
Beginning
EJB in Java EE 8

Building Applications with
Enterprise JavaBeans
—
Third Edition
—
Jonathan Wetherbee
Massimo Nardone
Chirag Rathod
Raghu Kodali

www.allitebooks.com

http://www.allitebooks.org

Beginning EJB in
Java EE 8

Building Applications with
Enterprise JavaBeans

Third Edition

Jonathan Wetherbee
Massimo Nardone
Chirag Rathod
Raghu Kodali

www.allitebooks.com

http://www.allitebooks.org

Beginning EJB in Java EE 8: Building Applications with Enterprise JavaBeans

ISBN-13 (pbk): 978-1-4842-3572-0			 ISBN-13 (electronic): 978-1-4842-3573-7
https://doi.org/10.1007/978-1-4842-3573-7

Library of Congress Control Number: 2018944142

Copyright © 2018 by Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and
Raghu Kodali

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484235720. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jonathan Wetherbee
San Mateo, California, USA

Massimo Nardone
Helsinki, Finland

Chirag Rathod
Jayanagar I Blk, India

Raghu Kodali
Cupertino, California, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3573-7
http://www.allitebooks.org

To my sons — Jacob, Patrick, and Nicholas — for your love,
support and inspiration throughout this endeavor.

—Jon Wetherbee

To Shaylee and Ashwini.

—Chirag Rathod

I would like to dedicate this book to the memory of my beloved
late mother, Maria Augusta Ciniglio. Thanks, mom, for all the

great things you have taught me, for making me a good person,
for making me study to become a computing scientist, and for the
great memories you left me. You will be loved and missed forever.

I love you mom. RIP.

—Massimo

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: �Introduction to the EJB 3.2 Architecture & CDI Services������������������������� 1
What’s New in Java Enterprise Edition (Java EE) 8 Architecture?��� 2

An Introduction to EJB��� 3

What Is EJB?��� 4

Core Features of the EJB Development Model��� 5

Progression of the EJB Spec�� 7

EJB 3 Simplified Development Model�� 10

Distributed Computing Model��� 13

How This Book Is Organized��� 15

Chapter 1: Introduction to the EJB 3.2 Architecture & CDI Services��������������������������������������� 15

Chapter 2: EJB Session Beans�� 15

Chapter 3: Entities and the Java Persistence API (JPA)�� 15

Chapter 4: Advanced Persistence Features�� 16

Chapter 5: EJB Message-Driven Beans�� 16

Chapter 6: EJB, Web Services, and Microservices�� 16

Chapter 7: Integrating Session Beans, Entities, Message-Driven Beans,
and Microservices�� 16

Chapter 8: Transaction Management�� 16

Chapter 9: EJB Performance and Testing��� 17

Chapter 10: Contexts and Dependency Injection�� 17

Chapter 11: EJB Packaging and Deployment��� 17

Chapter 12: EJB Client Applications��� 17

Chapter 13: Testing in an Embeddable EJB Container�� 18

About the Authors��xix

About the Technical Reviewer���xxiii

Preface���xxv

Acknowledgments���xxix

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Getting Started��� 18

Installing Java SE Development Kit (JDK) 8�� 19

Downloading the NetBeans IDE�� 20

Installing NetBeans IDE and Its Integrated GlassFish Server��� 21

Testing the NetBeans IDE and GlassFish Installation��� 24

Administrating the GlassFish Application Server�� 30

Troubleshooting�� 33

Summary��� 37

Chapter 2: �EJB Session Beans��� 39

Introduction to Session Beans��� 39

Types of Session Beans�� 40

When Do You Use Session Beans?��� 40

Stateless Session Beans�� 43

Set Up the Dependencies��� 44

The Bean Class��� 44

The Business Interface��� 45

Business Methods�� 49

Dependency Injection��� 51

Lifecycle Callback Methods�� 52

Interceptors�� 54

Stateful Session Beans�� 57

The Bean Class��� 57

The Business Interface��� 58

Business Methods�� 60

Lifecycle Callback Methods�� 61

Interceptors�� 62

Exception Handling��� 62

Singleton Session Beans��� 63

The Bean Class��� 63

The Business Interface��� 65

Business Methods�� 65

Table of Contents

vii

Lifecycle Callback Methods�� 66

Concurrency Management��� 68

Error Handling�� 71

Timer Service��� 71

Calendar-Based Time Expressions��� 73

Examples of Calendar-Based Time Expressions��� 74

Timer Persistence��� 75

Client View for Session Beans��� 76

Compiling, Deploying, and Testing the Session Beans��� 83

Prerequisites�� 84

Compiling the Session Beans and Their Clients��� 84

Deploying the Session Beans and Their Clients��� 86

Running the Client Programs�� 88

Summary��� 92

Chapter 3: �Entities and the Java Persistence API (JPA)�� 93

An Entity Example�� 96

A Simple JavaBean: Customer.java�� 96

A Simple Entity: Customer.java��� 97

An Entity with Defaults Exposed: Customer.java�� 99

Coding Requirements��� 102

Entity Data Access�� 103

Property Name�� 104

Example: Annotating Instance Variables��� 104

Example: Annotating Property Accessors��� 106

Declaring the Primary Key�� 108

Simple Primary Key�� 108

Composite Primary Key�� 110

Summary of Entity Examples��� 113

The Persistence Archive��� 113

The persistence.xml File��� 113

Table of Contents

viii

The EntityManager��� 115

Persistence Context�� 116

Acquiring an EntityManager Instance��� 116

Transaction Support��� 118

The Entity Life Cycle��� 119

The Life Cycle of a New Entity Instance��� 119

O/R Mapping�� 122

The @Table Annotation (Revisited)��� 122

The @Column Annotation (Revisited)��� 123

Complex Mappings��� 124

Entity Relationships��� 125

@OneToOne�� 125

@OneToMany and @ManyToOne�� 126

@ManyToMany��� 128

Lazy vs. Eager Field Bindings��� 129

Cascading Operations��� 130

Java Persistence Query Language (JPQL)��� 131

@NamedQuery and @NamedQueries��� 132

Binding Query Parameters��� 133

Dynamic Queries�� 134

Bulk Update and Delete Operations�� 134

Complex Queries�� 136

Persistence vs. Adaption�� 136

Forward Generation—Persistence��� 136

Reverse Engineering—Adaption�� 136

Which One Is Right for Your Project?�� 137

Example Application: CustomerOrderManager�� 137

Customer.java��� 137

Compiling, Deploying, and Testing the JPA Entities��� 145

Prerequisites�� 145

Opening the Sample Application�� 145

Table of Contents

ix

Creating the Database Connection and Sample Schema��� 148

Compiling the Entities, EJBs, and the Client��� 149

Deploying the JPA Persistence Unit, the EJB Module, and the Servlet��������������������������������� 150

Running the Client Programs�� 152

Summary��� 154

Chapter 4: �Advanced Persistence Features��� 157

Mapping Entity Inheritance Hierarchies��� 158

Getting Started��� 159

Entity Inheritance Mapping Strategies��� 160

Single-Table-per-Class Inheritance Hierarchy (InheritanceType.SINGLE_TABLE)����������������� 164

Common Base Table with Joined Subclass Tables (InheritanceType.JOINED)���������������������� 181

Single-Table-per-Outermost Concrete Entity Class
(InheritanceType.TABLE_PER_CLASS)�� 186

Comparison of O/R Implementation Approaches�� 190

Using Abstract Entities, Mapped Superclasses, and Non-Entity Classes in an
Inheritance Hierarchy��� 191

Abstract Entity Class�� 191

Mapped Superclass (@MappedSuperclass)��� 192

Non-Entity Class��� 195

Non-Entity Single-Value and Collection Fields��� 195

Polymorphic Relationships��� 200

Relationship Mapping��� 200

Polymorphic JPQL Queries��� 201

Using Native SQL Queries�� 201

The Query Criteria API�� 202

Composite Primary Keys and Nested Foreign Keys��� 204

Using an Embedded Composite Key (@EmbeddedId)�� 204

Exposing Composite Key Class Fields Directly on the Entity Class (@IdClass)�������������������� 206

Mapping Relationships That Use Composite Keys�� 208

Support for Optimistic Locking (@Version)�� 210

Support for Autogenerated Primary Key Values (@GeneratedValue)��� 211

Table of Contents

x

Interceptors: Entity Callback Methods��� 214

Compiling, Deploying, and Testing the JPA Entities��� 216

Prerequisites�� 216

Opening the Sample Application�� 216

Creating the Database Connection��� 219

Compiling the Sources��� 221

Running the Client Programs�� 222

Testing the Other Persistence Examples�� 224

Summary��� 225

Mapping Entity Inheritance Hierarchies��� 225

Using Abstract Entities, Mapped Superclasses, and Non-Entity Classes in an
Inheritance Hierarchy��� 225

Polymorphic Relationships��� 225

Polymorphic JPQL Queries��� 226

Using Native SQL Queries��� 226

Using the Query Criteria API��� 226

Composite Primary Keys and Nested Foreign Keys�� 227

Support for Optimistic Locking��� 227

Support for Autogenerated Primary Automatic Key Values�� 227

Interceptors: Entity Callback Methods�� 227

Chapter 5: �EJB Message-Driven Beans��� 229

Message-Oriented Architecture��� 229

What Is JMS?�� 230

Messaging Application Architecture��� 232

JMS 2.0�� 234

JMS 2.1�� 234

Using MDBs�� 235

When Do You Use MDBs?��� 235

MDB Classes��� 236

Configuration Properties��� 239

Dependency Injection in MDBs��� 244

Table of Contents

xi

Lifecycle Callback Methods�� 246

Interceptors�� 247

Exception Handling��� 248

Client View�� 248

Compiling, Deploying, and Testing MDBs��� 253

Prerequisites�� 253

Compiling the Session Beans and MDBs�� 254

Creating the JMS and JavaMail Resources�� 256

Deploying the Session Beans, MDBs, and Their Clients��� 262

Running the Client Programs�� 263

Summary��� 264

Chapter 6: �EJB, Web Services, and Microservices�� 265

What Are Web Services?�� 265

UDDI�� 267

WSDL�� 267

SOAP��� 273

REST��� 274

When Do You Use Web Services?��� 277

Java EE 8 and Web Services�� 277

JAX-WS��� 278

JAX-RS��� 279

JAXB��� 279

JAXR��� 280

SAAJ��� 280

JSR 224�� 280

EJB Stateless Session Beans as Web Services��� 280

Developing a New Web Service�� 281

Packaging, Deploying, and Testing Web Services�� 285

Prerequisites�� 285

Compiling the Session Bean��� 286

Deploying the Session Bean-Based Web Service��� 288

Testing the Credit Service�� 289

Table of Contents

xii

Web Service Client View�� 292

Developing a Java Client That Accesses the Web Service��� 292

Session Beans as Web Service Clients��� 301

What Are Microservices?��� 302

Java EE 8 and Microservices��� 305

Microservices Example Using Spring Boot and NetBeans��� 307

Prerequisites�� 307

Summary��� 317

Chapter 7: Integrating Session Beans, Entities, Message-Driven Beans,
and Web Services�� 319

Introduction�� 319

Application Overview��� 319

Application Components and Services�� 321

The Shopping Cart Component��� 321

The Search Façade Component�� 321

The Customer Façade Component��� 321

The Order Processing Façade Component��� 321

Persistence Services�� 322

The E-Mail Service��� 322

The Credit Service�� 322

The Order Processing Service�� 322

The Wines Online Application Business Process�� 322

In-Depth Component/Service Walkthrough�� 324

Persistence Services�� 324

The Customer Façade Component��� 325

The Search Façade Component�� 327

The Shopping Cart Component��� 329

The Order Processing Façade Component��� 337

The Order Processing Service�� 345

The E-Mail Service��� 351

Table of Contents

xiii

The Credit Service�� 353

The Database Schema�� 353

Building, Deploying, and Testing the Application��� 354

Prerequisites�� 355

Creating the Database Connection��� 355

Creating the JMS and JavaMail Resources�� 357

Opening the Sample Application�� 357

Configuring the EJB Web Service��� 358

The wineapp@yahoo.com Account and the user.properties File�� 359

Building, Deploying, and Executing the Sample Application��� 360

The Servlet Output�� 365

The Resulting E-Mail�� 365

Summary��� 366

Chapter 8: �Transaction Management��� 367

What Is a Transaction?��� 368

Distributed Transactions��� 369

The ACID Properties of a Transaction��� 369

The Java Transaction API (JTA)��� 371

The Two-Phase Commit Protocol�� 371

Transaction Support in EJB�� 371

EJB Transaction Services��� 372

Session Bean Transactional Behavior in the Service Model�� 373

Container-Managed Transaction (CMT) Demarcation��� 374

Bean-Managed Transaction (BMT) Demarcation�� 379

Implicit Commit vs. Explicit Commit��� 381

Using Transactions with JPA Entities��� 382

Relationship Between Entities and a Transaction Context��� 382

Container-Managed vs. Application-Managed Persistence Context������������������������������������� 383

Transaction-Scoped Persistence Context vs. Extended Persistence Context����������������������� 384

JTA vs. Resource-Local EntityManagers�� 385

Table of Contents

xiv

Two Sample Scenarios��� 385

Stateless Session Beans with CMT Demarcation��� 386

Java Façade Using Application-Managed EntityManager�� 397

Filtering Test Data Using a CMT Session Bean��� 401

Stateful Session Beans with BMT Demarcation and Extended Persistence Context������������ 409

Building, Deploying, and Testing: A Transactional Scenario from the Wines
Online Application�� 426

Prerequisites�� 426

Opening the Sample Application�� 426

Creating the Database Connection��� 428

Compiling the Sources��� 429

Deploying and Running the Client Programs�� 430

Summary��� 433

Chapter 9: �EJB Performance and Testing�� 435

The Testing Methodology��� 436

Performance Criteria�� 437

Simulating Application Usage��� 440

Defining Test Metrics�� 440

The Grinder�� 443

The Test Application��� 446

The Performance Test�� 451

The Test Environment��� 452

The Test Script�� 452

Setup�� 453

Preliminary Tests�� 460

Sample Size�� 462

Calibration�� 462

The Actual Test Runs�� 463

Analyzing the Results��� 465

Summary��� 468

Table of Contents

xv

Chapter 10: �Contexts and Dependency Injection��� 471

What Is CDI?��� 472

Relationship with EJB�� 478

CDI Concepts�� 479

Beans and beans.xml��� 479

Scope�� 480

Dependency Injection with @Inject�� 482

Dependency Resolution�� 485

Alternatives�� 490

Producers��� 491

Interaction with Session Beans��� 494

Session Bean Scope��� 494

Resolving Session Bean Ambiguity�� 495

Limitations�� 495

Compiling, Deploying, and Testing the CDI Application�� 495

Prerequisites�� 496

Structure of the Sample Code�� 497

Compiling the CDI Beans and Their Clients�� 497

Deploying and Running the CDI Clients�� 499

Summary��� 507

Chapter 11: �EJB Packaging and Deployment�� 509

A Note on Deployment Tools�� 510

Overview of the Packaging and Deployment Processes�� 511

The Provider��� 511

The Assembler�� 512

The Deployer�� 516

Java EE Deployment Infrastructure�� 518

The Java EE Server��� 518

The Java EE Containers�� 519

Table of Contents

xvi

Java EE Deployment Components��� 521

The Java EE Application��� 521

Java EE Module Types�� 522

Library Components��� 527

Application Servers and Platform Independence��� 530

Deployment Tools��� 530

The Deployment Plan�� 531

Deployment Roles�� 531

The Application Assembler��� 532

The Application Deployer�� 536

Assembling an EJB JAR Module�� 537

Naming Scope�� 538

Assembling a Persistence Unit�� 538

Naming Scope�� 539

Summary��� 539

Chapter 12: �EJB Client Applications�� 541

Application Architecture��� 541

JSF��� 547

Evolution of Java EE Web Technologies�� 549

JSF Architecture��� 553

JSF Tools and Components��� 556

Developing Web Applications Using JSF and EJB�� 557

The Login Page��� 559

The New Customer Registration Page�� 563

The Links Page��� 570

The Search Page�� 574

The Wine List Page��� 580

The Display Selected Wine Details Page�� 585

The Display Cart Items Page��� 589

The Notification Page��� 593

Table of Contents

xvii

Compiling, Deploying, and Testing the JSF Application�� 594

Prerequisites�� 595

Compiling the JSF Application�� 595

Deploying and Running the Wine Store Application��� 599

The Application Client Container�� 607

Summary��� 608

Chapter 13: �Testing in an Embeddable EJB Container��� 609

Test Clients��� 609

EJB Lite�� 610

Embeddable EJB Container�� 610

How This Chapter Is Organized�� 610

Concepts��� 611

JUnit Tests�� 613

WineAppServiceTest: A JUnit Test Class for the WineAppService EJB��������������������������������� 614

Instantiating the Embeddable EJB Container and Starting Derby��������������������������������������� 620

Initializing Data in the Persistence Unit�� 622

The Unit Test Methods�� 625

Building and Testing the Sample Code�� 629

Prerequisites�� 629

Opening the Sample Application�� 630

Compiling the Sources��� 631

Running the JUnit Tests�� 632

Summary��� 637

Index�� 639

Table of Contents

xix

About the Authors

Jonathan Wetherbee is a consulting engineer and tech lead

for EJB development tools on Oracle’s JDeveloper IDE. He

has over 20 years of experience in development at Oracle,

working on a variety of O/R mapping tools and overseeing

Oracle’s core EJB tool set since EJB 1.1. Most recently, Jon

has been responsible for the design and development of EJB

and JPA data binding solutions for ADF, Oracle’s application

development framework.

Prior to joining the JDeveloper project, Jon was a product

manager for Oracle’s CASE (computer-aided software

engineering) tools and worked on early object-relational

frameworks. He received a patent in 1999 for his work on integrating relational databases

in an object-oriented environment. Jon is coauthor of the first edition of this book,

Beginning EJB 3 Application Development: From Novice to Professional (Apress, 2006),

and has published articles online in Java Developer’s Journal and Oracle Technical

Network. He enjoys speaking and has given talks at conferences and developer groups,

including Oracle’s iDevelop (Bangalore, Taipei), The Server Side Java Symposium

(Barcelona), and various Java user groups. Jon holds a Bachelor of Science degree in

cognitive science from Brown University.

Massimo Nardone has more than 24 years of experiences

in Security, Web/Mobile development, Cloud, and IT

Architecture. His true IT passions are Security and Android. 

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++ and

MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

xx

He has worked as a Project Manager, Software Engineer, Research Engineer, Chief

Security Architect, Information Security Manager, PCI/SCADA Auditor, and Senior Lead

IT Security/Cloud/SCADA Architect for many years.

Technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl,

Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML and Proxy areas).

He currently works as the Chief Information Security Officer (CISO) for Cargotec Oyj,

and he is member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and is also the

coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018) and Pro Android Games (Apress, 2015).

Chirag Rathod is a principal engineer responsible for

developing and supporting design-time features for EJB

and CDI in Oracle’s JDeveloper IDE. He has over 14 years

of experience in developing development tools. Prior to

joining the JDeveloper IDE team, he helped develop Oracle’s

flagship products like Oracle SQL*Plus, Oracle Forms, and

Oracle Designer. Chirag received a Bachelor of Engineering

degree in computer science from The Faculty of Technology

and Engineering, Maharaja Sayajirao University.

About the Authors

xxi

Raghu Kodali is vice president of Product Management &

Strategy at Solix Technologies, where he is responsible for

product vision, management, strategy, user design, and

interaction. His work includes the next-generation data

optimization platform, industry-leading data discovery

platform, and enterprise data management-as-a-service,

application development using Big Data platforms and

cloud. Raghu is coauthor of Big Data Analytics using

Splunk (Apress, 2013). Prior to Solix, he was with Oracle for 12 years, holding senior

management positions responsible for Product Management and Strategy for Oracle

Fusion Middleware products. In addition, Raghu was Oracle’s SOA Evangelist, leading

next-generation Java EE initiatives. Raghu has authored a leading technical reference on

Java computing, Beginning EJB 3 Application Development: From Novice to Professional

(Apress, 2006), published numerous articles on enterprise technologies, and was a

contributing author for Oracle Information Integration, Migration and Consolidation

(PACKT Publishing, 2011).

About the Authors

xxiii

About the Technical Reviewer

Mario Faliero is a Telecommunications engineer and

entrepreneur. He has more than 10 years’ experience

with radio 1 frequency hardware engineering. Mario has

extensive experience in numerical coding, using scripting

languages (MATLAB, Python) and compiled languages

(C/C++, Java). He has been responsible for the development

of electromagnetic assessment tools for space and

commercial applications. Mario received his Master’s

Degree from the University of Siena.  

xxv

Preface

Dear Reader,

When we conceived the original edition of this book in 2006, the lightweight EJB 3 API

was still in its early stages, yet it was clear to us that the EJB specification designers had

at last achieved the right blend of power and usability. Coming from the EJB 2.x world, it

was like a breath of fresh air, and reminded us of how it felt to discover Java technology

after years of programming C and C++. The EJB component, redefined as an ordinary

Java class whose metadata could be declared through Java annotations, and enhanced

by the introduction of generics, container injection, and interceptors, became the

basis for a much more nimble development model: one that gained elegance through

simplicity. Enter the new Java Persistence API (JPA), where entities, too, were recast as

lightweight Java classes and O/R mapping metadata could be specified through spec-

defined annotations, and we suddenly had a comprehensive enterprise component

model comprising the latest technologies, all rolled into a worldwide standard. So you

can see what got our buzz going.

Fast forward to now, and the release of the EJB 3.2 and JPA 2.1 specs. Spanning over

a thousand pages combined, these specifications have matured to address a number

of new areas and improve upon their ease of use. Once again we saw an opportunity

to translate this latest material into an approachable format that reads well and makes

liberal use of examples that you can build, execute, and further explore on your own

machine. In this second edition, accompanying the release of Java EE 7, we introduce

the EJB 3.2 and JPA 2.1 APIs along with key features in the CDI and JAX-RS specifications

through a series of digestible chapters, allowing you to become comfortable with these

technologies one topic at a time. Within each chapter we provide executable source code

examples that demonstrate how each feature works, and how the pieces fit together. So

you don’t have to swallow the whole enchilada in one humongous gulp. In the spirit of

our Apress Wines Online application, which we use for numerous examples throughout

the book, we want you to truly savor and appreciate the richness of the Java EE 7

component ecosystem.

xxvi

For each technology we provide straightforward examples, but we also strive to

explain when and where to use its features and what their strengths and weakness are,

and offer insights into best usage practices. Following these topical explorations, we

explain how to integrate EJB and related components into a comprehensive Java EE 7

application, and then turn the spotlight on transaction management, performance

analysis, deployment, testing in an Embeddable EJB Container, and how to build solid

EJB clients.

Our job is to transform you from EJB novice to expert, and we want you to enjoy the

ride!

Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali

�Who Should Read This Book?
This book is targeted at enterprise software developers who are experienced with Java,

have built single tier or multitier applications using earlier versions of EJB or related

technologies, and are looking to build enterprise software based on the latest cross-

platform industry standards.

As authors of an introductory-level text, we have two main goals:

•	 Our first goal is to get you comfortable working with the many

essential elements of EJB and several closely related technologies so

that you can design, build, deploy, execute, and test comprehensive

enterprise applications in a Java EE environment. We expect you

to be able to come away with a sense of ease with the nuts and

bolts required to build and assemble an application based on EJB

components.

•	 Our second goal is to provide you with a broad perspective on the

service and persistence tiers of Java EE as a whole and, in particular,

on the full range of features offered by EJB. We intend for you to

leave this book holding a breadth-first foundation that will serve as a

launchpad from which to explore specific areas of the EJB and related

specifications in greater depth.

Preface

xxvii

To this end, this book strives to provide an approachable on-ramp to EJB that gets

you comfortable with building services and applications that exercise the full breadth

of EJB. We deliberately avoid diving deep into many areas of the spec, so that you can

get familiar with the overall environment without getting distracted by the minutia of

fine-grained options. We believe that this breadth-first foundation—based on a solid

understanding of the broad range of features offered by EJB—will put you in the best

position to then explore in greater depth, using the specification and other advanced

texts as your reference guides, specific areas of the EJB API that are required for your own

software development projects.

Preface

xxix

Acknowledgments

This book is borne of the efforts and insights of people who provided both technical

input and pure inspiration throughout its life. In particular, I would like to thank my

colleague and principal coauthor of this second edition, Chirag Rathod, for his insight,

spirit, and dedication at all stages of the endeavor. Late nights and early mornings are

made lighter when a close collaborator is also such a good friend! Raghu Srinivasan and

John Bracken were invaluable in design meetings and discussions of EJB and JPA best

practices. Chris Carter supported me on my quest, even when it took my attentions away

from JDeveloper; he knew that the insights gained from researching and writing this

book would surely pay back dividends to the team. And an enjoyable hour and a half

with Marina Vatkina discussing the latest state and future directions of EJB 3.2 was both

enlightening and timely.

With the technical help from all of the above, writing a book on this topic I hold

dear would have been a mere marathon, if it weren’t for all of the diversions of everyday

life! But for these welcome distractions, I would like to single out a few individuals

among many. Adam Beyda and Lauren Webster have given me a lifetime of insight

and perspective on what really matters. And Bob Lieb’s deep guidance and navigation

through the psychological waters of writing a book was essential. Rhonda Jeffrey, Andy

Cortwright, Dave Clark, and Marianna Klebanov: thank you for being good sounding

boards and wonderful friends during this past year.

My parents, Andrea and Peter Wetherbee, thank you for your love and

encouragement and the constant reminder that you are my biggest fans.

In the end, my primary motivation for punching this thing through came from the

desire to, once again, spend more time with my children and close friends. That time is

now!

—Jon Wetherbee

When Jon Wetherbee asked me if I would be interested in doing a “non-work” related

project with him, I had no idea about what I would be getting into. I would like to thank

Jon for giving me this wonderful opportunity of coauthoring this second edition. For me

he is more than a lead author—he is a friend and guide who led me through the path that

resulted in this book.

xxx

I would like to thank Srinivasan T. Raman and Chris Carter who not only supported

me during this endeavor but also encouraged me. I would have burnt a lot more

midnight oil writing this book if Oracle would not have given me time and resources. For

this I am grateful to Oracle Corporation.

My parents, Chandrabala and Jayantilal Rathod, thank you for your love. Last but not

least I would like to thank my wife Ashwini and daughter Shaylee for making me feel like

an “author” who was authoring the next “bestseller.”

—Chirag Rathod

Many thanks go to my wonderful family – my wife Pia, and my children Luna, Leo, and

Neve for supporting me when working on this book. You are the most beautiful reason of

my life.

I want to thank my beloved late mother, Maria Augusta Ciniglio, who always

supported and loved me so much. I will love and miss you forever my dearest mom.

I also need to thank my beloved father Giuseppe and my brothers Mario and Roberto

for your endless love and for being the best dad and brothers in the world.

To Franco Gentilucci and Maurizio De Marco for being two wonderful friends.

This book is also dedicated to my late dearest cousin Ann Goss. You will be missed.

A special thanks also goes to Catrin Bergholm and Sakari Salomaa for being two

wonderful persons and bringing joy to my family.

Thanks a lot to Steve Anglin and Matthew Moodie for giving me the opportunity to

work as writer on this book, as well as Mark Powers for doing such a great job during the

editorial process and supporting me all the time; and finally Mario Faliero, a good friend

and the technical reviewer of this book, for helping me to make a better book.

—Massimo Nardone

Acknowledgments

1
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_1

CHAPTER 1

Introduction to the
EJB 3.2 Architecture &
CDI Services
When we set out to write this book, our goal was to present Enterprise JavaBeans (EJB) to

developers, with a keen eye toward how this technology can be used in everyday, real-

world applications. JSR-345: Enterprise JavaBeansTM, Version 3.2 EJB Core Contracts

and Requirements is a deep spec that addresses the needs of beginning developers and

hardcore power users alike. That’s a large audience to satisfy and, as a reference guide,

the EJB spec document covers it well. In writing a book about how to use EJB, we had to

narrow our audience; nonetheless, we believe that we’ve written a book that will serve

the needs of a majority of Java EE developers.

This book is targeted at developers who are experienced with Java, have built single-

or multi-tier applications using earlier versions of EJB or other technologies, and are

ready to take on the challenges (and rewards) of building enterprise applications using

standards-based technology. Recognizing that a combined 1,100 pages of reference

material [covering the EJB and Java Persistence API (JPA) specs] can be daunting, we

have provided an on-ramp for developers, unfolding EJB one section at a time, and

giving you the information and code examples that you need to roll up your sleeves and

get to work.

As each chapter unfolds, you will not only learn about a new area of the spec, but you

will also learn through specific examples about how to apply it to your own applications.

Many of these examples come directly from the comprehensive, end-to-end, Java EE

Enterprise Wines Online application constructed in Chapter 7 and Chapter 12, so that

you can see how they fit into a bigger picture. You are encouraged to take these examples

and run with them. Try them out in your favorite IDE or development environment,

2

and change them around and try new things. EJB and the related APIs covered in this

book—JPA, Web Services, and Contexts and Dependency Injection (CDI)—offer you a

lot with which to work. Once you’re comfortable with the basics of building, deploying,

and testing, you’ll find that EJB components are not only powerful, but also easy to build

and use.

Together, the authors of this book have built a number of applications using EJB

in concert with other technologies in the Java EE stack, and we have attempted to

capture within it advice about the practical patterns we have learned, the strategies we

have found successful, and some pitfalls you can avoid. Most chapters in this book are

dedicated to exploring specific areas of EJB, but we have also included chapters on Java

Persistence API (JPA), Contexts and Dependency Injection (CDI), Web Services, gauging

the performance of your EJB applications, and deploying to the Java EE application

server of your choice. An introductory “Getting Started” section at the end of this chapter

will get you set up to run the many useful sample applications found at the end of each

chapter in the book.

We hope this book will serve not only as a reference guide for information on EJB but

also as a how-to guide and repository of practical examples to which you can refer back

as you build your own applications. Enjoy!

�What’s New in Java Enterprise Edition (Java EE) 8
Architecture?
This first release of the Java enterprise edition (Java EE) platform is dated June 2013, and

by the time I was updating this manuscript Java EE 9 was already published.

Java EE 8 includes updates to core APIs such as Servlet 4.0 and Context and

Dependency Injection 2.0 as well as two new APIs—Java API for JSON Binding (JSR 367)

and the Java EE Security API (JSR 375).

Java EE, a superset of the Java SE platform, includes over 30 specifications and a

runtime environment, which means that Java EE components can take full advantage of

all Java SE APIs.

Here is the list of the most important changes in Java EE 8:

•	 Java EE 8 Platform

•	 JSON-B 1.0

•	 JSON-P 1.1

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

3

•	 JAX-RS 2.1

•	 MVC 1.0

•	 Java Servlet 4.0

•	 JSF 2.3

•	 JMS 2.1

•	 CDI 2.0

•	 Java EE Security 1.0

•	 Java EE Management 2.0

•	 Concurrency Utilities

•	 Connector Architecture

•	 WebSocket

•	 JPA

•	 EJB

•	 JTA

•	 JCache

•	 JavaMail

More information about Java EE 8 can be found in the official Java web page:

http://www.oracle.com/technetwork/java/javaee/overview/index.html

�An Introduction to EJB
In the late 1990s, as Java was bolstered by the emergence of separate technologies

(such as RMI, JTA, and CORBA) that addressed the enterprise needs of large-scale

applications, a need arose for a business component framework that could unify these

technologies and incorporate them under a standard component development model.

EJB was born to fill this need. Over the ensuing years, EJB has evolved to encompass

numerous features (while judiciously rejecting others), and it has matured into a

robust and standard framework for deploying and executing business components in a

distributed, multiuser environment.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

http://www.oracle.com/technetwork/java/javaee/overview/index.html

4

�What Is EJB?
Each release of EJB is managed through the Java Community Process (JCP) as a Java

Specification Request (JSR). The latest release, which is covered in this book, is defined

by JSR 345: Enterprise JavaBeansTM 3.2. EJB JSRs prior to EJB 3.0 covered Persistent

components, but since the introduction of JPA, persistence is now managed through

its own JSRs. Nonetheless, the two areas complement each other well, and we have

included several chapters in this book dedicated largely to JPA.

The EJB 3.2 spec, entitled JSR 345: Enterprise JavaBeansTM, Version 3.2 EJB Core

Contracts and Requirements, together with the class library defined in the EJB 3.2 API,

define both a component model and a container framework.

�The EJB Component Model

As a component model, EJB defines three object types that developers may build and

customize as follows:

•	 Session beans can be stateless, stateful, or singleton, and they perform

business service operations. These services may be declaratively

configured to operate in distributed, transactional, and access-

controlled contexts.

•	 Message-driven beans (MDBs) are invoked asynchronously in

response to external events through association with a messaging

queue or topic.

Complementing this, the Java Persistence API (JPA) principally defines the following

persistent object type:

•	 Entities are objects that have unique identities and represent

persistent business data.

Session and message-driven beans are EJBs, and they are often referred to

collectively as enterprise beans. In earlier versions of EJB, entities were referred to as

entity beans, and they also fell into this category. In EJB 3, however, entities are now

managed by a persistence provider and not the EJB container, and they are no longer

considered enterprise beans. Enhanced message-driven beans contract with a no-

methods message listener interface to expose all public methods as message listener

methods.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

5

�The EJB Container

The EJB container provides the supporting environment in which EJB components

operate. This environment offers transaction and security services, pooling and caching

of resources, component lifecycle services, concurrency support, and more—all of which

we will explore throughout this book. EJB components specify the details of how they

wish to interact with their supporting container using EJB-specific metadata that is either

captured by the container and applied to the EJB’s behavior at runtime, or interpreted

at the time an EJB component is deployed to an EJB container and used to construct

wrapping. The EJB 3.2 specification also defined the EJB API Groups with clear rules for

an EJB Lite Container to support other API groups.

�Core Features of the EJB Development Model
Throughout its life, EJB has maintained its focus on delivering components imbued with

a handful of core features.

�Declarative Metadata

One of the hallmarks of the EJB component model is the ability for developers to

specify the behavior of both enterprise beans and entities declaratively (as opposed to

programmatically) using their choice of Java annotations and/or XML descriptors. This

greatly simplifies the development process, since much customization can be added to

a bean without having to encumber the Java source with service implementation code.

To accommodate developer preference and application flexibility, EJB offers developers

their choice of both annotations and XML, with the ability to use both methods

simultaneously within the same EJB or entity, for specifying behavior in metadata. In

cases where the same piece of metadata is defined both in an annotation and in XML,

the XML declaration takes precedence in resolving the conflict. Additional benefits of

this approach are explored later, in the “EJB 3 Simplified Development Model” section of

this chapter.

�Configuration by Exception

Coupled with the ability to specify behavior declaratively is the strong use of intelligent

defaults in EJB. Much behavior is attached automatically to an EJB or an entity without

it being declared explicitly, such as the transactional behavior of session bean methods

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

6

and the names of the table and columns that map to an entity’s persistent data

properties. An annotation, or its counterpart in XML, needs to be specified explicitly

only when non-default behavior is desired. In the most common cases, where the default

behavior is leveraged, this approach leads to very sparse, clean code. This development

model is known as configuration by exception, because only in exceptional (non-default)

cases is it necessary to configure the behavior of the component explicitly.

�Scalability

Large-scale applications demand the ability to scale well as the client load increases.

The EJB server employs resource pooling to maximize object reuse, utilizes a persistence

cache to avoid repeatedly querying or creating the same objects, and implements an

optimistic locking strategy in the middle tier to reduce load on the relational database

management system (RDBMS) and to avoid concurrency locking issues. The EJB

container also manages an EJB’s life cycle, allowing dependent resources to be freed up

and reused to optimize performance.

�Location Transparency

EJBs may be configured for remote access, allowing them to be accessed across a

network connection. A client, which may be another EJB, simply requests an instance

of a remote EJB, and the local and remote EJB containers transparently manage the

communication details.

�Transactionality

The Java Transaction API (JTA) defines a standard API for distributed transactions, and

the EJB container acts as a JTA transaction manager to EJBs. Since its inception, the

EJB spec has defined a standard model for declaratively specifying container-managed

transactional behavior on enterprise beans.

�Multiuser Security

Method-level access control may be specified declaratively on EJBs, enforcing user- and

role-level privileges defined by application server administrators.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

7

�Portability

Spec-compliant enterprise beans are deployable to any application server that

implements EJB, at least in theory. In practice (and this was particularly true of releases

prior to EJB 3), vendors provided their own metadata definitions that enterprise bean

developers grew to rely upon, locking them into a particular vendor’s implementation.

As EJB has matured, it has grown to incorporate many of these formerly platform-

specific features, so that EJBs implemented today are far more portable than in the past.

�Reusability

EJBs are loosely coupled components. An EJB may be reused and packaged into multiple

applications, though it must be bundled with, or have access to, the business interfaces

of dependent EJBs.

�Persistence

Although no longer covered in the EJB spec, JPA entities are an essential complement to

EJB. Entities are persistent domain objects with unique identities. An entity class maps

to a database table, and each entity instance is represented by a single row in that table.

�Progression of the EJB Spec
Each time a new version of the EJB spec is introduced, it includes new, significant

features to address popular demand and adopt emerging technologies. Here is a

brief summary of how the EJB spec has progressed since its birth in 1996, or more

importantly, since its first commercial implementations in 1998.

�EJB 1.0

The initial release, 1.0, began with support for stateful and stateless service objects,

called session beans; and optional support for persistent domain objects, called entity

beans. For portability, EJBs were made accessible through a special remote interface

that offered portability and remotability but incurred the overhead of a remoting

infrastructure and pass-by-value semantics.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

8

�EJB 1.1

The follow-up release, 1.1, mandated support among vendors for entity beans, and

introduced the XML deployment descriptor to replace storing metadata in a special

serialized class file.

�EJB 2.0

EJB 2.0 addressed the overhead and pass-by-value shortcomings of remote interfaces

by introducing the local interface. Only clients running inside the J2EE container could

access an EJB through its local interface, but pass-by-reference method calls allowed

for more efficient interchanges between components. A new type of EJB was also

introduced—the message-driven bean (MDB), which could participate in asynchronous

messaging systems. Entity beans gained support for container-managed relationships

(CMRs), allowing bean developers to declaratively specify persistent relationships

between entity beans that were managed by the EJB container. Also, Enterprise

JavaBeans Query Language (EJB QL) was introduced, which gave developers the ability

to query entity bean instances using a language that resembled SQL.

�EJB 2.1

EJB 2.1 added support for Web Services, allowing a session bean to expose an endpoint

interface, and a timer service that allowed EJBs to be invoked at designated times or intervals.

EJB 2.1 also provided expanded EJB QL functions, and an XML schema was introduced as a

replacement for the DTD that defined the ejb-jar.xml deployment descriptor.

�EJB 3.0

EJB 3.0 was a major milestone in the evolution of the standard. Introducing a new,

simplified development model (see below), EJB components became POJOs (plain old

Java objects); an EJB’s bean class was no longer required to implement EJB-specific

interfaces; and the properties that made a Java class an EJB were factored out into Java

annotations or captured externally in the ejb-jar.xml deployment descriptor file.

With a few basic conditions, any class could become an EJB and leverage the enterprise

services offered by an EJB container.

Also new in EJB 3.0, the Entity Beans portion of the spec was replaced by the new

JPA spec and, consistent with the new simplified development model, JPA entities were

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

9

POJOs as well. JPA entities were also decoupled from the EJB container and could be

used independently of EJB, including in a pure Java SE environment.

�EJB 3.1

EJB 3.1 further improved upon the simplified development model introduced in EJB

3.0. The no-interface option was now supported for Local EJBs. The Singleton pattern

was offered for Session beans along with Asynchronous and enhanced Timer support.

EJB Lite—an embeddable subset of the EJB Container’s functionality—allowed EJB

components to be executed in the same VM as an EJB client.

�EJB 3.2

In EJB 3.2, the Asynchronous and enhanced Timer features are added to the EJB Lite

subset. Along with other improvements, the bean developer is offered more control over

the transactionality of lifecycle interceptor methods, and the rules governing declaration

of Local and Remote behavior have been simplified.

The JSR-000345 Enterprise JavaBeansTM 3.2 Final Release can be downloaded from

this web page:

http://download.oracle.com/otndocs/jcp/ejb-3_2-fr-spec/index.html

The latest EJB 3.2 version release is dated April 10, 2013, and did not change from

Java EE 7 to EE 8.

Major changes include the following:

•	 An option to disable passivation of stateful session beans is

enhanced.

•	 The TimerService API to access all active timers in the EJB module is

enhanced.

•	 The embeddable EJBContainer to implement AutoClosable interface

is enhanced.

•	 The restrictions on javax.ejb.Timer and javax.ejb.TimerHandle that

required references to be used only inside a bean were removed.

•	 The list of standard JMS MDB activation properties is enhanced.

•	 Support for the optional features in the previous release and moving their

description to a separate EJB Optional Features documents was added.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

http://download.oracle.com/otndocs/jcp/ejb-3_2-fr-spec/index.html

10

�EJB 3 Simplified Development Model
EJB 3.0 was a significant departure from earlier releases. The architects of EJB 3 set out

to redesign the development experience; to introduce a greatly simplified development

model that would reduce the complexity of the enterprise beans themselves; and, at the

same time, incorporate many of the ideas found in peer technologies. The consensus is

in: the spec has been widely hailed as having achieved these goals, and in so doing has

overcome many of the problems that prevented earlier versions of EJB from becoming

widely adopted.

�XML and Annotations

If you are familiar with earlier versions of EJB, one of the first things you will notice

in EJB 3 is that it is no longer necessary to capture EJB metadata in a deployment

descriptor. EJB now lets you store your EJB metadata inside your bean source using Java

annotations. This isn’t to say that XML deployment descriptors have gone away; they

are still alive and well, and many developers prefer them to annotations. Using XML

decouples the Java source from the EJB metadata, allowing the same entity or enterprise

bean classes to be used in different contexts, where the context-specific information is

captured in the XML and doesn’t “pollute” the bean class.

Many users, however, will prefer to view their EJB metadata directly in the context

of their POJO classes and use annotations. To avoid wading into a religious war (vocal

proponents on both sides abound), we suggest that you choose for yourself. A simple

rule we follow is this: if we need to decouple our entity and bean classes from their

EJB metadata, as when we want to use the same entity classes with two different

entity inheritance strategies, we put our metadata in XML. Otherwise, we stick with

annotations. Don’t forget—you can always mix and match, relying on the firm policy

that whenever metadata is specified for an element using both XML and annotations,

the XML always wins. This allows any role (see the “EJB Roles” section later in the

chapter) downstream of the bean developer to override metadata settings without

having to update the Java source, since overrides can be applied exclusively to the XML

descriptors.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

11

Note A more advanced strategy, which we also recommend, is to use
annotations only when defining behavior on an enterprise bean or an entity that is
truly integral to its definition, such as the relationship type of an entity relationship
field, or the transactional requirements of a method on a session bean. Anything
that could reasonably be overridden, such as the name of the table to which an
entity maps, or the details of a value generator used for populating the primary
key on an entity, would go in the XML descriptor, where it can be specified at
deploy time by an application assembler, perhaps in consultation with a database
administrator. While there is no harm in specifying default values using annotations
in the Java source file, this approach recognizes the difference between firm
metadata, which ought not to be modified; and loose metadata that may be freely
modified without changing the behavior of the enterprise bean or entity.

�Dependency Injection

After an EJB is instantiated inside the Java EE container, but before it is handed out to

a client, the container may initialize property data on the instance according to rules

defined for that enterprise bean. This feature is called dependency injection, and it is

an example of inversion of control pattern, whereby an external provider initializes the

properties of an object instance instead of by the class itself. EJB 3 introduced the use of

dependency injection in Java EE and, largely because it caught on so well, this feature

has now been given its own spec. The current dependency injection API is managed

through JSR-330: Dependency Injection for JavaTM, and the functionality is further

extended through JSR 346: Contexts and Dependency Injection for JavaTM EE 1.1, which

we cover in Chapter 10, “Contexts and Dependency Injection.”

Note  Injection uses a “push” model to push data out to the bean, and it occurs
regardless of whether the bean actually uses the data. If there is a chance that
the data will not be used, the bean may elect to avoid incurring the cost of the
resource derivation by performing a Java Naming and Directory Interface (JNDI)
lookup in Java code to “pull” the data, only if it is actually (or likely to be) used.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

12

Common examples of dependency injection use in EJB are as follows:

•	 Injecting an EntityManager into a session bean for interacting with

entities in a persistence unit

•	 Injecting a UserTransaction into a session bean that manages its

transaction demarcation

�Interceptors: Callback Methods

Both enterprise beans and entities may designate some of their methods, or methods on

separate classes, to be called when certain lifecycle events occur. For instance, a session

bean may indicate that a certain method should be called after the bean has been

instantiated, but before it has been handed off to a client. This method may initialize

state information on the bean, or look up resources using JNDI, or any other action it

wishes, provided that it does not require a transactional context. Such callback methods

are called interceptors, and they allow bean developers to participate programmatically

in the interaction between an enterprise bean, or an entity, and its container. An

important advantage of this pattern (also known as cross-cutting) is that a single

interceptor may be defined once and then applied to multiple methods, or even multiple

EJBs. The EJB 3.2 specification also added an option for the lifecycle callback interceptor

methods of stateful session beans to be executed in a transaction context determined by

the lifecycle callback method’s transaction attribute.

�POJO Implementation

EJB 3 took great strides to eliminate the trappings that beset enterprise bean classes and

their required interfaces in earlier EJB releases. Similar to complaints over having to

define XML metadata to specify even the most basic bean behavior, developers found

it burdensome to have to write custom interfaces to handle an enterprise bean’s factory

support, and inconvenient to require a session bean’s interfaces to extend EJB-specific

interfaces. All of these limitations were addressed in EJB 3.

Home methods are no longer mandated, although they’re still supported. For

session beans and MDBs, a default constructor replaces the no-argument ejbCreate()

method required by earlier EJB specs.

For entities, the Home interface is replaced by an EntityManagerFactory instance that

produces EntityManager instances for a JPA persistence unit to manage entity lifecycle

operations, including query execution.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

13

�Intelligent Use of Defaults

An excellent example of how EJB 3 simplifies the development process is its leveraging

of default behavior to provide rich functionality with no coding or declarative metadata

required. For instance, by simply marking a POJO with the @Entity annotation, all of

its public properties automatically become persistent fields, and the table and column

names take on derived values that match the entity and field names. Additional

annotations or XML elements are only required when overriding the default behavior

of a particular area. Only when the table name does not match the entity name is the @

Table annotation required. Great care has been taken to ensure that the default values

match the most common usages so that, in the majority of use cases, explicit metadata is

not required, leading to leaner, more clutter-free code.

Note O ne consequence of relying on default behavior is that the class does not
describe its full behavior anywhere, so you need to have a good understanding of the
default behavior that is being applied. IDEs can be useful in deriving and displaying
the enterprise bean or entity with its fully defaulted values explicitly shown.

�Distributed Computing Model
Essential to any enterprise application is the ability to execute tasks and run components

in separate Java threads or processes. Through the RMI-based remoting services, clients

in an application client tier may access EJBs running in an application server anywhere

on the network. The pass-by-value behavior of remote interface methods provides a

coarse-grained model designed to reduce network traffic between clients and servers

that are loosely connected to each other. Many applications that use EJB do not require

remote access, however, and elect to configure their EJBs for local use. This eliminates

the overhead of remote access support while continuing to offer the remaining

enterprise services.

�EJB Roles

The EJB spec defines seven roles for individuals involved in the different stages of

defining an enterprise bean or entity, or in providing services and API implementation to

enterprise beans. This book is targeted at the three roles involved in defining enterprise

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

14

beans and their associated metadata. In practice, one or more of these roles may be

performed by the same individual, and certain tasks may be performed by one role and

overridden by another; but it is useful to understand the logical partitioning of tasks in

the EJB development process. We will refer to these roles in various sections throughout

the book.

The Enterprise Bean Provider

The Enterprise Bean Provider, also known as the Bean Provider, has the responsibility of

defining and implementing the business logic and structure of an enterprise bean. This

includes defining the Java class, implementing service methods, specifying transactional

and security information declaratively on the bean and its methods, injection or lookup

of required resources, and anything else that can be applied to the enterprise bean class.

Applied to JPA entities, the Bean Provider defines the persistent structure of the

entity and its relationships with other entities. The provider may define mapping and

primary key–generation behavior, but this role is generally limited to defining the logical

dependencies and structure of the entity.

The Application Assembler

The Application Assembler combines EJBs into EJB modules and entities into

persistence archives, and then it combines these modules together with other Java EE

modules to produce an application. This task requires resolving references to logical

server resources including references between EJBs. The Application Assembler must

work with the interfaces and metadata defined for the EJB and entity components but

need not be familiar with the implementation details.

The Deployer

The Deployer takes an application that has been assembled by the Application

Assembler and deploys it to a particular application server instance or cluster. The

Deployer must resolve all of the external dependencies defined by the EJB component,

mapping them to concrete resources installed in the application server environment. In

the case of entities, the Deployer may provide or override the details of the live database

objects to which the entities will map.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

15

�How This Book Is Organized
To orient you to the structure of the remainder of this book, here is a brief summary of

each chapter. There is no requirement that you read these chapters in order. Sample

programs accompany each chapter, and they may be run independently of one another.

Topics are introduced progressively, though, and thus if you find a reference in one

chapter to a term or concept that is not defined in that chapter, chances are that it was

defined in an earlier chapter of the book.

�Chapter 1: Introduction to the EJB 3.2 Architecture &
CDI Services
This chapter opens by introducing the book and offering an orientation to EJB. This

orientation covers the EJB development framework and component model, the core

features of EJB, the history of EJB, the EJB 3 simplified development model, and the EJB

distributed computing model. The chapter concludes with a “Getting Started” section

to help you install the NetBeans IDE and GlassFish Java EE reference implementation

server required to run the many sample applications provided with this book.

�Chapter 2: EJB Session Beans
Chapter 2 explores EJB’s primary service object: the session bean. Session beans are

examined in their many roles: as entity facades, as service components—both with and

without state, as singleton or timer-driven objects, and as the primary orchestrators of

transaction and security services.

�Chapter 3: Entities and the Java Persistence API (JPA)
The Java Persistence API (JPA) is introduced, along with the various persistence services

that are available to support entities both within a Java EE container and outside of one.

This chapter covers basic O/R mappings, and it introduces the Java Persistence Query

Language, or JPQL.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

16

�Chapter 4: Advanced Persistence Features
Delving into more advanced persistence concepts, this chapter describes the support

offered in JPA for mapping entity inheritance hierarchies. Examples of the three

supported inheritance mapping strategies identify the strengths and weaknesses of each

approach in order to help you decide which one best suits the particular needs of your

application. Among other topics, this chapter also covers complex primary key (PK)

mappings, ID generators for autopopulating primary key values using a database

sequence or table, locking strategies, and cache management.

�Chapter 5: EJB Message-Driven Beans
This chapter describes how you can use MDBs to add asynchronous, event-driven

behavior to your application. JMS, Java’s messaging API, is explained and demonstrated

in this chapter’s code examples.

�Chapter 6: EJB, Web Services, and Microservices
Session beans provide an excellent implementation for Web Services, and this chapter

explores EJB’s support for this fine marriage of technologies.

�Chapter 7: Integrating Session Beans, Entities,
Message-Driven Beans, and Microservices
After covering all of the different component model types individually, Chapter 7

brings them all together in an integrated Java EE application. We think you will find it

particularly useful to see how everything fits together to produce a running application.

�Chapter 8: Transaction Management
EJB offers rich transaction service support, and it makes it easy for Bean Providers to

declaratively specify custom container-provided transactional behavior on an enterprise

bean. EJB also allows enterprise beans to opt out of this model and control their own

transaction demarcation behavior. This chapter applies two alternative transactional

models to a single logical scenario for weighing the benefits of each approach.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

17

�Chapter 9: EJB Performance and Testing
This chapter provides an invaluable look at how to gauge the performance of your EJB

components in order to help you decide which of the many options EJB offers is right for

your application. In addition to explaining how to set up performance tests, we present

some performance test cases that we have run, complete with our assessments of the results.

�Chapter 10: Contexts and Dependency Injection
Introduced in Java EE 6, Contexts and Dependency Injection (CDI) services augment the

component model defined in EJB with a powerful means of injecting resources into your

application whose life cycles are contextual and conveniently managed by the server.

This chapter introduces CDI and explains how EJB developers can leverage this support

to enrich an application’s behavior.

�Chapter 11: EJB Packaging and Deployment
Assembly and deployment are rolled into this chapter as we cover the tasks required of

the Application Assembler and Deployer roles. This chapter discusses packaging EJB and

persistence modules, assembling modules in different ways into an enterprise archive

(EAR) file, resolving references between modules and between EJBs packaged into

different modules, and binding resource requirements to concrete resources installed in

the target application server environment.

�Chapter 12: EJB Client Applications
In this chapter, we walk you through application architectures and different

programming models that you can use to build applications, including the pros and cons

of each approach. Once we have done that, we settle on one application architecture—

developing Web applications using JavaServer Faces (JSF) technology. We then drill

down into the JSF architecture and concepts and focus on integrating JSF user interface

components and the JSF navigation model with the EJB/WebService/JPA back-end

application that we developed in Chapter 7.

Finally, we also explain how to use a lightweight application client container to

execute your session beans in a pure Java SE environment. This lightweight container

provides EJBs that execute in its environment with some of the services (such as

container injection) that are offered by a true EJB container.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

18

�Chapter 13: Testing in an Embeddable EJB Container
In a production deployment, EJB components run in a Java EE environment, inside an

application server. For testing purposes, EJB allows you to test your EJB components

within a lightweight subset of the EJB Container, known as EJB Lite and implemented

as an Embeddable EJB Container, which can run in a pure Java SE environment. This

chapter covers a variety of EJB testing scenarios and guides you in using JUnit to test EJB

components (and JPA entities) in GlassFish’s Embeddable EJB Container.

�Getting Started
This section of the chapter will get you ready with the software installation and

configuration required to work with the samples in the rest of the book. At the time of

this writing, the EJB 3.2 specification was on its way to being finalized. The GlassFish

application server had implemented the specification that allowed the developer

community to get hands-on experience with the new specification.

GlassFish is an open source application server that implements the newest

features of the Java EE platform. In fact, GlassFish is the reference implementation for

all of the specifications of the Java EE platform, including the EJB 3.2 specification.

Glassfish releases are tracked closely by the NetBeans IDE, ensuring that NetBeans

supports the very latest state of the Java EE specifications and making NetBeans the

ideal platform for deploying and running the examples in this book. You will find

that each successive chapter is accompanied by a NetBeans application project

comprised of one or more additional projects representing the EJB, Web, or other

modules that demonstrate the features covered in that chapter. Although these

sample applications are all configured to run in the GlassFish server, they are

portable (by virtue of following the Java EE standards) and may be deployed to the

Java EE 8 server of your choice.

Although we built and tested the examples in this book using NetBeans in

a Windows 7 environment, the code samples are not operating-system specific,

and they can be executed on any system that can run NetBeans and its integrated

GlassFish server. Nevertheless, you might have to tweak the environment settings to

install and execute NetBeans and its integrated GlassFish server on other operating

systems.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

19

Note  You can find more details on the NetBeans IDE and its integrated GlassFish
application server at the following website: http://netbeans.org/features/
index.html

The remaining sections of this chapter will cover the following:

•	 Installing Java SE Development Kit (JDK)

•	 Downloading the NetBeans IDE

•	 Installing NetBeans and its integrated GlassFish server

•	 Testing NetBeans and GlassFish installation

•	 Administrating the GlassFish application server

Even if you are familiar with NetBeans and GlassFish, we recommend that you read

through the following sections, as running the sample code in the rest of the chapters

depends on this setup being done correctly.

�Installing Java SE Development Kit (JDK) 8
As first thing we want to make sure we install the Java SE Development Kit (JDK) version 8

from the Java web site:

http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-

downloads-2133151.html

Once Java SE Development Kit (JDK) version 8 is installed you can test if it works by

running the command shown in Figure 1-1.

Figure 1-1.  Checking Java version installed

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

http://netbeans.org/features/index.html
http://netbeans.org/features/index.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html

20

Please notice that there is also a distribution of the JDK 8u161 that includes the Java

SE bundle of NetBeans IDE version 8.2:

http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-

jsp-142931.html

In this book we installed separately JDK and NetBeans.

�Downloading the NetBeans IDE
You can download the latest NetBeans installer from the following location:

http://netbeans.org/downloads/

Make sure that you download the installer with “Java EE” technology, as shown in

Figure 1-2. This installer will also contain the required Java SE and GlassFish packages.

Ant is included with GlassFish; you can either use it or configure the environment

properties to use another installation. The GlassFish project recommends that you use

Ant, which is bundled with its install.

Figure 1-2.  Downloading the NetBeans IDE

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://netbeans.org/downloads/

21

Note  When we started writing this book, the latest NetBeans version was 8.2,
which was used to test the setup and the sample code. Remember that multiple
installations of NetBeans IDE 5.x, 6.x, and 7.x can coexist with NetBeans IDE 8.2 on
the same system. You, actually, don't need to uninstall the earlier versions in order
to install or run NetBeans IDE 8.2.

Once the download is complete, you are set to start the installation of NetBeans

along with its integrated GlassFish server.

�Installing NetBeans IDE and Its Integrated
GlassFish Server
Navigate to the directory where the NetBeans IDE installer has been downloaded, and

run the installer. The first page of the installer wizard lists the packages that will be

installed.

If no Java SE Development Kit (JDK) version is installed you will receive the message

shown in Figure 1-3.

Figure 1-3.  No Java SE Development Kit (JDK) is installed

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

22

If, instead, Java SE Development Kit (JDK) is installed but you see the “No

compatible JDK was found” warning message, as shown in Figure 1-4, then you will

have to exit the wizard and first download and install the right and compatible Java SE

Development Kit 8.

Note E ven if you don’t see the "No compatible JDK was found" warning,
verify that you have Java Platform (JDK) 8 installed. If you don’t have the Java
Platform (JDK) 8 installed, then you might get a "javac: invalid target
release: 1.8.0" error while executing the samples in this book.

Figure 1-4.  Installing NetBeans. “No compatible JDK was found” warning

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

23

Rerun the NetBeans installer after a compatible JDK version is installed. Verify that

the “No compatible JDK found” warning does not reoccur, and traverse the wizard,

keeping all of the default values selected. The “Summary” page will list the folders where

the NetBeans IDE and the GlassFish application server will be installed. Finish the

wizard by pressing the Install button, as shown in Figure 1-5.

After a successful installation, your NetBeans IDE and GlassFish application server

will be ready for use. In the upcoming sections, we will show you how to create a simple

NetBeans project and verify that the installed GlassFish server is functioning properly.

Figure 1-5.  Installing the NetBeans IDE and GlassFish application server

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

24

�Testing the NetBeans IDE and GlassFish Installation
Assuming that all of the preceding steps have been executed successfully, you are ready

to start the NetBeans IDE and the integrated GlassFish application server. We will also

demonstrate a few simple tests to ensure that you are set to run the samples in this book.

�Starting NetBeans IDE

The NetBeans IDE provides a graphical environment for creating, deploying, and

executing Java EE applications. Administrative tasks like starting and shutting down the

GlassFish server domains can also be performed using NetBeans.

Invoke NetBeans, either by selecting “NetBeans” in the Start Menu of your

Windows 7 machine or running C:\Program Files (x86)\NetBeans 8.2\bin\

netbeans64.exe from the command prompt. Note that the exact path will depend on

the installation location that is mentioned in Figure 1-3, and for 32-bit systems the

executable will be named netbeans.exe. If you are running Windows 8 or 10, then you

need to press the “Windows” key and start typing “NetBeans.” The Apps Search tool will

search for the NetBeans executable that you can select to launch the NetBeans IDE.

The NetBeans IDE and GlassFish application server is shown in Figure 1-6.

Figure 1-6.  NetBeans IDE and GlassFish application server

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

25

�Testing Using Sample Project

Once the NetBeans IDE has opened, we will create a sample project to test the

compilation, deployment, and execution aspects of the IDE as well as the application

server.

To create a new project, open the New Project wizard by pressing Ctrl-Shift-N.

Select the Java Web category and the Web Application project, as shown in Figure 1-7.

Traverse the wizard, keeping all of the default values selected, and Finish the wizard.

Figure 1-7.  Creating a sample test project

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

26

Create a project named WebApplication1. Next we will create a servlet under the

project WebApplication1. To create a servlet, invoke the context menu by right-clicking

on the project name in the project navigator. Select the Servlet ... menu that is

available under New, as shown in Figure 1-8.

Figure 1-8.  Creating a test servlet

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

27

In the New Servlet wizard, enter a package name and Finish the wizard keeping the

other default values, as shown in Figure 1-9. We have used setup as the package name.

Figure 1-9.  Traversing the New Servlet wizard

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

28

After the NewServlet class is created, we can instantly run it by invoking the context

menu on the servlet file and selecting the Run File menu option, as shown in Figure 1-10.

Figure 1-10.  Running the servlet

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

29

When we run the servlet, NetBeans will automatically start the integrated GlassFish

server.

As part of running the servlet, NetBeans will compile, package, and deploy it to the

integrated GlassFish server. After the deployment, NetBeans will automatically open the

servlet URL in the default browser, as shown in Figure 1-11.

Successful execution of the servlet class means that the installation of NetBeans and

the integrated GlassFish server have gone through successfully, and the setup to run the

examples presented in this book is ready.

Note  By no means is this section of the chapter a user guide for the GlassFish
application server. For more information on GlassFish, see https://javaee.
github.io/glassfish/

Figure 1-11.  Running the servlet class

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/

30

�Administrating the GlassFish Application Server
NetBeans provides us with a graphical interface to perform various GlassFish server-

related administrative tasks. You can restart, start, and stop the GlassFish server from the

Services tab, as shown in Figure 1-12.

Figure 1-12.  Administrating the Glassfish application server

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

31

Once GlassFish has successfully started, you can test whether the server is able to

accept the basic HTTP requests. To do so, open a browser, type in the URL

http://localhost:8080/ and, if the server is up and running, you will be able to see

the page shown in Figure 1-13.

Note  Substitute localhost with the machine name or IP address if you are
trying to access it from a machine other than the one on which GlassFish is
installed. If you changed the port number during installation, use that port instead
of 8080.

Figure 1-13.  Testing GlassFish server

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

32

The next step is to test the access to the administration console of the GlassFish server.

Make sure that the GlassFish server is up and running, and then select the View Domain

Admin Console menu option from the context menu, as shown in Figure 1-12. NetBeans

will launch the default browser and open the administrator console. Alternatively, you can

type in the URL http://localhost:4848/, and you will be able to see the administration

console page, as shown in Figure 1-14.

Note  Substitute localhost with the machine name or IP address if you are
trying to gain access from a machine other than the one on which GlassFish is
installed. You will have to enter the username and password on the administration
console login page. If you changed the port number during installation, use that
port instead of 4848.

Figure 1-14.  The GlassFish administration console

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

33

�Troubleshooting
Even after precisely following the steps mentioned in this chapter and taking the

utmost care while installing and configuring the NetBeans IDE along with its integrated

GlassFish application server, you may face problems while running the sample code that

accompanies this book. This section will try to highlight issues that you may come across

and provides information on how to mitigate them.

�“No Compatible JDK was found” Warning During Installation

You get a “No compatible JDK was found” warning message on the first page of the

NetBeans installer wizard.

Diagnosis

Samples in this book require NetBeans version 8.2 since we utilize Java EE 8. NetBeans 8.2,

in turn, requires Java Platform (JDK) 8. You will get a “No compatible JDK was found”

warning message if Java Platform (JDK) 8 is not installed on your machine.

Solution

You will have to exit the wizard and install Java Platform (JDK) 8 after downloading it

from the following location:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

�Unable to See GlassFish Server’s Test Page

You are unable to see the GlassFish server’s test page as shown in Figure 1-13 after

installing the NetBeans IDE and its integrated GlassFish application server.

Diagnosis

You may not able to see the test page because of the following reasons:

•	 GlassFish server is not running.

•	 Browser is unable to resolve the server’s hostname.

•	 Incorrect port number is mentioned in the URL.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

http://www.oracle.com/technetwork/java/javase/downloads/index.html

34

Solution

•	 Start/restart the GlassFish server using the context menu as shown in

Figure 1-12.

•	 Verify that the machine name or the IP address that is used in the

URL is correct. You can find your machine’s IP address by executing

the ipconfig command on your Windows machine’s command

prompt. If you are using localhost, then verify that the browser is

able to resolve it by looping it back to your machine’s IP address.

•	 Verify that the port number used in the URL is correct. This solution

is explained in a section that follows.

�Unable to Resolve “localhost” Hostname

Your browser or the NetBeans IDE’s tester is able to run the GlassFish server’s test

page using the machine name or the IP address but is unable to resolve the localhost

hostname.

Diagnosis

The NetBeans IDE’s tester or the browser is unable to loopback to your machine using

localhost.

Solution

Update the C:\Windows\System32\drivers\etc\hosts file of your Windows machine to

add an entry that maps the IP address of your machine to localhost.

localhost name resolution is handled within DNS itself.

127.0.0.1 localhost

::1 localhost

<IP address of your machine> localhost 

�Browser is Unable to Connect to “8080” Port

The host name part of your URL is correct, but your browser is unable to connect to the

GlassFish application server at port 8080.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

35

Diagnosis

Your browser will be unable to use the 8080 port number for the GlassFish application

server if it is used by another application. During installation the configuration tool will

first try to assign the 8080 port to the GlassFish application server, but if it detects that the

8080 port number is unavailable, then it will assign a different port number to it.

Solution

You can find the port at which GlassFish application server is running with the following

steps:

•	 Navigate to the Services tab of the NetBeans IDE and invoke the

context menu on the GlassFish server node as shown in Figure 1-12.

•	 Select the Properties menu option to open the Servers dialog.

•	 Select the GlassFish server instance in the left panel.

•	 The Location text field, under the Common tab, will show the port

number at which the GlassFish application server is running.

�Errors While Compiling or Executing Sample Application Projects

You get compilation errors after opening the sample application project, or the sample

application project does not execute as expected.

Diagnosis

The samples provided as part of this book are tested with NetBeans version 8.2 and Java

Platform (JDK) 8.

You might get the “javac: invalid target release: 1.8” error while compiling

the sample application projects provided with this book if the NetBeans IDE is not

configured to use Java Platform (JDK) 8.

The sample application code contains hard-coded port numbers corresponding

to the NetBeans installation on which they were created. The sample will not execute

as expected if the port number hard-coded in the sample code is different from your

NetBeans installation.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

36

Solution

To resolve the “javac: invalid target release: 1.8” error, you have to verify

that NetBeans is using Java Platform (JDK) 8. You may have to install it from the URL

mentioned in the earlier sections.

If the sample application is not working as expected, then verify that the port

numbers used by the sample code are same as that of your NetBeans installation.

You can consult the Readme.txt file provided with each sample application for

additional information.

�Unable to Send or Receive the “wine order” Mail

You are unable to send or receive the “wine order” mail while executing the sample

application project.

Diagnosis

Few sample projects send out a mail as part of their execution. You may have trouble

sending the mail and may not receive it because of the following reasons:

•	 You have not updated the from and to e-mail addresses in the sample code.

•	 You are running the sample on a machine that is behind a firewall.

•	 JMS Resource configuration is incorrect.

•	 JavaMail Session configuration is incorrect.

Solution

Before you execute the sample application project that sends out a mail, verify that:

•	 You have created and configured the JMS Resource as shown in

Chapter 5.

•	 You have created and configured the JavaMail Session as shown in

Chapter 5.

•	 You have updated the from and to e-mail addresses in the sample’s

source code.

•	 You are not behind a firewall.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

37

You can consult the Readme.txt file provided with the sample application of Chapter 5

for information on how to configure JavaMail Session properties for popular mail services.

Even after verifying these details, if you are facing problems in sending or receiving

the mail, then check the GlassFish server log for any more details on the issue.

�Summary
This chapter opened with an introduction to this book and EJB. This orientation covered

essential information about the core features of EJB, the EJB framework, and the

component model. It included a brief overview of the history of EJB, the EJB 3 simplified

development model, and the EJB distributed computing model.

In the “How This Book Is Organized” section, we provided a summary of each

chapter to illustrate the general flow of the book, and to help you decide which areas to

focus on first, should you wish to read the chapters out of sequence.

The chapter concluded with a “Getting Started” section to help you install and

configure the NetBeans IDE and its integrated GlassFish application server, which has

the reference implementation of the latest Java EE specifications; and to verify that the

installation was successful. Having completed this task, you now have the required

software infrastructure to run the code samples in this book and to examine the many

features of EJB throughout the subsequent chapters. In the next chapter we will discuss

in detail the EJB session beans.

Chapter 1 Introduction to the EJB 3.2 Architecture & CDI Services

39
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_2

CHAPTER 2

EJB Session Beans
This chapter will discuss EJB session beans, the core business service objects used by

EJB client applications. You’ll gain an understanding of the simplified EJB session bean

model with insights into the following topics:

•	 Types of session beans—stateful, stateless, and singleton—and when

to use each one

•	 The bean class, business interfaces, and business methods

•	 Asynchronous methods

•	 Callback methods

•	 Interceptors

•	 Exception handling

•	 Client view

•	 Dependency injection with annotations related to session beans

•	 Timer service

�Introduction to Session Beans
Session beans are the most important part of EJB technology because they model the

business process of the Java Application and encapsulate a business logic for each process.

Session beans are Java components that run either in stand-alone EJB containers or

in EJB containers that are part of standard Java Platform, Enterprise Edition (Java EE)

application servers. These Java components are typically used to model a particular

user task or use case, such as entering customer information or implementing a process

that maintains a conversation state with a client application. Session beans can hold

the business logic for many types of applications, such as human resources, order entry,

40

and expense reporting applications. The EJB container provides services to the session

bean, and the bean indicates which services it needs using Java annotations and/or XML

metadata.

The container will manage the enterprise session beans and provide them with a

number of services including security, transaction, thread-safety, etc.

�Types of Session Beans
Session beans are of three types:

•	 Stateless: This type of bean does not maintain any conversational

state on behalf of a client application.

•	 Stateful: This type of bean maintains a state, and a particular instance

of the bean is associated with a specific client request. Stateful beans

can be seen as extensions to client programs, which are running on

the server.

•	 Singleton: This type of bean is instantiated only once per application.

Singleton beans live for the full duration of the application and

maintain their state between client invocations.

We will drill down into more specifics of stateless, stateful, and singleton beans in the

following sections.

�When Do You Use Session Beans?
Session beans are used to write business logic, maintain a conversation state for the

client, and model back-end processes or user tasks that perform one or more business

operations.

We want to consider using session beans, for instance, when we have a certain

methodsor API that doesn’t need the container service. In this case the session beans

would overhead the container.

Also, Data Access Object (DAO) classes don’t need to be session beans because they

will be used in the EJB application service layer.

We will see in this book also how Stateless EJB session beans as (DAO), will be

implemented with Java Persistence API (JPA).

Chapter 2 EJB Session Beans

41

Typical examples include the following:

•	 A session bean in a human resources application that creates a new

employee and assigns the employee to a particular department

•	 A session bean in an expense reporting application that creates a new

expense report

•	 A session bean in an order entry application that creates a new order

for a particular customer

•	 A session bean that manages the contents of a shopping cart in an

e-commerce application

•	 A session bean that leverages transaction services in an EJB container

(removing the need for an application developer to write the

transaction support)

•	 A session bean used to address deployment requirements when the

client applications are not collocated on the same server

•	 A session bean that leverages the security support provided by the

container on the component or method level

•	 A session bean that implements logging functionality and is shared

between different components of an application

Session beans can be used in traditional 2-tier or 3-tier architectures with

professional/rich client applications, or in 3-tier web-based applications. These

applications can be deployed in different logical and physical tier combinations. In the

next section, we will investigate some of the possible combinations.

�3-Tier Architecture with Rich Client

Figure 2-1 shows a typical architecture for a session bean in three tiers with a rich client

front-end application that has some data entry screens used by end users, such as customer

service representatives, bank tellers, and so on. These client applications can be developed

using Java Swing technology with the Java Platform, Standard Edition (Java SE), or they can

be plain old Java objects (POJOs), which are run from the command line. Generally, the

end user launches the client application from his or her desktop, enters some data, and

Chapter 2 EJB Session Beans

42

triggers an event by pressing some user interface component, such as a Submit button.

The general workflow may look something like this:

	 1.	 User action establishes a connection to the session bean running

in the EJB container using remote method invocation (RMI).

	 2.	 The client application invokes one or more business methods in

the session bean.

	 3.	 The session bean processes the request and validates data by

interacting with databases, enterprise applications, legacy

systems, and so on, to perform a certain business operation or

task.

	 4.	 Finally, the session bean sends a response back to the client

application, either through data collections or simple objects that

contain acknowledgment messages.

Figure 2-1.  Session beans in a 3-tier architecture with a Rich Client

�3-Tier Architecture for a Web Application

This architecture, as shown in Figure 2-2, is typically front ended by a web application

running in the browser of a desktop or laptop computer. These days, other types of client

devices, such as smartphones, tablets, cell phones, and telnet devices, are also being

used to run these applications. The web application running in a browser or mobile

device renders the user interface (data entry screens, submit buttons, and so on) using

web technologies such as JavaServer Pages (JSP), JavaServer Faces (JSF), or Java Servlets.

Typical user actions, such as entering search criteria or adding certain items to the web

Chapter 2 EJB Session Beans

43

application shopping cart, will invoke/call session beans running in an EJB container

via one of the aforementioned web technologies. Once the session bean gets invoked, it

processes the request and sends a response back to the web application, which formats

the response as required and then sends the response on to the requesting client device

(browser, smartphone, telnet, and so forth).

Figure 2-2.  Session beans in a 3-tier architecture with a web application

In the 3-tier architecture just discussed, the client application (which is the web

application) and the session beans can be run within the same instance of an application

server (collocated) or from different instances running on the same machine. They can

also be run on physically separate machines that have an instance of an application

server.

�Stateless Session Beans
Stateless session beans are comprised of the following elements:

•	 A bean class, which contains the business method implementation to

be executed

Optionally, one or more business interfaces allow different combinations of the

bean’s business methods to be presented to client applications. A Stateless session beans

pooling is a pool that contains all Stateless session beans instances. So, when a request

arrives for a bean, the container allocates a bean, and the Stateless session bean method

returns the bean placed back into the pool. If no bean is available for a request, it is

placed in a queue.

Chapter 2 EJB Session Beans

44

�Set Up the Dependencies
In order to use the Java EE8 Enterprise Beans 3.2, we want to make sure we will add the

latest version to the dependencies configuration section of the pom.xml file, which will

ensure that all Java EE 8 APIs will be available during the compiling time:

<dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-web-api</artifactId>

 <version>8.0</version>

 <scope>compile</scope>

 <optional>true</optional>

</dependency>

You can check the Maven Repository to find the latest Java EE 8 APi pom.xml file:

https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/

javaee-api-8.0.pom

�The Bean Class
A stateless session bean class is any standard Java class that has a class-level annotation

of @Stateless. If deployment descriptors are used instead of annotations, then the bean

class should be denoted as a stateless session bean in the ejb-jar.xml descriptor. If you

use both annotations and deployment descriptors (mixed mode), then the @Stateless

annotation must be specified if any other class-level or member-level annotations are

specified in the bean class. If both annotations and deployment descriptors are used,

then the settings or values in the deployment descriptor will override the annotations in

the classes during the deployment process.

Note  Starting with EJB 3.1, a session bean class can be a subclass of another
session bean class.

Chapter 2 EJB Session Beans

https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/javaee-api-8.0.pom
https://search.maven.org/remotecontent?filepath=javax/javaee-api/8.0/javaee-api-8.0.pom

45

To illustrate the use of stateless session beans, we will create a SearchFacade session

bean that provides various search facilities to client applications regarding available

wines. The workflow is as follows:

	 1.	 Users of the application will type in or choose one or more search

criteria, which will be submitted to the SearchFacade session

bean.

	 2.	 The SearchFacade bean will access back-end databases to retrieve

the requested information. To simplify the code examples in this

chapter, we will actually retrieve the list of hard-coded values

within the bean class. In later chapters, we will augment the

SearchFacade bean to access the back-end database.

	 3.	 The bean returns to the client applications the information that

satisfied the search criteria.

Listing 2-1 shows the definition of the SearchFacade bean. In the following sections

of this chapter, we will build the code that will show the preceding workflow in action.

SearchFacadeBean is a standard Java class with a class-level annotation of @Stateless.

Listing 2-1.  SearchFacadeBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Stateless;

@Stateless(name="SearchFacade")

public class SearchFacadeBean implements SearchFacade, SearchFacadeLocal {

 public SearchFacadeBean() {

 }

}

�The Business Interface
A stateless session business interface is a standard Java interface with no other special

requirements. This interface has a list of business method definitions that will be

available for the client application. A session bean can have a business interface that is

implemented by the bean class; generated at design time by tools such as JDeveloper,

NetBeans, or Eclipse; or generated at deployment time by the EJB container.

Chapter 2 EJB Session Beans

46

Business interfaces can also use annotations, as described in the following list:

•	 The @Remote annotation can be used to denote the remote business

interface.

•	 The @Local annotation can be used to denote the local business

interface.

Note  Starting with EJB 3.1, session beans support the “no-interface local view.”
This is a variation of the local view that exposes public methods of a bean class
without a separate business interface.

If no annotation is specified in the interface, then the public methods of the bean

class itself become its own de facto local interface.

If your architecture has a requirement whereby the client application (web

application or rich client) has to run on a different Java Virtual Machine (JVM) from the

one that is used to run the session beans in an EJB container, then you need to use the

remote interface. Make sure that the methods in the interface remote are really supposed

to be remotely exposed. The separate JVMs can be on the same physical machine or on

separate machines. If your application architecture is going to use the same JVM for both

the client application and the session beans, then performance is improved by using a

local interface (which can be the no-interface option).

It is possible that your application architecture requires both remote and local

interfaces. For example, an enterprise might have an order entry application that is

developed using session beans that have business methods for submitting new orders

and also addressing administrative tasks, such as data entry for the products. Potentially,

you could have two different client applications that access the back-end order entry

application, as follows:

•	 A web client application (as shown in Figure 2-3) that can be run in

the same JVM as the session bean and used to submit new orders

Chapter 2 EJB Session Beans

47

•	 A rich client application (as shown in Figure 2-4) that runs on an end-user

desktop machine and is used by the administrator for data entry purposes

Figure 2-3.  A web client using local interfaces of session beans

Figure 2-4.  A rich client using remote interfaces of session beans

Chapter 2 EJB Session Beans

48

The SearchFacade session bean has both remote and local interfaces, as shown in

Figure 2-5.

Figure 2-5.  The business interfaces of the SearchFacade session bean

Listing 2-2 shows the code snippet for the SearchFacade remote business interface

with an @Remote annotation and a wineSearch() method declaration. The wineSearch()

method takes one parameter that represents the type of the wine, and it returns a list of

wines that match the wine type criteria.

Listing 2-2.  SearchFacade.java

package com.apress.ejb.chapter02;

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface SearchFacade {

 List wineSearch(String wineType);

}

Listing 2-3 shows the code snippet for the SearchFacade local business interface

with an @Local annotation and a wineSearch() method declaration.

Listing 2-3.  SearchFacadeLocal.java

package com.apress.ejb.chapter02;

import java.util.List;

import javax.ejb.Local;

Chapter 2 EJB Session Beans

49

@Local

public interface SearchFacadeLocal {

 List wineSearch(String wineType);

}

�Business Methods
The methods implemented in the bean class must correspond to the business methods

declared in the remote or local business interfaces. They are matched up based on the

convention that they have the same name and method signature. Other methods in the

bean class that do not have the corresponding declaration in the business interfaces will

be private to the bean class methods.

The SearchFacade bean implements one method, wineSearch(), which has

been declared in both remote and local business interfaces. The wineSearch()

method returns a static wines list based on the type of wine. Listing 2-4 shows the

implementation for wineSearch().

Listing 2-4.  SearchFacadeBean.java

package com.apress.ejb.chapter02;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Stateless;

@Stateless(name="SearchFacade")

public class SearchFacadeBean implements SearchFacade, SearchFacadeLocal {

 public SearchFacadeBean() {

 }

 public List wineSearch(String wineType) {

 List wineList = new ArrayList();

 if (wineType.equals("Red")) {

 wineList.add("Bordeaux");

 wineList.add("Merlot");

 wineList.add("Pinot Noir");

 }

Chapter 2 EJB Session Beans

50

 else if (wineType.equals("White")) {

 wineList.add("Chardonnay");

 }

 return wineList;

 }

}

�Asynchronous Business Methods

Asynchronous methods immediately return to the caller without waiting for the method

execution to complete. Asynchronous methods are typically used for processor-intensive

or long-running, background tasks, such as printing a document or sending a large

e-mail.

Starting with EJB 3.1, a session bean can declare that one or more of its methods

can be executed asynchronously. When a session bean client invokes an asynchronous

method, the container immediately returns the control to the client. This allows the

client to perform tasks in parallel while the business method completes its execution on

a separate thread. For example, clients can use this functionality to show the progress of

a long-running task using a progress bar.

An asynchronous method is defined by annotating a business method with javax.

ejb.Asynchronous annotation. An @Asynchronous annotation at the class level marks all

the business methods of the session bean as asynchronous. An asynchronous method

must return either void or an implementation of the java.lang.concurrent.Future<V>

interface. Asynchronous methods that return void cannot throw application exceptions.

Application exceptions can only be thrown by asynchronous methods that return

Future<V>.

Asynchronous methods defined on a bean class should have the following signature:

public void <METHOD>(Object)

or

public java.util.concurrent.Future<V> <METHOD>(Object) throws <APPLICATION-

EXCEPTION>

Chapter 2 EJB Session Beans

51

Session bean clients invoke asynchronous methods in the same way they invoke

synchronous methods. If an asynchronous method has been defined to return a result,

the client immediately receives an instance of Future<V> interface. A client can use this

instance for any of the following operations:

•	 Retrieving the final result set using the get() method. Since this

method call blocks synchronously until a result is returned or an

exception is thrown, typically it is not called until isDone() returns true.

•	 Checking the status of the asynchronous method using the isDone()

method.

•	 Cancelling the method invocation using cancel(boolean) method.

Calling cancel() does not interrupt the thread, it simply sets a state

flag that can be checked within the running method so that it may

gracefully interrupt its execution and return.

•	 Checking if the method invocation was cancelled using

isCancelled() method.

•	 Checking for exceptions.

Note  Session bean methods that are exposed as web services can’t be
asynchronous.

If an asynchronous method returns a result, it must return that result using the

javax.ejb.AsyncResult<V> convenience wrapper object. Note that this object is not

actually returned to the client but is intercepted by the EJB container and unwrapped

to service method calls on the Future<V> object that was actually returned to the client

when the client invoked the method.

�Dependency Injection
In Chapter 1, we introduced the concept of dependency injection as a programming

design pattern. In this section, we will take a cursory look into using dependency

injection in stateless session beans. Dependency injection is discussed in detail in

Chapter 10.

Chapter 2 EJB Session Beans

52

EJB containers provide the facilities to inject various types of resources into stateless

session beans. Typically, in order to perform user tasks or process requests from client

applications, the business methods in the session bean require one or more types of

resources. These resources can be other session beans, data sources, or message queues.

Managed beans can be injected into session beans using Contexts and Dependency

Injection (CDI).

The resources that the stateless session bean is trying to use can be injected using

annotations or deployment descriptors. Resources can be acquired by annotation of

instance variables or annotation of the setter methods. Listing 2-5 shows an example of a

setter and instance variable–based injection of myDb, which represents the data source.

Listing 2-5.  Data Source Injection

@Resource

DataSource myDb;

// or

@Resource

public void setMyDb(DataSource myDb) {

 this.myDb = myDb;

}

You’ll typically use the setter injections to preconfigure or initialize properties of the

injected resource.

�Lifecycle Callback Methods
There will be certain instances or use cases in which the application using session beans

requires fine-grained control over lifecycle events like its own creation, removal, and so

on. For example, the SearchFacade session bean might need to perform some database

initialization when it is created or close some database connections when it is destroyed.

The application can gain fine-grained control over the various stages of the bean life

cycle via methods known as callback methods. A callback method can be any method in

the session bean that has callback annotations. The EJB container calls these methods at

the appropriate stages of the bean’s life cycle (bean creation and destruction).

Chapter 2 EJB Session Beans

53

Following are two such callbacks for stateless session beans:

•	 PostConstruct: Denoted with the @PostConstruct annotation.

Methods on the bean class that use a specific signature, as described

below, can be marked with this annotation.

•	 PreDestroy: Denoted with the @PreDestroy annotation. Again, any

method in the bean class with a specific signature, as described

below, can be marked with this annotation.

Callback methods defined on a bean class should have the following signature:

void <METHOD>()

Callback methods can also be defined on a bean’s listener class; these methods

should have the following signature:

void <METHOD>(Object)

where Object may be declared as the actual bean type, which is the argument passed

to the callback method at runtime. Lifecycle callback methods can have public, private,

protected, or package-level access. A lifecycle callback method must not be declared as

final or static.

PostConstruct callbacks happen after a bean instance is instantiated in the EJB

container. If the bean is using any dependency injection mechanisms for acquiring

references to resources or other objects in its environment, PostConstruct will occur

after injection is performed and before the first business method in the bean class is

called. In the case of the SearchFacade session bean, you could have a business method,

wineSearchByCountry(), which would return the wine list for a particular country and

have a PostConstruct callback method, initializeCountryWineList(), that would

initialize the country’s wine list whenever the bean gets instantiated. Ideally, you would

load the list from a back-end datastore; but in this chapter, we will just use some hard-

coded values that get populated into a HashMap, as shown in Listing 2-6.

Listing 2-6.  The PostConstruct Method

@PostConstruct

public void initializeCountryWineList() {

 // countryMap is HashMap

 countryMap.put("Australia", "Sauvignon Blanc");

 countryMap.put("Australia", "Grenache");

Chapter 2 EJB Session Beans

54

 countryMap.put("France","Gewurztraminer");

 countryMap.put("France","Bordeaux");

}

The PreDestroy callback happens before the container destroys an unused or

expired bean instance from its object pool. This callback can be used to close any

connection pool that has been created with dependency injection and also to release

any other resources.

In the case of the SearchFacade session bean, we could add a PreDestroy callback

method (destroyWineList()) into the SearchFacade bean, which would clear the

country wine list whenever the bean gets destroyed. Ideally, during PreDestroy, we

would close any resources that have been created with dependency injection; but in this

chapter, we will just clear the HashMap that has the countries and wine list. Listing 2-7

shows the destroyWineList() code.

Listing 2-7.  The PreDestroy Method

@PreDestroy

public void destroyWineList() {

 countryMap.clear();

}

�Interceptors
The EJB specification provides annotations called interceptors, which allow you to interpose

on a business method invocation to add your own wrapper code before and/or after the

method is called. An interceptor method can be defined for session and message-driven

beans (MDBs). We will show you the usage of interceptors in the session bean context.

There are number of use cases for interceptors in a typical application in which

you would find a need to perform a certain task before or after the business method is

invoked. For example, you may wish to do one of the following:

•	 Perform additional security checks before a critical business method

that transfers more than $100,000 dollars

•	 Do some performance analysis to compute the time it takes to

perform the task

•	 Do additional logging before or after the method invocation

Chapter 2 EJB Session Beans

55

There are two ways to define an interceptor. You can either add an @AroundInvoke

annotation on a particular method, or you can annotate the bean class to designate

an interceptor class that will interpose on all (or an explicit subset of) methods on the

bean class. An interceptor class is denoted by the @Interceptor annotation on the

bean class with which it is associated. In the case of multiple interceptor classes, the @

Interceptors annotation is used. Method specific interceptor is denoted by applying

the @Interceptors annotation to the business method. Methods that are annotated with

@AroundInvoke should have the following signature:

Object <METHOD>(InvocationContext) throws Exception

AroundInvoke methods can have public, private, protected, or package-level access.

An AroundInvoke method must not be declared as final or static. The definition of

InvocationContext is as follows:

package javax.ejb;

public interface InvocationContext {

 public Object getBean();

 public java.lang.reflect.Method getMethod();

 public Object[] getParameters();

 public void setParameters(Object[] params);

 public EJBContext getEJBContext();

 public java.util.Map getContextData();

 public Object proceed() throws Exception;

}

The following list describes the methods in the preceding code:

•	 getBean() returns the instance of the bean on which the method was

called.

•	 getMethod() returns the method on the bean instance that was

called.

•	 getParameters() returns the parameters for the method call.

•	 setParameters() modifies the parameters used for the method call.

•	 getEJBContext() gives the interceptor methods access to the bean’s

EJBContext.

Chapter 2 EJB Session Beans

56

•	 getContextData() allows values to be passed between interceptor

methods in the same InvocationContext instance using the Map

returned.

•	 proceed() invokes the next interceptor, if there is one, or invokes the

target bean method.

In the SearchFacade session bean, we can add an interceptor that logs the time taken

to execute each business method when invoked by the client applications. Listing 2-8

shows a time log method that will print out the time taken to execute a business method.

InvocationContext is used to get the name of bean class and the invoked method name.

Before invoking the business method, current system time is captured and deducted

from the system time after the business method is executed. Finally, the details are

printed out to the console log using System.out.println.

Listing 2-8.  The Interceptor Method

@AroundInvoke

public Object TimerLog (InvocationContext ctx) throws Exception {

 String beanClassName = ctx.getClass().getName();

 String businessMethodName = ctx.getMethod().getName();

 String target = beanClassName + "." + businessMethodName ;

 long startTime = System.currentTimeMillis();

 System.out.println ("Invoking " + target);

 try {

 return ctx.proceed();

 }

 finally {

 System.out.println ("Exiting" + target);

 long totalTime = System.currentTimeMillis() - startTime;

 System.out.println ("Business method" + businessMethodName +

 "in" + beanClassName + "takes" + totalTime + "ms to execute");

 }

}

Chapter 2 EJB Session Beans

57

�Stateful Session Beans
Similar to stateless session beans, stateful beans comprise a bean class and, optionally,

one or more business interfaces.

�The Bean Class
A stateful session bean class is any standard Java class that has a class-level annotation

of @Stateful. If deployment descriptors are used instead of annotations, the bean class

should be denoted as a stateful session bean. In the case of mixed mode, in which you

are using annotations and deployment descriptors, the @Stateful annotation must be

specified if any other class-level or member-level annotations are specified in the class.

To illustrate a stateful session bean, we will create a ShoppingCart session bean

that will keep track of the items added to a user’s shopping cart and their respective

quantities. In this chapter, we will use hard-coded values for the shopping cart to

illustrate the state and conversation maintenance between the client and stateful session

bean. Listing 2-9 shows the definition of a ShoppingCart session bean.

