES also uses another piece of jargon called “word” that needs

to be defined before we go further. Whereas a byte consists of eight bits, a

word consists of four bytes, that is, 32 bits. The four bytes in each column

of the state array form 32-bit words and can be called state words. The

state array can be shown as follows:

Also, every byte can be represented with two hexadecimal numbers.

Example: if the 8-bit byte is {00111010}, it could be represented as “3A” in

Hex notation. “3” represents the left four bits “0011” and “A” represents the

right four bits “1010.”

Now to generalize each round, processing in each round happens at

byte level and consists of byte-level substitution followed by word-level

permutation, hence it is a substitution-permutation network. We will get to

further details when we discuss the various operations in each round. The

overall encryption and decryption process of AES can be represented in

Figure 2-6.

Chapter 2 How Blockchain Works

50

Figure 2-6.  AES cryptography

If you paid close attention to Figure 2-6, you would have noticed

that the decryption process is not just the opposite of encryption. The

operations in the rounds are executed in a different order! All steps of the

round function—SubBytes, ShiftRows, MixColumns, AddRoundKey—are

invertible. Also, notice that the rounds are iterative in nature. Round 1

through round 9 have all four operations, and the last round excludes only

the “MixColumns” operation. Let us now build a high-level understanding

of each operation that takes place in a round function.

SubBytes: This is a substitution step. Here, each byte is represented as

two hexadecimal digits. As an example, take a byte {00111010} represented

with two hexadecimal digits, say {3A}. To find its substitution values, refer

to the S-box lookup table (16 × 16 table) to find the corresponding value

Chapter 2 How Blockchain Works

51

for 3-row and A-column. So, for {3A}, the corresponding substituted value

would be {80}. This step provides the nonlinearity in the cipher.

ShiftRows: This is the transformation step and is based upon the

matrix representation of the state array. It consists of the following shift

operations:

•	 No circular shifting of the first row, and remains as is

•	 Circularly shifting of the second row by one byte to the

left

•	 Circularly shifting of the third row by two bytes to the

left

•	 Circularly shifting of the fourth row (last row) by three

bytes to the left

It can be represented as shown:

MixColumns: It is also a transformation step where all the four

columns of the state are multiplied with a fixed polynomial (Cx) and get

transformed to new columns. In this process, each byte of a column is

mapped to a new value that is a function of all four bytes in the column.

This is achieved by the matrix multiplication of state as shown:

Chapter 2 How Blockchain Works

52

The matrix multiplication is as usual, but the AND products are

XORed. Let us see one of the examples to understand the process. Byte 0’ is

calculated as shown:

Byte 0’ = (2 . Byte0) ⊕ (3 . Byte1) ⊕ Byte3 ⊕ Byte4
It is important to note that this MixColumns step, along with the

ShiftRows step, provide the necessary diffusion property (information from

one byte gets diffused to multiple bytes) to the cipher.

AddRoundKey: This is again a transformation step where the 128-

bit round key is bitwise XORed with 128 bits of state in a column major

order. So, the operation takes place column-wise, meaning four bytes of

a word state column with one word of the round key. In the same way we

represented the 128-bit plaintext block, the 128-bit key should also be

represented in the same 4 × 4 matrix as shown here:

128-bit key

This operation affects every bit of a state. Now, recollect that there

are ten rounds, and each round has its own round key. Since there is an

“AddRoundKey” step before the rounds start, effectively there are eleven

(10 + 1) AddRoundKey operations. In one round, all 128-bits of subkey, that is,

all four words of subkey, are used to XOR with the 128-bit input data block. So,

in total, we require 44 key words, w0 through w43. This is why the 128-bit key has

to go through a key expansion operation, which we will get to in a little while.

Note here that the key word [w0, w1, w2, w3] gets XORed with the initial

input block before the round-based processing begins. The remaining 40

word-keys, w4 through w43, get used four words at a time in each of the ten

rounds.

Chapter 2 How Blockchain Works

53

AES Key Expansion: The AES key expansion algorithm takes as input

a 128-bit cipher key (four-word key) and produces a schedule of 44 key

words from it. The idea is to design this system in such a way that a one-bit

change in the key would significantly affect all the round keys.

The key expansion operation is designed such that each grouping

of a four-word key produces the next grouping of a four-word key in a

four-word to four-word basis. It is easy to explain this with a pictorial

representation, so here we go:

We will quickly run through the operations that take place for key

expansion by referring to the diagram:

•	 The initial 128-bit key is [w0, w1, w2, w3] arranged in four

words.

•	 Take a look at the expanded word now: [w4, w5, w6, w7].

Notice that w5 depends on w4 and w1. This means that

every expanded word depends on the immediately

preceding word, i.e., wi – 1 and the word that is four

positions back, i.e., wi – 4 . Test the same for w6 as

well. As you can see, just a simple XOR operation is

performed here.

Figure 2-7.  AES key expansion

Chapter 2 How Blockchain Works

54

•	 Now, what about w4? Or, any other position that is a

multiple of four, such as w8 or w12? For these words,

a more complex function denoted as “g” is used. It is

basically a three-step function. In the first step, the

input four-word block goes through circular left shift

by one byte. For example [w0, w1, w2, w3] becomes [w1,

w2, w3, w0]. In the second step, the four bytes input

word (e.g., [w1, w2, w3, w0]) is taken as input and byte

substitution is applied on each byte using S-box. Then,

in the third step, the result of step 2 is XORed with

something called round constant denoted as Rcon[

]. The round constant is a word in which the right-

most three bytes are always zero. For example, [x, 0,

0, 0]. This means that the purpose of Rcon[] is to just

perform XOR on the left-most byte of the step 2 output

key word. Also note that the Rcon[] is different for

each round. This way, the final output of the complex

function “g” is generated, which is then XORed with

wi – 4 to get wi where “I” is a multiple of 4.

•	 This is how the key expansion takes place in AES.

The output state array of the last round is rearranged back to form the

128-bit ciphertext block. Similarly, the decryption process takes place in a

different order, which we looked at in the AES process diagram. The idea

was to give you a heads-up on how this algorithm works at a high level,

and we will restrict our discussion to just the encryption process in this

section.

The AES algorithm is standardized by the NIST (National Institute

of Standards and Technology). It had the limitation of long processing

time. Assume that you are sending just a 1 megabyte file (8388608 bits)

by encrypting with AES. Using a 128-bit AES algorithm, the number of

steps required for this encryption will be 8388608/128 = 65536 on this

Chapter 2 How Blockchain Works

55

same number of data blocks! Using a parallel processing approach, AES

efficiency can be increased, but is still not very suitable when you are

dealing with large data.

�Challenges in Symmetric Key Cryptography

There are some limitations in symmetric key cryptography. A few of them

are listed as follows:

•	 The key must be shared by the sender and receiver

before any communication. It requires a secured key

establishment mechanism in place.

•	 The sender and receiver must trust each other, as they

use the same symmetric key. If a receiver is hacked by

an attacker or the receiver deliberately shared the key

with someone else, the system gets compromised.

•	 A large network of, say, n nodes require key n(n–1)/2

key pairs to be managed.

•	 It is advisable to keep changing the key for each

communication session.

•	 Often a trusted third party is needed for effective key

management, which itself is a big issue.

�Cryptographic Hash Functions
Hash functions are the mathematical functions that are the most

important cryptographic primitives and are an integral part of blockchain

data structure. They are widely used in many cryptographic protocols,

information security applications such as Digital Signatures and

message authentication codes (MACs). Since it is used in asymmetric

key cryptography, we will discuss it here prior to getting into asymmetric

Chapter 2 How Blockchain Works

56

cryptography. Please note that the concepts covered in this section may

not be in accordance with the academic text books, and a little biased

toward the blockchain ecosystem.

Cryptographic hash functions are a special class of hash functions

that are apt for cryptography, and we will limit our discussion pertaining

to it only. So, a cryptographic hash function is a one-way function that

converts input data of arbitrary length and produces a fixed-length output.

The output is usually termed “hash value” or “message digest.” It can be

represented as shown Figure 2-8.

Figure 2-8.  Hash function in its basic form

For the hash functions to serve their design purpose and be usable,

they should have the following core properties:

•	 Input can be any string of any size, but the output is of

fixed length, say, a 256-bit output or a 512-bit output as

examples.

•	 The hash value should be efficiently computable for

any given message.

•	 It is deterministic, in the sense that the same input

when provided to the same hash function produces the

same hash value every time.

•	 It is infeasible (though not impossible!) to invert and

generate the message from its hash value, except trying

for all possible messages.

Chapter 2 How Blockchain Works

57

•	 Any small change in the message should greatly

influence the output hash, just so no one can correlate

the new hash value with the old one after a small

change.

Apart from the aforementioned core properties, they should also meet

the following security properties to be considered as a cryptographic

protocol:

•	 Collision resistance: It implies that it is infeasible to

find two different inputs, say, X and Y, that hash to the

same value.

This makes the hash function H() collision resistant

because no one can find X and Y, such that H(X) =

H(Y). Note that this hash function is a compression

function, as it compresses a given input to fixed sized

output that is shorter than the input. So, the input space

is too large (anything of any size) compared with the

output space, which is fixed. If the output is a 256-bit

hash value, then the output space can have a maximum

of 2256 values, and not beyond that. This implies that a

collision must exist. However, it is extremely difficult

to find that collision. As per the theory of “the birthday

paradox,” we can infer that it should be possible to find

a collision by using the square root of the output space.

So, by taking 2128 + 1 inputs, it is highly likely to find

a collision; but that is an extremely huge number to

compute, which is quite infeasible!

Chapter 2 How Blockchain Works

58

Let us now discuss where this property could be useful.

In the majority of online storage, cloud file storage,

blob storage, App Stores, etc., the property “collision

resistance” is widely used to ensure the integrity of

the files. Example: someone computes the message

digest of a file and uploads to cloud storage. Later

when they download the file, they could just compute

the message digest again and cross-check with the old

one they have. This way, it can be ensured if the file

was corrupted because of some transmission issues

or possibly due to some deliberate attempts. It is due

to the property of collision resistance that no one can

come up with a different file or a modified file that

would hash to the same value as that of the original file.

•	 Preimage resistance: This property means that it is

computationally impossible to invert a hash function;

i.e., finding the input X from the output H(X) is

infeasible. Therefore, this property can also be called

“hiding” property. Pay close attention here; there is

another subtle aspect to this situation. Note that when

X can be anything in the world, this property is easily

achieved. However, if there are just a limited number

of values that X can take, and that is known to the

adversary, they can easily compute all possible values

of X and find which one hashes to the outcome.

Example: A laboratory decided to prepare the message

digests for the successful outcome of an experiment

so that any adversary who gets access to the results

database cannot make any sense of it because what

is stored in the system are hashed outputs. Assume

that there can only be three possible outcomes of the

Chapter 2 How Blockchain Works

59

experiment such as OP111, OP112, and OP113, out

of which only one is successful, say, OP112. So, the

laboratory decides to hash it, compute H(OP112),

and store the hashed values in the system. Though

an adversary cannot find OP112 from H(OP112),

they can simply hash all the possible outcomes of the

experiment, i.e., H(OP111), H(OP112), and H(OP113)

and see that only H(OP112) is matching with what

is stored in the system. Such a situation is certainly

vulnerable! This means that, when the input to a

hash function comes from a limited space and does

not come from a spread-out distribution, it is weak.

However, there is a solution to it as follows:

Let us take an input, say “X” that is not very spread

out, just like the outcomes of the experiment we

just discussed with a few possible values. If we can

concatenate that with another random input, say “r,”

that comes from a probability distribution with high

min entropy, then it will be difficult to find X from H(r ||

X). Here, high min entropy means that the distribution

is very spread out and there is no particular value that

is likely to occur. Assume that “r” was chosen from 256-

bit distribution. For an adversary to get the exact value

of “r” that was used along with input, there is a success

probability of 1/2256, which is almost impossible to

achieve. The only way is to consider all the possible

values of this distribution one by one—which is again

practically impossible. The value “r” is also referred

to as “nonce.” In cryptography, a nonce is a random

number that can be used only once.

Chapter 2 How Blockchain Works

60

Let us now discuss where this property of preimage

resistance could be useful. It is very useful in

committing to a value, so “commitment” is the use case

here. This can be better explained with an example.

Assume that you have participated in some sort of

betting or gambling event. Say you have to commit to

your option, and declare it as well. However, no one

should be able to figure out what you are betting on,

and you yourself cannot deny later on what you bet

on. So, you leverage the preimage resistance property

of Hash Function. You take a hash of the choice you

are betting on, and declare it publicly. No one can

invert the hash function and figure out what you are

betting on. Also, you cannot later say that your choice

was different, because if you hash a different choice,

it will not match what you have declared publicly. It is

advisable to use a nonce “r” the way we explained in

the previous paragraph to design such systems.

•	 Second preimage resistance: This property is slightly

different from “collision resistant.” It implies that given

an input X and its hash H(X), it is infeasible to find Y,

such that H(X) = H(Y). Unlike in collision-resistant

property, here the discussion is for a given X, which is

fixed. This implies that if a hash function is collision

resistant already, then it is second preimage resistant

also.

There is another derived property from the properties mentioned that

is quite useful in Bitcoin. Let us look into it from a technical point of view

and learn how Bitcoin leverages it for mining when we hit Chapter 3. The

name of this property is “puzzle friendliness.” This name implies that there

is no shortcut to the solution and the only way to get to the solution is to

Chapter 2 How Blockchain Works

61

traverse through all the possible options in the input space. We will not try

to define it here but will directly try to understand what it really means.

Let us consider this example: H(r || X) = Z, where “r” is chosen from a

distribution with high min entropy, “X” is the input concatenated with “r,”

and “Z” is the hashed output value. The property means that it is way too

hard for an adversary to find a value “Y” that exactly hashes to “Z.” That is,

H(ŕ || Y) = Z, where ŕ is a part of the input chosen in the same randomized

way as “r.” What this means is that, when a part of the input is substantially

randomized, it is hard to break the hash function with a quick solution; the

only way is to test with all possible random values.

In the previous example, if “Z” is an n-bits output, then it has taken just

one value out of 2n possible values. Note carefully that a part of your input,

say “r,” is from a high min-entropy distribution, which has to be appended

with your input X. Now comes the interesting part of designing a search

puzzle. Let’s say Z is an n-bits output and is a set of 2n possible values,

not just an exact value. You are asked to find a value of r such that when

hashed appended with X, it falls within that output set of 2n values; then it

forms a search puzzle. The idea is to find all possible values of r till it falls

withing the range of Z. Note here that the size of Z has limited the output

space to a smaller set of 2n possible values. The smaller the output space,

the harder is the problem. Obviously, if the range is big, it is easier to find

a value in it and if the range is quite narrow with just a few possibilities,

then finding a value within that range is tough. This is the beauty of the “r,”

called the “nonce” in the input to hash function. Whatever random value

of r you take, it will be concatenated with “X” and will go through the same

hash function, again and again, till you get the right nonce value “r” that

satisfies the required range for Z, and there are absolutely no shortcuts to it

except for trying all possible values!

Note that for an n-bit hash value output, an average effort of 2n is

needed to break preimage and second preimage resistance, and 2n/2 for

collision resistance.

Chapter 2 How Blockchain Works

62

We discussed various fundamental and security properties of hash

functions. In the following sections we will see some important hash

functions and dive deeper as applicable.

�A Heads-up on Different Hash Functions

One of the oldest hash functions or compression function is the MD4

hash function. It belongs to the message digest (MD) family. Other

members of the MD family are MD5 and MD6, and there are many other

variants of MD4 such as RIPEMD. The MD family of algorithms produce

a 128-bit message digest by consuming 512-bit blocks. They were widely

used as checksums to verify data integrity. Many file servers or software

repositories used to provide a precomputed MD5 checksum, which the

users could check against the file they downloaded. However, there were a

lot of vulnerabilities found in the MD family and it was deprecated.

Another such hash function family is the Secure Hash Algorithm

(SHA) family. There are basically four algorithms in this family, such as

SHA-0, SHA-1, SHA-2, and SHA-3. The first algorithm proposed in this

family was named SHA, but newer versions were coming with security

fixes and updates, so a retronym was applied to it and it was made SHA-

0. It was found to have a serious yet undisclosed security flaw and was

discontinued. Later, SHA-1 was proposed as a replacement to SHA-0.

SHA-1 had an extra computational step that addressed the problem in

SHA-0. Both SHA-0 and SHA-1 were 160-bit hash functions that consumed

512-bit block sizes. SHA-1 was designed by the National Security Agency

(NSA) to use it in the digital signature algorithm (DSA). It was used quite

a lot in many security tools and Internet protocols such as SSL, SSH, TSL,

etc. It was also used in version control systems such as Mercurial, Git, etc.

for consistency checks, and not really for security. Later, around 2005,

cryptographic weaknesses were found in it and it was deprecated after

the year 2010. We will get into SHA-2 and SHA-3 in detail in the following

sections.

Chapter 2 How Blockchain Works

63

�SHA-2

It belongs to the SHA family of hash functions, but itself is a family of hash

functions. It has many SHA variants such as SHA-224, SHA-256, SHA-384,

SHA-512, SHA-512/224, and SHA-512/256. SHA-256 and SHA-512 are the

primitive hash functions and the other variants are derived from them.

The SHA-2 family of hash functions are widely used in applications such as

SSL, SSH, TSL, PGP, MIME, etc.

SHA-224 is a truncated version of SHA-256 with a different initial

value or initialization vector (IV). Note that the SHA variants with different

truncations applied can produce the same bit length hash outputs, hence

different initialization vectors are applied in different SHA variants to be

able to properly differentiate them. Now coming back to the SHA-224

computation, it is a two-step process. First, SHA-256 value is computed

with a different IV compared with the default one used in SHA-256.

Second, the resulting 256-bit hash value is truncated to 224-bit; usually the

224 bits from left are kept, but the choice is all yours.

SHA-384 is a truncated version of SHA-512, just the way SHA-224 is a

truncated version of SHA-256. Similarly, both 512/224 and SHA-512/256

are truncated versions of SHA-512. Are you wondering why this concept

of “truncation” exists? Note that truncation is not just limited to the ones

we just mentioned, and there can be various other variants as well. The

primary reasons for truncation could be as follows:

•	 Some applications require a message digest with a

certain length that is different from the default ones.

•	 Irrespective of the SHA-2 variant we are using, we can

select a truncation level depending on what security

property we want to sustain. Example: Considering

today’s state of computing power, when collision

resistance is necessary, we should keep at least 160

bits and when only preimage-resistance is necessary,

Chapter 2 How Blockchain Works

64

we should keep at least 80 bits. The security property

such as collision resistance decreases with truncation,

but it should be chosen such that it would be

computationally infeasible to find a collision.

•	 Truncation also helps maintain the backward

compatibility with older applications. Example: SHA-

224 provides 112-bit security that can match the key

length of triple-DES (3DES).

Talking about efficiency, SHA-256 is based on a 32-bit word and SHA-

512 is based on a 64-bit word. So, on a 64-bit architecture, SHA-512 and all

its truncated variants can be computed faster with a better level of security

compared with SHA-1 or other SHA-256 variants.

Table 2-3 is a tabular representation taken from the NIST paper that

represents SHA-1 and different SHA-2 algorithms properties in a nutshell.

Table 2-3.  SHA-1 & SHA-2 Hash Function in a Nutshell

As a rule of thumb, it is advisable not to truncate when not necessary.

Certain hash functions tolerate truncation and some don’t, and it also

depends on how you are using it and in what context.

Chapter 2 How Blockchain Works

65

�SHA-256 and SHA-512

As mentioned already, SHA-256 belongs to the SHA-2 family of hash

functions, and this is the one used in Bitcoins! As the name suggests, it

produces a 256-bit hash value, hence the name. So, it can provide 2128-bit

security as per the birthday paradox.

Recall that the hash functions take arbitrary length input and produce

a fixed size output. The arbitrary length input is not fed as is to the

compression function and is broken into fixed length blocks before it is fed

to the compression function. This means that a construction method is

needed that can iterate through the compression function by constructing

fixed-sized input blocks from arbitrary length input data and produce

a fixed length output. There are various types of construction methods

such as Merkle-Damgård construction, tree construction, and sponge

construction. It is proven that if the underlying compression function is

collision resistant, then the overall hash function with any construction

method should also be collision resistant.

The construction method that SHA-256 uses is the Merkle-Damgård

construction, so let us see how it works in Figure 2-9.

Figure 2-9.  Merkle-Damgård construction for SHA-256

Chapter 2 How Blockchain Works

66

Referring to the diagram, the following steps (presented at a high level)

are executed in the order specified to compute the final hash value:

•	 As you can see in the diagram, the message is first

divided into 512-bit blocks. When the message is not

an exact multiple of 512 bits (which is usually the case),

the last block falls short of bits, hence it is padded to

make it 512 bits.

•	 The 512-bit blocks are further divided into 16 blocks of

32-bit words (16 × 32 = 512).

•	 Each block goes through 64 rounds of round function

where each 32-bit word goes through a series of

operations. The round functions are a combination of

some common functions such as XOR, AND, OR, NOT,

Bit-wise Left/Right Shift, etc. and we will not get into

those details in this book.

Similar to SHA-256, the steps and the operations are quite similar in

SHA-512, as SHA-512 also uses Merkle-Damgård construction. The major

difference is that there are 80 rounds of round functions in SHA-512 and

the word length is 64 bits. The block size in SHA-512 is 1024 bits, which

gets further divided into 16 blocks of 64-bit words The output message

digest is 512 bits in length, that is, eight blocks of 64-bit words. While SHA-

512 was gaining momentum, and started being used in many applications,

a few people turned to the SHA-3 algorithm to be future ready. SHA-3 is

just a different approach to hashing and not a real replacement to SHA-256

or SHA-512, though it allows tuning. We will learn a few more details about

SHA-3 in the following sections.

Chapter 2 How Blockchain Works

67

�RIPEMD

RACE Integrity Primitives Evaluation Message Digest (RIPEMD) hash

function is a variant of the MD4 hash function with almost the same design

considerations. Since it is used in Bitcoins, we will have a brief discussion

on it.

The original RIPEMD was of 128 bits, later RIPEMD-160 was

developed. There exist 128-, 256-, and 320-bit versions of this algorithm,

called RIPEMD-128, RIPEMD-256, and RIPEMD-320, respectively,

but we will limit our discussion to the most popular and widely used

RIPEMD-160.

RIPEMD-160 is a cryptographic hash function whose compression

function is based on the Merkle–Damgård construction. The input is

broken into 512-bit blocks and padding is applied when the input bits are

not a multiple of 512. The 160-bit hash value output is usually represented

as 40-digit hexadecimal numbers.

The compression function is made up of 80 stages, made up of two

parallel lines of five rounds of 16 steps each (5 × 16 = 80). The compression

function works on sixteen 32-bit words (512-bit blocks).

Note  Bitcoin uses both SHA-256 and RIPEMD-160 hashes together
for address generation. RIPEMD-160 is used to further shorten the
hash value output of SHA-256 to 160 bits.

�SHA-3

In 2015, the Keccak (pronounced as “ket-chak”) algorithm was

standardized by the NIST as the SHA-3. Note that the purpose was not

really to replace the SHA-2 standard, but to complement and coexist with

it, though one can choose SHA-3 over SHA-2 in some situations.

Chapter 2 How Blockchain Works

68

Since both SHA-1 and SHA-2 were based on Merkle-Damgård

construction, a different approach to hash function was desirable. So,

not using Merkle-Damgård construction was one of the criteria set by

the NIST. This was because the new design should not suffer from the

limitations of Merkle-Damgård construction such as multicollision.

Keccak, which became SHA-3, used a different construction method called

sponge construction.

In order to make it backward compatible, it was required that SHA-

3 should be able to produce variable length outputs such as 224, 256,

384, and 512 bits and also other arbitrary length outputs. This way SHA-

3 became a family of cryptographic hash functions such as SHA3-224,

SHA3-256, SHA3-384, SHA3 -512, and two extendable-output functions

(XOFs), called SHAKE128 and SHAKE256. Also, SHA-3 had to have a

tunable parameter (capacity) to allow a tradeoff between security and

performance. Since SHAKE128 and SHAKE256 are XOFs, their output can

be extended to any desired length, hence the name.

The following diagram (Figure 2-10) shows how SHA-3 (Keccak

algorithm) is designed at a high level.

Figure 2-10.  Sponge construction for SHA-3

Chapter 2 How Blockchain Works

69

A series of steps that take place for SHA-3 are as follows:

•	 As you can see in Figure 2-10, the message is first

divided into blocks (xi) of size r bits. If the input data is

not a multiple of r bits, then padding is required. If you

are wondering about this r, do not worry, we will get to

it in a little while. Now, let us focus on how this padding

happens. For a message block xi which is not a multiple

of r and has some message m in it, padding happens as

shown in the following:

xi = m || P 1 {0}* 1

“P” is a predetermined bit string followed by 1 {0}* 1,

which means a leading and trailing 1 and some number

of zeros (could be no zero bits also) that can make xi a

multiple of r. Table 2-4 shows the various values of P.

Table 2-4.  Padding in SHA-3 variants

•	 As you can see in Figure 2-10, there are broadly two

phases to SHA-3 sponge construction: the first one is

the “Absorbing” phase for input, and the second one

is the “Squeezing” phase for output. In the Absorbing

phase, the message blocks (xi) go through various

operations of the algorithm and in the Squeezing

Chapter 2 How Blockchain Works

70

phase, the output of configurable length is computed.

Notice that for both of these phases, the same function

called “Kecaak-f” is used.

•	 For the computation of SHA3-224, SHA3-256, SHA3-

384, SHA3 -512, which is effectively a replacement of

SHA-2, only the first bits of the first output block y0 are

used with required level of truncation.

•	 The SHA-3 is designed to be tunable for its security

strength, input, and output sizes with the help of tuning

parameters.

•	 As you can see in the diagram, “b” represents the width

of the state and requires that r + c = b. Also, “b” depends

on the exponent “ℓ” such that b = 25 × 2ℓ

•	 Since “ℓ” can take on values between 0 and 6, “b”can

have widths {25, 50, 100, 200, 400, 800 and 1600}. It is

advisable not to use the smallest two values of “b” in

practice as they are just there to analyze and perform

cryptanalysis on the algorithm.

•	 In the equation r + c = b, the “r” that we see is what

we used to preprocess the message and divided into

blocks of length “r.” This is called the “bit rate.” Also, the

parameter “c” is called the capacity that just has to satisfy

the condition r + c = b ∈ {25, 50, 100, 200, 400, 800, 1600}

and get computed. This way “r” and “c” are used as tuning

parameters to trade off between security and performance.

•	 For SHA-3, the exponent value ℓ is fixed to be “6,” so the

value of b is 1600 bits. For this given b = 1600, two

bit-rate values are permissible: r = 1344 and r = 1088.

This leads to two distinct values of “c.” So, for r = 1344,

c = 256 and for r = 1088, c = 512.

Chapter 2 How Blockchain Works

71

•	 Let us now look at the core engine of this algorithm, i.e.

Keccak-f, which is also called “Keccak-f Permutation.”

There are “n” rounds in each Keccak-f, where “n” is

computed as: n = 12 + 2ℓ. Since the value of ℓ is 6 for

SHA-3, there will be 24 rounds in each Keccak-f. Every

round takes “b” bits (r + c) input and produces the

same number of “b” bits as output.

•	 In each round, the input “b” is called a state. This state

array “b” can be represented as a three-dimensional

(3-D) array b = (5 x 5 × w), where word size w = 2ℓ. So,

w = 64 bits, which means 5 × 5 = 25 words of 64 bits

each. Recall that ℓ = 6 for SHA-3, so b = 5 × 5 x 64 = 1600.

The 3-D array can be shown as in Figure 2-11.

Figure 2-11.  State array representationin SHA-3

Chapter 2 How Blockchain Works

72

•	 Without getting into much detail into each of the five

steps, let us quickly learn what they do at a high level:

•	 Theta (θ) step: It performs the XOR operation to

provide minor diffusion.

•	 Rho (ρ) step: It performs bitwise rotation of each of

the 25 words.

•	 Pi (π) step: It performs permutation of each of the

25 words.

•	 Chi (χ) step: In this step, bits are replaced by

combining those with their two subsequent bits in

their rows.

•	 Iota (ι) step: It XORs a round constant into one

word of the state to break the symmetry.

•	 The last round of Keccak-f produces the y0 output,

which is enough for SHA-2 replacement mode, i.e., the

output with 224, 256, 384, and 512 bits. Note that the

least significant bits of y0 are used for the desired length

output. In case of variable length output, along with y0,

other output bits of y1, y2, y3… can also be used.

•	 Each round consists of a sequence of five steps and the

state array gets manipulated in each of those steps as

shown in Figure 2-12.

Figure 2-12.  The five steps in each SHA-3 round

Chapter 2 How Blockchain Works

73

When it comes to the real-life implementation of SHA-3, it is found that

its performance is good in software (though not as good as SHA-2) and is

excellent in hardware (better than SHA-2).

�Applications of Hash Functions

The cryptographic hash functions have many different usages in different

situations. Following are a few example use cases:

•	 Hash functions are used in verifying the integrity and

authenticity of information.

•	 Hash functions can also be used to index data in hash

tables. This can speed up the process of searching.

Instead of the whole data, if we search based on

the hashes (assuming the much shorter hash value

compared with the whole data), then it should

obviously be faster.

•	 They can be used to securely authenticate the users

without storing the passwords locally. Imagine a

situation where you do not want to store passwords on

the server, obviously because if an adversary hacks on

to the server, they cannot get the password from their

stored hashes. Every time a user tries to log in, hash of

the punched in password is calculated and matched

against the stored hash. Secured, isn’t it?

•	 Since hash functions are one-way functions, they can

be used to implement PRNG.

•	 Bitcoin uses hash functions as a proof of work (PoW)

algorithm. We will get into the details of it when we hit

the Bitcoin chapter.

Chapter 2 How Blockchain Works

74

•	 Bitcoin also uses hash functions to generate addresses

to improve security and privacy.

•	 The two most important applications are digital

signatures and in MACs such as hash-based message

authentication codes (HMACs).

Understanding the working and the properties of the hash functions,

there can be various other use cases where hash functions can be used.

Note T he Internet Engineering Task Force (IETF) adopted version
3.0 of the SSL (SSLv3) protocol in 1999, renamed it to Transport
Layer Security (TLS) version 1.0 (TLSv1) protocol and defined it in
RFC 2246. SSLv3 and TLSv1 are compatible as far as the basic
operations are concerned.

�Code Examples of Hash Functions

Following are some code examples of different hash functions. This section

is just intended to give you a heads-up on how to use the hash functions

programatically. Code examples are in Python but would be quite similar in

different languages; you just have to find the right library functions to use.

-*- coding: utf-8 -*-

import hashlib

hashlib module is a popular module to do hashing in python

#Constructors of md5(), sha1(), sha224(), sha256(), sha384(),

and sha512() present in hashlib

md=hashlib.md5()

md.update("The quick brown fox jumps over the lazy dog")

print md.digest()

Chapter 2 How Blockchain Works

75

print "Digest Size:", md.digest_size, "\n", "Block Size: ",

md.block_size

Comparing digest of SHA224, SHA256,SHA384,SHA512

print "Digest SHA224", hashlib.sha224("The quick brown fox

jumps over the lazy dog").hexdigest()

print "Digest SHA256", hashlib.sha256("The quick brown fox

jumps over the lazy dog").hexdigest()

print "Digest SHA384", hashlib.sha384("The quick brown fox

jumps over the lazy dog").hexdigest()

print "Digest SHA512", hashlib.sha512("The quick brown fox

jumps over the lazy dog").hexdigest()

All hashoutputs are unique

RIPEMD160 160 bit hashing example

h = hashlib.new('ripemd160')

h.update("The quick brown fox jumps over the lazy dog")

h.hexdigest()

#Key derivation Alogithm:

#Native hashing algorithms are not resistant against brutefore

attack.

#Key deviation algorithms are used for securing password

hashing.

import hashlib, binascii

algorithm='sha256'

password='HomeWifi'

salt='salt' # salt is random data that can be used as an

additional input to a one-way function

nu_rounds=1000

key_length=64 #dklen is the length of the derived key

dk = hashlib.pbkdf2_hmac(algorithm,password, salt, nu_rounds,

dklen=key_length)

Chapter 2 How Blockchain Works

76

print 'derieved key: ',dk

print 'derieved key in hexadeximal :', binascii.hexlify(dk)

Check properties for hash

import hashlib

input = "Sample Input Text"

for i in xrange(20):

 # add the iterator to the end of the text

 input_text = input + str(i)

 # show the input and hash result

 �print input_text, ':', hashlib.sha256(input_text).

hexdigest()

�MAC and HMAC
HMAC is a type of MAC (message authentication code). As the name

suggests, a MAC’s purpose is to provide message authentication using

Symmetric Key and message integrity using hash functions. So, the sender

sends the MAC along with the message for the receiver to verify and trust

it. The receiver already has the key K (as symmetric key cryptography is

being used, so both sender and receiver have agreed on it already); they

just use it to compute the MAC of the message and check it against the

MAC that was sent along with the message.

In its simplest form, MAC = H(key || message). HMAC is actually a

technique to turn the hash functions into MACs. In HMAC, the hash

functions can be applied multiple times along with the key and its derived

keys. HMACs are widely used in RFID-based systems, TLS, etc. In SSL/TLS

(HTTPS is TTP within SSL/TLS), HMAC is used to allow client and server

to verify and ensure that the exchanged data has not been altered during

transmission. Let us take a look at a few of the important MAC strategies

that are widely used:

Chapter 2 How Blockchain Works

77

•	 MAC-then-Encrypt: This technique requires the

computation of MAC on the cleartext, appending it to

the data, and then encrypting all of that together. This

scheme does not provide integrity of the ciphertext.

At the receiving end, the message decryption has to

happen first to be able to check the integrity of the

message. It ensures the integrity of the plaintext,

however. TLS uses this scheme of MAC to ensure that

the client-server communication session is secured.

•	 Encrypt-and-MAC: This technique requires the

encryption and MAC computation of the message

or the cleartext, and then appending the MAC at the

end of the encrypted message or ciphertext. Notice

that MAC is computed on the cleartext, so integrity of

the cleartext can be assured but not of the ciphertext,

which leaves scope for some attacks. Unlike the

previous scheme, integrity of the cleartext can be

verified. SSH (Secure Shell)uses this MAC scheme.

•	 Encrypt-then-MAC: This technique requires that the

cleartext needs to be encrypted first, and then compute

the MAC on the ciphertext. This MAC of the ciphertext

is then appended to the ciphertext itself. This scheme

ensures integrity of the ciphertext, so it is possible

to first check the integrity and if valid then decrypt

it. It easily filters out the invalid ciphertexts, which

makes it efficient in many cases. Also, since MAC is in

ciphertext, in no way does it reveal information about

the plaintext. It is usually the most ideal of all schemes

and has wider implementations. It is used in IPsec.

Chapter 2 How Blockchain Works

78

�Asymmetric Key Cryptography
Asymmetric key cryptography, also known as “public key cryptography,”

is a revolutionary concept introduced by Diffie and Hellman. With this

technique, they solved the problem of key distribution in a symmetric

cryptography system by introducing digital signatures. Note that

asymmetric key cryptography does not eliminate the need for symmetric

key cryptography. They usually complement each other; the advantages of

one can compensate for the disadvantages of the other.

Let us see a practical scenario to understand how such a system would

work. Assume that Alice wants to send a message to Bob confidentially so

that no one other than Bob can make sense of the message, then it would

require the following steps:

Alice—The Sender:

•	 Encrypt the plaintext message m using encryption

algorithm E and the public key PukBob to prepare the

ciphertext c.

•	 c = E(PukBob, m)

•	 Send the ciphertext c to Bob.

Bob—The Receiver:

•	 Decrypt the ciphertext c using decryption algorithm D

and its private key PrkBob to get the original plaintext m.

•	 m = D(PrkBob, c)

Such a system can be represented as shown in Figure 2-13.

Chapter 2 How Blockchain Works

79

Notice that the public key should be kept in a public repository

accessible to everyone and the private key should be kept as a well-

guarded secret. Public key cryptography also provides a way of

authentication. The receiver, Bob, can verify the authenticity of the origin

of the message m in the same way.

Figure 2-13.  Asymmetric cryptography for confidentiality

Figure 2-14.  Asymmetric cryptography for authentication

Chapter 2 How Blockchain Works

80

In the example in Figure 2-14, the message was prepared using Alice’s

private key, so it could be ensured that it only came from Alice. So, the

entire message served as a digital signature. Note that both confidentiality

and authentication are desirable. To facilitate this, public key encryption

has to be used twice. The message should first be encrypted with the

sender’s private key to provide a digital signature. Then it should be

encrypted with the receiver’s public key to provide confidentiality. It can

be represented as:

•	 c = E[PukBob, E(PrkAlice, m)]

•	 m = D[PukAlice, D(PrkBob, c)]

As you can see, the decryption happens in just its reverse order.

Notice that the public key cryptography is used four times here: twice for

encryption and twice for decryption. It is also possible that the sender may

sign the message by applying the private key to just a small block of data

derived from the message to be sent, and not to the whole message. In the

real world, App stores such as Google Play or Apple App Store require that

the software apps should be digitally signed before they get published.

We looked at the uses of the two keys in asymmetric cryptography,

which can be summarized as follows:

•	 Public keys are known and accessible to everyone.

They can be used to encrypt the message or to verify

the signatures.

•	 Private keys are extremely private to individuals. They

are used to decrypt the message or to create signatures.

In asymmetric or public key cryptography, there is no key distribution

problem, as exchanging the agreed upon key is no longer needed.

However, there is a significant challenge with this approach. How would

one ensure that the public key they are using to encrypt the message is

really the public key of the intended recipient and not of an intruder or

eavesdropper? To solve this, the notion of a trusted third party called public

Chapter 2 How Blockchain Works

81

key infrastructure (PKI) is introduced. Through PKIs, the authenticity of

public keys is assured by the process of attestation or notarization of user

identity. The way PKIs operate is that they provide verified public keys by

embedding them in a security certificate by digitally signing them.

The public key encryption scheme can also be called one-way function

or a trapdoor function. This is because encrypting a plaintext using the

public key “Puk” is easy, but the other direction is practically impossible.

No one really can deduce the original plaintext from the encrypted

ciphertext without knowing the secret or private key “Prk,” which is

actually the trapdoor information. Also, in the context of just the keys, they

are mathematically related but it is computationally not feasible to find

one from the other.

We discussed the important objectives of public key cryptography

such as key establishment, authentication and non-repudiation through

digital signatures, and confidentiality through encryption. However,

not all public key cryptography algorithms may provide all these three

characteristics. Also, the algorithms are different in terms of their

underlying computational problem and are classified accordingly. Certain

algorithms such as RSA are based on integer factorization scheme because

it is difficult to factor large numbers. Certain algorithms are based on

the discrete logarithm problems in finite fields such as Diffie–Hellman

key exchange (DH) and DSA. A generalized version of discrete logarithm

problems is elliptic curve (EC) public key schemes. The Elliptic Curve

Digital Signature Algorithm (ECDSA) is an example of it. We will cover

most of these algorithms in the following section.

�RSA

RSA algorithm, named after Ron Rivest, Adi Shamir, and Leonard Adleman

is possibly one of the most widely used cryptographic algorithms. It is

based on the practical difficulty of factoring very large numbers. In RSA,

plaintext and ciphertext are integers between 0 and n − 1 for some n.

Chapter 2 How Blockchain Works

82

We will discuss the RSA scheme from two aspects. First is generation

of key pairs and second, how the encryption and decryption works. Since

modular arithmetic provides the mechanism for key generation, let us

quickly look at it.

Modular Arithmetic

Let m be a positive integer called modulus. Two integers a and b are

congruent modulo m if:

a ≡ b (mod m), which implies a − b = m . k for some integer k.

Example: if a ≡ 16 (mod 10) then a can have the following solutions:

a = . . ., −24, − 14, −4, 6, 16, 26, 36, 46

Any of these numbers subtracted by 16 is divisible by 10. For example,

−24 −16 = −40, which is divisible by 10. Note that a ≡ 36 (mod 10) can also

have the same solutions of a.

As per the Quotient-Remainder theorem, only a unique solution of “a”

exists that satisfies the condition: 0 ≤ a < m. In the example a ≡ 16 (mod 10),

only the value 6 satisfies the condition 0 ≤ 6 < 10. This is what will be used

in the encryption/decryption process of RSA algorithm.

Let us now look at the Inverse Midulus. If b is an inverse to a modulo m,

then it can be represented as:

a b ≡ 1 (mod m), which implies that a b − 1 = m . k for some integer k.

Example: 3 has inverse 7 modulo 10 since

3 · 7 = 1 (mod 10) => 21 − 1 = 20, which is divisible by 10.

Generation of Key Pairs

As discussed already, a key pair of private and public keys is needed for

any party to participate in asymmetric crypto-communication. In the RSA

scheme, the public key consists of (e, n) where n is called the modulus and

e is called the public exponent. Similarly, the private key consists of (d, n),

where n is the same modulus and d is the private exponent.

Chapter 2 How Blockchain Works

83

Let us see how these keys get generated along with an example:

•	 Generate a pair of two large prime numbers p and q.

Let us take two small prime numbers as an example

here for the sake of easy understanding. So, let the two

primes be p = 7 and q = 17.

•	 Compute the RSA modulus (n) as n = pq. This n should

be a large number, typically a minimum of 512 bits. In

our example, the modulus (n) = pq = 119.

•	 Find a public exponent e such that 1 < e < (p − 1) (q − 1)

and there must be no common factor for e and (p − 1)

(q − 1) except 1. It implies that e and (p − 1) (q − 1) are

coprime. Note that there can be multiple values that

satisfy this condition and can be taken as e, but any one

should be taken.

•	 In our example, (p − 1) (q − 1) = 6 × 16 = 96. So, e can be

relatively prime to and less than 96. Let us take e to be 5.

•	 Now the pair of numbers (e, n) form the public key and

should be made public. So, in our example, the public

key is (5, 119).

•	 Calculate the private exponent d using p, q, and e

considering the number d is the inverse of e modulo

(p − 1) (q − 1). This implies that d when multiplied by

e is equal to 1 modulo (p − 1) (q − 1) and d < (p − 1) (q − 1).

It can be represented as:

e d = 1 mod (p − 1) (q − 1)

•	 Note that this multiplicative inverse is the link between

the private key and the public key. Though the keys are

not derived from each other, there is a relation between

them.

Chapter 2 How Blockchain Works

84

•	 In our example, we have to find d such that the above

equation is satisfied. Which means, 5 d = 1 mod 96 and

also d < 96.

•	 Solving for multiple values of d (can be calculated using

the extended version of Euclid’s algorithm), we can see

that d = 77 satisfies our condition. See the math:

77 × 5 = 385 and 385 − 1 = 384 is divisible by 96 because

4 × 96 + 1 = 385

•	 We can conclude that the in our example, the private

key will be (77, 119).

•	 Now you have got your key pairs!

Encryption/Decryption Using Key Pair

Once the keys are generated, the process of encryption and decryption are

fairly simple. The math behind them is as follows:

Encrypting the plaintext message m to get the ciphertext message c is

as follows:

c = m . e (mod n) given the public key (e, n) and the plaintext

message m.

Decrypting the ciphertext message c to get the plaintext message m is

as follows:

m = c . d (mod n) given the private key (d, n) and the ciphertext c.

Note that RSA scheme is a block cipher where the input is divided

into small blocks that the RSA algorithm can consume. Also, the plaintext

and the ciphertext are all integers from 0 to n − 1 for some integer n that

is known to both sender and receiver. This means that the input plaintext

is represented as integer, and when that goes through RSA and becomes

ciphertext, they are again integers but not the same ones as input; we

encrypted them remember? Now, considering the same key pairs from the

Chapter 2 How Blockchain Works

85

previous example, let us go through the steps to understand how it works

practically:

•	 The sender wants to send a text message to the receiver

whose public key is known and is say (e, n).

•	 The sender breaks the text message into blocks that can

be represented as a series of numbers less than n.

•	 The ciphertext equivalents of plaintext can be found

using c = m e (mod n). If the plaintext (m) is 19 and the

public key is (5, 119) with e = 5 and n = 119, then the

ciphertext c will be 195(mod 119) = 2, 476, 099

(mod 119) = 66, which is the remainder and 20,807 is

the quotient, which we do not use. So, c = 66

•	 When the ciphertext 66 is received at the receiver’s end,

it needs to be decrypted to get the plaintext using m = c
d (mod n).

•	 The receiver already has the private key (d, n) with

d = 77 and n = 119, and received the ciphertext c = 66

by the sender. So, the receiver can easily retrieve the

plaintext using these values as m = 6,677(mod 119) = 19

•	 For the modular arithmetic calculations, there are

many online calculators that you can play around with,

such as: http://comnuan.com/cmnn02/cmnn02008/

We looked at the math behind RSA algorithm. Now we know that n

(supposed to be a very large number) is publicly available. Though it is

public, factoring this large number to get the prime numbers p and q is

extremely difficult. The RSA scheme is based on this practical difficulty

of factoring large numbers. If p and q are not large enough, or the public

key e is small, then the strength of RSA goes down. Currently, RSA keys are

typically between 1024 and 2048 bits long. Note that the computational

overhead of the RSA cryptography increases with the size of the keys.

Chapter 2 How Blockchain Works

http://comnuan.com/cmnn02/cmnn02008/

86

In situations where the amount of data is huge, it is advisable to use a

symmetric encryption technique and share the key using an asymmetric

encryption technique such as RSA. Also, we looked at one of the aspects

of RSA, that is, for encryption and decryption. However, it can also be

used for authentication through digital signature. Just to give a high-level

idea, one can take the hash of the data, sign it using their own private key,

and share it along with the data. The receiver can check with the sender’s

public key and ensure that it was the sender who sent the data, and not

someone else. This way, in addition to secure key transport, the public key

encryption method RSA also offers authentication using a digital signature.

Note here that a different algorithm called digital signature algorithm

(DSA) can also be used in such situations that we will learn about in the

following section.

RSA is widely being used with HTTPS on web browsers, emails,

VPNs, and satellite TV. Also, many commercial applications or the apps

in app stores are also digitally signed using RSA. SSH also uses public key

cryptography; when you connect to an SSH server, it broadcasts a public

key that can be used to encrypt data to be sent to that server. The server

can then decrypt the data using its private key.

�Digital Signature Algorithm

The DSA was designed by the NSA as part of the Digital Signature Standard

(DSS) and standardized by the NIST. Note that its primary objective is

to sign messages digitally, and not encryption. Just to paraphrase, RSA

is for both key management and authentication whereas DSA is only

for authentication. Also, unlike RSA, which is based on large-number

factorization, DSA is based on discrete logarithms. At a high level, DSA is

used as shown in Figure 2-15.

Chapter 2 How Blockchain Works

87

As you can see in Figure 2-15, the message is first hashed and then signed

because it is more secured compared with signing and then hashing it. Ideally,

you would like to verify the authenticity before doing any other operation. So,

after the message is signed, the signed hash is tagged with the message and

sent to the receiver. The receiver can then check the authenticity and find the

hash. Also, hash the message to get the hash again and check if the two hashes

match. This way, DSA provides the following security properties:

•	 Authenticity: Signed by private key and verified by

public key

•	 Data integrity: Hashes will not match if the data is

altered.

•	 Non-repudiation: Since the sender signed it, they

cannot deny later that they did not send the message.

Non-repudiation is a property that is most desirable in

situations where there are chances of a dispute over the

exchange of data. For example, once an order is placed

electronically, a purchaser cannot deny the purchase

order if non-repudiation is enabled in such a situation.

Figure 2-15.  Digital Signature Algorithm (DSA)

Chapter 2 How Blockchain Works

88

A typical DSA scheme consists of three algorithms: (1) key generation,

(3) signature generation, and (3) signature verification.

�Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) actually evolved from Diffie-Hellman

cryptography. It was discovered as an alternative mechanism for

implementing public key cryptography. It actually refers to a suite of

cryptographic protocols and is based on the discrete logarithm problem,

as in DSA. However, it is believed that the discrete logarithmic problem

is even harder when applied to the points on an elliptic curve. So, ECC

offers greater security for a given key size. A 160-bit ECC key is considered

to be as secured as a 1024-bit RSA key. Since smaller key sizes in ECC can

provide greater security and performance compared with other public

key algorithms, it is widely used in small embedded devices, sensors,

and other IoT devices, etc. There are extremely efficient hardware

implementations available for ECC.

ECC is based on a mathematically related set of numbers on an

elliptic curve over finite fields. Also, it has nothing to do with ellipses!

Mathematically, an elliptic curve satisfies the following mathematical

equation:

y2 = x3 + ax + b, where 4 a3 + 27 b2 ≠ 0

With different values of “a” and “b”, the curve takes different shapes as

shown in the following diagram:

Chapter 2 How Blockchain Works

89

There are several important characteristics of elliptic curves that are

used in cryptography, such as:

•	 They are horizontally symmetrical. i.e., what is below

the X-axis is a mirror image of what is above the X-axis.

So, any point on the curve when reflected over the

X-axis still remains on the curve.

•	 Any nonvertical line can intersect the curve in at most

three places.

•	 If you consider two points P and Q on the elliptic curve

and draw a line through them, the line may exactly

cross the curve at one more places. Let us call it (− R).

If you draw a vertical line through (− R), it will cross the

curve at, say, R, which is a reflection of the point (− R).

Now, the third property implies that P + Q = R. This is

called “point addition,” which means adding two points

on an elliptic curve will lead you to another point on

the curve. Refer to the following diagram for a pictorial

representation of these three properties.

