Beginning
EJB In Java EE 8

Building Applications with
Enterprise JavaBeans

Third Edition

Jonathan Wetherbee
Massimo Nardone
Chirag Rathod
Raghu Kodali

Apress’

ww.allitebooks.co

http://www.allitebooks.org

Beginning EJB in
Java EE 8

Building Applications with
Enterprise JavaBeans

Third Edition

Jonathan Wetherbee
Massimo Nardone
Chirag Rathod
Raghu Kodali

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Beginning EJB in Java EE 8: Building Applications with Enterprise JavaBeans

Jonathan Wetherbee Massimo Nardone

San Mateo, California, USA Helsinki, Finland

Chirag Rathod Raghu Kodali

Jayanagar I Blk, India Cupertino, California, USA

ISBN-13 (pbk): 978-1-4842-3572-0 ISBN-13 (electronic): 978-1-4842-3573-7

https://doi.org/10.1007/978-1-4842-3573-7
Library of Congress Control Number: 2018944142

Copyright © 2018 by Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and
Raghu Kodali

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484235720. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3573-7
http://www.allitebooks.org

To my sons — Jacob, Patrick, and Nicholas — for your love,
support and inspiration throughout this endeavor.

—Jon Wetherbee

To Shaylee and Ashwini.
—Chirag Rathod

TIwould like to dedicate this book to the memory of my beloved
late mother, Maria Augusta Ciniglio. Thanks, mom, for all the
great things you have taught me, for making me a good person,
for making me study to become a computing scientist, and for the
great memories you left me. You will be loved and missed forever.
I love you mom. RIP.

—Massimo

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtNOrS.....cccusisssmsnmmsssssssmmsssssssnssssssssssssssnnnnsssssnnnnsssssnnnnsssssnnnnnssssnnnnsssnnns Xix
About the Technical REVIEWETcccuserrsssnsmsssnsssssnsssssssssssnsssssnsssssnnsssssnssssanssssnnssss Xxiii
o T XXV
Acknowledgments........ccccuuuisssnmmmnmmmmmmssssssssnssnnnmeesssssssssssnnnneessssssssnnnnnnnnnesssssnnnnnnns XXiX
Chapter 1: Introduction to the EJB 3.2 Architecture & CDI Servicescccesrrrrrsssnns 1
What’s New in Java Enterprise Edition (Java EE) 8 Architecture?ccovvvrrenresrnscnenescnnnnes 2
An INtroduction 10 EJB ...t e s 3
WRGAL IS EJBY......ceeer ettt e st e e s 4
Core Features of the EJB Development MOGELcccvverevnnenienennsensenesesessessessessssessessesnes 5
Progression 0f the EJB SPECcccevevervrereninienes s ses e s sessesse e sessessessesssssssessesaessssessesaens 7
EJB 3 Simplified Development Model...........ccovvrrinnininnnsns e 10
Distributed Computing MOdEl.........c.ooeoreererrer e s 13
How This BOOK IS Organized...........cccerererrenerreserenesesenesssesesesessssessssesessssessssessssssesssssssssssssssnns 15
Chapter 1: Introduction to the EJB 3.2 Architecture & CDI Services.......c.cceeerverververrerrercenne 15
Chapter 2: EJB SESSION BEANS........ccccvveruerrererserersessssesessessessssessessessssessessessessssessessessssensessens 15
Chapter 3: Entities and the Java Persistence APl (JPA)........cccvverevennerieriennsensessessesessessensens 15
Chapter 4: Advanced PersiStence FEAtUrES........couvvmrernrenrsse s e 16
Chapter 5: EJB Message-Driven BEaNS.........c.cccverernsesesesmsssesesssssssssssssssessesssssssssssessssesenns 16
Chapter 6: EJB, Web Services, and MiCrOSEIVICES........cvvrreererrerrerseerersersesssessessessessssssessennes 16
Chapter 7: Integrating Session Beans, Entities, Message-Driven Beans,
ANU MICTOSEIVICES ..evevereirere e se s s s s b e e e R e e e e e Re e p e e s e e nennas 16
Chapter 8: Transaction Management...........ccucvverererreriereresensesseresessessessessesessessessessssessessens 16
Chapter 9: EJB Performance and TEStINGcccvrererrnienennnensenese s sessessessssessessessessssessessens 17
Chapter 10: Contexts and Dependency INJECTION.........ccoveeererernsesessenesese s 17
Chapter 11: EJB Packaging and Deploymentcoocvrenrencrnnesennenesese s sessesenns 17
Chapter 12: EJB Client ApPlICAtiONSccccccverererircrirerere e s se e ses e sens 17
Chapter 13: Testing in an Embeddable EJB CONAINEN..........cccvrerrevernenseriensnsensesessesessensensens 18
v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

6T T TS =T T OO 18
Installing Java SE Development Kit (JDK) 8.......cccovverrierernnensenenenessessesessssessessessessssessessens 19
Downloading the NetBeans IDE...........ccoco s 20
Installing NetBeans IDE and Its Integrated GIassFiSh SErVercccvvvvvvvnvenienienessensennens 21
Testing the NetBeans IDE and GlassFish Installation.............ccccveevevnrnvenienssnsensenesessensenes 24
Administrating the GlassFish Application SErver.........ccccvevrvnrerienn e 30
QL0101 o1 L=T T 1100 (1o 33

£ 11114 7 37

Chapter 2: EJB SeSSION BeaANS.....ccicurrssumsrssansmsssnsssssnsesssnsesssnsesssnsssssnsssssnnssssnnssssanss 39

Introduction t0 SESSION BEANSccccccoeeeerecrrc e 39
TYPES Of SESSION BEANS........ccerecereeeree s se s e e nnene s 40
When Do You Use SeSSioN BEANS?ccoveierenereencrerenerese s ses e e sesesessenens 40

Stateless SESSION BEANS.........c.ccccverererreierererere s 43
Set Up the DependencCies ... s s 44
THE BEAN ClaSScivrueerreerreeresesessese e sesse e se e e se e sss e sss e sseseses e sesssessenessnsssssssnens 44
The BUSINESS INTEITACEccerercerererieseres s nnene s 45
BUSINESS METNOUScccreecereer s 49
Dependency INJECLIONcoveeerercrrerererer s 51
Lifecycle Callback Methods..........ccccoveerrnenmrenercc s 52
INTEICEPIONS ..t e nne s 54

Stateful SESSION BEANScccvvererenerrsesesese s ses e s sessssensnnens 57
THE BEAN ClaSScivrueerreerreesessesessesesrssesessssessssessssssessesessssesssssssssssssssssssssssssssnsssansssnsssssssnnes 57
The BUSINESS INTEITACEc..ecerercereereeseresese e 58
BUSINESS METNOUSeceereeereer e e 60
Lifecycle Callback Methods..........ccccoveerrnenrererecrre e 61
INTEICEPIONS ..t e ne s 62
EXCeption Handling........covocereireernesereses s s 62

Singleton SESSION BEANS.........c.ccceeereiernnernesere s 63
THE BRAN ClaSScivruirerreerreisrsesessesesrssesese e e sss e s e e s e sss s s sssssssssesssssssssssssansssnssssssenees 63
The BUSINESS INTEITACEc.ecerererrrese e sr e nnenens 65
BUSINESS METNOUSvcerrreircer s 65

TABLE OF CONTENTS

Lifecycle Callback MEthods.........cuvvvvverernnerseresesesseressessssessessessessssessessesssssssessessessssensessens 66
Concurrency ManagemeENtcccvvverrererererserseressssersessessesessessessessssessessesssssssessessessssensessens 68
(0]l o 410 T o S 71
LU LcT =] T P 71
Calendar-Based Time EXPrESSIONSccvevrererreriersersssersersessessssessersessssessessesssssssessessessssensessens 73
Examples of Calendar-Based Time EXPreSSiONS.cucvverrereerersersersssessessersessssessessessssessessees 74
TIMEE PEISISTENCE.ceieeerieere et e 75
Client View for SESSION BEANS...........ccvrecrerererenereese e se s seseesnenens 76
Compiling, Deploying, and Testing the SesSSion Beans..........c.ccccvveeverenernneressesessesessssesessesessenens 83
Prer@QUISITES ...coeiveiicircrer st e e e e e e e e 84
Compiling the Session Beans and Their CHIENtSccoooeereirnccnerrenerese e 84
Deploying the Session Beans and Their CENtscoccovveerererescrnscnesesesee s 86
Running the Client Programs...........cccininnnnsinsssese s s sessessessssessesse s 88
SUIMIMANY....eveereeererese s e e e e ae e e e e e e e Re e e e e e se e e e nRe e se e nensn e nrnnens 92
Chapter 3: Entities and the Java Persistence APl (JPA)cccussemmsssasmsssanssssssssssnnss 93
AN ENItY EXAMPIE ..ottt sae s sr e e st sa e ne s sae e nne e 96
A Simple JavaBean: CUSIOMELJAVAccceeveereriererssensene e sesse e s s e ssesessessessessssessesses 96

A Simple Entity: CUSTOMELJAVA........ecvieriererinserrere s se s s sae e s e s enes 97

An Entity with Defaults Exposed: CUSTOMEL.JAVAccccvrerererierierensssenesessssessessessesessessesnes 99
Coding REQUITEMENTSccceriererierirserere e s s e s sae s se s s sa e e saesae e e e s snesassessesneees 102
ENtity DAt ACCESS ...viirereerieirere s re s s s e p s e s e e e aes 103
Property NaME.........cocicieerir i s e s r e s n e e 104
Example: Annotating Instance Variables...........cccvvvnininnnnnninnn s sessennes 104
Example: Annotating Property ACCESSOIScuuimrirmrmesmsesesssessssesesesessssessssessssessssssessnss 106
Declaring the PriMary KeY.......ccucucienrnnesnesnesessse s sesse s s ssssssssssssssssessnses 108
SiMPIE PrMANY KEYcuccvireerinerrnesese s sss s e s ss s s ss s ss s sesssssnns 108
COmMPOSIte PrHIMAY KEYcovvieerreerinerrsessssese s s e s sss s s e sessssssssssssssessssssssssssssans 110
Summary of Entity EXaMPIESccceevieriisirnsissessss s s ssssssessnses 113
The PersiStence ArChiVe...........ucrrerinsss s 113
The persistenCe.XMI File........coouvririerernrirrere s se e sa e s enes 113

vii

TABLE OF CONTENTS

The EntityManNAgETcoieiirirrie e sa e s s a e s st s ae s s n e s ae s 115
PersiStenCe CONTEXL.........covuiieirrcrirerssse s 116
Acquiring an EntityManager INStaNCe...........cccvvvrrininne s 116
L VA EST T 1T 1T o] 010 O 118

The ENtity Life CYCIE.....cccoveeeiererntriririsisise e snns 119
The Life Cycle of a New Entity INSTANCEccccvevevververernrerrire s ses e sessesse e ssssesessesees 119

O/R MAPPING c.vereiricreriesis s e s s e s s b e s e e e e e e e e e e R e e e e e aeeRe e e e naennen 122
The @Table Annotation (ReViSited).........ccvrrerierninininnrn s 122
The @Column Annotation (ReViSited)cccvivrnirinininrnsn e 123
COMPIEX MAPPINGS ...veeeveerirerere et res e s e se s se s e s sesae e ae e se s se s e e b e e se e nesan e neeais 124

Entity RelationShipscococrerenrerrecrrcr e 125
@ONEBTOONE ... e e e e se e e s e re e e e se e e e e Re e e e e e s ne e e re e ne e e e nns 125
@O0neToMany and @ManyTOONE........c.ccoverrrereninsne e s se e nne 126
@MaANYTOMANYccciueriiieiire e e r e s b e e s b e e e R e ae e e e naenne s 128
Lazy vs. Eager Field BindiNgS.........cccvvrnnnnininnnsne s s ssssessessessssessesse s 129
Cascading OPerations..........cccuevinnnninenn s e e s 130

Java Persistence Query Language (JPAL)........ccoeecrrnererenerenerensesesesesesesessesessssessssesessesessenens 131
@NamedQuery and @NamMedQUETIES........covererrererensereseressesesessesesesessssesessesessssessssesessssenns 132
Binding QUery Parameters.......c.ccocoeerrnnerenneserese s 133
DYNAMIC QUEKIEScuveeeeereeereneserseses e s sessese e ses e ses e s sse e ses e ssssessesessssesensssssssessnses 134
Bulk Update and Delete Operations..........cccvrinnnnnnennsnsinesess s s sessessesnes 134
COMPIEX QUETIES ...ccuereerierieiriere st bbb s s ae bR e e ene s 136

Persistence VS. AdaplioN..........cciiininn s 136
Forward Generation—PerSiSIENCEccvvrerererernserinre s 136
Reverse Engineering—~Adaption ..o ssssesennes 136
Which One Is Right for YOUr ProjECL?........ccevreerrererescrseresese e sessesesnenens 137

Example Application: CustomerOrderManagercoouvvvvrereninsnseniesnsessessesesessesessessssesessens 137
LTS (0] 1 1= -\ WSS 137

Compiling, Deploying, and Testing the JPA ENtitiescccveeeresernnennesennsc s 145
PrEr@QUISITES .veueiriuerrreirrese s e p e nr s 145
Opening the Sample APPlCALIONcccvceeericrncrre e 145

viil

TABLE OF CONTENTS

Creating the Database Connection and Sample SChema.........ccccoevvrvvieriennsensenesessensenenns 148
Compiling the Entities, EJBS, and the Client...........cccccvvrievrrnienienssensense s sessesessessssessessens 149
Deploying the JPA Persistence Unit, the EJB Module, and the Serviet.........ccccvevivvrierennn. 150
Running the Client Programs..........ccecveevevniensenesssensesesssessessessessssessessssssssssessesssssssessesaes 152
£ 11134 7 154
Chapter 4: Advanced Persistence Features........cccurmmsmmmsssmsmsssssmssssssssssnsssssnssssas 157
Mapping Entity Inheritance Hierarchies..........cooeorrerneenresrercrsese e 158
L6 11410] P2 U o O 159
Entity Inheritance Mapping Strategies ..o 160
Single-Table-per-Class Inheritance Hierarchy (InheritanceType.SINGLE_TABLE)................ 164
Common Base Table with Joined Subclass Tables (InheritanceType.JOINED)...........c.cc...... 181
Single-Table-per-Outermost Concrete Entity Class
(InheritanceType.TABLE_PER_CLASS)ccccrrerererereerssesese s sese s sesnsesennes 186
Comparison of O/R Implementation APProaches...........ccoveerererercrsrcresnesese e 190
Using Abstract Entities, Mapped Superclasses, and Non-Entity Classes in an
INheritance HIerarChy ... s 191
ADSEract ENtity CIASS.......ccovererrererinsesssesesese s e sesseses s s e s sessesssssssssssesesssssssenens 191
Mapped Superclass (@MappedSUPEICIASS)......ccuvrrrrierinrnsensese s s sessesses 192
NON-ENLILY ClaSScovrreerreerinesrsesesese s ssseses e sesse e se s sessesessesnsssssssssesesssssssssessnns 195
Non-Entity Single-Value and Collection Fieldsc.cuovrrenerenrnsesensesesesesessesesesessssesenns 195
Polymorphic RelationShips........cccueeerecerneninesinsse s ssssesenns 200
Relationship Mapping.......cocccvvrninnnne s s s sas e saes 200
Polymorphic JPAL QUEIES.......ccreereriererserersessssessessessesessessessesessessessesssssssessesssssssessessessessssessens 201
Using Native SAL QUEKIEScccvrereriiieriniesinesese s ss s se s s ss s s ses s 201
The QUErY CHEEHIA APcccoierirereree s se s e st s ne e 202
Composite Primary Keys and Nested Foreign Keys ... s sessennns 204
Using an Embedded Composite Key (@Embeddedld)cccrrervnrvnirienninsnesssensennenns 204
Exposing Composite Key Class Fields Directly on the Entity Class (@IdClass) 206
Mapping Relationships That Use Composite Keys........c.ccourmrmnrinnnnsnnenesssensesesessessenns 208
Support for Optimistic LocKing (@VErSioN).........ccovererrererrssesesesessssesessesessssessssssessessssssessssesenns 210
Support for Autogenerated Primary Key Values (@GeneratedValue)coveerevsenerrenerensenenns 211

ix

TABLE OF CONTENTS

Interceptors: Entity Callback Methods ... 214
Compiling, Deploying, and Testing the JPA ENtitiescccovvrinvrnicnninsninsnssesense e 216
Prer@QUISITES ...ciueirecieircrc et e 216
Opening the Sample AppliCAtioN ... - 216
Creating the Database CONNECHIONc.ccvvververereserrere e sa e e sne s 219
COMPIlING the SOUFCESvecvrvereerrererrerere e s s e s s s s sa e e s e saesae e s e ssesaesassssnesaees 221
Running the Client Programs.........ccocecvverevernenseresssessesessssssessessesssssssessesssssssessesasssssessesaes 222
Testing the Other PersiStence EXAMPIEScccccvvverrervereresersersesessssessessessessssessessesssssssessesses 224
BT 1] 11012 OSSOSO 225
Mapping Entity Inheritance Hierarchiesccovivvrininininsnsnesssne s 225
Using Abstract Entities, Mapped Superclasses, and Non-Entity Classes in an
INheritance HIBrarchy ... s s 225
Polymorphic Relationships ... 225
Polymorphic JPAL QUETIESc.ceeerererrrrreereresisseeesesesss e sesesessssssssesesesessssssesesessssssssensssens 226
Using Native SQL QUETIES.......ccvururerereririnneseseseses s s e s se s se e s s sesassssesenes 226
Using the QUEry Criterid APlccccovrneercneririsse st se e sessssesenes 226
Composite Primary Keys and Nested FOreign Keys.......covvrrverernrensenseresessessessessssessessenes 227
Support for OptimiStic LOCKINGcccvrerereerersereresesseresessssesessesssssssessessessssessessesssssssessees 227
Support for Autogenerated Primary Automatic Key ValUEsc.ccvevvevveriereressenserenessensensenes 227
Interceptors: Entity Callback Methods..........cccveeveverrrieriennsnrere s s s ssssessessenes 227
Chapter 5: EJB Message-Driven Beanscccusseummssssssssmsssssssnssssssssnsssssssnssssssnnnnss 229
Message-0riented ArChItECIUNEc.cc v s 229
WRAL IS JMS......r st 230
Messaging Application ArchiteCtureccovcvvrecrrs s 232
IMIS 2.0eurevesereseereseeresessasee s esases s s s bbb bR R R e R e R e R e 234
UMS 2.1t R e 234
USING IMDBS.....ccteerueruererserersessesesessessessssessessessessssessesssssssessessessssensessessensssessessessssessessessessnsesaens 235
When Do YOU USE MDBS? ... s ssse s sssssssssssssssssssssssssssens 235
IVIDB CIASSES.....cerererrsueseseseresssssssssesesssssssssssesssnssssesssssnsssssens 236
Configuration PrOPEITIES.cucererirersereresse s s sessessesse e s s e s s sse e s e saesaess s e ssesnesssnessesaeses 239
Dependency INJECioN iN MDBS........ccucviererirnerseresesessese s sese e ssssessessessessssessesasssssessesses 244

TABLE OF CONTENTS

Lifecycle Callback MEthods.........cuvvvrierevnrenienene s sessessessssessessessesessessessesssssssesnees 246

LY (e (0T 0 (0] S 247
Exception Handling........cocevririnnininiinsin s s s s s sse s ssessnssaesaessenns 248
ClIENT VIBW ...ttt 248
Compiling, Deploying, and TeSting MDBS........c.ccccurninrnnnsess s ssssesens 253
o €T (= |11 (=T SR 253
Compiling the Session Beans and MDBS.........ccccvivvrrrrereressemsersesssssssessesessssessessesssssssessenes 254
Creating the JMS and JavaMail RESOUICEScevvrerrerererersensersersssesseressessssessessesssssssessenes 256
Deploying the Session Beans, MDBs, and Their Clientsccevevvvvenrerievssessensesesessenennes 262
Running the Client Programs.........ccocvcvrevevesnnseressssssessessssssessessesssssssessesssssssessessssssssssesaes 263
SUMIMAIY ..ttt e e R e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renrn 264
Chapter 6: EJB, Web Services, and MiCroServiCesccuummssssmssmsssessssssssssssnnsnsnas 265
What Are WED SEIVICES?ccoeeeereiereerrsesese e se s ses e sesse e ssssesss e sensssensenens 265
UDDLL...ceeeeeceessss s s se e e e AR A E e e e e 267
WSDL o..utueutucueuesesssssessssssssss s s s e e e e e bbb bbb e e e e nan 267
SOAP ...ttt re e R R R A A A A e R R R R e Ennan 273
REST .ottt e e bbb e e R R e nE s 274
When Do YOu USE WED SEIVICES?covieererererrneesesesesssssssesesessssssssssss s ssssssssssssssssssens 277
Java EE 8 and WED SEIVICES........ccvrrninrnririnnsssse e sessssans 277
JAXAWS. .ot nan 278
JAX-RS oottt e 279
JAXB ...ttt e nan 279
JAXR ..ottt e 280
SAAU ...t En 280
USR 224 ... e nae s 280
EJB Stateless Session Beans as Web SErviCeS ... 280
Developing a New WED SErVICe.........ccvvverierniserese s se s s ssssessssssessnses 281
Packaging, Deploying, and Testing Web SErviCeScuovvrreriirnsnienenssensessesesessesessessssessessens 285
PrEr@QUISITES ...ouevriueririirree s e p e nr s 285
Compiling the SESSION BEaN.........c.cccviireiesernrrese s 286
Deploying the Session Bean-Based Web SErViCe..........ccovrvnerrenernsesessesesssesessesesesessssesenns 288
Testing the Credit SEIVICE. ... vveierererese s s sr e 289

TABLE OF CONTENTS

Web Service CHENt VIBW ... s ssssssans 292
Developing a Java Client That Accesses the Web SErvice.......ccvvvvvrrerennnenserseresensensenes 292
Session Beans as Web Service Clients...........ocovrnnnnnnnsssesessssssssse s sssssesesessns 301

What Are IMICTOSEIVICES?covrerreeeseressssesssesesessssssssssesesassssssssesesssssssssssssssssasssssssssssssssssssssssssans 302

Java EE 8 and MICIOSEIVICESceeierreaerercrerseerseseressesessesessssesessesessssessssesessessssssessssssesssssssenens 305

Microservices Example Using Spring Boot and NetBeans...........ccocovienrescrnncnessenesenesensenens 307
Prer@QUISITES ...cvueiieiiircre ettt s 307

BT 111 T o SRS 317

Chapter 7: Integrating Session Beans, Entities, Message-Driven Beans,
aNd WEDb SerVICeSuicurssesssssmsssnsssansssansssnsssansssansssnssssnsssassssnsssansssassssnnsssnsssansssanssas 319

0L C (0T 11T 0 o T 319

APPLICALION OVEIVIBWovieiererie it s p bbb e s p e s nne s 319

Application Components and SEIVICESccuvrierirninien e s snens 321
The Shopping Cart COMPONENT..........cccoiiiirrin e s 321
The Search Fagade COMPONENt............oovcrnemmnn e 321
The Customer Fagade COMPONENT ... 321
The Order Processing Fagade CoOmpPoNnent ... 321
PErSISIENCE SEIVICEScoveerrrcrereerese s re e 322
The E-Mail SEIVICEcoveeereererrecrenere s s e s e se e se s e e e see e sensssnsenens 322
THE Credit SEIVICEccoveeeererereecrescre s sre s e nnenens 322
The Order ProCeSSiNg SEIVICEcccverererrererersesesesessesesessesessesessssessssesesssssssssessssesessesssssnees 322

The Wines Online Application BuSiness ProCess..........ccuurnnnnnenennsinsenesessssessessessssessessenes 322

In-Depth Component/Service Walkthrough...........ccovcvieinecnsc e 324
PErSISIENCE SEIVICEScciverrierrrrisere s r e r e nr s 324
The Customer Fagade COMPONENT ... 325
The Search Fagade COMPONENt............coovennemm e 327
The Shopping Cart COMPONENL.........ccccoviiiririnnr e 329
The Order Processing Fagade COmMpPONeNt ... 337
The Order ProCeSSiNG SEIVICEcucvverererreseressesesesesesesessesssesessssessssesessssssssssssssssesssssssennes 345
The E-Mail SEIVICEcoveeierreerieerisesese e s sr s se e sae e e sss s nsenens 351

xii

TABLE OF CONTENTS

THE Credit SEIVICEcovvvieeccerrrisssese s 353
The Database SChEMA...........coviirrniriese s 353
Building, Deploying, and Testing the Applicationccccvivninininsnsn e 354
PrEr@QUISITES ..ovueiveiecrc e e s s 355
Creating the Database CONNECLIONccccecrrcernienncs e s 355
Creating the JMS and JavaMail RESOUICEScvvrerrerererersersersersssessessessessssessessesssssssessees 357
Opening the Sample ApPlICAtIONcccccevreververiererer e e sae s 357
Configuring the EJB WED SEIVICEcccveveeverierereserrere s sese e sssses e s s sessessessesasssssesaees 358
The wineapp@yahoo.com Account and the user.properties File........cccvvvvrrrreriernsensersenens 359
Building, Deploying, and Executing the Sample Application..........ccccccvveriervrnverieriesenseniennes 360
The SErvlet QUIPUL.......cccviere et a e e e aesa e e aennen 365
The Resulting E-Mailccociienininiinin e s s e s se s sae s se s s sse e sae s 365

£ 1T 1117 OO 366
Chapter 8: Transaction Management.........cccccusemmmmmssssnsmmmssssssnmssssssnnssssssssssssssnnnnss 367
What IS @ TranSaCtion?........ccoveevrereresernsesrsese s s sss e s sesssssssenens 368
Distributed TranSaCONS.........ccoverererrrnre s nr s 369
The ACID Properties of @ TranSactioncccoevvvvnrnininnnnn e snes 369
The Java TranSaction APl (JTA)cccoeereresernseseneses e sese s e sessesessssessssesesssssssenens 371
The Two-Phase Commit PrOtOCOL..........ccccveeerneereresere s 371
Transaction SUPPOrtin EJB.......cocriiiiencsirsre et 371
EJB TranSaction SEIVICESccevererrenmrrnsesrsesesesessssesessesessese s sessssessssssssssssssessssssssssnsssnnes 372
Session Bean Transactional Behavior in the Service Model ..., 373
Container-Managed Transaction (CMT) Demarcationccueeevenernsesensessnssesessesessesesennes 374
Bean-Managed Transaction (BMT) Demarcationcccueeeernnernsenenesennsesnsessssessssssesenns 379
Implicit Commit vs. EXplicit COMMIL........ccovcriirrcs s 381
Using Transactions With JPA ENHItIEScccvevvrnrnennnrrene e sss s s ses e s e ssssessesnens 382
Relationship Between Entities and a Transaction Contextcccovvvvrivvsnvnieninsenseniennes 382
Container-Managed vs. Application-Managed Persistence Context.........ccccuecvverierenrenseraenn 383
Transaction-Scoped Persistence Context vs. Extended Persistence Context...........c.cceune.. 384
JTA vs. Resource-Local EntityManagersc.ccvvvrvrierennninsensenssessessesessssessessesssssssessessens 385

xiii

TABLE OF CONTENTS

TWO SAMPIE SCENANIOS...cveveierserserrererserseressesessesessessesesessessessssessesaessssessesaesaessssessessesesssnsesseses 385
Stateless Session Beans with CMT Demarcation.............cocuvnnnnnnnnnnsssssssssssssssesesessens 386
Java Facade Using Application-Managed EntityManagercccvrvnrnnnnnnninnennienen 397
Filtering Test Data Using @ CMT SeSSiON BEANccccevreruererrerierersssensessessssessessessssessessenses 401
Stateful Session Beans with BMT Demarcation and Extended Persistence Context........... 409

Building, Deploying, and Testing: A Transactional Scenario from the Wines

0NliNe APPLICALIONc.eeercce e 426
Prer@QUISITES ...cvueiveciiircne st e e 426
Opening the Sample Application ..o 426
Creating the Database CONNECTioN..........cccccvvrrinnnnre s s 428
Compiling the SOUICES ... e e 429
Deploying and Running the Client Programs..........cccovvvrennnscnnnennsesese s sesesesessesesenns 430

£ T TS 433

Chapter 9: EJB Performance and Testingcccciunssmmmnmmsssssnnmsssssnnnsssssssnssssssnnnnss 435

The Testing Methodologyccuverrirerniesinesese e e sr e 436
Performance Criteriaccuuverrenerinernsesssese s sr s 437
Simulating Application USAQE.........cuevvererinmrrnsmssnesssese s ssssessssssssssssssssessssssssssssssenes 440
Defining TESt MEIICSccvce e 440

LILLLE €11 - 443

BT L= Y0] =03 446

The Performance TESTccoiiririe e 451
The Test ENVIFONMENT ... s 452
LI =) 0) 452
LS] O 453
Preliminary TESISciviii s 460
T 111101 (- RS 462
(071111 1110 0 O 462
The ACtUal TESt RUNS ..o s e 463
Analyzing the RESUILSccvciieerrirer s e s 465

£ 11134 7 468

Xiv

TABLE OF CONTENTS

Chapter 10: Contexts and Dependency Injectionccccuuseemrrnssssnnnssssssnnssssssnnnns 471
WRAL IS CDI?.....cueeeceeeces st se e bbb e e 472
Relationship With EJB ..ottt snens 478
{0800 (0T SRS 479

Beans and DeanS.Xml ... s 479
Lo o TSROSO 480
Dependency Injection With @INJECT.........ccocveeeererererrrerree s 482
Dependency RESOIULION ..o s 485
AREINALIVEScoeveereecreecrere s s s se e sre e s e nnnnnns 490
(000 T 491
Interaction with SESSION BEANS..........ccccvveererererinernse s 494
SESSION BEAN SCOPEciveiiirirerr it e s bbb e e 494
Resolving Session Bean AMDIGUILYcccvvrererenernsesnsesesssess s s ssssesennes 495
T2 T 495
Compiling, Deploying, and Testing the CDI Applicationccccovervnsesenresenssessssesenesessssenenns 495
Prer@QUISITES ..evuerieriiireie st e e e e e 496
Structure of the SAMple Code ... —————— 497
Compiling the CDI Beans and Their ClIENtSc.cuccorerernnesnnennnsse e ssesesennes 497
Deploying and Running the CDI CHENTSccccvveernnrnesenesess s sennes 499
11T 111 1T o OSSOSO 507

Chapter 11: EJB Packaging and Deployment............ccccerrmssnmnnmmsssssnnsssssssssssssssnnnss 509
A Note on Deployment TOOIScocciciiiinisinsen s nne s 510
Overview of the Packaging and Deployment ProCESSES.........cccvvrernnnsnieniesnsensessessesessessenns 511

L LT85 (011 T TR 511
THE ASSEIMDIET ... e se e e nne e 512
TRE DEPIOYET..... et e b e e R nn 516
Java EE Deployment INfrastruCtUre........ovocovveeereecrrcsreser e 518
THE JAVA EE SEIVET.....c.ccceeeeeriecreseessee e sese e ses s e s e sss e sss s sessssesssssssssssenssssssenees 518
The Java EE CONTAINETSccvuererrrerereersesesessesessesesse e sessesesssssssssessssssessssssssnsssssessnssnsssenees 519

TABLE OF CONTENTS

Java EE Deployment COMPONENTS.......ccucrereimserierensssessessesssssssessessessssessessessessssessessesssssssesseses 521
The Java EE APPlICATION.......coccvvererrrr s e s 521
Java EE MOAUIE TYPES ..cuereereriirirree s rer s ss e s sn s s s a e s s s s s s 522
Library COMPONENTSc..cvreierierereserserersessesessessessessssessessessssessessesssssssessesassssssssessessensnsesneses 527

Application Servers and Platform Independence...........ccovvvrernenrnsennnesnne s 530
DeployMENT TOOISccceceereererer et a e s s e e s a e s ae s e e e e sneenenaeens 530
The Deployment Plan...........cocoveirirrne et s e s s n e s s 531

Deployment ROIES ... st r e s e 531
The Application ASSEMDIET ... ————— 532
The Application DEPIOYETcoe v e 536

Assembling an EJB JAR MOGUIEcoveerrercrercrereesesesesse e ses e e sesessesessssessssessnnes 537
T T Lo ST eT0] TS 538

Assembling a PersiStence UNitccocooverenrnnmnnnnsnnssessse s s sessssessssessnnes 538
T T 10 RS o0 TS 539

B30T 111 T o TSSO 539

Chapter 12: EJB Client ApplicationsSccccvuvmmmmssssmsssnmmsssmsssssssssssssssssssssssssssssssnns 541

ApPlication ArChItECIUIE.....ccce i 541

O ettt R R R R R e e e e e 547
Evolution of Java EE Web TeChnol0gies.........cccvreriinnniennnnsnne s ses s 549
JSF AFCRIECIUNE ... s 553
JSF Tools and COMPONENTES........ccceriirnicrinesin e st e e 556

Developing Web Applications Using JSF and EJB.............ccccrvrvnincnnnnnnnennsssesesessssenennens 557
TRE LOGIN PAQE.....coeiieirirerer ettt s b s 559
The New Customer Registration Page.........c.ccocvvvvrininninsnnnnnnsnsesese s sesennes 563
THE LINKS PAJEcoueeieieirer it s r s s s e s st 570
The Search Page.........ccou i e e s 574
The WINe LiSt PAQEcccvciererirsire sttt ss s s 580
The Display Selected Wine Details Pageccccoverererernierinienens s seseses e sesessesessesessenens 585
The Display Cart [eMS PAQE........cccccevrererererinierire s res e ses e se s sss e sesse e s e e ssssesessessssenens 589
The Notification PAgeccccevvirininerrsrse e e 593

TABLE OF CONTENTS

Compiling, Deploying, and Testing the JSF Application..........cccccvvvievevensnieniennsenserseseesessesenes 594
o (T (= 11 (=T S 595
Compiling the JSF APPlICALION.........ccccveererrrreriere s s s e s e ssesaesessessesne s 595
Deploying and Running the Wine Store Applicationccveeveerrevnrnieniennsensessesesessenennes 599

The Application Client CONTAINETccviiriirnncr e 607

SUMIMANY ..ttt e e e R e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 608

Chapter 13: Testing in an Embeddable EJB Container............cccecumssmnssssnnssssnnsnnns 609

=S 0T TSR 609

5 8 X OSSN 610

Embeddable EJB CONtAINE ... s sssas 610

How This Chapter IS Organizedcocvevrererernerreresesessesesessssessessessssessessesssssssessessessssessessens 610
0] 1 0T) O 611

JUNIE TESTES. 1.t bbb b e e e e 613
WineAppServiceTest: A JUnit Test Class for the WineAppService EJBcccocvveveeverreriennns 614
Instantiating the Embeddable EJB Container and Starting Derbyc.ccoovvvvvvrievnserieneenn 620
Initializing Data in the Persistence Unit..........cccoceveriininnenincerss v re e 622
The Unit TeSt MEthOdS ..o 625

Building and Testing the Sample Code ... 629
Prer@QUISITES ...ovueiieiccrcre st 629
Opening the Sample AppliCALioNc.ccocecrrirrc s 630
Compiling the SOUICESc.cccviriirrerir e et 631
Running the JUNIE TESES ..o s s 632

SUMIMAIY ..ttt E e e e e e R e e e e R e R e E e e e Re e Re R e e e e e Re b e e e e e Renns 637

INA@X.ciieiiiesriesssansssnsssn s s rn s n s 639

Xvii

About the Authors

Jonathan Wetherbee is a consulting engineer and tech lead
for EJB development tools on Oracle’s JDeveloper IDE. He
has over 20 years of experience in development at Oracle,
working on a variety of O/R mapping tools and overseeing
Oracle’s core EJB tool set since EJB 1.1. Most recently, Jon
has been responsible for the design and development of EJB
and JPA data binding solutions for ADF, Oracle’s application

development framework.

Prior to joining the JDeveloper project, Jon was a product
manager for Oracle’s CASE (computer-aided software
engineering) tools and worked on early object-relational
frameworks. He received a patent in 1999 for his work on integrating relational databases
in an object-oriented environment. Jon is coauthor of the first edition of this book,
Beginning EJB 3 Application Development: From Novice to Professional (Apress, 2006),
and has published articles online in Java Developer’s Journal and Oracle Technical
Network. He enjoys speaking and has given talks at conferences and developer groups,
including Oracle’s iDevelop (Bangalore, Taipei), The Server Side Java Symposium
(Barcelona), and various Java user groups. Jon holds a Bachelor of Science degree in
cognitive science from Brown University.

Massimo Nardone has more than 24 years of experiences
in Security, Web/Mobile development, Cloud, and IT
Architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++ and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

Xix

ABOUT THE AUTHORS

He has worked as a Project Manager, Software Engineer, Research Engineer, Chief
Security Architect, Information Security Manager, PCI/SCADA Auditor, and Senior Lead
IT Security/Cloud/SCADA Architect for many years.

Technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl,
Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML and Proxy areas).

He currently works as the Chief Information Security Officer (CISO) for Cargotec Oyj,
and he is member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and is also the
coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018) and Pro Android Games (Apress, 2015).

Chirag Rathod is a principal engineer responsible for
developing and supporting design-time features for EJB

and CDI in Oracle’s JDeveloper IDE. He has over 14 years

of experience in developing development tools. Prior to
joining the JDeveloper IDE team, he helped develop Oracle’s
flagship products like Oracle SQL*Plus, Oracle Forms, and
Oracle Designer. Chirag received a Bachelor of Engineering
degree in computer science from The Faculty of Technology
and Engineering, Maharaja Sayajirao University.

ABOUT THE AUTHORS

Raghu Kodali is vice president of Product Management &
Strategy at Solix Technologies, where he is responsible for
product vision, management, strategy, user design, and
interaction. His work includes the next-generation data
optimization platform, industry-leading data discovery
platform, and enterprise data management-as-a-service,

application development using Big Data platforms and
cloud. Raghu is coauthor of Big Data Analytics using

Splunk (Apress, 2013). Prior to Solix, he was with Oracle for 12 years, holding senior
management positions responsible for Product Management and Strategy for Oracle
Fusion Middleware products. In addition, Raghu was Oracle’s SOA Evangelist, leading
next-generation Java EE initiatives. Raghu has authored a leading technical reference on
Java computing, Beginning EJB 3 Application Development: From Novice to Professional
(Apress, 2006), published numerous articles on enterprise technologies, and was a
contributing author for Oracle Information Integration, Migration and Consolidation
(PACKT Publishing, 2011).

xxi

About the Technical Reviewer

Mario Faliero is a Telecommunications engineer and
entrepreneur. He has more than 10 years’ experience

with radio 1 frequency hardware engineering. Mario has
extensive experience in numerical coding, using scripting
languages (MATLAB, Python) and compiled languages
(C/C++, Java). He has been responsible for the development
of electromagnetic assessment tools for space and

commercial applications. Mario received his Master’s
Degree from the University of Siena.

xxiii

Preface

Dear Reader,

When we conceived the original edition of this book in 2006, the lightweight EJB 3 API
was still in its early stages, yet it was clear to us that the EJB specification designers had
at last achieved the right blend of power and usability. Coming from the EJB 2.x world, it
was like a breath of fresh air, and reminded us of how it felt to discover Java technology
after years of programming C and C++. The EJB component, redefined as an ordinary
Java class whose metadata could be declared through Java annotations, and enhanced
by the introduction of generics, container injection, and interceptors, became the
basis for a much more nimble development model: one that gained elegance through
simplicity. Enter the new Java Persistence API (JPA), where entities, too, were recast as
lightweight Java classes and O/R mapping metadata could be specified through spec-
defined annotations, and we suddenly had a comprehensive enterprise component
model comprising the latest technologies, all rolled into a worldwide standard. So you
can see what got our buzz going.

Fast forward to now, and the release of the EJB 3.2 and JPA 2.1 specs. Spanning over
a thousand pages combined, these specifications have matured to address a number
of new areas and improve upon their ease of use. Once again we saw an opportunity
to translate this latest material into an approachable format that reads well and makes
liberal use of examples that you can build, execute, and further explore on your own
machine. In this second edition, accompanying the release of Java EE 7, we introduce
the EJB 3.2 and JPA 2.1 APIs along with key features in the CDI and JAX-RS specifications
through a series of digestible chapters, allowing you to become comfortable with these
technologies one topic at a time. Within each chapter we provide executable source code
examples that demonstrate how each feature works, and how the pieces fit together. So
you don’t have to swallow the whole enchilada in one humongous gulp. In the spirit of
our Apress Wines Online application, which we use for numerous examples throughout
the book, we want you to truly savor and appreciate the richness of the Java EE 7
component ecosystem.

PREFACE

For each technology we provide straightforward examples, but we also strive to
explain when and where to use its features and what their strengths and weakness are,
and offer insights into best usage practices. Following these topical explorations, we
explain how to integrate EJB and related components into a comprehensive Java EE 7
application, and then turn the spotlight on transaction management, performance
analysis, deployment, testing in an Embeddable EJB Container, and how to build solid
EJB clients.

Our job is to transform you from EJB novice to expert, and we want you to enjoy the
ride!

Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali

Who Should Read This Book?

This book is targeted at enterprise software developers who are experienced with Java,
have built single tier or multitier applications using earlier versions of E]JB or related
technologies, and are looking to build enterprise software based on the latest cross-
platform industry standards.

As authors of an introductory-level text, we have two main goals:

e Our first goal is to get you comfortable working with the many
essential elements of EJB and several closely related technologies so
that you can design, build, deploy, execute, and test comprehensive
enterprise applications in a Java EE environment. We expect you
to be able to come away with a sense of ease with the nuts and
bolts required to build and assemble an application based on E]JB
components.

e Our second goal is to provide you with a broad perspective on the
service and persistence tiers of Java EE as a whole and, in particular,
on the full range of features offered by EJB. We intend for you to
leave this book holding a breadth-first foundation that will serve as a
launchpad from which to explore specific areas of the EJB and related
specifications in greater depth.

XxVi

PREFACE

To this end, this book strives to provide an approachable on-ramp to EJB that gets
you comfortable with building services and applications that exercise the full breadth
of EJB. We deliberately avoid diving deep into many areas of the spec, so that you can
get familiar with the overall environment without getting distracted by the minutia of
fine-grained options. We believe that this breadth-first foundation—based on a solid
understanding of the broad range of features offered by EJB—will put you in the best
position to then explore in greater depth, using the specification and other advanced
texts as your reference guides, specific areas of the EJB API that are required for your own
software development projects.

Xxvii

Acknowledgments

This book is borne of the efforts and insights of people who provided both technical
input and pure inspiration throughout its life. In particular, I would like to thank my
colleague and principal coauthor of this second edition, Chirag Rathod, for his insight,
spirit, and dedication at all stages of the endeavor. Late nights and early mornings are
made lighter when a close collaborator is also such a good friend! Raghu Srinivasan and
John Bracken were invaluable in design meetings and discussions of EJB and JPA best
practices. Chris Carter supported me on my quest, even when it took my attentions away
from JDeveloper; he knew that the insights gained from researching and writing this
book would surely pay back dividends to the team. And an enjoyable hour and a half
with Marina Vatkina discussing the latest state and future directions of EJB 3.2 was both
enlightening and timely.

With the technical help from all of the above, writing a book on this topic I hold
dear would have been a mere marathon, if it weren't for all of the diversions of everyday
life! But for these welcome distractions, I would like to single out a few individuals
among many. Adam Beyda and Lauren Webster have given me a lifetime of insight
and perspective on what really matters. And Bob Lieb’s deep guidance and navigation
through the psychological waters of writing a book was essential. Rhonda Jeffrey, Andy
Cortwright, Dave Clark, and Marianna Klebanov: thank you for being good sounding
boards and wonderful friends during this past year.

My parents, Andrea and Peter Wetherbee, thank you for your love and
encouragement and the constant reminder that you are my biggest fans.

In the end, my primary motivation for punching this thing through came from the
desire to, once again, spend more time with my children and close friends. That time is
now!

—Jon Wetherbee

When Jon Wetherbee asked me if I would be interested in doing a “non-work” related
project with him, I had no idea about what I would be getting into. I would like to thank
Jon for giving me this wonderful opportunity of coauthoring this second edition. For me
he is more than a lead author—he is a friend and guide who led me through the path that
resulted in this book.

XXix

ACKNOWLEDGMENTS

I would like to thank Srinivasan T. Raman and Chris Carter who not only supported
me during this endeavor but also encouraged me. I would have burnt a lot more
midnight oil writing this book if Oracle would not have given me time and resources. For
this I am grateful to Oracle Corporation.

My parents, Chandrabala and Jayantilal Rathod, thank you for your love. Last but not
least I would like to thank my wife Ashwini and daughter Shaylee for making me feel like
an “author” who was authoring the next “bestseller”

—Chirag Rathod

Many thanks go to my wonderful family - my wife Pia, and my children Luna, Leo, and
Neve for supporting me when working on this book. You are the most beautiful reason of
my life.

I'want to thank my beloved late mother, Maria Augusta Ciniglio, who always
supported and loved me so much. I will love and miss you forever my dearest mom.

I also need to thank my beloved father Giuseppe and my brothers Mario and Roberto
for your endless love and for being the best dad and brothers in the world.

To Franco Gentilucci and Maurizio De Marco for being two wonderful friends.

This book is also dedicated to my late dearest cousin Ann Goss. You will be missed.

A special thanks also goes to Catrin Bergholm and Sakari Salomaa for being two
wonderful persons and bringing joy to my family.

Thanks a lot to Steve Anglin and Matthew Moodie for giving me the opportunity to
work as writer on this book, as well as Mark Powers for doing such a great job during the
editorial process and supporting me all the time; and finally Mario Faliero, a good friend
and the technical reviewer of this book, for helping me to make a better book.

—Massimo Nardone

CHAPTER 1

Introduction to the
EJB 3.2 Architecture &
CDI Services

When we set out to write this book, our goal was to present Enterprise JavaBeans (EJB) to
developers, with a keen eye toward how this technology can be used in everyday, real-
world applications. JSR-345: Enterprise JavaBeansTM, Version 3.2 EJB Core Contracts
and Requirements is a deep spec that addresses the needs of beginning developers and
hardcore power users alike. That’s a large audience to satisfy and, as a reference guide,
the EJB spec document covers it well. In writing a book about how to use EJB, we had to
narrow our audience; nonetheless, we believe that we've written a book that will serve
the needs of a majority of Java EE developers.

This book is targeted at developers who are experienced with Java, have built single-
or multi-tier applications using earlier versions of EJB or other technologies, and are
ready to take on the challenges (and rewards) of building enterprise applications using
standards-based technology. Recognizing that a combined 1,100 pages of reference
material [covering the EJB and Java Persistence API (JPA) specs] can be daunting, we
have provided an on-ramp for developers, unfolding EJB one section at a time, and
giving you the information and code examples that you need to roll up your sleeves and
get to work.

As each chapter unfolds, you will not only learn about a new area of the spec, but you
will also learn through specific examples about how to apply it to your own applications.
Many of these examples come directly from the comprehensive, end-to-end, Java EE
Enterprise Wines Online application constructed in Chapter 7 and Chapter 12, so that
you can see how they fit into a bigger picture. You are encouraged to take these examples
and run with them. Try them out in your favorite IDE or development environment,

© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_1

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

and change them around and try new things. EJB and the related APIs covered in this
book—]JPA, Web Services, and Contexts and Dependency Injection (CDI)—offer you a
lot with which to work. Once you're comfortable with the basics of building, deploying,
and testing, you'll find that EJB components are not only powerful, but also easy to build
and use.

Together, the authors of this book have built a number of applications using EJB
in concert with other technologies in the Java EE stack, and we have attempted to
capture within it advice about the practical patterns we have learned, the strategies we
have found successful, and some pitfalls you can avoid. Most chapters in this book are
dedicated to exploring specific areas of EJB, but we have also included chapters on Java
Persistence API (JPA), Contexts and Dependency Injection (CDI), Web Services, gauging
the performance of your EJB applications, and deploying to the Java EE application
server of your choice. An introductory “Getting Started” section at the end of this chapter
will get you set up to run the many useful sample applications found at the end of each
chapter in the book.

We hope this book will serve not only as a reference guide for information on EJB but
also as a how-to guide and repository of practical examples to which you can refer back
as you build your own applications. Enjoy!

What’s New in Java Enterprise Edition (Java EE) 8
Architecture?

This first release of the Java enterprise edition (Java EE) platform is dated June 2013, and
by the time I was updating this manuscript Java EE 9 was already published.

Java EE 8 includes updates to core APIs such as Servlet 4.0 and Context and
Dependency Injection 2.0 as well as two new APIs—Java API for JSON Binding (JSR 367)
and the Java EE Security API (JSR 375).

Java EE, a superset of the Java SE platform, includes over 30 specifications and a
runtime environment, which means that Java EE components can take full advantage of
all Java SE APIs.

Here is the list of the most important changes in Java EE 8:

o Java EE 8 Platform
¢ JSON-B1.0
e JSON-P1.1

CHAPTER 1

JAX-RS 2.1

MVC 1.0

Java Servlet 4.0

JSF 2.3

JMS 2.1

CDI 2.0

Java EE Security 1.0
Java EE Management 2.0
Concurrency Utilities
Connector Architecture
WebSocket

JPA

EJB

JTA

JCache

JavaMail

INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

More information about Java EE 8 can be found in the official Java web page:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

An Introduction to EJB

In the late 1990s, as Java was bolstered by the emergence of separate technologies
(such as RMI, JTA, and CORBA) that addressed the enterprise needs of large-scale
applications, a need arose for a business component framework that could unify these

technologies and incorporate them under a standard component development model.

EJB was born to fill this need. Over the ensuing years, EJB has evolved to encompass

numerous features (while judiciously rejecting others), and it has matured into a

robust and standard framework for deploying and executing business components in a

distributed, multiuser environment.

http://www.oracle.com/technetwork/java/javaee/overview/index.html

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

What Is EJB?

