
this print for content only—size & color not accurate trim size = 7.5" x 9.25" spine = x.xxx" xxx page count

Books for professionals By professionals®

Beginning CouchDB
Dear Reader,

Apache CouchDB is an exciting database management system that is steadily improving
with each new version. This book provides the skills and strategies you need to become
a capable CouchDB administrator and programmer. Specifically, I will provide you with
all the information you need to get started with CouchDB, from installing and setting up
a database to developing applications that are powered by a CouchDB database.

I begin by introducing CouchDB and qualifying what makes it unique when com-
pared to traditional relational database systems. I document CouchDB’s relatively
short history and list some of the key advantages it has to offer. Next, I provide you
with a step-by-step guide to installing CouchDB on various distributions of the Linux
operating system as well as on a Mac, before guiding you through the creation of your
first database.

In the second part of this book, you will learn about Futon, CouchDB’s excellent
web-based admin interface, and then be introduced to the JSON format, which is
used to describe the data in CouchDB. Next, you will learn all about CouchDB views
and the sometimes difficult to grasp concept of map/reduce.

The final part of the book shows you how to create CouchApps, web applications
stored entirely in the database. You will also see how to work with CouchDB from your
Python and Ruby applications. Finally, you will explore some of the more advanced
concepts of CouchDB, such as replication, conflict management, and deployment.

With the information provided in this book, you should have everything you need to
start working with CouchDB. I hope you find it as enjoyable to read as I found it to write.

Joe Lennon

US $39.99

Shelve in
Databases

User level:
Beginning–Intermediate

Lennon
Beginning CouchDB

The eXperT’s Voice® in open source

Beginning

CouchDB

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Joe Lennon

Companion
eBook

Available

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Starting Apache CouchDB, the open source
database for the Cloud

ISBN 978-1-4302-7237-3

9 781430 272373

53999

THE APRESS ROADMAP

Pro Data Backup
and Recovery

Pro Javascript
RIA Techniques

Python for
Absolute Beginners

Beginning JavaScript
with DOM Scripting

and Ajax

Beginning
Ruby 2nd Edition

Beginning CouchDB

Beginning SimpleDB

FPO

www.allitebooks.com

http://www.allitebooks.org

Download at WoweBook.Com
www.allitebooks.com

http://www.allitebooks.org

Beginning CouchDB

■ ■ ■

JOE LENNON

Download at WoweBook.Com
www.allitebooks.com

http://www.allitebooks.org

ii

Beginning CouchDB

Copyright © 2009 by Joe Lennon

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-7236-6

ISBN-13 (electronic): 978-1-4302-7237-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Technical Reviewer: Paul Davis
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett
Copy Editor: Kim Wimpsett
Compositor: Kimberly Burton
Indexer: Potomac Indexing, LLC
Artist: April Milne
Cover Designer: Kurt Krames

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

Download at WoweBook.Com
www.allitebooks.com

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

iii

To the memory of my uncle, John, and my grandfather, Seán

Download at WoweBook.Com
www.allitebooks.com

http://www.allitebooks.org

iv

Download at WoweBook.Com

v

Contents at a Glance

■ABOUT THE AUTHOR.. xiii

■ABOUT THE TECHNICAL REVIEWER ... xv

■ACKNOWLEDGEMENTS ... xvii

■INTRODUCTION.. xix

■CHAPTER 1: INTRODUCTION TO COUCHDB ..3

■CHAPTER 2: INSTALLING COUCHDB ON LINUX ..11

■CHAPTER 3: INSTALLING COUCHDB ON MAC OS X ..31

■CHAPTER 4: CREATING YOUR FIRST COUCHDB DATABASE..49

■CHAPTER 5: USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE63

■CHAPTER 6: INTRODUCTION TO JSON...87

■CHAPTER 7: INTRODUCTION TO COUCHDB VIEWS ...107

■CHAPTER 8: MAP/REDUCE..125

■CHAPTER 9: ADVANCED COUCHDB VIEWS ..143

■CHAPTER 10: DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP163

■CHAPTER 11: DEVELOPING APPLICATIONS WITH COUCHDB ..185

■CHAPTER 12: ADVANCED COUCHDB TOPICS ...211

■CHAPTER 13: MECHANICS OF COUCHDB DEPLOYMENT...241

■APPENDIX A: COUCHDB API REFERENCE ..251

■APPENDIX B: HTTP AND CURL REFERENCE...283

■INDEX ..289

Download at WoweBook.Com

Download at WoweBook.Com

■ CONTENTS

vii

Contents

About the Author ... xiii

About the Technical Reviewer .. xv

Acknowledgements .. xvii

Introduction ... xix

Part 1: Getting Started..1

■Chapter 1: Introduction To CouchDB ...3

What Is CouchDB? ...3

CouchDB: The Story So Far..4

Document-Oriented Databases..5

CouchDB Documents ...6

The Javascript View Engine...7

Restful HTTP API ..7

Futon..8

So...Now What? ...9

■Chapter 2: Installing CouchDB on Linux ..11

Installing CouchDB on Ubuntu Linux 8.10..11

Installing CouchDB on Fedora Linux Using Yum ..16

Building CouchDB (and Prerequisites) from Source Code ...21

Building Erlang ... 23

Building Libcurl... 24

Download at WoweBook.Com

■ CONTENTS

 CONTENTS

viii

Building Icu... 25

Building Spidermonkey .. 25

Building Subversion.. 26

Building CouchDB... 27

■Chapter 3: Installing CouchDB on Mac OS X..31

Installing the Xcode Developer Tools...31

Installing Macports ..36

Installing CouchDB...42

CouchDBx: a One-Click CouchDB Package for Mac OS X ..47

■Chapter 4: Creating Your First CouchDB Database..49

Tools of the Trade ..49

HTTP Requests...50

JSON Response ...50

Using curl...51

Creating Your First Database ...51

Creating Documents in Your Contacts Database ...54

Getting Started with CouchDB Views...57

Summary ...59

Part 2: Managing CouchDB Databases ...61

■Chapter 5: Using Futon: the CouchDB Administration Interface............................63

Creating a Database ..65

Creating a Document ...70

Uploading Attachments..76

Compacting the Database..78

Futon Tools ..80

Summary ...86

Download at WoweBook.Com

■ CONTENTS

ix

■Chapter 6: Introduction To JSON ...87

What Is JSON? ...87

Why JSON? ..87

JSON 101: Syntax and Data Types...88

Working with JSON..91

Defining JSON Structures... 91

Looping Through JSON Arrays.. 96

CouchDB and JSON..103

Summary ...105

■Chapter 7: Introduction To CouchDB Views...107

Creating Views...109

Permanent Views...113

Design Documents...116

Views and the CouchDB API...119

Summary ...123

■Chapter 8: Map/Reduce ...125

What Is Map/Reduce?..125

Map/Reduce in CouchDB ...126

Map/Reduce in Futon...127

Map/Reduce Views and the CouchDB API ...135

Map/Reduce vs. SQL Queries...136

Word Count Example..139

Summary ...142

■Chapter 9: Advanced CouchDB Views..143

Advanced Aggregation...143

Ordering and Filtering Results ...151

Download at WoweBook.Com

■ CONTENTS

 CONTENTS

x

Working with Related Data ..154

Summary ...159

Part 3: Advanced CouchDB Topics..161

■Chapter 10: Developing CouchDB Applications with Couchapp163

Installing Couchapp ...163

Your First Couchapp...165

Creating Couchtasks: A Simple Task Manager ..169

Suggested Improvements..184

Summary ...184

■Chapter 11: Developing Applications with CouchDB ...185

Developing in Python with Couchdbkit ..185

Developing in Ruby with CouchRest ..191

Creating a Bookmarks Application with CouchDB and Django200

Summary ...209

■Chapter 12: Advanced CouchDB Topics...211

Replication ...211

Compaction..224

Fetching Documents in Bulk..229

Writing Documents in Bulk ..232

Show Functions ...235

Summary ...239

■Chapter 13: Mechanics of CouchDB Deployment...241

Measuring Performance ..241

Configuring CouchDB...243

Conflict Resolution...246

Download at WoweBook.Com

■ CONTENTS

xi

Security..247

Backup...248

Fault Tolerance and Load Balancing..249

Clustering...250

Summary ...250

■Appendix A: CouchDB API Reference...251

Server APIs ..251

Server Information.. 251

Current Configuration ... 252

Runtime Statistics .. 253

Get UUIDs.. 255

Database APIs..256

Create Database ... 256

Delete Database ... 257

List Databases .. 258

Database Information ... 259

Replicate Database... 260

Compact Database ... 261

Document APIs...262

Create New Document (Use UUID-Generated Document ID) .. 262

Create New Document (User Specified Document ID).. 263

Update Existing Document ... 264

Delete Document .. 265

Copy Document .. 266

List Documents... 267

List Documents Specifying a Key Set ... 268

List Modified Documents.. 269

List Modified Documents Specifying a Key Set .. 270

Download at WoweBook.Com

■ CONTENTS

 CONTENTS

xii

View Document... 271

Create/Update Attachment ... 272

Delete Attachment.. 273

Get Attachment... 274

Managing Bulk Documents... 275

View API...276

Create Design Document.. 276

Query Temporary View ... 277

Query Permanent View ... 278

Query a Permanent View Specifying a Key Set .. 279

Execute a Show Function ... 280

Execute a List Function .. 281

Execute a List Function Specifying a Key Set... 282

Further Information..282

■Appendix B: HTTP and curl Reference ...283

HTTP Request Message ...283

HTTP Request Methods..283

HTTP Response..284

HTTP Response Status Codes..285

Performing HTTP Requests with curl ...285

■Index..289

Download at WoweBook.Com

■ CONTENTS

xiii

About the Author

Joe Lennon is a web applications and database developer from Cork, Ireland. He
has had an interest in computing since he was five years old, when he got his first
taste of programming while typing up the code for Telly Tennis from the back of
the manual for his Amstrad 6128. This interest continued as he grew up, first
discovering the World Wide Web in the early 1990s on his father’s black-and-
white Windows 3.1 IBM ThinkPad, complete with 14.4Kbps PCMICA modem. He
dabbled with web development in the late 1990s and was an expert in HTML, CSS,
and JavaScript by the time he finished school.

In 2003, Joe enrolled at University College Cork to study Business
Information Systems, where he excelled over four years, achieving a First Class
Honours each year. He received a scholarship in 2006 for his performance in that

year’s examinations and regularly achieved grades of 90%+ for development projects. As part of the
program, Joe spent six months in Boston, Massachusetts, working as a systems analyst for Fidelity
Investments. He graduated from UCC in 2007.

Later that year, Joe joined Core International as a web applications developer. Since joining Core, he
has been involved in the development of several new web-based products, as well as the redevelopment
and improvement of some existing ones. He introduced the concept of JavaScript frameworks and Ajax
to the company’s web division in 2008, developing a PL/SQL and JavaScript framework that is now used
in every Core web product.

Aside from his work at Core, Joe has worked on several successful web development projects,
including Learn French by Podcast, a language-learning web site that offers its members free high-
quality MP3 podcasts and allows them to purchase accompanying professional PDF guides for a small
fee. He also maintains a blog on his web site at http://www.joelennon.ie, where he has often posted
tutorials about topics ranging from Oracle database development to Windows batch scripting. In the
past two years, Joe has written more than a dozen articles and tutorials for the IBM developerWorks web
site, including articles on Adobe Flex, Facebook applications, ExtJS, Adobe AIR, IBM DB2, and more.

Download at WoweBook.Com

http://www.joelennon.ie

Download at WoweBook.Com

■ CONTENTS

xv

About the Technical Reviewer

Paul J. Davis is a bioinformatician and CouchDB developer from Ipswich,
Massachusetts. A native of Agency, Iowa, he attended the University of Iowa
graduating in 2005 with a degree in electrical engineering. During his studies at
university, he got his first paid programming job as a research assistant under
Prof. Michael Mackey. With Prof. Mackey’s tutoring, he moved from data analysis
to system programming, working on the Large Scale Digital Cell Analysis System
(LSDCAS).

After working for four years on LSDCAS, he moved eastward to a position with
New England Biolabs. After repeated attempts of trying to force biological data
into a relational database, he quickly started searching for a better solution.
During this search, he found CouchDB and quickly became convinced that it was
just the solution he had been searching for. Nearly two years later, he’s now a
CouchDB committer.

Beyond CouchDB, Paul contributes to a number of other open source projects. You can find a
majority of his contributions via http://github.com/davisp or on his web site at
http://www.davispj.com.

Download at WoweBook.Com

http://github.com/davisp
http://www.davispj.com

Download at WoweBook.Com

■ CONTENTS

xvii

Acknowledgments

Writing this book would not have been possible if it were not for the help and support of many people.
First, I’d like to thank Jill, the love of my life, who has been there for me throughout this whole project.
She has put up with so much the past few months—and never once complained about it. I am eternally
grateful for her love and support.

Second, I’d like to thank my mother, Maria, who has always believed in me and pushed me to get
the best out of myself. Thank you to my father, Jim, who has always worked his socks off to make sure
that I had everything I could ever need or want. Thank you to my sisters, Laura and Kelly, who can
always put a smile on my face, even when I’m being a cranky big brother!

Thank you to my grandparents, my aunts and uncles, and my cousins. I hope you all enjoy this
book, because you will be receiving a copy for Christmas this (and every) year. Also a big thank you to
the Mac Sweeneys—Jill, Mick, Susie, Patrick, and Sarah—I greatly appreciate all the support you have
given me.

Thank you to the many people who have given me invaluable advice and support—Seán Murphy,
Darragh Duffy, Jonathan Reardon, John Goulding, and everyone at Core International; Dermot
O’Sullivan, Troy Mott, Hugh Nagle, and Connor Murphy. I’d also like to make a special thank you to my
grandfather, Joe Lennon (Senior), for all his help with my writing career to date.

I owe an enormous debt of gratitude to a number of people who worked on this book project.
Without my lead editor, Frank Pohlmann, this book would not have been created. I’d like to especially
thank him for all of his guidance and for giving me the opportunity to fulfill one of my ambitions in life.
Special thanks to Paul Davis; without his expertise on CouchDB, this book would be far less useful.
Thank you to Anne Collett, who managed the difficult task of keeping me on schedule while also keeping
me motivated at the same time. Thank you to Kim Wimpsett for the kind words about my writing style,
although in truth, her hard work and effort has made my writing look so much better than it really is.

I’d like to thank everyone at Apress who has worked to make this project a success, including
Leonardo Cuellar, Matthew Kennedy, Simon Yu, James Markham, and Anna Ishchenko.

Finally, I’d like to thank Damien Katz for creating CouchDB. Without your efforts, this book would
never have had a reason for being written.

Download at WoweBook.Com

Download at WoweBook.Com

xix

Introduction

Apache CouchDB is an exciting database management system that is growing in popularity each day.
This book introduces you to CouchDB, guiding you through its relatively short history and what makes it
different from the other database systems out there. It offers simple, unassuming steps on getting
CouchDB up and running on your computer that’s running Linux or Mac OS X. It guides you through the
process of creating a database and working with data; covers more complex topics such as views and
map/reduce; and explores advanced database concepts such as replication, compaction, and
deployment. It also shows you how to develop applications that are housed entirely in the database
itself, in addition to using Python, Django, and Ruby to interact with CouchDB from a traditional server-
side application.

Who This Book Is For
This book is written for anyone with an interest in CouchDB, document-oriented databases, or database
development in general. It does not assume any knowledge in relation to CouchDB, although some
experience with UNIX commands and basic JavaScript skills are beneficial.

What You Need
To follow the examples in this book, you will need access to a computer running the Linux operating
system or Mac OS X. You will need administrative access to this computer in order to install CouchDB. If
you are using a Windows PC, see the “CouchDB Resources” section for a link to an unofficial Windows
binary installer for CouchDB that you may be able to use. Alternatively, you can get a hosted version of
CouchDB from http://couch.io.

CouchDB Resources
This book is written as a guide to help you get started with CouchDB. For further information about
CouchDB, consult the following resources:

• http://couchdb.apache.org/

• http://couchdb.apache.org/community/lists.html

• #couchdb on irc.freenode.net

• http://wiki.apache.org/couchdb/

• http://planet.couchdb.org/

Download at WoweBook.Com

http://couch.io
http://couchdb.apache.org
http://couchdb.apache.org/community/lists.html
http://wiki.apache.org/couchdb
http://planet.couchdb.org

■ INTRODUCTION

xx

• http://hosting.couch.io/

• http://damienkatz.net/

• http://jan.prima.de/plok/

• http://wiki.apache.org/couchdb/Windows_binary_installer

• http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html

• http://twitter.com/CouchDB

Contacting the Author
If you have any questions, comments, or feedback, you can contact the author by e-mail at
joe@joelennon.ie or on Twitter @joelennon.

Download at WoweBook.Com

http://hosting.couch.io
http://damienkatz.net
http://jan.prima.de/plok
http://wiki.apache.org/couchdb/Windows_binary_installer
http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html
http://twitter.com/CouchDB
mailto:joe@joelennon.ie

P A R T 1
■ ■ ■

Getting Started

In this part, you will learn all about the CouchDB database and how it differs from

traditional relational database management systems. You will learn how to install

CouchDB on Linux and Mac OS X operating systems, and you will see just how easy it is

to create a new CouchDB database.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 1

■ ■ ■

3

Introduction to CouchDB

CouchDB is a relatively new database management system, designed from the ground up to suit modern
software applications that tend to be web-based, document-oriented, and distributed in nature. For
several decades now, relational database management systems have reigned supreme in application and
database development, with the likes of Oracle, SQL Server, and MySQL being used in every type of
software application imaginable.

When object-oriented development started to gain traction in the early 1990s, many believed that
object-oriented database systems would closely follow suit. Since then, however, there has been a large
shift in focus in software development. The breakthrough of dynamic web applications and mobile
technology has led to developers looking for lightweight, inexpensive, and well-documented solutions.
Many of these developers were prolific at SQL, and open source relational databases such as MySQL
simply made the most sense. Today, MySQL is used on millions of web sites across the world.

The relational model that these databases are built on, however, was designed many years ago,
when the World Wide Web and Internet were unheard of. Although the strict schema-based structure
these databases adhere to is required in some web applications, such as transaction systems, it is not a
good fit for many modern web projects, such as blogs, wikis, and discussion forums, which by their
nature are a better fit to a document-oriented database.

What Is CouchDB?
CouchDB is a document-oriented database management system, released under the open source
Apache License. In contrast to most database systems, it stores data in a schema-free manner. This
means that, unlike traditional SQL-based databases, there are no tables and columns, primary and
foreign keys, joins, and relationships. Instead, CouchDB stores data in a series of documents and offers a
JavaScript-based view model for aggregating and reporting on the data.

If you are wondering where the name CouchDB came from, you may be surprised to hear that it is in
fact an acronym. According to the CouchDB wiki, Couch stands for “Cluster Of Unreliable Commodity
Hardware,” indicating that CouchDB is intended to run distributed across a cluster of cheap servers.
Anyone who has dealt with replication in databases before will know that it is rarely a simple task, but
the exact opposite applies when it comes to CouchDB. Add to this the fact that CouchDB is developed in
Erlang OTP, a fault-tolerant programming language that offers excellent concurrency features, and you
know that your CouchDB database will scale well without a loss of reliability and availability.

Currently, CouchDB is available for most UNIX-based systems, including Linux and Mac OS X.
Binary installers are available for Ubuntu, Fedora, CentOS, FreeBSD, and Mac OS X systems through
each system’s individual package manager. Windows support is pretty sketchy currently, although an

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

4

unofficial binary installer is in the works. Alternatively, CouchDB can be built from source on virtually
any POSIX system. I will discuss how to install CouchDB on Linux and Mac OS X in the next two
chapters. You will also get a look at an unofficial application for Mac OS X called CouchDBX, which
allows you to simply download and run a CouchDB server immediately, no installation or configuration
necessary.

CouchDB: The Story So Far
In April 2005, Damien Katz posted on his blog about a new database engine he was working on. Details
were sparse at this early stage, but what he did share was that it would be a “storage system for a large
scale object database” and that it would be called CouchDB. His objectives for the database were for it to
become the database of the Internet and that it would be designed from the ground up with web
applications in mind.

Katz began working on the database soon after his blog post, choosing C++ as the platform to build
it on. Right from the very beginning, CouchDB was designed to be schema-free and indexable, using a
combination of append-only storage and atomic updates. It was clear that Katz was heavily influenced
by Lotus Notes, the product he worked tirelessly on for many years. The choice of using append-only
storage meant that data in a CouchDB database would never be overwritten, but rather it would become
“outdated,” with the newer data taking precedence.

In November 2005, Katz announced that he was working on the Fabric formula language. Katz was
previously involved in the development of the Lotus Notes Formula language, which Fabric inherited
many features from. In December 2005, Katz published a blog post outlining his goals and ambitions for
CouchDB, stating that it was “Lotus Notes built from the ground up for the Web.” It was in this blog post
that many of the features that exist in CouchDB today were put forward, such as document orientation,
distributed architecture, bidirectional replication, and offline access. Further validating the notion that
CouchDB would be the “database for the Web” was Katz’s hope that CouchDB would be a great database
engine for applications such as e-mail, bug tracking, timesheet management, blogs, and RSS feeds,
amongst others.

A big milestone in CouchDB development was the announcement in February 2006 that its
underpinning codebase was being moved, in its entirety, from C++ to Erlang. This purpose-built
programming language was developed by Ericsson and is heavily used in the telecommunications
industry. It is highly centered on the ideas of concurrency control, fault tolerance, and distributed
applications, and as a result, Katz believed it was the perfect fit for CouchDB.

Another breakthrough came in April 2006 when it was announced that CouchDB would be solely
accessible via an HTTP-based RESTful API. What this means is that rather than connecting to the
database server using a client application, you would use any software capable of interacting with an
HTTP web server to make requests, which would in turn perform database actions, returning an
appropriate response when finished. This means you can manage the database by simply visiting URLs
in your web browser, using command-line tools such as curl or, more importantly, via any
programming language that supports HTTP requests.

The first publically available release of CouchDB, version 0.2, was made available for download in
August 2006. At the time, CouchDB would run only on Microsoft Windows. Not much was said about
CouchDB over the next 12 months, but in August 2007, Damien Katz announced that he had decided to
scrap XML in the favor of JavaScript Object Notation (JSON) and to get rid of the Fabric formula
language altogether, instead choosing to use JavaScript as a query engine. This decision is arguably the
most important one made to date in the CouchDB project, and it sparked a huge amount of interest in
the project.

In November 2007, version 0.7.0 was released, and it came with a host of new features. CouchDB
now featured a JavaScript view engine based on Mozilla Spidermonkey and an attractive web-based

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

5

administration interface (which would later be named Futon). This version of CouchDB was the first
version that could actually be used as a proper database, and it quickly drew the attention of IBM, which
backed the project, allowing Damien Katz (who previously worked for IBM) to work full-time on
developing CouchDB. Soon after IBM got involved, CouchDB’s license was changed to use the Apache
License rather than the restrictive and cumbersome GNU General Public License (GPL).

In February 2008, it was announced that CouchDB would include support for Map/Reduce.
CouchDB views would be defined using a Map function and an optional Reduce function. The Map
function would take an input document and emit key/value pairs. The Reduce function then takes each
of these pairs and performs further calculation. CouchDB’s implementation of Map/Reduce is designed
to allow views to be updated incrementally, meaning that it will only reindex any documents that have
been modified since the last time the index was updated. This allows large sets of partitioned data to be
queried extremely quickly, as the view has been generated over time.

In June 2008, version 0.8.0 was launched, and the following month, a usable version of CouchDBX, a
one-click packaged version of CouchDB for Mac OS X, was made available. This meant that potential
CouchDB developers could get their feet wet by sampling what CouchDB has to offer, without getting
their hands dirty with a full install. In November 2008 CouchDB became a top-level Apache project,
alongside the likes of the Apache HTTP Server, Tomcat, Ant, and Jakarta. If anything, this certified
CouchDB as a credible project to developers around the world and has definitely worked to the project’s
advantage.

In April 2009, version 0.9.0 was released, followed by the release of version 0.9.1 in late July 2009.
The first beta version of CouchDB, 0.10.0, was released in October 2009. At the time of writing, there is
no fixed release date for version 1.0, although many predict it will be sometime in the next 12 months.

Document-Oriented Databases
A key feature of CouchDB is that it is a document-oriented database management system. Basically, this
means that the data stored in a CouchDB database comprises a series of documents, each of which can
contain a series of fields and values. Each document is independent of one another, and there is no strict
schema that they must adhere to. Traditional databases that adhered to the relational model stored data
in a series of tables; they were made up of rows and columns of data. In a relational database, you must
predefine the schema that all data in each table will adhere to, and all the data contained in the table
must strictly conform to that schema.

If you are used to SQL-based databases like Oracle, SQL Server, and MySQL, you are probably quite
familiar with the concepts of relationships, primary keys, foreign keys, referential integrity, and so forth.
If you are not, don’t panic, because these concepts don’t exist in CouchDB. In fact, it may take some
time for a SQL developer to grasp the idea of a database without relationships and a row/column layout.
Instead of a primary key field, each document in a CouchDB database has a unique ID. This unique ID
can be assigned by the user or application, or it can use a universally unique identifier (UUID)—a
random number generated by CouchDB that greatly reduces the chance of duplicate IDs being used. All
data relevant to the document in question is stored directly in that document itself.

The fact that CouchDB is a schema-free database management system is very important. When
developing a relational database, you must carefully think about how your database should be modeled
before you create it. Altering a SQL database can be a devastating experience for any database
administrator, because a series of dependency and integrity issues come into play. This is not the case
with a document-oriented database like CouchDB. Each document is self-contained, so you do not need
to store redundant null values, and you can define new fields for each document independently of one
another.

It may be easier to think of CouchDB as a collection of paper documents. On a paper document, it
doesn’t make any sense to list a field as null. For example, if a person does not have a middle name,

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

6

would you write their name as “John NULL Smith”? Of course not. You would simply leave out the
middle name altogether. The same principle applies to a document-oriented database.

Naturally, a schema-free architecture has some disadvantages, such as a lack of defined structure
and unnecessary replication of data across documents. Of course, in cases where these criteria are of the
utmost importance, CouchDB is probably not the database for you. In fact, the developers openly state
that they do not intend for CouchDB to be a direct replacement for a relational SQL-based database.
Instead, they see it as an alternative in scenarios where a document-oriented architecture is a viable
solution. In applications such as wikis, document management systems, discussion forums, blogs,
support management systems, and so forth, documents are the way forward. For years now, web
developers have retrofitted their application model to fit around a relational database. Thanks to
CouchDB, this may no longer be necessary.

CouchDB Documents
Data in a CouchDB database is stored in a series of uniquely named documents, objects made up of
various named fields. The values stored in the document can be strings, numbers, dates, booleans, lists,
maps, or other data types. Each document in the database has a unique ID, and the documents are
stored in the database on a flat address space. There is no limit to the number of fields a document may
have or on the size of values stored in the document. In addition to data fields, each document includes
metadata that is maintained by the CouchDB server itself, such as a revision number and more.

The use of document revisions is important, because CouchDB itself does not impose a locking
mechanism on data. If two users are editing the same data at the same time, the first to commit their
update will succeed, while the other will receive a conflict error. When a conflict is detected, the user will
be presented with the latest revision of the document and offered the opportunity to make their changes
again. Also important to note is that CouchDB will never overwrite existing documents, but rather it will
append a new document to the database, with the latest revision gaining prominence and the other
being stored for archival purposes. This works in a similar way to the revision control of a document
management system, except that it is taken care of by the database itself.

■ Note Although CouchDB stores previous revisions of documents, it is not safe to assume that these revisions
will be available permanently. To keep the size of the database to a minimum, CouchDB provides a feature
allowing a database administrator to compact the database. This will delete any previous revisions of documents,
and hence the revision history will be lost. If you are developing an application that requires revision history, it is
highly recommended that you build an additional versioning layer rather than use CouchDB's internal layer.

The CouchDB layout and committing system adheres to the ACID properties (atomicity,
consistency, isolation, and durability), which guarantee the reliable execution of database transactions.
Atomicity basically means that database transactions should be all or nothing—either the entire
transaction completes successfully or none of it does. Consistency refers to the database being in the
same state before and after every database transaction. Isolation means that each transaction must be
isolated from others in that its new state should not be available until the transaction is complete.
Finally, durability means that when a transaction is complete and the user has been notified of the fact,
the transaction cannot be reversed, even by a complete system failure or shutdown.

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

7

The JavaScript View Engine
Because CouchDB is schema-less by design, the data stored in the database is highly unstructured.
Although this means the data is flexible and the fields can be easily changed without disrupting database
integrity, it also means that the flat data can be difficult to report on. Although it might be suitable and
fast for general-purpose querying, it starts to become more cumbersome when you try to perform
aggregation and reporting.

Fortunately, CouchDB provides a Spidermonkey-based JavaScript view engine that allows you to
create ad hoc views that can perform aggregation and joins, allowing you to report on the documents in
the database. These views are not physically stored in the database, but rather they are generated when
required, and as a result, they do not impact the actual data being reported on. There is no limit to the
number of views you can use.

In CouchDB, views are defined inside design documents, and just like data documents, they can be
replicated across instances of the database. Inside these design documents are JavaScript functions that
run queries using CouchDB’s implementation of Map/Reduce. In addition to stored views, ad hoc
queries and reports can be run using a temporary view, although for performance reasons, this is not
recommended.

Each time a client makes a read request, CouchDB will make sure that the requested views are up-
to-date. If the requested view does not contain the most recent database changes, these edits are
incrementally inserted into the view. This alleviates the performance issues associated with generating a
view dynamically each and every time it is run, especially on databases that store millions of records of
data.

RESTful HTTP API
Traditional relational databases are typically accessible using a client software application or module,
and database transactions are committed using a language known as Structured Query Language (SQL).
CouchDB does things somewhat differently, depending on a RESTful HTTP API to provide users access
to the data. Before we continue, let’s deal with those acronyms.

Representational State Transfer (REST) in this sense refers to the fact that data access is available via
a series of simple web services that are implemented in Hypertext Transfer Protocol (HTTP) and adhere
to the principles of REST. JavaScript Object Notation (JSON) is a light, text-based data format for
representing data. An application programming interface (API) is the basic interface offered to
developers so they can build applications that interact with the database. Typically, programming
languages would each have a client library for interacting with a particular database. Although client
libraries exist for CouchDB (for the sole purpose of making it easier to interact with the database), any
platform that supports HTTP requests can interact with CouchDB without requiring any additional
client libraries to be installed.

To use the CouchDB API, you issue an HTTP request to the CouchDB server. What the server does
with your request depends on the URI you are issuing the request to, the request method you are using
(GET, POST, PUT, DELETE), and the data you send along with your request. When the server has
finished processing your request, it will return the data (or details of any error that may have been
encountered) or a suitable JSON response. You can then parse the JSON in your application and display
the results of the transaction accordingly.

Parsing JSON is quite simple, and using a JavaScript framework such as Prototype or jQuery makes
sending HTTP requests and parsing JSON responses very simple using Ajax methods. As JSON increases
in popularity, many languages are including support in their standard library. For languages that don’t
have built-in support, there is a wide selection of third-party extensions to almost all popular languages.

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

8

Futon
If all this API nonsense isn’t making much sense to you, feel free to park it for now, because I will be
covering it in more detail later, with detailed examples of how to use the API in your very own CouchDB
applications.

Thankfully, the developers of CouchDB decided that you shouldn’t need a degree in computer
science in order to interact with the database. To allow users to interact with the database immediately,
they created Futon, the web-based CouchDB administration tool (Figure 1-1). This visually stunning
web application comes bundled with every CouchDB install, and it actually runs on the same server as
CouchDB. As a result, when you start the CouchDB database, Futon is automatically available to you.

Futon is exceptionally feature rich for such a young piece of software. It allows you to create,
modify, and delete databases and documents as you please, and it has advanced pagination and sorting
functionality on every screen. It also allows you to easily compact your database, as well as run a series
of diagnostics to ensure your database is working as it should be.

Figure 1-1. Futon, the CouchDB administration interface

Download at WoweBook.Com

CHAPTER 1 ■ INTRODUCTION TO COUCHDB

9

So...Now What?
Now that you’ve learned what CouchDB is and how it works, you’re going to dive right in and get a
CouchDB development environment up and running. Over the next two chapters, I will walk you
through the process of installing CouchDB on Linux and Mac OS X operating systems. Then, in
Chapter 4, you shall delve deep into CouchDB development by creating your first database. If you
already have some experience with CouchDB, feel free to plough ahead to Part 2 of this book, where I’ll
discuss practices for managing CouchDB databases.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 2

■ ■ ■

11

Installing CouchDB on Linux

In this chapter, you will learn how to install CouchDB on the Linux operating system. When it comes to
setting up Couch on Linux, several options are available, depending on the particular Linux distribution
you use. Precompiled binary versions of CouchDB are available via various package managers; for
example, you can use aptitude on newer versions of Ubuntu Linux and yum on Fedora Linux. Even if your
system’s package manager does not include CouchDB itself in its repository, it’s quite likely that it does
feature some of Couch’s dependencies (Erlang, ICU, Spidermonkey, libcurl, and so on). If your operating
system does not support one of these package managers (or for some reason you can’t get it to work), all
is not lost, because it is not that difficult to compile CouchDB (and its prerequisites) from source code.

■ Note International Components for Unicode (ICU) is an open source set of libraries for Unicode support and
software internationalization. CouchDB uses it for Unicode collation. Mozilla Spidermonkey is a JavaScript engine
that CouchDB uses for creating views using JavaScript code. libcurl is a library that provides support for
transferring data over URLs. You use it so that Spidermonkey can make HTTP requests.

I will cover all these options in great detail over the course of this chapter. First, I will walk you
through installing CouchDB on Ubuntu Linux 8.10. I will then show how to use the yum package manager
to install CouchDB on Fedora Linux. Finally, you will learn the more difficult task of building CouchDB
and all dependencies from source code.

Installing CouchDB on Ubuntu Linux 8.10
In this section, I will walk you through the installation of CouchDB on Ubuntu Linux 8.10. You should
also be able to follow this guide to install CouchDB on later versions of Ubuntu. If you are using an
earlier version of Ubuntu, however, skip ahead to the “Building CouchDB (and Prerequisites) from
Source Code” section for instructions on building CouchDB and its dependencies from source. I will
show you how to install CouchDB’s dependencies using the apt-get command, before downloading the
latest release version of CouchDB (0.10.0 at the time of writing) and building it from source. If you want

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

12

to build the trunk version of CouchDB, you can simply follow the instructions here up until the point of
building CouchDB and then follow the CouchDB build instructions from the later section of this chapter.

You will be installing CouchDB and its dependencies using command-line tools, so open a Terminal
window. If you are using GNOME, you will find this option under Applications  Accessories  Terminal,
as shown in Figure 2-1.

Figure 2-1. Opening Terminal in Ubuntu Linux

Before you can install CouchDB, you need to install a series of dependency packages. If you are
using version 8.10 or later of Ubuntu Linux, you can use the apt-get package manager utility to install all
these dependencies. In the Terminal window, issue the following commands to automatically download
and install CouchDB’s dependencies. If any of these packages have further dependencies, apt-get will
automatically download and install them, too.

$ sudo apt-get install automake autoconf libtool help2man
$ sudo apt-get install build-essential erlang libicu-dev libmozjs-dev libcurl4-openssl-dev

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

13

With CouchDB’s dependency packages installed, you are now ready to download and build
CouchDB. In this section, you will download the latest release version of CouchDB (0.10.0 at the time of
writing) from an Apache mirror. In this example, I’m downloading from an Irish Apache mirror site—if
you want to find one closer to your location, visit the CouchDB web site at http://couchdb.apache.org.
The following commands will download and unpack the tarball for CouchDB 0.10.0.

$ wget http://apache.mirrors.esat.net/couchdb/0.10.0/apache-couchdb-0.10.0.tar.gz
$ tar xzvf apache-couchdb-0.10.0.tar.gz

This will create a new directory beneath your working directory, named apache-couchdb-0.10.0.
Let’s enter this directory and configure and build CouchDB from the source code:

$ cd apache-couchdb-0.10.0
$./configure
$ make
$ sudo make install

You now have CouchDB installed on your system, but you need to do some final configuration
before you can launch the CouchDB server. First, let’s create a user account, couchdb, which will own
the CouchDB system directories:

$ sudo adduser couchdb

You will be asked a series of questions in order to set up the user account. When asked for a
password, repeatedly hit the Enter key (providing no password) until it stops asking for one. You can
accept the default options for every field. With the user account created, let’s create the CouchDB
system directories and assign ownership of them to the couchdb user.

$ sudo mkdir -p /usr/local/var/lib/couchdb
$ sudo mkdir -p /usr/local/var/log/couchdb
$ sudo mkdir -p /usr/local/var/run
$ sudo chown -R couchdb /usr/local/var/lib/couchdb
$ sudo chown -R couchdb /usr/local/var/log/couchdb
$ sudo chown -R couchdb /usr/local/var/run

Finally, you need to copy the couchdb service to the correct folder and configure the service to run at
startup:

$ sudo cp /usr/local/etc/init.d/couchdb /etc/init.d
$ sudo update-rc.d couchdb defaults

With that completed, you are now ready to launch the CouchDB server. Use the following command
to start CouchDB as a background service, which will be automatically started when you boot your
machine:

$ sudo /etc/init.d/couchdb start

You should see a message that the system is “starting database server couchdb,” which will be
processed in the background. Let’s check that the server has started successfully:

$ curl http://127.0.0.1:5984

If CouchDB is running, you should see a message like the one shown in Figure 2-2.

Download at WoweBook.Com

http://couchdb.apache.org
http://apache.mirrors.esat.net/couchdb/0.10.0/apache-couchdb-0.10.0.tar.gz
http://127.0.0.1:5984

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

14

■ Note It is quite possible that curl is not installed by default on Ubuntu Linux. If you get a message informing
you that curl is not available, simply use the command sudo apt-get install curl to download and install it
automatically.

Figure 2-2. CouchDB welcome response message

With CouchDB up and running, now is a good time to open the Futon web administration interface
and run the Test Suite, ensuring that every component of the CouchDB server is running properly. Open
your favorite web browser, and navigate to the URL http://127.0.0.1:5984/_utils. On the right side of
the page, click the Test Suite link. On the page that follows, click the Run All button near the top left of
the page to begin the tests. Your browser may become slow and unstable while the tests run, so be
patient. If all is well, you should receive a “Success” response for each test in the list (Figure 2-3).

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

15

Figure 2-3. Futon Test Suite results

■ Note If you are experiencing problems with the replication test failing, make sure you entered the IP address
127.0.0.1 rather than localhost in the URL. If you have IPv6 enabled on your system, localhost will resolve to an
IPv6 address first, and because CouchDB listens only on IPv4, the connection cannot be established. If you’re set
on using localhost, disabling IPv6 will also fix this issue.

That’s it—you now have a working CouchDB server on your Ubuntu system! Feel free to play
around with CouchDB using the Futon interface, and when you’re ready, continue to Chapter 4 to learn
how to create your first CouchDB database.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

16

Installing CouchDB on Fedora Linux Using yum
Installing CouchDB on Fedora Linux is very simple thanks to the inclusion of the YellowDog Updater,
Modified (yum). This command-line based software management utility will automatically update itself
before fetching the requested software and any dependency packages required. I am installing CouchDB
on Fedora 11, but the process should be the same for earlier versions of Fedora.

The first thing you will need to do is open a Terminal window. You can find the Terminal
application in Applications  System Tools  Terminal, as shown in Figure 2-4.

Figure 2-4. Opening Terminal in Fedora Linux

You will now tell the yum application to install the couchdb package. It is highly likely that you are
logged in to Fedora as a standard user and hence will not have sufficient privileges to install packages
with yum. There’s no need to log out, however; we can use the su command to run a shell command as
the root user. Issue the following command in your Terminal window to begin the installation process:

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

17

$ su –c 'yum install couchdb'

You will be asked for a password. Enter your system administrator (root) password and hit Enter. yum
will search for any dependencies, before presenting a summary of what package and prerequisites are to
be installed. It will ask you to confirm before the installation starts, as shown in Figure 2-5.