Chapter 2 How Blockchain Works

90

•	 So, you can apply point addition to any two points on

the curve. Now, in the previous bullet-point, we did

point addition of P and Q (P + Q) and found − R and

then ultimately arrived at R. Once we arrive at R, we

can then draw a line from P to R and see that the line

intersects the graph again at a third point. We can then

take that point and move along a vertical line until

it intersect the graph again. This becomes the point

addition for points P and R. This process with a fixed

P and the resulting point can continue as long as we

want, and we will keep getting new points on the curve.

•	 Now, instead of two points P and Q, what if we apply

the operation to the same point P, i.e., P and P (called

“point doubling”). Obviously, infinite numbers of lines

are possible through P, so we will only consider the

tangential line. The tangent line will cross the curve in

one more point and a vertical line from there will cross

the curve again to get to the final value. It can be shown

as follows:

Chapter 2 How Blockchain Works

91

•	 It is evident that we can apply point doubling “n”

number of times to the initial point and every time

it will lead us to a different point on the curve. The

first time we applied point doubling to the point P, it

took us to the resulting point 2P as you can see in the

diagram. Now, if the same is repeated “n” number of

times, we will reach a point on the curve as shown in

the following diagram:

•	 In the aforementioned scenario, when the initial and

final point is given, there is no way one can say that

the point doubling was applied “n” number of times

to reach the final resulting point except trying for all

possible “n” one by one. This is the discrete logarithm

problem for ECC, where it states that given a point G

and Q, where Q is a multiple of G, find “d” such that

Q = d G. This forms the one-way function with no

shortcuts. Here, Q is the public key and d is the private

key. Can you extract private key d from public key Q?

This is the elliptic curve discrete logarithm problem,

which is computationally difficult to solve.

Chapter 2 How Blockchain Works

92

•	 Further to this, the curve should be defined over a finite

field and not take us to infinity! This means the “max”

value on the X-axis has to be limited to some value, so

just roll the values over when we hit the maximum. This

value is represented as P (not the P used in the graphs

here) in the ECC cryptosystem and is called "modulo”

value, and it also defines the key size, hence the finite

field. In many implementations of ECC, a prime number

for “P” is chosen.

•	 Increased size of “P” results in more usable values on

the curve, hence more security.

•	 We observed that point addition and point doubling

form the basis for finding the values that are used for

encryption and decryption.

So, in order to define an ECC, the following domain parameters need

to be defined:

•	 The Curve Equation: y2 = x3 + ax + b, where 4 a3 + 27 b2 ≠ 0

•	 P: The prime number, which specifies the finite field

that the curve will be defined over (modulo value)

•	 a and b: Coefficients that define the elliptic curve

•	 G: Base point or the generator point on the curve. This

is the point where all the point operations begin and it

defines the cyclic subgroup.

•	 n: The number of point operations on the curve until

the resultant line is vertical. So, it is the order of G, i.e.,

the smallest positive number such that nG = ∞. It is

normally prime.

•	 h: It is called “cofactor,” which is equal to the order of

the curve divided by n. It is an integer value and usually

close to 1.

Chapter 2 How Blockchain Works

93

Note that ECC is a great technique to generate the keys, but is used

alongside other techniques for digital signatures and key exchange. For

example, Elliptic Curve Diffie-Hellman (ECDH) is quite popularly used for

key exchange and ECDSA is used for digital signatures.

�Elliptic Curve Digital Signature Algorithm

The ECDSA is a type of DSA that uses ECC for key generation. As the name

suggests, its purpose is digital signature, and not encryption. ECDSA can

be a better alternative to RSA in terms of smaller key size, better security,

and higher performance. It is one of the most important cryptographic

components used in Bitcoins!

We already looked at how digital signatures are used to establish trust

between the sender and receiver. Since authenticity of the sender and

integrity of the message can be verified through digital signatures, two

unknown parties can transact with each other. Note that the sender and

the receiver have to agree on the domain parameters before engaging in

the communication.

There are broadly three steps to ECDSA: key generation, signature

generation, and signature verification.

Key Generation

Since the domain parameters (P, a, b, G, n, h) are preestablished, the curve

and the base point are known by both parties. Also, the prime P that makes

it a finite field is also known (P is usually 160 bits and can be greater as

well). So, the sender, say, Alice does the following to generate the keys:

•	 Select a random integer d in the interval [1, n − 1]

•	 Compute Q = d G

•	 Declare Q is the public key and keep d as the private

key.

Chapter 2 How Blockchain Works

94

Signature Generation

Once the keys are generated, Alice, the sender, would use the private key

“d” to sign the message (m). So, she would perform the following steps in

the order specified to generate the signature:

•	 Select a random number k in the interval [1, n − 1]

•	 Compute k.G and find the new coordinates (x1, y1) and

find r = x1 mod n

If r = 0, then start all over again

•	 Compute e = SHA-1 (m)

•	 Compute s = k −1 (e + d . r) mod n

If s = 0, then start all over again from the first step

•	 Alice’s signature for the message (m) would now be (r, s)

Signature Verification

Let us say Bob is the receiver here and has access to the domain

parameters and the public key Q of the sender Alice. As a security

measure, Bob should first verify that the data he has, which is the domain

parameters, the signature, and Alice’s public key Q are all valid. To verify

Alice’s signature on the message (m), Bob would perform the following

operations in the order specified:

•	 Verify that r and s are integers in the interval [1, n − 1]

•	 Compute e = SHA-1 (m)

•	 Compute w = s −1 mod n

•	 Compute u1 = e w mod n, and u2 = r w mod n

•	 Compute X = u1 G + u2 G, where X represents the

coordinates, say (x2, y2)

Chapter 2 How Blockchain Works

95

•	 Compute v = x1 mod n

•	 Accept the signature if r = v, otherwise reject it

In this section, we looked at the math behind ECDSA. Recollect that

we used a random number while generating the key and the signature. It

is extremely important to ensure that the random numbers generated are

actually cryptographically random. In many use cases, 160-bit ECDSA is

used because it has to match with the SHA-1 hash function.

Out of so many use cases, ECDSA is used in digital certificates. In its

simplest form, a digital certificate is a public key, bundled with the device

ID and the certificate expiration date. This way, certificates enable us to

check and confirm to whom the public key belongs and the device is a

legitimate member of the network under consideration. These certificates

are very important to prevent “impersonation attack” in key establishment

protocols. Many TLS certificates are based on ECDSA key pair and this

usage continues to grow.

�Code Examples of Assymetric Key Cryptography

Following are some code examples of different public ley algorithms. This

section is just intended to give you a heads-up on how to use different

algorithms programatically. Code examples are in Python but would be

quite similar in different languages; you just have to find the right library

functions to use.

-*- coding: utf-8 -*-

import Crypto

from Crypto.PublicKey import RSA

from Crypto import Random

from hashlib import sha256

Chapter 2 How Blockchain Works

96

Function to generate keys with default lenght 1024

def generate_key(KEY_LENGTH=1024):

 random_value= Random.new().read

 keyPair=RSA.generate(KEY_LENGTH,random_value)

 return keyPair

#Generate Key for ALICE and BOB

bobKey=generate_key()

aliceKey=generate_key()

#Print Public Key of Alice and Bob. This key could shared

alicePK=aliceKey.publickey()

bobPK=bobKey.publickey()

print "Alice's Public Key:", alicePK

print "Bob's Public Key:", bobPK

#Alice wants to send a secret message to Bob. Lets create a

dummy message for Alice

secret_message="Alice's secret message to Bob"

print "Message", secret_message

Function to generate a signature

def generate_signature(key,message):

 message_hash=sha256(message).digest()

 signature=key.sign(message_hash,'')

 return signature

Lets generate a signature for secret message

alice_sign=generate_signature(aliceKey,secret_message)

Before sending message in network, encrypt message using the

Bob's public key...

encrypted_for_bob = bobPK.encrypt(secret_message, 32)

Chapter 2 How Blockchain Works

97

Bob decrypts secret message using his own private key...

decrypted_message = bobKey.decrypt(encrypted_for_bob)

print "Decrypted message:", decrypted_message

Bob will use the following function to verify the signature

from Alice using her public key

def verify_signature(message,PublicKey,signature):

 message_hash=sha256(message).digest()

 verify = PublicKey.verify(message_hash,signature)

 return verify

bob is verifying using decrypted message and alice's public

key

print "Is alice's signature for decrypted message valid?",

verify_signature(decrypted_message,alicePK, alice_sign)

The ECDSA Algorithm

import ecdsa

SECP256k1 is the Bitcoin elliptic curve

signingKey = ecdsa.SigningKey.generate(curve=ecdsa.SECP256k1)

Get the verifying key

verifyingKey = signingKey.get_verifying_key()

Generate The signature of a message

signature = signingKey.sign(b"signed message")

Verify the signature is valid or invalid for a message

verifyingKey.verify(signature, b"signed message") # True.

Signature is valid

Verify the signature is valid or invalid for a message

assert verifyingKey.verify(signature, b"message") # Throws an

error. Signature is invalid for message

Chapter 2 How Blockchain Works

98

�Diffie-Hellman Key Exchange
We already looked at symmetric key cryptography in the previous sections.

Recollect that sharing the secret between the sender and the receiver is

a very big challenge. As a rule of thumb, we are now aware that the the

communication channel is always insecure. There could always be an

Eve trying to intercept your message while it is being transmitted by using

various different kinds of attacks. So, the technique of DH was developed

for securely exchanging the cryptographic keys. Obviously, you must be

wondering how secure key exchange is possible when the communication

channel itself is insecured. Well, later in this section you will see that

the DH technique is not really sharing the entire secret key between two

parties, rather it is about creating the key together. At the end of the day,

what is important is that the sender and the receiver both have the same

key. However, keep in mind that it is not asymmetric key cryptography, as

encryption/decrytion does not take place during the exchange. In fact, it

was the base upon which asymmetric key cryptography was later designed.

The reason we are looking at this technique now is because a lot of math

that we already studied in the previous section is useful here.

Let us first try to understand the concept at a high level before getting

into the mathematical explanation. Take a look at the following (Figure 2-16),

where a simple explanation of DH algorithm is presented with colors.

Chapter 2 How Blockchain Works

99

Notice that only the yellow color was shared between the two parties

in the first step, which may represent any other color or a randon number.

Both parties then add their own secret to it and make a mixture. That

mixture is again shared through the same insecured channel. Respective

parties then add their secret to it and form their final common secret.

In this example with colors, observe that the common secrets are

the combination of same sets of colors. Let us now look at the actual

mathematical steps that take place for the generation of keys:

•	 Alice and Bob agree on P = 23 and G = 9

•	 Alice chooses private key a = 4, computes 94 mod 23 = 6

and sends it to Bob

Figure 2-16.  Diffie-Hellman key exchange illustration

Chapter 2 How Blockchain Works

100

•	 Bob chooses private key b = 3, computes 93 mod 23 = 16

and sends it to Alice

•	 Alice computes 164 mod 23 = 9

•	 Bob computes 63 mod 23 = 9

If you follow through these steps, you will find that both Alice and Bob

are able to generate the same secret key at their ends that can be used for

encryption/decryption. We used small numbers in this example for easy

understanding, but large prime numbers are used in real-world use cases.

To understand it better, let us go through the following code snippet and

see how DH algorithm can be implemented in a simple way:

/* Program to calculate the Keys for two parties using Diffie-

Hellman Key exchange algorithm */

// function to return value of a ^ b mod P

long long int power(long long int a, long long int b, long long

int P)

{

 if (b == 1)

 return a;

 else

 return (((long long int)pow(a, b)) % P);

}

//Main program for DH Key computation

int main()

{

 long long int P, G, x, a, y, b, ka, kb;

 // Both the parties agree upon the public keys G and P

 P = 23; // A prime number P is taken

 printf("The value of P : %lld\n", P);

Chapter 2 How Blockchain Works

101

 G = 9; // A primitve root for P, G is taken

 printf("The value of G : %lld\n\n", G);

 // Alice will choose the private key a

 a = 4; // a is the chosen private key

 printf("The private key a for Alice : %lld\n", a);

 x = power(G, a, P); // gets the generated key

 // Bob will choose the private key b

 b = 3; // b is the chosen private key

 printf("The private key b for Bob : %lld\n\n", b);

 y = power(G, b, P); // gets the generated key

 // Generating the secret key after the exchange of keys

 ka = power(y, a, P); // Secret key for Alice

 kb = power(x, b, P); // Secret key for Bob

 printf("Secret key for the Alice is : %lld\n", ka);

 printf("Secret Key for the Bob is : %lld\n", kb);

 return 0;

}

Note W hile the discrete logarithm problem is traditionally used (the
xy mod p), the general process can be modified to use elliptic curve
cryptography as well.

Chapter 2 How Blockchain Works

102

�Symmetric vs. Asymmetric Key Cryptography
We looked at various aspects and types of both symmetric and asymmetric

key algorithms. Obviously, their design goals and implications are

different. Let us have a comparative analysis so that we use the right one at

the right place.

•	 Symmetric key cryptography is also referred to as

private key cryptography. Similarly, asymmetric key

cryptography is also called public key cryptography.

•	 Key exchange or distribution in symmetric key

cryptography is a big headache, unlike asymmetric key

cryptography.

•	 Asymmetric encryption is quite compute-intensive

because the length of the keys is usually large. Hence,

the process of encryption and decryption is slower. On

the contrary, symmetric encryption is faster.

•	 Symmetric key cryptography is appropriate for long

messages because the speed of encryption/decryption

is fast. Asymmetric key cryptography is appropriate

for short messages, and the speed of encryption/

decryption is slow.

•	 In symmetric key cryptography, symbols in plaintext

and ciphertext are permuted or substituted. In

asymmetric key cryptography, plaintext and ciphertext

are treated as integers.

•	 In many situations, when symmetric key is used for

encryption and decryption, asymmetric key technique

is used to share and agree upon the key used in

encryption.

Chapter 2 How Blockchain Works

103

•	 Asymmetric key cryptography finds its strongest

application in untrusted environments, when parties

involved have no prior relationship. Since the unknown

parties do not get any prior opportunity to establish

shared secret keys with each other, sharing of sensitive

data is secured through public key cryptography.

•	 Symmetric cryptographic techniques do not provide

a way for digital signatures, which are only possible

through asymmetric cryptography.

•	 Another good case is the number of keys required

among a group of nodes to communicate with each

other. How many keys do you think would be needed

among, say, 100 participants when symmetric key

cryptography is needed? This problem of finding the

keys needed can be approached as a complete graph

problem with order 100. Like each vertex requires

99 connected edges to connect with everyone, every

participant would need 99 keys to establish secured

connections with all other nodes.

So, in total, the keys needed would be

100 * (100 − 1)/2 = 4,950. It can be generalized for “n”

number of participants as n * (n − 1)/2 keys in total.

With an increased number of participant, it becomes

a nightmare! However, in the case of asymmetric key

cryptography, each participant would just need two

keys (one private and one public). For a network of

100 participants, total keys needed would be just 200.

Table 2-5 shows some sample data to give you an

analogy on the increased number of keys needed when

the number of participants increases.

Chapter 2 How Blockchain Works

104

�Game Theory
Game Theory is a certainly quite an old concept and is being used in many

real-life situations to solve complex problems. The reason we are covering

this topic at a high level is because it is used in Bitcoins and many other

blockchain solutions. It was formally introduced by John von Neumann to

study economic decisions. Later, it was more popularized by John Forbes

Nash Jr because of his theory of “Nash Equilibrium,” which we will look

into shortly. Let us first understand what game theory is.

Game theory is a theory on games, where the games are not just what

children play. Most are situations where two or more parties are involved

with some strategic behavior. Examples: A cricket tournament is a game,

two conflicting parties in a court of law with lawyers and juries is a game,

two siblings fighting over an ice cream is a game, a political election is a

game, a traffic signal is also a game. Another example: Say you applied

for a blockchain job and you are selected and offered a job offer with

some salary, but you reject the offer, thinking there is a huge gap in the

demand and supply and chances are good they will revise the offer with a

higher salary. You must be thinking now, what is not a game? Well, in real

situations, almost everything is a game. So, a “game” can be defined as a

situation involving a “correlated rational choice.” What it means is that the

Table 2-5.  Key Requirements Comparison for Symmetric and

Asymmetric Key Techniques

Chapter 2 How Blockchain Works

105

prospects available for any player are dependent not only on their own

choices, but also on the choices that others make in a given situation. In

other words, if your fate is impacted by the actions of others, then you are

in a game. So what is game theory?

Game theory is a study of strategies involved in complex games. It is

the art of making the best move, or opting for a best strategy in a given

situation based on the objective. To do so, one must understand the

strategy of the opponent and also what the opponent thinks your move is

going to be. Let us take a simple example: There are two siblings, one elder

and the other younger. Now, there are two ice creams in the fridge, one is

orange flavor and the other is mango flavor. The elder one wants to eat the

orange flavor, but knows if he opts for that, then the younger one would

cry for the same orange. So, he opts for the mango flavored ice cream and

it turns out as expected, the younger one wants the same. Now, the elder

one pretends to have sacrificed the mango flavored ice cream and gives it

to the younger one and eats the orange one himself. Look at the situation:

this is a win-win for both the parties, as this was the objective of the elder

one. If the elder one wanted, he could simply have fought with the younger

kid and got the orange one if that was his objective. In the second case,

the elder one would strategize where to hit so that the younger kid is not

injured much but enough so that he gives up on the orange flavored ice

cream. This is game theory: what is your objective and what should be

your best move?

One more example: more on a business side this time. Imagine that

you are a vendor supplying vegetables to a town. There are, say, three

ways to get to the town, out of which one is a regular route in the sense

that everyone goes by that route, maybe because it is shorter and better.

One day, you see that the regular route has been blocked because of

some repair activity and in no way can you go by that route. You are now

left with two other routes. One of those is a short route to the destination

town but is a little narrow. The other one is a little longer route but wide

enough. Here, you have to make a strategy as to which route of the two you

Chapter 2 How Blockchain Works

106

need to go by. The situation may be such that there is heavy traffic on the

roads and many people would try to get through the shortest route. This

can lead to heavy congestion on that route and can cause a huge delay.

So, you decided to take the longer route to reach the town on time, but at

the cost of few extra dollars spent on fuel. You are sure you can easily get

compensated for that if you arrive on time and sell your vegetables early at

a good price. This is game theory: what is your best move for the objective

you have in mind, which is usually finding an optimal solution.

In many situations, the role that you play and your objective both play

a vital role in formulating the strategy. Example: If you are an organizer of

a sport event, and not a participant in the competition, then you would

formulate a strategy where your objective could be that you want the

participants to play by the rules and follow the protocol. This is because

you do not care who wins at the end, you are just an organizer. On the

other hand, a participant would strategize the winning moves by taking

into account the strengths and weaknesses of the opponent, and the rules

imposed by the organizer because there could be penalties if you break

the rules. Now, let us consider this situation with you playing the role of

the organizer. You should consider if there could be a situation where a

participant breaks a rule and loses one point but injures the opponent

so much that they cannot compete any longer. So, you have to take into

account what the participants can think and set your rules accordingly.

Let us try to define game theory once again based on what we learned

from the previous examples. It is the method of modeling real-life

situations in the form of a game and analyzing what the best strategy or

move of a person or an entity could be in a given situation for a desired

outcome. Concepts from game theory are widely used in almost every

aspect of life, such as politics, social media, city planning, bidding, betting,

marketing, distributed storage, distributed computing, supply chains, and

finance, just to name a few. Using game theoretic concepts, it is possible to

design systems where the participants play by the rules without assuming

emotional or moral values of them. If you want to go beyond just building

Chapter 2 How Blockchain Works

107

a proof of concept and get your product or solution to production, then

you should prioritize game theory as one of the most important elements.

It can help you build robust solutions and lets you test those with different

interesting scenarios. Well, many people already think in game theoretic

perspectives without knowing it is game theory. However, if you are

equipped with the many tools and techniques from game theory, it

definitely helps.

�Nash Equilibrium
In the previous section, we looked at different examples of games. There

are many ways to classify games, such as cooperative/noncooperative

games, symmetric/asymmetric games, zero-sum/non-zero-sum games,

simultaneous/sequential games, etc. More generally, let us focus on the

cooperative/noncooperative perspective here, because it is related to the

Nash equilibrium.

As the name suggests, the players cooperate with each other and can

work together to form an alliance in cooperative games. Also, there can

be some external force applied to ensure cooperative behavior among the

players. On the other hand, in noncooperative games, the players compete

as individuals with no scope to form an alliance. The participants just

look after their own interests. Also, no external force is available to enforce

cooperative behavior.

Nash equilibrium states that, in any noncooperative games where

the players know the strategies of each other, there exists at least one

equilibrium where all the players play their best strategies to get the

maximum profits and no side would benefit by changing their strategies. If

you know the strategies of other players and you have your own strategy as

well, if you cannot benefit by changing your own strategy, then this is the

state of Nash equilibrium. Thus, each strategy in a Nash equilibrium is a

best response to all other strategies in that equilibrium.

Chapter 2 How Blockchain Works

108

Note that a player may strategize to win as an individual player, but

not to defeat the opponent by ensuring the worst for the opponents.

Also, any game when played repeatedly may eventually fall into the Nash

equilibrium.

In the following section, we will look at the “prisoner”s dilemma” to get

a concrete understanding of the Nash equilibrium.

�Prisoner’s Dilemma
Many games in real life can also be non-zero-sum games. Prisoner’s

dilemma is one such example, which can be broadly categorized as a

symmetric game. This is because, if you change the identities of the players

(e.g., if two players “A” and “B” are playing, then “A” becomes “B” and

“B” becomes “A”), and also the strategies do not change, then the payoff

remains the same. This is what a symmetric game is.

Let us start directly with an example. Assume that there are two

guys, Bob and Charlie, who are caught by the cops for selling drugs

independently, say in different locations. They are kept in two different

cells for interrogation. They were then toldd that they would be sentenced

to jail for two years for this crime. Now, the cops somehow suspect

that these two guys could also be involved in the robbery that just

happened last week. If they did not do the robbery, then it is two years of

imprisonment anyway. So, the cops have to strategize a way to get to the

truth. So here is what they do.

The cops go to Bob and give him a choice, a good choice that goes like

this. If Bob confesses his crime and Charlie does not, then his punishment

would go down from two years to just one year and Bob gets five years.

However, if Bob denies and Charlie confesses, then Bob gets five years and

Charlie gets just one year. Also, if both confess, then both get three years of

imprisonment. Similarly, the same choice is given to Charlie as well. What

do you think they are going to do? This situation is called the prisoner’s

dilemma.

Chapter 2 How Blockchain Works

109

Both Bob and Charlie are in two different cells. They cannot talk to

each other and conclude with the situation where they both deny and get

two years in jail (just for the drug dealing case), which seems to be the

global optimum in this situation. Well, even if they could talk to each other,

they may not really trust each other.

What would go through Bob’s mind now? He has two choices, confess

or deny. He knows that Charlie would choose what is best for him, and

he himself is no different. If he denies and Charlie confesses, then he is in

trouble by getting five years of jail and Charlie gets just one year of jail. He

certainly does not want to get into this situation.

If Bob confesses, then Charlie has two choices: confess or deny. Now

Bob thinks that if he confesses, then whatever Charlie does, he is not

getting more than three years. Let us state these scenarios for Bob.

•	 Bob confesses and Charlie denies—Bob gets one year,

Charlie gets five years (best case given Bob confesses)

•	 Bob confesses and Charlie also confesses—Both Bob

and Charlie get three years (worst case given Bob

confesses)

This situation is called Nash equilibrium where each party has taken

the best move, given the choices of the other party. This is definitely not

the global optimum, but represents the best move as an individual. Now,

if you look at this situation as an outsider, you would say both should deny

and get two years. But when you play as a participant in the game, Nash

equilibrium is what you would eventually fall into. Note that this is the

most stable stage where you changing your decision does not benefit you

at all. It can be pictorially represented as shown in Figure 2-17.

Chapter 2 How Blockchain Works

110

�Byzantine Generals’ Problem
In the previous section, we looked at different examples of games and

learned a few game theory concepts. Now we will discuss a specific

problem from the olden days that is still widely used to solve many

computer science as well as real-life problems.

The Byzantine Generals’ Problem was a problem faced by the

Byzantine army while attacking a city. The situation was straightforward

yet very difficult to deal with. To put it simply, the situation was that several

army factions commanded by separate generals surrounded a city to win

over it. The only chance of victory is when all the generals attack the city

together. However, the problem is how to reach a consensus. This implies

that either all the generals should attack or all of them should retreat.

If some of them attack and some retreat, then chances are greater they

would lose the battle. Let us take an example with numbers to be able to

understand the situation better.

Let us assume a situation where there are five factions of the Byzantine

army surrounding a city. They would attack the city if at least three out of

five generals are willing to attack, but retreat otherwise. If there is a traitor

among the generals, what he can do is vote for attack with the generals

willing to attack and vote for retreat with the generals willing to retreat.

He can do so because the army is dispersed in factions, which makes

Figure 2-17.  Prisoner’s dilemma—payoff matrix

Chapter 2 How Blockchain Works

111

centralized coordination difficult. This can result in two generals attacking

the city and getting outnumbered and defeated. There could be more

complicated issues with such a situation:

•	 What if there is more than one traitor?

•	 How would the message coordination between

generals take place?

•	 What if a messenger is caught/killed/bribed by the city

commander?

•	 What if a traitor general forges a different message and

fools other generals?

•	 How to find the generals who are honest and who are

traitors?

As you can see, there are so many challenges that need to be addressed

for a coordinated attack on the city. It can be pictorially represented as in

Figure 2-18.

Figure 2-18.  Byzantine army attacking the city

Chapter 2 How Blockchain Works

112

There are numerous scenarios in real life that are analogous to the

Byzantine Generals’ Problem. How a group of people reach consensus

on some voting agenda or how to maintain the consistent state of a

distributed or decentralized database, or maintaining the consistent state

of blockchain copies across nodes in a network are a few examples similar

to the Byzantine Generals’ Problem. Note, however, that the solutions to

these different problems could be quite different in different situations. We

will look at how Bitcoin solves the Byzantine Generals’ Problem later in

this book.

�Zero-Sum Games
A zero-sum game in game theory is quite straightforward. In such games,

one player’s gain is equivalent to another player’s loss. Example: One wins

exactly the same amount as the opponent loses, which means choices by

players can neither increase nor decrease the available resources in a given

situation.

Poker, Chess, Go, etc. are a few examples of zero-sum games. To

generalize even more, the games where only one person wins and the

opponent loses, such as tennis, badminton, etc. are also zero-sum games.

Many financial instruments such as swaps, forwards, and options can also

be described as zero-sum instruments.

In many real-life situations, gains and losses are difficult to quantify.

So, zero-sum games are less common compared with non-zero-sum

games. Most financial transactions or trades and the stock market are

non-zero-sum games. Insurance, however, is a field where a zero-sum

game plays an important role. Just think about how the insurance schemes

might work. We pay an insurance premium to the insurance companies to

guard against some difficult situations such as accidents, hospitalization,

death, etc. Thinking that we are insured, we live a peaceful life and we

are fairly compensated by the insurance companies when we face such

tough situations. There is certainly a financial backup that helps us survive.

Chapter 2 How Blockchain Works

113

Note that everyone who pays the premium does not meet with accident

or get hospitalized, and the ones who do need a lot of money compared

with the premium they pay. You see, things are quite balanced here, even

considering the operational expenses of the insurance company. Again,

the insurance company may invest the premium we pay and get some

return on that. Still, this is a zero-sum game.

Just to give you a different example, if there is one open position for

which an interview drive is happening, then the candidate who qualifies

actually does it at the cost of others’ disqualification. This is also a zero-

sum game.

You may ask if there is any use in studying about zero-sum games. Just

being aware of a zero-sum situation is quite useful in understanding and

devising a strategy for any complex problem. We can analyze if we can

practically gain in a given situation in which the transactions are taking

place.

�Why to Study Game Theory
Game theory is a revolutionary interdisciplinary phenomenon bringing

together psychology, economics, mathematics, philosophy, and an

extensive mix of various other academic areas.

We say that game theory is related to real-world problems. However,

the problems are limitless. Are the game theoretic concepts limitless as

well? Certainly! We use game theory every day, knowingly or unknowingly,

because we always use our brains to take the best strategic action, given a

situation. Don’t we? If that is so, why study game theory?

Well, there are numerous examples in game theory that help us think

differently. There are some theories developed such as Nash Equilibrium

that relate to many real-life situations. In many real-world situations, the

participants or the players are faced with a decision matrix similar to that

of a “prisoner’s dilemma.” So, learning these concepts not only helps us

formulate the problems in a more mathematical way, but also enables

Chapter 2 How Blockchain Works

114

us to make the best move. It lets us identify aspects that each participant

should consider before choosing a strategic action in any given interaction.

It tells us to identify the type of game first; who are the players, what are

their objectives or goals, what could be their actions, etc., to be able to

take the best action. Much decision-making in real life involves different

parties; game theory provides the basis for rational decision-making.

The Byzantine Generals’ Problem that we studied in the previou

section is widely used in distributed storage solutions and data centers to

maintain data consistency across computing nodes.

�Computer Science Engineering
As mentioned already, it is clever engineering with the concepts from

computer science that stitches the components of cryptography, game

theory, and many others to build a blockchain. In this section, we will

learn some of the important computer science components that are used

in blockchain.

�The Blockchain
As we will see, a blockchain is actually a blockchain data structure; in the

sense that it is a chain of blocks linked together. When we say a block,

it can mean just a single transaction or multiple transactions clubbed

together. We will start our discussion with hash pointers, which is the basic

building block of blockchain data structure.

A hash pointer is a cryptographic hash pointing to a data block, where

the hash pointer is the hash of the data block itself (Figure 2-19). Unlike

linked lists that point to the next block so you can get to it, hash pointers

point to the previous data block and provide a way to verify that the data

has not been tampered with.

Chapter 2 How Blockchain Works

115

The purpose of the hash pointer is to build a tamper resistant

blockchain that can be considered as a single source of truth. How does

blockchain achieve this objective? The way it works is that the hash of

the previous block is stored in the current block header, and the hash of

the current block with its block header will be stored in the next block’s

header. This creates the blockchain as we can see in Figure 2-20.

Figure 2-19.  Hash pointer for a block of transactions

Figure 2-20.  Blocks in a blockchain linked through hash pointers

As we can observe, every block points to its previous block, known as

“the parent block.” Every new block that gets added to the chain becomes

the parent block for the next block to be added. It goes all the way to the

first block that gets created in the blockchain, which is called “the genesis

block.” In such a design where blocks are linked back with hashes, it is

practically infeasible for someone to alter data in any block. We already

looked at the properties of hash functions, so we understand that the

hashes will not match if the data is altered. What if someone changes

the hash as well? Let us focus on Figure 2-21 to understand how it is not

possible to alter the data in any way.

Chapter 2 How Blockchain Works

116

•	 What if you also change the hash stored in the block

header of block-1235 so that it perfectly matches

the altered data. In other words, you hash the data

block-1234 after you alter it and replace that new hash

with the one stored in block header of block-1235.

After you do this, the hash of the block-1235 changes

(because block-1235 means the data and the header

together) and it does not match with the one stored in

the block header of block-1236.

•	 One has to keep doing this all the way till the final or

the most recent hash. Since everyone or many in the

network already have a copy of the blockchain along

with the most recent hash, in no way is it possible to

hack into the majority of the systems and change all the

hashes at a time.

•	 This makes it a tamper-proof blockchain data structure.

This clearly means that each block can be uniquely identified by its

hash. To calculate this hash, you can use either the SHA2 or SHA3 family

of hash functions that we discussed in the cryptography section. If you use

SHA-256 to hash the blocks, it would produce a 256-bit hash output such as:

000000000000000a73b6a2af7bad40ec3fc2a83dafd76ef15f3d1b71a7132765

Figure 2-21.  Any attempt in changing Header or Block content
breaks the entire chain. Assume that you altered the data in
block-1234. If you do so, the hash that is stored in the block header of
block-1235 would not match.

Chapter 2 How Blockchain Works

117

Notice that there are only 64 characters in it. Since the hashed output

is represented using hexadecimal characters, and every hex digit can

be represented using four bits, the output is 64 × 4 = 256 bits. You would

usually see that the 256-bit hashed output is represented using the 64 hex

characters in many places.

The structure of a block, that is, block size, the data and header

sections, number of transactions in a block, etc., is something that

you should decide while designing a blockchain solution. For existing

blockchains such as Bitcoin, Ethereum, or Hyperledger, the structure

is already defined and you have to understand that to build on top of

these platforms. We will take a closer look at the Bitcoin and Ethereum

blockchains later in this book.

�Merkle Trees
A Merkle tree is a binary tree of cryptographic hash pointers, hence it

is a binary hash tree. It is named so after its inventor Ralph Merkle. It is

another useful data structure being used in blockchain solutions such

as Bitcoin. Merkle trees are constructed by hashing paired data (usually

transactions at the leaf level), then again hashing the hashed outputs all

the way up to the root node, called the Merkle root. Like any other tree, it is

constructed bottom-up. In Bitcoin, the leaves are always transactions of a

single block in a blockchain. We will discuss in a little while the advantages

of using Merkle trees, so you can decide for yourself if the leaves would be

transactions or a group of transactions in blocks. A typical Merkle tree can

be represented as in Figure 2-22.

Chapter 2 How Blockchain Works

118

Figure 2-22.  Merkle tree representation

Similar to the hash pointer data structure, the Merkle tree is also

tamper-proof. Tampering at any level in the tree would not match with the

hash stored at one level up in the hierarchy, and also till the root node. It is

really difficult for an adversary to change all the hashes in the entire tree.

It also ensures the integrity of the order of transactions. If you change just

the order of the transactions, then also the hashes in the tree till the Merkle

root will change.

Here is a situation. The Merkle tree is a binary tree and there should be

an even number of items at the leaf level. What if there are an odd number

of items? One good solution would be to duplicate the last transaction

hash. Since it is the hash we are duplicating, it would mean just the same

transaction and not create any issue such as double-spend or repeated

transactions. That way, it is possible to balance the tree.

In the blockchain we discussed, if we were to find a transaction

through its hash, or check if a transaction had happened in the past, how

would we get to that transaction? The only way is to keep traversing till you

encounter the exact block that matches the hash of the transaction. This is

a case where a Merkle tree can help a great deal.

Chapter 2 How Blockchain Works

119

Merkle trees provide a very efficient way to verify if a specific

transaction belongs to a particular block. If there are “n” transactions in

a Merkle tree (leaf items), then this verification takes just Log (n) time as

shown in Figure 2-23.

Figure 2-23.  Verification in Merkle tree

To verify if a transaction or any other leaf item belongs to a Merkle

tree, we do not need all items and the whole tree. Rather, a subset of it is

needed as we can see in the diagram in Figure 2-23. One can just start with

the transaction to verify along with its sibling (it is a binary tree so there

would be one sibling leaf item), calculate the hash of those two, and see

if it matches their parent hash. Then continue with that parent hash and

its sibling at that level and hash them together to get their parent hash.

Continuing this process all the way to the top root hash is the quickest

possible way for transaction verification (just Log (n) time for n items). In

the figure, only the solid rectangles are required and the dotted rectangles

can be just computed, provided the solid rectangle data. Since there are

eight transaction elements (n = 8), only three computations (log2 8 = 3)

would be required for verification.

Chapter 2 How Blockchain Works

120

Now, how about a hybrid of both blockchain data structure and

Merkle tree? Imagine a situation in a blockchain where each block has a

lot of transactions. Since it is a blockchain, the hash of the previous block

is already there; now, including the Merkle root of all the transactions in

a block can help in quicker verification of the transactions. If we have to

verify a transaction that is claimed to be from, say, block-22456, we can get

the transactions of that block, verify the Merkle tree, and confirm quickly

if that transaction is valid. We already saw that verifying a transaction is

quite easy and fast with Merkle trees. Though blocks in the blockchain

are tamper resistant and do not provide even the slightest scope to

change anything in a block, the Merkle tree also ensures that the order of

transactions is preserved.

In a typical blockchain setting, there could be many situations where

a node (for simplicity sake, assume any node that does not have the full

blockchain data, i.e., a light node) has to verify if a certain transaction took

place in the past. There are actually two things that need verification here:

transaction as part of the block, and block as part of the blockchain. To

do so, a node does not have to download all the transactions of a block, it

can simply ask the network for the information pertaining to the hash of

the block and the hash of the transaction. The peers in the network who

have the relevant information can respond with the Merkle path to that

transaction. Well, you might ask how to trust the data that an unknown

peer in the network is sharing with you. You already know that the hash

functions are one-way. So in no way can an adversarial node forge

transactions that would match a given hash value; it is even difficult to do

so from transaction level till the Merkle root.

The use of Merkle trees is not limited to just blockchains: they are

widely used in many other applications such as BitTorrent, Cassandra—an

NoSQL database, Apache Wave, etc.

Chapter 2 How Blockchain Works

121

�Example Code Snippet for Merkletree

This section is just intended to give you a heads-up on how to code up a

Merkle tree at its most basic level. Code examples are in Python but would

be quite similar in different languages; you just have to find the right

library functions to use.

-*- coding: utf-8 -*-

from hashlib import sha256

class MerkelTree(object):

 def __init__(self):

 pass

 def chunks(self,transaction,n):

 #This function yeilds "n" number of transaction at time

 for i in range (0, len(transaction),number):

 yield transaction[i:i+2]

 def merkel_tree(self,transactions):

 �#Here we will find the merkel tree hash of all

transactions passed to this fuction

 #Problem is solved using recursion techqiue

 �# Given a list of transactions, we concatinate the

hashes in groups of two and compute

 �# the hash of the group, then keep the hash of group.

We repeat this step till

 # we reach a single hash

 sub_tree=[]

 for i in chunks(transactions,2):

 if len(i)==2:

 hash = sha256(str(i[0]+i[1])).hexdigest()

 else:

Chapter 2 How Blockchain Works

122

 hash = sha256(str(i[0]+i[0])).hexdigest()

 sub_tree.append(hash)

 �# When the sub_tree has only one hash then we reached

our merkel tree hash.

 #Otherwise, we call this fuction recursively

 if len(sub_tree) == 1:

 return sub_tree[0]

 else:

 return self.merkel_tree(sub_tree)

if __name__=='__main__':

 mk=MerkelTree()

 �merkel_hash= mk.merkel_tree(["TX1","TX2","TX3","TX4","TX5",

"TX6"])

 print merkel_hash

�Putting It All Together
To get to this section, we covered all the necessary components of

blockchain that can help us understand how it really works. After going

through them, namely cryptography, game theory, and computer

science engineering concepts, we must have developed a notion of how

blockchains might work. Though these concepts have been around for

ages, no one could ever imagine how the same old stuff can be used to

build a transforming technology such as blockchain. Let us have a quick

recap of some fundamentals we covered so far, and we will build further

understanding on those concepts. So here they are:

•	 Cryptographic functions are one-way and cannot be

inverted. They are deterministic and produce the same

output for a given input. Any changes to the input

would produce a completely different output when

hashed again.

Chapter 2 How Blockchain Works

123

•	 Using public key cryptography, digital signatures are

possible. It helps in verifying the authenticity of the

person/entity that has signed. Considering the private

key is kept confidential, it is not feasible to forge a

signature with someone else’s identity. Also, if someone

has signed on any document or a transaction, they

cannot later deny they did not.

•	 Using game theoretic principles and best practices,

robust systems can be designed that can sustain in

most of the odd situations. Systems that can face the

Byzantine Generals’ Problem need to be handled

properly. Our approach to any system design should

be such that the participants play by the rules to get the

maximum payoff; deviating from the protocol should

not really benefit them.

•	 The blockchain data structure, by using the

cryptographic hashes, provides a tamper resistant

chain of blocks. The usage of Merkle trees makes the

transaction verification easier and faster.

With all these concepts in mind, let us now think of a real blockchain

implementation. What problems can you think of that need to be

addressed for such a decentralized system to work properly? Well, there

are loads of them; some would be generic to most of the blockchain use

cases and some would be specific to a few. Let us discuss at least some of

the scenarios that need to be addressed:

•	 Who would maintain the distributed ledger of

transactions? Should all the participants maintain, or

only a few would do? How about the computing nodes

that are not powerful enough to process transactions or

do not have enough storage space to accommodate the

entire history of transactions?

Chapter 2 How Blockchain Works

124

•	 How is it possible to maintain a single consistent state

of the distributed ledger? Network latency, packet

drops, deliberate hacking attempts, etc. are inevitable.

How would the system survive all these?

•	 Who would validate or invalidate the transactions?

Would only a few authorized nodes validate, or all the

nodes together would reach a consensus? What if some

of the nodes are not available at a given time?

•	 What if some computing nodes deliberately want

to subvert the system or try to reject some of the

transactions?

•	 How would you upgrade the system when there is

no centralized entity to take the responsibility? In a

decentralized network, what if a few computing nodes

upgrade themselves and the rest don’t?

There are in fact a lot more concerns that need to be addressed apart

from the ones just mentioned. For now we will leave you with those

thoughts, but most of those queries should be clarified by the end of this

chapter.

Let us start with some basic building blocks of a blockchain system

that may be required to design any decentralized solution.

�Properties of Blockchain Solutions
So far, we have only learned the technical aspects of blockchain solutions

to understand how blockchains might work. In this section, we will learn

some of the desired properties of blockchains.

Chapter 2 How Blockchain Works

125

�Immutability

It is the most desired property to maintain the atomicity of the blockchain

transactions. Once a transaction is recorded, it cannot be altered. If the

transactions are broadcast to the network, then almost everyone has a

copy of it. With time, when more and more blocks are added to the

blockchain, the immutability increases and after a certain time, it becomes

completely immutable. For someone to alter the data of so many blocks

in a series is not practically feasible because they are cryptographically

secured. So, any transaction that gets logged remains forever in the

system.

�Forgery Resistant

A decentralized solution where the transactions are public is prone to

different kinds of attacks. Attempts at forgery are the most obvious of all,

especially when you are transacting anything of value. Cryptographic hash

and digital signatures can be used to ensure the system is forgery resistant.

We already learned that it is computationally infeasible to forge someone

else’s signature. If you make a transaction and sign a hash of it, no one can

alter the transaction later and say you signed a different transaction. Also,

you cannot later claim you never did the transaction, because it is you who

signed it.

�Democratic

Any peer-to-peer decentralized system should be democratic by design

(may not be fully applicable to the private blockchain, which we will

park for later). There should not be any entity in the system that is more

powerful than the others. Every participant should have equal rights

in any situation, and decisions are made when the majority reaches a

consensus.

Chapter 2 How Blockchain Works

126

�Double-Spend Resistant

Double-spend attacks are quite common in monetary as well as

nonmonetary transactions. In a cryptocurrency setting, a double-spend

attempt is when you try to spend the same amount to multiple people.

Example: You have $100 in your account and you pay $90 to two or more

parties is a type of double-spend. This is a little different when it comes

to cryptocurrency such as Bitcoin where there is no notion of a closing

balance. Input to a transaction (when you are paying to someone) is

the output of another transaction where you have received at least

the amount you are paying through this transaction. Assume Bob

received $10 from Alice some time back in a transaction. Today if Bob

wants to pay Charlie $8, then the transaction in which he received $10

from Alice would be the input to transact with Charlie. So, Bob cannot

use the same input (Alice’s $10 paid to him) multiple times to pay to

other people and double-spend. Just to give you a different example:

if someone owns some land and sells the same piece of land to two

people.

In a centralized system it is quite easy to prevent double-spend

because the central authority is aware of all the transactions. A blockchain

solution should also be immune to such double-spend attacks. While

cryptography ensures authenticity of a transaction, it cannot help prevent

double-spend. Because, technically, both a normal transaction and a

double-spend transaction are genuine. So, the only way possible to prevent

double-spend is to be aware of all the transactions. If we are aware of all

transactions that happened in the past, we can figure out if a transaction

is an attempt to double-spend. So, the nodes that would validate the

transactions should definitely be accessible to the whole blockchain data

since the genesis block.

Chapter 2 How Blockchain Works

127

�Consistent State of the Ledger

The properties we just discussed ensure that the ledger is consistent

throughout, to some extent. Imagine a situation when some nodes

deliberately want a transaction to not go through and to get rejected. Or, if

somehow some nodes are not in sync with the ledger and hence not aware

of a few transactions that took place while they were offline, then to them a

transaction may look like fraudulent. So, how to ensure consensus among

the participants is something that needs to be handled very carefully.

Recollect the Byzantine Generals’ Problem. The right kind of consensus

suitable for a given situation plays the most important role to ensure

stability of a decentralized solution. We will learn different consensus

mechanisms later in this book.

�Resilient

The network should be resilient enough to withstand temporary node

failures, unavailability of some computing nodes at times, network latency

and packet drops, etc.

�Auditable

A blockchain is a chain of blocks that are linked together through hashes.

Since the transaction blocks are linked back till the genesis block,

auditability already exists and we have to ensure that it does not break at

any cost. Also, if one wants to verify whether a transaction took place in the

past, then such verification should be quicker.

�Blockchain Transactions
When we say blockchain, we mean a blockchain of transactions, right? So

it starts from a transaction and then the transaction goes through a series

of steps and ultimately resides in the blockchain. Since blockchain is a

Chapter 2 How Blockchain Works

128

peer-to-peer phenomenon, if you are dealing with a use case that has a

lot of transactions taking place every second, you may not want to flood

the whole network with all transactions. Obviously when an individual

or an entity is making a transaction, they just have to broadcast it to the

whole network. Once that happens, it has to be validated by multiple

nodes. Upon validation, it has to again get broadcast to the whole

network for the transaction to get included in the blockchain. Now, why

not a transaction chain instead of a blockchain? It may make sense to

some extent if your business case does not involve a lot of transactions.

However, if there are a huge number of transactions every second, then

hashing them at transaction level, keeping a trail of it, and broadcasting

that to the network can make the system unstable. You may want a certain

number of transactions to be grouped in a block and broadcast that block.

Broadcasting individual transactions can become a costly affair. Another

good reason for a blockchain instead of a transaction chain is to prevent

Sybil Attack. In Chapter 3, you will learn in more detail how the PoW

mining algorithm is used and one node is chosen at random that could

propose a block. If it was not the case, people might create replicas of their

own node to subvert the system.

In its most simplified form, the blockchain transactions go through the

following steps to get into the blockchain:

•	 Every new transaction gets broadcast to the network so

that all the computing nodes are aware of that fact at

the time it took place (to ensure the system is double-

spend resistant) .

•	 Transactions may get validated by the nodes to accept

or reject by checking the authenticity.

•	 The nodes may then group multiple transactions into

blocks to share with the other nodes in the network.

Chapter 2 How Blockchain Works

129

•	 Here comes the difficult situation. Who would propose

the block of transactions that they have grouped

individually? Broadly speaking, the generation of new

blocks should be controlled but not in a centralized

fashion, and the mechanism should be such that every

node is given equal priority. Every node agreeing upon

a block is called the consensus, but there are different

algorithms to achieve the same objective, depending

on your use case. We will discuss different consensus

mechanisms in the following section.

•	 Though there is no notion of a global time due to

network latency, packet drops, and geographic

locations, such a system still works because the blocks

are added one after another in an order. So, we can

consider that the blocks are time stamped in the order

they arrive and get added in the blockchain.

•	 Once the nodes in the network unanimously accept a

block, then that block gets into the blockchain and it

includes the hash of the block that was created right

before it. So this extends the blockchain by one block.

We already discussed the blockchain data structure and the Merkle

trees, so we understand their value now. Recollect that when a node would

like to validate a transaction, it can do so more efficiently by the Merkle

path. The other nodes in the network do not have to share the full block of

data to justify proof of membership of a transaction in a block. Technically

speaking, memory efficient and computer-friendly data structures such as

“Bloom filters” are widely used in such scenarios to test the membership.

Also, note that for a node to be able to validate a transaction, it should

ideally have the whole blockchain data (transactions along with their

metadata) locally. You should select an efficient storage mechanism that

the nodes will adopt based on your use case.

Chapter 2 How Blockchain Works

130

�Distributed Consensus Mechanisms
When the nodes are aware of the entire history of transactions by having

a local copy of the full blockchain data to prevent double-spend, and they

can verify the authenticity of a transaction through digital signatures, what

is the use of consensus? Imagine the presence of one or more malicious

nodes. Can’t they say an invalid transaction is a valid one, or vice versa?

Recollect the Byzantine Generals’ Problem, which is most likely to occur in

many decentralized systems. To overcome such issues, we need a proper

consensus mechanism in place.

So far in our discussion, the one thing that is not clear yet is who

proposes the block. Obviously, not every node should propose a block to

the rest of the nodes at the same time because it is only going to create a

mess; forget about the consistent state of the ledger. On the other hand,

had it been the case with just transactions without grouping them into

blocks, you could argue that if every transaction gets broadcast to the

whole network and every node in the network casts a vote on those

individual transactions, it would only complicate the system and lead to

poor performance.

So, grouping transactions into blocks is important for obvious reasons

and consensus is required on a block by block basis. The best strategy for this

problem is that only one block should propose a block at a time and the rest

of the nodes should validate the transactions in the block and add to their

blockchains if transactions are valid. We know that every node maintains its

own copy of the ledger and there is no centralized source to sync from. So, if

any one node proposes a block and the rest of the nodes agree on it, then all

those nodes add that block to their respective blockchains. In such a design,

you would prefer that there are at least a few minutes of gap in block creation

and it should not be the case where multiple blocks arrive at the same time.

Now the question is: who might be that lucky node to propose a block? This

is the trickiest part and can lead to proper consensus; we will discuss this

aspect under different consensus mechanisms.

Chapter 2 How Blockchain Works

131

These consensus mechanisms actually come from game theory. Your

system should be designed such that the nodes get the most benefit if they

play by the rules. One of the aspects to ensure the nodes behave honestly

is to reward for honest behavior and punish for fraudulent activities.