Each release of EJB is managed through the Java Community Process (JCP) as a Java
Specification Request (JSR). The latest release, which is covered in this book, is defined
by JSR 345: Enterprise JavaBeans™ 3.2. EJB JSRs prior to EJB 3.0 covered Persistent
components, but since the introduction of JPA, persistence is now managed through
its own JSRs. Nonetheless, the two areas complement each other well, and we have
included several chapters in this book dedicated largely to JPA.

The EJB 3.2 spec, entitled JSR 345: Enterprise JavaBeans™, Version 3.2 EJB Core
Contracts and Requirements, together with the class library defined in the E]JB 3.2 AP],
define both a component model and a container framework.

The EJB Component Model

As a component model, EJB defines three object types that developers may build and
customize as follows:

o Session beans can be stateless, stateful, or singleton, and they perform
business service operations. These services may be declaratively
configured to operate in distributed, transactional, and access-
controlled contexts.

o Message-driven beans (MDBs) are invoked asynchronously in
response to external events through association with a messaging
queue or topic.

Complementing this, the Java Persistence API (JPA) principally defines the following
persistent object type:

o Entities are objects that have unique identities and represent
persistent business data.

Session and message-driven beans are EJBs, and they are often referred to
collectively as enterprise beans. In earlier versions of E]JB, entities were referred to as
entity beans, and they also fell into this category. In E]B 3, however, entities are now
managed by a persistence provider and not the EJB container, and they are no longer
considered enterprise beans. Enhanced message-driven beans contract with a no-
methods message listener interface to expose all public methods as message listener
methods.

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

The EJB Container

The EJB container provides the supporting environment in which EJB components
operate. This environment offers transaction and security services, pooling and caching
of resources, component lifecycle services, concurrency support, and more—all of which
we will explore throughout this book. EJB components specify the details of how they
wish to interact with their supporting container using EJB-specific metadata that is either
captured by the container and applied to the EJB’s behavior at runtime, or interpreted

at the time an EJB component is deployed to an EJB container and used to construct
wrapping. The EJB 3.2 specification also defined the EJB API Groups with clear rules for
an EJB Lite Container to support other API groups.

Core Features of the EJB Development Model

Throughout its life, EJB has maintained its focus on delivering components imbued with
a handful of core features.

Declarative Metadata

One of the hallmarks of the EJB component model is the ability for developers to
specify the behavior of both enterprise beans and entities declaratively (as opposed to
programmatically) using their choice of Java annotations and/or XML descriptors. This
greatly simplifies the development process, since much customization can be added to
a bean without having to encumber the Java source with service implementation code.
To accommodate developer preference and application flexibility, EJB offers developers
their choice of both annotations and XML, with the ability to use both methods
simultaneously within the same EJB or entity, for specifying behavior in metadata. In
cases where the same piece of metadata is defined both in an annotation and in XML,
the XML declaration takes precedence in resolving the conflict. Additional benefits of
this approach are explored later, in the “EJB 3 Simplified Development Model” section of
this chapter.

Configuration by Exception

Coupled with the ability to specify behavior declaratively is the strong use of intelligent
defaults in EJB. Much behavior is attached automatically to an EJB or an entity without
it being declared explicitly, such as the transactional behavior of session bean methods

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

and the names of the table and columns that map to an entity’s persistent data
properties. An annotation, or its counterpart in XML, needs to be specified explicitly
only when non-default behavior is desired. In the most common cases, where the default
behavior is leveraged, this approach leads to very sparse, clean code. This development
model is known as configuration by exception, because only in exceptional (non-default)
cases is it necessary to configure the behavior of the component explicitly.

Scalability

Large-scale applications demand the ability to scale well as the client load increases.
The EJB server employs resource pooling to maximize object reuse, utilizes a persistence
cache to avoid repeatedly querying or creating the same objects, and implements an
optimistic locking strategy in the middle tier to reduce load on the relational database
management system (RDBMS) and to avoid concurrency locking issues. The EJB
container also manages an EJB’s life cycle, allowing dependent resources to be freed up
and reused to optimize performance.

Location Transparency

EJBs may be configured for remote access, allowing them to be accessed across a
network connection. A client, which may be another EJB, simply requests an instance
of a remote EJB, and the local and remote EJB containers transparently manage the

communication details.

Transactionality

The Java Transaction API (JTA) defines a standard API for distributed transactions, and
the EJB container acts as a JTA transaction manager to EJBs. Since its inception, the
EJB spec has defined a standard model for declaratively specifying container-managed
transactional behavior on enterprise beans.

Multiuser Security

Method-level access control may be specified declaratively on E]JBs, enforcing user- and
role-level privileges defined by application server administrators.

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Portability

Spec-compliant enterprise beans are deployable to any application server that
implements EJB, at least in theory. In practice (and this was particularly true of releases
prior to EJB 3), vendors provided their own metadata definitions that enterprise bean
developers grew to rely upon, locking them into a particular vendor’s implementation.
As EJB has matured, it has grown to incorporate many of these formerly platform-
specific features, so that EJBs implemented today are far more portable than in the past.

Reusability

EJBs are loosely coupled components. An EJB may be reused and packaged into multiple
applications, though it must be bundled with, or have access to, the business interfaces
of dependent EJBs.

Persistence

Although no longer covered in the EJB spec, JPA entities are an essential complement to
EJB. Entities are persistent domain objects with unique identities. An entity class maps
to a database table, and each entity instance is represented by a single row in that table.

Progression of the EJB Spec

Each time a new version of the EJB spec is introduced, it includes new, significant
features to address popular demand and adopt emerging technologies. Here is a
brief summary of how the EJB spec has progressed since its birth in 1996, or more
importantly, since its first commercial implementations in 1998.

EJB 1.0

The initial release, 1.0, began with support for stateful and stateless service objects,
called session beans; and optional support for persistent domain objects, called entity
beans. For portability, EJBs were made accessible through a special remote interface
that offered portability and remotability but incurred the overhead of a remoting
infrastructure and pass-by-value semantics.

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

EJB 1.1

The follow-up release, 1.1, mandated support among vendors for entity beans, and
introduced the XML deployment descriptor to replace storing metadata in a special
serialized class file.

EJB 2.0

EJB 2.0 addressed the overhead and pass-by-value shortcomings of remote interfaces
by introducing the local interface. Only clients running inside the J2EE container could
access an EJB through its local interface, but pass-by-reference method calls allowed

for more efficient interchanges between components. A new type of EJB was also
introduced—the message-driven bean (MDB), which could participate in asynchronous
messaging systems. Entity beans gained support for container-managed relationships
(CMRs), allowing bean developers to declaratively specify persistent relationships
between entity beans that were managed by the EJB container. Also, Enterprise
JavaBeans Query Language (EJB QL) was introduced, which gave developers the ability
to query entity bean instances using a language that resembled SQL.

EJB 2.1

EJB 2.1 added support for Web Services, allowing a session bean to expose an endpoint
interface, and a timer service that allowed E]Bs to be invoked at designated times or intervals.
EJB 2.1 also provided expanded EJB QL functions, and an XML schema was introduced as a
replacement for the DTD that defined the ejb-jar.xml deployment descriptor.

EJB 3.0

EJB 3.0 was a major milestone in the evolution of the standard. Introducing a new,
simplified development model (see below), EJB components became POJOs (plain old
Java objects); an EJB’s bean class was no longer required to implement EJB-specific
interfaces; and the properties that made a Java class an EJB were factored out into Java
annotations or captured externally in the ejb-jar.xml deployment descriptor file.
With a few basic conditions, any class could become an EJB and leverage the enterprise
services offered by an EJB container.

Also new in EJB 3.0, the Entity Beans portion of the spec was replaced by the new
JPA spec and, consistent with the new simplified development model, JPA entities were

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

PO]JOs as well. JPA entities were also decoupled from the EJB container and could be
used independently of EJB, including in a pure Java SE environment.

EJB 3.1

EJB 3.1 further improved upon the simplified development model introduced in EJB
3.0. The no-interface option was now supported for Local E]JBs. The Singleton pattern
was offered for Session beans along with Asynchronous and enhanced Timer support.
EJB Lite—an embeddable subset of the EJB Container’s functionality—allowed EJB
components to be executed in the same VM as an EJB client.

EJB 3.2

In EJB 3.2, the Asynchronous and enhanced Timer features are added to the EJB Lite
subset. Along with other improvements, the bean developer is offered more control over
the transactionality of lifecycle interceptor methods, and the rules governing declaration
of Local and Remote behavior have been simplified.

The JSR-000345 Enterprise JavaBeansTM 3.2 Final Release can be downloaded from
this web page:

http://download.oracle.com/otndocs/jcp/ejb-3_2-fr-spec/index.html

The latest EJB 3.2 version release is dated April 10, 2013, and did not change from
Java EE 7 to EE 8.

Major changes include the following:

e An option to disable passivation of stateful session beans is
enhanced.

o The TimerService API to access all active timers in the EJB module is
enhanced.

o The embeddable EJBContainer to implement AutoClosable interface
is enhanced.

o Therestrictions on javax.ejb.Timer and javax.ejb.TimerHandle that
required references to be used only inside a bean were removed.

o Thelist of standard JMS MDB activation properties is enhanced.

e Support for the optional features in the previous release and moving their
description to a separate EJB Optional Features documents was added.

http://download.oracle.com/otndocs/jcp/ejb-3_2-fr-spec/index.html

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

EJB 3 Simplified Development Model

EJB 3.0 was a significant departure from earlier releases. The architects of EJB 3 set out
to redesign the development experience; to introduce a greatly simplified development
model that would reduce the complexity of the enterprise beans themselves; and, at the
same time, incorporate many of the ideas found in peer technologies. The consensus is
in: the spec has been widely hailed as having achieved these goals, and in so doing has
overcome many of the problems that prevented earlier versions of EJB from becoming
widely adopted.

XML and Annotations

If you are familiar with earlier versions of EJB, one of the first things you will notice

in EJB 3 is that it is no longer necessary to capture EJB metadata in a deployment
descriptor. EJB now lets you store your EJB metadata inside your bean source using Java
annotations. This isn’t to say that XML deployment descriptors have gone away; they
are still alive and well, and many developers prefer them to annotations. Using XML
decouples the Java source from the EJB metadata, allowing the same entity or enterprise
bean classes to be used in different contexts, where the context-specific information is
captured in the XML and doesn’t “pollute” the bean class.

Many users, however, will prefer to view their EJB metadata directly in the context
of their POJO classes and use annotations. To avoid wading into a religious war (vocal
proponents on both sides abound), we suggest that you choose for yourself. A simple
rule we follow is this: if we need to decouple our entity and bean classes from their
EJB metadata, as when we want to use the same entity classes with two different
entity inheritance strategies, we put our metadata in XML. Otherwise, we stick with
annotations. Don’t forget—you can always mix and match, relying on the firm policy
that whenever metadata is specified for an element using both XML and annotations,
the XML always wins. This allows any role (see the “E]JB Roles” section later in the
chapter) downstream of the bean developer to override metadata settings without
having to update the Java source, since overrides can be applied exclusively to the XML
descriptors.

10

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Note A more advanced strategy, which we also recommend, is to use
annotations only when defining behavior on an enterprise bean or an entity that is
truly integral to its definition, such as the relationship type of an entity relationship
field, or the transactional requirements of a method on a session bean. Anything
that could reasonably be overridden, such as the name of the table to which an
entity maps, or the details of a value generator used for populating the primary
key on an entity, would go in the XML descriptor, where it can be specified at
deploy time by an application assembler, perhaps in consultation with a database
administrator. While there is no harm in specifying default values using annotations
in the Java source file, this approach recognizes the difference between firm
metadata, which ought not to be modified; and loose metadata that may be freely
modified without changing the behavior of the enterprise bean or entity.

Dependency Injection

After an EJB is instantiated inside the Java EE container, but before it is handed out to

a client, the container may initialize property data on the instance according to rules
defined for that enterprise bean. This feature is called dependency injection, and it is

an example of inversion of control pattern, whereby an external provider initializes the
properties of an object instance instead of by the class itself. EJB 3 introduced the use of
dependency injection in Java EE and, largely because it caught on so well, this feature
has now been given its own spec. The current dependency injection API is managed
through JSR-330: Dependency Injection for Java™, and the functionality is further
extended through JSR 346: Contexts and Dependency Injection for Java™ EE 1.1, which
we cover in Chapter 10, “Contexts and Dependency Injection.”

Note Injection uses a “push” model to push data out to the bean, and it occurs
regardless of whether the bean actually uses the data. If there is a chance that
the data will not be used, the bean may elect to avoid incurring the cost of the
resource derivation by performing a Java Naming and Directory Interface (JNDI)
lookup in Java code to “pull” the data, only if it is actually (or likely to be) used.

11

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Common examples of dependency injection use in EJB are as follows:

o Injecting an EntityManager into a session bean for interacting with
entities in a persistence unit

o Injecting a UserTransaction into a session bean that manages its
transaction demarcation

Interceptors: Callback Methods

Both enterprise beans and entities may designate some of their methods, or methods on
separate classes, to be called when certain lifecycle events occur. For instance, a session
bean may indicate that a certain method should be called after the bean has been
instantiated, but before it has been handed off to a client. This method may initialize
state information on the bean, or look up resources using JNDI, or any other action it
wishes, provided that it does not require a transactional context. Such callback methods
are called interceptors, and they allow bean developers to participate programmatically
in the interaction between an enterprise bean, or an entity, and its container. An
important advantage of this pattern (also known as cross-cutting) is that a single
interceptor may be defined once and then applied to multiple methods, or even multiple
EJBs. The EJB 3.2 specification also added an option for the lifecycle callback interceptor
methods of stateful session beans to be executed in a transaction context determined by
the lifecycle callback method’s transaction attribute.

POJO Implementation

EJB 3 took great strides to eliminate the trappings that beset enterprise bean classes and
their required interfaces in earlier EJB releases. Similar to complaints over having to
define XML metadata to specify even the most basic bean behavior, developers found

it burdensome to have to write custom interfaces to handle an enterprise bean’s factory
support, and inconvenient to require a session bean’s interfaces to extend EJB-specific
interfaces. All of these limitations were addressed in EJB 3.

Home methods are no longer mandated, although they’re still supported. For
session beans and MDBs, a default constructor replaces the no-argument ejbCreate()
method required by earlier EJB specs.

For entities, the Home interface is replaced by an EntityManagerFactory instance that
produces EntityManager instances for a JPA persistence unit to manage entity lifecycle
operations, including query execution.

12

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Intelligent Use of Defaults

An excellent example of how EJB 3 simplifies the development process is its leveraging
of default behavior to provide rich functionality with no coding or declarative metadata
required. For instance, by simply marking a POJO with the @Entity annotation, all of

its public properties automatically become persistent fields, and the table and column
names take on derived values that match the entity and field names. Additional
annotations or XML elements are only required when overriding the default behavior

of a particular area. Only when the table name does not match the entity name is the @
Table annotation required. Great care has been taken to ensure that the default values
match the most common usages so that, in the majority of use cases, explicit metadata is
not required, leading to leaner, more clutter-free code.

Note One consequence of relying on default behavior is that the class does not
describe its full behavior anywhere, so you need to have a good understanding of the
default behavior that is being applied. IDEs can be useful in deriving and displaying
the enterprise bean or entity with its fully defaulted values explicitly shown.

Distributed Computing Model

Essential to any enterprise application is the ability to execute tasks and run components
in separate Java threads or processes. Through the RMI-based remoting services, clients
in an application client tier may access EJBs running in an application server anywhere
on the network. The pass-by-value behavior of remote interface methods provides a
coarse-grained model designed to reduce network traffic between clients and servers
that are loosely connected to each other. Many applications that use EJB do not require
remote access, however, and elect to configure their EJBs for local use. This eliminates
the overhead of remote access support while continuing to offer the remaining
enterprise services.

EJB Roles

The EJB spec defines seven roles for individuals involved in the different stages of
defining an enterprise bean or entity, or in providing services and API implementation to
enterprise beans. This book is targeted at the three roles involved in defining enterprise

13

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

beans and their associated metadata. In practice, one or more of these roles may be
performed by the same individual, and certain tasks may be performed by one role and
overridden by another; but it is useful to understand the logical partitioning of tasks in
the EJB development process. We will refer to these roles in various sections throughout
the book.

The Enterprise Bean Provider

The Enterprise Bean Provider, also known as the Bean Provider, has the responsibility of
defining and implementing the business logic and structure of an enterprise bean. This
includes defining the Java class, implementing service methods, specifying transactional
and security information declaratively on the bean and its methods, injection or lookup
of required resources, and anything else that can be applied to the enterprise bean class.

Applied to JPA entities, the Bean Provider defines the persistent structure of the
entity and its relationships with other entities. The provider may define mapping and
primary key-generation behavior, but this role is generally limited to defining the logical
dependencies and structure of the entity.

The Application Assembler

The Application Assembler combines E]JBs into EJB modules and entities into
persistence archives, and then it combines these modules together with other Java EE
modules to produce an application. This task requires resolving references to logical
server resources including references between EJBs. The Application Assembler must
work with the interfaces and metadata defined for the EJB and entity components but
need not be familiar with the implementation details.

The Deployer

The Deployer takes an application that has been assembled by the Application
Assembler and deploys it to a particular application server instance or cluster. The
Deployer must resolve all of the external dependencies defined by the EJB component,
mapping them to concrete resources installed in the application server environment. In
the case of entities, the Deployer may provide or override the details of the live database
objects to which the entities will map.

14

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

How This Book Is Organized

To orient you to the structure of the remainder of this book, here is a brief summary of
each chapter. There is no requirement that you read these chapters in order. Sample
programs accompany each chapter, and they may be run independently of one another.
Topics are introduced progressively, though, and thus if you find a reference in one
chapter to a term or concept that is not defined in that chapter, chances are that it was
defined in an earlier chapter of the book.

Chapter 1: Introduction to the EJB 3.2 Architecture &
CDI Services

This chapter opens by introducing the book and offering an orientation to EJB. This
orientation covers the EJB development framework and component model, the core
features of EJB, the history of E]JB, the EJB 3 simplified development model, and the EJB
distributed computing model. The chapter concludes with a “Getting Started” section
to help you install the NetBeans IDE and GlassFish Java EE reference implementation
server required to run the many sample applications provided with this book.

Chapter 2: EJB Session Beans

Chapter 2 explores EJB’s primary service object: the session bean. Session beans are
examined in their many roles: as entity facades, as service components—both with and
without state, as singleton or timer-driven objects, and as the primary orchestrators of
transaction and security services.

Chapter 3: Entities and the Java Persistence API (JPA)

The Java Persistence API (JPA) is introduced, along with the various persistence services
that are available to support entities both within a Java EE container and outside of one.
This chapter covers basic O/R mappings, and it introduces the Java Persistence Query
Language, or JPQL.

15

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Chapter 4: Advanced Persistence Features

Delving into more advanced persistence concepts, this chapter describes the support
offered in JPA for mapping entity inheritance hierarchies. Examples of the three
supported inheritance mapping strategies identify the strengths and weaknesses of each
approach in order to help you decide which one best suits the particular needs of your
application. Among other topics, this chapter also covers complex primary key (PK)
mappings, ID generators for autopopulating primary key values using a database
sequence or table, locking strategies, and cache management.

Chapter 5: EJB Message-Driven Beans

This chapter describes how you can use MDBs to add asynchronous, event-driven
behavior to your application. JMS, Java’s messaging AP], is explained and demonstrated
in this chapter’s code examples.

Chapter 6: EJB, Web Services, and Microservices

Session beans provide an excellent implementation for Web Services, and this chapter
explores EJB’s support for this fine marriage of technologies.

Chapter 7: Integrating Session Beans, Entities,
Message-Driven Beans, and Microservices

After covering all of the different component model types individually, Chapter 7
brings them all together in an integrated Java EE application. We think you will find it
particularly useful to see how everything fits together to produce a running application.

Chapter 8: Transaction Management

EJB offers rich transaction service support, and it makes it easy for Bean Providers to
declaratively specify custom container-provided transactional behavior on an enterprise
bean. EJB also allows enterprise beans to opt out of this model and control their own
transaction demarcation behavior. This chapter applies two alternative transactional
models to a single logical scenario for weighing the benefits of each approach.

16

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Chapter 9: EJB Performance and Testing

This chapter provides an invaluable look at how to gauge the performance of your EJB
components in order to help you decide which of the many options EJB offers is right for
your application. In addition to explaining how to set up performance tests, we present
some performance test cases that we have run, complete with our assessments of the results.

Chapter 10: Contexts and Dependency Injection

Introduced in Java EE 6, Contexts and Dependency Injection (CDI) services augment the
component model defined in EJB with a powerful means of injecting resources into your
application whose life cycles are contextual and conveniently managed by the server.
This chapter introduces CDI and explains how EJB developers can leverage this support
to enrich an application’s behavior.

Chapter 11: EJB Packaging and Deployment

Assembly and deployment are rolled into this chapter as we cover the tasks required of
the Application Assembler and Deployer roles. This chapter discusses packaging EJB and
persistence modules, assembling modules in different ways into an enterprise archive
(EAR) file, resolving references between modules and between EJBs packaged into
different modules, and binding resource requirements to concrete resources installed in

the target application server environment.

Chapter 12: EJB Client Applications

In this chapter, we walk you through application architectures and different
programming models that you can use to build applications, including the pros and cons
of each approach. Once we have done that, we settle on one application architecture—
developing Web applications using JavaServer Faces (JSF) technology. We then drill
down into the JSF architecture and concepts and focus on integrating JSF user interface
components and the JSF navigation model with the EJB/WebService/JPA back-end
application that we developed in Chapter 7.

Finally, we also explain how to use a lightweight application client container to
execute your session beans in a pure Java SE environment. This lightweight container
provides EJBs that execute in its environment with some of the services (such as

container injection) that are offered by a true EJB container.
17

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Chapter 13: Testing in an Embeddable EJB Container

In a production deployment, EJB components run in a Java EE environment, inside an
application server. For testing purposes, EJB allows you to test your EJB components
within a lightweight subset of the EJB Container, known as EJB Lite and implemented

as an Embeddable EJB Container, which can run in a pure Java SE environment. This
chapter covers a variety of E]JB testing scenarios and guides you in using JUnit to test EJB
components (and JPA entities) in GlassFish’'s Embeddable E]JB Container.

Getting Started

This section of the chapter will get you ready with the software installation and
configuration required to work with the samples in the rest of the book. At the time of
this writing, the EJB 3.2 specification was on its way to being finalized. The GlassFish
application server had implemented the specification that allowed the developer
community to get hands-on experience with the new specification.

GlassFish is an open source application server that implements the newest
features of the Java EE platform. In fact, GlassFish is the reference implementation for
all of the specifications of the Java EE platform, including the EJB 3.2 specification.
Glassfish releases are tracked closely by the NetBeans IDE, ensuring that NetBeans
supports the very latest state of the Java EE specifications and making NetBeans the
ideal platform for deploying and running the examples in this book. You will find
that each successive chapter is accompanied by a NetBeans application project
comprised of one or more additional projects representing the EJB, Web, or other
modules that demonstrate the features covered in that chapter. Although these
sample applications are all configured to run in the GlassFish server, they are
portable (by virtue of following the Java EE standards) and may be deployed to the
Java EE 8 server of your choice.

Although we built and tested the examples in this book using NetBeans in
a Windows 7 environment, the code samples are not operating-system specific,
and they can be executed on any system that can run NetBeans and its integrated
GlassFish server. Nevertheless, you might have to tweak the environment settings to
install and execute NetBeans and its integrated GlassFish server on other operating
systems.

18

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Note You can find more details on the NetBeans IDE and its integrated GlassFish
application server at the following website: http://netbeans.org/features/
index.html

The remaining sections of this chapter will cover the following:
o Installing Java SE Development Kit (JDK)
e Downloading the NetBeans IDE
o Installing NetBeans and its integrated GlassFish server
o Testing NetBeans and GlassFish installation
¢ Administrating the GlassFish application server

Even if you are familiar with NetBeans and GlassFish, we recommend that you read
through the following sections, as running the sample code in the rest of the chapters
depends on this setup being done correctly.

Installing Java SE Development Kit (JDK) 8

As first thing we want to make sure we install the Java SE Development Kit (JDK) version 8
from the Java web site:
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-
downloads-2133151.html
Once Java SE Development Kit (JDK) version 8 is installed you can test if it works by
running the command shown in Figure 1-1.

E¥ Komentokehote - O X

C:\>java -version

java version "1.8.0_161"

Java(TM) SE Runtime Environment (build 1.8.0_161-b12)

Java HotSpot(TM) 64-Bit Server VM (build 25.161-b12, mixed mode)

Ci\>m

Figure 1-1. Checking Java version installed

19

http://netbeans.org/features/index.html
http://netbeans.org/features/index.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Please notice that there is also a distribution of the JDK 8ul61 that includes the Java
SE bundle of NetBeans IDE version 8.2:

http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-
jsp-142931.html

In this book we installed separately JDK and NetBeans.

Downloading the NetBeans IDE

You can download the latest NetBeans installer from the following location:
http://netbeans.org/downloads/

Make sure that you download the installer with “Java EE” technology, as shown in
Figure 1-2. This installer will also contain the required Java SE and GlassFish packages.
Ant is included with GlassFish; you can either use it or configure the environment
properties to use another installation. The GlassFish project recommends that you use
Ant, which is bundled with its install.

- . -

Qr) D) htps//netbeans.org/downioads P-ac]| D) NetBeans IDE Download
File Edit View Favorites Tocls Help

Choase page language ¢

@Hmﬂeans NetBeans IDE | NetBeans Platform | Plugin upport | Community | Partners EZ -

HOME ! Downioad

NetBeans IDE 8.2 Download 8.1 8.2 Development Archive

i S— e R T <

Subscribe 1o newsletiers R y | s
M mantniy Weesdy s v

B4 NetBeans can contact me at this address

NetBeans IDE Download Bundies

E

Supported technologies ™ Java SE Java EE HTMLSJavaScript PHP C/C++
& NetBeans Platform SDK . .

4 Java SE . .

& Java Fx L] .

& Java EE .

Y Java ME

& HTMLS/JavaScript . . .

& PHP . .

4 C/C++ -
L Groovy

4 Java Card™ 3 Connected

Bundled servers

4 GlassFish Server Open
Source Edition 4.1.1
& Apache Tomcat 8.0.27 -

L L B L L R B B B

\ . [_Download x86] (_Download x86) (_Downicad x86) . ;
g el J ¢ 5 & J

| Download %64) |_Download x64) [Download x64 |

Figure 1-2. Downloading the NetBeans IDE

20

http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://netbeans.org/downloads/

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Note When we started writing this book, the latest NetBeans version was 8.2,
which was used to test the setup and the sample code. Remember that multiple
installations of NetBeans IDE 5.x, 6.x, and 7.x can coexist with NetBeans IDE 8.2 on
the same system. You, actually, don't need to uninstall the earlier versions in order
to install or run NetBeans IDE 8.2.

Once the download is complete, you are set to start the installation of NetBeans
along with its integrated GlassFish server.

Installing NetBeans IDE and Its Integrated
GlassFish Server

Navigate to the directory where the NetBeans IDE installer has been downloaded, and
run the installer. The first page of the installer wizard lists the packages that will be
installed.

If no Java SE Development Kit (JDK) version is installed you will receive the message
shown in Figure 1-3.

r B
) NetBeans IDE Installer LE_M

[

Java SE Development Kit (JOK) was not found on this computer

JDK 8 or newer is required for installing the NetBeans IDE. Make sure that the JDKis
properly installed and run installer again. You can specify valid JOK location using
-javahome installer argument.

To download the JDK, visit http://www oracle. com/Aechnetwork java/javase/downloads

[Ext Installer |

\

Figure 1-3. No Java SE Development Kit (JDK) is installed

21

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

If, instead, Java SE Development Kit (JDK) is installed but you see the “No
compatible JDK was found” warning message, as shown in Figure 1-4, then you will
have to exit the wizard and first download and install the right and compatible Java SE

Development Kit 8.
' —— S
) NetBeans IDE Installer (o] B
Welcome to the NetBeans IDE 8.2 Installer
The installer will install the NetBeans IDE with the Java EE pack and selected
application servers.
Select the application servers to install with the IDE:
[¥] GlassFish Server Open Source Edition 4.1.1
["] Apache Tomcat 8.0.27
Installation Size: 643,8 MB
i,nocmtbien(was\‘mnd.<:=
[Next> | { Cancel I
]

Figure 1-4. Installing NetBeans. “No compatible JDK was found” warning

Note Even if you don’t see the "No compatible JDK was found" warning,
verify that you have Java Platform (JDK) 8 installed. If you don’t have the Java
Platform (JDK) 8 installed, then you might get a "javac: invalid target
release: 1.8.0" error while executing the samples in this book.

22

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Rerun the NetBeans installer after a compatible JDK version is installed. Verify that
the “No compatible JDK found” warning does not reoccur, and traverse the wizard,
keeping all of the default values selected. The “Summary” page will list the folders where
the NetBeans IDE and the GlassFish application server will be installed. Finish the
wizard by pressing the Install button, as shown in Figure 1-5.

g | y P
) NetBeans IDE Installer [E=SIE 5
Summary
© NetBeans|DE

Click Install to start the installation.

NetBeans IDE Installation Folder:
C:\Program Files\NetBeans 8.2

GlassFish Server Open Source Edition 4. 1. 1 Installation Folder:
C:\Program Files\glassfish-4.1.1

[7] Check for Updates
The NetBeans installer can automatically check for updates of installed plugins
using your Internet connection,

Total Installation Size:
643,8 MB

[<Back | [instal | [cancel |

Figure 1-5. Installing the NetBeans IDE and GlassFish application server
After a successful installation, your NetBeans IDE and GlassFish application server

will be ready for use. In the upcoming sections, we will show you how to create a simple
NetBeans project and verify that the installed GlassFish server is functioning properly.

23

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Testing the NetBeans IDE and GlassFish Installation

Assuming that all of the preceding steps have been executed successfully, you are ready
to start the NetBeans IDE and the integrated GlassFish application server. We will also
demonstrate a few simple tests to ensure that you are set to run the samples in this book.

Starting NetBeans IDE

The NetBeans IDE provides a graphical environment for creating, deploying, and
executing Java EE applications. Administrative tasks like starting and shutting down the
GlassFish server domains can also be performed using NetBeans.

Invoke NetBeans, either by selecting “NetBeans” in the Start Menu of your
Windows 7 machine or running C: \Program Files (x86)\NetBeans 8.2\bin\
netbeans64.exe from the command prompt. Note that the exact path will depend on
the installation location that is mentioned in Figure 1-3, and for 32-bit systems the
executable will be named netbeans.exe. If you are running Windows 8 or 10, then you
need to press the “Windows” key and start typing “NetBeans.” The Apps Search tool will
search for the NetBeans executable that you can select to launch the NetBeans IDE.

The NetBeans IDE and GlassFish application server is shown in Figure 1-6.

-
) NetBeans IDE 8.2 e B |
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help .Q' Search :_\".='—5,'

AEES D 1O TH) B -6

| startPage =

@ NetBeans DE e

Learn & Discover

Take a Tour Demos & Tutorials Featured Demo

Try a Sampie Project

Java SE Applications Cannot connect to internet.
What's New Java and JavaFX GUI Applications
Community Comer Java EE & Java Web Applications

CIC++ Applications

PHP and HTMLS Applications

Mobile and Embedded Applications

All Online Documentation >>

| ORACLE

Figure 1-6. NetBeans IDE and GlassFish application server
24

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Testing Using Sample Project

Once the NetBeans IDE has opened, we will create a sample project to test the
compilation, deployment, and execution aspects of the IDE as well as the application
server.

To create a new project, open the New Project wizard by pressing Ctrl-Shift-N.
Select the Java Web category and the Web Application project, as shown in Figure 1-7.
Traverse the wizard, keeping all of the default values selected, and Finish the wizard.

' New Proj = A ot
Steps Choose Project
1. Choose Project Q Filter:
- AR
Cat i Projects:
| @ lava (&) Web Application
[Javarx & web Application with Existing Sources
7 3% Web Free-Form Application
gy JovaEE
=) HTMLS/JavaScript
() Maven
1)) NetBeans Modules
@1}, Samples
Description
Creates an empty Web application in a standard IDE project. A standard project uses an
IDE-generated build script to build, run, and debug your project.

Figure 1-7. Creating a sample test project

25

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Create a project named WebApplicationi. Next we will create a servlet under the
project WebApplicationi. To create a servlet, invoke the context menu by right-clicking
on the project name in the project navigator. Select the Servlet ... menu thatis

available under New, as shown in Figure 1-8.

o WebApplication1 - NetBeans IDE 8.2
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

PEES DE I 1e-TW b -B-&-

Figure 1-8. Creating a test servlet

26

Projects X |Files | Services | —]l
(SN =" RwebApplicatio P
=l Web Pages New >3 Folder..
o wesy @] Servlet..
.) ui I |
N (8] indext : | €5 RESTFul Web Services from Entity Classes...
& [SourcePac Clean and Build |
_ @] Java Class...
=8 setw Clean | @ :
B Ne Verify i Timer Session Bean...
@[Libraries B Java Package...
1 g Generate Javadoc |
@& Configurat [[® Web Service from WSDL...
Run (@ Entity Class...
Deploy : {#) JSF Pages from Entity Classes...
Debug . [# Entity Classes from Database...
Profile (&8 JsP..
Test RESTful Web Services Web Service...
Test Alt+F6 :@ RESTful Web Services from Patterns...
ﬁiviﬁaﬁor x] 'l Run Selenium Tests | ¢ HML..
Members | Open Required Projects 3 @ Sesion Bean..
S8 NewServiet:: | Close ‘ Other...
% doGet(Hty b
% doPost(Htt Rename... ;
© getServiet! Move...
O processrel Res{

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

In the New Servlet wizard, enter a package name and Finish the wizard keeping the
other default values, as shown in Figure 1-9. We have used setup as the package name.

O New Servlet =
Steps Name and Location
1. Choose File Type Class Name: NewServiet

2. Name and Location
3. Configure Serviet Deployment

Project: wWebApplication1
Location: | Source Packages 2]
Package: setup -

Created File: |C:\Users\arathod\Documents\NetBeansProjects\WebApplication 1\src\java\setup\NewServiet.java

[Lseeck] [nee>][Bnsh][concel J[uee]

Figure 1-9. Traversing the New Servlet wizard

27

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

After the NewServlet class is created, we can instantly run it by invoking the context
menu on the servlet file and selecting the Run File menu option, as shown in Figure 1-10.

) WebApplication1 - NetBeans IDE 8.2
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

PSS DE | 1e-TH b-HB-®-

Projects X Files | Services | -
= @ webApplication1
&5 WebPages
m-[)) wes-INF
~-[@] ndex.html
& |5y Source Packages)
=-F8 setwp Open
@
@ @ Lbraries Cut Ctrl+X
Paste Ctri+V
Compile File F9
 RunFile Shift+F6
Debug File Ctrl+Shift+F5
Profile File
Test File Ctrl+F6
i X
Mavigator X | - Debug Test File Ctrl+Shift+F6
Members ~

Iy Profile Test File
-8 NewServiet :: HttpServiet

%9 doGet(HtipSenvietReque] Add
%9 doPost(HttpServietReque

® oetServietnfod : Sting Delete Delete
% processR t{HttpSen Save As Template...
Find Usages Alt+F7
Refactor > |
Beanlnfo Editor... 'a DB Database Process X GlassFish Server.

Figure 1-10. Running the servlet

28

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

When we run the servlet, NetBeans will automatically start the integrated GlassFish
server.

As part of running the servlet, NetBeans will compile, package, and deploy it to the
integrated GlassFish server. After the deployment, NetBeans will automatically open the
servlet URL in the default browser, as shown in Figure 1-11.

B a | 3 serviet NewServiet X |4+ ~ = o %

i) (D localhost webApplication1/NewSer b = 1 =

Servlet NewServlet at /WebApplicationl

B a | E3 1ODO supply a title X |+ - m] X
® () localhost WebApplication1 Ve = 7 &

TODO write content

Figure 1-11. Running the servlet class

Successful execution of the servlet class means that the installation of NetBeans and
the integrated GlassFish server have gone through successfully, and the setup to run the

examples presented in this book is ready.

Note By no means is this section of the chapter a user guide for the GlassFish
application server. For more information on GlassFish, see https://javaee.
github.io/glassfish/

29

https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Administrating the GlassFish Application Server

NetBeans provides us with a graphical interface to perform various GlassFish server-
related administrative tasks. You can restart, start, and stop the GlassFish server from the
Services tab, as shown in Figure 1-12.

) NetBeansIDE82 & —-—
File Edit View Navigate Source Refactor Run Debug Profile Te

PSS DE: -] §

& | projects | Files | Services % | I
S |@- B Databases

% @9 web Services

Z |-l servers

S| o, rmpmm

#-1)) Applications Start

® [ﬁ) Resources Start in Debug Mode
i &- Web?en_nc Start in Profile Mode
@ik Maven Repositories
@ Cloud Restart
&% Hudson Buiders Stop
@& Docker Refresh
{53 TaskRepositories
@49 IS Test Driver Remove
(- Selenium Server

Terminate

View Domain Admin Console |
View Domain Server Log

View Domain Update Center

Properties

Figure 1-12. Administrating the Glassfish application server

30

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Once GlassFish has successfully started, you can test whether the server is able to
accept the basic HTTP requests. To do so, open a browser, type in the URL
http://localhost:8080/ and, if the server is up and running, you will be able to see
the page shown in Figure 1-13.

(st o | B

[GlassFish Server - Server X __ 0

& C () | ® localhost:8080 vr

oracle.com |

Your server is now running

To replace this page, overwrite the file index.html in the document root folder of this server. The document root
folder for this server is the docroot subdirectory of this server's domain directory.

To manage a server on the local host with the default administration port. go to the Administration Console.
Join the GlassFish community

Visit the GlassFish Community page for information about how to join the GlassFish community. The GlassFish
community is developing an open source, production-quality, enterprise-class application server that implements

the newest features of the Java™ Platform, Enterprise Edition (Java EE) platform and related enterprise
technologies.

Learn more about GlassFish Server

For more information about GlassFish Server, samples, documentation, and additional resources, see as-
install/ docs/akbout.html, where as-install is the GlassFish Server installation directory.

Company Info | Contact | Copyright © 2010, 2014 Oracle Corporation | Legal Netices

Figure 1-13. Testing GlassFish server

Note Substitute localhost with the machine name or IP address if you are
trying to access it from a machine other than the one on which GlassFish is
installed. If you changed the port number during installation, use that port instead
of 8080.

31

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

The next step is to test the access to the administration console of the GlassFish server.
Make sure that the GlassFish server is up and running, and then select the View Domain
Admin Console menu option from the context menu, as shown in Figure 1-12. NetBeans
will launch the default browser and open the administrator console. Alternatively, you can
type in the URL http://localhost:4848/, and you will be able to see the administration
console page, as shown in Figure 1-14.

m & Commen Tasks

€ @ locathost 4848 comman/indexjsf Google [¢l @- & D-

1 Domain: domain1 Server: localhost

GlassFish™ Server Open Source Edition

[Comman Tasks Common Tasks
@ Domain
) server (Admin Server)
i e GlassFish News Documentation
[Standalone Instances
* @ Nodes i Support | W Quick Start Guide
[Applications || Registration A || Administration Guide

&% Lifecycle Modules

L GlassFish News | Application Development Guide

& Monitoring Data
v | Resources Depl £ | Application Deployment Guide
8 Josc eploymen

o wl .

* ¢ Connectors
&3 Resource Adapter Configs
* gt JMS Resources
[JavaMail Sessions
* [NDI
v B Configurations

y List Deployed Applications

| | Deploy an Application

Administration
|| Change Administrator Password

Update Center

| Instalied Components
" Avaitable Updates

| Available Add-Ons

: Monitori Other Tasks
* B4 default-config - |
e | Create New JDBC Connection Pool "
(& Update Tool | Monitoring Data o ”

Figure 1-14. The GlassFish administration console

Note Substitute localhost with the machine name or IP address if you are
trying to gain access from a machine other than the one on which GlassFish is
installed. You will have to enter the username and password on the administration
console login page. If you changed the port number during installation, use that
port instead of 4848.

32

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Troubleshooting

Even after precisely following the steps mentioned in this chapter and taking the

utmost care while installing and configuring the NetBeans IDE along with its integrated
GlassFish application server, you may face problems while running the sample code that
accompanies this book. This section will try to highlight issues that you may come across

and provides information on how to mitigate them.

“No Compatible JDK was found” Warning During Installation
You get a “No compatible JDK was found” warning message on the first page of the
NetBeans installer wizard.

Diagnosis

Samples in this book require NetBeans version 8.2 since we utilize Java EE 8. NetBeans 8.2,
in turn, requires Java Platform (JDK) 8. You will get a “No compatible JDK was found”
warning message if Java Platform (JDK) 8 is not installed on your machine.

Solution

You will have to exit the wizard and install Java Platform (JDK) 8 after downloading it
from the following location:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Unable to See GlassFish Server’s Test Page
You are unable to see the GlassFish server’s test page as shown in Figure 1-13 after
installing the NetBeans IDE and its integrated GlassFish application server.
Diagnosis
You may not able to see the test page because of the following reasons:

e GlassFish server is not running.

o Browser is unable to resolve the server’s hostname.

e Incorrect port number is mentioned in the URL.

33

http://www.oracle.com/technetwork/java/javase/downloads/index.html

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Solution

o Start/restart the GlassFish server using the context menu as shown in
Figure 1-12.

e Verify that the machine name or the IP address that is used in the
URL is correct. You can find your machine’s IP address by executing
the ipconfig command on your Windows machine’s command
prompt. If you are using localhost, then verify that the browser is
able to resolve it by looping it back to your machine’s IP address.

o Verify that the port number used in the URL is correct. This solution
is explained in a section that follows.

Unable to Resolve “localhost” Hostname

Your browser or the NetBeans IDE’s tester is able to run the GlassFish server’s test
page using the machine name or the IP address but is unable to resolve the localhost
hostname.

Diagnosis

The NetBeans IDE’s tester or the browser is unable to loopback to your machine using
localhost.

Solution

Update the C: \Windows\System32\drivers\etc\hosts file of your Windows machine to
add an entry that maps the IP address of your machine to localhost.

localhost name resolution is handled within DNS itself.
127.0.0.1 localhost

#::1 localhost

<IP address of your machine> localhost

Browser is Unable to Connect to “8080” Port

The host name part of your URL is correct, but your browser is unable to connect to the
GlassFish application server at port 8080.

34

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Diagnosis

Your browser will be unable to use the 8080 port number for the GlassFish application
server if it is used by another application. During installation the configuration tool will
first try to assign the 8080 port to the GlassFish application server, but if it detects that the
8080 port number is unavailable, then it will assign a different port number to it.

Solution

You can find the port at which GlassFish application server is running with the following

steps:

« Navigate to the Services tab of the NetBeans IDE and invoke the
context menu on the GlassFish server node as shown in Figure 1-12.

o Select the Properties menu option to open the Servers dialog.
o Select the GlassFish server instance in the left panel.

e The Location text field, under the Common tab, will show the port
number at which the GlassFish application server is running.

Errors While Compiling or Executing Sample Application Projects

You get compilation errors after opening the sample application project, or the sample
application project does not execute as expected.

Diagnosis

The samples provided as part of this book are tested with NetBeans version 8.2 and Java
Platform (JDK) 8.

You might get the “javac: invalid target release: 1.8” error while compiling
the sample application projects provided with this book if the NetBeans IDE is not
configured to use Java Platform (JDK) 8.

The sample application code contains hard-coded port numbers corresponding
to the NetBeans installation on which they were created. The sample will not execute
as expected if the port number hard-coded in the sample code is different from your

NetBeans installation.

35

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

Solution

To resolve the “javac: invalid target release: 1.8” error, you have to verify
that NetBeans is using Java Platform (JDK) 8. You may have to install it from the URL
mentioned in the earlier sections.
If the sample application is not working as expected, then verify that the port
numbers used by the sample code are same as that of your NetBeans installation.
You can consult the Readme. txt file provided with each sample application for
additional information.

Unable to Send or Receive the “wine order” Mail

You are unable to send or receive the “wine order” mail while executing the sample

application project.

Diagnosis

Few sample projects send out a mail as part of their execution. You may have trouble
sending the mail and may not receive it because of the following reasons:

e You have not updated the from and to e-mail addresses in the sample code.
e You are running the sample on a machine that is behind a firewall.
e JMS Resource configuration is incorrect.

e JavaMail Session configuration is incorrect.

Solution

Before you execute the sample application project that sends out a mail, verify that:

e You have created and configured the JMS Resource as shown in
Chapter 5.

e You have created and configured the JavaMail Session asshown in
Chapter 5.

e You have updated the from and to e-mail addresses in the sample’s
source code.

¢ You are not behind a firewall.

36

CHAPTER 1 INTRODUCTION TO THE EJB 3.2 ARCHITECTURE & CDI SERVICES

You can consult the Readme. txt file provided with the sample application of Chapter 5
for information on how to configure JavaMail Session properties for popular mail services.

Even after verifying these details, if you are facing problems in sending or receiving
the mail, then check the GlassFish server log for any more details on the issue.

Summary

This chapter opened with an introduction to this book and EJB. This orientation covered
essential information about the core features of EJB, the E]B framework, and the
component model. It included a brief overview of the history of EJB, the EJB 3 simplified
development model, and the EJB distributed computing model.

In the “How This Book Is Organized” section, we provided a summary of each
chapter to illustrate the general flow of the book, and to help you decide which areas to
focus on first, should you wish to read the chapters out of sequence.

The chapter concluded with a “Getting Started” section to help you install and
configure the NetBeans IDE and its integrated GlassFish application server, which has
the reference implementation of the latest Java EE specifications; and to verify that the
installation was successful. Having completed this task, you now have the required
software infrastructure to run the code samples in this book and to examine the many
features of EJB throughout the subsequent chapters. In the next chapter we will discuss
in detail the EJB session beans.

37

CHAPTER 2

EJB Session Beans

This chapter will discuss EJB session beans, the core business service objects used by
EJB client applications. You'll gain an understanding of the simplified EJB session bean
model with insights into the following topics:

o Types of session beans—stateful, stateless, and singleton—and when
to use each one

o The bean class, business interfaces, and business methods

e Asynchronous methods

o Callback methods

¢ Interceptors

o Exception handling

e C(lient view

o Dependency injection with annotations related to session beans

o Timer service

Introduction to Session Beans

Session beans are the most important part of EJB technology because they model the
business process of the Java Application and encapsulate a business logic for each process.
Session beans are Java components that run either in stand-alone EJB containers or
in EJB containers that are part of standard Java Platform, Enterprise Edition (Java EE)
application servers. These Java components are typically used to model a particular
user task or use case, such as entering customer information or implementing a process
that maintains a conversation state with a client application. Session beans can hold
the business logic for many types of applications, such as human resources, order entry,

39
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018

J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_2

CHAPTER 2 EJB SESSION BEANS

and expense reporting applications. The EJB container provides services to the session
bean, and the bean indicates which services it needs using Java annotations and/or XML
metadata.

The container will manage the enterprise session beans and provide them with a
number of services including security, transaction, thread-safety, etc.

Types of Session Beans

Session beans are of three types:

o Stateless: This type of bean does not maintain any conversational
state on behalf of a client application.

o Stateful: This type of bean maintains a state, and a particular instance
of the bean is associated with a specific client request. Stateful beans
can be seen as extensions to client programs, which are running on
the server.

o Singleton: This type of bean is instantiated only once per application.
Singleton beans live for the full duration of the application and
maintain their state between client invocations.

We will drill down into more specifics of stateless, stateful, and singleton beans in the
following sections.

When Do You Use Session Beans?

Session beans are used to write business logic, maintain a conversation state for the
client, and model back-end processes or user tasks that perform one or more business
operations.

We want to consider using session beans, for instance, when we have a certain
methodsor API that doesn’t need the container service. In this case the session beans
would overhead the container.

Also, Data Access Object (DAO) classes don’t need to be session beans because they
will be used in the EJB application service layer.

We will see in this book also how Stateless EJB session beans as (DAO), will be
implemented with Java Persistence API (JPA).

40

CHAPTER 2 EJB SESSION BEANS

Typical examples include the following:

A session bean in a human resources application that creates a new
employee and assigns the employee to a particular department

A session bean in an expense reporting application that creates a new
expense report

A session bean in an order entry application that creates a new order

for a particular customer

A session bean that manages the contents of a shopping cart in an
e-commerce application

A session bean that leverages transaction services in an EJB container
(removing the need for an application developer to write the
transaction support)

A session bean used to address deployment requirements when the
client applications are not collocated on the same server

A session bean that leverages the security support provided by the
container on the component or method level

A session bean that implements logging functionality and is shared
between different components of an application

Session beans can be used in traditional 2-tier or 3-tier architectures with

professional/rich client applications, or in 3-tier web-based applications. These
applications can be deployed in different logical and physical tier combinations. In the
next section, we will investigate some of the possible combinations.

3-Tier Architecture with Rich Client

Figure 2-1 shows a typical architecture for a session bean in three tiers with a rich client
front-end application that has some data entry screens used by end users, such as customer
service representatives, bank tellers, and so on. These client applications can be developed
using Java Swing technology with the Java Platform, Standard Edition (Java SE), or they can
be plain old Java objects (POJOs), which are run from the command line. Generally, the
end user launches the client application from his or her desktop, enters some data, and

41

CHAPTER 2 EJB SESSION BEANS

triggers an event by pressing some user interface component, such as a Submit button.
The general workflow may look something like this:

1. User action establishes a connection to the session bean running
in the EJB container using remote method invocation (RMI).

2. The client application invokes one or more business methods in
the session bean.

3. The session bean processes the request and validates data by
interacting with databases, enterprise applications, legacy
systems, and so on, to perform a certain business operation or
task.

4. Finally, the session bean sends a response back to the client
application, either through data collections or simple objects that
contain acknowledgment messages.