Figure 2-5. Installing CouchDB using the yum package manager

Press the Y key on your keyboard, and hit Enter to begin the installation process. On my system, the
total download size amounted to 52 megabytes (MB). If you already have the latest version of Erlang
installed, this download size will be significantly less (CouchDB itself is less than half a megabyte!).
When it has finished downloading all the required packages, it will automatically install them for you.
When it is done, it will give you a summary of what package was installed and what dependencies were
installed along with it. This should look something similar to Figure 2-6.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

18

Figure 2-6. CouchDB installation complete

When the installation has finished, you will need to start the CouchDB server. This is very simple;
just issue the following command:

$ su –c 'couchdb'

You should see a message similar to the one shown in Figure 2-7.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

19

Figure 2-7. Apache CouchDB has started.

 You may notice that you no longer have a prompt in this terminal window. Not to worry, just open
another Terminal tab by hitting Shift+Ctrl+T. You will now verify that the server is running properly
using curl. It is highly likely that you already have curl installed on your system, but if you do not,
installing it is as simple as issuing the following command:

$ su –c 'yum install curl'

If curl is not installed, yum will automatically install it for you. If you have an out-of-date version of
curl installed, yum will update it for you. If you already have the latest version of curl, yum will tell you
that it has nothing to do and will quit. When curl has installed, you can verify that the CouchDB server is
running with the following command:

$ curl http://127.0.0.1:5984

The server should return the following response:

{"couchdb":"Welcome","version":"0.9.0"}

Download at WoweBook.Com

http://127.0.0.1:5984

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

20

Congratulations, you have now set up CouchDB on your Fedora Linux system! Before you proceed
to Chapter 4, it might be a good time to check that Futon, CouchDB’s web-based administration utility,
is up and running correctly. Fire up your favorite web browser, and point it to the following URL:

http://127.0.0.1:5984/_utils

If Futon is working, you should see an attractive user interface like the one shown in Figure 2-8.

Figure 2-8. CouchDB’s Futon Admin utility in action

I will now show how to run Futon’s Test Suite to perform several diagnostic checks on the CouchDB
server. Click the Test Suit link in the menu on the right side of the Futon screen. On the Test Suite page,
click the Run All link near the top left of the page to begin the tests. The process should not take long,
and with any luck, all the tests will return a success message, as per Figure 2-9.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

21

Figure 2-9. Futon Test Suite results

You are now ready to drive ahead and start developing CouchDB databases and applications. Feel
free to skip ahead to Chapter 4, where you’ll see how to create a CouchDB database.

Building CouchDB (and Prerequisites) from Source Code
If your system does not have a package manager with a CouchDB package available or you want to be
sure that you are installing the latest version of Couch, your best bet is to compile CouchDB from source
code. In this section, I will not only walk you through the process of building CouchDB from the source
code for the latest trunk version, but you will also learn how to manually build the prerequisite
applications you will need in order to use CouchDB—Erlang, libcurl, ICU, Spidermonkey, and
Subversion.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

22

■ Caution It is worth mentioning at this point that building software from source code is not for the fainthearted.
Things often go wrong, and you are pretty much on your own when it comes to fixing any issues that arise. The
following procedure is recommended for advanced users only. At the very least you should be comfortable working
at the Linux command line. You have been warned!

This procedure has been tested on Slackware Linux 12.2, but they should work on any Linux
distribution. It is assumed that you have OpenSSL installed, as well as the following development tools:

• GNU Automake (version 1.6.3 or newer)

• GNU Autoconf (version 2.59 or newer)

• GNU Libtool

• GNU help2man

• GNU Make

• GNU Compiler Collection (gcc)

■ Note Older versions of the client version of Ubuntu Linux did not install these tools by default. Fortunately,
installing these tools is very simple on Ubuntu. Just run the following command:

$ apt-get install build-essential automake autoconf libtool help2man

If you have any trouble installing a particular package, the best place to look for help is the relevant
application’s documentation or manual.

Let’s get started. For the most part, you will be entering commands in the Terminal window, and
you will need to run these commands with administrative privileges. To do this, you will need to prefix
your commands with su -c and wrap the command you are calling in single quotes. You may be asked
to authenticate the first time you use this.

For the most part, I will be working from my home directory. Most of the software will be installed to
various locations throughout the Linux filesystem, so where exactly you download and compile the
applications is not important. If you’re not sure where you are, use the command pwd to print your
working directory.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

23

Building Erlang
The first application you are going to download and build is Erlang. In the following command listing,
Erlang R13B01 is downloaded. This was the latest stable release available at the time of writing. Feel free
to change the download URL to a newer version of Erlang if you want. Download the Erlang source
distribution using wget as follows:

$ wget http://erlang.org/download/otp_src_R13B01.tar.gz

When the download has completed (it may take a while, because it’s quite a large file—around 50–
60MB), issue the following commands to create a new directory from which you will build Erlang:

$ su -c 'mkdir /usr/local/erlang'
$ cd /usr/local/erlang

Now you decompress and extract the source code archive:

$ su –c 'tar xvzf /root/otp_src_R13B01.tar.gz'

This will create a new directory called otp_src_R13B01 under /usr/local/erlang. Change into this
directory using this:

$ cd otp_src_R13B01

Now you are ready to go ahead and build your Erlang installation. The following commands will
configure and compile Erlang. Please note that each of these commands will take a considerable amount
of time to run, because you are compiling the source code for the entire Erlang programming language.

$ su -c './configure'
$ su -c 'make && make install'

When Erlang has finished compiling, you can test that it is working by running the Erlang prompt.
Simply enter the command erl to open the compiler, and you should see a prompt similar to that in
Figure 2-10.

Download at WoweBook.Com

http://erlang.org/download/otp_src_R13B01.tar.gz

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

24

Figure 2-10. Testing your Erlang installation

When you are satisfied that Erlang is working, you can return to your Linux shell by entering the
following command in the Erlang shell (don’t leave out the period at the end; it’s required!):

q().

Next you will build libcurl. Before you do so, return to your home directory (or wherever you’re
using as your base for downloading packages) by issuing the following:

$ cd ~

Building libcurl
The libcurl library is very simple to build. Download libcurl (and curl) using the following command:

$ wget http://curl.haxx.se/download/curl-7.19.6.tar.gz

Now extract the contents of the archive using the following command:

$ tar xvfz curl-7.19.6.tar.gz

Download at WoweBook.Com

http://curl.haxx.se/download/curl-7.19.6.tar.gz

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

25

This will create a new directory called curl-7.19.6. Enter this directory using the following:

$ cd curl-7.19.6

Now issue the following commands to configure and build curl and libcurl:

$ su -c './configure'
$ su -c 'make'
$ su -c 'make install'

That’s all there is to installing libcurl. In the next section, you will build ICU.

Building ICU
Installing ICU is relatively straightforward, and the steps are similar to those you followed to build
Erlang. The first step is to download the ICU source distribution. The latest version of ICU available at
the time of writing was 4.2. Check the ICU web site for newer versions if you so wish.

$ wget http://download.icu-project.org/files/icu4c/4.2.0.1/icu4c-4_2_0_1-src.tgz

When the download has finished, decompress and extract the archive file using the following
command:

$ tar xvfz icu4c-4_2_0_1-src.tgz

This will extract the contents of the archive into the icu directory. I will now show how to change to
the source subdirectory inside this new directory and change the permissions of a few files to make sure
they are ready for the build process:

$ cd icu/source
$ chmod u+x runConfigureICU configure install-sh

Next, you need to run the configuration script and start the compilation process itself:

$ su -c './runConfigureICU Linux'
$ su -c 'make && make install'

That’s it for ICU. The next dependency for CouchDB you need to install is Spidermonkey. Once
again, navigate back to your home directory before proceeding to the next section.

Building Spidermonkey
To build Spidermonkey, you will need to have several prerequisite packages installed on your system.
Most of these packages (Perl, gcc, GNU make, and so on) are preinstalled on most Linux distributions. If
you are using an older version of Ubuntu Linux, it is possible that you may not have all of these
dependencies installed. You can install all of Spidermonkey’s dependencies using the following
commands:

$ sudo apt-get build-dep firefox

Download at WoweBook.Com

http://download.icu-project.org/files/icu4c/4.2.0.1/icu4c-4_2_0_1-src.tgz

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

26

$ sudo apt-get install mercurical libasound2-dev libcurl4-openssl-dev libnotify-dev libxt-
dev libiw-dev

Ensure you are in your home directory, and you can proceed to download and build Spidermonkey.
First, let’s download the source distribution from Mozilla. I’m going to install Spidermonkey 1.7.0,
because it works well with recent versions of CouchDB. If you want to use 1.8.0, be sure to build
CouchDB from trunk.

 ■ Note Version 0.9.0 of CouchDB specifically requires version 1.7 of Spidermonkey to be installed. If you are
building this version of CouchDB, ensure you use Spidermonkey 1.7.

$ wget http://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

When the distribution package has finished downloading, use the following command to
decompress and extract it:

$ tar xvzf js-1.7.0.tar.gz

Now navigate into the src subdirectory of the js directory:

$ cd js/src

From here you can compile Spidermonkey using the following commands:

$ JS_DIST=/usr/local/spidermonkey make -f Makefile.ref export
$ export LD_LIBRARY_PATH=/usr/local/spidermonkey/lib
$ ln -s /usr/local/spidermonkey/lib/libjs.so /usr/local/lib/libjs.so
$ ln -s /usr/local/spidermonkey/include /usr/local/include/js

Spidermonkey is now installed! The final prerequisite you need to build before building CouchDB
itself is the Subversion, the version control system you need to use to get the latest “trunk” version of
CouchDB.

Building Subversion
The CouchDB source code is maintained in a Subversion repository on Apache’s servers. To download
the latest build of CouchDB from trunk, you need to have a Subversion client installed on your machine.
In this section, I will show how to build Subversion from source code.

 ■ Note Subversion is only required to retrieve the latest version of CouchDB from trunk. If you are building a
release version of CouchDB, you can skip this step and download the source code from the CouchDB project web
site instead.

Download at WoweBook.Com

http://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

27

Subversion has a number of dependencies that are required, which vary based on whether you are
installing Subversion client or server. Fortunately, an archive containing the dependencies for the client
is available, which can be extracted so that the prerequisites are automatically built along with
Subversion. If you follow these instructions, you will not need to take any further steps to install
Subversion’s dependencies.

First, download the Subversion source code and the dependency archive using the following
commands (make sure you’re in your home directory):

$ wget http://subversion.tigris.org/downloads/subversion-1.6.5.tar.gz
$ wget http://subversion.tigris.org/downloads/subversion-deps-1.6.5.tar.gz

The dependency archive will extract the dependencies into the same directory as the Subversion
source code archive was extracted to. Now enter the Subversion source directory and build Subversion:

$ cd subversion-1.6.5
$ su -c './configure'
$ su -c 'make && make install'

Subversion is now installed on your system. In the next section, you will use Subversion to get the
latest version of CouchDB from trunk, before building CouchDB itself.

Building CouchDB
First and foremost, congratulations for making it this far! Building applications from source distributions
is not light work. The good news is that you’re almost there. You will now download the CouchDB source
distribution from trunk using Subversion. Navigate back to your home directory, and use the following
command to check out the latest version of CouchDB from the project’s Subversion repository.

$ svn co http://svn.apache.org/repos/asf/couchdb/trunk couchdb

This will create a new folder named couchdb. Navigate into this folder using the following command:

$ cd couchdb

The first thing you need to do is bootstrap the source code. This is performed using the following
command:

$ su -c './bootstrap'

When the bootstrapping has completed, you will see the message “You have bootstrapped Apache
CouchDB, time to relax.” Now you will run the configuration script.

$ su -c './configure'

When the configuration process has completed, enter the following command to install CouchDB:

$ su -c 'make && make install'

You’re nearly there! Before you start the CouchDB server, you just need to create a user for couchdb,
create a few directories, and set some permissions. Firstly, create a couchdb user by issuing the following
command:

$ su -c 'adduser couchdb'

Download at WoweBook.Com

http://subversion.tigris.org/downloads/subversion-1.6.5.tar.gz
http://subversion.tigris.org/downloads/subversion-deps-1.6.5.tar.gz
http://svn.apache.org/repos/asf/couchdb/trunk

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

28

The system will ask you to enter a series of details for the new user. Simply accept the default
options, and make sure you supply no password when prompted. You should see a message “Account
setup complete” when the account has been created. Now you will create some directories and change
the ownership of those directories to the couchdb user.

$ su -c 'mkdir -p /usr/local/var/lib/couchdb'
$ su -c 'chown -R couchdb /usr/local/var/lib/couchdb'
$ su -c 'mkdir -p /usr/local/var/log/couchdb'
$ su -c 'chown -R couchdb /usr/local/var/log/couchdb'
$ su -c 'mkdir -p /usr/local/var/run'
$ su -c 'chown -R couchdb /usr/local/var/run'
$ su -c 'cp /usr/local/etc/rc.d/couchdb /etc/init.d/'

With all that done, you are now ready to start the CouchDB server. The following command will start
the CouchDB server in the background:

$ su -c '/etc/init.d/couchdb start'

You should see a message “Starting database server couchdb” to confirm that the server is indeed
starting. Let’s perform a quick check to see that it is indeed working:

$ curl http://127.0.0.1:5984

If the CouchDB server is running, you should see a message like this:

{"couchdb":"Welcome","version":"0.10.0a809125"}

If, for some reason, the server is not running and you get an error message when you try the
previous line, it may be an issue with the initialization script. Try simply entering the following
command:

$ couchdb

If the build was successful, you should see a message saying “Apache CouchDB has started – Time
to relax.” Open up a second Terminal window, and try the curl command shown previously again—this
time it should work.

Before you move on, now would be a good time to test that Futon, CouchDB’s administration utility,
is working correctly. Futon provides a suite of diagnostic tests that will ensure that your CouchDB
installation is healthy. Open your favorite web browser, and go to http://127.0.0.1:5984/_utils. You
should see a screen like Figure 2-11.

Download at WoweBook.Com

http://127.0.0.1:5984
http://127.0.0.1:5984/_utils

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

29

Figure 2-11. Apache CouchDB Futon administration utility

Now that you have Futon open, click the Test Suite link in the navigation menu on the right side of
the screen. From here, click the Run All link near the top left of the page to start the Futon diagnostic
tests. Ideally, all the tests will run and return a “success” status message, as in Figure 2-12.

Download at WoweBook.Com

CHAPTER 2 ■ INSTALLING COUCHDB ON LINUX

30

Figure 2-12. Futon Test Suite results

Congratulations, you have just successfully built CouchDB and its prerequisite packages from
source code. You are now armed with all the tools you need to go forward and start learning how to
create CouchDB databases. In the next chapter, you will learn how to install CouchDB on Mac OS X. In
Chapter 4, you will learn how to create your first CouchDB database.

Download at WoweBook.Com

C H A P T E R 3

■ ■ ■

31

Installing CouchDB on Mac OS X

In this chapter, you will learn how to install the CouchDB database on Mac OS X. There are several ways
of installing CouchDB on the Mac. An unofficial “one-click” package, CouchDBX, is available and
provides an easy-to-use way of trying CouchDB, if you don’t like to get your hands dirty. I will talk about
this in more detail later in this chapter. At the other end of the spectrum is the option to build CouchDB
directly from source code. This is quite complicated and is recommended only to power users who want
the highest level of flexibility with their CouchDB installation. Thankfully, there’s a happy medium that
offers relative simplicity in terms of installation while allowing you a high level of control in the
configuration of your CouchDB setup. This method is what I refer to as the “MacPorts” method.

Before you can install CouchDB using MacPorts, you need to take care of a few dependency issues.
First, you need to install Apple’s Xcode developer tools. You can install the tools from your Mac OS X
installation CDs/DVD, or alternatively you can download them from the Apple Developer Connection
web site. Then you need to install MacPorts, an excellent open source package manager for Mac OS X.
Once you have these dependency issues sorted out, installing CouchDB is a piece of cake.

Installing the Xcode Developer Tools
The Xcode developer tools are a suite of utilities for creating software applications that run on Mac OS X.
Although not installed by default, Xcode can be found on your Mac OS X installation DVD/CDs and
installed in a few simple steps. If you have lost the DVD/CDs that came with your Mac, you can
download Xcode from Apple’s Developer Connection (ADC) web site free of charge. In this section, I will
walk you through the process of downloading Xcode from ADC and installing it on Mac OS X Leopard
(10.5).

■ Note In the following steps I will be showing how to install Xcode version 3.0, because I am running Mac OS X
Leopard (10.5). If you are installing Xcode on an earlier version of Mac OS X, you will need to download a different
release of Xcode, because version 3.0 is not supported on older Mac OS X releases. Mac OS X Tiger (10.4) users
should look for Xcode version 2.5, while those using Mac OS X Panther (10.3) will need Xcode version 1.5.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

32

The first thing you need to do is download the latest version of the Xcode developer tools from ADC.
Open your favorite web browser, and visit this location:

http://developer.apple.com/technology/xcode.html

You should see a page similar to that in Figure 3-1.

Figure 3-1. The ADC web page for downloading Xcode

On this page you will see two options: Xcode for iPhone and Mac Development and Xcode for Mac-
only Development. Click the Download Now button next to the second option.

Download at WoweBook.Com

http://developer.apple.com/technology/xcode.html

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

33

Note that if your Mac has an Intel (not a PowerPC) processor, you can install the Xcode for iPhone
and Mac Development option. In addition to registering for ADC membership, you will need to register
as an iPhone developer. Please note that there may be small differences in the following steps if you
choose to go down this path.

The next screen (Figure 3-2) asks you to log in as an ADC member with your Apple ID and password.
If you are not an ADC member but you have an Apple ID, enter those credentials; you will be brought to
a page to complete your ADC membership registration. If you do not have an Apple ID, you will need to
use the “sign up” link at the bottom of the page to get one before you can log in and download the Xcode
tools.

Figure 3-2. Log in to Apple Developer Connection to download the Xcode developer tools.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

34

Once you have logged in to ADC, you will see a page similar to that shown in Figure 3-3. At the time
of writing, the latest available version of Xcode was 3.1.2. Click the Xcode 3.1.2 Developer Tools DVD
(Disk Image) link to commence the download.

■ Note The Xcode developer tools package is quite large (the disk image for version 3.1.2 weighed in at 996
megabytes), so it is highly recommended that you download the package over a high-speed Internet connection.
Even on a decent broadband connection, the download may take over an hour. If this is not an option for you, I
recommend that you install Xcode from your Mac OS X installation media instead.

Figure 3-3. Xcode developer tools download page

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

35

Although the download page says that this is a DVD disk image, it does not mean that you need to
burn it to DVD before you can use it. When the download has completed, the disk image should
automatically mount and pop up a Finder window. From here, you can launch the Xcode installation
application by double-clicking the XcodeTools.mpkg icon, as shown in Figure 3-4.

Figure 3-4. Xcode developer tools disk image

The Xcode Tools Installer will now load, and you can click the Continue button to begin the install.
On the screen that follows, click the Continue button once again, which will pop up a confirmation
dialog box, asking you to agree to the terms of the software license agreement. Click Read License to read
these terms, and once you are satisfied, click the Agree button to move on. On the Custom Install on
“Macintosh HD” screen, you can accept the default selections and click the Continue button to advance
to the next screen. If you want to change the location where Xcode will be installed, you can click the
Change Install Location button here; otherwise, simply click Install to begin the installation procedure.

You will now be asked for your Mac OS X system password. Enter it (if you have one), and click OK to
continue. The installation procedure will now begin, and depending on your hardware, the process
should take approximately ten minutes.

When the installation process has completed, you should see something similar to the screen shown
in Figure 3-5.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

36

Figure 3-5. Xcode developer tools installation succeeded message

Installing MacPorts
I am going to show how to install CouchDB using an excellent, open source package manager for Mac
OS X called MacPorts. Unfortunately, MacPorts is not included as part of Mac OS X, and therefore you
need to install it before you can use it to install CouchDB. You will install MacPorts by downloading the
latest binary package from the MacPorts project web site. Before beginning, please ensure that you have
installed Xcode (see the previous section for detailed instructions on how to do this), because some of its
components are required in order to install MacPorts.

Let’s dive in and get MacPorts up and running on your system. Open your favorite webs browser,
and visit the Installing MacPorts page on the MacPorts project web site:

http://www.macports.org/install.php

This page should look something like the one shown in Figure 3-6.

Download at WoweBook.Com

http://www.macports.org/install.php

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

37

Figure 3-6. The MacPorts Project web site—Installing MacPorts page

The first bullet point on this page has links to three binary DMG image files, one each for the Snow
Leopard (10.6), Leopard (10.5), Tiger (10.4), and Panther (10.3) versions of Mac OS X. Simply click the
relevant link for the version of the operating system installed on your Mac, and the download will start.
Unlike Xcode, MacPorts is a very lightweight piece of software (the current version at the time of writing,
1.7.1, weighed in at 415 kilobytes when I downloaded it). As soon as it has downloaded, the disk image
will mount, and the installation application should open immediately.

When the installer starts, you will be informed that the package contains a program that determines
whether the software can be installed, and it will ask whether you are sure that you want to continue.
Simply click the Continue button to close this message, and you will be brought to the MacPorts
installer, which should look similar to Figure 3-7.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

38

Figure 3-7. Welcome to the MacPorts installer

When this window appears, click the Continue button to move to the next part of the installation,
which gives you information about MacPorts, its requirements, where it will be installed, and how to use
it. Click Continue to skip forward to the next section. On the Software License Agreement screen, click
Continue to bring up the confirmation dialog box asking you to agree to the terms of the software license
agreement. If you like, read the license, and when you’re ready, click the Agree button to continue with
the installation. I don’t recommend changing the installation target location, but if you feel the need to
do so, you can click the Change Install Location button on the next screen to change it. Otherwise, just
hit Install, and the installation procedure will commence.

As with Xcode, you will now be asked for your Mac OS X system password. Enter it, if you have one,
and click OK to start the install. The entire process should only take a couple of minutes to complete.
When it is finished, you should see a message like the one in Figure 3-8.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

39

Figure 3-8. MacPorts install succeeded.

Before we move ahead and install CouchDB itself, let’s perform a quick test to ensure that MacPorts
is working as expected. To do this, open the Mac OS X Terminal application. The easiest way to do this is
to open Spotlight (Cmd+Spacebar) and enter Terminal into the Spotlight text box. You should see
Terminal as the Top Hit items and under the Applications section, as shown in Figure 3-9.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

40

Figure 3-9. Terminal in Mac OS X Spotlight

Alternatively, you can find Terminal in the folder Applications  Utilities. When you launch the
Terminal application, you should see a prompt like the one shown in Figure 3-10.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

41

Figure 3-10. Mac OS X prompt in Terminal window

To verify that MacPorts is working correctly, type in the following command in the Terminal
window:

$ port search couchdb

If MacPorts has been installed and configured as required, you should see output similar to that in
Figure 3-11.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

42

Figure 3-11. Verifying MacPorts is installed in Terminal

Now that you have MacPorts installed, you are only a short section away from having CouchDB up
and running on your Mac OS X system. Enter the quit command to exit the MacPorts interactive prompt
and return to the shell. Let’s move on and install CouchDB!

Installing CouchDB
In this section, you will use MacPorts to install CouchDB on your Mac. CouchDB has many
dependencies, but fortunately you do not need to worry about sourcing all of these because MacPorts
will automatically download and install them for you prior to installing CouchDB. As a result, installing
CouchDB itself is not difficult at all.

At the end of the previous section, you checked that MacPorts was installed by opening the Mac OS
X Terminal application and starting the MacPorts interactive prompt. If you closed that window, simply
follow the same steps to open a new Terminal window. This time, enter the following command:

$ sudo port install couchdb

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

43

You may be presented with a warning about improper use of the sudo command and will then be
asked to enter your password. Enter your password, and after a short time MacPorts will begin fetching
and automatically installing all of CouchDB’s dependency packages. Please note that this may take some
time (about an hour or maybe even longer on some systems), so it might be a good time to take a break!

■ Caution In Mac OS X Leopard (10.5), the sudo command will not work if the user you are logged in as does not
have a password set. If you simply hit the Return key when prompted for your password, sudo will just exit, and
nothing will happen. In the Accounts preferences pane in your Mac OS X System Preferences, set up a password
for your user account before you attempt to use MacPorts to install CouchDB. You can remove it after the
installation has been completed if you want.

You’ll know that the installation of CouchDB and its dependencies is completed when you are
returned to the prompt and your Terminal window looks like the one in Figure 3-12.

Figure 3-12. MacPorts installation of CouchDB completed

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

44

Before you take CouchDB out for a test-drive, let’s make sure that all the dependencies are up-to-
date. Back in the Mac OS X Terminal application, enter the following command (you’ll need to provide
your password again):

$ sudo port upgrade couchdb

In most cases, there should be nothing that needs updating, but if you already had MacPorts
installed before reading this book, this command will ensure that any CouchDB dependencies that were
already previously installed are up-to-date.

The final command you are going to run will configure CouchDB to run as a Mac OS X service and
tell it to run CouchDB every time Mac OS X boots up. This step is optional, but if you don’t complete, it
you will need to start CouchDB manually every time you want to use it.

$ sudo launchctl load –w /Library/LaunchDaemons/org.apache.couchdb.plist

This command will have started CouchDB, but if you have chosen not to install as a Mac OS X
service, you will need to manually start the server. Remember, you do not need to do this if you ran the
previous command.

$ sudo launchctl start org.apache.couchdb

If, for some reason, you need to stop the CouchDB server at any stage, you can use the following
command to do so:

$ sudo launchctl stop org.apache.couchdb

Now, let’s run a couple of quick checks to make sure your CouchDB setup is running nice and
smoothly! First, you will make sure that the CouchDB server is working correctly. The easiest way to do
this is to use curl to make a CouchDB request. At the Mac OS X Terminal, issue the following command:

$ curl http://127.0.0.1:5984

If the CouchDB server is running, you should see a message similar to the following:

{"couchdb":"Welcome","version":"0.9.0"}

You can perform the same test by simply visiting http://127.0.0.1:5984 in your favorite web
browser. Doing so, you should see a result similar to the one shown in Figure 3-13.

Download at WoweBook.Com

http://127.0.0.1:5984
http://127.0.0.1:5984

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

45

Figure 3-13. Checking the CouchDB server is running

The final test you will run is a quick check that Futon, the CouchDB web-based administration
interface, is up and running. To check this, visit http://127.0.0.1:5984/_utils/index.html in your
favorite web browser. You should see a rather pretty page, like the one in Figure 3-14.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils/index.html

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

46

Figure 3-14. Futon, the CouchDB administration interface

From the Tools menu on the right side of the Futon interface, click the Test Suite link. This will bring
you to a page where you can run a series of diagnostic tests to make sure that all aspects of your
CouchDB server are running as they should. Click the Run All link at the top of this page to begin the
tests. All going well, you should have zero failures, and the result should look something like the page in
Figure 3-15.

Download at WoweBook.Com

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

47

Figure 3-15. Futon’s CouchDB Test Suite results

Congratulations! You now have a fully operational installation of CouchDB running on your Mac OS
X system. If you chose to run the command to install CouchDB as a service, it will start up automatically
each time you boot up your Mac. Feel free to skip ahead to the next chapter, where you will learn how to
create a database and the basics of database development with CouchDB.

CouchDBX: A One-Click CouchDB Package for Mac OS X
 If the idea of installing Xcode, installing MacPorts, and getting down and dirty with the Mac OS X
Terminal are not your cup of tea, there is an alternative! An unofficial one-click CouchDB package
known as CouchDBX will get you up and running with a CouchDB server without installing anything. It
doesn’t offer the flexibility or configurability of a full install, but it’s great for trying out CouchDB quickly.
It can even be used on a machine that has a full version of CouchDB installed!

To get CouchDBX, visit http://janl.github.com/couchdbx/, and click the Download link. At the time
of writing, the latest version was 0.10.0-R13B02, which includes Apache CouchDB 0.10.0, Erlang R13B02,
Spidermonkey 1.7, and ICU 3.8. This particular version is approximately 12 megabytes in size, so it
shouldn’t take too long to download, even on slower Internet connections.

When the download has completed, you should have a CouchDB icon in the folder where your
browser downloads are stored. Simply double-click this icon to run CouchDBX, and you should see a
screen similar to that shown in Figure 3-16.

Download at WoweBook.Com

http://janl.github.com/couchdbx

CHAPTER 3 ■ INSTALLING COUCHDB ON MAC OS X

48

Figure 3-16. CouchDBX—the “one-click” CouchDB package

That was much simpler, now wasn’t it? There’s no doubting the fact that CouchDBX is the fastest
and easiest way of getting a CouchDB environment up and running on your Mac. You can use
CouchDBX to work through most of the content of this book, although if you are serious about CouchDB
development, I highly recommend that you consider installing CouchDB on your system, either using
MacPorts or building from the source code. It offers far superior performance and higher levels of
reliability and flexibility when it comes to your CouchDB setup.

Download at WoweBook.Com

C H A P T E R 4

■ ■ ■

49

Creating Your First CouchDB
Database

In this chapter, you will learn how to interact with the CouchDB database server—primarily by means of
learning how to perform basic tasks using the HTTP API, including the following:

• Creating a new database

• Creating, updating, and deleting database documents

• Adding file attachments to documents

• Retrieving documents from the database

• Creating a database view

If you have experience with traditional database management systems that use Structured Query
Language (SQL) to interact with the database, the concepts introduced in this chapter may be quite alien
at first. Unlike SQL-based databases, CouchDB does not come with its own client application; rather,
you communicate with the server using any application or language that supports HTTP requests.

Another thing that might seem strange is that I won’t discuss the design of your database before you
go ahead and create it. You don’t need to define the table structure for your database, because there are
no tables. You don’t need to draw up an entity relationship diagram (ERD) because there are no
relationships. CouchDB is a schema-free database management system, meaning you don’t have to
worry about these things before you create your database; you can change any of these as required
without negatively impacting your existing data.

Tools of the Trade
As mentioned, CouchDB does not come with a client application for connecting to the database server
(well, actually it does, in the form of a web-based interface called Futon, but I’ll discuss that in more
detail later). Instead, you can interact with the CouchDB server using any piece of software or any
programming language that supports making HTTP requests to a web server. CouchDB’s API defines a
series of methods that allow you to create databases, create documents, modify existing documents, and
do all the other features you’d expect from a database management system. CouchDB then sends a
response to the application in the form of JavaScript Object Notation (JSON), which can easily be parsed
by most modern programming languages. JSON also has the advantage in that it is quite easily read by
humans.

Download at WoweBook.Com

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

50

■ Note Up until this point, all UNIX commands have been prefixed with the prompt symbol ($). This is the final
chapter in which I will include the prompt before these commands.

In this chapter, you will issue commands to your CouchDB server using the curl utility. If you
followed an installation procedure from Chapter 2 or Chapter 3, you already came across curl when you
verified that CouchDB was installed correctly. If you want to check that curl is installed on your system,
open a Terminal window or command prompt, and enter the following command:

$ curl http://127.0.0.1:5984

If curl is installed (and assuming you have CouchDB running on your own computer), you should
receive a response like the following:

{"couchdb":"Welcome","version":"0.9.0"}

Later in this book you will use other tools to interact with the CouchDB database, including
CouchDB’s very own Futon web-based administration interface, the JavaScript client-side web
development language, and the PHP, Ruby, and Python programming languages.

HTTP Requests
To communicate with the CouchDB server over HTTP, it’s important to have a basic understanding of
how HTTP actually works. HTTP is a protocol that is primarily used to serve documents over the World
Wide Web. You probably recognize it from the start of web addresses (for example,
http://www.apress.com). HTTP is a client-server architecture where the client makes a request, and the
server processes that request before returning a response to the client.

HTTP defines eight methods that are used to describe the desired action to be performed on the
resource being requested. In CouchDB, you really need to be concerned with only four of these
methods—GET, POST, PUT, and DELETE. CouchDB also uses an extension method provided by the
HTTP protocol—COPY. What each method is used for is actually quite self-explanatory: GET is used to
retrieve data from the database, PUT is used to insert new data and modify existing data (POST can also
be used, but it is not recommended in most cases), DELETE is used to delete data from the database,
and COPY is used to copy documents in the database. You will learn a lot more about how these request
methods are used as you progress through this chapter.

JSON Response
When the CouchDB server processes an HTTP request, it returns a response in JSON. JSON is a light
format for transporting data that is easy for humans to read but at the same time is simple for machines
to parse. The data is written in the form of a JavaScript object, which is where the name comes from.
JSON parsers are available for virtually every programming language, making it simple to use in your
applications.

JSON supports various basic data types, including numbers, strings, booleans, nulls, arrays, and
objects. A JSON object is opened and closed with curly braces, with a collection of comma-separated
key/value pairs enclosed within these braces. A typical JSON object may look like the following:

Download at WoweBook.Com

http://127.0.0.1:5984
http://www.apress.com

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

51

{
 "firstName": "Joe",
 "lastName": "Lennon",
 "email": [
 "joe@joelennon.ie",
 "joe@joelennon.com"
],
 "web": "http://www.joelennon.ie"
}

Using curl
curl is a lightweight command-line tool for transferring data to or from a server using various protocols,
such as HTTP, HTTPS, and FTP. In this chapter, you will be using it to interact with CouchDB’s HTTP
interface. The most basic use of curl is to simply pass it a URL as an argument, and by default it will
issue an HTTP GET request to the URL supplied. You have already seen an example of this earlier in this
chapter, where you passed http://127.0.0.1:5984 as an argument to the curl utility.

curl has a host of options, most of which you don’t need now. Three options are very important,
however. First, the -X flag allows you to tell CouchDB which HTTP request method you want to use. This
is important because the HTTP request method will define what exactly the CouchDB server will do (for
example, GET retrieves, PUT creates/modifies, and DELETE destroys).

Another important curl flag is the -H option. This allows you to define HTTP headers in your
requests to the CouchDB server. When you create documents in CouchDB, you define your documents
in JSON and send this JSON data to the server. Unfortunately, older versions of the CouchDB server have
no way of knowing what type of content this is unless you explicitly tell it. Luckily, you can use the -H flag
and pass the string Content-Type: application/json, which does just that.

The final option you need to know about is the -d option. This allows you to include data (the
message part of the HTTP request) when communicating with the CouchDB server. This is essential
when you want to create meaningful documents or make any changes to existing documents. You will be
using the -d flag to send your JSON document definitions and JavaScript view definitions to CouchDB.

If this doesn’t make any sense to you at this point, don’t worry—it should become a lot clearer in the
next section when you actually start working with the database.

Creating Your First Database
Let’s dive right in and create your first CouchDB database—a simple contacts database where you will
store information much like that in an address book or phone book.

■ Note In all the following examples, I am assuming that you have the CouchDB server installed and running on
your local machine. If you are interacting with a remote CouchDB server, replace the IP address 127.0.0.1 with the
IP address of the machine where CouchDB is installed.

Download at WoweBook.Com

mailto:joe@joelennon.ie
mailto:joe@joelennon.com
http://www.joelennon.ie
http://127.0.0.1:5984

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

52

Creating the database is simple—just issue the following command in your Terminal window or
command prompt:

$ curl -X PUT http://127.0.0.1:5984/contacts

Here you are making an HTTP PUT request to the /contacts resource of the CouchDB server.
CouchDB translates this as “Create a new database named contacts.” When the database has been
created, CouchDB responds with the following JSON object:

{"ok":true}

The previous message basically means that the operation was successful and CouchDB encountered
no errors in the process of creating the contacts database. That’s great, but what would happen if
CouchDB did encounter an error? Let’s investigate by trying to create another database with the same
name. Hit the up arrow in your Terminal window or, if required, retype the previous command:

$ curl -X PUT http://127.0.0.1:5984/contacts

This time around, you should receive a much different response than the last time:

{"error":"file_exists","reason":"The database could not be created, the file already
exists."}

As you can see, the CouchDB server attempted to create another database called contacts but could
not do so because it already exists. It then sent a JSON response with two fields—the error field with the
error code value file_exists and the reason field with a user-friendly error message informing you that
the database could not be created because the file already exists.

Now that you have created a database, let’s ask CouchDB to specify what databases are currently
available on the server. Issue the following command:

$ curl -X GET http://127.0.0.1:5984/_all_dbs

You should receive the following response:

["contacts"]

This is a JavaScript array of all the databases currently stored on the CouchDB server. Let’s see how
it looks when there are multiple databases; create a second database called books:

$ curl -X PUT http://127.0.0.1:5984/books

Once again, you should receive the following response:

{"ok":true}

Now let’s ask CouchDB once more to list all the databases available:

$ curl -X GET http://127.0.0.1:5984/_all_dbs

This time, it should return the following array:

["books","contacts"]

Download at WoweBook.Com

http://127.0.0.1:5984/contacts
http://127.0.0.1:5984/contacts
http://127.0.0.1:5984/_all_dbs
http://127.0.0.1:5984/books
http://127.0.0.1:5984/_all_dbs

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

53

■ Note If you followed the installation guides in Chapters 2 and 3, you may also see some test databases when
you request a list of databases from the CouchDB server—usually named test_suite_db, test_suite_db_a, and
test_suite_db_b. These databases were automatically generated by the Futon administration tool’s Test Suite,
which you earlier used to verify that CouchDB was working correctly. You can safely ignore these databases and
continue as if they didn’t exist.

You’ll be working on the contacts database for the remainder of this chapter, so you have no need
for the books database. Let’s get rid of it by issuing the following command:

$ curl -X DELETE http://127.0.0.1:5984/books

You should see a familiar response:

{"ok":true}

Now let’s see whether you can generate another CouchDB error message. Press the up key to bring
back the last-issued command or, if required, reenter the following:

$ curl -X DELETE http://127.0.0.1:5984/books

This time, the response you receive should be an error message saying that the database doesn’t
exist:

{"error":"not_found","reason":"Missing"}

■ Tip At this point, you may want to delete those extra databases that were automatically created by the Futon
administration tool’s Test Suite. For most of them, this is a simple case of using the previous command and
replacing books with the name of the database you want to delete. Depending on the version of CouchDB you are
using, however, you may also have a database named test_suite_db/with_slashes. To delete this database, you
will need to URL-encode the slash in this database name by replacing the slash with %2F so it becomes
test_suite_db%2Fwith_slashes.

Before moving on to working with documents in your newly created database, let’s issue a
command that will provide some information about the contacts database:

$ curl -X GET http://127.0.0.1:5984/contacts

This should return a response similar to the following:

{"db_name":"contacts","doc_count":0,"doc_del_count":0,"update_seq":0,"purge_seq":0,"compact_
running":false,"disk_size":4096,"instance_start_time":"1246103330612270"}

Download at WoweBook.Com

http://127.0.0.1:5984/books
http://127.0.0.1:5984/books
http://127.0.0.1:5984/contacts

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

54

This response has some useful information fields, notably doc_count, which tells you how many
documents are contained in the contacts database, and disk_size, which informs you how much disk
space the database is taking up. These values should change substantially over the course of the coming
sections as you work with documents.

Creating Documents in Your Contacts Database
If you were working with a traditional relational database management system, at this point you would
be defining the schema for your database and mapping out the various tables, columns, and
relationships that are required for a contacts database. You would be trying to work out all the different
fields that may be required—for example, some contacts may have a fax number, an MSN Messenger
account, or a Skype account that you want to include. So, in your table design, you would need to have
columns for each of these fields. You may want to allow each contact to have several phone numbers
and put these into a separate table that holds the type of number and the number itself, as well as a
foreign key to map these numbers back to the contact record.

With CouchDB, however, you don’t have to do any of this. CouchDB databases are schema-free,
meaning that their structure is not strictly defined, and as a result you can change them on the fly as
your needs require. If one contact has a fax number, you include it in that contact’s document. If
another contact doesn’t have a fax number, you simply don’t include it. If a contact has several phone
numbers, you can set the phone_number field to be an array of phone number objects—there is no need to
define separate tables.

In the contacts database, each contact that you create is considered to be an individual document. It
may help to think of how a contact would be represented on a physical document—such as a business
card. Every business card is a separate document, and the same applies to the contacts in the CouchDB
database. Let’s go ahead and create a contact:

$ curl -X PUT http://127.0.0.1:5984/contacts/johndoe -d '{}'

This should return a response similar to the following:

{"ok":true,"id":"johndoe","rev":"1-795358690"}

You’ve just created a document with the document ID of johndoe. The CouchDB server has
automatically generated a revision number and included this in its response.