However, there is a catch here. In a public blockchain such as Bitcoin, one

can have many different public identities and they are quite anonymous.

It gets really difficult to punish such identities because they have a choice

to avoid that punishment by creating new identities for themselves. On

the other hand, rewarding them works great, because even if someone

has multiple identities, they can happily reap the rewards given to them.

So, it depends on your business case: if the identities are anonymous,

then punishing them may not work, but may work well if the identities

are not anonymous. You may want to consider this reward/punish aspect

despite having a great mechanism to select a node that would propose

the next block. This is because you would never know in advance if the

node selected is a malicious node or an honest one. Keep in mind the term

mining that we may be using quite often, and it would mean generating

new blocks.

The goal of consensus is also to ensure that the network is robust

enough to sustain various types of attacks. Irrespective of the types of

consensus algorithms one may choose depending on the use case, it has

to fall into the Byzantine fault tolerant consensus mold to be able to get

accepted. Let us now learn some of the consensus mechanisms pertaining

to the blockchain scenarios that we may be able to use in different

situations.

�Proof of Work

The PoW consensus mechanism has been around for a long time now.

However, the way it was used in Bitcoin along with other concepts made it

even more popular. We will discuss this consensus mechanism at its basic

level and look at how it is implemented in Bitcoin in Chapter 3.

Chapter 2 How Blockchain Works

132

The idea behind the PoW algorithm is that certain work is done for

a block of transactions before it gets proposed to the whole network.

A PoW is actually a piece of data that is difficult to produce in terms of

computation and time, but easy to verify. One of the old usages of PoW was

to prevent email spams. If a certain amount of work is to be done before

one can send an email, then spamming a lot of people would require a

lot of computation to be performed. This can help prevent email spams.

Similarly, in blockchain as well, if some amount of compute-intensive

work is to be performed before producing a block, then it can help in two

ways: one is that it will definitely take some time and the second is, if a

node is trying to inject a fraudulent transaction in a block, then rejection of

that block by the rest of the nodes will be very costly for the one proposing

the block. This is because the computation performed to get the PoW will

have no value.

Just think about proposing a block without much of effort vs. doing

some hard work to be able to propose a block. If it was with almost no

effort, then proposing a node with a fraudulent transaction and getting

rejected would not have been a big concern. People may just keep

proposing such blocks with a hope that one may get through and make it

to the blockchain sometime. On the contrary, doing some hard work to

propose a block prevents a node from injecting a fraudulent transaction in

a subtle way.

Also, the difficulty of the work should be adjustable so that there is a

control over how fast the blocks can get generated. You must be thinking, if

we are talking about some work that requires some computation and time,

what kind of work must it be? It is very simple yet tricky work. An example

would help here. Imagine a problem where you have to find a number

which, if you hash, the hashed output would start with the alphabet “a.”

How would you do it? We have learned about the hash functions and know

that there are no shortcuts to it. So you would just keep guessing (maybe

take any number and keep incrementing by one) the numbers and keep

hashing them to see if that fits the bill. If the difficulty level needs to be

Chapter 2 How Blockchain Works

133

increased, then one can say it starts with three consecutive “a”s. Obviously,

finding a solution for something like “axxxxxxx” is easier to find compared

with “aaaxxxxx” because the latter is more constrained.

In the example just given, if multiple different nodes are working to

solve such a computational puzzle, then you will never know which node

would solve it first. This can be leveraged to select a random node (this

time it is truly random because there is no algorithm behind it) that solves

the puzzle and proposes the block. It is extremely important to note that

in case of public blockchains, the nodes that are investing their computing

resources have to be rewarded for honest behavior, else it would be

difficult to sustain such a system.

�Proof of Stake

The Proof of Stake (PoS) algorithm is another consensus algorithm that is

quite popular for distributed consensus. However, what is tricky about it

is that it isn’t about mining, but is about validating blocks of transactions.

There are no mining rewards due to generation of new coins, there are only

transaction fees for the miners (more accurately validators, but we will

keep using ‘miners’ so it gets easier to explain).

In PoS systems, the validators have to bond their stake (mortgage the

amount of cryptocurrency thay would like to keep at stake) to be able to

participate in validating the transactions. The probability of a validator

producing a block is proportional to their stake; the more the amount at

stake, the greater is their chance to validate a new block of transactions.

A miner only needs to prove they own a certain percentage of all coins

available at a certain time in a given currency system. For example, if a

miner owns 2% of all Ether (ETH) in the Ethereum network, they would be

able to mine 2% of all transactions across Ethereum. Accordingly, who gets

to create the new block of transaction is decided, and it varies based on the

PoS algorithm you are using. Yes, there are variants of PoS algorithm such

as naive PoS, delegated PoS, chain-based PoS, BFT-style PoS, and Casper

Chapter 2 How Blockchain Works

134

PoS, to name a few. Delegated PoS (DPOS) is used by Bitshares and Casper

PoS is being developed to be used in Ethereum.

Since the creator of a block in a PoS system is deterministic (based on

the amount at stake), it works much faster compared with PoW systems.

Also, since there are no block rewards and just transaction fees, all the

digital currencies need to be created in the beginning and their total

amount is fixed all through.

The PoS systems may provide better protection against malicious

attacks because executing an attack would risk the entire amount at stake.

Also, since it does not require burning a lot of electricity and consuming

CPU cycles, it gets priority over PoW systems where applicable.

�PBFT

PBFT is the acronym for the Practical Byzantine Fault Tollerance

algorithm, one of the many consensus algorithms that one can consider

for their blockchain use case. Out of so many blockchain initiatives,

Hyperledger, Stellar, and Ripple are the ones that use PBFT consensus.

PBFT is also an algorithm that is not used to generate mining rewards,

similar to PoS algorithms. However, the technicalities in their respective

implementations are different. The inner working of PBFT is beyond

the scope of this book, but at a high level, requests are broadcast to all

participating nodes that have their own replicas or internal states. When

nodes receive a request, they perform the computation based on their

internal states. The outcome of the computation is then shared with all

other nodes in the system. So, every node is aware of what other nodes

are computing. Considering their own computation results along with

the ones received from ther nodes, they make a decision and commit to a

final value, which is again shared across the nodes. At this moment, every

node is aware of the final decision of all other nodes. Then they all respond

with their final decisions and, based on the majority, the final consensus is

achieved. This is demonstrated in Figure 2-24.

Chapter 2 How Blockchain Works

135

PBFT can be efficient compared with other consensus algorithms,

based on the effort required. However, anonymity in the system may be

compromised because of the way this algorithm is designed. It is one of

the most widely used algorithms for consensus even in non-blockchain

environments.

�Blockchain Applications
While we looked at the nuts and bolts of blockchain throughout this

chapter, it is also important that we look at how it is being used in

building blockchain solutions. There are applications being built that

treat blockchain as a backend database behind a web server, and there are

applications that are completely decentralized with no centralized server.

Bitcoin blockchain, for example, is a blockchain application where there is

no server to send a request to! Every transaction is broadcast to the entire

network. However, it is possible that a web application is built and hosted

in a centralized web server, and that makes Bitcoin blockchain updates

when required. Take a look at Figure 2-25 where a Bitcoin node broadcasts

the transactions to the nodes that are reachable at a given point in time.

Figure 2-24.  PBFT consensus approach

Chapter 2 How Blockchain Works

136

From a software application perspective, every node is self-sufficient

and maintains its own copies of the blockchain database. Considering

Bitcoin blockchain as a benchmark, the blockchain applications with no

centralized servers appear to be the purest decentralized applications

and most of them fall under the “public blockchain” category. Usually for

such public blockchains, usage of resources from cloud service providers

such as Microsoft Azure, IBM Bluemix, etc. are not quite popular yet. For

most of the private blockchains, however, the cloud service providers have

started to gain popularity. To give you an analogy, there could be one or

more web applications for different departments or actors, all of them

having their own Blockchin backends and still the blockchains are in sync

with each other. In such a setting, though technical decentralization is

achieved, politically it could still be centralized. Even though control or

governance is enforced, the system is still able to maintain transparency

and trust because of the accessibility to single source of truth. Take a

look at Figure 2-26, which may resemble most of the blockchain POCs or

applications being built on blockchain where blockchains are hosted by

some cloud service provider by consuming their blockchain-as-a-Service

(BaaS) offering.

Figure 2-25.  Bitcoin blockchain nodes

Chapter 2 How Blockchain Works

137

It may not be necessary that all the departments have their own

different web application. One web application can handle requests

from multiple different actors in the system with proper access controm

mechanisms. It might be a good idea that all the actors in the system have

their own copies of blockchains. Having a local copy of blockchain not only

helps maintain transparency in the system, but also may help generate

data-driven insights with ready access to data all the time. The different

“blockchains” maintained by different actors in the system are consistent

by design, thanks to consensus algorithms such as PoW, PoS, etc. Most of

the private blockchains prefer any consensus algorithm other than PoW to

mitigate heavy resource consumption, and save electricity and computing

power as much possible. The PoS consensus mechanism is quite common

when it comes to private or consortium blockchains. Since blockchain

is disrupting many aspects of businesses, and there was no better way of

enabling transparency among them, creating a blockchain solution in the

Genesis
Block

Previous Block

Block-1
Block-2 Block-3 Block-4 Block-1265

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions

Previous Block

Transactions
Genesis
Block

Block-1
Block-2 Block-3 Block-4 Block-1265

Genesis
Block

Block-1
Block-2 Block-3 Block-4 Block-1265

Blockchain

Dept. A Dept. B Dept. C

Web Servers
Web Application is hosted here

Actors in a Blockchain system

Figure 2-26.  Cloud-powered blockchain system

Chapter 2 How Blockchain Works

138

cloud with a “pay as you use” model is gaining momentum. Cloud services

are helping businesses leapfrog in their blockchain-enabled digital

transformation journey with minimal upfront investments.

There are also decentralized applications (DApps) being built on

Ethereum blockchain networks. These applications could be permissioned

on private Ethereum or could be permissionless on a public Ethereum

network. Also, these applications could be for different use cases on the

same public Ethereum network. Though we will cover the Ethereum-

specific details later in this book, just look at Figure 2-27 for a high-level

understanding of how those applications might look.

Figure 2-27.  DApps on Ethereum network

As discussed already in previous sections, developing blockchain

applications is only limited by your imagination. Pure blockchain native

applications could be built. Applications that treat blockchain as just a

backend are also being built, and there are hybrid applications that are

also being built that use the legacy applications and use blockchain for

Chapter 2 How Blockchain Works

139

some specific purpose only. So far, blockchain scalability is one of the

biggest concerns. Though the scalability itself is in research, let us learn

some of the scalability techniques.

�Scaling Blockchain
We looked at blockchain from a historic perspective and how it proves to

be one of the most disruptive technologies as of today. While exploring it

technically in this chapter, we learned about the scalability issues inherent

to most of the Blockchin flavors. By design, blockchains are difficult to

scale and thus a research area in academia and for some innovation-

driven corporates. If you look at the Bitcoin adoption, it is not being used

to replace fiat currencies due to the inherent scalability challenges. You

cannot buy a coffee using Bitcoin and wait for an hour for the transaction

to settle. So, Bitcoins are being used as an asset class for investers to invest

in. A Bitcoin blockchain network is not capable of accommodating as

many transactions as that of Visa or MasterCard, as of today.

Recollect the consensus protocols we have studied so far, such as

PoW of Bitcoins or Ethereum, or PoS and other BFT consensus of some

other blockchain flavors such as Multichain, Hyperledger, Ripple, or

Tendermint. All of these consensus algorithms’ primary objective is

Byzantine fault tolerance. By design, every node (at least the full nodes)

in a blockchain network maintains its own copy of the entire blockchain,

validates all transactions and blocks, serves requests from other nodes in

the network, etc. to achieve decentralization, which becomes a bottleneck

for scalability. Look at the irony here—we add more servers in a centralized

system for scalability, but the same does not apply in a decentralized

system because with more number of nodes, the latency only increases.

While the level of decentralization could increase with a greater number

of nodes in a decentralized network, the number of transactions in

the network also increases, which leads to increased requirements of

Chapter 2 How Blockchain Works

140

computing and storage resources. Keep in mind that this situation is

applicable more on public blockchains and less so for private blockchains.

Private blockchains could easily scale compared with the public ones

because the controlling entities could define and set node specifications

with high computation power and more bandwidth. Also, there could

be certain tasks offloaded from blockchain and computed off-chain that

could help the system scale well.

In this chapter, we will learn some of the generic scaling techniques,

and discuss Bitcoin- and Ethereum-specific scaling techniques in their

respective chapters. Please keep in mind that all scaling techniques may

not apply to all kinds of blockchain flavors or use cases. The best way is to

understand the techniques technically and use the best possible one in a

given situation.

�Off-Chain Computation
Off-chain computation is one of the most promising techniques to scale

blockchain solutions. The idea is to limit the usage of blockchain and do

the heavy lifting outside of it, and only store the outcomes on blockchain.

Keep in mind that there is no standard definition of how the off-chain

computation should happen. It is heavily dependent on the situation

and the people trying to address it. Also, different blockchain flavors may

require different approaches for off-chain computation. At a high level, it is

like another layer on top of blockchain that does heavy, compute-intensive

work and wisely uses the blockchain. Obviously, you may not be able to

retain all the characteristics of blockchain by doing computations off-

chain, but it is also true that you may not need blockchain for all kinds of

computing requirements and may use it only for specific pain points.

The off-chain computations could be on a sidechain, could be

distributed among a random group of nodes, or could be centralized as

well. The side chains are independent of the main blockchain. It not only

helps scale the blockchain well, it also isolates damages to the sidechain

Chapter 2 How Blockchain Works

141

and prevents the main blockchain from any damages from a sidechain.

One such example sidechain is the “Lightning Network” for Bitcoins that

should help in faster execution of transactions with minimal fee; that

will support micropayments as well. Another example of a sidechain for

Bitcoins is “Zerocash,” whose primary objective is not really scalability,

but privacy. If you are using Zerocash for Bitcoin transactions, you cannot

be tracked and your privacy is preserved. We will limit our discussion to

the generic scalability techniques and not get into a detailed discussion of

Bitcoin scalability in this book.

One obvious question that might come up at the moment is how

people would check the authenticity of the transactions if they are sent

off-chain. First, to create a valid transaction, you do not need a blockchain.

We learned in the “Cryptography” section in this chapter about the

assymetric key cryptography that is used by the blockchain system. To

make a transaction, you have to be the owner of a private key so you can

sign the transaction. Once the transaction is created, there are advantages

when it gets into the blockchain. Double-spend is not possible with

Bitcoin blockchain, and there are other advantages, too. For now, the

only objective is to get you on board with the fact that you can create a

transaction as long as you own the private key for your account.

Bitcoin blockchains are a stateless blockchain, in the sense that they do

not maintain the state of an account. Everything in Bitcoin blockchain is

present in the form of a transaction. To be able to make a transaction, you

have to consume a previous transaction and there is no notion of “closing

balance” for an account, as such. On the contrary, Ethereum blockchain is

a “stateful” one! The blocks in Ethereum blockchain contain information

regaring the state of the entire block where account balance is also a part.

The state information takes up significant space when every node in the

network maintains it. This situation is valid for other blockchains as well

that are stateful.

Chapter 2 How Blockchain Works

142

Let’s take an example to understand this better. Alice and Bob are two

parties having multiple transactions between each other. Let’s say they

usually have 50 monetary transactions in a month. In a stateful blockchain,

all these individual transactions would have their state information,

and that will be maintained by all the nodes. To address this challenge,

the concept of “state channels” is introduced. The idea is to update the

blockchain with the final outcome, say, at the end of the month or when

a certain transaction threshold is reached, and not with each and every

transaction.

State channels are essentially a two-way communication channel

between users, objects, or services. This is done with absolute security by

using cryptographic techniques. Just to get a heads-up on how it works,

take a look at Figure 2-28.

Figure 2-28.  State channels for off-chain computation

Notice that the off-chain state channels are mostly private and

confined among a group of participants. Keep in mind that the state of

blockchain for the participants needs to be locked as the first step. Either

it could be a MultiSig scheme or a smart contract-based locking. After

locking, the participants make transactions among each other that are

cryptographically secured. All transactions are cryptographically signed,

which makes them verifiable and these transactions are not immediately

Chapter 2 How Blockchain Works

143

submitted to the blockchain. As discussed, these state channels could have

a predefined lifespan, or could be bound to the amount of transactions

being carried out in terms of volume/quantity or any other quantifiable

measure. So, the final outcome of the transactions gets settled on the

blockchain and that unlocks the state as the final step.

State channels could be very differently implemented in different

use cases, and their implementations are actually left to the developers.

It is certainly a way forward and is one of the most critical components

for mainstream adoption of blockchain applications. For Bitcoin, the

Lightning Network was designed for off-chain computation and to

make the payments transaction faster. Similarly, the “Raiden Network”

was designed for Ethereum blockchain. There are many other such

developments to make micropayments faster and more feasible on

blockchain networks.

�Sharding Blockchain State
Sharding is one of the scalability techniques that has been there for ages

and has been a more sought-after topic for databases. People used this

technique differently in different use cases to address specific scalability

challenges. Before we understand how it could be used in scaling

blockchain as well, let us first understand what it means.

Disk read/write has always been a bottleneck when dealing with huge

data sets. When the data is partitioned across multiple disks, the read/

write could be performed in parallel and latency decreases significantly.

This technique is called sharding. Take a look at Figure 2-29.

Chapter 2 How Blockchain Works

144

Notice in Figure 2-29 how horizontal partitioning is done to distribute

a 300GB database table into three shards of 100GB each and stored

on separate server instances. The same concept is also applicable for

blockchain, where the overall blockchain state is divided into different

shards that contain their own substates. Well, it is definitely not as easy as

sharding a database with just doing horizontal partitioning.

So, how does sharding really work in the context of blockchain? The

idea is that the nodes wouln’t be required to download and keep a copy

of the entire blockchain. Instead, they would download and keep the

portions (shards) relevant to them. By doing so, they get to process only

those transactions that are relevant to the data they store, and parallel

execution of transactions is possible. So, when a transaction occurs, it is

routed to only specific nodes depending on which shards they affect. If

you look at it from a different lens, all the nodes are not required to do all

sorts of calculations and verifications for each and every transaction. A

mechanism or a protocol could be defined for communication between

shards when more than one shard is required to process any specific

Figure 2-29.  Database sharding example

Chapter 2 How Blockchain Works

145

transactions. Please keep in mind that different blockchains might have

different variants of sharding.

To give you an example, you might choose a specific sharding

technique for a given situation. One example could be where shards

are required to have multiple unique accounts in them. In other words,

each unique account is in one shard (more applicable for Ethereum style

blockchains that are stateful), and it is very easy for the accounts in one

shard to transact among themselves. Obviously, one more level extraction

at a shard level is required for sharding to work, and the nodes could keep

only a subset of the information.

�Summary
In this chapter, we took a deep dive into the core fundamentals of

cryptography, game theory, and computer science engineering. The

concepts learned would help you design your own blockchain solution

that may have some specific needs. Blockchain is definitely not a silver

bullet for all sorts of problems. However, for the ones where blockchain

is required, it is highly likely that different flavors of blockchain solutions

would be needed with different design constructs.

We learned different cryptographic techniques to secure transactions

and the usefulness of hash functions. We looked at how game theory

could be used to design robust solutions. We also learned some of the core

computer science fundamentals such as blockchain data structure and

Merkle trees. Some of the concepts were supplimented with example code

snippets to give you a jump start on your blockchain assignments.

In the next chapter, we will learn about Bitcoin as a blockchain use

case, and how exactly it works.

Chapter 2 How Blockchain Works

146

�References
New Directions in Cryptography

Diffie, Whitfield; Hellman, Martin E., “New Directions in

Cryptography,” IEEE Transactions on Information Theory, Vol IT-22, No 6,

https://ee.stanford.edu/~hellman/publications/24.pdf, November,

1976.

Kerckhoff ’s Principle
Crypto-IT Blog, “Kerckhoff’s Principle,” www.crypto-it.net/eng/

theory/kerckhoffs.html.

Block Cipher, Stream Cipher and Feistel Cipher
http://kodu.ut.ee/~peeter_l/teaching/kryptoi05s/streamkil.pdf.

www.cs.utexas.edu/~byoung/cs361/lecture45.pdf.

�www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/

Wk2.1.DES.pdf.

�https://engineering.purdue.edu/kak/compsec/NewLectures/

Lecture3.pdf.

Digital Encryption Standard (DES)
www.facweb.iitkgp.ernet.in/~sourav/DES.pdf.

Advanced Encryption Standard (AES)
www.facweb.iitkgp.ernet.in/~sourav/AES.pdf.

AES Standard Reference
National Institute of Standards and Technology (NIST), “Announcing

the Advanced Encryption Standard (AES),” Federal Information Processing

Standards Publication 197, http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.197.pdf, November 26, 2001.

Chapter 2 How Blockchain Works

https://ee.stanford.edu/~hellman/publications/24.pdf
http://www.crypto-it.net/eng/theory/kerckhoffs.html
http://www.crypto-it.net/eng/theory/kerckhoffs.html
http://kodu.ut.ee/~peeter_l/teaching/kryptoi05s/streamkil.pdf
http://www.cs.utexas.edu/~byoung/cs361/lecture45.pdf
http://www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/Wk2.1.DES.pdf
http://www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/Wk2.1.DES.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf
http://www.facweb.iitkgp.ernet.in/~sourav/DES.pdf
http://www.facweb.iitkgp.ernet.in/~sourav/AES.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

147

Secured Hash Standard
National Institute of Standards and Technology (NIST), “Announcing

the Advanced Encryption Standard (AES),” Federal Information Processing

Standards Publication 197, http://csrc.nist.gov/publications/fips/

fips180-4/fips-180-4.pdf, November 26, 2001.

SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions

NIST, “Announcing DraftFederl Information Processing Standard

(FIPS) 202, SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions, and Draft Revision of the Applicability Clause of FIPS

180-4, Secure Hash Standard, and Request for Comments,” https://csrc.

nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-

for-Com, May 28, 2014.

SHA-3
Paar, Christof, Pelzl, Jan, “SHA-3 and the Hash Function Keccak,”

Understanding Cryptography—A Textbook for Students and Practitioners,

(Springer, 2010), https://pdfs.semanticscholar.org/8450/06456ff132a

406444fa85aa7b5636266a8d0.pdf.

RSA Algorithm
Kaliski, Burt, “The Mathematics of the RSA Public-Key Cyptosystem,”

RSA Laboratories, www.mathaware.org/mam/06/Kaliski.pdf.

Milanov, Evgeny, “The RSA Algorithm,” https://sites.math.

washington.edu/~morrow/336_09/papers/Yevgeny.pdf. June 3, 2009.

Game Theory
Pinkasovitch, Arthur, “Why Is Game Theory Useful in Business?,”

Investopedia, www.investopedia.com/ask/answers/09/game-theory-

business.asp, December 19, 2017.

Chapter 2 How Blockchain Works

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://csrc.nist.gov/News/2014/Draft-FIPS-202,-SHA-3-Standard-and-Request-for-Com
https://pdfs.semanticscholar.org/8450/06456ff132a406444fa85aa7b5636266a8d0.pdf
https://pdfs.semanticscholar.org/8450/06456ff132a406444fa85aa7b5636266a8d0.pdf
http://www.mathaware.org/mam/06/Kaliski.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
http://www.investopedia.com/ask/answers/09/game-theory-business.asp
http://www.investopedia.com/ask/answers/09/game-theory-business.asp

148

Proof of Stake Algorithm
Buterin, Vitalik, “A Proof of Stake Design Philosophy,” Medium,

https://medium.com/@VitalikButerin/a-proof-of-stake-design-

philosophy-506585978d51, December 30, 2016.

Ray, James, “Proof of Stake FAQ,” Ethereum Wiki, https://github.

com/ethereum/wiki/wiki/Proof-of-Stake-FAQ.

Enabling blockchain Innovations with Pegged Sidechains
Back, Adam, Corallo, Matt, Dash Jr, Luke, et al., “Enabling blockchain

Innovations with Pegged Sidechains,” https://blockstream.com/

sidechains.pdf.

Chapter 2 How Blockchain Works

https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf

149© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_3

CHAPTER 3

How Bitcoin Works
Blockchain technology is all the rage these days, thanks to Bitcoin!

blockchain as we know it is a gift of Bitcoin and its inventor, Satoshi

Nakamoto, to the whole world. If you are wondering who Satoshi

Nakamoto is, it is the name used by the unknown person or persons who

originated Bitcoin. We suggest that you understand and appreciate the

wonderful technology behind Bitcoin without searching for the inventor.

Learning the technical fundamentals of Bitcoin will enable you to

understand the other blockchain applications that are there in the market.

Since Bitcoin testified to the robustness of blockchain technology for

years, people now believe in it and have started exploring other possible

ways to use it. In the previous chapter, we already got the hang of how

blockchain works at a technical level, but learning Bitcoin can give

you the real taste of blockchain. You may want to consider Bitcoin as a

cryptocurrency use case of blockchain technology. So, this chapter will not

only help you understand how Bitcoin works in particular, but also give

you a perspective of how different use cases can be built using blockchain

technology, the way Bitcoin is built.

We will cover Bitcoin in greater detail throughout this chapter and

while doing so, a lot of blockchain fundamentals will also be clarified

with more practical insights. If you are already familiar with the Bitcoin

fundamentals, you may skip this chapter. Otherwise, we advise you to

follow through the concepts in the order presented. This chapter explains

what Bitcoin is, how it is designed technically, and provides an analysis of

some inherent strengths and weaknesses of Bitcoin.

150

�The History of Money
Ever wonder what money is and why it even exists? Money is primarily the

medium of exchange for exchanging value, that is anything of value. It has

a history to it. We will quickly recap the history to be able to understand

how money has eveolved to how we know it today, and how Bitcoin

furthers it to the next level.

Not everyone has everything. In the good old days when there were

no notions of currency or money, people still figured out how they could

exchange what they had in surplus for what they needed from someone

else. Those were the days of the barter system. Wheat in exchange for

peddy or oranges for lemons was the system. This was all good, but what

if someone having wheat needs medicine that the other person does not

have? Example: Alice has wheat and needs medicine, but Bob knows

she has access to someone who has oranges, and Bob needs wheat. In

this situation, the exchange is not working out. So, they have to find a

third person, Charlie, who might need oranges and as well has surplus

medicine. A pictorial representation of this scenario is shown in Figure 3-1.

Figure 3-1.  The primitive barter system

Chapter 3 How Bitcoin Works

151

It was always tough to find a person such as Charlie in the previous

example who could fit in the puzzle so easily; this problem had to be

solved. So, people started thinking of a commoditized system of value

exchange. There were a few items that everyone would need, such as

milk, salt, seeds, sheep, etc. This system almost worked out! Soon after,

people realized that it was quite inconvenient and difficult to store such

commodities.

Eventually, better techniques were found to be used as financial

instruments, such as metal pieces. People valued the rare metals more

than the usual ones. Gold and silver metals topped the list as they wouldn’t

corrode. Then countries started minting their own currency (metal coins

with different weights) with their official seal in them. Though the metal

pieces and coins were better than the previous system, as one could

easily store and carry them, they were vulnerable to theft. Temples came

into rescue as people trusted in them and had a strong belief that no one

would steal from temples. The priests would give a receipt to the person

depositing gold that would mention the amount of gold/silver received, as

a promise to acknowledge their deposit and give back to the bearer of the

receipt the same when they returned. The person bearing the receipt could

circulate the receipt in the market to get what they wanted. This was the

beginning of our banking system. The receipt worked, as the fiat currency

and the temples played the role of centralized banks that people trusted.

Refer to Figure 3-2 to understand how this system appeared back then.

Chapter 3 How Bitcoin Works

152

In the system just mentioned, currency was always backed by some

precious metal such as gold or silver. This system continued even after the

goverenments and banks replaced the temples. This is how the commodity

currency came up in the market to enable a universal medium of value

exchange for the goods and services. Whatever currency was there in those

days was all backed by gold/silver.

Slowly, “fiat currency” was introduced by the governments as legal

tender, which was no longer backed by gold or silver. It was purely trust

based, in the sense that people did not have a choice but to trust the

government. Fiat currency does not have any intrinsic value, it is just

backed by the government. Today, the money that we know of is all fiat

currencies. So, the value of money today depends on the stability and

performance of the governments in whose jurisdiction the currency

is being issued and used. Those paper currencies were the money

themselves and there was nothing more valubale in the banks. This was

the state of banking systems and at the same time the digital world was just

forming up.

Figure 3-2.  The beginning of the banking era

Chapter 3 How Bitcoin Works

153

Around the 1990s, the Internet world was gaining momentum and the

banking systems were getting digitized. Since some level of discomfort was

still there with fiat currencies, since they were perishable and vulnerable

to theft, banks assured that people could just go digital! This was the era

when even the paper notes weren’t required to be printed. Money became

the digital numbers in the computer systems of banks. Today, if every

account holder went to their respectve bank and demanded the currency

notes for the amount of money they hold in their accounts, the banks

would be in big trouble! The total real money in circulation is extremely

marginal compared with the amount of digital money worldwide.

�Dawn of Bitcoin
In the first chapter we looked at the technology aspects of the Internet

revolution, and in the previous section of this chapter we looked at

the evolution of money. We should now look at them side by side to

understand Satoshi Nakamoto’s perspective behind designing Bitcoin—a

cryptocurrency. In this section and elsewhere in this text, we will try to

elaborate on Satoshi’s statements in the paper he wrote on Bitcoin.

We learned about temples and then governments and banks for the

role they played in the currency systems that eveolved from barter systems.

Even today, the situation is just the same. If you zoom in a bit on these

systems, you will find that the one pivotal thing that makes these systems

stable is the “trust” element. People trusted temples, and then they trusted

governments and banks. The entire commerce on the Internet today relies on

the centralized, trusted third parties to process payments. Though the Internet

was designed to be peer-to-peer, people build centralized systems on it to

reflect the same old practice. Well, technically building a peer-to-peer system

back in the 2000s was quite tough considering the maturity of technology

during that time. Consequently, the cost of transactions, time taken for a

transaction to settle, and other issues due to centralization were obvious. This

wasn’t the case with physical currencies, as transactions meant settlement.

Chapter 3 How Bitcoin Works

154

Could there be a digital currency backed by computing power, the

same way gold was used to back the money in circulation? The answer

is “Yes,” thanks to Satoshi’s Bitcoins. Bitcoins are designed to enable

electronic payments between two parties based on cryptographic proof,

and not based on trust due to intermediary third parties. It is possible

today because of the technological advancements. In this chapter, we will

see how Satoshi Nakamoto combined cryptography, game theory, and

computer science engineering fundamentas to design the Bitcoin system

in 2008. After it went live in 2009 and till today, the system is quite stable

and robust enough to sustain any kind of cyber attacks. It stood the test of

time and positioned itself as a global currency.

�What Is Bitcoin?
Blockchain offers cryptocurrency: digital money! Just as we can transact

with physical currency without banks or other centralized entities, Bitcoin

is designed to facilitate peer-to-peer monetary transactions without

trusted intermediaries. Let us look at what it is and then learn later in the

chapter how it really works. Bitcoin is a decentralized cryptocurrency that

is not limited to any nation and is a global currency. It is decentralized

in every aspect—technical, logical, as well as political. As and when the

transactions are validated, new Bitcoins get mined and a maximum of

21 million Bitcoins can ever be produced. Approximately, to reach 21

million Bitcoins, it would be take until the year 2140. Anyone with good

computing power can participate in mining and generate new Bitcoins.

After all the Bitcoins get generated, no new coins can be minted and only

the ones in circulation would be used. Note that Bitcoins do not have fixed

denominations such as the national fiat currencies. As per design, the

Bitcoins can have any value with eight decimal places of precision. So, the

smallest value in Bitcoin is 0.00000001 BTC, which is called 1 Satoshi.

Chapter 3 How Bitcoin Works

155

The miners mine the transactions to mint new coins and also consume

the transaction fee that the person willing to make a transaction is ready

to pay. When the total number of coins reaches 21 million, the miners

would validate the transactions solely for the transaction fees. If someone

tries to make a transaction without a transaction fee, it may still get mined

because it is a valid transaction (if at all it is) and also the miner is more

interested in the mining reward that lets him generate new coins.

Are you wondering what decides the value of Bitcoins? When currency

was backed by gold, it had great significance and was easy to assess

the value based on gold standards. When we say Bitcoin is backed by

the computing power that people use for mining, that is not enough to

understand how it attains its value. Here is a litle bit of economics required

to understand it.

When fiat currency was launched for the first time, it was backed by

gold. Since people believed in gold, they believed in currency as well.

After a few decades, currency was no longer backed by gold and was

totally dependent on the governments. People continued believing in it

because they themselves form or contribute to the formation of their own

government. Since the governments ensure its value, and people trust it,

so it attains that value. In an international setting, the value of currency of

specific countries depends on various factors and the most important of

them is “supply and demand.” Please keep in mind that some countries

that printed a lot of fiat currency notes went bankrupt; their economy went

down! There has to be a balance and to understand this, more economics

is needed, which is beyond the scope of this book. So, let us get back to

Bitcoins for now.

When Bitcoin was first launched, it did not have any official price or

value that people would believe. If one would sell it for some US dollars

(USD), I would never have bought those initially. Gradually when the

exchange started taking place, it developed a price and one Bitcoin was

Chapter 3 How Bitcoin Works

156

not even one USD then. Since Bitcoins are generated by a competitive and

decentralized process called “mining,” and they are generated at a fixed

rate with an upper cap of 21 million Bitcoins in total that can ever exist,

this makes Bitcoin a scarce resource. Now relating this context back to the

game of “supply and demand,” the value of Bitcoin started inflating. Slowly,

when the entire globe started believing in it, its price even skyrocketed

from a few USDs to thousands of USDs. Bitcoin adoption among the users,

merchants, start-ups, big businesses, and many others is growing like

never before because they are being used in the form of money. So, the

value of Bitcoin is highly influenced by “trust,” “adoption,” and “supply and

demand” and its price is set by the market.

Now, the question is why the value of Bitcoin is so volatile as of this

writing and fluctuates quite a lot. One obvious reason is supply and

demand. We learned that there can only be a limited number of Bitcoins

in circulation, which is 21 million, and the rate at which they get generated

is decreeasing with time. Because of this design, there is always a gap in

supply and demand, which results in this volatility. Another reason is

that Bitcoins are never traded in one place. There are so many exchanges

in so many places across the globe, and all those exchanges have their

own exchange prices. The indexes that you see gather Bitcoin exchange

prices from several exchanges and then average them out. Again, since

all these indexes do not collect data from the same set of exchanges,

even they do not match. Similarly, the liquidity factor that implies the

amount of Bitcoins flowing through the entire market at any given time

also influences the volatility in Bitcoin price. As of now, it is definitely a

high-risk asset but may get stabilized with time. Let us take a look at the

following list of factors that may influence the supply and demand of

Bitcoins, and hence their price:

•	 Confidence of people in Bitcoin and fear of uncertainty

•	 Press coverage with good and bad news on Bitcoin

Chapter 3 How Bitcoin Works

157

•	 Some people own Bitcoins and do not allow them to

flow through the market and some people keep buying

and selling to minimize risk. This is why the liquidity

level of Bitcoin keeps on changing.

•	 Acceptance of Bitcoins by big ecommerce giants

•	 Banning of Bitcoins in specific countries

If you are now wondering if there is any possibility of Bitcoin to

crash completely, then the answer is “Yes.” There are many examples of

countries whose currency systems have crashed. Well, there were political

and economic reasons for them to crash such as hyperinflation, which is

not the case with Bitcoins because one cannot generate as many Bitcoins

as they want and the total number of Bitcoins is fixed. However, there is

a possibility of technical or cryptographic failure of Bitcoins. Please note

that Bitcoin has stood the test of time since its inception in 2008 and there

is a possibility that it will grow much bigger with time, but it cannot be

guaranteed!

�Working with Bitcoins
In order to get started with Bitcoins, no technicality is needed. You just

have to download a Bitcoin wallet and get started with it. When you

download and install a wallet on your laptop or mobile, it generates your

first Bitcoin address (public key). You can generate many more, however,

and you should. It is a best practice to use the Bitcoin addresses only

once. Address reuse is an unintended practice in Bitcoin, though it works.

Address reuse can harm privacy and confidentiality. As an example, if you

are reusing the same address, signing a transaction with the same private

key, the recipient can easily and reliably determine that the address being

reused is yours. If the same address is used with multiple transactions,

they can all be tracked and finding who you are gets even easier.

Chapter 3 How Bitcoin Works

158

Remember that Bitcoin is not fully anonymous; it is said to be

pseudonymous and there are ways to trace the transaction origins that can

reveal the owners.

You have to disclose your Bitcoin address to the person willing to

transfer Bitcoins to you. This is very safe because the public key is public

anyway. We know that there is no notion of a closing balance in Bitcoin

and all records are there as transactions. Bitcoin wallets can easily

calculate their spendable balance, as they have the private keys of the

corresponding public keys on which transactions are received. There are

a variety of Bitcoin wallets available from so many wallet providers. There

are mobile wallets, desktop wallets, browser-based web wallets, hardware

wallets, etc., with varying levels of security. You need to be extremely

careful in the wallet security aspect while working with Bitcoins. The

Bitcoin payments are irreversible.

You must be wondering how secured are these wallets. Well, different

wallet types have different leves of security and it depends on how you

want to use it. Many online wallet services suffered from security breaches.

It is always a good practice to enable two-factor authentication whenever

applicable. If you are a regular user of Bitcoins, it may be a good idea to

use small amounts in your wallets and keep the remainder separately in a

safe environment. An offline wallet or cold wallet that is not connected to

the network provides the highest level of security for savings. Also, there

should be proper backup mechanisms for your wallet in case you lose your

computer/mobile. Remember that if you lose your private key, you lose all

the money associated with it.

If you have not joined Bitcoin as a miner running a full node, then

you can just be a user or a trader of Bitcoins. You will definitely need an

exchange from where you can buy some Bitcoins with your US dollars or

other currencies as accepted by the exchanges. You should prefer buying

Bitcoins from a legitimate and secured exchange. There have been many

examples of exchanges that suffered from security breaches.

Chapter 3 How Bitcoin Works

159

�The Bitcoin Blockchain
We already looked at the basic blockchain data structure in the previous

chapter and also covered the basic building blocks of a blockchain data

structure such as hashing techniques and asymmetric cryptography.

We will learn the specifics of Bitcoin blockchain in this section.

The Bitcoin blockchain, like any other blockchain, has a similar

blockchain data structure. The Bitcoin Core client uses the LevelDB

database of Google to store the blockchain datastructure internally. Each

block is identified by its hash (Bitcoin uses the SHA256 hashing algorithm).

Every block contains the hash of the previous block in its header section.

Remember that this hash is not just the hash of the previous header but the

entire block including header, and it continues all the way to the genesis

block. The genesis block is the beginning of any blockchain. Typically, a

Bitcoin blockchain looks as shown in Figure 3-3.

As you can see in this blockchain, there is a block header part that

contains the header information and there is a body part where the

transactions are bundled in every block. Every block’s header contains the

hash of the previous block. So, any change in any block in the chain will

not be so easy; all the subsequent blocks have to be changed accordingly.

Example: If someone tries to change a previous transaction that was

captured in, say, block number 441, after changing the transaction,

Figure 3-3.  The Bitcoin blockchain

Chapter 3 How Bitcoin Works

160

the hash of this block that is in the header of block number 442 will not

match, so it has to be changed as well. Changing the header with the new

hash will then require you to update the hash in the block header of the

next block in the sequence, which is block number 443, and this will go

on till the current block and this is tough work to do. It beccomes almost

impossible when we know that every node has it’s own copy and hacking

into all the nodes, or at least 51% of them, is infeasible.

In the blockchain, there is only one true path to the genesis block.

However, if you start from the genesis block, then there can be forks. When

two blocks are proposed at the same time and both of them are valid, only

one of them would become a part of the true chain and the other gets

orphaned. Every node builds on the longest chain, and whichever it hears

first and whichever becomes the longest chain will be the one to build on.

Such a scenario can be represented as shown in Figure 3-4.

Observe in Figure 3-4 that at block height-3, two blocks are proposed to

become block-3, but only one of them could make it to the final blockchain

and the rest got orphaned out. It is evident that at a certain block height,

there is a possibility of one or more blocks because there can as well be

some orphaned blocks at this height, so block height is not the best way to

uniquely identify a block and block hash is the right way to do so.

Figure 3-4.  Orphan blocks in true blockchain

Chapter 3 How Bitcoin Works

161

�Block Structure
The block structure of a Bitcoin blockchain is fixed for all blocks and

has specific fields with their corresponding required data. Take a look at

Figure 3-5, a birds-eye view of the entire block structure, and then we will

learn more about the individual fields later in this chapter.

A typical block structure appears as shown in Table 3-1.

Figure 3-5.  Block structure of Bitcoin blockchain

Table 3-1.  Block Structure

Field Size Description

Magic Number 4 bytes It has a fixed value 0xD9B4BEF9, which indicates

the start of the block and also that the block is from

the mainnet or the production network.

Block Size 4 bytes This indicates the size of the block. The original

Bitcoin blocks are of 1MB and there is a newer

version of Bitcoin called “Bitcoin Cash” whose block

size is 2MB.

Block Header 80 bytes It comprises much information such as Previous

Block’s hash, Nonce, Merkle Root, and many more.

(continued)

Chapter 3 How Bitcoin Works

162

Let us now zoom in (Table 3-2) to the “Block Header” section of the

blocks and learn the various different fields that it maintains.

Field Size Description

Transaction
Counter

1–9 bytes

(variable

length)

It indicates total number of transactions that are

included within the block. Not every transaction is

of the same size, and there is a variable number of

transactions in every block.

Transaction
List

Variable in

number but

fixed in size

It lists all the transactions that are taking place in a

given block. Depending on block size (whether 1MB

or 2MB), this field occupies the remaining space in

a block.

Table 3-1.  (continued)

Table 3-2.  Block Header Components

Field Size Description

Version 4 bytes It indicates the version number of Bitcoin protocol.

Ideally each node running Bitcoin protocol should

have the same version number.

Previous Block
Hash

32 bytes It contains the hash of the block header of the

previous block in the chain. When all the fields in the

previous block header are combined and hashed with

SHA256 algorithm, it produces a 256-bit result, which

is 32 bytes.

(continued)

Chapter 3 How Bitcoin Works

163

The block fields and their corresponding explanations as presented in

the previous tables are good enough to start with, and we will explore more

of only a few fields that require a more detailed explanation.

�Merkle Tree

We have covered the concept of Merkle trees in the previous chapter.

In this section, we will just take a look at how Bitcoin uses Merkle trees.

Each block in a Bitcoin blockchain contains the hash of all the transactions,

and the Merkle root of all these transactions is included in the header of

Field Size Description

Merkle Root 32 bytes Hashes of the transactions in a block form a Merkle

tree by design, and Merkle root is the root hash of

this Merkle tree. If a transaction is modified in the

block, then it won’t match with the Merkle root when

computed. This way it ensures that keeping the hash

of the previous block’s header is enough to maintain

the secured blockchain. Also, Merkle trees help

determine if a transaction was a part of the block in

O(n) time, and are quite fast!

Timestamp 4 bytes There is no notion of a global time in the Bitcoin

network. So, this field indicates an approximate time

of block creation in Unix time format.

Difficulty
Target

4 bytes The proof-of-work (PoW) difficulty level that was set

for this block when it was mined

Nonce 4 bytes This is the random number that satisfied the PoW

puzzle during mining.

Table 3-2.  (continued)

Chapter 3 How Bitcoin Works

164

that block. In a true sense, when we say that each block header contains

the hash of the entire previous block, the trust is that it just contains the

hash of the previous block’s header. Nonetheless, it is enough, because

the header already contains the Merkle root. If a transaction in the block

is altered, the Merkle root will not match anymore and such a design still

preserves the integrity of the blockchain.

The Merkle tree is a tree data structure of the hash of the transactions.

The “Leaf Nodes” in the Merkle tree actually represent the hash of the

transactions, whereas the root of the tree is the Merkle root. Refer to

Figure 3-6.

Notice that the hash of the seven transactions A, B, C, D, E, F, and G

form the leaf of the tree. Since there are seven transactions but the total

leaf nodes should be even in a binary tree, the last leaf node gets repeated.

Each transaction hash of 32 bytes (i.e., 256 bits) is calculated by applying

SHA256 twice to the transactions. Similarly, the hash of two transactions

are concatenated (62 bytes) and then hashed twice with SHA256 to get the

parent hash of 32 bytes.

Figure 3-6.  Merkle-tree representation

Chapter 3 How Bitcoin Works

165

Only the Merkle path to a transaction is enough to verify if a

transaction was a part of any block and is quite efficient therefore. So, the

actual blockchain can be represented as shown in Figure 3-7.

�Difficulty Target

The difficulty target is the one that drives the PoW in Bitcoin. The idea is

that once a block is filled with valid transactions, the hash of that block’s

header needs to be calculated to be less than the difficulty target in the

same header. The nonce in the header starts from zero. The miner has

to keep on incrementing this nonce and hashing the header till the hash

value is less than the target.

The difficulty bits of four bytes (32 bits) in the headers define what

would be the target value (256 bits) for that block to be mined. The nonce

should be found such that the hash of the entire header should be less

than the target value. Remember that the lower the target value, the more

difficult it would be to find a header hash that would be less than the

target. Since Bitcoin uses SHA256, every time you hash a block header,

the output is any number between 0 and 2256, which is quite a big number.

Figure 3-7.  Merkle tree representation

Chapter 3 How Bitcoin Works

166

If with your nonce the hash is less than the target, the block will be

accepted by the entire network, else you have to try with a different nonce

till it satisfies the condition. At this point, it is still not clear how the

difficulty target is calculated with the difficulty bits in each header.

The target can be derived from the four-byte (8 hexadecimal numbers)

difficulty bits in the header using a predefined formula that every node has

by default, as it came along with the binaries during installation. Following

is the formula to compute the difficulty:

target = coefficient * 2(8 * (exponent – 3))

Notice that there is a “coefficient” and there is also an “exponent” term

in this formula, which are present as a part of the four-byte difficulty bits.

Let us take an example to explain this better. If the four-byte difficulty bits

in hex form are 0x1b0404cb, then the first two hex digits form the exponent

term, which is (0x1b), and the remaining form the coefficient term, which

is (0x0404cb) in this case. Solving for the target formula with these values:

target = 0x0404cb * 2(0x08 * (0x1b – 0x03))

target = 0x00000000000404

CB00

Bitcoin is designed such that every 2,016 blocks should take two weeks

to be generated and if you do the math, it would be around ten minutes

for every block. In this asynchronous network, it is difficult to program

like this where every block takes exactly ten minutes with the kind of PoW

mechanism in place. In reality, it is the average time for a block, and there

is a possibility that a Bitcoin block gets generated within a minute or it may

very well take 15 minutes to be generated. So, the difficulty is designed to

increase or decrease depending on whether it took less or more than two

weeks to find 2,016 blocks. This time taken for 2,016 blocks can be found

using the time present in the timestamp fields of every block header.

If it took, say, T amount of time for 2,016 blocks, which is never exactly

Chapter 3 How Bitcoin Works

167

two weeks, the difficulty target in every block is multiplied by (T / 2 weeks).

So, the result of [difficulty target × (T / 2 weeks)] will be increased if T was

less and decreased otherwise.

It is evident by now that the difficulty target is adjustable; it could

be set more difficult or easier depending on the situation we explained

before. You must be wondering, who adjusts this difficulty when the

system is decentralized? One rule of thumb that you must always keep

in mind is that whatever happens in such a decentralized design has to

happen individually at every node. After every 2,016 blocks, all the nodes

individually compute the new difficulty target value and they all conclude

on the same one because there is already a formula defined for it. To have

this formula handy, here it is once again:

 New Target= Old Target * (T / 2 weeks)

⇨ �New Target= Old Target * (Time taken for 2016 Blocks in

Seconds / 12,09,600 seconds)

Note T he parameters such as 2,016 blocks and TargetTimespan of
two weeks (12,09,600 seconds) are defined in chainparams.cpp as
shown following:

consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; // two weeks

consensus.nPowTargetSpacing = 10 * 60;

consensus.nMinerConfirmationWindow = 2016; //

nPowTargetTimespan / nPowTargetSpacing

Note here that it is (T / 2 weeks) and not (2 weeks / T). The idea is to

decrease the difficulty target when it is required to increase the complexity,

so it takes more time. The lesser the target hash, the more difficult it gets

to find a hash that is less than this target hash. Example: If it took ten days

to mine 2,016 blocks, then (T / 2 weeks) would be a fraction, which when

Chapter 3 How Bitcoin Works

168

multiplied by “Old Target” further reduces it and “New Target” would be

a value less than the old one. This would make it difficult to find a hash

and would require more time. This is how the time between blocks is

maintained at ten minutes on average. Imagine that the difficulty target

was fixed and not adjustable; what do you think the problem would be?

Remember that the computation power of the hardware increases with

time as more powerful computers are introduced for block mining.

A situation where 10s or 100s or even 1,000s of blocks are proposed at the

same time is not desirable for the network to function properly. So, the

idea is that, even when more and more powerful computing nodes enter

into the Bitcoin network, avrage time required to propose a block should

still be ten minutes by adjusting the difficulty target. Also, a miner’s

chances of proposing a block depends on how much hash power they have

compared with the global hash power of all miners included.

Are you thinking why ten minutes, and why not 12 minutes? Or why

not six minutes? Just keep in mind that there has to be some time gap for

all the nodes in a decentralized asynchronous system to agree on it.