Listing 2-9.  ShoppingCartBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Stateful;

@Stateful(name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartLocal {

 public ShoppingCartBean() {

 }

}

There will be certain use cases in which the application wants to be notified by the

EJB container before or after transactions take place and then use these notifications

to manage data and cache. A stateful session bean can receive this kind of notification

by the EJB container when it implements the javax.ejb.SessionSynchronization

Chapter 2 EJB Session Beans

58

interface. This is an optional feature. There are three different types of transaction

notifications that the stateful session bean receives from the EJB container:

•	 afterBegin: Indicates that a new transaction has begun

•	 beforeCompletion: Indicates that the transaction is going to be

committed

•	 afterCompletion: Indicates that a transaction has been completed

For example, the ShoppingCart session bean could implement the javax.ejb.

SessionSynchronization interface to get an afterCompletion notification so that it can

clear out the shopping cart cache.

�The Business Interface
Business interfaces for stateful session beans are similar to those used for stateless

session beans, and they are annotated in the same way, using @Local and @Remote

annotations. Local views of stateful session beans can be accessed without a separate

local business interface. The ShoppingCart session bean has both remote and local

interfaces, as shown in Figure 2-6.

Figure 2-6.  Business interfaces for ShoppingCart

We will primarily use the local interface from our web application. The remote

interface is added to facilitate unit testing of the bean in this chapter.

Listings 2-10 and 2-11 show the remote and local ShoppingCart business interfaces,

with @Remote and @Local annotations, respectively.

Chapter 2 EJB Session Beans

59

Listing 2-10.  ShoppingCart.java

package com.apress.ejb.chapter02;

import javax.ejb.Remote;

@Remote

public interface ShoppingCart {

}

Listing 2-11.  ShoppingCartLocal.java

package com.apress.ejb.chapter02;

import javax.ejb.Local;

@Local

public interface ShoppingCartLocal {

}

Alternatively, you can use the coding style shown in Listing 2-12, in which you can

specify the @Local and @Remote annotations before specifying @Stateful or @Stateless

with the name of the business interface.

Listing 2-12.  ShoppingCartBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Local;

import javax.ejb.Remote;

import javax.ejb.Stateful;

@Local({ShoppingCartLocal.class})

@Remote({ShoppingCart.class})

@Stateful(name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartLocal {

 public ShoppingCartBean() {

 }

}

Note  We will follow the earlier convention in this book, in which @Local and
@Remote annotations are marked on the business interfaces.

Chapter 2 EJB Session Beans

60

�Business Methods
Business methods in stateful session beans are similar to those in stateless session

beans. We will augment the ShoppingCart bean by adding business methods that will

add and remove wines from the shopping cart and return a list of cart items.

Listing 2-13 shows the ShoppingCart bean implementing the addWineItem(),

removeWineItem(), and getCartItems() methods.

Listing 2-13.  ShoppingCartBean.java

package com.apress.ejb.chapter02;

import java.util.ArrayList;

import javax.ejb.Stateful;

@Stateful(name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartLocal {

 public ShoppingCartBean() {

 }

 public ArrayList cartItems;

 public void addWineItem(String wine) {

 cartItems.add(wine);

 }

 public void removeWineItem(String wine) {

 cartItems.remove(wine);

 }

 public void setCartItems(ArrayList cartItems) {

 this.cartItems = cartItems;

 }

 public ArrayList getCartItems() {

 return cartItems;

 }

}

Chapter 2 EJB Session Beans

61

�Lifecycle Callback Methods
Stateful session beans support callback events for construction, destruction, activation,

and passivation. Following are the callbacks that map to the preceding events:

•	 PostConstruct: Denoted with the @PostConstruct annotation.

•	 PreDestroy: Denoted with the @PreDestroy annotation.

•	 PreActivate: Denoted with the @PreActivate annotation.

•	 PrePassivate: Denoted with the @PrePassivate annotation.

The PostConstruct callback happens after a bean instance is instantiated in the

EJB container. If the bean is using any dependency injection mechanism for acquiring

references to resources or other objects in its environment, the PostConstruct event

happens after injection is performed and before the first business method in the bean

class is called.

In the case of the ShoppingCart session bean, we could have a business method

called initialize() that initializes the cartItems list, as shown in Listing 2-14.

Listing 2-14.  The PostConstruct Method

@PostConstruct

public void initialize() {

 cartItems = new ArrayList();

}

The PreDestroy callback happens after any method where an @Remove annotation has

been completed. In the case of the ShoppingCart session bean, we could have a business

method called exit() that writes the cartItems list into a database. In this chapter, we will

just print out a message to the system console to illustrate the callback. Listing 2-15 shows

the code for the exit() method, which has the @PreDestroy annotation.

Listing 2-15.  The PreDestroy Method

@PreDestroy

public void exit() {

 // items list into the database.

 System.out.println("Saved items list into database");

}

Chapter 2 EJB Session Beans

62

The @Remove annotation is a useful lifecycle method for stateful session beans. When

the method with the @Remove annotation is called, the container will remove the bean

instance from the object pool after the method is executed. Listing 2-16 shows the code

for the stopSession() method, which has the @Remove annotation.

Listing 2-16.  The Remove Method

@Remove

public void stopSession() {

 // The method body can be empty.

 System.out.println("From stopSession method with @Remove annotation");

}

The PrePassivate callback kicks in when a stateful session bean instance is idle for

too long. During this event, the container might passivate and store its state to a cache.

The method tagged with @PrePassivate is called before the container passivates the

bean instance.

The PostActivate event gets raised when the client application again uses a

passivated stateful session bean. A new instance with restored state is created. The

method with the @PostActivate annotation is called when the bean instance is ready.

�Interceptors
There are some minor differences between interceptors for stateless and stateful session

beans. AroundInvoke methods can be used with stateful session beans. For stateful

session beans that implement SessionSynchronization, afterBegin occurs before

any methods that have AroundInvoke annotations and before the beforeCompletion()

callback method.

�Exception Handling
The EJB specification outlines two types of exceptions:

•	 Application exceptions

•	 System exceptions

Chapter 2 EJB Session Beans

63

Application exceptions are exceptions related to execution of business logic that the

client should handle. For example, an application exception might be raised if the client

application passes an invalid argument, such as the wrong credit card number.

System exceptions, on the other hand, are caused by system-level faults, such as

Java Naming and Directory Interface (JNDI) errors or failure to acquire a database

connection. A system exception must be a subclass of a java.rmi.RemoteException or a

subclass of a java.lang.RuntimeException that is not an application exception.

From the EJB application point of view, application exceptions are completed by

writing application-specific exception classes that subclass the java.lang.Exception

class.

In the case of a system exception, the application catches particular exceptions, such

as a NamingException that results from a JNDI failure, and throws an EJBException.

In this chapter, the examples aren’t using any resources as such, but there are more

examples of system exceptions in the later chapters.

�Singleton Session Beans
Introduced in EJB 3.1, a singleton session bean is a session bean component that is

instantiated only once per application. For an application, only one instance of a

singleton session bean can ever exist. Once instantiated, a singleton session bean lives

for the full duration of the application. The singleton session bean maintains its state

between client invocations, but it cannot save that state after a container shutdown

or crash. Similar to stateless and stateful session beans, the singleton session bean is

comprised of a bean class and, optionally, one or more business interfaces.

�The Bean Class
A singleton session bean class is any standard Java class that has a class-level annotation

of @Singleton. If deployment descriptors are used instead of annotations, the bean

class should be denoted as a singleton session bean. If you are using annotations and

deployment descriptors (mixed mode), then the @Singleton annotation must be

specified if any other class-level or member-level annotations are specified in the class.

Chapter 2 EJB Session Beans

64

Note  Singleton can be initialized when called for the first time or on deployment
using the annotation “@Startup.”

To illustrate a singleton session bean, we will create a ShopperCount session bean

that will keep track of the number of users logged onto our shopping website. Listing 2-17

shows the definition of the ShopperCount session bean.

Listing 2-17.  ShopperCountBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton (name = "ShopperCount")

@Startup

public class ShopperCountBean {

 private int shopperCounter;

 // Increment number of shopper counter

 public void incrementShopperCount() {

 shopperCounter++;

 }

 // Return number of shoppers

 public int getShopperCount() {

 return shopperCounter;

 }

}

A singleton session bean is instantiated at the discretion of the EJB container.

However, you can annotate the bean class with @Startup to indicate that the container

must initialize the singleton bean during the application startup sequence.

When multiple singleton session beans are used within an application, the

application might require that they be initialized in a specific sequence. @DependsOn

annotation declares the startup dependencies of a singleton session bean. Listing 2-18

shows the definition of the LogShopperCount session bean that is dependent on the

ShopperCount session bean.

Chapter 2 EJB Session Beans

65

Listing 2-18.  LogShopperCount.java

package com.apress.ejb.chapter02;

import javax.ejb.Singleton;

import javax.ejb.Startup;

import javax.ejb.DependsOn;

import java.util.logging.Logger;

@Singleton

@Startup

@DependsOn("ShopperCount")

public class LogShopperCount {

 private final Logger log = Logger.getLogger("LogShopperCount.class");

 public void logShopperCount() {

 // Log shopper count

 }

}

Unlike stateless and stateful session beans, a singleton session bean must

not implement the javax.ejb.SessionSynchronization interface or use session

synchronization annotations.

�The Business Interface
Business interfaces for singleton session beans are similar to the interfaces for stateless

and stateful session beans, and they are annotated in the same way using @Local and @

Remote annotations. Singleton session beans support the no-interface local view, making

the declaration of a business interface optional for a local view.

�Business Methods
Business methods in singleton session beans are similar to the methods in stateless and

stateful session beans. We will augment the ShopperCount bean by adding a business

method that will reset the counter.

Chapter 2 EJB Session Beans

66

Listing 2-19 shows the ShopperCount bean implementing business methods.

Listing 2-19.  ShopperCountBean.java

package com.apress.ejb.chapter02;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton(name = "ShopperCount")

@Startup

public class ShopperCountBean {

 private int shopperCounter = 0;

 // Increment number of shopper counter

 public void incrementShopperCount() {

 shopperCounter++;

 }

 // Return number of shoppers

 public int getShopperCount() {

 return shopperCounter;

 }

 // Reset counter

 public void resetCounter() {

 shopperCounter = 0;

 }

}

�Lifecycle Callback Methods
Singleton life cycle goes so that we will create the singleton session bean instance and

then after inject the container; it will be put the instance in a managed pool named

“method-ready” waiting for a request.

Singleton session beans support callback events for construction and destruction.

Following are the callbacks that map to the preceding events:

•	 PostConstruct: Denoted with the @PostConstruct annotation

•	 PreDestroy: Denoted with the @PreDestroy annotation.

Chapter 2 EJB Session Beans

67

PostConstruct callback happens after a bean instance is instantiated in the EJB

container. If the bean is using any dependency injection mechanism for acquiring

references to resources or other objects in its environment, the PostConstruct event

happens after injection is performed and before the first business method in the bean

class is called.

PreDestroy callback happens during application shutdown. The container considers

the DependsOn relationship between singleton session beans and removes them in

a sequence that is in the reverse order of the sequence in which they were created.

For the ShopperCount example, LogShopperCount bean will be removed before the

ShopperCount bean.

Listing 2-20 shows the code for the applicationStartup() method with the

@PostConstruct annotation. This method resets the shopperCounter on startup.

Listing 2-20 also shows the code for the applicationShutdown() method with the

@PreDestroy annotation. This method prints a message on application shutdown.

Listing 2-20.  ShopperCountBean.java

package com.apress.ejb.chapter02;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton(name = "ShopperCount")

@Startup

public class ShopperCountBean {

 private int shopperCounter;

 // Increment number of shopper counter

 public void incrementShopperCount() {

 shopperCounter++;

 }

 // Return number of shoppers

 public int getShopperCount() {

 return shopperCounter;

 }

Chapter 2 EJB Session Beans

68

 // Reset counter

 public void resetCounter() {

 shopperCounter = 0;

 }

 // Reset counter

 @PostConstruct

 public void applicationStartup() {

 System.out.println("From applicationStartup method.");

 resetCounter();

 }

 @PreDestroy

 public void applicationShutdown() {

 System.out.println("From applicationShutdown method.");

 }

}

Like a stateless session bean, a singleton session bean is never passivated, so the

@PrePassivate and @PostActivate annotations should not be used to decorate methods

on a singleton session bean.

�Concurrency Management
A singleton session bean is instantiated only once per application, and hence it is

designed to support concurrent access. Concurrent access means multiple clients can

access the same instance of a singleton session bean at the same time. The management

of concurrent access is transparent to the clients. A client needs only a reference to a

singleton session bean, and it is unconcerned about other clients accessing the same

instance of the singleton session bean.

Concurrency is managed in two ways:

•	 Container-Managed concurrency: The container controls

concurrent access and allows fine-grained control of the state

synchronization behavior by offering a fixed set of options. This is the

default concurrency management type.

Chapter 2 EJB Session Beans

69

•	 Bean-Managed concurrency: The container allows full access to

the concurrent bean instance, and the user is responsible for state

synchronization.

The type of concurrency—container-managed or bean-managed—is specified

by the javax.ejb.ConcurrencyManagement annotation specified on the singleton

session bean class. For container-managed concurrency, the type attribute of

@ConcurrencyManagement is set to javax.ejb.ConcurrencyManagementType.CONTAINER;

for bean-managed concurrency, the type attribute of @ConcurrencyManagement is set to

javax.ejb.ConcurrencyManagementType.BEAN.

�Container-Managed Concurrency

For a singleton session bean using container-managed concurrency, the container

manages concurrency by associating each business method with either a shared

Read lock or an exclusive Write lock. A Read or Write lock is specified using the @Lock

annotation.

Listing 2-21 demonstrates container-managed concurrency by using the Read

lock on the getShopperCount method and Write lock on the incrementShopperCount

method. With this change, multiple clients can get the value of shopperCounter

concurrently, but access to incrementShopperCount is blocked for all other clients while

one client is accessing it.

Listing 2-21.  ShopperCountBean.java

package com.apress.ejb.chapter02;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.ejb.ConcurrencyManagement;

import javax.ejb.ConcurrencyManagementType;

import javax.ejb.Lock;

import javax.ejb.LockType;

import javax.ejb.Singleton;

import javax.ejb.Startup;

Chapter 2 EJB Session Beans

70

@Singleton(name = "ShopperCount")

@Startup

@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)

public class ShopperCountBean {

 private int shopperCounter;

 // Increment number of shopper counter

 @Lock(LockType.WRITE)

 public void incrementShopperCount() {

 shopperCounter++;

 }

 // Return number of shoppers

 @Lock(LockType.READ)

 public int getShopperCount() {

 return shopperCounter;

 }

 // Reset counter

 public void resetCounter() {

 shopperCounter = 0;

 }

 // Reset counter

 @PostConstruct

 public void applicationStartup() {

 resetCounter();

 }

 @PreDestroy

 public void applicationShutdown() {

 System.out.println("From applicationShutdown method.");

 }

}

For a singleton session bean, an @Lock annotation at the class level specifies that all

business methods will use the specified lock type unless a different type is explicitly set

at the method level. When the @Lock annotation is not explicitly present on the singleton

session bean class, the default lock type, @Lock(LockType.WRITE), is applied to all

business methods.

Chapter 2 EJB Session Beans

71

�Bean-Managed Concurrency

In the case of bean-managed concurrency, the container allows full concurrent access

to the singleton session bean instance, and the bean developer must provide protection

to the bean’s internal state against synchronization errors that result from concurrent

access. You can use synchronization primitives like synchronized and volatile for this

purpose.

�Error Handling
Errors can occur during initialization of a singleton session bean. These errors are fatal

and, as a result, the singleton session bean instance must be discarded. Attempted

invocations on a singleton session bean instance that failed to initialize will result in

the javax.ejb.NoSuchEJBException. Once a singleton session bean is instantiated

successfully, it will not be destroyed if exceptions are thrown from either business

methods or callbacks.

�Timer Service
The EJB Timer Service is a container-managed service that allows callbacks to be

scheduled for time-based events. Timer notifications can be scheduled to occur at a

calendar-based schedule, at a specific time, after a specific time, or at specific recurring

intervals.

Remember that Enterprise bean timers are either programmatic timers or automatic

timers.

Use timers for application-level processes. Don’t use timers for real-time events.

Typical examples of using a timer include the following:

•	 A timer in an expense reporting application prints newly filed

expenses every evening at 9 PM.

•	 A timer in a bug tracking application emails a list of open bugs to

team members every morning at 6 AM.

•	 A timer in a human resources application emails a list of public

holidays to all the employees on the 1st of January every year.

Chapter 2 EJB Session Beans

72

Note T he timer service of the enterprise bean can be used to enable scheduling
timed notifications for all types of enterprise beans except for stateful session
beans.

As we just said Enterprise bean timers are either programmatic timers or automatic

timers. The programmatic timers can be set by explicitly calling one of the timer

creation methods of the TimerService interface, while the automatic timers are created

by deploying an enterprise bean that contains a method annotated with the javax.ejb.

Schedule or javax.ejb.Schedules annotations.

Creating a timer is simplified in EJB 3.1 via introduction of @Schedule and

@Schedules annotations that automatically create timers based on metadata specified

on a method. In Listing 2-22, we augment our LogShopperCount by adding a recurring

timer that will log the shopper count every two hours.

Listing 2-22.  LogShopperCount.java

package com.apress.ejb.chapter02;

import javax.ejb.DependsOn;

import javax.ejb.Schedule;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton

@Startup

@DependsOn("ShopperCountBean")

public class LogShopperCount {

 // Logs shopper count every 2 hours

 @Schedule(hour="*/2")

 public void logShopperCount() {

 // Log shopper count

 }

}

Chapter 2 EJB Session Beans

73

Pass the Timer object in methods annotated with @Schedule to get information about

the timer. Listing 2-23 demonstrates the use of the Timer object to get information about

the timer that just expired.

Listing 2-23.  LogShopperCount.java

package com.apress.ejb.chapter02;

import javax.ejb.DependsOn;

import javax.ejb.Schedule;

import javax.ejb.Singleton;

import javax.ejb.Startup;

import javax.ejb.Timer;

@Singleton

@Startup

@DependsOn("ShopperCount")

public class LogShopperCount {

// Logs shopper count every 2 hours

@Schedule(hour="*/2")

public void logShopperCount(Timer timer) {

// Log shopper count

String timerInfo = (String) timer.getInfo();

System.out.println(timerInfo);

}

}

�Calendar-Based Time Expressions
The Timer Service is inspired by the UNIX cron utility. Table 2-1 lists the various

attributes of a calendar-based time expression.

Chapter 2 EJB Session Beans

74

Note  For dayOfWeek, both 0 and 7 represent Sunday and a negative number
(−7 to −1), which means the nth day or days before the end of the month. All
string constants (“Sun”, “Jan”, “Last”, “1st”) are case insensitive. Increments
are supported only by second, minute, and hour. Duplicate values within a list are
ignored.

�Examples of Calendar-Based Time Expressions
Let us see some examples that demonstrate the use of calendar-based time expressions.

•	 “Every second of every minute of every hour of everyday”

•	 @Schedule(second="*", minute="*", hour="*")

Table 2-1.  Attributes of calendar-based time expression

Attribute Description Allowable Values Default

second One or more seconds

within a minute

[0, 59] 0

minute One or more minutes

within an hour

[0, 59] 0

hour One or more hours

within a day

[0, 23] 0

dayOfMonth One or more days

within a month

[1, 31] or [−7, -1] or “Last” or {1st, 2nd, 3rd,

4th, 5th, “Last”} {“Sun”, “Mon”, “Tue”, “Wed”,

“Thu”, “Fri”, “Sat”}

*

month One or more months

within a year

[1, 12] or {“Jan”, “Feb”, “Mar”, “Apr”, “May”,

“Jun”, “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”}

*

dayOfWeek One or more days

within a week

[0, 7] or {“Sun”, “Mon”, “Tue”, “Wed”, “Thu”,

“Fri”, “Sat”}

*

year A particular calendar

year

4-digit calendar year *

Chapter 2 EJB Session Beans

75

•	 “Every fifteen minutes within the hour”

•	 @Schedule(minute="*/15", hour="*")

•	 @Schedule(minute="0, 15, 30, 45", hour="*")

•	 “Every Friday at midnight”

•	 @Schedule(dayOfWeek="Fri")

•	 “Every six hours on weekends”

•	 @Schedule(hour="*/6", dayOfWeek="Sat, Sun")

•	 “Every weekday morning at 7:30am U.S. Pacific Time”

•	 @Schedule(minute="30", hour="7", dayOfWeek="Mon-Fri",

timezone="America/Los_Angeles")

•	 “On 10th of January and September at 6am”

•	 @Schedule(month="Jan, Sep", dayOfMonth="10", hour="6")

•	 “Last Friday of December at 6pm”

•	 @Schedule(month="Dec", dayOfMonth="Last Fri", hour="18")

•	 “Second to last day (one day before the last day) of each month”

•	 @Schedule(dayOfMonth="-1")

•	 “Every day only for year 2013”

•	 @Schedule(year="2013")

�Timer Persistence
Timers are persistent. A timer is persisted by the Timer Service by storing it in a database.

The database used by the Timer Service can be changed by setting the Timer Service’s

Timer DataSource setting to a valid JDBC resource. Persistence helps timers survive

application shutdown, container crashes, and container shutdowns.

Persistence can be disabled on a per-timer basis by setting the persistent attribute

of the @Schedule annotation to false. A non-persistent timer’s lifetime is associated with

the JVM that created it. A non-persistent timer is considered cancelled in the event of

application shutdown, container crash, or crash/shutdown of the JVM on which the

timer was created.

Chapter 2 EJB Session Beans

76

�Client View for Session Beans
A session bean can be seen as a logical extension of a client program or application,

where much of the logic and data processing for that application happens. A client

application typically accesses the session object through the session bean’s client view

interfaces. These are the business interfaces that were discussed in earlier sections.

A client application that accesses session beans can be one of three types:

•	 Remote: Remote clients run in a separate JVM from the session beans

that they access, as shown in Figure 2-4. A remote client accesses a

session bean through the bean’s remote business interface. A remote

client can be another EJB, a Java client program, or a Java servlet.

Remote clients have location independence, meaning that they can

use the same API as the clients running in the same JVM.

•	 Local: Local clients run in the same JVM, as shown in Figure 2-3, and

access the session bean through the local business interface. A local

client can be another EJB, or a web application using Java Servlets,

JavaServer Pages (JSP), or JavaServer Faces (JSF). Local clients are

location dependent. Remote and local clients are compared in

Table 2-2.

Table 2-2.  Considerations for Choosing Between Local and Remote Clients

Remote Local

Loose coupling between the bean and the client Lightweight access to a component

Location independence Location dependence

Expensive remote calls Must be collocated with the bean

Objects must be serialized Not required

Objects are passed by value Objects are passed by reference

•	 Web Services: You can publish stateless session beans as web services

that can be invoked by Web Services clients. We will discuss Web

Services and clients in Chapter 6.

Chapter 2 EJB Session Beans

77

In some cases, the session beans need to have both local and remote business

interfaces to support different types of client applications. A client can obtain a session

bean’s business interface via dependency injection or JNDI lookup. Before invoking

the methods in the session bean, the client needs to obtain a stub object of the bean via

JNDI. Once the client has a handle to the stub object, it can call the business methods

in the session bean. In the case of a stateless session bean, a new stub can be obtained

on every invocation. In the case of a stateful session bean, the stub needs to be cached

on the client side so that the container knows which instance of the bean to return on

subsequent calls. Using dependency injection, we can obtain the business interface of

the SearchFacade session bean with the following code:

@EJB SearchFacade searchFacade;

If the client accessing the session bean is remote, the client can use JNDI lookup

once the context interface has been obtained with the right environment properties.

Local clients can also use JNDI lookup, but dependency injection results in simpler

code. Listing 2-24 shows the SearchFacadeTest client program’s code that looks up the

SearchFacade bean, invokes the wineSearch() business method, and prints out the

returned list of wines. SearchFacadeClient also looks up the ShopperCount singleton

bean and invokes the getShopperCount() business method to print the number of

shoppers logged.

Note I f the remote client is a Java application or command-line program, an
application client container can be used to invoke the session beans. Application
client containers support dependency injection for remote clients. We will discuss
application client containers in Chapter 12, along with other types of client
applications.

Listing 2-24.  SearchFacadeClient.java

package com.apress.ejb.chapter02;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.List;

import javax.ejb.EJB;

Chapter 2 EJB Session Beans

78

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "SearchFacadeClient", urlPatterns = {

"/SearchFacadeClient"})

public class SearchFacadeClient extends HttpServlet {

 @EJB

 SearchFacadeBean searchFacade;

 @EJB

 ShopperCountBean shopperCount;

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet SearchFacadeClient</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1> Starting Search Facade test ... </h1>");

 out.println("<h1>SearchFacade Lookup</h1>");

 out.println("<h1>Searching wines</h1>");

 List winesList = searchFacade.wineSearch("Red");

 out.println("<h1>Printing wines list</h1>");

 for (String wine:(List<String>)winesList){

 out.println("<h1>" + wine + "</h1>");

 }

Chapter 2 EJB Session Beans

79

 �System.out.println("Printing Shopper Count after

incrementing it ...");

 shopperCount.incrementShopperCount();

 out.println("<h1>" + shopperCount.getShopperCount() + "</h1>");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 �protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }

}

Listing 2-25 shows the ShoppingCartClient servlet, which looks up the stateful

ShoppingCart session bean, calls the addWineItem() business method to add a wine to

the shopping cart, calls the getCartItems() business method to get the items in the cart,

and finally prints the list of wines in the shopping cart.

Chapter 2 EJB Session Beans

80

Listing 2-25.  ShoppingCartClient.java

package com.apress.ejb.chapter02;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "ShoppingCartClient", urlPatterns = {

"/ShoppingCartClient"})

public class ShoppingCartClient extends HttpServlet {

 @EJB

 ShoppingCartBean shoppingCart;

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet ShoppingCartClient</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Starting Shopping Cart test ... </h1>");

 out.println("<h1>ShoppingCart Lookup </h1>");

 out.println("<h1>Adding Wine Item </h1>");

 shoppingCart.addWineItem("Zinfandel");

 out.println("<h1>Printing Cart Items </h1>");

Chapter 2 EJB Session Beans

81

 ArrayList cartItems = shoppingCart.getCartItems();

 for (String wine: (List<String>)cartItems) {

 out.println("<h1>" + wine + "</h1>");

 }

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 �protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }

}

Listing 2-26 shows the ShopperCountClient servlet, which looks up the singleton

ShopperCount session bean, calls the resetCounter() business method to reset the

shopper count, calls the incrementShopperCount() business method to increment the

shopper count, and finally prints the total number of shoppers counted. The value of

shopper count will be visible across the application.

Chapter 2 EJB Session Beans

82

Listing 2-26.  ShopperCountClient.java

package com.apress.ejb.chapter02;

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "ShopperCountClient", urlPatterns =

{"/ShopperCountClient"})

public class ShopperCountClient extends HttpServlet {

 @EJB

 ShopperCountBean shopperCount;

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 �/* TODO output your page here. You may use following sample

code. */

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet ShopperCountClient</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Resetting Shopper Count ... </h1>");

 shopperCount.resetCounter();

 out.println("<h1>Incrementing Shopper Count ... </h1>");

 shopperCount.incrementShopperCount();

 �out.println("<h1>Shopper Count: " + shopperCount.

getShopperCount() + "</h1>");

Chapter 2 EJB Session Beans

83

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 �protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }

}

�Compiling, Deploying, and Testing the Session
Beans
Session beans need to be packaged into EJB JAR (.jar) files before they are deployed

into EJB containers. In the case of some EJB containers or application servers,

packaged EJB archives need to be assembled into Enterprise Archive (EAR) files before

deployment. EJB containers or application servers provide deployment utilities or Ant

tasks to facilitate deployment of EJBs. Java IDEs (integrated development environments)

like JDeveloper, NetBeans, and Eclipse also provide deployment features that allow

Chapter 2 EJB Session Beans

84

developers to package, assemble, and deploy EJBs to application servers. Packaging,

assembly, and deployment are covered in detail in Chapter 11.

So far in this chapter we have developed one stateless session bean (SearchFacade),

one stateful session bean (ShoppingCart), and one singleton session bean

(ShopperCount). The following sections will walk you through the steps necessary to

compile, deploy, and test these session beans.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

�Compiling the Session Beans and Their Clients
Copy the Chapter02-SessionSamples directory and its contents into a directory of your

choice. Run the NetBeans IDE and open the Chapter02-SessionSamples project using

the File ➤ Open Project menu. Make sure the Open Required Projects check box is

checked, as shown in Figure 2-7.

Figure 2-7.  Opening the Chapter02-SessionSamples project

Chapter 2 EJB Session Beans

85

Expand the Chapter02-SessionSamples-ejb node and observe that the three session

beans that we created appear in the com.apress.ejb.chapter02 package. Similarly, the

three client servlets appear under the Chapter02-SessionSamples-war node, as shown

in Figure 2-8.

Figure 2-8.  Verifying that Session Beans and their clients are available in the
project

Invoke the context menu on Chapter02-SessionSamples node and build the

application by selecting the Clean and Build menu option, as shown in Figure 2-9.

Chapter 2 EJB Session Beans

86

�Deploying the Session Beans and Their Clients
Once you have compiled the session beans and the servlet clients, you can deploy

the application to the GlassFish application server. Invoke the context menu on

Chapter02-SessionSamples node and deploy the application by selecting the Deploy

menu option, as shown in Figure 2-10.

Figure 2-9.  Building the application

Chapter 2 EJB Session Beans

87

NetBeans will start the integrated GlassFish application server and deploy the

application to the server as shown in Figure 2-11.

Figure 2-11.  Application deployment result

Figure 2-10.  Deploying the application

Chapter 2 EJB Session Beans

88

The server’s log window will log the deployment status of the application as shown

in Figure 2-12.

Figure 2-12.  Log showing successful deployment

�Running the Client Programs
Once the session beans and their client servlets are successfully deployed, we need

to set the run target that we wish to execute. We have a choice of three run targets:

ShopperCountClient, SearchFacadeClient, or ShoppingCartClient. To set the run

target invoke the context menu on Chapter02-SessionSamples node and select the

Properties menu option. Select the Run category and enter the run target in Relative

URL text field and OK the dialog. Notice in Figure 2-13 that JDK 1.8 is used as library to

build the Application.

Chapter 2 EJB Session Beans

89

Figure 2-13.  JDK 1.8 as buiding Java libraries

To run the client servlets, invoke the context menu on Chapter02-SessionSamples

node and select the Run menu option as shown in Figure 2-14.

Chapter 2 EJB Session Beans

90

Figure 2-14.  Running the selected servlet

NetBeans will open your default browser and execute the selected servlet. The

output for the three client servlets is shown in Figures 2-15, 2-16 and 2-17.

Figure 2-15.  Output of ShopperCountClient servlet

Chapter 2 EJB Session Beans

91

Figure 2-16.  Output of SearchFacadeClient servlet

Figure 2-17.  Output of ShoppingCartClient servlet

Chapter 2 EJB Session Beans

92

Note T he application client container will be covered in detail in Chapter 12.

�Summary
This chapter covered EJB session bean details using a specific set of examples. We

looked at the simplified EJB model for developing session beans using standard Java

language artifacts, such as Java classes and interfaces. We looked at session beans and

some typical use cases in which session beans can be used for developing applications.

We discussed three different types of session beans (stateless, stateful, and singleton),

including the differences between them, and some general use cases for each. We

covered session bean usage in 2-tier and 3-tier application architectures. We discussed

the usage of dependency injection in stateless, stateful, and singleton beans. We

considered ways to gain fine-grained control over application flow, including the use of

lifecycle callback methods and interceptors in stateless and stateful beans, as well as the

use of annotations like @PostConstruct and @PreDestroy. We looked at what is required

to compile/build, package, and deploy session beans to the GlassFish application server.

Finally, we looked at running the sample client programs using the GlassFish application

client container.

In the next two chapters, we will drill down into the Java Persistence API (JPA) so

that you can learn how to map POJOs to database tables and perform query and CRUD

operations.

Chapter 2 EJB Session Beans

93
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_3

CHAPTER 3

Entities and the Java
Persistence API (JPA)
Now that you have explored how EJB provides business services through session beans,

we’ll turn your attention to a different kind of component called entities, which are

classes that represent tables in a database, and whose instances represent rows in those

tables. Whereas session beans provide services to a client application, entities represent

the business data. A common pattern is for a session bean to provide a convenient

interface for manipulating entities in the context of transactional, security, access

control, and other enterprise services. Methods to perform Create, Retrieve, Update, and

Delete operations, also known as CRUD methods, are exposed on a session bean to the

client to provide a “façade” pattern that we will use throughout the book.

The Java Persistence consists of four areas:

•	 The Java Persistence API

•	 The Java Persistence Criteria API

•	 The Query Language

•	 Object & Relational Mapping Metadata

Java Persistence API (JPA) was first introduced in Java EE 5, and it marked a

departure from the previous persistence model of “entity beans” that were defined as

part of the EJB specification. JPA is widely regarded as a tremendous improvement over

the entity beans model defined in earlier versions of EJB. JPA borrows unabashedly

from both proprietary and open source models such as TopLink, Hibernate, JDO, and

Spring, which gained traction as popular alternatives to the often heavyweight and

cumbersome entity bean model defined in earlier EJB revisions. Consequently, like

session beans, entities are simple POJOs (plain old Java objects), and apart from a sliver

of metadata indicating that they are an entity—captured in a Java annotation or in the

94

persistence XML descriptor—they are a very clean representation of the underlying

database table. While JPA expanded the persistence model in reach and ability, entities

themselves conveniently became largely decoupled from their supporting persistence

framework, allowing them to be used as ordinary POJOs as well as objects managed by

the persistence framework, both inside and outside a Java EE container.

JPA 1.0 was introduced in Java EE 5, JPA 2.0 accompanied Java EE 6, JPA 2.1 followed

by Java EE 7, and JPA 2.2 was included in Java EE 8. The final version of JPa 2.2 will be

part of Java EE 9.

Note  When using a JPA 1.0, JPA 2.0, or JPA 2.1 implementation, the schema
will be orm_1_0.xsd, orm_2_0.xsd or orm_2_1.xsd respectively, located at
http://xmlns.jcp.org/xml/ns/persistence/. When using the JPA 2.2
the schema will be instead named persistence_2_2.xsd and it will be also located
as before at http://xmlns.jcp.org/xml/ns/persistence/

In this book we will utilize version 2.2 of the Java Persistence API as part of the

Java EE 8.

Notice that in general JPA 2.2 is just a small release with a few new features added,

while the rest of them will be still part of the JPA 2.1.

Maintenance release of JPA 2.2 started during 2017 under JSR 338 and was finally

approved on June 19, 2017.

Here is the official Java Persistence 2.2 Maintenance release statement:

“The Java Persistence 2.2 specification enhances the Java Persistence API with

support for repeating annotations; injection into attribute converters; support for

mapping of the java.time.LocalDate, java.time.LocalTime, java.time.LocalDateTime,

java.time.OffsetTime, and java.time.OffsetDateTime types; and methods to retrieve the

results of Query and TypedQuery as streams.”

The JPA 2.2. changelog file can be found here:

https://jcp.org/aboutJava/communityprocess/maintenance/jsr338/ChangeLog-

JPA-2.2-MR.txt

In the spirit of this book, the two chapters on persistence will cover the most

commonly used features included in JAP 2.2, describing their use through practical

examples using our online wine store application. This chapter will get you started

writing entity classes and using the key persistence features. The next chapter will

explore more advanced persistence features. Through examples, these chapters explain

Chapter 3 Entities and the Java Persistence API (JPA)

http://xmlns.jcp.org/xml/ns/persistence/
http://xmlns.jcp.org/xml/ns/persistence/
https://jcp.org/aboutJava/communityprocess/maintenance/jsr338/ChangeLog-JPA-2.2-MR.txt
https://jcp.org/aboutJava/communityprocess/maintenance/jsr338/ChangeLog-JPA-2.2-MR.txt

95

the major areas of the persistence-programming model. They are not meant, however, to

be a substitute for the expansive JPA specification. We encourage you to refer to the JPA

spec when you’re ready to explore details that go beyond the scope of this discussion.

Table 3-1 summarizes what we’ll be covering in this chapter.

Table 3-1.  Key Topics in This Chapter

Concept Description

An entity example We begin with a simple JavaBean and progressively add annotations required to

transform it into a simple entity and then beyond.

Primary entity

annotations

Further refining the requirements of an entity, the entity class must have a

no-argument public or protected constructor and must not be final. Entities

define their persistent structure through their JavaBeans property accessors or

instance variables, and they may also include custom methods.

The

EntityManager

The EntityManager object provides persistence services, including transaction

management and query, merge, remove, find, and refresh operations. It is central

to an understanding of the JPA persistence framework.

Entity life cycle An entity instance may go through many formal states during its life as an

in-memory Java object. Understanding these different states will help you

know when the entity is in a consistent or inconsistent state with the back-end

database and how to reconcile these differences within a transactional context.

Object/relational

(O/R) mapping

JPA defines declarative markup through annotations and/or XML descriptors to

map entity fields to table columns in a relational database management system

(RDBMS).

Entity

relationships

Entity classes may hold unary and collection references to themselves or

to other entities. Note that, in JPA, relationship fields are not bidirectionally

maintained by the container.

Java Persistence

Query

JPA defines an SQL-like language—JPQL—that supports queries along with

bulk update and Language (JPQL) delete operations. Queries may either be

defined statically, as named queries, or dynamically. Queries may take bind

parameters and return Java objects, including entity instances or Maps.

(continued)

Chapter 3 Entities and the Java Persistence API (JPA)

96

Table 3-1.  (continued)

Concept Description

Persistence vs.

Adaption

As a practical consideration when designing your entity classes, consider whether

the entity class is the primary design object or whether the database schema is the

source of truth. In the former case, the database serves mainly to persist the entity

data; whereas in the latter case, the entity class serves to adapt the table into Java.

Example

application

Finally, we give an example application consisting of three JPA entities, an EJB,

and an HTTP servlet that demonstrates all of the concepts in this chapter in a

simple, working model.

�An Entity Example
Let’s take a look at how you can transform a simple JavaBean into an entity and

progressively customize it to add functionality and flexibility.

�A Simple JavaBean: Customer.java
We begin with a simple JavaBean, as shown in Listing 3-1. This class has properties as

defined by the JavaBeans standard. Each property on the JavaBean is represented to the

world outside the bean through a pair of property accessor methods. For each property,

a getter method retrieves its data, and a setter method assigns it. Internally, these

property accessor methods read and write to a private, dedicated instance variable on

the JavaBean class.

Listing 3-1.  A Simple JavaBean

public class Customer {

 private long customerId;

 private String name;

 public long getCustomerId() { return customerId; }

 public void setCustomerId(long customerId) { this.customerId = customerId; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

}

Chapter 3 Entities and the Java Persistence API (JPA)

97

�A Simple Entity: Customer.java
Listing 3-2 shows our simple JavaBean after it has been transformed into an entity.

Listing 3-2.  A Simple Entity

@Entity

public class Customer implements Serializable {

 @Id

 private long customerId;

 private String name;

 public long getCustomerId() { return customerId; }

 public void setCustomerId(long customerId) { this.customerId = customerId; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

}

The only changes required were to add the @Entity and @Id annotations. The @Id

annotation identifies customerId as the primary key for the entity, which is required to

express its unique identity. These are the minimum metadata requirements to transform

this class into an entity. We also added the Serializable interface, as this is a good

practice to ensure compatibility with remote clients.

�The @Entity Annotation

The @Entity annotation is required to identify this class as an entity at the time the entity

is deployed. When entities are deployed in a persistence archive (JAR file), they may be

accompanied by non-entity classes. This annotation, or its equivalent declaration in the

orm.xml file, tells the container to look for further annotations on the class and otherwise

handle its O/R mappings, allow it to participate in queries and persistent relationships

with other entities, and undergo byte weaving or other procedures when they are later

instantiated by the persistence provider. All classes that are not marked as entities are

ignored by the persistence provider during deployment.

Chapter 3 Entities and the Java Persistence API (JPA)

98

�The @Id Annotation

The @Id annotation indicates which field or fields—there may be several—is the entity’s

primary key, or identifier. The value in the identifier field (or fields) must be unique

across all entity instances of the entity type Customer so that it can uniquely identify this

entity. In the case that the primary key spans multiple columns in the table, a composite

primary key is required, and the @Id fields may be replaced by a single field that is

annotated @EmbeddedId. We will discuss how to specify composite keys later

in the chapter.

�Comparison with EJB 2.x

The fundamental JPA coding construct is the entity class. In EJB 2.x and earlier, an entity

bean served as the primary persistence object and was comprised of a bean class and

a local and/or remote component and home interface. Beginning with JPA, most of

the trappings of the entity bean have been stripped away or simplified through strong

use of defaults and annotations. What remains is simply the entity bean class, known

now as the entity class, or more simply still, the entity. While it is equally valid to specify

persistence metadata in an XML descriptor, for brevity, all examples in this chapter

use Java annotations. As in the EJB 3 realm, each declarative construct specified by an

annotation has a corresponding representation in the XML descriptor for the persistence

unit (collection of collocated entities), and so may be equivalently specified in XML. The

decision whether to use annotations or XML is entirely a matter of personal choice.

�Configuration by Default

The previous two annotations were specified explicitly. Given the EJB 3 simplified

development model that leverages configuration by default, you will not be surprised

to find out that a lot of other metadata in this example is implied by default. Before

exploring these default settings, it is worth considering why the @Entity and @Id

annotations were chosen to be specified explicitly, rather than implied implicitly.

The @Entity annotations could have been the default settings for each class

deployed through a persistence archive, and a hypothetical @NotEntity annotation

could have been used to specify a non-entity class. However, following the pattern set by

session- and message-driven beans, the explicit opt-in pattern was chosen instead.

Chapter 3 Entities and the Java Persistence API (JPA)

99

Similarly, all fields could have been assumed to be part of the primary key, but

in practice only a small subset (usually only one) of an entity’s properties typically

comprises an entity’s primary key. The spec designers felt that it makes better sense

in this case to use the opt-in pattern of explicitly specifying @Id on primary key

fields, implying that all columns are not part of the primary key. This type of decision

characterizes the configuration-by-default approach, in which annotations are not

required for the more common cases and are only used when an override is needed.

The next section will examine some of the behavior that this Customer entity

acquired by default, and it will show how you can override this default behavior.

�An Entity with Defaults Exposed: Customer.java
Listing 3-3 shows the same entity with some of its defaults shown.

Listing 3-3.  An Entity with Defaults Shown

@Entity(name="Customer")

@Table(name=" CUSTOMER")

public class Customer implements Serializable {

 @Id

 @Column(name="CUSTOMERID", table="CUSTOMER", unique=true,

 nullable=false, insertable=true, updatable=true)

 private long customerId;

 @Basic(fetch=FetchType.EAGER)

 @Column(name="NAME", table="CUSTOMER")

 private String name;

 // . . .

}

Each entity has a name, and unless otherwise specified, this name defaults to the

unqualified class name, which in this case is LiCustomer. This name is used when

referring to the entity in query statements (Java Persistence Query Language, or JPQL,

is covered in Chapter 4) and is typically specified when the unqualified class name is

awkward or is a reserved name in JPQL.

Chapter 3 Entities and the Java Persistence API (JPA)

100

�The @Table Annotation

An entity instance typically represents a single row in a table, and it exposes each

column value in that row through a corresponding property on the entity. Consequently,

an entity must map to a table in a database, and that table is specified using the @Table

annotation. Its name defaults to the entity name. Since not all databases support

mixed-case table names, this translates to a table named CUSTOMER.

�The @Column Annotation

Similarly, each field declared on the entity maps by default to a column with the same

name, and so the customerId and name fields map to the CUSTOMERID and NAME columns

in the CUSTOMER table. The @Column annotation may also be used to override default

column-type information, as well as column-level constraints, such as those used to

indicate that the column is optional, insertable, and/or updatable. Ordinarily, it is only

necessary to specify this level of detail when you are relying on the container to create

the table when an entity is deployed.

�The @Basic Annotation

Entity fields that are of simple Java types, such as String or int (like the customerId

and name fields), are automatically configured by the JPA to use the @Basic annotation.

Arrays of simple types, and any other type that implements the Serializable interface,

may also be marked @Basic.

The persistence framework provides automatic conversion of column data types

to certain Java types, and JPA persistence providers will attempt to define a suitable

default column type when generating tables for entity classes during deployment. Most

numeric, string, and date types will be converted automatically.

Table 3-2 presents a list of Java types that can be annotated @Basic and mapped

automatically.

Chapter 3 Entities and the Java Persistence API (JPA)

101

Table 3-2.  Field/Property Types That Are Valid for Simple Mappings

Java Type

Java primitive types (int, long, char, and so on)

Primitive wrapper types (Integer, Long, Char, and so on)

Java serializable types

User-defined serializable types

enums

java.lang.String

java.math.BigInteger

java.math.BigDecimal

java.util.Date

java.util.Calendar

java.sql.Date

java.sql.Time

java.sql.Timestamp

byte[]

Byte[]

char[]

Character[]

�Additional Field Types

There are a number of other type specifiers that may be applied to different types of

columns. For instance, an entity may also hold references to other entities, and these

references are also represented by properties on the entity. We will look at some

examples of how to specify these relationship properties later in this chapter.

Chapter 3 Entities and the Java Persistence API (JPA)

102

An entity may have methods beyond its property access methods, but typically these

are limited to support methods for managing add and remove operations from collection

relationship properties.

�Coding Requirements
In addition to the @Entity annotation and a primary key specifier, the minimal coding

requirements for an entity are that it has a public or protected default (no-argument)

constructor and that the class is not final. In this Customer example, a default constructor

was implied since, in the absence of any non-default constructors on a public class, a

default constructor is assumed by Java. Non-default constructors may also be specified

on an entity, and they are often used for initializing the entity with its mandatory

properties.

�The java.io.Serializable Interface

Entities that will be passed by value, as when passed by remote session

beans to Java SE clients that are external to the EJB container, must implement the

java.io.Serializable marker (no method) interface. Implementing this interface

indicates to the compiler that it must enforce all fields on the entity class to be

serializable so that any instance can be serialized to a byte stream and passed using

remote method invocation (RMI) over HTTP.

�Placing Annotations on Instance Variables vs. JavaBean Property
Accessors

When defining an entity class, you may choose to place member-level annotations

on the entity instance variables or on the corresponding JavaBean property accessors

for those instance variables. As with the decision between specifying metadata using

annotations or XML, this is largely a matter of personal preference.

Note S ince JPA 2.0, Java developers are allowed to annotate both instance
variables and property getters. Previously, all entities in an inheritance hierarchy
had to choose a single approach to follow.

Chapter 3 Entities and the Java Persistence API (JPA)

103

Regardless of where the member-level annotations are specified, the entity’s instance

variables must not be public, and clients of that entity, including related entities, must

always access an entity’s properties through accessor methods. It is up to the entity

provider to decide which property accessors to make public, exposing them to clients;

and which to make protected, making them available only to the persistence provider.

When annotating instance variables, the entity need not define any property accessor

methods, if desired.

By policy, only the persistence framework and the class methods themselves are

allowed to access these fields directly. For both access types, clients must access field

data through public accessor or other methods on the entity class.

There are several material consequences of choosing one approach over the other.

These are discussed in the following sections.

�Entity Data Access
When annotations are specified on the entity’s instance variables, the persistence

manager accesses the instance variables directly when reading and writing a persistent

property to and from the entity. When annotating property accessors instead of instance

variables, the persistence manager reads and writes property data through these

property accessors.

Annotating the entity’s instance variables directly avoids the overhead of method

calls and provides a slight performance optimization, since the persistence manager

talks directly to the fields. Annotating the property accessors provides a simple way for

the entity developer to intercept and perform custom logic during all attempts to read

and write property data.

This latter option affords the entity developer a chance lazily to derive persistent

property values on demand, if desired. However, be aware that any validation or

side-effect code on the property accessor methods will be called during entity state

transitions. As you’ll see in the next chapter, if the entity developer wishes to initialize

transient data or refine persistent data at the time that the entity’s persistent state is first

loaded, or prior to saving changes out to persistent storage, it is preferable to perform

these steps using entity lifecycle callback methods. Using the combination of field-level

annotations and entity lifecycle callbacks has the benefit that validation and other code

in the setter methods will only be called when a client calls the setter, and not when the

entity is being instantiated from persistent storage by the framework.

Chapter 3 Entities and the Java Persistence API (JPA)

104

Another consideration is how the entity behaves when it is involved in a query. This

is a similar issue, since a query statement may both retrieve and update field data on

an entity. Thus, it is important to be aware of any possible side effects of using property

accessors.

�Property Name
The second material impact of choosing whether to annotate instance variables or

property accessors occurs when the property accessor expresses a default field name

that is different from the instance variable name. When annotating property accessors,

the logical property name is derived from the getter using the JavaBean property-naming

convention, whereas if the instance variable is annotated, the logical property name

becomes the instance variable’s name.

�Example: Annotating Instance Variables
The code snippet in Listing 3-4 demonstrates instance variable annotation, and it

illustrates validation and side-effect code. In this example, which can also be found in

the Source Code area for this chapter, the entity provider narrows the client interface to

expose only the get/setZipCode() methods, but specifies both zipCodeInternal and

zipCode properties to the persistence provider. Placing annotations on the instance

variables provides a clean separation between the entity’s client-side API and its

persistence-side interface.

Listing 3-4.  An Entity That Uses Instance Variable Annotations

@Entity

public class Address implements Serializable {

 @Id

 private long addressId;

 @Column(name = "ZIP")

 private int zipCodeInternal;

 @Transient

 private String zipCode;

 public long getAddressId() { return addressId; }

 public void setAddressId(long addressId) { this.addressId = addressId; }

Chapter 3 Entities and the Java Persistence API (JPA)

105

 public String getZipCode() {

 if (zipCode == null && zipCodeInternal > 0) {

 zipCode = convertToStr(zipCodeInternal);

 }

 return zipCode;

 }

 public void setZipCode(String zipCode) throws IllegalArgumentException {

 // Validate the zipcode String, to make sure it reduces cleanly to

 // either a 5- or 9- digit integer, and assign it to the internal

 // persistent 'zipCodeInternal' class field

 // . . . <validation code here>. . .

 this.zipCode = zipCode;

 zipCodeInternal = convertToInt(zipCode);

 }

 private int convertToInt(String zipCode) {

 return new Integer(zipCode).intValue();

 }

 private String convertToStr(int zipCode) {

 return new Integer(zipCode).toString();

 }

}

The get/setZipCode() methods allow the entity to transform the internal data lazily

into a client-friendly String representation, but only when requested. No property

accessors are even specified for the zipCodeInternal instance variable.

�The @Transient Annotation

You may not wish to make all fields or properties of an entity class persistent. Derived

or transient fields may be annotated @Transient to indicate that they should be ignored

by the persistence framework. The zipCode instance variable is marked @Transient,

indicating that the persistence provider should not manage it. This instance variable

serves only to adapt the internal int value into a client-friendly, derived String value.

Chapter 3 Entities and the Java Persistence API (JPA)

106

�Example: Annotating Property Accessors
Listing 3-5 demonstrates how an entity developer may use side-effect code when

annotating an entity’s property accessors.

Listing 3-5.  An Entity That Uses Property Accessor Annotations

@Entity

public class Address implements Serializable {

 private BigDecimal addressId;

 private int zipCode;

 private String city;

 @Id

 public BigDecimal getAddressId() { return addressId; }

 �public void setAddressId(BigDecimal addressId) { this.addressId =

addressId; }

 public int getZipCode() { return zipCode; }

 public void setZipCode(int zipCode) {

 if (zipCode != this.zipCode)

 {

 city = null; // Force city to be lazily re-derived

 this.zipCode = zipCode;

 }

 }

 public String getCity() {

 // Derive the city from the zipcode property, if available

 if (city == null && zipCode > 0) {

 city = deriveCityFromZip();

 }

 return city;

 }

 public void setCity(String city) {

 this.city = city;

 }

Chapter 3 Entities and the Java Persistence API (JPA)

107

 private String deriveCityFromZip() {

 /* Implementation here. . . */

 return null;

 }

}

Placing the @Id annotation on the getAddressId() property accessor disambiguates

the access policy, indicating that property accessors should be used by the persistence

provider. Forcing the persistence provider to assign data through the property accessor

affords the entity the opportunity to reset the city value when a new zip code is

assigned. Also, knowing that the city field will be obtained by the persistence manager

through its getter method allows the entity lazily to calculate its value only when

requested through the getCity() accessor. Should the usage of this entity involve many

calls to setZipCode() before the entity is persisted (or merged) out to the database, it

is more efficient to defer deriving the city value until it is actually requested. Were this

entity to use instance variable access, it would be necessary to update the city field

eagerly each time the zipCode was assigned, since a request could come at any time to

merge the entity changes into the database. As mentioned earlier, however, the use of

entity lifecycle callback methods could avoid the overhead of eagerly deriving this value.

�Access Type Summary

JPA offers two models for how the persistence provider accesses the field data on

an entity, either directly through instance variables and indirectly through property

accessors. In the general case, we have found that annotating an entity’s instance

variables is preferable to annotating its property accessors. You’ll rarely have a need

to validate data coming in from the persistent store, and any side-effect code in setter

methods typically should be performed lazily, not eagerly at the time the entity is

instantiated. Furthermore, field-level annotations allow you to decouple the public

property types exposed through that field’s get/set methods from the underlying

column representation. For instance, you may want to expose the zipCode property as

a String through the getZipcode()/setZipcode() methods, but convert it internally

to an integer, using a field of type Integer, for persistence to an INTEGER column in the

database. Finally, the use of entity lifecycle callback methods provides the opportunity

for additional initialization or preparation, both after the entity data is loaded and before

it is saved.

Chapter 3 Entities and the Java Persistence API (JPA)

108

�Declaring the Primary Key
An entity must declare its primary key. The primary key serves to identify an entity

instance uniquely among all of the instances of the entity type. A primary key may be

simple, represented by a single field of a basic Java class, like String or Long, as in the

previous Customer example (Listing 3-2). Alternatively, a primary key may be complex,

represented by a composite class comprised of multiple elementary fields or properties.

The underlying column or columns on the entity’s table that are mapped to by the

primary key field or fields may be formally bound by a database primary key constraint,

but this is not a requirement. It is, however, required that the primary key column

value or values for any entity instance resolve to a unique value across all instances of

that entity. Database constraints are useful in enforcing this requirement, and in their

absence, care should be taken to ensure that unique values are assigned by application.

�Simple Primary Key
A simple primary key is declared by annotating a single basic-type field on the entity

class with the @Id annotation (see Listing 3-6). A basic-type field is a basic Java type

(a list of basic types is shown in Table 3-2).

Listing 3-6.  An Entity with a Simple Primary Key

@Entity

public class Customer implements Serializable {

 @Id

 private Integer id;

 private String name;

 public Customer() {}

 public Customer(Integer id) { this.id = id; }

 public Integer getId() { return id; }

 public void setId(Integer id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

}

Chapter 3 Entities and the Java Persistence API (JPA)

109

Note that we could eliminate the usefulness of an alternate constructor in our entity

class by using a database sequence to populate the PK value automatically. Listing 3-7

shows how this might look, using an ID value generator provided by JPA.

Listing 3-7.  An Entity with a Simple Primary Key That Is Populated Using

@GeneratedValue

@Entity

@SequenceGenerator(name = " CustomerSequence",

 sequenceName = " CUSTOMER_SEQ",

 initialValue = 100, allocationSize = 20)

public class Customer implements Serializable {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE,

 generator = " CustomerSequence")

 private Integer id;

 private String name;

 public Integer getId() { return id; }

 public void setId(Integer id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name;}

}

�The @GeneratedValue Annotation

The @GeneratedValue annotation tells the persistence framework to auto-populate this

column with the specified sequence generator, which must be defined on one of the

entities in your persistence archive. (It is defined directly on the Customer entity.)

A @SequenceGenerator annotation defines a sharable sequence generator, which can

either define a new framework-generated sequence or refer to an existing sequence in

your database. ID generators will be explored more fully in Chapter 4.

Chapter 3 Entities and the Java Persistence API (JPA)

110

�Composite Primary Key
If an entity’s primary key maps to multiple database columns, it uses a complex, or

composite, primary key. This may be represented in one of two ways on the entity

class. The entity may declare each field in the composite key directly on the entity class

(annotating each one with @Id), and specify a composite key class that provides these

exact same fields in an @IdClass annotation. Alternatively, the entity may designate a

single, complex field to represent its primary key by annotating that field with

@EmbeddedId. The class type of the @EmbeddedId field is the entity’s composite key class.

This composite key class is annotated @Embeddable and must specify the mapping details

for each of its fields. These fields will end up mapping to the base table on the entity.

With either approach, the composite primary key class must override the hashCode()

and equals(Object obj) methods on java.lang.Object.

Listing 3-8 shows how these options look.

Listing 3-8.  An Entity with a Composite Primary Key Using @IdClass

@Entity

@IdClass(CustomerPK.class)

public class Customer implements Serializable {

 @Id

 private Integer customerId;

 @Id

 private String name;

 public Integer getCustomerId() { return customerId; }

 �public void setCustomerId(Integer customerId) { this.customerId =

customerId; }

 public void setName(String name) { this.name = name; }

 public String getName() { return name; }

}

�The @IdClass Annotation

The @IdClass identifies an ordinary POJO (such as the example shown in Listing 3-9)

that does not require any metadata. Any mapping details required for the primary key

fields are specified on the fields on the entity.

Chapter 3 Entities and the Java Persistence API (JPA)

111

Listing 3-9.  A Simple POJO that Serves as a Composite Primary Key

public class CustomerPK implements Serializable {

 private Integer id;

 private String name;

 public void setId(Integer id) { this.id = id; }

 public Integer getId() { return id; }

 public void setName(String name) { this.name = name; }

 public String getName() { return name; }

 @Override

 public int hashCode() { return 0; /* Implementation here */ }

 @Override

 public boolean equals(Object obj) { return false; /* Implementation here

*/ }

}

The composite primary key class must conform to the access type (annotated

instance variables vs. property accessors) of the entity, and all its fields or properties

must have matching fields or properties on the entity class. The corresponding fields on

the entity must be annotated @Id.

�The @EmbeddedId Annotation

Alternatively, the entity may designate one of its fields or properties to be its composite

primary key by annotating it @EmbeddedId (see Listing 3-10).

Listing 3-10.  An Entity Using an @EmbeddedId Annotation

@Entity

public class Customer implements Serializable {

 @EmbeddedId

 private CustomerPK customerId;

 public CustomerPK getCustomerId() { return customerId; }

 public void setCustomerId(CustomerPK customerId) {

Chapter 3 Entities and the Java Persistence API (JPA)

112

 this.customerId = customerId;

 }

 // . . .

}

�The @Embeddable Annotation

Every @EmbeddedId must reference a class that is marked @Embeddable. Listing 3-11

shows the corresponding embeddable composite key class.

Listing 3-11.  An @Embeddable Composite Key Class

@Embeddable

public class CustomerPK implements Serializable {

 Long id;

 String name;

 public void setId(Long id) { this.id = id; }

 public Long getId() { return id; }

 public void setName(String name) { this.name = name; }

 public String getName() { return name; }

 @Override

 public int hashCode() { return 0; /* Implementation here */ }

 @Override

 public boolean equals(Object obj) { return false; /* Implementation here

*/ }

}

The composite key class CustomerPK must be annotated @Embeddable. Unlike in the

@IdClass case, its instance variables or property accessors may have @Column

annotations to specify their mapping details.

Chapter 3 Entities and the Java Persistence API (JPA)

113

�Summary of Entity Examples
The basic @Entity and @Id annotations are sufficient to define an entity class, making

the on-ramp to coding entities very straightforward. As you become more familiar with

the annotations available to you, and as your requirements become more demanding,

you can simply add annotations to your entities to achieve powerful persistence features.

We just covered the very basics in this section. We’ll now turn our attention away

from the entity class itself and toward the EntityManager and some other important

services in the persistence framework. Later, we’ll return to explore more annotations

that satisfy more complex needs.

�The Persistence Archive
Until now, we have referred to the persistence archive as the encapsulation of a group of

collocated entities that are deployed as a JAR file. This archive defines the entities and

related non-entity classes that are bundled together for deployment. Strictly speaking,

a persistence archive does not need to live in its own dedicated .jar file. Persistence

archives can be bundled inside .war files, EJB .jar files, and even exist as .class files and a

META-INF/persistence.xml file on a Java application’s class path.

Regardless of its surrounding context, we now take a closer look at the contents of

this archive.

�The persistence.xml File
A persistence archive requires a persistence.xml file in its META-INF directory. This file

groups subsets of entities in the archive into what are known as persistence units.

A persistence.xml file must define at least one persistence unit, and the same entity

may be included in multiple persistence units within the same persistence.xml file.

The persistence.xml and orm.xml mapping files and schemas were updated in

JPA 2.2 version.

The persistence.xml file defines a persistence unit, and it is located in the META-INF

directory of the root of the persistence unit.

The orm.xml file, contained in the META-INF directory of the root of the persistence

unit, includes the managed persistence classes used to take the form of annotations of

the object-relational mapping information. The orm.xml mapping file or other mapping

file will be loaded as a resource by the persistence provider.

Chapter 3 Entities and the Java Persistence API (JPA)

114

Note T he JPA versions 2.1 and 2.2 request that the XML file mappings, such as
persistence.xml and orm.xml, to be located in the Java class path.

The JPA 2.2 version says that:

“An object/relational mapping XML file named orm.xml may be specified in the

META-INF directory in the root of the persistence unit or in the META-INF directory of

any jar file referenced by the persistence.xml.”

Notice that we can add more mapping files that may be present anywhere on the

class path and the Classloader can load them as resources.

Listing 3-12 demonstrates an example of a persistence.xml file.

Listing 3-12.  An Example of a persistence.xml File

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd"

 version="2.2">

 <persistence-unit name="Chapter03PersistenceUnit" transaction-type="JTA">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <jta-data-source>jdbc/wineapp</jta-data-source>

 <class>com.apress.ejb.chapter03.entities.Address</class>

 <class>com.apress.ejb.chapter03.entities.Customer</class>

 <class>com.apress.ejb.chapter03.entities.CustomerOrder</class>

 <exclude-unlisted-classes>false</exclude-unlisted-classes>

 <properties>

 <property name="eclipselink.ddl-generation" value="create-tables"/>

 </properties>

 </persistence-unit>

 �<persistence-unit name="Chapter03PersistenceUnit-JSE" transaction-

type="RESOURCE_LOCAL">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <class>com.apress.ejb.chapter03.entities.Customer</class>

 <properties>

Chapter 3 Entities and the Java Persistence API (JPA)

115

 �<property name="javax.persistence.jdbc.driver" value="oracle.jdbc.

OracleDriver"/>

 �<property name="javax.persistence.jdbc.url" value="jdbc:oracle:thin:

@localhost:1521:XE"/>

 <property name="javax.persistence.jdbc.user" value="wineapp"/>

 �<property name="javax.persistence.jdbc.password" value="221CE6B0A87AC

61AE68FF3A130F7F666"/>

 <property name="eclipselink.logging.level" value="FINER"/>

 </properties>

 </persistence-unit>

</persistence>

Notice the attribute version=“2.2” that since JDK version 8 can be used as Ja PA

version.

This persistence.xml file defines two persistence units, Chapter03PersistenceUnit

and Chapter03PersistenceUnit-JSE. The Customer class is defined in both. The first

persistence unit is used by Java EE clients (like session beans), whereas the second unit

is configured for use by Java SE clients (like the CustomerService.java class shown in

Listing 3-14). Specifying different configuration settings in the two persistence units

allows you to insulate the client from the configuration details of the persistent units, and

it makes an entity that is run in both Java SE and EE environments appear virtually the

same in both cases.

�The EntityManager
The EntityManager is the client’s gateway to entity management services offered by

the JPA persistence framework. Client sessions must obtain an EntityManager instance

before interacting with persistent entity instances. The EntityManager provides support

for querying, updating, refreshing, and removing existing entity instances, and for

registering entity classes to create new persistent objects with identity.

Chapter 3 Entities and the Java Persistence API (JPA)

116

�Persistence Context
The EntityManager maintains a cache of instances within a transactional context

called a persistence context. The persistence context allows the EntityManager to track

modified, created, and removed entity instances, and to reconcile entity instances

with changes that were committed by external transactions concurrent with the

EntityManagers own transaction.

Entity instances queried through the EntityManager may be freely passed to clients

both inside and outside the EJB container. Clients may access and update the entity data

as they would an ordinary Java object. To apply changes back to the persistent store, the

client calls the merge() method on the EntityManager within a transactional scope, and

the EntityManager persists the state of the entity data into the back-end store.

�Acquiring an EntityManager Instance
An EntityManager instance can be acquired both from within the EJB container (Java EE)

and outside it (Java SE). This offers clients the flexibility to interact with persistent entity

beans in a uniform way, without regard to whether the persistence code is running inside

or outside the Java EE container.

�A Session Bean Using Container Injection

Listing 3-13 provides an example of a session bean acquiring an EntityManager instance

through container injection.

Listing 3-13.  A Session Bean Injected with an EntityManager Instance

@Stateless

public class CustomerManager {

 @PersistenceContext(unitName="Chapter03PersistenceUnit")

 private EntityManager em;

 public void createCustomer() {

 final Customer cust = new Customer();

Chapter 3 Entities and the Java Persistence API (JPA)

117

 cust.setName("Moneybags MgGee");

 em.persist(cust);

 }

}

In this example, we use container injection to obtain an EntityManager instance

that is bound to the Chapter03PersistenceUnit persistence unit, which includes our

Customer entity from Listing 3-7. We then use this EntityManager to persist a new

Customer instance. Note that this example assumes that an ID generator or other service

exists to auto-populate the primary key of the new instance.

�A Java SE Service Client Using an EntityManagerFactory

There are times when container injection is not an option, or when more control

over the life cycle of the EntityManager is desired by the application. In such cases,

the client can obtain an EntityManager by first acquiring an EntityManagerFactory.

The javax.persistence.Persistence class serves as a factory for acquiring an

EntityManagerFactory, and it may be used from both a Java EE environment and a Java

SE environment. Listing 3-14 shows how an ordinary Java SE service client would obtain

an EntityManager.

Listing 3-14.  A POJO that Serves as an Entity Façade

public class CustomerService {

 public static void main(String[] args) {

 final EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("Chapter03PersistenceUnit-JSE");

 final EntityManager em = emf.createEntityManager();

 final Customer cust = new Customer();

 cust.setName("Best Customer Ever");

 em.persist(cust);

 }

}

Chapter 3 Entities and the Java Persistence API (JPA)

118

Here we create an EntityManagerFactory that is again bound to the

Chapter03PersistenceUnit-JSE persistence unit, which includes our Customer entity

from Listing 3-7. We then create an EntityManager instance from that factory and use it

to persist a new Customer instance.

�Looking Up the EntityManager Through JNDI

A third option, available also through both Java SE and EE environments, is to look

up the EntityManagerFactory, or the EntityManager itself, through Java Naming and

Directory Interface (JNDI). Listing 3-15 shows an example of how this is done from

within a session bean.

Listing 3-15.  EntityManager Lookup Through JNDI

@Stateless

@PersistenceContext(unitName="Chapter03PersistenceUnit")

public class CustomerServiceBean {

 @Resource

 SessionContext ctx;

 public void performService() {

 �EntityManager em = (EntityManager)ctx.lookup("Chapter03Persistence

Unit");

 // . . .

 }

}

The injected SessionContext resource provides a JNDI namespace for acquiring

other resources at runtime.

�Transaction Support
The EntityManager also exposes methods to begin, commit, and roll back transactions

for use with resource-local (non-JTA) transactions. This topic is covered in depth in

Chapter 8.

Chapter 3 Entities and the Java Persistence API (JPA)

119

�The Entity Life Cycle
An entity instance may go through many formal states during its life as an in-memory

Java object. Understanding these different states will help you know when the entity is in

a consistent or inconsistent state with the back-end database, and how to reconcile these

differences within a transactional context.

An entity instance will typically go through many states of persistence during its

lifetime as a Java object. Since EJB 3, entity classes are completely transparent. They are

created using ordinary constructors instead of the Home and LocalHome factory interfaces

of earlier EJB versions. They may be freely passed to and from the EJB container and

between clients, and they may be updated by a client without the overhead of a callback

to the EJB container.

�The Life Cycle of a New Entity Instance
Let’s take a look at the life cycle of a newly created persistent entity instance. In its life,

the entity may visit the new, managed, detached, and removed states.

�New Entity Instance

A client creates a new entity instance by using one of the entity’s Java constructors. This

is a significant simplification over earlier EJB specifications, which required that users

define create() factory methods on the entity bean’s Home and/or LocalHome interfaces.

The default (no argument) constructor is required of all entity classes, but additional

constructors may also be defined. The client may live outside or within an EJB container.

At the point of construction, it is in the new state and does not yet have persistent

identity because it has not been associated with an EntityManagers persistence context.

The client is free to call any of its methods and assign data values, and all updates to the

entity are kept local to the entity class.

�Managed Entity Instance

To turn this entity class into a persistent object, the client acquires an EntityManager

instance and calls the EntityManager.persist() method. Listing 3-16 shows a code

snippet from a session bean that acquires the EntityManager through injection and then

persists the entity instance passed as a parameter to the persistEntity() method.

Chapter 3 Entities and the Java Persistence API (JPA)

120

Listing 3-16.  Example Showing How an Entity Instance Is Made Persistent

@Stateless

public class MySessionEJB {

 @PersistenceContext(unitName = "Chapter03PersistenceUnit")

 private EntityManager em;

 public void persistEntity(Object entity) {

 em.persist(entity);

 }

}

When the entity is made persistent, it is added to a persistence context as a managed

instance. Being managed affords the entity the following advantages:

•	 By default, all fields on the entity are designated to be lazily loaded by

the persistence provider. While a lazy designation is really only a hint

(see the “Lazy vs. Eager Field Bindings” section later in the chapter),

lazy field binding can be seamlessly performed only on managed

instances.

•	 When an entity is managed, changes made to it may be

tracked by the persistence manager to optimize subsequent

EntityManager.merge() operations. For instance, change

tracking may be handled directly on the entity instance using byte

weaving provided by the persistence provider when the entity was

instantiated. This is particularly important when managing a network

of related entities, so that a minimum of effort is required to calculate

the change set when the network of entities is merged back to the

persistence context.

In general, there is no guarantee that a call to EntityManager.persist() will cause

an SQL INSERT statement to be performed immediately. It is up to the persistence

manager to decide whether to perform this step immediately or at a later time but

prior to committing the transaction. In this example, however, the default behavior of a

method on a Stateless session bean is to create a new transaction and commit the work

each time one of its methods is called, so the entity was not only inserted but committed

as well.

Chapter 3 Entities and the Java Persistence API (JPA)

121

Sequence values may have been assigned to the entity instance, and other side-effect

code may also have been executed during this step.

�Detached Entity Instance

The entity remains in a managed state for the life of the persistence context in which it is

contained, or until it is removed from the database. If one of these events occurs, or if the

instance is passed by value to a client, it becomes a detached entity instance and is no

longer associated with a persistence context. Detached entities do not undergo change

tracking or other internal optimizations. In particular, the persistence provider is not

available to bind fields lazily that were not already bound at the time the entity became

detached, and attempting to access a detached entity’s field that has not yet been bound

will throw a runtime exception. To merge its state back into the persistence context

and make it a managed instance once again, you need to pass a detached entity to the

EntityManager.merge() method.

While an entity instance returned from an EntityManager.merge() call is managed,

changes are not propagated immediately to the persistent storage; they merely update

the entity itself. Suppose the client modifies the entity:

entity = mySession.persistEntity(entity);

entity.setName("foo");

After the second statement above, the name change has been applied only to the

entity instance, and no changes have been propagated to the persistence context or

to the database. To apply these changes to the persistence context, you would call the

EntityManager.merge() operation, as follows:

// Assumes the EntityManager em was obtained, possibly through injection

em.merge(entity);

This updates the persistence context cache, and possibly updates the row in the

underlying database as well, depending on the transactional settings in effect.

�Removed Entity Instance

An entity becomes a removed instance when its remove() method is called. The row

(or rows, if this entity maps to multiple tables) that represents its persistent state will be

removed when the context transaction is committed.

Chapter 3 Entities and the Java Persistence API (JPA)

122

�O/R Mapping
We have examined a number of annotations that define the general behavior of an entity.

Let us now explore the annotations involved in the O/R mapping of persistent fields or

properties on the entity to table columns in the database.

The heart of an entity class is the list of fields or properties that define its

persistent structure. These fields or properties that define its persistent state must

map to columns in a database table. It is the job of the persistence framework to load

this state from the database into an entity instance before it is handed out to a client

and to copy this state back out to the rows of the table when it is persisted. Whereas in

earlier versions of EJB, this O/R mapping information was specific to the various

container-managed persistence (CMP) providers, in JPA, this mapping markup is now part

of the specification. Like nearly every part of EJB since version 3.0, users have the choice of

specifying this information through annotations or using XML in the orm.xml file.

�The @Table Annotation (Revisited)
The @Table annotation lets you specify details about the base table to which an entity is

mapped. Listing 3-17 shows the @Table annotation definition.

Listing 3-17.  The @Table Annotation

@Target({ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface Table {

 String name() default "";

 String catalog() default "";

 String schema() default "";

 UniqueConstraint[] uniqueConstraints() default {};

}

Each entity identifies a database table that will hold its persistent data as follows:

@Entity

@Table(name="ADDRESSES")

public class Address implements Serializable {

 . . .

}

Chapter 3 Entities and the Java Persistence API (JPA)

123

Here, the @Table annotation is used to override the default table name for the

Address entity. In the absence of an @Table annotation, the default table name is the

same name as the entity class itself. (It would default to "ADDRESS" in this example.)

The @Table annotation also allows you to specify database schema and constraint

information for use when the table is generated during deployment. An entity may also

map to more than one table by specifying the @SecondaryTable annotation.

Note T he predefined annotation types @Target and @Retention may be
specified on an annotation definition to provide information to the compiler
about the annotation. The @Target annotation identifies the program element
(in our example, a part of a class) that can accept the annotation.
The @Retention annotation is used to indicate whether the annotation should be
available only in the Java source file or also in the compiled class file. When
@Retention(SOURCE) is specified, the annotation is useful as documentation,
and it may be used by a design-time tool like an integrated development
environment (IDE), but the annotation usage is not compiled into the .class file.
When @Retention(RUNTIME) is specified, the information is also compiled
into the .class file, and so it may be obtained through Java reflection for use by
deployment or runtime tools like the EJB container.

�The @Column Annotation (Revisited)
Entity class fields or properties are mapped to database columns using the @Column

annotation. Again, if no @Column annotation is defined for a field through its instance

variable or property accessor, the mapped column name gets its name from the field.

Listing 3-18 gives the definition of the @Column annotation.

Listing 3-18.  The @Column Annotation

@Target({ElementType.METHOD, ElementType.FIELD})

@Retention(RetentionPolicy.RUNTIME)

public @interface Column {

 String name() default "";

 boolean unique() default false;

Chapter 3 Entities and the Java Persistence API (JPA)

124

 boolean nullable() default true;

 boolean insertable() default true;

 boolean updatable() default true;

 String columnDefinition() default "";

 String table() default "";

 int length() default 255;

 int precision() default 0; // decimal precision

 int scale() default 0; // decimal scale

 }

As you can see, it is possible to specify a column’s attributes fully if desired. This

is useful when you want to give deploy-time directives to generate custom column

definitions. Most typically, you will use the name attribute to decouple the column name

from the field or property name, as when the column name is too utilitarian or cryptic.

Here, the field identifier is told to map to a column called ID, releasing the naming

dependency that binds them by default:

@Entity

@Table(name="ADDRESSES")

public class Address implements Serializable {

 ...

 @Column(name="ID")

 String identifier;

 ...

}

�Complex Mappings
More complex mappings, including those involving multiple tables per entity, complex

data types, embedded classes, and inheritance hierarchies will be covered in the next

chapter. For now, let us examine how relationships between entities are mapped.

Chapter 3 Entities and the Java Persistence API (JPA)

125

�Entity Relationships
Entities may hold single-value and collection references to themselves or to other

entities. Additionally, relationships may be exposed as relationship fields on either

one or both entities involved in the relationship. For those of you familiar with EJB 2.x,

be aware that in JPA, relationship fields are no longer bidirectionally maintained by

the container. Updating the field at one end of a bidirectional relationship no longer

causes the field at the other end to be updated automatically as well. When mapping

a relationship field, its primary key always represents the target entity. The source, or

owning end of the relationship, may be mapped to a foreign key on the source entity’s

table, but there is no requirement that an actual database foreign key constraint be

specified on the underlying columns.

Let’s take a look at how JPA lets you define relationships.

�@OneToOne
Following is the definition of the @OneToOne relationship annotation:

@Target({ElementType.METHOD, ElementType.FIELD})

@Retention(RetentionPolicy.RUNTIME)

public @interface OneToOne {

 Class targetEntity() default void.class;

 CascadeType[] cascade() default {};

 FetchType fetch() default EAGER;

 boolean optional() default true;

 String mappedBy() default "";

}

The @OneToOne relationship is represented by a single-value entity reference at one or

both ends of the relationship. One relationship field will map to columns on its table that

reference the primary key columns on the table at the other end of the relationship.

Chapter 3 Entities and the Java Persistence API (JPA)

126

Here is an example in which Customer uses Address, but Address knows nothing

about its usage by Customer, and so it does not have a relationship field in its class:

@Entity

public class Customer implements Serializable {

 . . .

 @OneToOne

 @JoinColumn(name="MAILING_ADDRESS_REF",

 referencedColumnName="ADDRESS_PK")

 protected Address address;

 . . .

}

To make this a bidirectional relationship, simply add a relationship field to Address

that points back to Customer:

@Entity

public class Address implements Serializable {

 . . .

 @OneToOne(mappedBy="address")

 protected Customer customer;

 . . .

}

Note that by using the (mappedBy="address") attribute, there is no need to specify

the @JoinColumn information on the Address.customer field redundantly. Also, the

entity type at the other end of the relationship is derived from the customer field type.

If you were then to make the relationship unidirectional but in the opposite

direction, you would just move the @JoinColumn annotation from Customer.address

onto Address.customer and then remove the Customer.address field.

�@OneToMany and @ManyToOne
Similarly, here are the definitions of the @OneToMany and @ManyToOne annotations:

Chapter 3 Entities and the Java Persistence API (JPA)

127

�@OneToMany:

@Target(value = {ElementType.METHOD, ElementType.FIELD})

@Retention(value = RetentionPolicy.RUNTIME)

public @interface OneToMany {

 public Class targetEntity() default void.class;

 public CascadeType[] cascade() default {};

 public FetchType fetch() default FetchType.LAZY;

 public String mappedBy() default "";

 public boolean orphanRemoval() default false;

}

�@ManyToOne:

@Target(value = {ElementType.METHOD, ElementType.FIELD})

@Retention(value = RetentionPolicy.RUNTIME)

public @interface ManyToOne {

 public Class targetEntity() default void.class;

 public CascadeType[] cascade() default {};

 public FetchType fetch() default FetchType.EAGER;

 public boolean optional() default true;

}

The @OneToMany relationship annotation is added to a Collection relationship field

where the entity at the other end either does not have a relationship field, or where it

has a single-value relationship field pointing back to this entity. If there is a field on the

entity at the other end of the relationship, it will be annotated @ManyToOne, indicating that

it is an entity that is part of a Collection and that it knows the entity type that owns the

Collection. As with an @OneToOne relationship field, specifying a mappedBy attribute on an

@OneToMany relationship is enough to identify the mapping used for both relationship fields.

@Entity

public class Orders implements Serializable {

 . . .

 @OneToMany(mappedBy="orders")

Chapter 3 Entities and the Java Persistence API (JPA)

128

 protected Collection<OrderItems> orderItemsCollection;

 . . .

}

@Entity

public class OrderItems implements Serializable {

 . . .

 @ManyToOne

 @JoinColumn(name="SELECTION_REF", referencedColumnName="SELECTION_PK")

 protected Orders orders;

 . . .

}

Note that by using generic collection types (Collection<OrderItems>), the

persistence framework is able to determine the entity type at the other end of the

relationship. With that, all that is needed to resolve the mapping for the @OneToMany side

is the field or property name on that entity, which in this case is orders.

�@ManyToMany
Following is the definition of the @ManyToMany relationship annotation:

@Target(value = {ElementType.METHOD, ElementType.FIELD})

@Retention(value = RetentionPolicy.RUNTIME)

public @interface ManyToMany {

 public Class targetEntity() default void.class;

 public CascadeType[] cascade() default {};

 public FetchType fetch() default FetchType.LAZY;

 public String mappedBy() default "";

}

The @ManyToMany annotation is assigned to a Collection relationship field to

indicate that the target entity also has a Collection of the source entity type. This

type of mapping requires an @JoinTable, commonly known as an intersection table.

The join table holds references back to the primary keys of the entities at either end

of the relationship. In the example that follows, the intersection table EJB_PROJ has

two columns: EMP_ID is a reference column back to the ID primary key column on

Chapter 3 Entities and the Java Persistence API (JPA)

129

the EMPLOYEE table, and PROJ_ID is a reference column pointing to the ID primary key

column on the PROJECT table.

@Entity

public class Employee implements Serializable {

 . . .

 @ManyToMany(mappedBy="employees", cascade=CascadeType.PERSIST)

 @JoinTable(name="EMP_PROJ",

 joinColumns={@JoinColumn(name="EMP_ID",

 referencedColumnName="ID")},

 inverseJoinColumns={@JoinColumn(name="PROJ_ID",

 referencedColumnName="ID")})

 protected Collection<Project> projects;

 . . .

}

@Entity

public class Project implements Serializable {

 . . .

 @ManyToMany(mappedBy="projects")

 protected Set<Employee> employees;

 . . .

}

Use of the (mappedBy="projects") attribute on @ManyToMany allows the mapping

information contained in the @JoinTable annotation to be shared by both relationship

fields.

�Lazy vs. Eager Field Bindings
By default, and for performance reasons, all field values are designated to be fetched

lazily, due to the fact that the implied fetch attribute found on each of the field

mappings (@Basic, @OneToMany, and so on) holds a default value of FetchType.LAZY.

This default FetchType.LAZY value is, in fact, only a hint, and the persistence manager

is not bound to honor the request. For many fields, including nearly all simple values, it

would be a significant burden to lazily fault in the fields of an entity, as they are actually

Chapter 3 Entities and the Java Persistence API (JPA)

130

required, so the persistence manager generally ignores the FetchType.LAZY directive

and loads them eagerly anyhow.

When the non-default value FetchType.EAGER is specified on a field mapping,

however, this is not an optional request. When a field is so decorated, the persistence

manager is obliged to bind its value eagerly when the entity is instantiated. This is

particularly relevant when dealing with relationship fields. A relationship field may be

annotated with the fetch=FetchType.EAGER attribute to ensure that, should the entity

become detached, it will still be possible for clients to traverse that relationship field to

access the related entity instances.

When an entity is managed, relationship values will be bound at the time they are

first requested. However, when an entity is instantiated and then detached, as when

it is serialized and passed to a remote client, it may be desirable to prebind all of its

relationship fields eagerly. In this case, you can override the default fetch values and

set (fetch=FetchType.EAGER) on the relationship fields. Be aware of the consequences

of this action, however, since this may cause a storm of cascaded loading if the eagerly

loaded collections in turn eagerly load their referenced objects, and so on.

�Cascading Operations
Entities that are related to other entities may cascade certain lifecycle operations

across references. This allows an operation on one entity to propagate to certain other

related entities. The cascade options are defined through annotations on the individual

relationship fields so that you can precisely control the cascading behavior. Here are the

cascade options:

public enum CascadeType {

 ALL,

 PERSIST,

 MERGE,

 REMOVE,

 REFRESH

}

For example, a Customer entity that holds a reference to an exclusively owned

Address entity may wish to have all operations on the Customer propagated to the

Address instance.

Chapter 3 Entities and the Java Persistence API (JPA)

131

@Entity

public class Customer implements Serializable {

 . . .

 @OneToOne(cascade=CascadeType.ALL)

 protected Address address;

 . . .

}

When an EntityManager operation like persist() or remove() is called on the

Customer entity, the operation will also be called on the Address instance held in the

address field and on any cascading fields of that Address instance, and so on.

Use of these cascade annotation attributes allows the entity developers to specify

cascading behavior declaratively and succinctly, and it saves the client from having to

keep track of the network of instances that need to be manipulated when a persist(),

merge(), remove(), or refresh() lifecycle operation is performed on a top-level instance.

�Java Persistence Query Language (JPQL)
The Java Persistence API provides two methods for querying entities such as the Java

Persistence query language (JPQL) and the Criteria API.

Let’s compare a bit JPQL and Criteria APIs. JPQL queries are generally more concise

and readable than Criteria queries. JPQL is easy to learn for programmers with previous

SQL knowledge.

JPQL queries are not typesafe, which means that they require a cast when retrieving

the query result from the entity manager. Because of that the type-casting errors may not

be caught at compiling time.

Also, JPQL queries do not support open-ended parameters. Criteria API queries

are typesafe and therefore don’t require casting. Remember that when comparing

performance between JPQL and Criteria API, Criteria API queries provide better

performance because JPQL dynamic queries must be parsed each time they are called.

One of the common Criteria API disadvantages is that they are typically more

verbose than JPQL queries. This means that they will require the programmers to create

many objects and perform operations on those objects before submitting the Criteria

API query to the entity manager.

Chapter 3 Entities and the Java Persistence API (JPA)

132

JPA defines its own query language to support entity-based queries along with bulk

update and delete operations. JPQL shares much in common with SQL, with the main

difference being that the primary structures are entities and fields instead of tables and

columns. Like SQL, JPQL queries may be defined either statically, through declared

@NamedQuery annotations, or as dynamic statements submitted to the EntityManager

and processed at runtime. Queries may take bind parameters, and their returned results

may be entities or ordinary Java objects.

By expressing queries in terms of entities and their fields, JPQL statements become

independent of the underlying schema. Thus, a JPQL query need not change when an

entity’s mappings are modified.

JPQL queries are executed by the EntityManager on the persistence context, so

query results will include uncommitted data that is pending in the context transaction.

�@NamedQuery and @NamedQueries
@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedQuery {

 String name();

 String query ();

 LockModeType lockMode() default LockModeType.NONE;

 QueryHint[] hints() default {};

}

@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedQueries {

 NamedQuery [] value ();

}

An entity may declare named JPQL statements inside @NamedQuery annotations to

define reusable queries. A @NamedQuery consists simply of a name and a query containing

the JPQL text. @NamedQuery names must be unique across the persistence unit.

@Entity

@NamedQueries({

 @NamedQuery(name="Inventory.findAll",

 query="select o from Inventory o"),

 @NamedQuery(name="Inventory.findByYear",

Chapter 3 Entities and the Java Persistence API (JPA)

133

 query="select o from Inventory o where o.year=:year"),

 @NamedQuery(name="Inventory.findByRegion",

 query="select o from Inventory o where o.region=?1 ")

})

public class Inventory implements Serializable {

 . . .

}

�Binding Query Parameters
Queries may take bind parameters, either as named parameters or indexed parameters.

To invoke the queries from the previous section, client code, such as a session bean,

might issue the following calls:

@Stateless

public class InventoryManagerBean implements InventoryManager,

 InventoryManagerLocal {

 . . .

 /** <code>select o from Inventory o</code> */

 public List<Inventory> findAllInventory() {

 �return em.createNamedQuery("Inventory.findAll", Inventory.class).

getResultList();

 }

 /** <code>select o from Inventory o where o.year=:year</code> */

 public List<Inventory> findInventoryByYear(Object year) {

 �return em.createNamedQuery("Inventory.findByYear", Inventory.

class).setParameter("year",year).getResultList();

 }

 /** <code>select object(o) from Inventory o where o.region=?1 </code> */

 public List<Inventory> findInventoryByRegion(Object p1) {

 �return em.createNamedQuery("findInventoryByRegion", Inventory.

class).setParameter(0,p1).getResultList();

 }

 . . .

}

Chapter 3 Entities and the Java Persistence API (JPA)

134

Note that the findInventoryByYear query takes a named parameter, :year,

whereas findInventoryByRegion uses an indexed parameter, ?1. These approaches

are equivalent but require different setParameter() calls when binding the parameters

prior to query execution time, as shown in the previous sample code.

�Dynamic Queries
So far, we have shown example queries that are defined through the @NamedQuery

annotation on an entity class. It is also possible to execute queries dynamically by

passing query strings that may be constructed on the fly at runtime.

Listing 3-19 shows an example of how this is done.

Listing 3-19.  Example of Dynamic JPQL Usage

@Stateless

public class CustomerManagerBean {

 @PersistenceContext(unitName = "Chapter03PersistenceUnit")

 private EntityManager em;

 /** <code>select object(o) from Customer o</code> */

 public List<Customer> findAllCustomers() {

 �return em.createQuery("select o from Customer o", Customer.class).

getResultList();

 }

 // . . .

}

�Bulk Update and Delete Operations
JPQL may also be used to perform bulk update and delete operations across multiple

instances of a specific entity class, including subclass instances. These JPQL statements

may also take parameters and return the number of entity instances affected by the

operation. An example of a bulk delete operation is shown in Listing 3-20.

Chapter 3 Entities and the Java Persistence API (JPA)

135

Listing 3-20.  Example of a Bulk Delete Statement in JPQL

@Stateless

public class CustomerManagerBean {

 @PersistenceContext(unitName = "Chapter03PersistenceUnit")

 private EntityManager em;

 /**

 * Perform a bulk delete of fulfilled CustomerOrder items

 */

 public int bulkDeleteFulfilledOrders() {

 �return em.createQuery("delete from CustomerOrder o where o.status =

'FULFILLED'").executeUpdate();

 }

 // . . .

}

Bulk delete and update statements are executed through the EntityManagers

query engine using the EntityManager.createQuery() call. They may also be specified

either declaratively, through @NamedQuery elements, or dynamically, as shown above in

Listing 3-20.

Caution  Care should be taken when performing bulk update and delete
operations, since they bypass the PersistenceContext and can lead to cache
inconsistency. They are essentially translated straight into SQL and executed
without observing optimistic locking checks or following cascade rules specified
on relationship fields. As a rule of thumb, bulk operations should be performed
in their own transaction context, or else at the beginning of a transaction. If a
PersistenceContext whose type is PersistenceContextType.EXTENDED
is used, make sure you call EntityManager.flush() after performing a bulk
operation. That way, no entities will exist in the cache following the bulk operation
that might be out of date or removed.

Chapter 3 Entities and the Java Persistence API (JPA)

136

�Complex Queries
We will cover more advanced areas of JPQL in the next chapter, including queries that

return ordinary, non-entity Java objects; and native queries written in SQL, which may

return results that are converted into entity instances.

Note  One of the most important changes in JPA 2.2 is the ability to stream the
result of a query execution using the method Stream getResultStream() added to
Query and TypedQuery interface. This can be very usable when we need to process
a huge result set.

�Persistence vs. Adaption
One of the decisions an application designer has to make when approaching JPA entity

classes is whether to design them top down or bottom up: that is, whether first to create

the entities and let the database schema follow, or whether to create the database schema

first. It is, of course, possible to build both entities and tables in parallel, but in many

cases one or the other of these objects is fixed, and the other must be built to match.