■ Tip When passing data to a CouchDB API using the -d flag, it is recommended that you encapsulate your JSON
code using single quotes rather than double quotes. JSON objects use double quotes around key names and string
values. Therefore, if you wrapped your -d argument in double quotes, you would need to escape every double
quote you used in the code.

Now that your document is in the database, let’s issue a command to retrieve it from CouchDB:

$ curl -X GET http://127.0.0.1:5984/contacts/johndoe

You should receive a response like the following:

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/johndoe
http://127.0.0.1:5984/contacts/johndoe

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

55

{"_id":"johndoe","rev":"1-795358690"}

At this point you’re probably thinking that this contact isn’t very useful. All it has is a unique ID and
a revision number; it has no contact-related data whatsoever. So, let’s just delete this contact altogether.
Deleting a document in CouchDB is quite similar to deleting a database, except you must specify the
latest revision number of the document you want to delete. Issue the following command to delete your
johndoe document from the database (be sure to replace the revision number after ?rev= with the actual
revision number of your document):

$ curl -X DELETE http://127.0.0.1:5984/contacts/johndoe?rev=1-795358690

All going well, you should receive a response similar to the following:

{"ok":true,"id":"johndoe","rev":"2-2789254104"}

■ Note If you pass the wrong revision number as a parameter when attempting to delete a document, you will get
an error such as “Document update conflict.” If you get this error, make sure your revision number is correct and
try again.

Let’s make sure the johndoe record is deleted by trying to retrieve the document once again:

$ curl -X GET http://127.0.0.1:5984/contacts/johndoe

If the document has been deleted, you should receive the following response:

{"error":"not_found","reason":"deleted"}

Now you will create a new contact, but this time around you will actually include some data for the
document. A document in CouchDB is simply a JSON object, and you simply include this JSON in your
curl request using the -d flag to send it along with your HTTP request. I am now going to create
document of my own contact details with fields for my first name, last name, and e-mail address. In
nicely formatted JSON, this document looks like the following:

{
"firstName":"Joe",
"lastName":"Lennon",
"email":"joe@joelennon.ie"

}

Let’s create this document now by issuing the following command:

$ curl -X PUT http://127.0.0.1:5984/contacts/joelennon -d
'{"firstName":"Joe","lastName":"Lennon","email":"joe@joelennon.ie"}'

When the contact has been created, you should receive a response like the following:

{"ok":true,"id":"joelennon","rev":"1-45597617"}

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/johndoe?rev=1-795358690
http://127.0.0.1:5984/contacts/johndoe
mailto:joe@joelennon.ie
http://127.0.0.1:5984/contacts/joelennon
mailto:joe@joelennon.ie

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

56

■ Caution You need to be careful of a couple of things when entering JSON data through curl. The first is that
although the JSON code may run over several lines, it’s important that you do not cause line breaks by pressing
Enter or Return yourself. Just let the commands wrap onto the next line themselves. Second, JSON data must be
escaped when passed as data in curl. As you can see in the previous example, I am escaping every double quote
character by inserting a backslash in front of it. If you do not do this, you can expect an invalid_json error to be
returned by the CouchDB server.

Now let’s get back this document from the database, with the following command:

$ curl -X GET http://127.0.0.1:5984/contacts/joelennon

You should see a more interesting result, like this one:

{"_id":"joelennon","_rev":"1-
45597617","firstName":"Joe","lastName":"Lennon","email":"joe@joelennon.ie"}

As you can see, your contact document now includes the data you specified as well as the document
ID and revision number. Let’s create another contact, but this time around let’s copy the existing contact
details instead of starting from scratch. Issue the following command:

$ curl -X COPY http://127.0.0.1:5984/contacts/joelennon -H "Destination: johnsmith"

The response this time just gives the revision ID for the new document:

{"rev":"1-4152282996"}

Let’s check that the document looks right using a GET request:

$ curl -X GET http://127.0.0.1:5984/contacts/johnsmith

You should get back something like this:

{"_id":"johnsmith","_rev":"1-
4152282996","firstName":"Joe","lastName":"Lennon","email":"joe@joelennon.ie"}

As you can see, all the details from the joelennon contact were copied to a new document with the
document ID johnsmith. Now let’s update this document with John Smith’s actual contact details. In
this example, you are also going to include a phone number and a second e-mail address. John Smith’s
contact document in nicely formatted JSON looks like the following:

{
 "firstName":"John",
 "lastName":"Smith",
 "email": [
 "johnsmith@example.com",
 "jsmith@example.com"
],
 "phone":"(555) 555-5555"
}

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/joelennon
mailto:joe@joelennon.ie
http://127.0.0.1:5984/contacts/joelennon
http://127.0.0.1:5984/contacts/johnsmith
mailto:joe@joelennon.ie
mailto:johnsmith@example.com
mailto:jsmith@example.com

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

57

To update an existing document, you must include the revision field in your JSON document, with
the revision identifier that the changes are based on. This is for conflict detection purposes and will
prevent multiple users from making changes to the same document at the same time. So, to update the
johnsmith contact, you can use the following:

$ curl -X PUT http://127.0.0.1:5984/contacts/johnsmith -d '{"_rev":"1-
4152282996","firstName":"John","lastName":"Smith","email":["johnsmith@example.com","jsmith@e
xample.com"],"phone":"(555) 555-5555"}'

The response should be similar to this:

{"ok":true,"id":"johnsmith","rev":"2-843046980"}

Let’s check it out with a GET request at any rate:

$ curl -X GET http://127.0.0.1:5984/contacts/johnsmith

This time you should get a response like the one shown here:

{"_id":"johnsmith","_rev":"2-
843046980","firstName":"John","lastName":"Smith","email":["johnsmith@example.com","jsmith@ex
ample.com"],"phone":"(555) 555-5555"}

Getting Started with CouchDB Views
If you have ever used a traditional relational database management system, you’re probably wondering
at this stage how you are going to actually perform meaningful queries on the data in your database. This
is handled by CouchDB’s powerful view engine. I will discuss this and provide in-depth examples of
CouchDB views in Chapters 8 and 9, but for now let’s get your feet wet by taking a look at some of the
built-in views that you can use to query your data right away.

■ Note In this example, you will write your view using the JavaScript view engine that ships with CouchDB. Views
can be written in any language that has an engine written for it—at the time of this writing, engines existed for
languages including Python, PHP, Ruby, and Erlang. It is worth noting that support for native Erlang views is
planned for CouchDB 0.10.0.

The first view I’ll cover is the _all_docs view. This specialized built-in view returns a listing of all
documents in a CouchDB database. To use the view, you simply issue a GET request to the URI
/databasename/_all_docs. Let’s try this on the contacts database:

$ curl -X GET http://127.0.0.1:5984/contacts/_all_docs

This will return a response with a count of the documents in the database, as well as document IDs
and revision numbers for each document, as shown here:

{“total_rows”:2,”offset”:0,”rows”:[

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/johnsmith
mailto:johnsmith@example.com
http://127.0.0.1:5984/contacts/johnsmith
mailto:johnsmith@example.com
http://127.0.0.1:5984/contacts/_all_docs

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

58

{"id":"joelennon","key":"joelennon","value":{"rev":"1-45597617"}},
{"id":"johnsmith","key":"johnsmith","value":{"rev":"2-843046980"}}
]}

The total_rows field tells you the number of documents stored in the database. The results are
ordered by document ID. You can reverse the order by issuing the query string descending=true:

$ curl -X GET http://127.0.0.1:5984/contacts/_all_docs?descending=true

As you can see, the results are identical except the contents of the rows array appear in the reverse
order:

{“total_rows”:2,”offset”:0,”rows”:[
{"id":"johnsmith","key":"johnsmith","value":{"rev":"2-843046980"}},
{"id":"joelennon","key":"joelennon","value":{"rev":"1-45597617"}}
]}

You can limit the number of documents to return using the limit query parameter. In the following
example, I am limiting the results of the _all_docs view to just one, with the order still set to descending.
Be sure to escape the & character by prefixing it with a backslash.

$ curl -X GET http://127.0.0.1:5984/contacts/_all_docs?descending=true\&limit=1

This should return output similar to the following:

{"total_rows":2,"offset":0,"rows":[
{"id":"johnsmith","key":"johnsmith","value":{"rev":"2-843046980"}}
]}

From version 0.9.0 of CouchDB onward, you can also request that the actual document data itself be
returned along with the metadata when using the _all_docs view. This will not work in versions prior to
0.9.0.

$ curl -X GET http://127.0.0.1:5984/contacts/_all_docs?include_docs=true

This returns similar results to the previous queries, except that it also returns the actual data stored
in each document. The response should be similar in format to the following text:

{"total_rows":2,"offset":0,"rows":[
{"id":"joelennon","key":"joelennon","value":{"rev":"1-
45597617"},"doc":{"_id":"joelennon","_rev":"1-
45597617","firstName":"Joe","lastName":"Lennon","email":"joe@joelennon.ie"}},
{"id":"johnsmith","key":"johnsmith","value":{"rev":"2-
843046980"},"doc":{"_id":"johnsmith","_rev":"2-
843046980","firstName":"John","lastName":"Smith","email":["johnsmith@example.com","jsmith@ex
ample.com"],"phone":"(555) 555-5555"}}
]}

The second and final built-in view I’ll cover is the _all_docs_by_seq view. This view returns all
documents in the database, including deleted ones, ordered by the last time they were modified. To use
this view, simply issue the following:

$ curl -X GET http://127.0.0.1:5984/contacts/_all_docs_by_seq

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_all_docs?descending=true
http://127.0.0.1:5984/contacts/_all_docs?descending=true\&limit=1
http://127.0.0.1:5984/contacts/_all_docs?include_docs=true
mailto:joe@joelennon.ie
mailto:johnsmith@example.com
http://127.0.0.1:5984/contacts/_all_docs_by_seq

CHAPTER 4 ■ CREATING YOUR FIRST COUCHDB DATABASE

59

This should return both of the documents that currently exist in the database, along with the
johndoe contact you created and subsequently deleted earlier in this chapter:

{"total_rows":2,"offset":0,"rows":[
{"id":"johndoe","key":2,"value":{"rev":"2-2789254104","deleted":true}},
{"id":"joelennon","key":5,"value":{"rev":"1-45597617"}},
{"id":"johnsmith","key":7,"value":{"rev":"2-843046980"}}
]}

All the view parameters you passed when using the _all_docs view will also work with the
_all_docs_by_seq view.

Summary
That concludes Part 1 of the book. In Chapter 1, you discovered what CouchDB is and how it differs from
traditional relational database management systems. You learned about CouchDB’s history and all
about the building blocks of the database server.

In Chapter 2, you learned how to install the CouchDB server on the Linux operating system. You
first learned how to install CouchDB from source code on Ubuntu Linux, installing dependencies using
the apt-get package utility. You then used the yum package manager to install CouchDB 0.9.0 on Fedora
Linux 11. Finally, you undertook the brave task of downloading and building CouchDB and its
dependencies—Erlang, ICU, and Spidermonkey—from source code.

In Chapter 3, you learned how to install CouchDB on a Mac OS X machine. You downloaded and
installed Apple’s developer tools package, Xcode. You also sourced and configured the MacPorts
package manager, before using MacPorts to retrieve the CouchDB binary package and install it. I also
briefly discussed the CouchDBX one-click package available for Mac OS X.

Finally, in this chapter, you undertook the task of creating your first CouchDB database using the
command-line tool curl. You learned how to create and delete databases and how to retrieve a list of all
available databases. Next you looked at database documents and how they are created, deleted, copied,
and modified. I rounded up this chapter and this part of the book by covering some of CouchDB’s built-
in specialized views for retrieving all documents and some of the parameters that can be used to
manipulate the resultset returned by these views.

In the next part of the book, you will take an in-depth look at managing CouchDB databases,
namely, using the Futon web-based administration interface, a more detailed investigation of
CouchDB’s API, an overview of the concept of map/reduce and how to use it in CouchDB, and the
creation of views using the JavaScript view engine.

Download at WoweBook.Com

Download at WoweBook.Com

P A R T 2
■ ■ ■

Managing CouchDB
Databases

Now that you have a working installation of CouchDB up and running and you’ve

learned the basics of how a CouchDB database works, let’s investigate some of the

CouchDB features that you can use to manage your database. In this part, you will

start with a detailed look at Futon, the web-based administration tool that comes

bundled with every CouchDB installation. You will then learn about JavaScript Object

Notation and how it is used to store documents in CouchDB databases. Next, you will

see how to create views of your data in special design documents and how the concept

of map/reduce applies to CouchDB. You then conclude this part of the book with a

chapter about creating advanced views.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 5

■ ■ ■

63

Using Futon: The CouchDB
Administration Interface

As you saw in Chapter 4, CouchDB offers a powerful RESTful API that can be interacted with via any
software that supports making HTTP requests. You used the curl command-line utility to create a
database and documents, modify documents, and delete documents. Although the syntax and process
of using curl for this purpose is quite straightforward, it’s not ideal for day-to-day database
management. Imagine retrieving all the documents in a database that contains thousands, or even
millions, of documents. The results would be completely unreadable.

Fortunately, CouchDB also comes with a graphical interface to the database: Futon. Futon is a web-
based administration tool that is built in HTML, CSS, and JavaScript. It is an interface that is as simple to
use as it is easy on the eye. You may remember Futon from Chapters 2 and 3, when you tested the
installation of CouchDB.

By default, you can access Futon by the /_utils URI of the CouchDB server. So, if you have
CouchDB installed on your local machine, you can access Futon via the URL
http://127.0.0.1:5984/_utils. Enter this URL into your favorite web browser to launch Futon.

On Futon’s start page (Figure 5-1), you will notice that the interface is divided into two key sections:
the navigation bar located on the right and the main area on the left. The navigation bar has links to
some useful CouchDB tools, as well as links to some recent databases you have worked on. This list may
be empty at this point, but you will notice it populating as you start to use Futon. You will take a look at
the tools Futon provides later in this chapter. The main area of the CouchDB interface is where you will
spend most of your time interacting with CouchDB databases—creating databases and documents,
uploading attachments, modifying documents, compacting databases, and deleting databases.

In the main section of the Futon interface, you should see an “Overview” heading at the top. This is
a breadcrumbs navigation trail, and when you start navigating into databases and documents, this area
will give you an easy way of getting back to previous pages. Beneath the heading bar, you should see a
plus icon (+) and a Create Database link. As you might expect, this link simply allows you to create a new
CouchDB database. You’ll come back to that feature in a moment. Below this link, you should see a table
with four columns: Name, Size, Number Of Documents, and Update Seq. If you followed Chapter 4 of
this book, you should see a single row for the contacts database. You’ll notice that the name of the
database is highlighted in bold and is red. This is because this is a link to navigate to a page where you
can manage that particular database.

In the footer of the databases table, there is a pagination bar, which will tell you the total number of
databases on the server, as well as allow you to define how many databases should be displayed per page
(ten is the default setting). If you have at least ten databases, you can navigate from page to page using
the Previous Page and Next Page links on the right side of the pagination bar.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

64

Figure 5-1. The Futon start page, or Overview page

 ■ Note If you see more than one database, it’s quite likely that you did not delete the databases that were
automatically generated by the Futon Test Suite in Chapters 2 and 3. Don’t worry about these databases; you can
delete them through Futon in due course if you so wish. Alternatively, you can just leave them there; they’re not
doing any harm.

That’s all there is to the Futon start page. As you create more CouchDB databases, the table on this
page will start to populate with more rows. Let’s move forward and create a new database.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

65

Creating a Database
Click the Create Database link near the top of the page, just beneath the Overview header. This will pop
up a modal dialog box, like the one shown in Figure 5-2.

Figure 5-2. Create New Database dialog box

The dialog box asks you to enter a name for the database. It informs you that the database name
must contain only lowercase characters (a–z), digits (0–9), or any of the characters _, $, (,), +, -, and /. As
a general rule of thumb, I prefer to name databases using only lowercase characters and the underscore
(_) character. This avoids any potential issues with URL encoding and escaping characters when using
the API. In this dialog box, enter books in the Database Name field, and click the Create button.

CouchDB will create a new database with the name books and will take you directly to its Futon
page, http://127.0.0.1:5984/_utils/database.html?books. Figure 5-3 shows the default view of this
page.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils/database.html?books

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

66

Figure 5-3. The New books database page

You may notice that the books database has been added to the Recent Databases list. Also, notice
that in the heading bar in the main section of Futon, alongside Overview you have an arrow and the
name of the database. Also notice that the text Overview is now clickable. This will bring you back to the
Futon start page. On the right side of the heading bar, you will notice a small gray shape that looks like a
signpost. This is a link to the raw view of the database, showing the JSON code that it is made up of. Click
that link now to view what the raw code looks like.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

67

Figure 5-4. Raw JSON view of the database

As you can see in Figure 5-4, this page displays the results of the specialized view _all_docs for the
books database. You may recall this specialized view from Chapter 4, when you used curl to get this
same data from the contacts database. You will notice that the URL is
http://127.0.0.1:5984/books/_all_docs. Try changing the books segment of the URL to contacts and
see what happens. If you followed Chapter 4, you should see a result like the one shown in Figure 5-5.

Download at WoweBook.Com

http://127.0.0.1:5984/books/_all_docs

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

68

Figure 5-5. The raw view of the contacts database from Chapter 4

Now, go back to the Browse Database page for the books database using your web browser’s Back
button. You should be back at the page that looks like Figure 5-3. Below the heading bar, you should see
three links: Create Document, Compact Database, and Delete Database. These links are pretty self-
explanatory, and you will learn about them in more detail in a moment.

A bit further to the right of these links you’ll notice a “Select view” drop-down box. Currently, “All
documents” is selected. If you expand the list, you should also see the Design Documents and
Temporary View options. Neither of these will be particularly useful right now, but you will learn a lot
more about views in Chapters 7, 8, and 9.

Below these links and the “Select view” drop-down box, there is another table, similar to the one
you saw on the Futon start page. This time, however, there are only two columns: Key and Value. You’ll
notice that the Key column has a darker shade of gray background, and there is an arrow on the right
side of the column heading. This is used to change the sort order of the data in the table, and you will see
it in action shortly when you start working with documents. This table’s footer is identical to the one you
saw previously, with pagination information and links. It works exactly the same as the one in the table
of databases.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

69

Click the Overview link in the heading bar to return to the Futon start page. You’ll notice that there
are now two rows in this table—one for the books database and one for the contacts database
(Figure 5-6). Rows in this table are ordered alphabetically, so books will appear above contacts.

Figure 5-6. The Futon Overview page—now with the books database

Let’s create a third database. Click the Create Database link once more. Enter whatever you like for
the database name. I used the name games, but it really doesn’t matter. When CouchDB has created the
database, you will be brought to the database’s page on Futon. It should be pretty much identical to the
page you saw moments ago for the books database. This time, however, you’re just going to go ahead
and delete the database. Click the Delete Database link beneath the heading bar. Futon will ask you to
confirm that you want to delete it, because it is irreversible (Figure 5-7).

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

70

Figure 5-7. Delete Database dialog box

Click the Delete button to confirm the deletion. You will now be back at the Futon start page, and
you’ll notice that there is no sign of the database you just deleted. Next you will look at creating
documents in your database.

Creating a Document
Click books to open the Futon page for that database once again. This time, click the Create Document
link. A modal dialog box will appear asking you to enter a unique ID of the document or to leave the field
empty to get an autogenerated ID (Figure 5-8).

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

71

Figure 5-8. Create New Document dialog box

For the first document, leave the Document ID field blank, and click the Create button. CouchDB
will automatically assign the document a universally unique identifier (UUID) and revision number.
When the document has been created, you will automatically be brought to a page that allows you to
work with that document. This page will look similar to Figure 5-9. Please note that the values of the _id
and _rev fields will be different from the ones shown in the figure.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

72

Figure 5-9. New document page

In the heading section, you will notice that the document ID has been added to the breadcrumbs
trail. Like in the database view page, you also get a link to view the raw data. Below the heading, there are
four links: Save Document, Add Field, Upload Attachment, and Delete Document. Again, these links are
self-explanatory. Below these links once again is a table, with Field and Value columns. Currently there
should be two rows, one for the _id field and one for the _rev field. You will notice at the top right of the
table there are two tabs: Field (currently selected) and Source. Click the Source tab to view the JSON
source code of the document. The footer in this table is not like the ones you have seen previously, but
rather it has Previous Version and Next Version links (which are likely grayed out at this point) for
viewing other versions of the document. As I pointed out in Chapter 1, every time you update a
document in CouchDB, the existing document is not in fact modified, but rather a new revision is
created to reflect the changes. These links allow you to flick through previous versions of the document
as you require.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

73

■ Caution Previous versions of CouchDB documents are deleted when the database is compacted, so don’t
assume that old revisions will always be available.

Let’s remove this document altogether by clicking the Delete Document link. Again, you’ll be asked
to confirm that you want to delete the document. Click the Delete button, and you will be brought back
to the books database page. Now create another document, but this time give it a meaningful ID, rather
than asking CouchDB to generate one. Click the Create Document link, and this time when asked for a
document ID, enter 978-1-4302-7237-3. That is the International Standard Book Number (ISBN) for this
book. Once again, you will see a page similar to the page for the previous document you created, except
that this time the _id field value will be 978-1-4302-7237-3.

Right now, this data isn’t exactly very useful; it merely tells you the ISBN of some book. Let’s make it
more useful by entering some more fields. Click the Add Field link. A new row will be added to the table,
with a text box shown in the Field column, with the value “unnamed” selected. After the text box, you
will see two tiny images, a green check and a red cross. Clicking the green check mark saves any changes
you make; clicking the red cross cancels and reverts it to the previous value. You can see this field in
Figure 5-10.

Figure 5-10. Adding a field to a document

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

74

Enter title as the field name, and press Enter to close the text box. You will notice that the text will
now be a noneditable label, and it has a gray x icon to the left of it. This allows you to delete the field. Try
clicking the icon; the field will be removed immediately. Once you have done this, add the field again.
Changing the field name is very simple—simply double-click the name, and it will show up as an
editable text box once again. You can change the name of any field except for the _id and _rev fields. In
the Value column, you will see that the title field is set to null. This is modified in the same way as the
field name column is, by double-clicking the current value to display an editable text box. Enter
Beginning CouchDB in this text box, and press Enter to leave the edit mode. If you have entered it
correctly, the text should turn green.

■ Caution It is important to include the surrounding double quotes when entering string values into the
database—these tell CouchDB that you are entering a string. If you forget the quotes, you will get an error
message: “Please enter a valid JSON value (for example: “string”).” Simply wrap your value in double quotes, and
it should save.

Let’s add some more fields to the document now. The following are the field names and values I
have entered for this document:

Field Value

author "Joe Lennon"

print_price 34.99

ebook_price 24.49

publisher "Apress"

tags ["database", "couchdb",
"beginner"]

In Figure 5-11, you will see how these fields look on the document page in Futon.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

75

Figure 5-11. The complete “Beginning CouchDB” document

You will notice that the two price fields do not have double quotes wrapped around them. The
reason for this is that these values are numeric, not strings. You will also notice that the tags field has an
array of three string values: "database", "couchdb", and "beginner". Futon nicely displays these values
each on a separate line, prefixed by each tag’s index in the array.

An important thing to note at this point is that all these new fields have not yet been saved to the
database. To do so, you need to click the Save Document link above the table, which will commit these
changes to the server. When you do so, the page will refresh, and you will notice that the revision
number has changed, and in the footer it will say that it is “Showing revision 2 of 2.” You will also be able
to click the Previous Version link to look at the old revision.

Next, let’s take a look at how all of this looks in JSON representation. Click the Source tab, located at
the top right of the document table. The source should look something like this:

{
 "_id": "978-1-4302-7237-3",
 "_rev": "2-1751458128",
 "title": "Beginning CouchDB",
 "author": "Joe Lennon",

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

76

 "print_price": 34.99,
 "ebook_price": 24.49,
 "publisher": "Apress",
 "tags": [
 "database",
 "couchdb",
 "beginner"
]
}

You can see a similar view of the data, albeit not as nicely formatted and without the syntax
highlighting, by clicking the gray shape on the right side of the heading bar. This will show the raw JSON
data, as it is retrieved from the database.

Uploading Attachments
CouchDB features built-in support for attaching files to documents in the database. These are
referenced in a special _attachments attribute of the document, in a JSON structure consisting of the
name of attachment, the content type (MIME type), and the attachment data itself, encoded in base64.
There are no limits on the number of attachments a document can have.

Futon makes it very easy to attach files to documents. On the document’s page in Futon, click the
Upload Attachment link. A modal dialog box will appear asking you to select the file you want to attach
to the document. It informs you that a new revision of the document will be created immediately after
the upload has completed, so there is no need to save the document to commit the changes. Figure 5-12
shows the dialog box.

Figure 5-12. Upload Attachment dialog box

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

77

In this example, I am going to attach an image file, specifically the cover image for this book. If you
want to download this image, you can find it at the following URL:
http://www.apress.com/resource/bookcover/9781430272373?size=medium. The image is in GIF format
and is less than 4KB in size. In the Upload Attachment dialog box, click the Choose File/Browse button,
and select the file you want to attach. Then click the Upload button to save the attachment to the
database. When the upload has finished, you will be brought back to the document page, and you will
notice that there is now an _attachments field, and a new revision of the document has been created, as
shown in Figure 5-13.

Figure 5-13. A document with an attachment

You’ll also notice that the name of the file that is attached to the document is in fact a link. Clicking
this link will display the image itself, because it is stored in the database. You can delete attachments
using the small delete icon to the left of the attachment filename. You will not be asked to confirm the
deletion, but it is worth noting that the attachment will not be deleted from the document until you click
the Save Document link.

Feel free to add some more documents to the database. For each book you add, you can have
different fields if you so want. There is no strict schema to adhere to, so if you have a book that does not

Download at WoweBook.Com

http://www.apress.com/resource/bookcover/9781430272373?size=medium

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

78

have an e-book version and hence has no e-book price, you do not need to include that field in the
document. Figure 5-14 shows how my books database looks, after I added some more book documents.

Figure 5-14. A more complete example

Compacting the Database
At this point, you should have several books in the database. I have 11 in my database, but whatever the
number is, it doesn’t really matter. Return to the Futon start page by clicking the Overview link in the
breadcrumbs trail in the heading section of Futon. The information about your books database should
be significantly different from what it was earlier. Mine tells me that it is 419.6KB in size, with 11
documents and an Update Seq value of 33. This is quite a large size for a database with only 11
documents. This is caused in part by the fact that I have included image attachments for several of those
documents. This size is further padded, however, by the fact that the database retains deleted
documents and older revisions of documents, including the attachments. This can lead to wasted disk
space, because much of the data is merely duplicated with each revision.

If you are satisfied that you do not need previous revisions and that you won’t need to restore
previously deleted documents, you can help reduce the database size by compacting the database.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

79

Futon includes a link to compact the database—simply click the database name on the Futon start page
(in this case, the books database). On this page, next to the Create Document link, you will see the link
for Compact Database. Click this to begin compacting. Before the process starts, you will be warned that
deleted documents and previous revisions will be removed and that the operation is irreversible and can
take a while for large databases (Figure 5-15). Click the Compact button.

 ■ Note When a CouchDB database is compacted, the database file is rewritten, permanently removing out-of-
date revisions and previously deleted documents from the file. Once you run compaction, there is no way of
recovering this data.

Figure 5-15. Compact Database dialog box

Because the database is still quite small, compaction will complete very quickly. When it is done,
you may be wondering what is different, because you will simply be returned to the database page in

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

80

Futon with no indication of anything being changed. The first thing that will be different will be that
previous revisions will no longer exist. Click any document ID that has been previously revised to open
that document’s page. Now try to click the Previous Version link in the footer of the table. You should get
a message similar to that shown in Figure 5-16.

Figure 5-16. Revision not found error message

The next major difference is the database size. Click the Overview link at the top of the page to
return to the Futon start page. The size of the books database should be much smaller. My 419.6KB
database was reduced to just 105.7KB by compacting it. As I’m sure you can imagine, these savings
become even more important as the database grows in size.

Futon Tools
In Futon’s navigation bar, you will see a series of tools: Overview, Configuration, Replicator, Status, and
Test Suite. You have already seen two of these links in great detail. The Overview link simply brings you
to the Futon start page, from where you can work with the databases stored on your CouchDB server.
The Test Suite option runs a series of tests to ensure that your CouchDB server is running and working
properly. You ran the Test Suite in Chapters 2 and 3, after you installed CouchDB. So, now let’s look at
the three options that you have not yet visited at this point.

Click Configuration to open the CouchDB Configuration page (Figure 5-17). This page lists all the
different CouchDB configuration options, which can be found in the configuration files on the server. It
is can be easier to read and update the different options here than it is to change the settings in the
configuration files. Please note, however, that you will still need to restart the CouchDB server in order
for some of these changes to take effect.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

81

Figure 5-17. Futon Configuration page

Generally speaking, you will not want to mess with these settings, because doing so could break
your CouchDB installation. One change you may want to make is the bind_address option in the httpd
section. By default this is set to 127.0.0.1. If you try to connect to your CouchDB database from another
computer on your network, you’ll notice that it will fail. For example, my CouchDB server is on a Mac OS
X machine with the IP address 192.168.1.8. I have a Windows laptop that should be able to access this
CouchDB server’s Futon interface by visiting http://192.168.1.8:5984/_utils in my web browser.
However, when I do so, Firefox (my web browser of choice on Windows) gives a page load error. This is
because a bind_address value of 127.0.0.1 allows only the computer running the server to access
CouchDB.

By changing the bind address from 127.0.0.1 to 0.0.0.0, you can allow remote connections to your
CouchDB database, from any machine (local or remote) that can access the server. By doing so, I was
successfully able to open Futon on my Windows machine, as shown in Figure 5-18. You do not need to
restart the server for this particular change to take effect.

Download at WoweBook.Com

http://192.168.1.8:5984/_utils

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

82

Figure 5-18. Accessing Futon remotely from a networked computer

 ■ Caution If you change your bind address to something other than 0.0.0.0, you will no longer be able to access
Futon (or CouchDB itself) using the local loopback IP address 127.0.0.1. Instead, you will need to use the IP
address you set in the bind_address configuration option (for me it is 192.168.1.8).

Now let’s take a brief look at the Status page. This will not be of much use to you at this point,
because you will have no processes or tasks running that you can view on this page. This is useful when
you have large databases and are using the Futon Replicator to replicate these databases between
instances or if you are compacting a large database. Right now, however, all you should see is something
similar to Figure 5-19.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

83

Figure 5-19. Futon Status page

Finally, let’s take a look at the Replicator tool. One of the key features of CouchDB is that it is easy to
replicate across instances and servers, making it an excellent option for a highly scalable database.
Futon includes an easy-to-use replicator that allows you to replicate changes from one database to
another. The databases can reside on the same machine or on a remote machine; it does not matter. You
will revisit the topic of replication later in this book, but for now, let’s check out Futon’s Replicator tool
by replicating the books database to a second local database.

First, click the Overview link (either at the top of the page or in the Tools menu in the right
navigation bar) to return to the Futon start page. From here, click Create Database, and give the
database the name more_books. If you like, you can create some new book documents in this database,
but it’s not necessary. To open Futon’s replication tool, click the Replicator link in the Futon navigation
bar. On this screen, you will see a box with some options for replicating a database. Under the “Replicate
changes from:” option, make sure the “Local database” radio button is selected, and from the drop-
down list, ensure that you pick the books database. Under the “to:” label, make sure that Local database
is selected also, but from this drop-down, select the more_books database. You can see these options in
Figure 5-20.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

84

Figure 5-20. Futon Replicator page

When you’re ready to replicate the database, click the Replicate button. CouchDB will immediately
begin the replication process, and it shouldn’t even take a second because the database is so small.
When it has completed, the Replicator screen will look similar to that in Figure 5-21.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

85

Figure 5-21. Futon Replicator result

 ■ Note If you created some books in the more_books database before you performed the replication, those
books will still be available, alongside the newly replicated books documents (assuming no conflicts between the
two databases, of course).

Now return to the Overview page, and you’ll notice that the more_books database will have the
same number of documents as the books database. The size may be larger, but that is because it has kept
placeholders for each revision of the database. If you want, you can compact the more_books database
to get it to match the size of the books database.

Of course, in a real scenario, replicating a database on the same server doesn’t have much use, and
you’d be far more likely to replicate the database across a network to a remote CouchDB server. This
example simply shows how easy it is to replicate a CouchDB database.

Download at WoweBook.Com

CHAPTER 5 ■ USING FUTON: THE COUCHDB ADMINISTRATION INTERFACE

86

Summary
In this chapter, you learned all about Futon, CouchDB’s web-based administration tool. You learned
how to create and delete databases, create documents, add fields, upload attachments, delete
documents, compact databases, replicate databases, and more. As you have seen, Futon itself is quite
powerful and is a very simple client for managing your CouchDB database.

In the next chapter, you will learn about JSON (JavaScript Object Notation), the format in which
CouchDB documents are stored.

Download at WoweBook.Com

C H A P T E R 6

■ ■ ■

87

Introduction to JSON

Documents in a CouchDB database are, put simply, data structures defined using JavaScript Object
Notation (JSON). In this chapter, you will learn all about JSON. Starting with the basics, you will learn
what exactly JSON is and how it works. You will see the different data types that a JSON object can work
with, and then you’ll get your hands dirty by creating JSON structures and testing them using JavaScript
and a web browser. You will then investigate how CouchDB uses JSON, providing you with the
knowledge you need to leverage the simplicity and power of this format in your CouchDB applications.

What Is JSON?
JSON is an open, text-based, human-readable data interchange format derived from the JavaScript
programming language. It is extremely lightweight, and despite its close connection to JavaScript, it is
language-independent, with parsers available for virtually every programming language in existence.

JSON is most commonly used in web application development, particularly those applications that
employ Ajax requests to asynchronously fetch data from the server. This does not mean it is restricted to
web applications, however; it can be used as a data format in any situation where information needs to
be stored as text.

If you are already familiar with JSON, you may want to skim through this chapter, at least up until
the “CouchDB and JSON” section, which introduces how JSON is employed in CouchDB.

Why JSON?
The main advantage of using JSON as a data format is its pure simplicity. It is very simple to write and
read JSON, from both human and computer perspectives. At its core, JSON is merely a collection of
name/value pairs defined inside an object, and its basic structure makes it perfect for transporting data
in an independent and lightweight manner.

Another advantage of JSON is its syntax, which uses conventions that programmers familiar with
languages such as C, C++, Java, PHP, Python, and JavaScript should be able to follow. JSON parsers are
available for most modern programming languages; a comprehensive list is available at
http://www.json.org. The popular server-side web development language PHP includes native JSON
support from version 5.2, and Python and JavaScript also have built-in JSON support.

For web applications, JSON makes a lot of sense. Some modern web browsers include support for
native JSON encoding and decoding. Many web services and feed providers are making their APIs
available with the option to return a response in JSON format. Yahoo! Pipes allows you to take one or

Download at WoweBook.Com

http://www.json.org

CHAPTER 6 ■ INTRODUCTION TO JSON

88

more existing feeds, regardless of the format they are available in, and mash them up to produce output
in a number of formats, including JSON.

■ Note At the time of writing, native JSON support is available in Firefox 3.5 and Microsoft Internet Explorer 8. For
browsers that do not support JSON natively, the eval() function can be used to translate a string containing JSON
code into JavaScript objects.

These are the other benefits of JSON:

• It is an open standard.

• It has internationalization support because it uses Unicode.

• It is easy to map to object-oriented frameworks.

• It is simple to map data from an existing database or XML to a JSON structure.

JSON 101: Syntax and Data Types
In JSON, data structures are defined as either an object or an array. You will now look at each of these
concepts in more detail.

An object is an unordered collection of name/value pairs. These pairs each contain a piece of data
that describes the object to which it belongs. The name is the description of what the data represents,
and the value is the data itself. For example, a Car object may have the name/value pairs listed in
Table 6-1.

Table 6-1. Car Object

Name Value

Make "Ford"

Model "Mustang"

Year 2009

Body "Coupe"

Color "Red"

In JSON, objects are defined between an opening brace ({) and a closing brace (}). Each name/value

pair is defined in the format name:value (name colon value), and pairs are separated using a comma (,).
Listing 6-1 shows this syntax.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

89

Listing 6-1. JSON Object Syntax

{
 name1: value1,
 name2: value2,
 name3: value3,
 ...,
 nameN: valueN
}

An array is an ordered list of values, indexed by the position of the value in the list. An example of an
array would be a list of the days of the week, as illustrated in Table 6-2.

Table 6-2. “Days of the Week” Array

Index 0 1 2 3 4 5 6

Value "Sunday" "Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday"

You define arrays in JSON using an opening bracket ([) and a closing bracket (]), separating each

value with a comma (,). Listing 6-2 shows the syntax of an array.

Listing 6-2. JSON Array Syntax

 [value1, value2, value3, …, valueN]

It is important to note that both of these structures can be nested. In other words, an object can
contain a value, which is itself an object or an array. Likewise, an array can contain a value, which is itself
an array or an object.

Each value in a JSON object or array must be represented using a valid data type. There are six basic
types available for use in JSON:

• String: This is used for character data such as names, addresses, and e-mail
addresses. These are defined in Unicode and are wrapped in double quotes ("). If
your string needs to include a double quote, you can escape it with the backslash
character (\). An example of a string value is "Joe Lennon".

• Number: This is used for numeric data, including integers and floating-point
numbers. An example of a number value is -901.8563.

• Boolean: This is a logical data type having one of two values: true or false.

• Null: This is used where a field has no value or an unknown value. Denoted simply
as null.

• Object: A value can itself be an object, another collection of name/value pairs. In
the previous Car example, you may have a field engine, which could be an object
itself with fields such as gas_type and cubic_capacity.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

90

• Array: A value can also be an array, representing another list of ordered values.
Again, take the example of a Car object. This could have a field called
previous_owners, which would be an array of previous owners. Each value in this
array could be a Person object.

Let’s look at examples of both of these structures. First translate the Car object from Table 6-2 into a
JSON object, as shown in Listing 6-3.

Listing 6-3. Car Object in JSON

{
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red"
}

Now let’s take a look at the “days of the week” array from Table 6-2 and how it would be represented
in JSON (see Listing 6-4).

Listing 6-4. “Days of the Week” in JSON

 [“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”]

Each value in the array is automatically assigned a numeric index based on its position in the array.
This index starts with 0 and increments by 1 for each consecutive value. Later in this chapter, you will
see the significance of this index value and the order in which array values are defined. Finally, let’s
make some adjustments to the Car object, adding some of the fields I suggested when discussing the
data types earlier in this section, namely, engine and previous_owners (see Listing 6-5).

Listing 6-5. Modified Car Object in JSON

{
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 4600
 },
 previous_owners: [
 {
 name: "John Smith",
 mileage: 1000
 },
 {

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

91

 name: "Jane Hunt",
 mileage: 2500
 }
]
}

As you can see in Listing 6-5, you have added a field called engine, which is itself a JSON object,
made up of two fields—gas_type and cubic_capacity. You have also added a field previous_owners,
which is an array of objects, each of which contains two fields—name and mileage.

In the next section, you will investigate further examples and see how you can actually work with
this data using JavaScript.

Working with JSON
The best way to get to grips with JSON structures is to actually define and use them. In this section, you
will use some basic JavaScript to define objects and arrays and to access the data they contain. To follow
these examples, simply enter the code from the listings into a text file using your favorite text editor, save
it to a location on your hard disk, and then open that file using your web browser.

Defining JSON Structures
Let’s get a basic outline HTML document together so you can start working on some examples. Open
your favorite text editor, and create a new plain-text file. Save the file as index.html, and store it
somewhere on your hard disk that will be easy to find. For example, on my Mac OS X environment, I
have created a folder in my home folder (/Users/joe) called json and saved index.html in it. Next, add
the contents of Listing 6-6 to the file and save it again.

Listing 6-6. index.html—Basic Structure

<html>
 <head>
 <title>My Cars</title>
 </head>
 <body>
 <h1>My Cars</h1>
 <script type="text/javascript">

 </script>
 </body>
</html>

Now open this file in your favorite web browser; you should see something like Figure 6-1.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

92

Figure 6-1. Viewing index.html in a web browser

The first thing you are going to do is create your JSON object. You do this between the opening and
closing <script> tag. The object definition is exactly as was illustrated in Listing 6-5, except that you are
also assigning the object to a JavaScript variable name, which is in this instance car (Listing 6-7).