If there was no time gap, so many blocks would arrive with just fractional

delays and there wouldn’t be any optimization benefit of blockchain as

compared with transaction chain. Every transaction is a broadcast and

every new block is also a broadcast. Also, the orderliness that a blockchain

brings to the system is quite infeasible by the transaction chain. With the

concept of blocks, it is possible to include the unrelated transactions from

any sender to any receiver in blocks, which is not easy to maintain with the

transaction chain. One valid block broadcast is more efficient compared

with individual transaction broadcast after validation. Now, coming back

to the discussion of ten minutes, it can very well be a little less or a little

more but there should certainly be some gap between two consecutive

blocks. Imagine that you are a miner and mining block number 4567, but

some other miner got lucky and proposed block number 4567, which you

just received while solving the cryptographic puzzle. What you would do

now is validate this block and if it is valid, add it to your local copy of the

Chapter 3 How Bitcoin Works

169

blockchain and immediately start on mining the 4568. You wouldn’t want

someone else to propose 4568 already while you just finished validating

block 4567, which you received a little later compared with other miners

due to network latency. Now the question is: is this 10 minutes the best

possible option? Well, it is difficult to explain this in one word, but a ten-

minute gap addresses a lot of issues due to an asynchronous network, time

delays, packet drops, system capacity, and more. There is a possibility that

it could be optimized further to, say, five minutes or so, which you can see

in many new cryptocurrencies and other blockchain use cases.

�The Genesis Block
The very first block as you can see in the following code, the block-0, is called

the genesis block. Remember that the genesis block has to be hardcoded

into the blockchain applications and so is the case with Bitcoin. You can

consider it as a special block because it does not contain any reference to the

previous blocks. The Bitcoin’s genesis block was created in 2009 when it

was launched. If you open the Bitcoin Core, specifically the file chainparams.

cpp, you will see how the genesis block is statically encoded. Using a

command line reference to Bitcoin Core, you can get the same information

by querying with the hash of the genesis block as shown below:

$ bitcoin-cli getblock 000000000019d6689c085ae165831e934

ff763ae46a2a6c172b3f1b60a8ce26f

Output of the preceding command:

{

 �"hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6

c172b3f1b60a8ce26f",

 "confirmations" : 308321,

 "size" : 285,

 "height" : 0,

Chapter 3 How Bitcoin Works

http://bit.ly/1x6rcwP
http://bit.ly/1x6rcwP

170

 "version" : 1,

 �"merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618

f76673e2cc77ab2127b7afdeda33b",

 �"tx" : ["4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc

77ab2127b7afdeda33b"],

 "time" : 1231006505,

 "nonce" : 2083236893,

 "bits" : "1d00ffff",

 "difficulty" : 1.00000000,

 �"nextblockhash" : "00000000839a8e6886ab5951d76

f411475428afc90947ee320161bbf18eb6048"

}

If you convert the Unix time stamp as shown in the previous output, you

will find this date-time information: Saturday 3rd January 2009 11:45:05 PM.

You can as well get the same information from the website https://

blockchain.info. Just navigate to this site and paste the hash value in the

right top search box and hit “Enter.” Here is what you will find (Table 3-3)

Table 3-3.  Transaction Information

Summary

Number Of Transactions 1

Output Total 50 BTC

Estimated Transaction Volume 0 BTC

Transaction Fees 0 BTC

Height 0 (Main Chain)

Timestamp 2009-01-03 18:15:05

Received Time 2009-01-03 18:15:05

(continued)

Chapter 3 How Bitcoin Works

https://blockchain.info/
https://blockchain.info/
https://blockchain.info/block-height/0

171

In this Block-0, there is just one transaction, which is a coinbase

transaction. Coinbase transactions are the ones that the miners get.

There are no inputs to such transactions and they can only generate new

Bitcoins. If you explored the transactions associated in this block, here is

how it would look (Figure 3-8).

Table 3-4.  Hash Information

Hashes

Hash 000000000019d6689c085ae165831e934ff763ae46a

2a6c172b3f1b60a8ce26f

Previous Block 000

00000000000000000000000

Next Block(s) 00000000839a8e6886ab5951d76f411475428afc

90947ee320161bbf18eb6048

Merkle Root 4a5e1e4baab89f3a32518a88c31bc87f618f76673e

2cc77ab2127b7afdeda33b

Summary

Relayed By Unknown

Difficulty 1

Bits 486604799

Size 0.285 kB

Weight 0.896 kWU

Version 1

Nonce 2083236893

Block Reward 50 BTC

Table 3-3.  (continued)

Chapter 3 How Bitcoin Works

https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/block/00
https://blockchain.info/block/00
https://blockchain.info/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
https://blockchain.info/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
https://blockchain.info/blocks/Unknown

172

�The Bitcoin Network
The Bitcoin network is a peer-to-peer network, as discussed already. There

is no centralized server in such a system and every node is treated equally.

There are no master–slave phenomena and no hierarchy as well in such

a system. Since this runs on the Internet itself, it uses the same TCP/IP

protocol stack as shown in Figure 3-9.

The above diagram shows how Bitcoin networks coexist on the same

Internet stack. The Bitcoin network is quite dynamic in the sense that

nodes can join and leave the netwrk at will and the system still works. Also,

despite being asynchronous in nature and with network delays and packet

drops, the system is very robust—thanks to the design of Bitcoin!

Figure 3-9.  The Bitcoin blockchain network on the Internet

Figure 3-8.  Coinbase transaction in Block-0

Chapter 3 How Bitcoin Works

173

The Bitcoin network is a decentralized network with no central point of

failure and as well no central authority. With such a design, how would you

assess how big the Bitcoin network is? There is no proper way of estimating

this as the nodes can join and leave at will. However, there are some

attempts at researching the Bitcoin network, and some claim that there are

close to 10,000 nodes that are mostly connected to the network all the time

and there can be millions of nodes at a time.

Every node in the Bitcoin network is equal in terms of authority and

has a flat structure, but the nodes can be full nodes or lightweight nodes.

The full nodes can do almost every permissible activity in the Bitcoin

system, such as mining transactions and broadcasting transactions,

and can provide wallet services. The full nodes also provide the routing

function to participate in and maintain the Bitcoin network. To become

a full node, you have to download the entire blockchain database that

containss the entire transactions taken place till now. Also, the node

must stay permanently connected to the Bitcoin network and hear all

transactions taking place. It is important that you have a good network

connection, good storage (at least 200GB), and at least 2GB RAM dedicated

to it. This requirement may further change and require more resources

with time.

On the other hand, lightweight nodes cannot mine new blocks but can

verify transactions by using Simplified Payment Verification (SPV). They

are otherwse termed “thin clients.” A vast majority of nodes in the Bitcoin

network are SPVs. They can as well participate in pool mining where there

are many nodes trying to mine new blocks together. Lightweight nodes can

help verify the transactions for the full nodes. A good example of an SPV is

a wallet (the client). If you are running a wallet and someone sends money

to you, you can act as a node in the Bitcoin network and download the

relevant transactions to the one made to you so you can check if the person

sending you Bitcoins actually owned them.

Chapter 3 How Bitcoin Works

174

It is important to note that an SPV is not as secured as a fully validating

node because it usually contains the block headers and not the entire

blocks. As a result, SPVs cannot validate transactions since they don’t

have them for a block and also because they do not have all the unspent

transaction outputs (UTXOs) except for their own.

�Network Discovery for a New Node
Now think about, when a new node wants to join the network, how would

it contact the network? It is not an intranet with a 192.168.1.X network

where you can broadcast to the IP 192.168.1.255 so that whichever

computer is a part of the 192.168.1.X network gets the broadcast message.

The network switches are designed to allow such broadcast packets.

However, remember that we are talking about the Internet, which Bitcoin

is sitting on. If you are running a node in London, there is a possibility that

there are other nodes in London, Russia, Ireland, the United States, and

India and all of them are connected through the Internet with some public

facing IP address.

The question here is that when a fresh node joins the network, how

does it figure out the peer nodes? There is no central server somewhere to

respond to their request the way a typical Internet-based web application

works. Blockchain is decentralized, remember? When started for the first

time, a Bitcoin Core or BitcoinJ program does not have the IP address of

any full node. So, they are equipped with several methods to find the peers.

One of them is DNS seeds. Several DNS seeds are hardcoded in them.

Also, several host names are maintained in the DNS system that resolve

to a list of IP addresses that are running the Bitcoin nodes. DNS seeds are

maintained by Bitcoin community members. Some community members

provide static DNS seeds by manually entering the IP addresses and port

numbers. Also, some community members provide dynamic DNS seed

servers that can automatically get the IP addresses of active Bitcoin nodes

that are running on default Bitcoin ports (8333 for mainnet and 18333

Chapter 3 How Bitcoin Works

175

for testnet). If you perform NSLOOKUPs on the DNS seeds, you will get a

bunch of IP addresses running Bitcoin nodes.

The clients (Bitcoin Core or BitcoinJ) also maintain a hardcoded

list of IP addresses that point to some (not one!) stable Bitcoin nodes.

Such nodes can be called bootstrap nodes whose endpoints are already

available with the source code itself. Every time one downloads the

binaries, a fresh list of active nodes get downloaded along with the

binaries. Once a Bitcoin node connection is established, it is very easy to

pull the list of other Bitcoin nodes active at that point in time. A pictorial

representation of how a new node becomes a part of the network can be

found in the following figures.

Step-1:
Imagine that there were six nodes active at some point in time in the

Bitcoin network. Refer to Figure 3-10.

Step-2:
There is a new node, say, a seventh node that just showed up and

is trying to join the existing Bitcoin network, but does not have any

connection yet. Refer to Figure 3-11.

Figure 3-10.  Bitcoin network in general

Chapter 3 How Bitcoin Works

176

Step-3:
The seventh node will try to reach out to as many nodes as it can either

using DNS seeds or using the list of stable Bitcoin nodes in the list that it

has—as shown in Figure 3-12.

In the diagram, we have skipped the DNS resolution part. It is the

same as when you browse any website with its name and post DNS

resolution the IP address is retrieved, which is then used as the destination

Figure 3-12.  New Bitcoin node contacts some peers

Figure 3-11.  A new node trying to join the network

Chapter 3 How Bitcoin Works

177

webserver’s address to send TCP packets to. To connect to a new peer,

the node establishes a TCP connection on port 8333 (port 8333 is well

known for Bitcoins but could be different). Then the two nodes handshake

with information such as version number, time, IP addresses, height of

blockchain, etc. The actual Bitcoin code for “Version” message defined in

net.cpp is as shown in the following:

PushMessage("version", PROTOCOL_VERSION, nLocalServices,

nTime, addrYou, addrMe,

 �nLocalHostNonce, FormatSubVersion(CLIENT_NAME,

CLIENT_VERSION,

 std::vector<string>()), nBestHeight, true);

Through this Version message, the compatibility between the two

nodes is checked as the first step toward further communication.

Step-4:
In the fourth step, the requested nodes will respond with the list of

IP addresses and corresponding port numbers of the other active Bitcoin

nodes that they are aware of. Please note that it is possible for some of

active nodes to not be aware of each and every Bitcoin node in the network

at any time. The port number is important because once the TCP packets

reach the destination node, it is the port number that is used by the

operating system to direct the message to the correct application/process

running on the system. Please refer to Figure 3-13.

Chapter 3 How Bitcoin Works

178

Note that, only one peer may be enough to bootstrap the connection

of a node to the Bitcoin network; the node must continue to discover and

connect to new peers. This is because nodes come and go at will and no

connection is reliable.

Step-5:
In the fifth step, the new seventh node establishes connection with

all the reachable Bitcoin nodes, depending on the list it received from the

nodes contacted in the previous step. Figure 3-14 represents this.

Figure 3-13.  Peer Bitcoin nodes respond to the network request by a
new node

Chapter 3 How Bitcoin Works

179

�Bitcoin Transactions
Bitcoin transactions are the fundamental building blocks of the Bitcoin

system. There are basically two broader categories of Bitcoin transactions:

•	 Coinbase transaction: Every block in Bitcoin

blockchain contains one coinbase transaction included

by the miners themselves to be able to mine new coins.

They do not have control of how many coins they can

mine in every block because it is controlled by the

network itself. It started with 50 BTC in the beginning

and keeps halving till it reaches 21 Million Bitcoins in

total.

•	 Regular transactions: The regular transactions are

very similar to currency exchanges in general, where

one is trying to transact some amount of money that

they own with another. Typically, in Bitcoin, everything

is present as transactions. To spend some amount, one

has to consume previous transaction(s) where they

Figure 3-14.  A new node becomes a part of the Bitcoin network

Chapter 3 How Bitcoin Works

180

received that amount—these are regular transactions in

Bitcoin. Our main focus in this chapter will be on these

regular transactions.

Each owner of a Bitcoin can transfer the coin to someone else by

digitally signing a hash of the previous transaction where they had

received the Bitcoin along with the public key of the recipient. The payee

or the recipient already has the public key of the payer so they can verify

the transaction. The following figure (Figure 3-15) is from the white paper

of Satoshi Nakamoto that pictorially demonstrates how it works.

Figure 3-15.  Bitcoin transaction

Notice only the highlighted Owner-2 section in the diagram. Since

Owner-1 is initiating this transaction, he is using his private key for signing

the hash of two items: one is the the previous transaction where he

himself received the amount and the second is Owner-2’s public key. This

signature can be easily verified using the public key of Owner-1 to ensure

that it is a legitimate transaction. Similarly, when Owner-2 will initiate

Chapter 3 How Bitcoin Works

181

a transfer to Owner-3, he will use his private key to sign the hash of the

previous transaction (the one he received from Owner-1) along with the

public key of Owner-3. Such a transaction can be, and will be, verified by

anyone who is a part of the network. Obviously because every transaction

is broadcast, most of the nodes will have the entire history of transactions

to be able to prevent double-spend attempts.

There is no principle of closing balance in a Bitcoin network, and the

total amount one holds is the summation of all incoming transactions to

the public addresses you own. You can create as many public addresses

as you want. If you have ten public addresses, then whatever transactions

were made to that public address, you can spend those transactions

(unspent transactions or UTXOs) using your private key. If you have to

spend, say, five Bitcoins, you have a coupe of choices:

•	 Use one of the previous transactions where you

received five or more Bitcoins. Transfer five Bitcoins to

the recepient, some amount as transaction fee and the

remainder to yourself. Refer to Figure 3-16.

•	 Use multiple previous transactions that you had

received that would sum up to more than five Bitcoins.

Transfer five Bitcoins to the recepient, some amount as

transaction fee and the remainder to yourself. Refer to

Figure 3-17.

Figure 3-16.  Bitcoin transaction with one transaction input

Chapter 3 How Bitcoin Works

182

As you can see, every transaction takes as input the previous

transaction(s). There is no account maintained that says you have eight

BTC, and you can spend anything below this amount; if you spend five

BTC, the remaining balance would be three BTC. In Bitcoin, everything

is a transaction where there are inputs and outputs. If the outputs are not

spent yet, they are the UTXOs.

We are aware that every transaction in the network is broadcast to

the entire network. Whether someone is maintaining a node or not,

they can still make a transaction and that transaction is published to all

the accessible Bitcoin nodes. The receiver Bitcoin nodes then further

broadcast the transactions to other nodes and the entire network is usually

flodded with transactions. This is sometimes referred to as the gossip

protocol and plays an important role in preventing double-spend attacks.

Recollect from Chapter 2 that the only way to prevent double-spend is to

be aware of all transactions.

Each node maintains a set of all the transactions that they hear about

and broadcasts only the new ones, which were not a part of the list already.

Nodes maintain the transactions in the list till the time the transaction

gets into a block and is a part of the blockchain. This is because there is

a chance that even if a block has all valid transactions and is proposed as

a valid block, it can still get orphaned by not being a part of the longest

chain. Once it is confirmed that the block is now a part of the longest

chain, the transactions that are there in that block are taken off from the

Figure 3-17.  Bitcoin transaction with multiple transactions input

Chapter 3 How Bitcoin Works

183

list of transactions. Each full node in the Bitcoin network must maintain

the entire list of unspent transactions (UTXOs) even though they are in

the millions. If a transaction is in the list of UTXOs, then it may not be a

double-spend attempt. Upon confirming a transaction is not a double-

spend attack and also validating the transactions from other perspectives,

a node broadcasts such transactions. If you are wondering how fast it

would be to search millions of UTXOs to check for double-spend, you

are on track. Since the transaction outputs are ordered by their hashes,

searching for an item in an ordered hash list is quite fast.

Let us now think and dig deeper into a double-spend scenario. It is

very possible that Alice (A) tries to pay Bob (B) and Charlie (C) the same

transaction (input to a transaction is a previous transaction and there is

no concept of closing balance). Such a scenario would appear as shown in

Figure 3-18.

Notice in the figure the following scenarios:

•	 A is trying to spend the same transaction to B and C.

•	 Node-2 received the transaction A Tx(1234) --> B and

Node-3 received the transaction A Tx(1234) --> C.

Figure 3-18.  A double-spend transaction scenario in Bitcoin network

Chapter 3 How Bitcoin Works

184

•	 For Node-2 and Node-3, their respective transactions

received were legitimate transactions.

•	 When Node-3 tries to broadcast the transaction

A Tx(1234) --> C to Node-2 (every node broadcasts new

transactions), Node-2 would refuse this transaction

because it already has a transaction A Tx(1234) --> B

with the same input transaction Tx(1234).

•	 Similar things happen with other nodes as well, and

they may have either the transaction “A Tx(1234) --> B”

or “A Tx(1234) --> C”, whichever reached them faster,

but not both.

•	 During mining, whichever node gets to propose

the block will include the transaction it has. This

transaction would be a part of the blockchain and the

rest of the nodes that are holding the other transaction

would simply drop the transaction with Tx(1234)

because it will no longer be a UTXO.

�Consensus and Block Mining
In the previous section we looked at granular transactions. We will

learn how the transactions are bundled together to form a block and

a consensus is achieved among nodes, so the entire network accepts

that block to extend the blockchain. Note that “block mining” refers to

successfully creating a new block in the blockchain. In Bitcoin, it is the

distributed PoW consensus algorithm that helps mine new blocks by

maintaining decentralization. Achieving distributed consensus in such

a network is very difficult. Though it has been around for decades for

distributed systems such as Facebook, Google, Amazon, and many more

because they have millions of servers that require consistency in the

Chapter 3 How Bitcoin Works

185

data they store, the term consensus is very much popularized because of

Bitcoins. We will get into the nuts and bolts of consensus and mining in

this chapter.

First, just keep in mind that everything in a Bitcoin network is

represented as transactions. If you want to make a transaction, you

have to consume one or more previous transactions as input and make

another transaction. We already know that one has to sign a transaction

using their private key to ensure that the right person is making the

transaction. Despite such cryptographic security, can’t that person sign a

transaction that they already spent? Example: Alice received ten Bitcoins

in a transaction with transaction number 1234. She can very well spend

the same transaction 1234 and give away those ten Bitcoins to Bob and

Charlie. Since she will sign with her private key, which means it is an

authentic transaction, what do you think can prevent her from double-

spending? Please note that there is no way in Bitcoin that you can prevent

her from attempting to make a double-spend, but the system is designed

so that such an attempt will not be successful. The only way to prevent

such attempts is to be aware of all the transactions that are taing place.

This is why all transactions in Bitcoin are broadcast to the entire network.

Once a transaction is spent, it is no longer a part of the UTXOs and a new

transaction number is generated to be a part of the UTXO, which only the

recipient can spend. This is the way nodes can validate transactions.

Also, the only way you can prevent a double-spend attack is by

knowing all the transactions. When you are aware of all transactions, you

would know the spend and the UTXOs. When a new block is proposed

by a miner, it is required that all the transactions in the block are valid.

Does it mean that the node proposing a block cannot include a invalid

transaction? The answer is “Yes.” They can certainly inject a fraudulent

transaction but the rest of the nodes will reject it. The PoW that the

node would have done (we will get into the details shortly) by spending

computer resources and electricity would be in vain! So, a node would

never want to propose an invalid block, thanks to the PoW consensus.

Chapter 3 How Bitcoin Works

186

Despite not having a notion of global time, observe that the transactions

are clubbed together to form a block that becomes a part of blockchain,

more blocks get added to the chain one by one, and there is an order! Note

carefully that the order in which the transactions took place is preserved

by the blockchain. This way, consensus happens at block level, which

propagates all the way to granular transactions.

Based on what we have understood so far, now we know that every

node in the Bitcoin network has its own copy of blockchain, and there is

no “global blockchain” as such; it is a decentralized network after all. Each

node in all those copies of blockchains comprises many transactions. It

is also true that every node maintains a list of UTXOs and when given

a chance (A node is randomly selected—we will see how) to propose a

block, they include as many transactions as possible up to the block limit

of 1MB or 2MB. If the block successfully makes it to the blockchain, they

are removed from the list of UTXOs. Note here that every node may have

different outstanding transactions lists because there is a possibility that

some transactions are not heard by some of the nodes.

It’s time now to see how the PoW algorithm really works. We learned

about the difficulty target field in the header of each block. Every mining

node tries to solve the cryptographic puzzle with an expectation to get

lucky and propose a block. The reason they are so desperate in proposing

a block is because they get great benefits when their proposed block

becomes a part of the blockchain. Every transaction that an individual

makes, they can set aside some transaction fee for the miners. We know

that all nodes maintain the list of transactions that are not yet a part of

the blockchain and when they get a chance to propose a block, they take

as many transactions as they can and form a block. It is obvious that they

will take all those transactions that would give them the highest profit and

leave the ones with minimum or no transaction fees. It may take some time

for the transactions with low transaction fee to get into the blocks, and

Chapter 3 How Bitcoin Works

187

chances are less for the ones with no transaction fee at all. Apart from the

transaction fee, the nodes that propose a new block are rewarded with new

Bitcoins. With every successful block, new Bitcoins get generated and the

miner who proposed the block gets all of those; this is the only way new

Bitcoins get created in the Bitcoin system. This is called “block reward.”

Technically, the node that proposes a block includes a special transaction

called “coin creation” in the proposed block where the recipient address

is the one that the miner owns. When the Bitcoin was first launched,

the block reward was 50 Bitcoins (BTC). By design, there can only be

21,000,000 BTCs in total, so the block reward gets halved every 210,000

blocks. It started at 50, then it became 25, then 12.5, and it goes on this

way till at some point in time (when it reaches 21,000,000 BTCs) it trends

to zero. Following is the code snippet from Bitcoin Core (main.cpp) that

shows this halving process:

int64_t GetBlockValue(int nHeight, int64_t nFees)

{

 int64_t nSubsidy = 50 * COIN;

 int halvings = nHeight / Params().SubsidyHalvingInterval();

 // Force block reward to zero when right shift is undefined.

 if (halvings >= 64)

 return nFees;

 �// Subsidy is cut in half every 210,000 blocks which will

occur approximately every 4 years.

 nSubsidy >>= halvings;

 return nSubsidy + nFees;

}

Chapter 3 How Bitcoin Works

188

Notice in the previous code snippet how the block reward gets halved.

The following explanation gives a better picture of this design:

//Block reward reduced by half, remains at 50%

BlockReward = BlockReward >> 1;

//Block reward further reduced by half, remains at 25%

BlockReward = BlockReward-(BlockReward>>2);

//Block reward further reduced by half, remains at 12.5%

BlockReward = BlockReward - (BlockReward>>3);

Even though the rewards look lucrative, it is not so easy to get lucky

and be the node that gets to propose a block. If you are not lucky enough,

all the work you did would be in vain; that’s a disadvantage! So, what is

it that the nodes do as a PoW? Let’s get back to the difficulty puzzle now.

Every mining node at all times is working to propose a block, but only one

succeeds at a given point in time. Assume that a block is proposed already,

and now all mining nodes are working to propose a new block. Let us go

through the process step by step and understand the whole flow:

Step-1:
The miners use a software to keep track of the transactions, eliminate

the ones that already made it to a successful block in blockchain, reject the

fraudulent transactions, and solve the cryptographic puzzle to propose a

new block and relay that to the entire network. The best software to mine

is the official Bitcoin Core but there have been many other variants that

people have come up with. If you log into this link (https://bitcoin.org/

en/download) you will find that the official Bitcoin Core is supported in

Windows, Linux, Mac OS, Ubuntu, and ARM Linux. So, when we say that

the mining node selects all the transactions (maybe the ones that give the

miner the highest profit) till the block limit of 1MB (2MB for Bitcoin Cash),

they also hash those transactions and generate the Merkle root that would

become a part of this new block’s header. This Merkle root represents all

the transactions.

Chapter 3 How Bitcoin Works

https://bitcoin.org/en/download
https://bitcoin.org/en/download

189

Step-2:
They prepare the block header. Apart from the nonce, the rest is all

available at this step. It is the work of the mining node to find the nonce

by hashing the block header twice and comparing it against the difficulty

target to see if it is less than that. They keep changing the nonce till it

satisfies this condition, and there is no shortcut to find a nonce quickly;

one must try out every possible option. We already looked at how to

compute the difficult target using the four bytes of data present in the

header itself, and we learned how it changes every two weeks. See the

following for how this process looks:

H [H (Version | Previous Block Hash | Merkle Root | Time Stamp

| Difficulty Target | Nonce)]

< [Difficulty Target]

Step-3:
The miner keeps on changing the nonce field in step-2, by

incrementing it by “1” till it satisfies the condition—it is a recursive

phenomenon. The difficulty target for every node is the same and all of

them are trying to solve the same problem, but remember that they may

have different variants of transaction pools and hence the Merkle root for

them would be different. Since every node is trying to extend the longest

and main blockchain, so the previous block hash would be the same.

So, ultimately the Sha256 hash twice for the block header should be

less than the target to be able to propose the block to the entire network.

See the following example for a better understanding:

Target : �0000000000000074cd0000000000000000000000000000000000

0000000000000

Hash : �0000000000000074cc4471deff052ced7f07347e4eda86c84

5a2fcf0553ed7f0

Chapter 3 How Bitcoin Works

190

Notice that the hash value and the target value have the same number

of leading zeros (i.e., 14) and “74cc” is less than “74cd,” so it satisfies

the condition and this block can now be proposed. In many places, you

would find that this explanation is simplified with ballpark values of both

the target and the hash, and counting only the leading zeros. If the hash

has more leading zeros than the target, then it satisfies the condition.

Remember again that the more zeros in the target, the more difficult it gets

in finding the hash that can satisfy the condition.

Let us connect this learning so far with the real Bitcoin

implementation. We know that block creation time is set to ten minutes—it

is coded up in Bitcoin binaries for 2,016 blocks in two weeks, as we

discussed already, and does not change till a hard fork happens. You can

browse blocks proposed and see the hashes that satisfied the difficulty

target at the website https://blockchain.info and see for yourself that

the hashes for different blocks would have different leading zeros, just to

set the block creation time to ten minutes on average. In the initial days,

the number of leading zeros was around nine or ten, and today it has

increased to around 18 to 20 zeros. It may increase even further as and

when more powerful computing nodes capable of more hash rates join the

network.

Step-4:
Once a miner finds the valid block, they immediately publish the block

to the entire network. Every node that receives this block individually

checks again if the miner who proposed the block actually solved the

mining puzzle. For these nodes to validate this, it is just one step, as shown

below:

H [H (Version| PreviousBlock Hash | Merkle Root | Time Stamp |

Difficulty Target | Found Nonce)]

< [Difficulty Target]

Chapter 3 How Bitcoin Works

https://blockchain.info/

191

Notice that they just use the block header that includes the nonce

found by the proposing miner to see if the hash is less than the target and

is valid. If it was a valid nonce and the condition satisfied, then they check

for individual transactions proposed in the block with its Merkle root in the

block header. If all transactions are valid, then they add this block to the

local copy of their blockchain. This new block has the coinbase transaction

that generates new coins (it started with 50 BTC, then 25, then 12.5, and

keeps halving as discussed) as an award for the miner who proposed the

valid block.

Note here that block mining is not an easy job, thanks to the PoW

mining algorithm. For a node to propose an invalid block, it has to burn a

lot of electricity and CPU cycles to find the nonce and propose the block

that would ultimately get rejected by nodes in the network. Had it been an

easy task, many nodes would just keep trying for it and flood the network

with bad blocks. You must understand and appreciate by now how Bitcoin

prevents such situations in a game theoretic way! It is always profitable for

the miners to play by the rules and they do not gain any extra benefits by

not following the rules.

In the previous steps, we learned the PoW mining procedure that

is implemented in Bitcoins. One of the best things in this design is the

random selection of a mining node that gets to propose a block. No one

knows who would get lucky to find the right nonce and propose a block, it

is purely a random phenomenon. We already know that generating a true

random number is quite difficult and this is something that is the most

vulnerable surface of attack for most cryptographic implementations. With

such a design as Bitcoin’s, random selection of a node to propose a block is

truly random.

The next best thing in Bitcoin mining is the block reward. It is

something that a miner who successfully proposes a new block gets,

using the coinbase transaction in the same block. The miners also get the

transaction fees associated with all the transactions they have included in

Chapter 3 How Bitcoin Works

192

the block. So, mining reward for a block is a combination of block reward

and transaction fee as shown below:

Mining Reward = Block Reward + Total transaction fees of all

transactions in the Block

We know that mining is the only way new Bitcoins are created in the

Bitcoin system, but is that the purpose of mining? No! The purpose of

mining is to mine new blocks, and generation of new Bitcoins and also

the transaction fee is to incentivize the miners so that more and more

miners are interested in mining. Obviously though, why would you mine

if you are not making good money? This is again game theory. A proper

incentivization mechanism is the key to make a sytem decentralized and

self-sustainable. Notice that the Bitcoin system does not have a way to

penalize nodes that do not play honestly, it only rewards honest behavior.

Actors in the Bitcoin blockchain network such as individuals who just use

Bitcoin or the miners are all identified using their public keys. It is possible

for them to generate as many key pairs as possible and this makes it a

psydonemous system. A node cannot be uniquely identified with its public

key that it has used in the coinbase transaction, as in the very next moment

it can create a new key pair and expose itself with a new network address.

So, proper incentivization stands to be the best way to ensure the actors in

the system play honestly—again the beauty of game theory!

Here is a question for you now. After a block was broadcast, let’s

say a node verified it, found the nonce and transactions and everything

else to be valid, and included it in its local copy of blockchain. Does this

mean that the transactions that were there in the block are all settled and

confirmed now? Well, not really! There is a chance that two blocks came

in at the same time and while one node started extending one of them,

there is a chance that a majority of the nodes are extending on the other

block. Eventually, the longest blockchain becomes the original chain.

This is a scenario when a block that is absolutely valid, with all legitimate

transactions and a proper nonce value that satisfied the mining puzzle,

can still get abandoned by the Bitcoin network. Such blocks that do not

Chapter 3 How Bitcoin Works

193

become a part of the final blockchain are called orphaned blocks. Now,

this explanation indicates that there is a certain possibility of one or more

blocks getting orphaned out at any time. So, the best strategy would be

to wait untill many blocks are added to the chain. In other words, when

a transaction receives multiple confirmations, it is safe to think that it

is a part of the final consensus chain and will not get orphaned out. As

any number of blocks get added after a certain block, that many number

of confirmations are received by the transactions in that block. Though

there are no rules as such that define how many confirmations one

should get before accepting a transaction, six confirmations has been

the best practice. Even with four confirmations, it is quite safe to assume

a transaction has been confirmed, but six is the best practice because

with more confirmations, the chances of a block getting orphaned out

decreases exponentially.

�Block Propagation
Bitcoin uses PoW mining to randomly select a node that can propose

a valid block. Once the miner finds a valid block, they broadcast that

block to the entire network. Block propagation in the network happens

the same way as transactions. Every node that receives the new block

further broadcasts it so that eventually the block reaches every node in

the network. Please note that a node does not broadcast a block unless it

is a part of the longest chain from its perspective. Once the nodes receive

the new block that is proposed, they not only verify the header and check

the hash value in acceptable range, but also validate each and every

transaction that was included in that block. It is clear by now that for a

node in the Bitcoin network, validating a block is a little more complex

compared with validating transactions. Similar to transactions, there is a

possibility that two valid blocks are proposed at the same time. In such a

scenario, the node will keep both the blocks and start building on the one

that comes from the longest chain.

Chapter 3 How Bitcoin Works

194

We must understand that there is always a latency involved for a

block to propagate through the entire network and reach every node. The

relation between the block size and the time taken is linearly proportional,

in the sense that for each kB added to the block size, the latency increases

linearly. It is obvious that such network latency would impact the rate of

growth of the blockchain. A measurement study that was conducted by

Decker and Wattenhofer addresses this situation. Refer to Figure 3-19,

which shows the relation between block size and the time it took to reach

25% (Line-1), 50% (Line-2), and 75% (Line-3) of monitored nodes.

The network bandwidth is the primary reason for such network

latencies and it is never consistent in all areas of the globe. On top of

this, we know that the broadcast packets of blocks go through many hops

to finally reach all nodes. A typical Bitcoin block is of 1MB and the new

variant of Bitcoin with a hard fork that has come up (Bitcoin Cash) is of

2MB block size; you can imagine the inherent limitations due to latency.

Figure 3-19.  Block propagation time with respect to block size

Chapter 3 How Bitcoin Works

195

As per the network research, there are more than a million Bitcoin nodes

that are connected to the Bitcoin network in a month and there are

thousands of full nodes that are almost always connected to the network

permanently.

�Putting It all Together
At a high level, if we just put down the events in the order they take place,

then here is how it may look:

•	 All new transactions are broadcast to all nodes.

•	 Each node that hears the new transactions collects

them into a block.

•	 Each mining node works on finding a difficult PoW for

its block to be able to propose it to the network.

•	 When a node gets lucky and finds a correct nonce to

the PoW puzzle, it broadcasts the block to all nodes.

•	 Nodes accept the proposed block only if the nonce and

all transactions in it are valid and not already spent.

•	 Bitcoin network nodes express their acceptance of

the block by working on creating the next block in

the chain, using the hash of the accepted block as the

previous hash for the new block they would be mining.

�Bitcoin Scripts
We learned about Bitcoin transactions in previous sections at a high level.

In this section we will delve deep into the actual programming constructs

that make the transactions happen. Every Bitcoin transactions’ input

and output are embedded with scripts. Bitcoin scripts are stack based,

Chapter 3 How Bitcoin Works

196

which we will see shortly, and are evaluated from left to right. Remember

that Bitcoin scripts are not Turing-complete, so you cannot really do

anything and everything that is possible through other Turing-complete

languages such as C, C++, or Java, etc. There are no concepts of loops in

Bitcoin script, hence the execution time for scripts is not variable and is

proportional to the number of instructions. This means that the scripts

execute in a limited amount of time and there is no possibility for them

to get stuck inside a loop. Also, most importantly, the scripts definitely

terminate. Now that we know a little about the scripts, where do they run?

Whenever transactions are made, whether programmatically, or through

a wallet software or any other program, the scripts are injected inside the

transactions and it is the work of the miners to run those scripts while

mining. The purpose of Bitcoin scripts is to enable the network nodes

to ensure the available funds are claimed and spent only by the entitled

parties that really own them.

�Bitcoin Transactions Revisited
A transaction in the Bitcoin network is a tranfer of value, which is a

broadcast to the entire network and ends up in some block in the

blockchain. Typically, it appears that Bitcoins get transferred from one

account or wallet to another, but in reality, it is from one transaction to

another. Well, before getting into further details, keep in mind that the

Bitcoin addresses are basically the double-hashed output of the public

key of the participants. The public key is first hashed using SHA256 and

then by RIPEMD160 hashing algorithms, respectively, to generate 160-

bit Bitcoin addresses. We have already covered these hashing techniques

in the previous chapter. Let us zoom in a bit more into the transactions

now. Take a look at the following transaction tree (Figure 3-20), the way it

happens in Bitcoin.

Chapter 3 How Bitcoin Works

197

Observe that the output of previous transactions become input to new

transactions and this process continues forever. In the previous figure, if

it was you who got the 100K from some previous output, it became the

spendable input to a new transaction. Notice that in Tx 0, you spent 40K

and 50K and paid up those amounts, and the remaining amount (10K)

became the fee to the miner. By default, the remaining amount is paid

to the miner, so you need to be careful not to ignore such situations,

which are always the case. In this same situation, out of the remaining

10K amount, you could transfer say 9K to your own address and leave

aside 1K for the mining fee. When an amount is not spent, in the sense

that a transaction is not used as an input to a new transaction, it remains

a UTXO, which can be spent later. Obviously, the ones previous to it are

already spent. So, all the UTXOs combined for all the accounts (public

keys) that you hold are your wallet balance.

Figure 3-20.  A typical Bitcoin transaction structure

Chapter 3 How Bitcoin Works

198

Pause for a moment here, and think about how it must have been

programmed. Remember that both the inputs and outputs of transactions

are equipped with relevant scripts to make it possible. It is only through

the scripts that it can be ensured that you are the authorized user to make

a transaction and you have the necessary amount that you have received

from a previous transaction. This means that both the inputs and outputs

are equally important. Here is how the transaction’s contents look:

Transaction Output = Amount of Bitcoins to transfer + Output

Script

Transaction Input = Reference to previous transaction output +

Input Script

Whether to look into the output script first or the input script first is

actually an egg-chicken problem. But we will see the output script first

because it is the one that is being consumed by the input script of the

next transaction. Let us repeat and get this right, that while making a

transaction, the output script of the current transaction is there just to

enable the future transaction that can consume this as input, but for this

current transaction, it is the previous transaction’s output script that lets

you spend it. This is why the output scripts have the public key of the

recipient and the value (amount of Bitcoins) being transferred. When the

output scripts are being used as inputs, their primary purpose is to check

the signature against the public key. The output scripts are also called

ScriptPubKey. Unless this output is spent, it remains a UTXO waiting to be

spent.

The input script in the transaction input data structure has the

mechanism of how to consume the previous transaction that you are trying

to spend. So, it has to have the reference to that previous transaction.

The hash of the previous transaction and the index number {hash, index}

pinpoints the exact place where you had received the amount that you

are now spending. The purpose of the “index” is to identify the intended

output in the previous transaction. If you were the recipient of the previous

Chapter 3 How Bitcoin Works

199

transaction, you have to provide your signature to claim that you are the

rightful owner of the public key to which the transaction was made. This

will let you spend that transaction. Also, you have to provide your public

key, which will hash to the one used as destination address in previous

transaction. Input scripts are also known as ScriptSigs. The ultimate

objective of the script is to push the signatures and keys onto the stack.

A typical Bitcoin transaction has the following fields (Table 3-5).

Table 3-5.  Bitcoin Transaction Fields

Field Size Description

Version no 4 bytes Currently 1. It tells Bitcoin peers and miners which

set of rules to use to validate this transaction.

In-counter 1 - 9 bytes Positive integer (VI = VarInt). It indicates total

number of inputs.

list of inputs Variabe length It lists all the inputs for a transaction.

Out-counter 1 - 9 bytes Positive integer (VI = VarInt). It indicates total

number of outputs.

list of outputs Variable length It lists all the outputs for a transaction.

lock_time 4 bytes Not being used currently. It indicates if the

transaction should be included in the blockchain

block immediately after it is validated by the

miner or there should be some lock time before it

gets included in the block.

Let us now take a look at a different representation of the same

transaction structure that we discussed in the previous section. This is

to see a more detailed view of the transaction structure and the various

components of it. Now refer to Figure 3-21.

Chapter 3 How Bitcoin Works

https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer#Protocol specification
https://en.bitcoin.it/wiki/Transaction#general_format_.28inside_a_block.29_of_each_input_of_a_transaction_-_Txin#Transaction
https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer#Protocol specification
https://en.bitcoin.it/wiki/Transaction#general_format_.28inside_a_block.29_of_each_input_of_a_transaction_-_Txin#Transaction

200

As you can see in the previous figure, the data items such as signatures

or public keys are all embedded inside the scripts and are a part of

the transaction. Just by looking at the granular components of Bitcoin

transactions, many of your queries would be answered up front. The

instructions in the script get pushed onto the stack and executed, which

we wil explore in detail shortly.

When Bitcoin nodes receive the transaction broadcasts, they all

validate those transactions individually, by combining the output script

of the previous transaction with the input script of the current transaction

following the steps mentioned as follows:

•	 Find the previous transaction whose output is being

used as input to make this transaction. The “Prev. Txn

ID (Hash)” field contains the hash of that previous

transaction.

•	 In the previous transaction output, find the exact

index where the amount was received. There could

be multiple receivers in a transaction, so the index is

used to identify the initiator of this current transaction

whose address was used as recipient in the previous

transaction.

Figure 3-21.  Granular components of a Bitcoin transaction

Chapter 3 How Bitcoin Works

201

•	 Consume the output script used in the previous

transaction using the Unlocking Script called

“ScriptSig.” Notice in Figure 3-21 that there is a field

before it that specifies the length of this Unlocking

Script.

•	 Join this output script with the input script by just

appending it to form the validation script and execute

this validation script (remember this is a stack-based

scripting language).

•	 The amount value is actually present in the Output

Script, i.e., the “ScriptPubKey.” It is the locking script

that locks the transaction output with the spending

conditions and ensures that only the rightful owner

of the Bitcoin address to which this transaction has

been made can later claim it. Observe that it also has

the Locking Script Length field right before it. For

the current transaction, this output script is only for

information, and plays its role in the future when the

owner tries to spend it.

•	 It is the validation script that decides if the current

transaction input has the right to spend the previous

UTXO by validating the signatures. If the validation

script runs successfully, it is confirmed that the

transaction is valid and the transaction went through.

Let us explore the previous explanation through a diagramatic

representation to get a better understanding. Assume that Alice is paying

Bob, say, five BTC. This means that Alice had received 5BTC in one of

the previous transactions that was locked using ScriptPubKey. Alice can

claim that she is the rightful owner of that transaction by unlocking it with

ScriptSig and can spend it to Bob. Similarly, now if Bob tries to spend three

Chapter 3 How Bitcoin Works

202

BTC to Charlie and two BTC to himself, then here is how it would look

(Figure 3-22).

When the Bitcoin network, more precisely the miners, receive the

transaction from Alice, they check and confirm that it is a valid transaction

and approve it by including it in their blocks (well, the one who proposes a

block does it). When that happens, the output of this transaction becomes

a part of the UTXO in the name of Bob, who could later spend it. And this

is what happens in our example—that Bob also spends it to Charlie. Bob did

so by consuming the previous transaction, unlocking it with his signature

and public key, to prove that he is the owner of the Bitcoin address that

Alice had used. Observe that there are two outputs in Bob’s transaction.

Since he had received five BTC from Alice and is paying three BTC to

Figure 3-22.  A practical example of Bitcoin scripts

Chapter 3 How Bitcoin Works

203

Charlie, he must transfer the remainder to himself so that it becomes

two BTC of UTXO bound to Bob himself and he could spend it in future.

In Bob’s transaction, the three BTC to Charlie is locked using the locking

script for only Charlie to spend later.

Are you now thinking about how the scripts are combined and

executed together? Remember that the unlocking script of current

transaction is run along with the locking script of the previous transaction.

As discussed already, running the scripts is a miner’s job and they do not

happen at the wallet software. In the previous example, when Bob makes

the transactions, miners execute the ScriptSig unlocking script from Bob’s

transaction, and then immediately execute the ScriptPubKey locking

script from Alice’s transaction in order. If the sequential execution in a

stack-based fashion for the combined validation script runs successfully

by returning TRUE, then Bob’s transaction is excepted by all the nodes

validating it. We will take a look at Bitcoin scripts and how a Bitcoin-

scripting virtual machine executes the stack during the execution of the

combined script commands in more detail in the following section. In this

section, however, take a look at the following example that represents the

transaction from a developer’s standpoint:

Example code with just one input and one output

{

 �"hash": "a320ba8bbe163f26cafb2092306c153f87c1c2609b25db0

c13664ae1afca78ce",

 "ver": 1,

 "vin_sz": 1,

 "vout_sz": 1,

 "lock_time": 0,

 "size": 51,

Chapter 3 How Bitcoin Works

204

 "in":[

 {

 "prev_out":{

 �"hash":"83cd5e9b704c0a4cb6066e3a1642b483adc8f73a76

791c82a73dfa381281d32f",

 "n":0

 },

 �"scriptSig":"63883d3d2dea35029d17d25b8a926675def004

5c397d3df55b0ae145ef80db7849599b930220ab13bd2dda2

ca0a67e2c5cd28030bb9b7b3dcacf176652dac82fe9d5873

f3409661281d32f6d35b46906cd562bf8b48f4f938c077bcb

29d46b0560fa5c61813d3d2d"

 }

],

 "out":[

 {

 "value":"0.08",

 �"scriptPubKey":"OP_DUP OP_HASH160 b3a2c0d84ec82cff

932b5c3231567a0d48ab4c78

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

}

Note that Bitcoin transactions are not encrypted, so it is possible to

browse and view every transaction ever collected into blocks.

�Scripts
A script is actually a list of instructions recorded with each transaction that

describes how the next person can gain access to those Bitcoins received

and spend them. Bitcoin uses stack-based, non–Turing-complete scripting

Chapter 3 How Bitcoin Works

205

language where the instructions get processed from left to right. Keep in

mind that it is non–Turing-complete by design!

We looked at the input and output scripts in the previous section. We

are now aware that the input script ScriptSig is the unlocking script and has

two components, the public key and the signature. The public key is used

because it hashes to the Bitcoin address that the transaction was spent

to, in the previous transaction. The ECDSA digital signature’s purpose is

to prove the ownership of the public key, hence the Bitcoin address to be

able to spend it further. Similarly, the output script ScriptPubKey in the

previous transaction was to lock the transaction to the rightful owner of

the Bitcoin address. These two scripts, ScriptSig of current transaction and

ScriptPubKey of previous transaction, are combined and run. Take a look

at its appearance after they are combined (Figure 3-23).

Figure 3-23.  Formation of combined validation script

As we learned already, it is important to note that the Bitcoin script

either runs successfully or it fails. When the transactions are valid, it

runs successfully without any errors. Bitcoin scripting language is a very

simplified version of programming languages and is quite small, with

Chapter 3 How Bitcoin Works

206

just 256 instructions in total. Out of these 256, 15 are disabled and 75 are

kept reserved maybe for later usage. These basic instructions comprise

mathematical, logical (if/then), error reporting, and just return statements.

Apart from these, there are some additional cryptographic instructions

such as hashing, signature verification, etc. We will not get into all the

available instruction sets, and focus only on the ones we will use in this

chapter. Following are a few:

•	 OP_DUP: It just duplicates the top item in the stack.

•	 OP_HASH160: It hashes twice, first with SHA256 and

then RIPEMD160.

•	 OP_EQUALVERIFY: It returns TRUE if the inputs

are matched, and FALSE otherwise and marks the

transaction invalid.

•	 OP_CHECKSIG: Checks if the input signature is a valid

signature using the input Public Key itself for the hash

of the current transaction.

To execute these instructions, we just have to push these instructions

on to the stack and then execute. Apart from the memory that the stack

takes, there is no extra memory required and this makes the Bitcoin scripts

efficient. As you have seen, there are two kinds of instructions in the script,

one is data instruction and the other is opcodes. The previous bullet list

entries are all opcodes, and the combined validation script that we saw

before has both of these kinds of instructions. Data instructions are just

to push data onto the stack and not really to perform any function, and

the sole purpose of opcodes is to execute some functions on the data in

the stack and pop out as applicable. Let us discuss how Bob’s transaction

would get executed with such a stack-based implementation. Recollect

the combined script where Bob is trying to spend a previously received

transaction in the current transaction to Charlie (Figure 3-24).

Chapter 3 How Bitcoin Works

207

The corresponding stack-based implemention would be as follows

(Figure 3-25).

Figure 3-25.  Example of stack-based implementation of Bitcoin script

Figure 3-24.  Combined script of ScriptPubKey and CheckSig

Chapter 3 How Bitcoin Works

208

Though the previous stack-based implementation is self explanatory,

we will quickly run through what happened here.

•	 First was Bob’s signature–a data instruction and so was

pushed onto the stack

•	 Then was his public key–again a data instruction and

was pushed on to the stack

•	 Then it was OP_DUP, an opcode. It duplicates the

first item in the stack, so the public key of Bob was

duplicated and became the third item on the stack.

•	 Next was OP_HASH160, an Opcode, which hashed

Bob’s public key twice, once with SHA256 and then

with RIPEMD160, and the final 160 bits output replaced

Bob’s public key and became the top of the stack.

•	 Then it was Bob’s Bitcoin address (160 bits)–a data

instruction, which was pushed to the stack.

•	 Next was an opcode, OP_EQUALVERIFY, which checks

the top two items in the stack and if they match, it pops

them both else an error is thrown and the script would

terminate.

•	 Then was again an opcode OP_CHECKSIG, which

checks the public key against the signature to validate

the authenticity of the owner. This opcode is also

capable of consuming both inputs and popping them

off the stack.

You must be wondering what if someone tries to inject some

fraudulent scripts or tries to misuse them. Please note that Bitcoin scripts

are standardized and the miners are aware of them. Anything that does not

follow the standard gets dropped by the miners, as they wouldn’t waste

their time executing such transactions.

Chapter 3 How Bitcoin Works

209

�Full Nodes vs. SPVs
We already got a heads-up on the full nodes and SPVs in this chapter. It is

obvious that the notion of full node and lightweight node is implemented

to ease out the usage of Bitcoins and make them more adaptable. In this

section, we will zoom in to the technicalities for these variants and understand

their purpose.

�Full Nodes
The full nodes are the most integral components in a Bitcoin network.

They are the ones that maintain and run Bitcoin from various places across

the globe. As discussed already, download the entire blockchain with

all transactions, starting all the way from the genesis block to the latest

discovered block. The latest block defines the height of the blockchain.