EJB Container

Session Bean

Professional

Client - e > JDBC

S Network 7 Network | Database
Application Session Bean

Session Bean

Figure 2-1. Session beans in a 3-tier architecture with a Rich Client

3-Tier Architecture for a Web Application

This architecture, as shown in Figure 2-2, is typically front ended by a web application
running in the browser of a desktop or laptop computer. These days, other types of client
devices, such as smartphones, tablets, cell phones, and telnet devices, are also being
used to run these applications. The web application running in a browser or mobile
device renders the user interface (data entry screens, submit buttons, and so on) using
web technologies such as JavaServer Pages (JSP), JavaServer Faces (JSF), or Java Servlets.
Typical user actions, such as entering search criteria or adding certain items to the web

42

CHAPTER 2 EJB SESSION BEANS

application shopping cart, will invoke/call session beans running in an EJB container
via one of the aforementioned web technologies. Once the session bean gets invoked, it
processes the request and sends a response back to the web application, which formats
the response as required and then sends the response on to the requesting client device
(browser, smartphone, telnet, and so forth).

Web Applications Web Container EJB Container
Browser <€ Network JSP Session Bean
Local JDBC
< Hawork JSF < >{| Session Bean

Remote Network Database

Network .
- Session Bean

o
[

Figure 2-2. Session beans in a 3-tier architecture with a web application

In the 3-tier architecture just discussed, the client application (which is the web
application) and the session beans can be run within the same instance of an application
server (collocated) or from different instances running on the same machine. They can
also be run on physically separate machines that have an instance of an application

SEerver.

Stateless Session Beans

Stateless session beans are comprised of the following elements:

e Abean class, which contains the business method implementation to
be executed

Optionally, one or more business interfaces allow different combinations of the
bean’s business methods to be presented to client applications. A Stateless session beans
pooling is a pool that contains all Stateless session beans instances. So, when a request
arrives for a bean, the container allocates a bean, and the Stateless session bean method
returns the bean placed back into the pool. If no bean is available for a request, it is
placed in a queue.

43

CHAPTER 2 EJB SESSION BEANS

Set Up the Dependencies

In order to use the Java EE8 Enterprise Beans 3.2, we want to make sure we will add the
latest version to the dependencies configuration section of the pom.xml file, which will
ensure that all Java EE 8 APIs will be available during the compiling time:

<dependency>
<groupld>javax</groupld>
<artifactId>javaee-web-api</artifactId>
<version>8.0</version>
<scope>compile</scope>
<optional>true</optional>

</dependency>

You can check the Maven Repository to find the latest Java EE 8 APi pom.xml file:

https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/
javaee-api-8.0.pom

The Bean Class

A stateless session bean class is any standard Java class that has a class-level annotation
of @Stateless. If deployment descriptors are used instead of annotations, then the bean
class should be denoted as a stateless session bean in the ejb-jar.xml descriptor. If you
use both annotations and deployment descriptors (mixed mode), then the @Stateless
annotation must be specified if any other class-level or member-level annotations are
specified in the bean class. If both annotations and deployment descriptors are used,
then the settings or values in the deployment descriptor will override the annotations in
the classes during the deployment process.

Note Starting with EJB 3.1, a session bean class can be a subclass of another
session bean class.

44

https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/javaee-api-8.0.pom
https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/javaee-api-8.0.pom

CHAPTER 2 EJB SESSION BEANS

To illustrate the use of stateless session beans, we will create a SearchFacade session
bean that provides various search facilities to client applications regarding available
wines. The workflow is as follows:

1. Users of the application will type in or choose one or more search
criteria, which will be submitted to the SearchFacade session
bean.

2. The SearchFacade bean will access back-end databases to retrieve
the requested information. To simplify the code examples in this
chapter, we will actually retrieve the list of hard-coded values
within the bean class. In later chapters, we will augment the
SearchFacade bean to access the back-end database.

3. The bean returns to the client applications the information that
satisfied the search criteria.

Listing 2-1 shows the definition of the SearchFacade bean. In the following sections
of this chapter, we will build the code that will show the preceding workflow in action.
SearchFacadeBean is a standard Java class with a class-level annotation of @Stateless.

Listing 2-1. SearchFacadeBean.java

package com.apress.ejb.chapteroz;

import javax.ejb.Stateless;

@Stateless(name="SearchFacade")

public class SearchFacadeBean implements SearchFacade, SearchFacadelocal {
public SearchFacadeBean() {

}

The Business Interface

A stateless session business interface is a standard Java interface with no other special
requirements. This interface has a list of business method definitions that will be
available for the client application. A session bean can have a business interface that is
implemented by the bean class; generated at design time by tools such as JDeveloper,
NetBeans, or Eclipse; or generated at deployment time by the EJB container.

45

CHAPTER 2 EJB SESSION BEANS

Business interfaces can also use annotations, as described in the following list:

o The @Remote annotation can be used to denote the remote business
interface.

o The @Local annotation can be used to denote the local business
interface.

Note Starting with EJB 3.1, session beans support the “no-interface local view.”
This is a variation of the local view that exposes public methods of a bean class
without a separate business interface.

If no annotation is specified in the interface, then the public methods of the bean
class itself become its own de facto local interface.

If your architecture has a requirement whereby the client application (web
application or rich client) has to run on a different Java Virtual Machine (JVM) from the
one that is used to run the session beans in an EJB container, then you need to use the
remote interface. Make sure that the methods in the interface remote are really supposed
to be remotely exposed. The separate JVMs can be on the same physical machine or on
separate machines. If your application architecture is going to use the same JVM for both
the client application and the session beans, then performance is improved by using a
local interface (which can be the no-interface option).

It is possible that your application architecture requires both remote and local
interfaces. For example, an enterprise might have an order entry application that is
developed using session beans that have business methods for submitting new orders
and also addressing administrative tasks, such as data entry for the products. Potentially,
you could have two different client applications that access the back-end order entry
application, as follows:

e A web client application (as shown in Figure 2-3) that can be run in
the same JVM as the session bean and used to submit new orders

46

CHAPTER 2 EJB SESSION BEANS

Web Container |EJB Container
1SP Session
Bean
= Local Session
Calls Bean
Session
| JVM |
I Application Server |

Figure 2-3. A web client using local interfaces of session beans

e Arich client application (as shown in Figure 2-4) that runs on an end-user
desktop machine and is used by the administrator for data entry purposes

EJB Container

Session Bean

Session Bean

Professional
C|.lent. | Remote
Application Calls
JVM

Session Bean

JVM

Application Server

Figure 2-4. Arich client using remote interfaces of session beans

47

CHAPTER 2 EJB SESSION BEANS

The SearchFacade session bean has both remote and local interfaces, as shown in
Figure 2-5.

<Business Interface> <Business Interface>
SessionFacade SessionFacadelocal
T- 7
\‘\\\ ,//
~ ”~”
-~ /f
\\\\ ///
\\ ~ /, 4

<Session Bean>
SessionFacadeBean

Figure 2-5. The business interfaces of the SearchFacade session bean

Listing 2-2 shows the code snippet for the SearchFacade remote business interface
with an @Remote annotation and a wineSearch() method declaration. The wineSearch()
method takes one parameter that represents the type of the wine, and it returns a list of
wines that match the wine type criteria.

Listing 2-2. SearchFacade.java

package com.apress.ejb.chapter02;
import java.util.list;
import javax.ejb.Remote;

@Remote
public interface SearchFacade {
List wineSearch(String wineType);

Listing 2-3 shows the code snippet for the SearchFacade local business interface
with an @Local annotation and a wineSearch() method declaration.

Listing 2-3. SearchFacadeLocal.java

package com.apress.ejb.chapter02;
import java.util.list;
import javax.ejb.local;

48

CHAPTER 2 EJB SESSION BEANS

@Local
public interface SearchFacadelocal {
List wineSearch(String wineType);

Business Methods

The methods implemented in the bean class must correspond to the business methods
declared in the remote or local business interfaces. They are matched up based on the
convention that they have the same name and method signature. Other methods in the
bean class that do not have the corresponding declaration in the business interfaces will
be private to the bean class methods.

The SearchFacade bean implements one method, wineSearch(), which has
been declared in both remote and local business interfaces. The wineSearch()
method returns a static wines list based on the type of wine. Listing 2-4 shows the
implementation for wineSearch().

Listing 2-4. SearchFacadeBean.java

package com.apress.ejb.chapteroz;
import java.util.Arraylist;
import java.util.Llist;

import javax.ejb.Stateless;

@Stateless(name="SearchFacade")
public class SearchFacadeBean implements SearchFacade, SearchFacadelocal {
public SearchFacadeBean() {

}

public List wineSearch(String wineType) {
List winelist = new ArraylList();
if (wineType.equals("Red")) {
winelist.add("Bordeaux");
winelist.add("Merlot");
winelist.add("Pinot Noir");

}

49

CHAPTER 2 EJB SESSION BEANS

else if (wineType.equals("White")) {
winelList.add("Chardonnay");

}

return winelist;

}

Asynchronous Business Methods

Asynchronous methods immediately return to the caller without waiting for the method
execution to complete. Asynchronous methods are typically used for processor-intensive
or long-running, background tasks, such as printing a document or sending a large
e-mail.

Starting with EJB 3.1, a session bean can declare that one or more of its methods
can be executed asynchronously. When a session bean client invokes an asynchronous
method, the container immediately returns the control to the client. This allows the
client to perform tasks in parallel while the business method completes its execution on
a separate thread. For example, clients can use this functionality to show the progress of
a long-running task using a progress bar.

An asynchronous method is defined by annotating a business method with javax.
ejb.Asynchronous annotation. An @Asynchronous annotation at the class level marks all
the business methods of the session bean as asynchronous. An asynchronous method
must return either void or an implementation of the java.lang.concurrent.Future<V>
interface. Asynchronous methods that return void cannot throw application exceptions.
Application exceptions can only be thrown by asynchronous methods that return
Future<V>.

Asynchronous methods defined on a bean class should have the following signature:

public void <METHOD>(Object)
or

public java.util.concurrent.Future<V> <METHOD>(Object) throws <APPLICATION-
EXCEPTION>

50

CHAPTER 2 EJB SESSION BEANS

Session bean clients invoke asynchronous methods in the same way they invoke
synchronous methods. If an asynchronous method has been defined to return a result,
the client immediately receives an instance of Future<V> interface. A client can use this
instance for any of the following operations:

o Retrieving the final result set using the get () method. Since this
method call blocks synchronously until a result is returned or an
exception is thrown, typically it is not called until isDone() returns true.

o Checking the status of the asynchronous method using the isDone()
method.

o Cancelling the method invocation using cancel (boolean) method.
Calling cancel() does not interrupt the thread, it simply sets a state
flag that can be checked within the running method so that it may
gracefully interrupt its execution and return.

o Checking if the method invocation was cancelled using
isCancelled() method.

e Checking for exceptions.

Note Session bean methods that are exposed as web services can’t be
asynchronous.

If an asynchronous method returns a result, it must return that result using the
javax.ejb.AsyncResult<V> convenience wrapper object. Note that this object is not
actually returned to the client but is intercepted by the EJB container and unwrapped
to service method calls on the Future<V> object that was actually returned to the client
when the client invoked the method.

Dependency Injection

In Chapter 1, we introduced the concept of dependency injection as a programming
design pattern. In this section, we will take a cursory look into using dependency
injection in stateless session beans. Dependency injection is discussed in detail in
Chapter 10.

51

CHAPTER 2 EJB SESSION BEANS

EJB containers provide the facilities to inject various types of resources into stateless
session beans. Typically, in order to perform user tasks or process requests from client
applications, the business methods in the session bean require one or more types of
resources. These resources can be other session beans, data sources, or message queues.
Managed beans can be injected into session beans using Contexts and Dependency
Injection (CDI).

The resources that the stateless session bean is trying to use can be injected using
annotations or deployment descriptors. Resources can be acquired by annotation of
instance variables or annotation of the setter methods. Listing 2-5 shows an example of a
setter and instance variable-based injection of myDb, which represents the data source.

Listing 2-5. Data Source Injection

@Resource
DataSource myDb;

// or

@Resource

public void setMyDb(DataSource myDb) {
this.myDb = myDb;

You'll typically use the setter injections to preconfigure or initialize properties of the

injected resource.

Lifecycle Callback Methods

There will be certain instances or use cases in which the application using session beans
requires fine-grained control over lifecycle events like its own creation, removal, and so
on. For example, the SearchFacade session bean might need to perform some database
initialization when it is created or close some database connections when it is destroyed.
The application can gain fine-grained control over the various stages of the bean life
cycle via methods known as callback methods. A callback method can be any method in
the session bean that has callback annotations. The EJB container calls these methods at
the appropriate stages of the bean’s life cycle (bean creation and destruction).

52

CHAPTER 2 EJB SESSION BEANS

Following are two such callbacks for stateless session beans:

e PostConstruct: Denoted with the @PostConstruct annotation.
Methods on the bean class that use a specific signature, as described
below, can be marked with this annotation.

o PreDestroy: Denoted with the @PreDestroy annotation. Again, any
method in the bean class with a specific signature, as described
below, can be marked with this annotation.

Callback methods defined on a bean class should have the following signature:
void <METHOD> ()

Callback methods can also be defined on a bean’s listener class; these methods
should have the following signature:

void <METHOD>(Object)

where Object may be declared as the actual bean type, which is the argument passed
to the callback method at runtime. Lifecycle callback methods can have public, private,
protected, or package-level access. A lifecycle callback method must not be declared as
final or static.

PostConstruct callbacks happen after a bean instance is instantiated in the EJB
container. If the bean is using any dependency injection mechanisms for acquiring
references to resources or other objects in its environment, PostConstruct will occur
after injection is performed and before the first business method in the bean class is
called. In the case of the SearchFacade session bean, you could have a business method,
wineSearchByCountry(), which would return the wine list for a particular country and
have a PostConstruct callback method, initializeCountryWinelist(), that would
initialize the country’s wine list whenever the bean gets instantiated. Ideally, you would
load the list from a back-end datastore; but in this chapter, we will just use some hard-
coded values that get populated into a HashMap, as shown in Listing 2-6.

Listing 2-6. The PostConstruct Method

@PostConstruct
public void initializeCountryWinelist() {
// countryMap is HashMap
countryMap.put("Australia”, "Sauvignon Blanc");
countryMap.put("Australia", "Grenache");
53

CHAPTER 2 EJB SESSION BEANS

countryMap.put("France", "Gewurztraminer");

countryMap.put("France","Bordeaux");

The PreDestroy callback happens before the container destroys an unused or
expired bean instance from its object pool. This callback can be used to close any
connection pool that has been created with dependency injection and also to release
any other resources.

In the case of the SearchFacade session bean, we could add a PreDestroy callback
method (destroyWinelList()) into the SearchFacade bean, which would clear the
country wine list whenever the bean gets destroyed. Ideally, during PreDestroy, we
would close any resources that have been created with dependency injection; but in this
chapter, we will just clear the HashMap that has the countries and wine list. Listing 2-7
shows the destroyWinelList() code.

Listing 2-7. The PreDestroy Method

@PreDestroy
public void destroyWinelList() {
countryMap.clear();

Interceptors

The EJB specification provides annotations called interceptors, which allow you to interpose

on a business method invocation to add your own wrapper code before and/or after the

method is called. An interceptor method can be defined for session and message-driven

beans (MDBs). We will show you the usage of interceptors in the session bean context.
There are number of use cases for interceptors in a typical application in which

you would find a need to perform a certain task before or after the business method is

invoked. For example, you may wish to do one of the following:

e Perform additional security checks before a critical business method
that transfers more than $100,000 dollars

o Do some performance analysis to compute the time it takes to
perform the task

e Do additional logging before or after the method invocation

54

CHAPTER 2 EJB SESSION BEANS

There are two ways to define an interceptor. You can either add an @AroundInvoke
annotation on a particular method, or you can annotate the bean class to designate
an interceptor class that will interpose on all (or an explicit subset of) methods on the
bean class. An interceptor class is denoted by the @Interceptor annotation on the
bean class with which it is associated. In the case of multiple interceptor classes, the @
Interceptors annotation is used. Method specific interceptor is denoted by applying
the @Interceptors annotation to the business method. Methods that are annotated with
@AroundInvoke should have the following signature:

Object <METHOD>(InvocationContext) throws Exception

AroundInvoke methods can have public, private, protected, or package-level access.
An AroundInvoke method must not be declared as final or static. The definition of
InvocationContext is as follows:

package javax.ejb;

public interface InvocationContext {
public Object getBean();
public java.lang.reflect.Method getMethod();
public Object[] getParameters();
public void setParameters(Object[] params);
public EJBContext getEJBContext();
public java.util.Map getContextData();
public Object proceed() throws Exception;

The following list describes the methods in the preceding code:

o getBean() returns the instance of the bean on which the method was
called.

o getMethod() returns the method on the bean instance that was
called.

o getParameters() returns the parameters for the method call.
o setParameters() modifies the parameters used for the method call.

o getEIBContext() gives the interceptor methods access to the bean’s
EJBContext.

55

CHAPTER 2 EJB SESSION BEANS

o getContextData() allows values to be passed between interceptor
methods in the same InvocationContext instance using the Map
returned.

o proceed() invokes the next interceptor, if there is one, or invokes the
target bean method.

In the SearchFacade session bean, we can add an interceptor that logs the time taken
to execute each business method when invoked by the client applications. Listing 2-8
shows a time log method that will print out the time taken to execute a business method.
InvocationContext is used to get the name of bean class and the invoked method name.
Before invoking the business method, current system time is captured and deducted
from the system time after the business method is executed. Finally, the details are
printed out to the console log using System.out.println.

Listing 2-8. The Interceptor Method

@AroundInvoke

public Object TimerLog (InvocationContext ctx) throws Exception {
String beanClassName = ctx.getClass().getName();
String businessMethodName = ctx.getMethod().getName();
String target = beanClassName + "."
long startTime = System.currentTimeMillis();
System.out.println ("Invoking " + target);

try {
return ctx.proceed();

+ businessMethodName ;

}
finally {
System.out.println ("Exiting" + target);
long totalTime = System.currentTimeMillis() - startTime;
System.out.println ("Business method" + businessMethodName +
"in" + beanClassName + "takes" + totalTime + "ms to execute");
}

56

CHAPTER 2 EJB SESSION BEANS

Stateful Session Beans

Similar to stateless session beans, stateful beans comprise a bean class and, optionally,
one or more business interfaces.

The Bean Class

A stateful session bean class is any standard Java class that has a class-level annotation
of @Stateful. If deployment descriptors are used instead of annotations, the bean class
should be denoted as a stateful session bean. In the case of mixed mode, in which you
are using annotations and deployment descriptors, the @Stateful annotation must be
specified if any other class-level or member-level annotations are specified in the class.
To illustrate a stateful session bean, we will create a ShoppingCart session bean
that will keep track of the items added to a user’s shopping cart and their respective
quantities. In this chapter, we will use hard-coded values for the shopping cart to
illustrate the state and conversation maintenance between the client and stateful session
bean. Listing 2-9 shows the definition of a ShoppingCart session bean.

Listing 2-9. ShoppingCartBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Stateful;

@Stateful (name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartlLocal {
public ShoppingCartBean() {

}

There will be certain use cases in which the application wants to be notified by the
EJB container before or after transactions take place and then use these notifications
to manage data and cache. A stateful session bean can receive this kind of notification
by the EJB container when it implements the javax.ejb.SessionSynchronization

57

CHAPTER 2 EJB SESSION BEANS

interface. This is an optional feature. There are three different types of transaction
notifications that the stateful session bean receives from the EJB container:

o afterBegin: Indicates that a new transaction has begun

o beforeCompletion: Indicates that the transaction is going to be
committed

o afterCompletion: Indicates that a transaction has been completed

For example, the ShoppingCart session bean could implement the javax.ejb.
SessionSynchronization interface to get an afterCompletion notification so that it can
clear out the shopping cart cache.

The Business Interface

Business interfaces for stateful session beans are similar to those used for stateless
session beans, and they are annotated in the same way, using @Local and @Remote
annotations. Local views of stateful session beans can be accessed without a separate
local business interface. The ShoppingCart session bean has both remote and local
interfaces, as shown in Figure 2-6.

<Business Interface> <Business Interface>
ShoppingCart ShoppingCartLocal
n\\\ /,#
ey g
\\\\ ///,
“\.\\ ,,/

<Session Bean>
ShoppingCartBean

Figure 2-6. Business interfaces for ShoppingCart

We will primarily use the local interface from our web application. The remote
interface is added to facilitate unit testing of the bean in this chapter.

Listings 2-10 and 2-11 show the remote and local ShoppingCart business interfaces,
with @Remote and @Local annotations, respectively.

58

CHAPTER 2 EJB SESSION BEANS
Listing 2-10. ShoppingCart.java

package com.apress.ejb.chapter02;
import javax.ejb.Remote;

@Remote

public interface ShoppingCart {

}

Listing 2-11. ShoppingCartLocal.java

package com.apress.ejb.chapteroz;
import javax.ejb.lLocal;
@Local
public interface ShoppingCartlocal {
}
Alternatively, you can use the coding style shown in Listing 2-12, in which you can
specify the @Local and @Remote annotations before specifying @Stateful or @Stateless
with the name of the business interface.

Listing 2-12. ShoppingCartBean.java

package com.apress.ejb.chapter02;
import javax.ejb.local;

import javax.ejb.Remote;

import javax.ejb.Stateful;

@Local({ShoppingCartLocal.class})
@Remote({ShoppingCart.class})
@Stateful(name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartlLocal {
public ShoppingCartBean() {

}

Note We will follow the earlier convention in this book, in which @Local and
@Remote annotations are marked on the business interfaces.

59

CHAPTER 2 EJB SESSION BEANS

Business Methods

Business methods in stateful session beans are similar to those in stateless session
beans. We will augment the ShoppingCart bean by adding business methods that will
add and remove wines from the shopping cart and return a list of cart items.

Listing 2-13 shows the ShoppingCart bean implementing the addWineItem(),
removelWineItem(), and getCartItems() methods.

Listing 2-13. ShoppingCartBean.java

package com.apress.ejb.chapteroz;
import java.util.Arraylist;
import javax.ejb.Stateful;

@Stateful (name="ShoppingCart")
public class ShoppingCartBean implements ShoppingCart, ShoppingCartlocal {
public ShoppingCartBean() {
}
public ArraylList cartItems;
public void addWineItem(String wine) {
cartItems.add(wine);

}

public void removeWineItem(String wine) {
cartItems.remove(wine);

}

public void setCartItems(ArraylList cartItems) {
this.cartItems = cartItems;

}

public Arraylist getCartItems() {
return cartltems;

60

CHAPTER 2 EJB SESSION BEANS

Lifecycle Callback Methods

Stateful session beans support callback events for construction, destruction, activation,
and passivation. Following are the callbacks that map to the preceding events:

e PostConstruct: Denoted with the @PostConstruct annotation.
o PreDestroy: Denoted with the @PreDestroy annotation.

e PreActivate: Denoted with the @PreActivate annotation.

e PrePassivate: Denoted with the @PrePassivate annotation.

The PostConstruct callback happens after a bean instance is instantiated in the
EJB container. If the bean is using any dependency injection mechanism for acquiring
references to resources or other objects in its environment, the PostConstruct event
happens after injection is performed and before the first business method in the bean
class is called.

In the case of the ShoppingCart session bean, we could have a business method
called initialize() that initializes the cartItems list, as shown in Listing 2-14.

Listing 2-14. The PostConstruct Method

@PostConstruct
public void initialize() {
cartItems = new Arraylist();

The PreDestroy callback happens after any method where an @Remove annotation has
been completed. In the case of the ShoppingCart session bean, we could have a business
method called exit() that writes the cartItems list into a database. In this chapter, we will
just print out a message to the system console to illustrate the callback. Listing 2-15 shows
the code for the exit () method, which has the @PreDestroy annotation.

Listing 2-15. The PreDestroy Method

@PreDestroy

public void exit() {
// items list into the database.
System.out.println("Saved items list into database");

61

CHAPTER 2 EJB SESSION BEANS

The @Remove annotation is a useful lifecycle method for stateful session beans. When
the method with the @Remove annotation is called, the container will remove the bean
instance from the object pool after the method is executed. Listing 2-16 shows the code
for the stopSession() method, which has the @Remove annotation.

Listing 2-16. The Remove Method

@Remove
public void stopSession() {
// The method body can be empty.
System.out.println("From stopSession method with @Remove annotation");

The PrePassivate callback kicks in when a stateful session bean instance is idle for
too long. During this event, the container might passivate and store its state to a cache.
The method tagged with @PrePassivate is called before the container passivates the
bean instance.

The PostActivate event gets raised when the client application again uses a
passivated stateful session bean. A new instance with restored state is created. The
method with the @PostActivate annotation is called when the bean instance is ready.

Interceptors

There are some minor differences between interceptors for stateless and stateful session
beans. AroundInvoke methods can be used with stateful session beans. For stateful
session beans that implement SessionSynchronization, afterBegin occurs before

any methods that have AroundInvoke annotations and before the beforeCompletion()
callback method.

Exception Handling

The EJB specification outlines two types of exceptions:
e Application exceptions

o System exceptions

62

CHAPTER 2 EJB SESSION BEANS

Application exceptions are exceptions related to execution of business logic that the
client should handle. For example, an application exception might be raised if the client
application passes an invalid argument, such as the wrong credit card number.

System exceptions, on the other hand, are caused by system-level faults, such as
Java Naming and Directory Interface (JNDI) errors or failure to acquire a database
connection. A system exception must be a subclass of a java.rmi.RemoteException or a
subclass of a java.lang.RuntimeException that is not an application exception.

From the EJB application point of view, application exceptions are completed by
writing application-specific exception classes that subclass the java.lang.Exception
class.

In the case of a system exception, the application catches particular exceptions, such
as a NamingException that results from a JNDI failure, and throws an EJBException.

In this chapter, the examples aren’t using any resources as such, but there are more
examples of system exceptions in the later chapters.

Singleton Session Beans

Introduced in EJB 3.1, a singleton session bean is a session bean component that is
instantiated only once per application. For an application, only one instance of a
singleton session bean can ever exist. Once instantiated, a singleton session bean lives
for the full duration of the application. The singleton session bean maintains its state
between client invocations, but it cannot save that state after a container shutdown

or crash. Similar to stateless and stateful session beans, the singleton session bean is
comprised of a bean class and, optionally, one or more business interfaces.

The Bean Class

A singleton session bean class is any standard Java class that has a class-level annotation
of @Singleton. If deployment descriptors are used instead of annotations, the bean
class should be denoted as a singleton session bean. If you are using annotations and
deployment descriptors (mixed mode), then the @Singleton annotation must be
specified if any other class-level or member-level annotations are specified in the class.

63

CHAPTER 2 EJB SESSION BEANS

Note Singleton can be initialized when called for the first time or on deployment
using the annotation “@Startup.”

To illustrate a singleton session bean, we will create a ShopperCount session bean
that will keep track of the number of users logged onto our shopping website. Listing 2-17
shows the definition of the ShopperCount session bean.

Listing 2-17. ShopperCountBean.java
package com.apress.ejb.chapter02;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton (name = "ShopperCount™)

@Startup

public class ShopperCountBean {
private int shopperCounter;

// Increment number of shopper counter
public void incrementShopperCount() {
shopperCounter++;

}

// Return number of shoppers
public int getShopperCount() {
return shopperCounter;

A singleton session bean is instantiated at the discretion of the EJB container.
However, you can annotate the bean class with @Startup to indicate that the container
must initialize the singleton bean during the application startup sequence.

When multiple singleton session beans are used within an application, the
application might require that they be initialized in a specific sequence. @ependsOn
annotation declares the startup dependencies of a singleton session bean. Listing 2-18
shows the definition of the LogShopperCount session bean that is dependent on the
ShopperCount session bean.

64

CHAPTER 2 EJB SESSION BEANS

Listing 2-18. LogShopperCount.java
package com.apress.ejb.chapter02;

import javax.ejb.Singleton;
import javax.ejb.Startup;

import javax.ejb.DependsOn;
import java.util.logging.logger;

@Singleton
@Startup
@ependsOn("ShopperCount™)
public class LogShopperCount {
private final Logger log = Logger.getlogger("LogShopperCount.class");

public void logShopperCount() {
// Log shopper count

Unlike stateless and stateful session beans, a singleton session bean must
not implement the javax.ejb.SessionSynchronization interface or use session
synchronization annotations.

The Business Interface

Business interfaces for singleton session beans are similar to the interfaces for stateless
and stateful session beans, and they are annotated in the same way using @Local and @
Remote annotations. Singleton session beans support the no-interface local view, making
the declaration of a business interface optional for a local view.

Business Methods

Business methods in singleton session beans are similar to the methods in stateless and
stateful session beans. We will augment the ShopperCount bean by adding a business
method that will reset the counter.

65

CHAPTER 2 EJB SESSION BEANS

Listing 2-19 shows the ShopperCount bean implementing business methods.

Listing 2-19. ShopperCountBean.java
package com.apress.ejb.chapteroz;

import javax.ejb.Singleton;
import javax.ejb.Startup;

@Singleton(name = "ShopperCount™)

@Startup

public class ShopperCountBean {
private int shopperCounter = 0;

// Increment number of shopper counter
public void incrementShopperCount() {
shopperCounter++;

}

// Return number of shoppers
public int getShopperCount() {
return shopperCounter;

}

// Reset counter
public void resetCounter() {
shopperCounter = 0;

Lifecycle Callback Methods

Singleton life cycle goes so that we will create the singleton session bean instance and
then after inject the container; it will be put the instance in a managed pool named
“method-ready” waiting for a request.

Singleton session beans support callback events for construction and destruction.
Following are the callbacks that map to the preceding events:

e PostConstruct: Denoted with the @PostConstruct annotation

o PreDestroy: Denoted with the @PreDestroy annotation.
66

CHAPTER 2 EJB SESSION BEANS

PostConstruct callback happens after a bean instance is instantiated in the EJB
container. If the bean is using any dependency injection mechanism for acquiring
references to resources or other objects in its environment, the PostConstruct event
happens after injection is performed and before the first business method in the bean
class is called.

PreDestroy callback happens during application shutdown. The container considers
the DependsOn relationship between singleton session beans and removes them in
a sequence that is in the reverse order of the sequence in which they were created.
For the ShopperCount example, LogShopperCount bean will be removed before the
ShopperCount bean.

Listing 2-20 shows the code for the applicationStartup() method with the
@PostConstruct annotation. This method resets the shopperCounter on startup.
Listing 2-20 also shows the code for the applicationShutdown() method with the
@PreDestroy annotation. This method prints a message on application shutdown.

Listing 2-20. ShopperCountBean.java
package com.apress.ejb.chapter02;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton(name = "ShopperCount")

@Startup

public class ShopperCountBean {
private int shopperCounter;

// Increment number of shopper counter
public void incrementShopperCount() {
shopperCounter++;

}

// Return number of shoppers
public int getShopperCount() {
return shopperCounter;

67

CHAPTER 2 EJB SESSION BEANS

// Reset counter
public void resetCounter() {
shopperCounter = 0;

}

// Reset counter

@PostConstruct

public void applicationStartup() {
System.out.println("From applicationStartup method.");
resetCounter();

}

@PreDestroy
public void applicationShutdown() {
System.out.println("From applicationShutdown method.");

Like a stateless session bean, a singleton session bean is never passivated, so the
@PrePassivate and @PostActivate annotations should not be used to decorate methods
on a singleton session bean.

Concurrency Management

A singleton session bean is instantiated only once per application, and hence it is
designed to support concurrent access. Concurrent access means multiple clients can
access the same instance of a singleton session bean at the same time. The management
of concurrent access is transparent to the clients. A client needs only a reference to a
singleton session bean, and it is unconcerned about other clients accessing the same
instance of the singleton session bean.

Concurrency is managed in two ways:

o Container-Managed concurrency: The container controls
concurrent access and allows fine-grained control of the state
synchronization behavior by offering a fixed set of options. This is the
default concurrency management type.

68

CHAPTER 2 EJB SESSION BEANS

e Bean-Managed concurrency: The container allows full access to
the concurrent bean instance, and the user is responsible for state
synchronization.

The type of concurrency—container-managed or bean-managed—is specified
by the javax.ejb.ConcurrencyManagement annotation specified on the singleton
session bean class. For container-managed concurrency, the type attribute of
@ConcurrencyManagement is set to javax.ejb.ConcurrencyManagementType.CONTAINER;
for bean-managed concurrency, the type attribute of @ConcurrencyManagement is set to
javax.ejb.ConcurrencyManagementType.BEAN.

Container-Managed Concurrency

For a singleton session bean using container-managed concurrency, the container
manages concurrency by associating each business method with either a shared
Read lock or an exclusive Write lock. A Read or Write lock is specified using the @Lock
annotation.

Listing 2-21 demonstrates container-managed concurrency by using the Read
lock on the getShopperCount method and Write lock on the incrementShopperCount
method. With this change, multiple clients can get the value of shopperCounter
concurrently, but access to incrementShopperCount is blocked for all other clients while
one client is accessing it.

Listing 2-21. ShopperCountBean.java
package com.apress.ejb.chapter02;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;

import javax.ejb.ConcurrencyManagement;
import javax.ejb.ConcurrencyManagementType;
import javax.ejb.Llock;

import javax.ejb.LockType;

import javax.ejb.Singleton;

import javax.ejb.Startup;

69

CHAPTER 2 EJB SESSION BEANS

@Singleton(name = "ShopperCount™)
@Startup
@ConcurrencyManagement (ConcurrencyManagementType.CONTAINER)
public class ShopperCountBean {

private int shopperCounter;

// Increment number of shopper counter

@Lock(LockType .WRITE)

public void incrementShopperCount() {

shopperCounter++;

}

// Return number of shoppers

@Lock(LockType.READ)

public int getShopperCount() {
return shopperCounter;

}

// Reset counter
public void resetCounter() {
shopperCounter = 0;

}

// Reset counter

@PostConstruct

public void applicationStartup() {
resetCounter();

}

@PreDestroy
public void applicationShutdown() {
System.out.println("From applicationShutdown method.");

For a singleton session bean, an @Lock annotation at the class level specifies that all
business methods will use the specified lock type unless a different type is explicitly set
at the method level. When the @Lock annotation is not explicitly present on the singleton
session bean class, the default lock type, @Lock (LockType .WRITE), is applied to all
business methods.

70

CHAPTER 2 EJB SESSION BEANS

Bean-Managed Concurrency

In the case of bean-managed concurrency, the container allows full concurrent access
to the singleton session bean instance, and the bean developer must provide protection
to the bean’s internal state against synchronization errors that result from concurrent
access. You can use synchronization primitives like synchronized and volatile for this
purpose.

Error Handling

Errors can occur during initialization of a singleton session bean. These errors are fatal
and, as a result, the singleton session bean instance must be discarded. Attempted
invocations on a singleton session bean instance that failed to initialize will result in
the javax.ejb.NoSuchEJBException. Once a singleton session bean is instantiated
successfully, it will not be destroyed if exceptions are thrown from either business
methods or callbacks.

Timer Service

The EJB Timer Service is a container-managed service that allows callbacks to be
scheduled for time-based events. Timer notifications can be scheduled to occur at a
calendar-based schedule, at a specific time, after a specific time, or at specific recurring
intervals.

Remember that Enterprise bean timers are either programmatic timers or automatic
timers.

Use timers for application-level processes. Don’t use timers for real-time events.
Typical examples of using a timer include the following:

e Atimer in an expense reporting application prints newly filed
expenses every evening at 9 PM.

e Atimer in a bug tracking application emails a list of open bugs to
team members every morning at 6 AM.

e Atimer in a human resources application emails a list of public
holidays to all the employees on the 1st of January every year.

71

CHAPTER 2 EJB SESSION BEANS

Note The timer service of the enterprise bean can be used to enable scheduling
timed notifications for all types of enterprise beans except for stateful session
beans.

As we just said Enterprise bean timers are either programmatic timers or automatic
timers. The programmatic timers can be set by explicitly calling one of the timer
creation methods of the TimerService interface, while the automatic timers are created
by deploying an enterprise bean that contains a method annotated with the javax.ejb.
Schedule or javax.ejb.Schedules annotations.

Creating a timer is simplified in EJB 3.1 via introduction of @5chedule and
@Schedules annotations that automatically create timers based on metadata specified
on a method. In Listing 2-22, we augment our LogShopperCount by adding a recurring
timer that will log the shopper count every two hours.

Listing 2-22. LogShopperCount.java
package com.apress.ejb.chapteroz;

import javax.ejb.DependsOn;
import javax.ejb.Schedule;
import javax.ejb.Singleton;
import javax.ejb.Startup;

@Singleton

@Startup
@DependsOn (" ShopperCountBean")
public class LogShopperCount {

// Logs shopper count every 2 hours
@Schedule(hour="*/2")

public void logShopperCount() {

// Log shopper count

}

72

CHAPTER 2 EJB SESSION BEANS

Pass the Timer object in methods annotated with @Schedule to get information about
the timer. Listing 2-23 demonstrates the use of the Timer object to get information about
the timer that just expired.

Listing 2-23. LogShopperCount.java
package com.apress.ejb.chapter02;

import javax.ejb.DependsOn;
import javax.ejb.Schedule;
import javax.ejb.Singleton;
import javax.ejb.Startup;
import javax.ejb.Timer;

@Singleton

@Startup
@DependsOn (" ShopperCount")
public class LogShopperCount {

// Logs shopper count every 2 hours
@Schedule(hour="*/2")

public void logShopperCount(Timer timer) {
// Log shopper count

String timerInfo = (String) timer.getInfo();
System.out.println(timerInfo);

}
}

Calendar-Based Time Expressions

The Timer Service is inspired by the UNIX cron utility. Table 2-1 lists the various
attributes of a calendar-based time expression.

73

CHAPTER 2 EJB SESSION BEANS

Table 2-1. Attributes of calendar-based time expression

Attribute Description Allowable Values Default

second One or more seconds [0,59] 0
within a minute

minute One or more minutes [0,59] 0
within an hour

hour One or more hours [0,23] 0
within a day

dayOfMonth ~ One or more days [1,31]or[-7,-1]or“Last” or {1st, 2nd, 3rd, *
within a month 4th, 5th, “Last”} {“Sun”, “Mon”, “Tue”, “Wed”",

“Thu”’ “Fri”’ I‘Satll}

month One or more months [1,12]or{*Jan”, “Feb”, “Mar”, “Apr”, “May”, *
within a year “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”}

dayOfWeek One or more days [0,7]or{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, *
within a week “Fri”, “Sat”}

year A particular calendar ~ 4-digit calendar year *

year

Note For dayOfWeek, both 0 and 7 represent Sunday and a negative number

(=7 to —1), which means the nth day or days before the end of the month. All

string constants (“Sun”, “Jan”, “Last”, “1st”) are case insensitive. Increments
are supported only by second, minute, and hour. Duplicate values within a list are

ignored.

Examples of Calendar-Based Time Expressions

Let us see some examples that demonstrate the use of calendar-based time expressions.

o “Every second of every minute of every hour of everyday”

74

@Schedule(second="*", minute="*", hour="*")

CHAPTER 2

“Every fifteen minutes within the hour”

e @Schedule(minute="*/15", hour="*")

e @Schedule(minute="0, 15, 30, 45", hour="*")
“Every Friday at midnight”

e @Schedule(dayOfWeek="Fri")

“Every six hours on weekends”

e @Schedule(hour="*/6", dayOfWeek="Sat, Sun")

“Every weekday morning at 7:30am U.S. Pacific Time”

EJB SESSION BEANS

e @Schedule(minute="30", hour="7", dayOfWeek="Mon-Fri",

timezone="America/Los_Angeles")

“On 10th of January and September at 6am”

e @Schedule(month="Jan, Sep", dayOfMonth="10", hour="6")

“Last Friday of December at 6pm”

o @Schedule(month="Dec", dayOfMonth="Last Fri", hour="18")

“Second to last day (one day before the last day) of each month”

e @Schedule(dayOfMonth="-1")
“Every day only for year 2013”
e @Schedule(year="2013")

Timer Persistence

application shutdown, container crashes, and container shutdowns.

timer was created.

Timers are persistent. A timer is persisted by the Timer Service by storing it in a database.
The database used by the Timer Service can be changed by setting the Timer Service’s
Timer DataSource setting to a valid JDBC resource. Persistence helps timers survive

Persistence can be disabled on a per-timer basis by setting the persistent attribute
of the @Schedule annotation to false. A non-persistent timer’s lifetime is associated with
the JVM that created it. A non-persistent timer is considered cancelled in the event of
application shutdown, container crash, or crash/shutdown of the JVM on which the

75

CHAPTER 2 EJB SESSION BEANS

Client View for Session Beans

A session bean can be seen as a logical extension of a client program or application,
where much of the logic and data processing for that application happens. A client
application typically accesses the session object through the session bean’s client view
interfaces. These are the business interfaces that were discussed in earlier sections.

A client application that accesses session beans can be one of three types:

e Remote: Remote clients run in a separate JVM from the session beans
that they access, as shown in Figure 2-4. A remote client accesses a
session bean through the bean’s remote business interface. A remote
client can be another EJB, a Java client program, or a Java servlet.
Remote clients have location independence, meaning that they can
use the same API as the clients running in the same JVM.

e Local: Local clients run in the same JVM, as shown in Figure 2-3, and
access the session bean through the local business interface. A local
client can be another EJB, or a web application using Java Servlets,
JavaServer Pages (JSP), or JavaServer Faces (JSF). Local clients are
location dependent. Remote and local clients are compared in
Table 2-2.

Table 2-2. Considerations for Choosing Between Local and Remote Clients

Remote Local

Loose coupling between the bean and the client Lightweight access to a component
Location independence Location dependence

Expensive remote calls Must be collocated with the bean
Objects must be serialized Not required

Objects are passed by value Objects are passed by reference

o Web Services: You can publish stateless session beans as web services
that can be invoked by Web Services clients. We will discuss Web
Services and clients in Chapter 6.

76

CHAPTER 2 EJB SESSION BEANS

In some cases, the session beans need to have both local and remote business
interfaces to support different types of client applications. A client can obtain a session
bean’s business interface via dependency injection or JNDI lookup. Before invoking
the methods in the session bean, the client needs to obtain a stub object of the bean via
JNDI. Once the client has a handle to the stub object, it can call the business methods
in the session bean. In the case of a stateless session bean, a new stub can be obtained
on every invocation. In the case of a stateful session bean, the stub needs to be cached
on the client side so that the container knows which instance of the bean to return on
subsequent calls. Using dependency injection, we can obtain the business interface of
the SearchFacade session bean with the following code:

@EJB SearchFacade searchFacade;

If the client accessing the session bean is remote, the client can use JNDI lookup
once the context interface has been obtained with the right environment properties.
Local clients can also use JNDI lookup, but dependency injection results in simpler
code. Listing 2-24 shows the SearchFacadeTest client program’s code that looks up the
SearchFacade bean, invokes the wineSearch() business method, and prints out the
returned list of wines. SearchFacadeClient also looks up the ShopperCount singleton
bean and invokes the getShopperCount () business method to print the number of
shoppers logged.

Note If the remote client is a Java application or command-line program, an
application client container can be used to invoke the session beans. Application
client containers support dependency injection for remote clients. We will discuss
application client containers in Chapter 12, along with other types of client
applications.

Listing 2-24. SearchFacadeClient.java

package com.apress.ejb.chapter02;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Llist;

import javax.ejb.EJB;

77

CHAPTER 2 EJB SESSION BEANS

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "SearchFacadeClient", urlPatterns = {
"/SearchFacadeClient"})
public class SearchFacadeClient extends HttpServlet {

@EJB
SearchFacadeBean searchFacade;

@EJB
ShopperCountBean shopperCount;
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SearchFacadeClient</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1> Starting Search Facade test ... </h1>");

out.println("<h1>SearchFacade Lookup</h1>");

out.println("<h1>Searching wines</h1>");

List winesList = searchFacade.wineSearch("Red");

out.println("<h1>Printing wines list</h1>");

for (String wine:(List<String>)winesList){
out.println("<h1>" + wine + "</h1>");

78

CHAPTER 2 EJB SESSION BEANS

System.out.println("Printing Shopper Count after

incrementing it ...");

shopperCount.incrementShopperCount();

out.println("<h1>" + shopperCount.getShopperCount() + "</h1>");

out.println("</body>");

out.println("</html>");
} finally {

out.close();

}

@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
public String getServletInfo() {
return "Short description”;

Listing 2-25 shows the ShoppingCartClient servlet, which looks up the stateful

ShoppingCart session bean, calls the addWineItem() business method to add a wine to

the shopping cart, calls the getCartItems() business method to get the items in the cart,

and finally prints the list of wines in the shopping cart.

79

CHAPTER 2

EJB SESSION BEANS

Listing 2-25. ShoppingCartClient.java

package com.

import
import
import
import
import
import
import
import
import
import

@WebServlet(name

java.
java.
java.
java.

javax.
javax.
javax.
javax.
javax.

apress.ejb.chapter02;

io.IOException;

io.Printhriter;
util.Arraylist;
util.List;
javax.ejb.EJB;

servlet.ServletException;
servlet.annotation.WebServlet;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
servlet.http.HttpServletResponse;

= "ShoppingCartClient”, urlPatterns = {

"/ShoppingCartClient"})
public class ShoppingCartClient extends HttpServlet {

@EJB

ShoppingCartBean shoppingCart;

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

80

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

try

{

out

out.
out.
.println("</head>");

out

out.
out.

out.
out.

.println("<html>");

println("<head>");
println("<title>Servlet ShoppingCartClient</title>");

println("<body>");
println("<h1>Starting Shopping Cart test ... </h1>");

println("<h1>ShoppingCart Lookup </h1>");
println("<h1>Adding Wine Item </h1>");

shoppingCart.addWineItem("Zinfandel");

out.

println("<h1>Printing Cart Items </h1>");

CHAPTER 2 EJB SESSION BEANS

Arraylist cartItems = shoppingCart.getCartItems();
for (String wine: (List<String>)cartItems) {
out.println("<h1>" + wine + "</h1>");

}

out.println("</body>");
out.println("</html>");

} finally {
out.close();
}
}
@Override

protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
public String getServletInfo() {
return "Short description”;

Listing 2-26 shows the ShopperCountClient servlet, which looks up the singleton

ShopperCount session bean, calls the resetCounter () business method to reset the

shopper count, calls the incrementShopperCount () business method to increment the

shopper count, and finally prints the total number of shoppers counted. The value of

shopper count will be visible across the application.

81

CHAPTER 2

EJB SESSION BEANS

Listing 2-26. ShopperCountClient.java

package com.apress.ejb.chapter02;

import
import
import
import
import
import
import
import

java.
java.

javax.
javax.

javax

javax.
javax.

javax

io.IOException;

io.Printhriter;

ejb.EJB;
servlet.ServletException;
.servlet.annotation.WebServlet;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
.servlet.http.HttpServletResponse;

@WebServlet(name = "ShopperCountClient", urlPatterns =

{"/ShopperCountClient"})

public class ShopperCountClient extends HttpServlet {
@EJB
ShopperCountBean shopperCount;
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

82

resp
Prin
try

throws ServletException, IOException {
onse.setContentType("text/html;charset=UTF-8");

thWriter out = response.getWriter();

{

/* TODO output your page here. You may use following sample
code. */

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet ShopperCountClient</title>");
out.println("</head>");

out.println("<body>");

out.println("<h1>Resetting Shopper Count ... </h1>");
shopperCount.resetCounter();
out.println("<h1>Incrementing Shopper Count ... </h1>");
shopperCount.incrementShopperCount();
out.println("<h1>Shopper Count: "
getShopperCount() + "</h1>");

+ shopperCount.

CHAPTER 2 EJB SESSION BEANS

out.println("</body>");

out.println("</html>");
} finally {

out.close();

}

@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@verride
protected void doPost(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@verride
public String getServletInfo() {
return "Short description”;

Compiling, Deploying, and Testing the Session
Beans

Session beans need to be packaged into EJB JAR (. jar) files before they are deployed
into EJB containers. In the case of some EJB containers or application servers,
packaged EJB archives need to be assembled into Enterprise Archive (EAR) files before

deployment. EJB containers or application servers provide deployment utilities or Ant
tasks to facilitate deployment of E]JBs. Java IDEs (integrated development environments)

like JDeveloper, NetBeans, and Eclipse also provide deployment features that allow

83

CHAPTER 2 EJB SESSION BEANS

developers to package, assemble, and deploy EJBs to application servers. Packaging,
assembly, and deployment are covered in detail in Chapter 11.

So far in this chapter we have developed one stateless session bean (SearchFacade),
one stateful session bean (ShoppingCart), and one singleton session bean
(ShopperCount). The following sections will walk you through the steps necessary to
compile, deploy, and test these session beans.

Prerequisites

Before performing any of the steps detailed in the next sections, complete the “Getting
Started” section of Chapter 1. This section will walk you through the installation and
environment setup required for the samples in this chapter.

Compiling the Session Beans and Their Clients

Copy the Chapter02-SessionSamples directory and its contents into a directory of your
choice. Run the NetBeans IDE and open the Chapter02-SessionSamples project using
the File » Open Project menu. Make sure the Open Required Projects check box is
checked, as shown in Figure 2-7.

P Lookin: | |, SampleCode = &2
< “f; (R N Chapter02-SessionSamples Project Name:
Chapter(2-SessionSamples
-' [¥] Open Required Projects:
Chapter02-SessionSamples-ejb (Chapter02-SessionSamples
Desktop Chapter(2-SessionSamples-war (Chapter02-SessionSample:
My m&
A
Computer
4 | m J +

@ File name: C:\SampleCode\Chapter02-SessionSamples

Open Project
S ofipes oo -

Figure 2-7. Opening the Chapter02-SessionSamples project

84

CHAPTER 2 EJB SESSION BEANS

Expand the Chapter02-SessionSamples-ejb node and observe that the three session
beans that we created appear in the com.apress.ejb.chapter02 package. Similarly, the
three client servlets appear under the Chapter02-SessionSamples-war node, as shown
in Figure 2-8.