Listing 6-7. index.html—Adding the JSON Object

<html>
 <head>
 <title>My Cars</title>
 </head>
 <body>
 <h1>My Cars</h1>
 <script type="text/javascript">

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

93

 var car = {
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 4600
 },
 previous_owners: [
 {
 name: "John Smith",
 mileage: 1000
 }, {
 name: "Jane Hunt",
 mileage: 2500
 }
]
 }
 </script>
 </body>
</html>

If you save the file and reload your web browser, you’ll notice that nothing has changed. The reason
is that you have simply defined your JavaScript object; you have not yet done anything with it. Let’s
make sure everything is working as it should be by adding some code to output the car’s details to the
screen (Listing 6-8).

Listing 6-8. index.html—Outputting the Car’s Details

<html>
 <head>
 <title>My Cars</title>
 </head>
 <body>
 <h1>My Cars</h1>
 <script type="text/javascript">
 var car = {
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 4600
 },
 previous_owners: [
 {

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

94

 name: "John Smith",
 mileage: 1000
 }, {
 name: "Jane Hunt",
 mileage: 2500
 }
]
 }

 document.write('<h2>'+car.make+' '+car.model+'</h2>');
 document.write('Year: '+car.year+'
');
 document.write('Body Type: '+car.body+'
');
 document.write('Engine: ');
 document.write(car.engine.cubic_capacity+'cc '+car.engine.gas_type);
 document.write('<h3>Previous Owners:</h3>');
 document.write('');
 for(person in car.previous_owners) {
 document.write('');
 document.write(car.previous_owners[person].name+' (');
 document.write(car.previous_owners[person].mileage+' miles)');
 document.write('');
 }
 document.write('');
 </script>
 </body>
</html>

This time around, when you save the file and open it in your browser, you should see a more
interesting result—like the one shown in Figure 6-2.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

95

Figure 6-2. Viewing index.html output in the browser

In Listing 6-8, you’ll notice that you are using the function document.write repeatedly. This merely
tells JavaScript to output the value between the parentheses to the document. In this example, you are
creating a level-two HTML heading with the car object’s make and model values. Notice how you access
the values in the car object using the syntax object_name.field_name. You then use a similar technique
to get the year and body values. As you saw previously, the field engine is itself an object, with two
fields—gas_type and cubic_capacity. To access these fields, you use the syntax
object_name.sub_object_name.field_name.

The field previous_owners is a little trickier, because it is an array. You are using the unordered list
HTML tag () to create a new list. You need to use the array index to tell JavaScript which item in the
array you want to display. So, you could simply use car.previous_owners[0].name and
car.previous_owners[1].name, and it would work the same way as in this coding example. But how do
you know how many values are in the array? It’s easy in this example because the number is small, but if
it were large, it would be very difficult to keep track of, not to mention the amount of repetitive code to

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

96

output all the values. Also, if the contents of the array were to change in the object definition, you would
also need to change the output code.

Looping Through JSON Arrays
A much easier solution is to use a for loop to iterate through the items in the array and output them. In
this example, we are saying that “For every person in the field car.previous_owners, execute the code
between the braces.” As you can see, this code outputs a list item with the person’s name and the
amount of mileage they have driven.

You are not restricted to just outputting the values in the object; you can also manipulate them and
perform calculations on them where relevant. Let’s modify the car example slightly. First let’s create a
current owner object. This will be the same type of object as each object in the previous_owners array,
with two fields—name and mileage (Listing 6-9). When you are outputting your data to the screen, you
will then calculate the total mileage for the car and output that too.

Listing 6-9. index.html—Working with the Object Data

<html>
 <head>
 <title>My Cars</title>
 </head>
 <body>
 <h1>My Cars</h1>
 <script type="text/javascript">
 var car = {
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 4600
 },
 current_owner: {
 name: "Joe Lennon",
 mileage: 500
 },
 previous_owners: [
 {
 name: "John Smith",
 mileage: 1000
 }, {
 name: "Jane Hunt",
 mileage: 2500
 }
]
 }

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

97

 var mileage_total = 0;

 document.write('<h2>'+car.make+' '+car.model+'</h2>');
 document.write('Year: '+car.year+'
');
 document.write('Body Type: '+car.body+'
');
 document.write('Engine: ');
 document.write(car.engine.cubic_capacity+'cc '+car.engine.gas_type);
 document.write('<h3>Owners, Past and Present:</h3>');
 document.write('');
 mileage_total += car.current_owner.mileage;
 document.write('');
 document.write(car.current_owner.name+' (');
 document.write(car.current_owner.mileage+' miles)');
 document.write('');
 for(person in car.previous_owners) {
 mileage_total += car.previous_owners[person].mileage;
 document.write('');
 document.write(car.previous_owners[person].name+' (');
 document.write(car.previous_owners[person].mileage+' miles)');
 document.write('');
 }
 document.write('');
 document.write('Total Mileage: '+mileage_total);
 </script>
 </body>
</html>

The first major change to this file is that you have added a new field to your Car object,
current_owner. This is an object with two fields, name and mileage, which are the same type as each
object in the previous_owners array. The next change is that you have added a line after your object
definition, which creates a mileage_total variable and sets its value to 0. You will use this variable to
hold the total mileage the car has done between all owners, past and present. The next important
modification is that before you loop through the previous_owners array, you add the mileage the
current_owner has done to the mileage_total, and you output the current owner’s details to the list. It is
important that this is done outside the previous_owners loop, because the current_owner is not part of
that array but rather an independent object field. Moving down to the for loop, you’ll notice that you
add the mileage of the previous_owners to the mileage_total variable. This will occur, of course, for
every iteration of the loop, so each previous owner’s mileage will be added to the total. Finally, after the
loop has finished, you output the mileage_total to the screen.

If all goes according to plan, when you save your index.html file and reload it in your browser, you
should see a result similar to that shown in Figure 6-3.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

98

Figure 6-3. Viewing index.html with current owner and mileage total

■ Note If you are familiar with HTML, you may be thinking that this is all well and good, but couldn’t you do the
same thing with some really basic HTML using many fewer lines of code? Yes, of course you could, but remember
this is a very simple example. In the real world, you might have cars stored in a database and use a programming
language like PHP, Python, Ruby, and so on, to retrieve these records. You could then leverage these languages to
output the data into JSON, which can be returned to JavaScript as the response to an asynchronous HTTP request.
JavaScript can easily read the JSON response and update the web page without needing to refresh the page.
Figure 6-4 illustrates where JSON data fits in the flow of a typical asynchronous web application.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

99

Figure 6-4. Where JSON fits in the traditional web application data flow

Before moving on to the next section, let’s make one final modification to the JSON example. Let’s
assume that the web site you are working with is one for a car dealership. Also assume that this
dealership will have more than one car for sale, so let’s add a couple of other vehicles into the mix.

If you have followed the example and you are not familiar with programming, your instinct may be
to create a second object, car2, and to copy and paste the code for outputting the data to output the
second car’s details. Again, this will work, but it becomes extremely tedious to manage with each
subsequent car you create. Instead, let’s create an array of car objects and then create a loop that will
iterate through this array to output the details of each car (Listing 6-10).

Listing 6-10. index.html—The Final Example

<html>
 <head>
 <title>My Cars</title>
 </head>
 <body>
 <h1>My Cars</h1>
 <script type="text/javascript">
 var cars = [
 {
 make: "Ford",
 model: "Mustang",
 year: 2009,
 body: "Coupe",
 color: "Red",
 engine: {
 gas_type: "Petrol",

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

100

 cubic_capacity: 4600
 },
 current_owner: {
 name: "Joe Lennon",
 mileage: 500
 },
 previous_owners: [
 {
 name: "John Smith",
 mileage: 1000
 },{
 name: "Jane Hunt",
 mileage: 2500
 }
]
 }, {
 make: "Chevrolet",
 model: "Camaro",
 year: 2001,
 body: "Convertible",
 color: "Blue",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 3800
 },
 current_owner: {
 name: "John Daly",
 mileage: 10500
 },
 previous_owners: [
 {
 name: "Tony Bellic",
 mileage: 47000
 },{
 name: "Lisa McIntyre",
 mileage: 12050
 },{
 name: "John Thornton",
 mileage: 18500
 }
]
 }, {
 make: "Dodge",
 model: "Challenger",
 year: 2008,
 body: "Coupe",
 color: "Orange",
 engine: {
 gas_type: "Petrol",
 cubic_capacity: 6100
 },

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

101

 current_owner: {
 name: "Susan Long",
 mileage: 800
 },
 previous_owners: [
 {
 name: "David White",
 mileage: 750
 }
]
 }
]

 for(car in cars) {
 var mileage_total = 0;
 document.write('<hr />');
 document.write('<h2>'+cars[car].make+' '+cars[car].model+'</h2>');
 document.write('Year: '+cars[car].year+'
');
 document.write('Engine: ');
 document.write(cars[car].engine.cubic_capacity+'cc ');
 document.write(cars[car].engine.gas_type);
 document.write('<h3>Owners, Past and Present:</h3>');
 document.write('');
 mileage_total += cars[car].current_owner.mileage;
 document.write('');
 document.write(cars[car].current_owner.name+' (');
 document.write(cars[car].current_owner.mileage+' miles) - current');
 document.write('');
 for(person in cars[car].previous_owners) {
 mileage_total += cars[car].previous_owners[person].mileage;
 document.write('');
 document.write(cars[car].previous_owners[person].name);
 document.write(' ('+cars[car].previous_owners[person].mileage);
 document.write(' miles)');
 document.write('');
 }
 document.write('');
 document.write('Total Mileage: '+mileage_total);
 }
 </script>
 </body>
</html>

In this example, you are creating an array named cars, which contains three items, each of which is
a car object. You then loop through this array, and for each iteration you create a total mileage variable,
set it to zero, and create a horizontal rule, followed by output of the car details. You’ll notice that in this
example the notation has changed from object_name.field_name to
array_name[array_index].field_name. Save your index.html file, and reload your browser window. The
final result should look like Figure 6-5.

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

102

Figure 6-5. The final index.html

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

103

In this section, you have seen a practical example of how to define JSON objects and arrays and how
to access the data in these containers using JavaScript. I hope the practical nature of this section has
provided you with some insight into how useful JSON is for storing simple data structures and how easy
it is to read and produce.

CouchDB and JSON
Up until this point, the primary focus of this chapter has been to serve as a primer for JSON. In this
section, you will explore the different ways CouchDB uses JSON. The most important aspect of
CouchDB’s use of JSON lies in the structure of the documents in the CouchDB database. In essence,
CouchDB documents are plain and simple JSON objects. Every document can have as many fields as
required, and these can be of any valid JSON type, such as strings, numbers, booleans, nulls, objects, or
arrays.

In addition to the data fields, each document has at least two meta fields: _id and _rev. These house
the unique identifier for the document and the document revision number. CouchDB allows base64-
encoded binary attachments to be included in a document, each of which is stored in the _attachments
field, which contains each attachment as a separate object, identified by its file name and containing the
data itself, the MIME type, and the file size of the content. Listing 6-11 shows an example of a CouchDB
document.

Listing 6-11. An Example of a CouchDB Document

{
 _id: "0ff345433e3464ae346453",
 _rev: "4-18435343",
 name: "John Smith",
 salary: 38000,
 department: "Accounts"
}

CouchDB’s special design documents, which house the views in a CouchDB database, are also
defined as JSON objects. Like regular documents, they have at least an _id field and a _rev field, and they
usually have a language field to denote what view server the view should be executed by. The view
functions are stored in a views field, which stores an array of the views contained in the design
document. Each item in this array represents an individual view, and each of these views contains a map
and, optionally, a reduce function. Listing 6-12 shows an example of a design document.

Listing 6-12. An Example of a Design Document

{
 _id: "_design/ordering",
 _rev: "2-233320815",
 language: "javascript",
 views: {
 order_by_salary: {
 map: "function(doc) { emit(doc.salary, doc); }"
 },
 order_by_department: {
 map: "function(doc) { emit(doc.dept, doc); }"

Download at WoweBook.Com

CHAPTER 6 ■ INTRODUCTION TO JSON

104

 }
 }
}

CouchDB uses JSON not only to define documents and design documents but also to return the
results of a view. This is the case for all views, be they special views included with CouchDB, views stored
in design documents, or temporary views that are executed ad hoc. The simplest example of this is the
_all_dbs resource, which simply returns a JSON array with the names of all the databases stored on the
CouchDB server. Point your web browser to http://127.0.0.1:5984/_all_dbs (assuming CouchDB is
installed on your local machine) to see this in action. In my case, it returned the following:
["contacts","oracle","employees","documents"]

Let’s take a look at a more complex example. This time, let’s look at the special _all_docs resource
for one of the databases that was returned in the previous example. In this case, I’m using the employees
database, so I point my browser to http://127.0.0.1:5984/employees/_all_docs. Listing 6-13 shows the
result I get. Please note that I have reformatted the output to make it easier to read.

Listing 6-13. Result of the _all_docs Resource

{
"total_rows": 3,
"offset": 0,
"rows": [

{
"id": "0ff58e85219e87cbd049985916ae6011",
"key": "0ff58e85219e87cbd049985916ae6011",
"value": {

"rev": "4-1095527712"
}

}, {
"id": "2c6ac90a0837c5fdec59840b59ad0d25",
"key": "2c6ac90a0837c5fdec59840b59ad0d25",
"value": {

"rev": "2-929410300"
}

}, {
"id": "3eccc869c36c87149b1dca2a67fec8ce",
"key": "3eccc869c36c87149b1dca2a67fec8ce",
"value" :{

"rev": "2-149107265"
}

}
]

}
As you can see, this resource returns a JSON object with three fields: total_rows, offset, and rows.

The rows value is a JSON array with each of the documents in the database represented as a JSON object,
with three values: id, key, and value. You will learn more about CouchDB views and how to create your
own temporary and permanent views in the coming chapters.

Download at WoweBook.Com

http://127.0.0.1:5984/_all_dbs
http://127.0.0.1:5984/employees/_all_docs

CHAPTER 6 ■ INTRODUCTION TO JSON

105

Summary
In this chapter, you learned about JavaScript Object Notation. You discovered how it came to be and
what the advantages are of using JSON as a data interchange format. You then learned the basics of JSON
structures, namely, data types and the syntax of JSON objects and arrays. You also looked at some
practical examples of JSON in action using JavaScript, before discovering how it is used to power many
aspects of CouchDB.

What you learned about JSON in this chapter should arm you with the knowledge you need to
proceed through the next three chapters, which all relate to CouchDB views. In Chapter 10, you will
meet JSON again as you build full CouchDB applications in JavaScript using CouchApp.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 7

■ ■ ■

107

Introduction to CouchDB Views

Up to this point, your main focus has been on performing CRUD-style operations on your CouchDB
data—creating, updating, and deleting documents and attachments and using the Futon web-based
interface to manage your database. In this chapter, you will investigate how to get some meaningful data
out of your CouchDB database, using the built-in JavaScript view engine.

If you have experience with traditional relational database management systems such as Oracle,
Microsoft SQL Server, or MySQL, you will be used to using Structured Query Language (SQL) queries to
retrieve data from your database. SQL offers a straightforward and simple means of retrieving,
aggregating, and sorting data from a structured database with a strictly defined schema. CouchDB
databases, however, do not have a schema, and therefore using structured queries does not make much
sense.

The best way to illustrate this is by means of an example. Let’s take a basic contacts table and see
how that might be represented in a traditional relational database (Figure 7-1).

 Table 7-1. Traditional RDBMS contacts table

id name phone email fax

1 John Smith 555-372589 jsmith@example.com 555-372590

2 Jane Thomas 555-210897 jthomas@example.com null

3 Emma Watson 555-726531 emma@example.com 555-726532

4 Charles Bing 555-821345 charlesb@exmaple.com null

5 Eric Quinn 555-012796 null 555-098245

As you can see in Table 7-1, the contacts table in a relational database has a strict structure, with

each record or row in the table having a value for each column. If a particular contact doesn’t have a
value for a particular column—for example, Jane Thomas and Charles Bing have no fax number, and
Eric Quinn has no e-mail address—then a null value is inserted in that column. Now, say you wanted to
retrieve the name, e-mail address, and fax number of all your contacts. To do this, you could use a SQL
statement like the following:

SELECT name, email, fax FROM contacts

Download at WoweBook.Com

mailto:jsmith@example.com
mailto:jthomas@example.com
mailto:emma@example.com
mailto:charlesb@exmaple.com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

108

This would successfully return all contacts from table, returning null values where no value is
present in a particular column. It can do this because although there is no value in that column, there is
still physical data stored in that column in the form of a null value.

Now, let’s look at the same data but in a CouchDB database (Figure 7-1).

Figure 7-1. CouchDB contact documents

As you can see in Figure 7-1, CouchDB does not store data in a tabular, structured way but rather as
individual, self-contained documents. Because there is no strict schema to adhere to, documents do not
include null values for fields they do not have data for. Jane Thomas and Charles Bing have no fax
numbers in their documents, and Eric Quinn has no e-mail address in his. Because of this, it would be
much more difficult to use a SQL SELECT statement to retrieve this data, because not all documents have
a value for email and fax.

This is where CouchDB’s support for row-oriented view engines comes into play. Using views, you
can aggregate and report on the documents in your CouchDB database. CouchDB views are completely
separate from the documents they report on, and there is no restriction on the number of views you can
have of any one document. These views are stored in CouchDB in the form of special design documents

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

109

and are replicated along with regular data documents. As you will see later in this book, this means you
can actually replicate entire web applications across CouchDB instances.

When a CouchDB view is queried for the first time, CouchDB runs through every document in the
database and runs the view function against it. It then takes the result of the view, which is stored in the
form of rows of key/value pairs, and stores it in an individual B-tree file. Although this can take quite
some time, it occurs only the first time the view is queried. With each subsequent change of a document,
the view function is executed against that document only—everything else is already stored in the B-tree
and remains unchanged.

Permanent views are views that are stored inside design documents in the database. They are
calculated as described in the previous paragraph. These views are stored and used until such time as
their definition changes. You can also create ad hoc temporary views, which are deleted when they are
no longer being used. These views are not stored in a design document, and they require the result to be
calculated almost every time they are queried. As a result, they are highly inefficient and should be
avoided on production systems if possible.

Creating Views
The easiest way to get started creating views is to run some temporary views using the Futon interface.
For a detailed overview of Futon, see Chapter 5 of this book. I have created a database called contacts
and populated it with the five records, as shown in in Figure 7-1. This database looks like Figure 7-2 in
Futon.

Figure 7-2. The contacts database in Futon

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

110

Futon makes it very simple to create temporary views of this data. To the top right of the key/value
table, you will see a “Select view” drop-down box. Currently, “All documents” should be selected.
Choose “Temporary view” from this list to navigate to the temporary view builder page (Figure 7-3).

Figure 7-3. Temporary view builder

On this page, you will notice that the key/value table has been replaced by a two-column View Code
box. In the left column you have the map function, and in the right column you have the optional reduce
function. Don’t worry about the reduce function for now, because I will discuss this in much further
detail in Chapter 8 when you look at the concept of map/reduce in detail.

In the Map Function column, you will see the code shown in Listing 7-1.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

111

Listing 7-1. The Default Map Function

function(doc) {
emit(null, doc);

}

This is an example of the map function of a CouchDB view. It takes the document object doc as an
argument and outputs results using the emit(key, value) function. Each call to emit corresponds to a
row in the view, assuming that the document is successfully processed for all views in the design
document. Every time a view is requested, all documents that have been added, updated, or deleted will
be processed and inserted in the view, before returning a response.

Beneath the Map Function column you will find a Run button. Click this button to execute the
temporary view (Figure 7-4).

Figure 7-4. Temporary view results

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

112

As you can see, the results include key/value pairs that match up to the key and value you passed to
the emit function in your view. You passed null as the key and doc (the document object) as the value. In
the results, for each document the key is null, and the document itself is the value. Let’s modify the
temporary view function, this time passing the document ID as the key argument to the emit function.
This allows you to filter and sort your view by the document ID (Listing 7-2).

Listing 7-2. Using Document ID as a Key

function(doc) {
 emit(doc._id, doc);
}

Click the Run button to execute the view. This time, the results in the Value column should be the
same as before, but in the Key column you’ll see that it is showing the document ID for each document.

Because your view is written in JavaScript, you can use its power and flexibility to filter the results.
For example, you may want to return the names and phone numbers of only those contacts who have a
fax number. Let’s create this view now (Listing 7-3).

Listing 7-3. Returning Records for Contacts with Fax Numbers

function(doc) {
if(doc.fax && doc.name && doc.phone)

emit(doc._id, {Name: doc.name, Phone: doc.phone});
}

■ Note CouchDB views use a style of dynamic typing known as duck typing to determine the semantics of an
object based on its current properties. You can see an example of this in Listing 7-3, where you check that a
document has fax, name, and phone properties before calling the emit function.

This view returns three only contacts—John Smith, Emma Watson, and Eric Quinn. In addition, it
returns the value for each contact as a key/value pair object with the fields Name and Phone. The results
are shown in Figure 7-5.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

113

Figure 7-5. Names and phone numbers of contacts with fax numbers

Permanent Views
The easiest way to create a permanent view in Futon is to first create a temporary view as described in
the previous section. When you are happy with the results your view returns, you can use the Save As
button, found in the Reduce Function column, to save your view as a design document in the database.

To see this in action, let’s save the view you created to return the names and phone numbers of only
those contacts with fax numbers in the previous section. In the temporary view builder page, make sure
the Map Function column contains the code from Listing 7-3, and check that it works as expected by
clicking the Run button. If the results look correct, save the view as a design document by clicking the
Save As button.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

114

Figure 7-6. Save View As dialog box

In the Save View As dialog box that appears, as shown in Figure 7-6, save the view to the design
document contacts (_design/contacts), and give it a name such as get_fax_contacts. When you’re
ready, click the Save button to persist the view to a design document.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

115

Figure 7-7. The get_fax_contacts view in the contacts design document

When the page refreshes, you will be viewing the page for the new permanent view,
get_fax_contacts (Figure 7-7). This page is similar to the temporary view builder page. To show the code
behind the view, click View Code in the box immediately above the Key/Value table. Once again, you
should see the Map Function and Reduce Function columns with the Run and Save As buttons. The
main differences between this page and the temporary view builder are that the “Select view” drop-
down box now shows get_fax_contacts. Also, in the top right of the View Code box, you will see the
name of the design document the view is stored in, _design/contacts.

Another difference between this page and the temporary view builder is that when you modify the
view on this page, the buttons Revert and Save become enabled. The functionality of these buttons is
exactly as you might expect—clicking Revert will undo any changes you have made since the previous
save, and clicking Save persists the new view code to the design document. Let’s make a change to see
how this works. First, change the code to anything you like (I entered blah), and try the Revert button to
undo it. Pretty mind-blowing stuff, eh? Next, let’s make a small change to the map function so that it
returns the contacts’ fax numbers instead of phone numbers. Change the function to look like
Listing 7-4.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

116

Listing 7-4. Returning Fax Numbers

function(doc) {
if(doc.fax)

emit(doc._id, {Name: doc.name, Facsimile: doc.fax});
}

Click the Run button to make sure the view is working correctly; this time it should produce results
with the Value column containing Name and Facsimile fields. If you are happy with the results, click the
Save button to persist your new and improved view to the design document. When the view has been
saved, you’ll notice that the Revert and Save buttons are disabled once again.

Now let’s create a similar view based on this view, this time returning only those contacts with an e-
mail address. Rather than going back to the temporary view builder and creating the view that way, this
time let’s just modify the get_fax_contacts view instead. Change the code in the Map Function editor
box to look like Listing 7-5.

Listing 7-5. Returning Only Those Contacts with E-mail Addresses

function(doc) {
if(doc.email)

emit(doc._id, {Name: doc.name, Email: doc.email});
}

Again, click Run to ensure that the correct results are being returned by the view. This time around,
however, don’t click the Save button, because that will overwrite your get_fax_contacts view with this
new view. Instead, click the Save As button to display the Save View As dialog box. The fields will be
prepopulated, with Design Document set to _design/contacts and View Name set to get_fax_contacts.
Change the View Name field to get_email_contacts, and click the Save button to create the new view,
saving it in the contacts design document.

Design Documents
As you discovered in the previous section, permanent views in CouchDB are stored in special
documents called design documents. These documents are stored in the same way as regular documents,
but they typically contain view functions rather than data. You can view all the design documents in a
database by selecting “Design documents” from the “Select view” drop-down box (Figure 7-8).

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

117

Figure 7-8. Design documents in the contacts database

To view a design document, click its key. In this example, the key is _design/contacts. The design
document appears the same as a regular document—it has a document ID and a revision number, and
you can save it, add fields, upload attachments, delete it, view the source code, and navigate between
revisions. These special documents usually have two important fields, language and views (Figure 7-9).
The language field denotes the language the views in the document are written in, usually javascript
(although the latest version of CouchDB also includes an Erlang view engine). The views field includes
the views that are contained in the document, which are themselves broken down into their map and
reduce functions where available. You can expand and collapse the function code using the small icon to
the left of the view name.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

118

Figure 7-9. The contacts design document

As with regular documents, you can navigate through different revisions of the design document
using the Previous Version and Next Version links. The previous revision should have only the
get_fax_contacts view, whereas the latest version also has the get_email_contacts view. It is worth
keeping in mind that, like regular documents, previous revisions of design documents are deleted when
the database is compacted.

You can also view the source code of the design document using the Source tab at the top right of
the document details. This will reveal the JSON source code the design document is made up of. Design
documents are just like regular CouchDB documents, but with special features; they will also appear in
the “All documents” page. Click “contacts” in the page header to go back to the contacts page, and from
the “Select view” drop-down box select “All documents.” You will notice that in addition to the contact
documents, this table now also includes the _design/contacts design document.

Download at WoweBook.Com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

119

Views and the CouchDB API
The Futon web interface makes it easy for you to create and work with the design documents and views
in your databases. That said, you will often want to work with CouchDB views using the powerful
RESTful API that Couch provides, allowing you to employ them in your own applications.

Let’s start off with a temporary view. To execute a temporary view using the API, you send a POST
request to the URI /databasename/_temp_view, passing the view’s functions in the request body. Let’s
create a very simple temporary view, which has the map function shown in Listing 7-6.

Listing 7-6. A Basic Temporary View Map Function

function(doc) {
emit(doc._id, doc);

}

Now use curl to make this POST request to the CouchDB server:

curl -X POST http://127.0.0.1:5984/contacts/_temp_view-d '{"map":"function(doc) {
emit(doc._id, doc); }"}'

Assuming your contacts database is configured as in the previous examples, this should bring back a
result similar to that in Listing 7-7. Please note that this listing has been formatted to make it easier to
read; the raw output you get from the curl command will not be formatted like this.

Listing 7-7. Results of the Temporary View

{
"total_rows":5,"offset":0,"rows":[

{
"id":"1",
"key":"1",
"value":{

"_id":"1",
"_rev":"2-1993229086",
"name":"John Smith",
"phone":"555-372589",
"email":"jsmith@example.com",
"fax":"555-372590"

}
},{

"id":"2",
"key":"2",
"value":{

"_id":"2",
"_rev":"2-1590163054",
"name":"Jane Thomas",
"phone":"555-210897",
"email":"jthomas@example.com"

}

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_temp_view-d
mailto:jsmith@example.com
mailto:jthomas@example.com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

120

},{
"id":"3",
"key":"3",
"value":{

"_id":"3",
"_rev":"2-832643768",
"name":"Emma Watson",
"phone":"555-726531",
"email":"emma@example.com",
"fax":"555-726532"

}
},{

"id":"4",
"key":"4",
"value":{

"_id":"4"
,"_rev":"2-1539547354",
"name":"Charles Bing",
"phone":"555-821345",
"email":"charlesb@example.com"

}
},{

"id":"5",
"key":"5",
"value":{

"_id":"5",
"_rev":"2-3630180106",
"name":"Eric Quinn",
"phone":"555-012796",
"fax":"555-098245"

}
}

]
}

Working with temporary views is nice and easy, but as discussed earlier in this chapter, their use is
limited, and they should be avoided if possible. Before you start creating permanent views using the API,
let’s use the curl command to access the two existing views you created in your design document
/_design/contacts. You can execute a permanent view using a GET request to the URI
/contacts/_design/contacts/_view/get_fax_contacts, where the second contacts in the URI is the
design document name and get_fax_contacts is the view name. Let’s try this using curl:

curl -X GET http://127.0.0.1:5984/contacts/_design/contacts/_view/get_fax_contacts

All going well, you should get a result like Listing 7-8.

Listing 7-8. Result of get_fax_contacts View

{"total_rows":3,"offset":0,"rows":[
{"id":"1","key":"1","value":{"Name":"John Smith","Facsimile":"555-372590"}},
{"id":"3","key":"3","value":{"Name":"Emma Watson","Facsimile":"555-726532"}},

Download at WoweBook.Com

mailto:emma@example.com
mailto:charlesb@example.com
http://127.0.0.1:5984/contacts/_design/contacts/_view/get_fax_contacts

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

121

{"id":"5","key":"5","value":{"Name":"Eric Quinn","Facsimile":"555-098245"}}
]}

Similarly, you can execute the get_email_contacts view the same way:

curl -X GET http://127.0.0.1:5984/contacts/_design/contacts/_view/get_email_contacts

This should return the result set shown in Listing 7-9.

Listing 7-9. Result of get_email_contacts View

{"total_rows":4,"offset":0,"rows":[
{"id":"1","key":"1","value":{"Name":"John Smith","Email":"jsmith@example.com"}},
{"id":"2","key":"2","value":{"Name":"Jane Thomas","Email":"jthomas@example.com"}},
{"id":"3","key":"3","value":{"Name":"Emma Watson","Email":"emma@example.com"}},
{"id":"4","key":"4","value":{"Name":"Charles Bing","Email":"charlesb@example.com"}}

]}

Now that you’ve seen how the API returns the results of a view, let’s move forward and create a
permanent view inside a new design document. You create a design document the same way as you
create a regular CouchDB document—using a PUT HTTP request and passing the document in JSON in
the request body. In this example, you are creating a new design document called more_views, and inside
this document you have a single view called get_email_or_fax, which will return the name of the contact
and the contact’s e-mail address, fax number, or both where available.

Listing 7-10 shows the definition of the new view you are creating. Store it in a text file named
more_views.json.

Listing 7-10. more_views.json

{
 "language": "javascript",
 "views": {
 "get_fax_or_email": {
 "map": "function(doc) {
 if(doc.name && doc.email && doc.fax)
 emit(doc._id, {Name: doc.name, Email: doc.email, Fax: doc.fax});
 else if(doc.name && doc.email)
 emit(doc._id, {Name: doc.name, Email: doc.email});
 else if(doc.name && doc.fax)
 emit(doc._id, {Name: doc.name, Fax: doc.fax});
 }"
 }
 }
}

Issue the following curl command to create this view in the database:

curl -X PUT http://127.0.0.1:5984/contacts/_design/more_views -d @more_views.json

You should get the following response:

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_design/contacts/_view/get_email_contacts
mailto:jsmith@example.com
mailto:jthomas@example.com
mailto:emma@example.com
mailto:charlesb@example.com
http://127.0.0.1:5984/contacts/_design/more_views
mailto:@more_views.json

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

122

{"ok":true,"id":"_design/more_views","rev":"1-4096382351"}

Now let’s test your new view by executing it using curl:

curl -X GET http://127.0.0.1:5984/contacts/_design/more_views/_view/get_fax_or_email

This should bring back a result like Listing 7-11.

Listing 7-11. Result of get_fax_or_email View

{"total_rows":5,"offset":0,"rows":[
{"id":"1","key":"1","value":{

"Name":"John Smith","Email":"jsmith@example.com","Fax":"555-372590"
}},
{"id":"2","key":"2","value":{

"Name":"Jane Thomas","Email":"jthomas@example.com"
}},
{"id":"3","key":"3","value":{

"Name":"Emma Watson","Email":"emma@example.com","Fax":"555-726532"
}},
{"id":"4","key":"4","value":{"

Name":"Charles Bing","Email":"charlesb@example.com"
}},
{"id":"5","key":"5","value":{

"Name":"Eric Quinn","Fax":"555-098245"
}}

]}

Before finishing, let’s check that your new design document and view are working as you would
expect them to in Futon. Fire up the Futon interface, and navigate to the contacts database. The “Select
view” drop-down box should now feature a new section called more_views with the new
get_fax_or_email view available within it. Click this view to execute it, and the results will look similar to
Figure 7-10.

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_design/more_views/_view/get_fax_or_email
mailto:jsmith@example.com
mailto:jthomas@example.com
mailto:emma@example.com
mailto:charlesb@example.com

CHAPTER 7 ■ INTRODUCTION TO COUCHDB VIEWS

123

Figure 7-10. Your new get_fax_or_email view in Futon

Summary
In this chapter, you learned about CouchDB views and how they are used to aggregate and report on the
data in a CouchDB database. You discovered how CouchDB uses map/reduce views instead of SQL
statements to interact with data. You then learned how to create and execute temporary views using the
Futon interface, before saving these views in special design documents in the CouchDB database.
Finally, you learned how to use the CouchDB RESTful HTTP API to run and create views and design
documents.

In the next chapter, you will explore in depth the concept of map/reduce and how it applies to
CouchDB views. In Chapter 9, you will move on to some more advanced CouchDB view concepts and
examples.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 8

■ ■ ■

125

Map/Reduce

In the previous chapter, you learned how to create views in CouchDB; they allow you to query your data
in different ways, much like you would use SQL for in traditional relational databases. In creating these
views, you may have noticed that each time you were putting your view code into something known as a
map function. In this chapter, you will explore the concept of map functions in more detail, and you will
also look at the reduce function. These two functions combine to form the concept of map/reduce,
which CouchDB uses to determine the following:

• What data is to be retrieved

• How to filter that data

• How that data should be ordered

• How to aggregate the data

What Is Map/Reduce?
Map/reduce is a concept in software that has recently gained popularity in distributed computing. The
concept is based on two functions—map and reduce—both of which are intended to be used with a list
of inputs. The map function produces an output for each item in this list, while the reduce function
produces a single output for the entire list. CouchDB exploits the characteristics of these two functions
to provide incremental calculation of views. This means that each time a document is updated in a
CouchDB database, only those documents that have been modified need to be reprocessed by the map
and reduce functions.

Google use an implementation of map/reduce in its web index. Google has thousands of machines
working on hundreds of terabytes of data, spread across the World Wide Web. Problems that would take
a single machine months to process take a matter of hours over this distributed model. Google’s
MapReduce library includes features such as load balancing and disk optimization to further enhance
the efficiency of the system, as well as to simplify its use. It is also built to be robust so that machine
failures do not have a negative impact on solving the original problem. In fact, according to Google’s
publicized research on MapReduce, it once lost 1,600 out of 1,800 machines in a cluster, but the system
still produced a result at the end.

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

126

Map/Reduce in CouchDB
In the previous chapter, you learned how to create CouchDB views using map functions. When creating
views in CouchDB, you must create a map function. This function takes a single argument, which is the
document itself, and uses the special emit function to produce a result. This emit function accepts two
arguments: a key and a value. Every time the emit function is called, a row is added to the view.
Whenever a new document is created or an existing document is updated or deleted, the rows in the
view are updated automatically. Listing 8-1 shows the most basic map function (in this case, I am using
the JavaScript view engine).

Listing 8-1. A Basic Map Function

function(doc) {
 emit(null, doc);
}

In this example, you can see that the map function has a single argument doc, which represents the
CouchDB document. This particular function simply adds every document in the database to the view,
with no key defined and the entire document as the value.

If the database contains documents of different types, you might use a field type to differentiate
between different types of documents. Consider the example in Listing 8-2, where you emit only those
rows that have a type car.

Listing 8-2. Filtering by Document Type

function(doc) {
 if(doc.type == "car") emit(null, { "make": doc.make, "model": doc.model, "year":
doc.year });
}

In this example, only those documents that have a type field with the value car will be added to the
view. Again, each of these documents will be represented by a row with a null key and an object
comprising the car’s make, model, and year as the value. This type of filtering should be used only where
the lookup key is fixed. Listing 8-3 provides an example that can be used for dynamic filtering.

Listing 8-3. Filtering and Sorting Documents

function(doc) {
 if(doc.type == "car") emit(doc.make, { "model": doc.model, "year": doc.year });
}

In this example, you emit a key—the make of the car. The rows in the view will be sorted by the key,
so the display order of the results of the view will be based on the make of the car. Additionally, you can
filter the results of the view using URL query arguments that define the key(s) that should be included in
the result. In this example, you could pass the query argument ?key="Toyota" when executing your view,
and only those cars that have "Toyota" as the key (the make field) will be returned.

CouchDB views must contain a map function, and they can also optionally include a reduce
function. Unlike the map function, which produces a row for each document it processes, the reduce
function produces a single result for all the documents. Reduce functions are used to aggregate data. The

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

127

reduce function accepts three arguments—key, values, and rereduce. It must return a single-value
result. Listing 8-4 shows the simplest example of a reduce function.

Listing 8-4. A Basic Reduce Function

function(key, values, rereduce) {
 return sum(values);
}

Assuming that the view’s corresponding map function emits number values, this reduce function
will return a result of the sum of the value of each row contained in the view. Depending on the amount
of data being processed, the reduce operation may be broken down into smaller chunks by CouchDB.
When this happens, the data will be processed by the reduce function before sending the result to the
reduce function with the rereduce argument set to true.

Take Listing 8-4 as an example. Say CouchDB decides to break the data to be processed into three
groups:

• Group A: 1, 4, 5

• Group B: 3, 4, 8

• Group C: 9, 2, 5

The view engine would first take each group individually, with rereduce set to false. This would
produce three results: 10 for Group A, 15 for Group B, and 16 for Group C. These results are then sent as
an array to the reduce function, with rereduce set to true. This produces a final result of 41.

Reduce functions are invoked differently based on whether rereduce is true or false. If rereduce is
false, the keys argument will be a list of keys and IDs for each row emitted by the map function, and the
values argument will be an array of the values emitted by the map function. If rereduce is true, however,
the keys argument will be null, and the values argument will be an array of the results produced by the
previous invocations of the reduce function.

In Listing 8-4, the type of data in the values argument is always the same, regardless of whether
rereduce is true or false, and as a result, you do not need to handle rereduce calls separately in the
reduce function. In Chapter 9, you will see an example of a reduce function where you need to take the
value of rereduce into consideration.

Map/Reduce in Futon
In Chapter 5, you learned how to use Futon, CouchDB’s web-based administration interface. In Chapter
7, you saw how you can create JavaScript views in CouchDB using Futon. Now, you’ll take this
knowledge a step further and learn how to create views in CouchDB that have both map and reduce
functions.

In this section, you will use the same contacts database that you worked with in Chapter 7. Some of
these contacts had an email field, some had a fax field, and some had both. In Chapter 7, you created
views that returned rows based on whether contacts had an e-mail address or fax number. However, this
type of data is more likely to be used for reporting purposes. For example, how many people have both,
how many have a fax, how many have an e-mail address, and how many have neither? Using the
methods described in Chapter 7, you would have to create separate views for each of these and look at

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

128

the number of rows returned to find this information. Wouldn’t it be much more useful if you could have
just one view which did this for you? Let’s find out how to create such a view.

Open Futon. (If CouchDB is installed on your local computer, you can open Futon by opening your
web browser and pointing it to http://127.0.0.1:5984/_utils.) Assuming you created the contacts
database in Chapter 7, you should be able to click that database in the CouchDB Overview page, as
shown in Figure 8-1.

Figure 8-1. CouchDB Futon Overview page

When you navigate to the contacts database, you should be looking at the “All documents” view, as
shown in Figure 8-2.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 8 ■ MAP/REDUCE

129

Figure 8-2. All documents in the contacts database

As you are creating a new view, open the view design page by selecting the “Temporary view” option
from the “Select view” drop-down box toward the top right of the main Futon window. This should bring
you to a page like the one shown in Figure 8-3.

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

130

Figure 8-3. Futon view design page

On this screen, you will see two large input boxes—Map Function and Reduce Function. In the past,
you have created views that required only map functions. This time around, you will be creating a
reduce function also.