�Forward Generation—Persistence
In the top-down model, the entity class serves as the source of truth, and the database

schema is created to provide persistence for the entity class data. The underlying table(s)

can be generated as a side effect of deploying the entity class; you may wish to specify

metadata in @Table, @Column, and related annotations to guide the deployment tool in

generating the structure of the schema.

�Reverse Engineering—Adaption
In the bottom-up approach, the database schema is the source of truth: the schema

is fixed, and the Java objects—entity classes—exist to adapt the database objects into

the Java world. This process, typically provided through an IDE using an EJB reverse

engineering tool, generates a default entity class for each table and a default field for

each column.

Chapter 3 Entities and the Java Persistence API (JPA)

137

�Which One Is Right for Your Project?
Both approaches are equally common in real-world development projects. Your needs

will dictate which tools you will want to use to glue the database to the entity beans. You

may think of the issue as one of persistence vs. adaption: does the database schema exist

solely to provide persistence for the entity beans, or are you adapting the database schema

into the Java space? Consider this question when you begin to create your entity beans.

�Example Application: CustomerOrderManager
In the CustomerOrderManager example, we show how a session bean may serve as a

façade for a handful of interrelated JPA entities. Our CustomerOrderManager session

bean exposes CRUD (create, retrieve, update, delete) operations as service methods,

allowing clients to access and manipulate Customer, CustomerOrder, and Address

entities. These service methods on the session façade provide transaction, access

control, and other enterprise-level services, and they allow the persistence framework to

handle the interface between the JPA entities and the underlying RDBMS.

�Customer.java
The Customer.java class, shown in Listing 3-21, hosts a pair of named queries and

has a simple primary key. It holds two unidirectional @OneToOne relationships with the

Address entity implemented through the billingAddress and shippingAddress fields.

It also has a bidirectional @OneToMany relationship with CustomerOrder, exposed through

the customerOrders field. Note that the property accessors for the customerOrders field

are complemented by addCustomerOrder() and removeCustomerOrder() methods.

These methods should be used by clients when adding or removing a CustomerOrder

from a Customer to ensure that the relationship fields on both entity classes involved are

properly updated with the correct relationship information.

Listing 3-21.  Customer.java

@Entity

@NamedQueries({

 @NamedQuery(name = "Customer.findAll",

 query = "select o from Customer o"),

Chapter 3 Entities and the Java Persistence API (JPA)

138

 @NamedQuery(name = "Customer.findByEmail",

 query = "select o from Customer o where o.email = :email")})

@Table(name = "CH03_CUSTOMER")

@TableGenerator(name = "Customer_ID_Generator",

 table = "CUSTOMER_ID_GENERATOR",

 pkColumnName = "PRIMARY_KEY_NAME",

 pkColumnValue = "Customer.id",

 valueColumnName = "NEXT_ID_VALUE")

public class Customer implements Serializable {

 @Id

 @Column(nullable = false)

 @GeneratedValue(strategy = GenerationType.TABLE,

 generator = "Customer_ID_Generator")

 private BigDecimal id;

 @Version

 private int version;

 @Column(length = 4000)

 private String email;

 @OneToMany(mappedBy = "customer", cascade = {CascadeType.ALL})

 private List<CustomerOrder> customerOrders;

 @OneToOne(cascade = {CascadeType.ALL})

 @JoinColumn(name = "BILLING_ADDRESS")

 private Address billingAddress;

 @OneToOne(cascade = {CascadeType.ALL})

 @JoinColumn(name = "SHIPPING_ADDRESS")

 private Address shippingAddress;

 public BigDecimal getId() { return id; }

 public void setId(BigDecimal id) { this.id = id; }

 public int getVersion() { return version; }

 public void setVersion(int version) { this.version = version; }

 public String getEmail() { return email; }

 public void setEmail(String email) { this.email = email; }

Chapter 3 Entities and the Java Persistence API (JPA)

139

 public List<CustomerOrder> getCustomerOrders() { return customerOrders; }

 public void setCustomerOrders(List<CustomerOrder> customerOrders) {

 this.customerOrders = customerOrders;

 }

 public CustomerOrder addCustomerOrder(CustomerOrder customerOrder) {

 if (customerOrders == null) {

 customerOrders = new ArrayList<CustomerOrder>();

 }

 customerOrders.add(customerOrder);

 customerOrder.setCustomer(this);

 return customerOrder;

 }

 public CustomerOrder removeCustomerOrder(CustomerOrder customerOrder) {

 getCustomerOrders().remove(customerOrder);

 customerOrder.setCustomer(null);

 return customerOrder;

 }

 public Address getBillingAddress() { return billingAddress; }

 public void setBillingAddress(Address billingAddress) {

 this.billingAddress = billingAddress;

 }

 public Address getShippingAddress() { return shippingAddress; }

 public void setShippingAddress(Address shippingAddress) {

 this.shippingAddress = shippingAddress;

 }

}

An instance of the CustomerOrder entity, shown in Listing 3-22, represents an order

placed by a customer. For this example, we have eliminated the related OrderItem

entities for brevity. The full-blown Apress Wines Online application, which includes a

number of other entities as well, is explored in Chapter 7.

Chapter 3 Entities and the Java Persistence API (JPA)

140

Listing 3-22.  CustomerOrder.java

@Entity

@NamedQueries({

 @NamedQuery(name = "CustomerOrder.findAll",

 query = "select o from CustomerOrder o")})

@Table(name = "CH03_CUSTOMER_ORDER")

@TableGenerator(name = "CustomerOrder_ID_Generator",

 table = "CUSTOMERORDER_ID_GENERATOR",

pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "CustomerOrder.id",

valueColumnName = "NEXT_ID_VALUE")

public class CustomerOrder implements Serializable {

 @Id

 @Column(nullable = false)

 @GeneratedValue(strategy = GenerationType.TABLE,

 generator = "CustomerOrder_ID_Generator")

 private BigDecimal id;

 @Version

 private int version;

 @Temporal(TemporalType.DATE)

 @Column(name = "CREATION_DATE")

 private Date creationDate;

 private String status;

 @ManyToOne

 @JoinColumn(name = "CUSTOMER_ID")

 private Customer customer;

 public Date getCreationDate() { return creationDate; }

 public void setCreationDate(Date creationDate) {

 this.creationDate = creationDate;

 }

 public BigDecimal getId() { return id; }

 public void setId(BigDecimal id) { this.id = id; }

 

Chapter 3 Entities and the Java Persistence API (JPA)

141

 public String getStatus() { return status; }

 public void setStatus(String status) { this.status = status; }

 public int getVersion() { return version; }

 public void setVersion(int version) { this.version = version; }

 public Customer getCustomer() { return customer; }

 public void setCustomer(Customer customer) { this.customer = customer; }

}

The final entity in this example is Address, shown in Listing 3-23. The Address entity

is referenced by the Customer entity but holds no relationship field of its own, making the

references from Customer unidirectional.

Listing 3-23.  Address.java

@Entity

@NamedQueries({

 @NamedQuery(name = "Address.findAll",

 query = "select o from Address o")})

@Table(name = "CH03_ADDRESS")

@TableGenerator(name = "Address_ID_Generator",

 table = "CH03_ADDRESS_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME",

 pkColumnValue = "Address.id",

 valueColumnName = "NEXT_ID_VALUE")

public class Address implements Serializable {

 @Column(length = 4000)

 private String city;

 @Id

 @Column(nullable = false)

 @GeneratedValue(strategy = GenerationType.TABLE,

 generator = "Address_ID_Generator")

 private BigDecimal id;

 private String state;

 @Column(length = 4000)

 private String street1;

Chapter 3 Entities and the Java Persistence API (JPA)

142

 @Column(length = 4000)

 private String street2;

 @Version

 private Integer version;

 @Column(name = "ZIP_CODE")

 private int zipCode;

 public String getCity() { return city; }

 public void setCity(String city) { this.city = city; }

 public BigDecimal getId() { return id; }

 public void setId(BigDecimal id) { this.id = id; }

 public String getState() { return state; }

 public void setState(String state) { this.state = state; }

 public String getStreet1() { return street1; }

 public void setStreet1(String street1) { this.street1 = street1; }

 public String getStreet2() { return street2; }

 public void setStreet2(String street2) { this.street2 = street2; }

 public Integer getVersion() { return version; }

 public void setVersion(Integer version) { this.version = version; }

 public int getZipCode() { return zipCode; }

 public void setZipCode(int zipCode) { this.zipCode = zipCode; }

}

The CustomerOrderManager Stateless session bean serves as a façade for the three

entities shown previously, and it offers an interface to the persist(), merge(), and

remove() methods on EntityManager. It is shown in Listing 3-24.

Listing 3-24.  CustomerOrderManager.java

@Stateless

public class CustomerOrderManager {

 @PersistenceContext(unitName = "Chapter03PersistenceUnit")

 private EntityManager em;

Chapter 3 Entities and the Java Persistence API (JPA)

143

 public CustomerOrderManager() {

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

 public void removeCustomer(Customer customer) {

 customer = em.find(Customer.class, customer.getId());

 em.remove(customer);

 }

 /** <code>select o from Customer o</code> */

 public List<Customer> getCustomerFindAll() {

 �return em.createNamedQuery("Customer.findAll", Customer.class).

getResultList();

 }

 public void removeAddress(Address address) {

 address = em.find(Address.class, address.getId());

 em.remove(address);

 }

 /** <code>select o from Address o</code> */

 public List<Address> getAddressFindAll() {

 �return em.createNamedQuery("Address.findAll", Address.class).

getResultList();

 }

 public void removeCustomerOrder(CustomerOrder customerOrder) {

 customerOrder = em.find(CustomerOrder.class, customerOrder.getId());

 em.remove(customerOrder);

 }

Chapter 3 Entities and the Java Persistence API (JPA)

144

 /** <code>select o from CustomerOrder o</code> */

 public List<CustomerOrder> getCustomerOrderFindAll() {

 return em

 .createNamedQuery("CustomerOrder.findAll", CustomerOrder.class)

 .getResultList();

 }

 /** <code>select o from CustomerOrder o where o.email = :email</code> */

 public List<CustomerOrder> getCustomerOrderFindByEmail(String email) {

 return em

 .createNamedQuery("CustomerOrder.findByEmail", CustomerOrder.class)

 .setParameter("email", email)

 .getResultList();

 }

}

To deploy this example, you will need a persistence.xml file that declares a named

persistence unit that can be referenced by the session bean (see Listing 3-25).

Listing 3-25.  persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/

persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd" version="2.2">

<persistence-unit name="Chapter03PersistenceUnit" transaction-type="JTA">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <jta-data-source>jdbc/wineapp</jta-data-source>

 <class>com.apress.ejb.chapter03.entities.Address</class>

 <class>com.apress.ejb.chapter03.entities.CustomerOrder</class>

 <class>com.apress.ejb.chapter03.entities.Customer</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

Chapter 3 Entities and the Java Persistence API (JPA)

145

 <property name="eclipselink.ddl-generation" value="create-tables"/>

 </properties>

 </persistence-unit>

</persistence>

�Compiling, Deploying, and Testing the JPA Entities
�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

�Opening the Sample Application
Copy the Chapter03-PersistenceSamples directory and its contents into a directory

of your choice. Run the NetBeans IDE, and open the Chapter03-PersistenceSamples

project using the File ➤ Open Project menu. Make sure the ‘Open Required

Projects' check box is checked. See Figure 3-1.

Figure 3-1.  Opening the Chapter03-PersistenceSamples project

Chapter 3 Entities and the Java Persistence API (JPA)

146

Expand the Chapter03-PersistenceSamples-ejb node and observe the packages

containing the EJB façade and the JPA entities for this sample application, and

the sources for the chapter listings. The persistence.xml file can be found in the

Configuration Files folder, and the JDBC data-sources that specify the database

connection are found in the glassfish-resources.xml file under Server Resources.

As described in “The Persistence Archive” section above, a JPA persistence archive may

be packaged in various ways within the application. In this example, we are bundling the

persistence archive together with the EJB façade, in the EJB .jar file.

The client HTTP servlet, CustomerOrderManagerClient.java, lives in the

Chapter03-PersistenceSamples-war project. See Figure 3-2.

Chapter 3 Entities and the Java Persistence API (JPA)

147

Figure 3-2.  Verifying that the EJB and the JPA artifacts are available in the project

Chapter 3 Entities and the Java Persistence API (JPA)

148

�Creating the Database Connection and Sample Schema
The samples in this chapter require a database connection and a database schema

populated with tables that map to the JPA entities. To create the database itself, click on

the Services tab, expand the Databases icon, and invoke “Create Database. . .” on

the Java DB node. Create a database named “WineApp,” with username and password

wineapp/wineapp as shown in Figure 3-3.

Figure 3-3.  Creating the WineApp database and connection

This last step created a database connection, which can now be used to create

the database schema. To do this, switch to the Files tab, expand the Chapter03-

PersistenceSamples folder and then the database folder, right-click on the Chapte03-

WineAppSchema.sql file, and choose “Run File.” In the dialog, be sure to select the new

WineApp connection created in the previous step. You can safely ignore errors that are

raised in the Chapter03-WineAppSchema.sql script caused by an attempt to clean out

objects that don’t yet exist. See Figure 3-4.

Chapter 3 Entities and the Java Persistence API (JPA)

149

�Compiling the Entities, EJBs, and the Client
Invoke the context menu on Chapter03-PersistenceSamples node and build the

application by selecting the Clean and Build menu option. See Figure 3-5.

Figure 3-4.  Creating the sample database schema in the WineApp database

Chapter 3 Entities and the Java Persistence API (JPA)

150

�Deploying the JPA Persistence Unit, the EJB Module,
and the Servlet
Once you have compiled the application, you can deploy it to the GlassFish application

server. Invoke the context menu on Chapter03-PersistenceSamples node and deploy

the application by selecting the Deploy menu option. See Figure 3-6.

Figure 3-5.  Building the application

Chapter 3 Entities and the Java Persistence API (JPA)

151

NetBeans will start the integrated GlassFish application server and deploy the

application to the server. The server’s log window will log the deployment status of the

application. See Figure 3-7.

Figure 3-6.  Deploying the application

Chapter 3 Entities and the Java Persistence API (JPA)

152

�Running the Client Programs
Once the entities, the EJB, and its client servlet are successfully deployed, we need to set

the run target that we wish to execute. To set the run target, invoke the context menu on

Chapter03-PersistenceSamples node and select the Properties menu option. Select

the Run category, enter the run target “CustomerOrderManagerClient” in the Relative

URL text field, and OK the dialog.

To run the client HTTP servlet, invoke the context menu on

Chapter03-PersistenceSamples node and select the Run menu option, as shown in

Figure 3-8.

Figure 3-7.  Log showing successful deployment

Chapter 3 Entities and the Java Persistence API (JPA)

153

Figure 3-8.  Running the selected servlet

NetBeans will open your default browser and execute the selected servlet. Any

existing conflicting data is deleted, new test data is created, and then it is queried and

rendered in tabular format. To avoid circular dependencies, an entity’s properties are

displayed only the first time it is encountered; any subsequent reference to that entity

is shown as [<entity> <PK> already printed]. Referenced objects, including lists of

referenced objects, are show in nested table cells. Here is the output for the client servlet,

showing the log of the servlet’s actions. See Figure 3-9.

Chapter 3 Entities and the Java Persistence API (JPA)

154

Take a look at the code in CustomerOrderManagerClient.java. Feel free to experiment

by creating additional entities, testing the mergeEntity() and other service methods on

the EJB session bean, and observing the resulting behavior. To reset the test schema back

to its original state, you can always re-execute the step depicted in Figure 3-4.

�Summary
This chapter introduced the Java Persistence API 2.2 introduced with Java EE 8 and

a few of the essential services it offers. We examined how a simple JavaBean can be

transformed into a JPA entity simply by adding a couple of annotations. We then

extended this example to illustrate how you can further refine your entities to add greater

flexibility by declaratively specifying additional annotations on the entity class.

Figure 3-9.  Output of CustomerOrderManagerClient servlet

Chapter 3 Entities and the Java Persistence API (JPA)

155

We explored these essential components of JPA: the persistence archive, the

persistence unit, the persistence context, and the EntityManager. We walked through

the entity life cycle to examine an entity’s behavior as it transitions between the following

states: new, managed, detached, and removed.

The section on O/R mapping explored how entities map to their underlying tables,

and how you can control the basic mapping to allow a field to map to a column with a

different name.

We discussed the role of an entity’s primary key, explored both simple and

composite primary keys, and how to define each. We showed how to configure an ID

generator to have JPA auto-assign an entity’s PK at the time it is persisted.

We then delved into entity relationships and discussed the relationship field types

supported by JPA: @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany.

A discussion of JPQL ensued with examples of how to declare and execute named

queries and how to use dynamic and bulk update and delete queries.

We concluded with a sample application that illustrated how related entities interact

and how they can be manipulated through a session façade that is in turn called from an

HTTP servlet.

Chapter 3 Entities and the Java Persistence API (JPA)

157
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_4

CHAPTER 4

Advanced Persistence
Features
We have organized the persistence sections of this book into three main chapters. The

previous chapter introduced the Java Persistence API (JPA), and it gave you a starting point

for creating entities, wiring up object/relational (O/R) mappings, and writing queries that

retrieve them. With an understanding of these concepts, you can create and build applications

with powerful, persistent entities that run both inside and outside an EJB container.

In this chapter, we build upon this knowledge and explore areas of the Java

Persistence API (JPA) that offer greater flexibility and power to your applications,

including the following:

•	 How to define and work with entity inheritance hierarchies

•	 How to work with abstract entities, mapped superclasses, and

non-entity classes

•	 How to build queries with Java Persistence Query Language (JPQL),

native SQL, and the query criteria API

•	 How to configure ID generators to auto-populate primary key fields

•	 How to specify entity lifecycle callbacks

•	 How to configure optimistic locking

The third main area of the Persistence API, which will be covered in Chapter 8,

involves EJB support for transaction management when working with JPA entities. The

EJB container provides you with options for session beans to manage the life cycle of the

EntityManager, control the longevity of your persistence context, and use either Java

Transaction API (JTA) or resource-local transactions. With good knowledge of the way

EJB and JPA support transactions and how you can apply this technology, you will have

the tools to build full-scale, persistent enterprise applications.

158

As with the rest of this book, this chapter covers many of the concepts defined

in the specification, but it is not intended to supplant it. Indeed, readers are strongly

encouraged to consult the spec as a reference document and a resource for exploring

these concepts in even greater depth, and to discover others that go beyond the scope

of this introductory text. Here we focus on translating some of the fundamental features

from spec into their applied use, providing examples of how the new persistence

features can be used to accomplish your real-world goals of building component-based

enterprise Java applications.

Each of the major concepts in this chapter is captured in a separate, runnable

example. The steps required to run the examples are covered at the end of the chapter

in the section entitled “Compiling, Deploying, and Testing the JPA Entities.” The general

structure is that we provide a stand-alone NetBeans project for each example and supply

each with its own JPA persistence unit, entities, and Java test service classes. You can run

and test the examples from a Java client in a pure Java SE environment without running

Glassfish, or you can execute the servlets that accompany each of these projects to run

the sample in a Java EE Web environment.

Note  As discussed in the previous chapter, entities may designate their
persistent state to be defined by either their instance variables or bean property
accessors. To improve readability in this chapter, we use the term field to refer
generically to the persistent members of an entity, leaving open the detail of how
the entity declares its persistent properties.

�Mapping Entity Inheritance Hierarchies
Java has supported single class inheritance—in which a non-interface class may extend

a single other class—since its inception. While it has been a common practice to exploit

the code reuse and polymorphism benefits of inheritance in many areas of the business

domain, data inheritance was not supported in the EJB persistence domain until the

introduction of JPA. This had been a major shortcoming since, in the real world, data is

often hierarchical; and the lack of standard, built-in support for inheritance of data objects

has required countless workarounds and headaches. Leveraging the ease of use of JDK

annotations, JPA delivers declarative support for defining and mapping entity inheritance

hierarchies, including abstract entities and polymorphic relationships and queries.

Chapter 4 Advanced Persistence Features

159

Note  An abstract entity is an entity class that contains the abstract modifier
and therefore cannot be instantiated in its own right. An abstract entity must
be an intermediate class in an entity inheritance hierarchy; it may not itself be
a leaf entity since it may only be instantiated through one of its subentities.
Correspondingly, all leaf entities in an entity inheritance hierarchy must be concrete
and therefore instantiable. An abstract entity exists to provide a common data
structure for its subentities and to represent its subentities through polymorphic
relationships with other entities.

Much of the entity inheritance support in JPA is borne of the work of designers

and tool developers who have, over the years, come up with ways to roll their own O/R

mappings, and JPA has conveniently adopted several alternative inheritance mapping

approaches that derive from these efforts.

Within a given entity inheritance hierarchy, a single inheritance strategy applies to

all entities in the hierarchy. Additionally, all entities in a hierarchy must use the same

primary key type, regardless of the inheritance strategy. This makes it reasonable for

the container to support polymorphic relationships, regardless of the mapping strategy

employed for the class hierarchy.

Also, should your database have the restriction that a table be limited to 256

columns, note that entities are free to distribute their field mappings across joined rows

in multiple tables.

�Getting Started
All of the code snippets in this chapter exist in runnable form that you can download

and execute directly in your local environment together with SQL scripts for creating

the corresponding tables and other database artifacts in your local database. The steps

for running the samples are described at the end of the chapter. Since these examples

deal only with entities, we can leverage the pure Java SE (outside-the-container) support

offered in JPA and skip the step of deploying these entities into a Java EE container. You

will see that a simple Java class is sufficient to create an EntityManager that can interact

with these entities and drive example tests. Seeing these concepts in action will help

clear up questions left unanswered here, and the samples should also provide a useful

launch pad for testing out your own ideas.

Chapter 4 Advanced Persistence Features

160

�Entity Inheritance Mapping Strategies
JPA provides declarative support for three main implementation strategies that dictate

how the entities in a hierarchy map to underlying tables. We will examine each strategy

by applying it to a sample entity hierarchy and explore the strengths and weaknesses of

each approach. This comparison is intended to help you decide how to map each of the

entity hierarchies in your own application.

�Sample Entity Hierarchy

To illustrate how these three strategies are manifested in code, Figure 4-1 shows a sample

entity hierarchy that demonstrates both inheritance and polymorphic relationships.

Figure 4-1.  An entity type hierarchy, rooted in the base entity Person, showing
relationships between entities both inside and outside the hierarchy

Chapter 4 Advanced Persistence Features

161

In this example, the Person entity serves as the root class in an entity hierarchy, and

it is extended by the Employee entity. Employee is further specialized to produce two

other entities: FullTimeEmployee and PartTimeEmployee. Inheritance relationships

are expressed in the figure through unnamed white arrowheads, and ordinary entity

relationships are expressed with named open arrowheads.

The root Person entity and the intermediate Employee entity are both abstract in

our example. Only the leaf entities FullTimeEmployee and PartTimeEmployee, and

the stand-alone entity Address, are concrete and instantiable. Note that even abstract

entities may be involved in relationships with other entities and, as you will see from the

code that follows, abstract entities may also be used in JPQL statements. Whenever a

non-leaf entity is referenced, that reference implicitly assumes that the actual concrete

implementation being referenced may be that entity or any of its subclass entities. Non-

leaf entities may also be concrete, though, and had we chosen to do this in our example,

we could have made these base classes concrete.

The root Person entity also holds a single-value reference to an Address instance,

represented by the homeAddress field on Person. This relationship is inherited

by all subclasses of Person; so all instances of Employee (FullTimeEmployee and

PartTimeEmployee) can also refer to their homeAddress field. Note that there is

no corresponding field on Address referencing Person, so this is a unidirectional

relationship. From our coverage of entity relationships in the previous chapter, you will

recall that this is a one-to-one relationship.

Note  A relationship between two entities that is exposed through a field on only
one of the entities is known as a unidirectional relationship. A relationship exposed
through fields on both entities involved is known as a bidirectional relationship.

In addition, we have defined a one-to-many, bidirectional relationship between a

FullTimeEmployee (a manager) and a collection of Employees (its managedEmployees).

Because this relationship is exposed through fields at both ends of the relationship

(in this case, the two entities involved are actually the same entity, Employee), this is a

bidirectional, one-to-many relationship.

Chapter 4 Advanced Persistence Features

162

As you look at each example, you will see how the Java source files are essentially

constant across the three inheritance mapping strategies. Only the class-level

annotations for declaring the inheritance strategies, and some details, like the table

names, separate the entities in one example from another. This is a key benefit—the

chosen inheritance strategy can be replaced without impacting the entities’ Java API. In

the three sections that follow, we will illustrate how each mapping strategy can be

applied to this hierarchy.

In these inheritance examples, we included a separate table for the Address entity

alongside the tables mapped to each inheritance hierarchy, as depicted in the database

schema diagrams. It is not strictly necessary to replace the ADDRESS table for each entity

hierarchy, since whatever table is associated with the Person entity could hold its own

foreign key reference to a common ADDRESS table. However, we took this approach to

help isolate each inheritance example.

�Object/Relational Inheritance Mapping Strategies

Note U nless otherwise specified, you can assume that all JPA classes mentioned
in this chapter are in the javax.persistence.* package.

Now that we have defined our entity hierarchy, let’s look at how each of the three

O/R strategies supported natively by JPA can be used to map this Person entity hierarchy,

and the associated Address entity, to a relational schema. Here is a summary of each

strategy defined by the InheritanceType enum:

public enum InheritanceType

{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

•	 SINGLE_TABLE: Single-table-per-class inheritance hierarchy. This is the

default strategy. The entity hierarchy is essentially flattened into the

sum of its fields, and these fields are mapped down to a single table.

•	 JOINED: Common base table with joined subclass tables. In this

approach, each entity in the hierarchy maps to its own dedicated

table that maps only the fields declared on that entity. The root entity

in the hierarchy is mapped to the base table, and the tables for all

other entities in the hierarchy reference this base table.

Chapter 4 Advanced Persistence Features

163

•	 TABLE_PER_CLASS: Single-table-per-outermost concrete entity class.

The third inheritance mapping option is also not required of JPA

containers for compliance with the final draft of the JPA 2.1 spec, so

portable applications should avoid it until it is officially mandated

or at least widely supported. This strategy maps each leaf (that is,

outermost, concrete) entity to its own dedicated table. Each such

leaf entity branch is flattened, combining its declared fields with the

declared fields on all of its superentities, and the sum of these fields is

mapped onto its table.

The @GeneratedValue Annotation

In each of the inheritance strategy examples, we use the @GeneratedValue annotation

to auto-populate the entity’s primary key for both the Person entity hierarchy and the

stand-alone Address entity. In our examples, we designate a field named id as the

primary key, simply for consistency. Specifying an ID generator in metadata allows the

persistence provider to assign an entity its ID value before the entity is actually saved as

a row in the database. Declarative specification of the @GeneratedValue annotation is

certainly easier than assigning the ID in application code, and it is also an optimization

over the alternative of auto-populating the ID value using a database trigger. Since the ID

value is used when persisting relationship mappings, this saves the persistence manager

the trouble of querying the row back again from the database to retrieve the trigger-

populated value. Details on how to customize sequence- or table-based ID generators

are provided later in the chapter.

We will now explore each strategy, discussing its strengths and weaknesses, and

illustrating its use through examples.

Note  Java source files for the examples shown in the listings below can all be
found in the Source Code area for this chapter.

Chapter 4 Advanced Persistence Features

164

�Single-Table-per-Class Inheritance Hierarchy
(InheritanceType.SINGLE_TABLE)
The default inheritance mapping strategy is SINGLE_TABLE, in which all the entities in

the class hierarchy map onto a single table. A dedicated discriminator column on this

table identifies the specific entity type associated with each row, and each entity in the

hierarchy is given a unique value to store in this column. By default, the discriminator

value for an entity is its entity name, although an entity may override this value using

the @DiscriminatorValue annotation. This approach performs well for querying, since

only a single table is involved, and if your type of hierarchy can abide by the practical

limitations, this is probably the best approach to use.

Figure 4-2 shows a diagram of a schema that maps our example entities using the

SINGLE_TABLE strategy. We have chosen to prefix these tables with CH04_ST_ to avoid

conflicts with the PERSON and ADDRESS tables in our example schema that are used by the

full Enterprise Wines Online application.

Figure 4-2.  The CH04_ST_PERSON table holds all entity instances in the entity
hierarchy rooted by Person. The CH04_ST_ADDRESS table holds the associated
Address instances.

Chapter 4 Advanced Persistence Features

165

All of the properties across the entity hierarchy rooted by the Person entity map to

columns on a single table, CH04_ST_PERSON. This table holds a foreign key reference,

bound to the HOME_ADDRESS column, to CH04_ST_ADDRESS, which is mapped to the

Address entity. It also holds a foreign key reference, using the MANAGER column, back to

itself. This foreign key is not constrained to be unique, indicating that multiple rows may

hold the same value in their MANAGER column.

�Example Entity Classes

Listings 4-1 through 4-4 show how the entities in the Person hierarchy are mapped using

the SINGLE_TABLE inheritance strategy. The inheritance strategy is declared on the root

entity in the hierarchy, and it also applies to all subentities in the hierarchy. Annotations

introduced in the example entities that have not yet been covered are explained in the

sections that follow.

Listing 4-1.  Person.java, an Abstract Root Entity in a SINGLE_TABLE Inheritance

Hierarchy

/*

 * Person: An abstract entity, and the root of an inheritance hierarchy

 *

 * To create ID generator table "CH04_ST_PERSON_ID_GEN":

 * �CREATE TABLE "CH04_ST_PERSON_ID_GEN" ("PRIMARY_KEY_NAME" VARCHAR2(4000)

PRIMARY KEY, "NEXT_ID_VALUE" NUMBER(38));

 *

 * �To initialize this table with data for this entity's ID generator

'Person.id' (starting with value '0'):

 * INSERT INTO "CH04_ST_PERSON_ID_GEN" VALUES ('Person.id', 0);

*/

@Entity

@NamedQueries({ @NamedQuery(name = "Person.findAll", query = "select o from

Person o") })

@Table(name = "CH04_ST_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_ST_PERSON_ID_

GEN", pkColumnName = "PRIMARY_KEY_NAME",

 pkColumnValue = "Person.id", valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

Chapter 4 Advanced Persistence Features

166

@DiscriminatorColumn(name="TYPE")

public abstract class Person

 implements Serializable

{

 @SuppressWarnings("compatibility:-7074714881275658754")

 private static final long serialVersionUID = 5291172566067954515L;

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person_ID_

Generator")

 private Integer id;

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

 @OneToOne(cascade=CascadeType.ALL)

 @JoinColumn(name = "HOME_ADDRESS")

 private Address homeAddress;

 @Version

 private Integer version;

 public Person() {

 }

 /* get/set methods... */

}

Listing 4-2.  Employee.java, an Abstract Intermediate Entity in a SINGLE_TABLE

Inheritance Hierarchy

/*

 * Employee: An abstract entity that extends Person

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Employee.findAll", query = "select o from Employee o")})

@Table(name = "CH04_ST_EMPLOYEE")

Chapter 4 Advanced Persistence Features

167

public abstract class Employee extends Person implements Serializable {

 @SuppressWarnings("compatibility:276774077273820023")

 private static final long serialVersionUID = -8529011412038476148L;

 @Column(length = 400)

 private String department;

 @Column(length = 400)

 private String email;

 @ManyToOne

 @JoinColumn(name = "MANAGER")

 private FullTimeEmployee manager;

 public Employee() {

 }

 /* get/set methods... */

}

Listing 4-3.  FullTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE

Inheritance Hierarchy

/*

 * FullTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from

FullTimeEmployee o")})

@Table(name = "CH04_ST_FT_EMPLOYEE")

public class FullTimeEmployee

 extends Employee

 implements Serializable {

 @SuppressWarnings("compatibility:9058152191575937294")

 private static final long serialVersionUID = -7301681120809804802L;

 @Column(name = "ANNUAL_SALARY")

 private double annualSalary;

 �@OneToMany(mappedBy = "manager", cascade = {CascadeType.PERSIST,

CascadeType.MERGE})

Chapter 4 Advanced Persistence Features

168

 private List<Employee> managedEmployees;

 public FullTimeEmployee() {

 }

 /* get/set methods... */

}

Listing 4-4.  PartTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE

Inheritance Hierarchy

/*

 * PartTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from

PartTimeEmployee o")})

@Table(name = "CH04_ST_PT_EMPLOYEE")

public class PartTimeEmployee extends Employee implements Serializable {

 @SuppressWarnings("compatibility:-4882346458268010846")

 private static final long serialVersionUID = 4017999239159878209L;

 @Column(name = "HOURLY_WAGE")

 private double hourlyWage;

 public PartTimeEmployee() {

 }

 /* get/set methods... */

}

Outside of this entity hierarchy lives the Address entity, shown in Listing 4-5. This

entity is the target of a unidirectional @OneToOne relationship with the root (and abstract)

Person entity shown previously.

Chapter 4 Advanced Persistence Features

169

Listing 4-5.  Address.java, a Concrete Stand-Alone Entity

/*

 * Address: A standalone entity

 *

 * �To create ID generator table "CH04_ST_ADDRESS_ID_GEN": CREATE TABLE

"CH04_ST_ADDRESS_ID_GEN"

 * ("PRIMARY_KEY_NAME" VARCHAR2(4000) PRIMARY KEY, "NEXT_ID_VALUE" NUMBER(38));

 *

 * �To initialize this table with data for this entity's ID generator

'Address.id' (starting with

 * value '0'): INSERT INTO "CH04_ST_ADDRESS_ID_GEN" VALUES ('Address.id', 0);

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Address.findAll", query = "select o from Address o")})

@Table(name = "CH04_ST_ADDRESS")

@TableGenerator(name = "Address_ID_Generator", table = "CH04_ST_ADDRESS_ID_

GEN", pkColumnName = "PRIMARY_KEY_NAME",

 pkColumnValue = "Address.id", valueColumnName = "NEXT_ID_VALUE")

public class Address

 implements Serializable {

 @SuppressWarnings("compatibility:-5340972441524875330")

 private static final long serialVersionUID = -5279408726470732092L;

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Address_ID_

Generator")

 private Integer id;

 @Column(length = 400)

 private String city;

 @Column(length = 2)

 private String state;

 @Column(length = 400)

 private String street1;

 @Column(length = 400)

Chapter 4 Advanced Persistence Features

170

 private String street2;

 @Version

 private Integer version;

 @Column(name = "ZIP_CODE")

 private String zipCode;

 public Address() {

 }

 /* get/set methods... */

}

Let’s take a look at some of the annotations that were introduced in this example.

The @JoinColumn Annotation

An Employee entity has a manager field of type FullTypeEmployee, and it is mapped this way:

@ManyToOne

@JoinColumn(name = "MANAGER")

private FullTimeEmployee manager;

The manager field is of type FullTimeEmployee and maps to the to the MANAGER

column, identified by the name = "MANAGER" attribute on the @JoinColumn annotation.

The MANAGER column happens to be a foreign key reference to the table mapped by the

FullTypeEmployee entity, which in this case is the same CH04_ST_PERSON table. Defining

a foreign key for such columns is not strictly necessary, but it is generally considered

good database design. Because the manager field maps to the foreign key column, it is

considered the owning end of the relationship.

The entity at the other end of this bidirectional relationship, FullTimeEmployee,

holds the managedEmployees field.

@OneToMany(mappedBy = "manager", cascade = {CascadeType.PERSIST,

CascadeType.MERGE})

private List<Employee> managedEmployees;

Chapter 4 Advanced Persistence Features

171

Since we have already specified the mapping on the owning end, this field can

simply refer to that manager field, using the mappedBy = "manager" attribute. In this

way, both relationship fields are mapped to the same foreign key, and a join table is not

required.

Note  JPA lets you map a @OneToMany field to a foreign key on the target entity’s
table even when the target entity doesn’t expose a corresponding @ManyToOne
relationship field. To do this you use a @JoinColumn on the @OneToMany field
that identifies the remote foreign key, instead of using the mappedBy attribute.

This managedEmployees field contains a list of Employee instances, which in practice

will be concrete FullTimeEmployee and/or PartTimeEmployee instances.

The cascade = { CascadeType.PERSIST, CascadeType.MERGE } attribute indicates

that any merge or persist operation performed on this entity, Employee, must also be

applied to any FullTimeEmployee instances referenced by this relationship field. For

example, if a new Employee instance is created and assigned a FullTimeEmployee as its

manager, the act of persisting the Employee instance through EntityManager.persist()

will also cause any referenced FullTimeEmployee instances to be persisted as well, if they

have not already been persisted.

The Person entity has a relationship with Address through the homeAddress field.

@OneToOne(cascade=CascadeType.ALL)

@JoinColumn(name = "HOME_ADDRESS")

private Address homeAddress;

Because there is no corresponding field on Address that references Person, this

is a unidirectional relationship. The cascade property on @OneToOne indicates which

operations should be propagated to the referenced object. Because we have specified

a cascade rule of CascadeType.ALL, all events–DETACH, MERGE, PERSIST, REFRESH, and

REMOVE–applied to a Person are automatically applied to its homeAddress object.

The @DiscriminatorColumn Annotation

Whenever we map multiple entity classes to a single table, as we do with the

InheritanceType.SINGLE_TABLE strategy, there must be some way to identify the

concrete entity type of any given row in the table. To determine the entity type, the

Chapter 4 Advanced Persistence Features

172

persistence manager looks for a column named DTYPE in the root entity’s table to

obtain this information. If your schema requires a different column name to capture

this information, you may use the @DiscriminatorColumn annotation to identify which

column JPA should use; in Listing 4-1, the Person.java entity specifies a discriminator

column named TYPE, through the @DiscriminatorColumn(name = "TYPE") annotation.

Were we to use a column named DTYPE, as we do for the remaining examples, we could

have skipped this annotation altogether and accepted the default value.

The @DiscriminatorValue Annotation

The value that gets stored in the discriminator column is known as a discriminator

value. Each concrete entity declares, either explicitly or by tacitly accepting the

default, a unique discriminator value that serves to identify the concrete entity type

associated with each row in the table. The discriminator value defaults to the entity

name, and in this example, we have accepted this default value for each of the entities

in the hierarchy. When adapting legacy tables and data into JPA, and you wish to map

preexisting discriminator values to entities with dissimilar names, you can use the

@DiscriminatorValue annotation to specify the discriminator value to use for each

entity in the hierarchy that requires an override.

�Pros and Cons of the SINGLE_TABLE Strategy

We consider each inheritance hierarchy from a design time and performance perspective,

weighing strengths and weaknesses. We start with the SINGLE_TABLE strategy.

Design-Time Considerations

The SINGLE_TABLE mapping approach works well when the type hierarchy is fairly

simple and stable. Adding a new type to the hierarchy and adding fields to existing

supertypes simply involves adding new columns to the table. In particularly large

deployments, however, this may have an adverse impact on the index and column layout

inside the database. If your hierarchy will possibly outgrow the column limitations of

a single table, which is typically 256 columns, or if for some reason you need to map

more than one very large field to inline LOB (Large OBject) columns, you may have to

introduce an @SecondaryTable mapping. In this case, it might be wiser to adopt one

of the approaches that follow. In addition, NOT NULL constraints may not be used on

columns that are not shared by all types in the hierarchy.

Chapter 4 Advanced Persistence Features

173

Performance Impact

The SINGLE_TABLE strategy is very efficient for querying across all types in the

hierarchy, or for specific types. No table joins are required by the internal persistence

framework—only a WHERE clause listing the type identifiers is necessary. In particular,

relationships involving types that employ this mapping strategy perform well.

�Sample Client Code

As we mentioned in the “Getting Started” section of this chapter, we have put together

sample client code to test the inheritance examples, along with the other examples that

appear later in this chapter. In the Sample Code provided for this chapter, we offer both a

Java client and an HTTP servlet for each of the inheritance examples. Listing 4-6 shows a

simple Java class that serves as a façade, like an EJB Session bean façade, for instantiating

an EntityManager for the Chapter04-PersistenceIISamples-SingleTable persistence

unit and exposing the CRUD methods for manipulating the JPA entities in that unit.

Listing 4-7 shows a Java client for this service that exercises these CRUD methods and

prints out the results. We could have used an actual EJB Session façade for this purpose

as well, but we wanted to demonstrate how an ordinary Java class can interact with JPA

entities in a non-JavaEE environment.

In the Sample Code area, we offer a similar Java service façade and accompanying

Java clients for the other inheritance strategies. They are identical across each

inheritance strategy except for the persistence unit used by each, and the entity classes

that are annotated with the specific inheritance strategy details.

Similarly, we provide a simple HTTP servlet client for each inheritance strategy,

demonstrating JPA entity use in a JavaEE Web environment. These servlets replace the

Java client, and they interact directly with the same Java service façade.

Listing 4-6.  JavaServiceFacade.java, a Java Class that Serves as a Façade for the

Entities Defined in Figure 4-1

/*

 * Java service façade that obtains an EntityManager running outside of a

 * Java EE container, and illustrates CRUD operations on a handful of entities.

 * Employs auto-commit behavior, emulating the default transaction behavior of

 * a Stateless Session bean.

 */

Chapter 4 Advanced Persistence Features

174

public class JavaServiceFacade {

 private final EntityManager em;

 public JavaServiceFacade() {

 // �To support an non-JavaEE environment, we avoid injection and create

an EntityManagerFactory

 // �for the desired persistence unit. From this factory we then create

the EntityManager.

 final EntityManagerFactory emf = Persistence.createEntityManagerFactory

("Chapter04-PersistenceIISamples-SingleTable");

 em = emf.createEntityManager();

 }

 /**

 * �All changes that have been made to the managed entities in the

persistence context are

 * applied to the database and committed.

 */

 private void commitTransaction() {

 final EntityTransaction entityTransaction = em.getTransaction();

 if (!entityTransaction.isActive()) {

 entityTransaction.begin();

 }

 entityTransaction.commit();

 }

 public Object queryByRange(String jpqlStmt, int firstResult, int maxResults) {

 Query query = em.createQuery(jpqlStmt);

 if (firstResult > 0) {

 query = query.setFirstResult(firstResult);

 }

 if (maxResults > 0) {

 query = query.setMaxResults(maxResults);

 }

 return query.getResultList();

 }

Chapter 4 Advanced Persistence Features

175

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 commitTransaction();

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 entity = em.merge(entity);

 commitTransaction();

 return entity;

 }

 public void removeEmployee(Employee employee) {

 employee = em.find(Employee.class, employee.getId());

 em.remove(employee);

 commitTransaction();

 }

 /**

 * <code>select o from Employee o</code>

 */

 public List<Employee> getEmployeeFindAll() {

 �return em.createNamedQuery("Employee.findAll", Employee.class).

getResultList();

 }

 public void removeFullTimeEmployee(FullTimeEmployee fullTimeEmployee) {

 �fullTimeEmployee = em.find(FullTimeEmployee.class, fullTimeEmployee.

getId());

 em.remove(fullTimeEmployee);

 commitTransaction();

 }

 /**

 * <code>select o from FullTimeEmployee o</code>

 */

Chapter 4 Advanced Persistence Features

176

 public List<FullTimeEmployee> getFullTimeEmployeeFindAll() {

 �return em.createNamedQuery("FullTimeEmployee.findAll",

FullTimeEmployee.class).getResultList();

 }

 public void removePartTimeEmployee(PartTimeEmployee partTimeEmployee) {

 partTimeEmployee = em.find(PartTimeEmployee.class, partTimeEmployee.getId());

 em.remove(partTimeEmployee);

 commitTransaction();

 }

 /**

 * <code>select o from PartTimeEmployee o</code>

 */

 public List<PartTimeEmployee> getPartTimeEmployeeFindAll() {

 �return em.createNamedQuery("PartTimeEmployee.findAll",

PartTimeEmployee.class).getResultList();

 }

 public void removePerson(Person person) {

 person = em.find(Person.class, person.getId());

 em.remove(person);

 commitTransaction();

 }

 /**

 * <code>select o from Person o</code>

 */

 public List<Person> getPersonFindAll() {

 return em.createNamedQuery("Person.findAll", Person.class).getResultList();

 }

 public void removeAddress(Address address) {

 address = em.find(Address.class, address.getId());

 em.remove(address);

 commitTransaction();

 }

Chapter 4 Advanced Persistence Features

177

 /**

 * <code>select o from Address o</code>

 */

 public List<Address> getAddressFindAll() {

 return em.createNamedQuery("Address.findAll", Address.class).getResultList();

 }

}

Listing 4-7.  JavaServiceFacadeClient.java, a Java Client to the JavaServiceFacade

that Illustrates Removing, Creating, and Retrieving the Entities Defined in Figure 4-1

/*

 * Java client for a Java service façade

 */

public class JavaServiceFacadeClient {

 public static void main(String[] args) {

 try {

 final JavaServiceFacade javaServiceFacade = new JavaServiceFacade();

 //---

 // Clear out any previous test data. Due to "cascade" settings on the

 // �"Person.homeAddress" relationship field, removing a Person will

remove its

 // Address as well.

 //---

 �for (PartTimeEmployee parttimeemployee : (List<PartTimeEmployee>)

 javaServiceFacade.getPartTimeEmployeeFindAll()) {

 javaServiceFacade.removePartTimeEmployee(parttimeemployee);

 }

 for (FullTimeEmployee fulltimeemployee : (List<FullTimeEmployee>)

 javaServiceFacade.getFullTimeEmployeeFindAll()) {

 javaServiceFacade.removeFullTimeEmployee(fulltimeemployee);

 }

Chapter 4 Advanced Persistence Features

178

 //---

 // �Create FullTimeEmployee and PartTimeEmployee instances, along

with their Address

 // objects, and persist them in the database.

 //---

 Address add = new Address();

 add.setCity("San Mateo");

 add.setState("CA");

 add.setStreet1("1301 Ashwood Ct");

 add.setZipCode("94402");

 javaServiceFacade.persistEntity(add);

 FullTimeEmployee ft = new FullTimeEmployee();

 ft.setAnnualSalary(1000D);

 ft.setDepartment("HQ");

 ft.setEmail("x@y.com");

 ft.setFirstName("Brian");

 ft.setLastName("Jones");

 ft.setHomeAddress(add);

 ft = javaServiceFacade.persistEntity(ft);

 add = new Address();

 add.setCity("San Francisco");

 add.setState("CA");

 add.setStreet1("53 Surrey St");

 add.setZipCode("94131");

 javaServiceFacade.persistEntity(add);

 final PartTimeEmployee pt = new PartTimeEmployee();

 pt.setHourlyWage(100D);

 pt.setDepartment("SALES");

 pt.setEmail("a@b.com");

 pt.setFirstName("David");

 pt.setLastName("Holmes");

 pt.setHomeAddress(add);

 pt.setManager(ft);

 javaServiceFacade.persistEntity(pt);

Chapter 4 Advanced Persistence Features

179

 //---

 // �Retrieve the entities through their type-specific JPQL queries

and print them out

 //---

 System.out.println("\nPersons:\n");

 for (Person person : (List<Person>) javaServiceFacade.getPersonFindAll()) {

 printPerson(person);

 }

 System.out.println("\nEmployees:\n");

 �for (Employee employee : (List<Employee>) javaServiceFacade.

getEmployeeFindAll()) {

 printEmployee(employee);

 }

 System.out.println("\nPartTimeEmployees:\n");

 for (PartTimeEmployee parttimeemployee : (List<PartTimeEmployee>)

 javaServiceFacade.getPartTimeEmployeeFindAll()) {

 printPartTimeEmployee(parttimeemployee);

 }

 System.out.println("\nFullTimeEmployees:\n");

for (FullTimeEmployee fulltimeemployee : (List<FullTimeEmployee>)

javaServiceFacade.getFullTimeEmployeeFindAll()) {

 printFullTimeEmployee(fulltimeemployee);

 }

 System.out.println("\nAddresses:\n");

 �for (Address address : (List<Address>) javaServiceFacade.

getAddressFindAll()) {

 printAddress(address);

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

Chapter 4 Advanced Persistence Features

180

 private static void printEmployee(Employee employee) {

 System.out.println("dept = " + employee.getDepartment());

 System.out.println("email = " + employee.getEmail());

 System.out.println("manager = " + employee.getManager());

 System.out.println("firstName = " + employee.getFirstName());

 System.out.println("id = " + employee.getId());

 System.out.println("lastName = " + employee.getLastName());

 System.out.println("version = " + employee.getVersion());

 System.out.println("homeAddress = " + employee.getHomeAddress());

 }

 private static void printFullTimeEmployee(FullTimeEmployee fulltimeemployee) {

 System.out.println("annualSalary = " + fulltimeemployee.getAnnualSalary());

 System.out.println("managedEmployees = " + �fulltimeemployee.

getManagedEmployees());

 System.out.println("dept = " + fulltimeemployee.getDepartment());

 System.out.println("email = " + fulltimeemployee.getEmail());

 System.out.println("manager = " + fulltimeemployee.getManager());

 System.out.println("firstName = " + fulltimeemployee.getFirstName());

 System.out.println("id = " + fulltimeemployee.getId());

 System.out.println("lastName = " + fulltimeemployee.getLastName());

 System.out.println("version = " + fulltimeemployee.getVersion());

 System.out.println("homeAddress = " + fulltimeemployee.getHomeAddress());

 }

 private static void printPartTimeEmployee(PartTimeEmployee parttimeemployee) {

 System.out.println("hourlyWage = " + parttimeemployee.getHourlyWage());

 System.out.println("dept = " + parttimeemployee.getDepartment());

 System.out.println("email = " + parttimeemployee.getEmail());

 System.out.println("manager = " + parttimeemployee.getManager());

 System.out.println("firstName = " + parttimeemployee.getFirstName());

 System.out.println("id = " + parttimeemployee.getId());

 System.out.println("lastName = " + parttimeemployee.getLastName());

 System.out.println("version = " + parttimeemployee.getVersion());

 System.out.println("homeAddress = " + parttimeemployee.getHomeAddress());

 }

Chapter 4 Advanced Persistence Features

181

 private static void printPerson(Person person) {

 System.out.println("firstName = " + person.getFirstName());

 System.out.println("id = " + person.getId());

 System.out.println("lastName = " + person.getLastName());

 System.out.println("version = " + person.getVersion());

 System.out.println("homeAddress = " + person.getHomeAddress());

 }

 private static void printAddress(Address address) {

 System.out.println("city = " + address.getCity());

 System.out.println("id = " + address.getId());

 System.out.println("state = " + address.getState());

 System.out.println("street1 = " + address.getStreet1());

 System.out.println("street2 = " + address.getStreet2());

 System.out.println("version = " + address.getVersion());

 System.out.println("zipCode = " + address.getZipCode());

 }

}

�Common Base Table with Joined Subclass Tables
(InheritanceType.JOINED)
In the JOINED strategy, each entity in the hierarchy introduces its own table, but only to

map fields that are declared on that entity type. The root entity in the hierarchy maps to

a root table that defines the primary key structure to be used by all tables in the entity

hierarchy, as well as the discriminator column and optionally a version column. Each

of the other tables in the hierarchy defines a primary key that matches the root table’s

primary key, and they optionally add a foreign key constraint from their ID column(s)

to the root table’s ID column(s). The non-root tables do not hold discriminator type or

version columns. Since each entity instance in the hierarchy is represented by a virtual

row that spans its own table as well as the tables for all of its superentities, it eventually

joins with a row in the root table that captures this discriminator type and version

information. Querying all the fields of any type requires a join across all of the tables

within the supertype hierarchy.

Chapter 4 Advanced Persistence Features

182

Figure 4-3 illustrates the schema that maps our entities using the JOINED inheritance

strategy. As in the previous example, we have prefixed the tables with the strategy

indicator, in this case CH04_JOIN_, so that all of the tables in these examples can be

loaded into a single test schema without danger of name collision.

Figure 4-3.  A schema that maps our example entities using the JOINED strategy.
Each entity in the hierarchy has its own table to persist its declared fields. The table
CH04_JOIN_ADDRESS holds associated Address instances.

�Example Entity Classes

Let’s now take a look at the entity classes that map to the previous schema. We have

omitted the class bodies for each of these entities, since the only differences between

these entities and the ones shown in the previous SINGLE_TABLE strategy example lie

in the entity’s class-level annotations. Listings 4-8 through 4-11 show the entities in the

Person hierarchy, while Listing 4-12 shows the Address entity.

Chapter 4 Advanced Persistence Features

183

Listing 4-8.  Person.java, an Abstract Root Entity in a JOINED Inheritance

Hierarchy

/*

 * Person: An abstract entity, and the root of an inheritance hierarchy

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@Table(name = "CH04_JOIN_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_JOIN_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Listing 4-9.  Employee.java, an Abstract Intermediate Entity in a JOINED

Inheritance Hierarchy

/*

 * Employee: An abstract entity that extends Person

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Employee.findAll", query = "select o from Employee o")})

@Table(name = "CH04_JOIN_EMPLOYEE")

public abstract class Employee extends Person implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Chapter 4 Advanced Persistence Features

184

Listing 4-10.  FullTimeEmployee.java, a Concrete Leaf Entity in a JOINED

Inheritance Hierarchy

/*

 * FullTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from

FullTimeEmployee o")})

@Table(name = "CH04_JOIN_FT_EMPLOYEE")

public class FullTimeEmployee extends Employee implements Serializable

{ /* The class body is identical across all inheritance strategies */

}

Listing 4-11.  PartTimeEmployee.java, a Concrete Leaf Entity in a JOINED

Inheritance Hierarchy

/*

 * PartTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from

PartTimeEmployee o")})

@Table(name = "CH04_JOIN_PT_EMPLOYEE")

public class PartTimeEmployee extends Employee implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Listing 4-12.  Address.java, a Concrete Stand-Alone Entity

/**

 * Address: A standalone entity

 */

@Entity

@NamedQueries({

Chapter 4 Advanced Persistence Features

185

 @NamedQuery(name = "Address.findAll", query = "select o from Address o")})

@Table(name = "CH04_JOIN_ADDRESS")

@TableGenerator(name = "Address_ID_Generator", table = "CH04_JOIN_ADDRESS_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME",pkColumnValue = "Address.id",

 valueColumnName = "NEXT_ID_VALUE")

public class Address implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

You can see from the highlighted differences that they are very minimal. Ignoring

table name differences, which are thrown in simply out of our desire to avoid name

collisions with the tables in the other examples, only the @Inheritance annotation

has changed on the root entity Person. Aside from its table and sequence names, the

Address entity is identical to Listing 4-5, the previous example of the SINGLE_TABLE

strategy.

�Pros and Cons of the JOINED Strategy

Design-Time Considerations

With the JOINED strategy, introducing a new type to the hierarchy, at any level,

simply involves interjecting a new table into the schema. Subtypes of that type will

automatically join with that new type at runtime. Similarly, modifying any entity type in

the hierarchy by adding, modifying, or removing fields affects only the immediate table

mapped to that type. This option provides the greatest flexibility at design time, since

changes to any type are always limited to that type’s dedicated table.

Performance Impact

The JOINED approach does not suffer from the use of UNION operations, but inherently

requires multiple JOIN operations to perform just about any query. Querying across

all instances initially involves only a single query of the topmost base entity’s table to

retrieve a list of all of the primary keys of instances in the hierarchy. Due to the presence

of the discriminator column in the base entity’s table, resolution of these instances into

entity classes can be efficient, depending on the lazy loading strategies employed by the

persistence manager implementation.

Chapter 4 Advanced Persistence Features

186

�Single-Table-per-Outermost Concrete Entity Class
(InheritanceType.TABLE_PER_CLASS)
Support for the final inheritance mapping strategy is optional for persistence providers.

It is not required for compliance with the JPA spec, so portable applications should avoid

it until it is officially mandated or at least widely supported. This inheritance mapping

option maps each outermost concrete entity to its own, dedicated table. Each table maps

all of the fields in that entity’s entire type hierarchy; since there is no shared table, no

columns are shared. The only table structure requirement is that all tables must share

a common primary key structure, meaning that the name(s) and type(s) of the primary

key column(s) must match across all tables in the hierarchy.

For good measure, Figure 4-4 illustrates our third type of hierarchy using the TABLE_

PER_CLASS inheritance strategy, which demonstrates the use of the single-table-per-

entity subclass approach. The tables are required to share nothing in common except

the structure of their primary key; and since the table implicitly identifies the entity type,

no discriminator column is required. Note that while tables are shown for the abstract

entities Person and Employee, they are not actually used. Future versions of EclipseLink

(the reference implementation of JPA) will probably be amended to suppress generation

of these tables when using the TABLE_PER_CLASS inheritance strategy. Annotating these

classes @MappedSuperclass instead of @Entity would prevent classes from being

generated in this case but would also prevent these classes from participating in Entity

relationships or JPQL statements.

Chapter 4 Advanced Persistence Features

187

�Example Entity Classes

Listings 4-13 through 4-16 show how the entities mapped to these tables are annotated.

Since only the class-level annotations are different from the previous strategy, the

method bodies are stripped out.

Listing 4-13.  Person.java, an Abstract Root Entity in a TABLE_PER_CLASS

Inheritance Hierarchy

/**

 * Person: An abstract entity, and the root of an inheritance hierarchy

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

Figure 4-4.  A schema that maps our example entities using the TABLE_PER_
CLASS strategy. Concrete leaf entities are mapped to dedicated tables that contain
columns that map all of their declared and inherited fields.

Chapter 4 Advanced Persistence Features

188

@Table(name = "CH04_TPC_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_TPC_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

public abstract class Person implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Listing 4-14.  Employee.java, an Abstract Intermediate Entity in a TABLE_PER_

CLASS Inheritance Hierarchy

/*

 * Employee: An abstract entity that extends Person

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Employee.findAll", query = "select o from Employee o")})

@Table(name = "CH04_TPC_EMPLOYEE")

public abstract class Employee extends Person implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Listing 4-15.  FullTimeEmployee.java, a Concrete Leaf Entity in a TABLE_PER_

CLASS Inheritance Hierarchy

/*

 * FullTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "FullTimeEmployee.findAll", query = "select o from

FullTimeEmployee o")})

@Table(name = "CH04_TPC_FT_EMPLOYEE")

public class FullTimeEmployee extends Employee implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Chapter 4 Advanced Persistence Features

189

Listing 4-16.  PartTimeEmployee.java, a Concrete Leaf Entity in a TABLE_PER_CLASS

Inheritance Hierarchy

/*

 * PartTimeEmployee: A concrete leaf entity

 */

@Entity

@NamedQueries({

 �@NamedQuery(name = "PartTimeEmployee.findAll", query = "select o from

PartTimeEmployee o")})

@Table(name = "CH04_TPC_PT_EMPLOYEE")

public class PartTimeEmployee extends Employee implements Serializable {

 /* The class body is identical across all inheritance strategies */

}

Again, the Address class in the TABLE_PER_CLASS example is identical to the previous

examples, aside from the table and sequence names we have chosen.

�Pros and Cons of the TABLE_PER_CLASS Strategy

Design-Time Considerations

With the TABLE_PER_CLASS strategy, as new outermost concrete types are introduced

into the hierarchy, new tables are added. This is nice because neither existing tables nor

their data are affected in any way. However, since each type also maps all of its supertype

fields, introducing a new field on a base class, or a new base entity itself, requires

modifying the tables for all affected subtypes across the hierarchy to map any newly

introduced fields.

Performance Impact

With the TABLE_PER_CLASS approach, querying across multiple types requires a UNION

select statement, which may not perform well, but querying a single type is very efficient,

since only one table is involved in the query. Polymorphic relationships (which involve

supertypes) in this hierarchy should be avoided since they will necessarily require this

UNION operation to resolve to concrete subtype instances.

Chapter 4 Advanced Persistence Features

190

�Comparison of O/R Implementation Approaches
Now that we have explored the three inheritance mapping implementations, let’s look

at some of the characteristics of a class inheritance hierarchy that should be considered

when choosing which implementation approach to use for your type hierarchies. The

following list contains subjective questions about your own entity hierarchies. They

do not have precise answers; rather, they are meant to stimulate design considerations

when building your application.

•	 Class hierarchies can be static, with a fixed number of subtypes, or

they can be dynamic, with varying numbers of subtypes. How often

will you need to incorporate new subtypes into your hierarchy?

•	 Hierarchies can be deep, with lots of subclasses, or they can be

shallow, with only a few. How granular is your hierarchy?

•	 The types in a hierarchy may diverge greatly, with very different sets

of properties on the subclasses than on the base class, or with very

little difference in properties. How much do the persistent property

sets of your entities diverge from one another?

•	 Will other entities define relationships with classes in this type hierarchy;

and, if so, will the base classes frequently be the referenced type?

•	 Will types in this hierarchy be frequently queried, updated, or

deleted? How will the presence or absence of SQL JOIN or UNION

operations impact your application’s performance?

•	 During the life of your application, how frequently will you be

updating the structure of the type hierarchy itself? The impact

of this type of change varies for each inheritance strategy with

considerations that include the following:

•	 Adding or removing new types to the hierarchy (as when

refactoring classes).

•	 Adding, removing, or modifying fields on an entity in the

hierarchy.

•	 Adding, removing, or modifying relationships involving types in this

hierarchy.

Chapter 4 Advanced Persistence Features

191

Note  A comparison of the performance of these three inheritance strategies,
along with details on how to set up your own performance comparison tests, is
explored in Chapter 9. Check out the results of our performance tests; and test
your own entity hierarchies as you build them, to help you decide which strategy
makes the best sense in the context of your application.

�Using Abstract Entities, Mapped Superclasses,
and Non-Entity Classes in an Inheritance Hierarchy
Within an entity class hierarchy, JPA allows both non-entity classes and abstract classes to

be intermixed. Using the JOINED example above, let’s look at how we map these classes.

�Abstract Entity Class
As shown in the previous section on inheritance hierarchies, JPA entities may be either

concrete or abstract. An abstract entity is simply an entity that cannot be instantiated

on its own—it can still be involved in entity relationships and queries, and its fields are

persisted following the mapping strategy for its type hierarchy. Listing 4-17 is an example

of one of our abstract entities.

Listing 4-17.  Person.java, an Abstract Root Entity in a JOINED Inheritance

Hierarchy

/**

 * Person: An abstract entity, and the root of an inheritance hierarchy

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@Table(name = "CH04_JOIN_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_JOIN_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

Chapter 4 Advanced Persistence Features

192

public abstract class Person implements Serializable {

 ...

 @OneToOne(cascade=CascadeType.ALL)

 @JoinColumn(name = "HOME_ADDRESS")

 private Address homeAddress;

 ...

}

Not only is the abstract Person entity queryable (here we have defined a "Person.

findAll" named query), it also holds an association with the Address entity that

is shared by all of its subclasses. Although Person is abstract, it can specify its own

mappings and its own table. It just won’t have its own discriminator value, since there

will never be a concrete entity instance of the base class Person.

�Mapped Superclass (@MappedSuperclass)
A mapped superclass is a non-entity class that is nonetheless recognized by the

persistence manager, and which declares persistent fields and their mappings. Since

it is not an entity, it may not be the target of persistent entity relationships, nor may

it be used in JPQL queries. It may, however, provide persistent properties common

to any entities that extend it, whether directly or indirectly. Starting with the previous

inheritance example, let us transform the root entity, Person, into a mapped superclass.

Listings 4-18 and 4-19 show the transformed classes.

Listing 4-18.  Person.java, an Abstract Mapped Superclass (Non-Entity)

/**

 * Person: A Mapped Superclass, and the base class (but not the root entity)

 * of an inheritance hierarchy

 *

 * To create ID generator table "CH04_MS_PERSON_ID_GEN": CREATE TABLE

 * "CH04_MS_PERSON_ID_GEN" ("PRIMARY_KEY_NAME" VARCHAR2(4000) PRIMARY KEY,

 * "NEXT_ID_VALUE" NUMBER(38));

 *

Chapter 4 Advanced Persistence Features

193

 * �To initialize this table with data for this entity's ID generator

'Person.id'

 * (starting with value '0'): INSERT INTO "CH04_MS_PERSON_ID_GEN" VALUES

 * ('Person.id', 0);

 */

@MappedSuperclass

@TableGenerator(name = "Person_ID_Generator", table = "CH04_MS_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

public abstract class Person implements Serializable {

 @SuppressWarnings("compatibility:-7074714881275658754")

 private static final long serialVersionUID = 5291172566067954515L;

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person_ID_

Generator")

 private Integer id;

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

 @OneToOne(cascade=CascadeType.ALL)

 @JoinColumn(name = "HOME_ADDRESS")

 private Address homeAddress;

 @Version

 private Integer version;

 public Person() {

 }

 /* get/set methods */

}

Chapter 4 Advanced Persistence Features

194

Listing 4-19.  Employee.java, an Abstract Root Entity in a JOINED Entity

Inheritance Hierarchy, and a Subclass of a Mapped Superclass

/*

 * �Employee: The root of an inheritance hierarchy. Extends Person, a Mapped

Superclass.

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Employee.findAll", query = "select o from Employee o")})

@Table(name = "CH04_MS_EMPLOYEE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Employee extends Person implements Serializable {

 @SuppressWarnings("compatibility:276774077273820023")

 private static final long serialVersionUID = -8529011412038476148L;

 @Column(length = 400)

 private String department;

 @Column(length = 400)

 private String email;

 @ManyToOne

 @JoinColumn(name = "MANAGER")

 private FullTimeEmployee manager;

 public Employee() {

 }

 /* get/set methods */

}

The Person class becomes a mapped superclass (@MappedSuperclass), and it is

stripped of its @NamedQuery, @Table, and @Inheritance annotations. @Inheritance is

moved onto Employee, which becomes the new root entity in the hierarchy.

While a mapped superclass may not be referenced as the target of a persistence

relationship field, it may have persistence relationship fields of its own, so the

homeAddress field that references the Address entity is perfectly legal.

Chapter 4 Advanced Persistence Features

195

Also note that we can continue to define the @Id and @Version fields on the mapped

superclass, and we can even continue to specify an ID generator for the id field. Entities

that extend this mapped superclass map these fields, along with all other fields defined

on the mapped superclass, onto their own tables.

�Non-Entity Class
Entities may also make use of non-entity classes within their type hierarchies. An

entity may subclass a non-entity class, or a non-entity class may extend it. Such classes

may be concrete or abstract, and so they may be instantiable, but their fields will not

be persistable or maintained by the JPA persistence framework. They also may not

participate at all in persistent entity relationships or JPQL queries. If a class in a type

hierarchy serves only as an organizing construct for its subclasses, and it is not involved

in entity relationships (and there is no other reason to mark it as an entity), then it is best

left as an ordinary class. It can always be turned into an entity later by annotating it or

designating it an entity in the XML descriptor.

�Non-Entity Single-Value and Collection Fields
Finally, an entity may embed a non-entity class, or a collection of non-entity classes, for

its own private use. Such embedded references may be to single objects or to collections

of objects. Single-object fields are typically of the type of which we are already familiar:

Basic object types, like String, int, or Long, which are implicitly marked @Basic. Single-

object fields may also have complex types, and we are familiar with these already as

entity references, using fields marked @OneToOne or @ManyToOne. When fields reference

complex non-entity types, they are marked @Embedded and the target class must be

annotated @Embeddable. Collection references to non-entity objects are marked @

ElementCollection, and they may be collections of either @Basic or @Embeddable class

types. Let’s take a closer look at these non-entity field references.

�@Embedded and @Embeddable

An entity or mapped superclass may contain fields marked @Embedded, and their type

must be a class that is correspondingly marked @Embeddable. Like a mapped superclass,

an embeddable class may hold mapping metadata for its persistent fields. When used

in this way, the field that references an embeddable object is marked @Embedded and the

Chapter 4 Advanced Persistence Features

196

fields on the embeddable class map to the owning entity’s table. Embeddable classes

are wholly owned by the class that embeds them and are persisted, merged, queried,

and removed in concert with their owning object. Instances of embeddable classes have

no persistent identity of their own, and they may not be passed around among entities.

They are generally used for their convenience as a field organization tool, allowing a set

of persistent fields to be encapsulated as a single field on the owning entity.

As an example, let us transform our Address entity (Listing 4-20) into an embeddable

class and embed it as a field on the Person entity (Listing 4-21). Figure 4-5 shows the

underlying schema configured like our JOINED hierarchy, with the exception that the

data columns on CH04_JOIN_ADDRESS have been folded into the CH04_EMB_PERSON table.

Figure 4-5.  Table CH04_EMB_PERSON holds columns for all fields in the Person
entity, as well as fields from an embedded Address

The transformation of Address.java into an @Embeddable, non-entity class is shown

in Listing 4-20. The @Id and @Version fields are now gone, since an Address no longer

has identity on its own. The Employee, FullTimeEmployee, and PartTimeEmployee

entities are unchanged from the JOINED hierarchy configuration.

Chapter 4 Advanced Persistence Features

197

Listing 4-20.  Address.java, an Embeddable Non-Entity Class

/**

 * Address: An embeddable non-entity class

 */

@Embeddable

public class Address implements Serializable {

 @SuppressWarnings("compatibility:-5340972441524875330")

 private static final long serialVersionUID = -5279408726470732092L;

 @Column(length = 400)

 private String city;

 @Column(length = 2)

 private String state;

 @Column(length = 400)

 private String street1;

 @Column(length = 400)

 private String street2;

 @Column(name = "ZIP_CODE")

 private String zipCode;

 public Address() {

 }

 /* get/set methods */

}

Listing 4-21.  Person.java, an Entity that Holds an @Embedded homeAddress Field

/**

 * Person: An abstract entity, and the root of an inheritance hierarchy

 *

 * �To create ID generator table "CH04_EMB_PERSON_ID_GEN": CREATE TABLE

"CH04_EMB_PERSON_ID_GEN"

 * ("PRIMARY_KEY_NAME" VARCHAR2(4000) PRIMARY KEY, "NEXT_ID_VALUE" NUMBER(38));

 *

Chapter 4 Advanced Persistence Features

198

 * �To initialize this table with data for this entity's ID generator

'Person.id' (starting with

 * value '0'): INSERT INTO "CH04_EMB_PERSON_ID_GEN" VALUES ('Person.id', 0);

 */

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@Table(name = "CH04_EMB_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_EMB_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

 @SuppressWarnings("compatibility:-7074714881275658754")

 private static final long serialVersionUID = 5291172566067954515L;

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person_ID_

Generator")

 private Integer id;

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

 @Embedded

 private Address homeAddress;

 @Version

 private Integer version;

 public Person() {

 }

 /* get/set methods */

}

When a Person instance is persisted, the values of fields on its homeAddress instance

are saved into columns on the CH04_EMB_PERSON table.

Chapter 4 Advanced Persistence Features

199

�@ElementCollection

A useful mapping feature introduced since JPA 2.0 is the ability to embed collections

of non-entity objects within an entity or mapped superclass and to make them wholly

owned by the embedding class. The @ElementCollection is the collection analog to

using @Embeddable and @Basic fields; only the instances in the collection are always

stored in a separate table from the owning entity or mapped superclass. Similarly, it is

the non-entity analog to the entity relationship types @OneToMany. Listing 4-22 shows our

Employee entity holding two element collections: one of @Embeddable instances and one

of @Basic instances.

Listing 4-22.  Person.java, an Entity that Holds two @ElementCollection fields

@Entity

public abstract class Person implements Serializable {

 ...

 @ElementCollection(fetch=FetchType.LAZY)

 private List<Address> addresses;

 @ElementCollection

 Private Collection<String> favoriteCities;

 public Person() {

 }

 /* get/set methods */

}

This code snippet demonstrates some of the simplest forms of @ElementCollection

usage, largely assuming default mappings. By using more advanced mappings, you can

customize the way the collection mapping table is wired up to the root table for Person,

whether lookup should be eager or lazy, column and table names, how to specify an

element collection as a Map, and many other details.

Chapter 4 Advanced Persistence Features

200

�Polymorphic Relationships
As shown in the previous examples, entity relationships can be specified between both

concrete and abstract entities in a hierarchy. You can define a relationship with any

entity in an inheritance hierarchy, and it will implicitly involve subtypes of that entity

as well. Even persistent entity relationship fields declared on mapped superclasses are

polymorphic. A relationship that implicitly includes subtypes in this way is known as a

polymorphic relationship.

In JPA, relationships may be defined against any other entity class, including

abstract supertype entities in a hierarchy. This support for polymorphic relationships

complements JPA’s support for mapping class hierarchies, and it provides a powerful

construct for querying entities at any level across an entity type hierarchy. In the

previous example of entity hierarchy, the FullTimeEmployee.manager-to-Employee.

managedEmployees relationship illustrates a one-to-many, bidirectional relationship

between the concrete FullTimeEmployee (manager) and its collection of abstract

Employee (managedEmployee) instances. This example shows a relationship between

entities within the same hierarchy, but it could just as easily be defined between entities

in separate entity hierarchies.

�Relationship Mapping
Mapping polymorphic relationships requires no special knowledge about the

inheritance table mapping strategy for either entity in the relationship. This is evident

from the fact that the relationship field mappings remained identical across our

sample entity classes as we applied each of the three inheritance mapping strategies.

All relationships map to the primary key of the target class, a mapping assumption

made possible because of the spec requirement that all classes in a class hierarchy

share a common primary key structure, even if each subclass maps to its own table.

The mapping information defined for each entity is sufficient for the JPA persistence

framework to resolve base type references onto the actual subclass instances.

Relationship fields are derived automatically using JOIN and UNION statements, and these

queries are further constrained by the use of WHERE clauses, which refer to discriminator

column values.

Chapter 4 Advanced Persistence Features

201

�Polymorphic JPQL Queries
Similarly, JPQL and criteria API queries can select or join entities of a supertype class,

and any instances of subtypes matching the query criteria will be returned in the query

result list. What’s more, queries may use internal JOIN clauses to bind references to types

anywhere along a supertype hierarchy, with the only restriction being that the left and

right side of the JOIN clause resolve to a common base type.

In the previous inheritance hierarchy, the "Person.findAll" and "Employee.

findAll" named queries defined on the abstract Person and Employee entities are

examples of polymorphic queries. Instances returned from these queries are all concrete

entities—either FullTimeEmployee or PartTimeEmployee.

By way of example, let us look at some code from our sample client. Listing 4-23

queries all Employee instances whose home address is somewhere in San Mateo. The

query is issued on the abstract Employee entity, and it traverses through the homeAddress

relationship field defined on the root Person entity. Any entities that are returned from

this will be concrete, either FullTimeEmployee or PartTimeEmployee.

Listing 4-23.  Code Listing that Demonstrates Polymorphic Relationship Usage

in JPQL

// Ad-hoc JPQL to demonstrate polymorphic relationship usage

final String stmt =

 "select o from Employee o where o.homeAddress.city = 'San Mateo'";

final List<Employee> emps = em.createQuery(stmt).getResultList();

for (Employee emp : emps)

{

 System.out.println(emp.getFirstName());

 System.out.println(emp.getLastName());

}

�Using Native SQL Queries
JPQL offers the ability to reference entity fields by name and join with other entities

through relationships, without regard to the underlying mapping details. This offers

a fair degree of independence between the database schema definer and the query

definer roles. There are times, however, when you’ll want to take control of the query to

Chapter 4 Advanced Persistence Features

202

leverage specific indexes, return sparse data sets, or otherwise issue a query that is more

conveniently expressed in SQL. JPA lets you do this easily, and it even offers support for

mapping the query results back to entities if you desire.

As an example, you may wish to use a native SQL query to return just the name and

primary key column data from a table that happens to map to one of your entities. The

queried name values could then be presented to the user through a combo box, and only

when the user chooses a name would you go out to the EntityManager and bind that

name’s corresponding primary key value to an entity instance using the EntityManager.

find(Object primaryKey) call. Had you used JPQL to return a collection of fully loaded

entities, instead of just the sparse key and name data set, you would have queried more

data fields than necessary, causing more resources to be consumed than were actually

needed.

The example in Listing 4-24 shows how to define a named native SQL query that

returns instances of entity type Address. Executing this named native query is the same

to the client as executing the equivalent JPQL named query.

Listing 4-24.  Code Listing that Demonstrates Native SQL Support

@NamedNativeQueries({

 @NamedNativeQuery(name = "Address.findAllNative",

 �query = "select id, city, state, street1, street2, zip_code from ch04_

join_address",

 resultClass=Address.class)})

�The Query Criteria API
JPA, since version 2.0, introduced an alternative to JPQL for defining and executing

queries, using strongly typed components. Using only Java, the criteria API allows you

to dynamically construct arbitrarily complex queries and execute them to return the

same results that could be achieved through JPQL, but with compile-time type checking.

Since the same underlying query engine is used for both the JPQL and criteria API, they

are equivalent in strength, and there is an analogous criteria API call for each feature

that can be expressed in JPQL. For situations where a query is also dynamically defined

through a query builder, for instance, the criteria API can be more manageable than

dynamically constructing an equivalent JPQL statement. We discussed in Chapter 3

which changes were introduced in JPA 2.2 as part of Java EE 8.

Chapter 4 Advanced Persistence Features

203

While the full criteria API, like the full feature set of the JPQL language, goes beyond

the scope of this book, we show an example of how it can be used in Listing 4-25.

Listing 4-25.  Code Listing that Demonstrates use of the query criteria API

/**

 * Criteria API equivalent to the following JPQL query:

 *

 * select o from Address o where o.city = :city

 */

public List<Address> getAddressFindByCity(String city) {

 // Define a query to return objects of type Address

 CriteriaBuilder cb = em.getCriteriaBuilder();

 CriteriaQuery<Address> c = cb.createQuery(Address.class);

 Root<Address> addr = c.from(Address.class);

 // Add the SELECT clause

 c.select(addr);

 // Define a predicate in the WHERE clause to compare the city

 // property with a parameter value

 ParameterExpression<String> p = cb.parameter(String.class, "city");

 c.where(cb.equal(addr.get("city"), p));

 // Bind the 'city' parameter

 TypedQuery<Address> q = em.createQuery(c);

 q.setParameter("city", city);

 // Return the query results as a List<Address>

 return q.getResultList();

}

The criteria API is a more formal approach but can be extremely useful in the right

application situation.

Chapter 4 Advanced Persistence Features

204

�Composite Primary Keys and Nested Foreign Keys
When mapping entities to a new schema, it is good practice to designate a single,

dedicated column to be the primary key column, as we have done in the previous

examples. An entity’s primary key value cannot be updated once it has been assigned.

Also, dedicating a column to hold the primary key instead of using a name or other

column that holds meaningful property data eliminates potential conflicts that might

arise should a user wish to modify a semantically significant field that happens to be

part of the primary key. It is also desirable to follow a single approach that is common to

all of your entities, and use of a single dedicated column for the primary key is a simple

pattern that we have found to work well.

There are cases, however, in which the schema has already been defined and is being

adapted into Java as JPA entities, and cases in which, for other reasons, a composite

primary key is required. A legacy case that we run into a lot occurs when a composite

primary key includes columns, such as foreign key columns, that are also involved

in relationships with other entities. On top of this, these relationships are necessarily

mandatory (since all primary key columns must be NOT NULL), so you will need to be

careful about how you persist your entity graphs when you need to persist such related

entities in order to avoid NOT NULL constraints when the row data is inserted during the

EntityManager.persist() call.

There are two ways you can use a composite primary key to implement your entity’s

identity. They are described in the following sections.

�Using an Embedded Composite Key (@EmbeddedId)
If the fields of the composite key do not represent useful property data that you consider

to be part of the entity definition, you can designate a single entity field to be the primary

key field and set its type to be the composite key class type. This composite key class is

marked @Embedded. Its fields will be mapped as if they were part of the entity itself, but

they will only be accessible to clients through the composite field.

The embedded composite key field myId on the entity is annotated @EmbeddedId.

In Listing 4-26, we introduce the @Embeddable class MyIdClass, containing the field’s

firstName and lastName fields that were previously on Person.

Chapter 4 Advanced Persistence Features

205

Listing 4-26.  MyIdClass.java, an @Embeddable class suitable for use as an

@EmbeddedId

@Embeddable

public class MyIdClass {

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

 @Override

 public boolean equals(Object obj) {

 return (obj instanceof MyIdClass &&

 firstName.equals(((MyIdClass) obj).getFirstName()) &&

 lastName.equals(((MyIdClass) obj).getLastName()));

 }

 @Override

 public int hashCode() {

 return System.identityHashCode(this);

 }

 /* get/set methods */

}

Listing 4-27 shows this new class being used as an @EmbeddedId on the Person class.

Listing 4-27.  Person.java, Illustrating Usage of a Composite Primary Key Using

an @EmbeddedId Annotation

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@Table(name = "CH04_EMBID_PERSON")

public class Person implements Serializable {

 @SuppressWarnings("compatibility:-7074714881275658754")

 private static final long serialVersionUID = 5291172566067954515L;

 @EmbeddedId

Chapter 4 Advanced Persistence Features

206

 private MyIdClass myId = new MyIdClass();

 @Version

 private Integer version;

 public Person() {

 }

 /* get/set methods */

}

To transform the Person class to use an embedded ID, we replaced the @Id Integer

id field with the @EmbeddedId myIdClass myId field. To fit this entity back into our

sample JOINED entity hierarchy, the manager relationship field on Person’s Employee

subentity and the PK fields on all subentities would need to be modified to map to all of

the columns in the new primary key.

�Exposing Composite Key Class Fields Directly
on the Entity Class (@IdClass)
An alternative approach to mapping a composite primary key is to declare fields

explicitly on the entity class for each field in the primary key class, but annotate each

of them @Id, as shown in Listing 4-28. If any of the fields on the primary key double as

useful properties on your entity, you will probably want to take this approach. You then

define a new composite key class that declares each of these @Id fields, taking care that

they exactly match the key class fields in name and type.

Starting with the classes from the previous example that used an @EmbeddedId, we

can modify MyIdClass to remove the @Embedded annotation, as shown in Listing 4-28.

Listing 4-28.  MyIdClass.java, a Serializable Java class suitable for Use as an

@IdClass

public class MyIdClass implements Serializable {

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

Chapter 4 Advanced Persistence Features

207

 public MyIdClass() {

 }

 public MyIdClass(String firstName, String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 @Override

 public boolean equals(Object obj) {

 return obj instanceof MyIdClass && firstName.equals(((MyIdClass) obj).

getFirstName()) && lastName.equals(((MyIdClass) obj).getLastName());

 }

 @Override

 public int hashCode() {

 return System.identityHashCode(this);

 }

 /* get/set methods */

}

This composite key class requires no special annotations. It is primarily used when

looking up a Person instance through its primary key, using the EntityManager.find()

method.

On Person, both the firstName and lastName fields are now marked @Id. We have

added an @IdClass annotation that identifies MyIdClass as the composite primary key

class, as shown in Listing 4-29.

Listing 4-29.  Person.java, an Entity Employing an @IdClass as a Composite

Primary Key

@Entity

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@Table(name = "CH04_IDCLASS_PERSON")

@IdClass(MyIdClass.class)

Chapter 4 Advanced Persistence Features

208

public class Person implements Serializable {

 @SuppressWarnings("compatibility:-7074714881275658754")

 private static final long serialVersionUID = 5291172566067954515L;

 @Id

 @Column(name = "FIRST_NAME", length = 400)

 private String firstName;

 @Id

 @Column(name = "LAST_NAME", length = 400)

 private String lastName;

 @Embedded

 private Address homeAddress;

 @Version

 private Integer version;

 public Person() {

 }

 /* get/set methods */

}

�Mapping Relationships That Use Composite Keys
When defining a relationship in which the target entity uses a composite primary key,

the owning entity must map its relationship field to columns of the corresponding type.

This requires use of the @JoinColumns annotation (or equivalent XML metadata). If

these columns happen to be nested in the owning entity’s primary key, or if they are

otherwise NOT NULL constrained, then the relationship must be bound at the time the

EntityManager.persist() operation is called to persist this entity into the persistence

context, or at least by the time EntityManager.flush() is called to issue the database

INSERT call.

In the following example, the PersonPK composite primary key class contains two

fields—id and addressId—that are mandatory (NOT NULL) since they are part of the

primary key. Since the addressId and the relationship field homeAddress both map to the

same ADDRESS_ID column, and only one of these fields may be insertable and updatable,

we must mark one of the fields to be read-only. In Listing 4-30, the relationship

field homeAddress is marked as read-only by assigning the insertable=false and

updatable=false attributes on the @JoinColumn annotation.

Chapter 4 Advanced Persistence Features

209

Listing 4-30.  Person.java, with a Composite Primary Key that Maps to a Column

that Is Shared by Both an Ordinary @Id Field and a Relationship Field

/*

 * Person: An abstract entity, and the root of a SINGLE_TABLE hierarchy,

 * demonstrating use of a composite key that contains a field whose mapped

 * column is also mapped to a relationship field.

 */

@Entity

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

@NamedQueries({

 @NamedQuery(name = "Person.findAll", query = "select o from Person o")})

@TableGenerator(name = "Person_ID_Generator", table =

"CH04_FKINPK_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Table(name = "CH04_FKINPK_PERSON")

@IdClass (PersonPK.class)

public abstract class Person

 implements Serializable

{

 @Id

 @Column(name = "ADDRESS_ID")

 private Integer addressId;

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person_ID_

Generator")

 private Integer id;

 @Column(name = "FIRST_NAME")

 private String firstName;

 @Column(name = "LAST_NAME")

 private String lastName;

 @Version

 private Integer version;

 @OneToOne(cascade = { CascadeType.ALL })

Chapter 4 Advanced Persistence Features

210

 @JoinColumn(name = "HOME_ADDRESS")

 private Address homeAddress;

 public Person() {

 }

 /* get/set methods */

}

When using this Person class, you may retrieve data through the homeAddress

relationship field, but you may not update this field. Its value must be populated at the

time the entity is persisted, and since it is part of the entity’s primary key, it may not

subsequently be modified.

�Support for Optimistic Locking (@Version)
As shown in the previous examples, you can use the @Version annotation to designate a

field to be used by the EntityManager to perform optimistic locking for merge operations

and concurrency management. Optimistic locking is a useful performance optimization

that offloads work that would otherwise be required of the database. Databases typically

offer a pessimistic locking service that allows the database client (in our case, the JPA

EntityManager) to lock a row in a table to prevent another client from updating it while

the EntityManager is applying some changes. This is an effective mechanism to ensure

that two clients do not modify the same row at the same time, but it requires expensive,

low-level access checks inside the database. An alternative to pessimistic locking is to

move concurrency control into a database client like the EntityManager and employ

an optimistic locking strategy. Using a dedicated @Version column, the EntityManager

follows a couple of simple rules. Whenever it sends a modified entity out to the database,

as during a commit or flush operation, it looks at the current value of the entity instance’s

@Version field, queries the current state of that entity’s row from the database, and

compares the version values. If they are the same, it increments the entity instance’s

@Version field (or whatever field is annotated @Version), and it sends the change out

to the database, causing an UPDATE statement to be executed. If the version values are

different, this means that some other client modified the row between the time the row

was last queried by the EntityManager and loaded into an entity instance and the time

that instance was flushed back out to the database. When such a difference is detected,

Chapter 4 Advanced Persistence Features

211

we call it a concurrency exception, and the EntityManager throws an exception and

marks the transaction for rollback. The client of the EntityManager needs to anticipate

that a concurrency exception might occur, and it must be prepared to resolve the

conflict, typically by notifying the user of the conflict so that the entity can be refreshed

before proceeding.

The use of a dedicated @Version column on an entity allows the EntityManager to

perform optimistic locking simply by comparing the value of the @Version field stored

in the entity instance with the value of the VERSION column in the database. If you don’t

specify an @Version field, the EntityManager has to walk through each field in the entity

instance and compare its value to its corresponding, mapped column in the database,

which is far more laborious. A declared @Version field will be auto-populated by the

persistence framework and should not be updated by application code.

The bottom line is that it’s not a requirement to use an @Version field, but it’s good

practice to define an @Version field on your entities to allow the EntityManager to take

advantage of this optimization.

�Support for Autogenerated Primary Key Values
(@GeneratedValue)
In addition to built-in optimistic locking support through the @Version column, JPA

provides several convenient ways to auto-populate primary key columns when an entity

is persisted. You can declare that a field’s value should be populated using the following:

•	 An automatic mechanism maintained by the persistence framework

(strategy=GenerationType.AUTO)

•	 A custom database sequence (strategy=GenerationType.SEQUENCE

or GenerationType.IDENTITY)

•	 A custom database table, emulating a pseudo-sequence

(strategy=GenerationType.TABLE)

We have found the auto-populated PK feature to be very high on the convenience

scale, saving us from coding this up for each entity in our application. Using schema

generation settings on the persistence unit in persistence.xml allows you to have JPA

auto-create the required artifacts (sequence or table) in the database and even configure

them with the settings specified through JPA metadata using annotations or XML. Once

Chapter 4 Advanced Persistence Features

212

installed, the AUTO case generates unique identifiers for any @Id field that is annotated

@GeneratedValue or @GeneratedValue(strategy=GenerationType.AUTO), and at least

it leaves the entity class a little less cluttered. Since not all databases support sequence

objects, you may wish to use a table generator, as shown in the examples throughout this

chapter.

Listing 4-31 demonstrates usage of the default ID generation feature.

Listing 4-31.  Person.java, Employing a Default ID Generator

@Entity

@Inheritance(strategy = InheritanceType.JOINED)

@DiscriminatorColumn(name = "TYPE")

@Table(name = "CH04_JOIN_PERSON")

@NamedQuery(name = "findAllPerson", query = "select object(o) from Person

o")

public abstract class Person implements Serializable {

 @Id

 @GeneratedValue

 private Long id;

 /* ... */

}

SQL scripts to generate all the tables and sequences for the examples in this chapter

are available in the Sample Code area. In addition, JPA providers generate DDL objects,

and even some DML that it requires, to support any entities that are deployed; so pre-

creating a schema is not strictly necessary. However, while JPA will take guidance about

what table and column names to use, for example, there is currently no way to specify

the names of constraints or other artifacts that are created automatically for you. Thus, if

you need to control the names and other details of the mapped objects, it is best to pre-

create the schema before you first deploy your persistence unit.

To illustrate how to pre-create the tables and sequences required for ID generation,

Listings 4-31 and 4-32 show the DDL required to create the ID generator tables and

sequences used in these examples.

Chapter 4 Advanced Persistence Features

213

Listing 4-32.  Usage of @GeneratedValue with a @SequenceGenerator

/**

 * To create ID generator sequence "CH04_SEQID_PERSON_ID_GEN":

 * CREATE SEQUENCE "CH04_SEQID_PERSON_ID_GEN" INCREMENT BY 50 START WITH 50;

 */

@Entity

@Table(name = "CH04_JOIN_PERSON")

@SequenceGenerator(name = "Person_ID_Generator", sequenceName = "CH04_JOIN_

PERSON_ID_GEN",

 allocationSize = 50, initialValue=1)

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

 ...

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "Person_

ID_Generator")

 private Integer id;

 ...

}

Listing 4-33 provides an example of a table-based ID generator declaration, along

with an INSERT statement for creating a named row for the pseudo-sequence.