The full nodes are extremely secure because they have the entire

chain. For an adversary to be successful in cheating a node, an alternative

blockchain needs to be presented, which is practically impossible. The

true chain is the most cumulative PoW chain, and it gets computationally

infeasible to propose a new fraudulent block. If all transactions are not

valid in a block, PoW mining performed by the adversary will be in

vain, because other miners will not mine on top of it. Such a block gets

orphaned out soon enough. Full nodes build and maintain their own copy

of blockchain locally. They do not rely on the network for transaction

validation because they are self-sufficient. They are just interested in

knowing the new blocks that get proposed by other nodes so that they can

update their local copy after validating blocks. So, we learned that each full

node must process all transactions; they must store the entire database,

every transaction that is currently being brioadcast, every transaction that

is ever spent, and the list of UTXOs; participate in maintaining the entire

Bitcoin network; and they also have to serve the SPV clients.

Chapter 3 How Bitcoin Works

210

Note that there are so many varities of Bitcoin software that the

full nodes use that are quite different in software architecture and

programmed in different language constructs. However, the most widely

used one is the “Bitcoin Core” software; more than three fourths of the

network uses it.

�SPVs
Bitcoin design has this nice concept of Simple Payment Verification(SPV)

nodes that can be used to verify transactions without running full nodes.

The way SPVs work is that they download only the header of all the blocks

during the initial syncing to the Bitcoin network. In Bitcoin, the block

headers are of 80 bytes each, and downloading all the headers is not much

and ranges to a few MBs in total.

The purpose of SPVs is to provide a mechanism to verify that a

particular transaction was in a block in a blockchain without requiring the

entire blockchain data. Every block header has the Merkle root, which is the

block hash. We know that every transaction has a hash and that transaction

hash can be linked to the block hash using the Merkle tree proof which we

discussed in the previous chapter. All the transactions

in a block form the Merkle leafs and the block hash forms the Merkle root.

The beauty of the Merkle tree is that only a small part of the block is needed

to prove that a transaction was actually a part of the block. So, to confirm a

transaction an SPV does two things. First, it checks the Merkle tree proof for

a transaction to accertain it is a part of the block and second, if that block

is a part of the main chain or not; and there should be at least six more

blocks created after it to confirm it is a part of the longest chain. Figure 3-26

depicts this process.

Chapter 3 How Bitcoin Works

211

Let us dig deeper into the technicality of how SPVs really work in

verifying transactions. At a high level, it takes the following steps:

•	 To the peers an SPV is connected to, it establishes Bloom

filters with many of them and ideally not just to one peer,

because there could be a chance for that peer to perform

denial of service or cheat. The purpose of Bloom filters

is to match only the transactions an SPV is interested

in, and not the rest in a block without revealing which

addresses or keys the SPV is interested in.

•	 Peers send back the relevant transactions in a

merkleblock message that contains the Merkle root and

the Merkle path to the transaction of interest as shown

in the figure above. The merkleblock message sze is in a

few kB and quite efficient.

•	 It is then easy for the SPVs to verify if a transaction truly

belongs to a block in the blockchain.

•	 Once the transaction is verified, the next step is to

check if that Block is actually a part of the true longest

blockchain.

Figure 3-26.  Merkle root in block header of SPV

Chapter 3 How Bitcoin Works

212

The following (Figure 3-27) represents this SPV communication steps

with its peers.

�Bitcoin Wallets
Bitcoin wallets are very similar to the wallet you use in your daily life, in

the sense you have access to it and you can spend when you want. Bitcoin

wallets, however, are a digital phenomenon. Recollect the example we

used in the previous section, where Alice paid some amount to Bob. How

would she do it if Bob did not have an account? In the Bitcoin setting,

the accounts or wallets are represented by the Bitcoin address. Bob must

first generate a key pair (private/public keys). Bitcoin uses the ECDSA

algorithm with secp256k1 curve (don’t worry, it is just the curve type—a

standard recommendation). First a random bit string is generated to

serve as private key, which is then deterministically transformed to

public key. As we learned before in Chapter 2, the private/public keys

are mathematically related and the public key can be generated from the

private key any time (deterministic). So, it is not really a requirement to

save the public keys. as such. True randomness is not possible through

Figure 3-27.  SPV communication mechanism with the Bitcoin
network

Chapter 3 How Bitcoin Works

213

software implementations, so many servers or applications use hardware

security modules (HSMs) to generate true random bits and also to protect

the private keys. Unlike public keys, private keys definitely require saving

them with maximum security. If you lose them, you cannot generate a

signature that would justify the ownership of the public key (or Bitcoin

address) that received some amount in any transaction. The public keys

are hashed twice to generate the Bitcoin adress, first with SHA256 and then

with RIPEMD160. This is also deterministic, so given a public key, it is just

a matter of a couple of hashes to generate the Bitcoin address.

Note carefully that the Bitcoin address does not really reveal the public

key. This is because the addresses are double-hashed public keys and it’s

quite infeasible to find the public key given the Bitcoin address. However,

for someone with a public key, it is easy to claim the ownership of a Bitcoin

address. The hashing technique in Bitcoin shortens and obfuscates the

public key. While it makes the manual transcription easier, it also provides

security against unanticipated problems that might allow reconstruction of

private keys from public keys. This is possibly the safest implementation!

Public keys are revealed only when the transaction output is being claimed

by the owner, not when it was transacted to them, as you can see in

Figure 3-28.

Chapter 3 How Bitcoin Works

https://bitcoin.org/en/glossary/public-key#The public portion of a keypair which can be used to verify signatures made with the private portion of the keypair.
https://bitcoin.org/en/glossary/private-key#The private portion of a keypair which can create signatures that other people can verify using the public key.
https://bitcoin.org/en/glossary/public-key#The public portion of a keypair which can be used to verify signatures made with the private portion of the keypair.

214

Bitcoin wallets are nothing but the SPVs and are served by the full

nodes. We already looked at the functioning of SPVs, so in this section we

will take a look at some wallet-specific activities. We all understand that to

make a transaction, or to receive a transaction, you need not be running a

full node. All you want is a wallet to be able to save your private/public key

pair, to be able to make and receive transactions (actually view and verify

the ones made to you). We already learned the verification part while going

through the SPVs section. Let us take a look at how to initiate a transaction

using a wallet.

It is advisible that you run your own full node and connect your wallet

to it, as it would be the most secured way of working on Bitcoin. However,

it is not a mandate and you can still work without maintaining your own

node. Keep in mind that when you query a node, you have to mention

your public address to get the list of UTXOs, and the full node is becoming

aware of your public address, which is a privacy leak! All a wallet has to do

is get the list of UTXOs so it can spend a transaction by signing it with its

private key and publish that transaction into the Bitcoin network. This can

be done by creating your own wallet software or by using a third-party

Figure 3-28.  Revealing public key to claim a transaction

Chapter 3 How Bitcoin Works

215

wallet service. However, be careful with the wallet service providers

because you are allowing them to take control of your private key. Whether

they deliberately take your Bitcoins or they themselves are hacked, which

has been the case with many wallet services, you lose your Bitcoins. At

the end of the day, all wallet-service providers are centralized, though

the Bitcoin network is decentralized. A typical pictorial representation

of initiating a Bitcoin transaction through the wallet software can be

represented as shown in the following (Figure 3-29).

An example of an SPV client that can serve as a Bitcoin wallet is

“BitcoinJ.” BitcoinJ is actually a library to work with the Bitcoin protocol,

maintain a wallet, and initiate/validate transactions. It does not require

a full node such as a Bitcoin Core node locally and can function as a thin

client node. Though it is implemented in Java, it can be used from any

JVM-compatible language such as JavaScript and Python.

Figure 3-29.  A wallet application interacting with the Bitcoin network

Chapter 3 How Bitcoin Works

216

�Summary
In this chapter, we learned how blockchain concepts we discussed in the

previous chapter were put together to build Bitcoin as a cryptocurrency

use case of blockchain technology. We covered the evolution of

Bitcoin, the history of it, what it is, the design benefits, and why it is so

important. We got to know about granular details on the Bitcoin network,

transactions, blocks, the blockchain, consensus, and how all these are

stitched together. Then we learned about the requirement of a wallet

solution to interact with the Bitcoin blockchain system.

In the 1990s, mass adoption of the Internet changed the way people

did business. It removed friction from creation and distribution of

information. This paved the way for new markets, more opportunities,

and possibilities. Similarly, blockchain is here today to take the Internet

to a whole new level. Bitcoin is just one cryptocurrency application of

blockchain, and the possibilities are limitless. In the next chapter, we

will learn about how Ethereum works and how it has become a defacto

standard for various decentralized applications on one public blockchain

network.

�References
Bitcoin: A Peer-to-Peer Electronic Cash System

Nakamoto, Satoshi, “Bitcoin: A Peer-to-Peer Electronic Cash System,”

https://bitcoin.org/bitcoin.pdf.

All about Bitcoin Network and Transactions
Bitcoin wiki, https://en.bitcoin.it/.

Chapter 3 How Bitcoin Works

https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/

217

Blockchain Technology
Crosby, Michael, Nachiappan; Pattanayak, Pradhan, Verma, Sanjeev,

Kalyanaraman, Vignesh, “BlockChain Technology: Beyond Bitcoin,”

Sutardja Center for Entrepreneurship & Technology, University of

California, Berkeley, http://scet.berkeley.edu/wp-content/uploads/

BlockchainPaper.pdf, October 16, 2015.

Accelerating Bitcoin’s Transaction Processing
Sompolinsky, Yonatan, Zohar, Aviv, “Secure High-Rate Transaction

Processing inBitcoin,” Hebrew University of Jerusalem, Israel, School of

Engineering and Computer Science, https://eprint.iacr.

org/2013/881.pdf.

Chapter 3 How Bitcoin Works

http://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
http://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
https://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2013/881.pdf

219© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_4

CHAPTER 4

How Ethereum Works
The era of blockchain applications has just begun. Ethereum is here to be

the defacto blockchain platform for building decentralized applications.

We already learned in the previous chapters that public blockchain use

cases are not just limited to cryptocurrencies, and the possibilities are

only limited by your imagination! Ethereum has already made inroads in

many business sectors and works best not only for public blockchain use

cases, but also for the private ones. Ethereum has already set a benchmark

for blockchain platforms and must be studied well to be able to envision

how usable decentralized applications can be built with or without

using Ethereum. Today, it is possible to build blockchain applications

with minimal knowledge of cryptography, game theory, mathematics

or complex coding, and computer science fundamentals, thanks to

Ethereum.

In Chapter 3, we learned how Bitcoin works by taking a deep dive

into the protocol as well as the Bitcoin application. We witnessed how

the cryptocurrency aspect is so much interwoven into the Bitcoin

protocol. We learned that Bitcoin is not Bitcoin on blockchain, rather

a Bitcoin blockchain. In this chapter, we will learn how Ethereum

has successfully built an abstract foundation layer that is capable

of empowering various different blockchain use cases on the same

blockchain platform.

220

�From Bitcoin to Ethereum
Obviously, blockchain technology came along with Bitcoin back in 2009.

After Bitcoin stood the test of time, people believed in the potential of

blockchain. The use cases now have gone beyond banking and finance

sectors and have enveloped other industries such as supply chain, retail,

e-commerce, healthcare, energy, and government sectors as well. This is

because different flavors of blockchain have come up and address specific

business problems. Nonetheless, there are public blockchain platforms

such as Ethereum that allow different decentralized use cases to be built

on the same public Ethereum platform.

With Bitcoins, decentralized peer-to-peer transaction of

cryptocurrency was possible. People realized that blockchain could

be used to transact and keep track of anything of value, not just

cryptocurrency. People started exploring if the same Bitcoin network

could be used for any other use case. To give you an example, “proof of

existence” is one such use case where the hash of a document was injected

in the Bitcoin blockchain network so that anyone could later verify that

such a ducument was existant in so and so point in time. Vitalik Buterin

introduced the Ethereum blockchain platform that could facilitate

transactions of not just money, but also shares, lands, digital content,

vehicles, and many others that have some intrinsic value. Take a look at

Figure 4-1.

Chapter 4 How Ethereum Works

221

Like Bitcoin, Ethereum is a public blockchain platform with a different

design philosophy. The most innovative approach was to build an abstraction

layer so that transactions from different applications are generalized to the

program code that can run on all the Ethereum nodes. Even in Ethereum,

the miners generate Ether, a tradeable cryptocurrency because of which the

public blockchain network is self-sustainable. Any application that is running

on Ethereum has to pay transaction fees that eventually the miners get for

running the nodes and sustaining the whole network.

�Ethereum as a Next-Gen Blockchain
With the Bitcoin blockchain, the developer community tried building

different decentralized applications with a completely new blockchain,

or were trying to modify Bitcoin Core to increase the set of functionalities.

Figure 4-1.  Multiple decentralized applications on one Ethereum
platform

Chapter 4 How Ethereum Works

222

Either way, it was complicated as well as time consuming. A different

design with an alternative protocol was probably the need of the hour

then, which is why the Ethereum blockchain platform! The purpose was to

facilitate development of many blockchain applications on one Ethereum

platform rather than building dedicated blockchains for each application

separately. Ethereum enabled rapid development of decentralized

applications that could interact among themselves, ensuring adequate

security. As mentioned in the previous section, Ethereum does this by

building an abstract foundation layer. Unlike Bitcoin, Ethereum supported

Turing-complete language so anyone could write smart contracts that

could virtually do anything and everything on a programming perspective.

Also, Ethereum is stateful by design and keeps track of the acount states,

which is very different from Bitcoin where everything remains as a

transaction and there is no internal persistent memory for scripts. With

the help of an abstract foundation layer, the underlying complexities

are hidden from the developers and not just that; the developers get

the flexibility of designing their own state transition functions for direct

transfer of value and information, and transaction formats.

In an effort to meet the objective, the core innovation of Ethereum was

the Ethereum Virtual Machine (EVM). The support for Turing-complete

languages through the EVM makes it easy for the developers to create

blockchain applications. Just the way a Java Virtual Machine (JVM) is

required to run Java code, EVM is required to run the smart contracts.

For now, just keep in mind that smart contracts are the Ethereum scripts

written in a Turing-complete language that automatically gets executed

in case a predefined event occurs. The “ScriptSig” and “ScriptPubKey”

in Bitcoins are the basic versions of smart contracts so to speak. We

learned in the previous chapter that in Bitcoins, the instruction set was

very limited. In Ethereum, however, one could code almost any program

that would run on the EVM on each and every node in the Ethereum

blockchain network. The decentralized applications in Ethereum are

called DApps. Ethereum being a global decentralized computer system

Chapter 4 How Ethereum Works

223

with no centralized server, DApps are the applications that run without

downtime, fraud, or any sort of regulations. A peer-to-peer electronic

cash system such as Bitcoin is very easy to build on Ethereum as a DApp.

Similarly, any other asset with some intrinsic value, such as land, cars,

houses, votes, etc., could easily be transacted through their respective

DAaps on Ethereum in the form of tokens.

Unlike traditional software development and deployment, DApps do

not need to be hosted on a back-end server. The “code” is embedded as

payload in transactions, so to speak, that are then sent to the mining nodes

in the Ethereum network. Such transactions would be considered by the

mining ecosystem because of the ETH (Ether) paid as “gas Price.” Like in

Bitcoin, these transactions get broadcast to other miners in the network

that they are accessible to. The transaction then eventually gets into a

block and becomes an eternal part of the blockchain when consensus is

reached. Developers have the liberty to code up any solution and deploy

that in the Ethereum network. The network executes that, all by itself, and

validates and produces the outputs as well. Well, had it been without any

cost, the network wouldn’t have been sustainable. There is a gas Price

associated with each blockchain transaction, and writing some garbage

code and deploying that into the Ethereum network could be an expensive

affair!

�Design Philosophy of Ethereum
Ethereum borrows many concepts from Bitcoin Core as it stood the test of

time, but is designed with a different philosophy. Ethereum development

has been done following certain principles as follows:

•	 Simplistic design: The Ethereum blockchain is

designed to be as simple as possible so that it is easy

to understand and develop decentralized applications

on. The complexities in the implementation are kept

Chapter 4 How Ethereum Works

224

to a bare minimum at the consensus level and are

managed at a level above it. As a result, high-level

language compilation or serialization/deserialization

of arguments, etc. are not a concern for the developers.

•	 Freedom of development: The Ethereum platform is

designed to encourage any sort of decentralization on

its blockchain platform and does not discremenate

or favor any specific kinds of use cases. This freedom

is given to an extent that a developer can code up

an infinite loop in a smart contract and deploy it.

Obviously, the loop will run as long as they are paying

the transaction fee (gas Price), and the loop eventually

terminates when it runs out of gas.

•	 No notion of features: In an effort to make the system

more generalized, Ethereum does not have built-in

features for the developers to use. Instead, Ethereum

provides support for Turing-complete language and

lets the users develop their own features the way they

want to. Starting from basic features such as “locktime,”

as in Bitcoin till full blown use cases, everything can be

coded up in Ethereum.

�Enter the Ethereum Blockchain
We learned about the objective behind Ethereum blockchain and its

design philosophy. To be able to understand and appreciate this next-gen

blockchain and build decentralized applications on it, we will learn about

the core components of Ethereum in great detail in this section.

Chapter 4 How Ethereum Works

225

�Ethereum Blockchain
The Ethereum blockchain data structure is pretty similar to that of

Bitcoin’s, except that there is a lot more information contained in the block

header to make it more robust and help maintain the state properly. We

will learn more about the Ethereum states in the following sections. Let us

focus more on the blockchain data structure and the header in this section.

In Bitcoins, there was only one Merkle root in the block header for all the

transactions in a block. In Ethereum, there are two more Merkle roots, so

there are three Merkle roots in total as follows:

•	 stateRoot: It helps maintain the global state.

•	 transactionsRoot: It is to track and ensure integrity

of all the transactions in a block, similar to Bitcoin’s

Merkle root.

•	 receiptsRoot: It is the root hash of the receipts trie

corresponding to the transactions in a block

We will take a look at these Merkle roots in their respective sections

of block header information. For better comprehension, take a look at

Figure 4-2.

Figure 4-2.  The blockchain data structure of Ethereum

Chapter 4 How Ethereum Works

226

Every block usually comprises block header, transactions list, uncles

list, and optional extraData. Let us now take a look at the header fields to

understand what they mean and their purpose for being in the header.

While you do so, keep in mind that there could be slight variants of these

names in different places, or the order in which they are presenbted

could be different in different places. We suggest that you build a proper

understanding of these fields so that any different terminology that you

might come across won’t bother you much.

Section-1: Block metadata

•	 parentHash: Keccak 256-bit hash of the parent block’s

header, like that of Bitcoin’s style

•	 timestamp: The Unix timestamp current block

•	 number: Block number of the current block

•	 Beneficiary: The 160-bit address of “author” account

responsible for creating the current block to which all

the fees from successfully mining a block are collected

Section-2: Data references

•	 transactionsRoot: The Keccak 256-bit root hash

(Merkle root) of the transactions trie populated with all

the transactions in this block

•	 ommersHash: It is otherwise known as “uncleHash.”

It is the hash of the uncles segment of the block, i.e.,

Keccak 256-bit hash of the ommers list portion of this

block (blocks that are known to have a parent equal to

the present block’s parent’s parent).

•	 extraData: Arbitrary byte array containing data relevant

to this block. The size of this data is limited to 32 bytes

(256-bits). As of this writing, there is a possibility that

Chapter 4 How Ethereum Works

227

this field might become “extraDataHash”, which will

point to the “extraData” contained inside the block.

extraData could be raw data, charged at the same

amount of gas as that of transaction data.

Section-3: Transaction execution information

•	 stateRoot: The Keccak 256-bit root hash (Merkle root)

of the final state after validating and executing all

transactions of this block

•	 receiptsRoot: The Keccak 256-bit root hash (Merkle

root) of the receipts trie populated with the recipients

of each transaction in this block

•	 logBloom: The accumulated Bloom filter for each of the

transactions’ receipts’ Blooms, i.e., the “OR” of all of the

Blooms for the transactions in the block

•	 gasUsed: The total amount of gas used through each of

the transactions in this block

•	 gasLimit: The maximum amount of gas that this block

may utilise (dynamic value depending on the activity in

the network)

Section-4: Consensus-subsystem information

•	 difficulty: The difficulty limit for this block calculated

from the previous block’s difficulty and timestamp

•	 mixHash: The 256-bits mix hash combined with the

‘nonce’ for the PoW of this block

•	 nonce: The nonce is a 64-bit hash that is combined with

mixHash and can be used as a PoW verification.

Chapter 4 How Ethereum Works

228

�Ethereum Accounts
The Ethereum accounts, unlike Bitcoins, are not in the form of unspent

transaction outputs (UTXOs). In the Bitcoin chapter, we learned that

Bitcoins are actually present in the form of transactions that have an owner

(owner’s public key, 20-byte address) and a value. The owner can spend

the transaction if they have the valid private key for the transaction they

are trying to spend. Bitcoin therefore is a state transition system where

“state” refers to the collection of all UTXOs. Every time a block is mined, a

state change happens because each block contains a bunch of transactions

where each transaction cosumes UTXO(s) and produces UTXO(s). Note

here that the state is not encoded inside the blocks. So, there is no notion

of an account balance as such in Bitcoin’s design. Ethereum on the other

hand is stateful, and its basic unit is the account. Each account has a state

associated with it and also has a 20-byte (160 bits) address through which

it gets identified and referenced. The purpose of blockchain in Ethereum is

to keep track of the state changes. There are broadly two types of Ethereum

accounts:

•	 Externally Owned Accounts (EOAs): These accounts

are also known as “simple accounts” that are usually

owned by users or devices who control these accounts

using Private Keys. The EOAs can send transactions

to other EOAs or Contract Accounts by signing with

a private key. The transaction between two EOAs is

usually to transfer any form of value. On the other

hand, when an EOA makes a transaction to a Contract

Account, the purpose is to activate the “code” inside the

Contract Account.

•	 Contract Accounts: These are controlled only by

the code contained in them. This code inside the

Contract Accounts is referred to as “smart contracts.”

Chapter 4 How Ethereum Works

229

They are usually activated when a transaction is sent

to the Contract Account by the EOAs or by other

Contract Accounts. Even though the Contract Accounts

are capable of executing complex business logics

through the code they contain, they can’t initiate new

transactions on their own and always depend on the

EOAs. All they can do is respond to other transactions

(obviously by making transactions) as per the logic

coded in their “code.”

Take a look at the following three scenarios (Figures 4-3 to 4-5) to get

a better understanding on the communication between the EOAs and

Contract Accounts.

EOA to EOA transaction:

Figure 4-3.  EOA to EOA transaction

Chapter 4 How Ethereum Works

230

EOA to Contract Account Transaction:

Figure 4-4.  EOA to Contract Account transaction

Chapter 4 How Ethereum Works

231

EOA to Contract Account to other Contract Account transaction:

Just so the previous representations are not confusing, please be aware

that the Contract Accounts are internal and the communications between

them, too. Unlike EOA accounts where EOAs make a transaction that

gets injected in the blockchain, Contract Accounts and the transactions

between them are internal phenomena.

�Advantages of UTXOs

We must understand that Bitcoin’s design perspective was to maintain

anonymity to an extent possible. When we compare it with Ethereum, the

following advantages of UTXOs seem to have a lot of significance:

•	 Better privacy: In Bitcoins, it is advisible to use a new

address while receiving transactions, which helps

reinforce anonymity. Even with sophisticated statistical

or machine learning techniques, it is difficult to link the

accounts together, though not impossible.

Figure 4-5.  EOA to Contract Account to Contract Account transaction

Chapter 4 How Ethereum Works

232

•	 Potentially more scalable: The discussion pertaining

to scalability is usually very subjective and depends

on the context, use case at hand, and many other

factors. The intention here is to just mention UTXO’s

inherent potential to scale. It is very easy to execute

the transactions in parallel. Also, when an owner or

other nodes maintaining the Merkle proof of ownership

data for some coins lose this data, only the owner is

impacted. On the contrary, when Merkle tree data

for some account is lost, then any operation on that

account would not be feasible, even sending to it.

�Advantages of Accounts

Even though Ethereum in a way is an extention to Bitcoin, it is imagined

with a whole new design with its own set of pros–cons tradeoff. Let us take

a look at the following advantages of Ethereum accounts compared with

Bitcoin design:

•	 Significant space saving: In Bitcoins, when

multiple transactions are clubbed together to make

one transaction (e.g., if you have to make a 5BTC

transaction and you never received one transaction

with at least 5BTC that you could use in this case,

then you have to bundle multiple transactions so the

total exceeds 5BTC), that many references to those

individual transactions must be made. Also, all those

transactions must have different addresses, so as many

transactions, that many addresses also! In Ethereum

accounts, however, just one reference to an account

is good enough. Even though Ethereum uses Merkle

Chapter 4 How Ethereum Works

233

Patricia tree (MPT), which is a bit more space intensive

than Merkle tree, you end up saving a significant

amount of space for complex transactions.

•	 Simple to code: Along with UTXOs and scripts that are

not Turing-complete, it is difficult to design complex

systems. UTXOs can either be spent or unspent; there

is no other state possible in between. Which makes

it difficult to code up complex business logics. Even

if the scripts are empowered to do more, it gets more

complicated as compared with just using accounts.

Since the objective of Ethereum is to go beyond

cryptocurrency and accommodate different kinds of

use cases (through DApps), an accounts-based system

is almost inevitable.

•	 Lightweight client reference: Unlike Bitcoin clients,

Ethereum client applications can easily and quickly

access all the data related to an account by scanning

down the state tree in a specific direction. In the UTXO

model, there are usually multiple references to multiple

transactions associated to any specific transaction

under consideration.

�Account State

We learned that every account has a state associated with it. We also

looked at the two kinds of accounts that exist with Ethereum, one is

a Contract Account and the other is an Externally Owned Account or

EOA. Regardless of the account type, they are tracked by the “stateRoot”

Merkle root in the block header and may appear as shown in Figure 4-6.

Chapter 4 How Ethereum Works

234

As you can see in the figure, irrespective of whether the account is an

EOA or or a Contract Account, it has the following four components:

•	 Account balance: Total “Ether” balance in the account.

More precisely, number of Wei owned by the address

(1ETH = 1018 Wei)

•	 CodeHash: This is the hash of the “code.” Every

Contract Account has “code” in it that gets executed

on the EVM. The hash of this code is stored in this

CodeHash field. For the EOA accounts, however, there

is no “code,” so the CodeHash field contains the hash of

empty string.

•	 StorageRoot: It is the 256-bit root hash of Merkle tree

that encodes the storage contents of an account. The

MPT encodes the hash of the storage content. Keeping

the root hash of this tree in the StorageRoot field helps

track the content of an account and also helps ensure

its integrity.

Figure 4-6.  Zooming in to account state representation

Chapter 4 How Ethereum Works

235

•	 Nonce: It is a counter that ensures each transaction is

processed only once. For EOAs, this number represents

the number of transactions from the account’s address.

For Contract Accounts, it represents the number of

contracts created by this account.

So, it is the “state” trie that is responsible to keep track of the state

changes of Ethereum blockchain. However, what is a bit tricky is that the

state is not directly stored in each block, rather in the form of Recursive

Length Prefix (RLP)-encoded state data in MPT at every Ethereum node.

So, to maintain the global state, the Ethereum blockchain includes “state

roots” in each and every block that store the root hash of the hash tree

(Merkle root) representing the system state at the time the block was

created.

As per the Ethereum Yellow Paper, the “World State” is a mapping

between addresses (160-bit identifiers) and account states. So, the World

State has the information of all the accounts in blockchain, but is not

stored in each block. Each block only modifies parts of the state. In a way,

the World State is generated processing each block since the genesis block.

Certain Ethereum nodes can choose to maintain all historical states by

keeping all the historical transactions, that is, state transitions and their

outputs. This allows clients to query the state of the blockchain at any time,

even for the historic ones, without having to recalculate everything from

the beginning. Retrieving the state information is similar to an aggregate

query in SQL where data is readily available; just aggregation is required.

So, old state data can easily be discarded (this is known as “pruning”)

because they can be computed back when required. Well, the state data

by design is implicit dada, which means state information should only be

calculated.

Chapter 4 How Ethereum Works

236

�Trie Usage
We learned the three types of tries that have their roots in the block header.

These roots are basically the pointers to those three tries. Though we

looked at the one-liner explanations of these tries in previous sections, let

us just revisit them with a slightly different choice of words

•	 State trie: It represents the entire state (the global state)

after accessing the block.

•	 Transaction trie: It represents all the transactions in a

block keyed by index (i.e., key:0 for the first transaction

to execute, key:1 for the second transaction, etc.).

Recollect the MPT fundamentals we covered earlier

and try to correlate.

•	 Receipt trie: It represents the "receipts" corresponding

to each transaction. A receipt for a transaction is an

RLP-encoded data structure as shown following:

 [medstate, gas_used, logbloom, logs]

Let’s now dig deeper into the Receipt trie as we havn’t covered the

basics yet on this. Take a look at all the fields in the Receipt trie’s

RLP-encoded data structure and follow through the following descriptions

for those fields:

•	 medstate: It is the State trie root after processing the

transaction. A successful transaction updates the

Ethereum state.

•	 gas_used: It is the total amount of gas used for

processing the transaction.

•	 logs: It is a list of items of the form-

[address, [topic1, topic2...], data]

Chapter 4 How Ethereum Works

237

•	 These list items are produced by the LOG0, LOG1…

opcodes during the execution of the transaction. The

“address” field is the address of the contract that

produced the log, the “topic” fields are up to four

32-byte values, and the “data” field is an arbitrarily

sized byte array.

•	 Logbloom: It is a Bloom filter made up of the addresses

and topics of all logs in the transaction. This is different

from the one present in the block header.

�Merkle Patricia Tree
In Ethereum, the accounts are mapped with their respective states.

The mapping between all the Ethereum accounts, including EOAs and

Contract Accounts with their states, is collectively referred to as World

States. To store this mapping data, the datastructure used in Ethereum is

the MPT. So, MPT is the principal data structure used in Ethereum which

is otherwise known as Merkle Patricia trie. We learned about the Merkle

trees in the Bitcoin chapter, which already takes us half way through in

understanding MPT. MPT is actually derived by taking elements from both

Merkle tree and Patricia tree.

Recollect from the Bitcoin chapter that Merkle trees are the binary

hash trees where the leaf nodes contain the hash of the data blocks and

every nonleaf node contains the hashes of their child nodes. When such

a data structure is implemented, it becomes easy to check if a certain

transaction was a part of a block. Only by using very little information from

the entire block, that is, by using just the Merkle branch instead of the

entire tree, providing proof of membership was quite easy. Merkle trees

facilitate efficient and secure verification of the contents in decentralized

systems. Instead of downloading every transaction and every block, the

light clients can only download the chain of block headers, that is, 80-byte

Chapter 4 How Ethereum Works

238

chunks of data for each block that contain only five things: hash of the

previous block header, timestamp, mining difficulty, nonce value that

satisfied PoW, and the root hash of the Merkle tree containing all the

transactions for that block. While it is quite useful and interesting, note

here that apart from validating the proof of membership for a transaction

in a block, there is nothing much you could do. One particular limitation is

that no information can be proved about the current state (e.g., total digital

asset holdings, name registrations, status of financial contracts). Even to

check how many Bitcoins you hold, quite a lot of querying and validating is

involved.

Patricia trees on the other hand are a form of Radix trees. The name

PATRICIA stands for “Practical Algorithm to Retrieve Information Coded In

Alphanumeric.” A Patricia tree facilitates efficient insert/delete operations.

The key-value lookups in the Patricia tree are very efficient. Keys are always

encoded in the path. So, “key” is the path that you take from the root till the

leaf node where the “value” is stored. Keys are usually the strings that help

descend down the path where each character indicates which child node

to follow to reach the leaf node and find the value stored in it.

So, the MPTs provide a cryptographically authenticated data structure

used to store all (key, value) bindings in Ethereum. They are fully

deterministic, meaning that a Patricia tree with the same (key, value)

bindings will surely be the same down to the last byte. The insert, lookup,

and delete operations are quite efficient with O(log(n)) complexity. Due to

the Merkle part in MPT, hash of a node is used as the pointer to the node

and the MPT is constructed accordingly, where

Key == SHA3(RLP(value))

While the Merkle part provides a tamperproof and deterministic tree

structure, the Patricia part provides an efficient information retrieval

feature. So, if you notice carefully, the root node in MPT becomes a

cryptographic fingerprint of the entire data structure. In the Ethereum

P2P network, when transactions are broadcast over the wire, they are

assembled by every mining node that received them. The nodes then

Chapter 4 How Ethereum Works

239

form a Tree (a.k.a. trie) and compute the root hash to include in the Block

header. While the transactions are stored locally in the tree, they are sent

to other nodes or clients after they are serialized to lists. The receiving

parties have to deserialize them back to form the transaction tree to

verify against the root hash. Also note that in Ethereum, MPTs are a little

modified for better fitment with Ethereum implementation. Instead of

binary, hexadecimal is used—X characters from a 16 character “alphabet.”

Hence nodes in the tree or trie have 16 child nodes (the 16 character hex

alphabet) and a maximum depth of X. Just to let you know, a hex character

is referred to as a “nibble” in many places.

The basic idea of an MPT in Ethereum is that for a single operation,

it will only modify the minimum amount of nodes to recalculate the root

hash. This way the storage and complexities are kept minimal.

�RLP Encoding
You must have noticed that we mentioned RLP encoding in previous

sections. We will give you a heads-up on what it is all about in this section.

RLP stands for Recursive Length Prefix. It is a serialization method used

in Ethereum for blocks, transactions, and wire protocol messages while

sending data over the wire and also for account state data while saving the

state in Patricia tree. In general, when complex data structures need to

be stored or transmitted and then get reconstructed at the receiving end

for processing, object serialization is a good practice. RLP in that sense

is similar to JSON and XML, but RLP is believed to be more minimalistic,

space efficient, simple to implement, and guarantees absolute byte-perfect

consistency. This is why RLP was chosen to be the main serialization

technique for Ethereum. Its sole purpose is to store nested arrays of

raw bytes. It does not try to define any specific data types either, such

as Booleans, floats, doubles, integers, etc., and is only designed to store

structure in the form of nested arrays. Key/value maps are not explicitly

Chapter 4 How Ethereum Works

240

supported by RLP. So, it is advisible to represent such maps as [[k1, v1],

[k2, v2], …], where k1, k2… are in lexicographic order (sorted using the

standard ordering for strings). Alternatively, use the higher-level Patricia

tree encoding that has an inherent RLP encoding scheme.

Please keep in mind that RLP is used only to encode the structure of

the data and is completely unaware of the type of object being encoded.

While it helps reduce the size of the encoding array of raw bytes, the

decoding end must be aware of the type of object it is trying to decode.

�Ethereum Transaction and Message Structure
In the previous section, we looked at the block structure and the different

fields in the block’s header. For a transaction to be qualified by the miners

or Ethereum nodes, it has to have a standardized structure. A typical

Ethereum transaction (e.g., what you pass through sendRawTransaction()

that we will see later in this book) consists of the following fields:

•	 nonce: It is an integer, just a counter equal to the

number of transactions sent by the sender account,

i.e., transaction sequence number.

•	 gasPrice: Price you are willing to pay in terms of the

number of Wei to be paid per unit of gas

•	 gasLimit: The maximum amount of gas that should be

used in executing this transaction, which also limits

the maximum number of computational steps the

transaction execution is allowed to take

•	 To: Recipient’s 160-bits address or Contract’s address.

For the transaction that is used to create a contract

(it means contract’s address does not exist yet), it is

kept empty.

Chapter 4 How Ethereum Works

https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree

241

•	 Value: Total Ether (number of Wei) to be transferred to

the recipient by the transaction sender

•	 V, r, s: values corresponding to the ECDSA signature

of the transaction; also represent the sender of this

transaction

•	 init: This is not really an optional field, only used with

transactions used for creating contracts. This field can

contain an unlimited size byte array specifying the

EVM-code for the account initialisation procedure.

•	 The opcode “init” is used only once for initializing the

new Contract Account and gets discarded after that. It

returns the body of the account code after associating

it with the Contract Account. Keep in mind that this

association is a permanent phenomenon and never

changes.

•	 Data: An optional field that can contain a message to be

sent to a contract or simple account. It has no special

function as such by default, but the EVM has an opcode

—using which, a contract can access this data field and

perform necessary computations and place them in

storage.

Note carefully that the aforementioned fields are supplied in the

order specified and are all RLP encoded, except for the field names. So, an

Ethereum transaction actually means a signed data package with these

fields. The gasPrice and gasLimit fields are important to prevent denial

of service attack. In order to prevent accidental or deliberate attempts of

infinite loops or other computational wastage in code, each transaction

is required to set a limit on how many computational steps for code

execution it can use.

Chapter 4 How Ethereum Works

242

Ethereum transactions are actually the "state transition functions"

because a successful transaction changes the state. Also, the result of these

transactions can be stored, as we already looked at in the “Account State”

section previously.

Ethereum messages on the other hand are like transactions, but are

triggered only by Contract Accounts and not by EOAs. Also, messages are

only meant to be between the Contract Accounts, due to which they are

also referred to as "internal transactions." So, contracts have the ability to

send messages to other contracts.

Typically, a message is produced when a contract, while executing

its code, encounters the “CALL” or “DELEGATECALL” opcodes. So,

messages are more like function calls that exist in the Ethereum execution

environment. It is also important to note that messages are always raw and

never serialized or deserialized. A message contains the following fields:

•	 Sender: The sender of the message as an implicit

option

•	 Recipient: The recipient contract address to send to

•	 Value: The amount of Wei to transfer to the contract

address along with the message

•	 Data: Optional field, but can contain input data for the

recipient contract provided by the sender

•	 gasLimit: The value that limits the maximum amount of

gas the code execution can consume when triggered by

the message. It is also termed “startGas.”

We looked at the transaction and messages. An Ethereum transaction

can be from an EOA to an EOA, or from an EOA to a Contract Account.

There exists another situation where a transaction from an EOA is initiated

to create a Contract Account (recollect the “init” field that we just covered).

Chapter 4 How Ethereum Works

243

Now, just think about what exactly a transaction is? It is definitely the

bridge between the external world and the Ethereum blockchain, but what

more? If you zoom in to a transaction, you will see that it is an instruction,

initiated by the EOA by signing it, which gets serialized and submitted to

the blockchain. Take a look at Figure 4-7.

Now what happens after a transaction is injected into the blockchain?

Well, it starts executing at every Ethereum node if found valid. While

this transaction is undergoing execution, Ethereum is designed to keep

tabs on the “substate” to track the flow of execution. This is because, if a

transaction does not complete due to “running out of gas,” then the entire

execution so far has to be reverted. Also, information collected during the

execution is required immediately after the transaction completion. So, the

substate contains the following:

•	 Self-destruct set: a set of accounts (if any) that will be

discarded after the transaction completion

•	 Log series: archived and indexable “checkpoints” of the

EVM’s code execution to track the contract calls

Figure 4-7.  Transaction initiation—zoomed in

Chapter 4 How Ethereum Works

244

•	 Refund balance: It is the amount to be refunded to the

sender account post transaction execution. Storage in

Ethereum is quite expensive, so there is an SSTORE

instruction in Ethereum that is used as a refund

counter. The refund counter starts at zero (no refund

state) and gets incremented every time the transaction

or contract deletes something from the storage.

Please note that this refund amount is different and in

addition to the unused gas that gets refunded to the

sender.

In the earlier versions of Ethereum, whether a transaction or contract

executes successfully or fails in between, the entire gas used to get

consumed. This was not always making sense. If an execution stopped

due to some authorization/permission issue or any other issue, the

execution would stop and the remaining gas would still be consumed.

The last Byzantium update introduced the “revert” code like an exception

handling. In case a contract has to stop, “revert” could be used to revert

state changes, return a reason for failure, and credit the remaining gas back

to the sender. Post successful execution of the transactions or contracts,

a state transition happens that we will dive deeper into in the followiung

section.

Just the way we looked at blockchaininfo to see a live Bitcoin

transaction, if you take a look at https://etherscan.io for Ethereum you

will find the following information:

Chapter 4 How Ethereum Works

https://etherscan.io/

245

�Ethereum State Transaction Function
In the previous section, we learned about Ethereum transactions and

messages. We are now aware that a state transition happens whenever a

transaction is through—successfully. So, the state transition function in

Ethereum is:

APPLY(S,Tx) -> S' \\where S is old state and S' is the new

state

Take a look at Figure 4-8.

Chapter 4 How Ethereum Works

246

So, the state transition function when Tx is applied to state S to result

in changed state S’ can be defined as follows:

•	 Validate the transaction to see if it is well formed.

•	 Has the right number of values

•	 The signature is valid.

•	 The nonce matches the nonce in the sender’s

account.

If any of preceding points is not valid, return an error.

•	 Calculate the fee and settle the accounts.

•	 Compute the transaction fee as gasLimit * gasPrice.

•	 Determine the sending address from the signature.

•	 Subtract the fee from the sender’s account balance

and increment the sender’s nonce.

Figure 4-8.  Ethereum state transition function

Chapter 4 How Ethereum Works

247

If there is not enough balance to spend, return an error.

•	 Initialize GAS = gasLimit, and take off a certain quantity

of gas per byte to pay for the bytes as a transaction fee.

•	 Transfer the transaction value (could be anything

of value) from the sender’s account to the receiving

account. Note here that the transaction could be for

anything of some intrinsic value such as land, vehicle,

ERC20 tokens, etc., but the gas Price has to be in Ether

so that the miners would accept the transaction. If the

receiving account does not yet exist, create it.

	 If the receiving account is a contract and not an EOA,

then run the contract’s code either to completion or

until the execution runs out of gas. Note here that the

contract code gets executed on every node’s EVM as

part of the block validation process so that the block,

hence the contract’s output post execution, becomes a

part of the main blockchain.

•	 If the value transfer failed because the sender did

not have enough money, or the code execution ran

out of gas, revert all state changes (thanks to MPT

implementation) except the payment of the fees, and

add the fees to the miner’s account.

•	 Otherwise, refund the fees for all remaining gas back

to the sender, and send the fees paid already for gas

consumed to the miner.

Chapter 4 How Ethereum Works

248

�Gas and Transaction Cost
Transactions on Ethereum run on “gas,” the fundamental unit of

computation in Ethereum. Every transaction, whether to an EOA or to a

contract, must have the gasLimit and gasPrice to compute the fee. This fee

is paid to the miners to compensate them for their resource contributions

and work they perform. Obviously, miners have the choice of including the

transaction and collecting the fee, similar to that of Bitcoin.

Usually, a computational step costs just one gas, but some of the

compute- or storage-intensive operations cost more. For every byte of

transaction data, around five gas is required. Take a look at these sample

examples: adding two numbers (with EVM opcode ADD) requires

approximately three gas; multiplying two numbers (with EVM opcode

MUL) requires approximately five gas; calculating a hash (SHA3) requires

around 30 gas (compute-intensive, you see). Storage cost is also computed

in similar fashion, but quite expensive for good reasons. As per the design,

a transaction can include an unlimited amount of data. It costs 68 gas per

byte of nonzero transaction data. To store a 256-bit word in a “Contract,”

approximately 20,000 gas is required. You could find more opcodes

and their corresponding prices in the Ethereum yellow paper. The cost

then would be to just multiply the gas required with the gasPrice. Unlike

Bitcoin, Ethereum cost computation is more complex. It takes into account

the costs of bandwidth, storage, and computation. Having such a fee

computation mechanism prevents the Ethereum network from an attacker

who might just want to inject an infinite loop for computation (leading

to denial-of-service attacks) or consume more and more space by storing

meaningless data.

The total Ether a transaction would cost actually depends on the

amount of gas consumed by the transaction, multiplied by the price of

one unit of gas specified in the transaction by the transaction initiator.

Miners on the other hand have a strategy for calculating the gas Price to

charge, which should be the least amount the sender of a transaction must

Chapter 4 How Ethereum Works

249

specify so that the transaction does not get rejected by the miner. So, how

do you calculate the total cost of a transaction? Not the approximate one,

but the actual cost? The total “Ether” cost of a transaction is based on two

factors: gasUsed and gasPrice. Total cost = gasUsed * gasPrice. The gasUsed

component is the total gas consumed while excuting the EVM opcodes for

the instructions, and gasPrice is the one specified by the user.

If the total amount of gas used by the computational steps (including

the transaction, the message, and any submessages that may be triggered)

is less than or equal to the gasLimit, then the transaction is processed by

the miner. However, if the total gas exceeds the gasLimit, then all changes

are reverted (though it is a valid transaction), except that the fee can still

be collected by the miner. So, what happens to the excess gas? All the

unused gas after transaction execution is reimbursed to the sender as

Ether. Senders do not need to worry about overspending, as they are only

charged for the gas consumed. This definitely means that it is important as

well as safe to send transactions with a gas limit well above the estimates.

It is also recommended not to pay very high gas Price and use the average

gas price from https://ethgasstation.info/.

Let us go through each and every step when a transaction is made in

an Ethereun network to build a concrete understanding of the flow:

•	 Every transaction must define a “gasLimit” that it is

willing to spend (gasLimit is also termed “startGas”),

and the fee that it is willing to pay per unit of gas

(gasPrice). At the start of execution, Ether worth of

gasLimit * gasPrice is removed from the transaction

sender’s account. Remember that this is not really the

total cost of a transaction (should be a bit more than

that in an ideal case). Only after the transaction, its

actual cost is concluded (gasUsed * gasPrice) that’s

adjusted from this (gasLimit * gasPrice), which was

initially deducted from sender’s account and the

Chapter 4 How Ethereum Works

https://ethgasstation.info/

250

balance amount is credited back to the sender. In the

beginning of a transaction itself, the amount (gasLimit

* gasPrice) is deducted because there could be a

possibility that the sender could go bankrupt while the

transaction they initiated is midway through.

•	 All operations during transaction execution, including

database reads and writes, messages, and every

computational step taken by the E VM such as addition,

subtraction, hash, etc. consume a certain quantity of

gas that is predefined.

•	 A normal transaction is one that executes successfully

without exceeding the gasLimit specified. For such

transactions, there should be some gas remaining, say,

“gas_rem”. After a successful transaction execution,

the transaction sender receives a refund of “gas_rem *

gasPrice” and the miner of the block receives a reward

of “(gasLimit - gas_rem) * gasPrice”.

•	 If a transaction runs out of gas before successful

completion, then all executions revert, but the

transaction is nevertheless valid. In such situations,

the only outcome of the transaction is that the entire

amount “gasLimit * gasPrice” is allocated to the miner.

•	 In the case of Contract Accounts, when a contract

sends a message to the other contract for subexecution,

it also has the option to set a gasLimit. This option is

specifically intended for the subexecution arising out

of that message, because there is a possibility that the

called contract has an infinite loop. If the subexecution

runs out of gas, then the subexecution is reverted,

which protects against such infinite loops or deliberate

Chapter 4 How Ethereum Works

251

attempts of DoS attacks. The gas is consumed anyway

and allocated to the miner. Also note that when a

message is triggered by a contract, only the instructions

cost gas, but data in a message do not cost any gas. This

is because the data from the parent contract need not

be copied again, and could be just referrenced through

a pointer.

The first Ethereum release (Frontier) had a default gas Price of 0.05e12

WEI (i.e., smallest denomination of Ether). In the second Ethereum release

(Homestead), default gas Price was reduced to 0.02e12 WEI. You must

be wondering why gas and Ether are decoupled from each other and not

a single unit of measurement, which would have made it much simpler.

Well, it is deliberately designed this way because units of gas align well

with computation units having a natural cost (e.g., cost per computation),

while the price of Ether generally fluctuates as a result of market forces.

We already know that every Ethereum node participating in the

network runs the EVM as part of the block verification protocol. This

means that all the nodes execute the same set of transactions and

contracts (redundantly parallel, but essential for consensus). While this

redundency naturally makes it expensive, there is an incentive not to use

the blockchain for computation that can be done offchain (Game Theory!).

Typically, 21,000 gas is charged for any transaction as a "base fee"

to cover the cost of an elliptic curve operation to compute the sender

address from the signature, and also for the disk space of storing the

transaction. There are ways to estimate gas requirements for transactions

and contracts. Example: “estimateGas” is a Web3 function to estimate gas

requirement for a given function. Also, to estimate the total cost, gas price

oracle is a helper function in “geth” client and “web3.eth.getGasPrice” is

a Web3 native function to find an approximate gas Price. Following is an

example code that can be used in “Truffle”:

Chapter 4 How Ethereum Works

252

Example code for transaction cost estimation

var MyContract = artifacts.require("./MyTest.sol");

// getGasPrice returns the gas price in Wei

MyContract.web3.eth.getGasPrice(function(error, result){

 var gasPrice = Number(result);

 console.log("Current gasPrice is " + gasPrice + " wei");

 // Get the Contract instance

 MyContract.deployed().then(function(instance) {

 �// Retrieve gas estimation for the function

giveAwayDividend()

 return instance.giveAwayDividend.estimateGas(1);

 }).then(function(result) {

 var gas = Number(result);

 �console.log("Total gas estimation = " + gas + " units");

 �console.log("Total Transaction Cost estimation in Wei =

" + (gas * gasPrice) + " wei");

 �console.log("Total Transaction Cost estimation in

Ether = " + MyContract.web3.fromWei((gas * gasPrice),

'ether') + " Ether");

 });

});

While writing smart contracts in Solidity, many prefer to use “constant”

functions to compute certain things offchain or just make an RPC query

to your local blockchain. Since such constant functions do not change the

blockchain state, they are in a way free of cost as they do not consume gas.

If the constant functions are used inside of any transaction, then it is highly

likely that gas expense would be required.

Chapter 4 How Ethereum Works

253

Let us now learn about the block’s gas limit. Recollect that Bitcoin

had a predefined limit of 1MB block size and Bitcoin cash had a 2MB

block size. Miners would accumulate as many transactions as could fit in

those blocks. Ethereum, however, has a very different way of limiting the

block size. In Ethereum, the block size is controlled by the block gas limit.