The view you are going to create should return the number of documents in the database that have
the following properties:

• Contain both an e-mail address and a fax number

• Contain only an e-mail address

• Contain only a fax number

• Contain neither an e-mail address nor a fax number

Let’s start by creating the map function. Enter the code in Listing 8-5 into the input box for the map
function.

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

131

Listing 8-5. The Map Function for the Aggregate View

function(doc) {
 if(doc.email && doc.fax)
 emit("Both", 1);
 else if(doc.email)
 emit("Email", 1);
 else if(doc.fax)
 emit("Fax", 1);
 else
 emit("Neither", 1);
}

Out of interest, click the Run button, situated just below the Map Function box, and let’s see what it
brings back (Figure 8-4).

Figure 8-4. Results of the map function

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

132

As you can see, the view returns five rows. This is because the map function is testing for all possible
scenarios of the presence of a fax number or e-mail address. Every document therefore is emitted by the
map function, with a key of either "Both", "Email", "Fax", or "Neither", and a value of 1. Because there
are only five documents in the sample database, it’s fairly easy to count the number of results for each
key. It would not be so simple, however, if your contacts database had hundreds or thousands of
documents. So, let’s see how you can aggregate this data to produce a count of the contacts for each key.

In the Reduce Function box, located to the right of the Map Function box, enter the code in
Listing 8-6.

Listing 8-6. The Reduce Function for the Aggregate View

function(key, values, rereduce) {
 return sum(values);
}

Click the Run button once more to see the results of the view (Figure 8-5).

Figure 8-5. The results of the aggregated view

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

133

As you can see from Figure 8-5, the results are now much more readable, with the count for the
number of rows for each key summed up to produce a total. As you can see, there are no documents in
the database that have neither a fax number nor an e-mail address. Let’s change one of the documents
with both of these fields to test that the "Neither" feature is working correctly.

First, save your view as a permanent view in the database by clicking the Save As button, located
below the Reduce Function box. In the Save View As dialog box that appears, enter contacts in the box
for the Design Document field and count_by_type in the field for View Name, as shown in Figure 8-6.

Figure 8-6. Save View As dialog box

Return to the “All documents” view of the contacts database by selecting the appropriate option
from the “Select view” drop-down menu. From there, click the document with ID 1 to navigate to the
document for John Smith. This document should look similar to the one in Figure 8-7.

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

134

Figure 8-7. The John Smith document in the database

In this document, delete the e-mail and fax fields by clicking the small, gray x button to the left of
the field name. The field should instantly be removed from the screen. To save these changes to the
database, click the Save Document link above the Fields table. When you have saved the document,
navigate to the “All documents” view of the contacts database by clicking the contacts link in the Futon
header. From here, use the “Select view” drop-down box to navigate to the count_by_type view, located
under the contacts design document (Figure 8-8).

Figure 8-8. The update count_by_type view

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

135

As you can see in Figure 8-8, the view results have been updated to reflect the document you just
modified. Now, the database includes a single document with both email and fax fields, two documents
with just an e-mail field, one document with just a fax field, and one document with neither an email
nor a fax field.

Map/Reduce Views and the CouchDB API
I covered creating CouchDB views using the API in Chapter 7. You simply add a reduce function to your
view’s JavaScript definition to get the desired results. Listing 8-7 would create the count_by_type view
from the previous section using the CouchDB RESTful HTTP API.

Listing 8-7. count_by_type.json

{
 "language": "javascript",
 "views": {
 "count_by_type": {
 "map": "function(doc) {
 if(doc.email && doc.fax) emit('Both', 1);
 else if(doc.email) emit('Email', 1);
 else if(doc.fax) emit('Fax', 1);
 else emit('Neither', 1);
 }",
 "reduce": "function(doc) {
 return sum(values);
 }"
 }
 }
}

Now let’s add this view to the contacts design document in the contacts CouchDB database:

curl -X PUT http://127.0.0.1:5984/contacts/_design/contacts -d @count_by_type.json

As you can see from Listing 8-7, you simply include the reduce function alongside your map
function when defining your view using JavaScript. Complex views are much easier to create using
Futon, because you don’t have to worry about escaping quote characters and missing braces and the
like. Of course, you could always create your own application for defining views.

Let’s now use curl to run the view you created in the previous section. If you saved the view in the
contacts design document with the name count_by_type, you should be able to access the view using the
following URL: http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type.

curl -X GET http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type

The results of this command should look similar to Listing 8-8.

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_design/contacts
mailto:@count_by_type.json
http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type
http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type

CHAPTER 8 ■ MAP/REDUCE

136

Listing 8-8. Command-Line Results of count_by_type View

{"rows":[
{"key":null,"value":5}

]}

That doesn’t look right, does it? It’s simply returning the overall count of the number of documents
in the database and not grouping the aggregation based on the key. The reason for this is that you need
to explicitly tell the CouchDB API to perform grouping on your view. You did not need to do this in
Futon because it does it for you automatically, but using the API, this is a manual process. This time
around, issue the following command:

cURL -X GET http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type?group=true

This command should result in the code in Listing 8-9 being returned.

Listing 8-9. Grouped Results of count_by_type View

{"rows":[
{"key":"Both","value":1},
{"key":"Email","value":2},
{"key":"Fax","value":1},
{"key":"Neither","value":1}

]}

That's more like it, isn't it? As you can see, by passing the group=true query parameter along with
your view’s URI, you tell CouchDB to group the results by the view’s key.

Map/Reduce vs. SQL Queries
If you come from a relational database background, the easiest way to describe how map/reduce works
is to identify the components of a view based on their counterparts in a SQL query implementation. Let’s
take the following SQL statement:

SELECT id, name, email FROM contacts WHERE country = 'USA' ORDER BY name

In this SQL statement, you are retrieving the id, name, and email columns from the contacts table.
You are filtering the results so that it returns only those rows in the contacts table where the country field
is equal to the string value "USA". Finally, you are requesting that the results be returned sorted by the
name field. Now let’s look at how you would retrieve results from a CouchDB database using a map
function (Listing 8-10).

Download at WoweBook.Com

http://127.0.0.1:5984/contacts/_design/contacts/_view/count_by_type?group=true

CHAPTER 8 ■ MAP/REDUCE

137

Listing 8-10. Using a Map Function to Filter and Sort Data

function(doc) {
 if(doc.type != "contact") return;
 emit([doc.country, doc.name], {name: doc.name, email: doc.email});
}

In the previous map function, you check that the document type is contact, and if it is, you emit a
complex key made up of the country and name fields,as well as a value object with name and email fields.
You can then use the startkey and endkey URI parameters to define which country you want to look up
values for. Now let’s compare the results from the SQL query and the map function (see Table 8-1).

Table 8-1. Results from SQL Query

id name email

3 Jane Smith jane@example.com

1 Joe Lennon joe@example.com

4 John Bloggs john@example.com

Table 8-1 is the table of results you could expect from the SQL statement you looked at earlier. For

example purposes, I’m assuming that the contact in the row with id 2 has a country value of Ireland, so
they would not be returned by this query. Table 8-2 shows the results you would get from your CouchDB
view using the map function defined in Listing 8-1, passing the parameter
?startkey=["USA"]&endkey=["USA",{}] to the view’s URI.

Table 8-2. Results from CouchDB View

id key value

"3" ["USA", "Jane Smith"] {"name":"Jane Smith","email":"jane@example.com"}

"1" ["USA", "Joe Lennon"] {"name":"Joe Lennon","email":"joe@example.com"}

"4" ["USA", "John Bloggs"] {"name":"John Bloggs","email":"john@example.com"}

You can see that in Table 8-2 the results are similar to those produced by the SQL statement.

CouchDB views always return the document ID, a key, and a value.
But what if you want to perform aggregation on this data? For example, let’s say you wanted to

return a count of the number of contacts, grouped by the country field. In SQL, you would issue the
following statement:

SELECT COUNT(*), country FROM contacts GROUP BY country

Download at WoweBook.Com

mailto:jane@example.com
mailto:joe@example.com
mailto:john@example.com
mailto:jane@example.com
mailto:joe@example.com
mailto:john@example.com

CHAPTER 8 ■ MAP/REDUCE

138

In the previous SQL statement, you use the COUNT function to return the number of contacts in the
table, and you group these results by the country column to return the number of contacts in each
country. Now let’s look at how you would perform this aggregation in your CouchDB view (Listing 8-11).

Listing 8-11. Using Map and Reduce Functions to Produce Aggregated Reports on Data

map: function(doc) {
 emit(doc.country, 1);
}

reduce: function(key, values, rereduce) {
 return sum(values);
}

In Listing 8-11, you create a map function that emits the country field as the key and 1 as the value.
You then create a reduce function that will aggregate the rows returned by the map function. In this
instance, the reduce function simply sums the values it receives as input. Because you emit the value as
1 in the map function, it will act as a counter. When calling this view, you pass the query string
parameter group=true to tell CouchDB that it should group the results by the key.

Let’s take a look at the results returned by the SQL statement (Table 8-3).

Table 8-3. Results from the Aggregated SQL Query

COUNT(*) country

1 Ireland

3 USA

As you can see, it has returned the number of rows in the contacts table, grouped by the country

column. There are three contacts in the United States and a single contact in Ireland. Now let’s look at
what the CouchDB view returns (Table 8-4).

Table 8-4. Results from the CouchDB View

key value

"Ireland" 1

"USA" 3

Look familiar? These results are the same as what was brought back by the SQL statement. You have

calculated the number of documents in the contacts database, grouped by the country field.

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

139

Word Count Example
One of the most commonly used examples when explaining the concept of map/reduce is the word
count example. Basically, you take a document of text and use map and reduce functions to return the
number of times each word appears in that document. For this example, I have created a database
named documents, and inside it I have created a single document, with the field content and its value
set to the full text of U.S. President Barack Obama’s 2009 inauguration speech, part of which is shown in
Figure 8-9.

Figure 8-9. Inauguration speech in the database

Now I want to create a view that takes this speech and counts the number of times each word in the
speech was mentioned. To do so, I created a new view, with the map function shown in Listing 8-12.

Listing 8-12. Map Function for Word Count View

function(doc) {
 var words = doc.content.toLowerCase().replace(/[^a-z]+/g, ' ').split(' ');

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

140

for(word in words)
 emit(words[word], 1);
}

In the previous function, I am taking the content field of the document, lowering it, and replacing
any nonalphabetical characters with a space, before tokenizing the document into an array of words,
split by a single whitespace token. I then use a loop to iterate through each item in the words array, and I
emit the word as the key and a value of 1 that will be used to count the occurrences in the reduce
function, as shown in Listing 8-13.

Listing 8-13. Reduce Function for Word Count View

function(key, values, rereduce) {
 return sum(values);
}

The reduce function is the same as you saw previously when performing count aggregation on your
documents. You simply take the values argument and return it summed up. Figure 8-10 shows a snippet
of the result returned by this view.

Figure 8-10. Word count view results

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

141

You can easily produce variations of this view; for example, say you want to count the number of
occurrences of words starting with each letter of the alphabet. Simply change the map function in the
previous view to Listing 8-14.

Listing 8-14. Revised Map Function

function(doc) {
 var words = doc.content.toLowerCase().replace(/[^a-z]+/g, ' ').split(' ');
 for(word in words)
 emit(words[word].substring(0,1), 1);
}

This view returns the result shown in Figure 8-11.

Figure 8-11. Word count by letter view results

Download at WoweBook.Com

CHAPTER 8 ■ MAP/REDUCE

142

Summary
In this chapter, you learned about map/reduce and how it is used in CouchDB views. You learned about
how to map a SQL statement into its counterpart map and reduce statements, how map functions are
used to define what rows and fields are to be output in the view, and how the results should be sorted.
You then learned how to aggregate these results using reduce functions. You walked through the process
of creating map and reduce functions in the contacts database, which groups the number of contacts
that have both e-mail addresses and fax numbers, either or, and neither nor. You then saw the common
map/reduce example of counting the number of occurrences of a word in a text, using the 2009
inauguration speech of U.S. President Barack Obama.

In the next chapter, you will take what you have learned in Chapters 7 and 8 to the next level by
working with some advanced CouchDB views, exposing the real power behind CouchDB.

Download at WoweBook.Com

C H A P T E R 9

■ ■ ■

143

Advanced CouchDB Views

In this chapter, you will look at more advanced areas of CouchDB views—advanced aggregation
functions such as average, maximum, and minimum; ordering and filtering results using keys; and the
different approaches to performing join-like operations in CouchDB.

Advanced Aggregation
For the purpose of examples in this section, I will be using a database of documents that hold employee
information—their name, their salary, and the department they work in. Table 9-1 shows the contents of
this database.

Table 9-1. Tabular Representation of the Employees Database

name salary department

"Jack Sawyer" 30000 "Sales"

"Kate Lynch" 45000 "Management"

"Patrick Wood" 32000 "Sales"

"John McIntyre" 19000 "Administration"

"Ann Hayes" 60000 "Management"

"Lisa Liu" 38000 "Accounts"

"David Harrington" 31000 "IT"

In the previous chapter, you learned to count grouped data. You can count the number of

employees in each department with the map and reduce functions, as shown in Listing 9-1.

Listing 9-1. Counting the Number of Employees by Department

map: function(doc) {
 if(doc.department)
 emit(doc.department, 1);

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

144

}

reduce: function(keys, values, rereduce) {
 return sum(values);
}

This view will return a result like the one shown in Figure 9-1.

Figure 9-1. Results of the count view

Now let’s change the view slightly so that it returns the total salary for each department. To do this,
you simple emit the salary field as the value in the map function. Listing 9-2 shows the code for this sum
view (with changes from Listing 9-1 in bold).

Listing 9-2. Finding the Total Salary by Department

map: function(doc) {
 if(doc.department)
 emit(doc.department, doc.salary);
}

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

145

reduce: function(keys, values, rereduce) {
 return sum(values);
}

The new view should return a result like the one in Figure 9-2.

Figure 9-2. Results of the sum view

Now let’s try something a bit trickier. Let’s get the average salary by department. This time, the map
function can stay the same, but you need to change the reduce function, telling it to calculate the
average salary instead of the total salary (Listing 9-3).

Listing 9-3. Finding the Average Salary by Department

map: function(doc) {
 if(doc.department)
 emit(doc.department, doc.salary);
}

reduce: function(keys, values, rereduce) {
 var total = sum(values);

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

146

 return Math.round((total / values.length) *100) / 100;
}

In this view, you are finding the total salary for each department, and then you are finding the
average by dividing this total by the number of employees in the department. In this example, you are
using the Math.round JavaScript function to round your result to two decimal places. The result should
look something like Figure 9-3.

Figure 9-3. Finding the average salary by department

■ Note Futon automatically groups results on views with reduce functions. By default, however, CouchDB does
not group these results. You can force this behavior by passing the parameter ?group=true to your view’s URI,
however.

In all the examples so far, you have aggregated by department. But what if you want an overall result
for all employees? To do this, change the key in the map function to a string label such as "Average", as
described in Listing 9-4.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

147

Listing 9-4. Finding the Average Salary for All Employees

map: function(doc) {
 if(doc.department)
 emit("Average", doc.salary);
}

reduce: function(keys, values, rereduce) {
 var total = sum(values);
 return Math.round((total / values.length) *100) / 100;
}

The two other common aggregate functions used when working with data are max and min, which, as
you might expect from their names, return the maximum value and minimum values found in a
resultset. In the employee database, you might want to find out what the highest and lowest salaries are.
Let’s find out how to do this using a CouchDB view (Listing 9-5).

Listing 9-5. Finding the Highest and Lowest Salaries

map: function(doc) {
 if(doc.department)
 emit("Max and Min", doc.salary);
}

reduce: function(keys, values, rereduce) {

var max, min;
 if(rereduce == false) {
 max = values[0];
 min = values[0];

 for(item in values) {
 if(values[item] > max) max = values[item];
 if(values[item] < min) min = values[item];
 }
 return { "max": max, "min": min };
 } else {
 max = values[0].max;
 min = values[0].min;

 for(item in values) {
 if(values[item].max > max) max = values[item].max;
 if(values[item].min < min) min = values[item].min;
 }

 return { "max": max, "min": min };
 }
}

In Listing 9-5, you use the reduce function to initialize the max and min variables and then loop
through the values sent to the reduce function to check whether the value is greater than or less than the
current max and min values. You then return the max and min values.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

148

You will notice in this example that you check to see whether the value of the rereduce argument is
false. On large data sets, CouchDB breaks down the data sent to the reduce function and processes it in
smaller batches. When these batches are processed, they return a value to the reduce function and set
the value of rereduce to true.

In this example, if rereduce is false, the values argument will be an array of the values emitted by
the map function—in this case the salary field of each document. You then process these salaries to find
the maximum and minumum values and return a JSON object with two fields, max and min. If rereduce is
true, the values argument will be an array of values returned by previous calls to the reduce function, in
this case, the JSON objects with max and min fields. Once again, you return a JSON object with maximum
and minumum values (Figure 9-4).

Figure 9-4. Finding the highest and lowest salaries

Of course, if you wanted the max and min values for each department, you can simply change the key
in the map function to doc.department, and it will group the results by department accordingly. You
might be wondering what good this information is to you when you don’t know which employee has the

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

149

maximum salary and which has the minimum salary. So, let’s modify the view so that it tells you the
name and salary of the highest and lowest earners (Listing 9-6).

Listing 9-6. Finding the Names and Salaries of the Highest and Lowest Earners

map: function(doc) {
 if(doc.department)
 emit("Max and Min", {"name": doc.name, "salary": doc.salary});
}

reduce: function(keys, values, rereduce) {
 var max, min, max_name, min_name;

 if(rereduce == false) {
 max = values[0].salary;
 min = values[0].salary;
 max_name = values[0].name;
 min_name = values[0].name;

 for(item in values) {
 if(values[item].salary > max) {
 max = values[item].salary;
 max_name = values[item].name;
 }
 if(values[item].salary < min) {
 min = values[item].salary;
 min_name = values[item].name;
 }
 }

 return {
 "max": { "name": max_name, "salary": max },
 "min": { "name": min_name, "salary": min }
 };
 } else {
 max = values[0].max.salary;
 min = values[0].min.salary;
 max_salary = values[0].max.name;
 min_salary = values[0].min.name;

 for(item in values) {
 if(values[item].max.salary > max) {
 max = values[item].max.salary;
 max_name = values[item].max.name;
 }
 if(values[item].min.salary < min) {
 min = values[item].min.salary;
 min_name = values[item].min.name;
 }
 }

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

150

 return {
 "max": { "name": max_name, "salary": max },
 "min": { "name": min_name, "salary": min }
 };
 }
}

The main change with Listing 9-6 is that the map function emits a value of a JSON object with name
and salary fields. This allows you to associate a name with each salary value when calculating the max
and min values in the reduce function. You can then return a result with the name and salary of the
employees with the highest and lowest salaries, as shown in Figure 9-5.

Figure 9-5. Finding the names and salaries of the highest and lowest earners

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

151

Ordering and Filtering Results
The results returned by a CouchDB view are ordered by the view’s key, ascending in direction by default.
Using the employees table from the previous section, let’s take a look at how this works. Take the view
shown in Listing 9-7 as an example.

Listing 9-7. Return All Documents, with Null as the Key

map: function(doc) {
 emit(null, doc);
}

This view simply returns all the documents in the database. It does not emit a key, and the value is
the document itself. Because CouchDB automatically uses ID as part of the key in a view, the results are
ordered by the document ID by default. To order by name, you’d simply use the name field of the
document as the key, and CouchDB will then order the results by name (Listing 9-8).

Listing 9-8. Return All Documents, Using Name As the Key

map: function(doc) {
 emit(doc.name, doc);
}

Similarly, you can order results by the employee’s salary (Listing 9-9).

Listing 9-9. Return All Documents, Using Salary as the Key

map: function(doc) {
 emit(doc.salary, doc);
}

Figure 9-6 shows the results of the last view (ordering results by salary).

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

152

Figure 9-6. Returning all documents ordered by salary

What if you want to reverse the order the rows are displayed? In other words, what if you want the
highest salary to appear first? In Futon, you can simply click the arrow in the Key column header in the
results table. This will return the results in descending order. To view the results in ascending order,
simply click the arrow again.

But what if you are not using Futon? If you view the raw data by navigating straight to the view’s URI
(or by clicking the gray tag icon in the top right of the main section of Futon), you will see that the results
are brought back, ordered by salary in ascending order, with no way to change the order in which the
results are displayed.

Fortunately, CouchDB provides a query parameter that you can use to change the order of results
just by changing the URL. To show results in descending order, simply append ?descending=true to the
end of the URL in your browser, and CouchDB will reverse the results, as shown in Figure 9-7.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

153

Figure 9-7. Reversing the results using descending=true

In addition to the descending option, CouchDB provides a range of URL query arguments that you
can use to manipulate the resultset returned by your views. You will now look at some of the more useful
arguments available.

You can search for a particular document using the key argument. For example, in the previous
example, if you removed ?descending=true and added ?key=45000, you would get back only a single
document—the record for Kate Lynch, whose salary is $45,000. If you changed the key to the department
field and then added ?key="Sales" to the URL, you would get back two results—the documents for
Patrick Wood and Jack Sawyer, who both work in the sales department.

What if you wanted to find a range of documents? For example, say you wanted to find everyone
who earned a salary between $30,000 and $40,000. You can call the view (where the key is the salary
field), passing two parameters—startkey and endkey. It’s important to note that you use the ? symbol
only before the first argument. Each subsequent argument you pass should be prefixed with the &
symbol. So, to get back the range of documents that meet the criteria of having a salary between $30,000
and $40,000, you add the string ?startkey=30000&endkey=40000 to the URL. Figure 9-8 shows the results.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

154

Figure 9-8. Retrieving a range of documents

Another useful argument is limit. You can use this to define a maximum number of results the
query can return. If you don’t want to return the first rows of the resultset, you can use the skip
argument to define the number of rows to skip when running the query.

Working with Related Data
If you have experience with relational databases, you will be familiar with the concept of relationships.
Traditionally, data is separated into different tables, and keys are used to create relationships between
these tables, allowing their data to be joined using SQL. For example, an employee’s payroll advice data
might be stored in a separate table called payslips, and this table would have a reference column that
indicates which employee it is stored for. You could then use SQL to join the data, retrieving the
employee’s name from the employees table and the dates and amounts of their payslips from the
payslips table.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

155

In CouchDB, however, there are no tables or relationships—everything is stored in self-contained
documents. So, how do you store related data? One way is to store the related data in the document
itself. For example, take the following employee document:

{
 name: "David Harrington",
 salary: 31000,
 department: "IT"
}

If you were to store pay advice information inside this document, it might look something like the
following:

{
 name: "David Harrington",
 salary: 31000,
 department: "IT",
 payslips: [
 { date: "20090825", amount: 2100 },
 { date: "20090725", amount: 2100 },
 { date: "20090625", amount: 2100 }
]
}

This method is a very straightforward and simple way of storing related information. Also, because
everything is kept in one document, all the data is stored together. This means that should you ever
delete the document, all of the pay advice data is deleted along with the employee data. This maintains
the referential integrity of the database automatically, leaving no redundant documents lying around.

Querying this data in a view is also simple. For example, if you wanted to get the total amount
grouped by employee, you could create the view as described in Listing 9-10.

Listing 9-10. Getting Total Amount Paid by Employee

map: function(doc) {
 if(doc.payslips) {
 for(item in doc.payslips) {
 emit(doc.name, doc.payslips[item].amount);
 }
 }
}

reduce: function(keys, values, rereduce) {
 return sum(values);
}

Figure 9-9 shows the result of this view.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

156

Figure 9-9. Getting total amount paid by employee

This method is not without its problems, however. The primary issue is that it is quite tedious to add
new payslips to the document, because they would need to be inserted into the existing employee record
structure. It can also lead to an increase in conflict errors. If someone tries to modify an employee’s
details, for example, while another user is inserting a payslip into the record, they will get a “409
Conflict” error.

An alternative method of storing related data is to store it in a separate document; in that case, each
employee would have one employee document and zero or more payslip documents. To make it easy to
distinguish one from the other, you might create a type field in each document to indicate whether it is
an employee document or a payslip document. The payslip document would also need to store a
reference to the employee to which it belongs.

Using this method, the employee document would look like the following:

{
 type: "employee",
 employee_no: 1,
 name: "David Harrington",

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

157

 salary: 31000,
 department: "IT"
}

It would then have three separate payslip documents:

{
 type: "payslip",
 employee_no: 1,
 date: "20090825",
 amount: 2100
}
{
 type: "payslip",
 employee_no: 1,
 date: "20090725",
 amount: 2100
}
{
 type: "payslip",
 employee_no: 1,
 date: "20090625",
 amount: 2100
}

Adding new payslips is far easier with this method, because you simply create a new document. It
also doesn’t suffer from concurrency issues, because the employee and payslip data are stored
independent of one another—so one user can change the employee record at the same time as another
user changes a payslip record.

Getting the total amount paid for each employee is simple, as shown in Listing 9-11.

Listing 9-11. Getting the Total Amount Paid by Employee

map: function(doc) {
 if(doc.type == "payslip")
 emit(doc.employee_no, doc.amount);
}

reduce: function(keys, values, rereduce) {
 return sum(values);
}

The obvious downside to this method is that you would need to use a separate view to get back the
employee’s information, such as their name. As a result, a separate HTTP request is required, adding
load to the server. Fortunately, you can use view collation to bring back documents of different types
alongside each other. So, you could bring back the employee record and then all of their associated
payslip documents after it. To do this, you would use what is known as a complex key, using the
employee_no field and an identifier to say which type of document should appear first. Listing 9-12 shows
the code.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

158

Listing 9-12. Using View Collation to Join Documents

map: function(doc) {
 if(doc.type == "employee")
 emit([doc.employee_no, 0], doc);
 else if(doc.type == "payslip")
 emit([doc.employee_no,1], doc);
}

This will first and foremost return the document containing the employee’s information, followed
by any payslip documents associated with that employee. You can see this in Figure 9-10.

Figure 9-10. Using view collation to join documents

Which method is best really depends on the data you are working with. If your related data has
many fields and requires constant additions and updates, you are probably better off storing this data in
separate documents.

Download at WoweBook.Com

CHAPTER 9 ■ ADVANCED COUCHDB VIEWS

159

Summary
In this chapter, you took what you learned in Chapters 7 and 8 and brought it to the next level by looking
at some of the more advanced areas of CouchDB views. You learned how to do all sorts of aggregation,
filter and sort your results, and store relational data in a CouchDB database. That concludes Part 2 of the
book. In Part 3, you will see how to put all of this together to create CouchDB applications using
CouchApp, and you will see how you can use a CouchDB database as the back end to applications
created in Python, and Ruby.

Download at WoweBook.Com

Download at WoweBook.Com

P A R T 3
■ ■ ■

Advanced CouchDB Topics

In this part, you will take the knowledge you gained in the previous parts of this book

and apply them in a series of applications. First, you will create a full client-side web

application using CouchApp. Then, you will learn how to connect to CouchDB from

your Python and Ruby applications, before creating a sample application in Python

using the Django web framework and the Couchdbkit library. Finally, you will explore

some more advanced areas of CouchDB such as replication, compaction, load

balancing, security, and more.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 10

■ ■ ■

163

Developing CouchDB Applications
with CouchApp

In this part of the book, you will leverage the skills you learned in the first two parts of this book to create
some CouchApps. If you have experience with server-side web application development, you may be
familiar with the process of creating a database in the vein of MySQL, Oracle, or another relational
database management system and then developing your application using a programming language
such as Python or Ruby.

You’ll learn how to develop CouchDB applications in these languages later. First you will investigate
CouchApp—a set of scripts that allow complete, stand-alone CouchDB applications to be built using just
HTML and JavaScript. These applications are housed in the CouchDB database, meaning that when the
database is replicated, any applications stored in that database are also replicated.

Installing CouchApp
CouchApp is a Python module and requires Python to be installed on your system to work. If you are
using Linux or Mac OS X, it is most likely that Python came preinstalled with your operating system. To
check, open a Terminal or shell window, and type the following command:

python -V

If Python is installed, you should see a response like the following:

Python 2.6.2

If Python is not installed, you might get the following:

bash: python: command not found

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

164

 ■ Note Installing Python is outside the scope of this book. If you need assistance setting up Python on your
system, refer to the Python documentation, available at (http://www.python.org/download/).

Now you need to install python-setuptools. You can use a package manager like apt-get if you
want, but for the sake of platform independence, I will install it manually. First download the .egg file
using wget:

wget http://pypi.python.org/packages/2.5/s/setuptools/setuptools-0.6c9-py2.5.egg

When the download has completed and you are returned to the shell, issue the following command
to install setuptools:

Sudo sh setuptools-0.6c9-py2.5.egg

If all has gone according to plan, the script should install setuptools, and you will see messages
similar to those shown in Figure 10-1.

Figure 10-1. Installing python-setuptools

Download at WoweBook.Com

http://www.python.org/download
http://pypi.python.org/packages/2.5/s/setuptools/setuptools-0.6c9-py2.5.egg

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

165

Now that you have installed python-setuptools, you can use easy_install to install the CouchDB,
SimpleJSON, and CouchApp Python modules (Listing 10-1).

Listing 10-1. Installing CouchApp and Dependencies Using python-setuptools

easy_install couchdb
easy_install simplejson

easy_install couchapp

That’s it—CouchApp is now installed, and you can begin writing CouchDB applications using
nothing but HTML and JavaScript! In the next section, you’ll look at getting up and running with
CouchApp.

Your First CouchApp
Now that you have installed CouchApp, you can start developing CouchApps right away. The first thing
to do is create a directory where you will store your CouchApps. I usually create a subdirectory called
couchapps below my home directory, as shown in Listing 10-2.

Listing 10-2. Creating a CouchApps Directory

mkdir ~/couchapps
cd ~/couchapps

From here, you use the following command to generate a new CouchApp:

couchapp generate test

This should generate a response like this:

[INFO] Generating a new CouchApp in /home/joe/couchapps/test

Now you need to push your CouchApp to your CouchDB installation. Assuming that your CouchDB
server is installed on your local machine and you have not set up authentication, you should be able to
push your CouchApp using the following command:

couchapp push test http://127.0.0.1:5984/testapp

If that worked correctly, you should see a message like this:

[INFO] Visit your CouchApp here: http://127.0.0.1:5984/testapp/_design/test/index.html

Copy and paste this URL into your favorite web browser, and you should see a screen similar to
Figure 10-2.

Download at WoweBook.Com

http://127.0.0.1:5984/testapp
http://127.0.0.1:5984/testapp/_design/test/index.html

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

166

Figure 10-2. The first CouchApp up and running

Let’s make a few changes to the first CouchApp before you move on to a more advanced example. In
your shell, navigate to the directory where you store your CouchApps, such as ~/couchapps. From here,
enter the directory for the test CouchApp you just created and list its contents using the following
commands:

cd test
ls

You should see five directories: _attachments, lists, shows, vendors, and views, as well as a single
couchapp.json file. I’ll discuss these in more detail in the next section, but for now let’s just go into the
_attachments directory and list its contents using this:

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

167

cd _attachments
ls

In this directory is a file index.html and a folder style. Style sheets for the application are usually
stored in the style directory. Let’s worry about changing the styles later; for now let’s just make some
rudimentary changes to the application’s content by modifying the index.html file. Open this file in your
favorite text editor (I like nano). Its contents should look like Figure 10-3.

Figure 10-3. CouchApp index.html file

Change the code between the <title> and </title> tags to something else. I decided to be
hyperbolic and name my app Super CouchApp. Also, change the text between the <h1> and </h1> tags to
the same, and change the text between the <p> and </p> tags to something along the lines of This ain’t
no placeholder page no more! Your final code should look somewhat along the lines of Listing 10-3.

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

168

Listing 10-3. The Newly Updated index.html File

<!DOCTYPE html>
<html>
 <head>
 <title>Super CouchApp</title>
 <link rel="stylesheet" href="style/main.css" type="text/css">
 </head>
 <body>
 <h1>Super CouchApp</h1>
 <p>This ain't no placeholder page no more!</p>
 </body>
 <script src="/_utils/script/json2.js"></script>
 <script src="/_utils/script/jquery.js?1.3.1"></script>
 <script src="/_utils/script/jquery.couch.js?0.9.0"></script>

</html>

When you have finished making changes, save the index.html file, and reload your CouchApp
browser window. Hmmm, nothing has changed, has it? That’s because you need to push the CouchApp
to CouchDB once again. You will need to do this every time you make changes to your CouchApp’s files.
Use the following command to push the CouchApp from the current directory:

couchapp push . http://127.0.0.1:5984/testapp

Once again you should get a message telling you the URL where you can visit your CouchApp. Now
head back to your browser window and try that URL once more. This time you should see a more
satisfying result, like the one in Figure 10-4.

Download at WoweBook.Com

http://127.0.0.1:5984/testapp

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

169

Figure 10-4. The new and improved CouchApp

As you can see, working with CouchApps is very straightforward. You simply edit the source files on
the disk and push the app to CouchDB when you want to test your changes. In the next section, you’ll
start creating a more useful application.

Creating CouchTasks: A Simple Task Manager
In this section, you’ll use HTML, JavaScript, and some CSS styling to create a simple task manager. By
the end of this chapter, you will have developed a CouchApp that allows you to create a new task and
delete existing tasks. It will also display any existing tasks when it loads. The application will use the
jQuery JavaScript library that comes with CouchApp, as well as some CouchApp extensions to this
library that neatly wrap the Ajax requests to the CouchDB database for you.

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

170

The end result should look something like Figure 10-5.

Figure 10-5. The final CouchTasks application

The first thing you need to do is generate a new CouchApp. Open a Terminal window, and navigate
to your CouchApps folder (mine is ~/couchapps). From here, issue the following command to generate
the couchtasks CouchApp folder:

couchapp generate couchtasks

This will create a new directory in your CouchApps folder named couchtasks. Enter this directory,
and navigate to the _attachments subdirectory using the following command:

cd couchtasks/_attachments

As you saw in the previous section, CouchApp automatically creates an index.html file and a
main.css file within the style subdirectory. The first thing you are going to do is edit your index.html file

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

171

to house the frame for your CouchTasks application. Open the file in your favorite text editor, and
replace the contents of the file with the code in Listing 10-4.

Listing 10-4. index.html

<!DOCTYPE html>
<html>
 <head>
 <title>CouchTasks</title>
 <link rel="stylesheet" href="style/main.css" type="text/css">
 </head>
 <body>
 <h1>CouchTasks</h1>
 <p>A simple CouchApp that allows you to create new tasks
 and delete completed ones.</p>
 <form name="add_task" id="add_task">
 <fieldset>
 <legend>New Task</legend>
 <label for="desc">Description:</label>

 <textarea id="desc" name="desc"></textarea>

 <input type="submit" id="create" value="Create" />
 </fieldset>
 </form>

 <form name="tasks" id="tasks">
 <fieldset>
 <legend>My Tasks</legend>
 <div id="task_count">You have 0 Task(s).</div>
 <ul id="my_tasks">
 </fieldset>
 </form>
 </body>
 <script src="/_utils/script/json2.js"></script>
 <script src="/_utils/script/jquery.js?1.3.1"></script>
 <script src="/_utils/script/jquery.couch.js?0.9.0"></script>
 <script src="vendor/couchapp/jquery.couchapp.js"></script>

</html>

 Let’s push the progress to CouchDB so you can see what this HTML has produced. In your Terminal
window, navigate to the main CouchTasks application directory (~/couchapps/couchtasks), and run the
following command:

couchapp push . http://127.0.0.1:5984/couchtasks

Download at WoweBook.Com

http://127.0.0.1:5984/couchtasks

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

172

If everything works as expected, you should see a message informing you that you can visit your
CouchApp at the URL http://127.0.0.1:5984/couchtasks/_design/couchtasks/index.html. Enter this
URL into your web browser, and you should see a page similar to the one shown in Figure 10-6.

Figure 10-6. The frame of your CouchTasks application

The bare bones of the application are now there, but it looks a bit dreary, doesn’t it? Let’s spruce it
up somewhat by adding a splash of color. To do this, you will modify the main.css file that CouchApp
kindly created for you when it generated your CouchTasks app. This file is in _attachments/style—
again, open it in your text editor. This time, replace the contents with the CSS code in Listing 10-5.

Download at WoweBook.Com

http://127.0.0.1:5984/couchtasks/_design/couchtasks/index.html

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

173

Listing 10-5. main.css

* {
 font-family: Helvetica, Arial, sans-serif;
}

body {
 margin: 0px; padding: 0px;
}

h1 {
 margin:0;
 padding: 0px 0px 0px 20px;
 background-color: #336699;
 color: #fff;
}

p {
 border: 1px solid #342c03;
 color: #342c03;
 background-color: #f0ffc2;
 padding: 10px;
 margin: 10px 20px 10px 20px;
 font-weight: bold;
}

fieldset {
 border: 1px solid #666;
 margin: 0px 20px 20px 20px;
 background-color: #eee;
}

legend {
 padding: 5px 15px 5px 15px;
 background-color: #ccc;
 border: 1px solid #666;
 font-weight: bold;
 font-size: 0.9em;
}

label {
 font-weight: bold;
 font-size: 0.8em;

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

174

}

textarea {
 width: 95%;
 height: 100px;
 margin-bottom: 10px;
}

input[type=submit] {
 font-size: 1.1em;
 font-weight: bold;
}

div#task_count {
 font-size: 0.8em;
 color: #888;
}

div#task_count span {
 font-weight: bold;

}

Save this file, and make sure you’re in the main CouchTasks directory in your Terminal window.
Now push the application to CouchDB once again using this:

couchapp push . http://127.0.0.1:5984/couchtasks

Now reload your CouchTasks browser window, and you should see a much more attractive user
interface, as shown in Figure 10-7.

Download at WoweBook.Com

http://127.0.0.1:5984/couchtasks

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

175

Figure 10-7. The restyled CouchTasks interface

So, now the application looks pretty, but you’ll notice that it still doesn’t actually do anything. Let’s
implement the New Task form so that it creates new task documents in the CouchDB database. To do
this, you need to create some JavaScript code. You could insert this directly into the index.html file, but
to keep your code manageable, you’ll create a separate JavaScript file and link to that from the
index.html file. In your terminal or shell, navigate to the _attachments subdirectory within your
couchtasks folder. Currently, there should be just the index.html file and style subdirectory in this
location. Let’s create a second subdirectory called script and create a file named main.js inside it:

mkdir script
cd script

touch main.js

Now open this main.js file, and add the code from Listing 10-6 to it.

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

176

Listing 10-6. main.js

$.CouchApp(function(app) {
 $('form#add_task').submit(function(e) {
 e.preventDefault();
 var newTask = {
 desc: $('#desc').val()
 }
 if(newTask.desc.length > 0) {
 app.db.saveDoc(newTask, { success: function(resp) {
 $('ul#my_tasks').append(''+newTask.desc+'');
 $('ul#my_tasks li:last').hide().fadeIn(1500);
 $('#desc').val('');
 var task_count = parseInt('#task_count span').html(), 10);
 task_count++;
 $('#task_count span').html(task_count);
 }});
 } else {
 alert('You must enter a description to create a new task!');
 }
 });

});

Let’s briefly walk through what this code does. First you are opening an instance of CouchApp,
which will automatically set up the database and design document variables for you. Within this, you are
capturing the submit event of the form with the ID add_task. In this function, you first prevent the
default action from being performed (in this case the form being submitted). You then build up your
new task’s document in JSON format, using the value of the Description textarea field for the value of
the desc field.

Next, you check that the user has actually entered something in the Description field, displaying an
error message if not. If all appears fine, you save the document to the CouchDB database. When
CouchDB returns and confirms that the document was saved correctly, you add your new task to the My
Tasks section of the page. You then clear the description textarea value and increase the task count
above your list of tasks.

Before you push the application to CouchDB, you need to make a small modification to the
index.html file to tell it to read your new JavaScript file. The new line is highlighted in bold in
Listing 10-7.