Listing 4-33.  Usage of @GeneratedValue with a @TableGenerator

/**

 * To create ID generator table "CH04_JOIN_PERSON_ID_GEN": CREATE TABLE

 * "CH04_JOIN_PERSON_ID_GEN" ("PRIMARY_KEY_NAME" VARCHAR2(4000) PRIMARY KEY,

 * "NEXT_ID_VALUE" NUMBER(38));

 *

 * To initialize this table with data for this entity's ID generator 'Person.id'

 * (starting with value '0'): INSERT INTO "CH04_JOIN_PERSON_ID_GEN" VALUES

 * ('Person.id', 0);

 */

Chapter 4 Advanced Persistence Features

214

@Entity

@Table(name = "CH04_JOIN_PERSON")

@TableGenerator(name = "Person_ID_Generator", table = "CH04_JOIN_PERSON_ID_GEN",

 pkColumnName = "PRIMARY_KEY_NAME", pkColumnValue = "Person.id",

 valueColumnName = "NEXT_ID_VALUE")

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Person implements Serializable {

 ...

 @Id

 @Column(nullable = false)

 �@GeneratedValue(strategy = GenerationType.TABLE, generator = "Person_ID_

Generator")

 private Integer id;

 ...

}

�Interceptors: Entity Callback Methods
JPA provides support for a number of callback methods, or interceptors, that allow you to

add your own custom code when certain lifecycle events occur on an entity or a mapped

superclass. You can register interceptors to be invoked when certain lifecycle events

occur on specific entity types, or broadly whenever a lifecycle event occurs on any entity.

The latter case is one of the few times when you must use XML to specify metadata, since

the effect is applied globally across all entities in the persistence unit.

The following annotations may be applied to methods to indicate that they are entity

callback methods:

•	 @PrePersist

•	 @PostPersist

•	 @PreRemove

•	 @PostRemove

•	 @PreUpdate

•	 @PostUpdate

•	 @PostLoad

Chapter 4 Advanced Persistence Features

215

To use a callback method, you write a method to perform the behavior you desire

and then simply annotate it using one of the above lifecycle callback annotations (for

instance, @PrePersist). Callback methods may have any name you choose, but must

not take any parameters and must return void. A single method may be annotated with

multiple entity callback annotations, if desired.

Alternatively, callback classes may be registered for an entity (or a mapped

superclass) to intercept one or more lifecycle events on one or more entity types.

Multiple interceptor methods may be registered for any given entity lifecycle event, and

they are executed in the order in which they are specified.

Entity callback methods can be used to validate an entity’s contents prior

to the entity being persisted, and to populate transient, derived fields following

instantiation. Listing 4-34 shows how you might plug an @PreUpdate interceptor into the

FullTimeEmployee entity in your company’s payroll system to give all employees from a

certain ZIP code an automatic raise whenever that employee instance is updated for any

reason. (Wishful thinking!)

Listing 4-34.  FullTimeEmployee.java, Employing an Illicit Entity Callback to

Finally Stick It to the Man!

@Entity

@Inheritance

public class FullTimeEmployee extends Employee {

 ...

 @PreUpdate

 public void wishfulThinking() {

 if (getHomeAddress().getZipCode() == 94402) {

 setSalary(getSalary() + 10000);

 }

 }

 ...

}

Chapter 4 Advanced Persistence Features

216

�Compiling, Deploying, and Testing the JPA Entities
For each of the seven major features described in this chapter, we provide a stand-alone

NetBeans project to test the feature from a pure Java SE context. In addition, each of

these projects is accompanied by a dedicated HTTP servlet that will test the same code

through a Java EE Web application. You are encouraged to explore these samples from

both client environments, edit the JPA entities and test code, and observe the results.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

�Opening the Sample Application
Copy the Chapter04-PersistenceIISamples directory and its contents into a directory

of your choice. Run the NetBeans IDE, and open the Chapter04-PersistenceIISamples

project using the File ➤ Open Project menu. Make sure that the “Open Required

Projects” check box is checked. See Figure 4-6.

Figure 4-6.  Opening the Chapter04-PersistenceIISamples project

Chapter 4 Advanced Persistence Features

217

No EJB Session beans are used in these examples, although they could easily have

been used instead of the Java service façade classes. The Java facades emulate the

default transactional behavior of a Stateless Session bean by auto-committing the results

whenever they perform a persist, merge, or remove operation. The principle difference

is that EJBs execute in an EJB container, which offers enterprise services that are not

required for these JPA examples.

The samples for this chapter consist of seven Java class libraries and one Web

application containing a servlet for each of the seven Java libraries. Expand the first Java

class library—Chapter04-PersistenceIISamples-embeddable, and observe the general

structure common to each project as shown in Figure 4-7.

Chapter 4 Advanced Persistence Features

218

Figure 4-7.  Observing the structure of the Chapter04-PersistenceIISamples-joined
project

Each Java class library contains the following:

•	 A single JPA persistence unit consisting of some number of

JPA entities or other mapped classes along with a META-INF/

persistence.xml file

Chapter 4 Advanced Persistence Features

219

•	 A Java service façade–JavaServiceFacade.java–a wrapper class

that provides CRUD methods for manipulating the JPA entities in the

context persistence unit

•	 A Java client–JavaServiceFacadeClient.java–for the service façade

that executes the test case for that persistence unit

�Creating the Database Connection
The samples in this chapter require a database connection, and for these tests we will

use the Derby database that is bundled with NetBeans and Glassfish. If you have not

already created the WineApp database, also used for the Chapter 3 examples, click on

the Services tab, expand the Databases icon, and invoke “Create Database...” on

the Java DB node. Create a database named “WineApp” with username and password

wineapp/wineapp as shown in Figure 4-8.

Figure 4-8.  Creating the WineApp database and connection

Chapter 4 Advanced Persistence Features

220

Figure 4-9.  “WineApp” Java DB

This last step created a database connection and is referenced from the persistence

units in each of the persistence.xml files found in the JPA projects. While it is possible

to pre-create the database objects (tables, sequences, key constraints, and so on), we will

let JPA create these database objects automatically the first time they are needed by each

persistence unit.

In case you did create the WineApp database in Chapter 3, then you should find it

underneath the Java DB section as shown in Figure 4-9.

Chapter 4 Advanced Persistence Features

221

Figure 4-10.  Building the application

�Compiling the Sources
Invoke the context menu on Chapter04-PersistenceIISamples node, and build the

application by selecting the Clean and Build menu option as shown in Figure 4-10.

Chapter 4 Advanced Persistence Features

222

Next run the HTTP servlet client by opening the Chapter04-PersistenceIISamples-war

project and expanding the package com.apress.ejb.chapter04.client. Open

the browser that is used by NetBeans to run servlets. (If you’re not sure, open the

NetBeans preferences by going to Tools ➤ Options ➤ General.) Right-click on

SingleTableInheritanceClient.java servlet, and choose “Run File” to run the test as

a Web application as shown in Figure 4-12.

Figure 4-11.  Executing the SINGLE_TABLE inheritance example in a Java SE
environment

�Running the Client Programs
After the WineApp database has been created and you have built the projects, you can run

the sample clients. Open the Chapter04-PersistenceIISamples-singletable project,

and expand the com.apress.ejb.chapter04.singletable.service package. You will

see the Java service façade (JavaServiceFacade.java) and its client class. Right-click

on JavaServiceFacadeClient.java, and choose “Run File.” The test will run within

NetBeans, and the output is sent to a log window. See Figure 4-11.

Chapter 4 Advanced Persistence Features

223

Figure 4-12.  Executing the com.apress.ejb.chapter04.client Servlet

NetBeans will execute the servlet in the default browser as shown in Figure 4-13.

During execution of the test, any existing conflicting data is deleted, new test data is

created, and then it is queried and rendered in tabular format. Referenced objects,

including lists of referenced objects, are shown in nested table cells. Here in Figure 4-13

is the output for this client servlet, showing the log of the servlet’s actions.

Chapter 4 Advanced Persistence Features

224

Figure 4-13.  Executing the SINGLE_TABLE inheritance example in a Java EE Web
environment

Take a look at the code in SingleTableInheritanceClient.java. Feel free to

experiment by creating additional entities, testing the query and other service methods

on the Java service façade, and observing the resulting behavior. To reset the test schema

back to its original state, you can always delete the WineApp test database and then re-

execute the step depicted in Figure 4-8.

�Testing the Other Persistence Examples
The remaining six projects each test a different feature covered in this chapter and

identified on the project name. You are encouraged to use these projects as a reference

for how to configure the various inheritance hierarchies, mapped superclasses,

embedded classes, and complex primary keys.

Chapter 4 Advanced Persistence Features

225

Since each project in this chapter shares the same structure, and a dedicated HTTP

servlet tester accompanies each, the above steps can guide you through executing each

example in the same way.

�Summary
We have covered a fair bit of ground in this chapter, and with this information in hand,

you should be ready to go out and build some powerful entities that are configured to

best suit your application domain. Below is a summary of the key concepts we covered in

this chapter.

�Mapping Entity Inheritance Hierarchies
JPA provides built-in support for three common O/R mapping strategies for entity

class inheritance hierarchies: SINGLE_TABLE, JOINED, and TABLE_PER_CLASS. We

examined the strengths and weaknesses of each approach, and we offered examples of

common use cases that map best to each strategy.

�Using Abstract Entities, Mapped Superclasses, and
Non-Entity Classes in an Inheritance Hierarchy
JPA offers flexible solutions when it comes to mixing entities with abstract and non-

entity classes in a type hierarchy. Entities may be either concrete or abstract. Only entity

classes may be queried or serve as the targets of mapped entity relationships, but entities

may still make use of non-entity classes, both by embedding them using @Embedded and

@ElementCollection and by extending them or being extended by them. We showed

some examples that mix these options together to illustrate their use.

�Polymorphic Relationships
Relationships can be specified between entities, including abstract supertype entities

in a hierarchy. This lets you define a relationship with entities anywhere along an

inheritance hierarchy that will implicitly involve subtypes of that entity as well.

Chapter 4 Advanced Persistence Features

226

�Polymorphic JPQL Queries
Similarly, JPQL queries can select or join entities of a supertype class, and any instances

of subtypes matching the query criteria will be returned in the query result. We looked at

how to use JPQL to build reusable @NamedQuery objects as well as the QueryCriteria API

introduced since JPA 2.0.

�Using Native SQL Queries
The EntityManager lets you issue native SQL queries as an overture to experienced SQL

developers and as an optimization to avoid the overhead of querying across all of an

entity’s fields when only a few are actually needed. We provided an example of how to

define a named native SQL query that returns entity instances so that the results could

be seamlessly integrated into an application.

�Using the Query Criteria API
As a type-safe alternative to JPQL, the criteria API introduced since JPA 2.0 allows you to

construct queries by dynamically assembling the constituent clauses and predicates into

a CriteriaQuery object that can be invoked to retrieve entity or other results. Figure 4-14

shows how the persistence.xml file looks in the NetBeans IDE 8.2.

Figure 4-14.  Persistence.xml file

Chapter 4 Advanced Persistence Features

227

�Composite Primary Keys and Nested Foreign Keys
We explored the different types of composite primary key usage, showing how to use

an @EmbeddedId field and multiple @Id fields. When an entity’s primary key maps to

columns that are also involved in relationships to other entities (as when the primary key

contains one or more columns that are also part of a foreign key), things can get a little

bit dicey. We provided some examples of how to deal with this situation.

�Support for Optimistic Locking
Using the @Version annotation, you can designate a field (one that is common to all

entities in your inheritance hierarchy) to be used by the EntityManager to perform

optimistic locking when managing concurrency, such as during merge operations. This

field will be auto-populated by the persistence framework and should not be updated by

application code.

�Support for Autogenerated Primary Automatic Key Values
JPA offers declarative support for the population of @Id fields with unique values. We

provided examples of how to declare both database sequence-based and table-based ID

generators.

�Interceptors: Entity Callback Methods
You can designate methods on your entity class, or on the helper class of your choosing,

to handle entity lifecycle callbacks. We listed the callback methods available to you and

explained how to use them to register your own custom methods that will be called

during lifecycle events.

Chapter 4 Advanced Persistence Features

229
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_5

CHAPTER 5

EJB Message-Driven
Beans
This chapter discusses the need for message-oriented architecture. It introduces Java

Message Service (JMS), the typical architecture for messaging applications, and it

details the concepts behind EJB message-driven beans (MDBs). The chapter also covers

annotations, dependency injection, and interceptors in relation to MDBs.

�Message-Oriented Architecture
Today’s IT organizations have dozens of applications and services that perform such

well-defined tasks as inventory, billing, expense reporting, and order entry. With the

evolution of the Internet and e-business, enterprises have started to think about how

different applications can work independently but still be a part of an information

workflow process at the same time.

This new demand brings us to the concept of integrating existing applications,

as well as building new applications that work coherently with existing applications.

Integrating existing applications with new applications is a very complex task: first due

to the large number of applications used by most enterprises, and second because of

their complex business workflow.

Messaging is one of the most viable solutions for integrating existing and new

applications in an asynchronous communication and loosely coupled transaction

model. Asynchronous messaging allows applications to communicate by exchanging

messages independently without them having to be hardwired to each other. An

application or business process sending a message does not have to wait for the receiver

as long as both sender and receiver understand and agree upon a message format and

an intermediate destination.

230

Here are the MDBs messaging concepts:

•	 Process of sending a loosely coupled, asynchronous message.

•	 The sender doesn’t know when the message is received.

•	 The sender can guarantee that the message will not be lost en route.

•	 The MOM (message-oriented middleware) service acts like a

voicemail when the receiver is AFK.

�What Is JMS?
JMS is a Java Message-Oriented Middleware (MOM) API that allows applications to send

and receive messages asynchronously. JMS is part of the standard Java EE API as defined

by JSR 914. JMS is analogous to JDBC (Java Database Connectivity), which provides a

standard API to connect to several types of databases (Oracle, DB2, MySQL). Likewise,

JMS provides a standard API to connect to several types of messaging systems (IBM MQ,

SonicMQ).

Note  MOM stores the Message in a Location specified by the sender and later
collected by the consumer.

JMS architecture consists of the following:

•	 JMS provider: A messaging system (as shown in Figure 5-1) that

handles the routing and delivery of messages. A JMS provider can

be a messaging component of an application server (such as Oracle

WebLogic Server, IBM WebSphere, Oracle GlassFish Server). JMS

providers are also known as JMS servers.

Chapter 5 EJB Message-Driven Beans

231

•	 JMS client: Any Java application or Java EE component that uses the

JMS API either to consume or produce a JMS message.

•	 JMS consumer: A JMS client application that consumes JMS

messages. The inventory, billing, and shipping applications shown in

Figure 5-1 are JMS message consumers.

•	 JMS producer: A JMS client that generates the message. The order

entry application shown in Figure 5-1 is a JMS message producer.

•	 JMS message: A message consisting of a header, properties, and a

body. The header identifies the message and contains a standard

information just like JMSTimestamp. MOM sets this header to the

current time when the message is sent. The properties provide

additional attributes that are specific to the application and provider.

The property is explicitly created by the application Message.

setBooleanProperty(“”,true); and it can be Boolean, byte, double,

float, int, long, short, String, Object, etc. The body contains the

content of the message and it can be ObjectMessage, ByteMessage,

MapMessage, StreamMessage, and TestMessage. The JMS

specification provides support to send and receive different types of

messages. Table 5-1 shows the message types and descriptions.

Figure 5-1.  A JMS messaging system

Chapter 5 EJB Message-Driven Beans

232

JMS has two types of resources: JMSContext and Destination.

JMS application will retrieve the JMSContext using DI with the CDI @Inject and

configure the JMSContext to connect to a connection factory with @JMSConnectionFactory.

�Messaging Application Architecture
Generally, two different classes of messaging applications exist:

•	 The point-to-point (P2P) model: only one consumer will process a

given message, PTP message destinations are called queues, A writes

to the queue and B reads from the queue.

•	 The publish-subscribe (pub-sub) model: each subscriber receives a

copy of the message.

The P2P model is based on message queues, where a queue holds the JMS messages

sent by the JMS client application. Message producers and consumers decide upon a

common queue to exchange messages.

The P2P model is used if there is one and only one message consumer for each

message. For example, the order entry system shown in Figure 5-2 sends a new order

into the message queue, which is picked up by the inventory system. Similarly, the

message sent by the inventory system is consumed by the shipping system, and the

message from the shipping system is consumed by the billing system.

Table 5-1.  JMS Message Types

Message Type Description

ByteMessage Consists of a series of bytes

MapMessage Consists of a set of name/value pairs

ObjectMessage Consists of a serialized Java object

StreamMessage Consists of a sequence of primitive data types

TextMessage Consists of strings

Chapter 5 EJB Message-Driven Beans

233

The pub-sub model is based on topics, where the topic is the destination address of

the message. Multiple recipients or JMS consumers can retrieve each message. In this

model, publishers are not always aware of possible subscribers. The pub-sub model

is used for broadcast-type applications, as shown in Figure 5-3, in which a message is

delivered for more than one JMS client. Topics, each having a unique name, are defined

in the messaging server. Each message, with its associated subject, gets published and

delivered to all subscribers.

Figure 5-2.  A JMS messaging system using queues

Figure 5-3.  A JMS messaging system using topics

Chapter 5 EJB Message-Driven Beans

234

�JMS 2.0
JMS 2.0 was released in April 2013, and it was the first update to the JMS specification

since version 1.1 was released in 2002.

JMS 2.0 is currently part of the Java EE 7 platform and can be used in Java EE Web or

EJB applications or as a stand-alone in a Java SE environment.

The JMS 2.0 main goals include:

–– API modernization

–– Java EE Alignment

–– EJB3/MDB Alignment

–– Minor Corrections and Clarifications since version 1.1

–– New API for sending and receiving messages

–– New API also supports resource injection

The JMS 2.0’s biggest change was the introduction of a new API for sending and

receiving messages, helping the programmer to reduce the amount of code to write.

�JMS 2.1
JMS 2.1 was first proposed by Oracle in August 2014 and then submitted as JSR 368 in

accordance with the Java Community Process. It was proposed and then finally approved

to be part of Java EE 8.

The early draft review 1 (EDR1) was published for public review in October 2015,

including a new chapter on flexible JMS message-driven beans.

In March 2016 the EDR2 was finally published for public review but then Oracle

stopped the development of JMS 2.1, announcing that they were changing the Java EE 8

priorities including the development of JMS 2.1.

Finally, in November 2016 Oracle formally proposed that the JSR be withdrawn and

confirmed that JMS would remain part of Java EE 8, but the existing version JMS 2.0

would be used rather than a new version 2.1.

The JMS 2.1 specification can be found in this web page:

https://jcp.org/en/jsr/detail?id=368

Chapter 5 EJB Message-Driven Beans

https://jcp.org/en/jsr/detail?id=368

235

Here are the most important changes in JMS 2.1:

–– Alignment with Java SE 8

–– Flexible MDBs (EE)

–– Change in the asynchronous messaging, including how MDB imple-

ments any MessageListener interface to any CDI bean

–– CDI Beans as Listeners

–– Batch delivery including Acknowledgment Modes, the setMessageL-

stener (EE), etc.

–– Repeatable Annotations including the redelivery configuration (EE)

�Using MDBs
An MDB is an asynchronous message consumer that processes messages delivered via

JMS. While MDBs do the job of processing the messages, the EJB container in which

the MDBs run take care of the services (transactions, security, resources, concurrency,

message acknowledgment), letting the bean developer focus on the business logic of

processing messages. Traditional JMS applications would have to custom write some

of these services. MDBs are stateless in nature, which means that EJB containers can

have numerous instances of MDBs execute concurrently to process hundreds of JMS

messages coming in from various applications or JMS producers and also provide quality

of service (QoS), such as high availability and reliability for enterprise applications.

EJB client applications cannot access MDBs directly as they can with session beans

and entities. The only way to communicate with an MDB would be by sending a JMS

message to the destination to which the MDB is listening. Any Java application or Java

EE component using the JMS API can be the message provider for the MDB by sending

messages to queues or topics.

�When Do You Use MDBs?
Earlier in the chapter, we discussed the need for asynchrony in enterprises.

Asynchronous messaging provides loose coupling between applications, systems, and

services, thus providing greater flexibility and change management for applications and

systems. MDBs provide a standard messaging component model that achieves the goal

of asynchronous and message-oriented architecture in enterprises.

Chapter 5 EJB Message-Driven Beans

236

Figure 5-4 shows a message-oriented application that has order entry, inventory,

billing, and shipping systems that communicate asynchronously to handle a workflow

that starts with a new purchase order and ends when the order gets shipped to the

customer. An order entry system captures a new order from a customer, processes the

order, and sends it into a designated message queue (in Figure 5-4, this is the New Order

queue). The inventory system picks up the message from the queue and checks whether

or not the inventory is available. If not, it sends a message to the Suppliers queue; if

the order can be shipped, then it puts a message into the Order Ready queue. This new

message is picked up by the billing system, which processes the billing for the customer

and puts a message back into the Shipping queue. Finally, the shipping application

picks up the message, gets the order shipped to the customer, and sends an e-mail to the

customer with tracking information.

Figure 5-4.  An order-to-shipping JMS messaging system

�MDB Classes
Unlike a session bean, an MDB doesn’t have any business interfaces. It has only the

following:

•	 A message-driven class

•	 An optional callback listener class

•	 An optional interceptor class

Chapter 5 EJB Message-Driven Beans

237

An MDB class is any standard Java class that has a class-level annotation

@MessageDriven. If deployment descriptors are used instead of annotations, the bean

class should be denoted as an MDB class. In the case of mixed mode, in which you are

using annotations and deployment descriptors, the @MessageDriven annotation must

be specified if any other class-level or member-level annotations are specified in the

bean class. The @MessageDriven annotation parameters can be used to specify the JMS

queues or topics to which the bean is listening. Table 5-2 details the parameters.

Table 5-2.  Parameter details for the @MessageDriven Annotation

Parameter Description

ActivationConfigProperty The set of properties used to specify the destination name

and type

description A description of the bean class

mappedName The physical Java Naming and Directory Interface (JNDI) name

of the topic or queue to which the MDB is listening

messageListener The interface name of the interface class that the MDB is

extending

name The name of the MDB, if it has to be a different name than the

bean class

To illustrate the use of an MDB, we will create the use case shown in Figure 5-5.

We will have an application client, which will be a Java command-line program that

invokes a business method in the OrderProcessing session bean. The OrderProcessing

session bean will create and send a JMS message to a topic registered/configured in the

GlassFish application server. An MDB, StatusMailer, will listen to the topic and process

the incoming message. The message received will contain details for the customer, and

it will be used to send an e-mail notification to the customer regarding his or her order

status. This simple use case will allow us to demonstrate how MDBs work and how to

inject different types of resources in session beans and MDBs.

Chapter 5 EJB Message-Driven Beans

238

Listing 5-1 shows the definition of a StatusMailer MDB. We have marked the

StatusMailerBean class with the @MessageDriven annotation.

Listing 5-1.  StatusMailerBean.java

package com.apress.ejb.chapter05;

import javax.ejb.MessageDriven;

@MessageDriven

public class StatusMailerBean {

}

An MDB class has one method, onMessage(), which gets invoked by the EJB

container on the arrival of a message in the queue/topic to which the MDB is listening.

The onMessage() method contains the business logic on how to process the incoming

message. The onMessage() method contains one parameter, which is the JMS message.

In the case of the StatusMailer bean, the onMessage() method checks whether the

message is of MapMessage type, and then it gets the customer information from the

message, creates an e-mail message about the order status, and then sends an e-mail to

the customer. Listing 5-2 shows the onMessage() method code. In a try block, we start

by checking whether the message received is of type MapMessage, as we are expecting. If

it is, then we use getStringProperty() to retrieve the values of the from, to, subject,

and content attributes in the message.

Listing 5-2.  The onMessage Method Code

package com.apress.ejb.chapter05;

import javax.ejb.MessageDriven;

@MessageDriven

public class StatusMailerBean {

 public void onMessage(Message message){

Figure 5-5.  A sample MDB use case

Chapter 5 EJB Message-Driven Beans

239

 try {

 if (message instanceof MapMessage) {

 MapMessage orderMessage = (MapMessage)message;

 String from = orderMessage.getStringProperty("from");

 String to = orderMessage.getStringProperty("to");

 String subject = orderMessage.getStringProperty("subject");

 String content = orderMessage.getStringProperty("content");

 }

 else {

 System.out.println("Invalid message ");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

In addition to marking the standard Java class with the @MessageDriven annotation,

the following requirements apply to an MDB class:

•	 The MDB class must implement the message listener interface. In the

case of JMS, this will be javax.jms.MessageListener.

•	 The class cannot be final or abstract.

•	 The class should have a no-argument public constructor that is used

by the EJB container to create instances of the bean class.

If both annotations and deployment descriptors are used, the settings or values

in the deployment descriptor will override the annotations in the classes during the

deployment process.

�Configuration Properties
Bean developers can provide configuration properties along with MDB classes, which

get used at deployment time. The EJB container uses these properties to configure the

bean and link it to the appropriate JMS provider. These configuration properties can be

set using the @ActivationConfigProperty annotation. This annotation can be provided

Chapter 5 EJB Message-Driven Beans

240

as one of the parameters for the @MessageDriven annotation. Listing 5-3 shows the

@MessageDriven annotation with properties for the StatusMailer MDB. We have

defined two ActivationConfigProperty annotations that specify the logical destination

name and the destination type.

Listing 5-3.  The @MessageDriven Annotation with Properties for the

StatusMailer MDB

@MessageDriven(activationConfig= {

@ActivationConfigProperty(propertyName="destinationName",

propertyValue="StatusMessageTopic"),

@ActivationConfigProperty(propertyName="destinationType",

propertyValue="javax.jms.Topic")

}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.MessageListener {

}

Standard configuration properties available for MDBs in EJB version 3.0 and 3.1

correspond to the configuration properties in JMS version 1.1. Standard configuration

properties for MDBs in EJB version 3.2 have been extended to correspond to the

configuration properties in JMS version 2.0. Table 5-3 shows the correspondence

between the EJB version and JMS version.

Table 5-3.  Mapping of EJB MDB

version to JMS version

EJB Version JMS Version

EJB 3.0 JMS 1.1

EJB 3.1 JMS 1.1

EJB 3.2 JMS 2.0

EJB 3.2 JMS 2.1

In the following sections, we will show what configuration properties can be set for

MDBs.

Chapter 5 EJB Message-Driven Beans

241

�Message Acknowledgment

The EJB container provides a message acknowledgment service. There are two message

acknowledgment modes:

•	 Auto-acknowledge

•	 Dups-ok-acknowledge

In the case of Auto-acknowledge, the message delivery acknowledgment happens

after the onMessage() method. This property is useful for applications that require no

duplicate messages. For example, a new order should be received by the inventory

system once and only once. In the case of Dups-ok-acknowledge, the acknowledgment

is done lazily, which means that there might be duplicate delivery of messages, but

it reduces the overhead for the session in terms of immediate acknowledgment. For

example, an e-mail message that gets sent out during the order process can possibly

allow duplicate messages. We can use the @ActivationConfigProperty annotation to

specify the message acknowledgment property. Listing 5-4 shows the property set to

allow duplicates.

Listing 5-4.  The @ActivationConfigProperty Annotation

@MessageDriven(

activationConfig= {

@ActivationConfigProperty(propertyName="acknowledgeMode", 

propertyValue="Dups-ok-acknowledge")}

)

�The Message Selector

The message selector allows filtering of incoming messages based on the selection

criteria provided by the bean developer using the @ActivationConfigProperty

annotation. This property is useful for restricting the messages that the bean receives.

For example, the MDB that processes the incoming orders might only process

orders pertaining to red and white wines. The property name used to specify is

messageSelector.

Chapter 5 EJB Message-Driven Beans

242

�Message Destination

The message destination describes whether the MDB listens on a queue or

topic. Bean developers can provide the description in the bean using the

@ActivationConfigProperty annotation. The value of the property must be either

javax.jms.Queue or javax.jms.Topic. For example, a new order may need to be

processed by an inventory system as a next step in the workflow; in this case, the

order entry system doesn’t have to broadcast the new order message. Both the order

entry and inventory system can agree on a particular destination. Listing 5-3 shows

the code to specify destination name and type.

�Subscription Durability

If the bean is designed to listen to a topic, then the bean developer can further specify

the durability of the message. The topic can be either Durable or Non-Durable. Usage

of Durable topics ensures reliability for the applications. They ensure that messages are

not missed, even if the EJB container is temporarily offline. For example, we may need

to make sure that the new purchase orders received from client applications are not lost

if the EJB container goes down. All purchase orders have to be reliably processed by the

MDBs. We can use the @ActivationConfigProperty annotation to specify the durability

using the subscriptionDurability property. Listing 5-5 shows the code to set the

property to Durable. If this property is not set, the container will assume the default of

Non-Durable.

Listing 5-5.  The Code to Set the Property to Durable

@MessageDriven(

activationConfig= {

@ActivationConfigProperty(propertyName="subscriptionDurability",

propertyValue="Durable")}

)

In the StatusMailer MDB, we will create properties using the

@ActivationConfigProperty annotation. The message’s destinationName is set to

StatusMessageTopic, and destinationType is set to javax.jms.Topic. We will use

the mappedName parameter to specify the physical destination name of the topic. In

our case, it is the same as destinationName. Listing 5-6 shows the StatusMailer

MDB in its current state of completion.

Chapter 5 EJB Message-Driven Beans

243

Listing 5-6.  StatusMailerBean.java

package com.apress.ejb.chapter05;

import javax.ejb.ActivationConfigProperty;

import javax.jms.Message;

import javax.ejb.MessageDriven;

import javax.jms.MapMessage;

@MessageDriven(activationConfig= {

@ActivationConfigProperty(propertyName="destinationName", propertyValue=

"StatusMessageTopic"),

@ActivationConfigProperty(propertyName="destinationType",

propertyValue="javax.jms.Topic")

}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.MessageListener{

 public void onMessage(Message message){

 try {

 if (message instanceof MapMessage) {

 MapMessage orderMessage = (MapMessage)message;

 String from = orderMessage.getStringProperty("from");

 String to = orderMessage.getStringProperty("to");

 String subject = orderMessage.getStringProperty("subject");

 String content = orderMessage.getStringProperty("content");

 }

 else {

 System.out.println("Invalid message ");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

Chapter 5 EJB Message-Driven Beans

244

�Dependency Injection in MDBs
MDBs can use dependency injection to acquire references to resources such as JavaMail,

EJBs, or other objects. The resources that an MDB tries to acquire and use must be

available in the container context or environment context.

In the sample use case from Figure 5-5, we talked about creating an e-mail after the

message is processed and sending the order status to the customer via e-mail. In order

to do this in the StatusMailer message bean, we need to acquire a JavaMail session so

that we can create an e-mail and send it. JavaMail is an API that provides a platform-

independent framework for building mail applications. The JavaMail API is available

with the Java EE platform.

We can acquire a JavaMail session in an MDB using dependency injection. Listing 5-7

shows the completed StatusMailer MDB using dependency injection and the

JavaMail API. The @Resource annotation is used to inject a JavaMail session with

the name mail/wineappMail, which has been registered as a mail resource in the

GlassFish application server. The injected mail session is used to create javax.mail.

Message, and the setter methods are used to create the headers and content of the mail

message. Finally, the send() method in the javax.mail.Transport class is used to

send the created message.

Listing 5-7.  The Completed StatusMailer MDB Using Dependency Injection and

the JavaMail API

package com.apress.ejb.chapter05;

import javax.annotation.Resource;

import javax.ejb.ActivationConfigProperty;

import javax.jms.Message;

import javax.ejb.MessageDriven;

import javax.jms.MapMessage;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;

import javax.mail.internet.MimeMessage;

@MessageDriven(activationConfig= {

@ActivationConfigProperty(propertyName="destinationName", 

propertyValue="StatusMessageTopic"), 

Chapter 5 EJB Message-Driven Beans

245

@ActivationConfigProperty(propertyName="destinationType", 

propertyValue="javax.jms.Topic")

}, mappedName="StatusMessageTopic")

public class StatusMailerBean implements javax.jms.MessageListener{

@Resource(name="mail/wineappMail")

private javax.mail.Session ms;

 public void onMessage(Message message){

 try {

 if (message instanceof MapMessage) {

 MapMessage orderMessage = (MapMessage)message;

 String from = orderMessage.getStringProperty("from");

 String to = orderMessage.getStringProperty("to");

 String subject = orderMessage.getStringProperty("subject");

 String content = orderMessage.getStringProperty("content");

 javax.mail.Message msg = new MimeMessage(ms);

 msg.setFrom(new InternetAddress(from));

 InternetAddress[] address = {new InternetAddress(to)};

 �msg.setRecipients(javax.mail.Message.RecipientType.TO,

address);

 msg.setSubject(subject);

 msg.setSentDate(new java.util.Date());

 msg.setContent(content, "text/html");

 System.out.println("MDB: Sending Message...");

 Transport.send(msg);

 System.out.println("MDB: Message Sent");

 }

 else {

 System.out.println("Invalid message ");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

Chapter 5 EJB Message-Driven Beans

246

�Lifecycle Callback Methods
There will be certain instances in which an application that uses MDBs requires fine-

grained control. Two lifecycle event callbacks are supported for MDBs:

•	 PostConstruct

•	 PreDestroy

The PostConstruct callback occurs before the first message listener method

invocation on the bean and after the container has performed the dependency injection.

The PreDestroy callback occurs when the MDB is removed from the pool or destroyed.

For example, a PostConstruct callback can be used to initialize some attributes or

resources, and a PreDestroy callback can be used to clean up or release the acquired

resources.

Callback methods defined on an MDB class should have the following signature:

public void <METHOD> ()

Callback methods can also be defined on a bean’s listener class, in which case the

methods should have the following signature:

public void <METHOD>(Object)

where Object may be declared as the actual bean type, which is the argument passed

to the callback method at run time.

Callback methods can be any methods in the MDB that have callback annotations.

The following rules apply to these methods:

•	 The method should be public.

•	 The method cannot be final or static.

•	 The return type should be void.

The methods can take either zero or one argument, as shown previously. A callback

listener class is denoted by the @CallbackListener annotation on the MDB class with

which it is associated.

Chapter 5 EJB Message-Driven Beans

247

�Interceptors
The EJB specification provides annotations called interceptors, which allow you to

intercept a business method invocation. Interceptor methods can be defined for MDBs.

You can add either an @AroundInvoke annotation or an <around-invoke-method>

element in the deployment descriptor for a particular method, or you can define an

interceptor class whose methods are invoked before the onMessage() method is invoked

in the MDB class. An interceptor class is denoted using the @Interceptor annotation on

the MDB class with which it is associated. In the case of multiple interceptor classes, the

@Interceptors annotation is used. Only one AroundInvoke method may be present on

the bean class or on any given interceptor class. An AroundInvoke method cannot be an

onMessage() method of the MDB class.

AroundInvoke methods should have the following signature:

public Object <METHOD>(InvocationContext) throws Exception

The definition of InvocationContext is as follows:

 package javax.ejb;

 public interface InvocationContext {

 public Object getBean();

 public java.lang.reflect.Method getMethod();

 public Object[] getParameters();

 public void setParameters(Object[] params);

 public EJBContext getEJBContext();

 public java.util.Map getContextData();

 public Object proceed() throws Exception;

 }

The following list describes each of the methods:

•	 getBean(): Returns the instance of the bean on which the method

was called

•	 getMethod(): Returns the method on the bean instance that was

called

•	 getParameters(): Returns the parameters for the method call

Chapter 5 EJB Message-Driven Beans

248

•	 setParameters(): Allows modification of the parameters for the

method call

•	 getEJBContext(): Gives the interceptor methods access to the bean’s

EJBContext

•	 getContextData(): Allows values to be passed between interceptor

methods in the same InvocationContext instance using the Map returned

•	 proceed(): Invokes the next interceptor if there is one, or invokes the

target bean method

�Exception Handling
The EJB spec outlines two types of exceptions: application exceptions and system

exceptions. For more general information on these exceptions, see the “Exception

Handling” section of Chapter 2. In the case of an MDB, the listener method must not

throw a java.rmi.RemoteException or, in general, a runtime exception. The client

assumes that the message consumer continues to exist even though a runtime exception

has occurred. If the client sends a message after a runtime exception is thrown, then the

EJB container delegates the messages to a different MDB instance. Also, if you allow an

exception to “escape” an MDB, the message isn’t considered to be consumed, and it goes

back on the queue/topic. Then the offending message gets redelivered. This is known as

the “poison message” problem.

Callback methods can throw runtime exceptions. A runtime exception thrown by a

callback method that executes within a transaction causes that transaction to be rolled

back. Callback methods must not throw application exceptions.

�Client View
To a client application, an MDB is simply a message consumer. A client application can

be any Java client of a Java EE component that is using the JMS API to send a message.

From the perspective of the client application, the existence of an MDB is completely

hidden behind the destination or endpoint for which the MDB is the message listener.

A client’s JNDI namespace may be configured to include the destinations or

endpoints of MDBs installed in multiple EJB containers located on multiple machines on

a network. The actual locations of an enterprise bean and EJB container are, in general,

transparent to the client using the enterprise bean.

Chapter 5 EJB Message-Driven Beans

249

References to message destinations can be injected via the @Resource annotation

(which is in the javax.annotation package) or via JNDI lookup in cases in which the

resource has been defined in the deployment descriptor.

Note S tarting with EJB 3.2, a JMS resource adapter can construct a subscription
name by looking up an MDB using its standard name.

In the use case discussed earlier and shown in Figure 5-5, we have a session bean

that is acting as an intermediary between the client application and the message

topic. The client application invokes a business method in the session bean, and the

session becomes the client or JMS message producer that is creating and sending the

message. To illustrate this, we will create a stateless session bean, OrderProcessing,

with one business method, SendOrderStatus(). Listing 5-8 shows the code for the

OrderProcessing session bean. We are using the @Resource annotation to inject the

TopicConnectionFactory and Topic to which the StatusMailer MDB is listening. We

will use some hard-coded values in the session bean to simulate the customer e-mail

address and the content for the e-mail. In the try block, we create a connection to the

statusMessageTopicConnectionFactory and start the connection. Using the created

session, we create a topic session and topic producer with the createSession() and

createProducer() methods. Finally, we create a MapMessage object; populate the

message with the e-mail address, subject, and content; and send the message to the

Topic using the send() method.

Listing 5-8.  OrderProcessingBean.java

package com.apress.ejb.chapter05;

import javax.annotation.Resource;

import javax.ejb.Stateless;

import javax.jms.Connection;

import javax.jms.JMSException;

import javax.jms.MapMessage;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.Topic;

import javax.jms.TopicConnectionFactory;

Chapter 5 EJB Message-Driven Beans

250

@Stateless(name = "OrderProcessing")

public class OrderProcessingBean

{

 public OrderProcessingBean() {

 }

 @Resource(mappedName = "StatusMessageTopicConnectionFactory")

 private TopicConnectionFactory statusMessageTopicCF;

 @Resource(mappedName = "StatusMessageTopic")

 private Topic statusTopic;

 public String SendOrderStatus() {

 String from = "chirag.rathod@oracle.com";

 String to = "chirag.rathod@oracle.com";

 String content =

 "Your order has been processed " + "If you have questions" +

 " call EJB Application with order id # " + "1234567890";

 try {

 System.out.println("Before status TopicCF connection");

 Connection connection = statusMessageTopicCF.createConnection();

 System.out.println("Created connection");

 connection.start();

 System.out.println("statted connection");

 System.out.println("Starting Topic Session");

 Session topicSession =

 connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 �MessageProducer publisher = topicSession.

createProducer(statusTopic);

 System.out.println("created producer");

 MapMessage message = topicSession.createMapMessage();

 message.setStringProperty("from", from);

 message.setStringProperty("to", to);

 message.setStringProperty("subject", "Status of your wine order");

 message.setStringProperty("content", content);

 System.out.println("before send");

Chapter 5 EJB Message-Driven Beans

251

 publisher.send(message);

 System.out.println("after send");

 }

 catch (JMSException e) {

 e.printStackTrace();

 }

 return "Created a MapMessage and sent it to StatusTopic";

 }

}

Note I n Listing 5-8, update the value of “from” and “to” fields to your e-mail ID.

One last thing we need to do to complete the use case discussed in Figure 5-5 is

to come up with the client application that will look up the OrderProcessing session

bean and invoke the SendOrderStatus() message. Listing 5-9 shows the code for the

client application. In the try block, we are doing a JNDI lookup of the OrderProcessing

session bean and calling the SendOrderStatus() business method.

Listing 5-9.  StatusMailerClient.java

package com.apress.ejb.chapter05;

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "StatusMailerClient", urlPatterns =

{"/StatusMailerClient"})

public class StatusMailerClient extends HttpServlet {

 @EJB

 OrderProcessingBean orderProcessing;

Chapter 5 EJB Message-Driven Beans

252

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet StatusMailerClient</title>");

 out.println("</head>");

 out.println("<body>");

 �out.println("<h1>OrderProcessing session bean lookup to be

done</h1>");

 �out.println("<h1>Invoking SendOrderStatus() business method

now</h1>");

 �out.println("<h1>" + orderProcessing.SendOrderStatus() +

"</h1>");

 out.println("<h1>Done !!!</h1>");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 �protected void doPost(HttpServletRequest request, HttpServletResponse

response)

Chapter 5 EJB Message-Driven Beans

253

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }

}

In the next section, we will look at compiling, deploying, and running the use case on

which we have worked.

�Compiling, Deploying, and Testing MDBs
MDBs need to be packaged into EJB JAR (Java Archive) files before they can be deployed

into EJB containers. These EJB archives can then be deployed. (For some EJB containers

or application servers, they need to be assembled into EAR [Enterprise Archive] files).

Most EJB containers or application servers provide deployment utilities or Ant tasks

to facilitate deployment of EJBs to their containers. Java-integrated development

environments (IDEs) like JDeveloper, NetBeans, and Eclipse also provide deployment

features that allow developers to package, assemble, and deploy EJBs to application

servers. Packaging, assembly, and deployment aspects are covered in detail in Chapter 11.

In this chapter, we have developed one stateless session bean (OrderProcessing)

and one MDB (StatusMailer). JMS providers have to be configured with queues and

topics that will be used by the client application and MDB accordingly before the MDBs

are deployed.

The following sections describe the steps to compile, deploy, and test these MDBs

and session beans.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1, which will walk you through the installation and

environment setup required for the samples in this chapter.

Chapter 5 EJB Message-Driven Beans

254

�Compiling the Session Beans and MDBs
Copy the Chapter05-MDBSamples directory and its contents into a directory of your

choice. Run the NetBeans IDE, and open the Chapter05-MDBSamples project using the

File ➤ Open Project menu. Make sure that the 'Open Required Projects' check box

is checked. See Figure 5-6.

Figure 5-6.  Opening the Chapter05-MDBSamples project

Expand the Chapter05-MDBSamples-ejb node, and observe that the MDB and

the session bean that we created appear in the com.apress.ejb.chapter05 package.

Similarly, the two client servlets appear under the Chapter05-MDBSamples-war node as

shown in Figure 5-7.

Chapter 5 EJB Message-Driven Beans

255

Invoke the context menu on Chapter05-MDBSamples node, and build the application

by selecting the Clean and Build menu option as shown in Figure 5-8.

Figure 5-7.  Verifying that the MDB, Session Bean, and their clients are available
in the project

Chapter 5 EJB Message-Driven Beans

256

�Creating the JMS and JavaMail Resources
The StatusMailer MDB makes use of JMS and JavaMail resources. Before the

Chapter05-MDBSamples application can be deployed to GlassFish, these resources have to

be preconfigured. First we will start the GlassFish application server and then configure

the JMS and JavaMail resources by using the web-based administrator console. c

Click the 'Services' tab available in the application navigator of NetBeans. 'GlassFish

Server 3+' is listed under the 'Servers' node. Invoke the context menu on 'GlassFish

Server 3+', and start the server by selecting the Start menu option. See Figure 5-9.

Figure 5-8.  Building the application

Chapter 5 EJB Message-Driven Beans

257

Figure 5-9.  Starting the GlassFish application server

The GlassFish Server 4.1.1 starting log file is shown in Figure 5-10.

Figure 5-10.  GlassFish application server starting log file

Chapter 5 EJB Message-Driven Beans

258

Figure 5-11.  GlassFish 4.1.1. server’s administrator console

After the server has started, open your favorite browser and navigate to http://

localhost:4848/. GlassFish version 4.1.1. server’s administrator console will be loaded

as shown in Figure 5-11.

Note I f you are running GlassFish on a different machine, substitute that machine
name for localhost in the command-line arguments. Similarly, if you are running
on a different port, substitute the port number you are running for 4848.

Using the administrator console, as shown in Figure 5-12, create a JMS

TopicConnectionFactory named StatusMessageTopicConnectionFactory, which will

be used by the OrderProcessing session bean to send a message to the topic that will be

consumed by StatusMailer MDB.

Chapter 5 EJB Message-Driven Beans

259

Figure 5-12.  Creating a TopicConnectionFactory

Chapter 5 EJB Message-Driven Beans

260

Create a JavaMail resource named mail/wineappMail that will be used by the

StatusMailer MDB to send out an e-mail as shown in Figure 5-14.

Figure 5-13.  Creating the JMS topic

Then create a JMS topic named StatusMessageTopic as shown in Figure 5-13.

Chapter 5 EJB Message-Driven Beans

261

If the SMTP server requires authentication, then set the ‘Additional Properties’ as

shown in Figure 5-15.

Figure 5-14.  Creating the JavaMail resource

Figure 5-15.  Setting the Additional Properties for Authenticated SMTP Servers

Chapter 5 EJB Message-Driven Beans

262

�Deploying the Session Beans, MDBs, and Their Clients
Once you have configured the JMS and JavaMail resources, you can deploy the

application to the GlassFish application server. Invoke the context menu on Chapter05-

MDBSamples node, and deploy the application by selecting the Deploy menu option as

shown in Figure 5-16.

Figure 5-16.  Deploying the MDB, session bean and their clients

Chapter 5 EJB Message-Driven Beans

263

�Running the Client Programs
Once the MDB, session bean, and their client servlets are successfully deployed, we

need to set the run target that we wish to execute. We have a choice of two run targets:

StatusMailerClient or StatusMessageClient. To set the run target, invoke the context

menu on Chapter05-MDBSamples node, and select the Properties menu option.

To run the client servlets, invoke the context menu on Chapter05-MDBSamples node,

and select the Run menu option as shown in Figure 5-17.

Figure 5-17.  Running the StatusMailerClient application target

Chapter 5 EJB Message-Driven Beans

264

Once the StatusMailerClient runs successfully, NetBeans will open your default

browser and execute the selected servlet. Here is the output from StatusMailerClient

servlet. You should also be able to see an e-mail in the inbox where the message was

sent as shown in Figure 5-18.

Figure 5-18.  Output of StatusMailerClient servlet

�Summary
In this chapter, we introduced you to the concept of message-oriented middleware and

why enterprises are looking at loosely coupled applications that can converse in an

asynchronous fashion.

We covered message application architecture with the P2P and pub-sub models,

and we discussed why messaging is one of the best ways to implement asynchronous

applications. We looked at JMS in detail, including different JMS components such as

providers, consumers, clients, and different types of messages. We looked at MDBs

and the different artifacts that can make them. We covered the different configuration

properties of MDBs and how they can be set using annotations. We explained

dependency injection in MDBs using the specific example of injecting a JavaMail

resource. We discussed what it takes to compile, package, deploy, and test MDBs, along

with information on how you can create different types of resources in the GlassFish

application server. Finally, we covered running sample client programs using the

application client container in GlassFish and viewing the output and receiving e-mail

messages sent by MDBs.

In the next chapter, we will drill down into web services, including how you can

publish session beans as web services and how to invoke web services from EJB

applications.

Chapter 5 EJB Message-Driven Beans

265
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_6

CHAPTER 6

EJB, Web Services,
and Microservices
This chapter will explain Java EE 8Web Services and Microservices and their differences.

We will introduce the core Web Services standards (SOAP, WSDL, UDDI, XML), and

discuss the evolution of Web Services and Microservices support in the Java EE platform.

We will also drill down into how you can publish EJB stateless session beans as Web

services as well as how to invoke the published Web service from a command-line Java

client program and a stateless session bean. Finally, we will show a short example about

Microservices using the Spring Boot project.

�What Are Web Services?
Web services fundamentally constitute a kind of business logic or functionality

available in an application or module and are exposed via a service interface to a client

application (commonly known as service consumer). The consumer of the Web service

doesn’t have to know any implementation details of the Web service—the client is

able to access or invoke the Web service with the information provided in the service

interface. This architecture fundamentally provides a loosely coupled model in which

the consumer doesn’t have to be aware of technology or infrastructure details particular

to the implementation of the business logic exposed as a Web service.

266

The Web Services Architecture Working Group of the W3C (World Wide Web

Consortium) provides the following definition for a Web service:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

While the concept of abstracting out details to an interface has been used in

several languages and distributed architectures (for example, EJB and CORBA), the

key difference in Web services is the usage of standards to describe the abstraction,

invocation, and registration of services.

Web services architecture goes by the find-bind-execute model in which you find

the required service in a registry (UDDI), get the description of the service, bind it to the

service (create the message that will be sent to the service based on the description),

and finally execute or invoke the service. Figure 6-1 shows the find-bind-execute model.

UDDI, WSDL, and SOAP are the standards that make this find-bind-execute model

ubiquitous and different from earlier computing models.

Figure 6-1.  Web services architecture

Chapter 6 EJB, Web Services, and Microservices

267

�UDDI
Universal Description, Discovery, and Integration (UDDI) provides a standards-based

approach to locating a Web service and information on invoking that service. It also

provides additional metadata about the service. UDDI helps you dynamically bind

Web services instead of having to hardwire them to an external interface, and it also

helps to provide taxonomy. Businesses or service providers can provide basic contact

information (including identification), categorization for the service, information that

describes its behavior, and the actual location of the Web service.

UDDI, which is currently in version 3, has evolved over the last few years. Version

1 focused on providing a registry for services, while version 2 focused on aligning the

specification with other Web services specifications and flexible taxonomies. The

current version focuses on delivering support for secure interaction of private or public

implementations of the services. Several companies, including Oracle, SAP, Microsoft,

IBM, Cisco, Computer Associates, and Systinet are members of the UDDI technical

committee for the Organization for the Advancement of Structured Information

Standards (OASIS). Most of the application server vendors (such as Oracle and

IBM) either provide a UDDI registry as a standard component that comes with their

application server, or an OEM UDDI registry (from Systinet or other registry providers)

as part of their middleware platform.

�WSDL
Web Services Description Language (WSDL), currently v 2.0, is a technology that is used

to describe the interface of a service using XML. WSDL is a standard developed by the

W3C to which several vendors and individuals have contributed over the last few years.

WSDL describes what a service does, how to invoke its operations, and where to find it.

WSDL details can be split into two categories: service interface definition details and

service implementation definition details. The service interface definition is an abstract

or reusable service definition that can be instantiated and referenced by multiple service

implementation definitions. It contains the following WSDL elements, which comprise

Chapter 6 EJB, Web Services, and Microservices

268

the reusable portion of the service description. We will use a credit check Web service as

an example to introduce the service interface definition elements listed here:

<definitions>

<types>

<message>

<portType>

<binding>

�The <definitions> Element

The <definitions> element allows you to specify global declarations of namespaces

that are visible through the WSDL document. It acts as a container for service

descriptions. Listing 6-1 shows an example <definitions> element that defines a target

namespace and other namespaces that are referred to by a credit service.

Listing 6-1.  The <definitions> Element in CreditService.wsdl

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.apress.com/ejb3/credit" 

name="CreditService" xmlns:tns="http://www.apress.com/ejb3/credit" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns=http://schemas.xmlsoap.org/wsdl/ />

�The <types> Element

The <types> element is used to define the data types for the <message> element.

XML schema definitions (XSDs) are most commonly used to specify the data types.

Listing 6-2 shows an example <types> element that provides the schema location for the

credit service.

Chapter 6 EJB, Web Services, and Microservices

269

Listing 6-2.  The <types> Element in CreditService.wsdl

 <types>

 <xsd:schema>

<xsd:import namespace="http://www.apress.com/ejb3/credit"

 schemaLocation="CreditServiceBeanService_schema1.xsd"/>

 </xsd:schema>

 </types>

�The <message> Element

The <message> element is used to define the format of data exchanged between a Web

service consumer and a Web service provider. Listing 6-3 shows an example of two

<message> elements: CreditCheck and CreditCheckResponse.

Listing 6-3.  The <message> Element in CreditService.wsdl

 <message name="CreditCheck">

 <part name="parameters" element="tns:CreditCheck"/>

 </message>

 <message name="CreditCheckResponse">

 <part name="parameters" element="tns:CreditCheckResponse"/>

 </message>

�The <portType> Element

The <portType> element is used to specify the operations of the Web service. Listing 6-4

shows the <portType> element for the credit service with the CreditCheck operation.

Listing 6-4.  The <portType> Element in CreditService.wsdl

<portType name="CreditCheckEndpointBean">

 <operation name="CreditCheck">

 <input message="tns:CreditCheck"/>

 <output message="tns:CreditCheckResponse"/>

 </operation>

</portType>

Chapter 6 EJB, Web Services, and Microservices

270

�The <binding> Element

The <binding> element describes the protocol, data format, and security for a

<portType> element. The standard bindings are HTTP or SOAP; or you can create one of

your own.

The “bindings” part of the WSDL specification is flexible—it allows you to provide

your own bindings environment instead of the default SOAP-over-HTTP model.

This flexibility of the specification has been widely exploited by WSIF (Web Services

Invocation Framework), which is an Apache open source project. WSIF provides a

nice way to expose existing Java, EJB, JMS (Java Message Service), and JCA-based

components as Web services with native bindings, which provide better performance

and that support native transactions. Listing 6-5 shows the <binding> element for the

credit service, using SOAP-over-HTTP.

Listing 6-5.  The <binding> Element in CreditService.wsdl

 <binding name="CreditCheckEndpointBeanPortBinding" 

type="tns:CreditCheckEndpointBean"> 

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" 

style="document"/>

 <operation name="CreditCheck">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

The service implementation definition part of the WSDL document identifies a Web

service. It contains the following elements:

<service>

<port>

Chapter 6 EJB, Web Services, and Microservices

271

�The <service> Element

The <service> element contains a collection of <port> elements where each port is

associated with an endpoint (a network address location or URL). Listing 6-6 shows an

example of a <service> element for the credit service.

Listing 6-6.  The <service> Element in CreditService.wsdl

 <service name="CreditService">

 <port name="CreditCheckEndpointBeanPort" 

binding="tns:CreditCheckEndpointBeanPortBinding">

 �<soap:address location="http://localhost:64082/CreditService/

CreditCheckEndpointBean"/>

 </port>

 </service>

Listing 6-7 shows the complete WSDL document for the credit service that we are

going to develop later in the chapter.

Listing 6-7.  The Complete WSDL Document for CreditService.wsdl

 <?xml version='1.0' encoding='UTF-8'?>

 �<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.apress.com/ejb/credit" xmlns:xsd="http://www.

w3.org/2001/XMLSchema" xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://www.apress.com/ejb/credit" name="CreditService">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.apress.com/ejb3/credit" 

 schemaLocation="CreditServiceBeanService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="CreditCheck">

 <part name="parameters" element="tns:CreditCheck"/>

 </message>

Chapter 6 EJB, Web Services, and Microservices

272

 <message name="CreditCheckResponse">

 <part name="parameters" element="tns:CreditCheckResponse"/>

 </message>

 <portType name="CreditCheckEndpointBean">

 <operation name="CreditCheck">

 <input message="tns:CreditCheck"/>

 <output message="tns:CreditCheckResponse"/>

 </operation>

 </portType>

 �<binding name="CreditCheckEndpointBeanPortBinding" type="tns:CreditCheck

EndpointBean">

 �<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

 <operation name="CreditCheck">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="CreditService">

 �<port name="CreditCheckEndpointBeanPort"

binding="tns:CreditCheckEndpointBeanPortBinding">

 �<soap:address location="http://localhost:64082/CreditService/

CreditCheckEndpointBean"/>

 </port>

 </service>

 </definitions>

Chapter 6 EJB, Web Services, and Microservices

273

�SOAP
Simple Object Access Protocol (SOAP), currently v 1.2, is an XML-based protocol used

for exchanging information in a decentralized and distributed environment using

XML. SOAP is a standard developed by the W3C. Fundamentally, SOAP is the default

transport layer for the Web services.

A SOAP message is an ordinary XML document containing the following elements:

•	 The required Envelope element identifies the XML document as a

SOAP message. Envelope is the top-level element in the document.

The envelope is required, and it basically marks the start and end of

the SOAP message (although messages can contain links to objects

outside the envelope). The envelope contains the Header and the

Body elements.

•	 The optional Header element contains header information. When

the SOAP protocol is used over HTTP, the HTTP headers provide

information about the content type, content length, and recipient of

the message. A header is included to add features to a SOAP message

without prior agreement between the communicating parties.

•	 The required Body element contains call-and-response information.

Body is a mandatory element that contains the information for the

recipient of the message.

•	 The optional Fault element provides information about errors that

occur while the message is processed. The Body element can contain

an optional Fault element to report errors.

Chapter 6 EJB, Web Services, and Microservices

274

Figure 6-2 illustrates the elements of a SOAP message.

Figure 6-2.  A SOAP Message

�REST
REST (REpresentational State Transfer) is a software architecture pattern that uses

HTTP (Hyper Text Transfer Protocol) to discover, query, and manipulate resources in a

decentralized and distributed environment. In recent times, REST has gained popularity

compared to WSDL-SOAP-based implementation because of its simplicity.

Using REST, the client accesses a resource on the server, using the URI (Universal

Resource Identifier) and the standard set of HTTP methods (GET, POST, PUT, and

DELETE). In response, the server returns a representation of the resource, which is

nothing but a document that contains the current or intended state of the resource. After

each access invocation and a corresponding new resource representation response, the

client is said to transfer state, hence the name Representational State Transfer. The REST

architectural pattern mandates the following six constraints:

	 1.	 Client–server Architecture: Clients and servers should be separate and

can only interact via a uniform interface. This separation means that

clients are not concerned with the data-storage internals of the server,

and the server is not concerned with the user interface of the clients.

Chapter 6 EJB, Web Services, and Microservices

275

	 2.	 Stateless Interaction: Clients and server can only interact using a

stateless protocol like HTTP. A server cannot store a client context

between requests. All requests must contain all of the information

required for those requests.

	 3.	 Cacheable: Server responses must identify themselves as

cacheable or non-cacheable. This can be used to prevent clients

from using stale data, and it can also help in improving the

performance and scalability.

	 4.	 Layered System: Clients should be able to connect to an

intermediary system seamlessly rather than directly to the end

server. Intermediary systems provide facilities like load balancing

and shared caching that improve scalability of the system.

	 5.	 Named Resources: Clients must be able to identify individual

server resources in each request using URIs.

	 6.	 Uniform Interface: A uniform interface between clients and

servers allow them to evolve independently.

�RESTful Web Services

RESTful Web services are services that are built based on the above-mentioned REST

principles. RESTful Web services use HTTP and implement operations that map to

common HTTP methods as shown in Table 6-1.

Table 6-1.  HTTP Method to CRUD operation mapping

HTTP Method CRUD Operation

POST create

GET retrieve

PUT update

DELETE delete

Listing 6-8 shows a simple RESTful Web service named CreditCheck that takes

a credit card number as an input and returns true or false based on its validity. For

simplicity’s sake, our method always returns true.

Chapter 6 EJB, Web Services, and Microservices

276

Listing 6-8.  CreditCheck.java

package com.apress.ejb.chapter06.services;

import javax.ws.rs.Consumes;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

@Path("creditCheck")

public class CreditCheck {

 @PUT

 @Consumes("text/plain")

 @Produces("text/plain")

 @Path("isValid")

 public boolean isValid(@PathParam("cardNumber")String ccNumber) {

 return true;

 }

}

Users can invoke the isValid method in CreditCheck as follows, and ccNumber will

be assigned the value 12345.

http://<host>:<port>/<resource>/creditCheck/isValid/12345

�RESTful vs. SOAP-Based Web Services

Table 6-2 lists the important difference and similarities between RESTful Web service

and SOAP-based Web service.

Chapter 6 EJB, Web Services, and Microservices

277

�When Do You Use Web Services?
Web services provide a standard way to expose existing or new applications and data to

external parties—including customers, suppliers, and partners—or across departments

in an enterprise, using industry standards. Web services can also be used to integrate

heterogeneous applications and data.

While many enterprises use Web services internally, there are numerous examples of

external Web services that are available. Some of the popular ones are package-tracking

services (provided by shippers like FedEx, UPS, and USPS). E-commerce websites, like

www.amazon.com, www.yahoo.com, www.ebay.com, and www.google.com expose their core

functionality using Web services. Developers can subscribe and use the Web services

provided by these e-commerce providers to develop applications that add value to, or

provide seamless integration with, back-end systems.

�Java EE 8 and Web Services
The Java EE platform has evolved over the last few years to become a mature, stable,

reliable, and available platform for enterprise applications. While technologies like

JDBC (Java Database Connectivity), JMS, and EJB have been in the Java EE platform

right from the start, however, only in J2EE 1.4 has the development and deployment

Table 6-2.  RESTful vs. SOAP-Based Web Services

Criteria SOAP RESTful

Specification JAX-WS JAX-RS

Simple/Complex Complex Simple

Message Size Large (XML markup) Small (no extra XML markup)

Standards Based Yes No

Transport HTTP, SMTP, JMS HTTP

Caching No GET operations can be cached

Protocols JMS, SMTP, HTTP HTTP

Human Readable Payload No Yes

Language and Platform Independent Independent

Chapter 6 EJB, Web Services, and Microservices

http://www.amazon.com/
http://www.yahoo.com/
http://www.ebay.com/
http://www.google.com/

278

of Web services assumed better shape as they’ve been standardized to make the

Web services in the Java EE platform more portable across application servers and

interoperable with .NET Web Services. The common goal for the Java EE specifications

was to provide ease of development and deployment for applications and services. Some

of the key specifications in Java EE that are related to Web services are JAX-WS, JAXB,

JAXR, SAAJ, and the JSR 224 annotations. In the following sections, we will show what

these specifications are and how they can be used with EJB. Figure 6-3 shows how EJB

interacts with different Web service-related specifications under the Java EE platform.

Figure 6-3.  EJB and Web Services

�JAX-WS
JAX-WS (Java API for XML Web Services) defines Java APIs and annotations for accessing

Web services from Java applications and Java EE components like EJBs. JAX-WS

provides mapping facilities between WSDL and Java interfaces, or from Java interfaces

to WSDL. WSDL-mapped interfaces are called service endpoint interfaces. JAX-WS

also provides the client-side and server-side APIs and annotations to send and receive

Web service requests via SOAP. The JAX-WS specification in Java EE depends on other

relevant specifications of the Java EE platform224 and JAXB. The current version of

JAX-WS is 2.3 (JSR 224). It also provides support for the latest Web services standards

like SOAP 1.2 and WSDL 2.0. Figure 6-4 shows a simplified diagram of a Web service

invocation.

Chapter 6 EJB, Web Services, and Microservices

279

�JAX-RS
JAX-RS (JAX-RS: Java API for RESTful Web Services) defines Java APIs and annotations

for creating Web services based on the REST architectural pattern. JAX-RS version 1.1

became an integral part of Java EE 6 through JSR-311. JAX-RS provides annotations like

@PATH, @GET, @PUT, @POST, @DELETE, @HEAD, @PRODUCES, @CONSUMES, and so forth that help

in mapping a POJO (plain old java objects) as a Web resource. The current version of

JAX-RS is 2.1 (JSR 370).

�JAXB
Web services consumers and providers use XML messages to send requests and

responses. These messages can be something like a purchase order that has an XSD,

which allows the parties involved (provider and consumer) to understand the purchase

order. Working with XML documents using low-level language APIs can be time

consuming and can involve complex code. The JAXB (Java Architecture for XML Binding)

specification, in context of Java EE, provides standard APIs for representing XML

documents as Java artifacts so that developers can work off Java objects that represent

the XML documents based on schemas (XSD). The JAXB specification facilitates

unmarshalling XML documents into sets of Java objects and marshalling sets of Java

objects back into XML documents. The JAXB specification provides full support for XML

Figure 6-4.  Web service invocation internals

Chapter 6 EJB, Web Services, and Microservices

280

schemas and binding support for JAX-WS, and it leverages other Java EE specifications,

such as JSR 175.

�JAXR
UDDI is the standard for Web services registry. The JAXR (Java API for XML Registries)

specification defines a standard set of APIs that allows Java clients to access the registry.

These APIs can also be used against XML registries other than UDDI ones.

�SAAJ
Similar to the attachments that you can use in e-mail messages, you can send

attachments to the SOAP messages that invoke Web services. SAAJ (SOAP with

Attachments API for Java) Java API for XML Registries define a standard set of APIs that

allow Java SE or EE components to construct SOAP messages with attachments.

�JSR 224
JSR 224 (Web Services Metadata for the Java Platform) defines a standard set of

annotations that can be used to simplify Web services development. These annotations

can be used with Java classes or EJB session beans that can be JAX-WS components. JSR

224 supplements the old JSR-181 annotations.

�EJB Stateless Session Beans as Web Services
Web services endpoints that are described using WSDL are stateless in nature. Stateless

session beans also share the same statelessness and are well suited for developing Web

services. The EJB specification relies on other Web services specifications in the Java EE

platform, including JAX-WS, JAXB, and JSR 224, either to consume Web services or

publish stateless session beans as Web services.

A service endpoint interface (SEI) is one that is mapped to a Web service. JAX-WS

provides this mapping layer. In order to develop a new Web service, you can take either

the bottom-up or top-down approach, both of which are described below.

Chapter 6 EJB, Web Services, and Microservices

281

In the case of the bottom-up approach, you start with an SEI and an implementation

that can be published as a Web service. In this process, Web service artifacts like WSDL

documents are generated at deployment time or by the administrative tools or utilities

provided by Java EE application servers.

In the top-down case, you start with a WSDL document and generate an SEI using

tools that implement JAX-WS. Once you have an SEI, you can add the implementation

behind it. In the case of EJB stateless session beans, you need to use the annotations

provided in the JAX-WS and JSR 224 specifications to mark the business interfaces

and/or bean classes so that the right set of Web services artifacts will be generated

at deployment time. Java EE specifications require that the annotations added to

components be processed at deployment time to generate the right set of artifacts. EJB

stateless session beans with Web services annotations are no different; they are also

processed at deployment time by the deployment utilities provided by the application

servers. There will be one stateless session bean for each SEI.

�Developing a New Web Service
Stateless session beans are implemented using the programming model described in

Chapter 2. In case you want to make a stateless session bean as a Web service, you will

need the following classes:

•	 A bean class (implementation)

•	 A Web service endpoint interface (optional)

•	 Additional business interfaces if the bean class has local or

remote clients

�Creating a Bean Class

A stateless session bean class is any standard Java class that has a class-level annotation

of @Stateless. Starting with version 3, the EJB specification doesn’t mandate the

requirement of SEIs. Providing an SEI along with a bean class is optional. In the use case

in which the bean class will be published as a Web service without any service endpoint

interface, the bean class will have the additional class-level annotation @WebService

(JSR 224). The @WebService annotation is in the javax.jws package, and it marks the

bean class as an implementation for a SOAP-based Web service.

Chapter 6 EJB, Web Services, and Microservices

282

To illustrate a stateless session bean that gets published as a Web service, we will

create a CreditServiceEndpointBean that will be published as CreditService.

In Listing 6-9, we have a Java class, CreditCheckEndpointBean, which has two

class-level annotations: @Stateless and @WebService. The @Stateless annotation

provides an additional parameter to mark the bean as CreditCheckEndpointBean. If the

same class is exposed to remote or local clients, those clients will access the stateless

session bean with that name. The @WebService annotation provides two additional

parameters: one to mark the service name as CreditService and the other to specify the

target namespace (instead of using the default Java package structure).

Listing 6-9.  CreditCheckEndpointBean.java

package com.apress.ejb.chapter06.services;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebService;

@Stateless(name = "CreditCheckEndpointBean")

@WebService(serviceName = "CreditService", targetNamespace = "http://www.

apress.com/ejb/credit")

Table 6-3.  The @WebService Annotation

Parameter Description Additional Info

name The name of the Web service that gets

mapped to wsdl:portType.

If not specified, the name of

the Java class is taken.

targetNamespace The XML namespace used for the

Web service.

If not specified, the name of

the Java class is taken.

serviceName The name of the Web service that gets

mapped to wsdl:service.

If not specified, the name of

the Java class is taken.

wsdlLocation The location of the WSDL document, which

comes in handy when the bean class is

implementing existing Web service.

The @WebService annotation takes the parameters described in Table 6-3.

Chapter 6 EJB, Web Services, and Microservices

283

public class CreditCheckEndpointBean {

 public CreditCheckEndpointBean() {

 }

}

The @WebMethod annotation defined in JSR 224 allows you to customize the method

that is exposed as a Web service operation. If no @WebMethod annotations are specified in

the bean class that has the @WebService annotation, then all public methods are exposed

as Web service operations.

The @WebMethod annotation takes the parameters described in Table 6-4.

Table 6-4.  The @WebMethod Annotation

Parameter Description Additional Info

operationName The name of the wsdl:operation that

matches this method.

By default, this is the name

of the Java method.

action The action for this operation. In the case of

SOAP bindings, it will be the value of the SOAP

action header.

By default, this is the name

of the Java method.

In Listing 6-10, we have added the following method into the

CreditCheckEndpointBean class, which will be exposed as a Web service operation.

The operation name is customized as CreditCheck using @WebMethod parameters. The

method takes a java.lang.String parameter (which is the credit card number) and

returns a java.lang.boolean value of true or false, depending on whether the credit

card is valid. For simplicity’s sake, we will always return true.

Listing 6-10.  The validateCC Method in CreditCheckEndpointBean.java

@WebMethod(operationName="CreditCheck")

public boolean validateCC(String cc){

return true;

}

Chapter 6 EJB, Web Services, and Microservices

284

�Web Service Endpoint Interface

JAX-WS doesn’t mandate the requirement of an SEI to implement a Web service

endpoint. You can use the annotations provided in JSR 224 to mark the bean class as a

Web service and one or more business methods as Web service operations. In the use

case in which an SEI is defined for a stateless session bean, the following should be

observed:

•	 The SEI must have a javax.jws.WebService annotation.

•	 One or more methods can have a javax.jws.WebMethod annotation.

•	 All method parameters and return types should be compatible with

the JAXB XML schema mapping definition.

•	 Arguments and return types of methods must be valid JAX-RPC value

types, which include Java primitives (int, long, and so on), Java

classes (String, Date, and so forth), Java Beans, and arrays.

•	 Throw clauses must include a java.rmi.RemoteException in addition

to any other application exceptions.

Note  Support for JAX-RPC has been made optional since Java EE 7. Since Java EE 7,
the specification encourages new applications to use the facilities provided by JAX-WS
that simplify Web service development. The current version of JAX-RPC is 1.1.

In our examples, we are adding annotations to the bean class itself, as shown in

Listings 6-9 and 6-10.

Listing 6-11 illustrates a service endpoint interface for the use case in which an

SEI is provided, and Listing 6-12 shows the CreditCheckEndpointBean class

implementing the SEI.

Listing 6-11.  A Service Endpoint Interface for the Use Case

@WebService(serviceName="CreditService",targetNamespace="http://www.apress.

com/ejb/credit")

public interface CreditCheckEndpoint {

Chapter 6 EJB, Web Services, and Microservices

285

 @WebMethod(operationName="CreditCheck")

 public boolean validateCC(String cc);

}

Listing 6-12.  The CreditCheckEndpointBean Class Implementing the SEI

@Stateless

public class CreditCheckEndpointBean implements CreditCheckEndpoint {

 public CreditCheckEndpointBean() {

 }

 //implementation goes here

}

�Packaging, Deploying, and Testing Web Services
Stateless session beans that have Web service annotations need to be packaged into

EJB Java Archive (JAR) files before they are deployed into EJB containers. For some EJB

containers or application servers, they first need to be assembled into EAR [Enterprise

Archive] files). Most EJB containers or application servers provide deployment utilities

or Ant tasks to facilitate deployment of EJBs to their containers. Java-integrated

development environments (IDEs) like JDeveloper, NetBeans, and Eclipse also provide

deployment features that allow developers to package, assemble, and deploy EJBs to

application servers. Packaging, assembly, and deployment aspects are covered in detail

in Chapter 11.

In this chapter, we have developed one stateless session bean

(CreditCheckEndpointBean) with Web service annotations. We will perform the

following steps to compile, deploy, and test the stateless session bean to be published as

a Web service.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1, which walks you through the installation and environment

setup required for the samples in this chapter.

Chapter 6 EJB, Web Services, and Microservices

286

�Compiling the Session Bean
Copy the Chapter06-WebServiceSamples directory and its contents into a directory

of your choice. Run the NetBeans IDE, and open the Chapter06-WebServiceSamples

project using the File ➤ Open Project menu. Make sure that the ‘Open Required

Projects' check box is checked, as shown in Figure 6-5.

Figure 6-5.  Opening the Chapter06-WebServiceSamples project

Expand the Chapter06-WebServiceSamples-ejb node as shown in Figures 6-6

and 6-7, and observe that the session bean-based Web service that we created appears

in the com.apress.ejb.chapter06.services package. Similarly, the client servlet also

appears under the Chapter06-WebServiceSamples-war node.

Chapter 6 EJB, Web Services, and Microservices

287

Invoke the context menu on Chapter06-WebServiceSamples node, and

build the application by selecting the Clean and Build menu option.

The session bean-based Web service will compile without any errors, but the client in

Chapter06-WebServiceSamples-war node will show compilation errors. We will ignore

these errors in the client for now.

Figure 6-6.  Verifying that the Session Bean and its clients are available in the
project

Chapter 6 EJB, Web Services, and Microservices

288

�Deploying the Session Bean-Based Web Service
Once we have compiled the session bean, we can deploy it to the GlassFish application

server. Invoke the context menu on Chapter06-WebServiceSamples-ejb node, and

deploy the application by selecting the Deploy menu option, as shown in Figure 6-8.

Figure 6-7.  Building the application

Chapter 6 EJB, Web Services, and Microservices

289

�Testing the Credit Service
After successful deployment, we can use the test harness to see if CreditService can

be invoked properly or not. To invoke the test harness, expand the Web Services node

under Chapter06-WebServiceSamples-ejb to expose the CreditCheckEndpointBean

node, and select the Test Web Service menu option, as shown in Figure 6-9.

Figure 6-8.  Deploying CreditService

Chapter 6 EJB, Web Services, and Microservices

290

In the generated test harness page (shown in Figure 6-10), enter 12345 as the credit

card number, and click the creditCheck button. You can also click on the WSDL File link

to check its contents. Bookmark the WSDL File URL, as it will be used for creating a Web

service client in the later sections.

Figure 6-9.  Testing CreditService

Chapter 6 EJB, Web Services, and Microservices

291

In the generated page, you can test the results with a SOAP request and response, as

shown in Figure 6-11.

Figure 6-10.  The Web service test harness

Figure 6-11.  SOAP request and response messages

Chapter 6 EJB, Web Services, and Microservices

292

So far, we have seen how to test the deployed Web services using the test harness.

In the next section, we will discuss Web Services clients and how you can develop and

run programs that can invoke Web services. In our case, we will be testing against the

deployed credit service.

�Web Service Client View
A stateless session bean that is published as a Web service can be accessed using the

client view described by the WSDL document that gets generated during deployment

(as shown in Listing 6-7). Since the stateless session bean is published as a Web service

using standards such as WSDL, any type of client application that can send and receive

SOAP messages (irrespective of technology or language) can invoke it. The client

application can be written using .NET or Java EE, or scripting languages such as PHP,

Python, or Ruby. From the client point of view, what it sees as a contract is a WSDL

document. In order to access the Web service, programmatic interfaces should be

generated from the WSDL document.

Web services are location independent, and they can be accessed remotely. If the

client application invoking a Web service is a Java client or other Java EE component,

such as an EJB, it uses JAX-WS client APIs or annotations to invoke the Web service via

SOAP and HTTP.

�Developing a Java Client That Accesses the Web Service
In order to access a Web service via a WSDL service contract, the client program needs

programmatic interfaces (commonly known as stubs or proxies) generated from the

WSDL document. Once the stubs have been generated from the WSDL document, we

can use the JAX-WS annotations to get a reference to the Web service and invoke it.

�Generating Web Service Proxy Classes

We will start by generating stubs for the CreditService WSDL document using the Web

Service Client wizard provided by the NetBeans IDE. Invoke the Web Service Client

wizard from the context menu of Chapter06-WebServiceSamples-ejb node, as shown in

Figure 6-12.

Chapter 6 EJB, Web Services, and Microservices

293

In the Web Service Client wizard, select the WSDL URL radio button, and enter the

WSDL File URL that you had bookmarked in the earlier section (see Figure 6-10). We

also need to specify the package where the client Java artifacts will be generated. We will

generate these artifacts in the com.apress.ejb.chapter06.services.client package.

Enter these details, as shown in Figure 6-13, and finish the wizard.

Figure 6-12.  Invoking the Web Service Client wizard

Chapter 6 EJB, Web Services, and Microservices

294

Figure 6-13.  Creating a Web Service Client

Chapter 6 EJB, Web Services, and Microservices

295

Once the stubs are generated and compiled, we can see artifacts under Generated

Sources (jax-ws) node, as shown in Figure 6-14.

Figure 6-14.  Verifying the generated stub sources

Note  GlassFish also provides the command-line utility wsimport.bat, which
can generate Web service stubs given a valid WSDL document. In case you are
deploying the Web service to other Java EE compatible servers, these servers
might also provide some tools or utilities to generate the stubs for the Web service.

Once the stubs are generated and compiled, the next step is to create a client that will

consume CreditService.

The JAX-WS specification provides the @WebServiceRef annotations that can be used

to declare a reference to a Web service, which in our case is CreditService.

Chapter 6 EJB, Web Services, and Microservices

296

Table 6-5.  The @WebServiceRef Annotation

Parameter Description Additional Info

name The name that identifies the Web

service reference

The name that is local to the application

component using the resource

wsdlLocation The URL pointing to the location of

the WSDL document

type The resource type

value The service type

mappedName The physical name of the resource

used to map the resource to a

vendor-specific container

The @WebServiceRef annotation can take the parameters described in Table 6-5.

�Developing a Web Service Client Program

The @WebServiceRef annotation either provides a reference to the SEI generated

by the container, or a reference to the SEI provided by the application developer.

Listing 6-13 shows a servlet class that is going to be a Web service client. In this servlet

class, CreditServiceClient, we are using dependency injection to inject the credit

service that we have deployed earlier as a Web service. The @WebServiceRef annotation

is used to inject the CreditService that has been generated as the proxy class. Once we

have injected the available resource, we use that proxy class to get the Web service port

using the getCreditCheckEndpointBeanPort() method. After successfully getting the

port, we can invoke the operations that are available on the port. In our case, we have

defined only one operation, creditCheck. You can see that this is being invoked with a

credit card number of 12345678.

Listing 6-13.  CreditServiceClient.java

package com.apress.ejb.chapter06.client;

import com.apress.ejb.chapter06.services.client.CreditCheckEndpointBean;

import com.apress.ejb.chapter06.services.client.CreditService;

import java.io.IOException;

Chapter 6 EJB, Web Services, and Microservices

297

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.ws.WebServiceRef;

@WebServlet(name = "CreditServiceClient", urlPatterns = {"/CreditServiceClient"})

public class CreditServiceClient extends HttpServlet {

 �@WebServiceRef(wsdlLocation = "http://localhost:64082/CreditService/

CreditCheckEndpointBean?WSDL")

 CreditService service;

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet CreditServiceClient</title>");

 out.println("</head>");

 out.println("<body>");

 �CreditCheckEndpointBean creditService = service.

getCreditCheckEndpointBeanPort();

 �out.println("<h1>Credit Check returned: " + creditService.

creditCheck("12345678") + "</h1>");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

Chapter 6 EJB, Web Services, and Microservices

298

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 �protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }

}

�Compiling the Client Class

Invoke the context menu on the Chapter06-WebServiceSamples-war node, and build

the client by selecting the Clean and Build menu option, as shown in Figure 6-15.

Chapter 6 EJB, Web Services, and Microservices

299

�Running the Web Service Client

Once we have compiled the client, we need to run it.

To run the client servlet, invoke the context menu on the

Chapter06-WebServiceSamples node, and select the Run menu option, as shown in

Figure 6-16.

Figure 6-15.  Compiling the Web service client

Chapter 6 EJB, Web Services, and Microservices

300

Once the CreditServiceClient runs successfully, NetBeans will open your

default browser and execute the selected servlet. Here is the output from the

CreditServiceClient servlet as shown in Figure 6-17.

Figure 6-16.  Running the client

Figure 6-17.  Checking the servlet output

Chapter 6 EJB, Web Services, and Microservices

301

�Session Beans as Web Service Clients
A session bean can also be a client to a Web service. In the sample application that

we will build in Chapter 7, the OrderProcessing session bean, which coordinates the

workflow, can invoke the credit service to check the validity of the credit card before

starting to process the order. To act as a client to a Web service, the OrderProcessing

session bean would make use of the @WebServiceRef annotation, similar to what we

have shown in the previous client sample.

Listing 6-14 shows the stateless session bean OrderProcessFacadeBean, which

implements both local and remote business interfaces. The @WebServiceRef

annotation is used to inject a reference to the CreditService WSDL document. The

PerformCheckCredit() method in the OrderProcessFacadeBean session bean uses the

injected reference to get the port in the CreditService and invokes the creditCheck

operation. As you can see, the process of injecting the Web service, getting the port, and

calling the operations from a session bean is similar to what we have done with the client

that acted as a Web service client.

Listing 6-14.  OrderProcessFacadeBean.java

@Stateless(name="OrderProcessFacade")

public class OrderProcessFacadeBean implements OrderProcessFacade,

 OrderProcessFacadeLocal {

 @WebServiceRef(type=CreditService.class)

 CreditService service;

 public OrderProcessFacadeBean() {

 }

 private boolean PerformCreditCheck(Individual customer){

 String ccnum = customer.getCcNum().toString();

 CreditCheckEndpointBean creditService =

 service.getCreditCheckEndpointBeanPort();

 return creditService.creditCheck(ccnum);

 }

}

Chapter 6 EJB, Web Services, and Microservices

302

�What Are Microservices?
Microservices are a variant of the service-oriented architecture (SOA) architectural style.

Microservices define a new architectural structure model so that a simple

application is developed as a set of multiple single and lightweight services.

Compared to previous architectural approaches, Microservices defined clearly a new

trend in the software development industry.

A major benefit of Microservice is that each of them is independently deployable and

scalable as well as that it can be written in different programming languages.

Microservices are commonly directly invoked by HTTP REST API calls. Standards like

RAML (Restful API Modelling Language) allow for the formal definition of REST APIs.

The development of Microservices is a combination of direct calls through HTTP and

indirect calls through a message broker.

We will see the main differences between monolithic and Microservices as well as

provide an example of Microservice development.

Here are some of the most important advantages and disadvantages of

Microservices:

Advantages:

•	 Better software practices

•	 Fault tolerance

•	 Evolutionary design

•	 Easy to deploy

•	 Reduce Coupling

•	 Right Tool for the Job

•	 Continuous Delivery

•	 Smaller codebases are easier to reason about

•	 Easy to replace old services

•	 Efficient Scaling

•	 Easier to develop, understand, and maintain

•	 Starts faster than a monolith

•	 Local changes can be easily deployed

Chapter 6 EJB, Web Services, and Microservices

303

•	 Improves fault isolation

•	 Not tech driven but business focused

Disadvantages:

•	 Tooling overhead

•	 Debugging

•	 Distributed transactions

•	 Latency

•	 Dependency

•	 Additional complexity of distributed systems

•	 Significant operational complexity, needs high level of automation.

•	 Rollout plan to coordinate deployments

Microservices Technology Stack might include:

•	 Java

•	 Spring

•	 Hibernate

•	 NodeJS

•	 PostgreSQL

•	 Redis

•	 Bootstrap

•	 AngularJS

•	 Amazon Web Services

•	 Docker

•	 RabbitMQ

•	 Hystrix

Chapter 6 EJB, Web Services, and Microservices

304

Figure 6-18 shows the Microservices concept.

Figure 6-19.  Monolith vs Microservices

Figure 6-18.  Microservices concept

Figure 6-19 shows the main differences between Monolith and Microservices.

Chapter 6 EJB, Web Services, and Microservices

305

In general, traditional software development processes result in relatively large

teams working on a single, monolithic deployment artifact while Microservices are a

fundamental shift in how IT approaches software development.

Figure 6-20 shows the Microservices general architecture.

Figure 6-20.  Microservice Architecture

�Java EE 8 and Microservices
The Java EE platform can be used, of course, to develop Microservices.

In general, the Java EE set of specifications allows the Java developer to create

easily monolithic applications since they don’t need to worry about handling technical

concerns like scaling, security, network handling, transaction management, etc. When

developing monolithic applications, Java EE developers only have to focus on business

concerns instead.

Chapter 6 EJB, Web Services, and Microservices

306

But the problem when developing a monolithic application is that the application

will be structured as an EAR file with multiple modules including the following:

•	 An EJB-module that handles integration aspects like SOAP web

services, Message handling, etc.

•	 An EJB-module with a common persistence layer to access data

stores with traditional means like JPA, JDBC, JCA, etc.

•	 Multiple WAR modules

This scenario very easily will turn to be very complex to develop while with tools like

Maven or OSGi, modularizing a Java EE application such as Microservices, has simplified

the development of monoliths on Java EE, meaning that the Java EE developer’s entire

application can be deployed in a single WAR file.

Here are the major advantages of developing Microservices with Java EE:

•	 Java EE is incredibly lightweight

•	 Rapid to develop

•	 Majority of alternative Java frameworks based on Java EE APIs

•	 Concentrates on building business functionality

•	 Produces small skinny wars

•	 Versioned runtime – aids operations

Microservices development platforms in Java include:

•	 Java EE

•	 Microprofile

•	 OSGI

•	 Vertx

•	 Akka

•	 Dropwizard

•	 etc.

Chapter 6 EJB, Web Services, and Microservices

307

Java EE Microservice building tools include:

•	 Maven

•	 Gradle

Microservice creates the following artifacts types:

•	 jar, war, ear, rar, etc.

•	 Java EE server RT configuration

Next we will show an example of Java EE 8 Microservices.

�Microservices Example Using Spring Boot
and NetBeans
We will now show how to develop a Java EE 8 microservice application using Spring Boot

and NetBeans IDE v8.2.

Spring Boot is an innovative project that can help the Java developer to create simple

stand-alone, production-grade Spring based Applications, etc. Spring Boot can be found

at https://projects.spring.io/spring-boot/

�Prerequisites
Prerequisites for this example are the following:

•	 NetBeans IDE 8.2

•	 JDK 8 recommended

•	 Spring Boot plug-in: NB-SpringBoot created by Alex Falappa at

https://github.com/AlexFalappa/nb-springboot

The first thing is that we must download and import the NB-SpringBoot plug-in into

NetBeans IDE 8.2.

Chapter 6 EJB, Web Services, and Microservices

https://projects.spring.io/spring-boot/
https://github.com/AlexFalappa/nb-springboot

308

Once imported, the Figure 6-21 shows the NB-SpringBoot plug-in installed into

NetBeans.

Figure 6-21.  NB-SpringBoot installed plug-in

Now we can create our Microservice using Spring Boot.

Chapter 6 EJB, Web Services, and Microservices

309

Figure 6-22.  New Maven SpringBoot project

Let’s create a new project using the Spring Initializer directly from NetBeans as

shown in Figure 6-22.

Chapter 6 EJB, Web Services, and Microservices

310

Figure 6-23.  New Maven SpringBoot project Info

Add some project info: as shown in Figures 6-23, 6-24, and 6-25.

Chapter 6 EJB, Web Services, and Microservices

311

Figure 6-24.  New Maven SpringBoot project dependences

Add Spring Boot version and the needed dependencies like Web:

Chapter 6 EJB, Web Services, and Microservices

312

Next, add the project name as “nb-springboot”:

Figure 6-25.  New Maven SpringBoot project name

Chapter 6 EJB, Web Services, and Microservices

313

Press Finish to create the project as show in Figure 6-26.

Figure 6-26.  New Maven SpringBoot project Microservice

Chapter 6 EJB, Web Services, and Microservices

314

Figure 6-27.  New RestController file

Now we need to create a new RestController Class file as shown in Figure 6-27.

Chapter 6 EJB, Web Services, and Microservices

315

Add some info to the file and then press finish to create the file as shown in Figure 6-28.

Figure 6-28.  Complete RestController file info

Add some code to test our new Microservice NewRestController.java. See Listing 6-15.

Listing 6-15.  NewRestController.java

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package com.apress.ejb.chapter6.microservice.example;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.bind.annotation.RequestMapping;

import static org.springframework.web.bind.annotation.RequestMethod.GET;

Chapter 6 EJB, Web Services, and Microservices

316

/**

 *

 * @author Massimo Nardone

 */

@RestController

@RequestMapping("/url")

public class NewRestController {

 @RequestMapping(path = "/microservice", method = GET)

 public String sayMicroService(){

 return "My first Java EE 8 microservice!";

 }

}

Finally run the Microservice as shown in Figure 6-29.

Figure 6-29.  Microservice is running

Now our Java EE 8 Microservice is running and can be tested by typing

http://localhost:8080/microservice as seen in the result in Figure 6-30.

Chapter 6 EJB, Web Services, and Microservices

317

Figure 6-30.  Testing the new Microservice

�Summary
In this chapter, we introduced you to Web Services and Microservices as part of

Java EE 8. We explained the Web Service architecture that goes by the find-bind-execute

model—and how standards like UDDI, WSDL, and SOAP have made Web services

ubiquitous as compared to earlier distributed computing models in terms of

standardization and interoperability. We also briefly discussed the REST architectural

pattern and RESTful Web services, which have simplified creation and use of Web services.

We looked into the details of the UDDI, SOAP, and WSDL standards, and we

demonstrated how WSDL documents and SOAP messages are constructed with a simple

credit service example.

We discussed some use cases for which Web services can be used, and we discussed

how they fit into intranet and Internet models, including some examples of existing

e-commerce sites that provide Web services.

We then dived into the Java EE platform and looked at different standards

(JAX-WS, JAX-RS, JAXB, JAXR, SAAJ, and JSR 224) that are enabling developers to create

Web services that are portable and interoperable within the .NET platform.

Then we looked at how to publish EJB stateless session beans as Web services using

simple Web Services Metadata annotations. We developed a credit service that can be

invoked from Web service clients.

Next we looked at compiling, deploying, and testing Web services using the GlassFish

application server and servlet clients, and we also looked at how this programming

model is similar to invoking Web services with EJBs.

Finally, we introduced the Java EE Microservices as part of the new Java Platform and

how to build a simple Microservice example using Boot Spring project.

So far, we have discussed the individual components of the EJB specifications:

session beans, JPA entities, MDBs, and Web services. In the next chapter, we will discuss

how you can integrate all of these components to build an enterprise application.

Chapter 6 EJB, Web Services, and Microservices

319
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_7

CHAPTER 7

Integrating Session Beans,
Entities, Message-Driven
Beans, and Web Services
�Introduction
Previous chapters in this book covered the individual components of EJB and related

technologies. These included session beans, message-driven beans (MDBs), stateless

session beans as Web services, and JPA entities. In this chapter, we will show you how to

integrate these components into a complete Java EE 8 application using a fictitious wine

store application as an example.