Different transactions have different gas limits; so, depending on the block

gas limit, a certain number of transactions are clubbed together so that

total transactions gas limit is less than the block gas limit. Different miners

can have different sets of transactions that they are willing to put in a block.

The block gas limit is dynamically calculated. The Ethereum protocol

allows the miner of a block to adjust the block gas limit by a factor of

1/1024 (0.0976%) in either direction. Miners on the Ethereum network use

a mining program, such as “ethminer.” The ethminer is an Ethereum GPU

mining worker, which connects to either geth or Parity Ethereum client

node. Both geth and Parity have options that miners can change.

�Ethereum Smart Contracts
Unlike Bitcoin, which is just a cryptocurrency, Ethereum is so much more–

thanks to the smart contracts. We got a glimpse of what a smart contract

might be in the previous sections while learning about Contract Accounts.

While we will get into the development aspects of smart contracts in the

following chapters, we will have a detailed exploration of what they really

are in this section.

Let us start with why it is named so? Please be aware that there is nothing

“smart” in a smart contract that is out-of-the-box. It is smart when you code

smart logic into it, and it is the beauty of Ethereum that enables you to do so.

Let us just summarize our learning so far on the Ethereum smart contracts:

•	 Smart contracts reside inside the Ethereum blockchain.

•	 They have their own account, hence address and

balance.

Chapter 4 How Ethereum Works

254

•	 They are capable of sending messages and receiving

transactions.

•	 They get activated when they receive a transaction, and

can be deactivated as well.

•	 Like other transactions, an execution fee and storage

fee are applicable for them as well.

All the code in Ethereum, including the smart contracts, is compiled

to a low level, stack-based bytecode language, referred to as EVM code,

that runs on EVM. The popular high-level languages used to write smart

contracts are Solidity, Serpent, and LLL, where their respective compilers

convert the high-level code into the EVM byte code. We looked at how

contracts could be added into the blockchain by any external agent such

as EOA. Since computation and storage in Ethereum are very expensive,

it is advisible that the logic should be written in as simple and optimized

fashion as possible. When a smart contract is deployed to the Ethereum

blockchain network, it is possible for anyone to call the functions of the

smart contract. The functions usually have security features coded up that

prevent unauthorized access; nevertheless, attempts can be made though

they won’t succeed.

If you try to imagine a smart contract inside of a block in an Ethereum

blockchain, it might appear as in Figure 4-9.

Chapter 4 How Ethereum Works

255

Let us now take an example of a voting application. A smart contract

is written that has an address (Contract Account address) and is a part

of some block in the blockchain, depending on when it was created. The

voters can make transactions to that address (votes). The contract code is

written such that it will increment the vote count with every transaction

received and terminates itself after some time, publishing the voting result

(Ethereum state change). Take a look at Figure 4-10 to have a diagramatic

representation for a high-level understanding.

Figure 4-9.  Ethereum smart contract with respect to blocks

Chapter 4 How Ethereum Works

256

�Contract Creation
Recollect that we learned about the contract creation transaction, whose

only purpose is to create a contract. It is a bit different kind of transaction

compared with the other types. So, before the contract creation transaction

is fired up to create a Contract Account, it must first initialize the four

properties that all types of accounts have:

•	 The “nonce” should be set to zero initially.

•	 The “Account Balance” should be set with the value

(amount of Ether) transferred by the sender, and the

same amount must be deducted from the sender’s

account.

Figure 4-10.  An application with smart contract logic

Chapter 4 How Ethereum Works

257

•	 The “StorageRoot” should be empty.

•	 The contract’s “codeHash” should be set with the

Keccak 256-bit hash of an empty string.

After initializing the account, the account can be created using the init

code sent with the transaction that does the real work. There could be a

whole bunch of actions defined in init code, and it’s execution can effect

several events that are not internal to the execution state, such as:

•	 The account’s ‘storage’ can be altered.

•	 Further accounts can be created.

•	 Further message calls can be triggered.

�Ethereum Virtual Machine and Code
Execution
Ethereum is a programmable blockchain that allows users to create their

own operations of any arbitrary complexity through Turing-complete

languages. The EVM is the execution engine of Ethereum that serves as

the runtime environment for smart contracts. It is the primary innovation

of Ethereum that makes it unique compared with other blockchain

systems. It is the EVM on the basis of which the smart contract technology

is supposed to get to the next level of innovation, and the game is on.

EVM also plays a critical role in transaction execution, changing the state

of Ethereum, and achieving consensus. The design goals of EVM are as

follows:

•	 Simplicity: The idea was to make EVM as simple as

possible with the low-level constructs. This is why the

number of low-level opcodes is kept to a minimum,

and so are the data types to the extent that complex

Chapter 4 How Ethereum Works

258

logics could still be written conveniently using these

constructs. Total 160 instructions, out of which 65 are

logically distinct

•	 Absolute determinism: Ensuring that the execution

of instructions with the same set of inputs should

produce the same set of outputs (deterministic!)

helps maintain the integrity of the EVM without any

ambiguity. Determinism along with the concept of

“computational step” helps estimate gas expense with

close approximation.

•	 Space optimization: In decentralized systems, space

saving is a biggest concern. This is why the EVM

assembly is kept as compact as possible.

•	 Tuned for native operations: EVM is tuned for

some native operations such as the specific types of

arithmatic operations used for cryptography (modular

arithmatic), reading blocks or transaction data,

interacting with “states,” etc. Another such example is:

256-bit (32 bytes) word length to store cryptographic

hashes, where EVM operates on the same 256-bits

integer.

•	 Easy security: In a way, gas Price helps ensure that the

EVM is nonexploitable. If there was no cost, attackers

could just keep attacking the system in every possible

way. While almost every operation on EVM requires

some gas cost, it should be easy to come up with good

gas cost model on EVM

We learned that every participating node in the Ethereum network

runs EVM locally, executes all transactions and smart contracts, and saves

the final state locally. It is the EVM that writes code (smart contracts) and

Chapter 4 How Ethereum Works

259

data to blockchain and executes instructions (opcodes) of transaction code

and smart contract code written in a Turing-complete language. That is

to say, EVM serves as a runtime environment (RTE) for Ethereum smart

contracts and ensures secured execution of the code. Obviously, when

the code or transactions are validated through their respective digital

signatures, they are executed on EVM. So, only after successful execution

of instructions through EVM, the Ethereum state can change.

Unless one connects the EVM with the rest of the network to

participate in the P2P network, it can be isolated from the main network.

In an isolated and sandboxed environment, EVM could be used to test

smart contracts. It facilitates in building better, robust, and production

ready-smart contracts.

To build a better understanding of how smart contracts work

leveraging the EVM, we should understand how data is organized, stored,

and manipulated in any EVM language such as Solidity, Serpent, and

ones that might come in future. You might want to consider EVM more

like a database engine. Though we will not get deeper into the Solidity

programming fundamentals, we will see how it interacts with the EVM in

this section. Take a look at Figure 4-11.

Chapter 4 How Ethereum Works

260

Let us now understand memory management with EVM. Take a look at

the following three strategies that the EVM follows:

•	 Storage (persistent)

•	 Key-value storage mapping (i.e., 256- bit to 256-bit

word mapping). This means both keys and values

are 256 bits (i.e., 32 bytes).

•	 From within a contract, it is not possible to

enumarate storage.

•	 At any given point in time, the state of the contract

can be determined by the contract level variables

called “state variables” that are always in “storage,”

and it cannot be updated at runtime. This means

that the structure of the storage is set only once

during the contract creation and cannot be altered.

Figure 4-11.  Smart contract deployment and usage

Chapter 4 How Ethereum Works

261

However, their content can be changed with

“sendTransaction” calls.

•	 Read/update of storage is an expensive affair.

•	 Contracts cannot read, write, or update to any other

storage that is not owned by them.

•	 SSTORE/SLOAD are the frequently used

instructions. Example: SSTORE instruction pops

the top two items off the stack, considers the first

item as the index, and inserts the second item into

the contract’s storage at that index location.

•	 Memory (volatile)

•	 It is similar to RAM requirement in a general

computer system for any code or application

execution and used to store temporary values.

•	 A contract can use any amount of memory during

execution by paying for it, and that memory space

is cleaned up after execution completes. The

outputs during execution could be pushed to the

persistent storage that can be reused in future

executions.

•	 Memory is actually a byte-array that is contiguous,

unlike storage. It is allocated in 256-bit (32 bytes)

chunks.

•	 Starts with no space and takes on space in the units

of 32-byte chunks.

•	 Without the “memory” keyword, smart contract

languages such as Solidity are expected to declare

variables in storage for persistence.

Chapter 4 How Ethereum Works

262

•	 Memory cannot be used at the smart contract level;

it can only be used in methods.

•	 Function arguments are almost always in memory.

•	 MSTORE/MLOAD are the frequently used

instructions.

•	 Stack

•	 EVM is stack based, hence follows LIFO (Last-

in, First-Out), where stack is used to perform

computations.

•	 Stack entries are also 256-bit words used to

mimic 256-bit pseudo registers. They are used to

hold local variables of “value” type and to pass

parameters to instructions or functions, memory

operations, and other algorithmic operations.

•	 Allows a maximum of 1024 element and is almost

free to use.

•	 Most of the stack operations are limited to top of

the stacks. The execution is pretty similar to the way

Bitcoin script was executed.

When EVM is running and the byte code is injected with a transaction

for execution, its full computational state can be defined by the following

tuple: [block_state, transaction, message, code, memory, stack, pc, gas].

You must be able to make out all these fields now. They have the three

kinds of memory we discussed (the block_state field represents the global

state and is for storage). The PC field is like a pointer for an instruction in

the stack to be executed.

In Ethereum, an Application Binary Interface (ABI) is an abstraction

that is not part of the core Ethereum protocol, but is used to access the

byte code in a smart contract as standard practice. Though it is possible

Chapter 4 How Ethereum Works

https://github.com/ethereum/yellowpaper

263

for anyone to define their own ABI for their contracts and comply with it to

get the desired output, it is easier to use Solidity. The purpose of ABI is as

follows:

•	 How and what functions inside smart contracts should

be called

•	 The Binary format in which information should be

passed to smart contract functions as inputs

•	 The Binary format in which you expect the output of

function execution after calling that function

With ABI specifications, it is easy (though may not be necessary) for

two programs written in two different languages to interact with each other.

�Ethereum Ecosystem
We learned the core components to understand how Ethereum really

works. There are some inherent limitations to Ethereum such as the

following:

•	 The EVM is slow; it is not advisible to be used for large

computations.

•	 Computation and storage on the blockchain is

expensive; it is advisible to use offchain computations

and use IPFS/Swarm for storage.

•	 Scalability is an issue; there are different techniques to

address it, but they are subjective to the business case

you are dealing with.

•	 Private blockchains are more likely to flourish.

Now let us take a look at the Ethereum tech stack to understand at a

high-level the Ethereum ecosystem.

Chapter 4 How Ethereum Works

264

�Swarm
It is not only a distributed storage platform of static files in a P2P fashion,

but also a distribution service. Swarm ensures adequate decentralization

and redundant storage of Ethereum’s blockchain data, DApp code, etc.

Unlike WWW, the uploads to Swarm are not centralized to one web server.

It is designed to have zero downtime and is DDOS resistant and fault

tolerant.

�Whisper
It is a communications protocol that allows DApps to communicate with

each other. It provides a distributed yet private messaging functionality. It

supports singlecast, multicast, and broadcast of messages.

�DApp
A DApp usually has two components, a front-end and a back-end

component. The back-end code runs on the actual blockchain coded

up in smart contracts. The front-end code and user interfaces could be

written in any language such as HTML, CSS, and JavaScript, as long as

it can make calls to its back end. Also, the front end can be hosted in a

decentralized storage like SWARM or IPFS instead of a centralized web

server.

User interface components will be cached on some kind of

decentralized BitTorrent-like cloud and pulled in by the ÐApp Browser as

needed. Like any App store, it is possible to browse the distributed DApps

catalog in the browser. The end user can install any DApp of interest in

their browser.

Chapter 4 How Ethereum Works

265

�Development Components
There are so many development components used to develop

decentralized applications on Ethereum and interact with them. Following

are a few popular ones, but there are many more such for you to explore.

We will just take a look at what they are and dive deeper into these topics

in the following chapters.

�Web3.js

This is a very important element in developing DApps.

�Truffle

Truffle provides the building blocks to create, compile, deploy, and test

blockchain applications.

�Mist Wallet

We learned in the previous chapters that a wallet is required to interact

with blockchain applications and the same applies to Ethereum as well.

To store, accept, and send Ether, the users need a wallet. Mist Wallet is a

UI-based solution that can be used to connect to the Ethereum blockchain.

Using Mist wallet, one can create accounts, design and deploy contracts,

transfer Ether across accounts, and view transaction details.

Internally, Mist is dependent on the “geth” client (i.e., GoEthereum

Client) to perform all the operations seamlessly.

�Summary
In this chapter, we covered the core components of Ethereum blockchain

and understood the design considerations. We were able to differentiate

Ethereum design with that of the Bitcoin blockchain and understood how

Chapter 4 How Ethereum Works

266

Ethereum blockchain facilitates development of different use cases on a

single platform. We took a deep dive into the smart contracts and how the

Ethereum Virtual Machine (EVM) executes it in a decentralized fashion.

We will explore more into the development aspect of blockchain in

general in Chapter 5 and then build a solid understanding of Ethereum

development in Chapter 6.

�References
Ethereum White Paper

https://github.com/ethereum/wiki/wiki/White-Paper.

Ethereum Yellow Paper
https://ethereum.github.io/yellowpaper/paper.pdf.

How Ethereum Works
https://medium.com/@preethikasireddy/how-does-ethereum-work-

anyway-22d1df506369.

Patricia Tree
https://dl.acm.org/citation.cfm?id=321481.

Merkling in Ethereum
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/.

Gas and Transactions in Ethereum
http://ethdocs.org/en/latest/contracts-and-transactions/

account-types-gas-and-transactions.html.

Technical Introduction to Events and Logs in Ethereum
https://media.consensys.net/technical-introduction-to-

events-and-logs-in-ethereum-a074d65dd61e.

Ethereum Internals
https://github.com/comaeio/porosity/wiki/Ethereum-Internals.

Chapter 4 How Ethereum Works

https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://dl.acm.org/citation.cfm?id=321481
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethereum-a074d65dd61e
https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethereum-a074d65dd61e
https://github.com/comaeio/porosity/wiki/Ethereum-Internals

267© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_5

CHAPTER 5

Blockchain
Application
Development
In the previous chapters we went into theoretical details about what

blockchain is and how the Bitcoin and Ethereum blockchains work. We

also looked at the different cryptographic and mathematical algorithms,

theorems, and proofs that go into making the blockchain technology.

In this chapter, we will start with how blockchain applications are

different than the conventional applications, and then we will dive into

how to build applications on blockchains. We will also look at setting up

the necessary infrastructure needed to start developing decentralized

applications.

�Decentralized Applications
The popularity of blockchain technology is mostly driven by the fact that

it can potentially solve various real-world problems because it provides

more transparency and security (tamper-proof) than conventional

technologies. There are a lot of blockchain use cases identified by several

startups and community members aimed at solving these problems.

268

To implement these use cases, we create applications that work on top

of blockchains. In general, applications that interact with blockchains

are referred to as “decentralized applications” or, in short, just DApps or

dApps.

To understand DApps better, let’s first revisit what a blockchain is.

A blockchain or a distributed ledger is basically a special kind of database

where the data is not stored at a centralized server, but it is copied at all

the participating nodes in the network. Also, the data on blockchains is

cryptographically signed, which proves the identity of the entity who wrote

that data on the blockchain. To make use of this database to store and

retrieve data, we create applications that are called DApps because these

applications do not rely on a centralized database but on a blockchain-

based decentralized data store. There is no single point of failure or control

for these applications.

Let’s take an example of a DApp. Let’s take a scenario of supply chain

where several vendors and logistics partners are involved in the supply

chain process of manufactured goods. To use blockchain technology for

this supply chain use case, here’s what we would do:

•	 We would need to set up blockchain nodes at each

of these vendors so that they can participate in the

consensus process on the data shared.

•	 We would need an interface so that all the participants

and users can store, retrieve, verify, and evaluate

data on the blockchain. This interface would be used

by the manufacturer to enter the information about

the goods manufactured; by the logistics partner to

enter information about the transfer of goods; by the

warehousing vendor to verify if the goods manufactured

and the goods transferred are in sync, etc., etc. This

interface would be our supply chain DApp.

Chapter 5 Blockchain Application Development

269

Another example of a DApp would be a voting system based on

blockchains. Using blockchain for voting, we would be able to make

the whole process much more transparent and secure because each

vote would be cryptographically signed. We would need to create an

application that could get a list of candidates for whom voters could vote,

and this application would also provide a simple interface to submit and

record the votes.

�Blockchain Application Development
Before we jump into code, let’s first understand some basic concepts

around blockchain application development. Generally, we are used

to concepts like objects, classes, functions, etc. when we develop

conventional software applications. However, when it comes to blockchain

applications, we need to understand a few more concepts like transactions,

accounts and addresses, tokens and wallets, inputs, and outputs and

balances. The handshake and request/response mechanism between a

decentralized application and a blockchain are driven by these concepts.

First, when developing an application based on blockchain, we

need to identify how the application data would map to the blockchain

data model. For example, when developing a DApp on the Ethereum

blockchain, we need to understand how the application state can be

represented in terms of Solidity data structures and how the application’s

behavior can be expressed in terms of Ethereum smart contracts. As we

know that all data on a blockchain is cryptographically signed by private

keys of the users, we need to identify which entities in our application

would have identities or addresses represented on the blockchain. In

conventional applications this is generally not the case, because the data

is not always signed. For blockchain application we need to define who

would be the signers and what data they would sign. For example, in

a voting DApp in which every voter cryptographically signs their vote,

Chapter 5 Blockchain Application Development

270

this is easy to identify. However, imagine a scenario where we need to

migrate an existing conventional distributed systems application, having

its data stored across multiple SQL tables and databases, to a DApp based

on Ethereum blockchain. In this case we need to identify which entities

in which table would have their identities and which entities would be

attached to other identities.

In the next few sections, we will explore Bitcoin and Ethereum

application programming using simple code snippets to send some

transactions. The purpose of this exercise is to become familiar with the

blockchain APIs and common programming practices. For simplicity, we

will be using public test networks for these blockchains and we will write

code in JavaScript. The reason for selecting JavaScript is, at the time of this

writing, we have stable JavaScript libraries available for both blockchains

and it will be easier to understand the similarities and differences in the

approaches we take while writing code. The code snippets are explained

in detail after every logical step and can be understood even if the reader is

not familiar with JavaScript programming.

�Libraries and Tools
Recall from Chapter 2, that there are a lot of cryptographic algorithms

and mathematics used in blockchain technology. Before we send our

transactions to blockchains from an application, we need to prepare

them. The transaction preparation includes defining accounts and

addresses, adding required parameters and values to the transaction

objects, and signing using private keys, among a few other things. When

developing applications, it’s better to use verified and tested libraries for

transaction preparation instead of writing code from scratch. Some of the

stable libraries for both Bitcoin and Ethereum are available open source,

which can be used to prepare and sign transactions and to send them to

the blockchain nodes/network. For the purpose of our code exercises,

we will be using the bitcoinjs JavaScript library for interacting with the

Chapter 5 Blockchain Application Development

271

Bitcoin blockchain and the web3.js JavaScript library for interacting with

the Ethereum blockchain. Both these libraries are available as node.js

packages and can be downloaded and integrated using the npm

commands.

Important Note T he code exercises in this chapter are based on
node.js applications. This is to make sure that the code we write as
part of this exercise has a container in which it can run and interact
with the other prepackaged libraries (node modules) mentioned. It is
nice to have some knowledge about node.js application development,
and the reader is encouraged to follow a getting started tutorial on
node.js and npm.

Figure 5-1 shows how a DApp interacts with a blockchain.

Figure 5-1.  Blockchain application interaction

Chapter 5 Blockchain Application Development

272

�Interacting with the Bitcoin Blockchain
In this section we will send a transaction to the Bitcoin public test network

from one address to another. Consider this a “Hello World” application

for the Bitcoin blockchain. As mentioned before, we will be using the

bitcoinjs JavaScript library for preparing and signing transactions. And

for simplicity, instead of hosting a local Bitcoin node, we will use a public

Bitcoin test network node hosted by a third-party provider block-explorer.

Note that you can use any provider for your application and you can also

host a local node. All you need to do is to point your application code to

connect to your preferred node.

Recall from previous chapters that the Bitcoin blockchain is primarily

for enabling peer to peer payments. A Bitcoin transaction is mostly just

a transfer of Bitcoins from one address to another. Here’s how we do this

programmatically.

The following (Figure 5-2) shows how this code interacts with the

Bitcoin blockchain. Note: The figure is just a rough sketch and does not

show the Block Explorer service architecture in detail.

Figure 5-2.  Application interacting with the Bitcoin blockchain using
the Block Explorer API

Chapter 5 Blockchain Application Development

273

The following subheadings of this section are steps to follow, in that

order, to send a transaction to the Bitcoin test network using JavaScript.

�Setup and Initialize the bitcoinjs Library
in a node.js Application
Before we call the library-specific code for Bitcoin transactions, we will

install and initialize the bitcoinjs library.

After initializing a node.js applicaion using the npm init command,

let’s create an entry point for our application, index.js, and custom

JavaScript module to call the bitcoinjs library functions btc.js. Import btc.js

in the index.js. Now, we are ready to follow the next steps.

First, let’s install the node module for bitcoinjs:

npm install --save bitcoinjs-lib

Then, in our Bitcoin module btc.js, we will initialize the bitcoinjs

library using the require keyword:

var btc = require('bitcoinjs-lib');

Now we can use this btc variable to call library functions on the

bitcoinjs library. Also, as part of the initialization process, we are

initializing a couple of more variables:

•	 The network to target : We are using the Bitcoin test

network.

var network = btc.networks.testnet;

•	 The public node API endpoint to get and post

transactions : We are using the Block Explorer API for

Bitcoin test network. Note that you can replace this API

endpoint with your preferred one.

var blockExplorerTestnetApiEndpoint =

'https://testnet.blockexplorer.com/api/';

Chapter 5 Blockchain Application Development

274

At this point, we are all set up to create a Bitcoin transaction using a

node.js application.

�Create Keypairs for the Sender and Receiver
The first thing that we will need are the keypairs for the sender and

the receivers. These are like user accounts identifying the users on the

blockchain. So, let’s first create two keypairs for Alice and Bob.

var getKeys = function () {

 var aliceKeys = btc.ECPair.makeRandom({

 network: network

 });

 var bobKeys = btc.ECPair.makeRandom({

 network: network

 });

 var alicePublic = aliceKeys.getAddress();

 var alicePrivate = aliceKeys.toWIF();

 var bobPublic = bobKeys.getAddress();

 var bobPrivate = bobKeys.toWIF();

 �console.log(alicePublic, alicePrivate, bobPublic,

bobPrivate);

};

What we did in the previous code snippet is, we used the ECPair class

of the bitcoinjs library and called the makeRandom method on it to create

random keypairs for the test network; note the parameter passed for

network type.

Now that we have created a couple of keypairs, let’s use them to send

Bitcoins from one to the other. In almost all the cryptography examples,

Alice and Bob have been the favorite characters, as seen in the preceding

keypair variables. However, every time we see a cryptography example,

generally Alice is the one who encrypts/signs something and sends to Bob.

Chapter 5 Blockchain Application Development

275

For that reason, we feel Bob is under a lot of debt from Alice, so in our case

we will help Bob repay some of that debt. We will do this example Bitcoin

transaction from Bob to Alice.

�Get Test Bitcoins in the Sender’s Wallet
We have identified that Bob is going to be acting as the sender in this

example Bitcoin transaction. Before he sends any Bitcoins to Alice, he

needs to own them. As we know that this example transaction is targeting

the Bitcoin test network, there is no real money involved but we still need

some test Bitcoins in Bob’s wallet. A simple way to get test network Bitcoins

is to ask on the Internet. There are a lot of websites on the Internet that

host a simple web form to take the Bitcoin testnet addresses and then

send test net Bitcoins to those. These services are called Bitcoin testnet

faucets, and if you search online for that term you will get a lot of those in

the search results. We are not listing or recommending any specific testnet

faucet because they are generally not permanent. As soon as a faucet

service provider has exhausted their test coins, or they don’t want to host

the service anymore, they shut it down. But then new ones keep coming up

all the time. A list of some of these faucet services is also available on the

Bitcoin wiki testnet page.

Another way of getting test net Bitcoins is to host a local Bitcoin node

pointing to the test net and mine some. The block mining on the Bitcoin

test network is not as difficult as that on the main network. This approach

could well be the next level approach when you are building a production

Bitcoin application and you need to test it frequently. Instead of asking for

test coins every time you want to test your application, you can just mine

them yourself.

For the purposes of this simple example, we will just get some

Bitcoins from a testnet faucet. In the previous code snippet, the value in

the bobPublic variable is Bob’s Bitcoin testnet address. When we ran this

snippet, it generated “msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2” as Bob’s

Chapter 5 Blockchain Application Development

276

address. It is also Bob’s base 58 encoded public key. We will submit this

value in one of the testnet faucet web forms and in return we will receive

a transaction ID. If we look up that transaction ID on any of the Bitcoin

testnet explorers, we will see that some other address has sent some test

Bitcoins to Bob’s address we submitted in the form.

�Get the Sender’s Unspent Outputs
Now that we know that we have some test Bitcoins in Bob’s wallet, we can

spend them and give them to Alice through a Bitcoin transaction. Let’s

recall from Chapter 3 how the Bitcoin transactions are made of inputs and

outputs. You can spend your unspent outputs by adding them as inputs

to the transactions where you want to spend them. To do that, first you

need to query the network about the sender’s unspent outputs. Here’s how

we will do that for Bob’s Bitcoin testnet address using the block explorer

API. To get the unspent outputs, we will send an HTTP request to the UTXO

endpoint with Bob’s address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2".

var getOutputs = function () {

 �var url = blockExplorerTestnetApiEndpoint + 'addr/' +

msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2 + '/utxo';

 return new Promise(function (resolve, reject) {

 request.get(url, function (err, res, body) {

 if (err) {

 reject(err);

 }

 resolve(body);

 });

 });

};

Chapter 5 Blockchain Application Development

277

In the previous code snippet, we have used the node.js request

module to send http requests using a node.js application. Feel free to use

your favorite http library/module. This snippet is a JavaScript function

that returns a promise that resolves into the response body from the API

method. Here’s how the response looks:

[

 {

 address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

 �txid: 'db2e5966c5139c6e937203d567403867643482bbd9a6624

752bbc583ca259958',

 vout: 0,

 �scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad

c51dc02d6888ac',

 amount: 0.99992,

 satoshis: 99992000,

 height: 1258815,

 confirmations: 1011

 },

 {

 address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

 �txid: '5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7

453e3afeb4934e6d1d928e',

 vout: 1,

 �scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad

c51dc02d6888ac',

 amount: 0.99998,

 satoshis: 99998000,

 height: 1258814,

 confirmations: 1012

 }

]

Chapter 5 Blockchain Application Development

278

The response body returned by the call is a JSON array with two

objects. Each of these objects represents an unspent output for Bob. Each

output has txid, which is the transaction ID where this output is listed, the

amount associated with output, and the vout, which means the sequence

or index number of the output in that transaction. There is some other

information in the JSON objects too, but that will not be used in the

transaction preparation process.

If we take the first object in the array, it basically says that the

Bitcoin testnet address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2"

has `99992000` unspent satoshis coming from the transaction

`db2e5966c5139c6e937203d567403867643482bbd9a6624752bbc583c

a259958` at the index `0`. Similarly, the second object represents

`99998000` unspent satoshis coming from the transaction

`5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7453e3afeb4934

e6d1d928e` at the index `1`.

Don’t forget that "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2" is Bob’s

Bitcoin testnet, which we created in step 2 earlier. Now we know that Bob

has this many satoshis, which he can spend in a new transaction.

�Prepare Bitcoin Transaction
The next step is to prepare a Bitcoin transaction in which Bob can send the

test coins to Alice. Preparing the transaction is basically defining its inputs,

outputs, and amount.

As we know from the previous step that Bob has two unspent outputs

under his Bitcoin testnet address, let’s spend the first element of the

outputs array. Let’s add this as an input to our transaction.

var utxo = JSON.parse(body.toString());

var transaction = new btc.TransactionBuilder(network);

transaction.addInput(utxo[0].txid, utxo[0].vout);

Chapter 5 Blockchain Application Development

279

In the prceding code snippet, first we have parsed the response we

received from the previous API call to get Bob’s unspent outputs.

Then we have created a transaction builder object for the Bitcoin test

network using the bitcoinjs library.

In the last line, we have defined a transaction input. Note that this input

is referring to the element at 0 index of the utxo array, which we received

in the API call from the previous step. We have passed the transaction ID

(txid) and vout from the unspent to the transaction.addInput method as

input parameters.

Basically, we are defining what we want to spend and where we got it

from.

Next, we add the transaction outputs. This is where we say how we

want to spend what we added in the input. In the line following, we

have added a transaction output by calling the addOutput method on

the transaction builder object and passed in the target address and the

amount. Bob wants to send 99990000 satoshis to Alice. Notice that we have

used Alice’s Bitcoin testnet address as the function’s first parameter.

transaction.addOutput(alicePublic, 99990000);

While we have used only one input and one output in this example

transaction, a transaction can have multiple inputs and outputs. An

important thing to note is that the total amount in inputs should not be

less than the total amount in outputs. Most of the time, the amount in

inputs is slightly more than the amount in outputs, and the difference is

the transaction fee offered to the miners to include this transaction when

they mine the next block.

In this transaction, we have 2,000 satoshis as the transaction fee,

which is the difference between input amount (99992000) and the output

amount (99990000). Note that we don’t have to create any outputs for the

transaction fee; the difference between the input and output total amounts

is automatically taken as the transaction fee.

Chapter 5 Blockchain Application Development

280

Also, note that we cannot spend partial unspent outputs. If an unspent

output has x amount of Bitcoins associated with it then we must spend

all of the x Bitcoins when adding this unspent output as an input in a

transaction. So, in case Bob doesn’t want to give all the 99,990,000 satoshis

associated with his unspent output to Alice, then we need to give it back to

Bob by adding another output to the transaction with an amount equal to

the difference of total unspent amount and the amount Bob wants to give

to Alice.

�Sign Transaction Inputs
Now, that we have defined the inputs and outputs in the transaction, we

need to sign the inputs using Bob’s keys. The following line of code calls

the sign function on the transaction builder object to cryptographically

sign the transaction using Bob’s private key, but it takes the whole key pair

object as an input parameter.

transaction.sign(0, bobKeys);

Note that the transaction.sign function takes the index of the input

and the full key pair as input parameters. In this transaction, because we

have only one input, the index we have passed is 0.

At this stage, our transaction is prepared and signed.

�Create Transaction Hex
Now we will create a hex string from the transaction object.

var transactionHex = transaction.build().toHex();

The output of this line of code is the following string, which represents

our prepared transaction; this step is needed because the send transaction

API accepts the raw transaction as a string.

Chapter 5 Blockchain Application Development

281

�Broadcast Transaction to the Network
Finally, we use the hex string value we generated in the last step and send

it to the block explorer public testnet node using the API,

var txPushUrl = blockExplorerTestnetApiEndpoint + 'tx/send';

request.post({

 url: txPushUrl,

 json: {

 rawtx: transactionHex

 }

 }, function (err, res, body) {

 if (err) console.log(err);

 console.log(res);

 console.log(body);

 });

If the transaction is accepted by the block explorer public node, we will

receive a transaction ID as the response of this API call,

{

 �txid: "db2e5966c5139c6e937203d567403867643482bbd

9a6624752bbc583ca259958"

}

Now that we have the transaction ID of our transaction, we can look it

up on any of the online testnet explorers to see if and when it gets mined

and how many confirmations it has.

Putting it all together, here’s the complete code for sending a Bitcoin

testnet transaction using JavaScript. The input parameters are the Bitcoin

testnet keypairs we created in step 1.

Chapter 5 Blockchain Application Development

282

var createTransaction = function (aliceKeys, bobKeys) {

 getOutputs(bobKeys.getAddress()).then(function (res) {

 var utxo = JSON.parse(res.toString());

 var transaction = new btc.TransactionBuilder(network);

 transaction.addInput(utxo[0].txid, utxo[0].vout);

 �transaction.addOutput(alicekeys.getAddress(),

99990000);

 transaction.sign(0, bobKeys);

 var transactionHex = transaction.build().toHex();

 �var txPushUrl = blockExplorerTestnetApiEndpoint +

'tx/send';

 request.post({

 url: txPushUrl,

 json: {

 rawtx: transactionHex

 }

 }, function (err, res, body) {

 if (err) console.log(err);

 console.log(res);

 console.log(body);

 });

 });

};

In this section we learned how we can programmatically send a

transaction to the Bitcoin test network. Similarly, we can send transactions

to the Bitcoin main network by using the main network as the target in the

library functions and in the API endpoints. We also used the query APIs

to get unspent outputs of a Bitcoin address. These functions can be used

to create a simple Bitcoin wallet application to query and manage Bitcoin

addresses and transactions.

Chapter 5 Blockchain Application Development

283

�Interacting Programmatically with
Ethereum—Sending Transactions
The Ethereum blockchain has much more to offer in terms of blockchain

application development as compared with the Bitcoin blockchain.

The ability to execute logic on the blockchain using smart contracts

is the key feature of Ethereum blockchain that allows developers to

create decentralized applications. In this section we will learn how to

programmatically interact with the Ethereum blockchain using JavaScript.

We will look at the main aspects of Ethereum application programming

from simple transactions to creating and calling smart contracts.

As we did for interacting with the Bitcoin blockchain in the previous

section, we will be using a JavaScript library and test network for

interacting with Ethereum as well. We will use the web3 JavaScript library

for Ethereum. This library wraps a lot of Ethereum JSON RPC APIs and

provides easy to use functions to create Ethereum DApps using JavaScript.

At the time of this writing, we are using a version greater than and

compatible with version 1.0.0-beta.28 of the web3 JavaScript library.

For the test network, we will be using the Ropsten test network for

Ethereum blockchain.

For simplicity, we will again use a public-hosted test network node for

Ethereum so that we don’t have to host a local node while running these

code snippets. However, all snippets should work with a locally hosted

node as well. We are using the Ethereum APIs provided by the Infura

service. Infura is a service that provides public-hosted Ethereum nodes so

that developers can easily test their Ethereum apps. There is a small and

free registration step needed before we can use the Infura API, so we will

go to https://infura.io and do a registration. We will get an API key after

registration. Using this API key, we can now call the Infura API.

Chapter 5 Blockchain Application Development

https://infura.io/

284

The following (Figure 5-3) shows how this code interacts with the

Ethereum blockchain. Note: The figure is just a rough sketch and does not

show the Infura service architecture in detail.

The following subsections of this section are steps to follow, in that

order, to send a transaction to the Ethereum Ropsten test network using

JavaScript.

�Set Up Library and Connection
First, we install the web3 library in our node.js application. Note the

specific version of library mentioned in the installation command. This

is because version 1.0.0 of the library has some more APIs and functions

available and they reduce dependency on other external packages.

npm install web3@1.0.0-beta.28

Then, we initialize the library in our nodejs Ethereum module using

the require keyword,

var Web3 = require('web3');

Figure 5-3.  Application interacting with Ethereum blockchain using
Infura API service

Chapter 5 Blockchain Application Development

285

Now, we have a reference of the web3 library, but we need to

instantiate it before we can use it. The following line of code creates a

new instance of the Web3 object and it sets the Infura-hosted Ethereum

Ropsten test network node as the provider for this Web3 instance.

var web3 = new Web3(new Web3.providers.HttpProvider('https://

ropsten.infura.io/<your Infura API key>'));

�Set Up Ethereum Accounts
Now that we are all set up, let’s send a transaction to the Ethereum

blockchain. In this transaction, we will send some Ether from one account

to another. Recall from Chapter 4 that Ethereum does not use the UTXO

model but it uses an account and balances model.

Basically, the Ethereum blockchain manages state and assets in terms

of accounts and balances just like banks do. There are no inputs and

outputs here. You can simply send Ether from one account to another and

Ethereum will make sure that the states are updated for these accounts on

all nodes.

To send a transaction to Ethereum that transfers Ether from one

account to others, we will first need a couple of Ethereum accounts. Let’s

start with creating two accounts for Alice and Bob.

The following code snippet calls the account creation function of web3

library and creates two accounts.

var createAccounts = function () {

 var aliceKeys = web3.eth.accounts.create();

 console.log(aliceKeys);

 var bobKeys = web3.eth.accounts.create();

 console.log(bobKeys);

};

Chapter 5 Blockchain Application Development

286

And here’s the output that we get in the console window after running

the previous snippet.

{

 address: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

 �privateKey: '0x9fb71152b32cb90982f95e2b1bf2a5b6b2a5385

5eacf59d132a2b7f043cfddf5',

 signTransaction: [Function: signTransaction],

 sign: [Function: sign],

 encrypt: [Function: encrypt]

}

{

 address: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 �privateKey: '0xc6676b7262dab1a3a28a781c77110b63ab8cd5

eae2a5a828ba3b1ad28e9f5a9b',

 signTransaction: [Function: signTransaction],

 sign: [Function: sign],

 encrypt: [Function: encrypt]

}

As you can see, along with the addresses and private keys, the output for

each account creation function call also includes a few functions. For now,

we will focus on the address and private key of the returned objects. The

address is the Keccak-256 hash of the ECDSA public key of the generated

private key. This address and private key combination represents an account

on the Ethereum blockchain. You can send Ether to the address and you can

spend that Ether using the private key of the corresponding address.

�Get Test Ether in Sender’s Account
Now, to create an Ethereum transaction which transfers Ether from one

account to another, we first need some Ether in one of the accounts. Recall

from the Bitcoin programming section that we used testnet faucets to get

Chapter 5 Blockchain Application Development

287

some test Bitcoins on the address we generated. We will do the same for

Ethereum also. Remember that we are targeting the Ropsten test network

for Ethereum, so we will search for a Ropsten faucet on the Internet.

For this example, we submitted Alice’s address that we generated in the

previous code snippet to an Ethereum Ropsten test network faucet and we

received three ethers on that address.

After receiving Ether on Alice’s address, let’s check the balance of this

address to confirm if we really have the Ether or not. Though we can check

the balance of this address using any of the Ethereum explorers online,

let’s do it using code. The following code snippet calls the getBalance

function passing Alice’s address as input parameter.

var getBalance = function () {

 �web3.eth.getBalance('0xAff9d328E8181aE831Bc426347949

EB7946A88DA').then(console.log);

};

And we get the following output as the balance of Alice’s address. That’s

a huge number but that’s actually the value of the balance in wei. Wei is the

smallest unit of Ether. One Ether equals 10^18 wei. So, the following value

equals three Ether, which is what we received from the test network faucet.

3000000000000000000

�Prepare Ethereum Transaction
Now that we have some test Ether with Alice, let’s create an Ethereum

transaction to send some of this Ether to Bob. Recall that there are no

inputs and outputs and UTXO queries to be done in the case of Ethereum

because it uses an account and balances-based system. So, all that we

need to do in the transaction is to specify the “from” address (the sender’s

address), the “to” address (the recipient address), and the amount of Ether

to be sent, among a few other things.

Chapter 5 Blockchain Application Development

288

Also, recall that in the case of a Bitcoin transaction we did not have

to specify the transaction fee; however, in the case of an Ethereum

transaction we need to specify two related fields. One is gas limit and the

other is gas Price. Recall from Chapter 4 that gas is the unit of transaction

fee we need to pay to the Ethereum network to get our transactions

confirmed and added to blocks. gas Price is the amount of Ether (in gwei)

we want to pay per unit of gas. The maximum fee that we allow to be used

for a transaction is the product of gas and gas Price.

So, for this example transaction, we define a JSON object with the

following fields. Here, “from” has Alice’s address and “to” has Bob’s

address, and value is one Ether in wei. The gas Price we choose is 20 gwei

and the maximum amount of gas we want to pay for this transaction is

42,000.

Also, note that we have left the data field empty. We will come back to

this later in the smart contract section.

{

 from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

 gasPrice: "20000000000",

 gas: "42000",

 to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 value: "1000000000000000000",

 data: ""

}

�Sign Transaction
Now that we have created a transaction object with the required fields

and values, we need to sign it using the private key of the account that is

sending the Ether. In this case, the sender is Alice, so we will use Alice’s

private key to sign the transaction. This is to cryptographically prove that it

is actually Alice who is spending the Ether in her account.

Chapter 5 Blockchain Application Development

289

var signTransaction = function () {

 var tx = {

 from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

 gasPrice: "20000000000",

 gas: "42000",

 to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 value: "1000000000000000000",

 data: ""

 };

 �web3.eth.accounts.signTransaction(tx, '0x9fb71152b32cb

90982f95e2b1bf2a5b6b2a53855eacf59d132a2b7f043cfddf5')

 .then(function(signedTx){

 console.log(signedTx.rawTransaction);

 });

};

The preceding code snippet calls the signTransaction function with

the transaction object we created in the step before and Alice’s private key

that we got when we generated Alice’s account. Following is the output we

get when we run the prceding code snippet.

{

 �messageHash: '0x91b345a38dc728dc06a43c49b92a6ac1e0e6d

614c432a6dd37d809290a25aa6b',

 v: '0x2a',

 �r: '0x14c20901a060834972a539d7b8ad1f23161

c2144a2b66fbf567e37e963d64537',

 �s: '0x3d2a0a818633a11832a5c48708a198af909

eaf4884a7856c9ac9ed216d9b029c',

Chapter 5 Blockchain Application Development

290

 �rawTransaction: '0xf86c018504a817c80082a4109422013fff98c

2909bbfccdabb411d3715fdb341ea880de0b6b3a76400

00802aa014c20901a060834972a539d7b8ad1f23161c2144a2b66fbf5

67e37e963d64537a03d2a0a818633a11832a5c48708a198af909ea

f4884a7856c9ac9ed216d9b029c'

}

In the output of the signTransaction function we receive a

JSON object with a few properties. The important value for us is the

rawTransaction value. This is the hex string representation of the signed

transaction. This is very similar to how we created a hex string of the

Bitcoin transaction in the Bitcoin section.

�Send Transaction to the Ethereum Network
The final step is to just send this signed raw transaction to the public-

hosted Ethereum test network node, which we have set as the provider of

our web3 object.

The following code calls the sendSignedTransaction function to send

the raw transaction to the Ethereum test network. The input parameter is

the value of the rawTransaction string that we got in the previous step as

part of signing the transaction.

web3.eth.sendSignedTransaction(signedTx.rawTransaction).

then(console.log);

Notice the use of “then” in the prceding code snippet. This is

interesting because the web3 library provides different levels of finality

when working with Ethereum transactions, because an Ethereum

transaction goes through several states after being submitted. In this

function, call of sending a transaction to the network, then, is hit when the

transaction receipt is created, and the transaction is complete.

Chapter 5 Blockchain Application Development

291

After a few seconds, when the JavaScript promise resolves, the

following is what we get as an output.

{

 �blockHash: '0x26f1e1374d11d4524f692cdf1ce3aa6e085dcc1810

84642293429eda3954d30e',

 blockNumber: 2514764,

 contractAddress: null,

 cumulativeGasUsed: 125030,

 from: '0xaff9d328e8181ae831bc426347949eb7946a88da',

 gasUsed: 21000,

 logs: [],

 �logsBloom: '0x000

000

000

000

000

000

000

000

000

0000000000000',

 status: '0x1',

 to: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

 �transactionHash: '0xd3f45394ac038c44c4fe6e0cdb7021fdbd

672eb1abaa93eb6a1828df5edb6253',

 transactionIndex: 3

}

The output has a lot of information, as we can see. The most important

part is the transactionHash, which is the ID of the transaction on the

network. It also gives us the blockHash, which is the ID of the block

in which this transaction was included. Along with this, we also get

information about how much gas was used for this transaction, among

Chapter 5 Blockchain Application Development

292

other details. If the gas used is less than the maximum gas we specified

during transaction creation, the remaining gas is sent back to the sender’s

address.

In this section, we sent a simple transaction to the Ethereum

blockchain using JavaScript. But this is just the beginning of Ethereum

application programming. In the next section, we will also look at how to

create and call smart contracts programmatically.

�Interacting Programmatically with
Ethereum—Creating a Smart Contract
In this section, we will continue our Ethereum programming exercise, and

we will create a simple smart contract on the Ethereum blockchain using

the same web3 JavaScript library and the Infura service API.

Because, no computer programming beginners’ tutorial is complete

without a “Hello World” program, the smart contract we are going to create

will be a simple smart contract returning the string “Hello World” when called.

The contract creation process will be a special kind of transaction sent

to the Ethereum blockchain, and these types of transactions are called

“contract creation transactions.” These transactions do not mention a

“to” address and the owner of the smart contract is the “from” address

mentioned in the transaction.

�Prerequisites
In this code exercise to create a smart contract, we will continue with the

assumption that the web3 JavaScript library is installed and instantiated in

a node.js app and we have registered for the Infura service, just like we did

in the previous section.

Following are the steps to create a smart contract on Ethereum using

JavaScript.

Chapter 5 Blockchain Application Development

293

�Program the Smart Contract
Recall from Chapter 4 that the Ethereum smart contracts are written in

Solidity programming language. While the web3 JavaScript library will

help us deploy our contract on the Ethereum blockchain, we will still have

to write and compile our smart contract in Solidity before we send it to the

Ethereum network using web3. So, let’s first create a sample contract using

Solidity.

There are a variety of tools available to code in Solidity. Most of the

major IDEs and code editors have Solidity plugins for editing and compiling

smart contracts. There is also a web-based Solidity editor called Remix. It’s

available for free to use at https://remix.ethereum.org/. Remix provides

a very simple interface to code and compile smart contracts within your

browser. In this exercise we will be using Remix to code and test our smart

contract and then we will send the same contract to the Ethereum network

using the web3 JavaScript library and the Infura API service.

The following code snippet is written in the Solidity programming

language and it is a simple smart contract that returns the string “Hello

World” from its function Hello. It also has a constructor that sets the value

of the message returned.

pragma solidity ^0.4.0;

contract HelloWorld {

 string message;

 function HelloWorld(){

 message = "Hello World!";

 }

 function Hello() constant returns (string) {

 return message;

 }

}

Chapter 5 Blockchain Application Development

https://remix.ethereum.org/

294

Let’s head to Remix and paste this code in the editor window. The

following images (Figures 5-4 and 5-5) show how our sample smart

contract looks in the Remix editor and what the output looks like when

we clickeded the Create button on the right-side menu, under the Run

tab. Also, note that by default, the Remix editor targets a JavaScript VM

environment for smart contract compilation and it uses a test account with

some ETH balance, for testing purposes. When we click the Create button,

this contract is created using the selected account in the JavaScript VM

environment.

Figure 5-4.  Editing smart contracts in Remix IDE

Chapter 5 Blockchain Application Development

295

Following is the output generated by the create operation, and it shows

us that the contract has been created because it has a contract address.

The “from” value is the account address that was used to create the

contract. It also shows us the hash of the contract creation transaction.

status 0x1 Transaction mined and execution succeed

contractAddress 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

from 0xca35b7d915458ef540ade6068dfe2f44e8fa733c

to HelloWorld.(constructor)

gas 3000000 gas

transaction cost 205547 gas

execution cost 109539 gas

hash 0x9f3c21c21f263084b9f031966858a5d8e0648ed19c77d4d2291

875b01d89a141

Figure 5-5.  Smart contract creation output in Remix IDE

Chapter 5 Blockchain Application Development

296

input 0x6060604052341561000f57600080fd5b6040805190810160405

280600c81526020017f48656c6c6f20576f726c642100000000000000000

000000000000000000000008152506000908051906020019061005a92919

0610060565b50610105565b8280546001816001161561010002031660029

00490600052602060002090601f016020900481019282601f106100a1578

05160ff19168380011785556100cf565b828001600101855582156100cf5

79182015b828111156100ce5782518255916020019190600101906100b35

65b5b5090506100dc91906100e0565b5090565b61010291905b808211156

100fe5760008160009055506001016100e6565b5090565b90565b6101bc8

06101146000396000f300606060405260043610610041576000357c01000

000900463f

fffffff168063bcdfe0d514610046575b600080fd5b34156100515760008

0fd5b6100596100d4565b604051808060200182810382528381815181526

0200191508051906020019080838360005b8381101561009957808201518

184015260208101905061007e565b50505050905090810190601f1680156

100c65780820380516001836020036101000a031916815260200191505b5

09250505060405180910390f35b6100dc61017c565b60008054600181600

116156101000203166002900480601f01602080910402602001604051908

101604052809291908181526020018280546001816001161561010002031

66002900480156101725780601f106101475761010080835404028352916

0200191610172565b820191906000526020600020905b815481529060010

19060200180831161015557829003601f168201915b50505050509050905

65b6020604051908101604052806000815250905600a165627a7a7230582

0d6796e48540eced3646ea52c632364666e64094479451066317789a712

aef4da0029

 decoded input {}

 decoded output -

 logs []

 value 0 wei

Chapter 5 Blockchain Application Development

297

At this point, we have a simple “Hello World” smart contract ready,

and now the next step is to deploy it programmatically to the Ethereum

blockchain.

�Compile Contract and Get Details
Let’s first get some details about our smart contract from Remix, which will

be needed to deploy the contract to the Ethereum network using the web3

library. Click on the Compile tab in the right-side menu and then click the

Details button. This pops up a new child window with details of the smart

contract. What’s important for us are the ABI and the BYTECODE sections

on the details popup window.