File Edit View Navigate Source Refactor Run
PSS DO

Projects % |Files | Services | =
@ /A Chapter02-SessionSamples
%
-1}y Source Packages
=-EE com.apress.ejb.chapter02
- |&| SearchFacadeBean.java
@ ShopperCountBean.java
~-[& shoppingCartBean.java
[Libraries
. @[Enterprise Beans
@- [Configuration Files
g Server Resources
=@ Chapter02-SessionSamples-war
/> Web Pages
-}y Source Packages
&5 com.apress.ejb.chapter02
--|&] SearchFacadeClient.java
; @ ShopperCountClient.java
“-|@| shoppingCartClient.java
@l Lbraries
#-[& Configuration Files

Figure 2-8. Verifying that Session Beans and their clients are available in the
project

Invoke the context menu on Chapter02-SessionSamples node and build the
application by selecting the Clean and Build menu option, as shown in Figure 2-9.

85

CHAPTER 2 EJB SESSION BEANS

File Edit View Navigate Source Refactor Run Debug Profile Team
PSS D -] T

Projects % |Files | Services | = ’

RV Chapter02-SessionSamples |}
=-Q Chapter02-SessionSample! Add Java EE Module...

E}'\El _uSER.I'C& Packages New »

=B corn.q:re-ss.ej::.d'ql

~[@ searchFacadel gyl
€] ShopperCounty o Build

_ --[&) shoppingCartE
@ ib Libraries Clean
/> Enterprise Beans Verify
& Configuration Files
- |jg ServerResources Run

=@ Chapter02-SessionSample! Deploy

Figure 2-9. Building the application

Deploying the Session Beans and Their Clients

Once you have compiled the session beans and the servlet clients, you can deploy
the application to the GlassFish application server. Invoke the context menu on
Chaptero2-SessionSamples node and deploy the application by selecting the Deploy
menu option, as shown in Figure 2-10.

86

Figure 2-10. Deploying the application

CHAPTER 2 EJB SESSION BEANS

File Edit View Navigate Source Refactor Run Debug Profile Team

PSS '—v@’

-] T

Projects # | Files ISer'mes | = ‘
2 W Chapter02-SessionSamples I s
% Chapter02-SessionSamples Add Java EE Module...
=] E} Source Packages New »
= com.apress.ejb.ch
[# searchFacadet Build
[#] shopperCount Clean and Build
: @ ShoppingCartd Clean
@[Enterprise Beans Verify
[} Jg Configuration Files Run
\fg Server Resources
=@ Chapter02-SessionSamples Deploy
@5 Web Pages Debug
-}y Source Packages Profile

1 s mmcnan it S

NetBeans will start the integrated GlassFish application server and deploy the

application to the server as shown in Figure 2-11.

éii-

& U WebPages
= Uy Source Packages.
=B comacrens.ep.chapterly

Ei searchFacadecient javs
B shepperCounsClent ava
B SwppnglariCient. e

i [Lbreries

& [Configuraben Fles

@ TH > BG-

Learn & Discover

Take 3 Tour
Try a Sample Project
Wimars New

Commurity Comer

- —

[+[:][=](=]

Demos & Tutorials Featured Demo =

Java SE Applicaicas Cannot connect tointemet.
Jaa ang JavaFx GUI Applications
Java EE & Jav.

D ADPICBONS

CICe+ ADpRCIINS
PHP ang HTMLS Applications
Modile ang EmBeaded Applications

All Daling Documentation »»

S Wl Gl T AN Wity ey Lkl ety B S i g ey iy
Sun Fab 11 09:60:3% EET 2018 : Apache Derky Wetwerk Server - 10.11.1.7 - (1629631} suarved and Fesdy ©To Accept comnsctices on pars 1627

Figure 2-11. Application deployment result

87

CHAPTER 2 EJB SESSION BEANS

The server’s log window will log the deployment status of the application as shown

in Figure 2-12.

StartPage [ERE[EA]E=)
-]
Output % | =1
1| Chapterd2-5essionSamples (run-depioy) i |Jmnnnmmwm u | GlassFish Server4.1.1 &
op| Info: visiting unvisited references ' =1
Info: Java security manager is disabled.
W Info: Entering Security Starvup Service.
El| Info: loading policy provider com.sun.enterprise.secusity.provides.PolicyWzapper.
@ Infe: Secuzity Service(s! starzed succes iy.
Infe: Created HITP listener http-listenez-l on host/pors 0.0.0.0:8080
Created HITP listener hotp-listener-2 on host/pezt 0.0.0.0:8181
Created HITP listener admin-listener on host/port 0.0.0.0:4848
Created virtuasl server server
Created virtual server __ asadmin
Setting JAAE app name glassfish-web
Virtual server server loaded default web module
Toplevel AvailabilityService.getAvailabilityEnabled: (truel
Teplevel EZjbAvailabilicyService.getAvailabilizyZnabled: [sruel
Glcbal AvailabilityEnabled: [tzue], application AvailabilicyEnabled: [false]
StazefulConcainezBuilder AvailabilizyEnabled (false] for this applicazicn
StatefulContainerBuilder.buildStoreManager() storeHame: ([SheppingCars 139074~ 1
[FileBackingStore: :initialize] Successfully Created and initialized store. Working dir: C:\Users\nardema\AppData'\Roaming\NetBeans\8.:
StatefulContainerbuilder instantiated store: org.glassfish.ha.store.adapter.file FileBacki 12afe78e, with h pled [falsel, [
Portable JNDI names for EJB ShoppingCart: [java:global/Ch -Sessi les/Ch 2-5 Sasples-eib/ShoppingCart, java:globe
Portable JNDI names for EJB ShopperCount: [dava:global/Ch ionSamples/Ch 2=5, Sazples-eib, Count, java:globs
Portable JHDI names for EJB Searchfacade: [Java:gleobal/C les/Ch 2-8 Sazples-eib/SearchFacads, java:globs
WELD-000%00: 2.2.13 (Final)
WELD-00LT00: Incezrceptor annotaticn class javax.ejb.Postictivate not found, intercepticn based on it is not enabled
WELD-00L700: Interceptsr annotaticn class Javax.ejb. net found, icn based on it is not enabled =
WELD-000411: Observer methed [BackedAnnotatedMethod] public org.glassfish.jms.injection. JMSCDIExtension.processAnnotatedType (§0bserve
WELD-000411: Ob mathed (B] org.qlassfish.s impl.Ser Extension atedlype (0bserve
WELD-000411: Observer method [B 1p org.glassfish jersey.ext cdilx internal . Cdi P! d
Frem applicaticnStartup method.
Loading application [C -Sesai lesgCh 2 Samples-wvar.war] at [Chapter(2-SessicnSamples-war]
Chap -1 ionS. les was fully depl d in 4 831 milliseconds. 3
7] m »

Figure 2-12. Log showing successful deployment

Running the Client Programs

Once the session beans and their client servlets are successfully deployed, we need
to set the run target that we wish to execute. We have a choice of three run targets:

ShopperCountClient, SearchFacadeClient, or ShoppingCartClient. To set the run
target invoke the context menu on Chapter02-SessionSamples node and select the

Properties menu option. Select the Run category and enter the run target in Relative

URL text field and OK the dialog. Notice in Figure 2-13 that JDK 1.8 is used as library to
build the Application.

88

CHAPTER 2 EJB SESSION BEANS

© Project Properties - Chapter02-5

Categories:

g1:
i

e B
i

P

|

=@ Run
+~ @ License Headers
- @ Formatting

Java Platform: DK 1.8 (Default)

Libraries Folder:

Compile | Processor | Compile Tests | Run Tests|

Compile-time Libraries:
Library Required in runtime Add Project...
Add Library...
Edit
Remove

Move Down

[V] Build Required Projects (Projects Used as Libraries)

[ox J[concel J[nee

Figure 2-13.]DK 1.8 as buiding Java libraries

To run the client servlets, invoke the context menu on Chapter02-SessionSamples

node and select the Run menu option as shown in Figure 2-14.

89

CHAPTER 2 EJB SESSION BEANS

File Edit View ﬂavigate Source Refgctor Run Debug Profile Tean
PEES D@ -1 ¥

=

Projects # | Files
& A Chapter02-SessionSampleg s
25 caapmozsmsyruﬁ' Add Java EE Module...
B U‘g Source Packages New >
=[5 com.apress.ejb. d*

@] Seadf-acadq Build

S"”PP'E"CCU‘(Clean and Build

@1 ShoppingCarf jean

@@ Lbraries .
@[}y Enterprise Beans L
[}53 Configuration Files B

=3 @ Chapter02-SessionSamplel 5t

. hb Web Pages DEbUg
J;; Source Packages Profile

Figure 2-14. Running the selected servlet

NetBeans will open your default browser and execute the selected servlet. The
output for the three client servlets is shown in Figures 2-15, 2-16 and 2-17.

lor

File Edit View Favonts Tools Help

@ http flncalhost 8080/ Chapter02-SessionSamples-war/ShopperCountClient D~ @Ser\rlet ShopperCountClient X

Resetting Shopper Count ...
Incrementing Shopper Count ...

Shopper Count: 1

Figure 2-15. Output of ShopperCountClient servlet

90

CHAPTER 2 EJB SESSION BEANS

2)| @ http://localhost8080/Chapter02-SessionSamples-war/SearchFacadeClient 0 ~ C | & Servlet SearchFacadeClient

File Edit View Favorites Tools Help

Starting Search Facade test ...
SearchFacade Lookup
Searching wines

Printing wines list

Bordeaux

Merlot

Pinot Noir

2

Figure 2-16. Output of SearchFacadeClient servlet

p-cl@ Servlet ShoppingCartClient

m' & http://localhost:8080/Chapter02-SessionSamples-war/ShoppingCartClient

File Edit View Favorites Tools Help

Starting Shopping Cart test ...
ShoppingCart Lookup
Adding Wine Item

Printing Cart Items
Zinfandel

Figure 2-17. Output of ShoppingCartClient servlet

91

CHAPTER 2 EJB SESSION BEANS

Note The application client container will be covered in detail in Chapter 12.

Summary

This chapter covered EJB session bean details using a specific set of examples. We
looked at the simplified EJB model for developing session beans using standard Java
language artifacts, such as Java classes and interfaces. We looked at session beans and
some typical use cases in which session beans can be used for developing applications.
We discussed three different types of session beans (stateless, stateful, and singleton),
including the differences between them, and some general use cases for each. We
covered session bean usage in 2-tier and 3-tier application architectures. We discussed
the usage of dependency injection in stateless, stateful, and singleton beans. We
considered ways to gain fine-grained control over application flow, including the use of
lifecycle callback methods and interceptors in stateless and stateful beans, as well as the
use of annotations like @PostConstruct and @PreDestroy. We looked at what is required
to compile/build, package, and deploy session beans to the GlassFish application server.
Finally, we looked at running the sample client programs using the GlassFish application
client container.

In the next two chapters, we will drill down into the Java Persistence API (JPA) so
that you can learn how to map POJOs to database tables and perform query and CRUD
operations.

92

CHAPTER 3

Entities and the Java
Persistence API (JPA)

Now that you have explored how EJB provides business services through session beans,
we'll turn your attention to a different kind of component called entities, which are
classes that represent tables in a database, and whose instances represent rows in those
tables. Whereas session beans provide services to a client application, entities represent
the business data. A common pattern is for a session bean to provide a convenient
interface for manipulating entities in the context of transactional, security, access
control, and other enterprise services. Methods to perform Create, Retrieve, Update, and
Delete operations, also known as CRUD methods, are exposed on a session bean to the
client to provide a “facade” pattern that we will use throughout the book.

The Java Persistence consists of four areas:

e The Java Persistence API

e The Java Persistence Criteria API

e The Query Language

e Object & Relational Mapping Metadata

Java Persistence API (JPA) was first introduced in Java EE 5, and it marked a
departure from the previous persistence model of “entity beans” that were defined as
part of the EJB specification. JPA is widely regarded as a tremendous improvement over
the entity beans model defined in earlier versions of EJB. JPA borrows unabashedly
from both proprietary and open source models such as TopLink, Hibernate, JDO, and
Spring, which gained traction as popular alternatives to the often heavyweight and
cumbersome entity bean model defined in earlier E]JB revisions. Consequently, like
session beans, entities are simple POJOs (plain old Java objects), and apart from a sliver
of metadata indicating that they are an entity—captured in a Java annotation or in the

93
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018

J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_3

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

persistence XML descriptor—they are a very clean representation of the underlying
database table. While JPA expanded the persistence model in reach and ability, entities
themselves conveniently became largely decoupled from their supporting persistence
framework, allowing them to be used as ordinary POJOs as well as objects managed by
the persistence framework, both inside and outside a Java EE container.

JPA 1.0 was introduced in Java EE 5, JPA 2.0 accompanied Java EE 6, JPA 2.1 followed
by Java EE 7, and JPA 2.2 was included in Java EE 8. The final version of JPa 2.2 will be
part of Java EE 9.

Note When using a JPA 1.0, JPA 2.0, or JPA 2.1 implementation, the schema
willbe orm_1 0.xsd, orm_2 0.xsdororm 2 1.xsd respectively, located at
http://xmlns.jcp.org/xml/ns/persistence/. When using the JPA 2.2
the schema will be instead named persistence_2_2.xsd and it will be also located
as before at http://xmlns.jcp.org/xml/ns/persistence/

In this book we will utilize version 2.2 of the Java Persistence API as part of the
Java EE 8.

Notice that in general JPA 2.2 is just a small release with a few new features added,
while the rest of them will be still part of the JPA 2.1.

Maintenance release of JPA 2.2 started during 2017 under JSR 338 and was finally
approved on June 19, 2017.

Here is the official Java Persistence 2.2 Maintenance release statement:

“The Java Persistence 2.2 specification enhances the Java Persistence API with
support for repeating annotations; injection into attribute converters; support for
mapping of the java.time.LocalDate, java.time.LocalTime, java.time.LocalDateTime,
java.time.OffsetTime, and java.time.OffsetDateTime types; and methods to retrieve the
results of Query and TypedQuery as streams.”

The JPA 2.2. changelog file can be found here:

https://jcp.org/about]ava/communityprocess/maintenance/jsr338/Changelog-
JPA-2.2-MR.txt

In the spirit of this book, the two chapters on persistence will cover the most
commonly used features included in JAP 2.2, describing their use through practical
examples using our online wine store application. This chapter will get you started
writing entity classes and using the key persistence features. The next chapter will
explore more advanced persistence features. Through examples, these chapters explain

94

http://xmlns.jcp.org/xml/ns/persistence/
http://xmlns.jcp.org/xml/ns/persistence/
https://jcp.org/aboutJava/communityprocess/maintenance/jsr338/ChangeLog-JPA-2.2-MR.txt
https://jcp.org/aboutJava/communityprocess/maintenance/jsr338/ChangeLog-JPA-2.2-MR.txt

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

the major areas of the persistence-programming model. They are not meant, however, to

be a substitute for the expansive JPA specification. We encourage you to refer to the JPA

spec when you're ready to explore details that go beyond the scope of this discussion.

Table 3-1 summarizes what we’ll be covering in this chapter.

Table 3-1. Key Topics in This Chapter

Concept

Description

An entity example

Primary entity
annotations

The
EntityManager

Entity life cycle

Object/relational
(O/R) mapping

Entity
relationships

Java Persistence
Query

We begin with a simple JavaBean and progressively add annotations required to
transform it into a simple entity and then beyond.

Further refining the requirements of an entity, the entity class must have a
no-argument public or protected constructor and must not be final. Entities
define their persistent structure through their JavaBeans property accessors or
instance variables, and they may also include custom methods.

The EntityManager object provides persistence services, including transaction
management and query, merge, remove, find, and refresh operations. It is central
to an understanding of the JPA persistence framework.

An entity instance may go through many formal states during its life as an
in-memory Java object. Understanding these different states will help you
know when the entity is in a consistent or inconsistent state with the back-end
database and how to reconcile these differences within a transactional context.

JPA defines declarative markup through annotations and/or XML descriptors to
map entity fields to table columns in a relational database management system
(RDBMS).

Entity classes may hold unary and collection references to themselves or
to other entities. Note that, in JPA, relationship fields are not bidirectionally
maintained by the container.

JPA defines an SQL-like language—JPQL—that supports queries along with
bulk update and Language (JPQL) delete operations. Queries may either be
defined statically, as named queries, or dynamically. Queries may take bind
parameters and return Java objects, including entity instances or Maps.

(continued)

95

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Table 3-1. (continued)

Concept Description

Persistence vs. As a practical consideration when designing your entity classes, consider whether

Adaption the entity class is the primary design object or whether the database schema is the
source of truth. In the former case, the database serves mainly to persist the entity
data; whereas in the latter case, the entity class serves to adapt the table into Java.

Example Finally, we give an example application consisting of three JPA entities, an EJB,
application and an HTTP servlet that demonstrates all of the concepts in this chapter in a
simple, working model.

An Entity Example

Let’s take a look at how you can transform a simple JavaBean into an entity and
progressively customize it to add functionality and flexibility.

A Simple JavaBean: Customer.java

We begin with a simple JavaBean, as shown in Listing 3-1. This class has properties as
defined by the JavaBeans standard. Each property on the JavaBean is represented to the
world outside the bean through a pair of property accessor methods. For each property,
a getter method retrieves its data, and a setter method assigns it. Internally, these
property accessor methods read and write to a private, dedicated instance variable on
the JavaBean class.

Listing 3-1. A Simple JavaBean

public class Customer {
private long customerId;
private String name;

public long getCustomerId() { return customerId; }

public void setCustomerId(long customerId) { this.customerId = customerId; }
public String getName() { return name; }

public void setName(String name) { this.name = name; }

96

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

A Simple Entity: Customer.java

Listing 3-2 shows our simple JavaBean after it has been transformed into an entity.

Listing 3-2. A Simple Entity

@Entity

public class Customer implements Serializable {
@Id
private long customerId;
private String name;

public long getCustomerId() { return customerId; }

public void setCustomerId(long customerId) { this.customerId = customerId; }
public String getName() { return name; }

public void setName(String name) { this.name = name; }

The only changes required were to add the @Entity and @Id annotations. The @Id
annotation identifies customerId as the primary key for the entity, which is required to
express its unique identity. These are the minimum metadata requirements to transform
this class into an entity. We also added the Serializable interface, as this is a good
practice to ensure compatibility with remote clients.

The @Entity Annotation

The @Entity annotation is required to identify this class as an entity at the time the entity
is deployed. When entities are deployed in a persistence archive (JAR file), they may be
accompanied by non-entity classes. This annotation, or its equivalent declaration in the
orm.xml file, tells the container to look for further annotations on the class and otherwise
handle its O/R mappings, allow it to participate in queries and persistent relationships
with other entities, and undergo byte weaving or other procedures when they are later
instantiated by the persistence provider. All classes that are not marked as entities are
ignored by the persistence provider during deployment.

97

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

The @Id Annotation

The @Id annotation indicates which field or fields—there may be several—is the entity’s
primary key, or identifier. The value in the identifier field (or fields) must be unique
across all entity instances of the entity type Customer so that it can uniquely identify this
entity. In the case that the primary key spans multiple columns in the table, a composite
primary key is required, and the @1d fields may be replaced by a single field that is
annotated @EmbeddedId. We will discuss how to specify composite keys later

in the chapter.

Comparison with EJB 2.x

The fundamental JPA coding construct is the entity class. In E]JB 2.x and earlier, an entity
bean served as the primary persistence object and was comprised of a bean class and
alocal and/or remote component and home interface. Beginning with JPA, most of

the trappings of the entity bean have been stripped away or simplified through strong
use of defaults and annotations. What remains is simply the entity bean class, known
now as the entity class, or more simply still, the entity. While it is equally valid to specify
persistence metadata in an XML descriptor, for brevity, all examples in this chapter

use Java annotations. As in the EJB 3 realm, each declarative construct specified by an
annotation has a corresponding representation in the XML descriptor for the persistence
unit (collection of collocated entities), and so may be equivalently specified in XML. The
decision whether to use annotations or XML is entirely a matter of personal choice.

Configuration by Default

The previous two annotations were specified explicitly. Given the EJB 3 simplified
development model that leverages configuration by default, you will not be surprised
to find out that a lot of other metadata in this example is implied by default. Before
exploring these default settings, it is worth considering why the @Entity and @Id
annotations were chosen to be specified explicitly, rather than implied implicitly.

The @Entity annotations could have been the default settings for each class
deployed through a persistence archive, and a hypothetical @NotEntity annotation
could have been used to specify a non-entity class. However, following the pattern set by
session- and message-driven beans, the explicit opt-in pattern was chosen instead.

98

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Similarly, all fields could have been assumed to be part of the primary key, but
in practice only a small subset (usually only one) of an entity’s properties typically
comprises an entity’s primary key. The spec designers felt that it makes better sense
in this case to use the opt-in pattern of explicitly specifying @1d on primary key
fields, implying that all columns are not part of the primary key. This type of decision
characterizes the configuration-by-default approach, in which annotations are not
required for the more common cases and are only used when an override is needed.

The next section will examine some of the behavior that this Customer entity
acquired by default, and it will show how you can override this default behavior.

An Entity with Defaults Exposed: Customer.java

Listing 3-3 shows the same entity with some of its defaults shown.

Listing 3-3. An Entity with Defaults Shown

@Entity(name="Customer")
@Table(name=" CUSTOMER")
public class Customer implements Serializable {
@Id
@Column(name="CUSTOMERID", table="CUSTOMER", unique=true,
nullable=false, insertable=true, updatable=true)
private long customerId;

@Basic(fetch=FetchType.EAGER)
@Column(name="NAME", table="CUSTOMER")
private String name;

/7 ...

Each entity has a name, and unless otherwise specified, this name defaults to the
unqualified class name, which in this case is LiCustomer. This name is used when
referring to the entity in query statements (Java Persistence Query Language, or JPQL,
is covered in Chapter 4) and is typically specified when the unqualified class name is
awkward or is a reserved name in JPQL.

99

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

The @Table Annotation

An entity instance typically represents a single row in a table, and it exposes each
column value in that row through a corresponding property on the entity. Consequently,
an entity must map to a table in a database, and that table is specified using the @Table
annotation. Its name defaults to the entity name. Since not all databases support
mixed-case table names, this translates to a table named CUSTOMER.

The @Column Annotation

Similarly, each field declared on the entity maps by default to a column with the same
name, and so the customerId and name fields map to the CUSTOMERID and NAME columns
in the CUSTOMER table. The @Column annotation may also be used to override default
column-type information, as well as column-level constraints, such as those used to
indicate that the column is optional, insertable, and/or updatable. Ordinarily, it is only
necessary to specify this level of detail when you are relying on the container to create
the table when an entity is deployed.

The @Basic Annotation

Entity fields that are of simple Java types, such as String or int (like the customerId
and name fields), are automatically configured by the JPA to use the @Basic annotation.
Arrays of simple types, and any other type that implements the Serializable interface,
may also be marked @Basic.

The persistence framework provides automatic conversion of column data types
to certain Java types, and JPA persistence providers will attempt to define a suitable
default column type when generating tables for entity classes during deployment. Most
numeric, string, and date types will be converted automatically.

Table 3-2 presents a list of Java types that can be annotated @Basic and mapped
automatically.

100

CHAPTER 3

ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Table 3-2. Field/Property Types That Are Valid for Simple Mappings

Java Type

Java primitive types (int, long, char, and so on)

Primitive wrapper types (Integer, Long, Char, and so on)

Java serializable types

User-defined serializable types

enums

java

java.
Jjava.

java.
java.
java.

java.

java
byte
Byte

char

.lang.String
math.BigInteger
math.BigDecimal

util.Date
util.Calendar
sql.Date
sql.Time
.sql.Timestamp
[]

[]

[]

Character|[]

Additional Field Types

There are a number of other type specifiers that may be applied to different types of

columns. For instance, an entity may also hold references to other entities, and these

references are also represented by properties on the entity. We will look at some

examples of how to specify these relationship properties later in this chapter.

101

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

An entity may have methods beyond its property access methods, but typically these
are limited to support methods for managing add and remove operations from collection
relationship properties.

Coding Requirements

In addition to the @Entity annotation and a primary key specifier, the minimal coding
requirements for an entity are that it has a public or protected default (no-argument)
constructor and that the class is not final. In this Customer example, a default constructor
was implied since, in the absence of any non-default constructors on a public class, a
default constructor is assumed by Java. Non-default constructors may also be specified
on an entity, and they are often used for initializing the entity with its mandatory
properties.

The java.io.Serializable Interface

Entities that will be passed by value, as when passed by remote session

beans to Java SE clients that are external to the EJB container, must implement the
java.io.Serializable marker (no method) interface. Implementing this interface
indicates to the compiler that it must enforce all fields on the entity class to be
serializable so that any instance can be serialized to a byte stream and passed using
remote method invocation (RMI) over HTTP.

Placing Annotations on Instance Variables vs. JavaBean Property
Accessors

When defining an entity class, you may choose to place member-level annotations
on the entity instance variables or on the corresponding JavaBean property accessors
for those instance variables. As with the decision between specifying metadata using
annotations or XML, this is largely a matter of personal preference.

Note Since JPA 2.0, Java developers are allowed to annotate both instance
variables and property getters. Previously, all entities in an inheritance hierarchy
had to choose a single approach to follow.

102

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Regardless of where the member-level annotations are specified, the entity’s instance
variables must not be public, and clients of that entity, including related entities, must
always access an entity’s properties through accessor methods. It is up to the entity
provider to decide which property accessors to make public, exposing them to clients;
and which to make protected, making them available only to the persistence provider.
When annotating instance variables, the entity need not define any property accessor
methods, if desired.

By policy, only the persistence framework and the class methods themselves are
allowed to access these fields directly. For both access types, clients must access field
data through public accessor or other methods on the entity class.

There are several material consequences of choosing one approach over the other.
These are discussed in the following sections.

Entity Data Access

When annotations are specified on the entity’s instance variables, the persistence
manager accesses the instance variables directly when reading and writing a persistent
property to and from the entity. When annotating property accessors instead of instance
variables, the persistence manager reads and writes property data through these
property accessors.

Annotating the entity’s instance variables directly avoids the overhead of method
calls and provides a slight performance optimization, since the persistence manager
talks directly to the fields. Annotating the property accessors provides a simple way for
the entity developer to intercept and perform custom logic during all attempts to read
and write property data.

This latter option affords the entity developer a chance lazily to derive persistent
property values on demand, if desired. However, be aware that any validation or
side-effect code on the property accessor methods will be called during entity state
transitions. As you'll see in the next chapter, if the entity developer wishes to initialize
transient data or refine persistent data at the time that the entity’s persistent state is first
loaded, or prior to saving changes out to persistent storage, it is preferable to perform
these steps using entity lifecycle callback methods. Using the combination of field-level
annotations and entity lifecycle callbacks has the benefit that validation and other code
in the setter methods will only be called when a client calls the setter, and not when the
entity is being instantiated from persistent storage by the framework.

103

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Another consideration is how the entity behaves when it is involved in a query. This
is a similar issue, since a query statement may both retrieve and update field data on
an entity. Thus, it is important to be aware of any possible side effects of using property

aCCesSors.

Property Name

The second material impact of choosing whether to annotate instance variables or
property accessors occurs when the property accessor expresses a default field name
that is different from the instance variable name. When annotating property accessors,
the logical property name is derived from the getter using the JavaBean property-naming
convention, whereas if the instance variable is annotated, the logical property name
becomes the instance variable’s name.

Example: Annotating Instance Variables

The code snippet in Listing 3-4 demonstrates instance variable annotation, and it
illustrates validation and side-effect code. In this example, which can also be found in
the Source Code area for this chapter, the entity provider narrows the client interface to
expose only the get/setZipCode() methods, but specifies both zipCodeInternal and
zipCode properties to the persistence provider. Placing annotations on the instance
variables provides a clean separation between the entity’s client-side API and its
persistence-side interface.

Listing 3-4. An Entity That Uses Instance Variable Annotations

@Entity
public class Address implements Serializable {
@Id
private long addressld;
@Column(name = "ZIP")
private int zipCodeInternal;
@Transient
private String zipCode;

public long getAddressId() { return addressId; }
public void setAddressId(long addressId) { this.addressId = addressld; }

104

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

public String getZipCode() {
if (zipCode == null 8& zipCodeInternal > 0) {
zipCode = convertToStr(zipCodeInternal);

}

return zipCode;

}

public void setZipCode(String zipCode) throws IllegalArgumentException {
// Validate the zipcode String, to make sure it reduces cleanly to
// either a 5- or 9- digit integer, and assign it to the internal
// persistent 'zipCodeInternal' class field
// ... <validation code here>. . .
this.zipCode = zipCode;
zipCodeInternal = convertToInt(zipCode);

}

private int convertToInt(String zipCode) {
return new Integer(zipCode).intValue();

}

private String convertToStr(int zipCode) {
return new Integer(zipCode).toString();

}

The get/setZipCode() methods allow the entity to transform the internal data lazily

into a client-friendly String representation, but only when requested. No property

accessors are even specified for the zipCodeInternal instance variable.

The @Transient Annotation

You may not wish to make all fields or properties of an entity class persistent. Derived

or transient fields may be annotated @Transient to indicate that they should be ignored

by the persistence framework. The zipCode instance variable is marked @Transient,

indicating that the persistence provider should not manage it. This instance variable

serves only to adapt the internal int value into a client-friendly, derived String value.

105

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Example: Annotating Property Accessors

Listing 3-5 demonstrates how an entity developer may use side-effect code when
annotating an entity’s property accessors.

Listing 3-5. An Entity That Uses Property Accessor Annotations

@Entity
public class Address implements Serializable {

private BigDecimal addressId;
private int zipCode;
private String city;

@Id

public BigDecimal getAddressId() { return addressId; }

public void setAddressId(BigDecimal addressId) { this.addressId =
addressId; }

public int getZipCode() { return zipCode; }
public void setZipCode(int zipCode) {
if (zipCode != this.zipCode)
{
city = null; // Force city to be lazily re-derived
this.zipCode = zipCode;
}
}

public String getCity() {
// Derive the city from the zipcode property, if available
if (city == null && zipCode > 0) {
city = deriveCityFromZip();
}
return city;
}
public void setCity(String city) {
this.city = city;
}

106

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

private String deriveCityFromZip() {
/* Implementation here. .. */
return null;

}
}

Placing the @Id annotation on the getAddressId() property accessor disambiguates
the access policy, indicating that property accessors should be used by the persistence
provider. Forcing the persistence provider to assign data through the property accessor
affords the entity the opportunity to reset the city value when a new zip code is
assigned. Also, knowing that the city field will be obtained by the persistence manager
through its getter method allows the entity lazily to calculate its value only when
requested through the getCity() accessor. Should the usage of this entity involve many
calls to setZipCode () before the entity is persisted (or merged) out to the database, it
is more efficient to defer deriving the city value until it is actually requested. Were this
entity to use instance variable access, it would be necessary to update the city field
eagerly each time the zipCode was assigned, since a request could come at any time to
merge the entity changes into the database. As mentioned earlier, however, the use of
entity lifecycle callback methods could avoid the overhead of eagerly deriving this value.

Access Type Summary

JPA offers two models for how the persistence provider accesses the field data on

an entity, either directly through instance variables and indirectly through property
accessors. In the general case, we have found that annotating an entity’s instance
variables is preferable to annotating its property accessors. You'll rarely have a need

to validate data coming in from the persistent store, and any side-effect code in setter
methods typically should be performed lazily, not eagerly at the time the entity is
instantiated. Furthermore, field-level annotations allow you to decouple the public
property types exposed through that field’s get/set methods from the underlying
column representation. For instance, you may want to expose the zipCode property as
a String through the getZipcode()/setZipcode() methods, but convert it internally
to an integer, using a field of type Integer, for persistence to an INTEGER column in the
database. Finally, the use of entity lifecycle callback methods provides the opportunity
for additional initialization or preparation, both after the entity data is loaded and before
itis saved.

107

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Declaring the Primary Key

An entity must declare its primary key. The primary key serves to identify an entity
instance uniquely among all of the instances of the entity type. A primary key may be
simple, represented by a single field of a basic Java class, like String or Long, as in the
previous Customer example (Listing 3-2). Alternatively, a primary key may be complex,
represented by a composite class comprised of multiple elementary fields or properties.
The underlying column or columns on the entity’s table that are mapped to by the
primary key field or fields may be formally bound by a database primary key constraint,
but this is not a requirement. It is, however, required that the primary key column
value or values for any entity instance resolve to a unique value across all instances of
that entity. Database constraints are useful in enforcing this requirement, and in their
absence, care should be taken to ensure that unique values are assigned by application.

Simple Primary Key

A simple primary key is declared by annotating a single basic-type field on the entity
class with the @Id annotation (see Listing 3-6). A basic-type field is a basic Java type
(alist of basic types is shown in Table 3-2).

Listing 3-6. An Entity with a Simple Primary Key

@Entity

public class Customer implements Serializable {
@Id
private Integer id;
private String name;

public Customer() {}
public Customer(Integer id) { this.id = id; }

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

108

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Note that we could eliminate the usefulness of an alternate constructor in our entity
class by using a database sequence to populate the PK value automatically. Listing 3-7
shows how this might look, using an ID value generator provided by JPA.

Listing 3-7. An Entity with a Simple Primary Key That Is Populated Using
@GeneratedValue

@Entity
@SequenceGenerator(name = " CustomerSequence”,
sequenceName = " CUSTOMER SEQ",
initialvalue = 100, allocationSize = 20)
public class Customer implements Serializable {
@Id
@GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = " CustomerSequence")
private Integer id;
private String name;

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name;}

The @GeneratedValue Annotation

The @GeneratedValue annotation tells the persistence framework to auto-populate this
column with the specified sequence generator, which must be defined on one of the
entities in your persistence archive. (It is defined directly on the Customer entity.)

A @SequenceGenerator annotation defines a sharable sequence generator, which can
either define a new framework-generated sequence or refer to an existing sequence in
your database. ID generators will be explored more fully in Chapter 4.

109

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Composite Primary Key

If an entity’s primary key maps to multiple database columns, it uses a complex, or
composite, primary key. This may be represented in one of two ways on the entity
class. The entity may declare each field in the composite key directly on the entity class
(annotating each one with @1d), and specify a composite key class that provides these
exact same fields in an @IdClass annotation. Alternatively, the entity may designate a
single, complex field to represent its primary key by annotating that field with
@EmbeddedId. The class type of the @EmbeddedId field is the entity’s composite key class.
This composite key class is annotated @Embeddable and must specify the mapping details
for each of its fields. These fields will end up mapping to the base table on the entity.
With either approach, the composite primary key class must override the hashCode ()
and equals(Object obj) methods on java.lang.Object.

Listing 3-8 shows how these options look.

Listing 3-8. An Entity with a Composite Primary Key Using @IdClass

@Entity
@IdClass(CustomerPK.class)
public class Customer implements Serializable {
@Id
private Integer customerld;
@Id
private String name;

public Integer getCustomerId() { return customerId; }

public void setCustomerId(Integer customerId) { this.customerId =
customerId; }

public void setName(String name) { this.name = name; }

public String getName() { return name; }

The @IldClass Annotation

The @IdClass identifies an ordinary POJO (such as the example shown in Listing 3-9)
that does not require any metadata. Any mapping details required for the primary key
fields are specified on the fields on the entity.

110

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Listing 3-9. A Simple POJO that Serves as a Composite Primary Key
public class CustomerPK implements Serializable {

private Integer id;
private String name;

public void setId(Integer id) { this.id = id; }
public Integer getId() { return id; }

public void setName(String name) { this.name = name; }
public String getName() { return name; }

@0Override

public int hashCode() { return 0; /* Implementation here */ }

@verride

public boolean equals(Object obj) { return false; /* Implementation here
%/}
}

The composite primary key class must conform to the access type (annotated
instance variables vs. property accessors) of the entity, and all its fields or properties
must have matching fields or properties on the entity class. The corresponding fields on
the entity must be annotated @Id.

The @Embeddedid Annotation

Alternatively, the entity may designate one of its fields or properties to be its composite
primary key by annotating it @®mbeddedId (see Listing 3-10).

Listing 3-10. An Entity Using an @EmbeddedId Annotation

@Entity

public class Customer implements Serializable {
@EmbeddedId
private CustomerPK customerId;

public CustomerPK getCustomerId() { return customerId; }
public void setCustomerId(CustomerPK customerId) {

111

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

this.customerId = customerld;

}

/...
}

The @Embeddable Annotation

Every @EmbeddedId must reference a class that is marked @Embeddable. Listing 3-11
shows the corresponding embeddable composite key class.

Listing 3-11. An @Embeddable Composite Key Class

@Embeddable

public class CustomerPK implements Serializable {
Long id;
String name;

public void setId(Long id) { this.id = id; }
public Long getId() { return id; }

public void setName(String name) { this.name = name; }
public String getName() { return name; }

@0verride

public int hashCode() { return 0; /* Implementation here */ }

@0verride

public boolean equals(Object obj) { return false; /* Implementation here
}

The composite key class CustomerPK must be annotated @Embeddable. Unlike in the
@IdClass case, its instance variables or property accessors may have @Column
annotations to specify their mapping details.

112

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Summary of Entity Examples

The basic @Entity and @Id annotations are sufficient to define an entity class, making
the on-ramp to coding entities very straightforward. As you become more familiar with
the annotations available to you, and as your requirements become more demanding,
you can simply add annotations to your entities to achieve powerful persistence features.

We just covered the very basics in this section. We’ll now turn our attention away
from the entity class itself and toward the EntityManager and some other important
services in the persistence framework. Later, we’'ll return to explore more annotations
that satisfty more complex needs.

The Persistence Archive

Until now, we have referred to the persistence archive as the encapsulation of a group of
collocated entities that are deployed as a JAR file. This archive defines the entities and
related non-entity classes that are bundled together for deployment. Strictly speaking,
a persistence archive does not need to live in its own dedicated .jar file. Persistence
archives can be bundled inside .war files, EJB .jar files, and even exist as .class files and a
META-INF/persistence.xml file on a Java application’s class path.

Regardless of its surrounding context, we now take a closer look at the contents of
this archive.

The persistence.xml File

A persistence archive requires a persistence.xml file in its META- INF directory. This file
groups subsets of entities in the archive into what are known as persistence units.

A persistence.xml file must define at least one persistence unit, and the same entity
may be included in multiple persistence units within the same persistence.xml file.

The persistence.xml and orm.xml mapping files and schemas were updated in
JPA 2.2 version.

The persistence.xml file defines a persistence unit, and it is located in the META-INF
directory of the root of the persistence unit.

The orm.xml file, contained in the META-INF directory of the root of the persistence
unit, includes the managed persistence classes used to take the form of annotations of
the object-relational mapping information. The orm.xml mapping file or other mapping
file will be loaded as a resource by the persistence provider.

113

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Note The JPA versions 2.1 and 2.2 request that the XML file mappings, such as
persistence.xml and orm.xml, to be located in the Java class path.

The JPA 2.2 version says that:

“An object/relational mapping XML file named orm.xml may be specified in the
META-INF directory in the root of the persistence unit or in the META-INF directory of
any jar file referenced by the persistence.xml.”

Notice that we can add more mapping files that may be present anywhere on the
class path and the Classloader can load them as resources.

Listing 3-12 demonstrates an example of a persistence.xml file.

Listing 3-12. An Example of a persistence.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence”

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd"
version="2.2">

<persistence-unit name="Chaptero3PersistenceUnit" transaction-type="JTA">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<jta-data-source>jdbc/wineapp</jta-data-source>
<class>com.apress.ejb.chaptero3.entities.Address</class>
<class>com.apress.ejb.chaptero3.entities.Customer</class>
<class>com.apress.ejb.chaptero3.entities.CustomerOrder</class>
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>

<property name="eclipselink.ddl-generation" value="create-tables"/>

</properties>

</persistence-unit>

<persistence-unit name="Chaptero3PersistenceUnit-JSE" transaction-

type="RESOURCE_LOCAL">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<class>com.apress.ejb.chaptero3.entities.Customer</class>
<properties>

114

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

<property name="javax.persistence.jdbc.driver" value="oracle.jdbc.
OracleDriver"/»>
<property name="javax.persistence.jdbc.url" value="jdbc:oracle:thin:
@localhost:1521:XE"/>
<property name="javax.persistence.jdbc.user" value="wineapp"/>
<property name="javax.persistence.jdbc.password" value="221CE6BOA87AC
61AE68FF3A130F7F666" />
<property name="eclipselink.logging.level” value="FINER"/>
</properties>
</persistence-unit>
</persistence>

Notice the attribute version="2.2" that since JDK version 8 can be used as Ja PA
version.

This persistence.xml file defines two persistence units, Chaptero3PersistenceUnit
and Chaptero3PersistenceUnit-JSE. The Customer class is defined in both. The first
persistence unit is used by Java EE clients (like session beans), whereas the second unit
is configured for use by Java SE clients (like the CustomerService. java class shown in
Listing 3-14). Specifying different configuration settings in the two persistence units
allows you to insulate the client from the configuration details of the persistent units, and
it makes an entity that is run in both Java SE and EE environments appear virtually the

same in both cases.

The EntityManager

The EntityManager is the client’s gateway to entity management services offered by

the JPA persistence framework. Client sessions must obtain an EntityManager instance
before interacting with persistent entity instances. The EntityManager provides support
for querying, updating, refreshing, and removing existing entity instances, and for
registering entity classes to create new persistent objects with identity.

115

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Persistence Context

The EntityManager maintains a cache of instances within a transactional context
called a persistence context. The persistence context allows the EntityManager to track
modified, created, and removed entity instances, and to reconcile entity instances
with changes that were committed by external transactions concurrent with the
EntityManagers own transaction.

Entity instances queried through the EntityManager may be freely passed to clients
both inside and outside the EJB container. Clients may access and update the entity data
as they would an ordinary Java object. To apply changes back to the persistent store, the
client calls the merge () method on the EntityManager within a transactional scope, and
the EntityManager persists the state of the entity data into the back-end store.

Acquiring an EntityManager Instance

An EntityManager instance can be acquired both from within the EJB container (Java EE)
and outside it (Java SE). This offers clients the flexibility to interact with persistent entity
beans in a uniform way, without regard to whether the persistence code is running inside
or outside the Java EE container.

A Session Bean Using Container Injection

Listing 3-13 provides an example of a session bean acquiring an EntityManager instance
through container injection.

Listing 3-13. A Session Bean Injected with an EntityManager Instance

@Stateless
public class CustomerManager {

@PersistenceContext(unitName="Chaptero3PersistenceUnit")
private EntityManager em;

public void createCustomer() {
final Customer cust = new Customer();

116

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

cust.setName("Moneybags MgGee");
em.persist(cust);
}
}

In this example, we use container injection to obtain an EntityManager instance
that is bound to the Chapter03PersistenceUnit persistence unit, which includes our
Customer entity from Listing 3-7. We then use this EntityManager to persist a new
Customer instance. Note that this example assumes that an ID generator or other service
exists to auto-populate the primary key of the new instance.

A Java SE Service Client Using an EntityManagerFactory

There are times when container injection is not an option, or when more control

over the life cycle of the EntityManager is desired by the application. In such cases,

the client can obtain an EntityManager by first acquiring an EntityManagerFactory.
The javax.persistence.Persistence class serves as a factory for acquiring an
EntityManagerFactory, and it may be used from both a Java EE environment and a Java
SE environment. Listing 3-14 shows how an ordinary Java SE service client would obtain
an EntityManager.

Listing 3-14. A POJO that Serves as an Entity Facade
public class CustomerService {

public static void main(String[] args) {
final EntityManagerFactory emf =
Persistence.createEntityManagerFactory("Chaptero3PersistenceUnit-JSE");
final EntityManager em = emf.createEntityManager();
final Customer cust = new Customer();
cust.setName("Best Customer Ever");
em.persist(cust);

117

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Here we create an EntityManagerFactory thatis again bound to the
Chapter03PersistenceUnit-JSE persistence unit, which includes our Customer entity
from Listing 3-7. We then create an EntityManager instance from that factory and use it
to persist a new Customer instance.

Looking Up the EntityManager Through JNDI

A third option, available also through both Java SE and EE environments, is to look
up the EntityManagerFactory, or the EntityManager itself, through Java Naming and
Directory Interface (JNDI). Listing 3-15 shows an example of how this is done from
within a session bean.

Listing 3-15. EntityManager Lookup Through JNDI

@Stateless
@PersistenceContext(unitName="Chaptero3PersistenceUnit")
public class CustomerServiceBean {

@Resource

SessionContext ctx;

public void performService() {
EntityManager em = (EntityManager)ctx.lookup("Chaptero3Persistence
Unit");
/...

The injected SessionContext resource provides a JNDI namespace for acquiring
other resources at runtime.

Transaction Support

The EntityManager also exposes methods to begin, commit, and roll back transactions
for use with resource-local (non-JTA) transactions. This topic is covered in depth in
Chapter 8.

118

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

The Entity Life Cycle

An entity instance may go through many formal states during its life as an in-memory
Java object. Understanding these different states will help you know when the entity is in
a consistent or inconsistent state with the back-end database, and how to reconcile these
differences within a transactional context.

An entity instance will typically go through many states of persistence during its
lifetime as a Java object. Since EJB 3, entity classes are completely transparent. They are
created using ordinary constructors instead of the Home and LocalHome factory interfaces
of earlier E]JB versions. They may be freely passed to and from the EJB container and
between clients, and they may be updated by a client without the overhead of a callback
to the EJB container.

The Life Cycle of a New Entity Instance

Let’s take a look at the life cycle of a newly created persistent entity instance. In its life,
the entity may visit the new, managed, detached, and removed states.

New Entity Instance

A client creates a new entity instance by using one of the entity’s Java constructors. This
is a significant simplification over earlier E]JB specifications, which required that users
define create() factory methods on the entity bean’s Home and/or LocalHome interfaces.
The default (no argument) constructor is required of all entity classes, but additional
constructors may also be defined. The client may live outside or within an EJB container.
At the point of construction, it is in the new state and does not yet have persistent
identity because it has not been associated with an EntityManagers persistence context.
The client is free to call any of its methods and assign data values, and all updates to the
entity are kept local to the entity class.

Managed Entity Instance

To turn this entity class into a persistent object, the client acquires an EntityManager
instance and calls the EntityManager.persist() method. Listing 3-16 shows a code
snippet from a session bean that acquires the EntityManager through injection and then
persists the entity instance passed as a parameter to the persistEntity() method.

119

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)
Listing 3-16. Example Showing How an Entity Instance Is Made Persistent

@Stateless
public class MySessionEJB {

@PersistenceContext(unitName = "Chaptero3PersistenceUnit")
private EntityManager em;

public void persistEntity(Object entity) {
em.persist(entity);
}
}

When the entity is made persistent, it is added to a persistence context as a managed
instance. Being managed affords the entity the following advantages:

o By default, all fields on the entity are designated to be lazily loaded by
the persistence provider. While a lazy designation is really only a hint
(see the “Lazy vs. Eager Field Bindings” section later in the chapter),
lazy field binding can be seamlessly performed only on managed
instances.

e When an entity is managed, changes made to it may be
tracked by the persistence manager to optimize subsequent
EntityManager.merge() operations. For instance, change
tracking may be handled directly on the entity instance using byte
weaving provided by the persistence provider when the entity was
instantiated. This is particularly important when managing a network
of related entities, so that a minimum of effort is required to calculate
the change set when the network of entities is merged back to the
persistence context.

In general, there is no guarantee that a call to EntityManager.persist() will cause
an SQL INSERT statement to be performed immediately. It is up to the persistence
manager to decide whether to perform this step immediately or at a later time but
prior to committing the transaction. In this example, however, the default behavior of a
method on a Stateless session bean is to create a new transaction and commit the work
each time one of its methods is called, so the entity was not only inserted but committed
as well.

120

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Sequence values may have been assigned to the entity instance, and other side-effect
code may also have been executed during this step.

Detached Entity Instance

The entity remains in a managed state for the life of the persistence context in which it is
contained, or until it is removed from the database. If one of these events occurs, or if the
instance is passed by value to a client, it becomes a detached entity instance and is no
longer associated with a persistence context. Detached entities do not undergo change
tracking or other internal optimizations. In particular, the persistence provider is not
available to bind fields lazily that were not already bound at the time the entity became
detached, and attempting to access a detached entity’s field that has not yet been bound
will throw a runtime exception. To merge its state back into the persistence context
and make it a managed instance once again, you need to pass a detached entity to the
EntityManager.merge() method.

While an entity instance returned from an EntityManager.merge() call is managed,
changes are not propagated immediately to the persistent storage; they merely update
the entity itself. Suppose the client modifies the entity:

entity = mySession.persistEntity(entity);
entity.setName("foo");

After the second statement above, the name change has been applied only to the
entity instance, and no changes have been propagated to the persistence context or
to the database. To apply these changes to the persistence context, you would call the
EntityManager.merge() operation, as follows:

// Assumes the EntityManager em was obtained, possibly through injection
em.merge(entity);

This updates the persistence context cache, and possibly updates the row in the
underlying database as well, depending on the transactional settings in effect.

Removed Entity Instance

An entity becomes a removed instance when its remove () method is called. The row
(or rows, if this entity maps to multiple tables) that represents its persistent state will be
removed when the context transaction is committed.

121

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

0/R Mapping

We have examined a number of annotations that define the general behavior of an entity.
Let us now explore the annotations involved in the O/R mapping of persistent fields or
properties on the entity to table columns in the database.

The heart of an entity class is the list of fields or properties that define its
persistent structure. These fields or properties that define its persistent state must
map to columns in a database table. It is the job of the persistence framework to load
this state from the database into an entity instance before it is handed out to a client
and to copy this state back out to the rows of the table when it is persisted. Whereas in
earlier versions of EJB, this O/R mapping information was specific to the various
container-managed persistence (CMP) providers, in JPA, this mapping markup is now part
of the specification. Like nearly every part of EJB since version 3.0, users have the choice of
specifying this information through annotations or using XML in the orm. xml file.

The @Table Annotation (Revisited)

The @Table annotation lets you specify details about the base table to which an entity is
mapped. Listing 3-17 shows the @Table annotation definition.