�Application Overview
The sample application that we are going to develop in this chapter is the Wines Online

application, which provides customers (either individuals or distributors) with a variety

of search criteria with which they can browse, select wines, add them to a shopping cart,

and process their order. Customers need to register with the Wines Online application

before they can submit orders. Once an order is submitted, the customer’s credit card is

validated, and this triggers an order processing message and an e-mail notification to the

customer on the status of the order.

Screens used by the customer to search, navigate, and submit orders are part of a

simple JavaServer Faces (JSF) Web application that interacts with back-end services and

components developed using EJBs. In this chapter, our focus will be on developing the

back-end part of the application, which can be tested with both a servlet and a simple

Java client. In Chapter 12, we will develop a JSF client for these back-end services.

320

As shown in Figure 7-1, the Wines Online application consists of several back-end

components that are used by the client application, and these back-end components in

turn make use of different types of services to perform CRUD (create, retrieve, update,

delete) operations, send e-mail notifications to the customer about order status, process

the incoming orders, and verify the credit card status of the customer. We will discuss the

behavior and functionality of these components in the next section.

Figure 7-1.  The Wines Online application architecture

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

321

�Application Components and Services
The back-end wine store application consists of different types of EJBs that are created

as components and services. The key components and services are described in the

following sections.

�The Shopping Cart Component
The shopping cart component manages the cart items for a registered customer who has

logged into the application. This component is a stateful session bean, and it keeps track

of cart items (wines and quantity) that are added to and removed from the shopping

cart. Finally, the shopping cart component transfers the order information to the order

processing component.

�The Search Façade Component
The search façade component allows the customer to retrieve all wines or search for

wines using criteria such as year, country, and varietal. This component is a stateless

session bean, and it returns a list of wines based on executed search criteria.

�The Customer Façade Component
The customer façade component allows customers to register themselves as members

of the wine application and also retrieve customer information based on their e-mail

addresses. This component is a stateless session bean.

�The Order Processing Façade Component
The order processing façade component acts as a coordinator between the credit service

and the order processing service. This component processes the cart items and creates

a purchase order (PO) that can be consumed by the order processing service. This

component is a stateless session bean.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

322

�Persistence Services
Persistence services comprise a packaged persistence unit that consists of a set of

entities that are mapped to the wine store database schema. All other components and

services in the back-end part of the application use this common persistence unit to

perform CRUD operations.

�The E-Mail Service
The e-mail service is an MDB that sends out an e-mail to the customer about the

status of the order submitted. This service is essentially the same MDB that we built in

Chapter 5, and it requires the same JMS and Java Mail Session resources.

�The Credit Service
The credit service is a Web service that is consumed by the application. This service

takes credit card information as an input message and returns the status of the credit for

a particular customer. We will use the credit service developed in Chapter 6.

�The Order Processing Service
The order processing service is an MDB that does the bulk of the order processing after a

purchase order has been received.

�The Wines Online Application Business Process
Figure 7-2 illustrates the process flow for the wine application. Once the shopping

cart service submits the customer and cart item information to the order processing

façade, it verifies that the customer credit card information is accurate and the card is

valid before proceeding to process the order. After approval is received from the credit

service, it creates a purchase order that contains the customer and order information

and submits it to the order processing service. If a negative response is received from

the credit service, the order is cancelled, and the e-mail service sends a notification

to the customer. Once a purchase order is received by the order processing service, it

proceeds to fulfill the order, which entails updating the inventory and sending an e-mail

notification on the status of the order to the customer using the e-mail service.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

323

Figure 7-3 illustrates the interactions that occur among the components and services

of the wine application. A step-by-step explanation of these interactions follows the

diagram.

Figure 7-2.  The Wines Online application business process

Figure 7-3.  The Wines Online application component and service
interactions

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

324

�In-Depth Component/Service Walkthrough
In the following sections, we will walk through the code for each individual component

to explain its interaction with the other components and services. Each of the listings

contains code that is included in the Chapter07-IntegratedServices sample

application. At the end of the chapter, you will find step-by-step instructions on how to

configure, build, deploy, and execute this application.

�Persistence Services
Persistence services present a domain model to the application in the form of a JPA

persistence unit. This persistence unit is comprised of JPA entities along with an

EntityManager for performing CRUD operations on the entities and for managing the

persistent state of those entities in a transactional context.

Figure 7-4 illustrates the entities, the inheritance models, and the relationships

between them. The Customer entity is inherited by the Individual and Distributor

entities. InventoryItem, CartItem, and OrderItem entities inherit the WineItem

entity. The BusinessContact entity is inherited by the Supplier entity. The wine store

persistence unit also contains different types of relationships between these entities

(including one-to-one, one-to-many, and many-to-many), which will be accessed from

the application code. The mappings used in these entities were covered in Chapter 3 and

Chapter 4. We will focus on the code that is used in other components of this application

to integrate this persistence unit.

Figure 7-4.  The Wines Online domain model

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

325

�The Customer Façade Component
CustomerFacadeBean is a stateless session bean. It provides business methods to

allow the client application either to query the customer based on its e-mail address

or perform CRUD operations on the Customer entity and its subclasses. This façade

is injected with an EntityManager via the @PersistenceContext annotation that

it uses to perform CRUD operations on Customer entities. Listing 7-1 shows the

getCustomerFindByEmail method in CustomerFacadeBean. This method calls the

named query Customer.findByEmail defined in the Customer entity of the wine store

persistence unit using the createNamedQuery() method in the EntityManager.

Note  createNamedQuery() is a method in the javax.persistence.
EntityManager interface. This method creates an instance of
javax.persistence.Query for executing a named query specified in
JPQL (Java Persistence Query Language) or native SQL.

Listing 7-1.  The getCustomerFindByEmail Method

public Customer getCustomerFindByEmail(String email) {

 �return em.createNamedQuery("Customer.findByEmail", Customer.class).

setParameter("email", email).

 getSingleResult();

}

Listing 7-2 shows the complete code for CustomerFacadeBean, which has the

business methods to perform CRUD operations using the EntityManager. This bean

class does not implement Local or Remote interfaces, and so the EJB container calls the

bean class directly in Local mode.

Note  In Chapter 2, we provided the details on the differences between remote
and client view architectures for session beans with a summary of advantages
and disadvantages along with a discussion of the no-interface mode introduced in
EJB 3.1. Chapter 3 provided the details on the methods that are available on the
EntityManager to perform the CRUD operations.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

326

Listing 7-2.  CustomerFacadeBean.java

 @Stateless(name = "CustomerFacade", mappedName = "Chapter07-

IntegratedSamples-Chapter07-ServiceIntegration-ejb-CustomerFacade")

public class CustomerFacadeBean {

 @PersistenceContext(unitName = "Chapter07-WineAppUnit-JTA")

 private EntityManager em;

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

 public void removeCustomer(Customer customer) {

 customer = em.find(Customer.class, customer.getId());

 em.remove(customer);

 }

 /**

 * <code>select o from Customer o</code>

 */

 public List<Customer> getCustomerFindAll() {

 �return em.createNamedQuery("Customer.findAll", Customer.class).

getResultList();

 }

 public Customer getCustomerFindById(Integer id) {

 return em.find(Customer.class, id);

 }

 /**

 * <code>select o from Customer o where o.email = :email</code>

 */

 public Customer getCustomerFindByEmail(String email) {

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

327

 �return em.createNamedQuery("Customer.findByEmail", Customer.class).

setParameter("email", email).

 getSingleResult();

 }

 public Customer registerCustomer(Customer customer) {

 return persistEntity(customer);

 }

}

�The Search Façade Component
SearchFacadeBean is a stateless session bean. This bean provides business methods

that allow the client application to query the Wine entity in the persistence unit based on

the year, country, and varietal of the wine. The persistence unit in SearchFacadeBean is

injected via the @PersistenceContext annotation. Listing 7-3 shows the complete code

for SearchFacadeBean, which has the business methods to perform search operations

using the EntityManager. This bean class has a business interface, SearchFacadeLocal,

which supports local client access. The methods getWineFindAll(),

getWineFindByYear(), getWineFindByCountry(), and getWineFindByVarietal() call

the respectively named queries defined in the Wine entity of the wine store persistence

unit using the createNamedQuery() method in the EntityManager, and return zero or

more Wine objects in java.util.List.

Listing 7-3.  SearchFacadeBean.java

@Stateless(name = "SearchFacade", mappedName = "Chapter07-

IntegratedSamples-Chapter07-ServiceIntegration-ejb-SearchFacade")

public class SearchFacadeBean implements SearchFacadeLocal {

 @PersistenceContext(unitName = "Chapter07-WineAppUnit-JTA")

 private EntityManager em;

 �public Object queryByRange(String jpqlStmt, int firstResult, int

maxResults) {

 Query query = em.createQuery(jpqlStmt);

 if (firstResult > 0) {

 query = query.setFirstResult(firstResult);

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

328

 if (maxResults > 0) {

 query = query.setMaxResults(maxResults);

 }

 return query.getResultList();

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

 public void removeWine(Wine wine) {

 wine = em.find(Wine.class, wine.getId());

 em.remove(wine);

 }

 /**

 * <code>select object(o) from Wine o</code>

 */

 public List<Wine> getWineFindAll() {

 return em.createNamedQuery("Wine.findAll", Wine.class).getResultList();

 }

 /**

 * <code>select object(wine) from Wine wine where wine.year = :year</code>

 */

 public List<Wine> getWineFindByYear(Integer year) {

 �return em.createNamedQuery("Wine.findByYear", Wine.class).

setParameter("year", year).

 getResultList();

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

329

 /**

 * �<code>select object(wine) from Wine wine where wine.country =

:country</code>

 */

 public List<Wine> getWineFindByCountry(String country) {

 �return em.createNamedQuery("Wine.findByCountry", Wine.class).

setParameter("country", country).

 getResultList();

 }

 /**

 * �<code>select object(wine) from Wine wine where wine.varietal =

:varietal</code>

 */

 public List<Wine> getWineFindByVarietal(String varietal) {

 �return em.createNamedQuery("Wine.findByVarietal", Wine.class).setParame

ter("varietal",varietal).getResultList();

 }

}

�The Shopping Cart Component
ShoppingCartBean is a stateful session bean and uses an extended persistence context.

This bean preserves the state of a customer who is logged into the system and is

currently either adding or removing wine items from the shopping cart. Once the

customer submits an order, ShoppingCartBean sends the customer information to the

order processing façade, which takes care of processing the order. We have decided to

use a stateful session bean for this use case for the following reasons:

•	 There is more than one type of client application that accesses the

back-end application (Web, Swing, and command-line client).

•	 We want to show the usage of EJB stateful session beans in a typical

application.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

330

Note  In general, there is a common belief that stateful session beans are a bit
heavyweight to store the state (as compared to storing the state on the client using
an HTTP session for Web clients). There is evidence that there isn’t a drastic cost in
terms of either performance or transactions associated with stateful session beans.
(See J2EE Performance Testing with BEA WebLogic Server, by Peter Zadrozny
[Apress, 2003], for thorough coverage of this topic.)

ShoppingCartBean has the business methods described in the following subsections.

�Finding Customers

Listing 7-4 shows the findCustomer() method in ShoppingCartBean. This method

uses the injected CustomerFacadeBean and calls the findCustomerByEmail() method

to get an instance, which in our case happens to be an Individual subentity. Once a

Customer is retrieved, it is assigned to a class-level attribute so that it can be referenced

subsequently through other methods on this stateful session bean. Because we are using

an extended persistence context, this instance will remain managed throughout the

life of the bean, through transaction boundaries, unless it is actively removed from the

persistence context.

Listing 7-4.  The findCustomer Business Method

public Customer findCustomer(String email) {

 customer = customerFacade.getCustomerFindByEmail(email);

 return customer;

}

�Adding Wine Items

Listing 7-5 shows the addWineItem() method in ShoppingCartBean. This business

method is called by the client application to add a particular wine item to the shopping

cart along with the quantity. The code creates a new instance of the CartItem entity and

sets the quantity, wine, and time of creation using the setter methods in CartItem.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

331

Note A quick refresher on the three states of an entity instance: managed,
detached, and new. A managed instance is one that is actively referenced by
a persistence context, and all changes made to that instance are tracked by
the persistence context. When the persistence context is synchronized with the
database, all pending changes found in managed instances are flushed to the
database through SQL statements. A detached entity instance is one that is no
longer referenced by a persistence context, and so its changes are not being
tracked. If a client modifies a detached instance, the client needs to ensure that
those changes are merged into a managed instance (for instance, through an
EntityManager.merge() call), or else the changes will never be synchronized
with the database. A new entity instance is like a detached instance, only it has not
yet been persisted in the database.

The addWineItem() method creates a new CartItem with the specified properties

and adds it to the Customer instance. Because we queried the Customer instance and

cached it in a class-level variable on our stateful session bean, we can count on it being

in a managed state. ShoppingCartBean uses container-managed transactions, and the

addWineItem() method defaults to using TransactionAttributeType.REQUIRED, so a

transaction will be started and committed during the course of this method. When the

commit is performed, the persistence context will be synchronized with the database,

and any changes pending in our managed customer instance will be pushed out to

the database. Because of the cascade rule on Customer’s cartItemList property, any

referenced CartItem instances will also be persisted. The result of this method call, then,

will be a new row in CartItem’s table with a foreign key reference to the Customer table

(or Individual table, depending on how the entity inheritance hierarchy is mapped).

Listing 7-5.  The addWineItem Business Method

public void addWineItem(Wine wine, int quantity) {

 CartItem cartItem = new CartItem(quantity, wine);

 customer.addCartItem(cartItem);

}

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

332

�Removing Wine Items

Listing 7-6 shows the removeWineItem() method in ShoppingCartBean. This method

lets the client applications remove the items from the shopping cart when requested by

the end user (via the user interface). Again, because the customer attribute is a managed

instance, any changes applied to it will be persisted at the conclusion of this method

when the CMT transaction created at the outset of this method is committed.

Listing 7-6.  The removeWineItem Business Method

public void removeWineItem(CartItem cartItem) {

 customer.removeCartItem(cartItem);

}

�Submitting Orders to the Order Processing Façade

Listing 7-7 shows the sendOrderToOPC() method in ShoppingCartBean. This method is

called by the client applications to submit the order when the end user finally decides

to buy one or more wines. This method uses the injected OrderProcessFacadeBean and

calls the processOrder() method to submit the order by passing the customer object.

Note T he rationale behind the naming of the sendOrderToOPC() method
was that OrderProcess ➤ FacadeBean, which receives the purchase orders,
in effect acts as an “order processing center.” With this in mind, we decided to
abbreviate “order processing center” to OPC so as to avoid an extremely long
method name.

Listing 7-7.  The sendOrderToOPC Business Method

public String sendOrderToOPC() {

 String result = null;

 try {

 orderProcessFacade.processOrder(customer);

 �result = "Your Order has been submitted - you will be notified about

the status via email";

 } catch (Exception ex) {

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

333

 ex.printStackTrace();

 �result = "An error occurred while processing your order. Please contact

Customer Service.";

 }

 return result;

}

�Retrieving the Customer’s Cart Items

Listing 7-8 shows the getCartItems() method in ShoppingCartBean. This method

retrieves the current list of cart items from the customer field (which may be either an

Individual or a Distributor entity type). This method will be useful when we build a

JSF application in which we can show all of the cart items in the user interface before the

customer submits the order.

Listing 7-8.  The getCartItems Business Method

public List<CartItem> getCartItems() {

 return customer.getCartItemList();

}

The complete code for ShoppingCartBean is shown in Listing 7-9.

Listing 7-9.  ShoppingCartBean.java

@Stateful(name = "ShoppingCart", mappedName = "Chapter07-IntegratedSamples-

Chapter07-ServiceIntegration-ejb-ShoppingCart")

public class ShoppingCartBean implements ShoppingCartLocal {

 �@PersistenceContext(unitName = "Chapter07-WineAppUnit-JTA",

type = PersistenceContextType.

 EXTENDED)

 private EntityManager em;

 private Customer customer;

 @EJB

 private CustomerFacadeBean customerFacade;

 @EJB

 private OrderProcessFacadeBean orderProcessFacade;

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

334

 public Customer getCustomer() {

 return customer;

 }

 public void addWineItem(Wine wine, int quantity) {

 CartItem cartItem = new CartItem(quantity, wine);

 customer.addCartItem(cartItem);

 }

 public void addWineItem(Wine wine) {

 CartItem cartItem = new CartItem();

 cartItem.setQuantity(20);

 wine = em.find(Wine.class, wine.getId());

 cartItem.setWine(wine);

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 customer.addCartItem(cartItem);

 }

 public void removeWineItem(CartItem cartItem) {

 customer.removeCartItem(cartItem);

 }

 public void addCartItemsTemporarily() {

 List<Wine> wines = em.createNamedQuery("findAllWine").getResultList();

 for (Wine wine : wines) {

 final CartItem cartItem = new CartItem();

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 cartItem.setQuantity(20);

 cartItem.setWine(wine);

 customer.addCartItem(cartItem);

 }

 }

 public Customer findCustomer(String email) {

 customer = customerFacade.getCustomerFindByEmail(email);

 return customer;

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

335

 public String sendOrderToOPC() {

 String result = null;

 try {

 orderProcessFacade.processOrder(customer);

 �result = "Your Order has been submitted - you will be notified about

the status via email";

 } catch (Exception ex) {

 ex.printStackTrace();

 �result = "An error occurred while processing your order. Please

contact Customer Service.";

 }

 return result;

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

 public void removeCartItem(CartItem cartItem) {

 cartItem = em.find(CartItem.class, cartItem.getId());

 em.remove(cartItem);

 }

 public List<CartItem> getCartItems() {

 return customer.getCartItemList();

 }

 public void removeWine(Wine wine) {

 wine = em.find(Wine.class, wine.getId());

 em.remove(wine);

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

336

 /**

 * <code>select object(o) from Wine o</code>

 */

 public List<Wine> getWineFindAll() {

 return em.createNamedQuery("Wine.findAll", Wine.class).getResultList();

 }

 /**

 * <code>select object(wine) from Wine wine where wine.year = :year</code>

 */

 public List<Wine> getWineFindByYear(Integer year) {

 �return em.createNamedQuery("Wine.findByYear", Wine.class).

setParameter("year", year).

 getResultList();

 }

 /**

 �* �<code>select object(wine) from Wine wine where wine.country =

:country</code>

 */

 public List<Wine> getWineFindByCountry(String country) {

 �return em.createNamedQuery("Wine.findByCountry", Wine.class).

setParameter("country", country).

 getResultList();

 }

 /**

 �* �<code>select object(wine) from Wine wine where wine.varietal =

:varietal</code>

 */

 public List<Wine> getWineFindByVarietal(String varietal) {

 �return em.createNamedQuery("Wine.findByVarietal", Wine.class).

setParameter("varietal",

 varietal).getResultList();

 }

}

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

337

�The Order Processing Façade Component
OrderProcessFacadeBean is a stateless session bean. This bean provides business

methods that are invoked by ShoppingCartBean to submit an order and other methods

that interact with the credit and order processing services. OrderProcessFacadeBean has

the business methods described in the following subsections.

�Credit Check

Listing 7-10 shows the performCreditCheck() method in OrderProcessFacadeBean.

This method uses a CreditService that was injected using the @WebServiceRef

annotation to get the port of the Web service. Once the port is available, the code can call

the creditCheck Web service operation, which takes a credit card number and returns a

message on the validity of the card in true or false terms. We are using the credit service

that we developed in Chapter 6.

Listing 7-10.  The performCreditCheck Business Method

private boolean performCreditCheck(Individual individual) {

 String ccnum = individual.getCcNum().toString();

 CreditCheckEndpointBean creditService = service.getCreditCheckEndpointBeanPort();

 return creditService.creditCheck(ccnum);

}

�Creating a Purchase Order

Listing 7-11 shows the processOrder() method in OrderProcessFacadeBean.

ShoppingCartBean calls this business method when an order is submitted by the client

application. This method has one parameter, which is of Customer entity type. The

customer’s shopping cart is contained in its cartItems list, each member of which

references a wine and a quantity added to the cart by the customer while shopping.

To start with, the method checks whether the received entity is managed. If not,

a call to the merge() method of the EntityManager is made to retrieve a managed

Customer object.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

338

Note  It is worth noting that when we run this application (following the
steps at the end of this chapter), the customer parameter will be found in
the persistence context, and so the merge step will not be performed. This is
because processOrder() is called from an existing transactional context—the
transaction that was created when its calling method, ShoppingCartBean.
sendOrderToOPC() was invoked. A single persistence context is always
bound to a given transaction, and in this case the extended persistence context
from ShoppingCartBean is the one associated with this transaction. When
sendOrderToOPC() is invoked, an existing context transaction is found and
used. When em.contains(customer) is called inside processOrder, the
EntityManager for OrderProcessFacadeBean observes that a persistence
context is already associated with this transaction, and it uses this persistence
context, which is the same extended persistence context associated with
ShoppingCartBean. This is why the customer instance is already determined to be
managed.

Once the managed customer entity is obtained, it checks whether the customer is

an Individual or a Distributor. For individuals, a call to the performCreditCheck()

method is made to verify the credit card. If the credit card is found to be invalid,

the message “Invalid Credit Card” is sent back to the client application via

ShoppingCartBean. For distributors, the memberStatus property is checked, and any

value other than “APPROVED” is rejected.

If the customer is approved, then processing continues, and a new order of type

CustomerOrder is created. This new order is populated with the collection of CartItem

objects associated with the Customer and found in its cartItems property. For each cart

item, an OrderItem object is created to capture the quantity of each wine and the total

price for the wine in that cart item. The price for each order item is calculated using the

available retail price information for each Wine entity.

Once all the cart items have been processed and corresponding order items have

been created, the new CustomerOrder containing the order items is persisted, in part to

acquire a generated value for its id field, which is used when generating an e-mail from

within the call sendPOtoMDB(). The removeCartItem() method is then called on each

cart item to remove it from the Customer.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

339

The non-entity utility class PurchaseOrder, which associates a Customer object

with a specific CustomerOrder, is created. This Purchase Order instance is passed as an

argument to the sendPOtoMDB() method, sending the purchase order to the processing

service. Once the call is made, the process becomes asynchronous, and a message is sent

back to the client application that the order has been sent for processing.

Since the entire method is executed in a transactional context, changes to the

customer object, and any other managed objects, will be persisted when the transaction

concludes.

Listing 7-11.  The processOrder Business Method

public String processOrder(Customer customer) {

 String processStatus = null;

 if (!em.contains(customer)) {

 customer = em.merge(customer);

 }

 if (customer instanceof Individual) {

 if (!performCreditCheck((Individual) customer)) {

 processStatus = "Invalid Credit Card number or credit check failed";

 }

 } else if (customer instanceof Distributor) {

 if (!"APPROVED".equals(((Distributor) customer).getMemberStatus())) {

 processStatus = "Distributor credit check rejected";

 }

 }

 if (processStatus == null) {

 CustomerOrder order = new CustomerOrder();

 order.setCreationDate(new Timestamp(System.currentTimeMillis()));

 em.persist(order);

 List<CartItem> cartItems = customer.getCartItemList();

 if (cartItems != null) {

 List<CartItem> tempCartItems = new ArrayList<CartItem>();

 for (CartItem cItem : cartItems) {

 OrderItem oItem = new OrderItem();

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

340

 int qty = cItem.getQuantity();

 oItem.setQuantity(qty);

 oItem.setOrderDate(new Timestamp(System.currentTimeMillis()));

 oItem.setWine(cItem.getWine());

 Wine tempWine = cItem.getWine();

 Float d = tempWine.getRetailPrice();

 Float price = d * cItem.getQuantity();

 oItem.setPrice(price);

 order.addOrderItem(oItem);

 tempCartItems.add(cItem);

 }

 for (CartItem cartItem : tempCartItems) {

 customer.removeCartItem(cartItem);

 em.remove(cartItem);

 }

 }

 customer.addCustomerOrder(order);

 PurchaseOrder po = new PurchaseOrder();

 po.setCustomer(customer);

 po.setCustomerOrder(order);

 sendPOtoMDB(po);

 processStatus = "Purchase Order sent for processing to the process queue";

 }

 return processStatus;

}

�Sending a Purchase Order to the Order Processing Service

Listing 7-12 shows the sendPOtoMDB() method in OrderProcessFacadeBean. This

business method makes use of injected Java Messaging Service (JMS) resources for

a topic connection factory and a topic. A connection to a topic connection factory is

created and the connection is started. Once a connection is available, a session is created

and a MessageProducer is created with a topic. An ObjectMessage is created to take the

PurchaseOrder object, and the MessageProducer is used to send the PurchaseOrder to

the topic.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

341

Listing 7-12.  The sendPOtoMDB Business Method

private void sendPOtoMDB(PurchaseOrder po) {

 //send PO to MDB now

 Connection connection = null;

 Session session = null;

 try {

 connection = poTopicCF.createConnection();

 connection.start();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer producer = session.createProducer(poTopic);

 ObjectMessage objMessage = session.createObjectMessage();

 objMessage.setObject(po);

 producer.send(objMessage);

 } catch (JMSException e) {

 e.printStackTrace();

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (JMSException ex) {

 �Logger.getLogger(OrderProcessFacadeBean.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 if (connection != null) {

 try {

 connection.close();

 } catch (JMSException ex) {

 �Logger.getLogger(OrderProcessFacadeBean.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 }

}

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

342

The complete code for OrderProcessFacadeBean.java is shown in Listing 7-13.

Listing 7-13.  OrderProcessFacadeBean.java

@Stateless(name = "OrderProcessFacade", mappedName = "OrderProcessFacade")

public class OrderProcessFacadeBean {

 @PersistenceContext(unitName = "Chapter07-WineAppUnit-JTA")

 private EntityManager em;

 @Resource(mappedName = "poTopicConnectionFactory")

 private TopicConnectionFactory poTopicCF;

 @Resource(mappedName = "PurchaseOrderTopic")

 private Topic poTopic;

 @WebServiceRef(type = CreditService.class)

 CreditService service;

 public Object mergeEntity(Object entity) {

 return em.merge(entity);

 }

 public Object persistEntity(Object entity) {

 em.persist(entity);

 return entity;

 }

 public void createNewOrder(CustomerOrder newOrder) {

 persistEntity(newOrder);

 }

 private boolean performCreditCheck(Individual individual) {

 String ccnum = individual.getCcNum().toString();

 �CreditCheckEndpointBean creditService = service.

getCreditCheckEndpointBeanPort();

 return creditService.creditCheck(ccnum);

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

343

 public String processOrder(Customer customer) {

 String processStatus = null;

 if (!em.contains(customer)) {

 customer = em.merge(customer);

 }

 if (customer instanceof Individual) {

 if (!performCreditCheck((Individual) customer)) {

 processStatus = "Invalid Credit Card number or credit check failed";

 }

 } else if (customer instanceof Distributor) {

 if (!"APPROVED".equals(((Distributor) customer).getMemberStatus())) {

 processStatus = "Distributor credit check rejected";

 }

 }

 if (processStatus == null) {

 CustomerOrder order = new CustomerOrder();

 order.setCreationDate(new Timestamp(System.currentTimeMillis()));

 em.persist(order);

 List<CartItem> cartItems = customer.getCartItemList();

 if (cartItems != null) {

 List<CartItem> tempCartItems = new ArrayList<CartItem>();

 for (CartItem cItem : cartItems) {

 OrderItem oItem = new OrderItem();

 int qty = cItem.getQuantity();

 oItem.setQuantity(qty);

 oItem.setOrderDate(new Timestamp(System.currentTimeMillis()));

 oItem.setWine(cItem.getWine());

 Wine tempWine = cItem.getWine();

 Float d = tempWine.getRetailPrice();

 Float price = d * cItem.getQuantity();

 oItem.setPrice(price);

 order.addOrderItem(oItem);

 tempCartItems.add(cItem);

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

344

 for (CartItem cartItem : tempCartItems) {

 customer.removeCartItem(cartItem);

 em.remove(cartItem);

 }

 }

 customer.addCustomerOrder(order);

 PurchaseOrder po = new PurchaseOrder();

 po.setCustomer(customer);

 po.setCustomerOrder(order);

 sendPOtoMDB(po);

 �processStatus = "Purchase Order sent for processing to the process

queue";

 }

 return processStatus;

 }

 private void sendPOtoMDB(PurchaseOrder po) {

 //send PO to MDB now

 Connection connection = null;

 Session session = null;

 try {

 connection = poTopicCF.createConnection();

 connection.start();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer producer = session.createProducer(poTopic);

 ObjectMessage objMessage = session.createObjectMessage();

 objMessage.setObject(po);

 producer.send(objMessage);

 } catch (JMSException e) {

 e.printStackTrace();

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (JMSException ex) {

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

345

 �Logger.getLogger(OrderProcessFacadeBean.class.getName()).

log(Level.SEVERE, null, ex);

 }

 }

 if (connection != null) {

 try {

 connection.close();

 } catch (JMSException ex) {

 �Logger.getLogger(OrderProcessFacadeBean.class.getName()).

log(Level.SEVERE, null, ex);

 }

 }

 }

 }

}

�The Order Processing Service
The order processing service is an MDB. The idea behind having MDBs in the wine

store application is to show how some of the processing in an enterprise application can

be done in an asynchronous fashion, and how you can work with the EntityManager,

session beans, and other MDBs from an MDB.

Note  Chapter 5, which covers MDBs, describes the asynchronous architecture in
detail and gives examples of some possible implementations.

OrderProcessingMDBBean is a plain old Java object (POJO) that is annotated with

a class-level @MessageDriven annotation to indicate that it is an MDB. This POJO

implements the mandatory onMessage() method to process the incoming messages with

the help of a utility method, processOrder(). We will walk through the methods in the

MDB from here.

Listing 7-14 shows the code for the onMessage() method. This method checks

whether the received message is of ObjectMessage instance type, and the retrieved

object is then typecast to the PurchaseOrder utility class. After that, a call to the

processOrder() utility method is made to process the received purchase order.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

346

Listing 7-14.  The onMessage Method in OrderProcessingMDBBean

public void onMessage(Message message) {

 try {

 if (message instanceof ObjectMessage) {

 ObjectMessage objMessage = (ObjectMessage) message;

 Object obj = objMessage.getObject();

 if (obj instanceof PurchaseOrder) {

 po = (PurchaseOrder) obj;

 processOrder(po);

 }

 }

 } catch (JMSException e) {

 e.printStackTrace();

 }

}

Listing 7-15 shows the code for the processOrder() method, which begins by

opening up the PurchaseOrder to obtain the Customer and CustomerOrder objects. For

each order item in the customer order, a corresponding amount of wine is deducted

from the inventory tables. To perform this work, the deductInventory() utility method

is called.

After the inventory is deducted, it is time to send a status update to the customer.

This is done using the e-mail service. The customer’s e-mail information and order ID

are retrieved from the PO object, the e-mail content is constructed, and a call is made to

the sendStatus() utility method.

Listing 7-15.  The processOrder Business Method

private void processOrder(PurchaseOrder po) {

 Customer customer = po.getCustomer();

 CustomerOrder order = po.getCustomerOrder();

 for (OrderItem oItem : order.getOrderItemList()) {

 Wine wine = oItem.getWine();

 int qty = oItem.getQuantity();

 deductInventory(wine, qty);

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

347

 String from = PopulateDemoData.FROM_EMAIL_ADDRESS;

 String to = customer.getEmail();

 String content =

 "Your order has been processed. "

 + "If you have questions call Beginning EJB Wine Store "

 + "Application with order id # "

 �+ po.getCustomerOrder().getId().toString(); sendStatus(from, to,

content);

}

Listing 7-16 shows the code for the deductInventory() method. This method makes

use of the injected EntityManager to call the query named Inventory.findItemByWine

defined in the InventoryItem entity. Once the inventory for the specific wine is

retrieved, the quantity is updated using the setQuantity() setter method. The inventory

item is managed, so its modifications are synchronized with the database when this

CMT method ends, or whenever its context transaction commits.

Listing 7-16.  The deductInventory Business Method

private void deductInventory(Wine tempWine, int deductQty) {

 InventoryItem iItem =

 em.createNamedQuery("InventoryItem.findItemByWine",

 �InventoryItem.class).setParameter("wine", tempWine).

getSingleResult();

 int newQty = iItem.getQuantity() - deductQty;

 iItem.setQuantity(newQty);

}

Listing 7-17 shows the code for the sendStatus() method. This utility method makes

use of an injected JMS resource for a topic connection factory and a topic. A connection

to a topic connection factory is created and the connection is started. Once a connection

is available, a session is created, and a MessageProducer containing the topic is created.

A Message object is created, and the JMSType is set to MailMessage. After that, a series of

calls to the setStringProperty() method on the Message object is made to create the to,

from, subject, and content sections of the e-mail. Once all of the properties are set, the

message is sent out to the message topic that will be processed by the e-mail service.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

348

Listing 7-17.  The sendStatus() Business Method

private void sendStatus(String from, String to, String content) {

 try {

 System.out.println("Before status TopicCF connection");

 Connection connection = statusMessageTopicCF.createConnection();

 System.out.println("Created connection");

 connection.start();

 System.out.println("Started connection");

 System.out.println("Starting Topic Session");

 Session topicSession =

 connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer publisher = topicSession.createProducer(statusTopic);

 System.out.println("created producer");

 MapMessage message = topicSession.createMapMessage();

 message.setStringProperty("from", from);

 message.setStringProperty("to", to);

 message.setStringProperty("subject", "Status of your wine order");

 message.setStringProperty("content", content);

 System.out.println("before send");

 publisher.send(message);

 System.out.println("after send");

 } catch (JMSException e) {

 e.printStackTrace();

 }

}

The complete code for OrderProcessingMDBBean is shown in Listing 7-18.

Listing 7-18.  OrderProcessingMDBBean.java

@MessageDriven(activationConfig = {

 �@ActivationConfigProperty(propertyName = "destinationType", propertyValue =

"javax.jms.Topic")},

 mappedName = "PurchaseOrderTopic")

public class OrderProcessingMDBBean implements MessageListener {

 private PurchaseOrder po;

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

349

 @PersistenceContext(unitName = "Chapter07-WineAppUnit-JTA")

 private EntityManager em;

 @Resource(mappedName = "StatusMessageTopicConnectionFactory")

 private TopicConnectionFactory statusMessageTopicCF;

 @Resource(mappedName = "StatusMessageTopic")

 private Topic statusTopic;

 public void onMessage(Message message) {

 try {

 if (message instanceof ObjectMessage) {

 ObjectMessage objMessage = (ObjectMessage) message;

 Object obj = objMessage.getObject();

 if (obj instanceof PurchaseOrder) {

 po = (PurchaseOrder) obj;

 processOrder(po);

 }

 }

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

 private void processOrder(PurchaseOrder po) {

 Customer customer = po.getCustomer();

 CustomerOrder order = po.getCustomerOrder();

for (OrderItem oItem : order.getOrderItemList()) {

 Wine wine = oItem.getWine();

 int qty = oItem.getQuantity();

 deductInventory(wine, qty);

 }

String from = PopulateDemoData.FROM_EMAIL_ADDRESS;

 String to = customer.getEmail();

 String content =

 "Your order has been processed. "

 + "If you have questions call Beginning EJB Wine Store "

 + "Application with order id # "

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

350

 + po.getCustomerOrder().getId().toString();

 sendStatus(from, to, content);

 }

 private void deductInventory(Wine tempWine, int deductQty) {

 InventoryItem iItem =

 em.createNamedQuery("InventoryItem.findItemByWine",

 �InventoryItem.class).setParameter("wine", tempWine).

getSingleResult();

 int newQty = iItem.getQuantity() - deductQty;

 iItem.setQuantity(newQty);

 }

 private void sendStatus(String from, String to, String content) {

 try {

 System.out.println("Before status TopicCF connection");

 Connection connection = statusMessageTopicCF.createConnection();

 System.out.println("Created connection");

 connection.start();

 System.out.println("Started connection");

 System.out.println("Starting Topic Session");

 Session topicSession =

 �connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer publisher = topicSession.createProducer(statusTopic);

 System.out.println("created producer");

 MapMessage message = topicSession.createMapMessage();

 message.setStringProperty("from", from);

 message.setStringProperty("to", to);

 message.setStringProperty("subject", "Status of your wine order");

 message.setStringProperty("content", content);

 System.out.println("before send");

 publisher.send(message);

 System.out.println("after send");

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

}

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

351

�The E-Mail Service
The e-mail service is an MDB. This MDB processes the incoming messages by sending

out e-mails using an e-mail resource that is injected as a resource reference.

Listing 7-19 shows the code for the onMessage() method in the StatusMailerBean

MDB. We will start by retrieving all of the properties from the message, and then we

will create an object of javax.mail.Message using the injected mail resource reference

mailSession. Then the message is decorated with relevant e-mail information, and the

send() method is called to send the e-mail message.

Listing 7-19.  The onMessage Method in the StatusMailer MDB

public void onMessage(Message message) {

 try {

 if (message instanceof MapMessage) {

 MapMessage orderMessage = (MapMessage) message;

 String from = orderMessage.getStringProperty("from");

 String to = orderMessage.getStringProperty("to");

 String subject = orderMessage.getStringProperty("subject");

 String content = orderMessage.getStringProperty("content");

 javax.mail.Message msg = new MimeMessage(mailSession);

 msg.setFrom(new InternetAddress(from));

 InternetAddress[] address = {new InternetAddress(to)};

 msg.setRecipients(RecipientType.TO, address);

 msg.setSubject(subject);

 msg.setSentDate(new java.util.Date());

 msg.setContent(content, "text/html");

 �System.out.println("MDB: Sending Message from " + from + " to " + to

+ "...");

 Transport.send(msg);

 System.out.println("MDB: Message Sent");

 } else {

 System.out.println("Invalid message ");

 }

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

352

 } catch (Exception ex) {

 ex.printStackTrace();

 }

}

The complete code for StatusMailerBean is shown in Listing 7-20.

Listing 7-20.  StatusMailerBean.java

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationName",

 propertyValue = "StatusMessageTopic"),

 @ActivationConfigProperty(propertyName = "destinationType",

 propertyValue = "javax.jms.Topic")

}, mappedName = "StatusMessageTopic")

public class StatusMailerBean implements MessageListener {

 @Resource(name = "mail/wineappMail")

 private Session mailSession;

 public void onMessage(Message message) {

 try {

 if (message instanceof MapMessage) {

 MapMessage orderMessage = (MapMessage) message;

 String from = orderMessage.getStringProperty("from");

 String to = orderMessage.getStringProperty("to");

 String subject = orderMessage.getStringProperty("subject");

 String content = orderMessage.getStringProperty("content");

 javax.mail.Message msg = new MimeMessage(mailSession);

 msg.setFrom(new InternetAddress(from));

 InternetAddress[] address = {new InternetAddress(to)};

 msg.setRecipients(RecipientType.TO, address);

 msg.setSubject(subject);

 msg.setSentDate(new java.util.Date());

 msg.setContent(content, "text/html");

 �System.out.println("MDB: Sending Message from " + from + " to " +

to + "...");

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

353

 Transport.send(msg);

 System.out.println("MDB: Message Sent");

 } else {

 System.out.println("Invalid message ");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

�The Credit Service
The credit service is a stateless session bean that is published as a Web service using JSR

181 (Web Services Metadata for the Java Platform) annotations. The idea behind creating

this Web service is twofold:

•	 It shows how you can expose a stateless session bean as a Web service.

•	 It shows how you can consume a Web service from an EJB

application.

This Web service is consumed by OrderProcessFacadeBean to check the customer’s

credit card. We are going to use the credit service that we developed in Chapter 6.

�The Database Schema
The Wines Online application uses a single database schema to store all of the

information related to customers, orders, inventory, and so on. Figure 7-5 shows a

database diagram with all of the tables and relationships. The schema is designed to

accommodate or showcase most of the O/R (object/relational) mappings in the JPA

specification that are covered in this book, including the different types of inheritance

strategies between entities. Not shown are the tables dedicated to ID generation for

each root entity in an inheritance hierarchy (for example, BUSINESS_CONTACT_ID_GEN) or

entity not involved in inheritance (for instance, ADDRESS_ID_GEN).

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

354

Figure 7-5.  Database diagram for the Wines Online application

�Building, Deploying, and Testing the Application
EJBs need to be packaged into EJB JAR (Java Archive) files before they are assembled

into EAR (Enterprise Archive) files that hold all of the required modules and libraries

for the application. Most application servers provide deployment utilities or Ant tasks

to facilitate deployment of EJBs to their containers. Java integrated development

environments (IDEs) like NetBeans, JDeveloper, and Eclipse provide graphical

deployment tools that allow developers to package, assemble, and deploy applications

to application servers. There is no requirement that EJBs have to be packaged into EJB

JAR files and assembled into EAR files. You can also deploy the EJB JAR files themselves.

In this chapter, we will assemble them into EAR files so that we can make the persistence

unit a shared module (in its own JAR file), and also to set the stage for Chapter 12, in

which we will be building client applications for the wine store back end that we have

just developed. We will also package the EJB/WebService module from Chapter 6 into

this EAR file, along with a Web module that contains a simple test servlet that drives the

test scenario.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

355

Packaging, assembly, and deployment aspects are covered in detail in Chapter 11. In

this chapter, we have developed the wine store application back end using session beans,

MDBs, JPA entities, and Web services. Using NetBeans and deploying to GlassFish, we

will perform the following steps to package, assemble, deploy, and test the services

defined in this chapter.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1, which will walk you through the installation and

environment setup required for the samples in this chapter.

�Creating the Database Connection
The samples in this chapter require a database connection, and for these tests we

will use the Derby database that is bundled with NetBeans and Glassfish. If you have

not already created the WineApp database, also used for the Chapter 3 and Chapter 4

examples, click on the Services tab, expand the Databases icon, and invoke "Create

Database..." on the Java DB node. Create a database named "WineApp" with username

and password wineapp/wineapp, as shown in Figure 7-6.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

356

This last step created a database connection, which is referenced from the

persistence units in the persistence.xml files found in both the JPA and EJB projects.

While it is possible to pre-create the database objects (tables, sequences, key constraints,

and so on), we will let JPA create these database objects automatically the first time they

are needed by each persistence unit.

Note T he samples for this chapter, like those for Chapter 3, include a JDBC data
source that references these connection details. If you choose to use different
credentials, make sure that you update the persistence.xml files, as well
as the data source defined in the glassfish-resources.xml file in the
Chapter07-IntegratedServices-ejb project.

Figure 7-6.  Creating the WineApp database and connection

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

357

�Creating the JMS and JavaMail Resources
The MDBs in this integrated application require JMS resources. In Chapter 5, we

created a JMS topic connection factory and a JMS topic, and we will create an additional

one of each that will be consumed by the MDBs. Initially, OrderProcessFacadeBean

sends a message to the queue that is consumed by OrderProcessingMDBBean. In turn,

OrderProcessingMDBBean uses a JMS topic connection factory to send a message to

the queue that will be used by StatusMailerBean to send out e-mail messages to the

customer. Each of our topic connection factories also requires a JMS topic to be defined.

If you have not completed the samples in Chapter 5 (EJB Message-Driven Beans),

follow the steps in that chapter in the section “Creating the JMS and JavaMail Resources.”

In addition to the resources created for that chapter’s samples, you will need to create

an additional TopicConnectionFactory and Topic. Chapter 5 will guide you in creating

these additional resources using the GlassFish admin console.

The new resources you will need to create are a TopicConnectionFactory named

poTopicConnectionFactory and a Topic named PurchaseOrderTopic.

�Opening the Sample Application
Before performing the next step, you may wish to close any existing projects in NetBeans

to avoid clutter. Open Chapter07-ServiceIntegration using the File ➤ Open Project

menu, as shown in Figure 7-7. Make sure that the ‘Open Required Projects’ check box

is checked.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

358

Note that this will open the Chapter06-WebServiceSamples-ejb project as well,

since it is used directly by the Chapter 7 samples. Some of the source files will initially be

flagged with warnings because they are missing dependencies until the EJB Web Service

has been configured in the next step.

�Configuring the EJB Web Service
We have built our wine store back-end application on top of the work we did in Chapter 6,

in which we implemented the credit service.

	 1.	 The application in this chapter will not compile until you follow

the steps in Chapter 6 to deploy the Web Service and create the

Web service client. These steps are outlined here, but you may

wish to refer to Chapter 6 for more comprehensive instructions

for performing these operations. Right-click on the Chapter06-

WebServiceSamples-ejb project, and choose ‘Clean and Build’

followed by ‘Deploy.’

Figure 7-7.  Opening the Chapter07-ServiceIntegration project

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

359

	 2.	 In the Chapter06-WebServiceSamples project, open the ‘Web

Services’ section, right-click on CreditCheckEndpointBean, and

choose ‘Test Web Service.’ When the Web page comes up, click on

‘WSDL File’ link, and then copy the browsers URL for the .wsdl

file (typically, http://localhost:8080/CreditService/CreditCh

eckEndpointBean?Tester).

	 3.	 Now right-click on the Chapter06-WebServiceSamples-ejb

project again, and choose ‘New | Web Service Client.’ In the

wizard, select the ‘WSDL URL’ radio button and paste the .wsdl

URL you copied in step 2. Set the package to ‘com.apress.ejb.

chapter06.services.client’ and choose Finish. This will

complete the Web Service configuration required to run the

Chapter 7 samples.

A quick look at the modules included in this example reveals that, in addition to

the EJB/WebServices module from Chapter 6, we have another EJB module containing

Session bean facades and MDBs, a number of JPA entities that comprise a JPA

persistence unit, and a Web module containing a test servlet.

�The wineapp@yahoo.com Account
and the user.properties File
We have set up a Yahoo! mail account, wineapp@yahoo.com, that you may use for testing

purposes. The password is: wine_app. All samples in this book that involve a JavaMail

Session default to this account. You are free to use it, or you may prefer to send and

receive e-mail through your own mail server (for example, if you are behind a firewall)

using your own e-mail account(s).

In the Chapter07-ServiceIntegration-jpa project, you will find a user.properties

file in the root source directory. This file allows you to specify the From: and To: e-mail

addresses for the e-mail generated by this sample. It is shown in Listing 7-21:

Listing 7-21.  The user.properties file found in the source root of the

Chapter07-ServiceIntegration-jpa project

Specify the From: and To: email accounts that will be shown

in the mail header that is sent from the JavaMail Session

named 'mail/wineappMail' and configured in Chapter 5. Note

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

360

that although the email header may appear to be from the

From account below, it will originate from the account

configured in the 'mail/wineappMail' JavaMail Session.

from_email_address = wineapp@yahoo.com

to_email_address = wineapp@yahoo.com

 

To change the To: and/or From: e-mail addresses, feel free to edit this plaintext

file. Also, refer to the Readme.txt file for guidance with proxy servers and other issues

resulting from non-default installation environments.

�Building, Deploying, and Executing the Sample Application
With all of the configuration steps completed, you are now ready to build, deploy, and

run this chapter’s WineApp application through its simple servlet client. To ensure that

any previous artifacts are removed, begin by selecting all five NetBeans projects and

invoking the ‘Clean’ operation, shown in Figure 7-8.

Figure 7-8.  Cleaning the Chapter07-ServiceIntegration project

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

361

Note  If GlassFish is running already, and you get errors while building because
.jar files cannot be deleted, try shutting down GlassFish and re-invoking the ‘Clean’
operation.

The next steps are to build, package, and deploy the EJB, JPA, and Web modules and

run the servlet client. All of these steps are performed automatically when invoking the

‘Run’ operation shown in Figure 7-9. NetBeans is able to track the state of the projects

and perform any required work prior to executing the ShoppingCartClient servlet.

Figure 7-9.  Running the Chapter07-ServiceIntegration project, which executes
the servlet ShoppingCartClient found in the Chapter07-ServiceIntegration-web
module

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

362

Client applications and different application architectures will be discussed in detail

in Chapter 12. In order to test the deployed wine store application, we have provided

a simple servlet client. GlassFish injects the ShoppingCart and SearchFacade session

beans into the servlet to search the wines, add items to the shopping cart, and finally

submit the order.

Listing 7-22 shows the code for the servlet client. To begin, the client looks up the

SearchFacadeBean session bean and calls the findWineByYear() method, which returns

a list of wines. In order to add wines to the shopping cart, the client program looks up the

ShoppingCart session bean and calls the findCustomer() method. Once the customer

has been found, the client goes into a while loop and adds the list of wines retrieved

from SearchFacadeBean using the addWineItem() method in the ShoppingCart bean.

To keep the client simple, the quantity of each wine is set to 20. Once the client finishes

adding all of the wines to the shopping cart, the sendOrderToOPC() method in the

ShoppingCart bean is called to submit the order.

The ShoppingCartClient servlet uses EJB injection to obtain the EJBs SearchFacade

and ShoppingCart through their Local interfaces. This servlet performs the following

steps, logging its progress by sending HTML back to the browser window:

•	 Initializes the sample data through a Java service

façade— PopulateDemoData—that uses the JPA entities to populate

the database

•	 Uses the stateful ShoppingCart to find an existing customer by e-mail

in the sample data set and cache it in the session bean

•	 Uses the SearchFacade to look up the wines from 2004 using the

"Wine.findByYear" JPQL named query, displays information about

wines from that year, and adds 20 bottles of each to the customer’s

shopping cart using the addWineItem() method in the ShoppingCart

bean

•	 Once the client finishes adding all of the wines to the shopping cart,

the sendOrderToOPC() method in the ShoppingCart bean is called to

submit the order

Listing 7-22 shows the servlet source.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

363

Listing 7-22.  The ShoppingCartClient.java servlet

@WebServlet(name = "ShoppingCartClient", urlPatterns = {"/ShoppingCartClient"})

public class ShoppingCartClient extends HttpServlet {

 @EJB

 private SearchFacadeLocal searchFacade;

 @EJB

 private ShoppingCartLocal shoppingCart;

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 /* TODO output your page here. You may use following sample code. */

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet ShoppingCartClient</title>");

 out.println("</head>");

 out.println("<body>");

 �out.println("<h1>Servlet ShoppingCartClient at " + request.

getContextPath() + "</h1>");

 out.println("</body>");

 out.println("</html>");

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

364

 out.print("<h2>Populating Demo Data... ");

 new PopulateDemoData("Chapter07-WineAppUnit-ResourceLocal").resetData();

 out.println("done</h2>");

 �out.print("<h2>Calling the ShoppingCart to find and cache customer

with email address " +

 PopulateDemoData.TO_EMAIL_ADDRESS + "... ");

 �final Customer customer = shoppingCart.findCustomer(PopulateDemoData.

TO_EMAIL_ADDRESS);

 �out.println("found " + customer.getFirstName() + " " + customer.

getLastName() + "</h2>");

 out.println("<h2>Calling the SearchFacade to find wines from 2004</h2>");

 List<Wine> yearWineList = searchFacade.getWineFindByYear(2004);

 if (yearWineList != null) {

 for (Wine wine : yearWineList) {

 shoppingCart.addWineItem(wine, 20);

 �out.println("<h3>Added cart item for 20 bottles of " + wine.

getName() + " " + wine.

 getYear() + "</h3>");

 }

 }

 �out.print("<h2>Calling the ShoppingCart to send the order to the

Order Processing Center... ");

 shoppingCart.sendOrderToOPC();

 out.println("done</h2>");

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 out.close();

 }

 }

 /* HttpServlet methods */

}

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

365

�The Resulting E-Mail
The servlet output shown in Figure 7-10 tells only part of the story. The servlet’s work

ends when the order is sent to the Order Processing Center, in the call to shoppingCart.

sendOrderToOPC(). In this sample, the result of a successfully processed order is an

e-mail sent from the account configured in the JavaMail session (created in Chapter 5)

to the account specified in to_email_account property in the user.properties file. The

e-mail that is sent using the default account information is shown in Figure 7-11.

Figure 7-10.  Output from the ShoppingCartClient servlet

Figure 7-11.  E-mail from wineapp@yahoo.com appearing in the wineapp
account’s inbox

�The Servlet Output
The output from the ShoppingCartClient servlet, logging the high-level operations

performed by the client, is shown in Figure 7-10:

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

366

If no e-mail appears in the inbox of the account listed in the to_email_address

property of the user.properties file, check the Spam folder for that account or look in

the ‘GlassFish Server’ tab of the Output window in NetBeans for diagnostic information.

The Readme.txt file in the Chapter07-ServiceIntegration project contains additional

troubleshooting information should you need it.

�Summary
In this chapter, we have covered some ways to integrate different types of EJBs, JPA

entities, and Web services with resources like data sources, JMS topics, and JavaMail.

We looked at the conceptual design of our fictitious wine store application, and we

laid out the design for the components and services that need to be built. We looked at

individual components and services, and we demonstrated how to use different types of

EJBs to solve specific application problems.

The wine store application illustrated the various parts of typical back-end

applications, which included a comprehensive persistence unit that utilized a range of

JPA mappings, session beans that interacted with entities in the persistence unit, MDBs,

and Web services using dependency injection.

We also looked at how to inject various types of resources in session beans and

MDBs and how to build asynchronicity into the application using the MDBs.

Additionally, we looked into dealing with managed and detached entities from the

persistence context and integrating an asynchronous model into a typical back-end

application.

Finally, we detailed steps on how you can package individual components and

services into modules, assemble them into a Java EE application, and deploy them to the

GlassFish server.

In the next chapter, we discuss the transactional services provided by the EJB

container and explore the different types of transactional models that you can use in a

variety of application architectures.

Chapter 7 Integrating Session Beans, Entities, Message-Driven Beans, and Web Services

367
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_8

CHAPTER 8

Transaction Management
Much of the work surrounding the design and development of enterprise applications

involves decisions about how to coordinate the flow of persistent data. This includes

when and where to cache data, when to apply it to a persistent store (typically the

database), how to resolve simultaneous attempts to access the same data, and how

to resolve errors that might occur when an action occurs that violates a constraint in

the database. A reliable database is capable of handling these issues at a low level—in

the database tier—but these same issues can exist in the middle (application server)

and client tiers as well, and typically require special application logic. For example, a

database provides built-in concurrency control through pessimistic locking support,

whereas an application may choose to use an optimistic locking strategy to achieve a

result more optimized for performance.

One of the principal benefits of using EJB is its support for enterprise-wide services

like transaction management and security control. In this chapter, we will explore how

EJB offers transaction services and how you can leverage them to meet your specific

requirements.

To illustrate what EJB has to offer and how to use it, we will examine a scenario from

our sample Apress Wines Online application that exemplifies the aforementioned data

flow issues. We will illustrate EJB’s transaction support by showing ways to perform tasks

that range from simple and concise to slightly more complex but more flexible. Before

we dive into the examples, though, we present an overview of some of the important

transaction concepts in the EJB transaction realm, including the Java Transaction API

(JTA), the many flexible transaction options offered to you by the EJB container through

declarative EJB metadata, and a look at how transactions are handled in the persistence

tier. EJB has offered these essential transaction services since its inception, so those of you

who are comfortable with these concepts can skip ahead to the example section to see how

they manifest themselves in an EJB world involving the Java Persistence API (JPA).

368

�What Is a Transaction?
In this section, we will explore the following questions:

•	 What is a transaction, and why is it important to enterprise

applications?

•	 What are the core ACID (atomicity, consistency, isolation, durability)

properties that define a robust and reliable transaction?

•	 What is JTA, what is a distributed transaction, and what is two-phase

commit?

A transaction is a group of operations that must be performed as a unit. These

operations can be synchronous or asynchronous and can involve persisting data objects,

sending e-mail, validating credit cards, and many other events. A classic example is a

banking transfer, in which one operation debits funds from one account (i.e., updates a

record in a database table), and another operation credits those same funds to another

account (updates another row in that same, or a different, database table). From the

perspective of an external application querying both accounts, there must never be a

time when these funds can be seen in both accounts. Nor can a moment exist when the

funds can be seen in neither account. Only when both operations in this transaction

have been successfully performed can the changes be visible from another application

context. A group of operations that must be performed together in this way, as a unit, is

known as a transaction.

The operations in a transaction are performed sequentially or in parallel,

typically over a (relatively short) period of time. After they are all performed, the

transaction is applied, or committed. If an error or other invalid condition arises

during the course of a transaction, the transaction may be cancelled, or rolled back,

and the operations that had thus far been performed under that transaction context

are undone.

Chapter 8 Transaction Management

369

�Distributed Transactions
When the operations in a transaction are performed across databases or other

resources that reside on separate computers or processes, this is known as a distributed

transaction. Such enterprise-wide transactions require special coordination between

the resources involved, and they can be extremely difficult to program reliably. This is

where JTA comes in, providing the interface that resources can implement and bind to,

to participate in a distributed transaction.

The EJB container is a transaction manager that supports JTA, and so it can

participate in distributed transactions involving other EJB containers as well as third-

party JTA resources, like many database management systems (DBMSs). This takes

the complexity of coordinating distributed transactions off the shoulders of business

application developers, so that they are free to integrate loosely coupled services and

distribute their data across the enterprise however they choose. In addition, as you will

see in the following sections, EJB allows developers to choose whether to demarcate

transactions explicitly—with calls to begin, commit, or roll back (cancel) a transaction—

or to allow the EJB container to automatically perform transaction demarcation along

EJB method boundaries.

�The ACID Properties of a Transaction
No, not the electric Kool-Aid kind. Transactions come in all shapes and sizes and can

involve synchronous and asynchronous operations, but they all have some core features

in common, known as their ACID components. ACID refers to the four characteristics

that define a robust and reliable transaction: atomicity, consistency, isolation, and

durability. Table 8-1 describes these four components.

Chapter 8 Transaction Management

370

Naturally, EJB addresses all these requirements, and we will point out how each one

is handled in the examples that follow.

Table 8-1.  The ACID Properties of a Transaction

Feature Description

Atomicity A transaction is composed of one or more operations that are performed as a

group, known as a unit of work. Atomicity ensures that at the conclusion of the

transaction, these operations are either all performed successfully (a successful

commit), or none of them are performed at all (a successful rollback). At the end

of a transaction, atomicity would be violated if some, but not all, of the operations

completed.

Consistency A consistent transaction has data integrity. Consistency ensures that at the

conclusion of the transaction, the data is left in a consistent state, so that

database constraints or logical validation rules are not left in violation.

Isolation Transaction isolation specifies that the outside world is not able to see the

intermediate state of a transaction. Outside programs viewing the data objects

involved in a transaction must not see the modified data objects until after the

transaction has been committed. Transaction isolation is a complex science in

itself, and it is largely beyond the scope of this discussion, but suffice it to say

that EJB server providers typically offer configurable isolation settings that let you

choose the degree to which resources within a transaction’s scope can see each

other’s pending changes, and changes that were committed externally but during

the course of the context transaction (dirty reads). There is no standard isolation

setting, so portable applications should not rely on a particular configuration in

their runtime environment.

Durability Transactions that are performed correctly are permanent and cannot be affected

by any failure of the system. Committing the data into a relational database,

in which the results may subsequently be queried, typically achieves this

requirement.

Chapter 8 Transaction Management

371

�The Java Transaction API (JTA)
JTA defines an interface for clients and transaction-aware resource managers to

participate in fault-tolerant distributed transactions. EJB automatically binds to

these services, so both clients and enterprise beans can conveniently participate in

distributed programming without having to explicitly code logic such as the two-phase

commit protocol. The primary interface for an EJB into its JTA transaction is through

the javax.transaction.UserTransaction object interface instantiated by the EJB

container and made available either through injection into the enterprise bean class or

through a Java Naming and Directory Interface (JNDI) lookup.

�The Two-Phase Commit Protocol
If you have programmed logic using relational databases, you may be familiar with the

two-phase commit protocol. This strategy gives veto authority to resource managers

participating in a distributed transaction, notifying them through a “prepare” command

that a commit is about to be issued, and allowing them to declare whether they can

apply their changes. Only if all resource managers indicate through unanimous consent

that they are prepared to apply their changes does the final word come down from

the transaction manager to actually apply the changes. Typically, resource managers

perform the bulk of the changes during the “prepare” step, so the final “commit” step is

trivial to execute. This reduces the likelihood that errors will occur during the “commit”

step. Robust transaction managers and resource managers are capable of handling even

this eventuality.

�Transaction Support in EJB
This section will explore the following questions:

•	 What transaction services are available to enterprise bean

developers?

•	 How do session beans, message-driven beans (MDBs), and entities

interact in a transactional context?

Chapter 8 Transaction Management

372

Much of the infrastructure in the EJB server is dedicated to supporting these services,

and for good reason. Not only does EJB provide a robust JTA transaction manager, it

makes it accessible through declarative metadata that can be specified on interoperable,

portable business components. Virtually all Java EE applications require transaction

services, and EJB brings them to the application developer in a very slick package.

From its inception, the EJB framework has provided a convenient way to manage

transactions and access control by letting you define the behavior declaratively on

a method-by-method basis. Beyond these container-provided services, EJB lets you

turn control over to your application to define transaction event boundaries and other

custom behavior.

In this chapter, we look at the role transactions play in accomplishing a range of

common tasks in your application. In a typical Java EE application, session beans

typically serve to establish the boundaries of a transaction and manipulate entities to

interact with the database in the transactional context. Our examples mix session bean

and entity operations to illustrate both the built-in (declarative) and manual behavior

provided by EJB. In the spirit of the simplified development model, EJB provides a lot

of its most useful features by default, so it should come as no surprise that the default

transaction options are both useful and powerful.

�EJB Transaction Services
The EJB transaction model is built on this JTA model, in which session beans or other

application clients provide the transactional context in which enterprise services are

performed as a logical unit of work. Enterprise services in the Java EE environment that

typically operate in a transactional context include creating, retrieving, updating, and

deleting entities; sending JMS messages to the queue; executing MDBs; firing e-mail

requests; invoking Web services; executing JDBC operations; and much more.

EJB provides a built-in JTA transaction manager, but the real power lies in the

declarative services that EJB offers to bean providers. Using metadata tags instead of

programmatic logic, EJB developers can seamlessly participate in JTA transactions

and declaratively control the transactional behavior of each business method on an

enterprise bean.

Chapter 8 Transaction Management

373

EJB extends this programming model by providing explicit support for both JTA

transactions and non-JTA (resource-local) transactions. Resource-local transactions are

restricted to a single resource manager, such as a database connection, but may result in a

performance optimization by avoiding the overhead of a distributed transaction monitor.

In addition, application builders may leverage the container-provided services

for automatically managing transactions, or they may choose to take control of the

transaction boundaries and handle the transaction begin, commit, and rollback events

explicitly. Within a single application, both approaches may be used, in combination if

desired. Whereas the choice of whether to have the container or the application itself

demarcate transactions is defined on the enterprise bean, the decision of which type of

transaction model to use with JPA entities—JTA or resource-local—is determined by how

the persistence unit is configured in the persistence.xml file.

The persistent objects in the game—the entities—are entirely, and happily, unaware

of their governing transaction framework. The transactional context in which an

entity operates is not part of its definition, and so the same entity class may be used

in whatever transactional context the application chooses, provided an appropriate

EntityManager is created to service the entity’s lifecycle events.

If all of this seems a little daunting at this point, fear not. It will all make sense once

we walk through some examples in code that demonstrate how all the pieces work

together. It is also worth noting that EJB’s built-in Container-Managed Transaction

(CMT) support is more than adequate for most applications running inside the EJB

container. This chapter will let you explore your options—but unless you are writing

applications involving entities that live wholly outside of the EJB container, the default

support is likely to serve your needs quite nicely.

�Session Bean Transactional Behavior
in the Service Model
This next section will explore the following questions:

•	 What declarative transaction support does the EJB container offer to

session beans?

Chapter 8 Transaction Management

374

•	 What is the difference between container-managed transaction

(CMT) demarcation and bean-managed transaction (BMT)

demarcation? When would you choose one approach over the other?

•	 What are CMT attributes?

•	 How does EJB support the explicit demarcation of transaction

boundaries using bean-managed transaction (BMT) beans?

•	 What is implicit vs. explicit commit behavior?

The enterprise bean is the heart of the EJB service layer. Through session beans,

the EJB container offers declarative demarcation of transaction events, along with the

option to demarcate transaction events explicitly in the bean or in the application client

code. Let’s consider these two approaches separately, beginning with the default option:

leveraging container-managed transaction demarcation using declarative markup.

�Container-Managed Transaction (CMT) Demarcation
The EJB container provides built-in transaction management services that are available

by default to session beans and MDBs. The bean designates transaction characteristics

for each of its methods through metadata (using either annotations or XML), and the

EJB container follows those directives to determine the transactional action (if any)

to perform. Using these directives, the EJB container may automatically begin a new

transaction, or suspend or reuse an existing transaction when the method is invoked,

and possibly commit the transaction before the method returns to the caller.

Note O nly the bean developer may assign the transaction management type of
an enterprise bean. Application assemblers are permitted to override the bean’s
method-level container-managed transaction attributes through the ejb-jar.xml
file, but they must use caution to avoid the possibility of deadlock. Application
assemblers and deployers are generally not permitted to override the bean’s
transaction management type.

Chapter 8 Transaction Management

375

When an EJB declares its transactional behavior in metadata, the container

interposes on calls to the enterprise bean’s methods and applies transactional behavior

at the session bean’s method boundaries, providing a fixed set of options that you can

specify for each method. The default behavior provided by the container (i.e., when

no other directive is specified) is to check, immediately before invoking the method,

whether a transaction context is associated with the current thread. If no transaction

context is available, the container begins a new transaction before executing the method.

If a transaction is available, the container allows that transaction to be propagated to

the method call and made available to the method code. Then, upon returning from

the method invocation, the container checks again. If the container was responsible

for creating a new transaction context, it automatically commits that transaction after

the method is exited. If it didn’t create the transaction, then it allows the transaction

to continue unaffected. By interposing on the bean’s method calls, the EJB container

is able to apply transactional behavior at runtime that was specified declaratively at

development time.

The default behavior, described in the previous paragraph, is but one of six CMT

demarcation options provided by the container. You can attribute any one of these six

demarcation options to any method on a session bean. Some of the attribute values

require specific conditions to be met; when they are not met, an exception is thrown.

These six attributes are listed in Table 8-2.

Chapter 8 Transaction Management

376

Table 8-2.  Container Transaction Attribute Definitions

Transaction Attribute Behavior

MANDATORY A transaction must be in effect at the time the method is called. If no

transaction is available, a javax.ejb.EJBTransactionRequired

exception is thrown. This transaction remains in effect while the method

is executed, and it is left active upon returning control to the caller.

REQUIRED This is the default transaction attribute value. Upon entering the method,

the container interposes to create a new transaction context if one

is not already available. If the container created a transaction upon

entering the method, it commits that transaction when the method call

completes. If a transaction was already in effect, the container does not

commit it before returning control to the client.

REQUIRES_NEW The container always creates a new transaction before executing a

method thusly marked. If a transaction context is already available when

the method is invoked, then the container suspends that transaction

by dissociating it from the current thread before creating the new

transaction. The container then reassociates the original transaction with

the current thread after committing the intervening one.

SUPPORTS This option is basically a no-op, resulting in no additional work by the

container. If a transaction context is available, it is used by the method.

If no transaction context is available, then the container invokes the

method with no transaction context. Upon exiting the method, any

preexisting transaction context remains in effect.

NOT_SUPPORTED The container invokes the method with an unspecified transaction

context. If a transaction context is available when the method is called,

then the container dissociates the transaction from the current thread

before invoking the method, and then it reassociates the transaction

with the thread upon returning from the method.

NEVER The method must not be invoked with a transaction context. The

container will not create one before calling the method, and if one is

already in effect, the container throws javax.ejb.EJBException.

Chapter 8 Transaction Management

377

Note I n general, transaction attributes may be specified on a session bean’s
business interface methods or Web service endpoint interface, or on an MDB’s
listener method, but some additional restrictions apply for specific cases. Such
details are beyond the scope of this book but may be found in the EJB Core
Contracts and Requirements spec.

All six attributes are typically available for session bean methods, though certain

attributes are not available on a session timeout callback method, or when the session

bean implements javax.ejb.SessionSynchronization. MDBs support only the

REQUIRED and NOT_SUPPORTED attributes. Here is an example of how you would specify

the transaction behavior on a session bean method to override the transaction behavior

specified (or defaulted) at the bean level:

@TransactionAttribute(TransactionAttributeType.SUPPORTS)

public CustomerOrder createCustomerOrderUsingSupports(Customer customer)

 throws Exception { ... }

Table 8-3 illustrates an EJB’s transactional behavior, dependent on its transaction

attribute and the presence or absence of a transactional context at the time the session

method is called. For each transaction attribute, we list on separate rows the method

body and resource transactional context when a client transaction is absent (None), and

when a client transaction is present (Tc). Whenever a new transaction is created for the

duration of the method (Tm), it is always committed by the EJB container before control

is returned to the caller. Both the transaction associated with the method body code and

the transaction associated with resources that are used by the method are shown.

Chapter 8 Transaction Management

378

Table 8-3 illustrates how the container interposes on CMT-demarcated methods to

propagate a transactional context differently for each transaction attribute. This table

also illustrates that the transactional context used within the bean method is always the

one that is in turn propagated to other methods called by that CMT bean method. Note

that a client to an enterprise bean may itself be another enterprise bean.

�The EJBContext.setRollbackOnly and getRollbackOnly Methods

In the event that an exception or other error condition is encountered in a method on a

CMT-demarcated enterprise bean, the bean may wish to prevent the context transaction

from being committed.

Table 8-3.  Client and Bean Transaction States for Each of the Six Transaction

Attributes

Transaction Client’s
Transaction

Transaction Associated
with Business Method

Transaction Associated with
Attribute Resource Managers

MANDATORY None Error N/A

Tc Tc Tc

NEVER None None None

Tc Error N/A

NOT_SUPPORTED None None None

Tc None None

REQUIRED None Tm Tm

Tc Tc Tc

REQUIRES_NEW None Tm Tm

Tc Tm Tm

SUPPORTS None None None

Tc Tc Tc

Chapter 8 Transaction Management

379

The MessageDrivenContext methods can be used, in the following ways, whenever

we use container-managed transactions:

•	 setRollbackOnly: This method can be used for error handling.

•	 getRollbackOnly: This method can be used to test whether the

current transaction has been marked for rollback.

The bean is not allowed to roll back the transaction explicitly, but it may obtain

the javax.ejb.EJBContext resource (through container injection or JNDI lookup)

and call its setRollbackOnly() method to ensure that the container will not commit

the transaction. Similarly, a bean method may at any time call the EJBContext.

getRollbackOnly() method to determine whether the current transaction has been

marked for rollback, whether by the current bean or by another bean or resource

associated with the current transaction.

�Bean-Managed Transaction (BMT) Demarcation
For some enterprise beans, the declarative CMT services may not provide the demarcation

granularity that they require. For instance, a client may wish to call multiple methods

on a session bean without having each method commit its work upon completion. In

this case, the client has several options: it can either instantiate its own JTA (or resource-

local) transaction and thus control the transaction begin/end boundaries explicitly; it can

write a custom CMT session bean to wrap the work inside a transactional bean method

and perform the steps inside the container-managed transaction; or it can control the

transaction demarcation explicitly by using a transaction resource available through the

EJB context.

EJB offers the latter option—known as bean-managed transaction (BMT) support

to enterprise beans as a convenient way to handle their demarcation of transaction

events. To turn off the automatic CMT demarcation services, enterprise beans simply

specify the @TransactionManagement(TransactionManagementType.BEAN) annotation

or assign the equivalent metadata to the session bean in the ejb-jar.xml file. With

BMT demarcation, the EJB container still provides the transaction support to the bean,

through a UserTransaction object available through the bean’s EJBContext object.

The primary difference is that the bean code makes explicit calls to begin, commit,

and roll back transactions instead of using CMT attributes to declaratively assign

transactional behavior to its methods. The container does not interpose on BMT

Chapter 8 Transaction Management

380

methods to begin and commit transactions, and it does not propagate transactions

begun by a client to beans that elect to demarcate their own transactions. While any

given enterprise bean must choose one plan or the other (CMT vs. BMT demarcation)

for its methods, both types of beans may interact with each other within a single

transaction context.

To demarcate transactions, an enterprise bean obtains an EJBContext (that is,

SessionContext for a session bean, or MessageDrivenContext for an MDB) resource

through injection:

@Resource

SessionContext sessionContext;

and then acquires a JTA javax.transaction.UserTransaction instance through this

resource:

UserTransaction txn = sessionContext.getUserTransaction();

This EJB container-provided UserTransaction interface provides begin(),

commit(), and rollback() transaction demarcation methods to the bean. Similarly,

non–enterprise bean clients may acquire a UserTransaction resource from a JTA server

other than the EJB container to demarcate transactions from an application client

environment, or they may use a non-JTA resource-local EntityTransaction obtained

through an EntityManager (see below). Regardless of how they begin a transaction,

though, it becomes the transaction in context when they invoke a session bean method,

and the rules from Table 8-3 apply.

In the example we will examine shortly, a stateful session bean using an EXTENDED

persistence context and BMT demarcation initiates a transaction in one method that is

then propagated to subsequent method calls until the transaction is finally committed

in a separate method. This behavior could not be specified with the same method

structure by calling these methods separately on a CMT session bean, although it would

be possible to achieve the same results by wrapping these separate calls inside a single

CMT-demarcated custom method on a CMT session bean.

Chapter 8 Transaction Management

381

Note H ow does the EJB server wire up a transaction context? You may be curious
as to how the EJB server is able to automatically enlist database connections, and
other resources obtained programmatically inside an enterprise bean, with the
transaction context. Since the EJB server is providing the context for executing bean
methods, it is able to interpose on these requests and perform this side-effect logic
without interrupting the flow of execution within the method. That is, it intercepts the
method invocation before it is performed; does some extra work (like checking the
state of the transaction context, possibly creating a new transaction, and associating
the enterprise bean with that context); and then invokes the bean method. Upon returning
from the bean method invocation, it again has an opportunity to perform extra logic,
such as committing the transaction that was created when the method was called,
before returning control to the client that invoked the bean method in the first place.

When we use bean-managed transactions, the delivery of a message to the

onMessage method takes place outside the JTA transaction context.

The transaction will:

•	 begin when we call the UserTransaction.begin method within the

onMessage method, and

•	 end when we call UserTransaction.commit or UserTransaction.

rollback.

Notice that any call to the Connection.createSession method should take place

within the transaction.

�Implicit Commit vs. Explicit Commit
When using CMT, the container requires that any transaction that it begins when a method

is called will be concluded when the method returns to the caller. This is known as implicit

commit behavior, or sometimes referred to as auto-commit behavior. The container

must enforce this rule or run the risk of losing track of the transaction as control passes

up the process stack. While you can still use the container-managed transactions with

CMT to allow multiple methods to be called within a single transaction, you must do this

by wrapping your method calls within an outer container-managed method. From the

perspective of a client, this still appears to be a single method call, to the wrapper method.

Chapter 8 Transaction Management

382

When using BMT with stateful session beans, you have the flexibility to achieve an

explicit commit model, where the bean or the client can control the beginning and end

of a transaction and call multiple methods explicitly during that time before concluding

with an explicit call to commit or roll back the work. This puts the burden on the client,

or on the bean developer, to ensure that transactions are not left dangling. With proper

care, however, this is a powerful tool when the application requires this behavior. As

mentioned earlier, EJB provides a built-in transaction for session beans and MDBs to

use for this—the javax.transaction.UserTransaction—which the bean can access

through its injected javax.ejb.EJBContext property (as either a SessionContext or a

MessageDrivenContext instance).

We will further explore both implicit and explicit commit behavior in the sample app

at the end of this chapter.

�Using Transactions with JPA Entities
This section will discuss the following questions:

•	 How are transactions managed in the persistence layer?

•	 What options does the persistence framework offer for controlling

transactions involving entities?

•	 What is the role of the persistence context in a transaction?

•	 How do entities become associated with, and dissociated from, a

transactional context?

If you recall from Chapter 3, a persistence unit defines a set of entity classes, and a

persistence context is a managed set of entity instances from a single persistence unit. At

any point in time, across multiple applications executing in an application server, many

persistence contexts may be actively associated with any given persistence unit, but each

persistence context is associated with, at most, one transaction context.

�Relationship Between Entities and a Transaction Context
From the preceding discussion about how the EJB server acts as a transaction

coordinator in associating resources with a transaction context, you may have realized

that the persistence context is the resource that gets associated with a transaction.

Chapter 8 Transaction Management

383

In this way, a persistence context is propagated through method calls so that entities

in a persistence unit can see each other’s intermediate state, through their common

persistence context, whenever they are associated with the same transaction context.

Also, the restriction that only one persistence context for any given persistence unit

must be associated with a given transaction context ensures that for any entity of type T

with identity I, its state will be represented by only one persistence context within any

transaction context.

Within an application thread, only one transaction context is available at any

moment, but the EJB server is free to dissociate one persistence context from that

thread and associate a new persistence context for the same persistence unit to satisfy

transaction isolation boundaries. When the EJB server does this, the newly instantiated

persistence context is not able to see the intermediate changes made to any entities

associated with the suspended persistence context.

�Container-Managed vs. Application-Managed Persistence
Context
The persistence services in EJB let you opt out of container-managed persistence

contexts altogether and manage the life cycles of your persistence context explicitly

within your application code. When an EntityManager instance is injected (or acquired

through JNDI), it comes in as a container-managed persistence context. The container

automatically associates container-managed persistence contexts with any transaction

that happens to be in context at the time that the EntityManager is used, and it destroys

the persistence context when the transaction concludes (with one caveat—see extended

persistence contexts, below). Should an application wish to control how or whether

its persistence contexts are associated with transactions, and whether it survives past

transactional boundaries, it may obtain an EntityManagerFactory (again, through

container injection or JNDI lookup) and explicitly create the EntityManager instances

that manage their persistence contexts. An application-managed persistence context

is used when the EntityManager is obtained through an EntityManagerFactory—a

requirement when running outside the Java EE container. For more information on using

an application-managed EntityManager outside of a Java EE container, as in a pure Java

SE environment, please see Chapter 4.

Chapter 8 Transaction Management

384

�Transaction-Scoped Persistence Context vs. Extended
Persistence Context
A persistence context that is created when a transaction is created, and destroyed when

the transaction ends, is known as a transaction-scoped persistence context. This is the

behavior of persistence contexts associated with all EntityManagers used on a stateless

session bean.

For stateful session beans, there exists a special form of container-managed

EntityManager that is not bound to the life of a transaction, but it is instead bound to the

life of a stateful session bean itself. This is known as an extended EntityManager, and it

behaves much like an application-managed persistence context but the EJB container

conveniently manages its life cycle. Because an extended persistence context is not

destroyed at the conclusion of each transaction as is a transaction-scoped persistence

context, entities can remain in a managed state even after they have been synchronized

with the database. In some cases, this avoids the need to re-query them or otherwise

obtain a managed instance if you wish to continue working with them after a commit.

In a conversational environment, such as a Web application, this can be very useful.

An extended persistence context stays open until its context stateful session bean is

destroyed. Only stateful session beans may use extended persistence contexts. At the

time an EntityManager instance is created, its persistence context type is defined, and it

may not be changed during the EntityManagers lifetime. The default type is transaction

scoped; to inject an EntityManager by specifying an extended persistence context, you

may specify the injection directive with the following:

@PersistenceContext(unitName="WineAppUnit", type = PersistenceContextType.

EXTENDED)

private EntityManager em;

or you may define a persistence-context-ref element in the XML descriptor.

In the transaction examples at the end of this chapter, we will compare the behavior

of a stateless session bean using a transaction-scoped persistence context with a stateful

session bean that uses an extended persistence context.

Chapter 8 Transaction Management

385

�JTA vs. Resource-Local EntityManagers
An EntityManager may be defined to participate in either a JTA transaction or a

non-JTA (resource-local) transaction. The features of JTA—most notably, support for

distributed transactions—have been described previously, along with usage of the bean’s

interface to a JTA transaction, javax.transaction.UserTransaction. Resource-local

EntityManagers service transactions using the javax.persistence.EntityTransaction

interface available to clients through the EntityManager.getEntityTransaction()

method. This interface exposes the expected transaction demarcation methods begin(),

commit(), and rollback(), along with getRollbackOnly() and setRollbackOnly()

methods that are equivalent to the EJBContext and UserTransaction methods available

to enterprise beans described previously, and an isActive() method to indicate

whether a transaction is currently in progress.

Container-managed EntityManagers must be JTA EntityManagers. Application-

managed EntityManagers may be either JTA or resource-local, but they may only be JTA

EntityManagers if the EntityManager resides in the Java EE environment.

One reason you might want to use a resource-local EntityManager is that while JTA

provides the infrastructure for distributed transactions, resource-local transactions can

provide a performance optimization by eliminating the overhead of this infrastructure.

Another reason is you may wish to use your JPA entities in a stand-alone Java SE

environment where JTA or/or data-source resources are not supported.

We will examine use of the EntityTransaction when we dissect a Java façade in the

sample application later in this chapter.

�Two Sample Scenarios
The following two sample scenarios use the entities in the persistence unit defined for

the Wines Online application, which we examined in Chapter 7. The first scenario uses

a stateless CMT session bean, leveraging the declarative transaction services provided

by the EJB container. The second scenario shows how transactions can be managed

explicitly by both the bean and the client when using a stateful BMT session bean. At

the end of this chapter you will find step-by-step instructions for building, deploying,

and testing these samples in GlassFish using NetBeans. For now, we will examine the

source files and discuss the different ways EJB and JPA can interact in a transactional

environment.

Chapter 8 Transaction Management

386

�Stateless Session Beans with CMT Demarcation
We begin with a default, straightforward, implementation of a stateless session bean,

OrderProcessorCMTBean.java (shown in Listing 8-1). This session bean uses CMT

demarcation to leverage EJB’s declarative transaction support. It is followed by a simple

servlet client, OrderProcessorCMTClient.java (shown in Listing 8-2).

Listing 8-1.  OrderProcessorCMTBean.java, a Stateless Session Bean Using CMT

Demarcation

@Stateless(name = "OrderProcessorCMT", mappedName = "Chapter08-

TransactionSamples-OrderProcessorCMT")

public class OrderProcessorCMTBean {

 @Resource

 SessionContext sessionContext;

 @PersistenceContext(unitName = "Chapter08-TransactionSamples-JTA")

 private EntityManager em;

 /**

 * �Remove any existing Customers with email 'wineapp@yahoo.com' and any

existing Wine with

 * �country 'United States'. The EJB container will ensure that this work

is performed in

 * a transactional context.

 */

 public String initialize() {

 StringBuffer strBuf = new StringBuffer();

 strBuf.append("Removed ");

 int i = 0;

 // Filter the data by removing any existing Customers with email

 // �'wineapp@yahoo.com' (or whatever is defined in the user.properties file).

 for (Customer customer :

 getCustomerFindByEmail(PopulateDemoData.TO_EMAIL_ADDRESS)) {

 em.remove(customer);

 i++;

 }

Chapter 8 Transaction Management

387

 strBuf.append(i);

 strBuf.append(" Customer(s) and ");

 // Remove any existing Wine with country 'United States'

 i = 0;

 for (Wine wine : getWineFindByCountry("United States")) {

 em.remove(wine);

 i++;

 }

 strBuf.append(i);

 strBuf.append(" Wine(s)");

 return strBuf.toString();

 }

 /**

 * �Create a new CustomerOrder from the items in a Customer's cart.

Creates a new CustomerOrder

 * �entity, and then creates a new OrderItem entity for each CartItem

found in the Customer's cart.

 *

 * �Using CMT w/ the default REQUIRED xaction attribute, if this method is

invoked without a

 * �transaction context, a new transaction will be created by the EJB

container upon invoking the

 * method, and committed upon successfully completing the method.

 *

 * @return a status message (plain text)

 */

 public CustomerOrder createCustomerOrder(Customer customer) {

 return createCustomerOrderUsingSupports(customer);

 }

 @TransactionAttribute(TransactionAttributeType.SUPPORTS)

 public CustomerOrder createCustomerOrderUsingSupports(Customer customer)

{

 if (customer == null) {

Chapter 8 Transaction Management

388

 �throw new IllegalArgumentException("OrderProcessingBean.

createCustomerOrder(): Customer not specified");

 }

 if (!em.contains(customer)) {

 customer = em.merge(customer);

 }

 final CustomerOrder customerOrder = new CustomerOrder();

 customer.addCustomerOrder(customerOrder);

 final Timestamp orderDate = new Timestamp(System.currentTimeMillis());

 final List<CartItem> cartItemList =

 new ArrayList(customer.getCartItemList());

 for (CartItem cartItem : cartItemList) {

 // Create a new OrderItem for this CartItem

 final OrderItem orderItem = new OrderItem();

 orderItem.setOrderDate(orderDate);

 orderItem.setPrice(cartItem.getWine().getRetailPrice());

 orderItem.setQuantity(cartItem.getQuantity());

 orderItem.setStatus("Order Created");

 orderItem.setWine(cartItem.getWine());

 customerOrder.addOrderItem(orderItem);

 // Remove the CartItem

 customer.removeCartItem(cartItem);

 }

 return persistEntity(customerOrder);

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

Chapter 8 Transaction Management

389

 public <T> void removeEntity(T entity) {

 em.remove(em.merge(entity));

 }

 public <T> List<T> findAll(Class<T> entityClass) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 return em.createQuery(cq).getResultList();

 }

 public <T> List<T> findAllByRange(Class<T> entityClass, int[] range) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 Query q = em.createQuery(cq);

 q.setMaxResults(range[1] - range[0]);

 q.setFirstResult(range[0]);

 return q.getResultList();

 }

 /**

 * <code>select o from Customer o where o.email = :email</code>

 */

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)

 public List<Customer> getCustomerFindByEmail(String email) {

 �return em.createNamedQuery("Customer.findByEmail", Customer.class).

setParameter("email", email).getResultList();

 }

 /**

 * <code>select object(wine) from Wine wine where wine.country =

:country</code>

 */

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)

 public List<Wine> getWineFindByCountry(String country) {

 �return em.createNamedQuery("Wine.findByCountry", Wine.class).

setParameter("country", country).getResultList();

 }

}

Chapter 8 Transaction Management

390

Listing 8-2.  OrderProcessorCMTClient.java, a Servlet That Drives the

OrderProcessorCMT Session Bean

@WebServlet(name = "OrderProcessorCMTClient", urlPatterns = {"/

OrderProcessorCMTClient"})

public class OrderProcessorCMTClient extends HttpServlet {

 @EJB

 OrderProcessorCMTBean orderProcessorCMT;

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 response.setContentType("text/html;charset=UTF-8");

 OutputStream rOut = response.getOutputStream();

 PrintStream out = new PrintStream(rOut);

 try {

 /* TODO output your page here. You may use following sample code. */

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet OrderProcessorCMTClient</title>");

 out.println("</head>");

 out.println("<body>");

 �out.println("<h1>Servlet OrderProcessorCMTClient at " + request.

getContextPath() + "</h1>");

 out.println("</body>");

Chapter 8 Transaction Management

391

 out.println("</html>");

 // �Create and persist a bunch of JPA entities, populating the

database with data

 out.print("<h2>Populating Demo Data... ");

 �PopulateDemoData.resetData("Chapter07-WineAppUnit-ResourceLocal",

System.out);

 out.println("done</h2>");

 // Filter the data by removing any existing Customers with email

 // �'wineapp@yahoo.com' (or whatever is defined in the user.

properties file).

 // �The first call to a transactional method on OrderProcessorBMT

will begin a

 // transaction.

 out.print("<h2>Filtering Demo Data... ");

 System.out.println(orderProcessorCMT.initialize());

 out.println("done</h2>");

 // Create a Customer and add some CartItems and their associated Wines

 Individual customer = new Individual();

 customer.setFirstName("Transaction");

 customer.setLastName("Head");

 customer.setEmail(PopulateDemoData.TO_EMAIL_ADDRESS);

 for (int i = 0; i < 5; i++) {

 final Wine wine = new Wine();

 wine.setCountry("United States");

 wine.setDescription("Delicious wine");

 wine.setName("Xacti");

 wine.setRegion("Dry Creek Valley");

 wine.setRetailPrice(new Float(20.00D + i));

 wine.setVarietal("Zinfandel");

 wine.setYear(2000 + i);

 orderProcessorCMT.persistEntity(wine);

 final CartItem cartItem = new CartItem();

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

Chapter 8 Transaction Management

392

 cartItem.setCustomer(customer);

 cartItem.setQuantity(12);

 cartItem.setWine(wine);

 customer.addCartItem(cartItem);

 }

 // Persist the Customer, relying on the cascade settings to persist all

 // �related Wine and CartItem entities as well. After the call, the

Customer

 // instance will have an ID value that was assigned by the EJB container

 // when it was persisted.

 orderProcessorCMT.persistEntity(customer);

 // Create a customer order and create OrderItems from the CartItems

 final CustomerOrder customerOrder =

 orderProcessorCMT.createCustomerOrder(customer);

 out.print("<h2>Retrieving Customer Order Items... ");

 for (OrderItem orderItem: customerOrder.getOrderItemList()) {

 final Wine wine = orderItem.getWine();

 out.println(wine.getName() + " with ID " + wine.getId());

 }

 out.println("done</h2>");

 } finally {

 rOut.close();

 out.close();

 }

 }

 /* HttpServlet Methods */

}

�Transaction Analysis

The following sections will analyze this test run from a transaction perspective.

Chapter 8 Transaction Management

393

Populating Test Data Through a Transactional Java Façade

The servlet client begins by wiping the slate clean. The client of a CMT bean does not

create transactions, or otherwise concern itself with transactional details. It delegates

all work to the CMT session bean and (indirectly to) a Java façade, and relies on them to

perform their work in a transactional context. The client first calls the PopulateDemoData

class from the Chapter 7 sample application, which is a helper class that delegates to a

Java façade that uses an application-managed EntityManager, to reset the demo data

to prepare for a new test run. We offer this example first, to see a raw use of transactions

in an application-managed EntityManager context. We will examine EJB session bean

behavior in a moment.