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

177

Listing 10-7. index.html

<!DOCTYPE html>
<html>
 <head>
 <title>CouchTasks</title>
 <link rel="stylesheet" href="style/main.css" type="text/css">
 </head>
 <body>
 <h1>CouchTasks</h1>
 <p>A simple CouchApp that allows you to create

new tasks and delete completed ones.</p>
 <form name="add_task" id="add_task">
 <fieldset>
 <legend>New Task</legend>
 <label for="desc">Description:</label>

 <textarea id="desc" name="desc"></textarea>

 <input type="submit" id="create" value="Create" />
 </fieldset>
 </form>

 <form name="tasks" id="tasks">
 <fieldset>
 <legend>My Tasks</legend>
 <div id="task_count">You have 0 Task(s).</div>
 <ul id="my_tasks">
 </fieldset>
 </form>
 </body>
 <script src="/_utils/script/json2.js"></script>
 <script src="/_utils/script/jquery.js?1.3.1"></script>
 <script src="/_utils/script/jquery.couch.js?0.9.0"></script>
 <script src="vendor/couchapp/jquery.couchapp.js"></script>
 <script src="script/main.js"></script>

</html>

Now you are ready to push your application once again. Again, making sure you are in the main
couchtasks directory, issue the following command:

couchapp push . http://127.0.0.1:5984/couchtasks

Now reload your CouchTasks browser window, and this time add a description and click the Create
button. You should see the Buy Milk list item fade in, and the task counter should update to 1, as shown
in Figure 10-8.

Download at WoweBook.Com

http://127.0.0.1:5984/couchtasks

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

178

Figure 10-8. Creating new tasks with CouchTasks

Feel free to check that the document was indeed saved to the database in Futon. It will be saved in
the couchtasks database.

Unfortunately, however, the application is not maintaining state between sessions. If you refresh
the CouchTasks browser window, you will notice that no tasks are displaying, and the counter is
showing zero results. That is because you have not told your application to bring back data from the
CouchDB database yet. To do so, you need to create a view and tell your CouchApp to read data from
this view.

To create a view in your CouchApp, you need to define it in the special views subdirectory in the
couchtasks directory. If you store your CouchApps in ~/couchapps, you should find this in
~/couchapps/couchtasks/views. The views directory is structured into subdirectories, each of which is
the name of the view. Within each of these subdirectories, you create a map.js file for your map function
and an optional reduce.js file for reduce functions if required.

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

179

For this application, you need to retrieve the tasks that are currently stored in the database when the
application first loads. To do this, you need a simple view that you shall call get_tasks. Open your shell
window, and navigate to your couchtasks directory. From here, issue the following commands to set up
your view file structure:

mkdir views/get_tasks
touch views/get_tasks/map.js

Now open the map.js file in your text editor, and add the code in Listing 10-8 to it.

Listing 10-8. map.js

function(doc) {
 emit(doc.desc, doc);

}

Save your changes to the map.js file before continuing. Next, you need to modify your main.js file
(in the couchtasks/_attachments/script directory) to tell your application to load existing data on
launch. The new content of main.js is shown in Listing 10-9.

Listing 10-9. main.js

$.CouchApp(function(app) {
 $('form#add_task').submit(function(e) {
 e.preventDefault();
 var newTask = {
 desc: $('#desc').val()
 }
 if(newTask.desc.length > 0) {
 app.db.saveDoc(newTask, { success: function(resp) {
 $('ul#my_tasks').append(''+newTask.desc+'');
 $('ul#my_tasks li:last').hide().fadeIn(1500);
 $('#desc').val('');
 var task_count = parseInt($('#task_count span').html(), 10);
 task_count++;
 $('#task_count span').html(task_count);
 }});
 } else {
 alert('You must enter a description to create a new task!');
 }
 });

 app.view("get_tasks", { success: function(json) {
 json.rows.map(function(row) {

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

180

 $('ul#my_tasks').append(''+row.key+'');
 });
 $('#task_count span').html(json.rows.length);
 }});

});

When you have saved main.js, push your application to CouchDB again using this:

couchapp push . http://127.0.0.1:5984/couchtasks

Now when you open CouchTasks in your web browser, you should see the task you previously
entered. Next, let’s make the list of tasks look a bit prettier with some padding and borders, and also let’s
add a delete button next to each task so that the user can delete the task from the database. First let’s
modify the main.css file (located in couchtasks/_attachments/style/main.css), adding some style sheet
rules for the tasks list and the delete buttons you are going to create. Add the code in Listing 10-10 to the
end of the main.css file.

Listing 10-10. Code to Append to main.css

ul#my_tasks {
 list-style: none;
 margin: 0; padding: 0;
 border: 1px solid #ccc;
 border-top: none;
}

ul#my_tasks li {
 list-style: none;
 display: block;
 padding: 10px;
 background-color: #fff;
 border-top: 1px solid #ccc;
}

ul#my_tasks div.desc {
 width: 80%;
 float: left;
 font-size: 1.1em;
}

ul#my_tasks li div.link {
 width: 20%;
 float: left;
 text-align: right;
}

Download at WoweBook.Com

http://127.0.0.1:5984/couchtasks

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

181

ul#my_tasks li div.clear {
 clear: both;
}

ul#my_tasks li a {
 background-color: maroon;
 color: #fff;
 padding: 2px;
 font-size: 1.1em;
 border: 1px solid #000;
 font-weight: bold;
 text-decoration: none;
}

ul#my_tasks li a:hover {
 background-color: red;

}

Now you need to modify the main.js file to take care of two scenarios—first adding delete buttons to
links generated when a user adds a new task and second adding delete buttons to links generated when
the application launches. Change the content of the main.js to match the code in Listing 10-11.

Listing 10-11. main.js

$.CouchApp(function(app) {
 $('form#add_task').submit(function(e) {
 e.preventDefault();
 var newTask = {
 desc: $('#desc').val()
 }
 if(newTask.desc.length > 0) {
 app.db.saveDoc(newTask, { success: function(resp) {
 $('ul#my_tasks').append('<li id="'+newTask._id+'">'
 +'<div class="desc">'+newTask.desc+'</div>'
 +'<div class="link">'
 +'<a href="#" onclick="return false;"'
 +' id="'+newTask._rev+'">Delete'
 +'</div>'
 +'<div class="clear"></clear>'
 +'');
 $('#'+newTask._rev).click(function() {
 if(confirm("Are you sure you want to delete this task?")) {
 var delTask = {

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

182

 _id: newTask._id,
 _rev: newTask._rev
 }
 app.db.removeDoc(delTask, {});
 $('#'+newTask._id).show().fadeOut(2000);
 var del_count = parseInt($('#task_count span').html(), 10);
 del_count--;
 $('#task_count span').html(del_count);
 return false;
 }
 });
 $('ul#my_tasks li:last').hide().fadeIn(1500);
 $('#desc').val('');
 var task_count = parseInt($('#task_count span').html(), 10);
 task_count++;
 $('#task_count span').html(task_count);
 }});
 } else {
 alert('You must enter a description to create a new task!');
 }
 });

 app.view("get_tasks", { success: function(json) {
 json.rows.map(function(row) {
 $('ul#my_tasks').append('<li id="'+row.value._id+'">'
 +'<div class="desc">'+row.key+'</div>'
 +'<div class="link">'
 +'<a href="#" onclick="return false;"'
 +' id="'+row.value._rev+'">Delete'
 +'</div>'
 +'<div class="clear"></clear>'
 +'');
 $('#'+row.value._rev).click(function() {
 if(confirm("Are you sure you want to delete this task?")) {
 var delTask = {
 _id: row.value._id,
 _rev: row.value._rev
 }
 app.db.removeDoc(delTask, {});
 $('#'+row.value._id).show().fadeOut(2000);
 var del_count = parseInt($('#task_count span').html(), 10);
 del_count--;
 $('#task_count span').html(del_count);
 return false;

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

183

 }
 });
 });
 $('#task_count span').html(json.rows.length);
 }});

});

Save this file, and push the application to CouchDB again. When you refresh your CouchTasks
browser window, you will notice that the task list items now appear in a nicer format, and each of them
has a red delete button on the right side. If you click the delete button, you will be asked for confirmation
that you want to delete the task (Figure 10-9), and if you click OK, it will be deleted from the database.

Figure 10-9. Delete task confirmation dialog box

Download at WoweBook.Com

CHAPTER 10 ■ DEVELOPING COUCHDB APPLICATIONS WITH COUCHAPP

184

Now the application is performing the functions outlined earlier in this section. You can add tasks to
the database using the form your application provides. This application is displaying the tasks that
already exist in the database using a CouchDB view, and you can delete existing and newly created tasks
in the My Tasks list.

Suggested Improvements
Obviously, the CouchTasks application is simple in its current form, but with a little knowledge of
JavaScript and the jQuery framework, you can build on this sample application and create a powerful
task management application. Some features you could quite easily add to the application include the
following:

• More detailed task documents. Add fields like Due Date, Priority, Category, and
more.

• Instead of deleting tasks, allow the user to mark them as completed and then
provide a view of previously completed tasks.

• Allow the user to edit tasks.

• Allow the user to rearrange the display order of tasks.

Summary
In this chapter, you learned how to create fully functional web application using CouchApp—a
development framework that allows you to build applications in HTML, CSS, and JavaScript that can
interact with a CouchDB database. You learned that the advantages that a 100 percent client-side
application can offer in terms of flexibility and portability. Finally, you put all of this into practice by
creating a task management CouchApp.

In the next chapter, you will look at using CouchDB as a traditional database back end to a server-
side application developed in Python.

Download at WoweBook.Com

C H A P T E R 11

■ ■ ■

185

Developing Applications with
CouchDB

In this chapter, you will learn how to develop software applications that are powered by a CouchDB
database. First you will look at the libraries available that allow you to connect to CouchDB from two
programming languages: Python and Ruby. In both cases, I will show how to use a software library to
connect to a CouchDB server from the programming language. You will then use this library to interact
with CouchDB by creating and working with databases and documents. Once I have walked you through
the basics, you will develop a sample application using Python and the Django web application
development framework, with the data stored in a CouchDB database.

Developing in Python with Couchdbkit
A number of CouchDB libraries are available for the Python programming language, and in this section
you will use the Couchdbkit library to connect to CouchDB from your Python applications. At the time of
writing, Couchdbkit requires the following:

• CouchDB 0.9.0 or newer.

• Python 2.5 or 2.6. Couchdbkit does not work with Python 3.0.

■ Note Many UNIX-based systems, including Linux distributions and Mac OS X, come with a version of Python
preinstalled. You can check whether Python is installed on your system (and which version you have) by issuing
the command python –version at the shell prompt or in a Terminal window. If Python is not installed, or the
version installed is not compatible with Couchdbkit, visit http://www.python.org/download to download a
suitable version for your operating system.

With the prerequisites installed, you are almost ready to install Couchdbkit. The easiest way to do so
is using easy_install, which requires that a recent version of setuptools be installed. If it is not (or you
are not sure), issue the following commands in your shell or Terminal window:

Download at WoweBook.Com

http://www.python.org/download

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

186

 curl -O http://peak.telecommunity.com/dist/ez_setup.py
 sudo python ez_setup.py -U setuptools

With easy_install available, you can now proceed to install pycurl by issuing this command:

 sudo easy_install -U pycurl

With pycurl installed, you are now ready to install Couchdbkit. This is as simple as entering the
following command:

sudo easy_install -U Couchdbkit

This will download Couchdbkit and its dependencies (simplejson, restclient, and httplib) and
install them for you automatically. When it’s finished, you’re ready to start developing CouchDB
applications in Python!

Open the Python interpreter by issuing the following command in your shell or Terminal window:

python

Now let’s start using Python to work with the CouchDB server. First things first, let’s create a
CouchDB database. At the Python interpreter prompt (usually denoted by >>>), enter the code in Listing
11-1 to create a CouchDB database.

Listing 11-1. Creating a CouchDB Database in Python

from couchdbkit.client import Server
server = Server()
server.create_db(“python_test”)

When you finish entering the third line from Listing 11-1, you should get a result like this:

<Database python_test>

Let’s be skeptics in this case, however, and verify that the database has been created. Open your
favorite web browser, and visit the Futon administration interface for your CouchDB server at
http://127.0.0.1:5984/_utils. If the database was successfully created, you should see it in all its glory,
as shown in Figure 11-1.

Download at WoweBook.Com

http://peak.telecommunity.com/dist/ez_setup.py
http://127.0.0.1:5984/_utils

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

187

Figure 11-1. The Python-created database in Futon

Next, let’s take things a step further by creating a CouchDB document using Couchdbkit. First, let’s
move from entering code at the interactive prompt to using source code files. Create a directory in your
home folder called python_couch. Now use your favorite text editor to create a new file in this folder,
named Bookmark.py. Add the code in Listing 11-2 to Bookmark.py.

Listing 11-2. Bookmark.py

from couchdbkit.schema import Document
from couchdbkit.schema.properties import *

class Bookmark(Document):
 url = StringProperty()
 title = StringProperty()
 date_added = DateTimeProperty()

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

188

Now, try running this source code by issuing the following command:

python Bookmark.py

If you don’t see any error messages, your class was evaluated successfully. Now let’s create some
code to utilize this class to create and save CouchDB documents. Create a new file in the python_couch
folder. Name this one BookmarksApp.py. This file should contain the code in Listing 11-3.

Listing 11-3. BookmarksApp.py

from datetime import datetime
from Bookmark import Bookmark
from couchdbkit.client import Server
from couchdbkit.session import create_session

server = Server()
db = create_session(server, "python_test")
bmark = Bookmark(
 url="http://couchdb.apache.org",
 title="Official Apache CouchDB project website",
 date_added=datetime.utcnow()
)

print('Saving CouchDB document')
db(bmark).save()
print('Document Saved.')

Now run this source code by issuing the following command:

python BookmarksApp.py

You should see the messages “Saving CouchDB document” and “Document Saved”—but once
again, let’s not take the application’s word for it. If you take a quick look in Futon, you can see that your
python_test database now has a document, with the values from the previous code stored. If you run the
code again, you’ll see that a second document has been created.

It’s unlikely you’d want to store the data to be added to CouchDB in your source code, of course.
You’d probably want to allow the user to enter the URL and title of the bookmark. Let’s make a few
simple changes to the application to allow for user input. Modify the BookmarksApp.py file, making the
changes highlighted in Listing 11-4.

Listing 11-4. Updated Version of BookmarksApp.py

from datetime import datetime
from Bookmark import Bookmark
from couchdbkit.client import Server
from couchdbkit.session import create_session

server = Server()
db = create_session(server, "python_test")

the_url = raw_input('Enter website URL: ')

Download at WoweBook.Com

http://couchdb.apache.org

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

189

the_title = raw_input('Enter website title: ')

bmark = Bookmark(
 url=the_url,
 title=the_title,
 date_added=datetime.utcnow()
)

print('Saving CouchDB document')
db(bmark).save()
print('Document Saved.')

Now run your application again by entering this command:

python BookmarksApp.py

This time around, you should be prompted for a URL and a title, as shown in Figure 11-2.

Figure 11-2. Prompting for user input

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

190

It’s great that you can create CouchDB documents from Python, but what if you wanted to use
Python to execute CouchDB views? You’d need to create a view. Of course, you could use Futon or the
CouchDB API to create this view, but you can also use Couchdbkit for this. The first thing you need to do
is create a valid directory structure for your view’s design document. In your python_couch directory,
create a subdirectory called views/_design/bookmark/views/all using the following command:

mkdir -p views/_design/bookmark/views/all

Now create a file in the all subdirectory named map.js. The contents of this file should match
Listing 11-5.

Listing 11-5. map.js

function(doc) {
 if(doc.doc_type == "Bookmark")
 emit(doc._id, doc);
}

Now you need to use the “loaders” feature of Couchdbkit to load this view and insert it into the
CouchDB database. Back in your python_couch directory (where you saved Bookmark.py and
BookmarksApp.py earlier), create a new file named BookmarksView.py, and add the code in Listing 11-6 to
it.

Listing 11-6. BookmarksView.py

from Bookmark import Bookmark
from couchdbkit.client import Server
from couchdbkit.session import create_session
from couchdbkit.loaders import FileSystemDocsLoader

server = Server()
db = create_session(server, "python_test")

Bookmark = db(Bookmark)

loader = FileSystemDocsLoader('/home/joe/python_couch/views/_design')
loader.sync(db, verbose=True)

bmarks = Bookmark.view('bookmark/all')
print(str(bmarks.count()) + ' bookmark(s) in database.')

 This code will take the view you defined in Listing 11-5 and load it into CouchDB in a design
document. You then execute the view, which returns a ViewResults object. You then use the count
instance method of this object to print the number of bookmarks currently stored in the database.

As you have seen, Couchdbkit provides you with many utilities for working with CouchDB databases
in your Python projects. In fact, there is quite a bit more to Couchdbkit than the small sections we
touched on in this section.

If you want to learn more about Couchdbkit, visit the project’s API at
http://www.couchdbkit.org/docs/api/.

Download at WoweBook.Com

http://www.couchdbkit.org/docs/api

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

191

In the next section, you will look at using the CouchRest Ruby library in the same way as you used
Couchdbkit in this section. You will then use the skills you learned in this section to develop a Django
application that is powered by a CouchDB database.

Developing in Ruby with CouchRest
If you worked through the previous section, you saw how simple it is to use Python to create applications
that store data in CouchDB. In this section, you will learn about how CouchRest offers the same
simplicity to Ruby developers. The requirements for CouchRest, at the time of writing, are as follows:

• CouchDB 0.9.0 or newer installed

• Ruby installed (I have tested on version 1.8.7, but other versions should work)

• RubyGems installed

■ Note If you do not have Ruby installed, take a trip to http://rubyonrails.org, and follow the instructions
there. You will need to install Ruby and RubyGems for this section. You do not need to install Rails, but if you are
planning on developing Ruby on Rails applications in the future, you may as well install it now also.

Before installing CouchRest, you’ll need to make sure that your RubyGems install is up-to-date. If
you have just installed RubyGems, you should be fine, but if not (or you want to be sure), simply issue
the following command in a shell or Terminal window:

sudo gem update –system

With RubyGems up-to-date, you can install CouchRest using RubyGems. Simply enter the following
command:

sudo gem install couchrest

This will use the RubyGems package manager to download CouchRest and any dependency
packages, before automatically installing them. With CouchRest installed, let’s hop into the Ruby
interpreter and perform a quick test to see that CouchRest is working. Issue the following command to
open the Ruby interpreter:

irb

At the Ruby interpreter prompt (denoted by >> or irb(main):001:0>), enter the following line:

require 'couchrest'

Unless you have previously installed the JSON gem, you will more than likely get an error like the
one shown in Figure 11-3.

Download at WoweBook.Com

http://rubyonrails.org

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

192

Figure 11-3. No JSON-compatible library is installed.

Exit the Ruby interpreter by entering exit at the Ruby prompt. This will return you to your system
shell. From here, enter the following command to install the JSON RubyGem:

sudo gem install json

Now open the Ruby interpreter once again, and this time, enter the lines of code in Listing 11-7.

Listing 11-7. Testing CouchRest

require 'rubygems'
require 'couchrest'
SERVER = CouchRest.new
DB = SERVER.database!(‘ruby_test’)

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

193

If the code worked correctly, you should see some fairly cryptic messages, which, if you read them
carefully, reveal information about the ruby_test database you just created, as shown in Figure 11-4.

Figure 11-4. Creating CouchDB databases in Ruby with CouchRest

Let’s remain skeptical, however, and head into Futon to check that it did indeed create a database.
Open your favorite web browser, and enter the URL http://127.0.0.1:5984/_utils. If it worked, you
should see the new ruby_test database in the list of databases, as shown in Figure 11-5.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

194

Figure 11-5. The CouchRest-created ruby_test database in Futon

In the previous section of this chapter, you learned how to work with documents in Python using
the example of storing bookmarks in the CouchDB database. I will use the same example in this section,
except the application will be developed in Ruby using CouchRest.

In your home directory, create a subdirectory named ruby_couch. In it, create a new file called
Bookmark.rb, and enter the code in Listing 11-8 in it.

Listing 11-8. Bookmark.rb

require 'rubygems'
require 'couchrest'

SERVER = CouchRest.new
DB = SERVER.database('ruby_test')

class Bookmark < CouchRest::ExtendedDocument
 use_database DB

 property :url
 property :title

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

195

 timestamps!

 view_by :title

end

Now it’s time to compile the Bookmark class using the Ruby compiler. In your Terminal window,
navigate to the ruby_couch directory in your home folder, and run the following command:

ruby Bookmark.rb

Now let’s create a Ruby application that uses this class. Create a new file called BookmarksApp.rb,
and save it in the same location as the Bookmark.rb file. Edit its contents so it is the same as the code in
Listing 11-9.

Listing 11-9. BookmarksApp.rb

require 'Bookmark'

bmark = Bookmark.new(
 :url => 'http://couchdb.apache.org',
 :title => 'Official Apache CouchDB project website'
)

puts "Saving bookmark: #{bmark.inspect}"
bmark.save
puts "Bookmark Saved."

Now, compile this code using the following command at your shell prompt (not the Ruby prompt):

ruby BookmarksApp.rb

This should return with the JSON representation of the document that is being created and the
message “Bookmark Saved,” as shown in Figure 11-6.

Download at WoweBook.Com

http://couchdb.apache.org

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

196

Figure 11-6. The CouchDB document created in Ruby using CouchRest

Ever the skeptics, let’s double-check that it worked in Futon. If you can find the document, which
looks like in Figure 11-7, it worked!

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

197

Figure 11-7. The CouchRest-created document in Futon

Running the application again and again re-creates the same document. Of course, it would be
much nicer if you could define the URL and title you want to add to the database at runtime. Modify the
BookmarksApp.rb file, making the changes highlighted in bold in Listing 11-10.

Listing 11-10. Updated Version of BookmarksApp.rb

require 'Bookmark'

puts "Enter website URL: "
STDOUT.flush
the_url = gets.chomp

puts "Enter website title: "
STDOUT.flush
the_title = gets.chomp

bmark = Bookmark.new(
 :url => the_url,
 :title => the_title

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

198

)

puts "Saving bookmark: #{bmark.inspect}"
bmark.save
puts "Bookmark Saved."

Rerun the application by issuing the following command:

ruby BookmarksApp.rb

This time, you should be prompted for a website URL and title, and the values you enter here will be
used to form the document that is saved in the database. You can see the output returned by Ruby in
Figure 11-8.

Figure 11-8. Saving custom documents using Ruby and CouchRest

Up until this point, working with CouchDB in Python using Couchdbkit and in Ruby using
CouchRest has been quite similar, albeit with differing syntax. The following method of creating

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

199

CouchDB views is quite different from the method used in Couchdbkit. Create a new file named
BookmarksView.rb, and save it in the same location as the other two Ruby source files you have created.
Add the code in Listing 11-11 to this file.

Listing 11-11. BookmarksView.rb

require 'Bookmark'

all_view = {
 :map = 'function(doc) { if(doc["couchrest-type"] == "Bookmark") emit(doc._id, doc); }'
}

DB.delete_doc DB.get("_design/bookmark") rescue nil

DB.save_doc({
 "_id" => "_design/bookmark",
 :views => {
 :all => all_view
 }
})

puts DB.view('bookmark/all')['rows'].inspect

Now run this file using the following command:

ruby BookmarksView.rb

The output should be each “Bookmark” document stored in your CouchDB database, as shown in
Figure 11-9.

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

200

Figure 11-9. Results of BookmarksView.rb

In the next section, you will develop a web application using Python and Django that uses CouchDB
to store its data. If you want to learn more about CouchRest, visit
http://github.com/jchris/couchrest/tree/master.

Creating a Bookmarks Application with CouchDB and Django
In this section, you will create a sample bookmark application that is deployed as a web application
using the Python-based Django framework. Luckily, the Couchdbkit framework you used earlier in this
chapter has Django extensions built into it, making it simple to build Django applications that use
CouchDB to store data.

Download at WoweBook.Com

http://github.com/jchris/couchrest/tree/master

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

201

■ Note In this section, you are using wget to download Django. If you are using Linux, this should be already
installed on your system, but if you are using Mac OS X, you probably don’t have wget. If you followed the
instructions for installing CouchDB on Mac OS X in Chapter 3, you will have MacPorts installed on your system.
You can use this to download and install wget by issuing the following command in a Terminal window: sudo port
install wget. You will be asked to enter your administrator password, and once you do, MacPorts will download
and install wget on your system automatically. You can then use wget to download Django.

The first thing you need to do is install Django. From your home directory, issue the following
command to download and install Django 1.1 (the latest release version available at the time of writing):

wget http://www.djangoproject.com/download/1.1/tarball/
tar xzvf Django-1.1.tar.gz
cd Django-1.1
sudo python setup.py install

That’s it! Django is now installed and ready to use! Let’s move on and create the Django project.
Make sure you are in your home directory, and issue the following command:

django-admin.py startproject myproject

This will create a new Django project called myproject, automatically creating a directory of the
same name beneath the directory you ran the command from. Enter this directory by issuing the
following:

cd myproject

Now, let’s create the Django application:

python manage.py startapp bookmarks

This will create a new directory called bookmarks beneath the myproject directory. Now let’s start to
build the Django application. The first thing you need to do is make a few changes to your project’s
settings.py file, found in the myproject folder. Open this file in your favorite text editor, and change it
so that it matches Listing 11-12 (changes from the standard file are highlighted in bold).

Listing 11-12. settings.py

import os, platform
PROJECT_PATH = os.path.dirname(os.path.abspath(__file__))
DEBUG = True
TEMPLATE_DEBUG = DEBUG

ADMINS = (
 ('Joe Lennon', 'joe@joelennon.ie'),
)
MANAGERS = ADMINS

Download at WoweBook.Com

http://www.djangoproject.com/download/1.1/tarball
mailto:joe@joelennon.ie

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

202

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'dummy.db'

COUCHDB_DATABASES = (
 ('myproject.bookmarks', 'http://127.0.0.1:5984/bookmarks'),
)

TIME_ZONE = 'Europe/Dublin'
LANGUAGE_CODE = 'en-us'
SITE_ID = 1
USE_I18N = True
MEDIA_ROOT = os.path.join(PROJECT_PATH, 'static')
MEDIA_URL = '/media'
ADMIN_MEDIA_PREFIX = '/media/admin/'

SECRET_KEY = 'fsdg43sdfgu5tfgjfhdgsd554ergf54yhdsgeghdgghgfd56ytr'

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
)

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
)

ROOT_URLCONF = 'myproject.urls'

TEMPLATE_DIRS = (
 os.path.join(PROJECT_PATH, 'templates'),
)

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'couchdbkit.ext.django',
 'myproject.bookmarks',
)

Next, you need to change your urls.py file to tell Django what views to point what URLs to. Modify
this file in your favorite text editor so it matches the code in Listing 11-13.

Download at WoweBook.Com

http://127.0.0.1:5984/bookmarks

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

203

Listing 11-13. urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^$', 'bookmarks.views.index'),
)

Next, let’s create the application models. In the bookmarks directory, edit the models.py file, and
modify it so that it reflects the code shown in Listing 11-14.

Listing 11-14. models.py

from datetime import datetime
from django.db import models
from couchdbkit.ext.django.schema import *

class Bookmark(Document):
 url = StringProperty(required=True)
 title = StringProperty(required=True)
 date_added = DateTimeProperty(default=datetime.utcnow)

 Now, modify the views.py file. This is where you will create the index view, which the main Django
application URL will access. Listing 11-15 shows the contents of this file.

Listing 11-15. views.py

from datetime import datetime
from django.shortcuts import render_to_response
from django.template import RequestContext, loader, Context
from couchdbkit.ext.django.forms import DocumentForm
from myproject.bookmarks.models import Bookmark

class BookmarkForm(DocumentForm):
 class Meta:
 document = Bookmark
 exclude = ('date_added',)

def index(request):
 bookmark = None

 if request.POST:
 form = BookmarkForm(request.POST)
 if form.is_valid():
 bookmark = form.save()
 else:
 form = BookmarkForm()

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

204

 bookmarks = Bookmark.view('bookmarks/all', descending=True)

 return render_to_response("index.html", {
 "form": form,
 "bookmark": bookmark,
 "bookmarks": bookmarks
 }, context_instance=RequestContext(request))

You may have noticed in Listing 11-15 that you are returning the bookmarks stored in the database
using a CouchDB view: bookmarks/all. This view does not exist, however, so you need to create it. In the
bookmarks directory, create a nested directory structure as follows:

_design
 views
 all

You can create this by issuing the command (assuming you are in the bookmarks directory):

mkdir -p _design/views/all

Now you need to create a new file at the bottom of this structure (in other words, in the all
subdirectory) called map.js, which will house your view’s map function. This view will simply return a
list of all documents in the database that have a doc_type field with the value Bookmark. This allows you
to display only data documents from your database (whereas the _all_docs view would include design
documents also). Listing 11-16 shows the map.js file source code.

Listing 11-16. map.js

function(doc) {
 if(doc.doc_type == "Bookmark")
 emit(doc._id, doc);
}

The final thing you need to do is create the template index.html file that is used by the Django view.
In the main project directory (myproject), create a new directory named templates as follows:

mkdir templates

In this directory, create a new file named index.html, with the code in Listing 11-17.

Listing 11-17. index.html

{% load i18n %}

<html>
<head>
<title>Bookmarks Application</title>
<style type="text/css">
* { font-family: Helvetica, Verdana, sans-serif; }
body { margin: 0; padding: 0; }

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

205

h1 { background-color: #336699; color: #fff; font-size: 1.3em; margin: 0; padding: 10px; }
fieldset { margin: 20px; border: 1px solid #ccc; }
legend {
 border: 1px solid #ccc; background-color: #eee; padding: 4px; font-weight: bold; font-
size: 0.8em;
}
form table { margin: 10px; }
form table th { text-align: left; }
form table th label[for="id_url"] { text-transform: uppercase; }
h2 { margin: 20px; padding: 10px; background-color: #eee; border: 1px solid #ccc; font-size:
1.1em; }
table.results {
 width: 95%; margin: 20px; border: 1px solid #ccc; border-bottom: none; border-righ: none;
}
table.results th {
 text-align: left; background-color: #eee; border-bottom: 1px solid #ccc; border-right: 1px
solid #ccc;
}
table.results td { border-bottom: 1px solid #ccc; border-right: 1px solid #ccc; }
p { margin: 20px; color: green; font-weight: bold; }
</style>
</head>

<body>
<h1>Bookmarks Application</h1>
<form method="post">
<fieldset><legend>Create New Bookmark</legend>
<table>
{{ form.as_table }}
<tr><td colspan="2" align="center">
<input type="submit" id="submit" value="Create Bookmark" />
</td></tr></table></fieldset></form>

{% if bookmark %}
<p>{{ bookmark.title }} was added.</p>
{% endif %}

<h2>View Bookmarks</h2>
<table class="results" cellspacing="0" cellpadding="4">
<tr><th>Link</th><th>Date Added</th></tr>
{% for b in bookmarks %}
<tr>
<td>{{ b.title }}</td>
<td>{{ b.date_added|date:"D d M Y @ H:i:s" }}</td>
</tr>
{% endfor %}
</table>
</body>
</html>

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

206

That’s it; your Django + CouchDB application is ready to be tested! Navigate to the main project
directory (myproject), and issue the following command:

python manage.py syncdb

This will start creating some tables in the SQLite database for some preinstalled Django modules.
You may be asked to create a superuser; feel free to do so by answering the questions when prompted.
When your superuser has been created, you will notice the message “sync ‘myproject.bookmarks’ in
CouchDB” before some messages about installing indexes. Does this mean that the bookmarks database
has been created in CouchDB? Let’s check in Futon by visiting http://127.0.0.1:5984/_utils in a web
browser. You should see a positive result, as shown in Figure 11-10.

Figure 11-10. The bookmarks database, automatically created by Django

But that’s nothing that you couldn’t do with some simple Python code yourself. How about an
actual Django web application? Head back to your shell prompt or Terminal window, and from the
myproject directory, issue the following command:

python manage.py runserver

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

207

This will validate your Django models and launch Django’s built-in development web server on port
8000. You should see a message like the one shown in Figure 11-11.

Figure 11-11. Running the Django development web server

As instructed, visit the URL http://127.0.0.1:8000 in your web browser. You should now be able to
add new bookmarks, which will be retrieved from CouchDB and displayed in the table at the bottom of
the page. The end product should look something like Figure 11-12.

Download at WoweBook.Com

http://127.0.0.1:8000

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

208

Figure 11-12. The bookmark Django + CouchDB application

Congratulations, you have developed a bookmark web application in Python using the Django web
application development framework that uses CouchDB to store its data. Of course, this sample
application barely scratches the surface in terms of potential features. However, with some basic
knowledge of Python, Django, and Couchdbkit, you can take the sample application you have developed
here and turn it into a full-blown CouchDB-driven application. Some suggestions for feature
enhancements include the following:

• Allow bookmarks to be edited and deleted

• Add more fields to the application, such as tags, description, rating, and so on

• Separate the application into multiple views

• Create more CouchDB views to give multiple representations of the data, such as
tag clouds, sorting by fields, pagination, and so on

Download at WoweBook.Com

CHAPTER 11 ■ DEVELOPING APPLICATIONS WITH COUCHDB

209

• Use JavaScript to allow bookmarks to be sorted using drag and drop

• Allow bookmarks to be organized into categories

The possibilities for this application are truly endless.

Summary
In this chapter, you learned how to work with CouchDB databases using two modern programming
languages: Python and Ruby. With Python, you learned how to leverage the Couchdbkit library to create
and work with CouchDB databases and views. You then saw how to do the same in Ruby using
CouchRest. Finally, you developed a basic bookmark storage web application using the Django
framework for Python, with your data stored in CouchDB, of course.

In the next chapter, you will learn about some of the more advanced aspects of CouchDB, such as
replication, compaction and working with documents in bulk.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 12

■ ■ ■

211

Advanced CouchDB Topics

In this chapter, you will learn about some of the more advanced aspects of CouchDB. First, you will see
how a CouchDB database can be replicated—to another database on the local CouchDB server and to a
database on a remote CouchDB instance. Then, you’ll learn about database compaction and how it
reduces the size of the database file, as well as its impact on previous revisions of documents. Next, you
will learn how to fetch and write documents from and to the database in bulk. Finally, you will see how
show functions allow you to represent CouchDB data in different formats.

Replication
CouchDB is designed to allow bidirectional replication in an efficient and reliable manner. It does this
through an incremental replication model, where only those documents that have changed since the last
replication are processed. By design, CouchDB’s replication system allows a failed replication process to
pick up from the last saved checkpoint.

In addition to regular CouchDB documents that store data, the design documents that house
CouchDB views are also replicated, as well as any document’s attachments. This means that entire
CouchDB applications can enjoy the benefits of this replication feature, not just the data.

Let’s take a look at how to perform replication in CouchDB. The first method is using Futon, the
web-based administration interface that comes with every CouchDB installation. Open your web
browser, and visit the URL http://127.0.0.1:5984/_utils (assuming CouchDB is installed on your local
computer). In Futon, create two databases—one called futon-one and the other called futon-two. In the
futon-one database, create three documents (you don’t need to worry about creating any fields because
the aim is merely to get replication working). When viewing Futon’s Overview page, you should see your
two databases, similar to Figure 12-1. Note that futon-one has three documents and futon-two has zero
documents.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

212

Figure 12-1. The futon-one and futon-two databases

Now, in the main menu of Futon on the right side, click the Replicator link to navigate to the Futon
replication tool. This page should look like the one shown in Figure 12-2.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

213

Figure 12-2. Futon replication tool

At the top of this page you will see two sides, one with the heading “Replicate changes from” and the
other with the heading “to.” Under each you will see two options—“Local database” and “Remote
database.” For this example, you will be replicating your local database futon-one to another local
database, futon-two. Make sure that under “Replicate changes from,” the “Local database” option is
selected and that the futon-one database is selected. Ensure that under “to” that “Local database” is also
selected but that here the futon-two database is selected. When you are ready to replicate the database,
click the Replicate button. The replication process will start and should finish almost immediately,
because the database is very small. When it is done, you will see a message in the Event area like the one
shown in Figure 12-3.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

214

Figure 12-3. Futon replication result

The message in the Event area is a JSON object with details about the replication and its results. You
can see in Figure 12-3 that, in my case, the replication took less than a second to complete, checked
three documents to see whether they were missing, found that all three were missing, read the three of
them, wrote them to the other database, and encountered zero failures.

Now let’s return to the Overview page of Futon, where you can see that the futon-two database now
contains three documents, just as futon-one does (Figure 12-4).

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

215

Figure 12-4. Futon’s Overview page after replication

Next, let’s investigate how the incremental replication works. From Futon’s Overview page, open
the futon-two database, and create two new documents. Again, you don’t need to create any real data,
unless you feel a burning desire to do so, of course! Your databases should now look something like
Figure 12-5, with futon-one containing three documents and futon-two containing five documents.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

216

Figure 12-5. Getting ready for incremental replication

Head back over to the Replicator tool; this time select futon-two under the “Replicate changes from”
heading, and select the futon-one database below the “to” heading. Click the Replicate button to
commence replication. The results will again show in the Event section, as shown in Figure 12-6.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

217

Figure 12-6. Result of incremental replication

If you read through the JSON result object, you will see that this time around it checked five
documents to see whether any were missing from the target database, and it found that two were
missing (the two we just created). It then read these two documents from the source database and wrote
them to the target database. Now let’s examine replicating across different CouchDB instances.

For the purposes of this example, I will assume that you have CouchDB installed on two separate
computers that are connected to the same network. If you don’t have two machines, you can try
installing two instances of CouchDB on the same computer, or of course you can create a virtual
machine and install CouchDB there. In my case, my CouchDB instances are installed on my Mac mini
computer, which has an IP address of 192.168.1.8, and on my MacBook, which has an IP address of
192.168.1.14. Be sure to replace these IP addresses with the addresses for your own computers.

■ Caution Before trying to replicate databases between CouchDB instances, it’s a good idea to test that the
computers can find each other. Open a shell or Terminal window on each machine, and use the ping command to
see whether it can find the other. For example, on my Mac mini I issued the command ping 192.168.1.14, and
on my MacBook I issued ping 192.168.1.8. If you fail to receive a response from the other computer, you will
need to resolve this issue before you can try replicating CouchDB databases.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

218

By default, CouchDB is configured to listen on port 5984, binding to the IP address 127.0.0.1. As a
result, it will not be discoverable by other computers in your network. To see what I mean, try to visit the
CouchDB front page on machine B using your browser on machine A. You should get a result like the
one shown in Figure 12-7.

Figure 12-7. CouchDB only listens to local connections by default.

To resolve this issue, you will need to modify CouchDB’s configuration file. Fortunately, Futon
provides an easy way to do this. On each machine, visit the Futon page for the local instance of CouchDB
at http://127.0.0.1:5984/_utils. Click the Configuration link in the menu on the right to visit the
CouchDB Configuration options page. You should see an array of different configuration options here,
but you are interested only in the “bind_address” option in the “httpd” section, as shown in Figure 12-8.
By default, this is set to 127.0.0.1, but by changing it to 0.0.0.0 you can tell CouchDB to bind to all
available addresses for incoming connections. Double-click the “127.0.0.1” text, and an editable text box
will open. Enter 0.0.0.0, and click the green check icon to the right of the field to save the configuration.
Repeat this process on your other computer.

Download at WoweBook.Com

http://127.0.0.1:5984/_utils

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

219

Figure 12-8. Futon configuration tool

With this configuration completed, try to connect to CouchDB on the remote machine once again.
This time you should have more success, as shown in Figure 12-9.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

220

Figure 12-9. Accessing CouchDB remotely

Now let’s replicate the futon-one database from the machine you created it on earlier to the
machine that doesn’t have the database. First create a new database on the target instance called futon-
copy. Your target machine’s Futon interface should show this database with zero documents, as shown
in Figure 12-10.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

221

Figure 12-10. Setting up the target database for replication

Now open the Futon page for your source instance, and navigate to the Replicator tool. Under the
“Replicate changes from” heading, select the “Local database” option, and make sure futon-one is
chosen in the drop-down list. Under the “to” heading, select the “Remote database” option, and in the
text box enter the URL http://192.168.1.14:5984/futon-copy. Then click the Replicate button. If all goes
well, you should see an outcome like Figure 12-11.

Download at WoweBook.Com

http://192.168.1.14:5984/futon-copy

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

222

Figure 12-11. Result of remote replication

■ Caution Be sure to replace the IP address in this URL with the IP address of the machine you are working with,
or it will not work!