Listing 3-17. The @Table Annotation

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Table {
String name() default "";
String catalog() default "";
String schema() default "";

UniqueConstraint[] uniqueConstraints() default {};

Each entity identifies a database table that will hold its persistent data as follows:

@Entity
@Table(name="ADDRESSES")
public class Address implements Serializable {

122

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Here, the @Table annotation is used to override the default table name for the
Address entity. In the absence of an @Table annotation, the default table name is the
same name as the entity class itself. (It would default to "ADDRESS" in this example.)
The @Table annotation also allows you to specify database schema and constraint
information for use when the table is generated during deployment. An entity may also
map to more than one table by specifying the @SecondaryTable annotation.

Note The predefined annotation types @Target and @Retention may be
specified on an annotation definition to provide information to the compiler

about the annotation. The @Target annotation identifies the program element

(in our example, a part of a class) that can accept the annotation.

The @Retention annotation is used to indicate whether the annotation should be
available only in the Java source file or also in the compiled class file. When
@Retention(SOURCE) is specified, the annotation is useful as documentation,
and it may be used by a design-time tool like an integrated development
environment (IDE), but the annotation usage is not compiled into the . class file.
When @Retention(RUNTIME) is specified, the information is also compiled
into the . class file, and so it may be obtained through Java reflection for use by
deployment or runtime tools like the EJB container.

The @Column Annotation (Revisited)

Entity class fields or properties are mapped to database columns using the @Column

annotation. Again, if no @Column annotation is defined for a field through its instance

variable or property accessor, the mapped column name gets its name from the field.
Listing 3-18 gives the definition of the @Column annotation.

Listing 3-18. The @Column Annotation

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Column {

String name() default "";
boolean unique() default false;

123

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "";

String table() default "";

int length() default 255;

int precision() default 0; // decimal precision

int scale() default 0; // decimal scale

Asyou can see, it is possible to specify a column’s attributes fully if desired. This
is useful when you want to give deploy-time directives to generate custom column
definitions. Most typically, you will use the name attribute to decouple the column name
from the field or property name, as when the column name is too utilitarian or cryptic.
Here, the field identifier is told to map to a column called ID, releasing the naming
dependency that binds them by default:

@Entity
@Table(name="ADDRESSES")
public class Address implements Serializable {

@Column(name="ID")
String identifier;

Complex Mappings

More complex mappings, including those involving multiple tables per entity, complex
data types, embedded classes, and inheritance hierarchies will be covered in the next
chapter. For now, let us examine how relationships between entities are mapped.

124

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Entity Relationships

Entities may hold single-value and collection references to themselves or to other
entities. Additionally, relationships may be exposed as relationship fields on either
one or both entities involved in the relationship. For those of you familiar with EJB 2.x,
be aware that in JPA, relationship fields are no longer bidirectionally maintained by
the container. Updating the field at one end of a bidirectional relationship no longer
causes the field at the other end to be updated automatically as well. When mapping
arelationship field, its primary key always represents the target entity. The source, or
owning end of the relationship, may be mapped to a foreign key on the source entity’s
table, but there is no requirement that an actual database foreign key constraint be
specified on the underlying columns.

Let’s take a look at how JPA lets you define relationships.

@0neToOne

Following is the definition of the @OneToOne relationship annotation:

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER;
boolean optional() default true;

String mappedBy() default "";

The @0neToOne relationship is represented by a single-value entity reference at one or
both ends of the relationship. One relationship field will map to columns on its table that
reference the primary key columns on the table at the other end of the relationship.

125

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Here is an example in which Customer uses Address, but Address knows nothing
about its usage by Customer, and so it does not have a relationship field in its class:

@Entity

public class Customer implements Serializable {
@0neToOne
@JoinColumn(name="MAILING ADDRESS REF",

referencedColumnName="ADDRESS PK")
protected Address address;

To make this a bidirectional relationship, simply add a relationship field to Address
that points back to Customer:

@Entity
public class Address implements Serializable {

@0OneToOne (mappedBy="address")
protected Customer customer;

Note that by using the (mappedBy="address") attribute, there is no need to specify
the @JoinColumn information on the Address.customer field redundantly. Also, the
entity type at the other end of the relationship is derived from the customer field type.

If you were then to make the relationship unidirectional but in the opposite
direction, you would just move the @JoinColumn annotation from Customer.address
onto Address. customer and then remove the Customer.address field.

@0neToMany and @ManyToOne

Similarly, here are the definitions of the @OneToMany and @ManyToOne annotations:

126

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

@0OneToMany:

@Target(value = {ElementType.METHOD, ElementType.FIELD})
@Retention(value = RetentionPolicy.RUNTIME)
public @interface OneToMany {

public Class targetEntity() default void.class;
public CascadeType[] cascade() default {};
public FetchType fetch() default FetchType.LAZY;

public String mappedBy() default "";
public boolean orphanRemoval() default false;

}
@ManyToOne:

@Target(value = {ElementType.METHOD, ElementType.FIELD})
@Retention(value = RetentionPolicy.RUNTIME)
public @interface ManyToOne {

public Class targetEntity() default void.class;
public CascadeType[] cascade() default {};

public FetchType fetch() default FetchType.EAGER;
public boolean optional() default true;

The @0neToMany relationship annotation is added to a Collection relationship field
where the entity at the other end either does not have a relationship field, or where it
has a single-value relationship field pointing back to this entity. If there is a field on the
entity at the other end of the relationship, it will be annotated @ManyToOne, indicating that
itis an entity that is part of a Collection and that it knows the entity type that owns the
Collection. As with an @0neToOne relationship field, specifying a mappedBy attribute on an
@0neToMany relationship is enough to identify the mapping used for both relationship fields.

@Entity
public class Orders implements Serializable {

@OneToMany (mappedBy="orders")

127

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

protected Collection<OrderItems> orderItemsCollection;

}

@Entity
public class OrderItems implements Serializable {

@ManyToOne
@JoinColumn(name="SELECTION REF", referencedColumnName="SELECTION_PK")
protected Orders orders;

Note that by using generic collection types (Collection<OrderItems>), the
persistence framework is able to determine the entity type at the other end of the
relationship. With that, all that is needed to resolve the mapping for the @neToMany side
is the field or property name on that entity, which in this case is orders.

@ManyToMany

Following is the definition of the @anyToMany relationship annotation:

@Target(value = {ElementType.METHOD, ElementType.FIELD})
@Retention(value = RetentionPolicy.RUNTIME)
public @interface ManyToMany {

public Class targetEntity() default void.class;

public CascadeType[] cascade() default {};

public FetchType fetch() default FetchType.LAZY;

public String mappedBy() default "";

The @ManyToMany annotation is assigned to a Collection relationship field to
indicate that the target entity also has a Collection of the source entity type. This
type of mapping requires an @JoinTable, commonly known as an intersection table.
The join table holds references back to the primary keys of the entities at either end
of the relationship. In the example that follows, the intersection table EJB_PROJ has
two columns: EMP_ID is a reference column back to the ID primary key column on

128

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

the EMPLOYEE table, and PROJ_ID is a reference column pointing to the ID primary key
column on the PROJECT table.

@Entity
public class Employee implements Serializable {

@ManyToMany (mappedBy="employees", cascade=CascadeType.PERSIST)
@JoinTable(name="EMP_PROJ",
joinColumns={@JoinColumn(name="EMP_ID",
referencedColumnName="ID")},
inverseJoinColumns={@JoinColumn(name="PROJ ID",
referencedColumnName="1ID")})
protected Collection<Project> projects;

}

@Entity
public class Project implements Serializable {

@ManyToMany (mappedBy="projects")
protected Set<Employee> employees;

Use of the (mappedBy="projects") attribute on @anyToMany allows the mapping
information contained in the @JoinTable annotation to be shared by both relationship
fields.

Lazy vs. Eager Field Bindings

By default, and for performance reasons, all field values are designated to be fetched
lazily, due to the fact that the implied fetch attribute found on each of the field
mappings (@Basic, @0neToMany, and so on) holds a default value of FetchType. LAZY.
This default FetchType.LAZY value is, in fact, only a hint, and the persistence manager
is not bound to honor the request. For many fields, including nearly all simple values, it
would be a significant burden to lazily fault in the fields of an entity, as they are actually

129

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

required, so the persistence manager generally ignores the FetchType.LAZY directive
and loads them eagerly anyhow.

When the non-default value FetchType.EAGER is specified on a field mapping,
however, this is not an optional request. When a field is so decorated, the persistence
manager is obliged to bind its value eagerly when the entity is instantiated. This is
particularly relevant when dealing with relationship fields. A relationship field may be
annotated with the fetch=FetchType.EAGER attribute to ensure that, should the entity
become detached, it will still be possible for clients to traverse that relationship field to
access the related entity instances.

When an entity is managed, relationship values will be bound at the time they are
first requested. However, when an entity is instantiated and then detached, as when
it is serialized and passed to a remote client, it may be desirable to prebind all of its
relationship fields eagerly. In this case, you can override the default fetch values and
set (fetch=FetchType.EAGER) on the relationship fields. Be aware of the consequences
of this action, however, since this may cause a storm of cascaded loading if the eagerly
loaded collections in turn eagerly load their referenced objects, and so on.

Cascading Operations

Entities that are related to other entities may cascade certain lifecycle operations

across references. This allows an operation on one entity to propagate to certain other
related entities. The cascade options are defined through annotations on the individual
relationship fields so that you can precisely control the cascading behavior. Here are the
cascade options:

public enum CascadeType {
ALL,
PERSIST,
MERGE,
REMOVE,
REFRESH

For example, a Customer entity that holds a reference to an exclusively owned
Address entity may wish to have all operations on the Customer propagated to the
Address instance.

130

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

@Entity
public class Customer implements Serializable {

@0neToOne(cascade=CascadeType.ALL)
protected Address address;

When an EntityManager operation like persist() or remove() is called on the
Customer entity, the operation will also be called on the Address instance held in the
address field and on any cascading fields of that Address instance, and so on.

Use of these cascade annotation attributes allows the entity developers to specify
cascading behavior declaratively and succinctly, and it saves the client from having to
keep track of the network of instances that need to be manipulated when a persist(),
merge(), remove(), or refresh() lifecycle operation is performed on a top-level instance.

Java Persistence Query Language (JPQL)

The Java Persistence API provides two methods for querying entities such as the Java
Persistence query language (JPQL) and the Criteria API.

Let’s compare a bit JPQL and Criteria APIs. JPQL queries are generally more concise
and readable than Criteria queries. JPQL is easy to learn for programmers with previous
SQL knowledge.

JPQL queries are not typesafe, which means that they require a cast when retrieving
the query result from the entity manager. Because of that the type-casting errors may not
be caught at compiling time.

Also, JPQL queries do not support open-ended parameters. Criteria API queries
are typesafe and therefore don’t require casting. Remember that when comparing
performance between JPQL and Criteria API, Criteria API queries provide better
performance because JPQL dynamic queries must be parsed each time they are called.

One of the common Criteria API disadvantages is that they are typically more
verbose than JPQL queries. This means that they will require the programmers to create
many objects and perform operations on those objects before submitting the Criteria
API query to the entity manager.

131

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

JPA defines its own query language to support entity-based queries along with bulk
update and delete operations. JPQL shares much in common with SQL, with the main
difference being that the primary structures are entities and fields instead of tables and
columns. Like SQL, JPQL queries may be defined either statically, through declared
@NamedQuery annotations, or as dynamic statements submitted to the EntityManager
and processed at runtime. Queries may take bind parameters, and their returned results
may be entities or ordinary Java objects.

By expressing queries in terms of entities and their fields, JPQL statements become
independent of the underlying schema. Thus, a JPQL query need not change when an
entity’s mappings are modified.

JPQL queries are executed by the EntityManager on the persistence context, so
query results will include uncommitted data that is pending in the context transaction.

@NamedQuery and @NamedQueries

@Target ({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {
String name();
String query ();
LockModeType lockMode() default LockModeType.NONE;
QueryHint[] hints() default {};
}
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQueries {
NamedQuery [] value ();

An entity may declare named JPQL statements inside @NamedQuery annotations to
define reusable queries. A @NamedQuery consists simply of a name and a query containing
the JPQL text. @NamedQuery names must be unique across the persistence unit.

@Entity
@NamedQueries ({
@NamedQuery(name="Inventory.findAll",
query="select o from Inventory o"),
@NamedQuery(name="Inventory.findByYear",

132

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

query="select o from Inventory o where o.year=:year"),
@NamedQuery(name="Inventory.findByRegion",
query="select o from Inventory o where o.region=?1 ")

1)

public class Inventory implements Serializable {

Binding Query Parameters

Queries may take bind parameters, either as named parameters or indexed parameters.
To invoke the queries from the previous section, client code, such as a session bean,
might issue the following calls:

@Stateless
public class InventoryManagerBean implements InventoryManager,
InventoryManagerLocal {

/** <code>select o from Inventory o</code> */
public List<Inventory> findAllInventory() {
return em.createNamedQuery("Inventory.findAll", Inventory.class).
getResultlist();
}
/** <code>select o from Inventory o where o.year=:year</code> */
public List<Inventory> findInventoryByYear(Object year) {
return em.createNamedQuery("Inventory.findByYear", Inventory.
class).setParameter("year",year).getResultList();

}

/** <code>select object(o) from Inventory o where o.region=?1 </code> */
public List<Inventory> findInventoryByRegion(Object p1) {
return em.createNamedQuery("findInventoryByRegion", Inventory.
class).setParameter(0,p1).getResultList();

133

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Note that the findInventoryByYear query takes a named parameter, :year,
whereas findInventoryByRegion uses an indexed parameter, ?1. These approaches
are equivalent but require different setParameter() calls when binding the parameters
prior to query execution time, as shown in the previous sample code.

Dynamic Queries

So far, we have shown example queries that are defined through the @NamedQuery
annotation on an entity class. It is also possible to execute queries dynamically by
passing query strings that may be constructed on the fly at runtime.

Listing 3-19 shows an example of how this is done.

Listing 3-19. Example of Dynamic JPQL Usage

@Stateless
public class CustomerManagerBean {

@PersistenceContext(unitName = "Chaptero3PersistenceUnit")
private EntityManager em;

/** <code>select object(o) from Customer o</code> */

public List<Customer> findAllCustomers() {
return em.createQuery("select o from Customer o", Customer.class).
getResultList();

}
/...

Bulk Update and Delete Operations

JPQL may also be used to perform bulk update and delete operations across multiple
instances of a specific entity class, including subclass instances. These JPQL statements
may also take parameters and return the number of entity instances affected by the
operation. An example of a bulk delete operation is shown in Listing 3-20.

134

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)
Listing 3-20. Example of a Bulk Delete Statement in JPQL

@Stateless
public class CustomerManagerBean {

@PersistenceContext(unitName = "Chaptero3PersistenceUnit")
private EntityManager em;

/**

* Perform a bulk delete of fulfilled CustomerOrder items
*/

public int bulkDeleteFulfilledOrders() {

return em.createQuery("delete from CustomerOrder o where o.status =
"FULFILLED'").executeUpdate();

¥
/...

Bulk delete and update statements are executed through the EntityManagers
query engine using the EntityManager.createQuery() call. They may also be specified
either declaratively, through @NamedQuery elements, or dynamically, as shown above in
Listing 3-20.

Caution Care should be taken when performing bulk update and delete
operations, since they bypass the PersistenceContext and can lead to cache
inconsistency. They are essentially translated straight into SQL and executed
without observing optimistic locking checks or following cascade rules specified
on relationship fields. As a rule of thumb, bulk operations should be performed

in their own transaction context, or else at the beginning of a transaction. If a
PersistenceContext whose type is PersistenceContextType.EXTENDED
is used, make sure you call EntityManager.flush() after performing a bulk
operation. That way, no entities will exist in the cache following the bulk operation
that might be out of date or removed.

135

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Complex Queries

We will cover more advanced areas of JPQL in the next chapter, including queries that
return ordinary, non-entity Java objects; and native queries written in SQL, which may
return results that are converted into entity instances.

Note One of the most important changes in JPA 2.2 is the ability to stream the
result of a query execution using the method Stream getResultStream() added to
Query and TypedQuery interface. This can be very usable when we need to process
a huge result set.

Persistence vs. Adaption

One of the decisions an application designer has to make when approaching JPA entity
classes is whether to design them top down or bottom up: that is, whether first to create
the entities and let the database schema follow, or whether to create the database schema
first. It is, of course, possible to build both entities and tables in parallel, but in many
cases one or the other of these objects is fixed, and the other must be built to match.

Forward Generation—Persistence

In the top-down model, the entity class serves as the source of truth, and the database
schema is created to provide persistence for the entity class data. The underlying table(s)
can be generated as a side effect of deploying the entity class; you may wish to specify
metadata in @Table, @Column, and related annotations to guide the deployment tool in
generating the structure of the schema.

Reverse Engineering—Adaption

In the bottom-up approach, the database schema is the source of truth: the schema
is fixed, and the Java objects—entity classes—exist to adapt the database objects into
the Java world. This process, typically provided through an IDE using an EJB reverse
engineering tool, generates a default entity class for each table and a default field for
each column.

136

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Which One Is Right for Your Project?

Both approaches are equally common in real-world development projects. Your needs
will dictate which tools you will want to use to glue the database to the entity beans. You
may think of the issue as one of persistence vs. adaption: does the database schema exist
solely to provide persistence for the entity beans, or are you adapting the database schema
into the Java space? Consider this question when you begin to create your entity beans.

Example Application: CustomerOrderManager

In the CustomerOrderManager example, we show how a session bean may serve as a
facade for a handful of interrelated JPA entities. Our CustomerOrderManager session
bean exposes CRUD (create, retrieve, update, delete) operations as service methods,
allowing clients to access and manipulate Customer, CustomerOrder, and Address
entities. These service methods on the session facade provide transaction, access
control, and other enterprise-level services, and they allow the persistence framework to
handle the interface between the JPA entities and the underlying RDBMS.

Customer.java

The Customer. java class, shown in Listing 3-21, hosts a pair of named queries and

has a simple primary key. It holds two unidirectional @neToOne relationships with the
Address entity implemented through the billingAddress and shippingAddress fields.
It also has a bidirectional @0neToMany relationship with CustomerOrder, exposed through
the customerOrders field. Note that the property accessors for the customerOrders field
are complemented by addCustomerOrder () and removeCustomerOrder () methods.
These methods should be used by clients when adding or removing a CustomerOrder
from a Customer to ensure that the relationship fields on both entity classes involved are
properly updated with the correct relationship information.

Listing 3-21. Customer.java

@Entity
@NamedQueries ({
@NamedQuery(name = "Customer.findAll",
query = "select o from Customer o"),

137

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

@NamedQuery(name = "Customer.findByEmail",
query = "select o from Customer o where o.email = :email")})
@Table(name = "CHO3_CUSTOMER")
@TableGenerator(name = "Customer ID Generator",
table = "CUSTOMER ID GENERATOR",
pkColumnName = "PRIMARY_KEY NAME",
pkColumnValue = "Customer.id",
valueColumnName = "NEXT ID VALUE")
public class Customer implements Serializable {

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE,
generator = "Customer ID Generator")

private BigDecimal id;

@Version

private int version;

@Column(length = 4000)

private String email;

@0neToMany(mappedBy = "customer"”, cascade = {CascadeType.ALL})

private List<CustomerOrder> customerOrders;

@0neToOne(cascade = {CascadeType.ALL})

@JoinColumn(name = "BILLING ADDRESS")

private Address billingAddress;

@0neToOne(cascade = {CascadeType.ALL})

@JoinColumn(name = "SHIPPING ADDRESS")

private Address shippingAddress;

public BigDecimal getId() { return id; }
public void setId(BigDecimal id) { this.id = id; }

public int getVersion() { return version; }
public void setVersion(int version) { this.version = version; }

public String getEmail() { return email; }
public void setEmail(String email) { this.email = email; }

138

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

public List<CustomerOrder> getCustomerOrders() { return customerOrders; }
public void setCustomerOrders(List<CustomerOrder> customerOrders) {
this.customerOrders = customerOrders;

}

public CustomerOrder addCustomerOrder(CustomerOrder customerOrder) {
if (customerOrders == null) {
customerOrders = new ArraylList<CustomerOrder>();
}
customerOrders.add(customerOrder);
customerOrder.setCustomer(this);
return customerOrder;

}

public CustomerOrder removeCustomerOrder(CustomerOrder customerOrder) {
getCustomerOrders().remove(customerOrder);
customerOrder.setCustomer(null);
return customerOrder;

}

public Address getBillingAddress() { return billingAddress; }
public void setBillingAddress(Address billingAddress) {
this.billingAddress = billingAddress;

}

public Address getShippingAddress() { return shippingAddress; }
public void setShippingAddress(Address shippingAddress) {
this.shippingAddress = shippingAddress;

An instance of the CustomerOrder entity, shown in Listing 3-22, represents an order

placed by a customer. For this example, we have eliminated the related OrderItem

entities for brevity. The full-blown Apress Wines Online application, which includes a

number of other entities as well, is explored in Chapter 7.

139

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Listing 3-22. CustomerOrder.java

@Entity
@NamedQueries ({
@NamedQuery(name = "CustomerOrder.findAll",
query = "select o from CustomerOrder o")})

@Table(name = "CHO3_CUSTOMER_ORDER™)
@TableGenerator(name = "CustomerOrder ID Generator",

table = "CUSTOMERORDER ID GENERATOR",
pkColumnName = "PRIMARY_KEY NAME", pkColumnValue = "CustomerOrder.id",
valueColumnName = "NEXT ID VALUE")
public class CustomerOrder implements Serializable {

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE,
generator = "CustomerOrder ID Generator")

private BigDecimal id;

@Version

private int version;

@Temporal (TemporalType.DATE)

@Column(name = "CREATION DATE")

private Date creationDate;

private String status;

@ManyToOne

@JoinColumn(name = "CUSTOMER ID")

private Customer customer;

public Date getCreationDate() { return creationDate; }
public void setCreationDate(Date creationDate) {
this.creationDate = creationDate;

}

public BigDecimal getId() { return id; }
public void setId(BigDecimal id) { this.id = id; }

140

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

public String getStatus() { return status; }

public void setStatus(String status) { this.status = status; }
public int getVersion() { return version; }
public void setVersion(int version) { this.version = version; }

public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }

The final entity in this example is Address, shown in Listing 3-23. The Address entity
is referenced by the Customer entity but holds no relationship field of its own, making the
references from Customer unidirectional.

Listing 3-23. Address.java

@Entity
@NamedQueries({
@NamedQuery(name = "Address.findAll",
query = "select o from Address o")})

@Table(name = "CHO3_ADDRESS")

@TableGenerator(name = "Address ID Generator",
table = "CHO3_ADDRESS ID GEN",
pkColumnName = "PRIMARY KEY NAME",
pkColumnValue = "Address.id",
valueColumnName = "NEXT ID VALUE")

public class Address implements Serializable {

@Column(length = 4000)

private String city;

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE,
generator = "Address_ID Generator")

private BigDecimal id;

private String state;

@Column(length = 4000)

private String streeti;

141

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

@Column(length = 4000)
private String street2;
@Version

private Integer version;
@Column(name = "ZIP CODE")
private int zipCode;

public String getCity() { return city; }
public void setCity(String city) { this.city = city; }

public BigDecimal getId() { return id; }
public void setId(BigDecimal id) { this.id = id; }

public String getState() { return state; }
public void setState(String state) { this.state = state; }

public String getStreeti() { return streeti; }

public void setStreet1(String street1) { this.street1l = street1; }
public String getStreet2() { return street2; }
public void setStreet2(String street2) { this.street2 = street2; }

public Integer getVersion() { return version; }
public void setVersion(Integer version) { this.version = version; }

public int getZipCode() { return zipCode; }
public void setZipCode(int zipCode) { this.zipCode = zipCode; }

The CustomerOrderManager Stateless session bean serves as a facade for the three
entities shown previously, and it offers an interface to the persist(), merge(), and
remove () methods on EntityManager. It is shown in Listing 3-24.

Listing 3-24. CustomerOrderManager.java

@Stateless
public class CustomerOrderManager {

@PersistenceContext(unitName = "ChapterO3PersistenceUnit")
private EntityManager em;

142

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

public CustomerOrderManager() {

}

public <T> T persistEntity(T entity) {
em.persist(entity);
return entity;

}

public <T> T mergeEntity(T entity) {
return em.merge(entity);

}

public void removeCustomer(Customer customer) {
customer = em.find(Customer.class, customer.getId());
em.remove(customer);

}

/** <code>select o from Customer o</code> */

public List<Customer> getCustomerFindAll() {
return em.createNamedQuery("Customer.findAll", Customer.class).
getResultlist();

}

public void removeAddress(Address address) {
address = em.find(Address.class, address.getId());
em.remove(address);

}

/** <code>select o from Address o</code> */

public List<Address> getAddressFindAll() {
return em.createNamedQuery("Address.findAll", Address.class).
getResultlist();

}

public void removeCustomerOrder(CustomerOrder customerOrder) {
customerOrder = em.find(CustomerOrder.class, customerOrder.getId());
em.remove(customerOrder);

}

143

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

/** <code>select o from CustomerOrder o</code> */
public List<CustomerOrder> getCustomerOrderFindAll() {
return em
.createNamedQuery("CustomerOrder.findAll", CustomerOrder.class)
.getResultList();

}

/** <code>select o from CustomerOrder o where o.email = :email</code> */
public List<CustomerOrder> getCustomerOrderFindByEmail(String email) {
return em
.createNamedQuery("CustomerOrder.findByEmail", CustomerOrder.class)
.setParameter("email", email)
.getResultList();

To deploy this example, you will need a persistence.xml file that declares a named
persistence unit that can be referenced by the session bean (see Listing 3-25).

Listing 3-25. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/

persistence"” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance" xsi:schemalocation="http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd" version="2.2">

<persistence-unit name="Chaptero3PersistenceUnit" transaction-type="JTA">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<jta-data-source>jdbc/wineapp</jta-data-source>
<class>com.apress.ejb.chaptero3.entities.Address</class>
<class>com.apress.ejb.chaptero3.entities.CustomerOrder</class>
<class>com.apress.ejb.chaptero3.entities.Customer</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
<properties>

144

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

<property name="eclipselink.ddl-generation" value="create-tables"/>
</properties>
</persistence-unit>
</persistence>

Compiling, Deploying, and Testing the JPA Entities
Prerequisites

Before performing any of the steps detailed in the next sections, complete the “Getting
Started” section of Chapter 1. This section will walk you through the installation and
environment setup required for the samples in this chapter.

Opening the Sample Application

Copy the Chapter03-PersistenceSamples directory and its contents into a directory
of your choice. Run the NetBeans IDE, and open the Chapter03-PersistenceSamples
project using the File » Open Project menu. Make sure the ‘Open Required
Projects' check boxis checked. See Figure 3-1.

T =
1 Lookin: | |, SampleCode v & 2

-t (— :
3 ter03-PersistenceSamples By ame:
S [B X Crooter03 Persistencesamples | Biject
Chapter03-PersistenceSamples

- [¥] Open Required Projects:

Desktop

My Documents

A

-

JWETHERB-PC

‘.&\ File pame: C:\SampleCode\Chapter(3-PersistenceSamples Open Project

Network ; :
o Files of type: | project Folder v Cancel

Figure 3-1. Opening the Chapter03-PersistenceSamples project

145

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Expand the Chapter03-PersistenceSamples-ejb node and observe the packages
containing the EJB facade and the JPA entities for this sample application, and
the sources for the chapter listings. The persistence.xml file can be found in the
Configuration Files folder, and the JDBC data-sources that specify the database
connection are found in the glassfish-resources.xml file under Server Resources.
As described in “The Persistence Archive” section above, a JPA persistence archive may
be packaged in various ways within the application. In this example, we are bundling the
persistence archive together with the EJB facade, in the EJB .jar file.

The client HTTP servlet, CustomerOrderManagerClient. java, lives in the
Chapter03-PersistenceSamples-war project. See Figure 3-2.

146

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

() Chapter03-PersistenceSamples-ejb - NetBeans IDE82
File Edit View Navigate Source Refactor Run Debug Profile Te

FEES D 7 €

Projects % |Files | Services | =

@A Cl'aapter03-PersastenoeSamples

59

5 & A chePackages

2 @ com.apress.ejb.chapter03.ejb
@ CustomerOrderManager.java
8- @ com.apress.ejb.chapter03.entities
{ @ Address.java

@ Customer.java

~ |& customerOrder.java
@[] com.apress.ejb.chapter03.listings.listing_3_01
@[com.apress.ejb.chapter03.listings.listing_3_02
@[com.apress.ejb.chapter03.listings.listing_3_03
@[com.apress.ejb.chapter03.listings.listing_3_04
@[] com.apress.ejb.chapter03.listings.listing_3_05
@[com.apress.ejb.chapter03.listings. listing_3_06
@[] com.apress.ejb.chapter03.listings.listing_3_07
@[5 com.apress.ejb.chapter03.listings.listing_3_08
@[com.apress.ejb.chapter03.listings.listing_3_09
@[com.apress.ejb.chapter03.listings.listing_3_10
@[5 com.apress.ejb.chapter03.listings.listing_3_11
@[5 com.apress.ejb.chapter03.listings. listing_3_13
@[com.apress.ejb.chapter03.listings.listing_3_14
@[com.apress.ejb.chapter03.listings.listing_3_15
@[com.apress.ejb.chapter03.listings.listing_3_16
@[com.apress.ejb.chapter03.listings.listing_3_19
®-F8 canapresej:d‘:mterﬁistngsistng 3.20

E-} [b Generated Sources (ap-source-output

@ (@ Lbraries

@[Enterprise Beans

@ (& Configuration Files

@-jg Server Resources

@- @ Chapter03-PersistenceSamples-war

@Navigator &)

'J

Figure 3-2. Verifying that the EJB and the JPA artifacts are available in the project

147

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Creating the Database Connection and Sample Schema

The samples in this chapter require a database connection and a database schema
populated with tables that map to the JPA entities. To create the database itself, click on
the Services tab, expand the Databases icon, and invoke “Create Database. . .” on
the Java DB node. Create a database named “WineApp,” with username and password

wineapp/wineapp as shown in Figure 3-3.

) NetBeans IDE 8.2

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

PGS DE | Q- THDIPB-@-

& | projects Files | Services % | =1
5 |@- B Databases
IR
@\
© @& 0 Create Java DB Database ——— E
-8
@ Database Name: WineApp|
g kﬁk User Name: wineapp
ﬁ.“, C&:.’ Password: sssenee
Lﬂ% | Confirm Password: eesessse
i
@ *% Database Location: C:\Users\pardoma\AppData\Roaming\NetBeans\Derby
&2

Figure 3-3. Creating the WineApp database and connection

This last step created a database connection, which can now be used to create
the database schema. To do this, switch to the Files tab, expand the Chapter03-
PersistenceSamples folder and then the database folder, right-click on the Chapte03-
WineAppSchema.sql file, and choose “Run File.” In the dialog, be sure to select the new
WineApp connection created in the previous step. You can safely ignore errors that are
raised in the Chapter03-WineAppSchema.sql script caused by an attempt to clean out
objects that don’t yet exist. See Figure 3-4.

148

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

Q) Chapter03-Persi Samples - NetB IDE 8.2 s W
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help
RS DE | 1@ TH P-B-G-

= [projects | Files = | services =
z .:.' W U’Iapwa;i#uwbencw

g & @ Chapter03-PersistenceSamples-eb

& @ (@ Chapterd3-PersistenceSamples-war

Bl buid
E-[)) database
@
- dst Open
@[nbproject) |
B[sewp Etory]
@[e
= ut =X
8 buidom < o
@-[)) Chapter03-PersistenceSamples-eit ~ “OPY Ctrl+C
#1-{). Chapterd3-PersistenceSamples-wa Run File ShifteFs |
Delete .
Rename...
Save As Template
Tools
Properties

Figure 3-4. Creating the sample database schema in the WineApp database

Compiling the Entities, EJBs, and the Client

Invoke the context menu on Chapter03-PersistenceSamples node and build the
application by selecting the Clean and Build menu option. See Figure 3-5.

149

CHAPTER 3

ENTITIES AND THE JAVA PERSISTENCE API (JPA)

) Chapter03-PersistenceSamples - NetBeans IDE8.2

File Edit View Navigate Source Refactor Run Debug Profile Team T¢

PEES DE

-1 @7

Figure 3-5. Building the application

(=2 = ‘
%
2 Lb Java EE Modules Add Java EE Module...
2 Us Conﬁguahonﬁles New >
® @[l Server Resources |
@--Q Chapter03-Persistences Build ;
@ [}y SourcePackages | Clean and Build |
0@ Generated Souces| Clean
[Er [Libraries Verify
E*J '/ Enterprise Beans
LQ Configuration Files | Run
_ g Server Resources | Do
@@ Chapter03-Persistences B
Debug
Profile

Deploying the JPA Persistence Unit, the EJB Module,

and the Servlet

Once you have compiled the application, you can deploy it to the GlassFish application
server. Invoke the context menu on Chapter03-PersistenceSamples node and deploy
the application by selecting the Deploy menu option. See Figure 3-6.

150

) Chapter03-PersistenceSamples - NetBeans IDE8.2

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

File Edit View Navigate Source Refactor Run Debug Profile Team Tools

RS DE

';C'?c

(Z) Navigator Ty

Figure 3-6.

NetBeans will start the integrated GlassFish application server and deploy the

Projects % | Files Services

B A Chapter03-PersistenceSamnles

@[y Java EE Modules
@-[j§ Configuration Files
@ [jg Server Resources
- Q) Chapter03-PersistenceSam
- @[} Source Packages
. @ Generated Sources (ap
@@ Libraries
@[Enterprise Beans
@[Configuration Files
@ [y Server Resources
& @ Chapter03-PersistenceSam

Deploying the application

(=

Add Java EE Module...

New

Build
Clean and Build
Clean

Verify

Run

Deploy
Debug
Profile

application to the server. The server’s log window will log the deployment status of the

application. See Figure 3-7.

151

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

S L TS L L i

: Dutput

¥ | JavaDe | Scﬂtrl.l.l L] MMWMM}

(lb"- Severe: Annotations processing failed for £1le: /C:/Sampl g / -Fersis r les/dist/gfdeploy/Ch TER is axples/Chapt
Info: wvisiting unvisited references

L visiting unvisited references

|@| tafo: com.ap #4b.chapter0?.entities Customer actuslly got transformed

iﬂ Info: com.ap: e3b. 3.entities. actually got transformed
Info: com.ap ©jb.chapter03_ entities Address actually got transformed
Info: Eclipselink, version: Eclipse Persistence Services - 2.6.1 vi0150605-31e8258
Info: /file:/C:/SazpleCode/beg-ei Chapter0i-F st/gfdaploy/ch 3= Chaprer0i-Persi 4b_jar/_Ck
Warning: FERO1000: Got SQLExceprion sxecuting statemenc “CREATE TABLE CHO3_ADDRESS (ID DECIMAL(15) WOT WULL, CITY VARCHAR (4000], STATE VARCHAR(2868), STREETI
Warning: FERO1000: Got SQLExceprion sxecuting scatemenc “CREATE TABLE CHO3_CUSTOMER ORDER (ID DECTIMAL(15) WOT WOULL, CREATION DATE DATE, STATUS VARCHAR(258),
Warning: FERO1000: Got SQLExceprion sxecuting scatemsnc “CREATE TABLE CHO3_CUSTOMER (ID DECIMAL(15) WOT WULL, EMATL VARCHAR(4000), VERSION INTEGER, BILLING
Harning: PERO1000: Got SQLExceprion sxecuting scatemsnc “CREATE TABLE CHO3_ADDRESS_ID GEN (PRIMARY_MEV _WAME VARCHAR(50) WOT WULL, MEXT_ID VALUE DECIMALI15],
Harning: PER01000: Got SQLExceprion sxecuting statemenc “IHSERT INTO CHO3_ADDRESS_ID GEN(PRIMARY_WEY HAME, NEXT_ID VALUE) values (‘Address.id’, 01%: java.sc
Warning: PERO1000: Got SQLExcepricn sxecuting scatemsnc “CREATE TABLE CHO3_CUSTOMER_ID GEN (PAIMARY_KEY WAME VARCHAR(50) HOT WULL, NEXT_ID_VALUE DECTMAL(15]

PEIRO1000: Gou SQLE: axscuting statemant “IRSERT INTO CHO3_CUSTCMER_ID_GEN (FRIMARY_KEY_HAME, WEXNT_ID_VALUS) waluss ('Custcmer.id®, 0)7: Java.
Warning: PERO1000: Gov SQLSxcepticn executing statement “CREATE TABLE CHO3_CUSTOMER_ORDER_ID GEN (PRIMARY_KEY_MAME VARCHAR(S0) NOT WULL, KEXT_ID _VALUZ DECIX
Wazning: FSRO1000: Geou SGI-!“E“:'\ SXECUTLRG ITATEZMNT 'IIIS ar INTO CHO3_CUSTOMZR_OADZR_ID_GEN(PAIMARY_KEY_HAME, NEXI_ID VALUZ) valuss ('Custcmerfzde: L)
Info: Fortable JNDI nazes 2 bal/ Chaptez03-Pezs: a3k iceBean,
Infe: Fertable JHDI names EJB CustemezOrdeszManages: 3 BI-ICHOPECEU ¥ w laz-e3by
Infe: FPorzable JNDI mames for ZJB Listing_3_13_CustomezManager: (java:global/Chaptez03-Pers: P P -a3b/Listing 3 13 _Cust
Infe: Fortable JHDL mames for EJB MySessioniJE: [java:global/ch ¥ B L EJB, java:glsbal L
Infa: Fortable JHDI names for EJB : [lava:glebal/ Pa; Chaprezli-Fazss as-alk Java:
WARM: WELD-00041l: Obsezves mathod [Backedinnotatediethed] private org.glassfiish.jezsay.ext.odilx.intesnal. azedIype (I0Bsesy
WARN: WELD-0004ll: Cbserver sethod [BackedinnctatedMethod] public crg.glassfish.lms.injestion. m'.‘n'ix.onnen presessAnnotatediyvpe (00D Frocesshnnotatd
WARN: WELD-0004ll: Cbsarver methed [Backedinnctateddethed] ozg.glassfish.sse.ispl — TR vas Processhnnotatd
Info: Inivializing Mojarra 2.3.13 (J0150720-0848 hetpe://evn. jave.net/sva/sojarza~-svn/tage/3.2.17014885) for context '/ChapterOi-PezsistenceSasples-var®
Infe: Leading applicaticn ¥ B Fez ~waz.war] at ® ezl
Info: B .8 AR 1y deployed in I 176 =illiseccnds.
m

Figure 3-7. Log showing successful deployment

Running the Client Programs

Once the entities, the EJB, and its client servlet are successfully deployed, we need to set

the run target that we wish to execute. To set the run target, invoke the context menu on
Chaptero3-PersistenceSamples node and select the Properties menu option. Select

the Run category, enter the run target “CustomerOrderManagerClient” in the Relative
URL text field, and OK the dialog.

To run the client HTTP servlet, invoke the context menu on
Chapter03-PersistenceSamples node and select the Run menu option, as shown in
Figure 3-8.

152

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

() Chapter03-PersistenceSamples - NetBeans IDE82
File Edit View Navigate Source Refactor Run Debug Profile Team Ti

RS D E

-] @- 7

& =
g
.% (i Java EE Modules Add Java EE Module...
z & Configuration Files New >
® _ g Server Resources
= Q) Chapter03-Persistences: Build
@ (5 SourcePadtages Clean and Build
@U@ G oy Clean
@) Lbrarnes :
& Enterprise Beans ey _
@& Configuration Files Run '
@y Server Resources Deskc
@3- @) Chapter03-PersistenceS: ot
Debug
Profile

Figure 3-8. Running the selected servlet

NetBeans will open your default browser and execute the selected servlet. Any
existing conflicting data is deleted, new test data is created, and then it is queried and
rendered in tabular format. To avoid circular dependencies, an entity’s properties are
displayed only the first time it is encountered; any subsequent reference to that entity
is shown as [<entity> <PK> already printed].Referenced objects, including lists of
referenced objects, are show in nested table cells. Here is the output for the client servlet,
showing the log of the servlet’s actions. See Figure 3-9.

153

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

— = S S—— ”'_' = .
{ _:-/'. @ http://localhost:8080/Chapter)3-PersistenceSamples-war/CustomerOrderManagerClient p~0 ESQNMCustomerOrderMan.., x |
File Edit View Favorites Tools Help

Servlet CustomerOrderManagerClient at /Chapter03-PersistenceSamples-war

Deleting any existing Customer and referenced objects
Deleting customer (and referenced objects) 1

Creating and persisting new Customer and referenced objects

Customer
id
version 1
email [wineapp-info @ apress.com
CustomerOrder
(B B

‘ersion
eal

2|
[street]]200 Oracle Plowy
15212639
[version J[L

[pCodd 3063
sh ddress|[Address 2 already printed)

billingAddress

Figure 3-9. Output of CustomerOrderManagerClient servlet

Take a look at the code in CustomerOrderManagerClient. java. Feel free to experiment
by creating additional entities, testing the mergeEntity() and other service methods on
the EJB session bean, and observing the resulting behavior. To reset the test schema back
to its original state, you can always re-execute the step depicted in Figure 3-4.

Summary

This chapter introduced the Java Persistence API 2.2 introduced with Java EE 8 and

a few of the essential services it offers. We examined how a simple JavaBean can be
transformed into a JPA entity simply by adding a couple of annotations. We then
extended this example to illustrate how you can further refine your entities to add greater
flexibility by declaratively specifying additional annotations on the entity class.

154

CHAPTER 3 ENTITIES AND THE JAVA PERSISTENCE API (JPA)

We explored these essential components of JPA: the persistence archive, the
persistence unit, the persistence context, and the EntityManager. We walked through
the entity life cycle to examine an entity’s behavior as it transitions between the following
states: new, managed, detached, and removed.

The section on O/R mapping explored how entities map to their underlying tables,
and how you can control the basic mapping to allow a field to map to a column with a
different name.

We discussed the role of an entity’s primary key, explored both simple and
composite primary keys, and how to define each. We showed how to configure an ID
generator to have JPA auto-assign an entity’s PK at the time it is persisted.

We then delved into entity relationships and discussed the relationship field types
supported by JPA: @neToOne, @OneToMany, @ManyToOne, and @ManyToMany.

A discussion of JPQL ensued with examples of how to declare and execute named
queries and how to use dynamic and bulk update and delete queries.

We concluded with a sample application that illustrated how related entities interact
and how they can be manipulated through a session fagade that is in turn called from an
HTTP servlet.

155

CHAPTER 4

Advanced Persistence
Features

We have organized the persistence sections of this book into three main chapters. The
previous chapter introduced the Java Persistence API (JPA), and it gave you a starting point
for creating entities, wiring up object/relational (O/R) mappings, and writing queries that
retrieve them. With an understanding of these concepts, you can create and build applications
with powerful, persistent entities that run both inside and outside an EJB container.

In this chapter, we build upon this knowledge and explore areas of the Java
Persistence API (JPA) that offer greater flexibility and power to your applications,
including the following:

o How to define and work with entity inheritance hierarchies

e How to work with abstract entities, mapped superclasses, and
non-entity classes

e How to build queries with Java Persistence Query Language (JPQL),
native SQL, and the query criteria API

o How to configure ID generators to auto-populate primary key fields
o How to specify entity lifecycle callbacks
e How to configure optimistic locking

The third main area of the Persistence API, which will be covered in Chapter 8,
involves EJB support for transaction management when working with JPA entities. The
EJB container provides you with options for session beans to manage the life cycle of the
EntityManager, control the longevity of your persistence context, and use either Java
Transaction API (JTA) or resource-local transactions. With good knowledge of the way
EJB and JPA support transactions and how you can apply this technology, you will have
the tools to build full-scale, persistent enterprise applications.

157
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018

J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_4

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

As with the rest of this book, this chapter covers many of the concepts defined
in the specification, but it is not intended to supplant it. Indeed, readers are strongly
encouraged to consult the spec as a reference document and a resource for exploring
these concepts in even greater depth, and to discover others that go beyond the scope
of this introductory text. Here we focus on translating some of the fundamental features
from spec into their applied use, providing examples of how the new persistence
features can be used to accomplish your real-world goals of building component-based
enterprise Java applications.

Each of the major concepts in this chapter is captured in a separate, runnable
example. The steps required to run the examples are covered at the end of the chapter
in the section entitled “Compiling, Deploying, and Testing the JPA Entities.” The general
structure is that we provide a stand-alone NetBeans project for each example and supply
each with its own JPA persistence unit, entities, and Java test service classes. You can run
and test the examples from a Java client in a pure Java SE environment without running
Glassfish, or you can execute the servlets that accompany each of these projects to run
the sample in a Java EE Web environment.

Note As discussed in the previous chapter, entities may designate their
persistent state to be defined by either their instance variables or bean property
accessors. To improve readability in this chapter, we use the term field to refer
generically to the persistent members of an entity, leaving open the detail of how
the entity declares its persistent properties.

Mapping Entity Inheritance Hierarchies

Java has supported single class inheritance—in which a non-interface class may extend

a single other class—since its inception. While it has been a common practice to exploit
the code reuse and polymorphism benefits of inheritance in many areas of the business
domain, data inheritance was not supported in the EJB persistence domain until the
introduction of JPA. This had been a major shortcoming since, in the real world, data is
often hierarchical; and the lack of standard, built-in support for inheritance of data objects
has required countless workarounds and headaches. Leveraging the ease of use of JDK
annotations, JPA delivers declarative support for defining and mapping entity inheritance
hierarchies, including abstract entities and polymorphic relationships and queries.

158

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Note An abstract entity is an entity class that contains the abstract modifier
and therefore cannot be instantiated in its own right. An abstract entity must

be an intermediate class in an entity inheritance hierarchy; it may not itself be

a leaf entity since it may only be instantiated through one of its subentities.
Correspondingly, all leaf entities in an entity inheritance hierarchy must be concrete
and therefore instantiable. An abstract entity exists to provide a common data
structure for its subentities and to represent its subentities through polymorphic
relationships with other entities.

Much of the entity inheritance support in JPA is borne of the work of designers
and tool developers who have, over the years, come up with ways to roll their own O/R
mappings, and JPA has conveniently adopted several alternative inheritance mapping
approaches that derive from these efforts.

Within a given entity inheritance hierarchy, a single inheritance strategy applies to
all entities in the hierarchy. Additionally, all entities in a hierarchy must use the same
primary key type, regardless of the inheritance strategy. This makes it reasonable for
the container to support polymorphic relationships, regardless of the mapping strategy
employed for the class hierarchy.

Also, should your database have the restriction that a table be limited to 256
columns, note that entities are free to distribute their field mappings across joined rows
in multiple tables.

Getting Started

All of the code snippets in this chapter exist in runnable form that you can download
and execute directly in your local environment together with SQL scripts for creating

the corresponding tables and other database artifacts in your local database. The steps
for running the samples are described at the end of the chapter. Since these examples
deal only with entities, we can leverage the pure Java SE (outside-the-container) support
offered in JPA and skip the step of deploying these entities into a Java EE container. You
will see that a simple Java class is sufficient to create an EntityManager that can interact
with these entities and drive example tests. Seeing these concepts in action will help
clear up questions left unanswered here, and the samples should also provide a useful
launch pad for testing out your own ideas.

159

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Entity Inheritance Mapping Strategies

JPA provides declarative support for three main implementation strategies that dictate
how the entities in a hierarchy map to underlying tables. We will examine each strategy
by applying it to a sample entity hierarchy and explore the strengths and weaknesses of
each approach. This comparison is intended to help you decide how to map each of the
entity hierarchies in your own application.

Sample Entity Hierarchy

To illustrate how these three strategies are manifested in code, Figure 4-1 shows a sample
entity hierarchy that demonstrates both inheritance and polymorphic relationships.

|:| Person |:|Address

- String firstName - String city

- Address homeAddress - Integer id

- Integer id =>_ String state

- String lastName homeAddress - String street1
- Integer version - String street2

- Integer version

[ﬁ - String zipCode

|:| Employee
- String department managedEmployees
- String email <<

- FullTimeBrployee manager

Aﬁ ZF rnanagerl
|:| FullTimeEmployee

:|:]Parl'l'imeEn'ployee - double annualSalary
- double hourlyWage - List<Brployee> managedBErployees

Figure 4-1. An entity type hierarchy, rooted in the base entity Person, showing
relationships between entities both inside and outside the hierarchy

160

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

In this example, the Person entity serves as the root class in an entity hierarchy, and
it is extended by the Employee entity. Employee is further specialized to produce two
other entities: FullTimeEmployee and PartTimeEmployee. Inheritance relationships
are expressed in the figure through unnamed white arrowheads, and ordinary entity
relationships are expressed with named open arrowheads.

The root Person entity and the intermediate Employee entity are both abstract in
our example. Only the leaf entities FullTimeEmployee and PartTimeEmployee, and
the stand-alone entity Address, are concrete and instantiable. Note that even abstract
entities may be involved in relationships with other entities and, as you will see from the
code that follows, abstract entities may also be used in JPQL statements. Whenever a
non-leaf entity is referenced, that reference implicitly assumes that the actual concrete
implementation being referenced may be that entity or any of its subclass entities. Non-
leaf entities may also be concrete, though, and had we chosen to do this in our example,
we could have made these base classes concrete.

The root Person entity also holds a single-value reference to an Address instance,
represented by the homeAddress field on Person. This relationship is inherited
by all subclasses of Person; so all instances of Employee (FullTimeEmployee and
PartTimeEmployee) can also refer to their homeAddress field. Note that there is
no corresponding field on Address referencing Person, so this is a unidirectional
relationship. From our coverage of entity relationships in the previous chapter, you will
recall that this is a one-to-one relationship.

Note A relationship between two entities that is exposed through a field on only
one of the entities is known as a unidirectional relationship. A relationship exposed
through fields on both entities involved is known as a bidirectional relationship.