// Create and persist a bunch of JPA entities, populating the database

with data

out.print("<h2>Populating Demo Data... ");

PopulateDemoData.resetData("Chapter07-WineAppUnit-ResourceLocal", System.out);

out.println("done</h2>");

The PopulateDemoData class is shown in Listing 8-3:

Listing 8-3.  PopulateDemoData.java, a utility class resets the sample data by

delegating to a transactional Java façade over JPA entities

public class PopulateDemoData {

 public static final String FROM_EMAIL_ADDRESS;

 public static final String TO_EMAIL_ADDRESS;

 static {

 Properties properties = new Properties();

 InputStream is = null;

 try {

 �is = PopulateDemoData.class.getClassLoader().getResourceAsStream

("user.properties");

 properties.load(is);

 FROM_EMAIL_ADDRESS = properties.getProperty("from_email_address");

 TO_EMAIL_ADDRESS = properties.getProperty("to_email_address");

 } catch (IOException e) {

 throw new RuntimeException(e);

Chapter 8 Transaction Management

394

 } finally {

 if (is != null) {

 try {

 is.close();

 } catch (IOException ex) {

 �Logger.getLogger(PopulateDemoData.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 }

 }

 private JavaServiceFacade facade;

 public static void main(String[] args) {

 �PopulateDemoData.resetData("Chapter07-WineAppUnit-ResourceLocal",

System.out);

 }

 public static void resetData(String persistenceUnit, PrintStream out) {

 PopulateDemoData pdd = null;

 try {

 pdd = new PopulateDemoData(persistenceUnit);

 out.println("Reporting existing data...");

 pdd.showDataCount(out);

 out.println("Removing data...");

 pdd.removeAllDemoData(out);

 out.println("Reporting data after removal...");

 pdd.showDataCount(out);

 

 out.println("Populating data...");

 pdd.populateDemoCustomer();

 pdd.populateWines();

 out.println("Reporting final data...");

Chapter 8 Transaction Management

395

 pdd.showDataCount(out);

 } finally {

 if (pdd != null) {

 pdd.releaseEntityManager();

 }

 }

 }

 private PopulateDemoData(String persistenceUnit) {

 facade = new JavaServiceFacade(persistenceUnit);

 }

 private void removeAllDemoData(PrintStream out) {

 removeAll(OrderItem.class, out);

 removeAll(CustomerOrder.class, out);

 removeAll(Individual.class, out);

 removeAll(Distributor.class, out);

 removeAll(Supplier.class, out);

 removeAll(InventoryItem.class, out);

 removeAll(CartItem.class, out);

 removeAll(Wine.class, out);

 }

 private <T> void removeAll(Class<T> entityClass, PrintStream out) {

 int i = 0;

 for (T entity : facade.findAll(entityClass)) {

 facade.removeEntity(entity);

 }

 out.println("Removed " + i + " " + entityClass.getSimpleName() + " instances");

 }

 private Customer populateDemoCustomer() {

 �Address a = new Address("Redwood Shores", "CA", "200 Oracle Pkwy",

null, "94065");

 �Individual i = new Individual("James", "Brown", "800.888.8000",

TO_EMAIL_ADDRESS, a, a, "04/14", "123");

 facade.persistEntity(i);

Chapter 8 Transaction Management

396

 return i;

 }

 private InventoryItem populateWines() {

 InventoryItem ii = null;

 for (int i = 0; i < 6; i++) {

 �Wine w = new Wine("USA", "Fine Wine - ranked #" + i, "Yerba Buena " +

i, 90, "Napa Valley", new Float(10 + i), "Zinfandel", 2000 + i);

 facade.persistEntity(w);

 �ii = new InventoryItem(10 + i, w, new java.util.Date(System.

currentTimeMillis()), new Float(1 + i));

 facade.persistEntity(ii);

 }

 for (int i = 4; i < 10; i++) {

 �Wine w = new Wine("France", "Fine Wine - ranked #" + i, "Chateau

Brown " + i, 90, "Loire Valley ", new Float(10 + i), "Zinfandel",

2000 + i);

 facade.persistEntity(w);

 �ii = new InventoryItem(10 + i, w, new java.util.Date(System.

currentTimeMillis()), new Float(1 + i));

 facade.persistEntity(ii);

 }

 return ii;

 }

 public void showDataCount(PrintStream out) {

 out.println(facade.getCount(Address.class) + " Addresses found");

 �out.println(facade.getCount(BusinessContact.class) + " Business

Contacts found");

 out.println(facade.getCount(CustomerOrder.class) + " Customer Orders found");

 out.println(facade.getCount(Wine.class) + " Wines found");

 out.println(facade.getCount(WineItem.class) + " Wine Items found");

 }

Chapter 8 Transaction Management

397

 private void releaseEntityManager() {

 if (facade != null) {

 facade.close();

 }

 }

}

Notice that instead of injecting an EJB façade using the @EJB notation, we instantiate

the Java façade (JavaServiceFacade) through its constructor and pass it the name

of a RESOURCE_LOCAL persistence unit, which we can see from the original call is

"Chapter07-WineAppUnit-ResourceLocal". This helper class is calling operations like

persistEntity() and removeCustomerOrder() on the façade without explicitly calling

for the operation to be committed, which is an indication that the façade uses implicit

commit behavior.

We also take care to ensure that the façade is notified, through its own close()

method, after it is used. This allows it to release its own resources: notably, its

EntityManagerFactory and EntityManager resources. These are housekeeping items

you don’t need to worry about with EJBs, since the EJB container handles this level of

resource management for you.

�Java Façade Using Application-Managed EntityManager
This brings us to the details of the Java façade itself. This façade was actually quietly

introduced in Chapter 7, where it is bundled with the common persistence archive we

are sharing from that chapter. We will now see how this is handled, by now examining

the JavaServiceFacade class in Listing 8-4:

Listing 8-4.  JavaServiceFacade.java, a transactional Java façade over JPA entities,

exhibiting implicit commit behavior

public class JavaServiceFacade {

 private final EntityManagerFactory emf;

 private final EntityManager em;

 public JavaServiceFacade() {

 this("Chapter13-EmbeddableEJBTests-ResourceLocal");

 }

Chapter 8 Transaction Management

398

 public JavaServiceFacade(String persistenceUnit) {

 emf = Persistence.createEntityManagerFactory(persistenceUnit);

 em = emf.createEntityManager();

 }

 public void close() {

 if (em != null && em.isOpen()) {

 em.close();

 }

 if (emf != null && emf.isOpen()) {

 emf.close();

 }

 }

 /**

 * �All changes that have been made to the managed entities in the

persistence context are applied

 * to the database and committed.

 */

 private void commitTransaction() {

 final EntityTransaction entityTransaction = em.getTransaction();

 if (!entityTransaction.isActive()) {

 entityTransaction.begin();

 }

 entityTransaction.commit();

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 commitTransaction();

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 entity = em.merge(entity);

 commitTransaction();

 return entity;

 }

Chapter 8 Transaction Management

399

 public <T> void removeEntity(T entity) {

 em.remove(em.merge(entity));

 commitTransaction();

 }

 public <T> List<T> findAll(Class<T> entityClass) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 return em.createQuery(cq).getResultList();

 }

 public <T> int getCount(Class<T> entityClass) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 Root<T> rt = cq.from(entityClass);

 cq.select(em.getCriteriaBuilder().count(rt));

 javax.persistence.Query q = em.createQuery(cq);

 return ((Long) q.getSingleResult()).intValue();

 }

 /**

 * <code>select object(wine) from Wine wine where wine.year = :year</code>

 */

 public List<Wine> getWineFindByYear(int year) {

 �return em.createNamedQuery("Wine.findByYear", Wine.class).

setParameter("year", year).getResultList();

 }

 /**

 * �<code>select object(wine) from Wine wine where wine.country =

:country</code>

 */

 public List<Wine> getWineFindByCountry(String country) {

 �return em.createNamedQuery("Wine.findByCountry", Wine.class).

setParameter("country", country).getResultList();

 }

 /**

Chapter 8 Transaction Management

400

 * �<code>select object(wine) from Wine wine where wine.varietal =

:varietal</code>

 */

 public List<Wine> getWineFindByVarietal(String varietal) {

 �return em.createNamedQuery("Wine.findByVarietal", Wine.class).

setParameter("varietal", varietal).getResultList();

 }

}

This façade obtains its EntityManager from an EntityManagerFactory, and so

the life cycle of this EntityManager is now the responsibility of the façade is now

the responsibility of the façade instead of the container. An application-managed

EntityManager is bound to a persistence context cache that can exist outside of a

transactional context, and live through multiple transactions, which is essentially the

same as an EXTENDED persistence context for a stateful session bean. This allows calls

such as EntityManager.persist() to be made before a transaction has been started.

Such an out-of-transaction call would add a new entity to the persistence context but

would not immediately result in an SQL call to update the database.

Note E ven before an EntityManager transaction is begun, the persistence context
quietly begins its own private transaction, as needed, to service any ID generator
requests when EntityManager.persist( ) is called. Because we have bound the PK
fields of our entities to a @GeneratedValue ID generator, these IDs are actually
eagerly obtained and assigned to the entities during the persist( ).

The persistence context cache is not flushed to the database until the transaction is

actually begun, through an EntityTransaction.begin() call, which could be immediately

before an EntityTransaction.commit() call is performed. That is, you have the choice to

begin the transaction before any changes are applied to the persistence context or defer

the beginning of the transaction until you are ready to commit. In our sample, we defer the

begin() call to inside the commitTransaction() method:

private void commitTransaction() {

 final EntityTransaction entityTransaction = em.getTransaction();

 if (!entityTransaction.isActive()) {

Chapter 8 Transaction Management

401

 entityTransaction.begin();

 }

 entityTransaction.commit();

}

Contrast this behavior with a stateless session bean using the default CMT behavior

of TransactionAttributeType.REQUIRED, which implicitly begins a transaction when

a session bean method call is made, and it commits the work to the database upon

returning from that method call. The transaction begins and ends within the boundaries

of that method call, and such CMT beans would never expose commitTransaction()

or rollbackTransaction() methods to their clients, as we will see in the BMT example

next. The implicit commit behavior avoids leaving uncommitted data hanging around

in a cache, vulnerable to loss due to hardware or network failure. However, it also incurs

additional back-end processing to complete the work and commits it each time an

atomic operation is performed (not to mention, a persistence context cache is created

and destroyed with each call), which can affect performance.

A RESOURCE_LOCAL EntityManager provides its clients with an

EntityTransaction object for managing transactions. The commitTransaction()

method in Listing 8-4 demonstrates its use, and the implicit behavior of this façade is

achieved by the policy of calling commitTransaction() at the end of every method that

updates the persistence context (through a persist, merge, or remove operation).

�Filtering Test Data Using a CMT Session Bean
After using the Java façade (through a utility class) to populate the demo data, the servlet

client then calls a stateless CMT session bean, OrderProcessorCMTBean, to filter this

data remove Customer and Wine entities that might have been created from previous

invocations. We could have both data population and data filtering with a single

façade tied to a single persistence unit, but we are deliberately mixing and matching

options here to show how they can interact. What allows this to work is that both

persistence units, one RESOURCE_LOCAL and one JTA, both point to the same database

connection.

Chapter 8 Transaction Management

402

// Filter the data by removing any existing Customers with email

'xaction.head@yahoo.com'

// and any existing Wine with country 'United States'.

out.print("<h2>Filtering Demo Data... ");

System.out.println(orderProcessorCMT.initialize());

out.println("done</h2>");

The stateless session bean OrderProcessorCMTBean does not explicitly declare its

transactional behavior, and so it assumes the default TransactionManagement value—

CMT—which is the equivalent of annotating the bean:

@TransactionManagement(TransactionManagementType.CONTAINER)

Because the initialize() method is not annotated with a TransactionAttribute

override, and OrderProcessorCMTBean does not override the default

TransactionAttribute value for all its methods at the bean level, it assumes the default

transaction attribute value, the equivalent of the following:

@TransactionAttribute(TransactionAttributeType.REQUIRED)

Since the client has neither begun nor inherited a transaction, one is created

and begun by the EJB container for the duration of the initialize() method, and

all changes are committed upon successful completion of this method. CMT beans

will always exhibit implicit commit behavior, because the container will not allow a

transaction that it begins to continue after the method has completed. The implicit

commit causes any changes made during the course of that method to be made

persistent, and they are applied to the database so that the changes are visible to all

clients henceforth.

�Creating New Customer and CartItem Entity Instances
in the Client

The next step for the client is to create a new Customer entity instance (actually, the

concrete Individual entity subclass of the abstract Customer entity), create some Wine

instances, and add some bottles of wine represented by CartItem instances, to the

customer’s cart:

Chapter 8 Transaction Management

403

// Create a Customer and add some CartItems and their associated Wines

Individual customer = new Individual();

customer.setFirstName("Transaction");

customer.setLastName("Head");

customer.setEmail(PopulateDemoData.TO_EMAIL_ADDRESS);

for (int i = 0; i < 5; i++) {

 final Wine wine = new Wine();

 wine.setCountry("United States");

 wine.setDescription("Delicious wine");

 wine.setName("Xacti");

 wine.setRegion("Dry Creek Valley");

 wine.setRetailPrice(new Float(20.00D + i));

 wine.setVarietal("Zinfandel");

 wine.setYear(2000 + i);

 orderProcessorCMT.persistEntity(wine);

 final CartItem cartItem = new CartItem();

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 cartItem.setCustomer(customer);

 cartItem.setQuantity(12);

 cartItem.setWine(wine);

 customer.addCartItem(cartItem);

}

Note that during this stage, only the wine instances are persisted explicitly. All

other entities that are created are associated, directly or indirectly, with the customer

instance, and they exist only in the servlet’s method context. No transaction is involved

in this process of creating these entity objects, assigning their ordinary properties, and

associating them with each other. The wine instances are deliberately not associated

with the other object through cascade rules, so they must be persisted explicitly.

Persisting the Customer

Having created the Customer and associated CartItem objects, the client passes

the Customer to the OrderProcessorCMT bean’s persistEntity() method. Because

the relationships on the Customer and CartItem entities are annotated cascade

= {CascadeType.ALL}, the act of persisting the Customer entity is cascaded to all

Chapter 8 Transaction Management

404

associated entities, and so they are all persisted as well. This method call will begin a

transaction, persist the customer and related objects to the database, and commit

the work:

// Persist the Customer, relying on the cascade settings to persist all

// related CartItem entities as well. After the call, the Customer

// instance will have an ID value that was assigned by the EJB container

// when it was persisted.

orderProcessorCMT.persistEntity(customer);

Also note that because we set up an ID generator on the base class for each of the

entities in our persistence unit, their id fields are auto-populated at the time they are

persisted, and foreign key columns mapped to entity relationships will be wired up

properly as well. For the BusinessContext class, which uses a table generator, the ID

generator for its id field is defined like this:

@Id

@Column(nullable = false)

@GeneratedValue(strategy = GenerationType.TABLE, generator =

"BusinessContact_ID_Generator")

private Integer id;

The Customer instance we pass to persistEntity() is updated to become both

managed and persisted. Were we calling persistEntity() through a remote interface

on OrderProcessorCMTBean, the invocation would use pass-by-value semantics, and we

would need to capture the updated Customer instance in the method result. Since we’re

calling the session bean using local mode from within the Java EE tier, we are using pass-

by-reference semantics, so the Customer instance is updated directly.

At the conclusion of the persistEntity() call, the Customer (Individual) and all

associated data is now applied to the database and available to all clients, including

our own.

Creating the CustomerOrder

An instance of a Customer entity now exists as a persistent row in the database, so we can

call createCustomerOrder() with customer to create a new CustomerOrder, and create

an OrderItem for each CartItem on the Customer:

Chapter 8 Transaction Management

405

// Create a customer order and create OrderItems from the CartItems

final CustomerOrder customerOrder =

 orderProcessorCMT.createCustomerOrder(customer);

Here again, the createCustomerOrder() method definition is not annotated with a

transaction attribute, so it defaults to REQUIRED, and the EJB container creates and begins

a new transaction for the duration of that method, and then commits it upon returning

control to the client. Note that the implementation of the createCustomerOrder()

method delegates to another method, createCustomerOrderUsingSupports(), which is

annotated as follows:

@TransactionAttribute(TransactionAttributeType.SUPPORTS)

public CustomerOrder createCustomerOrderUsingSupports(Customer customer) {...}

This delegation exists purely to allow us to illustrate the transaction behavior

involved when calling a method marked SUPPORTS from a method marked REQUIRED.

The method called from the client, createCustomerOrder(), causes a transaction to be

created that is propagated to its delegate, createCustomerOrderUsingSupports(). This

latter method inherits the transaction context created by the EJB container for its caller.

Had the client called createCustomerOrderUsingSupports() directly, an exception

would have been thrown during its execution, when the remove() and persist()

operations were called outside a transaction context.

A lot is going on inside the createCustomerOrderUsingSupports() method. Because

the customer argument might be detached (in our case it isn’t, since our servlet is

running within a local Java EE environment), it needs to be turned into a managed

instance. If it is already managed, this precaution is unnecessary but not harmful:

if (!em.contains(customer)) {

 customer = em.merge(customer);

}

Next, the CustomerOrder instance is created and added to the Customer. Our

implementation of the addCustomerOrder() method adds the CustomerOrder to the

Customer’s customerOrderList property and also assigns the customer back-pointer

property on CustomerOrder, effectively wiring up the bidirectional relationship:

final CustomerOrder customerOrder = new CustomerOrder();

customer.addCustomerOrder(customerOrder);

Chapter 8 Transaction Management

406

and the CustomerOrder is then populated with new OrderItems to match each

CartItem in the Customer’s shopping cart. We copy the customer’s CartItem list into an

ArrayList so we can iterate over it and remove each CartItem from the Customer after

a corresponding OrderItem has been created in the CustomerOrder, without causing a

concurrency exception:

final Timestamp orderDate = new Timestamp(System.currentTimeMillis());

final List<CartItem> cartItemList =

 new ArrayList(customer.getCartItemList());

for (CartItem cartItem : cartItemList) {

 // Create a new OrderItem for this CartItem

 final OrderItem orderItem = new OrderItem();

 orderItem.setOrderDate(orderDate);

 orderItem.setPrice(cartItem.getWine().getRetailPrice());

 orderItem.setQuantity(cartItem.getQuantity());

 orderItem.setStatus("Order Created");

 orderItem.setWine(cartItem.getWine());

 customerOrder.addOrderItem(orderItem);

 // Remove the CartItem

 customer.removeCartItem(cartItem);

}

As each OrderItem is created, its CartItem is removed from the Customer. An

orphanRemoval=true property on the @OneToMany relationship annotating Customer.

orderItemList ensures that after each CartItem is removed from the Customer, it will be

automatically removed from persistent storage as well when the context transaction is

committed.

At last, the newly populated CustomerOrder is persisted and returned to the caller:

return persistEntity(customerOrder);

The transaction is not committed until after the

createCustomerOrderUsingSupports() method has completed and control is returned

from the wrapper createCustomerOrder() method. Assuming that we are using a

JTA transaction that uses a two-phase commit (for instance, a container-managed

transaction created by the EJB container), should anything go wrong in the course of

either of these methods, the entire transaction will be rolled back, and neither this client

nor any outside application will ever be aware that a CustomerOrder was created.

Chapter 8 Transaction Management

407

�Does This Pass the ACID Test?

Have the core ACID requirements that characterize a valid transaction been met? Let’s

look at how EJB addresses each one.

Atomicity

The EJB container ensures that whenever a stateless CMT method marked REQUIRED

or REQUIRES_NEW is called, if the container interposes to create a new transaction (this

will always happen with REQUIRES_NEW), it will resolve that transaction upon exiting

the method. If the method completes successfully, and if the bean code did not call

EJBContext.setRollbackOnly(), the transaction will be committed. If the method

throws an exception, or if EJBContext.setRollbackOnly() is called, the transaction

will be rolled back. These two transaction attributes are the only ones for which the

container may interpose to create a new transaction. For all other transaction attributes,

either an externally managed transaction is involved (in which case the container will

not interpose to commit it when the method is exited), or the method is called with

no transaction context. In the latter case, because we are using a transaction-scoped

persistence context and there is no transactional context, calls to persist(), merge(), or

remove() will cause a javax.persistence.TransactionRequiredException. Were we

to be using a stateful session bean with an extended persistence context, these changes

would be tracked by the persistence context, even outside of a transaction, and applied

should a transaction be subsequently created (and associated with this persistence

context) and committed.

Consistency

Any database constraints or concurrency conditions (whether enforced in the database

or in the EJB container) are guaranteed to be satisfied when a transaction is committed

through the EJB services. Violations will result in exceptions being thrown from the EJB

container, and the transaction will automatically be rolled back. A successful commit

indicates that all defined constraint conditions have been met.

Isolation

This requirement is largely the responsibility of the underlying JTA resources. Each

resource may expose its own configurable isolation level settings to provide varying

Chapter 8 Transaction Management

408

degrees of consistency to the resources involved in a transaction. Isolation levels

determine the extent to which resources within the transaction are able to see the

partial (in-transaction) state of other resources involved in the transaction, and largely

translate into cache consistency settings within the resource. Isolation also determines

that the transaction should not see uncommitted data of another transaction. To remain

database neutral, our example did not attempt to configure these settings.

Durability

This is also largely the responsibility of the underlying JTA resources involved in the

transaction (e.g., the database or mail server). At the conclusion of a JTA transaction, any

such resources are expected to be able to show the new state of the data when queried.

We demonstrated this by querying the details of the new CustomerOrder from the client

after the createCustomerOrder() method, and its transaction encapsulated within, had

completed.

�Benefits of This Approach

A principal benefit of using a default stateless session bean with CMT demarcation is

that the client does not need to be concerned about beginning, ending, or otherwise

coordinating the transaction logic. Also, any transaction context currently in effect on the

thread in which the bean method is called is automatically propagated to that method

call (if the transaction attribute is REQUIRED or SUPPORTS). Each call it makes to the

OrderProcessorCMT bean either completes successfully (in which case it can be assumed

that the work has been applied persistently) or results in an exception (whereupon the

work performed in that method is completely rolled back). It’s a very simple model.

�Limitations of This Approach

In general, simple is good, but sometimes it is too limiting. While this example allows

the client to create and manipulate new entity instances in the client tier, as when it

created the Customer, Wine and CartItem instances, the client must rely on the EJBs to

ensure that the updates it makes to the entity model are persisted to the database within

a transaction, since transactions are always begun and terminated by the EJB container

before control is handed back to the client.

Chapter 8 Transaction Management

409

In the next example, we will show how using stateful session beans, coupled with

BMT and an extended persistence context, empowers the client with greater flexibility

(and with it, responsibility) over the transactional behavior of the application.

Note T here has been a popular conception among EJB users that stateful
session beans should be avoided for performance reasons. The performance tests
that we have done strongly suggest that stateful session beans have been falsely
maligned, and that when correctly used, they can actually boost performance.
Furthermore, in EJB, their value is increased, since they provide you this
PersistenceContext.EXTENDED option, allowing entity instances to be cached
for use across transactions.

�Stateful Session Beans with BMT Demarcation
and Extended Persistence Context
To illustrate extending the reach of EJB’s transaction support, here is the same

application written using a stateful BMT session bean, OrderProcessorBMTBean.java.

This BMT example also leverages EJB’s built-in transaction support, but instead of

relying on the container to manage transaction demarcation at method boundaries,

shows how to demarcate transactions explicitly, inside the enterprise bean code and

controlled from the client as well.

There is no requirement that you use BMT demarcation when using stateful session

beans, and in fact this option is not typically used. We show it here in Listing 8-5 to

illustrate how you would use it, should you be so inclined.

Listing 8-5.  OrderProcessorBMTBean.java, a Stateful Session Bean Using BMT

Demarcation and an Extended Persistence Context

@Stateful(name = "OrderProcessorBMT", mappedName = "Chapter08-

TransactionSamples-OrderProcessorBMT")

@TransactionManagement(TransactionManagementType.BEAN)

@Interceptors(OrderProcessorBMTBeanTxnInterceptor.class)

Chapter 8 Transaction Management

410

public class OrderProcessorBMTBean {

 @Resource

 SessionContext sessionContext;

 �@PersistenceContext(unitName = "Chapter08-TransactionSamples-JTA",

type = PersistenceContextType.EXTENDED)

 private EntityManager em;

 /**

 * Remove any existing Customers with email 'wineapp@yahoo.com' and any

 * existing Wine with country 'United States'

 */

 public String initialize() throws HeuristicMixedException,

 HeuristicRollbackException,

 RollbackException,

 SystemException {

 StringBuffer strBuf = new StringBuffer();

 strBuf.append("Removed ");

 int i = 0;

 // Filter the data by removing any existing Customers with email

 // 'wineapp@yahoo.com' (or whatever is defined in the user.properties file).

 // �The first call to a transactional method on OrderProcessorBMT will

begin a

 // transaction.

 for (Customer customer

 : getCustomerFindByEmail(PopulateDemoData.TO_EMAIL_ADDRESS)) {

 em.remove(customer);

 i++;

 }

 strBuf.append(i);

 strBuf.append(" Customer(s) and ");

 // Remove any existing Wine with country 'United States'

 i = 0;

 for (Wine wine : getWineFindByCountry("United States")) {

 em.remove(wine);

 i++;

Chapter 8 Transaction Management

411

 }

 strBuf.append(i);

 strBuf.append(" Wine(s)");

 // Apply these changes, committing the entity removal operations

 commitTransaction();

 return strBuf.toString();

 }

 /**

 * Create a new CustomerOrder from the items in a Customer's cart. Creates a

 * new CustomerOrder entity, and then creates a new OrderItem entity for each

 * CartItem found in the Customer's cart.

 *

 * Using CMT w/ the default Required xaction attribute, if this method is

 * invoked without a transaction context, a new transaction will be created by

 * the EJB container upon invoking the method, and committed upon successfully

 * completing the method.

 *

 * @return a status message (plain text)

 */

 public CustomerOrder createCustomerOrder(Customer customer) throws Exception {

 if (customer == null) {

 �throw new IllegalArgumentException("OrderProcessingBean.

createCustomerOrder(): Customer not specified");

 }

 // Ensure we are working with a managed Customer object

 customer = em.find(Customer.class, customer.getId());

 CustomerOrder customerOrder = new CustomerOrder();

 customer.addCustomerOrder(customerOrder);

 final Timestamp orderDate = new Timestamp(System.currentTimeMillis());

 // �Clone the CartItem list so we remove the CartItem entries from the

Customer

 // without causing a ConcurrentModificationException on the iterator.

Chapter 8 Transaction Management

412

 final List<CartItem> cartItemList = new ArrayList(customer.getCartItemList());

 for (CartItem cartItem : cartItemList) {

 // Create a new OrderItem for this CartItem

 final OrderItem orderItem = new OrderItem();

 orderItem.setOrderDate(orderDate);

 orderItem.setPrice(cartItem.getWine().getRetailPrice());

 orderItem.setQuantity(cartItem.getQuantity());

 orderItem.setStatus("Order Created");

 orderItem.setWine(cartItem.getWine());

 customerOrder.addOrderItem(orderItem);

 // Remove the CartItem. Note that the 'orphanRemoval' flag will ensure

 // that the cartItem is removed from the database once it is disassociated

 // from a customer.

 customer.removeCartItem(cartItem);

 }

 // The Cascade rules on Customer will cause the CustomerOrder to be

 // persisted when the Customer is merged

 em.merge(customer);

 return customerOrder;

 }

 @ExcludeClassInterceptors

 �public void commitTransaction() throws HeuristicMixedException,

HeuristicRollbackException, RollbackException, SystemException {

 final UserTransaction txn = sessionContext.getUserTransaction();

 if (txn.getStatus() == Status.STATUS_ACTIVE) {

 txn.commit();

 }

 }

 @ExcludeClassInterceptors

 public void rollbackTransaction() throws SystemException {

 final UserTransaction txn = sessionContext.getUserTransaction();

 if (txn.getStatus() == Status.STATUS_ACTIVE) {

 txn.rollback();

Chapter 8 Transaction Management

413

 }

 }

 @ExcludeClassInterceptors

 public boolean isTransactionDirty() throws SystemException {

 final UserTransaction txn = sessionContext.getUserTransaction();

 return Boolean.valueOf(txn.getStatus() == Status.STATUS_ACTIVE);

 }

 @ExcludeClassInterceptors

 �public Object queryByRange(String jpqlStmt, int firstResult, int

maxResults) {

 Query query = em.createQuery(jpqlStmt);

 if (firstResult > 0) {

 query = query.setFirstResult(firstResult);

 }

 if (maxResults > 0) {

 query = query.setMaxResults(maxResults);

 }

 return query.getResultList();

 }

 public <T> T persistEntity(T entity) {

 em.persist(entity);

 return entity;

 }

 public <T> T mergeEntity(T entity) {

 return em.merge(entity);

 }

 public <T> void removeEntity(T entity) {

 em.remove(em.merge(entity));

 }

 @ExcludeClassInterceptors

 public <T> List<T> findAll(Class<T> entityClass) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

Chapter 8 Transaction Management

414

 cq.select(cq.from(entityClass));

 return em.createQuery(cq).getResultList();

 }

 @ExcludeClassInterceptors

 public <T> List<T> findAllByRange(Class<T> entityClass, int[] range) {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 cq.select(cq.from(entityClass));

 Query q = em.createQuery(cq);

 q.setMaxResults(range[1] - range[0]);

 q.setFirstResult(range[0]);

 return q.getResultList();

 }

 /**

 * <code>select o from Customer o where o.email = :email</code>

 */

 @ExcludeClassInterceptors

 public List<Customer> getCustomerFindByEmail(String email) {

 �return em.createNamedQuery("Customer.findByEmail", Customer.class).

setParameter("email", email).getResultList();

 }

 /**

 * <code>select object(wine) from Wine wine where wine.year = :year</code>

 */

 @ExcludeClassInterceptors

 public List<Wine> getWineFindByYear(Integer year) {

 �return em.createNamedQuery("Wine.findByYear", Wine.class).

setParameter("year", year).getResultList();

 }

 /**

 * �<code>select object(wine) from Wine wine where wine.country = :country

</code>

 */

Chapter 8 Transaction Management

415

 @ExcludeClassInterceptors

 public List<Wine> getWineFindByCountry(String country) {

 �return em.createNamedQuery("Wine.findByCountry", Wine.class).

setParameter("country", country).getResultList();

 }

 /**

 * �<code>select object(wine) from Wine wine where wine.varietal =

:varietal</code>

 */

 @ExcludeClassInterceptors

 public List<Wine> getWineFindByVarietal(String varietal) {

 �return em.createNamedQuery("Wine.findByVarietal", Wine.class).

setParameter("varietal", varietal).getResultList();

 }

 /**

 * <code>select o from InventoryItem o where o.wine = :wine</code>

 */

 @ExcludeClassInterceptors

 public List<InventoryItem> getInventoryItemFindItemByWine(Object wine) {

 �return em.createNamedQuery("InventoryItem.findItemByWine",

InventoryItem.class).setParameter("wine", wine).getResultList();

 }

}

Coupled to this stateful session bean is an Interceptor class that serves to interpose

on each method that applies changes through the EntityManager to automatically begin

a transaction. This pattern is similar to SQL’s transactional model, where a transaction is

implicitly begun each time a DML operation like INSERT, UPDATE, or DELETE is called.

Hence, the client is responsible only for calling COMMIT or ROLLBACK to conclude the

transaction, but there is no explicit call to begin the transaction. The Interceptor class is

shown here, in Listing 8-6.

Chapter 8 Transaction Management

416

Listing 8-6.  OrderProcessorBMTBeanTxnInterceptor.java, an Interceptor

used by OrderProcessorBMTBean to begin a JTA transaction, using the

UserTransaction from the BMT bean’s SessionContext, each time a method is

called which applies changes through the EntityManager

class OrderProcessorBMTBeanTxnInterceptor {

 public OrderProcessorBMTBeanTxnInterceptor() {

 }

 @AroundInvoke

 Object beginTrans(InvocationContext invocationContext) throws Exception {

 �final OrderProcessorBMTBean orderProcessorBMTBean =

(OrderProcessorBMTBean) invocationContext.getTarget();

 �final UserTransaction txn = orderProcessorBMTBean.sessionContext.

getUserTransaction();

 if (txn.getStatus() == Status.STATUS_NO_TRANSACTION) {

 txn.begin();

 }

 return invocationContext.proceed();

 }

}

Listing 8-7 shows OrderProcessorBMTClient.java, a servlet client that drives the

OrderProcessorBMT session bean to demonstrate EJB’s BMT demarcation by calling

through the UserTransaction interface.

Listing 8-7.  OrderProcessorBMTClient.java, Our Mock Java SE Client

@WebServlet(name = "OrderProcessorBMTClient", urlPatterns = {"/

OrderProcessorBMTClient"})

public class OrderProcessorBMTClient extends HttpServlet {

 @EJB

 OrderProcessorBMTBean orderProcessorBMT;

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

Chapter 8 Transaction Management

417

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 �protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 response.setContentType("text/html;charset=UTF-8");

 OutputStream rOut = response.getOutputStream();

 PrintStream out = new PrintStream(rOut);

 try {

 /* TODO output your page here. You may use following sample code. */

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet OrderProcessorBMTClient</title>");

 out.println("</head>");

 out.println("<body>");

 �out.println("<h1>Servlet OrderProcessorBMTClient at " + request.

getContextPath() + "</h1>");

 out.println("</body>");

 out.println("</html>");

 out.print("<h2>Populating Demo Data... ");

 �PopulateDemoData.resetData("Chapter07-WineAppUnit-ResourceLocal",

System.out);

 out.println("done</h2>");

 out.print("<h2>Filtering Demo Data... ");

 StringBuffer strBuf = new StringBuffer();

 strBuf.append("Removed ");

 int n = 0;

Chapter 8 Transaction Management

418

 // Filter the data by removing any existing Customers with email

 // �'wineapp@yahoo.com' (or whatever is defined in the user.

properties file).

 // �The first call to a transactional method on OrderProcessorBMT

will begin a

 // transaction.

 for (Customer customer :

 �orderProcessorBMT.getCustomerFindByEmail(PopulateDemoData.TO_

EMAIL_ADDRESS)) {

 orderProcessorBMT.removeEntity(customer);

 n++;

 }

 strBuf.append(n + " Customer(s) and ");

 // Remove any existing Wine with country 'United States'

 n = 0;

 �for (Wine wine : orderProcessorBMT.getWineFindByCountry("United

States")) {

 orderProcessorBMT.removeEntity(wine);

 n++;

 }

 strBuf.append(n + " Wine(s)");

 out.print(strBuf.toString() + "</h2>");

 // Apply these changes, committing the entity removal operations

 orderProcessorBMT.commitTransaction();

 // Create a Customer and add some CartItems and their associated Wines

 Individual customer = new Individual();

 customer.setFirstName("Transaction");

 customer.setLastName("Head");

 customer.setEmail(PopulateDemoData.TO_EMAIL_ADDRESS);

 for (int i = 0; i < 5; i++) {

 final Wine wine = new Wine();

 wine.setCountry("United States");

 wine.setDescription("Delicious wine");

 wine.setName("Xacti");

Chapter 8 Transaction Management

419

 wine.setRegion("Dry Creek Valley");

 wine.setRetailPrice(new Float(20.00D + i));

 wine.setVarietal("Zinfandel");

 wine.setYear(2000 + i);

 orderProcessorBMT.persistEntity(wine);

 final CartItem cartItem = new CartItem();

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 cartItem.setCustomer(customer);

 cartItem.setQuantity(12);

 cartItem.setWine(wine);

 customer.addCartItem(cartItem);

 }

 // Persist the Customer, relying on the cascade settings to persist all

 // related CartItem entities as well. After the call, the Customer

 // instance will have an ID value that was assigned by the EJB container

 // when it was persisted.

 orderProcessorBMT.persistEntity(customer);

 // Create a customer order and create OrderItems from the CartItems

 final CustomerOrder customerOrder =

 orderProcessorBMT.createCustomerOrder(customer);

 out.print("<h2>Retrieving Customer Order Items... ");

 for (OrderItem orderItem : customerOrder.getOrderItemList()) {

 final Wine wine = orderItem.getWine();

 out.println(wine.getName() + " with ID " + wine.getId());

 }

 out.println("done</h2>");

 // Commit the order, applying all of the changes made thus far

 orderProcessorBMT.commitTransaction();

 } catch (Exception ex) {

 ex.printStackTrace();

 if (orderProcessorBMT != null) {

 try {

Chapter 8 Transaction Management

420

 orderProcessorBMT.rollbackTransaction();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 } finally {

 rOut.close();

 out.close();

 }

 }

 /* HTTPServlet methods... */

}

�Transaction Analysis

The following sections will analyze this second example from a transactional

perspective. We have empowered the session bean with state (i.e., Stateful), giving it

control over the demarcation of its transactions, and allowed its associated persistence

context to survive from one transaction to the next.

Session Bean Declaration

These features have arisen through the combination of annotations and code. You’ll

notice that this session bean is annotated:

@Stateful(name = "OrderProcessorBMT", mappedName = "Chapter08-

TransactionSamples-OrderProcessorBMT")

@TransactionManagement(TransactionManagementType.BEAN)

@Interceptors(OrderProcessorBMTBeanTxnInterceptor.class)

public class OrderProcessorBMTBean {

 @Resource

 SessionContext sessionContext;

 �@PersistenceContext(unitName = "Chapter08-TransactionSamples-JTA",

type = PersistenceContextType.EXTENDED)

 private EntityManager em;

 ...

}

Chapter 8 Transaction Management

421

It injects both a SessionContext and an EntityManager. Being stateful allows the

enterprise bean to retain state from one client invocation to the next. In this case, that

state is the persistence context and the associated transaction, which must survive

through multiple method invocations. The BMT declaration means that the container

should not automatically interpose on method boundaries to demarcate transactions.

Attempts to add TransactionAttribute qualifiers to methods on a BMT session bean

will be caught and raise an exception at deployment time.

The @PersistenceContext annotation holds a type property with value

PersistenceContextType.EXTENDED, meaning that it persists from one transaction to

the next, and allows associated entities to remain managed even after the transaction

in which they were created has ended. The UserTransaction object available through

the sessionContext property is this BMT bean’s interface onto the EJB container’s JTA

transaction manager, and exposes the begin(), commit(), and rollback() transaction

demarcation methods.

Removing Previous Test Data

We could have populated the test environment through a session bean method call,

as we did for the preceding CMT example. However, using BMT offers us the option of

performing this work interactively, in the client. This is because the OrderProcessorBMT

bean’s persistence context is EXTENDED, allowing the entities to remain associated with a

persistence context even after control has been returned from the enterprise bean to

the client.

// Filter the data by removing any existing Customers with email

// 'wineapp@yahoo.com' (or whatever is defined in the user.properties file).

// The first call to a transactional method on OrderProcessorBMT will begin a

// transaction.

for (Customer customer :

 orderProcessorBMT.getCustomerFindByEmail(PopulateDemoData.TO_EMAIL_ADDRESS)) {

 orderProcessorBMT.removeEntity(customer);

 n++;

}

strBuf.append(n + " Customer(s) and ");

Chapter 8 Transaction Management

422

// Remove any existing Wine with country 'United States'

n = 0;

for (Wine wine : orderProcessorBMT.getWineFindByCountry("United States")) {

 orderProcessorBMT.removeEntity(wine);

 n++;

}

strBuf.append(n + " Wine(s)");

out.print(strBuf.toString() + "</h2>");

// Apply these changes, committing the entity removal operations

orderProcessorBMT.commitTransaction();

Each call to removeEntity() is performed in the transaction that was begun on the

OrderProcessorBMT bean through its Interceptor, and puts the entity in the “removed”

state in its persistence context. At the conclusion of these steps, the client calls

commitTransaction() to actually perform the DBMS DELETE operations in the database

and commit the transaction.

Creating New Customer and CartItem Entity Instances in the Client

As with the preceding stateless session example, the step of instantiating the Customer

and its CartItem entity instances and wiring them all together involves no transactions,

and they can be carried out entirely within the client:

// Create a Customer and add some CartItems and their associated Wines

Individual customer = new Individual();

customer.setFirstName("Transaction");

customer.setLastName("Head");

customer.setEmail(PopulateDemoData.TO_EMAIL_ADDRESS);

for (int i = 0; i < 5; i++) {

 final Wine wine = new Wine();

 wine.setCountry("United States");

 wine.setDescription("Delicious wine");

 wine.setName("Xacti");

 wine.setRegion("Dry Creek Valley");

 wine.setRetailPrice(new Float(20.00D + i));

Chapter 8 Transaction Management

423

 wine.setVarietal("Zinfandel");

 wine.setYear(2000 + i);

 orderProcessorBMT.persistEntity(wine);

 final CartItem cartItem = new CartItem();

 cartItem.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 cartItem.setCustomer(customer);

 cartItem.setQuantity(12);

 cartItem.setWine(wine);

 customer.addCartItem(cartItem);

}

It is worth noting that prior to JPA, this work would have required much more

effort and expended more resources. With EJB 2.x entity beans, the client developer

had two main options. Under one approach, the developer could create data transfer

objects (DTOs) or follow some other similar pattern to simulate the task of creating and

associating the entity objects through proxies. This network of DTO classes would then

be passed into the session bean layer, as we did previously; but inside the session bean,

actual entity beans would have to be explicitly created and initialized from the DTO

objects.

A second approach, updating the entity beans directly from the client, is simpler

to code, but potentially at the expense of higher performance costs. If the client exists

outside the Java EE tier, each method call would incur the overhead of RMI/IIOP (remote

method invocation over the Internet inter-ORB protocol) marshalling to communicate

with the actual EJB object residing in the EJB container. Much of this overhead is

removed when the client lives in the Java EE tier, since it could use local entity bean

interfaces to communicate directly with the live entity bean; but Java SE clients were

forced to use remote interfaces onto the entity beans. On top of that, container-managed

relationships (CMRs) are only supported on local component interfaces; so direct entity

bean relationship lookups and updates were not even available to Java SE clients in the

EJB 2.x world.

Chapter 8 Transaction Management

424

Persisting the Customer

Although we chose in this example to embed the transaction begin() operation inside

the Interceptor class that interposes on the BMT session bean’s methods, we could have

exposed a beginTransaction() call to the client as well. Because we have chosen the

approach we did, all that is required is the call to persistEntity() that now implicitly

begins the transaction (but does not commit it):

// Persist the Customer, relying on the cascade settings to persist all

// related CartItem entities as well. Reassign the customer

// to pick up the ID value that was assigned by the EJB container when

// it was persisted.

orderProcessorBMT.persistEntity(customer);

The transaction context does not extend to the client thread itself; it exists only in

the session bean’s thread. The call to UserTransaction.begin() that occurs inside the

Interceptor establishes a transaction context on that thread that is then available to the

session bean when its persistEntity() method is called.

Creating the CustomerOrder

Our transaction, now in effect, continues through the step of creating the customer

order. This stage is similar to the stateless CMT example except that the transaction has

already been created and must be explicitly committed at the conclusion.

// Create a customer order and create OrderItems from the CartItems

final CustomerOrder customerOrder =

 orderProcessorBMT.createCustomerOrder(customer);

out.print("<h2>Retrieving Customer Order Items... ");

for (OrderItem orderItem : customerOrder.getOrderItemList()) {

 final Wine wine = orderItem.getWine();

 out.println(wine.getName() + " with ID " + wine.getId());

}

out.println("done</h2>");

// Commit the order, applying all of the changes made thus far

orderProcessorBMT.commitTransaction();

Chapter 8 Transaction Management

425

Should the client wish to cancel the order at this stage, perhaps through interactive

confirm/cancel buttons exposed in a client panel, the BMT option provides this

possibility even after the CustomerOrder has been created.

�Benefits of This Approach

The benefit of using explicit transaction demarcation is the additional degree of

flexibility that it offers. The EJB server is still acting in its capacity as transaction manager,

only it exposes the transaction demarcation control to the enterprise bean instead of

automating this demarcation based on the @TransactionAttribute settings on each

method. While the stateless example could have prompted the user before creating the

CustomerOrder, this approach allows the CustomerOrder to be created and validated—

for example, before being submitted to the user for confirmation. BMT must be used

with caution, however, for the reasons mentioned in the following section.

�Limitations of This Approach

It can be argued that the additional degree of flexibility is typically outweighed by the

additional burdens of tracking the transaction state and avoiding misuse by session bean

clients. Leaving the process of beginning and ending transactions to the mercy of the

order in which clients call the session bean methods offers the possibility of dangling

transactions. The client, in coordination with the bean itself, has the responsibility of

cleanly ending—whether committing or rolling back—each transaction that has begun.

This may be a reasonable risk if you can control how clients will use the bean—but

session beans are openly published, and it may be difficult to anticipate who might use

them, and how.

BMT session beans can be written to safeguard against misuse, but this safeguard

code is probably going to leave the bean with behavior similar to CMT beans anyway, in

which case little is gained for your efforts.

Chapter 8 Transaction Management

426

�Building, Deploying, and Testing: A Transactional
Scenario from the Wines Online Application
Now that we’ve examined many of the details of transaction support offered by EJB, let’s

execute the test cases we just covered.

For both the CMT and BMT scenarios, we invoke a servlet client that creates a new

customer, builds up a shopping cart consisting of cart item entries, and then creates a

customer order consisting of order items based on the cart items in the cart. We chose

these examples for this chapter because they involve multiple operations that can be

partitioned into transactional work units of greater or less granularity depending on the

requirements of the client.

To illustrate the default support provided by EJB, we use the example we explored

first: a standard stateless session bean implementation that uses the default CMT

demarcation. In our second example, we demonstrate the client taking some

responsibility for managing the transaction, using a stateful session bean using BMT

demarcation and an extended persistence context.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

�Opening the Sample Application
This chapter’s root project holds a dependency on the JPA persistence unit defined

in Chapter07-ServiceIntegration-jpa. Launch the NetBeans IDE, and open the

Chapter08-TransactionSamples project using the File ➤ Open Project menu. Make

sure that the ‘Open Required Projects’ check box is checked. See Figure 8-1.

Chapter 8 Transaction Management

427

This application consists of three modules: a JPA persistence unit taken directly

from Chapter 7; an EJB module containing CMT and BMT session beans explored in this

chapter; and a Web module containing the two servlet clients that we also examined. See

Figure 8-2.

Figure 8-1.  Opening the Chapter08-TransactionSamples project

Chapter 8 Transaction Management

428

�Creating the Database Connection
The samples in this chapter require a database connection, and for these tests we will

use the Derby database that is bundled with NetBeans and Glassfish. If you have already

created the WineApp database, also used for the examples in Chapter 3, Chapter 4, and

Chapter 7, continue to the next step. Otherwise, click on the Services tab, expand the

Databases icon, and invoke “Create Database...” on the Java DB node. Create a

database named “WineApp” with username and password wineapp/wineapp as shown in

Figure 8-3.

Figure 8-2.  Observing the structure of the Chapter08-TransactionSamples
application

Chapter 8 Transaction Management

429

This last step created a database connection, which is referenced from the

persistence units in the persistence.xml files found in both the JPA and EJB projects.

While it is possible to pre-create the database objects (tables, sequences, key constraints,

etc.), we will let JPA create these database objects automatically the first time they are

needed by each persistence unit.

�Compiling the Sources
After the WineApp database has been created, invoke the context menu on Chapter08-

TransactionSamples node, and build the application by selecting the Clean and Build

menu option as shown in Figure 8-4.

Figure 8-3.  Creating the WineApp database and connection

Chapter 8 Transaction Management

430

�Deploying and Running the Client Programs
Once the project sources have built successfully, invoke the same menu and choose

Deploy as shown in Figure 8-5.

Figure 8-4.  Building the application

Chapter 8 Transaction Management

431

When that completes, invoke either the Run or Debug menu item to launch

the OrderProcessorCMTClient servlet. We have preconfigured the Chapter09-

TransactionSamples project to run this servlet by default. The servlet will display the

output from the example using the default browser configured for NetBeans a shown in

Figure 8-6.

Figure 8-5.  Deplyiong the application

Chapter 8 Transaction Management

432

If you choose to debug, feel free to add some breakpoints to the

OrderProcessorCMTBean.java session bean, the OrderProcessorCMTClient.java

servlet, the JPA entities, or any of the other source files in the application.

Next, launch the second example, the OrderProcessorBMTClient servlet. To do

this, you may either update your browser URL to replace CMT with BMT or update the

properties of the Chapter09-TransactionSamples project. Just re-deploy the project

using the OrderProcessorCMTBean.java session bean and then selecting the Run

category. The result is shown in Figure 8-7.

Figure 8-6.  Output from running the OrderProcessorCMTClient servlet

Figure 8-7.  Configuring the Chapter09-TransactionSamples project’s Run target

Chapter 8 Transaction Management

433

�Summary
This chapter has defined the concepts essential to all transaction behavior and explored

the transactional features offered by the EJB server and interfaces accessible to the

enterprise bean developer.

We began by exploring the core ACID characteristics that define a transaction—

atomicity, consistency, isolation, and durability. We introduced JTA and described the

features and benefits of its distributed transaction model, including the behavior of the

essential two-phase commit protocol.

We looked at how the EJB server acts as a JTA transaction manager, allowing EJBs to

participate seamlessly in distributed transactions, and alleviating bean developers of the

need to explicitly bind persistence or other transactional operations with transactional

resources. We also detailed EJB’s declarative support for these transaction services to

enterprise bean developers, exploring both CMT and BMT demarcation–supported

enterprise beans, and using both implicit and explicit commit models. For CMT beans,

we described the behavior and implications of each of the six transaction attributes

that may be used to define the transactional behavior of a CMT bean method. In the

JPA realm, we explored the relationship between transactions and persistence contexts

and explained how extended persistence contexts may be used with stateful session

beans to support entities in resolving relationships with other entities, even outside of a

transactional context.

The chapter then examined some live examples based on a scenario taken from

the Wines Online application. These examples illustrated the use of CMT and BMT

demarcation, extended persistence context on stateful session beans, rollback scenarios,

client-controlled transactions, interactions with entities outside a transactional context

using a BMT bean, and transaction context propagation between methods on a CMT

bean.

We concluded with steps for running the CMT and BMT example applications that

we examined.

In the next chapter, we will explore some techniques you can use to analyze the

EJB-specific performance of your applications. Using a couple of common examples, we

will demonstrate how you can set up your own tests to analyze your specific application

components.

Chapter 8 Transaction Management

435
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_9

CHAPTER 9

EJB Performance
and Testing
As developers, we are always trying to find the most efficient way to write code that

delivers the highest performance. Over the years, we have learned that some of the

assumptions we make are not always right and that certain programming models and

techniques that we use do not achieve the expected level of performance. The surprise

here is that most of the time, our expectations are defeated with models and techniques

that our logic and gut feelings tell us are best.

Performance of computer systems is a very complex issue. Just think about

the following: We are programming a piece of Java code that takes advantage of an

infrastructure called Java Enterprise Edition (Java EE), which happens to run on top of a

Java Virtual Machine (JVM). In this book we will utilize the Java EE version 8. The virtual

machine is hosted on an operating system, which runs on a computer that interacts with

other computers using networks composed of hardware and software components. Each

of these layers—the network, the computer, the operating system, the JVM, and the Java

EE server—has a number of knobs that can be used to configure and optimize behavior.

Each of them will present a different behavior under various usage conditions, which will

inevitably impact the behavior of the other layers. Within this rather complex context, it

becomes a little easier to understand why our logic will not always work.

The bottom line is that we just cannot generalize when making performance

statements. The only way that we can find out what performance to expect from our

system is to test it in conditions as close as possible to the ones in which the code will

run when in the production environment.

Every software application is unique. In order to understand the performance of

your own application, you must test it yourself, according to your own definition of

performance. In some situations, good performance will mean the ability to support a

436

large number of users; in others (for example, when the user load is small), it will simply

mean being able to run as fast as possible.

In this chapter, we describe a methodology that you can use to test the performance

of your systems in a consistent way. We also present tools that you can use to conduct

these tests. Finally, we carry out a performance test to illustrate the methodology and

the usage of the tools. The methodology and toolkit are useful in two basic situations:

•	 Performance testing a complete application

•	 Designing for performance (examining the performance costs of

various aspects of the Java EE API and how certain design decisions

will impact overall performance)

In the first scenario, we treat the application like a black box. We test the application

under various user loads and investigate the performance of every request made by the

users. The data is analyzed—we search for requests that don’t meet the required criteria,

and opportunities for improving performance are identified.

While the aforementioned is useful, our advice is to performance test as early in the

development cycle as possible. This way, you can use the methodology and the data you

obtain from it to help you design for performance, rather than performance testing after

the fact.

The example presented in this chapter focuses on designing for performance, rather

than testing a complete application. If you are interested in learning more about the

methodology of testing an application and performance testing in general, you can refer

to J2EE Performance Testing with BEA WebLogic Server by Peter Zadrozny (Apress, 2003).

In this chapter, we present an adaptation of the methodology presented in Zadrozny’s

book, which is narrowly focused on the example at hand.

�The Testing Methodology
The focus of the testing methodology is consistency of data measurement. The following

list provides a high-level overview of the steps that are involved in the methodology. We

present them and describe them in the logical order in which they will be carried out

when performing each test:

	 1.	 Define the performance criteria. We must define the relevant

performance metrics for the specific application in question and

set a realistic target for that metric (for instance, a maximum

acceptable response time).

Chapter 9 EJB Performance and Testing

437

	 2.	 Accurately simulate the application usage. The key aspect of this is

the definition of the test scripts. These are configuration files that

contain a set of requests that represent typical usage profiles of the

application.

	 3.	 Define the test metrics. These include the duration of the tests,

the size of the sample, the amount of initial data to exclude, and

others.

	 4.	 Perform the tests.

�Performance Criteria
Depending on the type of application, your focus will vary between two basic

performance indicators: response time and throughput.

When working with synchronous interactive applications, we define a maximum

acceptable response time. This is the maximum amount of time that we are willing to

wait before we get a response from the application.

For a batch or back-end application, we define the minimum acceptable throughput,

typically as transactions per second (TPS), but this has to be based on a solid

understanding of exactly how a transaction will be defined in your system.

Each of these metrics is inextricably linked to one another; however, we have not

been able to find any mathematical or geometrical relation between them.

Our advice is to define your performance metrics clearly and unambiguously and

to test to well-defined requirements. Not doing so is an open invitation to test and tune

endlessly.

As we will be collecting data during the performance test runs, we need to have a

clear understanding of the basic statistics, so let’s examine them in more detail.

For the purposes of this book, we define response time as the length of time a client

has to wait from the moment it sends a request to the moment it receives the last byte of

the response from the application.

The sets of data that we collect from a performance test run consist of the individual

response times of every request that makes up the test script. Each request in a test script

is executed one after another, by each simulated user for a certain period of time. Our

base measurement of analysis is the arithmetic mean of the response times for all users

of a particular request: the average response time (ART).

Chapter 9 EJB Performance and Testing

438

Aggregate average response time (AART) is a measurement that we use extensively

when analyzing performance data, and we define it as the sum of the ARTs of every

individual request in a test script, divided by the number of requests in that test script.

Admittedly, AART has no real meaning in terms of how an application is performing,

but it does provide an excellent indicator of how loaded the entire system is. As such,

we sometimes refer to this measurement as the load factor. A typical AART curve when

plotted against the number of simultaneous users looks like the one presented in

Figure 9-1.

Figure 9-1.  A typical AART curve

Throughput is not a clear-cut metric in the same way as is response time. The

standard way of expressing throughput is in TPS, and it is vital to understand what a

transaction represents in the application being tested. It might be a single query or a

specific group of queries. In a messaging system, it might be a single message; and in

a servlet-based application, it might be a request. Even when there is consensus as

to exactly what is being measured, the values obtained for throughput can often be

misinterpreted. The reason for this is that many people regard this metric in much

the same way as they regard “miles per hour”: as a measurement of speed. In fact,

throughput is a measure of capacity.

We can attempt to explain how throughput works in terms of a supermarket

analogy. Imagine that a supermarket runs a promotion whereby 10 shoppers will get

for free everything they can put in their shopping carts in 15 minutes. The supermarket

is the application, the shoppers are analogous to the requests (or messages), and the

supermarket staff who are restocking the shelves are analogous to the components of

your system that are working to cope with the demand.

Chapter 9 EJB Performance and Testing

439

Even if all 10 shoppers reach capacity (by completely filling their carts in 15

minutes), it doesn’t necessarily mean that they’ve taken everything available in the

supermarket. However, as we increase the number of shoppers, we will reach a point

where there are enough shoppers to empty the supermarket in that time. We call this the

point of saturation, as there are no more resources available. As we increase the number

of shoppers beyond this point, crowding in the aisles causes reduced shopper mobility

(longer response times) and, ultimately, an actual drop in throughput.

Similar to ART, our base measurement of analysis is the arithmetic mean of the

requests per second for all users of a particular request. We call this TPS.

For the purposes of analyzing performance data, and independently of the

definition of throughput used for a specific performance test, we use the concept of total

transactional rate (TTR). TTR is the addition of the TPS measurements of each request

in a test script. TTR provides us with an excellent indicator of system capacity. Figure 9-2

shows a typical TTR curve, which reaches the point of saturation at about 100 users. At

that point, it starts dropping (due to, for example, too many shoppers).

Figure 9-2.  A typical TTR curve

The AART curve presented in Figure 9-1 is the result of data collected from the same

test run as the TTR curve presented in Figure 9-2. If you review the AART curve, you can

see that the response time increases in a linear fashion until it reaches 100 users. After

that, the increase is more dramatic. This coincides with the TTR curve, in which the

saturation point is reached at 100 users. After that, the performance of the application in

general degrades. Analyzing these two curves, you can state that the application has an

upper limit of 100 users under the conditions of the performance test.

Chapter 9 EJB Performance and Testing

440

�Simulating Application Usage
The objective of this section of the methodology is to ensure that we are collecting our

performance data in test conditions that mimic reality as closely as possible. This applies

more so when performance testing whole applications, and less so when designing for

performance.

For every application, there will be a number of different profiles of use that will

be run concurrently. Sometimes, we will be able to simulate usage with a single test

script and a single request. In other cases, it can take a dozen or so profiles, each with a

different amount of requests.

A special note has to be made regarding think time, also known as sleep time. This

is the amount of time that elapses between the executions of each individual request

in a test script. In real life, think time can be highly variable. It can be as little as a few

seconds (for example, when clicking a button that will take us to the next page), or as

much as 5 to 10 minutes (for instance, when examining the transactions we made in

our bank account over the last month). For the performance tests, we have adopted two

basic strategies:

•	 Using the real think time: This case is used when doing a performance

test of a complete, working application.

•	 Using zero think time: This case is used when performing

more general investigative measurements, such as comparing

programming techniques. The consequence of this is that we are not

testing under realistic conditions. However, we can perform accurate

comparative measurements, and once we have chosen the best

scenario from these results, we can then perform tests with realistic

think times.

�Defining Test Metrics
The methodology is based on using a fixed number of users per test run. A performance

test is made up by a number of test runs, usually increasing the user load with each

subsequent test run. Some people are interested in ramping up the number of users

during a single test run. We believe that this introduces a new variable that can have

negative effects on the results, and it is statistically incorrect from the standpoint of

finding a maximum user load.

Chapter 9 EJB Performance and Testing

441

The first step is finding a representative number of simultaneous users (the lower

limit) that can be increased in a regular fashion until reaching the saturation point of the

application (the upper limit). We typically have a couple of additional test runs over the

upper limit, just to understand better the behavior (or misbehavior) of the application.

Unfortunately, there is no exact science for choosing the upper limit up front. We

usually select a random number of users and perform a couple of test runs in which the

number of users is higher and lower than that initial random choice, and we analyze the

results to determine the direction we should pursue—either increasing or decreasing the

number of users.

The second step is defining the sample size: that is, the length of time for which the

test run will execute. To choose the actual sample size, we have to reach a compromise

between two divergent interests. The first is that we want to have enough data so that the

sample is statistically significant. The second is the desire to make the tests as short as

possible, since we will have many test runs to do and we don’t want to spend too much

time on them.

To figure out the sample size, we perform a test run using the upper limit of users, for

a longer-than-usual period of time. We then plot the AART against time and analyze the

curve. We are looking for a segment of the curve that is pretty much stable.

Another point that has to be made is that of data exclusion. When you first start

a test, the response times are usually higher than normal. This is because all of the

subsystems that make up the application take a little while to get up to speed. For

example, the optimizer in the JVM needs a couple of minutes to optimize the running

code. The same goes for the cache of the database, which will take a little time before it is

useful (and so on with other components of the application).

These unusually high response times that are seen initially only affect the first few

users on a production application that will typically run for weeks. However, in our case,

in which we will be testing for just a few minutes, these results will negatively skew our

sample results. Because of this, we exclude the first few sets of data we collect, and we

start the sample when the curve has stabilized.

Thus, the sample size will start at a certain time after the actual test run has

started, and it will last for a certain period that provides us with enough data to deem it

statistically significant.

Next is the issue of assessing the accuracy of the test results. Depending on the kind

of performance test that is being conducted, you can use two different ways to measure

accuracy with a high level of certainty.

Chapter 9 EJB Performance and Testing

442

For performance tests that deal with a complete application, we usually calculate the

following metric, which we call the quality of a sample:

quality = standard deviation / arithmetic mean

We usually apply this formula to the AART data collected.

Tip  Based on our experience, acceptable quality numbers lie in the range of
0.06 to 0.2. When the quality number exceeds 0.25, we carefully analyze all of the
available data to find out the reason for such a low-quality sample. Sometimes,
this can lead us to discard the data generated by the test run in question.

When doing tests focused on designing for performance and, more specifically,

when the think time is zero, we use another method called calibration. Here we perform

three test runs with the upper limit of users. We then compare the AART and TTR results

of each test run against each other. The comparison is done as a percentage, and the

greatest difference of all values is taken as the margin of error for the performance test.

Now that we have described all the preparation work, we can move on to describe

the actual test runs that will provide us with the data that we need to perform the

analysis and to make the conclusions of the performance test. The actual test runs are

rather mechanical and boring procedures in which you start with a test run using the

lower limit of users, increase the number of users, perform another test run, and so on

until you reach the upper limit. As mentioned earlier, you will probably want to have a

couple of additional test runs in which the upper limit is exceeded.

Because the base of the methodology is consistency, you will have to reset or restart

every component or subsystem that makes up the application. In our case, that will be

the database and the Java EE server.

Chapter 9 EJB Performance and Testing

443

We will go over a practical example of implementing the methodology later in this

chapter to illustrate how to use it.

�The Grinder
The Grinder is a Java-based load-testing framework that is freely available under a

BSD-style open source license. The Grinder, along with its source code, documentation,

ancillary modules, test scripts, and much more, can be found at http://grinder.

sourceforge.net. There are also some mailing lists that you can join in order to

participate in the Grinder community.

Please remember that the Grinder version 3 is required for Java EE 8.

The Grinder is extremely powerful, yet it’s easy to use and is a lightweight toolkit. It

allows you to simulate users and behaviors via test scripts across a number of machines.

It consists of the following:

•	 A worker process that interprets the test scripts written in Jython and

performs the tests using a number of worker threads, each of which

simulates a user.

•	 An agent process that manages the worker processes. If you are

running the simulated users on more than one computer, you will

need one agent process for every computer.

•	 The console, which collates and displays statistics while coordinating

the other processes.

Chapter 9 EJB Performance and Testing

http://grinder.sourceforge.net/
http://grinder.sourceforge.net/

444

A performance test using The Grinder is a collection of test runs that can include one

or more test scripts. A test run is the continuous sequential execution of test scripts. The

test runs can last either a specific number of cycles or a specific period of time. A cycle is

a single execution of a test script.

Note  What we call a cycle is defined in the documentation of The Grinder as a
run, which we find confusing.

Figure 9-3.  The Grinder Process

The grinder process is shows in Figure 9-3.

Chapter 9 EJB Performance and Testing

445

Test scripts are used to simulate the application usage. Test scripts represent the

usage profiles that you want to simulate. A test script contains one or more requests,

which resemble the typical interaction that a user of a specific profile would have with

the application.

Note A gain, to avoid confusion, we use the word request instead of test, as
defined in the documentation of The Grinder.

A Grinder test script is a Jython program that can contain certain logic to modify

the default behavior, which is the sequential execution of the requests (for example, to

execute certain requests based on the response of an already executed request).

A test script can be written by hand or, if the simulated user interacts with the

application via an HTML interface, it can be recorded. The TCP Proxy module can be

used to accomplish this. This module is part of The Grinder distribution. The HTML

plug-in filter of the proxy allows your interaction with an application through a Web

browser to be recorded. For details on how to use this functionality, please refer to the

documentation.

In addition to executing URLs, The Grinder can also execute Java code as part of a

request in a test script. This gives you the flexibility of simulating heavy clients, such as

Swing-based clients.

Each agent process sets up a connection with the console to receive commands

(such as start, stop, and reset), which it passes on to its worker processes. Each worker

process sets up a connection to the console to report statistics.

In addition to the statistics presented on the console, for each test run, every worker

process writes logging information and a final statistics summary to a file with a name

that starts with the word out. Errors are written to a file with a name that starts with the

word error. If no errors occur during a test run, no error file will be created. Detailed

statistical information for every request executed is written to a file with a name that

starts with the word data. These files follow a naming convention that, in addition to the

words we described, also contain the name of the computer hosting the worker process

and the number of the working process, as you can have more than one.

Chapter 9 EJB Performance and Testing

446

Modifying values in the grinder.properties configuration easily alters the behavior

of The Grinder. Very likely, the most common properties you will be modifying are the

following:

•	 grinder.threads: This property specifies the number of simulated

users that will execute the specified test script.

•	 grinder.runs: This property specifies the number of times a

simulated user will sequentially execute the test script (cycles). If the

value is zero, it will execute forever.

•	 grinder.consoleHost: This is the name or IP address of the

computer running the Grinder console.

•	 grinder.logProcessStreams: Set to true, this property will provide

extremely detailed information about the execution of every simulated

user. This information appears in the out file. It is useful during the

preliminary runs, but we strongly suggest that you set it to false for all

of the other runs, as it will degrade the performance of the test runs.

•	 grinder.logDirectory: This property specifies the directory in

which you want to place the three log files described earlier.

•	 grinder.script: This is the file name of the test script to be

executed.

There are many more properties available. Please consult the Grinder

documentation for a full list of properties.

�The Test Application
The test application that we have used for performance testing is a subset of the

integrated Wines Online back-end application developed in Chapter 7. The user

interface is developed using JavaServer Faces (JSF).

The latest JSF specifications can be found in this web page:

https://javaee.github.io/javaserverfaces-spec/

JavaServer Faces (JSF) is a Java Community Process (JCP) Standard technology for

authoring component-based user interfaces on the Java EE platform.

Please notice that the JSF available by the time this manuscript was written was

version 2.3, which was part of Java EE 8 in April 2017.

Chapter 9 EJB Performance and Testing

https://javaee.github.io/javaserverfaces-spec/

447

The executable implementations of the JSF 2.3 can be found in the javax.faces

repository:

https://maven.java.net/content/repositories/releases/org/glassfish/

javax.faces/2.3.0/

Please refer to the NetBeans Introduction to JavaServer Faces 2.x on the NetBeans

web page:

https://netbeans.org/kb/docs/web/jsf20-intro.html

Figure 9-4 displays the JSF page, which shows the catalog of all available wines in a

list box. Users can a select wine items of their choice, enter the quantity in the input text

box, and click the “Add to Cart” button. Users can repeat the same process to add more

wines, and finally they can click the “Submit Order” button.

Figure 9-4.  The wine store JSF application

Chapter 9 EJB Performance and Testing

https://maven.java.net/content/repositories/releases/org/glassfish/javax.faces/2.3.0/
https://maven.java.net/content/repositories/releases/org/glassfish/javax.faces/2.3.0/
https://netbeans.org/kb/docs/web/jsf20-intro.html

448

Figure 9-5 shows the interaction between the JSF application and the back-end

wine store application. When the JSF application is launched from the browser, a call to

the getWineDisplayList() method (which uses an injected EJB in the managed bean)

is made. This retrieves a list of all available wines using the findAll() method on the

injected WineFacade EJB. The initial JSF page displays the retrieved list of wines. When

the user adds a wine item and clicks the “Add to Cart” button, the addWineToCart()

method in the ShoppingCart session bean is invoked, creating a new customer and

adding the wine to the customer’s cart items. Adding a customer only happens when the

addWineToCart() item is called for the first time. When the user finally submits the order

from the client application, the processOrder() method in the ShoppingCart session

bean is invoked, which creates a new customer order, adds all the cart items to the order

as order items, deletes the items in the cart, and finally deducts the inventory.

Figure 9-5.  The wine store application components and services interaction

Chapter 9 EJB Performance and Testing

449

Figure 9-6 illustrates the Java Persistence API (JPA) entities, the inheritance model

between the Java classes, and the relationships between them. The BusinessContact

entity is inherited by the Customer and Supplier entities. The Customer entity is

inherited by the Individual and Distributor entities. The InventoryItem, CartItem,

and OrderItem entities inherit the WineItem entity. The wine store persistence unit also

contains different types of relationships between these entities (including one-to-one,

one-to-many, and many-to-many) that are exercised in the test application. Relationship

fields whose names end in List are 0..* properties; all others are single-value properties.

The relationship mappings used in these entities were covered in Chapter 3 and Chapter 4.

Figure 9-6.  The wine store domain model

For the performance tests that we are going to run, all of the previously discussed

components (the JSF application, the ShoppingCart and WineFacade session beans, and

the Java classes in the persistence unit) remain exactly the same. The only differences

between the two tests are the object/relational (O/R) mapping annotations specified

in the JPA entities of the domain model and the database schema to which these Java

classes are mapped. The first test uses a JOINED entity inheritance strategy in which the

two root entities (BusinessContact and WineItem) map to the root table in the hierarchy,

and the tables for all the subentities join to that table. Figure 9-7 shows the database

schema used for mapping the persistent Java classes using a JOINED inheritance strategy.

Chapter 9 EJB Performance and Testing

450

In the second test, we use a SINGLE_TABLE entity inheritance strategy in which the

entities in each class hierarchy all map onto a single table. Figure 9-8 shows the database

schema that is used to map the second test case.

Figure 9-7.  The database schema for the JOINED entity inheritance strategy

Chapter 9 EJB Performance and Testing

451

Note I nheritance strategies are explained in detail in Chapter 4.

�The Performance Test
Following the methodology described earlier, and using the test program just described,

we will get on with the task of comparing the inheritance models to find out which one is

best under the following conditions.

Figure 9-8.  The database schema for the SINGLE_TABLE entity inheritance
strategy

Chapter 9 EJB Performance and Testing

452

�The Test Environment
We have set up a test machine in the cloud, which has eight cores and 8GB of memory. It

runs an instance of the GlassFish server (in this book version 4.1.1). The test application

uses the Derby database, which is also running on this server. We run The Grinder from

our laptop, which is not in the data center where we have the test machine running, so

all the traffic is going over the Internet. Normally, we would not do this, as we prefer to

work in so-called sterile conditions; that is, the only traffic on the test network is the one

generated by the tests. However, after doing many preliminary tests, we found that the

margin of error of the tests to be so very low (1%), that we decided to continue working

this way.

The test computer runs only the corresponding software required for the tests,

besides the default processes of the operating systems. We use the default settings on all

of the software involved. We realize that better performance can be obtained by fine-

tuning these components, but that would be beyond the scope of this book.

�The Test Script
As mentioned earlier in this chapter, the idea is to create a test script that resembles

as closely as possible the usage of the application in real life. Since this is a design-for-

performance test, we use a test script that loosely resembles the typical usage profile of

the application:

	 1.	 The user goes to the wine application website (home).

	 2.	 The user selects a couple of bottles of one type of wine.

	 3.	 The user selects a few bottles of another type of wine.

	 4.	 The user checks out.

Since, in this example, we are comparing a couple of different inheritance models to

understand which one applies best to our circumstances (design for performance), we

use a zero think time.

Admittedly, running this set of performance tests using Derby is not very realistic,

but the intent here is to provide an example on how to use the methodology. Our

intention is that readers will apply this process to testing their own application, in their

own application environment.

Chapter 9 EJB Performance and Testing

453

The output of the TCP Proxy module can be redirected to a file. This output is a

Jython program that contains a high-level flow of the recorded tests, and it is easily

readable by humans. This is where we modify or remove the grinder.sleeptime

directives to eliminate the think time, or where we change the name or IP address of the

target machine running the application. We review in detail the actual wine.py test script

in the next section.

�Setup
The installation of GlassFish was explained in the Getting Started section of Chapter 1,

so we won’t go over that here. You just need to make sure that the GlassFish server

is up and running, and that the application is deployed with the necessary resources

(JDBC connection pool and resource). One way to start the GlassFish server is to change

directories to %GLASSFISH_HOME%/bin in a command shell and issue the following

command:

asadmin start-domain

To stop the GlassFish server, you issue the following command:

asadmin stop-domain

Throughout the performance tests, we restart the GlassFish server with:

asadmin restart-domain

�The Database

Each of the two tests requires its own database connection to ensure that your DB

schemas don’t collide. The tables mapped by each inheritance schema use similar

names but have different structures. To minimize the installation requirements, we used

the Derby database supplied with GlassFish for our tests. The projects are preconfigured

for Derby, and to run them out of the box you will need to create the Derby databases.

Refer to the Creating the Database Connection and Sample Schema section in Chapter 3

for steps on how to create a new database (and associated connection) in Derby. For

these tests, you will need to create a WineAppJoin database with user wineapp_join/

wineapp_join and a WineAppST database with user wineapp_st/wineapp_st.

Chapter 9 EJB Performance and Testing

454

Configuring Connections to Your Own Database

You may wish to use Oracle or some other production database when running your tests.

To do so, you would update the persistence.xml file in the JPA project for each test

(Chapter09-PerformanceJoined-jpa and Chapter09-PerformanceSingleTable-jpa) to

modify the connection and information to point to your database. First create a separate

database connection for each test, as we did for Derby above. For Oracle, we suggest

that you begin by creating new DB users wineapp_join/wineapp_join and wineapp_st/

wineapp_st in your database. Then go to the Services tab in NetBeans, right-click on

Databases, and choose New Connection… to create a new database connection for

each user.

Once your test database connections are created, you can edit the persistence.xml

file in each JPA project through its Design editor tab by selecting the appropriate Joined

or SingleTable connection through the JDBC Connection combo.

Similarly, you would need to update the <property> entries of the <jdbc-

connection-pool> entry in the glassfish-resources.xml file inside the EJB

project for each test (Chapter09-PerformanceJoined-ejb and Chapter09-

PerformanceSingleTable-ejb) to update the connection information. (NetBeans 7.2.1

doesn’t provide an editor to do this through a drop-down list, but you can easily cut/

paste the <property> elements that specify the connection details.) Be sure to preserve

the <jdbc-resource> jndi-name property as jdbc/wineAppJoin, or jdbc/wineAppST

for the SINGLE_TABLE test, since this resource is referenced by name from the persistence

units in the EJB projects.

�The Grinder

The next step is to install The Grinder on the computer dedicated to creating the

simulated user load. Once you have downloaded The Grinder from http://grinder.

sourceforge.net, all you need to do is to unzip it in the desired directory.

The Grinder version 3.11 was installed for this testing in the C:\grinder-3.11 r

directory of our laptop. Once you’ve done that, you can extract the Grinder-related files

from the download package. These are in the grinder directory. We installed these files

in the C:\SampleCode directory. There are three files needed for our example: grinder.

properties, joined.py, and single.py. The last two files are the actual test scripts.

Chapter 9 EJB Performance and Testing

http://grinder.sourceforge.net/
http://grinder.sourceforge.net/

455

Refer to the Grinder.properties web page for additional information about how to

configure this file:

http://grinder.sourceforge.net/g3/properties.html

Let’s start by reviewing the first script, grinder.properties, shown in Listing 9-1.

Listing 9-1.  grinder.properties

Beginning EJB in Java EE 8

Chapter 9: EJB Performance and Testing

The number of worker processes

grinder.processes=1

Number of simulated users

grinder.threads=140

Run forever

grinder.runs=0

Name of the machine where the console runs

grinder.consoleHost=localhost

We don't want a full detailed log file

grinder.logProcessStreams=false

Place the log files in this directory

grinder.logDirectory=log

Start all the simulated users at the same time

grinder.initialSleepTime=0

properties file. The default is "helloworld.py".

Execute the test script called joined.py

grinder.script=joined.py

The comments in this properties file are pretty clear. You will just be changing the

number of simulated users (grinder.threads) and the number of cycles that the test

script will run (grinder.runs). Just make sure that you have the correct name or IP

address of the machine on which the Grinder console will be running. Other than that,

you really don’t need to change anything else in this properties file.

Chapter 9 EJB Performance and Testing

http://grinder.sourceforge.net/g3/properties.html

456

�The Test Script

In Listing 9-2 we present the core of the Jython program generated by the HTTP Proxy

when we recorded the session with a joined tables inheritance scheme. The think time

statements, which appear in bold, normally will present the amount of time it took

you to go from one request to the next while recording the test script, as measured in

milliseconds. As mentioned earlier, we replaced the original values with zero, but you

can also just delete that line (see Listing 9-2).

Listing 9-2.  Main Section of the Test Script

def __call__(self):

 """Called for every run performed by the worker thread."""

 self.page1() # GET WineStoreJoined.jsp (request 101)

 grinder.sleep(0)

 self.page2() # POST WineStoreJoined.jsp (request 201)

 grinder.sleep(0)

 self.page3() # POST WineStoreJoined.jsp (request 301)

 grinder.sleep(0)

 self.page4() # POST WineStoreJoined.jsp (request 401)

As an example of the page methods, we present in Listing 9-3 the one for page 1, the

first request of the test script, along with a few definitions that happen before the first

page method.

Listing 9-3.  Example of the page method

url0 = 'http://glassfish:8080'

request101 = createRequest(Test(101, 'GET WineStoreJoined.jsp'), url0)

class TestRunner:

 """A TestRunner instance is created for each worker thread."""

Chapter 9 EJB Performance and Testing

457

 # A method for each recorded page.

 def page1(self):

 """GET WineStoreJoined.jsp (request 101)."""

 �result = request101.GET('/Chapter09-PerformanceJoined-war/faces/

WineStoreJoined.jsp')

 self.token_j_id_id17 = \

 httpUtilities.valueFromHiddenInput('j_id_id17') # 'j_id_id17'

 self.token_javaxfacesViewState = \

 �httpUtilities.valueFromHiddenInput('javax.faces.ViewState')

'9131085258160566843:4053788772783974794'

 return result

�Running the Simulated Users

You will have to modify the classpath of the following command according to where

you installed the Grinder software. To execute the grinder, though, all you need is the

following simple command. Just don’t launch it before you start the Grinder console.

java -classpath \grinder\lib\grinder.jar net.grinder.Grinder

�The Grinder Console

As an alternate way to start the console, all we do is change the directory to C:\grinder\

lib and issue the following command to bring up the console:

java –classpath grinder.jar net.grinder.Console

Chapter 9 EJB Performance and Testing

458

Figure 9-9 shows the Grinder console.

Figure 9-9.  The Grinder console

The console has a couple of buttons on the top-left side that are used to indicate

the Grinder agent to start or reset the worker threads: that is, the simulated users.

When you hover over them, it will present a description of the function of the button.

Figure 9-10 shows the Grinder console during the execution of a performance test and

the information it normally displays.

Chapter 9 EJB Performance and Testing

459

Just to make sure that things are working fine, go ahead and do a quick test with only

one simulated user for one cycle (after configuring the database; see “The Database”

section, above). The steps are as follows:

	 1.	 Use the following URL to reset the database: http://

yourserver:port/Chapter09-PerformanceJoined-war/

ResetJoinedData

	 2.	 Reset the Glassfish server.

	 3.	 Start the Grinder console: java -classpath <classpath_to_the_

grinder> net.grinder.Console

	 4.	 Edit the grinder.properties file, and verify that you have only

one user and one cycle.

	 5.	 Start the grinder agent and the grinder console by typing the

following commands: java -classpath <classpath_to_the_

grinder> net.grinder.Grinder.

	 6.	 Click the start button on the Grinder console. No results will be

displayed on the console because it will run for only one cycle.

Figure 9-10.  Performance test with the Grinder

Chapter 9 EJB Performance and Testing

460

	 7.	 Check the window where you started the Grinder agent. When

it states that it has finished and is waiting for the console signal,

click the reset button on the Grinder console.

	 8.	 Go to the log directory, and review the file that starts with the

word out. This file contains a summary of the whole test run,

including statistics. If there is a problem, this file and the error file

will provide you with the necessary information to solve it.

After you have run these steps once for each test, you may want to update the

persistence.xml file in both the JPA projects of each test app to turn off table

generation. We left this flag on so that the tables would be created the first time you ran

the ResetJoinedData/ResetSingleTableData servlets. After you have run each script

once to create the tables for your persistence unit, you can avoid the overhead (and the

warnings issued) due to the tables already existing for each subsequent run.

Now that everything is set and ready, you can go on to the next step.

�Preliminary Tests
The objective of this first set of tests is to get familiar with the application and its

behavior, as well as to discover any potential problems we might have with the test script

or the application. As we’re testing two different implementations of inheritance, it really

doesn’t matter which implementation we use for these preliminary tests, so we choose

to conduct our initial tests with the implementation that uses multiple tables. We already

performed one test run with one user for one cycle. Now we can move on to a test run for

unlimited cycles and let it run for a couple of minutes. Then we’ll move on to test with

multiple simultaneous users for one cycle. This is done to make sure that the application

and the test script can handle concurrency correctly. We will typically choose 10 users.

After that, we’ll test 10 users for unlimited cycles for a couple of minutes. Once these

tests have completed successfully, we’ll know that the test script and application are

working fine, and we’ll be ready for the next step.

We’re looking to select a representative number of users for about half a dozen quick

test runs that can clearly show us how the application behaves as we increase the user

load.

When dealing with performance tests of full applications, we typically look for

the upper limit of users when the maximum acceptable response time is reached or

exceeded. Since this is a design-for-performance test, and we are not using any think

Chapter 9 EJB Performance and Testing

461

time in the test script, we are going to focus on finding the number of users for which the

saturation point of the application is reached. The strategy, as much as it can be called

that, is to pick a number of users at random.

The test runs are short, since we don’t need an exact upper limit number, just an

approximation. In this case, we choose to start with 100 simultaneous users, and we will

collect data from the test runs for 2.5 minutes. Since we are using a sample interval of 5

seconds, we just type 30 in the Grinder console’s “Collect samples forever” box. The title

to the box will change to “Stop after 30 samples” after we type 30. To keep things simple,

we will not exclude the initial data. We do this by typing 0 in the Grinder console’s

“Ignore samples” box. The collected statistics will present values that are a little higher

than normal. This is not an issue, as these tests are just preliminary. Following best

practices, we reset the database and the Glassfish server for every performance test.

We start our first test run, and we obtain an AART of 737 milliseconds.

Note  You can find this information on the bottom part of the left column of the
console (to the left of the square that graphically presents the TPS) with the title
“(mean)”.

The TTR is 137 (you can find this information in the same place that you found the

AART, with the title “TPS (mean)”). Next, we will try again with 120 users. For this, we

modify the grinder.properties file by changing the grinder.threads property to 120.

We perform the next run and obtain an AART of 911 milliseconds and a TTR of 133. As

the TTR for 120 users is lower than that for 100 users, we know that the saturation point

is at about 100 or fewer users, so our next test run will be with 80 users.

After changing the number of users in the grinder.properties file, we start the test

run. We obtain an AART of 593 milliseconds and a TTR of 136. These results indicate that

the saturation point is somewhere around the 100-user mark, so we will use this as the

upper limit. (Talk about a lucky guess in choosing 100 users as the initial test point!)

Based on this information, we choose to select 40 users as the lower limit and 100

users as the upper limit. The test runs will be done with 40, 60, 80, 100, 120, and 140

users. This will provide us with six reference points, which should clearly show us the

behavior of the application.

Chapter 9 EJB Performance and Testing

462

�Sample Size
Now that we have chosen the upper and lower limits of simultaneous users, we want

to figure out how long the tests should run. This is rather simple. All we need to do is to

perform a test run that will execute for a longer period of time than the 2.5 minutes we

chose earlier. Our experience with this kind of test tells us that about 7 minutes is typically

a good choice. The test run will be performed with the upper limit, which is 100 users.

Once we have concluded the test run, we take the data file generated by The Grinder

that contains the individual response times for every simulated user for every test. This

file can be found in the log directory with a file name that starts with the word data. Next

we plot a curve that presents the AART over the time period of the test. The results of

this test run are presented in Figure 9-11. Here we can see that the response time curve

stabilizes at about 60 seconds into the test run.

Figure 9-11.  Sample size analysis chart, plotting AARP over time period of the test

We can also see that the curve remains fairly stable after the 60-second mark and

extremely stable after the 240-second mark. Therefore, we decide the test runs will last

240 seconds (4 minutes—nice and short), of which we will ignore the first 60 seconds. As

we have defined the sample size in the Grinder console to be 5 seconds; this means that

we will ignore 12 samples and collect 36 samples.

�Calibration
Now we proceed to find out the accuracy of our performance test. Since this will be done

based on three test runs using the upper limit, we only have to do two additional runs.

We can use the appropriate data from the previous run to determine the sample size.

Chapter 9 EJB Performance and Testing

463

Tip I t has been our experience that typical margins of error using this method
are between 5 and 10 percent. They tend to increase when there are think times
in the test scripts. In these cases, it’s not unusual to find numbers as high as 30
percent.

Table 9-1 and Table 9-2 show the differential of the results collected from the test

runs for the AART and the TTR.

Table 9-1.  Margin of Error (AART)

AART Run 1 Run 2 Run 3

Run 1 100.1 percent 100.0 percent

Run 2 99.9 percent 100.0 percent

Run 3 99.9 percent 100.0 percent

Table 9-2.  Margin of Error (TTR)

TTR Run 1 Run 2 Run 3

Run 1 99.3 percent 100.0 percent

Run 2 100.7 percent 100.0 percent

Run 3 100.7 percent 100.0 percent

The biggest differences in these tables are 100.7 percent (for instance, run 2 vs. run

1 in the TTR table), and 99.9 percent (for example, run 3 vs. run 1 in the AART table).

Thus. the official margin of error of this performance test is 0.7 percent, which is a very

good number.

�The Actual Test Runs
Now that we have completed all of the preparations, we are ready to start running the

formal tests that will give us a picture as to which inheritance model behaves best under

extremely stressful conditions.

Chapter 9 EJB Performance and Testing

464

This part of the performance tests is mechanical and rather boring. The initial step

is to start the Grinder console and make sure that the parameters for our tests are set

correctly. First, we verify that the sample interval is set to 5,000 milliseconds. Next, we

check that we ignore 12 samples (of 5 seconds each, totaling the 60 seconds that we

chose earlier). Then we choose to stop collecting data after 36 samples (of 5 seconds

each, totaling the 180 seconds that we chose earlier).

The steps to follow for each test run are as follows:

	 1.	 Reset the database using the corresponding URL depending on

the inheritance model:

http://yourserver:port/Chapter09-PerformanceJoined-war/

ResetJoinedData

http://yourserver:port/Chapter09-PerformanceSingleTable-war/

ResetSingleTableData

	 2.	 Restart the GlassFish server.

	 3.	 Edit the grinder.properties file, and modify the number of

users.

	 4.	 Click the “Start to capture statistics” button on the Grinder

console. This will clear out all the results of the previous run.

	 5.	 Click the “Start processes” button on the Grinder console.

	 6.	 Wait for the data collection to complete. A good indicator is

when the line on the center of the left panel goes from stating

“Collecting samples: XX” in green to stating “Ignoring samples:

XX” in red.

	 7.	 Click the “Reset processes” button on the Grinder console. This

step actually stops the execution of the simulated users.

	 8.	 Click the “Save results” button. Provide a descriptive file name,

and save the results displayed on the console for later analysis.

	 9.	 Start over again at the beginning of this list.

Once you have finished with all of the test runs for the JOINED table inheritance

strategy, you can proceed to do all of the preparations for the set of test runs for the

SINGLE_TABLE inheritance scheme.

Chapter 9 EJB Performance and Testing

465

As explained in the earlier sections, the differences between our two tests are O/R

mapping annotations and the database schema. Once the application is ready for the

next set of test runs, just repeat the steps you did for the previous set of test runs.

�Analyzing the Results
We have to start by stating that the results presented in this chapter are not meant to

endorse one inheritance method over another. They are provided only to illustrate how

to apply the methodology and how to use the Grinder toolkit. Because of this, we have

gone into this performance test with no expectations about which inheritance model will

work better.

We start our analysis by reviewing the results of the test run of the multiple-table

inheritance with 100 users. These results are shown in Table 9-3.

Table 9-3.  Multiple-Table, 100-User Results

100 Users ART TPS

Request 1 1,240 34.1

Request 2 594 34.1

Request 3 549 34.1

Request 4 543 34.1

Total 732 136

Two things should quickly come to your attention. The first is that the time required

to obtain the home page of the application was long—a little over 1 second—especially

when compared to all of the other response times in the test script. This can be explained

because in setting up the main page, although simple, it involves sending data from the

server to the browser, which in general is considered a more expensive operation than

updating a shopping cart. The next thing that should catch your eye is that the checkout

process lasts less than 1 second. While this is an ideal time for a process that verifies

inventory and that performs other actions associated with a checkout, the truth is that

there is not much of an inventory on this test system.

Chapter 9 EJB Performance and Testing

466

This part of the analysis is limited to reviewing every individual request, and it is

usually done with the results collected from the test run with the upper limit of users.

The next step is to analyze the AART and TTR for all of the user loads that we selected.

We start with the results from using the multiple-table inheritance model, which is

shown in Table 9-5.

Table 9-4.  Single-Table, 100-User Results

100 Users ART TPS

Request 1 1,320 33.4

Request 2 580 33.4

Request 3 540 33.5

Request 4 543 33.6

Total 745 134

Looking at the results from the test run of the single-table inheritance model with

100 users (shown in Table 9-4), you can see a similar pattern of behavior, so at least it’s

consistent.

Table 9-5.  Multiple-Table, All-User Results

Users AART TTR

40 291 137

60 438 137

80 584 137

100 732 136

120 919 130

140 1,120 125

From this table, it can be seen that the saturation point is reached from the beginning

of the performance tests, which is quite unusual. This means that the inheritance model

is gobbling up all of the resources available from the beginning.

Let’s review the results for the single-table inheritance model so that we can do some

comparisons. They are presented in Table 9-6.

Chapter 9 EJB Performance and Testing

467

Figure 9-12.  AART comparison

Table 9-6.  Single-Table, All-User Results

Users AART TTR

40 296 135

60 446 135

80 592 134

100 745 134

120 908 132

140 1,120 125

Once again, we see the same pattern of saturation from the beginning. This could

be attributed to the Derby database and memory usage. What can also be seen is that

both the Total Transactional Rate and the Aggregate Average Response Times are slightly

lower than those of the multiple-table inheritance model.

This comparison can be seen more clearly in the charts presented in Figure 9-12,

which contains a comparison of both sets of results for the AART; and Figure 9-13, which

contains the comparison for the TTR.

Chapter 9 EJB Performance and Testing

468

Figure 9-13.  TTR comparison

In Figure 9-12, the Aggregate Average Response Times (AART) are pretty much the

same, so we will have to look carefully at the Total Transactional Rate (TTR) to try to

understand which model is more beneficial under the conditions of the performance

tests we are doing.

In Figure 9-13, not only does the single-table model reach the saturation point faster

than the multiple-table model, but the Total Transactional rate is slightly lower than that

of the multiple-table model. As you can see, the single-table model starts degrading at

60 concurrent users, whereas the multiple-table model does so at 80 concurrent users.

The big drop, however, happens earlier for the multiple-table model. Based on the

data collected, we can conclude that the JOINED, or multiple-table, inheritance model

presents a slightly better performance under highly stressful conditions.

�Summary
In this chapter, we have presented The Grinder, a methodology to conduct performance

tests, and a toolkit to generate the load for the performance tests. We went through an

example of a performance test that used the methodology and the toolkit. In particular,

we discussed performance criteria, with a review of the two performance indicators:

response time and throughput. We covered the simulation of application usage, with

a discussion about test scripts and think times. We also covered the defining of test

Chapter 9 EJB Performance and Testing

469

metrics, such as the number of users, sample size, and exclusion of data, as well as how

to determine the accuracy of the performance test.

To illustrate the use of this methodology, we presented a detailed case study using

the application we created in the previous chapters and compared two inheritance

strategies.

In the next chapter, we will look into Contexts and Dependency Injection (CDI) and

how it can be used to enhance EJBs and the application development experience.