Let’s copy the details in the ABI section using the copy value to

clipboard button available next to the ABI header. Following is the value of

the ABI data for our smart contract.

[

 {

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [

 {

 "name": "",

 "type": "string"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

Chapter 5 Blockchain Application Development

298

 {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }

]

This is a JSON array and if we closely look at it, we see that it has JSON

objects for each function in our contract including its constructor. These

JSON objects have details about a function and its input and output. This

array describes the smart contract interface.

When we call this smart contract after it is deployed to the network,

we will need this information to find out what functions the contract is

exposing and what do we need to pass as an input to the function we wish

to call.

Now let’s get the data in the BYTECODE section of the details popup.

Following is the data we copied for our contract.

{

 "linkReferences": {},

 �"object": "6060604052341561000f57600080fd5b6040805190810

160405280600c81526020017f48656c6c6f20576f726c64210000000

00000000000000000000000000000000081525060009080519060200

19061005a929190610060565b50610105565b8280546001816001161

56101000203166002900490600052602060002090601f01602090048

1019282601f106100a157805160ff19168380011785556100cf565b8

28001600101855582156100cf579182015b828111156100ce5782518

255916020019190600101906100b3565b5b5090506100dc91906100e

0565b5090565b61010291905b808211156100fe57600081600090555

06001016100e6565b5090565b90565b6101bc806101146000396000f

300606060405260043610610041576000357c0100000000000000000

000000000000000000000000000000000000000900463ffffffff168

Chapter 5 Blockchain Application Development

299

063bcdfe0d514610046575b600080fd5b341561005157600080fd5b6

100596100d4565b60405180806020018281038252838181518152602

00191508051906020019080838360005b83811015610099578082015

18184015260208101905061007e565b50505050905090810190601f1

680156100c65780820380516001836020036101000a0319168152602

00191505b509250505060405180910390f35b6100dc61017c565b600

08054600181600116156101000203166002900480601f01602080910

40260200160405190810160405280929190818152602001828054600

181600116156101000203166002900480156101725780601f1061014

757610100808354040283529160200191610172565b8201919060005

26020600020905b81548152906001019060200180831161015557829

003601f168201915b5050505050905090565b6020604051908101604

052806000815250905600a165627a7a72305820877a5da4f7e05c4ad

9b45dd10fb6c133a523541ed06db6dd31d59b35d51768a30029",

"opcodes": "PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE

ISZERO PUSH2 0xF JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST

PUSH1 0x40 DUP1 MLOAD SWAP1 DUP2 ADD PUSH1 0x40 MSTORE

DUP1 PUSH1 0xC DUP2 MSTORE PUSH1 0x20 ADD PUSH32

0x48656C6C6F20576F726C64210000000000000000000000000000000000

000000 DUP2 MSTORE POP PUSH1 0x0 SWAP1 DUP1 MLOAD SWAP1 PUSH1

0x20 ADD SWAP1 PUSH2 0x5A SWAP3 SWAP2 SWAP1 PUSH2 0x60 JUMP

JUMPDEST POP PUSH2 0x105 JUMP JUMPDEST DUP3 DUP1 SLOAD PUSH1

0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1

0x2 SWAP1 DIV SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0

KECCAK256 SWAP1 PUSH1 0x1F ADD PUSH1 0x20 SWAP1 DIV DUP2 ADD

SWAP3 DUP3 PUSH1 0x1F LT PUSH2 0xA1 JUMPI DUP1 MLOAD PUSH1 0xFF

NOT AND DUP4 DUP1 ADD OR DUP6 SSTORE PUSH2 0xCF JUMP JUMPDEST

DUP3 DUP1 ADD PUSH1 0x1 ADD DUP6 SSTORE DUP3 ISZERO PUSH2

0xCF JUMPI SWAP2 DUP3 ADD JUMPDEST DUP3 DUP2 GT ISZERO PUSH2

0xCE JUMPI DUP3 MLOAD DUP3 SSTORE SWAP2 PUSH1 0x20 ADD SWAP2

SWAP1 PUSH1 0x1 ADD SWAP1 PUSH2 0xB3 JUMP JUMPDEST JUMPDEST

Chapter 5 Blockchain Application Development

300

POP SWAP1 POP PUSH2 0xDC SWAP2 SWAP1 PUSH2 0xE0 JUMP JUMPDEST

POP SWAP1 JUMP JUMPDEST PUSH2 0x102 SWAP2 SWAP1 JUMPDEST DUP1

DUP3 GT ISZERO PUSH2 0xFE JUMPI PUSH1 0x0 DUP2 PUSH1 0x0 SWAP1

SSTORE POP PUSH1 0x1 ADD PUSH2 0xE6 JUMP JUMPDEST POP SWAP1

JUMP JUMPDEST SWAP1 JUMP JUMPDEST PUSH2 0x1BC DUP1 PUSH2

0x114 PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60

PUSH1 0x40 MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH2 0x41 JUMPI

PUSH1 0x0 CALLDATALOAD PUSH29 0x1000000000000000000000000000

00000000000000000000000000000 SWAP1 DIV PUSH4 0xFFFFFFFF AND

DUP1 PUSH4 0xBCDFE0D5 EQ PUSH2 0x46 JUMPI JUMPDEST PUSH1 0x0

DUP1 REVERT JUMPDEST CALLVALUE ISZERO PUSH2 0x51 JUMPI PUSH1

0x0 DUP1 REVERT JUMPDEST PUSH2 0x59 PUSH2 0xD4 JUMP JUMPDEST

PUSH1 0x40 MLOAD DUP1 DUP1 PUSH1 0x20 ADD DUP3 DUP2 SUB DUP3

MSTORE DUP4 DUP2 DUP2 MLOAD DUP2 MSTORE PUSH1 0x20 ADD SWAP2

POP DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 DUP1 DUP4 DUP4 PUSH1

0x0 JUMPDEST DUP4 DUP2 LT ISZERO PUSH2 0x99 JUMPI DUP1 DUP3

ADD MLOAD DUP2 DUP5 ADD MSTORE PUSH1 0x20 DUP2 ADD SWAP1 POP

PUSH2 0x7E JUMP JUMPDEST POP POP POP POP SWAP1 POP SWAP1 DUP2

ADD SWAP1 PUSH1 0x1F AND DUP1 ISZERO PUSH2 0xC6 JUMPI DUP1

DUP3 SUB DUP1 MLOAD PUSH1 0x1 DUP4 PUSH1 0x20 SUB PUSH2 0x100

EXP SUB NOT AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP JUMPDEST

POP SWAP3 POP POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1

RETURN JUMPDEST PUSH2 0xDC PUSH2 0x17C JUMP JUMPDEST PUSH1 0x0

DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100

MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1 PUSH1 0x1F ADD PUSH1

0x20 DUP1 SWAP2 DIV MUL PUSH1 0x20 ADD PUSH1 0x40 MLOAD SWAP1

DUP2 ADD PUSH1 0x40 MSTORE DUP1 SWAP3 SWAP2 SWAP1 DUP2 DUP2

MSTORE PUSH1 0x20 ADD DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1

AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1

ISZERO PUSH2 0x172 JUMPI DUP1 PUSH1 0x1F LT PUSH2 0x147 JUMPI

Chapter 5 Blockchain Application Development

301

PUSH2 0x100 DUP1 DUP4 SLOAD DIV MUL DUP4 MSTORE SWAP2 PUSH1

0x20 ADD SWAP2 PUSH2 0x172 JUMP JUMPDEST DUP3 ADD SWAP2 SWAP1

PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 SWAP1 JUMPDEST

DUP2 SLOAD DUP2 MSTORE SWAP1 PUSH1 0x1 ADD SWAP1 PUSH1 0x20

ADD DUP1 DUP4 GT PUSH2 0x155 JUMPI DUP3 SWAP1 SUB PUSH1 0x1F

AND DUP3 ADD SWAP2 JUMPDEST POP POP POP POP POP SWAP1 POP

SWAP1 JUMP JUMPDEST PUSH1 0x20 PUSH1 0x40 MLOAD SWAP1 DUP2

ADD PUSH1 0x40 MSTORE DUP1 PUSH1 0x0 DUP2 MSTORE POP SWAP1

JUMP STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 DUP8 PUSH27

0x5DA4F7E05C4AD9B45DD10FB6C133A523541ED0

6DB6DD31D59B35D5 OR PUSH9 0xA30029000000000000 ",

 �"sourceMap": "24:199:0:-;;;75:62;;;;;;;;106:24;;;;;;;;;;;;

;;;;;;:7;:24;;;;;;;;;;;;:::i;:::-;;24:199;;;;;;;;;;;;;;;;;

;;

;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;;

;;;;;;;;;;;:::o;:::-;;;;;;;"

}

As we can see, the data in the BYTECODE section is a JSON object.

This is basically the output of the compilation of the smart contract. Remix

compiled our smart contract using the Solidity compiler and as a result

we got the solidity byte code. Now closely examine this JSON and look at

the “object” property and its value. This is a hex string that contains the

byte code for our smart contract, and we will be sending it in the contract

creation transaction in the data field—the same data field that we left blank

in the previous example Ethereum transaction between Alice and Bob.

Now we have all the details for our smart contract and we are ready to

send it to the Ethereum network.

Chapter 5 Blockchain Application Development

302

�Deploy Contract to Ethereum Network
Now that we have our smart contract and its details, we need to prepare a

transaction that can deploy this contract to the Ethereum blockchain. This

transaction preparation will be very similar to the transaction we prepared

in the previous section, but it will have a few more properties that are

needed to create contracts.

First, we need to create an object of the web3.eth.Contract class,

which can represent our contract. The following code snippet creates an

instance for the said class with a JSON array as an input parameter. This

is the same JSON array that we copied from the ABI section of the Remix

popup window, showing the details about our smart contract.

var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }]);

Chapter 5 Blockchain Application Development

303

Now we need to send this contract to the Ethereum network using the

Contract.deploy method of the web3 library. The following code snippet

shows how to do this.

helloworldContract

.deploy({

 �data: '0x6060604052341561000f57600080fd5b604080519081

0160405280600c81526020017f48656c6c6f20576f726c6421000

00000000000000000000000000000000000008152506000908051

906020019061005a929190610060565b50610105565b828054600

18160011615610100020316600290049060005260206000209060

1f016020900481019282601f106100a157805160ff19168380011

785556100cf565b828001600101855582156100cf579182015b82

8111156100ce5782518255916020019190600101906100b3565b5

b5090506100dc91906100e0565b5090565b61010291905b808211

156100fe5760008160009055506001016100e6565b5090565b905

65b6101bc806101146000396000f3006060604052600436106100

41576000357c01000000000000000000000000000000000000000

00000000000000000900463ffffffff168063bcdfe0d514610046

575b600080fd5b341561005157600080fd5b6100596100d4565b6

04051808060200182810382528381815181526020019150805190

6020019080838360005b838110156100995780820151818401526

0208101905061007e565b50505050905090810190601f16801561

00c65780820380516001836020036101000a03191681526020019

1505b509250505060405180910390f35b6100dc61017c565b6000

8054600181600116156101000203166002900480601f016020809

10402602001604051908101604052809291908181526020018280

54600181600116156101000203166002900480156101725780601

f1061014757610100808354040283529160200191610172565b82

0191906000526020600020905b815481529060010190602001808

Chapter 5 Blockchain Application Development

304

31161015557829003601f168201915b5050505050905090565b60

20604051908101604052806000815250905600a165627a7a72305

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31

d59b35d51768a30029'

 })

 .send({

 from: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

 gas: 4700000,

 gasPrice: '20000000000000'

 },

 function(error, transactionHash){

 console.log(error);

 console.log(transactionHash);

 })

 .then(function(contract){

 console.log(contract);

 });

Note that the value of the field data inside the deploy function

parameter object is the same value we received in the object field of the

BYTECODE details in the previous step. Also notice that the string “0x”

is added to this value in the beginning. So, the data passed in the deploy

function is ‘0x’ + byte code of the contract.

Inside the send function after the deploy, we have added the “from”

address, which will be the owner of the contract and the transaction fee

details of gas limit and gas Price. Finally, when the call is complete, the

contract object is returned. This contract object will have the contract

details along with the address of the contract, which can be used to call the

function on the contract.

Another way of sending the contract to the network would be to wrap

the contract inside a transaction and send it directly. The following code

snippet creates a transaction object with data as the contract bytecode,

Chapter 5 Blockchain Application Development

305

signs it using the private key of the address in the “from” field, and then

sends it to the Ethereum blockchain.

Note that we have not assigned a “to” address in this transaction

object, as the address of the contract is unknown before the contract is

deployed.

var tx = {

 from: "0x22013fff98c2909bbFCcdABb411D3715fDB341eA",

 gasPrice: "20000000000",

 gas: "4900000",

 �data: "0x6060604052341561000f57600080fd5b604080519081

0160405280600c81526020017f48656c6c6f20576f726c6421000

00000000000000000000000000000000000008152506000908051

906020019061005a929190610060565b50610105565b828054600

18160011615610100020316600290049060005260206000209060

1f016020900481019282601f106100a157805160ff19168380011

785556100cf565b828001600101855582156100cf579182015b82

8111156100ce5782518255916020019190600101906100b3565b5

b5090506100dc91906100e0565b5090565b61010291905b808211

156100fe5760008160009055506001016100e6565b5090565b905

65b6101bc806101146000396000f3006060604052600436106100

41576000357c01000000000000000000000000000000000000000

00000000000000000900463ffffffff168063bcdfe0d514610046

575b600080fd5b341561005157600080fd5b6100596100d4565b6

04051808060200182810382528381815181526020019150805190

6020019080838360005b838110156100995780820151818401526

0208101905061007e565b50505050905090810190601f16801561

00c65780820380516001836020036101000a03191681526020019

1505b509250505060405180910390f35b6100dc61017c565b6000

8054600181600116156101000203166002900480601f016020809

10402602001604051908101604052809291908181526020018280

54600181600116156101000203166002900480156101725780601

Chapter 5 Blockchain Application Development

306

f1061014757610100808354040283529160200191610172565b82

0191906000526020600020905b815481529060010190602001808

31161015557829003601f168201915b5050505050905090565b60

20604051908101604052806000815250905600a165627a7a72305

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31

d59b35d51768a30029"

 };

 �web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

 .then(function (signedTx) {

 web3.eth.sendSignedTransaction(signedTx.rawTransaction)

 .then(console.log);

 });

When we execute this code snippet, we get the following output, which

is the receipt of this transaction.

{

 �blockHash: '0xaba93b4561fc35e062a1ad72460e0b677603331bbee

3379ce6c74fa5cf505d82',

 blockNumber: 2539889,

 �contractAddress: '0xd5a2d13723A34522EF79bE0f1E7806E86a45

78E9',

 cumulativeGasUsed: 205547,

 from: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

 gasUsed: 205547,

 logs: [],

 �logsBloom: '0x000

000

000

000

000

Chapter 5 Blockchain Application Development

307

000

000

000

000

0000000000000',

 status: '0x1',

 to: null,

 �transactionHash: '0xc333cbc5fc93b52871689aab22c48b910cb19

2b4875bea69212363030d36565a',

 transactionIndex: 0

}

Notice the properties of the transaction receipt object. It has a

value assigned to the contractAddress property, while the value of

the “to” property is null. This means that this was a contract creation

transaction that was successfully mined on the network and the

contract created as part of this transaction is deployed at the address

`0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9`.

We have successfully created an Ethereum smart contract

programmatically.

�Interacting Programmatically with
Ethereum—Executing Smart Contract
Functions
Now that we have deployed our smart contract to the Ethereum network,

we can call its member functions. Following are the steps to call an

Ethereum smart contract programmatically.

Chapter 5 Blockchain Application Development

308

�Get Reference to the Smart Contract
To execute a function of the smart contract, first we need to create an

instance of the web3.eth.Contract class with the ABI and address of our

deployed contract. The following code snippet shows how to do that.

var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

In the prceding code snippet, we have created an instance of the

web3.eth.Contract class by passing the ABI of the contract we created in

the previous section, and we have also passed the address of the contract

that we received after deploying the contract.

This object can now be used to call functions on our contract.

Chapter 5 Blockchain Application Development

309

�Execute Smart Contract Function
Recall that we have only one public function in our contract. This method

is named Hello and it returns the string "Hello World!" when executed.

To execute this method, we will call it using the contract.methods

class in the web3 library. The follwing code snippet shows this.

helloworldContract.methods.Hello().send({

 from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

 }).then(console.log);

In the prceding code snippet, we have added a value to the “from”

address in the send function, and this address will be used to send the

transaction that will in turn execute the function Hello on our smart contract.

The full code for calling a smart contract is in the follwing code snippet.

var callContract = function () {

 var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

Chapter 5 Blockchain Application Development

310

 helloworldContract.methods.Hello().send({

 from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

 }).then(console.log);

};

Another way of executing this contract function will be by sending a

raw transaction by signing it. It is similar to how we sent a raw Ethereum

transaction to send Ether and to create a contract in the previous sections.

In this case all we need to do is provide the contract address in the “to”

field of the transaction object and the encoded ABI value of the function

call in the data field.

The following code snippet first creates a contract object and then

gets the encoded ABI value of the smart contract function to be called. It

then creates a transaction object based on these values and then signs and

sends it to the network. Note that we have used the encodeABI function on

the contract function to get the data payload value for the transaction. This

is the input for the smart contract.

var callContract = function () {

 var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

Chapter 5 Blockchain Application Development

311

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

 �var payload = helloworldContract.methods.Hello().

encodeABI();

 var tx = {

 from: "0xF68b93AE6120aF1e2311b30055976d62D7dBf531",

 gasPrice: "20000000000",

 gas: "4700000",

 data: payload

 };

 �web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

 .then(function (signedTx) {

 �web3.eth.sendSignedTransaction(signedTx.raw

Transaction)

 .then(console.log);

 });

};

Important Note  When using a public-hosted node for Ethereum,
we should use the raw transaction method for creating and executing
smart contracts because the web3.eth.Contract submodule of the
library uses either an unlocked or default account associated with the
provider Ethereum node, but this is not supported by the public nodes
(at the time of this writing).

Chapter 5 Blockchain Application Development

312

�Blockchain Concepts Revisited
In the previous sections we programmatically sent transactions to both

Bitcoin and Ethereum blockchains using JavaScript. Here are some of

the common concepts that we can now revisit, looking at the process of

handcrafting transactions using code.

•	 Transactions: Looking at the code we wrote and the

output we got for sending transactions to Ethereum and

Bitcoin, we can now say that blockchain transactions

are the operations initiated from an account owner,

which, if completed successfully, update the state of the

blockchain. For example, in our transactions between

Alice and Bob, we saw that the ownership of a certain

amount of Bitcoins and Ether changed from Alice to

Bob and vice versa, and this change of ownership was

recorded in the blockchain, hence bringing it into a

new state. In the case of Ethereum, transactions go

further into contract creation and execution and these

transactions also update the state of the blockchain.

We created a transaction that in turn deployed a smart

contract on the Ethereum blockchain. The state of the

blockchain was updated because now we have a new

contract account created in the blockchain.

•	 Inputs, Outputs, Accounts and Balances: We also

saw how Bitcoin and Ethereum are different from each

other in terms of managing the state. While Bitcoin

uses the UTXO model, Ethereum uses the accounts

and balances model. However, the underlying idea is

both the blockchains record the ownership of assets,

and transactions are used to change ownership of these

assets.

Chapter 5 Blockchain Application Development

313

•	 Transaction Fee: For every transaction we do on

public blockchain networks, we must pay a transaction

fee for our transactions to be confirmed by the miners.

In Bitcoin this is automatically calculated, while in

Ethereum we should mention the maximum fee we are

willing to pay in terms of gas Price and gas limit.

•	 Signing: In both cases, we also saw that after creating a

transaction object with the required values, we signed it

using the sender’s public key. Cryptographic signing is a

way of proving ownership of the assets. If the signature

is incorrect, then the transaction becomes invalid.

•	 Transaction broadcasting: After creating and signing

the transactions, we sent them to the blockchain nodes.

While we sent our example transactions to publicly

hosted Bitcoin and Ethereum test network nodes, we

are free to send our transactions to multiple nodes if we

don’t trust all of them to process our transactions. This

is called transaction broadcasting.

To summarize, when interacting with blockchains, if we intend to

update the state of the blockchain, we submit signed transactions; and to

get these transactions confirmed, we need to pay some fee to the network.

�Public vs. Private Blockchains
Based on access control, blockchains can be classified as public and

private. Public blockchains are also called permissionless blockchain and

private blockchains are also called permissioned blockchains. The primary

difference between the two is access control. Public or permissionless

blockchains do not restrict addition of new nodes to the network and

anyone can join the network. Private blockchains have a limited number

Chapter 5 Blockchain Application Development

314

of nodes in the network and not everyone can join the network. Examples

of public blockchains are Bitcoin and Ethereum main nets. An example of

a private blockchain can be a network of a few Ethereum nodes connected

to each other but not connected to the main net. These nodes would be

collectively called a private blockchain.

Private blockchains are generally used by enterprises to exchange

data among themselves and their partners and/or among their

suborganizations.

When we develop applications for blockchains, the type of blockchain,

public or private, makes a difference because the rules of interaction with

the blockchain may or may not be the same. This is called blockchain

governance. The public blockchains have a predefined set of rules and

the private ones can have a different set of rules per blockchain. A private

blockchain for a supply chain may have different governance rules, while

a private blockchain for protocol governance may have different rules. For

example, the token, gas Price, transaction fee, endpoints, etc. may or may

not be the same in the aforementioned private Ethereum ledger and the

Ethereum main net. This can impact our applications too.

In our code samples, we primarily focused on the public test networks

of Bitcoin and Ethereum. While the basic concepts of interacting with

private deployments of these blockchains will still be the same, there will be

differences in how we configure our code to point to the private networks.

�Decentralized Application Architecture
In general, the decentralized applications are meant to directly interact

with the blockchain nodes without the need for any centralized

components coming into picture. However, in practical scenarios, with

legacy systems integrations and limited functionality and scaling of the

current blockchain networks, sometimes we must make choices between

full decentralization and scalability while designing our DApps.

Chapter 5 Blockchain Application Development

315

�Public Nodes vs. Self-Hosted Nodes
Blockchains are decentralized networks of nodes. All nodes have the same

copy of data and they agree on the state of data always. When we develop

applications for blockchains, we can make our application talk to any of

the nodes of the target network. There can be mainly two set-ups for this:

•	 Application and node both run locally: The

application and the node both run on the local

machine. This means we will need our application

users to run a local blockchain node and point the

application to connect with it. This model would be a

purely decentralized model of running an application.

An example of this model is the Ethereum-based Mist

browser, which uses a local geth node.

	 Figure 5-6 shows this setup.

•	 Public node: The application talks to a public node

hosted by a third party. This way our users don’t have

to host a local node. There are several advantages and

disadvantages of this approach. While the users don’t

have to pay for power and storage for running a local

Figure 5-6.  DApp connets to local node

Chapter 5 Blockchain Application Development

316

node, they need to trust a third party to broadcast their

transactions to the blockchain. The Ethereum browser

plugin metamask uses this model and connects with

public hosted Ethereum nodes.

	 Figure 5-7 shows this setup.

�Decentralized Applications and Servers
Apart from the previously mentioned scenarios, there can be other setups

too, depending upon specific use cases and requirements. There are a lot

of scenarios when a server is needed between an app and the blockchain.

For example: When you need to maintain a cache of the blockchain state

for faster queries; when the app needs to send notifications (emails, push,

SMS, etc.) to the users based on state updates on the blockchain; and when

multiple ledgers are involved, and you need to run a back-end logic to

transform data between the ledgers. Imagine the infrastructure being used

by some of the big cryptocurrency exchanges where we get all the services

like two-factor authentication, notifications, and payment gateways,

among other things, and none of these services are available directly in any

of the blockchains. In a broader sense, blockchains simply make sure of

keeping the data layer tamper resistant and auditable.

Figure 5-7.  DApp connets to public node

Chapter 5 Blockchain Application Development

317

�Summary
In this chapter we learned about decentralized application development

along with some code exercises about interacting programmatically with

the Bitcoin and Ethereum blockchains. We also looked at some of the

DApp architecture models and how they differ based on the use cases.

In the next chapter we will set up a private Ethereum network and then

we will develop a full-fledged DApp interacting with this private network,

which will also use smart contracts for business logic.

�References
web3.js Documentation

http://web3js.readthedocs.io/en/1.0/index.html.

Solidity Documentation
https://solidity.readthedocs.org/.

bitcoinjs Source Code Repository
https://github.com/bitcoinjs/bitcoinjs-lib.

Infura Documentation
https://infura.io/docs.

Block Explorer API Documentation
https://blockexplorer.com/api-ref.

Designing the Architecture for your Ethereum Application
https://blog.zeppelin.solutions/designing-the-architecture-

for-your-ethereum-application-9cec086f8317.

Chapter 5 Blockchain Application Development

http://web3js.readthedocs.io/en/1.0/index.html
https://solidity.readthedocs.org/
https://github.com/bitcoinjs/bitcoinjs-lib
https://infura.io/docs
https://blockexplorer.com/api-ref
https://blog.zeppelin.solutions/designing-the-architecture-for-your-ethereum-application-9cec086f8317
https://blog.zeppelin.solutions/designing-the-architecture-for-your-ethereum-application-9cec086f8317

319© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_6

CHAPTER 6

Building an Ethereum
DApp
In the previous chapter we learned how to programmatically interact with

Bitcoin and Ethereum blockchains using JavaScript. We also touched on

how to create and deploy Ethereum smart contracts. In this chapter we will

take our blockchain application programming to the next level by learning

how to develop and deploy a DApp based on the Ethereum blockchain.

As part of creating this DApp, we will be setting up a private Ethereum

network and then we will use this network as the underlying blockchain

for our DApp. This DApp will have its business logic in an Ethereum

smart contract, and this logic will be executed using a web application

connecting to private Ethereum network. This way, we intend to cover all

aspects of Ethereum application development—from setting up nodes and

networks, to creating and deploying a smart contract, to executing smart

contract functions using client applications.

�The DApp
Before we jump into developing the DApp, we need to define the use case

for the DApp. We also need to define the various components that will be

part of our DApp. So, let’s first do this.

320

The use case for our DApp is a polling application that can allow voters

to vote on a poll published in the public domain. Voting using a centralized

system is not very reliable, as it exposes a single point of data corruption

and failure. So, the goal of our DApp is to enable decentralized polling.

This way every voter is in control of their vote and each vote is processed

on every node on the blockchain so there is no way to tamper with the vote

data. While this can be easily done using the public Ethereum blockchain,

to make our exercise interesting we will deploy our polling DApp on a

private Ethereum network, and for that we will set up the private network

too. Sounds interesting? Let’s do this.

The first step will be to set up a private Ethereum network. Then, for

hosting the business logic and poll results, we will create a smart contract

that will be deployed on this private Ethereum network. To interact with

this smart contract, we will create a front-end web application using the

web3 library. That’s it.

As per the plan just described, our DApp development exercise will

have the following steps:

	 1.	 Setting up a private Ethereum network

	 2.	 Creating a smart contract for polling functionality

	 3.	 Deploying the smart contract to the private network

	 4.	 Creating a front-end web app to interact with the

smart contract

In the following sections, we will be looking, in detail, at each of the

steps mentioned.

Chapter 6 Building an Ethereum DApp

321

Note A s mentioned, we can also use the public Ethereum network
for this DApp development. In addition to that, we can also use several
tools like Metamask and Truffle framework to expedite the development
of an Ethereum DApp. These tools, along with various others, allow
us to manage our code and deployments in a better way. The reader
is encouraged to explore these and other tools to try to find the best
combination to create a comfortable and productive development
environment for their DApp development. This text is primarily focussed
on making the reader understand what goes under the hood when
creating an Ethereum DApp, hence all tools providing abstractions on
top of the DApp development process are kept out of scope.

�Setting Up a Private Ethereum Network
To set up a private Ethereum network, we will need one of the many

Ethereum clients available. In simple terms, an Ethereum client is an

application that implements the Ethereum blockchain protocol. There are

many Ethereum clients available on the Internet today; one of the popular

ones is go-ethereum, also known as geth. We will be using geth for our

private network set-up. For this exercise, we are using a virtual machine

running Ubuntu Linux version 16.04.

�Install go-ethereum (geth)
The first step is to install geth on our local machine. To install geth, we will

get the geth executable installer from the official source https://geth.

ethereum.org/downloads/. This download page at the official geth website

lists the installer packages for all major platforms (Windows, macOS,

Linux).

Chapter 6 Building an Ethereum DApp

https://geth.ethereum.org/downloads/
https://geth.ethereum.org/downloads/

322

Download the installer package for your platform and install geth on

your local machine. You can also choose to install geth on a remote (cloud-

hosted) server/virtual machine if you do not want to install it on your local

machine.

Once geth is successfully installed on your local machine, you

can check the installation by running the following command in your

terminal/command prompt.

geth version

Depending on your platform OS and the geth version you have

installed, this command should give an output similar to the following:

Geth

Version: 1.7.3-stable

Git Commit: 4bb3c89d44e372e6a9ab85a8be0c9345265c763a

Architecture: amd64

Protocol Versions: [63 62]

Network Id: 1

Go Version: go1.9

Operating System: linux

GOPATH=

GOROOT=/usr/lib/go-1.9

�Create geth Data Directory
By default, geth will have its working directory but we will create a custom

one so that we can track it easily. Simply create a directory and keep the

path to this directory handy.

mkdir mygeth

Chapter 6 Building an Ethereum DApp

323

�Create a geth Account
The first thing we need is an Ethereum account that can hold Ether. We will

need this account to create our smart contracts and transactions later in

the DApp development. We can create a new account using the following

command.

sudo geth account new --datadir <path to the data directory we

created in the previous step>

sudo geth account new --datadir /mygeth

Note  We are using sudo to avoid any permission issues.

When you run this command, the prompt will ask for a passphrase

to lock this account. Enter and confirm the passphrase and then

your geth account will be created. Make sure to remember the

passphrase you entered; it will be needed to unlock the account

later to sign transactions. The address of this account will be shown

on the screen. For us, the address of the generated account is

baf735f889d603f0ec6b1030c91d9033e60525c3. The following screenshot

(Figure 6-1) shows this process.

Notice that we have passed the data directory as the parameter for

the create account command. This is to make sure that the file containing

the account details is created inside our data directory so that it is easy to

Figure 6-1.  Ethereum account setup with geth

Chapter 6 Building an Ethereum DApp

324

access the account from the context of this directory. If we do not pass the

data directory parameter to the geth commands, then it will automatically

take the default location of the data directory (which can be different

depending on the platform).

�Create genesis.json Configuration File
After installing geth and creating a new account, the next step is to define the

genesis configuration for our private network. As we have seen in the previous

chapters, blockchains have a genesis block that acts as the starting point

of the blockchain, and all transactions and blocks are validated against the

genesis block. For our private network, we will have a custom genesis block

and hence a custom genesis configuration. This configuration defines some

key values for the blockchain like difficulty level, gas limit for blocks, etc.

The genesis configuration for Ethereum has the following format as

a JSON object. Each of the keys of this object is a configuration value that

drives the network.

{

 "config": {

 "chainId": 3792,

 "homesteadBlock": 0,

 "eip155Block": 0,

 "eip158Block": 0

 },

 "difficulty": "2000",

 "gasLimit": "2100000",

 "alloc": {

 �"baf735f889d603f0ec6b1030c91d9033e60525c3":

{ "balance": "9000000000000000000" }

 }

}

Chapter 6 Building an Ethereum DApp

325

The JSON object is primarily constituted by a config section having

values specific to chainId and block numbers related to some of the forks

that have taken place. The important parameter to note here is the chainId,

which represents the identifier of the blockchain and helps prevent replay

attacks. For our private chain, we have opted for a random chainId 3792.

You can choose any number here different from the numbers used by main

net (1) and the test nets (2, 3, and 4).

The next important parameter is the difficulty. This value defines

how difficult it will be to mine a new block. This value is much higher in

the Ethereum main network, but for private networks we can choose a

relatively smaller value.

Then there is gasLimit. This is the total gas limit for a block and not

a transaction. A higher value generally means more transactions in each

block.

Finally, we have the alloc section. Using this configuration, we can

prefund Ethereum accounts with the value in wei. As we can see, we have

funded the same Ethereum account that we created in the last step, with 9

Ether.

�Run the First Node of the Private Network
To run the first node of the private blockchain, let’s first copy the JSON

from the previous step and save it as a file named genesis.json. For

simplicity, we are saving this file in the same directory that we are using as

the data directory for geth.

First, we need to initialize geth with the genesis.json. This initialization

is needed to set the custom genesis configuration for our private network.

CD to the directory where we have saved the genesis.json file is

cd mygeth

Chapter 6 Building an Ethereum DApp

326

The following command will initialize geth with the custom

configuration we have defined.

sudo geth --datadir "/mygeth" init genesis.json

geth will confirm the custom genesis configuration set-up with the output

in the following screen-shot (Figure 6-2).

Next, we need to run geth using the following command and the

parameters. We will look into each of these parameters in detail.

sudo geth --datadir "/mygeth" --networkid 8956 --ipcdisable

--port 30307 --rpc --rpcapi "eth,web3,personal,net,miner,admin,

debug" --rpcport 8507 --mine --minerthreads=1 --etherbase=0xbaf

735f889d603f0ec6b1030c91d9033e60525c3

Let’s look at each of the parameters that we gave to the geth command.

datadir: This is to specify the data directory just like

we did in the previous steps.

networkid: This is the identifier of the network,

which differentiates our private blockchain with

other Ethereum networks. This is similar to the

chainId we defined in the genesis.json file but

provides another layer of differentiation among

networks. As we can see, we have used another

custom number for this value.

Figure 6-2.  Initialize geth with configuration in genesis.json

Chapter 6 Building an Ethereum DApp

327

ipcdisable: With this parameter we have disabled

the interprocess communication port for geth so

that while running multiple geth instances (nodes)

on the same local machine we should not encounter

any conflicting issues.

port: We have selected a custom value for the port

to interact with geth.

rpc, --rpcapi, --rpcport: These three parameters

define the configuration for the RPC API exposed by

geth. We want to enable it; we want eth,web3,perso

nal,net,miner,admin,debug geth APIs exposed over

RPC; and we want to run it on a custom port 8507.

mine – minerthreads – etherbase: With these

three parameters we are instructing geth to start

this node as a miner node, limit the miner process

threads to only one (so that we do not consume a lot

of CPU power), and send the mining rewards to the

Ethereum account that we created in the first step.

That’s all the configuration we need at this time to run our first geth

node for the private network.

When we run this command with all the parameters, geth will give the

following output (as in the screenshot shown in Figure 6-3).

Chapter 6 Building an Ethereum DApp

328

Note the UDP listener up log statement in the output.

INFO [02-11|18:00:57] UDP listener up

self=enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e

225c1d1cb1a765195474d7418f3e8fbfeefd55bd85722973d1762

6f0e53208c62e38d1099bb583e702b3b48@[::]:30307

This contains the address of the node we just started. To connect other

nodes to this node we will need this address. Let’s keep it noted at some

place. The following line has the extracted address from the previous log

statement.

enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e225c1d1cb1a7

65195474d7418f3e8fbfeefd55bd85722973d17626f0e53208c62e38d1099

bb583e702b3b48@[::]:30307

Note the [::] before the port number we defined in the command. Let’s

replace this with the local host IP address if we are running the other node

on the same machine, or else replace it with the external IP address of

the machine. As we are going to run the other network node on the same

Figure 6-3.  Geth run first node

Chapter 6 Building an Ethereum DApp

329

machine (for development purposes), we will replace it with the localhost

IP address. So, the address of the first node will finally be

enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4eb2e225c1d1cb1a

765195474d7418f3e8fbfeefd55bd85722973d17626f0e53208c62e38d10

99bb583e702b3b48@127.0.0.1:30307

�Run the Second Node of the Network
There is no network with just one node; it should at least have two nodes.

So, let’s run another geth instance on the same machine, which will

interact with the node we just started, and both these nodes together will

form our Ethereum private network.

To run another node, first of all we need another directory that can be

set as the data directory of the second node. Let us create one.

mkdir mygeth2

Now, we will initialize this node also with the same genesis.json

configuration we created for the first node. Let’s create another copy of this

genesis.json file and save it in the new directory we created earlier. Let’s

also CD to this directory. Now, let’s initialize the genesis configuration for

the second node.

sudo geth --datadir "/mygeth2" init genesis.json

And, we will get a similar output as we got for the first node. See the

screenshot below (Figure 6-4).

Figure 6-4.  Geth initialize configuration for second node

Chapter 6 Building an Ethereum DApp

330

Now our second node is also initialized with the genesis configuration.

Let’s run it.

For running the second node, we will pass a few different parameters

to the geth command. This second node will not run as a miner, so we will

skip the last three parameters from the command that we gave to the first

node. Also, we want to expose the geth console while running this node,

so we will add a parameter for that. The command for running the second

node will be

sudo geth --datadir "/mygeth2" --networkid 8956 --ipcdisable

--port 30308 --rpc --rpcapi "eth,web3,personal,net,miner,admin,

debug" --rpcport 8508 console

As we can see, the data directory and ports have been changed for the

second node. We also have added the console flag to the command so we

can get the geth console for this node.

When we run this command, the second node will also start running

and we will see the following output in the terminal (Figure 6-5).

Figure 6-5.  Geth run second node

Chapter 6 Building an Ethereum DApp

331

At this time, both our geth nodes are running but they do not know

about each other. If we run the admin.peers command on the geth console

of the second node, we will get an empty array as the result (Figure 6-6).

This means that the nodes are not connected to each other. Let’s

connect the nodes. To do this, we will send the admin.addPeer()

command on the geth console of the second node with the node address

of the first node as the parameter. Remember we noted the address of the

first node after running it. Let’s run this command in the second node’s

geth console.

admin.addPeer("enode://e03b50e9b1b2579904f2bbdff7dd0826bd4e4e

b2e225c1d1cb1a765195474d7418f3e8fbfeefd55bd85722973d17626f0e5

3208c62e38d1099bb583e702b3b48@127.0.0.1:30307")

And as soon as we run this command on the second node, it returns

true. Also, after a few seconds it starts synchronization with the first node.

The following screen shot (Figure 6-7) shows this output from the console

of the second node.

Figure 6-6.  Geth console—check for peers

Chapter 6 Building an Ethereum DApp

332

Both our nodes are now connected and our private Ethereum network

is up. To further verify this, we will run the admin.peers command again

on the second node and this time we will see the JSON array with an object

showing the first node as the peer (Figure 6-8).

The following screen shot shows the terminal windows of both the

nodes we’ve set up. On the left is the first node, which is also a miner

node, and as we can see it is constantly mining new blocks. The second

node is on the right and we can see it is synchronizing with the first

node. The screenshot (Figure 6-9) is too small to read because of too

Figure 6-8.  Geth console—check for peers (again)

Figure 6-7.  Geth console—add peer node

Chapter 6 Building an Ethereum DApp

333

much information in it, but it just captures and shows the logs from both

Ethereum nodes side by side.

Now that both nodes are peers to each other in the network, we have

a working private Ethereum blockchain with two nodes. We also have an

Ethereum account that is set as a miner and also is prefunded by some

Ether amount. We can now create more accounts and pass Ether among

them on this private blockchain.

In this section we learned how to set up a private Ethereum network

with two nodes. This can be any number of nodes; we just need to follow

the same process for each new node. In case of remote nodes, we should

be careful about specifying the right IP addresses of the remote machines

and we should also make sure that the required ports are opened if there is

a firewall preventing traffic to the machines.

Figure 6-9.  Geth logs from both Ethereum nodes

Chapter 6 Building an Ethereum DApp

334

�Creating the Smart Contract
Now that we have the private Ethereum network set up and working, we

can move on to the next step of creating a smart contract for the polling

functionality of our DApp. We will then deploy this contract to our private

network. We will follow the same steps of creating and deploying a smart

contract as we did in the last chapter.

Let’s fire up the Remix online IDE and code our smart contract in Solidity.

The following Solidity code snippet shows the smart contract we have

coded for the polling functionality.

pragma solidity ^0.4.19;

contract Poll {

 event Voted(

 address _voter,

 uint _value

);

 mapping(address => uint) public votes;

 �string pollSubject = "Should coffee be made tax free? Pass

1 for yes OR 2 for no in the vote function.";

 function getPoll() constant public returns (string) {

 return pollSubject;

 }

 function vote(uint selection) public {

 Voted(msg.sender, selection);

 require (votes[msg.sender] == 0);

 require (selection > 0 && selection < 3);

 votes[msg.sender] = selection;

 }

}

Chapter 6 Building an Ethereum DApp

335

Now, let’s analyze this contract source code to understand what we

have done here. As we can see, the name of the contract is Poll.

The next line of code is

event Voted(

 address _voter,

 uint _value

);

The preceding code snippet is basically declaring a smart contract

event that takes two parameters: one is of the type of Ethereum address

and another is of the type of unsigned integer. We have created this event

so that we can capture who has voted what in the poll. We will come back

to this later.

Next, we have

mapping(address => uint) public votes;

The preceding line of code declares a mapping of Ethereum addresses

and unsigned integers. This is the data store where we will be storing the

voters’ addresses and their chosen value for the vote.

Then we have the following:

string pollSubject = "Should coffee be made tax free? Pass 1

for yes OR 2 for no in the vote function.";

function getPoll() constant public returns (string) {

 return pollSubject;

}

The preceding code snippet first declares a string for the polling

subject. In this we are asking a question of the voters. And then we have

a function that can return the value of this string so that voters can query

what the poll is about.

Chapter 6 Building an Ethereum DApp

336

And finally, we have the function that implements the voting

functionality.

function vote(uint selection) public {

 Voted(msg.sender, selection);

 require (votes[msg.sender] == 0);

 require (selection > 0 && selection < 3);

 votes[msg.sender] = selection;

}

Examine closely each line of the preceding snippet.

First, as soon as we enter this function, we are raising the voted event

we created with the values of the sender’s address (voter) and the value he

has chosen.

Next, we are limiting one vote per voter by checking if the value of the

vote is zero for the corresponding address in the mapping. The require

statement is used to check conditions based on user inputs.

And then we are also limiting, by using the require statement, the value of

the selection to either 1 or 2. 1 is a yes and 2 is a no. And we have passed these

instructions in the pollSubject string so that the voters know what to do.

The screenshot in Figure 6-10 shows the smart contract in Remix,

We compiled this contract code using Remix and we took the ABI and

byte code for the contract so that we can deploy it to our private network.

We copied the bytecode and ABI from the respective sections in the details

popup of the Remix compile tab—exactly how we did this in the previous

chapter.

Chapter 6 Building an Ethereum DApp

337

The ABI of the contract is

[

 {

 "constant": true,

 "inputs": [

 {

 "name": "",

 "type": "address"

 }

],

 "name": "votes",

 "outputs": [

 {

 "name": "",

 "type": "uint256"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

Figure 6-10.  Smart contract editing in Remix online Solidity editor

Chapter 6 Building an Ethereum DApp

338

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

 "outputs": [

 {

 "name": "",

 "type": "string"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [

 {

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

Chapter 6 Building an Ethereum DApp

339

 {

 "constant": false,

 "inputs": [

 {

 "name": "selection",

 "type": "uint256"

 }

],

 "name": "vote",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

]

And the byte code for the contract is

{

 "linkReferences": {},

 �"object": "606060405260806040519081016040528060508152602

0017f53686f756c6420636f66666565206265206d616465207461782

0667265653f2081526020017f53656e64203120666f7220796573204

f52203220666f72206e6f20696e20746881526020017f6520766f746

52066756e6374696f6e2e00000000000000000000000000000000815

2506001908051906020019061009c9291906100ad565b5034156100a

857600080fd5b610152565b828054600181600116156101000203166

002900490600052602060002090601f016020900481019282601f106

100ee57805160ff191683800117855561011c565b828001600101855

5821561011c579182015b8281111561011b578251825591602001919

060010190610100565b5b509050610129919061012d565b5090565b6

1014f91905b8082111561014b5760008160009055506001016101335

65b5090565b90565b610373806101616000396000f30060606040526

Chapter 6 Building an Ethereum DApp

340

0043610610057576000357c010000000000000000000000000000000

0000000000000000000000000900463ffffffff1680630121b93f146

1005c57806303c322781461007f578063d8bff5a51461010d575b600

080fd5b341561006757600080fd5b61007d600480803590602001909

190505061015a565b005b341561008a57600080fd5b6100926102735

65b60405180806020018281038252838181518152602001915080519

06020019080838360005b838110156100d2578082015181840152602

0810190506100b7565b50505050905090810190601f1680156100ff5

780820380516001836020036101000a031916815260200191505b509

250505060405180910390f35b341561011857600080fd5b610144600

480803573ff1690602

001909190505061031b565b604051808281526020019150506040518

0910390f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db2

8a91436490b7d53870ca43382604051808373fffffffffffffffffff

fffffffffffffffffffff1673fffffffffffffffffffffffffffffff

fffffffff1681526020018281526020019250505060405180910390a

160008060003373ff1

673ff1681526020019

081526020016000205414151561021257600080fd5b6000811180156

102225750600381105b151561022d57600080fd5b806000803373fff

fffffffffffffffffffffffffffffffffffff1673fffffffffffffff

fffffffffffffffffffffffff1681526020019081526020016000208

190555050565b61027b610333565b600180546001816001161561010

00203166002900480601f01602080910402602001604051908101604

05280929190818152602001828054600181600116156101000203166

002900480156103115780601f106102e657610100808354040283529

160200191610311565b820191906000526020600020905b815481529

0600101906020018083116102f457829003601f168201915b5050505

050905090565b6000602052806000526040600020600091509050548

1565b6020604051908101604052806000815250905600a165627a7a7

2305820ec7d3e1dae8412ec85045a8eafc248e37ae506802cc008ead

300df1ac81aab490029",

Chapter 6 Building an Ethereum DApp

341

 �"opcodes": "PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x80 PUSH1

0x40 MLOAD SWAP1 DUP2 ADD PUSH1 0x40 MSTORE DUP1 PUSH1 0x50

DUP2 MSTORE PUSH1 0x20 ADD PUSH32 0x53686F756C6420636F666

66565206265206D6164652074617820667265653F20 DUP2 MSTORE

PUSH1 0x20 ADD PUSH32 0x53656E64203120666F7220796573204F52

203220666F72206E6F20696E207468 DUP2 MSTORE PUSH1 0x20

ADD PUSH32 0x6520766F74652066756E6374696F6E2E00000000

000000000000000000000000 DUP2 MSTORE POP PUSH1 0x1 SWAP1

DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 PUSH2 0x9C SWAP3

SWAP2 SWAP1 PUSH2 0xAD JUMP JUMPDEST POP CALLVALUE ISZERO

PUSH2 0xA8 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2

0x152 JUMP JUMPDEST DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1

0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1

DIV SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256

SWAP1 PUSH1 0x1F ADD PUSH1 0x20 SWAP1 DIV DUP2 ADD SWAP3

DUP3 PUSH1 0x1F LT PUSH2 0xEE JUMPI DUP1 MLOAD PUSH1 0xFF

NOT AND DUP4 DUP1 ADD OR DUP6 SSTORE PUSH2 0x11C JUMP

JUMPDEST DUP3 DUP1 ADD PUSH1 0x1 ADD DUP6 SSTORE DUP3

ISZERO PUSH2 0x11C JUMPI SWAP2 DUP3 ADD JUMPDEST DUP3 DUP2

GT ISZERO PUSH2 0x11B JUMPI DUP3 MLOAD DUP3 SSTORE SWAP2

PUSH1 0x20 ADD SWAP2 SWAP1 PUSH1 0x1 ADD SWAP1 PUSH2 0x100

JUMP JUMPDEST JUMPDEST POP SWAP1 POP PUSH2 0x129 SWAP2

SWAP1 PUSH2 0x12D JUMP JUMPDEST POP SWAP1 JUMP JUMPDEST

PUSH2 0x14F SWAP2 SWAP1 JUMPDEST DUP1 DUP3 GT ISZERO PUSH2

0x14B JUMPI PUSH1 0x0 DUP2 PUSH1 0x0 SWAP1 SSTORE POP PUSH1

0x1 ADD PUSH2 0x133 JUMP JUMPDEST POP SWAP1 JUMP JUMPDEST

SWAP1 JUMP JUMPDEST PUSH2 0x373 DUP1 PUSH2 0x161 PUSH1

0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60 PUSH1 0x40

MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH2 0x57 JUMPI PUSH1

0x0 CALLDATALOAD PUSH29 0x10000000000000000000000000000

0000000000000000000000000000 SWAP1 DIV PUSH4 0xFFFFFFFF

Chapter 6 Building an Ethereum DApp

342

AND DUP1 PUSH4 0x121B93F EQ PUSH2 0x5C JUMPI DUP1 PUSH4

0x3C32278 EQ PUSH2 0x7F JUMPI DUP1 PUSH4 0xD8BFF5A5 EQ

PUSH2 0x10D JUMPI JUMPDEST PUSH1 0x0 DUP1 REVERT JUMPDEST

CALLVALUE ISZERO PUSH2 0x67 JUMPI PUSH1 0x0 DUP1 REVERT

JUMPDEST PUSH2 0x7D PUSH1 0x4 DUP1 DUP1 CALLDATALOAD

SWAP1 PUSH1 0x20 ADD SWAP1 SWAP2 SWAP1 POP POP PUSH2 0x15A

JUMP JUMPDEST STOP JUMPDEST CALLVALUE ISZERO PUSH2 0x8A

JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x92 PUSH2

0x273 JUMP JUMPDEST PUSH1 0x40 MLOAD DUP1 DUP1 PUSH1 0x20

ADD DUP3 DUP2 SUB DUP3 MSTORE DUP4 DUP2 DUP2 MLOAD DUP2

MSTORE PUSH1 0x20 ADD SWAP2 POP DUP1 MLOAD SWAP1 PUSH1

0x20 ADD SWAP1 DUP1 DUP4 DUP4 PUSH1 0x0 JUMPDEST DUP4

DUP2 LT ISZERO PUSH2 0xD2 JUMPI DUP1 DUP3 ADD MLOAD DUP2

DUP5 ADD MSTORE PUSH1 0x20 DUP2 ADD SWAP1 POP PUSH2 0xB7

JUMP JUMPDEST POP POP POP POP SWAP1 POP SWAP1 DUP2 ADD

SWAP1 PUSH1 0x1F AND DUP1 ISZERO PUSH2 0xFF JUMPI DUP1

DUP3 SUB DUP1 MLOAD PUSH1 0x1 DUP4 PUSH1 0x20 SUB PUSH2

0x100 EXP SUB NOT AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP

JUMPDEST POP SWAP3 POP POP POP PUSH1 0x40 MLOAD DUP1 SWAP2

SUB SWAP1 RETURN JUMPDEST CALLVALUE ISZERO PUSH2 0x118

JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x144 PUSH1

0x4 DUP1 DUP1 CALLDATALOAD PUSH20 0xFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP2

SWAP1 POP POP PUSH2 0x31B JUMP JUMPDEST PUSH1 0x40 MLOAD

DUP1 DUP3 DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP POP PUSH1

0x40 MLOAD DUP1 SWAP2 SUB SWAP1 RETURN JUMPDEST PUSH32

0x4D99B957A2BC29A30EBD96A7BE8E68FE50A3C701DB28A91436490B7

D53870CA4 CALLER DUP3 PUSH1 0x40 MLOAD DUP1 DUP4 PUSH20 0xF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND PUSH20 0xFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND DUP2 MSTORE PUSH1

0x20 ADD DUP3 DUP2 MSTORE PUSH1 0x20 ADD SWAP3 POP POP POP

Chapter 6 Building an Ethereum DApp

343

PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 LOG1 PUSH1 0x0 DUP1

PUSH1 0x0 CALLER PUSH20 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFF AND PUSH20 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE

PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SLOAD EQ ISZERO ISZERO

PUSH2 0x212 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH1 0x0

DUP2 GT DUP1 ISZERO PUSH2 0x222 JUMPI POP PUSH1 0x3 DUP2

LT JUMPDEST ISZERO ISZERO PUSH2 0x22D JUMPI PUSH1 0x0 DUP1

REVERT JUMPDEST DUP1 PUSH1 0x0 DUP1 CALLER PUSH20 0xFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND PUSH20 0xFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND DUP2 MSTORE PUSH1 0x20

ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256

DUP2 SWAP1 SSTORE POP POP JUMP JUMPDEST PUSH2 0x27B PUSH2

0x333 JUMP JUMPDEST PUSH1 0x1 DUP1 SLOAD PUSH1 0x1 DUP2

PUSH1 0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2

SWAP1 DIV DUP1 PUSH1 0x1F ADD PUSH1 0x20 DUP1 SWAP2 DIV

MUL PUSH1 0x20 ADD PUSH1 0x40 MLOAD SWAP1 DUP2 ADD PUSH1

0x40 MSTORE DUP1 SWAP3 SWAP2 SWAP1 DUP2 DUP2 MSTORE PUSH1

0x20 ADD DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 AND

ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1

ISZERO PUSH2 0x311 JUMPI DUP1 PUSH1 0x1F LT PUSH2 0x2E6

JUMPI PUSH2 0x100 DUP1 DUP4 SLOAD DIV MUL DUP4 MSTORE SWAP2

PUSH1 0x20 ADD SWAP2 PUSH2 0x311 JUMP JUMPDEST DUP3 ADD

SWAP2 SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256

SWAP1 JUMPDEST DUP2 SLOAD DUP2 MSTORE SWAP1 PUSH1 0x1

ADD SWAP1 PUSH1 0x20 ADD DUP1 DUP4 GT PUSH2 0x2F4 JUMPI

DUP3 SWAP1 SUB PUSH1 0x1F AND DUP3 ADD SWAP2 JUMPDEST POP

POP POP POP POP SWAP1 POP SWAP1 JUMP JUMPDEST PUSH1 0x0

PUSH1 0x20 MSTORE DUP1 PUSH1 0x0 MSTORE PUSH1 0x40 PUSH1

0x0 KECCAK256 PUSH1 0x0 SWAP2 POP SWAP1 POP SLOAD DUP2

JUMP JUMPDEST PUSH1 0x20 PUSH1 0x40 MLOAD SWAP1 DUP2 ADD

Chapter 6 Building an Ethereum DApp

344

PUSH1 0x40 MSTORE DUP1 PUSH1 0x0 DUP2 MSTORE POP SWAP1

JUMP STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 0xec PUSH30

0x3E1DAE8412EC85045A8EAFC248E37AE506802CC008EAD300DF1AC81A

AB49 STOP 0x29 ",

 �"sourceMap": "26:576:0:-;;;167:103;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;:::i;:::-;;26:576;;;;;;;;;;;;;;;;;;;;;;;;

;;

;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;

;;;;;;;;;;;;:::o;:::-;;;;;;;"

}

With these values our smart contract is ready to be deployed.