In addition, we have defined a one-to-many, bidirectional relationship between a
FullTimeEmployee (amanager) and a collection of Employees (its managedEmployees).
Because this relationship is exposed through fields at both ends of the relationship
(in this case, the two entities involved are actually the same entity, Employee), this is a
bidirectional, one-to-many relationship.

161

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

As you look at each example, you will see how the Java source files are essentially
constant across the three inheritance mapping strategies. Only the class-level
annotations for declaring the inheritance strategies, and some details, like the table
names, separate the entities in one example from another. This is a key benefit—the
chosen inheritance strategy can be replaced without impacting the entities’ Java API. In
the three sections that follow, we will illustrate how each mapping strategy can be
applied to this hierarchy.

In these inheritance examples, we included a separate table for the Address entity
alongside the tables mapped to each inheritance hierarchy, as depicted in the database
schema diagrams. It is not strictly necessary to replace the ADDRESS table for each entity
hierarchy, since whatever table is associated with the Person entity could hold its own
foreign key reference to a common ADDRESS table. However, we took this approach to
help isolate each inheritance example.

Object/Relational Inheritance Mapping Strategies

Note Unless otherwise specified, you can assume that all JPA classes mentioned
in this chapter are in the javax.persistence.* package.

Now that we have defined our entity hierarchy, let’s look at how each of the three
O/R strategies supported natively by JPA can be used to map this Person entity hierarchy,
and the associated Address entity, to a relational schema. Here is a summary of each
strategy defined by the InheritanceType enum:

public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

o SINGLE_TABLE: Single-table-per-class inheritance hierarchy. This is the
default strategy. The entity hierarchy is essentially flattened into the
sum of its fields, and these fields are mapped down to a single table.

o JOINED: Common base table with joined subclass tables. In this
approach, each entity in the hierarchy maps to its own dedicated
table that maps only the fields declared on that entity. The root entity
in the hierarchy is mapped to the base table, and the tables for all
other entities in the hierarchy reference this base table.

162

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

o TABLE_PER_CLASS: Single-table-per-outermost concrete entity class.
The third inheritance mapping option is also not required of JPA
containers for compliance with the final draft of the JPA 2.1 spec, so
portable applications should avoid it until it is officially mandated
or at least widely supported. This strategy maps each leaf (that is,
outermost, concrete) entity to its own dedicated table. Each such
leaf entity branch is flattened, combining its declared fields with the
declared fields on all of its superentities, and the sum of these fields is
mapped onto its table.

The @GeneratedValue Annotation

In each of the inheritance strategy examples, we use the @GeneratedValue annotation
to auto-populate the entity’s primary key for both the Person entity hierarchy and the
stand-alone Address entity. In our examples, we designate a field named id as the
primary key, simply for consistency. Specifying an ID generator in metadata allows the
persistence provider to assign an entity its ID value before the entity is actually saved as
arow in the database. Declarative specification of the @GeneratedValue annotation is
certainly easier than assigning the ID in application code, and it is also an optimization
over the alternative of auto-populating the ID value using a database trigger. Since the ID
value is used when persisting relationship mappings, this saves the persistence manager
the trouble of querying the row back again from the database to retrieve the trigger-
populated value. Details on how to customize sequence- or table-based ID generators
are provided later in the chapter.

We will now explore each strategy, discussing its strengths and weaknesses, and
illustrating its use through examples.

Note Java source files for the examples shown in the listings below can all be
found in the Source Code area for this chapter.

163

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Single-Table-per-Class Inheritance Hierarchy
(InheritanceType.SINGLE_TABLE)

The default inheritance mapping strategy is SINGLE_TABLE, in which all the entities in
the class hierarchy map onto a single table. A dedicated discriminator column on this
table identifies the specific entity type associated with each row, and each entity in the
hierarchy is given a unique value to store in this column. By default, the discriminator
value for an entity is its entity name, although an entity may override this value using
the @iscriminatorValue annotation. This approach performs well for querying, since
only a single table is involved, and if your type of hierarchy can abide by the practical
limitations, this is probably the best approach to use.

Figure 4-2 shows a diagram of a schema that maps our example entities using the
SINGLE_TABLE strategy. We have chosen to prefix these tables with CH04_ST_ to avoid
conflicts with the PERSON and ADDRESS tables in our example schema that are used by the
full Enterprise Wines Online application.

& CHO4_ST_PERSON f& CHO4_ST_ADDRESS
ID : NUMBER(10, 0) ID : NUMBER(10, 0)

TYPE : VARCHAR2(31 BYTE) CITY : VARCHAR2(400 BYTE)
FIRST_NAME : VARCHAR2(400 BYTE) STATE : VARCHAR2(2 BYTE)

LAST_NAME : VARCHAR2(400 BYTE)
VERSION : NUMBER(10, 0)

HOME_ADDRESS STREET1 : VARCHAR2(400 BYTE)
—STREET2: VARCHAR2(400 BYTE)

HOME_ADDRESS : NUMBER(10, 0) 0..1 '\VERSION : NUMBER(10, 0)
DEPARTMENT : VARCHAR2(400 BYTE) ZIP_CODE : VARCHAR2(255 BYTE)
EMAIL : VARCHAR2(400 BYTE) a -

MANAGER : NUMBER(10, 0) D <PK>SYS_C0025613: ID

ANNUAL_SALARY : NUMBER(19, 4)
HOURLY _WAGE : NUMBER(19, 4)

«PK»SYS_C0025615: ID
«FK»>FK_CHD4_ST_PERSON_HOME_ADDRESS: HOME_ADDRESS

FK»FK_CHD4_ST_PERSON_MANAGER: MANAGER
Ll » - =1 o
-

MANAGER | 0.1

Figure 4-2. The CH04_ST_PERSON table holds all entity instances in the entity
hierarchy rooted by Person. The CH04_ST _ADDRESS table holds the associated
Address instances.

164

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

All of the properties across the entity hierarchy rooted by the Person entity map to
columns on a single table, CHO4 ST PERSON. This table holds a foreign key reference,
bound to the HOME_ADDRESS column, to CH04_ST_ADDRESS, which is mapped to the
Address entity. It also holds a foreign key reference, using the MANAGER column, back to
itself. This foreign key is not constrained to be unique, indicating that multiple rows may
hold the same value in their MANAGER column.

Example Entity Classes

Listings 4-1 through 4-4 show how the entities in the Person hierarchy are mapped using
the SINGLE_TABLE inheritance strategy. The inheritance strategy is declared on the root
entity in the hierarchy, and it also applies to all subentities in the hierarchy. Annotations
introduced in the example entities that have not yet been covered are explained in the
sections that follow.

Listing 4-1. Person.java, an Abstract Root Entity in a SINGLE_TABLE Inheritance
Hierarchy

/*

* Person: An abstract entity, and the root of an inheritance hierarchy

*

* To create ID generator table "CHO4 ST PERSON_ID GEN":

* CREATE TABLE "CHo4 ST PERSON_ID GEN" ("PRIMARY KEY NAME" VARCHAR2(4000)
PRIMARY KEY, "NEXT _ID VALUE" NUMBER(38));

* To initialize this table with data for this entity's ID generator
'Person.id' (starting with value '0'):

* INSERT INTO "CHO4_ ST PERSON_ID GEN" VALUES ('Person.id', 0);

*/
@Entity
@NamedQueries({ @NamedQuery(name = "Person.findAll", query = "select o from
Person o") })

@Table(name = "CHO4 ST PERSON")

@TableGenerator(name = "Person ID Generator", table = "CH04_ ST _PERSON_ID
GEN", pkColumnName = "PRIMARY_KEY NAME",

pkColumnValue = "Person.id", valueColumnName = "NEXT ID VALUE")

@Inheritance(strategy = InheritanceType.SINGLE TABLE)

165

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@DiscriminatorColumn(name="TYPE")
public abstract class Person
implements Serializable
{
@SuppressWarnings("compatibility:-7074714881275658754")
private static final long serialVersionUID = 5291172566067954515L;

@Id

@Column(nullable = false)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person ID
Generator")

private Integer id;

@Column(name = "FIRST NAME", length = 400)
private String firstName;

@Column(name = "LAST_NAME", length = 400)
private String lastName;
@0neToOne(cascade=CascadeType.ALL)
@JoinColumn(name = "HOME_ADDRESS")

private Address homeAddress;

@Version

private Integer version;

public Person() {

}

/* get/set methods... */
}

Listing 4-2. Employee.java, an Abstract Intermediate Entity in a SINGLE_TABLE
Inheritance Hierarchy

/*

* Employee: An abstract entity that extends Person
*/

@Entity

@NamedQueries({

@NamedQuery(name = "Employee.findAll", query = "select o from Employee 0")})
@Table(name = "CHO4 ST EMPLOYEE")

166

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public abstract class Employee extends Person implements Serializable {
@SuppressWarnings("compatibility:276774077273820023")
private static final long serialVersionUID = -8529011412038476148L;
@Column(length = 400)
private String department;
@Column(length = 400)
private String email;
@ManyToOne
@JoinColumn(name = "MANAGER")
private FullTimeEmployee manager;

public Employee() {
}

/* get/set methods... */
}

Listing 4-3. FullTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE
Inheritance Hierarchy

/*
* FullTimeEmployee: A concrete leaf entity
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from
FullTimeEmployee 0")})
@Table(name = "CHO4_ST_FT_EMPLOYEE")
public class FullTimeEmployee
extends Employee
implements Serializable {
@SuppressWarnings ("compatibility:9058152191575937294")
private static final long serialVersionUID = -7301681120809804802L;
@Column(name = "ANNUAL SALARY")
private double annualSalary;
@0OneToMany(mappedBy = "manager", cascade = {CascadeType.PERSIST,
CascadeType.MERGE})

167

CHAPTER 4 ADVANCED PERSISTENCE FEATURES
private List<Employee> managedEmployees;

public FullTimeEmployee() {
}

/* get/set methods... */
}

Listing 4-4. PartTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE
Inheritance Hierarchy

/*
* PartTimeEmployee: A concrete leaf entity
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from
PartTimeEmployee 0")})
@Table(name = "CHo4_ST_PT_EMPLOYEE")
public class PartTimeEmployee extends Employee implements Serializable {
@SuppressWarnings("compatibility:-4882346458268010846")
private static final long serialVersionUID = 4017999239159878209L;
@Column(name = "HOURLY WAGE")
private double hourlyWage;

public PartTimeEmployee() {
}

/* get/set methods... */

Outside of this entity hierarchy lives the Address entity, shown in Listing 4-5. This
entity is the target of a unidirectional @neToOne relationship with the root (and abstract)
Person entity shown previously.

168

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-5. Address.java, a Concrete Stand-Alone Entity

/*

* Address: A standalone entity

*

* To create ID generator table "CHO4 ST_ADDRESS ID GEN": CREATE TABLE
"CHo4_ST ADDRESS_ID GEN"

* ("PRIMARY KEY NAME" VARCHAR2(4000) PRIMARY KEY, "NEXT ID VALUE" NUMBER(38));

* To initialize this table with data for this entity's ID generator
'Address.id" (starting with

* value '0'): INSERT INTO "CHO4 ST ADDRESS ID GEN" VALUES ('Address.id', 0);

*/
@Entity
@NamedQueries ({

@NamedQuery(name = "Address.findAll", query = "select o from Address o")})
@Table(name = "CHO4 ST ADDRESS")
@TableGenerator(name = "Address ID Generator", table = "CHO4 ST ADDRESS ID
GEN", pkColumnName = "PRIMARY_KEY NAME",

pkColumnValue = "Address.id", valueColumnName = "NEXT ID VALUE")
public class Address
implements Serializable {

@SuppressWarnings("compatibility:-5340972441524875330")

private static final long serialVersionUID = -5279408726470732092L;

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE, generator = "Address ID

Generator")

private Integer id;

@Column(length = 400)

private String city;

@Column(length = 2)

private String state;

@Column(length = 400)

private String streeti;

@Column(length = 400)

169

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

private String street2;
@Version

private Integer version;
@Column(name = "ZIP_CODE")
private String zipCode;

public Address() {
}

/* get/set methods... */

Let’s take a look at some of the annotations that were introduced in this example.

The @JoinColumn Annotation
An Employee entity has a manager field of type FullTypeEmployee, and it is mapped this way:

@ManyToOne
@JoinColumn(name = "MANAGER")
private FullTimeEmployee manager;

The manager field is of type FullTimeEmployee and maps to the to the MANAGER
column, identified by the name = "MANAGER" attribute on the @JoinColumn annotation.
The MANAGER column happens to be a foreign key reference to the table mapped by the
FullTypeEmployee entity, which in this case is the same CH04 ST _PERSON table. Defining
a foreign key for such columns is not strictly necessary, but it is generally considered
good database design. Because the manager field maps to the foreign key column, it is
considered the owning end of the relationship.

The entity at the other end of this bidirectional relationship, FullTimeEmployee,
holds the managedEmployees field.

@0OneToMany(mappedBy = "manager", cascade = {CascadeType.PERSIST,
CascadeType.MERGE})
private List<Employee> managedEmployees;

170

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Since we have already specified the mapping on the owning end, this field can
simply refer to that manager field, using the mappedBy = "manager" attribute. In this
way, both relationship fields are mapped to the same foreign key, and a join table is not
required.

Note JPA lets you map a @OneToMany field to a foreign key on the target entity’s
table even when the target entity doesn’t expose a corresponding @ManyToOne
relationship field. To do this you use @ @JoinColumn on the @OneToMany field
that identifies the remote foreign key, instead of using the mappedBy attribute.

This managedEmployees field contains a list of Employee instances, which in practice
will be concrete FullTimeEmployee and/or PartTimeEmployee instances.

The cascade = { CascadeType.PERSIST, CascadeType.MERGE } attribute indicates
that any merge or persist operation performed on this entity, Employee, must also be
applied to any FullTimeEmployee instances referenced by this relationship field. For
example, if a new Employee instance is created and assigned a FullTimeEmployee as its
manager, the act of persisting the Employee instance through EntityManager.persist()
will also cause any referenced FullTimeEmployee instances to be persisted as well, if they
have not already been persisted.

The Person entity has a relationship with Address through the homeAddress field.

@0neToOne(cascade=CascadeType.ALL)
@JoinColumn(name = "HOME_ADDRESS")
private Address homeAddress;

Because there is no corresponding field on Address that references Person, this
is a unidirectional relationship. The cascade property on @0neToOne indicates which
operations should be propagated to the referenced object. Because we have specified
a cascade rule of CascadeType.ALL, all events-DETACH, MERGE, PERSIST, REFRESH, and
REMOVE-applied to a Person are automatically applied to its homeAddress object.

The @DiscriminatorColumn Annotation

Whenever we map multiple entity classes to a single table, as we do with the
InheritanceType.SINGLE TABLE strategy, there must be some way to identify the
concrete entity type of any given row in the table. To determine the entity type, the

171

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

persistence manager looks for a column named DTYPE in the root entity’s table to
obtain this information. If your schema requires a different column name to capture
this information, you may use the @iscriminatorColumn annotation to identify which
column JPA should use; in Listing 4-1, the Person.java entity specifies a discriminator
column named TYPE, through the @DiscriminatorColumn(name = "TYPE") annotation.
Were we to use a column named DTYPE, as we do for the remaining examples, we could
have skipped this annotation altogether and accepted the default value.

The @DiscriminatorValue Annotation

The value that gets stored in the discriminator column is known as a discriminator
value. Each concrete entity declares, either explicitly or by tacitly accepting the
default, a unique discriminator value that serves to identify the concrete entity type
associated with each row in the table. The discriminator value defaults to the entity
name, and in this example, we have accepted this default value for each of the entities
in the hierarchy. When adapting legacy tables and data into JPA, and you wish to map
preexisting discriminator values to entities with dissimilar names, you can use the
@DiscriminatorValue annotation to specify the discriminator value to use for each
entity in the hierarchy that requires an override.

Pros and Cons of the SINGLE_TABLE Strategy

We consider each inheritance hierarchy from a design time and performance perspective,
weighing strengths and weaknesses. We start with the SINGLE_TABLE strategy.

Design-Time Considerations

The SINGLE_TABLE mapping approach works well when the type hierarchy is fairly
simple and stable. Adding a new type to the hierarchy and adding fields to existing
supertypes simply involves adding new columns to the table. In particularly large
deployments, however, this may have an adverse impact on the index and column layout
inside the database. If your hierarchy will possibly outgrow the column limitations of

a single table, which is typically 256 columns, or if for some reason you need to map
more than one very large field to inline LOB (Large OBject) columns, you may have to
introduce an @SecondaryTable mapping. In this case, it might be wiser to adopt one

of the approaches that follow. In addition, NOT NULL constraints may not be used on
columns that are not shared by all types in the hierarchy.

172

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Performance Impact

The SINGLE_TABLE strategy is very efficient for querying across all types in the
hierarchy, or for specific types. No table joins are required by the internal persistence
framework—only a WHERE clause listing the type identifiers is necessary. In particular,
relationships involving types that employ this mapping strategy perform well.

Sample Client Code

As we mentioned in the “Getting Started” section of this chapter, we have put together
sample client code to test the inheritance examples, along with the other examples that
appear later in this chapter. In the Sample Code provided for this chapter, we offer both a
Java client and an HTTP servlet for each of the inheritance examples. Listing 4-6 shows a
simple Java class that serves as a facade, like an EJB Session bean facade, for instantiating
an EntityManager for the Chapter04-PersistenceIISamples-SingleTable persistence
unit and exposing the CRUD methods for manipulating the JPA entities in that unit.
Listing 4-7 shows a Java client for this service that exercises these CRUD methods and
prints out the results. We could have used an actual EJB Session fagade for this purpose
as well, but we wanted to demonstrate how an ordinary Java class can interact with JPA
entities in a non-JavaEE environment.

In the Sample Code area, we offer a similar Java service facade and accompanying
Java clients for the other inheritance strategies. They are identical across each
inheritance strategy except for the persistence unit used by each, and the entity classes
that are annotated with the specific inheritance strategy details.

Similarly, we provide a simple HTTP servlet client for each inheritance strategy,
demonstrating JPA entity use in a JavaEE Web environment. These servlets replace the
Java client, and they interact directly with the same Java service facade.

Listing 4-6. JavaServiceFacade.java, a Java Class that Serves as a Facade for the
Entities Defined in Figure 4-1

/*
* Java service facade that obtains an EntityManager running outside of a
* Java EE container, and illustrates CRUD operations on a handful of entities.

*

Employs auto-commit behavior, emulating the default transaction behavior of
a Stateless Session bean.

*

*/

173

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public class JavaServiceFacade {
private final EntityManager em;

public JavaServiceFacade() {

// To support an non-JavaEE environment, we avoid injection and create
an EntityManagerFactory

// for the desired persistence unit. From this factory we then create
the EntityManager.

final EntityManagerFactory emf = Persistence.createEntityManagerFactory

("Chapter04-PersistenceIISamples-SingleTable");
em = emf.createEntityManager();

}
/**
* All changes that have been made to the managed entities in the
persistence context are
* applied to the database and committed.
*/
private void commitTransaction() {
final EntityTransaction entityTransaction = em.getTransaction();
if (lentityTransaction.isActive()) {
entityTransaction.begin();

}

entityTransaction.commit();

}

public Object queryByRange(String jpglStmt, int firstResult, int maxResults) {
Query query = em.createQuery(jpqlStmt);
if (firstResult > 0) {
query = query.setFirstResult(firstResult);

}

if (maxResults > 0) {
query = query.setMaxResults(maxResults);

}
return query.getResultlList();

174

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public <T> T persistEntity(T entity) {
em.persist(entity);
commitTransaction();
return entity;

}

public <T> T mergeEntity(T entity) {
entity = em.merge(entity);
commitTransaction();
return entity;

}

public void removeEmployee(Employee employee) {
employee = em.find(Employee.class, employee.getId());
em.remove(employee);
commitTransaction();

}

/**

* <code>select o from Employee o</code>

*/

public List<Employee> getEmployeeFindAll() {
return em.createNamedQuery("Employee.findAll", Employee.class).
getResultlist();

}

public void removeFullTimeEmployee(FullTimeEmployee fullTimeEmployee) {
fullTimeEmployee = em.find(FullTimeEmployee.class, fullTimeEmployee.

getld());
em.remove(fullTimeEmployee);

commitTransaction();

}

J¥*

* <code>select o from FullTimeEmployee o</code>
*/

175

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public List<FullTimeEmployee> getFullTimeEmployeeFindAll() {
return em.createNamedQuery("FullTimeEmployee.findAll",
FullTimeEmployee.class).getResultList();

}

public void removePartTimeEmployee(PartTimeEmployee partTimeEmployee) {
partTimeEmployee = em.find(PartTimeEmployee.class, partTimeEmployee.getId());
em.remove(partTimeEmployee);
commitTransaction();

}

/**

* <code>select o from PartTimeEmployee o</code>

*/

public List<PartTimeEmployee> getPartTimeEmployeeFindAll() {
return em.createNamedQuery("PartTimeEmployee.findAll",
PartTimeEmployee.class).getResultList();

}

public void removePerson(Person person) {
person = em.find(Person.class, person.getId());
em.remove(person);
commitTransaction();

}

/**
* <code>select o from Person o</code>
*/
public List<Person> getPersonFindAll() {
return em.createNamedQuery("Person.findAll", Person.class).getResultList();

}

public void removeAddress(Address address) {
address = em.find(Address.class, address.getId());
em.remove(address);
commitTransaction();

}

176

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

/**
* <code>select o from Address o</code>
*/
public List<Address> getAddressFindAll() {
return em.createNamedQuery("Address.findAll", Address.class).getResultlist();

}
}

Listing 4-7. JavaServiceFacadeClient.java, a Java Client to the JavaServiceFacade
that Illustrates Removing, Creating, and Retrieving the Entities Defined in Figure 4-1

/*

* Java client for a Java service facade
*/

public class JavaServiceFacadeClient {
public static void main(String[] args) {

try {
final JavaServiceFacade javaServiceFacade = new JavaServiceFacade();

// Clear out any previous test data. Due to "cascade" settings on the

// "Person.homeAddress" relationship field, removing a Person will
remove its

// Address as well.

for (PartTimeEmployee parttimeemployee : (List<PartTimeEmployee>)
javaServiceFacade.getPartTimeEmployeeFindAll()) {
javaServiceFacade.removePartTimeEmployee(parttimeemployee);
}
for (FullTimeEmployee fulltimeemployee : (List<FullTimeEmployee>)
javaServiceFacade.getFullTimeEmployeeFindAll()) {
javaServiceFacade.removeFullTimeEmployee(fulltimeemployee);

}

177

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

// Create FullTimeEmployee and PartTimeEmployee instances, along
with their Address
// objects, and persist them in the database.

Address add = new Address();
add.setCity("San Mateo");
add.setState("CA");
add.setStreet1("1301 Ashwood Ct");
add.setZipCode("94402");
javaServiceFacade.persistEntity(add);

FullTimeEmployee ft = new FullTimeEmployee();
ft.setAnnualSalary(1000D);
ft.setDepartment("HQ");
ft.setEmail("x@y.com");
ft.setFirstName("Brian");
ft.setLastName("Jones");
ft.setHomeAddress(add);

ft = javaServiceFacade.persistEntity(ft);
add = new Address();

add.setCity("San Francisco");
add.setState("CA");

add.setStreet1("53 Surrey St");
add.setZipCode("94131");
javaServiceFacade.persistEntity(add);

final PartTimeEmployee pt = new PartTimeEmployee();
pt.setHourlyWage(100D);

pt.setDepartment("SALES");

pt.setEmail("a@b.com");

pt.setFirstName("David");

pt.setLastName("Holmes");

pt.setHomeAddress(add);

pt.setManager(ft);
javaServiceFacade.persistEntity(pt);

178

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

// Retrieve the entities through their type-specific JPQL queries
and print them out

System.out.println("\nPersons:\n");

for (Person person : (List<Person>) javaServiceFacade.getPersonFindAll()) {
printPerson(person);

}

System.out.println("\nEmployees:\n");

for (Employee employee : (List<Employee>) javaServiceFacade.

getEmployeeFindAll()) {
printEmployee(employee);

}

System.out.println("\nPartTimeEmployees:\n");

for (PartTimeEmployee parttimeemployee : (List<PartTimeEmployee>)
javaServiceFacade.getPartTimeEmployeeFindAll()) {
printPartTimeEmployee(parttimeemployee);

}
System.out.println("\nFullTimeEmployees:\n");

for (FullTimeEmployee fulltimeemployee : (List<FullTimeEmployee>)
javaServiceFacade.getFullTimeEmployeeFindA11l()) {
printFullTimeEmployee(fulltimeemployee);
}
System.out.println("\nAddresses:\n");
for (Address address : (List<Address>) javaServiceFacade.
getAddressFindAll()) {
printAddress(address);
}
} catch (Exception ex) {
ex.printStackTrace();

}

179

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

private stat

System.out.
System.out.

ic void printEmployee(Employee employee) {
println("dept = " + employee.getDepartment());
println("email = " + employee.getEmail());

System.out.println("manager = " + employee.getManager());

System.out.println("firstName = " + employee.getFirstName());

System.out.println("id = " + employee.getId());

System.out.println("lastName = " + employee.getLastName());

System.out.println("version = " + employee.getVersion());

System.out.println("homeAddress = " + employee.getHomeAddress());
}

private static void printFullTimeEmployee(FullTimeEmployee fulltimeemployee) {

System.out.println("annualSalary =

+ fulltimeemployee.getAnnualSalary());

System.out.println("managedEmployees = " + fulltimeemployee.
getManagedEmployees());
System.out.println("dept = " + fulltimeemployee.getDepartment());
System.out.println("email = " + fulltimeemployee.getEmail());
System.out.println("manager = " + fulltimeemployee.getManager());
System.out.println("firstName = " + fulltimeemployee.getFirstName());
System.out.println("id = " + fulltimeemployee.getId());

System.out.

System.out
System.out

}

println("lastName = " + fulltimeemployee.getLastName());

.println("version = " + fulltimeemployee.getVersion());

.println("homeAddress = " + fulltimeemployee.getHomeAddress());

private static void printPartTimeEmployee(PartTimeEmployee parttimeemployee) {

System.out.
System.out.
System.out.
System.out.

println("hourlyWage = " + parttimeemployee.getHourlyWage());
println("dept = " + parttimeemployee.getDepartment());
println("email = " + parttimeemployee.getEmail());
println("manager = " + parttimeemployee.getManager());

System.out.println("firstName = " + parttimeemployee.getFirstName());
System.out.println("id = " + parttimeemployee.getId());
System.out.println("lastName = " + parttimeemployee.getLastName());
System.out.println("version = " + parttimeemployee.getVersion());

System.out.println("homeAddress = " + parttimeemployee.getHomeAddress());

180

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

private static void printPerson(Person person) {
System.out.println("firstName = " + person.getFirstName());
System.out.println("id = " + person.getId());
System.out.println("lastName = " + person.getLastName());
System.out.println("version = " + person.getVersion());

System.out.println("homeAddress = " + person.getHomeAddress());

}

private static void printAddress(Address address) {
System.out.println("city = " + address.getCity());
System.out.println("id = " + address.getId());
System.out.println("state = " + address.getState());
System.out.println("streetl = " + address.getStreeti());
System.out.println("street2 = " + address.getStreet2());

" + address.getVersion());

+ address.getZipCode());

System.out.println("version

System.out.println("zipCode

Common Base Table with Joined Subclass Tables
(InheritanceType.JOINED)

In the JOINED strategy, each entity in the hierarchy introduces its own table, but only to
map fields that are declared on that entity type. The root entity in the hierarchy maps to
aroot table that defines the primary key structure to be used by all tables in the entity
hierarchy, as well as the discriminator column and optionally a version column. Each
of the other tables in the hierarchy defines a primary key that matches the root table’s
primary key, and they optionally add a foreign key constraint from their ID column(s)
to the root table’s ID column(s). The non-root tables do not hold discriminator type or
version columns. Since each entity instance in the hierarchy is represented by a virtual
row that spans its own table as well as the tables for all of its superentities, it eventually
joins with a row in the root table that captures this discriminator type and version
information. Querying all the fields of any type requires a join across all of the tables
within the supertype hierarchy.

181

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

(f& cHO4_JON_PT_BWPLOYEE

Figure 4-3 illustrates the schema that maps our entities using the JOINED inheritance
strategy. As in the previous example, we have prefixed the tables with the strategy
indicator, in this case CH04_JOIN , so that all of the tables in these examples can be
loaded into a single test schema without danger of name collision.

{ID: NUMBER(10, 0)

[HOURLY_WAGE: NUMBER(19, 4)

|<FKoSY'S_C0025586: 1D

| &
D - NUMBER(10, 0)
DEPARTMENT : VARCHAR2(400 BY TE)
| |BVAIL: VARCHAR2(400 BY TE)
| |MANAGER: NUMBER(10, 0)

| «FK»FK_CHO4_JON_PT_BWPLOYEE D D] |

|«PK»SYS_C0025582 D

D

w | «FIKnFK_CHO4_JON_BWPLOYEE_ID: ID

| FK»FK_CHO4_JOIN_EMPLOYEE_MANAGER MANAGER

CHO4_JOIN_EVPLOYEE

ID: NUMBER(10, 0)
ANNUAL_SALARY : NUMBER(19, 4)

PP SY'S_0D025584: 1D
«FKnFK_CHO4_JON_FT_BVPLOYEE_D. D)

D | 0.1

%01 (s} &

D o
. ID|1 MANAGER|0..1 1
)

CHO4_JOIN_PERSON

D - NUMBER(10, 0)

DTYFE : VARCHAR2(31 BYTE)
ARST_NAME : VARCHAR2(400 BY TE)
LAST_NAME : VARCHAR2(400 BY TE)
VERSION : NUMBER(10, 0)
HOME_ADDRESS : NUMBER{ 10, 0)

|PK»SY'S_CO025580. D

«FK»CHI4_JOIN_FERSON_HOME_ADDRESS: HOME_ADORESS

%@, cros_yon_ADoRESS

1D: NUMBER(10, 0)

CITY : VARCHAR2(400 BY TE)

STATE: VARCHAR2(2 BYTE)

STREET1 . VARCHAR2(400 BY TE)
HOME_ADORESS |STREET2 | VARCHAR2(400 BY TE)

o1 VERSION : NUMBER(10, 0)
ZIP_COOE: VARCHAR2(255 BYTE)

.«Pl\'»SY S_C0025578: 1D

-

Figure 4-3. A schema that maps our example entities using the JOINED strategy.
Each entity in the hierarchy has its own table to persist its declared fields. The table
CHO04_JOIN_ADDRESS holds associated Address instances.

Example Entity Classes

Let’s now take a look at the entity classes that map to the previous schema. We have
omitted the class bodies for each of these entities, since the only differences between
these entities and the ones shown in the previous SINGLE_TABLE strategy example lie
in the entity’s class-level annotations. Listings 4-8 through 4-11 show the entities in the
Person hierarchy, while Listing 4-12 shows the Address entity.

182

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-8. Person.java, an Abstract Root Entity in a JOINED Inheritance
Hierarchy

/*

* Person: An abstract entity, and the root of an inheritance hierarchy
*/

@Entity

@NamedQueries ({

@NamedQuery(name = "Person.findAll", query = "select o from Person 0")})

@Table(name = "CHO4_JOIN_PERSON")

@TableGenerator(name = "Person ID Generator", table = "CH04 JOIN PERSON ID GEN",
pkColumnName = "PRIMARY KEY NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT_ID VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

/* The class body is identical across all inheritance strategies */

}

Listing 4-9. Employee.java, an Abstract Intermediate Entity in a JOINED
Inheritance Hierarchy

/*
* Employee: An abstract entity that extends Person
*/

@Entity

@NamedQueries ({

@NamedQuery(name = "Employee.findAll", query = "select o from Employee 0")})
@Table(name = "CHO4_JOIN_EMPLOYEE")
public abstract class Employee extends Person implements Serializable {

/* The class body is identical across all inheritance strategies */

}

183

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-10. FullTimeEmployee.java, a Concrete Leaf Entity in a JOINED
Inheritance Hierarchy

/*

* FullTimeEmployee: A concrete leaf entity

*/
@Entity
@NamedQueries ({

@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from

FullTimeEmployee 0")})

@Table(name = "CHo4 JOIN FT EMPLOYEE")

public class FullTimeEmployee extends Employee implements Serializable
{ /* The class body is identical across all inheritance strategies */

}

Listing 4-11. PartTimeEmployee.java, a Concrete Leaf Entity in a JOINED
Inheritance Hierarchy

/*
* PartTimeEmployee: A concrete leaf entity
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from
PartTimeEmployee 0")})
@Table(name = "CHo4_JOIN PT_EMPLOYEE")
public class PartTimeEmployee extends Employee implements Serializable {
/* The class body is identical across all inheritance strategies */

}

Listing 4-12. Address.java, a Concrete Stand-Alone Entity
/**

* Address: A standalone entity
*/

@Entity

@NamedQueries ({

184

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@NamedQuery(name = "Address.findAll", query = "select o from Address o0")})

@Table(name = "CHO4_JOIN_ADDRESS")

@TableGenerator(name = "Address ID Generator", table = "CHOo4 JOIN ADDRESS ID GEN",
pkColumnName = "PRIMARY_KEY_NAME",pkColumnValue = "Address.id",
valueColumnName = "NEXT ID VALUE")

public class Address implements Serializable {

/* The class body is identical across all inheritance strategies */

}

You can see from the highlighted differences that they are very minimal. Ignoring
table name differences, which are thrown in simply out of our desire to avoid name
collisions with the tables in the other examples, only the @Inheritance annotation
has changed on the root entity Person. Aside from its table and sequence names, the
Address entity is identical to Listing 4-5, the previous example of the SINGLE_TABLE
strategy.

Pros and Cons of the JOINED Strategy
Design-Time Considerations

With the JOINED strategy, introducing a new type to the hierarchy, at any level,

simply involves interjecting a new table into the schema. Subtypes of that type will
automatically join with that new type at runtime. Similarly, modifying any entity type in
the hierarchy by adding, modifying, or removing fields affects only the immediate table
mapped to that type. This option provides the greatest flexibility at design time, since
changes to any type are always limited to that type’s dedicated table.

Performance Impact

The JOINED approach does not suffer from the use of UNION operations, but inherently
requires multiple JOIN operations to perform just about any query. Querying across

all instances initially involves only a single query of the topmost base entity’s table to
retrieve a list of all of the primary keys of instances in the hierarchy. Due to the presence
of the discriminator column in the base entity’s table, resolution of these instances into
entity classes can be efficient, depending on the lazy loading strategies employed by the

persistence manager implementation.

185

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Single-Table-per-Outermost Concrete Entity Class
(InheritanceType.TABLE_PER_CLASS)

Support for the final inheritance mapping strategy is optional for persistence providers.
It is not required for compliance with the JPA spec, so portable applications should avoid
it until it is officially mandated or at least widely supported. This inheritance mapping
option maps each outermost concrete entity to its own, dedicated table. Each table maps
all of the fields in that entity’s entire type hierarchy; since there is no shared table, no
columns are shared. The only table structure requirement is that all tables must share

a common primary key structure, meaning that the name(s) and type(s) of the primary
key column(s) must match across all tables in the hierarchy.

For good measure, Figure 4-4 illustrates our third type of hierarchy using the TABLE_
PER_CLASS inheritance strategy, which demonstrates the use of the single-table-per-
entity subclass approach. The tables are required to share nothing in common except
the structure of their primary key; and since the table implicitly identifies the entity type,
no discriminator column is required. Note that while tables are shown for the abstract
entities Person and Employee, they are not actually used. Future versions of EclipseLink
(the reference implementation of JPA) will probably be amended to suppress generation
of these tables when using the TABLE_PER_CLASS inheritance strategy. Annotating these
classes @MappedSuperclass instead of @Entity would prevent classes from being
generated in this case but would also prevent these classes from participating in Entity
relationships or JPQL statements.

186

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

0.1
F& CHO4_TPC_FT_EMPLOYEE MANAGER
1D : NUMBER(10, 0) B CcHO4_TPC_PT_EMPLOYEE | .o
ANNUAL_SALARY : NUMBER(19, 4) ID : NUMBER(10, 0) o
DEPARTMENT : VARCHAR2(400 BYTE) DEPARTMENT : VARCHAR2(400 BYTE) . G‘P‘-TPC-E"PLOYEE
EMAL : VARCHAR2(400 BYTE) EMALL : VARCHAR2(400 BYTE) MATLAGER - MMEERITN, O)
FIRST_NAME : VARCHAR2(400 BYTE) FIRST_NAME : VARCHAR2(400 BYTE) O ALEVESS - EMRE 0)
LAST_NAME : VARCHAR2(400 BYTE) |MANAGER HOURLY_WAGE : NUMBER(19, 4) L J
VERSION - NUMBER(10, 0) LAST_NAME : VARCHAR2(400 BYTE) <FK>CHO4_TPC_EMPLOYEE_HOME_ADC
MANAGER : NUMBER(10, 0) 0.1 D VERSION : NUMBER(10, 0) «FK>FK_CHO4_TPC_EMPLOYEE_MANAC
HOME_ADDRESS : NUMBER(10, 0) MANAGER : NUMBER(10, 0)

* HOME_ADDRESS : NUMBER(10, 0) o
«PK>SYS_C0025627: ID ' | HOME_ADDRESS
«FK>CHO4TPCFT_EMPLOYEEHOME _ADC o «PK>SYS_C0025625: ID 0.1 0.1 | HOME_ADDRESS
«FK>CHO4_TPC_FT_EMPLOYEE_MANAC -F:ncmupcm_smoveem_m D W cHos_TRC
<FIK>CHO4_TPC_PT_EMPLOYEE_MANAC 1D - NOMBER(10, 0)-‘ DRESS

B MANAGER | 0.1 ' CITY : VARCHAR2(400 BYTE)
HOME_ADDRESS STATE : VARCHAR2(2 BYTE)
0.4 |STREET1 : VARCHAR2(400 BYTE)
STREET2: VARCHAR2(400 BYTE)
) CHO4_TPC_PERSON | VERSION : NUMBER(10, 0)
HOME_ADDRESS : NUMBER(10, 0) . HOME_ADDRESS ZIP_CODE : VARCHAR2(255 BYTE)
=)
<FK3CHO4_TPC_PERSON_HOME_ADDRE © 0.1

«PH2SYS_C0025623: ID

Figure 4-4. A schema that maps our example entities using the TABLE_PER_
CLASS strategy. Concrete leaf entities are mapped to dedicated tables that contain
columns that map all of their declared and inherited fields.

Example Entity Classes

Listings 4-13 through 4-16 show how the entities mapped to these tables are annotated.
Since only the class-level annotations are different from the previous strategy, the
method bodies are stripped out.

Listing 4-13. Person.java, an Abstract Root Entity in a TABLE_PER_CLASS
Inheritance Hierarchy
/**
* Person: An abstract entity, and the root of an inheritance hierarchy
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "Person.findAll", query = "select o from Person o")})

187

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@Table(name = "CHo4 TPC_PERSON")

@TableGenerator(name = "Person ID Generator", table = "CHo4 TPC PERSON ID GEN",
pkColumnName = "PRIMARY KEY NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT_ID VALUE")

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

public abstract class Person implements Serializable {

/* The class body is identical across all inheritance strategies */

}

Listing 4-14. Employee.java, an Abstract Intermediate Entity in a TABLE_PER_
CLASS Inheritance Hierarchy

/*
* Employee: An abstract entity that extends Person
*/

@Entity

@NamedQueries ({

@NamedQuery(name = "Employee.findAll", query = "select o from Employee 0")})
@Table(name = "CHo4 TPC_EMPLOYEE")
public abstract class Employee extends Person implements Serializable {

/* The class body is identical across all inheritance strategies */

}

Listing 4-15. FullTimeEmployee.java, a Concrete Leaf Entity in a TABLE_PER _
CLASS Inheritance Hierarchy

/*
* FullTimeEmployee: A concrete leaf entity
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from
FullTimeEmployee 0")})
@Table(name = "CHo4_TPC_FT_EMPLOYEE")
public class FullTimeEmployee extends Employee implements Serializable {
/* The class body is identical across all inheritance strategies */

}

188

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-16. PartTimeEmployee.java, a Concrete Leaf Entity in a TABLE_PER_CLASS
Inheritance Hierarchy

/*
* PartTimeEmployee: A concrete leaf entity
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from
PartTimeEmployee 0")})
@Table(name = "CHo4 TPC_PT_EMPLOYEE")
public class PartTimeEmployee extends Employee implements Serializable {
/* The class body is identical across all inheritance strategies */

}

Again, the Address class in the TABLE_PER_CLASS example is identical to the previous
examples, aside from the table and sequence names we have chosen.

Pros and Cons of the TABLE_PER_CLASS Strategy
Design-Time Considerations

With the TABLE_PER_CLASS strategy, as new outermost concrete types are introduced
into the hierarchy, new tables are added. This is nice because neither existing tables nor
their data are affected in any way. However, since each type also maps all of its supertype
fields, introducing a new field on a base class, or a new base entity itself, requires
modifying the tables for all affected subtypes across the hierarchy to map any newly
introduced fields.

Performance Impact

With the TABLE_PER_CLASS approach, querying across multiple types requires a UNION
select statement, which may not perform well, but querying a single type is very efficient,
since only one table is involved in the query. Polymorphic relationships (which involve
supertypes) in this hierarchy should be avoided since they will necessarily require this
UNION operation to resolve to concrete subtype instances.

189

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Comparison of 0/R Implementation Approaches

Now that we have explored the three inheritance mapping implementations, let’s look
at some of the characteristics of a class inheritance hierarchy that should be considered
when choosing which implementation approach to use for your type hierarchies. The
following list contains subjective questions about your own entity hierarchies. They

do not have precise answers; rather, they are meant to stimulate design considerations
when building your application.

o (lass hierarchies can be static, with a fixed number of subtypes, or
they can be dynamic, with varying numbers of subtypes. How often
will you need to incorporate new subtypes into your hierarchy?

e Hierarchies can be deep, with lots of subclasses, or they can be
shallow, with only a few. How granular is your hierarchy?

o The types in a hierarchy may diverge greatly, with very different sets
of properties on the subclasses than on the base class, or with very
little difference in properties. How much do the persistent property
sets of your entities diverge from one another?

o Will other entities define relationships with classes in this type hierarchy;
and, if so, will the base classes frequently be the referenced type?

o Will types in this hierarchy be frequently queried, updated, or
deleted? How will the presence or absence of SQL JOIN or UNION
operations impact your application’s performance?

e During the life of your application, how frequently will you be
updating the structure of the type hierarchy itself? The impact
of this type of change varies for each inheritance strategy with
considerations that include the following:

e Adding or removing new types to the hierarchy (as when
refactoring classes).

e Adding, removing, or modifying fields on an entity in the
hierarchy.

¢ Adding, removing, or modifying relationships involving types in this
hierarchy.

190

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Note A comparison of the performance of these three inheritance strategies,
along with details on how to set up your own performance comparison tests, is
explored in Chapter 9. Check out the results of our performance tests; and test
your own entity hierarchies as you build them, to help you decide which strategy
makes the best sense in the context of your application.

Using Abstract Entities, Mapped Superclasses,
and Non-Entity Classes in an Inheritance Hierarchy

Within an entity class hierarchy, JPA allows both non-entity classes and abstract classes to
be intermixed. Using the JOINED example above, let’s look at how we map these classes.

Abstract Entity Class

As shown in the previous section on inheritance hierarchies, JPA entities may be either
concrete or abstract. An abstract entity is simply an entity that cannot be instantiated

on its own—it can still be involved in entity relationships and queries, and its fields are
persisted following the mapping strategy for its type hierarchy. Listing 4-17 is an example
of one of our abstract entities.

Listing 4-17. Person.java, an Abstract Root Entity in a JOINED Inheritance

Hierarchy

/**

* Person: An abstract entity, and the root of an inheritance hierarchy
*/

@Entity

@NamedQueries ({

@NamedQuery(name = "Person.findAll", query = "select o from Person o0")})

@Table(name = "CHO4 JOIN PERSON")

@TableGenerator(name = "Person ID Generator", table = "CH04 JOIN PERSON ID GEN",
pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT _ID VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

191

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public abstract class Person implements Serializable {

@0neToOne(cascade=CascadeType.ALL)
@JoinColumn(name = "HOME_ADDRESS")
private Address homeAddress;

Not only is the abstract Person entity queryable (here we have defined a "Person.
findAll" named query), it also holds an association with the Address entity that
is shared by all of its subclasses. Although Person is abstract, it can specify its own
mappings and its own table. It just won’t have its own discriminator value, since there

will never be a concrete entity instance of the base class Person.

Mapped Superclass (@MappedSuperclass)

A mapped superclass is a non-entity class that is nonetheless recognized by the
persistence manager, and which declares persistent fields and their mappings. Since
itis not an entity, it may not be the target of persistent entity relationships, nor may

it be used in JPQL queries. It may, however, provide persistent properties common

to any entities that extend it, whether directly or indirectly. Starting with the previous
inheritance example, let us transform the root entity, Person, into a mapped superclass.
Listings 4-18 and 4-19 show the transformed classes.

Listing 4-18. Person.java, an Abstract Mapped Superclass (Non-Entity)

J¥*

* Person: A Mapped Superclass, and the base class (but not the root entity)
of an inheritance hierarchy

To create ID generator table "CHO4_MS PERSON_ID GEN": CREATE TABLE
"CHO4 _MS PERSON_ID GEN" ("PRIMARY_ KEY NAME" VARCHAR2(4000) PRIMARY KEY,
"NEXT_ID VALUE" NUMBER(38));

* XK X X X ¥

192

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

* To initialize this table with data for this entity's ID generator
'Person.id’
* (starting with value '0'): INSERT INTO "CHO04 MS PERSON_ID GEN" VALUES
* ('Person.id', 0);
*/
@MappedSuperclass
@TableGenerator(name = "Person_ID Generator", table = "CH04 _MS PERSON_ID GEN",
pkColumnName = "PRIMARY KEY NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT _ID VALUE")
public abstract class Person implements Serializable {
@SuppressWarnings("compatibility:-7074714881275658754")
private static final long serialVersionUID = 5291172566067954515L;
@Id
@Column(nullable = false)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person ID_
Generator")
private Integer id;
@Column(name = "FIRST NAME", length = 400)
private String firstName;
@Column(name = "LAST_NAME", length = 400)
private String lastName;
@0neToOne(cascade=CascadeType.ALL)
@JoinColumn(name = "HOME_ADDRESS")
private Address homeAddress;
@Version
private Integer version;

public Person() {
}

/* get/set methods */

193

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-19. Employee.java, an Abstract Root Entity in a JOINED Entity
Inheritance Hierarchy, and a Subclass of a Mapped Superclass

/*
* Employee: The root of an inheritance hierarchy. Extends Person, a Mapped
Superclass.
*/
@Entity
@NamedQueries ({
@NamedQuery(name = "Employee.findAll", query = "select o from Employee 0")})
@Table(name = "CHO4 MS EMPLOYEE")
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Employee extends Person implements Serializable {
@SuppressWarnings("compatibility:276774077273820023")
private static final long serialVersionUID = -8529011412038476148L;
@Column(length = 400)
private String department;
@Column(length = 400)
private String email;
@ManyToOne
@JoinColumn(name = "MANAGER")
private FullTimeEmployee manager;

public Employee() {
}

/* get/set methods */

The Person class becomes a mapped superclass (@MappedSuperclass), and it is
stripped of its @NamedQuery, @Table, and @Inheritance annotations. @Inheritance is
moved onto Employee, which becomes the new root entity in the hierarchy.

While a mapped superclass may not be referenced as the target of a persistence
relationship field, it may have persistence relationship fields of its own, so the
homeAddress field that references the Address entity is perfectly legal.

194

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Also note that we can continue to define the @Id and @Version fields on the mapped
superclass, and we can even continue to specify an ID generator for the id field. Entities
that extend this mapped superclass map these fields, along with all other fields defined
on the mapped superclass, onto their own tables.

Non-Entity Class

Entities may also make use of non-entity classes within their type hierarchies. An

entity may subclass a non-entity class, or a non-entity class may extend it. Such classes
may be concrete or abstract, and so they may be instantiable, but their fields will not

be persistable or maintained by the JPA persistence framework. They also may not
participate at all in persistent entity relationships or JPQL queries. If a class in a type
hierarchy serves only as an organizing construct for its subclasses, and it is not involved
in entity relationships (and there is no other reason to mark it as an entity), then it is best
left as an ordinary class. It can always be turned into an entity later by annotating it or
designating it an entity in the XML descriptor.

Non-Entity Single-Value and Collection Fields

Finally, an entity may embed a non-entity class, or a collection of non-entity classes, for
its own private use. Such embedded references may be to single objects or to collections
of objects. Single-object fields are typically of the type of which we are already familiar:
Basic object types, like String, int, or Long, which are implicitly marked @Basic. Single-
object fields may also have complex types, and we are familiar with these already as
entity references, using fields marked @0neToOne or @ManyToOne. When fields reference
complex non-entity types, they are marked @Embedded and the target class must be
annotated @Embeddable. Collection references to non-entity objects are marked @
ElementCollection, and they may be collections of either @Basic or @Embeddable class
types. Let’s take a closer look at these non-entity field references.

@Embedded and @Embeddable

An entity or mapped superclass may contain fields marked @Embedded, and their type
must be a class that is correspondingly marked @Embeddable. Like a mapped superclass,
an embeddable class may hold mapping metadata for its persistent fields. When used
in this way, the field that references an embeddable object is marked @Embedded and the

195

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

fields on the embeddable class map to the owning entity’s table. Embeddable classes
are wholly owned by the class that embeds them and are persisted, merged, queried,
and removed in concert with their owning object. Instances of embeddable classes have
no persistent identity of their own, and they may not be passed around among entities.
They are generally used for their convenience as a field organization tool, allowing a set
of persistent fields to be encapsulated as a single field on the owning entity.

As an example, let us transform our Address entity (Listing 4-20) into an embeddable
class and embed it as a field on the Person entity (Listing 4-21). Figure 4-5 shows the
underlying schema configured like our JOINED hierarchy, with the exception that the
data columns on CH04_JOIN_ADDRESS have been folded into the CHO4 EMB_PERSON table.