Chapter 9 EJB Performance and Testing

471
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_10

CHAPTER 10

Contexts and Dependency
Injection
In this chapter, we will discuss Contexts and Dependency Injection (CDI). CDI provides

powerful services to glue the various tiers of the Java EE framework together. The first

public draft of Java Contexts and Dependency Injection for the Java EE Platform, as

defined in JSR 299, was made public in 2008. During the initial development phase,

the JSR 299 specification was called Web Beans. After the specification was renamed to

Contexts and Dependency Injection, the initial reference implementation was given

the name Web Beans. The use of the same name, Web Beans, in two different contexts

created some confusion among the community members, and this led to the renaming

of the reference implementation from Web Beans to Weld. Notice that Weld 3.0, the

reference Implementation of CDI, will be integrated with the upcoming GlassFish 5.

CDI builds upon the Interceptor Specification (JSR 318), the Managed Bean

Specification (JSR 316), and the Dependency Injection for Java Specification (JSR 330).

You might be wondering why we have included a chapter on CDI in this book. There

are two reasons for this: First, the dependency injection behavior first introduced in

EJB is enhanced in CDI; and second, CDI supplements EJB by providing the contextual

functionality to an application. EJB complements CDI by providing enterprise services

like security, transaction management, and scalability to an application. If an application

developer wisely decides when to use CDI, EJB, or both, then the resulting application

will be both nimble and scalable.

After you have finished this chapter, you will gain an insight into the following areas:

•	 CDI basics

•	 Relationship of CDI with EJB

•	 Deploying and executing CDI clients

472

�What Is CDI?
Before the arrival of CDI on the Java EE scene, there was no easy way for the three tiers of

Java EE technology—namely, the Web tier, the business tier, and the persistence tier—to

interact with each other in a loosely coupled but typesafe manner. The Web tier did not

have a proper mechanism to support transactions because it focused on presenting the

content and had limited access to transactional resources.

CDI was mainly introduced to help with:

•	 Life cycle for stateful objects bound to lifecycle contexts

•	 Typesafe dependency injection mechanism

•	 Event notification

•	 Integration with the Unified Expression Language (EL)

CDI services help in unifying Enterprise JavaBeans (EJB) and JavaServer Faces

(JSF) programming models. CDI services allow Enterprise JavaBeans to be used as the

Managed Beans in JavaServer Faces framework. CDI also provides a good support for

accessing transactional resources, which facilitates an easy creation of Web applications

using Java Persistence API. CDI bridges this gap. Using CDI, the Web tier can directly

interact with the beans in the business and persistence tiers. This is the reason why CDI

was initially named Web Beans.

Contexts and Dependency Injection for Java EE (CDI) 1.0 (JSR-299) was first

introduced as part of the Java EE 6 platform including:

•	 A well-defined life cycle for stateful objects bound to lifecycle

contexts

•	 Where the set of contexts is extensible

•	 A typesafe dependency injection mechanism without verbose

•	 Configuration

•	 Dependencies can be selected at development or deployment time

•	 Typesafe decorators and interceptors

•	 An event notification model

•	 An SPI allowing portable extensions to integrate cleanly with the

container

Chapter 10 Contexts and Dependency Injection

473

Then CDI 1.1/1.2 (JSR-346) was developed, including the following:

•	 Add automatic enablement of CDI in Java EE (beans.xml is not

required)

•	 Add introspection with event, bean, decorator, and interceptor

metadata

•	 Ease access to bean manager from outside CDI with CDI class

•	 Add global enablement of interceptors using the @Priority

annotation

•	 Add unmanaged allowing easy access to non-contextual instances

•	 Spec clarification of CDI Life Cycle and Events

•	 Reworking Bean defining annotation to avoid conflict with other JSR

330 frameworks

•	 Clarification on conversation resolution

•	 OSGi official support in the API

Finally, CDI 2.0 (JSR-365), completed in May 2017, is a major evolution of the CDI 1.2

(JSR 346) specification lead by Antoine Sabot-Durand (Red Hat Inc.).

The Java EE 8 platform requires CDI 2.0, which comes with the following new

features:

•	 Built-in annotation literals that can be used for creating instances of

annotations

•	 An API which can be used for bootstrapping a CDI container in

Java SE 8

•	 Some new configurators interfaces, which can be used for

dynamically defining as well as modifying CDI objects

•	 Support for observer ordering, which is used to determine the order

in which the observer methods for a particular event are invoked

•	 Support for firing events asynchronously

•	 Spec was split into three parts

•	 Java SE Support, using CDI outside Java EE

Chapter 10 Contexts and Dependency Injection

474

•	 Alignment on Java 8 features (streams, lambdas, repeating qualifiers)

•	 Event enhancement

•	 Configurators for major SPI elements

•	 Possibility to apply interceptor on producers

The CDI 2.0 specification was split into three parts such as Java SE, Java EE, and CDI

Core. The main reason for splitting was:

•	 To align on many other Java EE specs that support Java SE

bootstrapping

•	 JAX-RS, JPA, etc.

•	 To boost CDI adoption for Spec and Frameworks

•	 Java SE has been already supported by Weld, Apache

OpenWebBeans, Apache DeltaSpike, and so on, but API is

different from each implementation.

•	 Programming model should be defined to avoid user confusion.

•	 To provide a mean of building new stacks out of Java EE

(MicroProfile)

After the splitting, the specification name was also changed from “Contexts and

Dependency Injection for Java EE (JSR 346)” to “Contexts and Dependency Injection for

Java (JSR 365).”

Note  Custom libraries using CDI 1.x might be built again to align with CDI 2.0

Information about CDI be found at: http://www.cdi-spec.org/

The CDI specification can be found at: http://docs.jboss.org/cdi/spec/2.0/

cdi-spec.html

Chapter 10 Contexts and Dependency Injection

http://www.cdi-spec.org/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html

475

Figure 10-1 shows the architecture of a Java EE application before the arrival of CDI

on the Java EE scene, and Figure 10-2 shows how the Web tier and the business tier

interact after the arrival of CDI.

Figure 10-1.  Java EE Application Architecture before CDI

Figure 10-2.  CDI Application Architecture

Chapter 10 Contexts and Dependency Injection

476

The two important features provided by CDI are a part of its name:

•	 Contexts: Deals with binding the stateful components

(like stateful session beans) to a well-defined scope. Stateful

components are those that retain information across their

invocations. A CDI container associates stateful components with a

definite scope—creating them when required and destroying them

when they are out of scope. As a result, the client is not burdened

with managing the life cycle of the stateful components.

•	 Dependency Injection: Deals with injecting the components into

an application in a loosely coupled but typesafe way. The injected

components are instantiated by the container, which means users

don’t need to create an instance of the component using new. Users

can use the interface instead of the actual implementation of the

interface for injection. This allows users to defer selection of a specific

implementation, of a bean type that needs to be injected, to deploy at

runtime.

Note  We can use injection points only in a CDI-enabled application, and Java EE 8
platform requires Dependency Injection for Java 1.0.

Listings 10-1, 10-2, and 10-3 demonstrate the concepts of “Contexts” and

“Dependency Injection” in their simplest form. In the following sections of this

chapter, we will build upon this example to demonstrate the various features of

CDI. Listing 10-1 defines a Wine interface that is implemented by the RedWine class,

as shown in Listing 10-2.

Listing 10-1.  Wine.java

package com.apress.ejb.chapter10;

public interface Wine {

 public String getColor();

}

Chapter 10 Contexts and Dependency Injection

477

The RedWine class demonstrates the “Context” aspect of CDI. It has the

ApplicationScoped annotation, which means that an instance of RedWine will be created

only once when the application is instantiated, and that instance will be destroyed when

the application is shut down. During the lifetime of the application, this instance will be

shared across the application. We will learn more about scopes later in this chapter.

Listing 10-2.  RedWine.java demonstrates the Context aspect

package com.apress.ejb.chapter10;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped

public class RedWine implements Wine {

 public String getColor() {

 return "Red";

 }

}

The client shown in Listing 10-3 injects the field newWine using the @Inject

annotation. Fields injected using the @Inject annotation are instantiated by the

container, which means that users do not need to create an instance of the object using

new, nor do they need a compile-time dependency on the actual implementation class. An

important thing to observe here is that the newWine field is of type Wine. In this particular

case, the container automatically uses the RedWine implementation for instantiation.

If we had to instantiate RedWine in the classical way, then we would have to use the

RedWine implementation instead of the Wine interface. As a result, there would have

been a tight coupling between the client and the Wine object that could not be changed

either at deploy time or at runtime. We will learn more about how the CDI container

knows which implementation to inject when we discuss dependency injection later in

this chapter.

Listing 10-3.  WineClient.java demonstrates the Dependency Injection Aspect

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineClient {

Chapter 10 Contexts and Dependency Injection

478

 // Instantiating the classical way

 private Wine oldWine = new RedWine();

 // Instantiating via field dependency injection

 @Inject

 private Wine newWine;

}

For reference, the CDI specification also defines the following services. A more

detailed explanation of these advanced CDI topics is outside the scope of this chapter,

but you are encouraged to refer to the CDI spec for additional information.

•	 Integration of the Web tier with contextual objects via Unified

Expression Language (EL)

•	 Decorators that implement beans and can intercept the invocation of

those beans by business methods

•	 Interceptors for separating business logic from cross-cutting

concerns

•	 Event notification model that defines the interaction between beans

in a loosely coupled manner

•	 Ability to interact cleanly with the container via Portable Extensions

�Relationship with EJB
CDI bridges the gap between the Web tier consisting of Servlets, JSP, and JSF and

the enterprise tier consisting of EJB and JPA. Servlets, JSP, and JSF are responsible

for content presentation but do not have transaction management and persistence

functionality. EJB and JPA, support database-related operations like commit, rollback,

and other transaction management functionality. Using CDI, Web applications can

perform database-related operations supported by JPA using session beans as a façade.

Session Beans participate in the CDI life cycle like managed beans. Session Beans

can be injected into other session beans and managed beans. Managed Beans can be

injected into session beans. Users should be careful while deciding whether to use

session beans or managed beans. Session Beans should be used when the application

requires the following advanced enterprise services:

Chapter 10 Contexts and Dependency Injection

479

•	 Role-based security

•	 Transaction management

•	 Scalability through instance pooling

•	 Concurrency

•	 Events and timers

Managed beans will suffice for applications that require dependency injection,

lifecycle management, and interceptors. Managed Beans can be easily upgraded to

session beans by adding @Stateless, @Stateful, or @Singleton annotation.

Note  Message-Driven Beans and Entities are non-contextual objects and may
not be injected into other objects. Message-Driven Beans take advantage of a few
CDI features, like interceptors and decorators, as the container performs injection
on all managed bean instances including the noncontextual ones.

�CDI Concepts
Now that we have a basic understanding of CDI, its place in the Java EE stack, and its

relationship with EJB, let us take a detailed look at Contexts and Dependency Injection.

�Beans and beans.xml
Beans are container-managed components that contain business logic: for example,

managed beans and session beans. It is important for readers to note that CDI does not

introduce a new bean type called a “CDI Bean” with its own unique component model.

CDI provides a set of services that can be consumed by managed beans and EJBs that

are defined by their existing component models. The process that the CDI container

undergoes of identifying beans found in the various deployment modules is called bean

discovery. The beans discovered by the container via bean discovery participate in the

CDI life cycle. The life cycle of these beans is managed by the container as per the CDI

specification.

Chapter 10 Contexts and Dependency Injection

480

Note T hroughout this chapter, the word “bean” implies Java beans participating
in the CDI life cycle unless specified otherwise.

The beans within a module participate in the CDI life cycle if the container detects a

beans.xml file in the WEB-INF directory of a WAR file or the META-INF directory of a JAR

file. Presence of beans.xml within a module aids the container to isolate quickly the CDI-

related modules, making bean discovery quicker. CDI does not require the beans.xml

to declare the beans available in the module; beans.xml can be empty. CDI artifacts like

alternatives, interceptors, and stereotypes are declared in the beans.xml if required.

The CDI container provides the following services to its beans:

•	 Transparent creation, destruction, and scoping

•	 Typesafe-scoped resolution via qualifiers when injected into

Java clients

•	 Typesafe-scoped resolution via name when used in Unified EL

Expressions for JSF clients

•	 Lifecycle callbacks

•	 Automatic injection of other bean instances

•	 Interception and decoration

•	 Event notification

Beans are injected into other beans and clients by declaring a class-level field and

annotating it with the javax.inject.Inject annotation. Beans can also be used with

Web tier technologies like JSP and JSF via Unified EL Expressions, by annotating them

with the javax.inject.Named annotation.

�Scope
The scope of an object determines the life span of individual instances of that object. An

application containing stateful object instances needs these instances to hold their state

for a defined period. The scope dictates when a bean instance should be created and

when the container should destroy it.

CDI has the following five types of scopes.

Chapter 10 Contexts and Dependency Injection

481

�Application Scope

The state of an application-scoped bean is shared across all of the users of the

application. An application-scoped object is created only once during the lifetime

of the application—the first time it is injected—and is destroyed only when the

application is shut down. An application scope is declared using the

@javax.enterprise.context.ApplicationScoped annotation.

�Request Scope

The state of a request-scoped bean is shared by all of the beans involved

in a single request. A request-scoped bean is created once per request and

destroyed upon completion of that request. A request scope is declared using the

@javax.enterprise.context.RequestScoped annotation.

�Session Scope

The state of a session-scoped bean is shared across multiple requests within the same

HTTP session. A session-scoped bean is created when the HTTP session begins and is

destroyed when the HTTP session closes or times out. A session scope is declared using

the @javax.enterprise.context.SessionScoped annotation.

�Conversation Scope

The state of a conversation-scoped bean is shared across all of the standard lifecycle

phases of a JSF faces or non-faces request. One JSF request is associated with only one

conversation. Any conversation can be either in transient state or in long-running state.

Transient is the default state for a conversation. A conversation is marked long running

by calling Conversation.begin(), and it is marked as transient by calling Conversation.

end(). At the end of a JSF request, a conversation-scoped object has to be in transient

state to be destroyed. A conversation scope is declared using the @javax.enterprise.

context.ConversationScoped annotation.

Chapter 10 Contexts and Dependency Injection

482

�Dependent Pseudo-Scope

The dependent scope is the default scope, and the container applies it when no scope

is explicitly defined. The instances of beans with a dependent scope are bound to only

one object. Instances of such beans are created and destroyed in sync with the creation

and destruction of the associated object. These bean instances are not shared between

the client applications. The dependent scope is declared using the @javax.enterprise.

context.Dependent annotation.

Note  Users can define custom scopes by using the @javax.inject.Scope
annotation.

�Dependency Injection with @Inject
Before the publication of JSR 330, which introduced Dependency Injection, a client

requiring services of a dependent class either had to instantiate a concrete instance

of that class or rely upon an outside module to wire up the dependency before it was

required. This created either a tightly coupled compile-time dependency between

the client and the dependent class or reliance by the client on an outside process to

“configure” the client appropriately. With dependency injection, the contract between

the client and the dependent class became decoupled, and the client gained some

control over how it was initialized. The client could request a resource to be injected

by its interface and relied on the container to inject an acceptable instance of some

concrete implementation class deliberately unknown to the client. CDI extends the

power of the client to control its configuration by introducing a way (Qualifiers, see

below) for the client to tell the container which abstract characteristics it requires of

the injected class. The container uses these requirements to decide, at runtime, which

dependent class to inject. This creates an even more loosely coupled system whereby the

injected class requirements are configured declaratively and dynamically in the client

and bound to an implementation class by the container at runtime.

The @javax.inject.Inject annotation defines an injection point, and there are

three locations in a bean where injection can be performed by the CDI container: to

initialize parameter values on a constructor declaration, to initialize parameter values

on a method declaration, and to initialize a class member in a field declaration. We will

examine each of these next.

Chapter 10 Contexts and Dependency Injection

483

�Bean Constructor Parameter Injection

A CDI bean designates a single one of its constructors to be its bean constructor. This is

the constructor that the CDI container uses to instantiate the bean. Bean constructor

parameter injection occurs when we add an @javax.inject.Inject annotation to a

bean constructor with one or more parameters. If a bean constructor has more than one

parameter, then all of the parameters are valid injection points, which means that the

container must provide values for all the parameters of a bean constructor. If the bean

class does not have a bean constructor with an @Inject annotation, then the default

(parameterless) constructor is used as the bean constructor.

It is possible for a client application to bypass the container and directly instantiate

the bean. The obvious result in such cases is that the returned object is not bound to any

context and the life cycle of the new instance is not managed by the container.

Listing 10-4 shows how the beanConstParaInjVintage field in the

WineCellarClient class can be initialized with a vintage Wine type using a bean

constructor parameter injection.

Note T he CDI container will choose the default implementation of the
Wine interface and pass an instance of that implementation onto the
WineCellarClient bean constructor.

Listing 10-4.  WineCellarClient.java

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineCellarClient {

 private Wine beanConstParaInjVintage;

 @Inject

 WineCellarClient(Wine vintage)

 {

 this.beanConstParaInjVintage = vintage;

 }

}

Chapter 10 Contexts and Dependency Injection

484

�Initializer Method Parameter Injection

CDI can also initialize a bean’s properties afterward by calling methods on the

bean that have been annotated @javax.inject.Inject. A bean method with an

@javax.inject.Inject annotation is called an initializer method. An initializer

method must be nonabstract, nonstatic, and nongeneric. An initializer method can have

zero or more parameters. If an initializer method has multiple parameters, then all of

the parameters are valid injection points and the CDI container must be able to supply

values for all of the parameters. It is legal for a bean class to declare multiple initializer

methods.

It is possible for a client application to bypass the container and directly call the

initializer method. Again, the obvious result in such cases is that the container will pass

no parameters to the method.

Listing 10-5 shows how the WineCellarClient class can be modified to use the

initializer method parameter injection instead of bean constructor parameter injection

to achieve the same result.

Listing 10-5.  WineCellarClient.java

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineCellarClient {

 private Wine initParaInjVintage;

 WineCellarClient()

 {

 }

 @Inject

 public void setVintageWine(Wine vintage)

 {

 this.initParaInjVintage = vintage;

 }

}

Chapter 10 Contexts and Dependency Injection

485

�Field Injection

Finally, a CDI container can instantiate a class-level field by selecting an unambiguous

implementation of the field’s interface type. A class-level field can be injected by

annotating it with the @Inject annotation. An injected field must be a nonstatic,

nonfinal field of a bean class or of any Java EE component class supporting injection.

Listing 10-6 shows how field injection simplifies initialization of the

fieldInjVintage.

Listing 10-6.  WineCellarClient.java

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineCellarClient {

 @Inject

 private Wine fieldInjVintage;

}

�Dependency Resolution
The CDI specification guarantees loosely coupled and typesafe resolution of injected beans.

The CDI container can unambiguously select an implementation of a bean type (class or

interface) with exactly one implementation. But it is possible for a bean type to have

multiple implementations. For example, we can add another class WhiteWine, as shown

in the Listing 10-7, that implements the interface Wine that we created in Listing 10-1.

Listing 10-7.  WhiteWine.java

package com.apress.ejb.chapter10;

public class WhiteWine implements Wine {

 public String getColor() {

 return "White";

 }

}

Chapter 10 Contexts and Dependency Injection

486

After introduction of the WhiteWine implementation, our WineClient, in which

Wine is injected, needs to distinguish between the two implementations of Wine: that

is, RedWine and WhiteWine. The CDI container raises an unsatisfied or ambiguous

dependency deployment time error when it is not able to isolate one bean class that

needs to be injected at a given injection point. This ambiguous dependency issue can be

resolved by using any one of the following three solutions:

•	 Qualifiers (for compile-time resolution)

•	 Alternatives (for deployment-time resolution)

•	 Producers (for runtime resolution)

�Qualifiers

A qualifier type enables CDI components to interact in a loosely coupled way by

providing polymorphism at compile time and dynamic binding at runtime. A qualifier

type allows the client to specify the desired characteristics of the instance to be injected

without having to know which concrete implementation class is being chosen.

Let us try and understand qualifiers using an example. The addition of WhiteWine

class in Listing 10-7 forced the container to raise an error, as the container could not

decide whether to instantiate the RedWine or the WhiteWine implementation. We will

use a qualifier to resolve this dependency. Listing 10-8 shows a user-defined qualifier

named Red.

Listing 10-8.  Red.java

package com.apress.ejb.chapter10;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

Chapter 10 Contexts and Dependency Injection

487

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface Red {

}

We will augment the RedWine class shown in Listing 10-2 with the Red qualifier, as

shown in Listing 10-9.

Listing 10-9.  RedWine.java 

package com.apress.ejb.chapter10;

import javax.enterprise.context.ApplicationScoped;

// Instance will be created only once, will be shared

// across the application and will be destroyed on

// application shutdown

@ApplicationScoped

@Red

public class RedWine implements Wine {

 public String getColor() {

 return "Red";

 }

}

Introducing this custom qualifier allows us to resolve the ambiguous dependency

error. WineClient, as coded in Listing 10-3, will now instantiate WhiteWine, as

WhiteWine has the @Default qualifier, and the injection point also has the same

@Default qualifier. Listing 10-10 shows how we can instantiate the newWine field with

RedWine implementation by adding the @Red qualifier at the injection point.

Listing 10-10.  WineClient. java

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineClient {

 // Instantiating in classic way

 // private Wine oldWine = new RedWine();

Chapter 10 Contexts and Dependency Injection

488

 // Instantiating via field dependency injection

 @Inject

 @Red

 private Wine newWine;

}

Now that we have a basic understanding of how qualifiers help us in resolving

ambiguity, we will look into the four types of CDI qualifiers.

@Default

When a bean or an injection point does not explicitly define a qualifier, the CDI

container assumes the qualifier as @javax.enterprise.inject.Default. If the CDI

bean has only one implementation, then the CDI container can easily select that

implementation for injection, as there is no ambiguity. The @Default is a built-in

qualifier that informs the CDI container to inject a single, default bean implementation

when no other qualifier (other than @Named, see below) is specified. The WhiteWine

class in Listing 10-7 has the @Default qualifier and can be written, as shown in

Listing 10-11, without any change in behavior.

Listing 10-11.  WhiteWine.java

package com.apress.ejb.chapter10;

import javax.enterprise.inject.Default;

@Default

public class WhiteWine implements Wine {

 public String getColor() {

 return "White";

 }

}

@Any

Just like the @Default qualifier, all beans implicitly have the @Any qualifier. We can add

an @javax.enterprise.inject.Any annotation to the WhiteWine class, as shown in

Listing 10-11, alongside @Default without any change in behavior. An @Any qualifier at

an injection point is useful for iterating over all of the implementations of a bean type.

Chapter 10 Contexts and Dependency Injection

489

Listing 10-12 shows how a @Any qualifier can be used to iterate over all of the

implementations of Wine.

Listing 10-12.  AllWinesClient.java

package com.apress.ejb.chapter10;

import javax.enterprise.inject.Any;

import javax.enterprise.inject.Instance;

import javax.inject.Inject;

public class AllWinesClient {

 @Inject

 @Any

 private Instance<Wine> allWines;

 private void printAllWineColors(){

 for (Wine wine : allWines){

 System.out.println(wine.getColor());

 }

 }

}

@Named

The @Named built-in qualifier is used by the beans that are required to be made accessible

to the Web tier through the Unified Expression Language (EL). By default, the bean name

with its first letter in lowercase is used to access the bean. A non-default name can be

passed as an argument to the @Named qualifier.

@New

The @New qualifier disassociates an instance of the bean from its declared scope. An

application can obtain the bean instances that are not bound to the declared scope by

using the @New qualifier. The @New qualifier forces the container to create a new instance

of the bean that is not bound to the specified CDI contextual life cycle.

For example, an instance of newWine, as shown in Listing 10-10, will be application

scoped as it is qualified with the @Red annotation and the RedWine bean is application

scoped. If we update the client to include the @New annotation, as shown in Listing 10-13,

Chapter 10 Contexts and Dependency Injection

490

then the newWine instance will be dependent scoped—adopt the life cycle of its normal

Java context—and not application scoped.

Listing 10-13.  WineClient.java

package com.apress.ejb.chapter10;

import javax.enterprise.inject.New;

import javax.inject.Inject;

public class WineClient {

 // Instantiating in classic way

 // private Wine oldWine = new RedWine();

 // Instantiating via field dependency injection

 @Inject

 @Red

 @New

 private Wine newWine;

}

User-defined qualifiers can be created using the @Qualifier annotation, as shown in

Listing 10-8.

�Alternatives
Alternatives enable the CDI components to interact in a loosely coupled way by

providing polymorphism at deployment time. An alternative bean is declared by

annotating the bean class with an @Alternative annotation. An alternative bean must

be explicitly declared in the beans.xml file if it has to be available for lookup, injection,

or EL resolution. When an ambiguous dependency exists at an injection point, the

container attempts to resolve the ambiguity by looking for the available alternative

among the beans that could be injected.

Alternatives use the information supplied in beans.xml to select the implementation

that needs to be instantiated. As the responsibility of choosing the implementation is

shifted out of the Java code and into a deployment descriptor, recompilation of the Java

code is not warranted if we decide to choose a different implementation.

Chapter 10 Contexts and Dependency Injection

491

To resolve a dependency at deploy time using alternatives, add the @javax.

enterprise.inject.Alternative annotation to the RedWine and the WhiteWine

implementations mentioned in Listing 10-2 and Listing 10-7, respectively. Then update

the beans.xml with the implementation class that should be instantiated, as shown

in Listing 10-14. The CDI container will instantiate the RedWine class in this case.

Recompilation of the client is not required if we decide to instantiate the WhiteWine class

later. We only need to update the beans.xml descriptor accordingly. If at deployment

time the beans.xml contains more than one implementation class or with a class name

that cannot be resolved, the container automatically detects the problem and treats it as

an error.

Listing 10-14.  beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <alternatives>

 <class>com.apress.ejb.chapter10.RedWine</class>

 </alternatives>

</beans>

�Producers
We have seen how to use the @Inject annotation to inject beans and to resolve

ambiguous dependencies that we face during injection using qualifiers and alternatives.

Using producers, we can inject any object in any other object provided that we produce

the object that needs to be injected. A producer method acts as a source of objects that

need to be injected. The objects that need to be injected need not be instances of a

bean, and the concrete type of the object that needs to be injected can be decided at

runtime. This provides a loosely coupled but typesafe polymorphism at runtime. One

of the practical uses of producers is to inject Java EE resources like EntityManager,

QueueConnetion, QueueSession, and so on. CDI also provides the @Dispose annotation,

which we can use to free up the resources by closing them when they go out of scope.

Chapter 10 Contexts and Dependency Injection

492

Producer Field is a simpler alternative to Producer Methods.

Listing 10-16 shows how a producer method can be used to select which

implementation of the Wine interface is chosen for dependency injection. The decision

to choose the exact implementation for injection is taken at runtime. The qualifier

RandomSelector defined in Listing 10-15 is similar to the qualifier Red defined in

Listing 10-8.

Listing 10-15.  RandomSelector.java

package com.apress.ejb.chapter10;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface RandomSelector {

}

Listing 10-16 shows the WineSelector class that has a getWine method that returns

an instance of Wine. The important thing to note here is the exact instance of Wine

(RedWine or WhiteWine) that will be returned is decided at the runtime. In this case, that

decision is based on the number generated by the random number generator.

Listing 10-16.  WineSelector.java

package com.apress.ejb.chapter10;

import java.util.Random;

import javax.enterprise.inject.New;

import javax.enterprise.inject.Produces;

Chapter 10 Contexts and Dependency Injection

493

public class WineSelector {

 @Produces

 @RandomSelector

 public Wine getWine(@New RedWine rw, @New WhiteWine ww) {

 final int wineNumber = new Random().nextInt(2);

 if (wineNumber == 0) {

 return rw;

 }

 else if (wineNumber == 1) {

 return ww;

 }

 else{

 return null;

 }

 }

}

Listing 10-17 shows the WineClient class that uses the RandomSelector qualifier to

instantiate the randomWine field based on the random number generated in Listing 10-16.

Listing 10-17.  WineClient.java

package com.apress.ejb.chapter10;

import javax.inject.Inject;

public class WineClient {

 @Inject

 @RandomSelector

 private Wine randomWine;

}

Chapter 10 Contexts and Dependency Injection

494

�Interaction with Session Beans
CDI enhances the functionality provided by the session beans by associating them with a

definite scope and creating a loosely coupled typesafe ecosystem that resolves ambiguity

through injection at compile time, deploy time, or runtime. In return, managed beans

can be annotated with a @Stateful, @Stateless, or @Singleton annotation enhancing

them with declarative enterprise features like role-based security, transaction

management, scalability, and concurrency in a multiuser environment.

�Session Bean Scope
Session beans participate in the contextual life cycle provided by the CDI container

like any other bean. A session bean can be associated with CDI scopes by adding CDI-

specific scope annotations (@ApplicationScoped, @RequestScoped, @SessionScoped, or

@ConversationScoped). As a result, the container automatically creates a session bean

instance when it is needed by the client and, when no longer in scope, the container

automatically destroys the instance.

By default, all generic session beans have @Dependent pseudo-scope, and hence

they cannot be shared between the client applications. Inherently, some types of session

beans play well with specific types of scopes. For example, a singleton session bean can

have only one instance that exists during the entire life of an application. This property

of the singleton session bean compliments the property of an application-scoped bean.

Adding an @ApplicationScoped annotation to a stateless session bean does not make

sense as a stateless session bean instance is associated with a client only for the duration

of its invocation and does not maintain a conversational state with the client.

As a result, users must follow the rules mentioned in Table 10-1 while applying the

CDI scopes to a session bean. If a session bean specifies an illegal scope, the container

automatically detects the problem and treats it as a definition error.

Table 10-1.  Session Bean to CDI Scope Mapping

Session Bean Type Scope

@Singleton @ApplicationScoped or @Dependent

@Stateless @Dependent

@Stateful @ApplicationScoped, @RequestScoped, @SessionScoped,

@ConversationScoped, or @Dependent

Chapter 10 Contexts and Dependency Injection

495

�Resolving Session Bean Ambiguity
Just like any other bean, session beans participating in the CDI life cycle can encounter

the “unsatisfied or ambiguous dependency” error when the CDI container is not

able to isolate one session bean that can be injected at a given injection point. These

ambiguities can be resolved by applying qualifiers, alternatives, or producers to the

participating session bean.

Session beans participating in a CDI life cycle use qualifiers (@Default, @Any, @New,

@Named, or user defined) to resolve ambiguous dependencies at compile time, just like

any other bean.

If an ambiguous dependency needs to be resolved at deployment time, then an

alternative session bean must be declared explicitly in beans.xml. Once declared in

beans.xml, it is automatically available for lookup, injection, or EL resolution.

The producer method of a session bean must be either a business method of the EJB

or a static method of the bean class. If this is not the case, the container automatically

detects the problem and treats it as a definition error. Similarly, the producer field must

be a static field of the bean class.

Users can use qualifiers, alternatives, and producers with session beans in exactly

the same way they use them with other beans.

�Limitations
While CDI and session beans are great companions with each filling the gap that was left

by the other, session beans participating in the CDI life cycle do have some limitations.

For example, remote interfaces of session beans are not included in set of bean types and

cannot participate in the CDI life cycle.

�Compiling, Deploying, and Testing the CDI
Application
Unlike EJB, CDI doesn’t define any special deployment archive. CDI beans can be

packaged within a JAR, EJB-JAR, or WAR file. The only condition is that the archive must

be a bean archive, which means that the archive must include the beans.xml descriptor.

The location of CDI beans within an archive is dependent on the location of its beans.xml.

Chapter 10 Contexts and Dependency Injection

496

•	 If the beans.xml is located in the META-INF directory of the archive,

then the CDI beans must be packaged in a library JAR, an EJB JAR, or

a RAR archive.

•	 If the beans.xml is located in the WEB-INF directory of the WAR file,

then the CDI beans must be packaged in WEB-INF/classes directory

of a WAR file.

In the case of some CDI containers, packaged CDI archives need to be assembled

into an Enterprise Archive (EAR) file before deployment. Application servers provide

deployment utilities or Ant tasks to facilitate deployment of CDI beans. Java IDEs

(integrated development environments) like JDeveloper, NetBeans, and Eclipse also

provide deployment features that allow developers to package and deploy CDI beans to

an application server.

Throughout this chapter, we have used code snippets that demonstrate the two core

aspects of CDI: scope and dependency injection. We started with developing a simple

Wine interface and then went on to create two implementations of it – RedWine and

WhiteWine. We learned about the various scopes and added the application scope to the

RedWine implementation. We also saw examples that resolved ambiguous dependency

by using qualifiers, alternatives, and producers. The WineClient client that we listed in

the chapter until now demonstrates how clients can potentially interact with the CDI

beans, but it is not a full-fledged executable client. We will now convert the WineClient

client into a servlet client and test the CDI beans using it by deploying them on the

GlassFish application server. The following sections will walk you through the steps

necessary to compile, deploy, and test these CDI beans using their corresponding

servlet clients.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

Chapter 10 Contexts and Dependency Injection

497

Note  While creating a new NetBeans project, make sure that you have selected
the “Enable Contexts and Dependency Injection” check box on the “Server and
Settings” page of the new application wizard. This will create a beans.xml and
add the CDI-related runtime libraries to your project.

�Structure of the Sample Code
We have divided the samples into the following four packages, and all the artifacts

within those packages have the package-private scope. We do this separation so that the

CDI objects and their clients do not interfere with each other, and we can observe their

behavior in isolation.

•	 com.apress.ejb.chapter10.userdefinedqualifier

•	 com.apress.ejb.chapter10.anyqualifier

•	 com.apress.ejb.chapter10.alternatives

•	 com.apress.ejb.chapter10.producers

�Compiling the CDI Beans and Their Clients
Copy the Chapter10-CDISamples directory and its contents into a directory of your

choice. Run the NetBeans IDE, and open the Chapter10-CDISamples project using the

File ➤ Open Project menu, as shown in Figure 10-3.

Chapter 10 Contexts and Dependency Injection

498

Expand the Chapter10-CDISamples node and observe that the various packages

listed above appear under the Source Packages section as shown in Figure 10-4.

Figure 10-4.  Verifying the packages in the Chapter10-CDISamples project

Figure 10-3.  Opening the Chapter10-CDISamples project

Chapter 10 Contexts and Dependency Injection

499

Invoke the context menu on the Chapter10-CDISamples node, and build the

application by selecting the Clean and Build menu option, as shown in Figure 10-5.

The CDI bean and their clients compile without any errors.

Figure 10-5.  Building the project

�Deploying and Running the CDI Clients
Once we have compiled the CDI project, we can run the clients directly using the Run

option available on the context menu of each of the servlet clients. When we run the

servlet client the NetBeans IDE will automatically package the CDI beans and their

clients and deploy them to the integrated GlassFish application server.

�Testing the User-Defined Qualifier Client

We will start with testing and experimenting with the user-defined qualifier Red, which

we created in Listing 10-8 and used in Listings 10-9 and 10-10.

In addition to the Red qualifier, we have also created the White qualifier that

we have added to the WhiteWine implementation of the Wine interface. Expand the

com.apress.ejb.chapter10.userdefinedqualifier package, and right-click on the

Chapter 10 Contexts and Dependency Injection

500

UsrDefQlfWineClient servlet to invoke the context menu, as shown in Figure 10-6. Next

select the Run option to execute the servlet client.

Figure 10-6.  Running the User-Defined Qualifier Client

Even though there are two implementations of the Wine interface—RedWine and

WhiteWine—the CDI container is able to resolve the ambiguous dependency by using

the @Red annotation on injected newWine field. The result of the executed servlet is

shown in Figure 10-7.

Chapter 10 Contexts and Dependency Injection

501

You can try to run the client again with the following changes and observe the

difference in the output:

•	 Replace the @Red annotation on the injected newWine field with the

@White annotation.

•	 Remove both @Red and @White annotations on the injected newWine

field, and execute the servlet client.

�Testing the Any Qualifier Client

Next, we will test the Any qualifier, demonstrated in Listing 10-12, which will return the

list of all the implementations of the Wine interface.

In addition to the RedWine and WhiteWine implementations, we have also created

the SparklingWine implementation along with its Sparkling qualifier. Expand the com.

apress.ejb.chapter10.anyqualifier package, and right-click on the AnyWineClient

servlet to invoke the context menu, as shown in Figure 10-8. Select the Run option to

execute the servlet client.

Figure 10-7.  Results from the User-Defined Qualifier servlet

Chapter 10 Contexts and Dependency Injection

502

By using the @Any qualifier, the container is able to determine all the

implementations of the Wine interface. The result of the executed servlet is shown in

Figure 10-9.

Figure 10-8.  Running the Any qualifier client

Chapter 10 Contexts and Dependency Injection

503

You can try to run the client again with the following changes and observe the

difference in the output:

•	 Create a RoseWine implementation along with its Rose qualifier in the

same package, and rerun the servlet client.

•	 Remove the @Any annotation present on the injected allWines field,

and execute the servlet client.

�Testing the Alternatives Client

After seeing the qualifiers in action, we will look at how we can resolve ambiguous

dependencies at deploy time using alternatives. We saw how to declare alternatives in

beans.xml in Listing 10-14.

Expand the com.apress.ejb.chapter10.alternatives package, and right-click

on the AlternativesWineClient servlet to invoke the context menu, as shown in

Figure 10-10. Select the Run option to execute the servlet client.

Figure 10-9.  Result from the Any qualifier client servlet

Chapter 10 Contexts and Dependency Injection

504

The CDI container instantiates the RedWine class using the <alternatives>

declaration in the beans.xml. The output of the execution is shown in Figure 10-11.

Figure 10-10.  Running the Alternatives client

Figure 10-11.  Result from the Alternatives client

Chapter 10 Contexts and Dependency Injection

505

You can try and run the client again with the following changes and observe the

difference in the output:

•	 Update the beans.xml with WhiteWine, and rerun the servlet client.

•	 Remove the @Alternative annotation present on RedWine or

WhiteWine implementation, and execute the servlet client.

�Testing the Producers Client

Finally, we will see the producers in action. We saw how to declare a producer method

in Listing 10-16. Expand the com.apress.ejb.chapter10.producers package, and

right-click on the ProducerWineClient servlet to invoke the context menu, as shown in

Figure 10-12. Select the Run option to execute the servlet client.

Chapter 10 Contexts and Dependency Injection

506

The WineSelector class declares a producer method named getWine. In the getWine

method, we generate a random number that is greater than or equal to 0 and less than

4. The getWine method returns an instance of an implementation of the Wine interface

based on the generated random number. The output is shown in Figure 10-13.

Figure 10-13.  Result from Producers client

Figure 10-12.  Running the Producer client

Chapter 10 Contexts and Dependency Injection

507

You can try to run the client again with the following changes and observe the

difference in the output:

•	 Re-deploy and rerun the client servlet a couple of times, and observe

the difference in output.

•	 Comment out the @Produces annotation present on the getWine

method, and execute the servlet client.

�Summary
In this chapter, we covered Contexts and Dependency Injection (CDI) version 2.0.

We looked at the place that CDI occupies within Java EE framework and the benefits

it provides by gluing Web and business tiers. We especially learned that we can now

use CDI 2.0 on Java EE as well as Java SE as well as how the CDI 2.0 new features

help increase developer productivity. We explained the two main components of

CDI framework, namely, contexts and dependency injection. We also looked at the

contextual life cycle of stateful components participating in the CDI life cycle and

discussed different types of scopes. Using examples, we also looked at different ways that

dependency can be injected and how ambiguous dependency issues can be resolved at

compile time, deploy time, or runtime. We discussed the relationship between CDI and

EJB, specifically with session beans. Finally, we deployed and executed the sample CDI

client program using the GlassFish application server and experimented with the sample

code to see how changes to the code affect the output.

Chapter 10 Contexts and Dependency Injection

509
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_11

CHAPTER 11

EJB Packaging
and Deployment
Until now, we have focused on how to build EJBs, Java Persistence API (JPA) entities,

and their clients, for exploiting the surrounding enterprise services offered by the EJB

container. In Java EE parlance, these tasks fall under the role of Application Component

Provider, which is simply referred to as the Provider. In this chapter, we explore the

topics that surround the process of packaging your components into modules and

library components, binding external references declared in your Java EE components

to actual resources in your server environment, and sending it all off to an application

server so that the components can be executed at runtime by an application. These

responsibilities are handled by the Java EE roles of the Application Assembler (the

Assembler) and the Application Deployer (the Deployer). While in practice it is common

for a single individual to perform one or more of these roles, or for many people to

perform any single role, for the purpose of explaining these topics, we will partition the

deployment tasks into stages that correspond to these designated roles.

We will emphasize EJB and JPA entity components and also touch upon deployment

of the other Java EE module types: Web application modules, application clients, and

resource adapters. We will also look at the relationship between the Java EE server and

the four Java EE containers that it supports, and we will explore some of the services that

are provided by a Java EE server.

Following a brief overview of the deployment tasks in which we introduce much of

the deployment terminology, we offer a look at the Java EE infrastructure components—

the Java EE server and containers—that support deployment. We will explore the

different types of Java EE modules and how they fit together and how you specify

the deployment descriptors—metadata files—that define each module. A section on

library components is offered, which explains how to declare class-path dependencies

between Java EE modules and library components. We then provide a more detailed

510

examination of the Assembler and Deployer roles, and we conclude with the deployment

requirements that are specific to EJB modules and JPA persistence units.

In the current Java world, it is very important the usage of Java Virtual Machine

(JMV). Basically, every Java program requires a JVM running on our machine so that

all the Java bytecode is run using that JVM. This means that VM will be not distributed

with each program. The same concept is used for Java EE. After reading this chapter, you

should understand how to do the following:

•	 Group your EJB, JPA, and other application components into Java EE

modules and library components.

•	 Resolve naming collisions and redundancies found in external

references.

•	 Package a Java EE application consisting of one or more Java EE

modules and library components.

•	 Declare class-path dependencies between modules and libraries.

•	 Bind external references to physical resources in the application

server environment.

�A Note on Deployment Tools
This chapter provides some examples of how to structure your application archives. It

assumes that you have access to software tools, typically offered through an integrated

development environment (IDE), to assist you in the assembly and deployment of

your Java EE applications. There have been efforts in the Java Community Process

(JCP) to standardize in this area (see JSR 88, the Java EE Application Deployment

API), but deployment inevitably requires application server-specific configuration

tasks. Fortunately, application servers generally provide Ant tasks to invoke their own

deployment utilities, and you may also use Ant to create the deployable archives. The

use of Ant is prevalent in many development environments and is nearly ubiquitous in

production environments in which automated scripts are required to deploy the same

Java EE applications to multiple Java EE server instances. Many of the customization

steps that are described in this chapter require the use of interactive editors, mainly

Chapter 11 EJB Packaging and Deployment

511

for updating Java EE generic and platform-specific XML deployment descriptors. For

these tasks, an IDE can prove invaluable, and many IDEs provide platform-specific

deployment support that guides you in packaging, configuring, and deploying your

Java EE applications.

�Overview of the Packaging and Deployment
Processes
Packaging is the process of assembling (or grouping) various Java EE modules into Java

EE JAR, WAR, or EAR files. Once packaged in a Java Archive (JAR) file, a Web Archive

(WAR) file, or an Enterprise Archive (EAR) file, the Java EE application is ready to be

delivered to the application server. Deployment is the process of installing Java EE

components in an application server so that they can be found and executed when

you run your application. This process involves multiple tasks that must be performed,

roughly, in sequence. These tasks are summarized in the following sections, and each is

described in greater detail and applied specifically to EJB and JPA deployment later in

this chapter. Some steps will only need to be performed under special circumstances, so

actual deployment may involve only a subset of these tasks.

Major packaging distribution goal is making sure that:

–– Not all the libraries needed by the programs will be distributed.

Instead it is making sure that they will be downloaded” once in the

whole system.

–– Not many libraries needed by the programs will be loaded many

times into memory. Instead we need to load the shared code once for

other programs to use it.

�The Provider
Generally speaking, the Provider (there may be many for a given project) produces the

Java EE application components as a precursor to deployment. The tasks associated with

the Provider, along with the files delivered by this role, are shown in Figure 11-1.

Chapter 11 EJB Packaging and Deployment

512

The deliverables from the Provider are application components and possibly module

descriptors, provided either as files on disk or packaged into Java Archive (JAR) files.

�The Assembler
The Assembler takes the output from the Provider, and with it performs the tasks and

produces the deliverables illustrated in Figure 11-2.

Figure 11-1.  Tasks and deliverables of the Application Component Provider

Chapter 11 EJB Packaging and Deployment

513

�Grouping Components by Container Type to Produce Java EE
Modules

The output of the Provider is a set of Java EE components, such as EJBs, JPA entities, JSF

(JavaServer Faces) pages, application client classes, and possibly others. The Provider

may also produce non-Java EE components, like ordinary Java classes. The Assembler

groups the Java EE components together such that each group contains components of

only one Java EE component type. Whenever the Provider has defined a module-level

deployment descriptor (XML) file, the Assembler may follow any directives in that file to

compose the groups, or the Assembler may choose either to merge or split descriptors to

increase or decrease the number of Java EE components in each group. At the end of this

process, each resulting group will become a Java EE module. The non-Java EE classes

and resources that are left over may be bundled into the Java EE modules or isolated into

their own groups to become sharable library components.

�Defining Module-Level Deployment Descriptors (Optional)

For each Java EE module that is formed, the Assembler may locate and assign a

deployment descriptor to represent that module. Starting with Java EE 5, this step

is optional, since annotations now make it possible to identify the module type by

Figure 11-2.  Deployment tasks and deliverables of the Application Assembler

Chapter 11 EJB Packaging and Deployment

514

analyzing its file contents. For example, you (in the role of either the Provider or the

Assembler) are free to define an ejb-jar.xml deployment descriptor; but unless you are

overriding information that is captured in Java annotations, or you have chosen to not

use annotations, it is no longer necessary. In Java EE 5, an EJB module is defined simply

by the presence of a class in a file group that is annotated @Stateless, @Stateful, or

@MessageDriven.

�Packaging Components (with Optional Descriptors) into JAR
Files

In this stage, the component groups identified in the first stage are packaged together

with their module-level deployment descriptors, if defined, into files using the JAR

format. EJB modules are archived into EJB JAR files with a .jar extension, Web

application modules are archived into Web Archive (WAR) files with a .war extension,

application clients are archived into JAR files with a .jar extension, and so on. JPA

persistence units may be archived into their own JAR files (with .jar extensions) or

archived directly into EJB JAR or WAR files. We’ll cover this detail in the “Assembling a

Persistence Unit” section later in the chapter.

In addition, non-Java EE components, such as ordinary Java classes, may be added

to these Java EE module archives; or the Assembler may archive them into their own JAR

files to be deployed as library components.

�Creating an Enterprise Archive (EAR) File (Optional)

If you (as the Assembler) have created multiple archives that you want to deploy together

as a logical group, you will need to bundle these archives together inside a wrapper JAR

file known as an EAR file, which uses the suffix .ear. This EAR file is referred to as a Java

EE application. If you have created only a single EJB JAR or WAR archive, no further

packaging is required. You can skip the step of creating a wrapper EAR file, and deploy

the EJB JAR or WAR file as a stand-alone module.

An application acts as a packaging boundary, ensuring that the Java EE components

in all modules are able to communicate with each other within a single naming context.

A Java EE application does not necessarily correspond to an actual end-user application

as it may be used by many different client applications, but it allows client applications

to connect to the Java EE application once and access the Java EE components in that

application from a single context.

Chapter 11 EJB Packaging and Deployment

515

An EAR file may contain an application-level deployment descriptor, application.

xml, in its META-INF directory. This file is optional in Java EE 5, since it is now possible

to rely on default rules to provide default names and properties for each module. By

default, each module name defaults to the short name of its archive file, minus the file

suffix (.jar, .war, and so on). Defining an application.xml descriptor allows you to

refine the default names and properties and to choose selectively which modules in the

EAR file to include in the application for a particular deployment. The Figure 11-3 shows

the EAR File Structure.

Note A WAR file and an EAR file are standard JAR files with a .war or .ear
extension respectively.

Figure 11-3.  EAR File Structure

�Assembler-Specific Tasks

Depending on the completeness and the complexity of the deployment descriptors

for each module, the Assembler may be required to complete or refine some of the

external references declared by the Provider. In many cases, the modules are sufficiently

Chapter 11 EJB Packaging and Deployment

516

self-contained and complete so that there is no further work for the Assembler to

perform, even when a deployment descriptor is not supplied by the Provider. In more

complex deployment scenarios, when Provider-supplied documentation is used

(possibly communicated through description properties on either the annotations or

in the deployment descriptor), the Assembler may need to consolidate semantically

equivalent but disparately named resources into a minimal, distinct set. Conversely, the

Assembler may need to avoid resource name collisions by renaming resource references

that share the same name but hold different semantics.

For example, if the Assembler is bundling two Java EE modules produced by different

providers into a single Java EE application, both providers may reference the same

logical EJB but use different names, or they may reference them with the names not yet

bound. It is the responsibility of the Assembler to detect cases such as this, using the

documentation provided by the Provider(s), and update the EJB references to bind to a

single name. This name may be chosen by the Assembler and assigned to the EJB in that

application context.

Any changes made by the Assembler are applied only to the module and application

deployment descriptor files, and not to the Java source. This process works because

of the rules of precedence dictated by Java EE, which in the case where conflicting

metadata properties are defined both in the Java annotation source and the XML

deployment descriptors, the deployment descriptors will prevail. The Assembler is

able to resolve inconsistencies in the Java source by working only with the deployment

descriptor files.

�The Deployer
The tasks and deliverables of the Deployer are depicted in Figure 11-4.

Chapter 11 EJB Packaging and Deployment

517

�Deployer-Specific Tasks

Again, using instructions from the Assembler (and Provider)—typically communicated

through description properties in the deployment descriptors or source annotations,

the Deployer is required to bind all external references onto concrete resources (EJB

references, resource references, persistence unit references, and so on) in the target

application server environment. Only the Deployer can presume to know about the

target server environment, and Java EE has deliberately added a layer of indirection to

all resource usage to allow this binding to occur without affecting the work of either the

Provider or the Assembler. This is why all resources used by the Java EE components are

referred to via indirect references.

As was the case with the Assembler, Java EE policy dictates that the Deployer is

allowed to make changes only to the XML deployment descriptor files and not to

annotations in the Java source.

�Invoking the Application Server-Specific Deployment Tool

Finally, your Java EE module or your Java EE application is ready to be submitted to the

application server. Your application server will provide a deployment tool that lets you

complete the deployment and install the Java EE components in the application server,

ready to be executed by the end-user applications. During this stage, the deployment

Figure 11-4.  Tasks and deliverables of the Application Deployer

Chapter 11 EJB Packaging and Deployment

518

tool will validate the module(s) being submitted for internal integrity and ensure

that all resources can be bound to actual objects that reside in the application server

environment. The deployment will fail if any required resources cannot be located at

deploy time, or if referenced library components are not found.

Note T he application server will run once per environment, meaning that only
one runtime is started.

�Summary of Overview

Java EE deployment lets you deploy individual modules, library components, or

complete applications. In many cases, deployment may simply involve packaging the

compiled source, together with the descriptors (a persistence.xml file is mandatory for

persistence units, but ejb-jar.xml, web.xml, and application.xml files are optional for

an EJB JAR, WAR and EAR modules respectively) and submitting them to a deployment

tool. When assembling applications from multiple modules that may have been built by

different component providers and may be of differing versions, the Assembler role takes

on greater importance.

�Java EE Deployment Infrastructure
Now that we have summarized the deployment process, let us explore some areas of the

Java EE infrastructure that are central to deployment. An understanding of this topic is

useful when it is time to make your own decisions about how to package your code into

modules and to resolve and bind external references.

�The Java EE Server
The Java EE server is the program running inside your application server that provides

enterprise services to your Java EE components when they are executed. The Java EE

server is also responsible for handling deployment requests and redirecting them to the

Java EE containers that it hosts.

The Java EE specification defines the list of core services that must be supported by

a Java EE server. These include messaging, database, security, transaction, persistence,

and many other services. The Java EE server may also be extended to provide additional

Chapter 11 EJB Packaging and Deployment

519

services, or alternative implementations of existing services, which are beyond those

mandated by the specification. Java EE specification defines how a server may be extended

to provide its containers with access to remote and external services by adapting them into

the Java EE environment using resource adapters through the Java EE Connector API.

�The Java EE Containers
The primary purpose of the Java EE server is to support Java EE containers, which

provide various environments in which Java EE components are run.

Containers are the interface between a component and the low-level, platform-

specific functionality that supports the component.

Before we can execute it, we must assemble into a Java EE module and deploy into its

container the following: a Web, enterprise bean, or application client component, which

means that we need to specify the container settings for each component in the Java EE

application and for the Java EE application itself.

We must use the Java EE container settings to customize the underlying support

provided by the Java EE server, including services as the following:

•	 The Java EE security model;

•	 The Java EE transaction model;

•	 JNDI lookup services;

•	 The Java EE remote connectivity model.

The Java EE 8 specification stipulates support for the following Java EE containers

shown in Figure 11-5 and are the following:

•	 Java EE server: The runtime portion of a Java EE product.

•	 EJB container: Manages the execution of enterprise beans for Java EE

applications.

•	 Web container: Manages the execution of web pages, servlets, and

some EJB components for Java EE applications.

•	 Application client container: Manages the execution of application

client components.

•	 Applet container: Manages the execution of applets and consists of a

web browser and a Java Plug-in running on the client together.

Chapter 11 EJB Packaging and Deployment

520

While the EJB and Web containers execute in the application server running in the

middle tier, the application client container typically executes in a Java SE environment

on the client tier, and the applet container typically runs inside a Web browser.

Nonetheless, they all rely on their underlying Java EE server for the many enterprise

services that they in turn provide—through APIs—to the components that execute inside

their container environment. For example, a Java EE server provides native messaging

services to a Java EE container, and the container exposes messaging services to its

Figure 11-5.  A JAVA EE 8 Container

Chapter 11 EJB Packaging and Deployment

521

components through the JMS (Java Message Service) API. Similarly, the container

exposes database services through Java Database Connectivity (JDBC), transaction

services through Java Transaction API (JTA), and so on. The Java EE containers also

interpose on all communication between Java EE application components executing in

Java EE containers, to provide component and resource injection. This is illustrated in

Figure 11-6.

Figure 11-6.  A JAVA EE Server

In addition to the many built-in services offered to Java EE components by the

Java EE containers, Java EE allows for the integration of third-party services—through

resource adapters and the Connector API—that are exposed to Java EE components

through their containers using the Java EE Service Provider Interface (SPI).

�Java EE Deployment Components
The principal building block components of a Java EE deployment are the Java EE

application and the Java EE modules. Let’s take a look at what defines these components.

�The Java EE Application
Java EE lets you deploy both individual Java EE modules and entire Java EE applications

to the server. As mentioned in the preceding “Overview of the Packaging and

Deployment Processes” section, when deploying an application, you package the

individual Java EE modules, together with any associated deployment descriptors

Chapter 11 EJB Packaging and Deployment

522

and dependent library components, into a wrapper archive JAR file known as an EAR

file, which has the suffix .ear. Deploying an individual Java EE module is essentially a

shortcut to avoid wrapping one JAR file around another single JAR file.

Apart from its packaging structure, a Java EE application operates, at runtime, as a

context in which one or more associated Java EE components, such as EJBs, servlets, and

application clients, can operate and communicate with one another using a shared class

loader and namespace. It may be useful to think of a Java EE application as a loosely

coupled group of Java EE modules that are able to see each other and to share resources.

�Java EE Module Types
Java EE defines the following Java EE module types: EJB, Web application, application

client, and resource adapter. The first three correspond to their eponymous containers,

and their deployment is delegated to these containers. Deploying a resource adapter

module installs the resources in the Java EE server and registers these resources for

use by Java EE components. Ordinary Java classes and other resources referenced by

your Java EE modules may also be included as library components within an EAR file,

either packaged as JAR files or stored as directories, and deployed with your Java EE

application.

Note that a JPA persistence unit, comprising a set of JPA entities, is not a Java EE

module but a library component. We describe some of the reasons for this in the

“Persistence Unit” section that follows.

Let’s take a closer look at each of the Java EE module types.

�EJB Module

An EJB module is comprised of one or more session and/or message-driven beans

(MDBs). It is packaged into an EJB JAR file, and if it includes an ejb-jar.xml deployment

descriptor (this is optional starting with Java EE 5), it must be located in the META-

INF directory in the JAR file. Platform-specific descriptors may also be added to this

META-INF directory. If the EJB JAR file doesn’t contain an ejb-jar.xml file, the EJB bean

classes must identify themselves as EJBs using @Stateless, @Stateful, @Singleton, or @

MessageDriven annotations.

In many cases, it is desirable to isolate the client’s view of an EJB module into its

own archive. When the client communicates only with a session bean’s interfaces, it

does not need access to the session bean class. In this case, it is good practice to package

Chapter 11 EJB Packaging and Deployment

523

only the interfaces of the session bean(s), along with any other dependent classes,

into a separate EJB client JAR library. This JAR file can be handed to the client, but it

can also be referenced from the EJB JAR file so that these interfaces do not need to be

duplicated inside the EJB JAR file. To reference the EJB client JAR file, or any other JAR

file or directory in the EAR file, the Assembler adds a Class-Path entry to the META-INF/

MANIFEST.MF file in the JAR file that points to these locations:

Class-Path: MyEjb-Client.jar

Note  For further information on the MANIFEST.MF file, including usage of
the Class-Path and Extension-List entries referred to in this chapter, please see:
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/
jar.html.

More than one JAR file or directory can be referenced in this way by separating the

.jar and directory entries with a space character. The path of the referenced JAR files

is relative to the EJB JAR file itself, which must be located in the root directory of the

EAR file. In the preceding example, the MyEjb-Client.jar file is also located in the root

directory of the EAR file.

An EJB module may also include a persistence unit, which is described in the

following section. A persistence unit may only exist in the EJB JAR in expanded form;

JAR files may not be nested inside the EJB JAR file. A persistence unit is defined by the

presence of a META-INF/persistence.xml file in the contents of the EJB JAR file.

An EJB module may be assigned a name using a module declaration inside a META-

INF/application.xml file. When no META-INF/application.xml file is present during

deployment, as when the EJB JAR file is deployed stand-alone or within an EAR file that

does not include this descriptor, it is assigned a default name. This name is derived from

the name of the EJB JAR archive, minus any directory information or the .jar suffix. For

example, an EJB JAR file may be bundled in an EAR file in the following location:

./OrderManagerEJBModule.jar

In this case, its default module name would be OrderManagerEJBModule.

Chapter 11 EJB Packaging and Deployment

http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html

524

�EJBs in a WAR File

The EJB 3.0 specification simplified the packaging of EJBs by making the packaging of

XML descriptors like ejb-jar.xml optional. The EJB 3.1 specification has taken this

simplification even further by allowing the packaging of EJBs (POJOs annotated with

@Stateless, @Stateful, @Singleton, or @MessageDriven annotations) directly in the

WEB-INF/classes directory of the WAR file. Similarly, the ejb-jar.xml descriptor, if

present, can be packaged directly into the WEB-INF directory along with web.xml. With

this change, users no longer need to create a separate EJB JAR module for packaging the

EJBs. Figure 11-7 depicts this new packaging option.

Figure 11-7.  Packaging EJB directly under WEB-INF\classes directory of WAR file

�Persistence Unit

A group of JPA entities, known as a persistence unit, is neither strictly a module type nor

does it have its own dedicated container. Instead, the Java EE server supports persistence

directly as one of the core services it offers to the Java EE containers. This allows JPA

entities to behave as persistent objects and interact with Java EE components while

executing in the other Java EE container environments. By not being constrained to their

own container, JPA entities are also free to execute and demonstrate persistent behavior

outside the Java EE environment.

Note I n a deployment context, the term persistence unit refers to a group
of collocated JPA entities and a corresponding (and mandatory) META-INF/
persistence.xml file. This group of files may be packaged into its own JAR
file, or the files may be bundled directly inside an EJB JAR or WAR file. In turn, the
persistence.xml file defines one or more <persistence-unit> entries that

Chapter 11 EJB Packaging and Deployment

525

may further partition the entities in the persistence unit packaging structure. In this
chapter, we differentiate these two concepts that share similar names by always
using the hyphen (persistence-unit) when describing the <persistence-unit>
XML element. Thus, any reference to a persistent unit can be assumed to refer to
the group of entities Collocated with a persistence.xml file.

As mentioned in the preceding note, the packaging of persistence units is different

from the packaging of other module types. When packaged in a Java EE application EAR

file, a persistence unit is treated as a library component (see the “Library Components”

section below). It can be packaged into a JAR file, or its classes can be packaged directly

inside an EJB JAR or WAR file. Either way, a META-INF/persistence.xml file serves to

identify the entities contained in the persistence unit. We will discuss the packaging

details in the “Assembling a Persistence Unit” section later in this chapter.

�Web Application Module

A Web application module is comprised of servlets, HTML pages, JSF, JSP documents,

and any other Web-based files. Its deployment descriptor is the WEB-INF/web.xml file

and, as with the EJB module, the presence of this file is now optional starting with Java

EE 5 since its contents can be derived using default rules. When archived, the contents

of a Web application module are packaged into a JAR file with the suffix .war. This is

commonly referred to as a WAR file.

The contents of a WAR file follow a special structure to suit application partitioning

in Web browsers better. Of particular relevance when bundling persistence units into a

WAR file, Java .class files are placed in the WEB-INF/classes directory, and dependent

JAR files may be added directly to the WEB-INF/lib directory.

Similar to an EJB module, a Web module may be assigned a name using a module

declaration inside a META-INF/application.xml file. When no META-INF/application.

xml file is present during deployment, as when the WAR file is deployed stand-alone

or within an EAR file that does not include this descriptor, it is assigned a default

name. This name is derived from the name of the WAR archive, minus any directory

information or the .war suffix. For example, a WAR file may be bundled in an EAR file in

the following location:

./OrderManagerWebApp.war

In this case, its default module name would be OrderManagerWebApp.

Chapter 11 EJB Packaging and Deployment

526

�Resource Adapter Module

Resource adapters offer a mechanism for extending a Java EE server. They allow

resources and services managed by external systems to be integrated into the Java

EE server for use by components executing in the Java EE containers. A resource

adapter module contains a set of resource adapters and an optional META-INF/ra.xml

deployment descriptor.

During deployment, a resource adapter is packaged into a Resource Archive (RAR)

file, which is a JAR file with the suffix .rar.

�Application Client Module

An application client module contains Java classes that can be executed in a Java SE

environment on the client tier. The application client container is a lightweight Java EE

container that supports injection and provides persistence, security, and messaging

services, among others. It does not provide many of the services that are available from

the middle-tier Java EE containers.

The deployment descriptor for an application client module resides in META-INF/

application-client.xml and, like the other Java EE module deployment descriptors, is

optional starting with Java EE 5.

�Security Module

This module will help and allow the developer to configure a web component or

enterprise bean so that system resources are accessed only by the authorized users.

As we said, the enterprise tier and web tier applications are made up of components,

which are deployed then into various containers. These components, in general,

are combined to build a multitier enterprise application. In specific the security for

components is provided by their containers, where each container provides two kinds of

security such as: declarative and programmatic.

•	 Declarative security defines a certain application component’s

security requirements by using either deployment descriptors or

annotations.

•	 Programmatic security, instead, will be embedded in an application

and will be used to make security decisions.

Chapter 11 EJB Packaging and Deployment

527

�Library Components
Shared classes or other resources that your modules require at runtime can be packaged

into library components. Libraries may either be installed in the application server

(the process of installing a library is not described here) or bundled inside your EAR or

WAR file. Any JAR-format file embedded inside an EAR, whether a Java EE module or a

bundled library archive, may reference a bundled library component using the Class-

Path property in the META-INF/MANIFEST.MF file.

Note  Whenever a JAR file is referenced through a Class-Path entry, only the
classes in the referenced JAR file are recognized by the deployment tool. Any
descriptor files found in the referenced JAR file will be ignored.

�Bundled Libraries

Listing 11-1 shows the file contents of a sample EAR file to demonstrate how the Class-

Path property references a bundled library. Here we use a shorthand notation to show

the Class-Path: myEjb-Client.jar entries that reside in the META-INF/MANIFEST.MF

files for their associated JAR and WAR files.

Listing 11-1.  Example EAR File Contents Showing Explicit Module

Dependencies on a Bundled Library Component

myApp.ear:

 META-INF/application.xml

 myEjb.jar Class-Path: myEjb-Client.jar

 myWebApp.war Class-Path: myEjb-Client.jar

 myEjb-Client.jar

In this example, the client-side interfaces (remote, local, and Web service endpoint

interfaces) have been deliberately stripped from the myEjb.jar EJB module and

packaged into the bundled myEjb-Client.jar library component. The META-INF/ejb-

jar.xml descriptor in myEjb.jar contains the following entry:

<ejb-client-jar>myEjb-Client.jar</ejb-client-jar>

Chapter 11 EJB Packaging and Deployment

528

This identifies myEjb-Client.jar as the JAR file holding its client-side interfaces.

The myEjb.jar EJB module depends on these EJB interfaces, and it declares its

dependence through its Class-Path entry referencing the myEjb-Client.jar library.

The myWebApp.war Web module references these EJB interfaces, and it declares its

dependence on myEjb-Client.jar in the same way. The myEjb-Client.jar library is an

ordinary JAR file, and it sits alongside the EJB and WAR files in the EAR file.

An alternative to explicitly declaring dependence on a bundled library component

is to use the EAR file’s built-in library directory, lib, as shown in Listing 11-2. All JAR

files found in the lib directory are automatically added to the class-path of the Java EE

modules in the EAR file.

Listing 11-2.  Example EAR File Contents Showing Implicit Module

Dependencies on a Shared, Bundled Library Component

myApp.ear:

 META-INF/application.xml

 myEjb.jar

 myWebApp.war

 lib/myEjb-Client.jar

This achieves the same result as Listing 11-1. Assuming application.xml does not

specify a <library-directory> element that overrides the default lib directory, the

Java EE server will automatically add the myEjb-Client.jar file to the class-paths of the

myEjb.jar and myWebApp.war modules.

Libraries may also be bundled in the WEB-INF/lib directory for the JAR files of a WAR

file, and in the WEB-INF/classes directory for the unpackaged classes of a WAR file.

�Installed Libraries

It is also possible to install libraries in your application server environment and then

reference them from the JAR-format files in your EAR file using the Extension-List

property in the JAR file’s META-INF/MANIFEST.MF file. This is an efficient means of

sharing libraries across Java EE applications since it avoids having to bundle the libraries

redundantly in multiple EAR files. The installed libraries are stored on disk by the

application server instance, and typically a shared library entry in one of the application

server’s configuration files links the name of the installed library with its JAR file or files.

Java EE applications may then refer to this installed library by name without having to

know about the JAR file contents of the library.

Chapter 11 EJB Packaging and Deployment

529

An example of using an installed library is shown in Listing 11-3.

Listing 11-3.  Example EAR File Contents Showing Usage of an Installed Library

myApp.ear:

 META-INF/MANIFEST.MF:

 Extension-List: commonUtils

 commonUtils-Extension-Name: com/apress/ejb/ch11/commonUtils

 commonUtils-Extension-Specification-Version: 1.4

 META-INF/application.xml

 myEjb.jar

In this example, the EAR file’s META-INF/MANIFEST.MF file is used to declare a

reference to an installed library named commonUtils, version 1.4. This gives all the JAR

files inside the EAR file access to the contents of the commonUtils library, satisfying the

myEjb.jar module’s dependence on the contents of this library. The reference could

have been defined on myEjb.jar instead, in which case only myEjb.jar would be given

access to this library. Either way, the installed library must have been installed prior to

deployment of myEjb.jar.

The META-INF/MANIFEST.MF file for the JAR file contained in our commonUtils library

is shown in Listing 11-4.

Listing 11-4.  Contents of an Installed Library’s JAR File

commonUtils.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/apress/ejb/ch11/commonUtils

 Specification-Title: Utils for implementing common patterns

 Specification-Version: 1.4

�Versioning of Libraries

Although it is not mandated by the Java EE specification, many application servers

support Java EE application isolation levels that allow each Java EE application to have

its own class loader. This allows multiple applications running simultaneously in the

same Java EE server to reference different versions of the same bundled or installed

library component. An example where this is useful is when you wish to migrate a subset

of your applications to use a new library version. You can install the new library version

Chapter 11 EJB Packaging and Deployment

530

in the server and then selectively update the Specification-Version property for any

applications that you wish to use the new library version.

Alternatively, Java EE servers with this level of isolation support will allow you to

deploy a Java EE application that bundles its own version of a dependent library. The

rules of precedence in the Java EE specification dictate that, in the case of a conflict

between a bundled library and an installed library with the same Extension-Name, the

bundled library will be used. This guarantees that the application will always use its

bundled library, regardless of which versions of that library are available in the server’s

installed library base.

�Application Servers and Platform Independence
Java EE has always held a keen eye to portability, although in practice this has often been

difficult to achieve. Ideally, all Java EE servers implement the specification as far as it

goes and then differentiate themselves both on performance and features, like support

for configurable isolation levels and advanced object/relational (O/R) mapping options

that are recommended (or hinted at, but not mandated) by the specification.

Application servers are expected to define their own platform-specific descriptors

to be used to augment the core requirements of the Java EE specification, and indeed

virtually all application server implementations offer such descriptors. Over time (and

we have seen this most notably in the area of JPA mapping metadata), features that are

found to be lacking in the specification and are solved by vendor implementations,

get rolled into the specification and are made generic. For example, EJB 2.1 offered no

support or regulations on how to define O/R mappings for entity beans, nor on how to

implement an entity inheritance hierarchy. Starting with EJB 3, the JPA has taken many

of the best ideas coming out of TopLink, Hibernate, and Java Data Objects (JDO), and

rolled them straight into the orm.xml file to offer these features, as well as others.

�Deployment Tools
Application server vendors have virtually all standardized on JSR 88, which specifies

the use of managed JavaBeans, called MBeans, to manage the deployment process.

MBeans are self-describing and follow design patterns defined by the Java Management

Extensions (JMX) specification to provide an interface between the Java EE server and

the application server’s deployment tool. The actual interfaces exposed by the Java

Chapter 11 EJB Packaging and Deployment

531

EE-deployment MBeans vary from one application server to another; but the fact that

all deployment tools now use them, to one degree or another, offers some consistency

between vendor deployment tools.

Typically, a vendor’s deployment tools will guide the Assembler not only through the

process of packaging the Java EE modules, libraries, and application archives, but also

through specifying some amount of metadata for populating both the Java EE generic

and platform-specific deployment descriptors. The tools will also accept EJB, WAR, or

EAR files, and they actually perform the installation and validation deployment tasks in

the server itself.

Note  Cargo is a thin wrapper that allows you to manipulate Java EE containers
in a standard way. Cargo aims to provide an abstraction API to many of the popular
Java EE containers, through the medium of Ant tasks, Maven, and IDE plug-ins. For
more information on Cargo, see http://cargo.codehaus.org.

�The Deployment Plan
Some vendors’ application server tools record the Deployer’s choices in a document

called a deployment plan. Since deployment is often an iterative process, especially

during the development and testing stages, it is convenient to capture the Deployer’s

choices so that the Deployer does not have to specify the same information repeatedly.

Currently, there is no standard format for a deployment plan specified in JSR 88

or elsewhere, so it is not a document that can be reused across application server

implementations. If you find this inconvenient, get involved in the JCP and form or join a

JSR to promote a standard in this area.

�Deployment Roles
Any encompassing enterprise service platform is, by its very nature, complex.

Recognizing this reality, the architects of Java EE have partitioned the Java EE services

into well-defined APIs. Similarly, they have partitioned the tasks associated with the

various stages of developing and configuring Java EE applications into well-defined

roles. We mentioned that the tasks associated with building the various application

components, such as EJBs, entities, servlets, JSF JSPs, and many others, fall under the

Chapter 11 EJB Packaging and Deployment

http://cargo.codehaus.org/

532

Java EE role of Application Component Provider. There are also other roles, such as

the System Component Provider, which is responsible for installing resources in the

application server that are required by the application components. Among these are

database resources, authorization policies, security roles, and many others, including

services brought in through resource adapters.

We had previously introduced the roles of Application Assembler and Application

Deployer. In this section, however, we will explore these roles in greater depth.

�The Application Assembler
Here is what you need to know as an application Assembler.

�Defining and Describing External Dependencies

The Provider identifies the external requirements held by its components, either in

annotations, deployment descriptors, or both. These dependencies may be on other

EJBs, persistence units, environment property values, database connections, or any other

object external to that application component. It is the responsibility of the Assembler

to describe these external dependencies further such that the Deployer can figure out

how to map them to concrete resources in a specific application server environment.

External dependencies are defined through <ejb-ref>, <ejb-local-ref>, <resource-

ref>, <resource-env-ref>, <security-role-ref>, and <message-destination-ref>

entries in annotations or deployment descriptors. The Assembler’s job is to analyze these

external references and patch them up. This process involves the following steps.

Ensuring That All References Are Complete

It is legal, and common, for the Provider to complete the definition of external references

only partially. The Provider may not know, or may attempt to guess, the actual names of

the resources being referenced. In such cases, the Provider will spell out the details of

the reference—its object type, its internally used name, and a description of the logical

behavior of the referenced object. The Assembler takes this information and then links it

to a name of a resource that is internally consistent within the application. An example of

this is an EJB reference. A web.xml, ejb-jar.xml, or application-client.xml descriptor

is allowed to declare EJB references using an <ejb-ref> element. An <ejb-ref> has

an ejb-ref-name property that is used by the referencing component (whether a Web

Chapter 11 EJB Packaging and Deployment

533

form, another EJB, or an application client), and links it to the actual name assigned to

the EJB during deployment by assigning a value to the <ejb-ref>’s ejb-link property.

Listing 11-5 illustrates an <ejb-ref> that has been fully defined by the Assembler.

Listing 11-5.  An ejb-ref Descriptor Element that Has Been Properly Linked to a

Named EJB

<ejb-ref>

 <description>

 Some description that defines this EJB to the Assembler

 </description>

 <ejb-ref-name>ejb/MyAccountManager</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <remote>com.apress.ejb.ch11.MyAccountManager</remote>

 <ejb-link>SalesAccountManager</ejb-link>

</ejb-ref>

Note T he <home> and <local-home> properties are optional starting with EJB 3.

It is also possible to resolve a reference to an EJB that is packaged in a different EJB

JAR file in the same application. Listing 11-6 illustrates how you would use a special path

notation in the ejb-link value to do this. The ejb-link property value may refer to any

EJB found in an EJB JAR file in the application EAR file.

Listing 11-6.  An ejb-ref Descriptor Element that Links to an EJB Residing in a

Different EJB JAR in the Application

<ejb-ref>

 <description>

 Some description that defines this EJB to the Assembler

 </description>

 <ejb-ref-name>ejb/MyAccountManager</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <remote>com.apress.ejb.ch11.MyAccountManager</remote>

 <ejb-link>../salesEjbModule.jar#SalesAccountManager</ejb-link>

</ejb-ref>

Chapter 11 EJB Packaging and Deployment

534

This example shows how the link would appear if the SalesAccountManager EJB was

moved into a peer EJB module named salesEjbModule.jar. Finally, the Assembler may

need to resolve EJB references that have been partially declared using @EJB annotations

in the Java source, as shown in Listing 11-7.

Listing 11-7.  A Partial @EJB Annotation in a Java Source File

@EJB(name="AccountManager",

 beanInterface=AccountManager.class,

 description="The Department Account Manager")

private AccountManager acctMgr;

The Assembler would add an <ejb-ref> element to complete this reference but

would leave the properties that have already been defined intact, as shown in Listing 11-8.

Listing 11-8.  An ejb-ref Descriptor Element that Fills in the Missing Properties of

an @EJB Annotation

<ejb-ref>

 <ejb-ref-name>ejb/MyAccountManager</ejb-ref-name>

 <ejb-link>SalesAccountManager</ejb-link>

</ejb-ref>

Note  While it is possible to use JNDI (Java Naming and Directory Interface) to
look up EJBs deployed outside the context application, <ejb-ref>, <ejb-local-
ref>, and the corresponding @EJB annotation may only be used to access EJBs
deployed in the context application.

This process continues until the Assembler has linked all the EJB, resource, resource

environment, and any other references that were found dangling.

Resolving Conflicting and Redundant References

The modules presented to the Assembler for assembly into an application may have

been built by different Providers, or at different times. In such cases, it is common to find

references to the same logical resources but using different names. It is the responsibility

of the Assembler to scan both the source annotations and any XML deployment

descriptors and rename any redundant references to a common name.

Chapter 11 EJB Packaging and Deployment

535

Similarly, the same internal name may be used by application components to refer

to logically distinct resources. Using the description properties of these references,

found both on annotations and in deployment descriptors, along with any other

documentation supplied by the Provider, the Assembler must detect such conflicts and

rename these references appropriately.

The Assembler may choose to populate each module descriptor fully by merging

Java annotations found in the module source files into the descriptor, whenever

it is not in conflict. If the Assembler chooses to perform this task, the descriptor’s

metadata-complete property may be set to true. This signals to the Deployer that this

descriptor and the Java annotations need not be further analyzed, leading to a speedier

deployment.

�Packaging

The Assembler performs the packaging stage to bundle application components into

container-specific JAR files and component libraries. This packaging process was

outlined in the preceding “Overview of the Packaging and Deployment Processes”

section. You can use Ant or ZIP utilities to perform these steps of grouping the Java EE

components into modules and packaging them into JAR files. However, this is an area

that benefits from the use of a visual packaging tool, typically available through an

IDE. The Assembler packages EJB and application client modules into JAR files, Web

application modules into WAR files, and resource adapters into RAR files.

When assembling a stand-alone Java EE module with no bundled libraries, no

further packaging is needed. The module’s JAR file is ready to be deployed.

If multiple modules are involved, or if libraries need to be bundled as well, the

Assembler creates an EAR file and adds the modules and libraries to this archive. The

Assembler may add the modules using an internal directory structure, provided that the

lib directory, or the directory specified by <library-directory> in the application.

xml file, is honored as the location for implicitly shared libraries.

An optional application.xml file in the EAR file’s META-INF directory may be used

to identify the modules explicitly, which are included in the application. This is the way

of telling the deployment tool to ignore the modules that are not meant of be part of the

application, but for some reason are included as part of the application.

Chapter 11 EJB Packaging and Deployment

536

�The Application Deployer
The module or package produced by the Assembler is then handed off to the Deployer.

The Deployer has intimate knowledge of the target application server environment,

including information about all the resources that are currently deployed in that

environment.

The Deployer’s actual experience differs due to the varying tool sets offered by

vendors to accompany their application servers. The logical processes of the deployment

state are outlined in the following sections.

�Unpackaging the Archive

The EAR file, or stand-alone module JAR file, is unpackaged and its contents are

analyzed.

�Deriving the Module Descriptors

The Deployer processes the descriptor for each Java EE module. If a descriptor was

provided, and if its metadata-complete property is set to true, then the Deployer can

send the module off to the appropriate container. If the descriptor is not supplied, or

if metadata-complete is not set to true, then the Java source contents of that module

must be scanned to detect annotations. All metadata properties found by scanning

the annotations are coalesced with properties found in the descriptor. During this

reconciliation step, Java EE precedence rules dictate that whenever both an annotation

and the descriptor provide a value for a given property, the value in the descriptor

prevails. The result of this reconciliation state is a completed descriptor for that module.

�Binding External References

All external references found are checked for completeness, ensuring that the work of the

Assembler was performed. These references are then matched to actual resources in the

application server environment. If any resources cannot be bound, an error is reported

back to the Deployer so that it can be resolved. As you can imagine, this process greatly

benefits from a robust deployment tool set provided by the application server.

Chapter 11 EJB Packaging and Deployment

537

�Deploying to the Containers

Each completed module can be sent to its corresponding container to be installed and

registered. Once complete, the Java EE components in these modules are ready to be

accessed by clients.

�Assembling an EJB JAR Module
An EJB JAR file is a pretty straightforward archive. The .class files are laid out in the JAR

file in directories corresponding to their packages, rooted at the top-level directory of the

JAR. The ejb-jar.xml deployment descriptor, if present, goes in the META-INF directory,

typically accompanied by any other platform-specific descriptors.

Arbitrary classes may be included alongside the EJB classes and interfaces. It is a

common practice to package the shared library JARs in the same EAR file as the EJB

JAR file. Libraries bundled in the surrounding EAR file may be referenced using the

Class-Path property of the EJB JAR file’s META-INF/MANIFEST.MF file, as described in

the preceding “Library Components” section. Similarly, you may reference installed

libraries previously deployed but outside the context application by listing them in the

Extension-List property in the META-INF/ MANIFEST.MF file.

When it comes to specifying the metadata for an EJB, the ejb-jar.xml descriptor

and the Java source annotations are mutually redundant. The decision to use one

approach over another is largely a matter of Provider preference, though this decision is

also affected by how the application will be edited, assembled, and deployed. However,

the top-level settings, (such as <ejb-client-jar>) have no corresponding annotations

and must be assigned through this descriptor.

Note  Starting with Java EE 5, we have the ability to deploy EJB and WAR
modules directly, without packaging them as a Java EE application. This is
only appropriate if these modules hold no external dependencies on classes
in other JAR files that are not already deployed to the target application server
environment.

Chapter 11 EJB Packaging and Deployment

538

�Naming Scope
Within a Java EE application, no two EJBs may have the same name. It is the Assembler’s

responsibility to detect this case and rename EJBs appropriately to resolve the conflict.

�Assembling a Persistence Unit
A persistence unit is a set of JPA entity, mapped superclass, and embeddable classes

coupled with a mandatory META-INF/persistence.xml file. Java EE offers a fixed set of

ways to bundle a persistence unit during deployment. You can package a persistence

unit in any of the following ways:

•	 Into one or more JAR files, which in turn may be packaged within a

WAR or an EAR file

•	 As a set of classes within an EJB-JAR file

•	 In the classes directory of a WAR file

•	 Or as a combination of the above-mentioned ways

The JAR file or directory where its META-INF/persistence.xml file is located is

called the root of the persistence unit, and it defines the root directory for the classes

that comprise the persistence unit. The root of the persistence unit must be one of the

following:

•	 An EJB-JAR file

•	 The WEB-INF/classes directory of a WAR file

•	 A JAR file in the WEB-INF/lib directory of a WAR file

•	 A JAR file in the library directory of an EAR file

•	 An application client JAR file

The decision of where you bundle your persistence unit determines which modules

will have visibility to it. For instance, adding it to the EAR file’s library directory gives

access to all other modules in the application. Placing it in the EJB, Web application, or

application client JAR limits its scope to that module.

In addition to the persistence.xml file, one or more O/R mapping files may be

added to the META-INF directory to augment or override any annotations that may have

Chapter 11 EJB Packaging and Deployment

539

been specified in the managed JPA classes. The JPA specifies the default file name to be

META-INF/orm.xml, but each <persistence-unit> defined in the persistence.xml file

may specify its own mapping files, using <mapping-file> elements. Notice that Java EE 8

comes with the JPA version 2.2.

�Naming Scope
Within a Java EE application, it is possible for two JPA entities to have the same name,

but only if they are in separate contexts. For instance, two Web application modules

may bundle separate persistence units inside their WEB-INF/lib or WEB-INF/classes

directories. In this case, the persistence units are private to each Web application

module, and duplicate names between these persistence units will not cause a conflict.

It is the Assembler’s responsibility to detect conflicts within the same naming scope

and rename entity-name properties appropriately to resolve the conflict.

�Summary
This chapter introduced the topic of Java EE deployment, and it covered both general

deployment issues and areas of deployment that are specific to EJBs and JPA entities.

We began the discussion with an overview of the tasks that are performed during

deployment, noting that, depending on the complexity of the Java EE modules being

deployed, some steps may not be required. This overview section also explained the

roles of the Assembler and Deployer, and it explained the deployment tasks in the

context of these two roles.

To provide some background into the deployment infrastructure (knowledge that

will assist you when choosing how to partition your applications and resolve external

references), we explored the Java EE server and the four Java EE containers: EJB, Web,

application client, and applet. This led to a discussion of the corresponding Java EE

module types, and the definition of a Java EE application. We also explained how to use

library components to package your JPA persistence units and non-Java EE components.

The remainder of the chapter provided a more in-depth look at the roles of the

Assembler and Deployer, and it concluded with further specifics on how to deploy EJB

modules and JPA persistence units.

In the next chapter, we explore how to build clients that are capable of interacting

with EJB components in a multiuser, distributed environment.

Chapter 11 EJB Packaging and Deployment

541
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_12

CHAPTER 12

EJB Client Applications
So far in our journey, we have covered, in detail, session beans, entities using the Java

Persistence API (JPA), message-driven beans (MDBs), publishing stateless session beans

as Web services, and integrating all of these components. On top of this, we have covered

specific details on transactions and performance. While we have been developing simple

servlets as our client applications to illustrate how the components work, we haven’t

thoroughly discussed the different types of EJB client applications and how to develop

them. In this chapter, we will discuss different application architectures in which client

applications can be involved, and we will build the common ones.

�Application Architecture
The Java EE platform provides flexibility on how components can be distributed across

different tiers and architectures. You can choose the right architecture and programming

model based on the application or configuration requirements. In this section, we will

look at the different architectures and programming models that you can use.

Figure 12-1 shows the architectural layout for Web-based applications. This

architecture is typically front ended by a Web application running in a browser. These

days, other types of client devices (such as smartphones, tablets, cell phones, and telnet

devices) are also being used to run these applications. The Web application running

in a browser or mobile device renders the user interface using Web technologies

such as JavaServer Pages (JSP), JavaServer Faces (JSF), or Java Servlets. Typical user

actions, such as entering search criteria or adding items to a shopping cart, will invoke/

call session beans running in an EJB container via one of the aforementioned Web

technologies. Once the session beans are invoked, they process the requests, and

responses are sent back.

542

This architecture allows you to leverage all of the benefits of session beans, such as

encapsulating interactions with entities, managing transactions and security, and so

on. The downside is that you need an EJB container or an application server to deploy

and run the session beans. Another thing to note in this architecture is that you can

run the Web and EJB containers on two different physical machines or on two separate

Java Virtual Machines (JVMs) on the same physical machine. The pros and cons of this

approach were discussed in Chapter 2.

A slight modification of this architecture is shown in Figure 12-2, in which the

Web and EJB containers are collocated in the same JVM. In this architecture, Web

components interact with EJB components in local mode. The pros and cons of this

approach were also discussed in Chapter 2.

Figure 12-1.  A Web-based application architecture

Figure 12-2.  A Web-based application architecture with local invocation

Chapter 12 EJB Client Applications

543

The JPA specification provides a lightweight persistence object model with plain

old Java objects (POJOs) and annotations for object/relational (O/R) mapping. This is

drastically different from what the earlier EJB specifications were doing for persistence.

The lightweight nature of this persistence model makes it possible to have application

architectures that allow Web applications to interact directly with persistence object

models or JPA entities. Figure 12-3 shows the architectural layout for this kind of

programming model. In this architecture, the Web components will interact with entities

using the EntityManager to perform CRUD (create, retrieve, update, delete) operations

and queries to retrieve data.

Figure 12-3.  A Web-based application architecture using JPA entities

The upside of this programming model is that you can run your Web applications

on any standard lightweight Web container (such as Tomcat). You don’t need any EJB

containers or application servers, as you aren’t using session beans or MDBs. This

architecture is widely used with other O/R frameworks, such as TopLink and Hibernate,

on which the JPA specification is based. The downside is that you lose some of the

services provided by EJB containers (such as transactions and security).

The preceding three architectures are most commonly used when building Web

applications with EJBs or entities. Other variants of these architectures are possible, but

we will not be drilling down into all of the options.

The next two architectures are programming models in which the client applications

are of the desktop variety, which provide rich UI functionality for data entry purposes.

Chapter 12 EJB Client Applications

544

Figure 12-4 shows an architecture in which a client application running on the

desktop invokes a remote session. The client application running on the desktop has

data entry screens used by the end users (such as customer service representatives and

bank tellers). These client applications can be developed using Java Swing technology

in Java SE or using plain Java classes (POJOs) that are run from the command line.

Generally, the end users launch the client application from their desktop, enter some

data, and trigger an event by pressing some onscreen UI component (such as a Submit

button).

Figure 12-4.  A professional desktop client application architecture

Client applications can either be installed on the desktop machine or downloaded

from a server using technologies like Java Web Start. In this architecture, there will

always be remote invocation of the session beans from the client applications, as the

session beans will be running on a remote server. This architecture can leverage the

benefits of session beans, as is the case with Web applications.

Figure 12-5 shows an architecture that uses JPA entities directly instead of going

through the session beans. In this programming model, the client application and

entities packaged in a persistence unit are collocated and assembled as a single

application unit. The client application makes use of the EntityManager to perform

CRUD operations and queries to retrieve the data.

Chapter 12 EJB Client Applications

545

The upside of this programming model is that you can run your applications in a

standard Java SE environment without using an EJB container, but the obvious downside

is that you will lose the services like security and transaction management that are

provided by the EJB container.

As described in Chapter 6, stateless session beans can be published as Web services.

Once a stateless session bean is published as a Web service, any Web service client

application that can assemble and send a Simple Object Access Protocol (SOAP)

message can invoke the published Web service. Figure 12-6 shows this architecture.

Figure 12-5.  A professional client application architecture using JPA entities

Chapter 12 EJB Client Applications

546

Enterprises typically have several business processes that interact with

heterogeneous back-end systems or services. Business Process Execution Language

(BPEL) is a standard markup language that allows you to assemble discrete Web services

as a single business process. BPEL-based business processes use standard Web services

architecture and infrastructure to invoke one or more Web services. Figure 12-7 shows

an architecture in which a BPEL-based business process invokes a stateless session

bean published as a Web service. For example, Chapter 6 demonstrated how to create

and publish a credit service that checks the validity of a credit card. In the context of an

order-processing business process, this credit service may be one of several services with

which the business process interacts to fulfill the order process.

Figure 12-6.  A Web service client application architecture

Figure 12-7.  A business process as a client application

Chapter 12 EJB Client Applications

547

So far, we have looked at the possible architectures and programming models

that involve EJB or JPA components. In the next sections, we will drill down into the

Web-based application architecture shown in Figure 12-2 and demonstrate how you

can expand on the integrated back-end application developed for the Wines Online

application in Chapter 7. We chose this architecture because it is commonly used and

helps us illustrate the usage of container services.

�JSF
JavaServer Faces technology establishes the standard for building server-side user

interfaces for Java EE. JavaServer Faces (JSF) custom tags libraries for expressing UI

components within a view and for wiring components to server-side objects. The JSF

version 2.3 was used during the writing of this manuscript.

In this section, we will look at developing a Web application that uses JavaServer

Faces (JSF) to talk to an integrated EJB back-end application using the architecture

shown in Figure 12-2. We will start with a brief introduction to several concepts of JSF to

prepare you to develop a full-fledged Web application. JSF was first introduced in 2002

and requires JDK 1.5 or higher, so the very first requirement is to have JDK installed on

your machine.