If the JSON response in the Event section looks like it’s in order, head over to the Futon interface for
the target instance, and check that the database replicated as expected. If it did, you should now see that
the futon-copy database contains five documents, the five that were replicated from the futon-one
database on the other machine (Figure 12-12). CouchDB replication really is that simple.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

223

Figure 12-12. Replicated data in the remote target database

Although Futon does a really good job at implementing CouchDB’s replication features, you will
probably want to trigger database replication from your own applications. This is also very simple to
perform, thanks to CouchDB’s RESTful Replication API. Before you investigate interacting with this API
using curl, let’s create a new database that we will replicate data into. On the same machine that you
created the futon-copy database, create a new database called futon-copy-two. Now open a shell or
Terminal window on the machine that contains your source database, in this instance, the futon-two
database.

At the prompt, enter the following command (replacing the IP address with the IP of the target
instance):

curl http://192.168.1.14:5984

This will test that curl is installed and that you can access the remote CouchDB server. If you get a
response with a JSON object containing a welcome message and version number, you’re ready to
replicate using the API. Enter the following command to replicate the local futon-two database to the
remote futon-copy-two database:

curl -X POST -d "{\"source\":\"futon-two\",\"target\":\"http://192.168.1.14:5984/futon-copy-
two\"}" http://127.0.0.1:5984/_replicate

When you press Enter, the futon-two database in the local instance will be replicated to the futon-
copy-town database in the remote instance (on 192.168.1.14 in my case). The result is similar to the one
you received in Futon earlier, as shown in Figure 12-13.

Download at WoweBook.Com

http://192.168.1.14:5984
http://192.168.1.14:5984/futon-copy-two\
http://192.168.1.14:5984/futon-copy-two\
http://127.0.0.1:5984/_replicate

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

224

Figure 12-13. Result of Replication API call

In this command, we are making a POST request to the URI http://127.0.0.1:5984/_replicate,
which is the location of the CouchDB Replication API. You are passing in a JSON object in the message
body, with two properties—source and target. If either of these two properties represents a database on
the local machine, you merely specify the database name, but if it resides on a remote database, you
must give the full URL to that database.

Compaction
One of the features of CouchDB is that each time a document is modified, it does not overwrite the old
document but rather creates a new revision of it. The new revision will have the same _id value as the
old version, but it will have a new _rev value. This system is used by CouchDB to implement optimistic
concurrency control—which basically means that if you edit an old revision of a document (that is, a
new revision has been created between the time you started to edit the document and the time you
saved it), a conflict error will be raised. Although this is very useful, it requires that system resources
(specifically disk space) need to be reclaimed periodically.

To counter this problem, CouchDB provides a compaction feature, which is used to purge old
revisions of documents from the database. When the database is compacted, the database file is
rewritten, with out-of-date revisions and previously deleted documents permanently removed from the
database. It is an irreversible operation, so once you compact the database, there is no way to retrieve
those purged documents.

Performing database compaction is very simple using the Futon interface. For example, I have a
database named my-database with four documents currently stored in it. I earlier deleted a document

Download at WoweBook.Com

http://127.0.0.1:5984/_replicate

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

225

from this database, which had some sizable attachments, and as you can see in Figure 12-14, despite this
documents being deleted, my meager four-document database still takes up 28.8MB of disk space.

Figure 12-14. A database in need of compaction

Now I’m going to use compaction to reclaim some of that lost space. Click the database name to
navigate to the database’s page. From the menu near the top of the page, select the Compact Database
option, which will open a confirmation dialog box, as in Figure 12-15.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

226

Figure 12-15. Confirm database compaction

Click Compact to confirm, and when the page reloads, navigate to the Overview page to check the
database size. As you can see in Figure 12-16, my database has been shaved down to just 0.6MB, thanks
to the deletion of those old documents with heavy attachments that I previously deleted.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

227

Figure 12-16. My post-diet database

Once again, Futon makes this process so easy—but it is likely that you won’t always use it to
perform these operations. You will probably want to build compaction into your applications—and this
is also very simple—using the Compaction API.

Open your shell or Terminal window. In this example, I am once again shaving down a database
that contains a deleted document with a large attachment. First, let’s see the current size of the database
using the following command:

curl http://127.0.0.1:5984/my-database

Make a note of the disk_size field value (in my case it’s 30,011,574 bytes, which equates to 28.6MB).
Now issue the following command to compact the database:

curl -X POST http://127.0.0.1:5984/my-database/_compact

You should receive a response telling you that all went OK. Let’s check that out by rerunning the
earlier command:

curl http://127.0.0.1:5984/my-database

This time, the disk_size value should be smaller (assuming you had previous revisions or deleted
documents when you ran compaction, of course!). For example, my disk size is now 587,342 bytes, or
0.6MB. You can see the results of these three commands on my machine in Figure 12-17.

Download at WoweBook.Com

http://127.0.0.1:5984/my-database
http://127.0.0.1:5984/my-database/_compact
http://127.0.0.1:5984/my-database

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

228

Figure 12-17. Compaction with the CouchDB API

 ■ Note Because CouchDB databases can (and should) be compacted in this manner, the document revisions in
the database itself should never be used as the basis for version control of documents in your applications.

At the time of writing, compacting CouchDB databases can be performed manually only, one
database at a time. Future versions of CouchDB may include more advanced compaction features such
as queuing compactions and processing multiple compactions with one API call.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

229

Fetching Documents in Bulk
CouchDB allows multiple documents to be fetched with a single HTTP request. To do this, you make a
POST request to the /[databasename]/_all_docs URI, with the message body containing a JSON array
object with the document IDs you want to retrieve. For example, take the following example database
called people. As you can see in Figure 12-18, I have six documents in this database, with each person’s
first name as the document ID. It’s not a very practical system, but let’s keep things simple!

Figure 12-18. My people database

Now, I open my Terminal window and issue the following command:

curl http://127.0.0.1:5984/people/_all_docs

This brings back all the documents in the database, as you might expect (Figure 12-19).

Download at WoweBook.Com

http://127.0.0.1:5984/people/_all_docs

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

230

Figure 12-19. Returning all documents

This time, I’m going to make a POST request to this URI, passing a JSON array of the document IDs I
want to bring back (in this case jill, kelly, laura, and maria) as the request message:

curl -X POST -d '{"keys":["jill","kelly","laura","maria"]}'
http://127.0.0.1:5984/people/_all_docs

As you can see in Figure 12-20, this time around only those documents that match the document
IDs I supplied are returned in the response.

Download at WoweBook.Com

http://127.0.0.1:5984/people/_all_docs

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

231

Figure 12-20. Returning all documents matching set of supplied document IDs

You may have noticed in the previous example that only the _id and _rev fields were returned from
the document itself. What if you want to get back the documents? In my example, I have given each
document a name field with the person’s full name. I use the query parameter ?include_docs=true at the
end of the URI in my HTTP request to tell CouchDB to include the documents in the response:

curl -X POST -d '{"keys":[" jill","kelly","laura","maria"]}'
http://127.0.0.1:5984/people/_all_docs?include_docs=true

The result is shown in Figure 12-21—notice that each row has a doc field with the actual document
inside.

Download at WoweBook.Com

http://127.0.0.1:5984/people/_all_docs?include_docs=true

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

232

Figure 12-21. Including documents in bulk read calls

Writing Documents in Bulk
What about writing multiple documents into the CouchDB database with a single call to the API? Once
again, this is very simple—you simply make a POST request to the /[databasename]/_bulk_docs URI with
the documents you want to write to the database in the request body. This makes it much easier to
import data into CouchDB from external data sources. For example, take the contents of Listing 12-1,
which I have saved in a file named new_people.json.

Listing 12-1. new_people.json

{
 "docs": [
 {"_id": "patrick", "name": "Patrick Mac Sweeney"},

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

233

 {"_id": "susie", "name": "Susan Mac Sweeney"},
 {"_id": "sarah": "name": "Sarah Mac Sweeney"}
]
}

I can now use the Bulk Document API to load this JSON file into the database, creating the three
new documents specified:

curl -X POST -d @new_people.json http://127.0.0.1:5984/people/_bulk_docs

The CouchDB server returns a response with the document IDs and revision numbers, which looks
pretty positive. I also make a call to _all_docs to make sure the new documents were created, as shown
in Figure 12-22.

Figure 12-22. Loading bulk documents into the database

Pretty sweet, huh? In this example, I specified a document ID for my new documents. If you omit
the _id field, Couch will automatically assign the document a UUID. If you want to modify existing

Download at WoweBook.Com

mailto:@new_people.json
http://127.0.0.1:5984/people/_bulk_docs

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

234

documents, simply include the _id and _rev fields of the latest revision of the document you want to
update. Want to delete a document? Pass in the _deleted field with a value of true. For example, if I
wanted to modify the documents for Jill and Jim and delete the document for Joe, I would use the JSON
code in Listing 12-2.

Listing 12-2. change_people.json

{
 "docs": [
 {"_id":"jill","_rev":"2-1465099083","name":"Jillian Mac Sweeney"},
 {"_id":"jim","_rev":"2-3528199421","name":"James Lennon"},
 {"_id":"joe","_rev":"2-1118430947","_deleted":true}
]
}

As you can see from the temporary view shown in Figure 12-23, the jill and jim documents have
been updated accordingly, and the joe document has been deleted from the database.

Figure 12-23. Result of bulk modification

The default behavior of Bulk Document updates in CouchDB 0.9.0 and newer is that updates are
nonatomic; that is, some of the document updates may have failed, while others may have succeeded,
with documents that succeeded/failed clearly indicated in the response. The most common reason for a

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

235

document not updating is a conflict error. This behavior ensures that just because one document fails to
update does not mean the entire bulk update will fail.

An alternative behavior is “all-or-nothing”—where if any document fails to update, none of the
changes to any of the documents will be committed. Additionally, with this method there is no conflict
detection; documents are committed regardless, even if you supply an invalid revision number when
trying to update a document. The conflicting documents will not be overwritten, but rather you will have
two documents with the same document ID after the bulk update.

If you want to perform an “all-or-nothing” bulk update, you simply pass the all_or_nothing field
with a value of true alongside your docs array, as shown in Listing 12-3.

Listing 12-3. change_people.json

{
 "all_or_nothing":"true",
 "docs": [
 {"_id":"jill","_rev":"2-1465099083","name":"Jillian Mac Sweeney"},
 {"_id":"jim","_rev":"2-3528199421","name":"James Lennon"},
 {"_id":"joe","_rev":"2-1118430947","_deleted":true}
]
}

Show Functions
From version 0.9.0 of CouchDB on, you can store show functions in your design documents, which will
present your JSON documents in a non-JSON format. Each document is processed individually for
efficiency, and the functions are designed to be cacheable. These functions can be used only to
represent JSON data in other document formats, and they cannot make HTTP requests.

These functions are stored in design documents, in the shows and lists keys, respectively. I’m going
to use Futon to create a new design document and modify it to include these keys with a sample of each
type of function. First, let’s create a show function.

For this example I’m using the same database I used in the previous section (the people database).
In Futon, I navigate to the people database, and from there I select “Temporary view…” from the “Select
view” drop-down list. I don’t modify the map and reduce functions for the view and simply choose Save
As to save the design document. This opens the dialog box shown in Figure 12-24.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

236

Figure 12-24. Creating a design document

I name my design document _design/people; the view name is irrelevant in this case. Now from the
“Select view” drop-down I select Design Documents, which shows my newly created design document.
Clicking this allows me to modify this document’s keys and values. To create my show functions, I add a
new field named shows and add the JSON object shown in Figure 12-25 as its value. I then save the design
document.

Download at WoweBook.Com

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

237

Figure 12-25. My Shows function—name

Now I can have a look at my function in action by visiting the following URL in my browser:
http://127.0.0.1:5984/people/_design/people/_show/name/jill. Figure 12-26 shows the result.

Download at WoweBook.Com

http://127.0.0.1:5984/people/_design/people/_show/name/jill

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

238

Figure 12-26. Show function in action

Impressive, eh? If you use your imagination, I’m sure you can see the potential this offers. In the
previous URL, if I change the jill portion (the document ID) to another document ID, that person’s
name will be displayed.

As well as show functions, CouchDB supports list functions, which can be used to format the results
returned by a CouchDB view. For example, if I have a view, which returns all rows in my people database
sorted by the name key, I can use a list function to format this in pretty HTML, with links to a show
function for each item in the list. Unfortunately, the support for list functions is experimental in version
0.9.0, although drastic improvements are available in the trunk development version. The API for list
functions is volatile at present, so check the CouchDB wiki for the syntax to use for these functions. They
are saved the same way as show functions and are called using the following URL syntax:
http://127.0.0.1:5984/[db_name]/_design/[design_doc_name]/[list_name]/[view_name].

Download at WoweBook.Com

http://127.0.0.1:5984

CHAPTER 12 ■ ADVANCED COUCHDB TOPICS

239

Summary
In this chapter, you saw some of the more advanced features of the CouchDB database such as how to
replicate databases either locally or remotely across CouchDB servers. You learned how to replicate
databases using the Futon administration interface and using the raw CouchDB API. Similarly, you saw
how to use the Compaction API to remove old revisions and deleted documents from the database,
freeing up valuable resources. Again, you used both Futon and the API to do so. Then you learned how to
retrieve more than one document at a time using a single HTTP request. You then used the _bulk_docs
API to create, update, and delete multiple documents in the same request. Finally, you saw how recent
versions of CouchDB include show and list functions, allowing users to format their JSON data in
different ways that are more meaningful to the user.

In the next and final chapter, I’ll cover some of the issues surrounding the deployment of CouchDB
in a production environment, including topics such as security, configuration, load balancing,
clustering, backup, and reverse proxies.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 13

■ ■ ■

241

Mechanics of CouchDB Deployment

In this chapter, you will learn some of the key areas of ensuring your CouchDB installation is configured
correctly for deployment to a production environment. At the time of writing, CouchDB is in beta and
has been used in production by a number of organizations. In fact, the latest version of Ubuntu Linux,
9.10 Karmic Koala, includes a copy of CouchDB by default. With that in mind, it is worth remembering
that CouchDB is still beta software, and the API for new and existing features may change between
versions. Some older versions of CouchDB will also require a dump/load cycle of data as the database
formats change.

Measuring Performance
CouchDB 0.9.0 and newer includes a runtime statistics feature that allows you to measure your
CouchDB installation’s performance. To see all the statistics available, issue an HTTP GET request to the
URI /_stats. If you have CouchDB installed on your local machine, either you can use the following curl
command:

curl http://127.0.0.1:5984/_stats

or you can simply visit the URL http://127.0.0.1:5984/_stats in your web browser. You should see a
response similar to the one shown in Listing 13-1. Please note that I have formatted this JSON response
to make it easier to read.

Listing 13-1. CouchDB Runtime Statistics Sample Response

{
 "httpd_status_codes": {
 "200": {
 "current":25,
 "count":58,
 "mean":0.4310344827586207,
 "min":0,
 "max":6,
 "stddev":1.2192715316025617,
 "description":"number of HTTP 200 OK responses"
 }, "404": {
 "current":4,

Download at WoweBook.Com

http://127.0.0.1:5984/_stats
http://127.0.0.1:5984/_stats

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

242

 "count":58,
 "mean":0.06896551724137934,
 "min":0,"max":2,
 "stddev":0.3649312153192539,
 "description":"number of HTTP 404 Not Found responses"
 }
 }, "httpd_request_methods" : {
 "GET": {
 "current":57,
 "count":60,
 "mean":0.9499999999999996,
 "min":0,
 "max":17,
 "stddev":2.8660367524975436,
 "description":"number of HTTP GET requests"
 }
 }, "httpd": {
 "requests": {
 "current":57,
 "count":60,
 "mean":0.9499999999999996,
 "min":0,
 "max":17,
 "stddev":2.8660367524975436,
 "description":"number of HTTP requests"
 }
 }, "couchdb": {
 "open_databases": {
 "current":2,
 "count":53,
 "mean":0.03773584905660379,
 "min":0,
 "max":2,
 "stddev":0.2721170773935086,
 "description":"number of open databases"
 }, "open_os_files": {
 "current":2,
 "count":53,
 "mean":0.03773584905660379,
 "min":0,
 "max":2,
 "stddev":0.2721170773935086,
 "description":"number of file descriptors CouchDB has open"
 }, "request_time": {
 "current":0,
 "count":57,
 "mean":1.5789473684210524,
 "min":0,
 "max":10,
 "stddev":3.646422752776584,
 "description":"length of a request inside CouchDB without MochiWeb"

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

243

 }
 }
}

The statistics produced here are broken into different groups representing different areas of
CouchDB: couchdb, httpd, httpd_request_methods, and http_status_codes. Each of these areas are
further broken down into keys; for example, the http_status_codes has a key for the various HTTP status
codes that are sent as responses to API requests (for example, 200, 403, 404, 500). In Listing 13-1, you will
notice that there are keys for the status codes 200 and 404 only. This is because there were no responses
of other HTTP status codes generated by my CouchDB install since I started the CouchDB server.

Every key in the response contains the same metrics: current, count, mean, max, min, stddev, and
description. The description provides a useful English description of what the metric actually measures.

By default, these statistics produce results that measure the interaction with the server since it was
started. You can also choose to view results for the last minute, the last five minutes, and the last fifteen
minutes if you so wish. To do this, you simply append the following string:

?range=n

where n is the number of seconds you want to query. So, for example, if you would like results for the
past 15 minutes, you would issue a GET request to the URI /_stats?range=900. The only valid values for
this parameter are 60, 300, and 900.

You can also request only those statistics for a particular key if you want. To do so, you simply issue
a GET request to the URI /_stats/group/key. For example, to view the statistics for the GET key in the
httpd_request_methods group, you issue your request to the URI /_stats/httpd_request_methods/GET.
Listing 13-2 show a sample result from this request, which I have formatted to make it easier to read.

Listing 13-2. CouchDB Runtime Statistics by Key

{
 "httpd_request_methods": {
 "GET": {
 "current":8,
 "count":3206,
 "mean":0.0024953212726138586,
 "min":0,
 "max":7,
 "stddev":0.12485804469709988,
 "description":"number of HTTP GET requests"
 }
 }
}

As you can see, this request only returned the metric for the GET key of the httpd_request_methods
group.

Configuring CouchDB
When you first build or install CouchDB on your system, there is zero configuration required to start
creating CouchDB databases. That does not mean there are not any configuration options, however.
CouchDB’s configuration file includes many options for customizing your CouchDB installation.

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

244

There are two primary ways of modifying the CouchDB configuration file. The first is to manually
edit the file itself. You can find this in the directory /usr/local/etc/couchdb or /opt/local/etc/couchdb,
depending on your operating system. The configuration file is one of the areas of CouchDB that has
changed significantly over recent releases. At the time of writing, the latest version of CouchDB provides
two configuration files, default.ini and local.ini. The default.ini file includes the standard CouchDB
configuration options and is overwritten when you upgrade CouchDB. As a result, any modifications you
make to default.ini will be lost when you upgrade. For that reason, any changes to the CouchDB
configuration should be made in local.ini, which will not be overwritten in an upgrade.

The second, and easier way of changing configuration options, is to use the Futon web-based
administration interface, which includes a utility for modifying CouchDB’s configuration file. If
CouchDB is installed on your local computer, you can open the Futon configuration utility by pointing
your web browser to the address http://127.0.0.1:5984/_utils/config.html. See Figure 13-1 for an
example of this utility in action.

Figure 13-1. The Futon configuration utility

To change a particular option using this utility, you double-click the current value, which will switch
that option’s value column to an editor field, as shown in Figure 13-2. You can then modify the text of
the option, and either use the green accept icon to save the change or click the red reject icon to cancel

Download at WoweBook.Com

http://127.0.0.1:5984/_utils/config.html

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

245

the change. Some changes will take effect immediately, but others may not have an impact until
CouchDB is restarted.

Figure 13-2. Changing a configuration option

The CouchDB configuration options are split into several sections: couchdb, daemons, httpd,
httpd_db_handlers, httpd_design_handlers, httpd_global_handlers, log, and query_servers. An
example of an option you may want to change is the bind_address option, which by default tells
CouchDB to listen only on the local loopback IP address 127.0.0.1. This means that remote computers
cannot access the CouchDB server. To make CouchDB listen to incoming connections on all available IP
addresses, simply change the value of the bind_address option to 0.0.0.0.

A common question is how to make the Futon administration interface display when the user visits
the root URI, in other words, http://127.0.0.1:5984/. By default this responds with a CouchDB
welcome message and the version number of the CouchDB server that is installed on the machine. To
change this to redirect to the Futon interface, you simply change the option / under
httpd_global_handlers to the following value:

{couch_httpd, send_redirect, "/_utils"}

Download at WoweBook.Com

http://127.0.0.1:5984

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

246

■ Note Configuration changes made using the Futon administration utility may take several minutes to take effect.

Newer versions of CouchDB also facilitate working with the configuration file using the _config API.
You will see an example of this later when I cover how to implement security in CouchDB.

Conflict Resolution
When CouchDB encounters a conflict in a document during the replication process, it adds a special
field to that document called _conflicts. To see all the conflicts that have occurred in your database,
you can create a CouchDB view with the map function as defined in Listing 13-3.

Listing 13-3. Finding Conflicts in the Database

function(doc) {
 if(doc._conflicts) {
 emit(doc._conflicts, null);
 }
}

If there are no conflicts in the database, the response you will receive from the view should look
something like this:

{"total_rows":0,"rows":[]}

If a conflict is found, the result may look something like the following:

{"total_rows":1,"offset":0,"rows":[
{"id":"my-document","key":["3-1185264872"],"value":null}
]}

This response tells you that one document has had a conflict; also, the ID of that document was my-
document, and the revision 3-1185264872 of the version that lost the conflict. To find the revision number
of the winning version, you simply request the document itself by issuing a GET request to the URI
/[db_name]/[document_id]. Alternatively, you could modify the view in Listing 13-3 along the lines of the
function in Listing 13-4.

Listing 13-4. Returning the Current Revision First

function(doc) {
 if(doc._conflicts) {
 emit([doc._rev].concat(doc._conflicts)], null);
 }
}

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

247

This way, the current revision is returned first, with any conflicts following. This saves you from
making a second HTTP request to figure out which revision has won the conflict.

Security
Security is an important issue for any database management system. Data should be protected by
security mechanisms such as authentication, authorization, encryption, and validation to ensure that
the integrity of the data in the database is maintained and to keep sensitive data hidden from prying
eyes.

CouchDB is still in the alpha stage of development, and as a result its security features are
incomplete and constantly evolving. At the time of writing, CouchDB has relatively mature support for
basic HTTP authentication, which allows administrator accounts to be set up in the CouchDB
configuration file.

To create an administrator account, edit your CouchDB installation’s local.ini configuration file
with your favorite text editor. You will see the following lines at the bottom of this file:

;[admins]
;admin = mysecretpassword

Uncomment these two lines by removing the semicolons at the beginning of each line. Then change
the value mysecretpassword to a more secure password. This will automatically be hashed into an
encrypted string when you restart the CouchDB server. With this authentication enabled, you will be
required to log in to complete certain operations such as creating or deleting a database or triggering
database compaction. You can see an example of how this authentication is implemented in Figure 13-3.

Figure 13-3. Login dialog box for restricted features

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

248

An obvious problem with this is that the connection is not secure, and an attacker could potentially
intercept the authentication credentials if the CouchDB server is exposed to remote connections.
Unfortunately, CouchDB does not support SSL at the time of writing. A workaround would be to create
an SSL proxy using nginx or Apache and mod_proxy.

Another issue is that this form of authentication is quite antiquated and will not be familiar to many
users. It is implemented via unfamiliar pop-up login dialog boxes like the one shown in Figure 13-3,
rather than integrated login boxes in the application itself. Recent developments in the trunk version of
CouchDB include support for cookie authentication and OAuth authentication, which should allow for a
much more streamlined security solution than the basic HTTP authentication option. These solutions
are not yet finalized, however, and may have changed dramatically by the time this book goes to print.

Authorization is an important security concept and refers to the concept of who can see or modify
what data. Unfortunately, CouchDB currently supports only a single role, which caters to administrators.
This means that it is not currently possible to restrict read access to the database, and as a result,
anybody who can communicate with the database server can read the data within it.

The fact that CouchDB supports only a single role also makes it difficult to define “who has access to
what.” For example, user A can modify documents 1, 2, and 3, and user B can modify documents 4 and 5.
A basic workaround (albeit easy to circumvent) is to create a validate_doc_update function in your
design documents. By specifying the owner of the document in a field in the document itself, you can
match this up with the login name of the user currently logged in before an update of that document is
processed. Listing 13-5 shows an example of such a function.

Listing 13-5. Validating Document Owner Against Logged-in User

function(newDoc, oldDoc, userCtx) {
 if(newDoc.owner && newDoc.owner != userCtx.name)
 throw({"error": "You do not own this document!"});
}

CouchDB’s security features are being constantly developed, and by the time the application
reaches version 1.0, a strong security model should be in place. Until then, basic controls like the ones
provided and using reverse proxies such as nginx and Apache/mod_proxy provide you with ample
options for securing your CouchDB databases.

Backup
It goes without saying that it is a good policy to regularly back up your database and its associated data.
Individual CouchDB databases can be backed up to remote computers using replication. For more
information on this, see Chapter 12 of this book where CouchDB replication is described in more detail.

It is also good practice to regularly back up the CouchDB-related files on the file system. The
important files to back up are the database, configuration, and log files. The directories you need to back
up are as follows:

• Database files: ${PREFIX}/var/lib/couchdb

• Configuration files: ${PREFIX}/etc/couchdb

• Log files: ${PREFIX}/var/log/couchdb

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

249

The value of ${PREFIX} depends on your operating system. On a Linux system, this is usually
/usr/local, and on Mac OS X it is typically /opt/local.

■ Caution Because CouchDB is beta software, certain features may be added, modified, or removed between
versions. Also, some new configuration options may be added with each release. Before a final release version of
CouchDB is available, you should ensure that when restoring a backed-up CouchDB database file and
configuration file, you restore it to a CouchDB instance that is the same version as the one you backed up from.

If you have backed up a CouchDB database by replicating it to another CouchDB server and you
need to restore that backup, simply create a new database on the primary CouchDB server and replicate
the backed-up database to it.

Fault Tolerance and Load Balancing
In the previous section, you learned that you could use replication to back up a CouchDB database to an
off-site CouchDB database. Every computer system suffers from faults at some point in the system. You
might have a second hard disk installed in a RAID 1 configuration so that if your primary disk fails, the
secondary one can take over. You can have a similar setup with CouchDB—simply set up a second server
in a location separate from your primary CouchDB server, and make sure that changes are replicated
across to it. One way of doing this would be to set up a cron job that runs at a frequent interval, calling a
script that uses curl to replicate your primary database to a database on your backup server.

The primary issue with the cron job is that, unless your cron job runs every second (which could
lead to some serious performance issues), there may be a period of time during which your two servers
are not in sync. An alternative and less-resource-wasteful method is to use the update_notification
section of the CouchDB configuration file. With this method, you can use the same script that the cron
job calls, but the script will get called only when a document is modified.

To set this up, open the local.ini configuration file, and find the following lines:

[update_notification]
;unique notifier name=/full/path/to/exe -with "cmd line arg"

Change the second line to the following:

backup_db=/path/to/script

where /path/to/script is the full system path to your script that replicates the database. All that’s left is
to test that the script is working by adding a new document or modifying an existing document in your
primary database and checking that it has successfully replicated across to the backup database. This
script would typically trigger replication in intervals of updates or seconds. The CouchDB wiki features
an example of a script that updates views for every tenth update or at most once a second.

You will now need to set up a failover system so that in the event of the primary server crashing,
requests are redirected to the secondary server.

Download at WoweBook.Com

CHAPTER 13 ■ MECHANICS OF COUCHDB DEPLOYMENT

250

Clustering
Fault tolerance accounts for situations where a server actually fails, but what about a scenario where the
performance of a server is suffering under a heavy load? As your database requirements grow, you’ll
quickly realize that a single server is not sufficient to process transactions on its own. Sure, you could
upgrade your server or purchase a new, more powerful server, but eventually this will also be
insufficient.

A solution to this issue would be to set up a cluster of servers that share the load generated by the
database between them. Clustering features are not built in to CouchDB itself but are available through a
third-party proxy-based partitioning/clustering framework known as couchdb-lounge. At the time of
writing, this framework only supports CouchDB 0.9.0 and is in a very early stage of development. For
more information, visit the project web site at http://code.google.com/p/couchdb-lounge/.

Summary
In this chapter, you learned about various topics that are relevant when readying your CouchDB
installation for deployment to a production environment. You learned how to view CouchDB runtime
statistics to measure your instance’s performance. I then showed you how to configure the installation
to your requirements using the CouchDB configuration file. Next, you saw how to identify any conflicts
that have occurred after replication and how you can resolve them. You then learned about security in
CouchDB and the options currently available and those that are currently under development in trunk
versions of the database. Finally, you discovered how to ensure that your data is kept safe and consistent
by backing up your databases and CouchDB-related files, how to automate replication to ensure a
failover for fault tolerance, and the options that are available to you to ensure your CouchDB server
keeps running smoothly under heavy loads.

Download at WoweBook.Com

http://code.google.com/p/couchdb-lounge

A P P E N D I X A

■ ■ ■

251

CouchDB API Reference

This appendix is an overview of the API calls you can make to the CouchDB server.

Server APIs

Server Information

Request Method: GET

Request URI: /

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Returns a welcome message and the CouchDB
version number

Sample Request URI: http://127.0.0.1:5984/

The following is a sample response:

{"couchdb":"Welcome","version":"0.9.1"}

Download at WoweBook.Com

http://127.0.0.1:5984

APPENDIX A ■ COUCHDB API REFERENCE

252

Current Configuration

Request Method: GET

Request URI: /_config

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Returns all of CouchDB’s configuration options and their current values

Sample Request URI: http://127.0.0.1:5984/_config

The following is a sample response:

{"httpd_design_handlers":{"_list":"{couch_httpd_show,
handle_view_list_req}","_show":"{couch_httpd_show,
handle_doc_show_req}","_view":"{couch_httpd_view,
handle_view_req}"},"httpd_global_handlers":{"/":"{couch_httpd_misc_handlers,
handle_welcome_req, <<\"Welcome\">>}","_active_tasks":"{couch_httpd_misc_handlers,
handle_task_status_req}","_all_dbs":"{couch_httpd_misc_handlers,
handle_all_dbs_req}","_config":"{couch_httpd_misc_handlers,
handle_config_req}","_replicate":"{couch_httpd_misc_handlers,
handle_replicate_req}","_restart":"{couch_httpd_misc_handlers,
handle_restart_req}","_stats":"{couch_httpd_stats_handlers,
handle_stats_req}","_utils":"{couch_httpd_misc_handlers, handle_utils_dir_req,
\"/usr/local/share/couchdb/www\"}","_uuids":"{couch_httpd_misc_handlers,
handle_uuids_req}","favicon.ico":"{couch_httpd_misc_handlers, handle_favicon_req,
\"/usr/local/share/couchdb/www\"}"},"log":{"file":"/usr/local/var/log/couchdb/couch.log","le
vel":"info"},"query_servers":{"javascript":"/usr/local/bin/couchjs
/usr/local/share/couchdb/server/main.js"},"daemons":{"db_update_notifier":"{couch_db_update_
notifier_sup, start_link, []}","external_manager":"{couch_external_manager, start_link,
[]}","httpd":"{couch_httpd, start_link, []}","query_servers":"{couch_query_servers,
start_link, []}","stats_aggregator":"{couch_stats_aggregator, start,
[]}","stats_collector":"{couch_stats_collector, start, []}","view_manager":"{couch_view,
start_link, []}"},"httpd":{"WWW-Authenticate":"Basic
realm=\"administrator\"","authentication_handler":"{couch_httpd,
default_authentication_handler}","bind_address":"127.0.0.1","port":"5984"},"httpd_db_handler
s":{"_design":"{couch_httpd_db, handle_design_req}","_temp_view":"{couch_httpd_view,
handle_temp_view_req}"},"test":{"foo":"bar"},"couchdb":{"database_dir":"/usr/local/var/lib/c
ouchdb","max_attachment_chunk_size":"4294967296","max_dbs_open":"100","max_document_size":"4
294967296","os_process_timeout":"5000","util_driver_dir":"/usr/local/lib/couchdb/erlang/lib/
couch-0.9.1/priv/lib","view_index_dir":"/usr/local/var/lib/couchdb"}}

Download at WoweBook.Com

http://127.0.0.1:5984/_config

APPENDIX A ■ COUCHDB API REFERENCE

253

Runtime Statistics

Request Method: GET

Request URI: /_stats

Request Headers: None

Request Body: Empty

Request Parameters: range (integer, time period for which to retrieve
stats, default 0)
Valid values: 0 (since the server booted), 60, 300,
900

Description: Returns a set of CouchDB runtime statistics

Sample Request URI: http://127.0.0.1:5984/_stats

The following is a sample response:

{"httpd_status_codes":{"200":{"current":152,"count":9466,"mean":0.016057468835833463,"min":0
,"max":22,"stddev":0.2956761553416581,"description":"number of HTTP 200 OK
responses"},"201":{"current":78,"count":9465,"mean":0.0082408874801902,"min":0,"max":21,"std
dev":0.25164166969889457,"description":"number of HTTP 201 Created
responses"},"202":{"current":2,"count":9414,"mean":0.00021244954323348223,"min":0,"max":1,"s
tddev":0.0145741006043276,"description":"number of HTTP 202 Accepted
responses"},"304":{"current":1,"count":9414,"mean":0.00010622477161674126,"min":0,"max":1,"s
tddev":0.0103059928155727,"description":"number of HTTP 304 Not Modified
responses"},"400":{"current":1,"count":2416,"mean":0.0004139072847682145,"min":0,"max":1,"st
ddev":0.02034050062136692,"description":"number of HTTP 400 Bad Request
responses"},"404":{"current":12,"count":9465,"mean":0.001267828843106181,"min":0,"max":6,"st
ddev":0.06660175343709973,"description":"number of HTTP 404 Not Found
responses"},"405":{"current":2,"count":9442,"mean":0.00021181952976064448,"min":0,"max":1,"s
tddev":0.014552479591033817,"description":"number of HTTP 405 Method Not Allowed
responses"},"409":{"current":1,"count":595,"mean":0.0016806722689075649,"min":0,"max":1,"std
dev":0.0409615381746351,"description":"number of HTTP 409 Conflict
responses"},"500":{"current":1,"count":4887,"mean":0.00020462451401678002,"min":0,"max":1,"s
tddev":0.014303238892818738,"description":"number of HTTP 500 Internal Server Error
responses"}},"httpd_request_methods":{"COPY":{"current":2,"count":9432,"mean":0.000212044105
17387668,"min":0,"max":1,"stddev":0.01456019033087608,"description":"number of HTTP COPY
requests"},"DELETE":{"current":42,"count":9465,"mean":0.00443740095087166,"min":0,"max":6,"s
tddev":0.10472898092881516,"description":"number of HTTP DELETE
requests"},"GET":{"current":113,"count":9466,"mean":0.011937460384534125,"min":0,"max":21,"s
tddev":0.24915896286993675,"description":"number of HTTP GET
requests"},"POST":{"current":14,"count":9450,"mean":0.0014814814814814847,"min":0,"max":3,"s

Download at WoweBook.Com

http://127.0.0.1:5984/_stats

APPENDIX A ■ COUCHDB API REFERENCE

254

tddev":0.04598051031711314,"description":"number of HTTP POST
requests"},"PUT":{"current":78,"count":9466,"mean":0.008240016902598794,"min":0,"max":22,"st
ddev":0.26029556220645184,"description":"number of HTTP PUT
requests"}},"httpd":{"bulk_requests":{"current":1,"count":9430,"mean":0.00010604453870625688
,"min":0,"max":1,"stddev":0.010297246877785696,"description":"number of bulk
requests"},"requests":{"current":250,"count":9466,"mean":0.02641031058525249,"min":0,"max":3
2,"stddev":0.5274422956827197,"description":"number of HTTP
requests"},"temporary_view_reads":{"current":2,"count":9450,"mean":0.0002116402116402122,"mi
n":0,"max":1,"stddev":0.014546319811589058,"description":"number of temporary view
reads"},"view_reads":{"current":2,"count":9454,"mean":0.00021155066638459967,"min":0,"max":1
,"stddev":0.014543242853646884,"description":"number of view
reads"}},"couchdb":{"database_reads":{"current":42,"count":9460,"mean":0.004439746300211437,
"min":0,"max":10,"stddev":0.1446047067385059,"description":"number of times a document was
read from a
database"},"database_writes":{"current":66,"count":9461,"mean":0.0069760067646126005,"min":0
,"max":22,"stddev":0.27500988894664896,"description":"number of times a database was
changed"},"open_databases":{"current":3,"count":9465,"mean":0.0003169572107765436,"min":-
5,"max":5,"stddev":0.0815843181281427,"description":"number of open
databases"},"open_os_files":{"current":3,"count":9465,"mean":0.0003169572107765436,"min":-
5,"max":5,"stddev":0.08660958488049343,"description":"number of file descriptors CouchDB has
open"},"request_time":{"current":2,"count":250,"mean":6.872,"min":0,"max":1093,"stddev":68.9
0938699480645,"description":"length of a request inside CouchDB without MochiWeb"}}}

Download at WoweBook.Com

APPENDIX A ■ COUCHDB API REFERENCE

255

Get UUIDs

Request Method: GET

Request URI: /_uuids

Request Headers: None

Request Body: Empty

Request Parameters: count (integer, the number of UUIDs to return,
default 1)

Description: Returns a list of UUIDs

Sample Request URI: http://127.0.0.1:5984/_uuids?count=3

The following is a sample response:

{"uuids":["1beb354da53d6581efb552fd18d30694","e5b2e7d2866af47d114676fb8fc813b","d2cac24e8b22
1a8f2481ce6990731e71"]}

Download at WoweBook.Com

http://127.0.0.1:5984/_uuids?count=3

APPENDIX A ■ COUCHDB API REFERENCE

256

Database APIs

Create Database

Request Method: PUT

Request URI: /[db_name]

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Creates a new database

Sample Request URI: http://127.0.0.1:5984/employees

The following is a sample response:

{"ok":true}

Download at WoweBook.Com

http://127.0.0.1:5984/employees

APPENDIX A ■ COUCHDB API REFERENCE

257

Delete Database

Request Method: DELETE

Request URI: /[db_name]

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Deletes (drops) an existing database

Sample Request URI: http://127.0.0.1:5984/employees

The following is a sample response:

{"ok":true}

Download at WoweBook.Com

http://127.0.0.1:5984/employees

APPENDIX A ■ COUCHDB API REFERENCE

258

List Databases

Request Method: GET

Request URI: /_all_dbs

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Returns an array with the names of all databases
on the server

Sample Request URI: http://127.0.0.1:5984/_all_dbs

The following is a sample response:

["my_db","employees","contacts","customers"]

Download at WoweBook.Com

http://127.0.0.1:5984/_all_dbs

APPENDIX A ■ COUCHDB API REFERENCE

259

Database Information

Request Method: GET

Request URI: /[db_name]

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Returns basic information about a CouchDB
database

Sample Request URI: http://127.0.0.1:5984/employees

The following is a sample response:

{"db_name":"employees","doc_count":125,"doc_del_count":3,"update_seq":190,"purge_seq":10,"co
mpact_running":false,"disk_size":192847,"instance_start_time":"1254437520141551"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees

APPENDIX A ■ COUCHDB API REFERENCE

260

Replicate Database

Request Method: POST

Request URI: /_replicate

Request Headers: None

Request Body: JSON object with two fields, source and target,
each represented by a database name (if local) or
the URL (if remote)

Request Parameters: None

Description: Replicates a source database to a target database

Sample Request URI: http://127.0.0.1:5984/_replicate

The following is a sample response:

{"ok":true,"session_id":"95896d0cb2f59ae4b5717f128300697","source_last_seq":1,"history":[{"s
tart_time":"Thu, 01 Oct 2009 22:45:29 GMT","end_time":"Thu, Oct 01 2009 22:45:29
GMT","start_last_seq":0,"end_last_seq":1,"missing_checked":1,"missing_found":1,"docs_read":1
,"docs_written":1,"doc_write_failures":0}]}

Download at WoweBook.Com

http://127.0.0.1:5984/_replicate

APPENDIX A ■ COUCHDB API REFERENCE

261

Compact Database

Request Method: POST

Request URI: /[db_name]/_compact

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Deletes documents marked as deleted and old
revisions of documents

Sample Request URI: http://127.0.0.1:5984/employees/_compact

The following is a sample response:

{"ok":true}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_compact

APPENDIX A ■ COUCHDB API REFERENCE

262

Document APIs

Create New Document (Use UUID-Generated Document ID)

Request Method: POST

Request URI: /[db_name]

Request Headers: None

Request Body: The document itself as a JSON object

Request Parameters: None

Description: Creates a new document in the database, with the
document ID automatically generated by the
server

Sample Request URI: http://127.0.0.1:5984/employees

The following is a sample response:

{"ok":true,"id":"89107b443aadb405dc871efbec5073ad","rev":"1-2286301188"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees

APPENDIX A ■ COUCHDB API REFERENCE

263

Create New Document (User Specified Document ID)

Request Method: PUT

Request URI: /[db_name]/[doc_id]

Request Headers: None

Request Body: The document as a JSON object

Request Parameters: None

Description: Creates a new document in the database, with the
specified document ID

Sample Request URI: http://127.0.0.1:5984/employees/126

The following is a sample response:

{"ok":true,"id":"126","rev":"1-2833850875"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126

APPENDIX A ■ COUCHDB API REFERENCE

264

Update Existing Document

Request Method: PUT

Request URI: /[db_name]/[doc_id]

Request Headers: X-Couch-Full-Commit: true (optional). Ensure that
the document has synced to disk before returning
success.