Important Note T here may be some improvements that can be
done to make this contract more secure and performance (gas)
friendly. The Solidity code should not be taken as reference. Detailed
discussion on Solidity best practices is out of scope for this text. For
Solidity best practices, we recommend following the official solidity
documentation and Solidity-specific texts.

�Deploying the Smart Contract
In this section we will deploy the smart contract we developed in the last

section to the private Ethereum network we have created. The process of

deploying the smart contract is the same as what we did in the previous

chapter. The only difference is that this time we are deploying the

contract to a private network instead of a public one. In this chapter too,

we are using the same web3.js library for Ethereum programming using

JavaScript. We recommend the reader to go through the previous chapter if

they have not already done that.

Chapter 6 Building an Ethereum DApp

345

�Setting up web3 Library and Connection
First of all, we will install the web3 library in a node.js application. This is

exactly how we did it in the last chapter. This node.js application will be

used to deploy the smart contract.

npm install web3@1.0.0-beta.28

After installation, let’s first initialize and instantiate the web3 instance.

var Web3 = require('web3');

var web3 = new Web3(new Web3.providers.HttpProvider('ht

tp://127.0.0.1:8507'));

Note that this time, our HTTP provider for the web3 instance has

changed to a local endpoint instead of a public INFURA endpoint, which

we used in the last chapter. This is because we are now connecting to our

local private network. Also note that the port we are using is 8507, which

is what we provided in the --rpcport parameter when we set up the first

node of our private network. This means we are connecting to the first

node of the network from our web3 instance.

�Deploy the Contract to the Private Network
Now that we have our smart contract and its details, we will prepare a web3

contract object with the details of this contract, and then we will deploy

this contract to the Ethereum blockchain by calling the deploy method on

the contract object.

We need to create an object of the web3.eth.Contract class that can

represent our contract. The following code snippet creates a contract

instance with the ABI of our contract as an input to the constructor.

Chapter 6 Building an Ethereum DApp

346

var pollingContract = new web3.eth.Contract([

 {

 "constant": true,

 "inputs": [

 {

 "name": "",

 "type": "address"

 }

],

 "name": "votes",

 "outputs": [

 {

 "name": "",

 "type": "uint256"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

 "outputs": [

 {

 "name": "",

 "type": "string"

 }

],

Chapter 6 Building an Ethereum DApp

347

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [

 {

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

 {

 "constant": false,

 "inputs": [

 {

 "name": "selection",

 "type": "uint256"

 }

],

 "name": "vote",

 "outputs": [],

Chapter 6 Building an Ethereum DApp

348

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

]);

Now we need to deploy this contract to the Ethereum network using

the web3 library’s deploy method. The following code snippet shows how

to do this. In this snippet we have added the byte code in the data field of

the object passed to the deploy method.

pollingContract

 .deploy({

 �data: '0x606060405260806040519081016040528060508152602

0017f53686f756c6420636f66666565206265206d6164652074617

820667265653f2081526020017f53656e64203120666f722079657

3204f52203220666f72206e6f20696e20746881526020017f65207

66f74652066756e6374696f6e2e000000000000000000000000000

000008152506001908051906020019061009c9291906100ad565b5

034156100a857600080fd5b610152565b828054600181600116156

101000203166002900490600052602060002090601f01602090048

1019282601f106100ee57805160ff191683800117855561011c565

b8280016001018555821561011c579182015b8281111561011b578

251825591602001919060010190610100565b5b509050610129919

061012d565b5090565b61014f91905b8082111561014b576000816

000905550600101610133565b5090565b90565b610373806101616

000396000f300606060405260043610610057576000357c0100000

000900

463ffffffff1680630121b93f1461005c57806303c322781461007

f578063d8bff5a51461010d575b600080fd5b34156100675760008

0fd5b61007d600480803590602001909190505061015a565b005b3

41561008a57600080fd5b610092610273565b60405180806020018

281038252838181518152602001915080519060200190808383600

Chapter 6 Building an Ethereum DApp

349

05b838110156100d25780820151818401526020810190506100b75

65b50505050905090810190601f1680156100ff578082038051600

1836020036101000a031916815260200191505b509250505060405

180910390f35b341561011857600080fd5b610144600480803573f

fffffffffffffffffffffffffffffffffffffff169060200190919

0505061031b565b604051808281526020019150506040518091039

0f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db28a91

436490b7d53870ca43382604051808373fffffffffffffffffffff

fffffffffffffffffff1673fffffffffffffffffffffffffffffff

fffffffff168152602001828152602001925050506040518091039

0a160008060003373fffffffffffffffffffffffffffffffffffff

fff1673ff1681526

020019081526020016000205414151561021257600080fd5b60008

11180156102225750600381105b151561022d57600080fd5b80600

0803373ff1673fff

fffffffffffffffffffffffffffffffffffff16815260200190815

26020016000208190555050565b61027b610333565b60018054600

181600116156101000203166002900480601f01602080910402602

001604051908101604052809291908181526020018280546001816

00116156101000203166002900480156103115780601f106102e65

7610100808354040283529160200191610311565b8201919060005

26020600020905b8154815290600101906020018083116102f4578

29003601f168201915b5050505050905090565b600060205280600

05260406000206000915090505481565b602060405190810160405

2806000815250905600a165627a7a72305820ec7d3e1dae8412ec8

5045a8eafc248e37ae506802cc008ead300df1ac81aab490029'

 })

 .send({

 from: '0xbaf735f889d603f0ec6b1030c91d9033e60525c3',

 gas: 4700000,

 gasPrice: '20000000000000'

 },

Chapter 6 Building an Ethereum DApp

350

 function(error, transactionHash){

 console.log(error);

 console.log(transactionHash);

 })

 .then(function(contract){

 console.log(contract);

 });

Note that we have also used the account that we created during the

network setup in the “from” field of the send function. As this account was

prefunded with nine Ether and it’s also added as the etherbase account for

the mining rewards, it has enough Ether to deploy a contract.

The full function to deploy the contract will be

var deployContract = function () {

 var pollingContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [{

 "name": "",

 "type": "address"

 }],

 "name": "votes",

 "outputs": [{

 "name": "",

 "type": "uint256"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

Chapter 6 Building an Ethereum DApp

351

 "name": "getPoll",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [{

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

 {

 "constant": false,

 "inputs": [{

 "name": "selection",

 "type": "uint256"

 }],

Chapter 6 Building an Ethereum DApp

352

 "name": "vote",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

]);

 pollingContract

 .deploy({

 �data: '0x60606040526080604051908101604052806050815

26020017f53686f756c6420636f66666565206265206d61646

52074617820667265653f2081526020017f53656e642031206

66f7220796573204f52203220666f72206e6f20696e2074688

1526020017f6520766f74652066756e6374696f6e2e0000000

00000000000000000000000008152506001908051906020019

061009c9291906100ad565b5034156100a857600080fd5b610

152565b8280546001816001161561010002031660029004906

00052602060002090601f016020900481019282601f106100e

e57805160ff191683800117855561011c565b8280016001018

555821561011c579182015b8281111561011b5782518255916

02001919060010190610100565b5b509050610129919061012

d565b5090565b61014f91905b8082111561014b57600081600

0905550600101610133565b5090565b90565b6103738061016

16000396000f300606060405260043610610057576000357c0

1000

0000000900463ffffffff1680630121b93f1461005c5780630

3c322781461007f578063d8bff5a51461010d575b600080fd5

b341561006757600080fd5b61007d600480803590602001909

190505061015a565b005b341561008a57600080fd5b6100926

10273565b60405180806020018281038252838181518152602

Chapter 6 Building an Ethereum DApp

353

00191508051906020019080838360005b838110156100d2578

0820151818401526020810190506100b7565b5050505090509

0810190601f1680156100ff578082038051600183602003610

1000a031916815260200191505b50925050506040518091039

0f35b341561011857600080fd5b610144600480803573fffff

fffffffffffffffffffffffffffffffffff169060200190919

0505061031b565b60405180828152602001915050604051809

10390f35b7f4d99b957a2bc29a30ebd96a7be8e68fe50a3c70

1db28a91436490b7d53870ca43382604051808373fffffffff

fffffffffffffffffffffffffffffff1673fffffffffffffff

fffffffffffffffffffffffff1681526020018281526020019

250505060405180910390a160008060003373fffffffffffff

fffffffffffffffffffffffffff1673fffffffffffffffffff

fffffffffffffffffffff16815260200190815260200160002

05414151561021257600080fd5b60008111801561022257506

00381105b151561022d57600080fd5b806000803373fffffff

fffffffffffffffffffffffffffffffff1673fffffffffffff

fffffffffffffffffffffffffff16815260200190815260200

16000208190555050565b61027b610333565b6001805460018

1600116156101000203166002900480601f016020809104026

02001604051908101604052809291908181526020018280546

00181600116156101000203166002900480156103115780601

f106102e657610100808354040283529160200191610311565

b820191906000526020600020905b815481529060010190602

0018083116102f457829003601f168201915b5050505050905

090565b6000602052806000526040600020600091509050548

1565b6020604051908101604052806000815250905600a1656

27a7a72305820ec7d3e1dae8412ec85045a8eafc248e37ae50

6802cc008ead300df1ac81aab490029'

 })

Chapter 6 Building an Ethereum DApp

354

 .send({

 �from: '0xbaf735f889d603f0ec6b1030c91d9033e6

0525c3',

 gas: 4700000,

 gasPrice: '20000000000000'

 },

 function (error, transactionHash) {

 console.log(error);

 console.log(transactionHash);

 })

 .then(function (contract) {

 console.log(contract);

 });

};

After executing this function from our node.js application, we received

the following output:

Contract {

 currentProvider: [Getter/Setter],

 _requestManager:

 RequestManager {

 provider: null,

 providers:

 { WebsocketProvider: [Function: WebsocketProvider],

 HttpProvider: [Function: HttpProvider],

 IpcProvider: [Function: IpcProvider] },

 subscriptions: {} },

 givenProvider: null,

 providers:

 { WebsocketProvider: [Function: WebsocketProvider],

 HttpProvider: [Function: HttpProvider],

 IpcProvider: [Function: IpcProvider] },

Chapter 6 Building an Ethereum DApp

355

 _provider: null,

 setProvider: [Function],

 BatchRequest: [Function: bound Batch],

 extend:

 { [Function: ex]

 formatters:

 �{ inputDefaultBlockNumberFormatter: [Function:

inputDefaultBlockNumberFormatter],

 �inputBlockNumberFormatter: [Function:

inputBlockNumberFormatter],

 inputCallFormatter: [Function: inputCallFormatter],

 �inputTransactionFormatter: [Function:

inputTransactionFormatter],

 �inputAddressFormatter: [Function:

inputAddressFormatter],

 inputPostFormatter: [Function: inputPostFormatter],

 inputLogFormatter: [Function: inputLogFormatter],

 inputSignFormatter: [Function: inputSignFormatter],

 �outputBigNumberFormatter: [Function:

outputBigNumberFormatter],

 �outputTransactionFormatter: [Function:

outputTransactionFormatter],

 �outputTransactionReceiptFormatter: [Function:

outputTransactionReceiptFormatter],

 outputBlockFormatter: [Function: outputBlockFormatter],

 outputLogFormatter: [Function: outputLogFormatter],

 outputPostFormatter: [Function: outputPostFormatter],

 �outputSyncingFormatter: [Function:

outputSyncingFormatter] },

Chapter 6 Building an Ethereum DApp

356

 utils:

 { _fireError: [Function: _fireError],

 �_jsonInterfaceMethodToString: [Function:

_jsonInterfaceMethodToString],

 randomHex: [Function: randomHex],

 _: [Function],

 BN: [Function],

 isBN: [Function: isBN],

 isBigNumber: [Function: isBigNumber],

 isHex: [Function: isHex],

 isHexStrict: [Function: isHexStrict],

 sha3: [Function],

 keccak256: [Function],

 soliditySha3: [Function: soliditySha3],

 isAddress: [Function: isAddress],

 checkAddressChecksum: [Function: checkAddressChecksum],

 toChecksumAddress: [Function: toChecksumAddress],

 toHex: [Function: toHex],

 toBN: [Function: toBN],

 bytesToHex: [Function: bytesToHex],

 hexToBytes: [Function: hexToBytes],

 hexToNumberString: [Function: hexToNumberString],

 hexToNumber: [Function: hexToNumber],

 toDecimal: [Function: hexToNumber],

 numberToHex: [Function: numberToHex],

 fromDecimal: [Function: numberToHex],

 hexToUtf8: [Function: hexToUtf8],

 hexToString: [Function: hexToUtf8],

 toUtf8: [Function: hexToUtf8],

 utf8ToHex: [Function: utf8ToHex],

 stringToHex: [Function: utf8ToHex],

Chapter 6 Building an Ethereum DApp

357

 fromUtf8: [Function: utf8ToHex],

 hexToAscii: [Function: hexToAscii],

 toAscii: [Function: hexToAscii],

 asciiToHex: [Function: asciiToHex],

 fromAscii: [Function: asciiToHex],

 unitMap: [Object],

 toWei: [Function: toWei],

 fromWei: [Function: fromWei],

 padLeft: [Function: leftPad],

 leftPad: [Function: leftPad],

 padRight: [Function: rightPad],

 rightPad: [Function: rightPad],

 toTwosComplement: [Function: toTwosComplement] },

 Method: [Function: Method] },

 clearSubscriptions: [Function],

 options:

 { address: [Getter/Setter],

 jsonInterface: [Getter/Setter],

 data: undefined,

 from: undefined,

 gasPrice: undefined,

 gas: undefined },

 defaultAccount: [Getter/Setter],

 defaultBlock: [Getter/Setter],

 methods:

 { votes: [Function: bound _createTxObject],

 '0xd8bff5a5': [Function: bound _createTxObject],

 'votes(address)': [Function: bound _createTxObject],

 getPoll: [Function: bound _createTxObject],

 '0x03c32278': [Function: bound _createTxObject],

 'getPoll()': [Function: bound _createTxObject],

Chapter 6 Building an Ethereum DApp

358

 vote: [Function: bound _createTxObject],

 '0x0121b93f': [Function: bound _createTxObject],

 'vote(uint256)': [Function: bound _createTxObject] },

 events:

 { Voted: [Function: bound],

 �'0x4d99b957a2bc29a30ebd96a7be8e68fe50a3c701db28a91436

490b7d53870ca4': [Function: bound],

 'Voted(address,uint256)': [Function: bound],

 allEvents: [Function: bound] },

 _address: '0x59E7161646C3436DFdF5eBE617B4A172974B481e',

 _jsonInterface:

 [{ constant: true,

 inputs: [Array],

 name: 'votes',

 outputs: [Array],

 payable: false,

 stateMutability: 'view',

 type: 'function',

 signature: '0xd8bff5a5' },

 { constant: true,

 inputs: [],

 name: 'getPoll',

 outputs: [Array],

 payable: false,

 stateMutability: 'view',

 type: 'function',

 signature: '0x03c32278' },

 { anonymous: false,

 inputs: [Array],

 name: 'Voted',

 type: 'event',

Chapter 6 Building an Ethereum DApp

359

 �signature: '0x4d99b957a2bc29a30ebd96a7be8e68fe50a3c70

1db28a91436490b7d53870ca4' },

 { constant: false,

 inputs: [Array],

 name: 'vote',

 outputs: [],

 payable: false,

 stateMutability: 'nonpayable',

 type: 'function',

 signature: '0x0121b93f' }] }

The output shows the various properties of the contract we

deployed to our private network. The most important one is

the contract address at which the contract is deployed, which is

0x59E7161646C3436DFdF5eBE617B4A172974B481e.

The contract ABI and address can be used to call a function on the

contract. In the next section we will build a simple web app that will call

the vote function of this contract, showcasing how the polling can be done

from the front end.

�Client Application
As we did in the last chapter, we can use the web3 library to call a function

on a smart contract. But, in the last chapter we did that using a node.js

application and not in a browser application. In this section, we will be

using web3 in a browser application to call our deployed smart contract’s

vote function.

The simplest web application we can create for this DApp is a single

web page with a few text and button controls. For the web page, we can use

the following code inside an html file and then run it from a local server.

Note that running from a local server and not directly opening the file from

the browser is important to load the scripts properly, without facing any

browser security issues.

Chapter 6 Building an Ethereum DApp

360

<html>

<c>

 <meta charset="UTF-8">

 <title>Beginning Blockchain - DApp demo</title>

 �<script src="<source of web3 library from any CDN or local

file>"></script>

</head>

<body>

 <div>

 <p>

 Beginning Blockchain

 </p>

 <p>Hi, Welcome to the Polling DApp!</p>

 <p> </p>

 <p>Get latest poll:

 <button onclick="getPoll()">Get Poll</button>

 </p>

 <p>

 <div id="pollSubject"></div>

 </p>

 <p>Vote: Yes:

 <input type="radio" id="yes"> No:

 <input type="radio" id="no">

 </p>

 <p>Submit:

 <button onclick="submitVote()">Submit Vote</button>

 </p>

 </p>

 </div>

Chapter 6 Building an Ethereum DApp

361

 <script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 �web3 = new Web3(new Web3.providers.HttpProvider

('http://127.0.0.1:8507'));

 }

 function getPoll() {

 var pollingContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [{

 "name": "",

 "type": "address"

 }],

 "name": "votes",

 "outputs": [{

 "name": "",

 "type": "uint256"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

Chapter 6 Building an Ethereum DApp

362

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [{

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

 {

 "constant": false,

 "inputs": [{

 "name": "selection",

 "type": "uint256"

 }],

 "name": "vote",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

Chapter 6 Building an Ethereum DApp

363

], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

 �pollingContract.methods.getPoll().call().

then(function (value) {

 �document.getElementById('pollSubject').

textContent = value;

 });

 };

 function submitVote() {

 var value = 0

 var yes = document.getElementById('yes').checked;

 var no = document.getElementById('no').checked;

 if (yes) {

 value = 1

 } else if (no) {

 value = 2

 } else {

 return;

 }

 var pollingContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [{

 "name": "",

 "type": "address"

 }],

 "name": "votes",

 "outputs": [{

 "name": "",

 "type": "uint256"

 }],

Chapter 6 Building an Ethereum DApp

364

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [{

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

Chapter 6 Building an Ethereum DApp

365

 {

 "constant": false,

 "inputs": [{

 "name": "selection",

 "type": "uint256"

 }],

 "name": "vote",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

 pollingContract.methods.vote(value).send({

 �from: '0xbaf735f889d603f0ec6b1030c91d9033e

60525c3'

 }).then(function (result) {

 console.log(result);

 });

 };

 </script>

</body>

</html>

Let’s now analyze each of the sections of this HTML file.

In the head section of the HTML document, we have loaded the web3

script from either a CDN source or a local source. This is just like we refer

to any other third-party JavaScript library in our web pages (JQuery, etc.)

Then in the body section of the HTML, we have the controls for

showing the poll subject and radio and submit buttons to capture user

input. The overall web page looks like this (Figure 6-11).

Chapter 6 Building an Ethereum DApp

366

What is important is the script section in the body. That’s where we are

calling the smart contract interaction code. Let’s look at it in detail.

<script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 �web3 = new Web3(new Web3.providers.HttpProvider

('http://127.0.0.1:8507'));

 }

 function getPoll() {

 var pollingContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [{

 "name": "",

 "type": "address"

 }],

Figure 6-11.  Polling web application view

Chapter 6 Building an Ethereum DApp

367

 "name": "votes",

 "outputs": [{

 "name": "",

 "type": "uint256"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [{

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

Chapter 6 Building an Ethereum DApp

368

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

 {

 "constant": false,

 "inputs": [{

 "name": "selection",

 "type": "uint256"

 }],

 "name": "vote",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

 �pollingContract.methods.getPoll().call().

then(function (value) {

 �document.getElementById('pollSubject').

textContent = value;

 });

 };

Chapter 6 Building an Ethereum DApp

369

 function submitVote() {

 var value = 0

 var yes = document.getElementById('yes').checked;

 var no = document.getElementById('no').checked;

 if (yes) {

 value = 1

 } else if (no) {

 value = 2

 } else {

 return;

 }

 var pollingContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [{

 "name": "",

 "type": "address"

 }],

 "name": "votes",

 "outputs": [{

 "name": "",

 "type": "uint256"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getPoll",

Chapter 6 Building an Ethereum DApp

370

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "anonymous": false,

 "inputs": [{

 "indexed": false,

 "name": "_voter",

 "type": "address"

 },

 {

 "indexed": false,

 "name": "_value",

 "type": "uint256"

 }

],

 "name": "Voted",

 "type": "event"

 },

 {

 "constant": false,

 "inputs": [{

 "name": "selection",

 "type": "uint256"

 }],

 "name": "vote",

 "outputs": [],

Chapter 6 Building an Ethereum DApp

371

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 }

], '0x59E7161646C3436DFdF5eBE617B4A172974B481e');

 pollingContract.methods.vote(value).send({

 �from: '0xbaf735f889d603f0ec6b1030c91d9033

e60525c3'

 }).then(function (result) {

 console.log(result);

 });

 };

 </script>

In the previous script section, first we are initializing the web3 object

with the HTTP provider of the local Ethereum node (if it is not already

initialized).

Then, we have two JavaScript functions. One for getting the value of

the pollSubject string from the smart contract and another for calling the

vote function of the contract.

The calling of smart contract functions is exactly how we did it in the

previous chapter using the web3.eth.Contract submodule of the web3

library.

Note that in the first function getPoll we are calling the call function

on the smart contract instance, while in the second function submitVote

we are calling send on the smart contract instance. That’s primarily the

difference in the two function calls.

Using the call on the getPoll function of the smart contract, we

are getting the return value of the getPoll function without sending any

transaction to the network. We are then showing this value on the UI by

assigning it as the text of a UI element.

Chapter 6 Building an Ethereum DApp

372

Next, using send on the vote function, we are sending a transaction

to execute this function on the network and so we have to also define an

account that will be used to execute the smart contract function. Following

is the output obtained from the submitVote function shown previously,

which is basically a transaction receipt.

{

 �blockHash: '0x04a02dd56c037569eb6abe25e003a65d3366407

134c90a056f64b62c2d23eb84',

 blockNumber: 4257,

 contractAddress: null,

 cumulativeGasUsed: 43463,

 from: '0xbaf735f889d603f0ec6b1030c91d9033e60525c3',

 gasUsed: 43463,

 �logsBloom: '0x000000000000000000000000000000800000000

00000040000000000000000000200000000000000000000000000

000

00000000000200000000002000000000000000000000000000000

000

000

00000000000000000000000000000000000002000000000000000

000

000

000',

 �root: '0x58bc4ee0a3025ca3f303df9bb243d052a123026519637

30c52c88aafe92ebeee',

 to: '0x59e7161646c3436dfdf5ebe617b4a172974b481e',

 �transactionHash: '0x434aa9c0037af3367a0d3d92985781c50

774241ace1d382a8723985efcea73b3',

 transactionIndex: 0,

Chapter 6 Building an Ethereum DApp

373

 events: {

 Voted: {

 �address: '0x59E7161646C3436DFdF5eBE617B4A17

2974B481e',

 blockNumber: 4257,

 �transactionHash: '0x434aa9c0037af3367a0d3d929

85781c50774241ace1d382a8723985efcea73b3',

 transactionIndex: 0,

 �blockHash: '0x04a02dd56c037569eb6abe25e003a65

d3366407134c90a056f64b62c2d23eb84',

 logIndex: 0,

 removed: false,

 id: 'log_980a1744',

 returnValues: [Result],

 event: 'Voted',

 �signature: '0x4d99b957a2bc29a30ebd96a7be8e68f

e50a3c701db28a91436490b7d53870ca4',

 raw: [Object]

 }

 }

}

If we look closely at this output, we see that this also has an events

section and it shows the triggering of the Voted event that we created in

our smart contract.

events: {

 Voted: {

 �address: '0x59E7161646C3436DFdF5eBE617B4A172

974B481e',

 blockNumber: 4257,

 �transactionHash: '0x434aa9c0037af3367a0d3d929

85781c50774241ace1d382a8723985efcea73b3',

Chapter 6 Building an Ethereum DApp

374

 transactionIndex: 0,

 �blockHash: '0x04a02dd56c037569eb6abe25e003a6

5d3366407134c90a056f64b62c2d23eb84',

 logIndex: 0,

 removed: false,

 id: 'log_980a1744',

 returnValues: [Result],

 event: 'Voted',

 �signature: '0x4d99b957a2bc29a30ebd96a7be8e68fe

50a3c701db28a91436490b7d53870ca4',

 raw: [Object]

 }

 }

In the preceding code snippet, we’ve extracted out the events section

from the transaction receipt we received in the response of the send

transaction to the vote function of our smart contract. As we can see, the

events section also shows the return values and the raw values from the

function call.

We have now come to the end of our DApp programming exercise.

In the previous sections of this chapter, we developed an end-to-end

decentralized application on the Ethereum blockchain and we also

deployed a private blockchain for our DApp.

The DApp can be used with the public Ethereum network too—a voter

has to host a node and they can vote using their existing Ethereum accounts

on the public (main) network.

There can be several ways in which the business logic in the smart

contract can be enhanced by using different checks and rules.

This programming exercise gives us a basic idea about how to

approach development of decentralized applications and the components

Chapter 6 Building an Ethereum DApp

375

that come into the picture during the process. This exercise can be treated

as a starting point for Ethereum application development, and the reader

is encouraged to explore best practices and more complex scenarios on the

subject.

�Summary
In this chapter we compiled a programming exercise of developing a

decentralized application based on the Ethereum blockchain. We also

learned how to set up a private Ethereum network and how to interact with

it using the DApp.

�References
web3.js Documentation

http://web3js.readthedocs.io/en/1.0/index.html.

Solidity Documentation
https://solidity.readthedocs.org/.

Ethereum Private Networking Tutorial
https://github.com/ethereumproject/go-ethereum/wiki/Private-

Networking-Tutorial.

Chapter 6 Building an Ethereum DApp

http://web3js.readthedocs.io/en/1.0/index.html
https://solidity.readthedocs.org/
https://github.com/ethereumproject/go-ethereum/wiki/Private-Networking-Tutorial
https://github.com/ethereumproject/go-ethereum/wiki/Private-Networking-Tutorial

377© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0

Index

A
Abstraction layers, 17
admin.addPeer() command, 331
Advanced Encryption Standard

(AES)
AddRoundKey, 52
AES-128, 48
8-bit byte, 49
block size, 48
encryption and decryption

process, 49–50
key expansion, 53–54
MixColumns, 51
NIST, 54
processing steps, 48
round function, 50
ShiftRows, 51
state array, 49
state words, 49
SubBytes, 50
substitution-permutation

network, 48–49
Amazon, 14, 23, 184
Application Binary Interface (ABI),

262–263, 297, 302, 308, 310,
336, 337

Application layer, 19, 25

Asymmetric key cryptography
App stores, 80
authentication, 79
code examples, 95–97
confidentiality, 79
digital signatures, 78
DSA, 86–88
ECC (see Elliptic curve

cryptography (ECC))
ECDSA, 93–95
private key, 80
public key, 79–81
RSA algorithm

encryption/decryption, 84–86
generation of key pairs, 82–84
modular arithmetic, 82

vs. symmetric key
cryptography, 102–104

text message, Alice to Bob, 78
Autonomous Decentralized Peer-To-

Peer Telemetry (ADEPT), 27

B
Banking era, 152
Bitcoin, 3, 149

bitcoinjs, 215, 272
block explorer API, 272

https://doi.org/10.1007/978-1-4842-3444-0

378

block structure
difficulty target, 165–168
header components,

162–163
field and size, 161
Merkle trees, 163–165

data structure, 159
dawn, 153–154
defined, 154–157
Ethereum, 220–221
full nodes, 209–210
genesis block

chainparams.cpp, 169
hash information, 171
transaction information, 170

mining, 22
orphan blocks, 160
PoW, 22
smart contracts, 20
SPVs, 210, 212
transaction, Bitcoin test

network
addOutput method, 279
broadcast transaction,

281–282
transaction.addInput

method, 279
get test net Bitcoins, 275
hex string, 280
keypairs creation, 274
sender’s unspent outputs,

276–278
setup and initialization,

bitcoinjs library, 273–274

sign transaction inputs, 280
wallets, 212–215
working with, 157–158

Bitcoin network
block propagation, 193–194
consensus and block mining

(see Block mining)
discovery, new node, 174–178
full/lightweight nodes, 173
on Internet, 172
SPV, 173–174
transactions, 179–184

Bitcoin scripts
CheckSig, 207
defined, 204
formation of combined

validation, 205
granular components, 200
input and output code, 203–204
practical example, 202
ScriptPubKey, 201, 203, 207
ScriptSig, 201
stack-based implementation,

206–207
transaction fields, 199
transactions revisited, 196–198

BitcoinJ, 215
Blockchain

advantages, 1
applications

actors, handle requests, 137
backend database, 135
Bitcoin node, 135–136
centralized web server, 135

Bitcoin (cont.)

Index

379

cloud-empowered
blockchain system,
136–137

cloud services, 136, 138
consensus algorithms, 137
DApps, Ethereum network,

138
development, 269–270
hybrid, 138
interaction, 271
public blockchain, 136

banking system, 2–3
Bitcoin (see Bitcoin)
business problems and

situations, 34
Byzantine Generals’ Problem,

33
centralized system, 33
components, 32
computer science engineering

(see Computer science
engineering)

core, 32
cryptocurrency

implementations, 32
cryptography (see

Cryptography)
data structure, 9, 123
decentralized and peer-to-peer

solution, 6–7
description, 31
distributed consensus

mechanisms, 130–131
fundamentals, 122

game theory (see Game theory)
handcrafting transactions,

312–313
intermediary vs. peer-to-peer

transaction, 4–5
offerings, 24
PBFT, 134–135
PoS, 133–134
PoW, 131–133
properties

auditability, 127
consistent state of ledger,

127
democratic, 125
double-spend resistant, 126
forgery resistant, 125
immutability, 125
resilient, 127

real-world business problems,
31

scalability
Bitcoin adoption, 139
centralized system, 139
consensus protocols, 139
database sharding, 143–145
disruptive technologies, 139
off-chain computation,

140–143
public and private

Blockchains, 140
transactions, 139

scenarios, 123
transactions, 127–129, 312
use cases, 26–27

Index

380

Block ciphers, 40–41
Block mining

ballpark values, 190
block header, 189
block reward, 187
coin creation, 187
cryptographic security, 185
defined, 184
halving process, 187
hash and target value, 190
incentivization mechanism, 192
miners, 188
nodes, 188
orphaned blocks, 193
PoW, 185, 191
transaction fees, 186
valid block, 190

Bureaucratic system, 3
Business transaction, 4
Byzantine Generals’

Problem, 110–112, 114

C
Centralized systems

advantages, 14
vs. decentralized systems, 11–14
limitations, 14, 23–24

Coinbase transaction, 179
Computer science engineering

blockchain
block-1234, 116
block structure, 117
data structure, 114

genesis block, 115
hash pointer, 114–115
parent block, 115
SHA-256, 116

Merkle trees, 117–122
Consensus layer, 22
Contract.deploy method, 303
Cryptography

advanced mathematical
techniques, 34

asymmetric key (see
Asymmetric key
cryptography)

authentication, 35
ciphertext, 35–36
confidentiality, 35
data integrity, 35
Diffie-Hellman key exchange,

98–101
encryption techniques, 35
hash functions (see Hash

functions)
non-repudiation, 35
plaintext, 35
steps, 36
symmetric key (see Symmetric

key cryptography)
transactions, 33

D
Database sharding, 143–145
Data Encryption Standard (DES)

64-bit block size, 43

Index

381

cryptography, 44
Feistel cipher, 43, 45–47
key generator, 44
limitations, 48
Moore’s law, 43
round function, 47

Decentralized applications
(DApps)

architecture
public nodes vs. self-hosted

nodes, 315–316
servers, 316

blockchain-based, 268
client application, web3

getPoll function, 371
html file and scripts, 360
JavaScript functions, 371
polling web application

view, 366
send on vote function, 372
smart contract interaction

code, 366
transaction, smart contract

function, 372–373
voted event, 373–374
web3.eth.Contract

submodule, 371
private Ethereum network (see

Private Ethereum network)
smart contract (see Smart

contract, DApp)
voting system, 269

Decentralized applications
(DApps), 138

Decentralized systems
advantages, 15, 24
vs. centralized systems, 11–14
limitations, 15
peer-to-peer system, 16

Diffie-Hellman key
exchange, 98–101

Digital signature algorithm
(DSA), 62, 86–88

E
Elliptic curve cryptography (ECC)

160-bit ECC key, 88
characteristics, 89–92
discrete logarithm problem, 88
domain parameters, 92
mathematical equation, 88
shapes, 88

Elliptic Curve Diffie-Hellman
(ECDH), 93

Elliptic Curve Digital Signature
Algorithm (ECDSA)

key generation, 93
vs. RSA, 93
sender and receiver, 93
signature generation, 94
signature verification, 94–95

Ethereum blockchain, 219
accounts

advantages, 232–233
Contract Accounts, 228
EOAs (see Externally Owned

Accounts (EOAs))

Index

382

state, 233–235
UTXOs advantages,

231–232
Bitcoin to, 220–221
block metadata, 226
consensus-subsystem

information, 227
data references, 226
data structure, 225
decentralized applications,

221, 222
design philosophy, 223–224
ecosystem

DApp, 264
development components,

265
limitations, 263
Swarm, 264
Whisper, 264

EVM, 222, 257–262
gas and transaction cost,

248–253
Infura API service, 284
Merkle Patricia tree, 237–239
mining, 22
PoW, 22
RLP encoding, 239
Ropsten test network

library and connection,
284–285

preparation, 287–288
send transaction, 290–292

set up Ethereum accounts,
285–286

sign transaction, 288–289
testnet faucets, sender’s

account, 286–287
smart contracts, 20, 253–254

application, 256
blocks, 255
compilation, 297
contract creation, 256–257
deploy, 302
executing, 309–311
Remix IDE, 294–295
solidity programming

language, 293
transaction, 295, 297
voting application, 255

software development and
deployment, 223

state transaction function,
245–247

transaction and message
structure, 240–244

transaction execution
information, 227

trie usage, 236
Ethereum virtual machine

(EVM)
ABI, 262–263
absolute determinism, 258
easy security, 258
JVM, 222
memory, 261–262
native operations, 258

Ethereum blockchain (cont.)

Index

383

P2P network, 259
simplicity, 257–258
smart contract deployment and

usage, 259–260
space optimization, 258
stack, 262
storage, 260–261

Ethminer, 253
Execution layer, 20
Externally Owned Accounts

(EOAs), 228
to Contract Account

transaction, 230–231
to EOA transaction, 229

F
Feistel cipher, 43, 45–47
Fiat currency, 152
Financial services market, 25

G
Game theory

Bitcoins, 104
blockchain job, 104
Byzantine Generals’

Problem, 110–112, 114
cricket tournament, 104
Nash Equilibrium, 107–108
prisoner’s dilemma, 108–110,

113
real-life situations, 104, 106, 113
sport event, 106

strategies, 105
vegetables, 105
zero-sum games, 112–113

Government sectors, 28

H
Handcrafting transactions, 312–313
Hash functions

applications, 73
basic form, 56
Bitcoin, 60
code examples, 74–75
core properties, 56
hash value, 56
information security

applications, 55
message digest (MD)

family, 62
puzzle friendliness, 60
RIPEMD, 67
search puzzle, 61
security properties

collision resistance, 57–58
pre-image resistance, 58–60

SHA (see Secure Hash
Algorithm (SHA))

Hyperledger, 20, 24, 117, 134, 139

I, J
Initial Coin Offering (ICO), 26
Internet Engineering Task Force

(IETF), 74

Index

384

K
Keypairs, 274

L
Layers

abstraction, 17
application, 19
consensus, 22
execution, 20
propagation, 21–22
semantic, 20–21

M
Merkle trees, 21, 117–122
Message authentication code

(MAC), 55, 76–77
Mining, 156
Mist wallet, 265
Monetary transactions, 9–11
Money

banking era, 151–152
fiat currency, 152, 153
gold and silver metals, 151
Internet, 153
pimitive barter system, 150

N, O
Nash Equilibrium, 107–108
National Institute of Standards and

Technology (NIST), 54
National Security Agency (NSA), 62

P, Q
PBFT, see Practical Byzantine Fault

Tollerance (PBFT)
Pimitive barter system, 150
PoS, see Proof of Stake (PoS)
PoW, see Proof of Work (PoW)
Practical Byzantine Fault

Tollerance (PBFT), 134–135
Prisoner’s dilemma, 108–110, 113
Private Ethereum network

account creation, 323
first node

configuration, 327
custom genesis

configuration, 326
geth command, 326–328

genesis.json configuration
file, 324–325

geth data directory, 322
install geth, 321
second node

command, 330
genesis.json

configuration, 329
geth console, peers, 331–332
geth initialize

configuration, 329
geth logs, 333

Proof of Stake (PoS), 133–134
Proof of Work (PoW), 22, 131–133
Propagation layer, 21–22
Pseudorandom number generator

(PRNG), 40, 43, 73

Index

385

Public key infrastructure
(PKI), 80–81

Public vs. private
blockchains, 313–314

R
RACE Integrity Primitives

Evaluation Message Digest
(RIPEMD), 67

Regular transactions, 179

S
ScriptPubKey, 198
Secure Hash Algorithm (SHA)

DSA, 62
NSA, 62
SHA-1, 62, 64
SHA-2, 63–64
SHA-3

cryptographic hash
functions, 68

Merkle-Damgård
construction, 68

NIST, 67
sponge construction, 68–70,

72
state array representationin,

71
variants, padding, 69

SHA-256 and SHA-512, 65–66
versions, 62

Semantic layer, 20–21

sendSignedTransaction
function, 290

Simplified Payment Verification
(SPV), 173

signTransaction function, 289–290
Smart contract, Ethereum DApp

client applications
html code, 360
interaction code, 366
polling web application

view, 366
transaction, 372

creation
ABI, 337, 339
byte code, 339
polling functionality, 334
preceding code snippet, 335
Remix online Solidity editor,

337
solidity code snippet, 334
voting functionality, 336

deploying
private network, 345
web3 library and

connection, 345
Smart software engineering, 34
Solidity programming language,

293
Stock transaction, 5–6
Stream ciphers, 39–40
Supply chains, 28
Symmetric key cryptography

AES (see Advanced Encryption
Standard (AES))

Index

386

vs. asymmetric key
cryptography, 102–104

block ciphers, 40–41
ciphertext, 37
DES (see Data Encryption

Standard (DES))
file transfer protocols, 38
Kerckhoff’s principle and XOR

function, 38–39
limitations, 55
MAC and HMAC, 76–77
one-time pad, 42–43
sender and receiver, 37
“shared secret”, 37
stream ciphers, 39–40

T, U, V
transaction.sign function, 280
Transmission Control Protocol/

Internet Protocol (TCP/IP),
2, 17

Truffle, 265

W, X, Y
Web3.js, 265
The Wisdom of Crowds, 27
World Wide Web (WWW), 2

Z
Zero-sum games, 112–113

Symmetric key cryptography (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Blockchain
	Backstory of Blockchain
	What is Blockchain?
	Centralized vs. Decentralized Systems
	Centralized Systems
	Decentralized Systems

	Layers of Blockchain
	Application Layer
	Execution Layer
	Semantic Layer
	Propagation Layer
	Consensus Layer

	Why is Blockchain Important?
	Limitations of Centralized Systems
	Blockchain Adoption So Far

	Blockchain Uses and Use Cases
	Summary
	References

	Chapter 2: How Blockchain Works
	Laying the Blockchain Foundation
	Cryptography
	Symmetric Key Cryptography
	Kerckhoff’s Principle and XOR Function
	Stream Ciphers vs. Block Cipher
	One-Time Pad
	Data Encryption Standard
	Advanced Encryption Standard
	Challenges in Symmetric Key Cryptography

	Cryptographic Hash Functions
	A Heads-up on Different Hash Functions
	SHA-2
	SHA-256 and SHA-512
	RIPEMD
	SHA-3
	Applications of Hash Functions
	Code Examples of Hash Functions

	MAC and HMAC
	Asymmetric Key Cryptography
	RSA
	Modular Arithmetic
	Generation of Key Pairs
	Encryption/Decryption Using Key Pair

	Digital Signature Algorithm
	Elliptic Curve Cryptography
	Elliptic Curve Digital Signature Algorithm
	Key Generation
	Signature Generation
	Signature Verification

	Code Examples of Assymetric Key Cryptography

	Diffie-Hellman Key Exchange
	Symmetric vs. Asymmetric Key Cryptography

	Game Theory
	Nash Equilibrium
	Prisoner’s Dilemma
	Byzantine Generals’ Problem
	Zero-Sum Games
	Why to Study Game Theory

	Computer Science Engineering
	The Blockchain
	Merkle Trees
	Example Code Snippet for Merkletree

	Putting It All Together
	Properties of Blockchain Solutions
	Immutability
	Forgery Resistant
	Democratic
	Double-Spend Resistant
	Consistent State of the Ledger
	Resilient
	Auditable

	Blockchain Transactions
	Distributed Consensus Mechanisms
	Proof of Work
	Proof of Stake
	PBFT

	Blockchain Applications
	Scaling Blockchain
	Off-Chain Computation
	Sharding Blockchain State

	Summary
	References

	Chapter 3: How Bitcoin Works
	The History of Money
	Dawn of Bitcoin
	What Is Bitcoin?
	Working with Bitcoins

	The Bitcoin Blockchain
	Block Structure
	Merkle Tree
	Difficulty Target

	The Genesis Block

	The Bitcoin Network
	Network Discovery for a New Node
	Bitcoin Transactions
	Consensus and Block Mining
	Block Propagation
	Putting It all Together

	Bitcoin Scripts
	Bitcoin Transactions Revisited
	Scripts

	Full Nodes vs. SPVs
	Full Nodes
	SPVs

	Bitcoin Wallets
	Summary
	References

	Chapter 4: How Ethereum Works
	From Bitcoin to Ethereum
	Ethereum as a Next-Gen Blockchain
	Design Philosophy of Ethereum

	Enter the Ethereum Blockchain
	Ethereum Blockchain
	Ethereum Accounts
	Advantages of UTXOs
	Advantages of Accounts
	Account State

	Trie Usage
	Merkle Patricia Tree
	RLP Encoding
	Ethereum Transaction and Message Structure
	Ethereum State Transaction Function
	Gas and Transaction Cost

	Ethereum Smart Contracts
	Contract Creation

	Ethereum Virtual Machine and Code Execution
	Ethereum Ecosystem
	Swarm
	Whisper
	DApp
	Development Components
	Web3.js
	Truffle
	Mist Wallet

	Summary
	References

	Chapter 5: Blockchain Application Development
	Decentralized Applications
	Blockchain Application Development
	Libraries and Tools

	Interacting with the Bitcoin Blockchain
	Setup and Initialize the bitcoinjs Library in a node.js Application
	Create Keypairs for the Sender and Receiver
	Get Test Bitcoins in the Sender’s Wallet
	Get the Sender’s Unspent Outputs
	Prepare Bitcoin Transaction
	Sign Transaction Inputs
	Create Transaction Hex
	Broadcast Transaction to the Network

	Interacting Programmatically with Ethereum—Sending Transactions
	Set Up Library and Connection
	Set Up Ethereum Accounts
	Get Test Ether in Sender’s Account
	Prepare Ethereum Transaction
	Sign Transaction
	Send Transaction to the Ethereum Network

	Interacting Programmatically with Ethereum—Creating a Smart Contract
	Prerequisites
	Program the Smart Contract
	Compile Contract and Get Details
	Deploy Contract to Ethereum Network

	Interacting Programmatically with Ethereum—Executing Smart Contract Functions
	Get Reference to the Smart Contract
	Execute Smart Contract Function

	Blockchain Concepts Revisited
	Public vs. Private Blockchains
	Decentralized Application Architecture
	Public Nodes vs. Self-Hosted Nodes
	Decentralized Applications and Servers

	Summary
	References

	Chapter 6: Building an Ethereum DApp
	The DApp
	Setting Up a Private Ethereum Network
	Install go-ethereum (geth)
	Create geth Data Directory
	Create a geth Account
	Create genesis.json Configuration File
	Run the First Node of the Private Network
	Run the Second Node of the Network

	Creating the Smart Contract
	Deploying the Smart Contract
	Setting up web3 Library and Connection
	Deploy the Contract to the Private Network

	Client Application
	Summary
	References

	Index