. cHOo4_EMB_PT_EMPLOYEE R CHO4_EMB_EMPLOYEE . CHO4_EMB_FT_EMPLOYEE

ID : NUMBER(10, 0) | Io: NUMBER(10,0) ID : NUMBER(10, 0)

HOURLY_WAGE : NUMBER(19, 4) DEPARTMENT : VARCHAR2(400 BYTE) ANNUAL_SALARY : NUMBER(19, 4)
EMAIL : VARCHAR2(400 BYTE)

«PK>SYS_C0025564; ID MANAGER : NUMBER(10, 0) «PK>SYS_C0025562 ID

«FK>FK_CHO4_EMB_PT_EMPLOYEE_ID: ID «FK>FK_CHO4_EMB_FT_EMPLOYEE_ID: ID
«PK2SYS_C0025560: ID

. I <FK>FK_CHO4_EMB_EMPLOYEE_ID: ID o %01

«FK>FK_CHO4_EMB_EMPLOYEE_MANAGER: MANAGER

oYo1 oY D (1

& CHO4_EMB_PERSON
T——— ID : NUMBER(10, 0)
DTYPE : VARCHAR2(31 BYTE)

0.1 FIRST_NAME : VARCHAR2(400 BYTE)
LAST_NAME : VARCHAR2(400 BYTE)
VERSION : NUMBER(10, 0)

CITY : VARCHAR2(400 BYTE)

1 ISTATE: VARCHAR2(2 BYTE)
STREET1 : VARCHAR2(400 BYTE)
STREET2 : VARCHAR2(400 BYTE)
ZIP_CODE : VARCHAR2(255 BYTE) _

«PK»SYS_C0025558: ID

Figure 4-5. Table CHO4_EMB_PERSON holds columns for all fields in the Person
entity, as well as fields from an embedded Address

The transformation of Address. java into an @Embeddable, non-entity class is shown
in Listing 4-20. The @Id and @Version fields are now gone, since an Address no longer
has identity on its own. The Employee, FullTimeEmployee, and PartTimeEmployee
entities are unchanged from the JOINED hierarchy configuration.

196

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-20. Address.java, an Embeddable Non-Entity Class
/**
* Address: An embeddable non-entity class
*/
@Embeddable
public class Address implements Serializable {
@SuppressWarnings("compatibility:-5340972441524875330")
private static final long serialVersionUID = -5279408726470732092L;
@Column(length = 400)
private String city;
@Column(length = 2)
private String state;
@Column(length = 400)
private String streeti;
@Column(length = 400)
private String street2;
@Column(name = "ZIP CODE")
private String zipCode;

public Address() {
}

/* get/set methods */
}

Listing 4-21. Person.java, an Entity that Holds an @Embedded homeAddress Field
/**

* Person: An abstract entity, and the root of an inheritance hierarchy

*

* To create ID generator table "CHO4_ EMB_PERSON_ID GEN": CREATE TABLE
"CHo4_EMB_PERSON_ID GEN"

* ("PRIMARY_KEY NAME" VARCHAR2(4000) PRIMARY KEY, "NEXT ID VALUE" NUMBER(38));

*

197

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

* To initialize this table with data for this entity's ID generator
"Person.id' (starting with

* value '0"): INSERT INTO "CHo4 EMB_PERSON ID GEN" VALUES ('Person.id', 0);

*/

@Entity

@NamedQueries({

@NamedQuery(name = "Person.findAll", query = "select o from Person o0")})

@Table(name = "CHO4 EMB PERSON")

@TableGenerator(name = "Person ID Generator", table = "CHo4 EMB PERSON ID GEN",
pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT ID VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

@SuppressWarnings("compatibility:-7074714881275658754")

private static final long serialVersionUID = 5291172566067954515L;
@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person ID
Generator")

private Integer id;

@Column(name = "FIRST NAME", length = 400)

private String firstName;

@Column(name = "LAST_NAME", length = 400)

private String lastName;

@Embedded

private Address homeAddress;

@Version

private Integer version;

public Person() {
}

/* get/set methods */

When a Person instance is persisted, the values of fields on its homeAddress instance
are saved into columns on the CH0O4_EMB_PERSON table.

198

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@ElementCollection

A useful mapping feature introduced since JPA 2.0 is the ability to embed collections

of non-entity objects within an entity or mapped superclass and to make them wholly
owned by the embedding class. The @ElementCollection is the collection analog to
using @Embeddable and @Basic fields; only the instances in the collection are always
stored in a separate table from the owning entity or mapped superclass. Similarly, it is
the non-entity analog to the entity relationship types @neToMany. Listing 4-22 shows our
Employee entity holding two element collections: one of @mbeddable instances and one
of @Basic instances.

Listing 4-22. Person.java, an Entity that Holds two @ElementCollection fields

@Entity
public abstract class Person implements Serializable {

@ElementCollection(fetch=FetchType.LAZY)
private List<Address> addresses;

@ElementCollection
Private Collection<String> favoriteCities;

public Person() {
}

/* get/set methods */

This code snippet demonstrates some of the simplest forms of @ 1lementCollection
usage, largely assuming default mappings. By using more advanced mappings, you can
customize the way the collection mapping table is wired up to the root table for Person,
whether lookup should be eager or lazy, column and table names, how to specify an
element collection as a Map, and many other details.

199

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Polymorphic Relationships

As shown in the previous examples, entity relationships can be specified between both
concrete and abstract entities in a hierarchy. You can define a relationship with any
entity in an inheritance hierarchy, and it will implicitly involve subtypes of that entity
as well. Even persistent entity relationship fields declared on mapped superclasses are
polymorphic. A relationship that implicitly includes subtypes in this way is known as a
polymorphic relationship.

In JPA, relationships may be defined against any other entity class, including
abstract supertype entities in a hierarchy. This support for polymorphic relationships
complements JPA’s support for mapping class hierarchies, and it provides a powerful
construct for querying entities at any level across an entity type hierarchy. In the
previous example of entity hierarchy, the FullTimeEmployee.manager-to-Employee.
managedEmployees relationship illustrates a one-to-many, bidirectional relationship
between the concrete FullTimeEmployee (manager) and its collection of abstract
Employee (managedEmployee) instances. This example shows a relationship between
entities within the same hierarchy, but it could just as easily be defined between entities
in separate entity hierarchies.

Relationship Mapping

Mapping polymorphic relationships requires no special knowledge about the
inheritance table mapping strategy for either entity in the relationship. This is evident
from the fact that the relationship field mappings remained identical across our

sample entity classes as we applied each of the three inheritance mapping strategies.
All relationships map to the primary key of the target class, a mapping assumption
made possible because of the spec requirement that all classes in a class hierarchy
share a common primary key structure, even if each subclass maps to its own table.

The mapping information defined for each entity is sufficient for the JPA persistence
framework to resolve base type references onto the actual subclass instances.
Relationship fields are derived automatically using JOIN and UNION statements, and these
queries are further constrained by the use of WHERE clauses, which refer to discriminator
column values.

200

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Polymorphic JPQL Queries

Similarly, JPQL and criteria API queries can select or join entities of a supertype class,
and any instances of subtypes matching the query criteria will be returned in the query
result list. What’s more, queries may use internal JOIN clauses to bind references to types
anywhere along a supertype hierarchy, with the only restriction being that the left and
right side of the JOIN clause resolve to a common base type.

In the previous inheritance hierarchy, the "Person.findAl1l" and "Employee.
findAll" named queries defined on the abstract Person and Employee entities are
examples of polymorphic queries. Instances returned from these queries are all concrete
entities—either FullTimeEmployee or PartTimeEmployee.

By way of example, let us look at some code from our sample client. Listing 4-23
queries all Employee instances whose home address is somewhere in San Mateo. The
query is issued on the abstract Employee entity, and it traverses through the homeAddress
relationship field defined on the root Person entity. Any entities that are returned from
this will be concrete, either FullTimeEmployee or PartTimeEmployee.

Listing 4-23. Code Listing that Demonstrates Polymorphic Relationship Usage
in JPQL

// Ad-hoc JPQL to demonstrate polymorphic relationship usage
final String stmt =
"select o from Employee o where o.homeAddress.city = 'San Mateo'";
final List<Employee> emps = em.createQuery(stmt).getResultlList();
for (Employee emp : emps)
{
System.out.println(emp.getFirstName());
System.out.println(emp.getLastName());

}

Using Native SQL Queries

JPQL offers the ability to reference entity fields by name and join with other entities
through relationships, without regard to the underlying mapping details. This offers

a fair degree of independence between the database schema definer and the query
definer roles. There are times, however, when you'll want to take control of the query to

201

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

leverage specific indexes, return sparse data sets, or otherwise issue a query that is more
conveniently expressed in SQL. JPA lets you do this easily, and it even offers support for
mapping the query results back to entities if you desire.

As an example, you may wish to use a native SQL query to return just the name and
primary key column data from a table that happens to map to one of your entities. The
queried name values could then be presented to the user through a combo box, and only
when the user chooses a name would you go out to the EntityManager and bind that
name’s corresponding primary key value to an entity instance using the EntityManager.
find(Object primaryKey) call. Had you used JPQL to return a collection of fully loaded
entities, instead of just the sparse key and name data set, you would have queried more
data fields than necessary, causing more resources to be consumed than were actually
needed.

The example in Listing 4-24 shows how to define a named native SQL query that
returns instances of entity type Address. Executing this named native query is the same
to the client as executing the equivalent JPQL named query.

Listing 4-24. Code Listing that Demonstrates Native SQL Support

@NamedNativeQueries({
@NamedNativeQuery(name = "Address.findAllNative",
query = "select id, city, state, streeti, street2, zip code from cho4 _
join address”,
resultClass=Address.class)})

The Query Criteria API

JPA, since version 2.0, introduced an alternative to JPQL for defining and executing
queries, using strongly typed components. Using only Java, the criteria API allows you

to dynamically construct arbitrarily complex queries and execute them to return the
same results that could be achieved through JPQL, but with compile-time type checking.
Since the same underlying query engine is used for both the JPQL and criteria API, they
are equivalent in strength, and there is an analogous criteria API call for each feature
that can be expressed in JPQL. For situations where a query is also dynamically defined
through a query builder, for instance, the criteria API can be more manageable than
dynamically constructing an equivalent JPQL statement. We discussed in Chapter 3
which changes were introduced in JPA 2.2 as part of Java EE 8.

202

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

While the full criteria AP], like the full feature set of the JPQL language, goes beyond
the scope of this book, we show an example of how it can be used in Listing 4-25.

Listing 4-25. Code Listing that Demonstrates use of the query criteria API
/**

* Criteria API equivalent to the following JPQL query:

*

* select o from Address o where o.city = :city

*/

public List<Address> getAddressFindByCity(String city) {
// Define a query to return objects of type Address
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Address> c = cb.createQuery(Address.class);
Root<Address> addr = c.from(Address.class);

// Add the SELECT clause
c.select(addr);

// Define a predicate in the WHERE clause to compare the city

// property with a parameter value

ParameterExpression<String> p = cb.parameter(String.class, "city");
c.where(cb.equal(addr.get("city"), p));

// Bind the 'city' parameter
TypedQuery<Address> q = em.createQuery(c);
q.setParameter("city", city);

// Return the query results as a List<Address>
return q.getResultlist();

The criteria API is a more formal approach but can be extremely useful in the right
application situation.

203

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Composite Primary Keys and Nested Foreign Keys

When mapping entities to a new schema, it is good practice to designate a single,
dedicated column to be the primary key column, as we have done in the previous
examples. An entity’s primary key value cannot be updated once it has been assigned.
Also, dedicating a column to hold the primary key instead of using a name or other
column that holds meaningful property data eliminates potential conflicts that might
arise should a user wish to modify a semantically significant field that happens to be
part of the primary key. It is also desirable to follow a single approach that is common to
all of your entities, and use of a single dedicated column for the primary key is a simple
pattern that we have found to work well.

There are cases, however, in which the schema has already been defined and is being
adapted into Java as JPA entities, and cases in which, for other reasons, a composite
primary key is required. A legacy case that we run into a lot occurs when a composite
primary key includes columns, such as foreign key columns, that are also involved
in relationships with other entities. On top of this, these relationships are necessarily
mandatory (since all primary key columns must be NOT NULL), so you will need to be
careful about how you persist your entity graphs when you need to persist such related
entities in order to avoid NOT NULL constraints when the row data is inserted during the
EntityManager.persist() call.

There are two ways you can use a composite primary key to implement your entity’s
identity. They are described in the following sections.

Using an Embedded Composite Key (@EmbeddedId)

If the fields of the composite key do not represent useful property data that you consider
to be part of the entity definition, you can designate a single entity field to be the primary
key field and set its type to be the composite key class type. This composite key class is
marked @Embedded. Its fields will be mapped as if they were part of the entity itself, but
they will only be accessible to clients through the composite field.

The embedded composite key field myId on the entity is annotated @EmbeddedId.
In Listing 4-26, we introduce the @Embeddable class MyIdClass, containing the field’s
firstName and lastName fields that were previously on Person.

204

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-26. MyldClass.java, an @Embeddable class suitable for use as an
@EmbeddedIld

@Embeddable

public class MyIdClass {
@Column(name = "FIRST NAME", length = 400)
private String firstName;
@Column(name = "LAST NAME", length = 400)
private String lastName;

@0verride
public boolean equals(Object obj) {
return (obj instanceof MyIdClass 8&
firstName.equals(((MyIdClass) obj).getFirstName()) &&
lastName.equals(((MyIdClass) obj).getLastName()));

}

@verride
public int hashCode() {
return System.identityHashCode(this);

}
/* get/set methods */

Listing 4-27 shows this new class being used as an @EmbeddedId on the Person class.

Listing 4-27. Person.java, Illustrating Usage of a Composite Primary Key Using
an @EmbeddedId Annotation

@Entity
@NamedQueries ({
@NamedQuery(name = "Person.findAll", query = "select o from Person 0")})
@Table(name = "CHO4 EMBID PERSON")
public class Person implements Serializable {
@SuppressWarnings("compatibility:-7074714881275658754")
private static final long serialVersionUID = 5291172566067954515L;
@EmbeddedId

205

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

private MyIdClass myId = new MyIdClass();
@Version
private Integer version;

public Person() {
}

/* get/set methods */

To transform the Person class to use an embedded ID, we replaced the @Id Integer
id field with the @EmbeddedId myIdClass myId field. To fit this entity back into our
sample JOINED entity hierarchy, the manager relationship field on Person’s Employee
subentity and the PK fields on all subentities would need to be modified to map to all of
the columns in the new primary key.

Exposing Composite Key Class Fields Directly
on the Entity Class (@ldClass)

An alternative approach to mapping a composite primary key is to declare fields
explicitly on the entity class for each field in the primary key class, but annotate each
of them @Id, as shown in Listing 4-28. If any of the fields on the primary key double as
useful properties on your entity, you will probably want to take this approach. You then
define a new composite key class that declares each of these @Id fields, taking care that
they exactly match the key class fields in name and type.

Starting with the classes from the previous example that used an @EmbeddedId, we
can modify MyIdClass to remove the @Embedded annotation, as shown in Listing 4-28.

Listing 4-28. MyldClass.java, a Serializable Java class suitable for Use as an
@IdClass

public class MyIdClass implements Serializable {
@Column(name = "FIRST NAME", length = 400)
private String firstName;
@Column(name = "LAST_NAME", length = 400)
private String lastName;

206

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public MyIdClass() {
}

public MyIdClass(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

@verride
public boolean equals(Object obj) {
return obj instanceof MyIdClass 8& firstName.equals(((MyIdClass) obj).
getFirstName()) &&% lastName.equals(((MyIdClass) obj).getLastName());

}

@0verride
public int hashCode() {
return System.identityHashCode(this);

}
/* get/set methods */

This composite key class requires no special annotations. It is primarily used when
looking up a Person instance through its primary key, using the EntityManager.find()
method.

On Person, both the firstName and lastName fields are now marked @1d. We have
added an @IdClass annotation that identifies MyIdClass as the composite primary key
class, as shown in Listing 4-29.

Listing 4-29. Person.java, an Entity Employing an @IdClass as a Composite
Primary Key

@Entity
@NamedQueries ({
@NamedQuery(name = "Person.findAll", query = "select o from Person o")})
@Table(name = "CHO4_IDCLASS PERSON")
@IdClass(MyIdClass.class)

207

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

public class Person implements Serializable {
@SuppresshWarnings (" compatibility:-7074714881275658754")
private static final long serialVersionUID = 5291172566067954515L;
@Id
@Column(name = "FIRST NAME", length = 400)
private String firstName;
@Id
@Column(name = "LAST NAME", length = 400)
private String lastName;
@Embedded
private Address homeAddress;
@Version
private Integer version;

public Person() {
}

/* get/set methods */

Mapping Relationships That Use Composite Keys

When defining a relationship in which the target entity uses a composite primary key,
the owning entity must map its relationship field to columns of the corresponding type.
This requires use of the @JoinColumns annotation (or equivalent XML metadata). If
these columns happen to be nested in the owning entity’s primary key, or if they are
otherwise NOT NULL constrained, then the relationship must be bound at the time the
EntityManager.persist() operation is called to persist this entity into the persistence
context, or at least by the time EntityManager.flush() is called to issue the database
INSERT call.

In the following example, the PersonPK composite primary key class contains two
fields—id and addressId—that are mandatory (NOT NULL) since they are part of the
primary key. Since the addressId and the relationship field homeAddress both map to the
same ADDRESS_ID column, and only one of these fields may be insertable and updatable,
we must mark one of the fields to be read-only. In Listing 4-30, the relationship
field homeAddress is marked as read-only by assigning the insertable=false and
updatable=false attributes on the @JoinColumn annotation.

208

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-30. Person.java, with a Composite Primary Key that Maps to a Column
that Is Shared by Both an Ordinary @Id Field and a Relationship Field

/*
* Person: An abstract entity, and the root of a SINGLE TABLE hierarchy,
* demonstrating use of a composite key that contains a field whose mapped
* column is also mapped to a relationship field.
*/
@Entity
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@NamedQueries ({
@NamedQuery(name = "Person.findAll", query = "select o from Person 0")})
@TableGenerator(name = "Person_ ID Generator", table =
"CHo4_FKINPK_PERSON ID GEN",
pkColumnName = "PRIMARY KEY NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT ID VALUE")

@Table(name = "CHO4 FKINPK PERSON")

@IdClass (PersonPK.class)

public abstract class Person

implements Serializable
{

@Id

@Column(name = "ADDRESS ID")

private Integer addressId;

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person ID

Generator")

private Integer id;

@Column(name = "FIRST NAME")

private String firstName;

@Column(name = "LAST NAME")

private String lastName;

@Version

private Integer version;

@0neToOne(cascade = { CascadeType.ALL })

209

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@JoinColumn(name = "HOME_ADDRESS")
private Address homeAddress;

public Person() {
}

/* get/set methods */

When using this Person class, you may retrieve data through the homeAddress
relationship field, but you may not update this field. Its value must be populated at the
time the entity is persisted, and since it is part of the entity’s primary key, it may not
subsequently be modified.

Support for Optimistic Locking (@Version)

As shown in the previous examples, you can use the @Version annotation to designate a
field to be used by the EntityManager to perform optimistic locking for merge operations
and concurrency management. Optimistic locking is a useful performance optimization
that offloads work that would otherwise be required of the database. Databases typically
offer a pessimistic locking service that allows the database client (in our case, the JPA
EntityManager) to lock a row in a table to prevent another client from updating it while
the EntityManager is applying some changes. This is an effective mechanism to ensure
that two clients do not modify the same row at the same time, but it requires expensive,
low-level access checks inside the database. An alternative to pessimistic locking is to
move concurrency control into a database client like the EntityManager and employ

an optimistic locking strategy. Using a dedicated @Version column, the EntityManager
follows a couple of simple rules. Whenever it sends a modified entity out to the database,
as during a commit or flush operation, it looks at the current value of the entity instance’s
@Version field, queries the current state of that entity’s row from the database, and
compares the version values. If they are the same, it increments the entity instance’s
@Version field (or whatever field is annotated @/ersion), and it sends the change out

to the database, causing an UPDATE statement to be executed. If the version values are
different, this means that some other client modified the row between the time the row
was last queried by the EntityManager and loaded into an entity instance and the time
that instance was flushed back out to the database. When such a difference is detected,

210

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

we call it a concurrency exception, and the EntityManager throws an exception and
marks the transaction for rollback. The client of the EntityManager needs to anticipate
that a concurrency exception might occur, and it must be prepared to resolve the
conflict, typically by notifying the user of the conflict so that the entity can be refreshed
before proceeding.

The use of a dedicated @Version column on an entity allows the EntityManager to
perform optimistic locking simply by comparing the value of the @Version field stored
in the entity instance with the value of the VERSION column in the database. If you don’t
specify an @Version field, the EntityManager has to walk through each field in the entity
instance and compare its value to its corresponding, mapped column in the database,
which is far more laborious. A declared @Version field will be auto-populated by the
persistence framework and should not be updated by application code.

The bottom line is that it’s not a requirement to use an @Version field, but it’s good
practice to define an @Version field on your entities to allow the EntityManager to take
advantage of this optimization.

Support for Autogenerated Primary Key Values
(@GeneratedValue)

In addition to built-in optimistic locking support through the @Version column, JPA
provides several convenient ways to auto-populate primary key columns when an entity
is persisted. You can declare that a field’s value should be populated using the following:

e An automatic mechanism maintained by the persistence framework
(strategy=GenerationType.AUTO)

o A custom database sequence (strategy=GenerationType.SEQUENCE
or GenerationType.IDENTITY)

e A custom database table, emulating a pseudo-sequence
(strategy=GenerationType.TABLE)

We have found the auto-populated PK feature to be very high on the convenience
scale, saving us from coding this up for each entity in our application. Using schema
generation settings on the persistence unit in persistence.xml allows you to have JPA
auto-create the required artifacts (sequence or table) in the database and even configure
them with the settings specified through JPA metadata using annotations or XML. Once

211

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

installed, the AUTO case generates unique identifiers for any @Id field that is annotated
@GeneratedValue or @GeneratedValue(strategy=GenerationType.AUTO), and at least
it leaves the entity class a little less cluttered. Since not all databases support sequence
objects, you may wish to use a table generator, as shown in the examples throughout this
chapter.

Listing 4-31 demonstrates usage of the default ID generation feature.

Listing 4-31. Person.java, Employing a Default ID Generator

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
@iscriminatorColumn(name = "TYPE")
@Table(name = "CHO4_JOIN_PERSON")
@NamedQuery(name = "findAllPerson", query = "select object(o) from Person
o
public abstract class Person implements Serializable {
@Id
@GeneratedValue
private Long id;
/¥ oo0*/

SQL scripts to generate all the tables and sequences for the examples in this chapter
are available in the Sample Code area. In addition, JPA providers generate DDL objects,
and even some DML that it requires, to support any entities that are deployed; so pre-
creating a schema is not strictly necessary. However, while JPA will take guidance about
what table and column names to use, for example, there is currently no way to specify
the names of constraints or other artifacts that are created automatically for you. Thus, if
you need to control the names and other details of the mapped objects, it is best to pre-
create the schema before you first deploy your persistence unit.

To illustrate how to pre-create the tables and sequences required for ID generation,
Listings 4-31 and 4-32 show the DDL required to create the ID generator tables and
sequences used in these examples.

212

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Listing 4-32. Usage of @GeneratedValue with a @SequenceGenerator
/**
* To create ID generator sequence "CHO4 SEQID PERSON_ID GEN":
* CREATE SEQUENCE "CHo4 SEQID PERSON ID GEN" INCREMENT BY 50 START WITH 50;
*/
@Entity
@Table(name = "CHO4 JOIN PERSON")
@SequenceGenerator(name = "Person ID Generator", sequenceName = "CHO4 JOIN
PERSON_ID GEN",
allocationSize = 50, initialValue=1)
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Person implements Serializable {
@Id
@Column(nullable = false)
@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "Person_

ID Generator")
private Integer id;

Listing 4-33 provides an example of a table-based ID generator declaration, along
with an INSERT statement for creating a named row for the pseudo-sequence.

Listing 4-33. Usage of @GeneratedValue with a @TableGenerator
/**

* To create ID generator table "CHO4_JOIN_PERSON_ID GEN": CREATE TABLE
* "CHo4 JOIN PERSON ID GEN" ("PRIMARY KEY NAME" VARCHAR2(4000) PRIMARY KEY,
* "NEXT_ID VALUE" NUMBER(38));

To initialize this table with data for this entity's ID generator 'Person.id'
(starting with value '0'): INSERT INTO "CHO4 JOIN_PERSON_ID GEN" VALUES
('Person.id', 0);

EE

*/

213

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

@Entity

@Table(name = "CHO4_JOIN_PERSON")

@TableGenerator(name = "Person ID Generator", table = "CH04 JOIN PERSON ID GEN",
pkColumnName = "PRIMARY KEY NAME", pkColumnValue = "Person.id",
valueColumnName = "NEXT ID VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

@Id
@Column(nullable = false)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person ID

Generator")
private Integer id;

Interceptors: Entity Callback Methods

JPA provides support for a number of callback methods, or interceptors, that allow you to
add your own custom code when certain lifecycle events occur on an entity or a mapped
superclass. You can register interceptors to be invoked when certain lifecycle events
occur on specific entity types, or broadly whenever a lifecycle event occurs on any entity.
The latter case is one of the few times when you must use XML to specify metadata, since
the effect is applied globally across all entities in the persistence unit.

The following annotations may be applied to methods to indicate that they are entity
callback methods:

e (@PrePersist
e (@PostPersist
e @PreRemove

o (@PostRemove
o (@PreUpdate

e (@PostUpdate
e (@Postload

214

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

To use a callback method, you write a method to perform the behavior you desire
and then simply annotate it using one of the above lifecycle callback annotations (for
instance, @PrePersist). Callback methods may have any name you choose, but must
not take any parameters and must return void. A single method may be annotated with
multiple entity callback annotations, if desired.

Alternatively, callback classes may be registered for an entity (or a mapped
superclass) to intercept one or more lifecycle events on one or more entity types.
Multiple interceptor methods may be registered for any given entity lifecycle event, and
they are executed in the order in which they are specified.

Entity callback methods can be used to validate an entity’s contents prior
to the entity being persisted, and to populate transient, derived fields following
instantiation. Listing 4-34 shows how you might plug an @PreUpdate interceptor into the
FullTimeEmployee entity in your company’s payroll system to give all employees from a
certain ZIP code an automatic raise whenever that employee instance is updated for any
reason. (Wishful thinking!)

Listing 4-34. FullTimeEmployee.java, Employing an Illicit Entity Callback to
Finally Stick It to the Man!

@Entity
@Inheritance
public class FullTimeEmployee extends Employee {

@PreUpdate
public void wishfulThinking() {
if (getHomeAddress().getZipCode() == 94402) {
setSalary(getSalary() + 10000);
}
}

215

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Compiling, Deploying, and Testing the JPA Entities

For each of the seven major features described in this chapter, we provide a stand-alone
NetBeans project to test the feature from a pure Java SE context. In addition, each of
these projects is accompanied by a dedicated HTTP servlet that will test the same code
through a Java EE Web application. You are encouraged to explore these samples from
both client environments, edit the JPA entities and test code, and observe the results.

Prerequisites

Before performing any of the steps detailed in the next sections, complete the “Getting
Started” section of Chapter 1. This section will walk you through the installation and
environment setup required for the samples in this chapter.

Opening the Sample Application

Copy the Chapter04-PersistenceIISamples directory and its contents into a directory
of your choice. Run the NetBeans IDE, and open the Chapter04-PersistenceIISamples
project using the File » Open Project menu. Make sure that the “Open Required
Projects” check boxis checked. See Figure 4-6.

[Open Project ()
, Lookin: | J, SampleCode - & e
2 : _ SR
0 sistencelISamples Pr MName:
Recentitems | @ A A ot
ChapterQ4-PersistencellSamples

! [¥] Open Required Projects:

Backion Chapter0

My Documents

-._L

==

JWETHERB-PC

M
‘_E Flename: C:\SampleCode\Chapter04-PersistencellSamples Open Project

Network Fiesof type: [project Folder = Cancel

Figure 4-6. Opening the Chapter04-PersistencellSamples project

216

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

No EJB Session beans are used in these examples, although they could easily have
been used instead of the Java service facade classes. The Java facades emulate the
default transactional behavior of a Stateless Session bean by auto-committing the results
whenever they perform a persist, merge, or remove operation. The principle difference
is that E]JBs execute in an EJB container, which offers enterprise services that are not
required for these JPA examples.

The samples for this chapter consist of seven Java class libraries and one Web
application containing a servlet for each of the seven Java libraries. Expand the first Java
class library—Chaptero4-PersistenceIISamples-embeddable, and observe the general
structure common to each project as shown in Figure 4-7.

217

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

) Chapter04-PersistencellSamples - NetBeans IDE82
File Edit View Navigate Source Refactor Run Debug Profile Tea

DS DE: [-1 @

Projects % | Files Services =] _
SRV Nl Chapter04-PersistencellSamples

E‘}Lb Java EE Modules
@& Configuration Files
g Lh Server Resources
=& Chapter04-PersistencellSamples-embeddable
&l Source Packages
&5 META-INF
B persistence.xml
E] E5] com.apress.ejb.chapter04.embeddable
: @ Address.java
@ Employee.java
--|& FullTimeEmployee.java
@ PartTimeEmployee.java
: @ Person.java
©-[com.apress.ejb.chapter04.embeddable.service
@} JavaServiceFacade.java
; - [@ JavaServiceFacadeClient.java

(Z) Navigator T

Figure 4-7. Observing the structure of the Chapter04-PersistencellSamples-joined
project
Each Java class library contains the following:

o Asingle JPA persistence unit consisting of some number of
JPA entities or other mapped classes along with a META-INF/
persistence.xml file

218

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

e AJava service facade-JavaServiceFacade. java-a wrapper class
that provides CRUD methods for manipulating the JPA entities in the
context persistence unit

e AJavaclient-JavaServiceFacadeClient. java-for the service facade
that executes the test case for that persistence unit

Creating the Database Connection

The samples in this chapter require a database connection, and for these tests we will
use the Derby database that is bundled with NetBeans and Glassfish. If you have not
already created the WineApp database, also used for the Chapter 3 examples, click on
the Services tab, expand the Databases icon, and invoke “Create Database...” on
the Java DB node. Create a database named “WineApp” with username and password
wineapp/wineapp as shown in Figure 4-8.

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

PEES DE: 1THOPB-@-
Projects | Files | services % | =1

=B Databases

. {8 i
) Create Java DB Database (23]

&
&

Database Name: WineApp

f 89
§ g

3

User Name: wineapp

Password: senne

i 8

g PP ==
g
]

ERCRCRCNENG

Confirm Password: eeeee

E
o

Database Location: C:\Users\jwetherb\.netbeans-derby Properties...

Figure 4-8. Creating the WineApp database and connection

219

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

In case you did create the WineApp database in Chapter 3, then you should find it
underneath the Java DB section as shown in Figure 4-9.

ONetBeanleE&Z‘.o - ‘

File Edit View Navigate Source Refactor Run Debug Profile Team Tot

PSS DE: 1@ T

& | projects | Files | Services % | =]
g 2 & Databases

2| @ [§ lavaDs

% &} {)) Drivers

©| @ [&] jdbc:derby:/flocahost: 1527/dbperson [dbperson on DBPERSON]

w-[&3 ;dbc derby: fﬂocahost 1527/sample [2pp on APF]
ol
EJ @ WebSemces
@[l servers
@@ Maven Repositories
@Yo Hudson Builders
@ TaskRepositories
@-4% IS Test Driver
@-@§ Selenium Server

Figure 4-9. “WineApp” Java DB

This last step created a database connection and is referenced from the persistence
units in each of the persistence.xml files found in the JPA projects. While it is possible
to pre-create the database objects (tables, sequences, key constraints, and so on), we will
let JPA create these database objects automatically the first time they are needed by each
persistence unit.

220

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Compiling the Sources

Invoke the context menu on Chapter04-PersistenceIISamples node, and build the
application by selecting the Clean and Build menu option as shown in Figure 4-10.

) Chapter04-PersistencellSamples - NetBeans IDE82
File Edit View Navigate Source Refactor Run Debug Profile Team T¢

PGS DE: -] @

(w2 =
S

§ 5 Add Java EE Module...

L] EB New 4

Build

b dwapterOWersistencens! Clean and Build
@& Chapter04-PersistencellS Clean
@& Chapter04-PersistencellS Verify
- & Chapterﬂ4—PersistenceIISi

#-& Chapter04-PersistencellS| Run

@& Chapter04-PersistencellS Deploy

@@ Chapter04-PersistencellS Bebug
Profile

Figure 4-10. Building the application

221

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Running the Client Programs

After the WineApp database has been created and you have built the projects, you can run
the sample clients. Open the Chapter04-PersistencelISamples-singletable project,
and expand the com.apress.ejb.chapter04.singletable.service package. You will
see the Java service facade (JavaServiceFacade. java) and its client class. Right-click

on JavaServiceFacadeClient. java, and choose “Run File.” The test will run within
NetBeans, and the output is sent to a log window. See Figure 4-11.

) Chapterd-PenistencellSamples-idciazs - Netfieans IDE B2 —— e e - R EECT]
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Melp G sewh icvis
AEES D mer O TH DB G

= projects = | Files | Services =]
5 M, Chacterds PersstancellSavpies
5 Chapterds Perstencellanpies smibeddatle

(@) Hvigter

7 & Chapter04 PersatencellSanpies-embeddd
= G Chapter04PersstencellSamples dcass
5[l Source Packages
4 [veTare
& perssoence.ei
2 [com.aoress.ep.chapter4 ddass
) addeessjava
[MyldCmes e
[Persen jova
B com.sores. i chapter(4 ddass. service:

o & Chapter04PersstencellSampies tabieperdass
o i

saien: Eclipse Pecsistesce Sesvices - 2.5.2.v20140315-Sadfabd
ile: 701/ Sumg: 3 EariChaptardd-FarsiatancelTSamplas/ Chaptesl4-Per sl srancel Iamples-1dclass bulld/els

Figure 4-11. Executing the SINGLE_TABLE inheritance example in a Java SE
environment

Next run the HTTP servlet client by opening the Chapter04-PersistenceIISamples-war
project and expanding the package com.apress.ejb.chaptero4.client. Open
the browser that is used by NetBeans to run servlets. (If you're not sure, open the
NetBeans preferences by going to Tools » Options » General.) Right-click on
SingleTableInheritanceClient.java servlet, and choose “Run File” to run the test as
a Web application as shown in Figure 4-12.

222

) Chapter04-PersistencellSamples-war - NetBeans IDE8.2

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window

PSS D

1 @-T @ D

Figure 4-12. Executing the com.apress.ejb.chaptero4.client Servlet

NetBeans will execute the servlet in the default browser as shown in Figure 4-13.
During execution of the test, any existing conflicting data is deleted, new test data is
created, and then it is queried and rendered in tabular format. Referenced objects,

=¥ | Projects lllFiles {Senricea l el
% @-& Chapter04-PersistencellSamples-embeddable
Z - Chapter04-PersistencellSamples-embeddid
©|@ & chapteroa-persistencelisamples-iddass
@-& Chapter04-PersistencellSamples-joined
@ & Chapter04-PersistencellSamples-mappedsuperdass
@& Chapter04-PersistencellSamples-singletable
@-& Chapter04-PersistencellSamples-tableperdass
=@ Chapter04-PersistencellSamples-war
=) 5 Web Pages
) WEB-INF
@ index.jsp
&-[}) Source Packages
| & [comepress.cp.chapterddg OPen
..... |&] EmbeddableClient.java
..... [&) EmbeddedidClient.java Cut cute
|8 1dClassClient java Copy e
& JoinedinheritanceClient, Paste Ctrl+V
----- |#] MappedSuperdassClient Compile File F9
----- © |
i [TablePerClassInheritanc Run File Shift+F6 |
P Libraries Debug File Ctrl+Shift+F5
@[Confiauration Files -~

including lists of referenced objects, are shown in nested table cells. Here in Figure 4-13

is the output for this client servlet, showing the log of the servlet’s actions.

223

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

e - -
m} fr—} http://localhost:8080/Chapter04-Persistencellsamples-war/SingleTablelnheritanceClient L~c ” a Servlet SingleTablelnheritan... *
File Edit View Favorites Tools Help

Servlet SingleTableInheritanceClient at /Chapter04-PersistencelISamples-war

Deleting any existing Address and Person hierarchy data
Deleting parttimeemployee (and related objects) 2

Deleting fulltimeemployee (and related objects) 1

Creating and persisting new Address for FullTimeEmployee
Creating and persisting new FullTimeEmployee

Creating and persisting new Address for PartTimeEmployee

Creating and persisting new PartTimeEmployee

Persons:
FullTimeEmployee

firstName I rian
id J51

lastName |[Tones
[version [t _

(R

1301 Ashwood C

Figure 4-13. Executing the SINGLE_TABLE inheritance example in a Java EE Web
environment

Take a look at the code in SingleTableInheritanceClient. java. Feel free to
experiment by creating additional entities, testing the query and other service methods
on the Java service facade, and observing the resulting behavior. To reset the test schema
back to its original state, you can always delete the WineApp test database and then re-
execute the step depicted in Figure 4-8.

Testing the Other Persistence Examples

The remaining six projects each test a different feature covered in this chapter and
identified on the project name. You are encouraged to use these projects as a reference
for how to configure the various inheritance hierarchies, mapped superclasses,
embedded classes, and complex primary keys.

224

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Since each project in this chapter shares the same structure, and a dedicated HTTP
servlet tester accompanies each, the above steps can guide you through executing each
example in the same way.

Summary

We have covered a fair bit of ground in this chapter, and with this information in hand,
you should be ready to go out and build some powerful entities that are configured to
best suit your application domain. Below is a summary of the key concepts we covered in
this chapter.

Mapping Entity Inheritance Hierarchies

JPA provides built-in support for three common O/R mapping strategies for entity
class inheritance hierarchies: SINGLE_TABLE, JOINED, and TABLE_PER_CLASS. We
examined the strengths and weaknesses of each approach, and we offered examples of
common use cases that map best to each strategy.

Using Abstract Entities, Mapped Superclasses, and
Non-Entity Classes in an Inheritance Hierarchy

JPA offers flexible solutions when it comes to mixing entities with abstract and non-
entity classes in a type hierarchy. Entities may be either concrete or abstract. Only entity
classes may be queried or serve as the targets of mapped entity relationships, but entities
may still make use of non-entity classes, both by embedding them using @Embedded and
@ElementCollection and by extending them or being extended by them. We showed
some examples that mix these options together to illustrate their use.

Polymorphic Relationships

Relationships can be specified between entities, including abstract supertype entities
in a hierarchy. This lets you define a relationship with entities anywhere along an
inheritance hierarchy that will implicitly involve subtypes of that entity as well.

225

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Polymorphic JPAL Queries

Similarly, JPQL queries can select or join entities of a supertype class, and any instances
of subtypes matching the query criteria will be returned in the query result. We looked at
how to use JPQL to build reusable @NamedQuery objects as well as the QueryCriteria API
introduced since JPA 2.0.

Using Native SQL Queries

The EntityManager lets you issue native SQL queries as an overture to experienced SQL
developers and as an optimization to avoid the overhead of querying across all of an
entity’s fields when only a few are actually needed. We provided an example of how to
define a named native SQL query that returns entity instances so that the results could
be seamlessly integrated into an application.

Using the Query Criteria API

As a type-safe alternative to JPQL, the criteria API introduced since JPA 2.0 allows you to
construct queries by dynamically assembling the constituent clauses and predicates into
a CriteriaQuery object that can be invoked to retrieve entity or other results. Figure 4-14
shows how the persistence.xml file looks in the NetBeans IDE 8.2.

| B persistence.oml 3| (TR EINL]]
| Desgn | source History [General: - ® =B
Persistence Unit Mame: Chapterd4
Persistence Library: Edoss.nk (A 2.1) ‘:
JOBC Connection: ' sdbe:derby: flecalhosts 1527/ WineApp [wineage on WINEARP) v:
Use Java Transaction APls
Table Generation Strategy: Create Drop and Creates @ Hone
Vabdation Strategy: @ Auto () Callback () None
Shared Cache Mode: Al MNone Enable Sslective Disable Selactive @) Unspacfied
Include All Entity Classes in "Chapter(4-PersistencellSamples-embeddable” Module -
Indude Entity Classes:
[com.apress.efb | Add Class.
oore, apvess.eh = v |
lcom.apress.efb it ble. Part ' o :
{com.apress.ejb. chapter04.embeddable. Persan

Figure 4-14. Persistence.xml file

226

CHAPTER 4 ADVANCED PERSISTENCE FEATURES

Composite Primary Keys and Nested Foreign Keys

We explored the different types of composite primary key usage, showing how to use

an @EmbeddedId field and multiple @Id fields. When an entity’s primary key maps to
columns that are also involved in relationships to other entities (as when the primary key
contains one or more columns that are also part of a foreign key), things can get a little
bit dicey. We provided some examples of how to deal with this situation.

Support for Optimistic Locking

Using the @Version annotation, you can designate a field (one that is common to all
entities in your inheritance hierarchy) to be used by the EntityManager to perform
optimistic locking when managing concurrency, such as during merge operations. This
field will be auto-populated by the persistence framework and should not be updated by
application code.

Support for Autogenerated Primary Automatic Key Values

JPA offers declarative support for the population of @1d fields with unique values. We
provided examples of how to declare both database sequence-based and table-based ID

generators.

Interceptors: Entity Callback Methods

You can designate methods on your entity class, or on the helper class of your choosing,
to handle entity lifecycle callbacks. We listed the callback methods available to you and
explained how to use them to register your own custom methods that will be called
during lifecycle events.

227

CHAPTER 5

EJB Message-Driven
Beans

This chapter discusses the need for message-oriented architecture. It introduces Java
Message Service (JMS), the typical architecture for messaging applications, and it
details the concepts behind EJB message-driven beans (MDBs). The chapter also covers
annotations, dependency injection, and interceptors in relation to MDBs.

Message-Oriented Architecture

Today’s IT organizations have dozens of applications and services that perform such
well-defined tasks as inventory, billing, expense reporting, and order entry. With the
evolution of the Internet and e-business, enterprises have started to think about how
different applications can work independently but still be a part of an information
workflow process at the same time.

This new demand brings us to the concept of integrating existing applications,
as well as building new applications that work coherently with existing applications.
Integrating existing applications with new applications is a very complex task: first due
to the large number of applications used by most enterprises, and second because of
their complex business workflow.

Messaging is one of the most viable solutions for integrating existing and new
applications in an asynchronous communication and loosely coupled transaction
model. Asynchronous messaging allows applications to communicate by exchanging
messages independently without them having to be hardwired to each other. An
application or business process sending a message does not have to wait for the receiver
as long as both sender and receiver understand and agree upon a message format and
an intermediate destination.

229
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018

J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_5

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Here are the MDBs messaging concepts:
e Process of sending a loosely coupled, asynchronous message.
e The sender doesn’t know when the message is received.
o The sender can guarantee that the message will not be lost en route.

o The MOM (message-oriented middleware) service acts like a
voicemail when the receiver is AFK.

What Is JMS?

JMS is a Java Message-Oriented Middleware (MOM) API that allows applications to send
and receive messages asynchronously. JMS is part of the standard Java EE API as defined
by JSR 914. JMS is analogous to JDBC (Java Database Connectivity), which provides a
standard API to connect to several types of databases (Oracle, DB2, MySQL). Likewise,
JMS provides a standard API to connect to several types of messaging systems (IBM MQ,
SonicMQ).

Note MOM stores the Message in a Location specified by the sender and later
collected by the consumer.

JMS architecture consists of the following:

o JMS provider: A messaging system (as shown in Figure 5-1) that
handles the routing and delivery of messages. A JMS provider can
be a messaging component of an application server (such as Oracle
WebLogic Server, IBM WebSphere, Oracle GlassFish Server). J]MS
providers are also known as JMS servers.

230

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Order Entry Inventory

A4
M

Billing Shipping

Figure 5-1. A JMS messaging system

e JMS client: Any Java application or Java EE component that uses the
JMS API either to consume or produce a JMS message.

e JMS consumer: A JMS client application that consumes JMS
messages. The inventory, billing, and shipping applications shown in
Figure 5-1 are JMS message consumers.

e JMS producer: A JMS client that generates the message. The order
entry application shown in Figure 5-1 is a JMS message producer.

o JMS message: A message consisting of a header, properties, and a
body. The header identifies the message and contains a standard
information just like JMSTimestamp. MOM sets this header to the
current time when the message is sent. The properties provide
additional attributes that are specific to the application and provider.
The property is explicitly created by the application Message.
setBooleanProperty(“,true); and it can be Boolean, byte, double,
float, int, long, short, String, Object, etc. The body contains the
content of the message and it can be ObjectMessage, ByteMessage,
MapMessage, StreamMessage, and TestMessage. The JMS
specification provides support to send and receive different types of

messages. Table 5-1 shows the message types and descriptions.

231

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Table 5-1. JMS Message Types

Message Type Description

ByteMessage Consists of a series of bytes

MapMessage Consists of a set of name/value pairs
ObjectMessage Consists of a serialized Java object
StreamMessage Consists of a sequence of primitive data types
TextMessage Consists of strings

JMS has two types of resources: JMSContext and Destination.
JMS application will retrieve the JMSContext using DI with the CDI @Inject and
configure the JMSContext to connect to a connection factory with @/ MSConnectionFactory.

Messaging Application Architecture

Generally, two different classes of messaging applications exist:

e The point-to-point (P2P) model: only one consumer will process a
given message, PTP message destinations are called queues, A writes
to the queue and B reads from the queue.

e The publish-subscribe (pub-sub) model: each subscriber receives a
copy of the message.

The P2P model is based on message queues, where a queue holds the JMS messages
sent by the JMS client application. Message producers and consumers decide upon a
common queue to exchange messages.

The P2P model is used if there is one and only one message consumer for each
message. For example, the order entry system shown in Figure 5-2 sends a new order
into the message queue, which is picked up by the inventory system. Similarly, the
message sent by the inventory system is consumed by the shipping system, and the
message from the shipping system is consumed by the billing system.

232

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Order Entry ‘ JMS Server l Inventory I—

a3

¢ Message
Queven=

~ Message
S——_Queve |

A

Shipping @—r Billing

Figure 5-2. A JMS messaging system using queues

The pub-sub model is based on topics, where the topic is the destination address of
the message. Multiple recipients or JMS consumers can retrieve each message. In this
model, publishers are not always aware of possible subscribers. The pub-sub model
is used for broadcast-type applications, as shown in Figure 5-3, in which a message is
delivered for more than one JMS client. Topics, each having a unique name, are defined
in the messaging server. Each message, with its associated subject, gets published and
delivered to all subscribers.

Publisher Subscriber
JMS Server

/\

Publisher

Subscriber

Figure 5-3. A JMS messaging system using topics

233

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

JMS 2.0

JMS 2.0 was released in April 2013, and it was the first update to the JMS specification
since version 1.1 was released in 2002.

JMS 2.0 is currently part of the Java EE 7 platform and can be used in Java EE Web or
EJB applications or as a stand-alone in a Java SE environment.

The JMS 2.0 main goals include:

— APImodernization

— Java EE Alignment

— EJB3/MDB Alignment

— Minor Corrections and Clarifications since version 1.1
— New API for sending and receiving messages

— New API also supports resource injection

The JMS 2.0’s biggest change was the introduction of a new API for sending and
receiving messages, helping the programmer to reduce the amount of code to write.

JMS 2.1

JMS 2.1 was first proposed by Oracle in August 2014 and then submitted as JSR 368 in
accordance with the Java Community Process. It was proposed and then finally approved
to be part of Java EE 8.

The early draft review 1 (EDR1) was published for public review in October 2015,
including a new chapter on flexible JMS message-driven beans.

In March 2016 the EDR2 was finally published for public review but then Oracle
stopped the development of JMS 2.1, announcing that they were changing the Java EE 8
priorities including the development of JMS 2.1.

Finally, in November 2016 Oracle formally proposed that the JSR be withdrawn and
confirmed that JMS would remain part of Java EE 8, but the existing version JMS 2.0
would be used rather than a new version 2.1.

The JMS 2.1 specification can be found in this web page:

https://jcp.org/en/jsr/detail?id=368

234

https://jcp.org/en/jsr/detail?id=368

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Here are the most important changes in JMS 2.1:

Alignment with Java SE 8

Flexible MDBs (EE)

— Change in the asynchronous messaging, including how MDB imple-
ments any MessageListener interface to any CDI bean

— CDI Beans as Listeners

— Batch delivery including Acknowledgment Modes, the setMessageL-
stener (EE), etc.

— Repeatable Annotations including the redelivery configuration (EE)

Using MDBs

An MDB is an asynchronous message consumer that processes messages delivered via
JMS. While MDBs do the job of processing the messages, the EJB container in which
the MDBs run take care of the services (transactions, security, resources, concurrency,
message acknowledgment), letting the bean developer focus on the business logic of
processing messages. Traditional JMS applications would have to custom write some
of these services. MDBs are stateless in nature, which means that EJB containers can
have numerous instances of MDBs execute concurrently to process hundreds of JMS
messages coming in from various applications or JMS producers and also provide quality
of service (QoS), such as high availability and reliability for enterprise applications.

EJB client applications cannot access MDBs directly as they can with session beans
and entities. The only way to communicate with an MDB would be by sending a JMS
message to the destination to which the MDB is listening. Any Java application or Java
EE component using the JMS API can be the message provider for the MDB by sending
messages to queues or topics.

When Do You Use MDBs?