Request Body: The document itself as a JSON object. It must
include the _rev property, with the revision
number of the document the update is based on as
the value.

Request Parameters: None

Description: Updates an existing document and replaces it with
a new revision

Sample Request URI: http://127.0.0.1:5984/employees/126

The following is a sample response:

{"ok":true,"id":126","rev":"2-4058198378"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126

APPENDIX A ■ COUCHDB API REFERENCE

265

Delete Document

Request Method: DELETE

Request URI: /[db_name]/[doc_id]

Request Headers: None

Request Body: Empty

Request Parameters: rev (String, required, revision number of
document to be deleted)

Description: Deletes a document from the database by creating
a new revision of the document, which is marked
as deleted. The document will be removed
permanently from the database the next time it is
compacted.

Sample Request URI: http://127.0.0.1:5984/employees/126

The following is a sample response:

{"ok":true,"id":"126","3-2206761782"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126

APPENDIX A ■ COUCHDB API REFERENCE

266

Copy Document

Request Method: COPY

Request URI: /[db_name]/[doc_id]

Request Headers: Destination: [destination_doc_id]

Request Body: Empty

Request Parameters: None

Description: Copies a document to the document ID specified
in the destination header. If overwriting an
existing document, you need to specify the
revision being overwritten using the rev parameter
in the Destination header (such as Destination:
126?rev=2-345345345345).

Sample Request URI: http://127.0.0.1:5984/employees/126

The following is a sample response:

{"rev":"1-1950429145"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126

APPENDIX A ■ COUCHDB API REFERENCE

267

List Documents

Request Method: GET

Request URI: /[db_name]/_all_docs

Request Headers: None

Request Body: Empty

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, oevel at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function;
default true)

Description: Returns every document in a database

Sample Request URI: http://127.0.0.1:5984/employees/_all_docs

The following is a sample response:

{"total_rows":125,"offset":0,"rows":[
{"id":"001","key":"001","value":{"rev":"1-4228106699"}},
…
{"id:"125","key":"125","value":{"rev":"2-3453483473}}
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_all_docs

APPENDIX A ■ COUCHDB API REFERENCE

268

List Documents Specifying a Key Set

Request Method: GET

Request URI: /[db_name]/_all_docs

Request Headers: None

Request Body: {"keys":["docid1","docid2",...,"docidN"]}

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function;
default true)

Description: Returns every document in a database

Sample Request URI: http://127.0.0.1:5984/employees/_all_docs

The following is a sample response:

{"total_rows":125,"offset":0,"rows":[
{"id":"docid1","key":"001","value":{"rev":"1-4228106699"}},
{"id”:"125","key":"125","value":{"rev":"2-3453483473}},
...
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_all_docs

APPENDIX A ■ COUCHDB API REFERENCE

269

List Modified Documents

Request Method: GET

Request URI: /[db_name]/_all_docs_by_seq

Request Headers: None

Request Body: Empty

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
 limit (Number, restrict number of results)
 startkey (String, start key to return documents in a range)
 endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
 endkey_docid (String, end document ID of range)
 key (String, only display document that matches key)
 stale (String=ok, don’t refresh views for quicker results)
 skip (Number, skip the defined number of documents)
 group (Boolean, results should be grouped, default false)
 group_level (Number, level at which documents should be
grouped)
 reduce (Boolean; if exists, display result of reduce function;
default true)

Description: Returns documents that have been updated or deleted

Sample Request URI: http://127.0.0.1:5984/employees/_all_docs_by_seq

The following is a sample response:

{"total_rows":1,"offset":0,"rows":[
{"id":"001","key:1,"value":{"rev":"1-4228106699"}},
{"id”:"126","key":4,"value":{"rev":"3-2206761782","deleted":true}}
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_all_docs_by_seq

APPENDIX A ■ COUCHDB API REFERENCE

270

List Modified Documents Specifying a Key Set

Request Method: GET

Request URI: /[db_name]/_all_docs_by_seq

Request Headers: None

Request Body: {"keys":["docid1","docid2",...,"docidN"]}

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function;
default true)

Description: Returns documents that have been updated or deleted.

Sample Request URI: http://127.0.0.1:5984/employees/_all_docs_by_seq

The following is a sample response:

{"total_rows":1,"offset":0,"rows":[
{"id":"docid1","key:1,"value":{"rev":"1-4228106699"}},
{"id”:"docid2","key":4,"value":{"rev":"3-2206761782","deleted":true}},
…
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_all_docs_by_seq

APPENDIX A ■ COUCHDB API REFERENCE

271

View Document

Request Method: GET

Request URI: /[db_name]/[doc_id]

Request Headers: None

Request Body: Empty

Request Parameters: full (Boolean, return full documents including
metadata, default false)
revs (Boolean, return a list of previous revisions,
default false)
rev (String, set a specific revision number)
attachments (Boolean, get attachments in Base64,
default false)

Description: Returns a document from a CouchDB database

Sample Request URI: http://127.0.0.1:5984/employees/025

The following is a sample response:

{"_id":"025","_rev":"1-4546452541","name":"Joe Lennon","location":"Cork"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/025

APPENDIX A ■ COUCHDB API REFERENCE

272

Create/Update Attachment

Request Method: PUT

Request URI: /[db_name]/[doc_id]/[attachment_filename]

Request Headers: Content-Type: [mime_type]
Content-Length: [file_size]

Request Body: The attachment file data itself

Request Parameters: rev (String, revision number of document, omit to
create new doc)

Description: Attaches a file to a document

Sample Request URI: http://127.0.0.1:5984/employees/126/photo.jpg

The following is a sample response:

{"ok":true,"id":"45fd4543543g43432ab342","rev":"1-2489366227"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126/photo.jpg

APPENDIX A ■ COUCHDB API REFERENCE

273

Delete Attachment

Request Method: DELETE

Request URI: /[db_name]/[doc_id]/[attachment_filename]

Request Headers: None

Request Body: Empty

Request Parameters: rev (String, required, revision number of document)

Description: Deletes an attachment from a document

Sample Request URI: http://127.0.0.1:5984/employees/126/photo.jpg?rev=1-
2489366227

The following is a sample response:

{"ok":true,"id":"126","rev":"2-130046133"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126/photo.jpg?rev=1-2489366227
http://127.0.0.1:5984/employees/126/photo.jpg?rev=1-2489366227

APPENDIX A ■ COUCHDB API REFERENCE

274

Get Attachment

Request Method: GET

Request URI: /[db_name]/[doc_id]/[attachment_filename]

Request Headers: None

Request Body: Empty

Request Parameters: None

Description: Retrieves an attachment from a document

Sample Request URI: http://127.0.0.1:5984/employees/126/photo.jpg

The response is the actual file attachment (in this example, a JPEG photo).

Download at WoweBook.Com

http://127.0.0.1:5984/employees/126/photo.jpg

APPENDIX A ■ COUCHDB API REFERENCE

275

Managing Bulk Documents

Request Method: POST

Request URI: /[db_name]/_bulk_docs

Request Headers: X-Couch-Full-Commit: true (optional). Ensure that
the document has synced to disk before returning
success.

Request Body: JSON object with docs field containing array of
documents

Request Parameters: None

Description: Creates, updates and deletes documents in bulk.
Documents that are to be updated or deleted must
contain the _rev field, specifying the revision
number to be deleted as the value. To delete a
document, it should include the field
"_deleted":true.

Sample Request URI: http://127.0.0.1:5984/employees/_bulk_docs

The following is a sample response:

[{"id":"2d32010cc35bdeb92dac487274662809","rev":"1-
2530238890"},{"id":"e24d6da28466cf136242b150f38e2dcb","rev":"1-879513885"}]

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_bulk_docs

APPENDIX A ■ COUCHDB API REFERENCE

276

View API

Create Design Document

Request Method: PUT

Request URI: /[db_name]/_design/[design_doc_name]

Request Headers: None

Request Body: JSON document with views field for storing
permanent views, shows field for storing show
functions, and lists field for storing list functions

Request Parameters: None

Description: Creates a design document to store permanent
CouchDB views, show functions, and list functions

Sample Request URI: http://127.0.0.1:5984/employees/_design/myviews

The following is a sample response:

{"ok":true,"id":"_design/myviews","rev":"1-1907630304"}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myviews

APPENDIX A ■ COUCHDB API REFERENCE

277

Query Temporary View

Request Method: POST

Request URI: /[db_name]/_temp_view

Request Headers: Content-type: application/json

Request Body: Map function (required) and Reduce function (optional) of
view

Request Parameters: descending (Boolean, Reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, Results should be grouped, default false)
group_level (Number, level at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function;
default true)

Description: Performs a query on the database using a temporary view

Sample Request URI: http://127.0.0.1:5984/employees/_temp_view

The following is a sample response:

{"total_rows":2,"offset":0,"rows":[
{"id":"2d32010cc35bdeb92dac4872746628","key":"2d32010cc35bdeb92dac487274662809","value":null
},
{"id":"e24d6da28466cf136242b150f8e2dcb","key":"e24d6da28466cf136242b150f8e2dcb","value":null
}
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_temp_view

APPENDIX A ■ COUCHDB API REFERENCE

278

Query Permanent View

Request Method: GET

Request URI: /[db_name]/_design/[design_doc_name]/_view/[view_name]

Request Headers: None

Request Body: None

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (string, Start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function; default
true)

Description: Executes a permanent view stored in a CouchDB design
document

Sample Request URI: http://127.0.0.1:5984/employees/_design/myviews/_view/getall

The following is a sample response:

{"total_rows":2,"offset":0,"rows":[
{"id":"2d32010cc35bdeb92dac4872746628","key":"2d32010cc35bdeb92dac487274662809","value":null
},
{"id":"e24d6da28466cf136242b150f8e2dcb","key":"e24d6da28466cf136242b150f8e2dcb","value":null
}
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myviews/_view/getall

APPENDIX A ■ COUCHDB API REFERENCE

279

Query a Permanent View Specifying A Key Set

Request Method: GET

Request URI: /[db_name]/_design/[design_doc_name]/_view/[view_name]

Request Headers: None

Request Body: {"keys":["docid1","docid2",...,"docidN"]}

Request Parameters: descending (Boolean, reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be
grouped)
reduce (Boolean; if exists, display result of reduce function; default
true)

Description: Executes a permanent view stored in a CouchDB design
document

Sample Request URI: http://127.0.0.1:5984/employees/_design/myviews/_view/getall

The following is a sample response:

{"total_rows":2,"offset":0,"rows":[
{"id":"doc1","key":"2d32010cc35bdeb92dac487274662809","value":null},
{"id":"doc2","key":"e24d6da28466cf136242b150f8e2dcb","value":null}
…
]}

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myviews/_view/getall

APPENDIX A ■ COUCHDB API REFERENCE

280

Execute a Show Function

Request Method: GET

Request URI: /[db_name]/_design/[design_doc_name]/_show/[function_name]/[doc_id]

Request Headers: None

Request Body: None

Request Parameters: format (String, file format to show document in)

details (Boolean, show the document’s details, default false)

Description: Presents a CouchDB document in a defined format, as set out in a show
function

Sample Request URI: http://127.0.0.1:5984/employees/_design/myshows/_show/payslips/200

The response is the document represented in the format set in the show function.

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myshows/_show/payslips/200

APPENDIX A ■ COUCHDB API REFERENCE

281

Execute a List Function

Request Method: GET

Request URI: /[db_name]/_design/[design_doc_name]/_list/[function_name]/
[view_name]

Request Headers: None

Request Body: None

Request Parameters: descending (Boolean, Reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be grouped)
reduce (Boolean; if exists, display result of reduce function; default true)

Description: Presents a list of the results of a CouchDB view, as defined in a list
function

Sample Request URI: http://127.0.0.1:5984/employees/_design/myviews/_list/browse/getall

The response is the results of the view, in a format as set out in the list function.

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myviews/_list/browse/getall

APPENDIX A ■ COUCHDB API REFERENCE

282

Execute a List Function Specifying a Key Set

Request Method: GET

Request URI: /[db_name]/_design/[design_doc_name]/_list/[function_name]/
[view_name]

Request Headers: None

Request Body: {"keys":["docid1","docid2",...,"docidN"]}

Request Parameters: descending (Boolean, Reverses order of results, default false)
include_docs (Boolean, include full document, default false)
limit (Number, restrict number of results)
startkey (String, start key to return documents in a range)
endkey (String, end key to return documents in a range)
startkey_docid (String, start document ID of range)
endkey_docid (String, end document ID of range)
key (String, only display document that matches key)
stale (String=ok, don’t refresh views for quicker results)
skip (Number, skip the defined number of documents)
group (Boolean, results should be grouped, default false)
group_level (Number, level at which documents should be grouped)
reduce (Boolean; if exists, display result of reduce function; default true)

Description: Presents a list of the results of a CouchDB view, as defined in a list
function

Sample Request URI: http://127.0.0.1:5984/employees/_design/myviews/_list/browse/getall

The response is the results of the view, in a format as set out in the list function.

Further Information
The CouchDB API is constantly evolving. With each version, new features are added, and older features
are deprecated. You can find out more information on the CouchDB API in the handlers section of the
default.ini configuration file or on the official CouchDB wiki at http://wiki.apache.org.

Download at WoweBook.Com

http://127.0.0.1:5984/employees/_design/myviews/_list/browse/getall
http://wiki.apache.org

A P P E N D I X B

■ ■ ■

283

HTTP and curl Reference

CouchDB’s API is made available using a RESTful HTTP interface. This appendix outlines how an HTTP
request is processed.

HTTP Request Message
An HTTP request comprises the following elements:

• The request line, indicating the method, resource, and HTTP version of the request

• Headers, such as Content-type and Content-length

• An empty line

• The message body

Listing B-1 shows an example of an HTTP request with all four of these properties.

Listing B-1. A Sample HTTP Request

POST /db HTTP/1.1
Content-type: application/json

{“type”:”category”,”name”:”Web Tutorials”,”slug”:”web-tutorials”}

HTTP Request Methods
Table B-1 describes the HTTP request methods that are used in CouchDB. Please note that the COPY
method is not part of the HTTP standard but is rather an extension to HTTP used by CouchDB.

Download at WoweBook.Com

APPENDIX B ■ HTTP AND CURL REFERENCE

284

Table B-1. HTTP Request Methods

Method Name Description

GET GET requests are usually used for side-effect-free transactions, such as retrieving
data. In CouchDB, GET requests are used to request data from the database.

POST POST requests are used to submit data to a resource, with the data included in the
message body. In CouchDB, POST requests are used to create new resources,
typically where the URI of the request is different to the resource that is to be
created.

PUT PUT requests are also used to submit data to a resource, with the data included in
the message body. Unlike POST requests, PUT requests are generally used to
update existing data, at the same resource the URI is requested from. PUT requests
are also used in CouchDB where you want to specify the resource name where the
data will be accessible, that is, when you want to specify the document ID when
creating a document, rather than have one automatically assigned by the server.

DELETE DELETE requests are used to delete the specified resource. CouchDB uses DELETE
requests to delete databases and documents.

COPY This nonstandard extension to HTTP is used by CouchDB to copy one resource to
another resource.

HTTP Response
An HTTP response consists of a status line, headers, and a body. The headers usually provide
information such as the time of the response, information about the server, the type of content
contained in the response body, and more meta-information. The response message is returned in the
body.

Listing B-2 is an example of an HTTP response.

Listing B-2. A Sample HTTP Response

HTTP/1.1 200 OK
Server: CouchDB/0.9.0 (Erlang OTP/R13B)
Date: Sun, 04 Oct 2009 20:50:00 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 40
Cache-Control: must-revalidate

{"couchdb":"Welcome","version":"0.9.0"}

Download at WoweBook.Com

APPENDIX B ■ HTTP AND CURL REFERENCE

285

HTTP Response Status Codes
Table B-2 describes the HTTP status codes that CouchDB uses to indicate the success or failure of a
database transaction.

Table B-2. HTTP Response Status Codes

Status Code Description

200 (OK) The request was successfully processed.

201 (Created) The document was successfully created.

202 (Accepted) The database was successfully compacted.

304 (Not Modified) The document has not been modified since the last update.

400 (Bad Request) The syntax of the request was invalid or could not be processed.

404 (Not Found) The requested resource was not found.

405 (Method Not Allowed) The request was made using an incorrect request method; for
example, a GET was used where a POST was required.

409 (Conflict) The request failed because of a database conflict.

412 (Precondition Failed) Could not create database—a database with that name already
exists.

500 (Internal Server Error) The request was invalid and failed, or an error occurred within
the CouchDB server that prevented it from processing the
request.

Performing HTTP Requests with curl
The curl command-line utility provides a convenient way to make HTTP requests. The following is an
example of the most basic curl HTTP request to CouchDB:

curl http://127.0.0.1:5984

This command makes a GET request to the URL http://127.0.0.1:5984. By default, curl outputs
the message body of the HTTP response, as shown here:

{"couchdb":"Welcome","version":"0.9.0"}

curl has a series of command-line arguments that can be used to modify part of the HTTP
transaction. For example, if you want the response header to be displayed, you can use the -v (verbose)
argument, for example:

curl -v http://127.0.0.1:5984

Although you are requesting the same resource as before, the response is much different:

Download at WoweBook.Com

http://127.0.0.1:5984
http://127.0.0.1:5984
http://127.0.0.1:5984

APPENDIX B ■ HTTP AND CURL REFERENCE

286

* About to connect() to 127.0.0.1 port 5984 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 5984 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
> Host: 127.0.0.1:5984
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: CouchDB/0.9.0 (Erlang OTP/R13B)
< Date: Sun, 04 Oct 2009 21:08:36 GMT
< Content-Type: text/plain;charset=utf-8
< Content-Length: 40
< Cache-Control: must-revalidate
<
{"couchdb":"Welcome","version":"0.9.0"}
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0

By default, if a request method is not supplied, curl will perform a GET request. To make an HTTP
request with a different method, such as PUT, you can use the -X argument. The following command
makes a PUT request to the URI /mydb, which will create a new database named mydb:

curl -X PUT http://127.0.0.1:5984/mydb

If you need to specify headers in your HTTP request, you use the -H argument. The following
example uses the Destination header to define where a document should be copied to:

curl -X COPY http://127.0.0.1:5984/mydb/doc1 -H 'Destination: doc2'

Many of CouchDB’s API methods require you to include data in the message body. You can supply
this data using the -d argument, as shown in the following replication example:

curl -X POST http://127.0.0.1:5984/_replicate -d '{"source":"db_one","target":"db_two"}’

The previous example works quite nicely, because the data being supplied in the request body is
short. But what if you need to supply a large set of data, such as a number of documents being added
using the bulk document API? In this case, you can save the data in a file, for example documents.json,
and then tell curl to load the data from this file. The following is an example of this type of request:

curl -X POST http://127.0.0.1:5984/mydb/_bulk_docs -d @documents.json

Download at WoweBook.Com

http://127.0.0.1:5984/mydb
http://127.0.0.1:5984/mydb/doc1
http://127.0.0.1:5984/_replicate
http://127.0.0.1:5984/mydb/_bulk_docs
mailto:@documents.json

APPENDIX B ■ HTTP AND CURL REFERENCE

287

curl has a host of other command-line arguments, far too many to list here. A final argument that
you may find useful, however, is the -o flag. You can use this to output the response to a file, as follows:

curl http://127.0.0.1:5984/mydb/mydoc -o mydoc.json

This will store the document with document ID mydoc in the file mydoc.json.

Download at WoweBook.Com

http://127.0.0.1:5984/mydb/mydoc

Download at WoweBook.Com

289

Index

■ Symbols
+ (plus) icon (Futon), 63
/ (slash) as request URI, 251

■ A
ACID properties, 6
ad hoc views. See temporary views
ADC (Apple’s Developer Connection), 32
administration tool. See Futon administration

tool
aggregating results on views, 143–50
_all_dbs resource, 104, 258
_all_docs resource, 57, 229, 267, 268
_all_docs_by_seq resource, 58, 269, 270
all-or-nothing bulk updates, 235
Apple’s Developer Connection (ADC), 32
application development, 185–209

with CouchApp. See CouchApp
with Couchdbkit library (Python), 185–91
with CouchRest library, 191–200
with Django extensions (Python), 200–209

apt-get package manager, 12
arrays, JSON, 89, 90

looping through, 96–102
atomicity, 6
attachments

deleting, 273
uploading with Futon, 76–78, 272

_attachments subdirectory (couchapps
directory), 172

■ B
backups, 248
bind_address option, 81
bookmarks application (example), 200–209
boolean data type (JSON), 89
building CouchDB from source code, 19–28

Erlang, 23
ICU, 25
Libcurl library, 24

Spidermonkey, 25
Subversion, 26

_bulk_docs resource, 232, 275
bulk fetching of documents, 229–32, 275
bulk writing of documents, 232–35

■ C
clustering, 250
Compact Database link (Futon), 78–80
_compact resource, 261
compacting databases, 78–80, 224–28, 261
complex keys, 157
_config resource, 252
configuration information, retrieving, 252
configuring CouchDB installation, 80, 243–46
conflict resolution, 246–47
_conflicts document, 246
consistency, 6
Content-Type header, 272, 277
COPY requests (HTTP), 50, 266, 284
copying documents, 266
CouchApp, 163–84

building task manager, 169–84
getting started, 165–69
installing, 163–65

couchapps directory, creating, 165
CouchDB, about, 3–5
CouchDB administration tool. See Futon

administration tool
CouchDB API, 7

triggering database replication, 223
views and, 119–23

map/reduce with, 135–36
CouchDB applications, developing, 185–209

with CouchApp. See CouchApp
with Couchdbkit library (Python), 185–91
with CouchRest library, 191–200
with Django extensions (Python), 200–209

CouchDB configuration options, 80
CouchDB Configuration tool (Futon), 80
CouchDB dependency packages, 12

Erlang, 23

Download at WoweBook.Com

■ INDEX

290

ICU, 25
libcurl, 24
Spidermoney, 25
Subversion, 26
updating (Mac OS X), 44

CouchDB deployment, 241–50
backup, 248
clustering, 250
configuration, 243–46
conflict resolution, 246–47
fault tolerance and load balancing, 249
measuring performance, 241–43
security, 247–48

CouchDB documents, about, 6. See also
documents

couchdb folder, 27
CouchDB installation on Linux, 9–28

building from source code, 19–28
Erlang, 23
ICU, 25
Libcurl library, 24
Spidermonkey, 25
Subversion, 26

configuration options, 243–46
Fedora Linux, 14–19
Ubuntu Linux 8.10, 12–15

CouchDB installation on Mac OS X, 29–46
configuration options, 243–46
MacPorts package manager, 34–40
using CouchDBX, 45–46
Xcode developer tools, 29–34

couchdb-lounge framework, 250
couchdb service, configuring, 13
couchdb user, creating, 13, 27
CouchDB views. See views
Couchdbkit library, 185–91

Django extensions, 200–209
installing, 186

CouchDBX package, 45–46
CouchRest library, 191–200
CouchTasks application (example), 169–84
COUNT function (SQL), 138
counting words with map/reduce (example),

139–41
Create Database link (Futon), 63, 65–70
Create Document link (Futon), 70–76
curl utility, 13, 19, 50

accessing views, 120, 135
determining database size, 227
entering JSON data through, 56
how to use, 51
performing HTTP requests, 285–88

■ D
-d option, curl utility, 51, 54
data relationships, views and, 154–58
data types

JSON, 50, 89
limiting map functions with, 126

databases
adding documents to, 54–57, 262, 263

in bulk, 232–35
using Couchdbkit (for Python), 187
using CouchRest (for Ruby), 194

allowing remote connections to, 81
APIs for (list), 256–61
backups, 248
compacting, 78–80, 224–28, 261
conflict resolution, 246–47
creating, 49, 51–57, 256

with Futon, 65–70
in Python, 186
in Ruby, 193

deleting, 53, 257
deleting documents from, 55
fetching documents in bulk, 229–32, 275
listing, 258
replicating, 83–85, 211–24, 260

for backup, 248
incremental replication, 215
triggering replication from

applications, 223
retrieving information on, 259
security, 247–48
size of, determining, 227
updating documents in, 57, 264

in bulk, 232–35
views. See views

DELETE requests (HTTP), 50, 265, 273, 284
_deleted meta field (documents), 234
deleting

attachments, 273
databases, 53, 257
documents, 55, 265
old document revisions. See compaction

dependency packages, installing, 12
Erlang, 23
ICU, 25
libcurl, 24
Spidermonkey, 25
Subversion, 26
updating (Mac OS X), 44

deploying CouchDB, 241–50
backup, 248
clustering, 250
configuration, 243–46
conflict resolution, 246–47

Download at WoweBook.Com

■ INDEX

291

fault tolerance and load balancing, 249
measuring performance, 241–43
security, 247–48

descending argument (views), 58, 152
design documents, 116–18

creating, 276
as JSON objects, 103
language and views fields, 117
permanent views in, 121
show functions in, 235–38, 280

_design resource, 276, 278, 279, 280, 281, 282
Destination header, 266
developing CouchDB applications, 185–209

with CouchApp. See CouchApp
with Couchdbkit library (Python), 185–91
with CouchRest library, 191–200
with Django extensions (Python), 200–209

disk_size value, 227
Django extensions, 200–209
document revisions, 6

deleting documents and, 55
purging old (compaction), 224–28
_rev field, 103

document-oriented databases, 5
documents

adding to databases, 54–57, 262, 263
in bulk, 232–35
using Couchdbkit (for Python), 187
using CouchRest (for Ruby), 194

APIs for, list of, 262–75
attaching files to, 76–78, 272
backups of, 248
copying, 266
creating with Futon, 70–76
deleting, 55, 265
design documents. See design documents
fetching in bulk, 229–32, 275
_id and _rev fields, 103

bulk fetching and, 231
bulk writing and, 234

JSON, presenting in non-JSON formats, 235–
38

listing, 267, 268, 269, 270
querying (returning). See views
updating, 57, 264

in bulk, 232–35
viewing, 271. See also views

duck typing, 112
durability, 6

■ E
easy_install utility, 165, 185
emit function, 126
endkey argument (views), 153

Erlang, building, 23
executing views. See views

■ F
Fabric formula language, 4
fault tolerance, 249
Fedora Linux, installing CouchDB on, 14–19
fetching documents in bulk, 229–32, 275
file_exists error, 52
files, attaching to documents, 76–78, 272
filtering results (views), 151–54
Futon administration tool, 8, 63–86

compacting databases, 78–80, 224–28
creating databases, 65–70
creating documents, 70–76
creating views, 109–13. See also views

permanent views, 113–16
map/reduce in, 127–35
replication. See replicating databases
show functions, creating, 235
Test Suite, running, 14, 20, 29, 46

databases created by, 53
tools of, 80–85
uploading attachments, 76–78

■ G
GET requests (HTTP), 50, 284
Google’s map/reduce functionality, 125
grouping results on views, 143–50

■ H
-H option, curl utility, 51
history of CouchDB, 4
HTTP requests, 283

performing with curl, 285–88
HTTP responses, 50, 284

status codes for, 285

■ I
ICU, building, 25
_id field (documents), 103

for design documents, 103
fetching documents in bulk, 231
writing documents in bulk, 234

incremental replication, 215
index.html file (couchapps directory), 167
installing CouchDB on Linux, 9–28

building from source code, 19–28
Erlang, 23
ICU, 25
Libcurl library, 24

Download at WoweBook.Com

■ INDEX

292

Spidermonkey, 25
Subversion, 26

configuration options, 243–46
Fedora Linux, 14–19
Ubuntu Linux 8.10, 12–15

installing CouchDB on Mac OS X, 29–46
configuration options, 243–46
MacPorts package manager, 34–40
using CouchDBX, 45–46
Xcode developer tools, 29–34

isolation, 6

■ J
JavaScript Object Notation. See JSON, See JSON
Javascript view engine, 7, 57
JSON (JavaScript Object Notation), 7, 50, 87–105

about, 87
advantages, 87
CouchDB with, 103–4
encapsulating with single quotes, 54
entering data through curl, 56
looping through arrays, 96–102
presenting documents as non-JSON, 235–38
role in asynchronous web applications, 98
structures, defining, 91–96
syntax and data types, 88–91

■ K
Katz, Damien, 4
key argument (views), 153

■ L
language field (design documents), 103, 117
launching CouchDB server, 13, 18, 28
Libcurl library, building, 24
limit argument (views), 154
limit query parameter, 58
Linux, installing CouchDB on, 9–28

building from source code, 19–28
Erlang, 23
ICU, 25
Libcurl library, 24
Spidermonkey, 25
Subversion, 26

configuration options, 243–46
Fedora Linux, 14–19
Ubuntu Linux 8.10, 12–15

list functions, 238, 281, 282
_list resource, 281, 282
listing databases, 258
listing documents, 267, 268, 269, 270
lists keys, 235

load balancing, 249
“Local database” option (replication), 83, 213
looping through JSON arrays, 96–102

■ M
Mac OS X, installing CouchDB on, 29–46

configuration options, 243–46
MacPorts package manager, 34–40
using CouchDBX, 45–46
Xcode developer tools, 29–34

MacPorts package manager, installing, 34–40
main area, Futon, 63
main.css file (style directory), 170, 180
map function, 110, 125, See also views, See also

map/reduce concept; views
in CouchApp views, 178
CouchDB API and, 135–36
creating, 126
creating in Futon, 127–35
SQL queries vs., 136–38
word count example, 139–41

map/reduce concept. See also map function
in CouchDB, 126–27
CouchDB API and, 135–36
defined, 125
in Futon, 127–35
reduce. See reduce function
SQL queries vs., 136–38
word count example, 139–41

Map Function box (Futon), 130
map.js file, 178
Math.round function (JavaScript), 146
max function, 147
measuring CouchDB performance, 241–43
min function, 147

■ N
navigation bar, Futon, 63
nonatomic bulk updates, 234
null data type (JSON), 89
null values, 108
number data type (JSON), 89

■ O
objects, JSON, 50, 88, 89

creating (defining), 92
ordering results (views), 151–54
Overview heading (Futon), 63

Download at WoweBook.Com

■ INDEX

293

■ P
pagination bar (Futon), 63
password for user account, 13
performance

clustering, 250
load balancing, 249
measurement of, 241–43
runtime statistics, retrieving, 253

permanent views, 109, 113–16
in design documents, 121
executing with CouchDB API, 120

map/reduce with, 135–36
map/reduce. See map/reduce concept
querying, 278, 279

ping command, 217
plus (+) icon (Futon), 63
POST requests (HTTP), 50, 284

fetching documents in bulk, 229–32, 275
writing documents in bulk, 232–35

purging old document revisions. See
compaction

pushing CouchApps to CouchDB, 165, 168
PUT requests (HTTP), 50, 284
pycurl utility, installing, 186
Python

executing views from, 190
installing, 163, 185

Python applications
Couchdbkit library with (Python), 185–91
Django framework, 185–91

■ Q
querying database. See views
querying related data, 155

■ R
Rails, installing, 191
RDBMS (relational database management

systems), 107
reduce function, 125, See also map function

in CouchApp views, 178
CouchDB API and, 135–36
creating, 126
creating in Futon, 127–35
SQL queries vs., 136–38
word count example, 139–41

Reduce Function box (Futon), 132
reduce.js file, 178
related data, views and, 154–58
relational database management systems, 107
remote connections to databases, 81

“Remote database” option (replication), 213
_replicate resource, 260
replicating databases, 83–85, 211–24, 260

for backup, 248
incremental replication, 215
triggering replication from applications, 223

replication test failure, 15
Replicator tool (Futon), 83–85, 211–24

incremental replication, 216
requests. See HTTP requests
rereduce argument (reduce function), 127, 148
responses. See HTTP responses
RESTful, CouchDB API as, 7
returning documents with queries. See views
_rev meta field (documents), 103

for design documents, 103
fetching documents in bulk, 231
writing documents in bulk, 234

reversing results order on views, 152
revisions, document, 6

deleting documents and, 55
purging old (compaction), 224–28
_rev field, 103

round function (JavaScript), 146
Ruby

developing applications in, 191–200
executing views from, 198
installing RubyGems, 191

runtime statistics, retrieving, 253

■ S
saving views as permanent, 113–16
schema-free DBMS, CouchDB as, 5, 49
security, 247–48
SELECT statements (SQL) vs. map/reduce, 136–

38
server APIs, list of, 251–55
server clustering, 250
server information, retrieving, 251
setuptools (Python), 164, 185
show functions, 235–38, 280
_show resource, 280
shows keys, 235
size of database, determining, 227
/ (slash) as request URI, 251
source code, building CouchDB from, 19–28

Erlang, 23
ICU, 25
Libcurl library, 24
Spidermonkey, 25
Subversion, 26

Spidermonkey, building, 25
Spidermonkey-based engine. See JavaScript view

engine

Download at WoweBook.Com

■ INDEX

294

SQL (Structured Query Language), 107
SQL queries vs. map/reduce, 136–38
stand-alone applications, building, 185–209

with CouchApp. See CouchApp
with Couchdbkit library (Python), 185–91
with CouchRest library, 191–200
with Django extensions (Python), 200–209

starting CouchDB server, 13, 18, 28
startkey argument (views), 153
_stats resource, 253
status codes for HTTP responses, 285
Status page (Futon), 82
storing related data, 155
string data type (JSON), 89
Structured Query Language. See SQL
structures, JSON, 91–96
style subdirectory (couchapps directory), 167
Subversion, building, 26
sudo command, Max OS X Leopard and, 43

■ T
task manager application, building, 169–84
_temp_view resource, 277
temporary views, 109

creating, 109–13
executing with CouchDB API, 119
making permanent, 113–16
map/reduce. See map/reduce concept
querying, 277

Terminal application (Mac OS), 39
Terminal window, opening, 12, 16
test databases, 53
Test Suite, running, 14, 20, 29, 46

databases created by, 53
total_rows field, 58
triggering database replication, 223
types. See data types

■ U
Ubuntu Linux 8.10, installing CouchDB on, 12–

15
update_notification section (local.ini), 249
updating documents, 57, 264

in bulk, 232–35
Upload Attachment link (Futon), 76–78

user account, creating, 13, 27
UUIDs, retrieving, 255
_uuids resource, 255

■ V
version control, compaction and, 228
view APIs, list of, 276–82
view engines, 108, See also JavaScript view

engine
map/reduce. See map/reduce concept

_view resource, 278, 279
viewing documents, 271
views, 7, 57–59, 107–23, 143–59, 267

advanced aggregation, 143–50
in CouchApps, 178
CouchDB API and, 119–23, 135–36
creating, 109–13

from Python (with Couchdbkit), 190
from Ruby (with CouchRest), 198

design documents with, 116–18
map/reduce. See map/reduce concept
ordering and filtering results, 151–54
permanent views, 109, 113–16

in design documents, 121
executing with CouchDB API, 120

querying, 277
working with related data, 154–58

views field (design documents), 103, 117
views subdirectory (couchapps directory), 178

■ W
wget utility, 201
word count with map/reduce (example), 139–41
writing documents. See documents, adding to

databases

■ X
-X option, curl utility, 51
Xcode developer tools, installing, 29–34
X-Couch-Full-Commit header, 264, 275

■ Y
yum, installing CouchDB using, 14–1

Download at WoweBook.Com

323

Download at WoweBook.Com

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	What You Need
	CouchDB Resources
	Contacting the Author

	Introduction to CouchDB
	What Is CouchDB?
	CouchDB: The Story So Far
	Document-Oriented Databases
	CouchDB Documents
	The JavaScript View Engine
	RESTful HTTP API
	Futon
	So...Now What?

	Installing CouchDB on Linux
	Installing CouchDB on Ubuntu Linux 8.10
	Installing CouchDB on Fedora Linux Using yum
	Building CouchDB (and Prerequisites) from Source Code
	Building Erlang
	Building libcurl
	Building ICU
	Building Spidermonkey
	Building Subversion
	Building CouchDB

	Installing CouchDB on Mac OS X
	Installing the Xcode Developer Tools
	Installing MacPorts
	Installing CouchDB
	CouchDBX: A One-Click CouchDB Package for Mac OS X

	Creating Your First CouchDB Database
	Tools of the Trade
	HTTP Requests
	JSON Response
	Using curl
	Creating Your First Database
	Creating Documents in Your Contacts Database
	Getting Started with CouchDB Views
	Summary

	Using Futon: The CouchDB Administration Interface
	Creating a Database
	Creating a Document
	Uploading Attachments
	Compacting the Database
	Futon Tools
	Summary

	Introduction to JSON
	What Is JSON?
	Why JSON?
	JSON 101: Syntax and Data Types
	Working with JSON
	Defining JSON Structures
	Looping Through JSON Arrays

	CouchDB and JSON
	Summary

	Introduction to CouchDB Views
	Creating Views
	Permanent Views
	Design Documents
	Views and the CouchDB API
	Summary

	Map/Reduce
	What Is Map/Reduce?
	Map/Reduce in CouchDB
	Map/Reduce in Futon
	Map/Reduce Views and the CouchDB API
	Map/Reduce vs. SQL Queries
	Word Count Example
	Summary

	Advanced CouchDB Views
	Advanced Aggregation
	Ordering and Filtering Results
	Working with Related Data
	Summary

	Developing CouchDB Applications with CouchApp
	Installing CouchApp
	Your First CouchApp
	Creating CouchTasks: A Simple Task Manager
	Suggested Improvements
	Summary

	Developing Applications with CouchDB
	Developing in Python with Couchdbkit
	Developing in Ruby with CouchRest
	Creating a Bookmarks Application with CouchDB and Django
	Summary

	Advanced CouchDB Topics
	Replication
	Compaction
	Fetching Documents in Bulk
	Writing Documents in Bulk
	Show Functions
	Summary

	Mechanics of CouchDB Deployment
	Measuring Performance
	Configuring CouchDB
	Conflict Resolution
	Security
	Backup
	Fault Tolerance and Load Balancing
	Clustering
	Summary

	CouchDB API Reference
	Server APIs
	Server Information
	Current Configuration
	Runtime Statistics
	Get UUIDs

	Database APIs
	Create Database
	Delete Database
	List Databases
	Database Information
	Replicate Database
	Compact Database

	Document APIs
	Create New Document (Use UUID-Generated Document ID)
	Create New Document (User Specified Document ID)
	Update Existing Document
	Delete Document
	Copy Document
	List Documents
	List Documents Specifying a Key Set
	List Modified Documents
	List Modified Documents Specifying a Key Set
	View Document
	Create/Update Attachment
	Delete Attachment
	Get Attachment
	Managing Bulk Documents

	View API
	Create Design Document
	Query Temporary View
	Query Permanent View
	Query a Permanent View Specifying A Key Set
	Execute a Show Function
	Execute a List Function
	Execute a List Function Specifying a Key Set

	Further Information

	HTTP and curl Reference
	HTTP Request Message
	HTTP Request Methods
	HTTP Response
	HTTP Response Status Codes
	Performing HTTP Requests with curl

	Index