Earlier in the chapter, we discussed the need for asynchrony in enterprises.
Asynchronous messaging provides loose coupling between applications, systems, and
services, thus providing greater flexibility and change management for applications and
systems. MDBs provide a standard messaging component model that achieves the goal

of asynchronous and message-oriented architecture in enterprises.
235

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Figure 5-4 shows a message-oriented application that has order entry, inventory,
billing, and shipping systems that communicate asynchronously to handle a workflow
that starts with a new purchase order and ends when the order gets shipped to the
customer. An order entry system captures a new order from a customer, processes the
order, and sends it into a designated message queue (in Figure 5-4, this is the New Order
queue). The inventory system picks up the message from the queue and checks whether
or not the inventory is available. If not, it sends a message to the Suppliers queue; if
the order can be shipped, then it puts a message into the Order Ready queue. This new
message is picked up by the billing system, which processes the billing for the customer
and puts a message back into the Shipping queue. Finally, the shipping application
picks up the message, gets the order shipped to the customer, and sends an e-mail to the
customer with tracking information.

Order Ent Invento
A | New Order i | L
Queue

Suppliers
Queue

| P

Giin e pa
w\

,
Queue
Billing —l_ _|—) Shipping

Figure 5-4. An order-to-shipping JMS messaging system

MDB Classes

Unlike a session bean, an MDB doesn’t have any business interfaces. It has only the

following:
e A message-driven class
e An optional callback listener class

e An optional interceptor class

236

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

An MDB class is any standard Java class that has a class-level annotation
@MessageDriven. If deployment descriptors are used instead of annotations, the bean
class should be denoted as an MDB class. In the case of mixed mode, in which you are
using annotations and deployment descriptors, the @MessageDriven annotation must
be specified if any other class-level or member-level annotations are specified in the
bean class. The @MessageDriven annotation parameters can be used to specify the JMS
queues or topics to which the bean is listening. Table 5-2 details the parameters.

Table 5-2. Parameter details for the @MessageDriven Annotation

Parameter Description

ActivationConfigProperty The set of properties used to specify the destination name

and type

description A description of the bean class

mappedName The physical Java Naming and Directory Interface (JNDI) name
of the topic or queue to which the MDB is listening

messagelistener The interface name of the interface class that the MDB is
extending

name The name of the MDB, if it has to be a different name than the
bean class

To illustrate the use of an MDB, we will create the use case shown in Figure 5-5.
We will have an application client, which will be a Java command-line program that
invokes a business method in the OrderProcessing session bean. The OrderProcessing
session bean will create and send a JMS message to a topic registered/configured in the
GlassFish application server. An MDB, StatusMailer, will listen to the topic and process
the incoming message. The message received will contain details for the customer, and
it will be used to send an e-mail notification to the customer regarding his or her order
status. This simple use case will allow us to demonstrate how MDBs work and how to
inject different types of resources in session beans and MDBs.

237

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Application OrderProcessing e StatusMailer
- 2 —
Client Session Bean Topic MDB

Figure 5-5. A sample MDB use case

Listing 5-1 shows the definition of a StatusMailer MDB. We have marked the
StatusMailerBean class with the @MessageDriven annotation.

Listing 5-1. StatusMailerBean.java

package com.apress.ejb.chapter0s;
import javax.ejb.MessageDriven;
@MessageDriven

public class StatusMailerBean {

}

An MDB class has one method, onMessage(), which gets invoked by the EJB
container on the arrival of a message in the queue/topic to which the MDB is listening.
The onMessage () method contains the business logic on how to process the incoming
message. The onMessage () method contains one parameter, which is the JMS message.
In the case of the StatusMailer bean, the onMessage() method checks whether the
message is of MapMessage type, and then it gets the customer information from the
message, creates an e-mail message about the order status, and then sends an e-mail to
the customer. Listing 5-2 shows the onMessage () method code. In a try block, we start
by checking whether the message received is of type MapMessage, as we are expecting. If
it is, then we use getStringProperty() to retrieve the values of the from, to, subject,
and content attributes in the message.

Listing 5-2. The onMessage Method Code

package com.apress.ejb.chapter0s;
import javax.ejb.MessageDriven;
@MessageDriven
public class StatusMailerBean {

public void onMessage(Message message){
238

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

try {
if (message instanceof MapMessage) {

MapMessage orderMessage = (MapMessage)message;
String from = orderMessage.getStringProperty("from");
String to = orderMessage.getStringProperty("to");
String subject = orderMessage.getStringProperty("subject”);
String content = orderMessage.getStringProperty("content");
}

else {
System.out.println("Invalid message ");
}

} catch (Exception ex) {
ex.printStackTrace();

In addition to marking the standard Java class with the @MessageDriven annotation,
the following requirements apply to an MDB class:

e The MDB class must implement the message listener interface. In the
case of JMS, this will be javax.jms.MessagelListener.

o The class cannot be final or abstract.

o The class should have a no-argument public constructor that is used
by the EJB container to create instances of the bean class.

If both annotations and deployment descriptors are used, the settings or values
in the deployment descriptor will override the annotations in the classes during the
deployment process.

Configuration Properties

Bean developers can provide configuration properties along with MDB classes, which
get used at deployment time. The EJB container uses these properties to configure the
bean and link it to the appropriate JMS provider. These configuration properties can be
set using the @ActivationConfigProperty annotation. This annotation can be provided

239

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

as one of the parameters for the @MessageDriven annotation. Listing 5-3 shows the
@MessageDriven annotation with properties for the StatusMailer MDB. We have
defined two ActivationConfigProperty annotations that specify the logical destination
name and the destination type.

Listing 5-3. The @MessageDriven Annotation with Properties for the
StatusMailer MDB

@MessageDriven(activationConfig= {
@ActivationConfigProperty(propertyName="destinationName", «~
propertyValue="StatusMessageTopic"), «~
@ActivationConfigProperty(propertyName="destinationType", «~
propertyValue="javax.jms.Topic")

}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.Messagelistener {

}

Standard configuration properties available for MDBs in EJB version 3.0 and 3.1
correspond to the configuration properties in JMS version 1.1. Standard configuration
properties for MDBs in EJB version 3.2 have been extended to correspond to the
configuration properties in JMS version 2.0. Table 5-3 shows the correspondence
between the E]B version and JMS version.

Table 5-3. Mapping of E]JB MDB
version to JMS version

EJB Version JMS Version
EJB 3.0 JMS 1.1
EJB 3.1 JMS 1.1
EJB 3.2 JMS 2.0
EJB 3.2 JMS 2.1

In the following sections, we will show what configuration properties can be set for
MDBs.

240

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Message Acknowledgment

The EJB container provides a message acknowledgment service. There are two message
acknowledgment modes:

o Auto-acknowledge
o Dups-ok-acknowledge

In the case of Auto-acknowledge, the message delivery acknowledgment happens
after the onMessage () method. This property is useful for applications that require no
duplicate messages. For example, a new order should be received by the inventory
system once and only once. In the case of Dups-ok-acknowledge, the acknowledgment
is done lazily, which means that there might be duplicate delivery of messages, but
it reduces the overhead for the session in terms of immediate acknowledgment. For
example, an e-mail message that gets sent out during the order process can possibly
allow duplicate messages. We can use the @ActivationConfigProperty annotation to
specify the message acknowledgment property. Listing 5-4 shows the property set to
allow duplicates.

Listing 5-4. The @ActivationConfigProperty Annotation

@MessageDriven(

activationConfig= {
@ActivationConfigProperty(propertyName="acknowledgeMode", «
propertyValue="Dups-ok-acknowledge")}

)

The Message Selector

The message selector allows filtering of incoming messages based on the selection
criteria provided by the bean developer using the @ActivationConfigProperty
annotation. This property is useful for restricting the messages that the bean receives.
For example, the MDB that processes the incoming orders might only process

orders pertaining to red and white wines. The property name used to specify is
messageSelector.

241

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Message Destination

The message destination describes whether the MDB listens on a queue or

topic. Bean developers can provide the description in the bean using the
@ActivationConfigProperty annotation. The value of the property must be either
javax.jms.Queue or javax.jms.Topic. For example, a new order may need to be
processed by an inventory system as a next step in the workflow; in this case, the
order entry system doesn’t have to broadcast the new order message. Both the order
entry and inventory system can agree on a particular destination. Listing 5-3 shows
the code to specify destination name and type.

Subscription Durability

If the bean is designed to listen to a topic, then the bean developer can further specify
the durability of the message. The topic can be either Durable or Non-Durable. Usage

of Durable topics ensures reliability for the applications. They ensure that messages are
not missed, even if the E]B container is temporarily offline. For example, we may need
to make sure that the new purchase orders received from client applications are not lost
if the EJB container goes down. All purchase orders have to be reliably processed by the
MDBs. We can use the @ActivationConfigProperty annotation to specify the durability
using the subscriptionDurability property. Listing 5-5 shows the code to set the
property to Durable. If this property is not set, the container will assume the default of
Non-Durable.

Listing 5-5. The Code to Set the Property to Durable

@MessageDriven(

activationConfig= {
@ActivationConfigProperty(propertyName="subscriptionDurability",
propertyValue="Durable")}

)

In the StatusMailer MDB, we will create properties using the
@ActivationConfigProperty annotation. The message’s destinationName is set to
StatusMessageTopic, and destinationType is set to javax.jms.Topic. We will use
the mappedName parameter to specify the physical destination name of the topic. In
our case, it is the same as destinationName. Listing 5-6 shows the StatusMailer
MDB in its current state of completion.

242

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Listing 5-6. StatusMailerBean.java

package com.apress.ejb.chapter0s;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;

import javax.ejb.MessageDriven;
import javax.jms.MapMessage;

@MessageDriven(activationConfig= {
@ActivationConfigProperty(propertyName="destinationName", propertyValue=
"StatusMessageTopic"),

@ActivationConfigProperty(propertyName="destinationType",

propertyValue="javax.jms.Topic")

}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.Messagelistener{
public void onMessage(Message message){

try {

if (message instanceof MapMessage) {

}

MapMessage orderMessage = (MapMessage)message;

String from = orderMessage.getStringProperty("from");
String to = orderMessage.getStringProperty("to");

String subject = orderMessage.getStringProperty("subject");
String content = orderMessage.getStringProperty("content");

else {

System.out.println("Invalid message ");

}

} catch (Exception ex) {
ex.printStackTrace();

243

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Dependency Injection in MDBs

MDBs can use dependency injection to acquire references to resources such as JavaMail,
EJBs, or other objects. The resources that an MDB tries to acquire and use must be
available in the container context or environment context.

In the sample use case from Figure 5-5, we talked about creating an e-mail after the
message is processed and sending the order status to the customer via e-mail. In order
to do this in the StatusMailer message bean, we need to acquire a JavaMail session so
that we can create an e-mail and send it. JavaMail is an API that provides a platform-
independent framework for building mail applications. The JavaMail API is available
with the Java EE platform.

We can acquire a JavaMail session in an MDB using dependency injection. Listing 5-7
shows the completed StatusMailer MDB using dependency injection and the
JavaMail API. The @Resource annotation is used to inject a JavaMail session with
the name mail/wineappMail, which has been registered as a mail resource in the
GlassFish application server. The injected mail session is used to create javax.mail.
Message, and the setter methods are used to create the headers and content of the mail
message. Finally, the send() method in the javax.mail.Transport class is used to
send the created message.

Listing 5-7. The Completed StatusMailer MDB Using Dependency Injection and
the JavaMail API

package com.apress.ejb.chapteros;

import javax.annotation.Resource;

import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;

import javax.ejb.MessageDriven;

import javax.jms.MapMessage;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

@MessageDriven(activationConfig= {
@ActivationConfigProperty(propertyName="destinationName", «
propertyValue="StatusMessageTopic"), «

244

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

@ActivationConfigProperty(propertyName="destinationType", «
propertyValue="javax.jms.Topic")
}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.Messagelistener{

@Resource(name=

"mail/wineappMail”)

private javax.mail.Session ms;

public void onMessage(Message message){

try {

if (message instanceof MapMessage) {

}

MapMessage orderMessage = (MapMessage)message;

String from = orderMessage.getStringProperty("from");
String to = orderMessage.getStringProperty("to");

String subject = orderMessage.getStringProperty("subject");
String content = orderMessage.getStringProperty(“content”);
javax.mail.Message msg = new MimeMessage(ms);

msg.setFrom(new InternetAddress(from));
InternetAddress[] address = {new InternetAddress(to)};
msg.setRecipients(javax.mail.Message.RecipientType.TO,
address);

msg.setSubject(subject);

msg.setSentDate(new java.util.Date());
msg.setContent(content, "text/html");
System.out.println("MDB: Sending Message...");
Transport.send(msg);

System.out.println("MDB: Message Sent");

else {

System.out.println("Invalid message ");

}

} catch (Exception ex) {
ex.printStackTrace();

245

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Lifecycle Callback Methods

There will be certain instances in which an application that uses MDBs requires fine-
grained control. Two lifecycle event callbacks are supported for MDBs:

e PostConstruct
o PreDestroy

The PostConstruct callback occurs before the first message listener method
invocation on the bean and after the container has performed the dependency injection.
The PreDestroy callback occurs when the MDB is removed from the pool or destroyed.

For example, a PostConstruct callback can be used to initialize some attributes or
resources, and a PreDestroy callback can be used to clean up or release the acquired
resources.

Callback methods defined on an MDB class should have the following signature:

public void <METHOD> ()

Callback methods can also be defined on a bean’s listener class, in which case the
methods should have the following signature:

public void <METHOD>(Object)

where Object may be declared as the actual bean type, which is the argument passed
to the callback method at run time.

Callback methods can be any methods in the MDB that have callback annotations.
The following rules apply to these methods:

¢ The method should be public.
¢ The method cannot be final or static.
o Thereturn type should be void.

The methods can take either zero or one argument, as shown previously. A callback
listener class is denoted by the @CallbackListener annotation on the MDB class with
which it is associated.

246

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Interceptors

The EJB specification provides annotations called interceptors, which allow you to
intercept a business method invocation. Interceptor methods can be defined for MDBs.

You can add either an @AroundInvoke annotation or an <around-invoke-method>
element in the deployment descriptor for a particular method, or you can define an
interceptor class whose methods are invoked before the onMessage () method is invoked
in the MDB class. An interceptor class is denoted using the @Interceptor annotation on
the MDB class with which it is associated. In the case of multiple interceptor classes, the
@Interceptors annotation is used. Only one AroundInvoke method may be present on
the bean class or on any given interceptor class. An AroundInvoke method cannot be an
onMessage() method of the MDB class.

AroundInvoke methods should have the following signature:

public Object <METHOD>(InvocationContext) throws Exception
The definition of InvocationContext is as follows:

package javax.ejb;

public interface InvocationContext {
public Object getBean();
public java.lang.reflect.Method getMethod();
public Object[] getParameters();
public void setParameters(Object[] params);
public EJBContext getEJBContext();
public java.util.Map getContextData();
public Object proceed() throws Exception;

}

The following list describes each of the methods:

o getBean(): Returns the instance of the bean on which the method
was called

o getMethod(): Returns the method on the bean instance that was
called

o getParameters(): Returns the parameters for the method call

247

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

o setParameters(): Allows modification of the parameters for the
method call

o getEJBContext(): Gives the interceptor methods access to the bean'’s
EJBContext

o getContextData(): Allows values to be passed between interceptor
methods in the same InvocationContext instance using the Map returned

o proceed(): Invokes the next interceptor if there is one, or invokes the
target bean method

Exception Handling

The EJB spec outlines two types of exceptions: application exceptions and system
exceptions. For more general information on these exceptions, see the “Exception
Handling” section of Chapter 2. In the case of an MDB, the listener method must not
throw a java.rmi.RemoteException or, in general, a runtime exception. The client
assumes that the message consumer continues to exist even though a runtime exception
has occurred. If the client sends a message after a runtime exception is thrown, then the
EJB container delegates the messages to a different MDB instance. Also, if you allow an
exception to “escape” an MDB, the message isn’t considered to be consumed, and it goes
back on the queue/topic. Then the offending message gets redelivered. This is known as
the “poison message” problem.

Callback methods can throw runtime exceptions. A runtime exception thrown by a
callback method that executes within a transaction causes that transaction to be rolled
back. Callback methods must not throw application exceptions.

Client View

To a client application, an MDB is simply a message consumer. A client application can
be any Java client of a Java EE component that is using the JMS API to send a message.
From the perspective of the client application, the existence of an MDB is completely
hidden behind the destination or endpoint for which the MDB is the message listener.

A client’s JNDI namespace may be configured to include the destinations or
endpoints of MDBs installed in multiple EJB containers located on multiple machines on
a network. The actual locations of an enterprise bean and EJB container are, in general,
transparent to the client using the enterprise bean.

248

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

References to message destinations can be injected via the @Resource annotation
(which is in the javax.annotation package) or via JNDIlookup in cases in which the
resource has been defined in the deployment descriptor.

Note Starting with EJB 3.2, a JMS resource adapter can construct a subscription
name by looking up an MDB using its standard name.

In the use case discussed earlier and shown in Figure 5-5, we have a session bean
that is acting as an intermediary between the client application and the message
topic. The client application invokes a business method in the session bean, and the
session becomes the client or JMS message producer that is creating and sending the
message. To illustrate this, we will create a stateless session bean, OrderProcessing,
with one business method, SendOrderStatus(). Listing 5-8 shows the code for the
OrderProcessing session bean. We are using the @Resource annotation to inject the
TopicConnectionFactory and Topic to which the StatusMailer MDB is listening. We
will use some hard-coded values in the session bean to simulate the customer e-mail
address and the content for the e-mail. In the try block, we create a connection to the
statusMessageTopicConnectionFactory and start the connection. Using the created
session, we create a topic session and topic producer with the createSession() and
createProducer () methods. Finally, we create a MapMessage object; populate the
message with the e-mail address, subject, and content; and send the message to the
Topic using the send() method.

Listing 5-8. OrderProcessingBean.java

package com.apress.ejb.chapteros;

import javax.annotation.Resource;

import javax.ejb.Stateless;

import javax.jms.Connection;

import javax.jms.JIMSException;

import javax.jms.MapMessage;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.Topic;

import javax.jms.TopicConnectionFactory;

249

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

@Stateless(name = "OrderProcessing")

public class OrderProcessingBean

{

250

public OrderProcessingBean() {

}

@Resource(mappedName = "StatusMessageTopicConnectionFactory")
private TopicConnectionFactory statusMessageTopicCF;

@Resource(mappedName = "StatusMessageTopic")
private Topic statusTopic;

public String SendOrderStatus() {
String from = "chirag.rathod@oracle.com";
String to = "chirag.rathod@oracle.com";
String content =
"Your order has been processed " + "If you have questions" +
" call EJB Application with order id # " + "1234567890";

try {
System.out.println("Before status TopicCF connection");

Connection connection = statusMessageTopicCF.createConnection();
System.out.println("Created connection");
connection.start();
System.out.println("statted connection");
System.out.println("Starting Topic Session");
Session topicSession =

connection.createSession(false, Session.AUTO ACKNOWLEDGE);
MessageProducer publisher = topicSession.
createProducer(statusTopic);
System.out.println("created producer");
MapMessage message = topicSession.createMapMessage();
message.setStringProperty("from", from);
message.setStringProperty("to", to);
message.setStringProperty("subject”, "Status of your wine order");
message.setStringProperty("content”, content);
System.out.println("before send");

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

publisher.send(message);
System.out.println("after send");

}

catch (IMSException e) {
e.printStackTrace();

}

return "Created a MapMessage and sent it to StatusTopic";

Note In Listing 5-8, update the value of “from” and “to” fields to your e-mail ID.

One last thing we need to do to complete the use case discussed in Figure 5-5 is
to come up with the client application that will look up the OrderProcessing session
bean and invoke the SendOrderStatus () message. Listing 5-9 shows the code for the
client application. In the try block, we are doing a JNDI lookup of the OrderProcessing
session bean and calling the SendOrderStatus () business method.

Listing 5-9. StatusMailerClient.java

package com.apress.ejb.chapter0s;

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "StatusMailerClient", urlPatterns =
{"/StatusMailerClient"})
public class StatusMailerClient extends HttpServlet {
@EJB
OrderProcessingBean orderProcessing;

251

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet StatusMailerClient</title>");
out.println("</head>");
out.println("<body>");

out.println("<h1>0rderProcessing session bean lookup to be
done</h1>");
out.println("<h1>Invoking SendOrderStatus() business method
now</h1>");
out.println("<h1>" + orderProcessing.SendOrderStatus() +
"</h1>");
out.println("<h1>Done !!!</h1>");
out.println("</body>");
out.println("</html>");
} finally {
out.close();

}

@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
processRequest(request, response);

}

@0verride
protected void doPost(HttpServletRequest request, HttpServletResponse
response)

252

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

throws ServletException, IOException {
processRequest(request, response);

}

@Override
public String getServletInfo() {
return "Short description”;

}
}
In the next section, we will look at compiling, deploying, and running the use case on
which we have worked.

Compiling, Deploying, and Testing MDBs

MDBs need to be packaged into EJB JAR (Java Archive) files before they can be deployed
into EJB containers. These EJB archives can then be deployed. (For some EJB containers
or application servers, they need to be assembled into EAR [Enterprise Archive] files).
Most EJB containers or application servers provide deployment utilities or Ant tasks
to facilitate deployment of EJBs to their containers. Java-integrated development
environments (IDEs) like JDeveloper, NetBeans, and Eclipse also provide deployment
features that allow developers to package, assemble, and deploy EJBs to application
servers. Packaging, assembly, and deployment aspects are covered in detail in Chapter 11.

In this chapter, we have developed one stateless session bean (OrderProcessing)
and one MDB (StatusMailer). JMS providers have to be configured with queues and
topics that will be used by the client application and MDB accordingly before the MDBs
are deployed.

The following sections describe the steps to compile, deploy, and test these MDBs
and session beans.

Prerequisites

Before performing any of the steps detailed in the next sections, complete the “Getting
Started” section of Chapter 1, which will walk you through the installation and
environment setup required for the samples in this chapter.

253

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Compiling the Session Beans and MDBs

Copy the Chapter05-MDBSamples directory and its contents into a directory of your
choice. Run the NetBeans IDE, and open the Chapter05-MDBSamples project using the
File » Open Project menu. Make sure that the 'Open Required Projects' check box
is checked. See Figure 5-6.

eop.nm_ -

Look in: [SampleCode v_ r
e
Rmﬁm [GRICY Chapter05-MDBSamples Broject Name:
dupmsamsm
. [¥] Open Required Projects:
(Chapter05-MDBSamples-ejb (Chapter05-MDBSampled
Dexchop iChapter05-MDBSamples-war (Chapter05-MDBSample
My Documents
Computer
< m] b
@ File pame: C:\SampleCode\Chapter05-MDBSamples Open Project
MK ot ot e 5

Figure 5-6. Opening the Chapter05-MDBSamples project

Expand the Chapter05-MDBSamples-ejb node, and observe that the MDB and
the session bean that we created appear in the com.apress.ejb.chapteros package.
Similarly, the two client servlets appear under the Chapter05-MDBSamples-war node as
shown in Figure 5-7.

254

@ Chapter05-MDBSamples - NetBeansIDEB2 |

File Edit View Navigate Source Refactor Run Debug Profile Team Toc

E‘EW%E‘DC’E.

€-%

2

Projects % |Files | Services |

E] A Chapter05-MDBSamples
- @[l JavaEE Modules
[a (& Configuration Files
=8 Q Chapter05-MDBSamples-ejb
- [}g Source Packages
| B @ com.apress.ejb.chapter0s
@&Orderﬁmm java
- - [@)®statusMailerBean. java
EJ [b Libraries
@[Enterprise Beans
l}} [h Configuration Files
& @ Chapter05-MDBSamples-war
@[5 Web Pages
E} (ly Source Packages
= @ com.apress.ejb.chapter0s
[statusMailerClient.java
_ ..[# statusMessageClient.java
[b Libraries
@[Configuration Files

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Figure 5-7. Verifying that the MDB, Session Bean, and their clients are available

in the project

Invoke the context menu on Chapter05-MDBSamples node, and build the application

by selecting the Clean and Build menu option as shown in Figure 5-8.

255

CHAPTER 5

EJB MESSAGE-DRIVEN BEANS

) Chapter05-MDBSamples - NetBeans IDE82 Wi |

File Edit View Navigate Source Refactor Run Debug Profile Team Tc

PEESDE

(7) Navigator Gh

Figure 5-8. Building the application

-] @-

Projects # | Files

@[Java EE Mog

@[Configuratio
- [jg ServerReso
- Q) Chapter05-MDBS
- &1} Source Packi
&-E8 com.apry
- | @orde
- - [@%stay
[Libraries
@[Enterprise By
@- (& Configuratio
|y ServerReso
=-@ Chapter05-MDBS
@-[}5 Web Pages
&-f3 Source Packi
; EJ @ com.apri
- [&] stat
@ sty
@l Libraries
@- [y Configuratio

services |

=

Add Java EE Module...

New

Build
Clean and Build

Clean
Verify
Run
Deploy
Debug
Profile

Open Required Projects

Close

Rename...
Move...
Copy...
Delete

Delete

Creating the JMS and JavaMail Resources

The StatusMailer MDB makes use of JMS and JavaMail resources. Before the

Chapter05-MDBSamples application can be deployed to GlassFish, these resources have to
be preconfigured. First we will start the GlassFish application server and then configure

the JMS and JavaMail resources by using the web-based administrator console. ¢

Click the 'Services' tab available in the application navigator of NetBeans. 'GlassFish
Server 3+' islisted under the 'Servers' node. Invoke the context menu on 'GlassFish
Server 3+', and start the server by selecting the Start menu option. See Figure 5-9.

256

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

ONeseansiDEs2 [l 0T W

File Edit View Navigate Source Refactor Run Debug Profile Team Toc
PEES D E | 1@ T

Projects | Files | Services % | =
@8 Databases

@@ web Services

6 GlassFish Server 4.1.1
& Maven Repositories Start

.~ Cloud Start in Debug Mode
@y Hudson Buiders Start in Profile Mode
& Docker
@[5 TaskRepositories
@49 IS Test Driver Stop
@-@§ Selenium Server Refresh

(Z) Navigator Th

Restart

Remove
Terminate

View Domain Admin Console
View Domain Server Log
View Domain Update Center

Properties

Figure 5-9. Starting the GlassFish application server

The GlassFish Server 4.1.1 starting log file is shown in Figure 5-10.

=5
"

o

o

s
Info: visiting unvisited Teferences
Info: visiting unvisited references
Info: Leading 1 e
Info: Lleading dora 4n 520 s
Info: GlasaFish Sezves Open Scusce Ddiciom 4.1.1 (1) stastup sime : Telix (4 260=a). sctastup sesvices(il d4ima), totalile T0%=a)
Info: Griasly Framework 3.3.33 started in: Oms = bousd to [/0.9.0.0:7678)
Infao: ed com. L Implde a3 0504 service den: 2
Info: nas snarve d o URL service:jmx:rsi://FIHELZ-11012.meinc lceal: 8686/ Indl rml : /FIRELI-L1013 . meint . local : BERE/ ymurml
Warming: Imstance esuld met be imizialized. Classs ranar-3, grizely by
Info: ted HTTP Listens: hitp-listene:-2 oe how
Info: 31y Frasmwork 3.3.33 wea Cew = bound to [/0.0.0.0:81811
Warning mat glasesash ntep. “Aadin, F-limsanes=: 3, Ay BEERd
Info: Created HIT? Listensr hutp-listener-1 on host/port 9.0.0.0:8080 L]
Info: Grimzly Framework 3.3.33 sta in: Cma - Beumd ve [/0.0.0.0:8080) f |
N L

Figure 5-10. GlassFish application server starting log file
257

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

After the server has started, open your favorite browser and navigate to http://
localhost:4848/. GlassFish version 4.1.1. server’s administrator console will be loaded

as shown in Figure 5-11.

Note If you are running GlassFish on a different machine, substitute that machine
name for localhost in the command-line arguments. Similarly, if you are running
on a different port, substitute the port number you are running for 4848.

2 = ¢ | @ csshan Consoke - comen.. [N i

File Edt View Favortes Tools

User: admin Domaln: domain Server: localhost

GlassFish™ Server Open Source Edition
&

[Common Tasks " S
GlassFish Console - Common Tasks
@ Doenain
[g] sesver (Admn Server)
b Clusters
i) >i2mtstona iatances GlassFish News Documentation
= [y Nodes
» [Applications | GlassFish News |- | Gpen Source Editon Documentation Set
7 Lifecycle Modules | Quick Stan Guide N
[Moniteing Data Deployment | Administration Guide |
v |gp Resources List Deployed Appheations =
_‘ R A g o - | Agpiication Development Guide B
) -oncoent Rasourens | Deploy an Appiication i
> gy Connectars e | Application Deployment Guide -
> @ JeC Administration
= g IMS Resources Update Center
| Change Administrator Password "
» L3 NDI o | Instalied Components
[Javaladl Sessions || List Password Aliases Avaliahie UDgates
& Resource Adapler Canfigs L= P
v B Configurations Monitoring || Awallable Adg-Ons N
* [defaut-config | Mantoning Data
» gy serverconfig Resources
13 Update Tool || Create New JOBC Rescurce -
, Create New JOBC Connection Pool N W

Figure 5-11. GlassFish 4.1.1. server’s administrator console

Using the administrator console, as shown in Figure 5-12, create a JMS
TopicConnectionFactory named StatusMessageTopicConnectionFactory, which will
be used by the OrderProcessing session bean to send a message to the topic that will be
consumed by StatusMailer MDB.

258

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

€ @ locathost 1848 /common/index juf cl @ & 0O-

GlassFish™ Server Open Source Edition

& Total # of

Tree

New JMS Connection Factory Lok | r

& Common Tasks The creaticn of a new Java Message Sendice (JMS) connection factory also creates a connector connection pool for the factory and a connector
@ Domain resource
[server (Admin Server)
58 Clusters General Settings
) ~mesiony Rutmicrs Pool Neme: * [StatysMessageTopisConnectionEaciory
* & Nodes Tupe: * 3 = = - T
» [Applications Resource Type: _;avax.pns.TopcchecbonFac{ory a B
& Lifecycle Modules Description:
¥ (g Resources Status: 14| Enabled 1=
* @ Josc = |
* i Connectors Pool Settings
i Resource Adapter Configs Initial and Minimum Pool Size: g | Connections

'iﬂ JMS Resources Minimum and intial number of connections maintamed n the pool
I. Maximum Pool Size: 32 | Connections

* [{) Destination Resources
* i JavaMail Sessions

Maximum number of connections that can be created to salisfy client requests

Pool Resize Quantity: [Connections

* (g JNDI
- Number of connections to be removed when pool idle timeout expires
v i Configurations 3
» gy default-config Idie Timeout: 300 Seconds (]
- 5 server-config Maximum time that connection can remain idle in the pool
£ Update Tool Max Wait Time: 60000 I.illsgcnnds
Amount of time caller waits before connection timeout is sent
On Any Failure: | Close All Connections
Close all connections and reconnect on fadure, otherwise reconnect only when used
Transaction Support: :I
Level of transaction support. Overwrite the transaction suppert attribute in the Resource Adapter in a downward
compatible way
o e, =
i “ . -

Figure 5-12. Creating a TopicConnectionFactory

259

CHAPTER 5

EJB MESSAGE-DRIVEN BEANS

Then create a JMS topic named StatusMessageTopic as shown in Figure 5-13.

€ | @ localhost-1848/commonyindex sl

Lk ym Role: Default

Google & ¢ o # B~

Server: localhost

GlassFish™ Server Open Source Edition

of available updates : 48

[Comman Tasks
@ Domain
[server (Admin Server)
&8 Clusters
[Standalone Instances
* & Nodes
* [Applications
» Lifecycle Modules
v @ Rescurces
* [g JDBC
* g3 Connectors
& Resource Adapter Configs
v gt JMS Resources
* [Connection Factories

* [JavaMail Sessions
* [JNDI

* Bt Configurations
» g default-config
* B4 senver-config

New JMS Destination Resource

The creation of a new Java Message Senice [JMS) destination resource also creates an admin object resource.

[E0KS] [{Cancel|

JNDI Name: * StatusMessageTopic
A umigue name of up to 255 characters; must contain only alphanumeric. underscore, dash, or dot characters
Physical Destination Name * 'Sample
Destination name in the Message Queus broker If the destination does not exist, it will be created automatically
when needad

Resousce Type: * [
Description:
Status: ¥ Enabled

Additional Properties (0)
SARUROGSI, | Delete Propesies

| Name | Value
No items found

[fok] [Cancal |

Figure 5-13. Creating the JMS topic

Create a JavaMail resource named mail/wineappMail that will be used by the
StatusMailer MDB to send out an e-mail as shown in Figure 5-14.

260

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

et v c| @ 4 B-

Domain: Defaull Serves

GlassFish™ Server Open Source Edition

& Total # of available updates : 48

5 Common Tasks Edit JavaMail Session [Sawe | [Cancel |
@ Domain

sion resource represents a mail session in the JavaMail AP

g senver (Admin Server)
&8 Clusters
jj Z=odslcon listanc es JNDI Name: mailwineapphail
: 1 todes : Mail Host: © <our SMTP Server Name>
] Applications DNS name of the default mail server
;L iocycls Mot Default User: * our Miai U emame>

v g9 Resources A
s User name to provide when connecting to a mail server, must contain only alphanumeric, underscore, dash, or dot
¥ ’ Josc characters
-
£y Cannactors Default Sender Address: * | <Your mail (0>
3 Resource Adapter Configs E-mail address of the dafault user
* g% JMS Resources
+ [JavaMail Sessions

Description:
Makes it easier lo find this session later

| Cmaineapeal | ———

* (] dNDI
v [Conhgurations Advanced
* B default-config
* g server-config Store Protocol: imap
5 Update Tool Either IMARP or POP3; default is IMAP

Store Protocol Class: com sun mail imap IMAPStore
Deefault is com_sun mail imap IMAPStore
Transport Protocol: smtp
Default is SMTP
Transport Protocol Class: |com sun mail smip SMTPTransport
Default is com.sun.mail.smtp SMTPTransport

Debug: |1 Enabled

Figure 5-14. Creating the JavaMail resource

If the SMTP server requires authentication, then set the ‘Additional Properties’ as

shown in Figure 5-15.

> gt IMS Resources Il 2dditional Properties (
¥ [JavaMail Sessions - Add Property Delate Properies
I. L . | Value “ | Description:

* [NI

%

<Your SMTP Server Name>

v g Configurations j
» g3 defaultconfig 1 mail-smtp-user <Your Mail Usemame>
* B senerconfig : mail-smip-password <Your Mail Password> |
Update Tool ! | madl-smip-auth true

|| mail-smip-port 465
mail-smip-socketFactory-port 465
M-sﬂﬁ—éockblFactod;-c'lass] 'ja'n-ax.ne!.ssl.SSLSDckalFactoly

pstatis-enable | e

[] [mail-smig-socketFactoryfallback - false

Figure 5-15. Setting the Additional Properties for Authenticated SMTP Servers

261

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Deploying the Session Beans, MDBs, and Their Clients

Once you have configured the JMS and JavaMail resources, you can deploy the
application to the GlassFish application server. Invoke the context menu on Chapter05-
MDBSamples node, and deploy the application by selecting the Deploy menu option as
shown in Figure 5-16.

J Chapter05-MDBSamples - NetBeans IDE 8.2
File Edit View Navigate Source Refactor Run Debug Profile Team T

PSS D -1 @-°

@ Jy Web Pages
& Iﬁ] Source Packages |

Open Required Projects

(=3 l =1
5 .
2| @ [a JavaEEModues, AddJava EE Module..
2 | @ [§ ConfiurationFie, New
@ - Server Resources
= Q Chapter0s-MDBSampl Build
-l SourcePackages| Clean and Build
= Egéomapresse Clean
—[& OrderProc :
L@ stwsma VoY
& 'b Libraries Run
@#- 4 Enterprise Beans | Deol
@[Configuration File 22y
- [server Resources Debug
=@ Chapter05MDBSampl Profile

= com.apress.e, Close
|| statusMai
@ StatusMe: Rename...
Lj Ib Libraries Move...
-1 & Configuration File| Copy...
Delete Delete

Figure 5-16. Deploying the MDB, session bean and their clients

262

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Running the Client Programs

and select the Run menu option as shown in Figure 5-17.

@ Chapter05-MDBSamples - NetBeans IDE 8.2

Once the MDB, session bean, and their client servlets are successfully deployed, we
need to set the run target that we wish to execute. We have a choice of two run targets:
StatusMailerClient or StatusMessageClient. To set the run target, invoke the context
menu on Chapter05-MDBSamples node, and select the Properties menu option.

To run the client servlets, invoke the context menu on Chapter05-MDBSamples node,

File Edit View Navigate Source Refactor Run Debug Profile Team To

PEHESDC

1 @

Projects % | Files | Services

|

=

E]A Chapter05-MDBSa
- @[y JavaEE Module
(& Configuration File
g Server Resource:
=-Q) Chapter05-MDBSamg
&- [} Source Packages
- =-F8 com.apress.¢
I @ OrderPro
i w [StatusMd

@ |p Libraries
@[Enterprise Beans
(& Configuration File
‘g Server Resource
=@ Chapter05-MDBSamg

(5 Web Pages

c] [y Source Packages
= com.apress.e
&) statusmd
@ StatusMe

@ Libraries
@& Configuration File

(7) Navigator

Add Java EE Module...

New

Build
Clean and Build
Clean

Verify

Run
Deploy
Debug

Profile

Open Required Projects

Close

Rename...
Move...

Copy...
Delete

Delete

Figure 5-17. Running the StatusMailerClient application target

263

CHAPTER5 EJB MESSAGE-DRIVEN BEANS

Once the StatusMailerClient runs successfully, NetBeans will open your default
browser and execute the selected servlet. Here is the output from StatusMailerClient
servlet. You should also be able to see an e-mail in the inbox where the message was
sent as shown in Figure 5-18.

e & http://localhost:64082/ Chapter)S-MDBSamples-war/StatusClient P]

File Edit View Favorites Tools Help

OrderProcessing session bean lookup to be done
Invoking SendOrderStatus() business method now
Created a MapMessage and sent it to StatusTopic

Done !!!
®100% - |

Figure 5-18. Output of StatusMailerClient servlet

Summary

In this chapter, we introduced you to the concept of message-oriented middleware and
why enterprises are looking at loosely coupled applications that can converse in an
asynchronous fashion.

We covered message application architecture with the P2P and pub-sub models,
and we discussed why messaging is one of the best ways to implement asynchronous
applications. We looked at JMS in detail, including different JMS components such as
providers, consumers, clients, and different types of messages. We looked at MDBs
and the different artifacts that can make them. We covered the different configuration
properties of MDBs and how they can be set using annotations. We explained
dependency injection in MDBs using the specific example of injecting a JavaMail
resource. We discussed what it takes to compile, package, deploy, and test MDBs, along
with information on how you can create different types of resources in the GlassFish
application server. Finally, we covered running sample client programs using the
application client container in GlassFish and viewing the output and receiving e-mail
messages sent by MDBs.

In the next chapter, we will drill down into web services, including how you can
publish session beans as web services and how to invoke web services from EJB
applications.

264

CHAPTER 6

EJB, Web Services,
and Microservices

This chapter will explain Java EE 8Web Services and Microservices and their differences.
We will introduce the core Web Services standards (SOAP, WSDL, UDDI, XML), and
discuss the evolution of Web Services and Microservices support in the Java EE platform.
We will also drill down into how you can publish EJB stateless session beans as Web
services as well as how to invoke the published Web service from a command-line Java
client program and a stateless session bean. Finally, we will show a short example about
Microservices using the Spring Boot project.

What Are Web Services?

Web services fundamentally constitute a kind of business logic or functionality
available in an application or module and are exposed via a service interface to a client
application (commonly known as service consumer). The consumer of the Web service
doesn’t have to know any implementation details of the Web service—the client is

able to access or invoke the Web service with the information provided in the service
interface. This architecture fundamentally provides a loosely coupled model in which
the consumer doesn’t have to be aware of technology or infrastructure details particular
to the implementation of the business logic exposed as a Web service.

265
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018

J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_6

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

The Web Services Architecture Working Group of the W3C (World Wide Web
Consortium) provides the following definition for a Web service:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

While the concept of abstracting out details to an interface has been used in
several languages and distributed architectures (for example, EJB and CORBA), the
key difference in Web services is the usage of standards to describe the abstraction,
invocation, and registration of services.

Web services architecture goes by the find-bind-execute model in which you find
the required service in a registry (UDDI), get the description of the service, bind it to the
service (create the message that will be sent to the service based on the description),
and finally execute or invoke the service. Figure 6-1 shows the find-bind-execute model.
UDDI, WSDL, and SOAP are the standards that make this find-bind-execute model
ubiquitous and different from earlier computing models.

uDDI
> Service <
Registry
Service E SOAP = Service
Consumer kd i Provider

Figure 6-1. Web services architecture

266

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

UDDI

Universal Description, Discovery, and Integration (UDDI) provides a standards-based
approach to locating a Web service and information on invoking that service. It also
provides additional metadata about the service. UDDI helps you dynamically bind
Web services instead of having to hardwire them to an external interface, and it also
helps to provide taxonomy. Businesses or service providers can provide basic contact
information (including identification), categorization for the service, information that
describes its behavior, and the actual location of the Web service.

UDDI, which is currently in version 3, has evolved over the last few years. Version
1 focused on providing a registry for services, while version 2 focused on aligning the
specification with other Web services specifications and flexible taxonomies. The
current version focuses on delivering support for secure interaction of private or public
implementations of the services. Several companies, including Oracle, SAP, Microsoft,
IBM, Cisco, Computer Associates, and Systinet are members of the UDDI technical
committee for the Organization for the Advancement of Structured Information
Standards (OASIS). Most of the application server vendors (such as Oracle and
IBM) either provide a UDDI registry as a standard component that comes with their
application server, or an OEM UDDI registry (from Systinet or other registry providers)
as part of their middleware platform.

WSDL

Web Services Description Language (WSDL), currently v 2.0, is a technology that is used
to describe the interface of a service using XML. WSDL is a standard developed by the
W3C to which several vendors and individuals have contributed over the last few years.
WSDL describes what a service does, how to invoke its operations, and where to find it.
WSDL details can be split into two categories: service interface definition details and
service implementation definition details. The service interface definition is an abstract
or reusable service definition that can be instantiated and referenced by multiple service
implementation definitions. It contains the following WSDL elements, which comprise

267

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

the reusable portion of the service description. We will use a credit check Web service as
an example to introduce the service interface definition elements listed here:

<definitions>
<types>
<message>
<portType>
<binding>

The <definitions> Element

The <definitions> element allows you to specify global declarations of namespaces
that are visible through the WSDL document. It acts as a container for service
descriptions. Listing 6-1 shows an example <definitions> element that defines a target
namespace and other namespaces that are referred to by a credit service.

Listing 6-1. The <definitions> Element in CreditService.wsdl

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.apress.com/ejb3/credit" «
name="CreditService" xmlns:tns="http://www.apress.com/ejb3/credit" «
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" «
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" «
xmlns=http://schemas.xmlsoap.org/wsdl/ />

The <types> Element

The <types> element is used to define the data types for the <message> element.

XML schema definitions (XSDs) are most commonly used to specify the data types.
Listing 6-2 shows an example <types> element that provides the schema location for the
credit service.

268

CHAPTER 6 EJB, WEB SERVICES, AND MICROSERVICES
Listing 6-2. The <types> Element in CreditService.wsdl

<types>
<xsd:schema>
<xsd:import namespace="http://www.apress.com/ejb3/credit" «
schemalocation="CreditServiceBeanService_ schemal.xsd"/>
</xsd:schema>
</types>

The <message> Element

The <message> element is used to define the format of data exchanged between a Web
service consumer and a Web service provider. Listing 6-3 shows an example of two
<message> elements: CreditCheck and CreditCheckResponse.

Listing 6-3. The <message> Element in CreditService.wsdl

<message name="CreditCheck">

<part name="parameters" element="tns:CreditCheck"/>
</message>
<message name="CreditCheckResponse">

<part name="parameters" element="tns:CreditCheckResponse"/>
</message>

The <portType> Element

The <portType> element is used to specify the operations of the Web service. Listing 6-4
shows the <portType> element for the credit service with the CreditCheck operation.

Listing 6-4. The <portType> Element in CreditService.wsdl

<portType name="CreditCheckEndpointBean">
<operation name="CreditCheck">
<input message="tns:CreditCheck"/>
<output message="tns:CreditCheckResponse"/>
</operation>
</portType>

269

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

The <binding> Element

The <binding> element describes the protocol, data format, and security for a
<portType> element. The standard bindings are HTTP or SOAP; or you can create one of
your own.

The “bindings” part of the WSDL specification is flexible—it allows you to provide
your own bindings environment instead of the default SOAP-over-HTTP model.
This flexibility of the specification has been widely exploited by WSIF (Web Services
Invocation Framework), which is an Apache open source project. WSIF provides a
nice way to expose existing Java, EJB, JMS (Java Message Service), and JCA-based
components as Web services with native bindings, which provide better performance
and that support native transactions. Listing 6-5 shows the <binding> element for the
credit service, using SOAP-over-HTTP.

Listing 6-5. The <binding> Element in CreditService.wsdl

<binding name="CreditCheckEndpointBeanPortBinding" «
type="tns:CreditCheckEndpointBean"> «
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" «
style="document"/>
<operation name="CreditCheck">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

The service implementation definition part of the WSDL document identifies a Web
service. It contains the following elements:

<service>
<port>

270

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

The <service> Element

The <service> element contains a collection of <port> elements where each portis
associated with an endpoint (a network address location or URL). Listing 6-6 shows an
example of a <service> element for the credit service.

Listing 6-6. The <service> Element in CreditService.wsdl

<service name="CreditService">
<port name="CreditCheckEndpointBeanPort" «
binding="tns:CreditCheckEndpointBeanPortBinding">
<soap:address location="http://localhost:64082/CreditService/
CreditCheckEndpointBean"/>
</port>
</service>

Listing 6-7 shows the complete WSDL document for the credit service that we are
going to develop later in the chapter.

Listing 6-7. The Complete WSDL Document for CreditService.wsdl

<?xml version="1.0" encoding="UTF-8'?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.apress.com/ejb/credit" xmlns:xsd="http://www.
w3.0rg/2001/XMLSchema” xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://www.apress.com/ejb/credit"” name="CreditService">
<types>
<xsd:schema>
<xsd:import namespace="http://www.apress.com/ejb3/credit" «
schemalocation="CreditServiceBeanService schemal.xsd"/>
</xsd:schema>
</types>
<message name="CreditCheck">
<part name="parameters" element="tns:CreditCheck"/>
</message>

271

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

<message name="CreditCheckResponse">
<part name="parameters" element="tns:CreditCheckResponse"/>
</message>
<portType name="CreditCheckEndpointBean">
<operation name="CreditCheck">
<input message="tns:CreditCheck"/>
<output message="tns:CreditCheckResponse"/>
</operation>
</portType>
<binding name="CreditCheckEndpointBeanPortBinding" type="tns:CreditCheck
EndpointBean">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="CreditCheck">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/»>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="CreditService">
<port name="CreditCheckEndpointBeanPort"
binding="tns:CreditCheckEndpointBeanPortBinding">
<soap:address location="http://localhost:64082/CreditService/
CreditCheckEndpointBean"/>
</port>
</service>
</definitions>

272

SOAP

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

Simple Object Access Protocol (SOAP), currently v 1.2, is an XML-based protocol used

for exchanging information in a decentralized and distributed environment using
XML. SOAP is a standard developed by the W3C. Fundamentally, SOAP is the default
transport layer for the Web services.

A SOAP message is an ordinary XML document containing the following elements:

The required Envelope element identifies the XML document as a
SOAP message. Envelope is the top-level element in the document.
The envelope is required, and it basically marks the start and end of
the SOAP message (although messages can contain links to objects
outside the envelope). The envelope contains the Header and the
Body elements.

The optional Header element contains header information. When
the SOAP protocol is used over HTTP, the HTTP headers provide
information about the content type, content length, and recipient of
the message. A header is included to add features to a SOAP message
without prior agreement between the communicating parties.

The required Body element contains call-and-response information.
Body is a mandatory element that contains the information for the
recipient of the message.

The optional Fault element provides information about errors that
occur while the message is processed. The Body element can contain
an optional Fault element to report errors.

273

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

Figure 6-2 illustrates the elements of a SOAP message.

SOAP Message
SOAP Envelope (-!—— SOAP envelope encloses payload
SOAP Header q] SOAP header encloses headers
L Header |
Header < Individual headers
SOAP body contains SOAP message
SOAP Body ‘J Name and message data
Message Name and
Mess age Data XML - encoded SOAP message name

and data

Figure 6-2. A SOAP Message

REST

REST (REpresentational State Transfer) is a software architecture pattern that uses

HTTP (Hyper Text Transfer Protocol) to discover, query, and manipulate resources in a
decentralized and distributed environment. In recent times, REST has gained popularity
compared to WSDL-SOAP-based implementation because of its simplicity.

Using REST, the client accesses a resource on the server, using the URI (Universal
Resource Identifier) and the standard set of HTTP methods (GET, POST, PUT, and
DELETE). In response, the server returns a representation of the resource, which is
nothing but a document that contains the current or intended state of the resource. After
each access invocation and a corresponding new resource representation response, the
client is said to transfer state, hence the name Representational State Transfer. The REST
architectural pattern mandates the following six constraints:

1. Client-server Architecture: Clients and servers should be separate and
can only interact via a uniform interface. This separation means that
clients are not concerned with the data-storage internals of the server,
and the server is not concerned with the user interface of the clients.

274

CHAPTER6 EJB, WEB SERVICES, AND MICROSERVICES

2. Stateless Interaction: Clients and server can only interact using a
stateless protocol like HTTP. A server cannot store a client context
between requests. All requests must contain all of the information
required for those requests.

3. Cacheable: Server responses must identify themselves as
cacheable or non-cacheable. This can be used to prevent clients
from using stale data, and it can also help in improving the
performance and scalability.

4. Layered System: Clients should be able to connect to an
intermediary system seamlessly rather than directly to the end
server. Intermediary systems provide facilities like load balancing
and shared caching that improve scalability of