Mainly JSF will help us to do the following:

–– Drop components onto a page by adding component tags,

–– Wire component-generated events to server-side application code,

–– Bind UI components on a page to server-side data,

–– Construct a UI with reusable and extensible components,

–– Save and restore UI state beyond the life of server requests.

In this manuscript, the JSF version 2.3 was used including new features include like

these:

–– The CDI alignment improvements;

–– JSF 2.3 artifacts can now be easily injected into Java classes and EL

expressions;

–– Improvement of WebSocket, which is a protocol that provides full

duplex bidirectional communication over TCP;

Chapter 12 EJB Client Applications

548

–– Date-Time API improvements;

–– API enhancements including UIData, UIRepeat, etc.

Note T his section by no means provides a comprehensive discussion of JSF. As
with any other Java EE technology, detailed information about JSF can be found at:
https://myfaces.apache.org/jsfintro.html

JSF Views include:

•	 Tree of Components

•	 Facelets or HTML

•	 Expression Language

•	 Mix with JSTL and other tab libraries, as needed

•	 Component Libraries

Here is what's new in JSF 2.3 in Java EE 8:

•	 Two feature drivers: Oracle & Community

•	 Feature clean-up

•	 Small new feature set based upon community requests

•	 Mature standard for building Java EE applications

JSF 2.3 New Features include:

–– Inject ViewMap

•	 @ViewMap

•	 @Inject

•	 Map viewMap;

–– Inject UiViewRoot @Inject

•	 UIViewRoot viewRoot;

–– #1332 - Let CDI handle #{view}

–– #1331 - Let CDI handle #{application}

Chapter 12 EJB Client Applications

https://myfaces.apache.org/jsfintro.html

549

–– #1254 - Contracts attribute too restrictive

–– #1328 - Let CDI handle #{session} EL resolving

–– #1325 - Let CDI handle #{applicationScope}

–– #1311 - Let CDI handle #{facesContext} EL resolving

–– #1323 - Support @Inject for the applicationMap @ApplicationMap

•	 @Inject

•	 Map applicationMap;

•	 Map applicationMap;

–– #1322 - Simplify #{externalContext} to use ExternalContextProducer

–– #1309 - Support @Inject for ExternalContext

•	 @Inject ExternalContext externalContext;

–– #527 - Support @Inject for FacesContext

•	 @Inject FacesContext facesContext;

–– javax.faces.bean.ManagedProperty Replacement

–– #1396 - f:socket for SSE and WebSocket

�Evolution of Java EE Web Technologies
Java EE technologies have evolved to deliver a mature, reliable, and stable platform

that allows developers to build enterprise-scale applications. The platform has evolved

significantly in the Web technologies space as well. Figure 12-8 shows the evolution of

Web technologies in the Java EE platform.

Chapter 12 EJB Client Applications

550

Prior to the arrival of Java Servlets, CGI scripts were used to generate dynamic

Web content. CGI scripts had their own limitations, including the scripts being run as

individual processes, which led to scalability issues.

After CGI scripts, Java Servlets became the basis of all Web technologies in the

Java EE platform. Java Servlets provided a great start for developing standards-based

Web components and applications that are portable across Web containers. One of

the disadvantages of Java Servlets was they were code intensive—all of the HTML was

printed out using println() methods. Servlets did not provide a bridge between the

graphic designers who created the design of the pages and the Java programmers who

created the dynamic content.

JSP was next in the evolution of Web technologies; it bridged the gap between

graphic designers and Java programmers. Based on Java Servlets technology, JSP pages

are HTML pages with embedded Java code. This model allowed graphic designers to

create JSP pages, which programmers could then make dynamic by adding Java code or

scriplets. When compiled, JSP pages become Java servlets.

While the advent of JSP pages was nice, many developers now had to deal with

mundane tasks like iterating over collections of data. This led to the creation of the JSP

Standard Tag Library (JSTL), which automated some of these tasks.

Figure 12-8.  The evolution of Java EE Web technologies

Chapter 12 EJB Client Applications

551

While all of these advances in technologies simplified the building of Web

applications, there was no standard component model for developing them. On top of

this, development of Web applications with reusable components in fourth-generation

languages (4GLs) like Visual Basic, Oracle Forms, and PowerBuilder weren’t available

yet either.

JSF is the latest Java EE Web technology. With the component model, it addresses

the issues of reusable components and ease of building Web applications. The reusable

component model is not the only thing that JSF provides, though. We will look into some

of the other features and benefits of JSF in the following sections.

�The Model-View-Controller Pattern

During the early phases of Java EE Web technology development, most of the Web

applications were built using the so-called Model-I approach. The basic idea of Model-I

is that the Web technology that renders the dynamic Web content is closely intertwined

with the business logic of the back-end systems. There was no separation of concerns

in this approach, which led to application maintenance issues. The Model-II approach

(also known as the Model-View-Controller [MVC] pattern) was a follow-up to the

Model-I approach. The key to this approach is the clean separation between the view

layer and the model layer that supplies the data and business logic.

Major Model-View-Controller benefits include:

–– Action-oriented framework layered on top of JAX-RS

–– Manual controller logic… you control your own destiny

–– No UI Components

–– You choose your front-end technology

The MVC pattern isn’t specific to the Java language as such; it dates back to languages

like Smalltalk. In this approach, the model layer is used for the business logic and data, the

view is used to render the user interface, and the controller is used for application flow and

event handling. While the Java EE platform had been evolving with respect to the model

and view-side technologies, it didn’t include a built-in framework that could be used on

the controller side. Instead, many developers built homegrown controllers using Java

Servlets technology. Many others turned to Apache Struts, which provided an alternative

to writing homegrown controllers. Apache Struts is a widely used open source framework

that has become the de facto controller framework for Web applications.

Chapter 12 EJB Client Applications

552

Finally, JSF technology standardized the controller aspect of the MVC pattern by

providing a controller as part of the framework.

MVC 1.0 controllers benefits include:

•	 Controls the request-processing for an MVC application

•	 JAX-RS Implementation

•	 Class annotated with @Controller either at class level or method level

•	 Must be CDI Managed

•	 Possible to create hybrid classes (@Controller at method level)

•	 Four return types: String, void, Response, Viewable

•	 String: returns path to view

•	 Void: requires @javax.mvc.View annotation

Response: typical javax.ws.rs.core.Response, providing full

access to the response

Viewable: javax.mvc.Viewable containing information about

the view and how to process

•	 Default response type text/html, but can be modified with @Produces

The MVC 1.0 includes models to utilize entity classes for data, or store into a CDI bean.

Two ways to work with models include:

–– javax.mvc.Models class

–– CDI-Based Models

JSR 371: Model-View-Controller 1.0 Specification can be found at:

https://www.mvc-spec.org/

Here are the major differences between JSF and MVC:

JSF:

•	 Component Based

•	 Controller Logic

•	 Automates Processing

•	 Facelets

Chapter 12 EJB Client Applications

https://www.mvc-spec.org/

553

•	 Rapid Development

•	 Works well with REST

•	 Stateful… remains across requests

MVC:

•	 Action Based

•	 Layered on Top of JAX-RS

•	 Manual Validations/Conversions

•	 Many Different View Options

•	 Fine Control Request/Response

•	 Great fit for REST

•	 No State Across Requests

�JSF Architecture
Figure 12-9 shows the simplified JSF architecture. JSF has a front controller servlet called

FacesServlet. FacesServlet performs the role of brokering the incoming requests

from clients to the right places. As mentioned earlier, JSF comes with reusable Web

components that can be used to develop user interfaces. These UI components can be

associated with objects called managed beans. These managed beans handle the logic

for the application and interact with back-end systems or components like EJBs. Each

UI component in JSF can be associated with a different render kit that can generate

different markup, such as HTML or WML (Wireless Markup Language), onto different

types of devices.

Chapter 12 EJB Client Applications

554

�The JSF Life Cycle

Figure 12-10 shows the JSF life cycle that handles the initial requests, as well as the

postbacks from the client application or user interface. The following list describes the

lifecycle phases:

•	 Restore view: If the incoming request is an initial request, the

JSF implementation creates the view. During the view creation,

the UI objects for each UI component are created and stored

in a component tree. The state of the UI view is then saved for

subsequent requests. If the incoming request is a postback, the JSF

implementation restores the saved UI to process the current request.

•	 Apply request values: In this phase, the data that was sent as part of

the request is used to update the UI objects that are part of the view.

•	 Process validation: In this phase, the data that has been submitted is

validated.

•	 Update model: In this phase, the back-end objects are updated with

the validated data from the request. Conversion of received data also

happens in this phase.

Figure 12-9.  JSF architecture

Chapter 12 EJB Client Applications

555

•	 Invoke application: In this phase, the back-end application is invoked

to complete the processing of the request, and the response is

rendered back to the client.

•	 Render response: In this phase of the life cycle, the UI components are

rendered, and the response is sent back to the client.

Figure 12-10.  The JSF life cycle

�The JSF Application

A typical JSF application consists of the following:

•	 JSP pages or Facelets: The JSP pages or Facelets in the application

contain the JSF UI components that are encapsulated in the JSP

tags. Each JSF component is a building block that is markup

agnostic. It contains three major pieces: a UIComponent, a

renderer, and a tag handler. The UIComponent defines the behavior

of the component (for example, the behavior of a UI component

like a radio group or a menu). It is also associated with a specific

renderer at runtime. The renderer is in charge of what markup is

being rendered to the client. A tag handler is a JSP tag that allows

for usage of JSF UI components in JSP.

Chapter 12 EJB Client Applications

556

•	 Navigation model: The information about how the control flows

through the application is defined in an XML deployment descriptor

called faces-config.xml. This file can hold several other types of

information, such as validators, converters, and lists of managed

beans. Each JSF application can contain more than one faces-

config.xml file.

•	 Managed beans: These are plain Java classes that facilitate the

application logic. They can be used as bindings to the data coming

from a back-end component, or to invoke a business method in the

back-end application.

�JSF Tools and Components
Having a standard doesn’t always help. Support from developer communities and

vendors plays an important role in making a technology successful. While the goal of

JSF is to simplify drastically Web application development, this goal cannot be reached

with standardization alone. We need the full range of available UI components for

developers to build applications, as well as the full range of development tools to assist

in the application-building process. In the last couple of years, development tools such

as JDeveloper, Java Studio Creator, and Eclipse have provided support for building JSF

applications. Apache MyFaces, an open source implementation of the JSF framework,

offers components that provide more functionality than those from the JSF reference

implementation. Oracle has also released more than 100 standard Faces components

under the umbrella of ADF Faces. These ADF Faces components have been donated

to the Apache Software Foundation, and are now part of the MyFaces project, A.K.A.

Trinidad. All of these factors have significantly contributed to the success of the JSF

technology and its adoption by developers.

Note I nformation about the MyFaces project can be found at:
http://myfaces.apache.org.

Chapter 12 EJB Client Applications

http://myfaces.apache.org/

557

�Developing Web Applications Using JSF and EJB
A significant amount of work was done in Chapter 7 to integrate different types of EJBs

(session beans, MDBs, entities, and Web services) to develop a full-fledged EJB back-

end infrastructure for the Wines Online application. In this section, we will develop a

JSF client application that will work on top of the EJB back-end application, as shown

in Figure 12-11.

Figure 12-11.  Sample application architecture

The main goal of this section is to show you how to develop a set of JSF pages and

wire them to EJB components in the back-end application. With this in mind, we’ll start

with the ways in which the user would navigate through a set of Web pages to perform

the following operations:

•	 Register as a new customer

•	 Log in

Chapter 12 EJB Client Applications

558

•	 Search wines based on different criteria

•	 Add wines to the shopping cart

•	 View the contents of the shopping cart

•	 Submit orders

Figure 12-12 shows the application flow, and it illustrates a set of JSF pages that

allows the user to perform the aforementioned actions. We will build one page at a time,

wire each page to the EJB back-end application as needed, and complete the application.

Figure 12-12.  JSF application page flow

We’ll start with a simple login page.

Chapter 12 EJB Client Applications

559

�The Login Page
To simplify the login process, we will use the e-mail address of the customer to

authenticate and authorize the order. Email is one of the mapped fields in the Customer

entity of the persistence unit used in Chapter 7. Listing 12-1 shows the code for login.

jsp. To begin, there are two tag library directives, some standard HTML tags, and some

tags to render the JSF UI components. Any page that includes JSF elements must have

the f:view tag as the outermost JSF tag. The h:form tag creates an HTML form, the

h:inputText tag creates an input text field, and the h:commandButton tag creates a

Submit button in the form. As you may notice, the value attributes for h:inputText have

a different syntax from the ones used in HTML. We are using the Expression Language

(EL) syntax — #{}. The expression #{Login.email} means that the JSP page wants to

access the e-mail property from the Login object. The Login object is a managed bean,

which will be discussed shortly. Similar to a HTML form, there is an action attribute

for h:commandButton. The EL syntax used for action is #{Login.processLogin}, which

means that when the user hits the Submit button, a POST operation will trigger the

processLogin method in the Login managed bean.

Listing 12-1.  login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 �<meta http-equiv="Content-Type"content="text/html;

charset=windows-1252"/>

 <title>Login Page</title>

 </head>

 <body>

 <h:form>

 <h3> Beginning EJB: Wine Store Application </h3>

 <h5> Enter Email address: </h5>

Chapter 12 EJB Client Applications

560

 <p> <h:inputText value="#{Login.email}"/> </p>

 <p> <h:commandButton value="Login" action="#{Login.processLogin}"/> </p>

 </h:form>

 </body>

 </html>

</f:view>

Figure 12-18, shown in the “Compiling, Deploying, and Testing the JSF Application”

section later in the chapter, shows the login.jsp page rendered in the browser.

The next step is to create a Login managed bean that will be used with login.jsp.

Managed beans are JavaBeans that are used by JSF applications. These objects are

managed by the JSF implementation, and the properties and methods in these objects

can be referenced from JSP pages using value-binding and method-binding expressions.

Listing 12-2 shows the Login managed bean. Login has three property fields along with

their accessor: email, customer, and shoppingCart. We have an @EJB annotation on top

of the setShoppingCart() method. We are using setter injection to inject the stateful

session bean ShoppingCart that we had developed in Chapter 7. We have one additional

method processLogin() in our bean that calls the findCustomer(String email)

business method using the injected shoppingCart stateful session bean. This business

method returns a Customer object if the e-mail ID exists in our customer database.

Additional logic is incorporated to return a string value stored in the faces-config.xml

file, for use in our navigation model. We will discuss this shortly.

Listing 12-2.  Login.java

package com.apress.ejb.chapter12.view.managed;

import com.apress.ejb.chapter07.ejb.ShoppingCartLocal;

import com.apress.ejb.chapter07.entities.Customer;

import javax.ejb.EJB;

public class Login

{

 public Login() {

 }

 String email;

 Customer customer;

 ShoppingCartLocal shoppingCart;

Chapter 12 EJB Client Applications

561

 public void setEmail(String email) {

 this.email = email;

 }

 public String getEmail() {

 return email;

 }

 public String processLogin() {

 String navigation = null;

 customer = (Customer)shoppingCart.findCustomer(email);

 if (customer != null) {

 navigation = "winehome";

 }

 else {

 navigation = "register";

 }

 return navigation;

 }

 public void setCustomer(Customer customer) {

 this.customer = customer;

 }

 public Customer getCustomer() {

 return customer;

 }

 @EJB

 public void setShoppingCart(ShoppingCartLocal shoppingCart) {

 this.shoppingCart = shoppingCart;

 }

 public ShoppingCartLocal getShoppingCart() {

 return shoppingCart;

 }

}

Chapter 12 EJB Client Applications

562

The deployment descriptor faces-config.xml has information on page navigation,

managed beans, and so on. Listing 12-3 shows the faces-config.xml with control flow

to and from login.jsp. It also shows the Login class being registered as a managed

bean. We have set the scope of the Login managed bean to session. This allows us to

store information about the customer and shopping cart through the session so that

we don’t have to re-query our back-end application for the same information. This also

facilitates the usage of this information across other pages and invokes other business

methods on the ShoppingCart stateful session bean without having to look up the bean

again. Additionally, we have created three navigation rules:

•	 From login.jsp to winehome.jsp, with the value winehome: This will

be used if the login is successful.

•	 From login.jsp to newCustomer.jsp, with the value register: This

will be used if the login fails and the customer wants to register as a

new customer.

•	 From newCustomer.jsp to login.jsp, with the value success: This

will be used to navigate the customer back to the login page after

successful registration.

Listing 12-3.  faces-config.xml

<?xml version="1.0" encoding="windows-1252"?>

<!DOCTYPE faces-config PUBLIC

 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"

 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration">

 <managed-bean>

 <managed-bean-name>Login</managed-bean-name>

 �<managed-bean-class>com.apress.ejb.chapter12.view.managed.Login

</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 </managed-bean>

Chapter 12 EJB Client Applications

563

 <navigation-rule>

 <from-view-id>/login.jsp</from-view-id>

 <navigation-case>

 <from-outcome>winehome</from-outcome>

 <to-view-id>/winehome.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>register</from-outcome>

 <to-view-id>/newCustomer.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

 <navigation-rule>

 <from-view-id>/newCustomer.jsp</from-view-id>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/login.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

So far, we have shown you how to get started with a JSF application with a simple

login page that can look up EJBs and invoke business methods. In the next few sections,

we will continue on our venture to complete the remaining wine store JSF application

pages.

�The New Customer Registration Page
Listing 12-4 shows the code for the newCustomer.jsp JSF page. This page is very

similar to the login.jsp page created earlier, except that it has more input fields that

capture the customer information. All input fields in the JSP page (First Name, Last

Name, Phone, Email, Street 1, Street 2, City, State, Zip Code, Credit Card, and Credit

Card Expiration date) have value-binding expressions that map to properties in the

NewCustomer managed bean. It also has a Submit button whose action is mapped to the

AddNewCustomer() method in the managed bean using the expression #{NewCustomer.

AddNewCustomer}.

Chapter 12 EJB Client Applications

564

Listing 12-4.  newCustomer.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>New Customer Page</title>

 </head>

 <body>

 <h:form>

 <h1> Beginning EJB: Wine Store Application </h1>

 Enter the following information to register as a new customer:

 <table cellspacing="2" cellpadding="3" border="1" width="100%">

 <tr>

 <td width="33%">First Name</td>

 �<td width="67%"> <h:inputText value="#{NewCustomer.

firstName}"/> </td>

 </tr>

 <tr>

 <td width="33%">Last Name</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.lastName}"/> </td>

 </tr>

 <tr>

 <td width="33%">Phone</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.phone}"/> </td>

 </tr>

 <tr>

 <td width="33%">Email</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.email}"/> </td>

 </tr>

 <tr>

Chapter 12 EJB Client Applications

565

 <td width="33%">Street 1</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.streetOne}"/> </td>

 </tr>

 <tr>

 <td width="33%">Street 2</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.streetTwo}"/> </td>

 </tr>

 <tr>

 <td width="33%">City</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.city}"/> </td>

 </tr>

 <tr>

 <td width="33%">State</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.state}"/> </td>

 </tr>

 <tr>

 <td width="33%">Zip Code</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.zipCode}"/> </td>

 </tr>

 <tr>

 <td width="33%">Credit Card </td>

 <td width="67%"> <h:inputText value="#{NewCustomer.ccnum}"/> </td>

 </tr>

 <tr>

 <td width="33%">Credit Card Expiry date</td>

 <td width="67%"> <h:inputText value="#{NewCustomer.ccexpDate}"/> </td>

 </tr>

 </table>

 <h1>

 �<h:commandButton value="Submit" action="#{NewCustomer.

AddNewCustomer}"/>

 </h1>

 </h:form>

 </body>

 </html>

</f:view>

Chapter 12 EJB Client Applications

566

Figure 12-19 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the newCustomer.jsp page being rendered in the browser.

After the newCustomer.jsp page is created, we will create the NewCustomer managed

bean. Listing 12-5 shows the code for this managed bean that has getter and setter

methods for all of the properties referred by the newCustomer.jsp page. In addition,

the class injects the CustomerFacade stateless session bean using the @EJB annotation.

Finally, the AddNewCustomer() method creates a new Individual entity instance using

the getter methods of the properties and calls the AddCustomer() business method in

CustomerFacade. Upon successful execution, this method returns a success string that

navigates the user to the login page.

Listing 12-5.  NewCustomer.java

package com.apress.ejb.chapter12.view.managed;

import com.apress.ejb.chapter07.ejb.CustomerFacadeLocal;

import com.apress.ejb.chapter07.entities.Address;

import com.apress.ejb.chapter07.entities.Individual;

import javax.ejb.EJB;

public class NewCustomer

{

 private String firstName;

 private String lastName;

 private String phone;

 private String email;

 private String streetOne;

 private String streetTwo;

 private String city;

 private String state;

 private String zipCode;

 private String ccnum;

 private String ccexpDate;

 @EJB

 CustomerFacadeLocal customerFacade;

 public NewCustomer() {

 }

Chapter 12 EJB Client Applications

567

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setPhone(String phone) {

 this.phone = phone;

 }

 public String getPhone() {

 return phone;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public String getEmail() {

 return email;

 }

 public void setStreetOne(String streetOne) {

 this.streetOne = streetOne;

 }

 public String getStreetOne() {

 return streetOne;

 }

Chapter 12 EJB Client Applications

568

 public void setStreetTwo(String streetTwo) {

 this.streetTwo = streetTwo;

 }

 public String getStreetTwo() {

 return streetTwo;

 }

 public void setCity(String city) {

 this.city = city;

 }

 public String getCity() {

 return city;

 }

 public void setState(String state) {

 this.state = state;

 }

 public String getState() {

 return state;

 }

 public void setZipCode(String zipCode) {

 this.zipCode = zipCode;

 }

 public String getZipCode() {

 return zipCode;

 }

 public void setCcnum(String ccnum) {

 this.ccnum = ccnum;

 }

 public String getCcnum() {

 return ccnum;

 }

Chapter 12 EJB Client Applications

569

 public void setCcexpDate(String ccexpDate) {

 this.ccexpDate = ccexpDate;

 }

 public String getCcexpDate() {

 return ccexpDate;

 }

 public String AddNewCustomer() {

 Individual customer = new Individual();

 customer.setFirstName(firstName);

 customer.setLastName(lastName);

 customer.setPhone(phone);

 customer.setEmail(email);

 Address address = new Address();

 address.setStreet1(streetOne);

 address.setStreet2(streetTwo);

 address.setState(state);

 address.setCity(city);

 address.setZipCode(zipCode);

 customer.setDefaultBillingAddress(address);

 customer.setCcNum(ccnum);

 customer.setCcExpDate(ccexpDate);

 if (customerFacade != null) {

 customerFacade.registerCustomer(customer);

 }

 return "success";

 }

}

Note  Chapter 7 provides the details on all the EJBs and business methods
available for the clients.

Chapter 12 EJB Client Applications

570

Now we need to update the faces-config.xml file shown in Listing 12-3 by adding

the NewCustomer as a managed bean. Listing 12-6 shows the snippet of XML that needs

to be added. Unlike the Login managed bean, we are going to set the scope of this bean

to request, as we don’t need to store the customer registration information across the

session.

Listing 12-6.  faces-config.xml, with the NewCustomer Managed Bean

<managed-bean>

 <managed-bean-name>NewCustomer</managed-bean-name>

 �<managed-bean-class>com.apress.ejb.chapter12.view.managed.NewCustomer

</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

</managed-bean>

Note  We have already added the navigation case from newCustomer.jsp to
login.jsp in Listing 12-3.

We have finished the login and new customer registration tasks. The next step is to

allow the user to search for wines based on different criteria. We will start by creating a

simple JSF page that will provide the links to different options available to the user.

�The Links Page
Listing 12-7 shows the code for the winehome.jsp JSF page. This page uses an

h:commandLink JSF UI component that allows you to embed output text that should be

displayed when the page is rendered. It also includes a live link that the user can click to

navigate to the next page. This page provides three options to the user:

•	 A complete list of available wines

•	 The ability to search wines by year, country, or varietal

•	 The ability to view the shopping cart and submit orders

Chapter 12 EJB Client Applications

571

Listing 12-7.  winehome.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>Wine Home Page</title>

 </head>

 <body>

 <h:form>

 <h1> Beginning EJB: Wine Store Application </h1>

 <p>

 <h:commandLink action="#{WineList.findAllWines}">

 <h:outputText value="Complete List of Wines"/>

 </h:commandLink>

 </p>

 <p>

 <h:commandLink action="search">

 <h:outputText value="Search by Year or Country or Varietal"/>

 </h:commandLink>

 </p>

 <p>

 <h:commandLink action="cartitems">

 <h:outputText value="View shopping cart and submit order"/>

 </h:commandLink>

 </p>

 </h:form>

 </body>

 </html>

</f:view>

Chapter 12 EJB Client Applications

572

We can specify the action attribute with the h:commandLink component that can

be an expression based on a method or property in a managed bean. Alternatively, the

action attribute can be the name of the navigation case that is defined in faces-config.

xml. We are going to use the method-binding expression #{WineList.findAllWines} as

an action property value for the “Complete List of Wines” option, and we will use the

names of the navigation case for the remaining two options.

Figure 12-21 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the winehome.jsp page rendered in a browser.

The next step is to define the WineList managed bean that will talk to the back-end

EJB to get the list of all wines. Listing 12-8 shows the code for the WineList bean. We will

start by injecting the SearchFacade EJB using the @EJB annotation. The findAllWines()

method in the bean class makes use of the injected SearchFacade stateless session bean

and calls the getWineFindAll() business method that returns the list of available wines.

The returned list of wines is stored in the winesList property of the managed bean, and

the allwines string is returned as the navigation case.

Listing 12-8.  WineList.java

package com.apress.ejb.chapter12.view.managed;

import com.apress.ejb.chapter07.ejb.SearchFacadeLocal;

import com.apress.ejb.chapter07.entities.Wine;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.EJB;

import javax.faces.application.Application;

import javax.faces.component.html.HtmlDataTable;

import javax.faces.context.FacesContext;

import javax.faces.el.ValueBinding;

public class WineList

{

 public WineList() {

 }

 @EJB

 private SearchFacadeLocal searchFacade;

 private List<Wine> winesList = new ArrayList();

Chapter 12 EJB Client Applications

573

 public String findAllWines() {

 if (searchFacade == null) {

 return "gohome";

 }

 else {

 winesList = searchFacade.getWineFindAll();

 return "allwines";

 }

 }

 public void setWinesList(List<Wine> winesList) {

 this.winesList = winesList;

 }

 public List<Wine> getWinesList() {

 return winesList;

 }

}

To finish the work for this page, we will extend the faces-config.xml file with the

details shown in Listing 12-9. We have defined WineList as a managed bean and added

three more navigation rules that create the following links:

•	 From winehome.jsp to searchwines.jsp, to take the user to the

search page

•	 From winehome.jsp to wineList.jsp, after executing the

findAllWines() method provided in the managed bean

•	 From winehome.jsp to cartItems.jsp, to show the list of all items in

the shopping cart

Listing 12-9.  faces-config.xml, with the WineList Managed Bean

<managed-bean>

 <managed-bean-name>WineList</managed-bean-name>

 �<managed-bean-class>com.apress.ejb.chapter12.view.managed.WineList

</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

</managed-bean>

Chapter 12 EJB Client Applications

574

<navigation-rule>

 <from-view-id>/winehome.jsp</from-view-id>

 <navigation-case>

 <from-outcome>search</from-outcome>

 <to-view-id>/searchwines.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>allwines</from-outcome>

 <to-view-id>/wineList.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>cartitems</from-outcome>

 <to-view-id>/cartItems.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

We will work on the three pages to which we are navigating in the next sections.

�The Search Page
Listing 12-10 shows the code for the searchwines.jsp JSF page. This page allows the user

to search for the wines by year, country, or varietal. We are using the h:selectOneListBox

components that are populated with a static list of values for each of the search criteria.

The value selected from the list box is stored in the properties of the SearchWines

managed bean using the value-binding expressions specified in the value attribute of the

h:selectOneListBox component. We have also provided three Submit buttons whose

action attributes have method-binding expressions, such as #{WineList.searchByYear},

to trigger a method in the WineList managed bean that will retrieve the results from the

EJB back-end application.

Listing 12-10.  searchwines.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

Chapter 12 EJB Client Applications

575

<f:view>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>Search Wines Page</title>

 </head>

 <body>

 <h:form>

 <h2> Beginning EJB: Wine Store Application </h2>

 <h4> Search Wines </h4>

 <table cellspacing="2" cellpadding="3" border="1" width="100%">

 <tr>

 <td><h:outputText value="Year"/></td>

 <td>

 <h:selectOneListbox value="#{SearchWines.year}">

 <f:selectItem itemLabel="2001" itemValue="2001"/>

 <f:selectItem itemLabel="2002" itemValue="2002"/>

 <f:selectItem itemLabel="2003" itemValue="2003"/>

 <f:selectItem itemLabel="2007" itemValue="2007"/>

 <f:selectItem itemLabel="2008" itemValue="2008"/>

 <f:selectItem itemLabel="2009" itemValue="2009"/>

 </h:selectOneListbox>

 </td>

 �<td><h:commandButton value="Go" action="#{WineList.

searchByYear}"/></td>

 </tr>

 <tr>

 <td><h:outputLabel value="Country"/></td>

 <td>

 <h:selectOneListbox value="#{SearchWines.country}">

 <f:selectItem itemLabel="USA" itemValue="USA"/>

 <f:selectItem itemLabel="France" itemValue="France"/>

 <f:selectItem itemLabel="Australia" itemValue="Australia"/>

 </h:selectOneListbox>

 </td>

Chapter 12 EJB Client Applications

576

 �<td><h:commandButton value="Go" action="#{WineList.

searchByCountry}"/></td>

 </tr>

 <tr>

 <td><h:outputLabel value="Varietal"/></td>

 <td><h:selectOneListbox value="#{SearchWines.varietal}">

 <f:selectItem itemLabel="Zinfandel" itemValue="Zinfandel"/>

 </h:selectOneListbox>

 </td>

 �<td><h:commandButton value="Go" action="#{WineList.

searchByVarietal}"/></td>

 </tr>

 </table>

 </h:form>

 </body>

 </html>

</f:view>

Figure 12-22 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the searchwines.jsp page rendered in a browser.

The next step is to add new methods to the WineList managed bean and define a

new managed bean called SearchWines. Listing 12-11 shows the SearchWines managed

bean that has three properties (year, varietal, and country) and their accessors. User-

selected values in the searchwines.jsp page are stored in these properties, which can

be retrieved by the WineList managed bean.

Listing 12-11.  SearchWines.java

package com.apress.ejb.chapter12.view.managed;

public class SearchWines

{

 public SearchWines() {

 }

 public String year;

 public String varietal;

 public String country;

Chapter 12 EJB Client Applications

577

 public void setYear(String year) {

 this.year = year;

 }

 public String getYear() {

 return year;

 }

 public void setVarietal(String varietal) {

 this.varietal = varietal;

 }

 public String getVarietal() {

 return varietal;

 }

 public void setCountry(String country) {

 this.country = country;

 }

 public String getCountry() {

 return country;

 }

}

We have to add new functionality to the WineList managed bean created earlier

(see Listing 12-8) by adding three more methods that are bound in the method-binding

expressions of the searchwines.jsp JSF page. Listing 12-12 shows the three methods:

searchByYear(), searchByCountry(), and searchByVarietal(). Each of these methods

needs the value of the properties from the SearchWines managed bean. JSF provides

access to the requested data and data from other objects through the FacesContext

object. Once we have the reference to FacesContext, we can get access to the application

and the managed beans. All methods use the technique of getting the Application from

FacesContext and calling the createValueBinding() method with the value-binding

expression to retrieve the value of the relevant property from the SearchWines managed

bean. Once the value of the property is retrieved from SearchWines, the method calls

the business methods in the SearchFacade EJB by passing in the parameters that match

the search criteria to retrieve the list of wines. The retrieved list of wines is stored in the

winesList property that is of java.util.List type.

Chapter 12 EJB Client Applications

578

Listing 12-12.  WineList.java, with Search Methods

public String searchByCountry() {

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding wineyear = app.createValueBinding("#{SearchWines.country}");

 String country = wineyear.getValue(ctx).toString();

 if (searchFacade == null) {

 return "gohome";

 }

 else {

 winesList = searchFacade.getWineFindByCountry(country);

 return "success";

 }

}

public String searchByVarietal() {

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding wineyear = app.createValueBinding("#{SearchWines.varietal}");

 String varietal = wineyear.getValue(ctx).toString();

 if (searchFacade == null) {

 return "gohome";

 }

 else {

 winesList = searchFacade.getWineFindByVarietal(varietal);

 return "success";

 }

}

public String searchByYear() {

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding wineyear = app.createValueBinding("#{SearchWines.year}");

 String year = wineyear.getValue(ctx).toString();

 if (searchFacade == null) {

Chapter 12 EJB Client Applications

579

 return "gohome";

 }

 else {

 winesList = searchFacade.getWineFindByYear(new Integer(year));

 return "success";

 }

}

All of the methods return a value of success that will be used as a navigation

case. We need to add this navigation case into faces-config.xml and also register

SearchWines as a managed bean. Listing 12-13 shows the snippets of XML that need to

be added to faces-config.xml. A success value returned by the methods will take the

user to wineList.jsp that will display the list of wines. Notice that we have set the scope

of the SearchWines managed bean to session, as we are accessing the properties from

other managed beans as well.

Listing 12-13.  faces-config.xml, with the SearchWines Managed Bean

<navigation-rule>

 <from-view-id>/searchwines.jsp</from-view-id>

 <navigation-case>

 <from-outcome>gohome</from-outcome>

 <to-view-id>/winehome.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/wineList.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

<managed-bean>

 <managed-bean-name>SearchWines</managed-bean-name>

 �<managed-bean-class>com.apress.ejb.chapter12.view.managed.SearchWines

</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

</managed-bean>

Chapter 12 EJB Client Applications

580

So far, we have completed the following tasks:

•	 Creating the login page

•	 Creating the registration page

•	 Creating the home page with a list of options

•	 Creating the search page

We will now work on showing the wine list to the user in the wineList.jsp page.

�The Wine List Page
Listing 12-14 shows the code for the wineList.jsp JSF page. In this page, we are using

a new UI component called h:dataTable. This component allows collections of data

to be rendered from managed bean properties that are of type java.util.List. In the

previous sections, we have been storing the retrieved wines in the winesList property.

The #{WinesList.winesList} expression is used for the value attribute of h:dataTable

to display the list of wines in the table format. Once the list of wines is displayed to the

user, the user can select one of the wines displayed in the data table component so that

the user can see the details of the wine in a different page and add it to the shopping cart

if the user wants to buy it. In order to keep track of the selected wine in the data table

component, we have added the binding attribute to h:dataTable. One last thing we

need to do is to provide a hyperlink for each row in the data table that the user can click

to select the wine. To achieve this, we will wrap the column displaying the wine ID with

the h:commandLink component. The value of the h:commandLink action attribute is set

to the #{WinesList.invokeAddToCart} expression, which means that we need to extend

the WinesList managed bean with a new method: invokeAddToCart().

Listing 12-14.  wineList.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

Chapter 12 EJB Client Applications

581

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>Wine List Page</title>

 </head>

 <body>

 <h:form>

 <h2> Beginning EJB: Wine Store Application </h2>

 <h:dataTable value="#{WineList.winesList}" var="wines"

 binding="#{WineList.dataTable1}" id="dataTable1">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Id"/>

 </f:facet>

 <h:commandLink action="#{WineList.invokeAddToCart}">

 <h:outputText value="#{wines.id}"/>

 </h:commandLink>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Name"/>

 </f:facet>

 <h:outputText value="#{wines.name}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Varietal"/>

 </f:facet>

 <h:outputText value="#{wines.varietal}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Country"/>

 </f:facet>

 <h:outputText value="#{wines.country}"/>

Chapter 12 EJB Client Applications

582

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Year"/>

 </f:facet>

 <h:outputText value="#{wines.year}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Region"/>

 </f:facet>

 <h:outputText value="#{wines.region}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Rating"/>

 </f:facet>

 <h:outputText value="#{wines.rating}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Retail Price"/>

 </f:facet>

 <h:outputText value="#{wines.retailPrice}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Description"/>

 </f:facet>

 <h:outputText value="#{wines.description}"/>

 </h:column>

 <h:column>

 �<h:commandButton value="Add to Cart" action="#{WineList.

invokeAddToCart}"/>

 </h:column>

Chapter 12 EJB Client Applications

583

 </h:dataTable>

 </h:form>

 </body>

 </html>

</f:view>

Figure 12-23 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the wineList.jsp page rendered in the browser.

Listing 12-15 shows the new code that we need to add to the WinesList managed

bean. We will add a new property, dataTable1, with respective accessor methods and

a brand new method, invokeAddToCart(). The new dataTable1 property is used to set

the value of the binding attribute in the h:dataTable1 component in wineList.jsp, as

shown in Listing 12-14. In the invokeAddToCart() method, we are retrieving the selected

row using the getRowData() method of the dataTable1 property and setting it as the

value of the selectedWine property in a new managed bean: JSFShoppingCart. We have

used the technique of getting the application from FacesContext and setting the value

of the property, instead of retrieving the value as we did in the earlier use case. The

invokeAddToCart() method returns addtocart on successful execution that we will use

as a navigation case.

Listing 12-15.  WineList.java, with the invokeAddToCart Method

private HtmlDataTable dataTable1;

public void setDataTable1(HtmlDataTable dataTable1) {

 this.dataTable1 = dataTable1;

}

public HtmlDataTable getDataTable1() {

 return dataTable1;

}

public String invokeAddToCart() {

 Wine addWine = (Wine)this.getDataTable1().getRowData();

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

Chapter 12 EJB Client Applications

584

 �ValueBinding binding = app.createValueBinding("#{JSFShoppingCart.

selectedWine}");

 binding.setValue(ctx, addWine);

 return "addtocart";

}

Before we update the faces-config.xml, we need to create a new managed bean,

JSFShoppingCart. Listing 12-16 shows the code for this managed bean. We will start with

a simple property, selectedWine, with its accessor methods, and then we will extend

the bean to meet the new requirements. (These requirements will be discussed in later

sections of the chapter.)

Listing 12-16.  JSFShoppingCart.java

package com.apress.ejb.chapter12.view.managed;

import com.apress.ejb3.wineapp.Wine;

public class JSFShoppingCart {

 public JSFShoppingCart() {

 }

 Wine selectedWine;

 public void setSelectedWine(Wine selectedWine) {

 this.selectedWine = selectedWine;

 }

 public Wine getSelectedWine() {

 return selectedWine;

 }

}

We need to update the faces-config.xml by registering JSFShoppingCart as a

managed bean and add a new navigation case from wineList.jsp to addtoCart.jsp.

Listing 12-17 shows the XML snippets that will go into the faces-config.xml file.

Chapter 12 EJB Client Applications

585

Listing 12-17.  faces-config.xml, with the JSFShoppingCart Managed Bean

<managed-bean>

 <managed-bean-name>JSFShoppingCart</managed-bean-name>

 <managed-bean-class>com.apress.ejb.chapter12.view.managed.

JSFShoppingCart</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

</managed-bean>

<navigation-rule>

 <from-view-id>/wineList.jsp</from-view-id>

 <navigation-case>

 <from-outcome>addtocart</from-outcome>

 <to-view-id>/addtoCart.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

In this particular task, we have displayed the list of wines in a data table component

and provided the user with the ability to select one of the wines. The selected wine is

stored in the JSFShoppingCart managed bean.

�The Display Selected Wine Details Page
Listing 12-18 shows the code for the addtoCart.jsp JSF page. On this particular page,

we are going to use the h:outputText component to display the wine information and

the h:inputText component to let the user enter the quantity for the selected wine.

The value attribute of h:outputText is populated from the selectedWine property in

the JSFShoppingCart managed bean developed in the preceding section. The value of

h:inputText is set with the expression #{JSFShoppingCart.quantity}; this will be a

new property that we need to add to JSFShoppingCart. One last thing to notice in this

page is the h:commandButton component that the users will use as a Submit button to

add wines to the shopping cart. The value of the action attribute for h:commandButton

is set to the #{JSFShoppingCart.addToCart} expression. The addToCart() is a new

method that we will have to add to the JSFShoppingCart bean.

Chapter 12 EJB Client Applications

586

Listing 12-18.  addtoCart.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>Add To Cart Page</title>

 </head>

 <body>

 <h:form>

 <h3>Beginning EJB: Wine Store Application</h3>

 <h5>Selected Wine - Enter Quantity and press AddtoCart button</h5>

 <table cellspacing="3" cellpadding="2" border="1" width="100%">

 <tr>

 <td>Wine ID</td>

 <td> <h:outputText value="#{JSFShoppingCart.selectedWine.id}"/> </td>

 </tr>

 <tr>

 <td>Name</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

name}"/> </td>

 </tr>

 <tr>

 <td>Description</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

description}"/> </td>

 </tr>

 <tr>

 <td>Country</td>

Chapter 12 EJB Client Applications

587

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

country}"/> </td>

 </tr>

 <tr>

 <td>Rating</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

rating}"/> </td>

 </tr>

 <tr>

 <td>Region</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

region}"/> </td>

 </tr>

 <tr>

 <td>Retail Price</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

retailPrice}"/> </td>

 </tr>

 <tr>

 <td>Varietal</td>

 �<td> <h:outputText value="#{JSFShoppingCart.selectedWine.

varietal}"/> </td>

 </tr>

 <tr>

 <td>Year</td>

 <td>

 <h:outputText value="#{JSFShoppingCart.selectedWine.year}"/>

 </td>

 </tr>

 <tr>

 <td>Quantity</td>

 <td> <h:inputText value="#{JSFShoppingCart.quantity}"/> </td>

 </tr>

 </table>

 <p>

Chapter 12 EJB Client Applications

588

 �<h:commandButton value="Add to cart" action="#{JSFShoppingCart.

addToCart}"/>

 </p>

 </h:form>

 </body>

 </html>

</f:view>

Figure 12-24 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the addtoCart.jsp page rendered in the browser.

We will update the JSFShoppingCart managed bean with a new Quantity property

and an addToCart() method. Listing 12-19 shows the code snippets for these two things.

The Quantity property has the accessor methods, and the addToCart() method uses

the technique of getting the application from FacesContext and retrieving the instance

of the ShoppingCart stateful EJB from the Login managed bean. Once that is done, the

addWineItem() business method is invoked to add the selected wine and quantity to the

list of cart items in the ShoppingCart EJB. The addToCart() method returns a value of

success that will be used as a navigation case.

Listing 12-19.  JSFShoppingCart.java, with the addToCart Method

String Quantity;

public void setQuantity(String quantity) {

 this.Quantity = quantity;

}

public String getQuantity() {

 return Quantity;

}

public String addToCart() {

 Integer qty = new Integer(Quantity);

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 //check whether customer has already logged in.

 ValueBinding customerBinding = app.createValueBinding("#{Login.customer}");

 if (customerBinding.getValue(ctx) == null) {

Chapter 12 EJB Client Applications

589

 return "success";

 }

 else {

 �ValueBinding shoppingCartBinding = app.createValueBinding("#{Login.

shoppingCart}");

 shoppingCart = (ShoppingCartLocal)shoppingCartBinding.getValue(ctx);

 shoppingCart.addWineItem(selectedWine, qty.intValue());

 return "success";

 }

}

To complete this task, we need to add one navigation case to the faces-config.xml.

Listing 12-20 shows the XML snippet. When a wine is successfully added to the shopping

cart, the user is taken to a new page, cartItems.jsp, which displays the list of all items in

the cart.

Listing 12-20.  faces-config.xml, with the addtoCart Navigation Rule

<navigation-rule>

 <from-view-id>/addtoCart.jsp</from-view-id>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/cartItems.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

�The Display Cart Items Page
Listing 12-21 shows the cartItems.jsp JSF page. In this page, we want to display all of

the items in the shopping cart using a data table component. The #{JSFShoppingCart.

cartItems} expression is used as a value-binding expression for the h:dataTable1

component. This means that again we have to update our JSFShoppingCart managed

bean with code that will populate the cartItems property. Finally, the JSF page has a

h:commandButton component that the user will use as a Submit button to complete the

order. #{JSFShoppingCart.ProcessOrder} is a method-binding expression used for the

Submit button.

Chapter 12 EJB Client Applications

590

Listing 12-21.  cartItems.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 �<meta http-equiv="Content-Type" content="text/html;

charset=windows-1252"/>

 <title>Cart Items Page</title>

 </head>

 <body>

 <h:form>

 <h3>Beginning EJB: Wine Store Application</h3>

 <h4>Shopping Cart</h4>

 <h:dataTable value="#{JSFShoppingCart.cartItems}" var="cartItems">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Id"/>

 </f:facet>

 <h:outputText value="#{cartItems.id}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Created Date"/>

 </f:facet>

 <h:outputText value="#{cartItems.createdDate}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Wine"/>

 </f:facet>

 <h:outputText value="#{cartItems.wine.name}"/>

Chapter 12 EJB Client Applications

591

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Quantity"/>

 </f:facet>

 <h:outputText value="#{cartItems.quantity}"/>

 </h:column>

 </h:dataTable>

 �<h:commandButton value="Submit Order" action="#{JSFShoppingCart.

ProcessOrder}"/>

 </h:form>

 </body>

 </html>

</f:view>

Figure 12-25 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the cartItems.jsp page rendered in the browser.

Listing 12-22 shows the code snippets that are used to update the JSFShoppingCart

managed bean. We have a property—cartItems—of java.util.List type, with accessor

methods. In the getter method, we are retrieving the Customer object and the instance

of the ShoppingCart stateful EJB from the Login managed bean, and we are calling the

business method getAllCartItems() that returns the list of items in the cart. The second

method, ProcessOrder(), also retrieves the instance of the ShoppingCart stateful EJB

from the Login managed bean and invokes the ProcessOrder business method on the

back-end application to complete the order on the JSF application side. Upon successful

execution, the ProcessOrder() method in JSFShoppingCart returns success as a value

that is used for navigation back to the home page of the application.

Listing 12-22.  JSFShoppingCart.java, with the getCartItems and ProcessOrder

Methods

List<CartItem> cartItems = new ArrayList();

public void setCartItems(List<CartItem> cartItems) {

 this.cartItems = cartItems;

}

Chapter 12 EJB Client Applications

592

public List<CartItem> getCartItems() {

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding customerBinding = app.createValueBinding("#{Login.customer}");

 Individual customer = (Individual)customerBinding.getValue(ctx);

 �ValueBinding shoppingCartBinding = app.createValueBinding("#{Login.

shoppingCart}");

 shoppingCart = (ShoppingCartLocal)shoppingCartBinding.getValue(ctx);

 return shoppingCart.getAllCartItems(customer);

}

public String ProcessOrder() {

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 �ValueBinding shoppingCartBinding = app.createValueBinding("#{Login.

shoppingCart}");

 shoppingCart = (ShoppingCartLocal)shoppingCartBinding.getValue(ctx);

 shoppingCart.sendOrderToOPC();

 return "success";

}

One last thing that we need to do is to add a navigation case to faces-config.xml

that will route the user back to the processOrder.jsp notification page as shown in

Listing 12-23.

Listing 12-23.  faces-config.xml, with the cartItems Navigation Rule

<navigation-rule>

 <from-view-id>/cartItems.jsp</from-view-id>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/processOrder.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

Chapter 12 EJB Client Applications

593

�The Notification Page
We’re almost there! We will add one final JSF page processOrder.jsp that will display an

order submission message to the user and provide a link to navigate back to the home

page. Listing 12-24 shows the code for processOrder.jsp. As you can see, the page is

pretty static—it prints out notification text and uses an h:commandLink component to

route the user back to the winehome.jsp page that shows the list of options for searching

wines, viewing the contents of the shopping cart, and so on.

Listing 12-24.  processOrder.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<f:view>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>

 <title>Process Order Page</title>

 </head>

 <body>

 <h:form>

 <p> Beginning EJB: Wine Store Application </p>

 �<p> Your order has been submitted, you will receive an

email with order id and details. </p>

 <p>

 <h:commandLink value="Back to Home" action="winehome2">

 <h:outputText value="Back to wine search"/>

 </h:commandLink>

 </p>

 </h:form>

 </body>

 </html>

</f:view>

Chapter 12 EJB Client Applications

594

Figure 12-26 (in the “Compiling, Deploying, and Testing the JSF Application”

section) shows the processOrder.jsp page being rendered in the browser.

To complete the process, we will add one final navigation case into faces-config.

xml, as shown in Listing 12-25.

Listing 12-25.  faces-config.xml, with the processOrder Navigation Rule

<navigation-rule>

 <from-view-id>/processOrder.jsp</from-view-id>

 <navigation-case>

 <from-outcome>winehome2</from-outcome>

 <to-view-id>/winehome.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

With that, we have completed the JSF application with the control flow shown

previously in Figure 12-12. Now we will look at deploying and executing the completed

application and walk through the screens that we have developed, which access the EJB

back-end application.

�Compiling, Deploying, and Testing the JSF
Application
JSF applications need to be packaged into Web Archive (WAR) files before they’re

assembled into Enterprise Archive (EAR) files that hold all of the required modules and

libraries for the application. Most application servers provide deployment utilities or Ant

tasks to facilitate deployment of EJBs to their containers. Java-integrated development

environments (IDEs) like JDeveloper, NetBeans, and Eclipse also provide deployment

features that allow developers to package, assemble, and deploy applications to

application servers.

Packaging, assembly, and deployment aspects are covered in detail in Chapter 11.

In this chapter, we have developed a JSF application that accesses the back-end

application built in Chapter 7. We will perform the following steps to deploy and test the

JSF application.

Chapter 12 EJB Client Applications

595

�Prerequisites
Before performing the steps detailed in the next sections, complete the “Getting Started”

section of Chapter 1, which will walk you through the installation and environment setup

required for the samples in this chapter. Since we have built our JSF application on top of

the work we have done in Chapter 7, you will need to make sure that you have completed

the following steps:

•	 You must have created the resources detailed in the “Creating Data

Sources, JMS Resources, and Mail Resources” section of Chapter 7.

•	 You must have successfully deployed the application as detailed in

the “Deploying the Application” section of Chapter 7.

Note T he sample code of Chapter 7 is dependent on Chapter 6. Hence, make
sure that you have completed both Chapter 6 and Chapter 7 before you proceed
further. Refer to the Readme.txt bundled with the sample code in case you face
any problems in executing the sample code.

�Compiling the JSF Application
Copy the Chapter12-JSFClientSamples directory and its contents into a directory

of your choice. As the sample code of this chapter references the artifacts of Chapter

6, make sure that you have the Chapter06-WebServiceSamples directory alongside

the Chapter12-JSFClientSamples directory. Run the NetBeans IDE, and open the

Chapter12-JSFClientSamples file using the File ➤ Open Project menu, as shown in

Figure 12-13.

Chapter 12 EJB Client Applications

596

Note  Before you open the Chapter12-JSFClientSamples file within
NetBeans, make sure you have closed the Chapter07-ServiceIntegration
project and Chapter06-WebServiceSamples from the NetBeans IDE. The
sample code of Chapter 12 is built on top of Chapter 6 and Chapter 7, and having
these projects open within NetBeans will result in compilation errors. NetBeans will
automatically open the required projects when Chapter12-JSFClientSamples
is opened.

Expand the Chapter12-JSFClientSamples-war node, and observe that all of the JSF

files and managed beans discussed in this chapter are listed as shown in Figure 12-14.

Figure 12-13.  Opening the Chapter12-JSFClientSamples file

Chapter 12 EJB Client Applications

597

Figure 12-14.  Verifying the packages in the Chapter12-JSFClientSamples-war
project

Chapter 12 EJB Client Applications

598

Figure 12-15.  Building the project

Invoke the context menu on the Chapter07-ServiceIntegration node, and build

the application by selecting the Clean and Build menu option, as shown in Figure 12-15.

The JSF pages and their managed beans will compile without any errors.

Chapter 12 EJB Client Applications

599

�Deploying and Running the Wine Store Application
Once the JSF pages and managed beans are successfully compiled, we need to set the

run target that we wish to execute. To set the run target, invoke the context menu on

Chapter07-ServiceIntegration node, and select the Properties menu option. As

shown in Figure 12-16, select the Run category, enter the run target as faces/login.jsp

in Relative URL text field, and click OK.

Figure 12-16.  Setting the run target

Now you are ready to run the wine store application with the JSF user interface. To

run the application, invoke the context menu on Chapter07-ServiceIntegration node

and select the Run menu option, as shown in Figure 12-17. Running the application will

deploy the application on the integrated GlassFish application server and launch the

wine store application in your default browser.

Chapter 12 EJB Client Applications

600

Figure 12-17.  Running the wine store application

Chapter 12 EJB Client Applications

601

Note A s the aim of this sample application is solely to learn the technology, its
code does not have the required data validations entry that you would normally
find in enterprise applications. Thus, make sure you enter valid values for the given
text fields.

Enter your e-mail in the “Enter Email address” text field, and click the “Login”

button. Since you haven’t registered as a customer yet, and your e-mail does not exist

in the customer database, you will be redirected to the customer registration page, as

shown in Figure 12-19. Enter the relevant values in the input fields as shown, and click

the “Submit” button.

Upon startup, the login page rendered as shown in Figure 12-18.

Figure 12-18.  The wine store application login page

Chapter 12 EJB Client Applications

602

Upon successful registration, you will be routed back to the login page. On the login

page, enter the e-mail address that you have used in the registration process and click

the “Login” button, as shown in Figure 12-20.

Figure 12-20.  The wine store application login page

Figure 12-19.  The customer registration page

Chapter 12 EJB Client Applications

603

After the e-mail address is validated, you will be routed to the wine store home page

that will show you a list of options, as shown in Figure 12-21.

Figure 12-22.  The search page

Figure 12-21.  The wine store home page

We will walk you through the search use case. Click the link that reads, “Search by year,

country, or varietal.” You will be routed to the search page, as shown in Figure 12-22.

Chapter 12 EJB Client Applications

604

Select “Zinfandel” as the varietal, and click the “Go” button. Figure 12-23 shows the

list of wines that satisfy the search criteria.

Figure 12-23.  The wine list page

In the wine list page, click the “Add to Cart” button for the wine that you wish to add

to the shopping cart. This will bring you to the JSF page, as shown in Figure 12-24, which

shows the details of the wines and a text box for entering the quantity.

Chapter 12 EJB Client Applications

605

Enter “10” for quantity, and click the “Add to cart” button. You will be routed to

the shopping cart page. At this stage, you can either submit your order by pressing the

“Submit Order” button or use your browser’s back button to go to the page that lists

the wines and add more wines to your shopping cart. As shown in Figure 12-25, the

shopping cart page shows all of the items in the shopping cart.

Figure 12-24.  The wine details page

Chapter 12 EJB Client Applications

606

Once the order has been processed, you will receive an e-mail notification, as shown

in Figure 12-27.

The shopping cart page provides a “Submit Order” button for submitting the order.

Click this button, and the order will be processed by the EJB back-end application. You

will then be shown a notification page, as shown in Figure 12-26.

Figure 12-25.  The shopping cart page

Figure 12-26.  The notification page

Chapter 12 EJB Client Applications

607

Figure 12-27.  The notification e-mail

�The Application Client Container
We have mentioned and used the application client container in earlier chapters, and

we have shown a couple of application architectures in Figure 12-4 and Figure 12-5.

Application clients or client programs that are developed using technologies like Java

Swing can be run in stand-alone Java SE environments. Application client containers

provide additional system services (such as security and deployment) that client

programs can use during execution.

An application client can leverage authentication services provided by the

application client container for authenticating its users. The container’s service may be

integrated with the native platform’s authentication system to provide single sign-on

capability to the enterprise users.

Client programs using an application client container can invoke EJBs. Similar to

other Java EE components, programs running in a client container can use the Java

Naming and Directory Interface (JNDI) to look up EJBs or resources like Java Message

Service (JMS) and JavaMail. Application client containers also provide injection facilities

to client programs. Since application client containers do not create instances of an

application client, static fields and methods should be used for injecting any resources.

Application clients are packaged into JAR files. If an application client container is

used to run the client programs, then you will have to bundle or package the application

client container along with the application so that you can run it on individual desktop

machines.

Chapter 12 EJB Client Applications

608

�Summary
In this chapter, we introduced different application architectures that you can use to

meet different requirements, as well as the programming models that go along with

them. We looked at architectures that are useful for Web and desktop applications, and

we also looked at Web service client applications and business process services that can

make use of EJBs published as Web services.

We discussed how Java EE based Web technologies have evolved, resulting in

significantly simplified Web application development.

We drilled down into JSF architecture, the JSF life cycle, and JSF applications, as well

as the current state of tools and UI components for JSF.

Ultimately, we built a comprehensive JSF application to communicate with the

integrated EJB back-end application developed in Chapter 7. During the development

process, we illustrated several programming techniques for sharing the data in the JSF

application and looking up and invoking business methods in the back-end application.

Finally, we examined the application client container, including the services that it

provides to client programs running on desktop machines.

The last chapter of this book will detail the various EJB testing scenarios and will

guide you on using JUnit to test EJB components (and JPA entities) in GlassFish’s

Embeddable EJB Container.

Chapter 12 EJB Client Applications

609
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7_13

CHAPTER 13

Testing in an Embeddable
EJB Container
As with all mission-critical software, EJB components must be well tested before they

are deployed into a production environment. The finest level of granularity in an EJB

is its method; so proper unit tests must test each method of each EJB in isolation. For

stateless Session beans, this is typically sufficient. Because a stateful Session bean may

also contain state, full coverage additionally requires inclusion of more coarse-grained

scenarios as well, involving sequences of method calls. When a stateless Session bean

effectively stores “state” information in a database, as through JPA entities, multistep test

scenarios are generally also required. In this chapter, we will look at both single-method

and multi-method tests, covering stateless and stateful Session beans serving primarily

as service interfaces for JPA-based operations.

�Test Clients
Thus far, the examples in this book have largely used servlets as clients to call EJB

methods. Using test frameworks, such as ServletUnit, servlets can serve as a viable unit

test bed for testing EJBs. Similarly, JSF clients that call EJBs can be unit tested using

the HttpUnit framework, which allows you to record user interactions with JSF clients

running in a browser and then compare the actual screen results with expected screen

results. However, both approaches must be executed within a full Java EE application

server. In this chapter, we will explore a lightweight option for testing EJBs running in a

pure Java SE environment.

610

�EJB Lite
EJB Lite was introduced in EJB 3.1 and further enhanced in EJB 3.2, and it is specified

to be a minimal subset of the full EJB Container functionality. Recognizing that many

enterprise applications require only a subset of the full EJB API, EJB Lite includes many

of the most important features of EJB but with a smaller footprint. Implementations of

EJB Lite include the Embeddable EJB Container, described below; and the Java EE Web

Profile.

Because EJB Lite is a strict subset of the EJB API, any application that is compliant

with EJB Lite will also run in a full EJB Container within a Java EE server. That is, EJB Lite

does not explicitly support any behavior that is outside of the EJB API.

�Embeddable EJB Container
An Embeddable EJB Container is essentially a Java library that provides the services

defined by the EJB Lite specification. It emulates an EJB Container running in a Java

EE environment, but it runs in a Java SE environment. In fact, attempting to instantiate

an Embeddable EJB Container from within a Java EE environment is restricted. This

embeddable container provides an operating environment for EJBs, supplying injected

resources, security, and a JTA transactional interface so that EJBs can be tested in a

controlled environment.

�How This Chapter Is Organized
In this chapter, we explore some of the principle concepts around unit testing. We

then look at how to set up, execute, and debug JUnit tests using an Embeddable EJB

Container, drawing from a handful of scenarios in our WineApp application. We will next

take a close look at the services offered by EJB Lite, uncover its strengths and limitations,

and show some useful shortcuts to isolate the EJB and JPA components being tested

while reducing complexity in the test environment.

After we examine the JUnit test code that enables you to work with EJBs in the

Embeddable EJB Container, we will look at some of the configuration options that you

can leverage that are particularly well suited for a test environment. At the conclusion

Chapter 13 Testing in an Embeddable EJB Container

611

of the chapter, we will walk you through step-by-step instructions on how to set up and

configure a JUnit environment in NetBeans, and then execute and debug the tests.

�Concepts
Let’s take a closer look at some of the principal concepts that we’ll be covering in this

chapter.

�JUnit

JUnit is a test framework widely used for testing Java classes of all forms. Test classes are

ordinary Java classes that have been annotated to identify methods that serve special

purposes. A method annotated as @Test identifies a single unit test. The test invokes one

or more methods on a class being tested, obtains the results from calling those methods,

and compares the actual with the expected results. When they differ, the test reports a

failure, and the tester is alerted that a test needs attention.

By writing JUnit tests that comprehensively test the behavior of one or more classes,

the tester can then execute those tests each time changes are made to the code being

tested or to any code that is called indirectly. Any failures indicate that the expected

behavior is no longer occurring. Furthermore, because a unit test typically targets a very

specific bit of functionality, the failed test can clearly identify to the tester the specific

code area that caused the disruption.

Because an EJB is a component that honors a public interface, it lends itself well to

this form of unit testing. The introduction to EJB 3.1 of EJB Lite and Embeddable EJB

Containers formally allows EJBs to be unit tested, without modification, through the

JUnit testing framework in a pure Java SE environment.

�EJB Lite

Let us take a closer look at the subset of features that comprise EJB Lite. Table 13-1 shows

which of the major features of EJB 3.2 are included in EJB 3.2 Lite.

Chapter 13 Testing in an Embeddable EJB Container

612

Most notably, in EJB 3.2 Lite all forms of Local session beans are supported,

but Remote session beans, MDBs, and EJBs as Web Services are not. Security and

JTA support is in EJB Lite, including support for BMT and CMT. Finally, support for

EntityManager and EntityManagerFactory injection is offered for JPA.

Table 13-1.  The features of EJB 3.2 that are part of EJB 3.2 Lite

EJB 3.2 Feature Included in EJB 3.2 Lite

Session Beans (stateless, stateful, and singleton) Yes

Message-Driven Beans (MDBs) No

Entity Beans (EJB 2.x) No

Java Persistence API (JPA) 2.0 Yes

No Interface Yes

Local business interface Yes

Remote interface No

Embeddable API Yes

JAX-WS Web Service End Point No

JAX-RPC Web Service End Point No

Nonpersistent EJB Timer Service Yes

Persistent EJB Timer Service No

Local asynchronous session bean invocations Yes

Remote asynchronous session bean invocations No

Interceptors Yes

RMI-IIOP Interoperability No

Container-managed transactions Yes

Bean-managed transactions Yes

Declarative Security Yes

Programmatic Security Yes

Chapter 13 Testing in an Embeddable EJB Container

613

�Embeddable EJB Container Client

A client using the Embeddable EJB Container looks up EJBs through JNDI instead of

through injection since a Java EE server provides client injection, which is absent in this

environment. EJBs themselves may be injected with other EJBs, however, along with

other resources that are provided by their EJB Container.

In the JUnit examples shown later in this chapter, the JUnit test classes themselves

are the clients of the Embeddable EJB Container. They instantiate the container directly

through a static factory method, optionally initializing the container with configuration

properties. The container then provides an InitialContext to the client that can be

used to look up EJB and other resources through a JNDI namespace. The Embeddable

EJB Container is capable of supporting EJBs at runtime, injecting session beans with

resources, providing a JTA context for performing transactions, and all other services

specified in EJB Lite that are listed in Table 13-1.

When the Embeddable EJB Container is instantiated in an environment where the

GlassFish Embeddable Server (which also runs in a Java SE environment) is present,

GlassFish augments the experience by providing services to the Embedded EJB

Container.

�JUnit Tests
Having explored the core concepts of this chapter, let us now look at some examples in

the code. Like the Embeddable EJB Container, JUnit is essentially a Java library that you

include in the class-path to enable functionality in your application. While it is beyond

the scope of this chapter to describe all of the features of JUnit (including grouping

tests into Suites, defining initialization Parameters, and so on), for the purposes of our

example, it is useful to view the basic task of writing and executing JUnit classes as

follows:

•	 Write test classes that follow JUnit patterns to initialize the test

environment.

•	 Write one or more methods that perform a specific unit test by

calling one or more methods on an EJB, obtain the results from

those method calls, and compare the results with previously

defined expected results.

Chapter 13 Testing in an Embeddable EJB Container

614

•	 At a per-class level, instantiate the Embeddable EJB Container the

first time that any test method in the class is invoked, and close the

container to release resources after the last test method is invoked.

•	 At a per-test level, initialize the database connection used by the

JPA persistence unit to remove any existing data, and reset the

state to a properly configured one.

•	 Invoke the JUnit test runner, passing as arguments the names of test

classes you wish to execute and adding the following to the class-path:

•	 The JUnit classes (.jar file(s))

•	 The JUnit classes you wrote (optionally in .jar file(s))

•	 The EJB .jar file(s) for EJBs you are testing, along with any

dependent .jar files (like JPA persistence units)

•	 An Embeddable EJB Container .jar, along with any dependent

.jar files it needs

An IDE like NetBeans, JDeveloper, or Eclipse greatly simplifies the invocation

process, as you will see later in the chapter, and it will even set up a lot of the basic

plumbing in your JUnit test classes. This leaves you with the core task of writing just the

code specific to each unit test.

Let us now dissect a JUnit test class we have written against the EJBs in our WineApp

sample application to test a handful of scenarios.

�WineAppServiceTest: A JUnit Test Class
for the WineAppService EJB
For this chapter’s example, we offer in Listing 13-1 a JUnit test class that contains all of

the elements required to unit test EJBs in the Embeddable EJB Container.

Listing 13-1.  WineAppServiceTest.java, a JUnit class for testing EJBs in the

WineApp application

public class WineAppServiceTest {

 private static EJBContainer ejbContainer;

 private static NetworkServerControl derbyServer;

Chapter 13 Testing in an Embeddable EJB Container

615

 public WineAppServiceTest() {

 }

 @BeforeClass

 public static void setUpClass() throws Exception {

 PrintWriter pw = new PrintWriter(System.out);

 // Start the Derby Database server, waiting until it is responsive

 // before continuing

 try {

 derbyServer = new org.apache.derby.drda.NetworkServerControl();

 derbyServer.start(pw);

 int i = 50;

 while (--i > 0) {

 try {

 derbyServer.ping();

 break;

 } catch (Exception ex) {

 �System.out.println("Derby Server started; waiting for

response...");

 }

 Thread.sleep(100);

 }

 } finally {

 pw.close();

 }

 // Instantiate an Embeddable EJB Container

 ejbContainer = javax.ejb.embeddable.EJBContainer.createEJBContainer();

 }

 @AfterClass

 public static void tearDownClass() throws Exception {

 // Close the Embeddable EJB Container, releasing all resources

 ejbContainer.close();

 // Shutdown the Derby Database server

 derbyServer.shutdown();

 }

Chapter 13 Testing in an Embeddable EJB Container

616

 @Before

 public void setUp() {

 // Inititalize the data in the domain model

 �PopulateDemoData.resetData("Chapter13-EmbeddableEJBTests-

ResourceLocal", System.out);

 }

 @After

 public void tearDown() {

 }

 /**

 * Test findCustomerByEmail on WineAppService.

 *

 * Assert that the Customer returned is named "James Brown".

 *

 * @throws Exception

 */

 @Test

 public void testFindCustomerByEmail() throws Exception {

 System.out.println("findCustomerByEmail");

 WineAppService wineAppSvcFacade =

 �(WineAppService) ejbContainer.getContext().lookup("java:global/

classes/WineAppService");

 Customer customer =

 �wineAppSvcFacade.findCustomerByEmail(PopulateDemoData.TO_EMAIL_

ADDRESS);

 �assertEquals("WineAppServiceFacade.findCustomerByEmail(): Checking

customer name",

 "James Brown",

 customer.getFirstName() + " " + customer.getLastName());

 }

 /**

 * Test createIndividual() on WineAppService and findCustomerByEmail() on

 * CustomerFacade.

 *

Chapter 13 Testing in an Embeddable EJB Container

617

 �* Assert that the Individual instance created in createIndividual() has the

 * expected email property.

 * Assert that the Customer retrieved in

 * findCustomerByEmail() has the expected name.

 * �Assert that the shippingAddress property is in a managed state after

merge

 */

 @Test

 public void testCreateIndividual() throws Exception {

 System.out.println("createIndividual");

 WineAppService wineAppSvcFacade =

 �(WineAppService) ejbContainer.getContext().lookup("java:global/

classes/WineAppService");

 String email = "drwho@yahoo.com";

 Individual individual =

 wineAppSvcFacade.createIndividual("Adam", "Beyda", email);

 �assertEquals("WineAppServiceFacade.createIndividual(): Checking

Individual.email prop",

 email, individual.getEmail());

 CustomerFacade custFacade =

 �(CustomerFacade) ejbContainer.getContext().lookup("java:global/

classes/CustomerFacade");

 Customer customer = custFacade.findCustomerByEmail(email);

 �assertEquals("CustomerFacade.findCustomerByEmail(): Checking Customer.

email prop",

 �"Adam Beyda", customer.getFirstName() + " " + customer.

getLastName());

 // Managed/detached entity state check

 �Address shippingAddress = new Address("San Mateo", null, null, null,

null);

 customer.setDefaultShippingAddress(shippingAddress);

 customer = custFacade.merge(customer);

 assertNotNull("customer.getDefaultShippingAddress().getId() is null",

 customer.getDefaultShippingAddress().getId());

Chapter 13 Testing in an Embeddable EJB Container

618

 assertNotNull("shippingAddress.getId() is null",

 shippingAddress.getId());

 }

 /**

 * Test createIndividual() and createCustomerOrder() on WineAppService,

 * getWineFindByYear() on WineFacade, and merge() on CustomerFacade.

 *

 * Assert that the total value of the created order is 110.

 �* Assert that the customerOrder and customer objects are in a managed

state

 */

 @Test

 public void testCreateCustomerOrder() throws Exception {

 System.out.println("createCustomerOrder");

 Context context = ejbContainer.getContext();

 WineAppService wineAppSvcFacade =

 �(WineAppService) context.lookup("java:global/classes/

WineAppService");

 WineFacade wineFacade =

 �(WineFacade) context.lookup("java:global/classes/WineFacade");

 CustomerFacade custFacade =

 �(CustomerFacade) context.lookup("java:global/classes/

CustomerFacade");

 // Add CartItems to the Customer's cart and merge the customer changes

 final String email = "drwho@yahoo.com";

 �Customer customer = wineAppSvcFacade.createIndividual("Adam", "Beyda",

email);

 for (Wine wine : wineFacade.getWineFindByYear(2005)) {

 customer.addCartItem(new CartItem(10, wine));

 }

 customer = custFacade.merge(customer);

 �CustomerOrder customerOrder = wineAppSvcFacade.

createCustomerOrder(customer);

 Float total = new Float(0);

Chapter 13 Testing in an Embeddable EJB Container

619

 for (OrderItem orderItem : customerOrder.getOrderItemList()) {

 total += orderItem.getQuantity() * orderItem.getPrice();

 }

 �assertEquals("Checking that customer order totals $270", total, new

Float(270));

 // Query the latest state of our customer from the persistence context

 // �(using a new transaction, courtesy CMT) and check whether it

contains a

 // customer order with a populated 'id' field

 CustomerOrder customerOrder1 =

 �wineAppSvcFacade.findCustomerByEmail(email).getCustomerOrderList().

get(0);

 �assertNotNull("customerOrder1.getId() is null", customerOrder1.

getId());

 // �Check whether our original customer order has had its 'id' field

auto-populated

 assertNotNull("customerOrder.getId() is null", customerOrder.getId());

 // Check whether the customer order referenced by our customer

 // has had its 'id' field auto-populated

 CustomerOrder customerOrder2 = customer.getCustomerOrderList().get(0);

 �assertNotNull("customerOrder2.getId() is null", customerOrder2.

getId());

 }

}

When this test class is executed in the JUnit tester, each method marked @Test is run

in isolation as its own unit test. However, before any of these methods is executed, JUnit

performs some initialization steps to instantiate the Embeddable EJB Container and

initialize the data in the persistence unit. We will explore the elements of this JUnit class

next, beginning with the initialization steps.

Chapter 13 Testing in an Embeddable EJB Container

620

�Instantiating the Embeddable EJB Container and
Starting Derby
Before any test in this class is executed, we want to initialize the Embeddable EJB

Container. Because this is a somewhat resource-intensive operation (albeit not as

expensive as launching a full-blown GlassFish server), we would like to do this only once

each time the JUnit tester is launched. JUnit lets you annotate static methods with

@BeforeClass, and it executes these methods once per JUnit session, before the first

unit test method is executed on that class. Our class-level setup method is as follows:

@BeforeClass

public static void setUpClass() throws Exception {

 PrintWriter pw = new PrintWriter(System.out);

 // Start the Derby Database server, waiting until it is responsive

 // before continuing

 try {

 derbyServer = new org.apache.derby.drda.NetworkServerControl();

 derbyServer.start(pw);

 int i = 50;

 while (--i > 0) {

 try {

 derbyServer.ping();

 break;

 } catch (Exception ex) {

 �System.out.println("Derby Server started; waiting for

response...");

 }

 Thread.sleep(100);

 }

 } finally {

 pw.close();

 }

Chapter 13 Testing in an Embeddable EJB Container

621

 // Instantiate an Embeddable EJB Container

 ejbContainer = javax.ejb.embeddable.EJBContainer.createEJBContainer();

}

We begin by starting up the Derby database to allow our persistence unit to connect

to a running server. Because the org.apache.derby.drda.NetworkServerControl.

start() method is asynchronous, we have to assume that the server might not be

available for connections right away, so we ping it in a loop, sleeping briefly between

iterations, until it is ready or we decide to time out.

Once Derby is available for connections, we create the Embeddable EJB Container

through the javax.ejb.embeddable.EJBContainer.createEJBContainer() call. Our

WineAppServiceTest class is called from the JUnit tester, and NetBeans launches the

tester with a class-path containing the JPA persistence unit .jar file (from Chapter 7)

along with the EJBs defined in our Chapter 13 EJB jar and all of the necessary Java

libraries required to run the JUnit framework and instantiate the Embeddable EJB

Container. The current (at the time of this writing) GlassFish implementation links to

a GlassFish server installation area to provide the services an EJB Container generally

requires from its host Java EE server environment. Again, because we are running in

a Java SE environment, the Java EE GlassFish server is not actually started, but classes

required by the Embeddable EJB Container are loaded as needed from the Java libraries

that comprise GlassFish.

At the conclusion of the JUnit session, the Embeddable EJB Container and the Derby

Database server must be closed properly to release any resources that they may continue

to hold. JUnit invokes methods annotated @AfterClass at this time, and our method

tearDownClass() performs these tasks:

@AfterClass

public static void tearDownClass() throws Exception {

 // Close the Embeddable EJB Container, releasing all resources

 ejbContainer.close();

 // Shutdown the Derby Database server

 derbyServer.shutdown();

}

Chapter 13 Testing in an Embeddable EJB Container

622

�Initializing Data in the Persistence Unit
Whereas steps such as starting the Derby and Embeddable EJB Container need to be

performed only once per JUnit test session, other initialization steps must be executed

prior to every JUnit test. Per-test initialization steps goes in a method (or methods)

annotated @Before, like this:

@Before

public void setUp() {

 // Inititalize the data in the domain model

 PopulateDemoData.resetData("Chapter13-EmbeddableEJBTests-ResourceLocal",

System.out);

}

For our tests, we want to ensure that each unit test begins with the same data in the

database, so we execute a script that initializes the database and resets the data to the

desired state. You may be familiar with this static PopulateDemoData.resetData() method

from when it was used in other chapters. Note that we pass the name of a persistence unit

so that we can reuse it in different application contexts. The JPA persistence unit in the

Chapter07-ServiceIntegration-jpa project defines its own persistence.xml file, and

within it a <persistence-unit> named Chapter07-WineAppUnit-ResourceLocal. The

<persistence-unit> we are using for our JUnit tests is “Chapter13-EmbeddableEJBTests-

ResourceLocal” and it is defined in our context project, Chapter13-EmbeddedEJBTests,

in the “Configuration Files” section. Since the entity classes in our JPA persistence unit

are visible to our Test/EJB module, we are free to define additional persistence units that

reference these same entity classes. JPA is happy to let you define multiple persistence

units for the same entity classes, using multiple persistence.xml files if desired, allowing

each persistence unit to specify a different database connection, schema generation plan,

persistence provider, or any other configuration option. We define a new persistence unit

in this case so that we can map them to a database connection that is suited to testing

purposes. This connection is described next.

�Using the “jdbc/__default” Connection

GlassFish comes preconfigured with a connection well suited for use by the Embeddable

EJB Container. It is created automatically when requested, and it is deleted automatically

when the Embedded Glassfish Server closes. It is available to clients as a data-source

Chapter 13 Testing in an Embeddable EJB Container

623

resource named jdbc/__default, and it is used by both our JTA and RESOURCE_

LOCAL persistence units defined in the persistence.xml file found in Chapter13-

EmbeddableEJBTests and shown in Listing 13-2.

Listing 13-2.  persistence.xml, containing the two persistence units used by our

tests

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 �<persistence-unit name="Chapter13-EmbeddableEJBTests-ResourceLocal"

transaction-type="RESOURCE_LOCAL">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <non-jta-data-source>jdbc/__default</non-jta-data-source>

 <class>com.apress.ejb.chapter07.entities.Address</class>

 <class>com.apress.ejb.chapter07.entities.BusinessContact</class>

 <class>com.apress.ejb.chapter07.entities.CartItem</class>

 <class>com.apress.ejb.chapter07.entities.Customer</class>

 <class>com.apress.ejb.chapter07.entities.CustomerOrder</class>

 <class>com.apress.ejb.chapter07.entities.Distributor</class>

 <class>com.apress.ejb.chapter07.entities.Individual</class>

 <class>com.apress.ejb.chapter07.entities.InventoryItem</class>

 <class>com.apress.ejb.chapter07.entities.OrderItem</class>

 <class>com.apress.ejb.chapter07.entities.Supplier</class>

 <class>com.apress.ejb.chapter07.entities.Wine</class>

 <class>com.apress.ejb.chapter07.entities.WineItem</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

 �<property name="eclipselink.ddl-generation" value="drop-and-create-

tables"/>

 </properties>

 </persistence-unit>

 �<persistence-unit name="Chapter13-EmbeddableEJBTests-JTA" transaction-

type="JTA">

Chapter 13 Testing in an Embeddable EJB Container

624

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <jta-data-source>jdbc/__default</jta-data-source>

 <class>com.apress.ejb.chapter07.entities.Address</class>

 <class>com.apress.ejb.chapter07.entities.BusinessContact</class>

 <class>com.apress.ejb.chapter07.entities.CartItem</class>

 <class>com.apress.ejb.chapter07.entities.Customer</class>

 <class>com.apress.ejb.chapter07.entities.CustomerOrder</class>

 <class>com.apress.ejb.chapter07.entities.Distributor</class>

 <class>com.apress.ejb.chapter07.entities.Individual</class>

 <class>com.apress.ejb.chapter07.entities.InventoryItem</class>

 <class>com.apress.ejb.chapter07.entities.OrderItem</class>

 <class>com.apress.ejb.chapter07.entities.Supplier</class>

 <class>com.apress.ejb.chapter07.entities.Wine</class>

 <class>com.apress.ejb.chapter07.entities.WineItem</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 </persistence-unit>

</persistence>

The two persistence units are nearly identical but for their transactional and schema

generation behavior. The first persistence unit, Chapter13-EmbeddableEJBTests-

ResourceLocal, references jdbc/__default as a non-jta-data-source, and it is used by

our non-EJB Java façade inside the PopulateDemoData.resetData() operation. Since we

know our tests will execute this operation prior to each test, we configure its persistence

unit always to drop and re-create the schema objects required by the entities in that unit.

This is reflected in the property defined for that unit:

<property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>

Note I n JPA 2.0 and earlier, schema generation options were not defined in the
spec, and users had to rely on platform-specific support for this, like the EclipseLink
property shown above. JPA 2.1 introduces support for schema generation through a
number of standard configuration properties, including a parallel property to the one
above: “javax.persistence.schema-generation-action”. Currently the
Java EE 8 provides the JAP version 2.2 but for compatibility with JPA 2.0 libraries,
for now we use the EclipseLink property in our examples.

Chapter 13 Testing in an Embeddable EJB Container

625

The second persistence unit in our persistence.xml file, Chapter13-

EmbeddableEJBTests-JTA, can assume that the schema has already been created, so we

deliberately do not enlist a schema generation option for this persistence unit.

If we needed to free up resources acquired during the individual unit tests runs, we

could free them up using a method annotated @After. In our example, we don’t need to

do this, so we leave the method body empty.

�The Unit Test Methods
Having now covered the test initialization steps, we turn our attention to the unit tests

themselves. Each unit test is annotated @Test to differentiate it from ordinary methods

that might also be on the class, and we include three test methods.

The first test, findCustomerByEmail(): executes a single method

findCustomerByEmail() on the WineAppService EJB, which returns a Customer

instance. It then asserts that the firstname + lastName is “James Brown,” the expected

result. Our test class controls the state of the data in the persistence unit, and so it knows

what to expect.

/**

 * Test findCustomerByEmail on WineAppService.

 *

 * Assert that the Customer returned is named "James Brown".

 *

 * @throws Exception

 */

@Test

public void testFindCustomerByEmail() throws Exception {

 System.out.println("findCustomerByEmail");

 WineAppService wineAppSvcFacade =

 �(WineAppService) ejbContainer.getContext().lookup("java:global/

classes/WineAppService");

 Customer customer =

 �wineAppSvcFacade.findCustomerByEmail(PopulateDemoData.TO_EMAIL_

ADDRESS);

 �assertEquals("WineAppServiceFacade.findCustomerByEmail(): Checking

customer name",

Chapter 13 Testing in an Embeddable EJB Container

626

 "James Brown",

 customer.getFirstName() + " " + customer.getLastName());

}

�EJB Lookup Through JNDI

EJB injection is not available to us from the JUnit test class, since it is running in an

ordinary Java SE environment and not inside the Embeddable EJB Container. Thus we use

JNDI through the javax.naming.Context API provided by our EJBContainer object to get

references to the EJBs we are testing. There are several ways to look up an EJB, depending

on whether it is global to the application or local to your context module. In this example,

our EJBs are registered globally to the application, and we can use the global namespace

to find them, using a URL such as "java:global/classes/WineAppService."

The second test, testCreateIndividual(), is a superset of the first test, but it does

not rely on any side effects of the first test:

/**

 * Test createIndividual() on WineAppService and findCustomerByEmail() on

 * CustomerFacade.

 *

 * Assert that the Individual instance created in createIndividual() has the

 * expected email property.

 * Assert that the Customer retrieved in

 * findCustomerByEmail() has the expected name.

 */

@Test

public void testCreateIndividual() throws Exception {

 System.out.println("createIndividual");

 WineAppService wineAppSvcFacade =

 (WineAppService) ejbContainer.getContext().lookup("java:global/

classes/WineAppService");

 String email = "drwho@yahoo.com";

 Individual individual =

 wineAppSvcFacade.createIndividual("Adam", "Beyda", email);

 �assertEquals("WineAppServiceFacade.createIndividual(): Checking

Individual.email prop",

 email, individual.getEmail());

Chapter 13 Testing in an Embeddable EJB Container

627

 CustomerFacade custFacade =

 �(CustomerFacade) ejbContainer.getContext().lookup("java:global/

classes/CustomerFacade");

 Customer customer = custFacade.findCustomerByEmail(email);

 �assertEquals("CustomerFacade.findCustomerByEmail(): Checking Customer.

email prop",

 �"Adam Beyda", customer.getFirstName() + " " + customer.

getLastName());

 // Managed/detached entity state check

 �Address shippingAddress = new Address("San Mateo", null, null, null,

null);

 customer.setDefaultShippingAddress(shippingAddress);

 customer = custFacade.merge(customer);

 assertNotNull("customer.getDefaultShippingAddress().getId() is null",

 customer.getDefaultShippingAddress().getId());

 assertNotNull("shippingAddress.getId() is null",

 shippingAddress.getId());

}

This tests our transactional method createIndividual() on WineAppService,

which creates and persists an instance of Individual. We then query it through

findCustomerByEmail() on a separate EJB, CustomerFacade, to verify that it can be found.

A secondary step in the test creates a new address and assigns it as the customer’s

default shipping address. We will return to this when running the tests later in this chapter.

Our third unit test, testCreateCustomerOrder(), further tests the app behavior by

calling multiple transactional methods on different EJBs and combining test-side and

server-side steps that build up a customer cart and process it to create a customer order:

/**

 * Test createIndividual() and createCustomerOrder() on WineAppService,

 * getWineFindByYear() on WineFacade, and merge() on CustomerFacade.

 *

 * Assert that the total value of the created order is 110.

 * �Assert that the customerOrder and customer objects are in a managed

state

 */

Chapter 13 Testing in an Embeddable EJB Container

628

@Test

public void testCreateCustomerOrder() throws Exception {

 System.out.println("createCustomerOrder");

 Context context = ejbContainer.getContext();

 WineAppService wineAppSvcFacade =

 �(WineAppService) context.lookup("java:global/classes/

WineAppService");

 WineFacade wineFacade =

 (WineFacade) context.lookup("java:global/classes/WineFacade");

 CustomerFacade custFacade =

 �(CustomerFacade) context.lookup("java:global/classes/

CustomerFacade");

 // Add CartItems to the Customer's cart and merge the customer changes

 final String email = "drwho@yahoo.com";

 �Customer customer = wineAppSvcFacade.createIndividual("Adam", "Beyda",

email);

 for (Wine wine : wineFacade.getWineFindByYear(2005)) {

 customer.addCartItem(new CartItem(10, wine));

 }

 customer = custFacade.merge(customer);

 �CustomerOrder customerOrder = wineAppSvcFacade.

createCustomerOrder(customer);

 Float total = new Float(0);

 for (OrderItem orderItem : customerOrder.getOrderItemList()) {

 total += orderItem.getQuantity() * orderItem.getPrice();

 }

 �assertEquals("Checking that customer order totals $270", total, new

Float(270));

 // Query the latest state of our customer from the persistence context

 // (using a new transaction, courtesy CMT) and check whether it contains a

 // customer order with a populated 'id' field

Chapter 13 Testing in an Embeddable EJB Container

629

 CustomerOrder customerOrder1 =

 �wineAppSvcFacade.findCustomerByEmail(email).getCustomerOrderList().

get(0);

 assertNotNull("customerOrder1.getId() is null", customerOrder1.getId());

 // �Check whether our original customer order has had its 'id' field

auto-populated

 assertNotNull("customerOrder.getId() is null", customerOrder.getId());

 // Check whether the customer order referenced by our customer

 // has had its 'id' field auto-populated

 CustomerOrder customerOrder2 = customer.getCustomerOrderList().get(0);

 assertNotNull("customerOrder2.getId() is null", customerOrder2.getId());

}

This high-level test covers some ground and also exercises a real-world process.

It is designed to sniff out any breakages across a relatively large swath of code, and it

complements other tests that are designed to pinpoint very specific areas of the code

should changes to the app cause these tests to start to fail.

Having examined our JUnit test code in detail, you can now follow the steps

outlined in the next section to build and run these tests in NetBeans using JUnit with the

Embedded EJB Container.

�Building and Testing the Sample Code
Now that we’ve examined how JUnit tests can be written to execute EJB unit tests against

an Embeddable EJB Container, let’s execute the test cases we just covered from within

NetBeans.

�Prerequisites
Before performing any of the steps detailed in the next sections, complete the “Getting

Started” section of Chapter 1. This section will walk you through the installation and

environment setup required for the samples in this chapter.

Chapter 13 Testing in an Embeddable EJB Container

630

�Opening the Sample Application
This chapter’s root project holds a dependency on the JPA persistence unit defined

in Chapter07-ServiceIntegration-jpa. Launch the NetBeans IDE, and open the

Chapter13-EmbeddableEJBTests project using the File ➤ Open Project menu. Make

sure that the 'Open Required Projects' check box is checked as shown in Figure 13-1.

This project is a stand-alone EJB project, a departure from the other Java EE

Application projects that we have used for the other chapters. The project consists of a

handful of EJBs to be tested, under the Source Packages folder; a persistence.xml file

defining the persistence units used by the EJBs, in the Configuration Files folder; and

our JUnit test class in the Test Packages folder. The structure is shown in Figure 13-2.

Figure 13-1.  Opening the Chapter13-EmbeddableEJBTests project

Chapter 13 Testing in an Embeddable EJB Container

631

Figure 13-2.  Observing the structure of the Chapter13-EmbeddableEJBTests
project

�Compiling the Sources
Invoke the context menu on the Chapter13-EmbeddableEJBTests node, and build the

application by selecting the Clean and Build menu option, as shown in Figure 13-3.

Chapter 13 Testing in an Embeddable EJB Container

632

�Running the JUnit Tests
There are several ways to launch JUnit tests from NetBeans, but for these tests, you

will right-click on the WineAppServiceTest class and choose “Test File,” as shown in

Figure 13-4.

Figure 13-3.  Building the application

Chapter 13 Testing in an Embeddable EJB Container

633

This step instantiates the Embeddable EJB Container, initializes the database, and

executes the three unit tests in our class. The results of the test will appear in the Test

Results tab.

As you will see, the second and third tests fail due to assertion failures. So let’s

diagnose these problems.

�Fixing the Test Cases

Our first failure occurs in the second unit test – testCreateIndividual() – with the

message shippingAddress.getId() is null. Interestingly, the prior assertion check in

that unit test—checking the id field on the shippingAddress property currently known

to our customer—succeeded. You might be forgiven for thinking that these asserts

Figure 13-4.  Launching the JUnit Tester to execute the unit tests in
WineAppServiceTest.java

Chapter 13 Testing in an Embeddable EJB Container

634

should be checking the same object—the object that was originally assigned to the

customer using setDefaultShippingAddress()—because, although we performed

a merge() on customer, shippingAddress is a new instance and so logically it was

persisted and not merged. Since the persist() operation transforms the object into

a managed instance in-place, without creating a new managed object the way that

merge() does, shouldn’t our original shippingAddress instance now just be the original

instance but in a managed state?

Cascading MERGE Operations

The answer is that a cascade MERGE performs a merge() of new instances as well as of

detached and managed ones; new instances in this case are not persisted through a

call to persist(). Thus our original shippingAddress reference is now stale, and the

customer holds a reference to the new managed copy of shippingAddress. This is an

important “gotcha” when persisting and merging entities that cascade MERGE operations

to objects they reference. A merge() is performed on both new and existing objects

that are found during a cascading MERGE operation. Whereas persist() transforms the

original instance into a managed copy and places it in the persistence context, merge()

creates a new managed copy of the original and adds that instead. The original object

being merged (customer in our case) is updated correctly to refer to the newly managed

copy of shippingAddress. However, any references to the original, detached instances—

for example, our shippingAddress variable—are now stale and need to be refreshed

before they can be used.

Thus to fix this problem, we need to obtain the new managed copy of the

shippingAddress object from the EntityManager by calling merge(). If we amend the

test code, adding line 124, as shown in Figure 13-5, and rerun the test, this test will now

succeed.

Figure 13-5.  Updating the test method WineAppServiceTest.
testCreateIndividual() to refresh a stale reference

Chapter 13 Testing in an Embeddable EJB Container

635

Returning Managed Objects from EJB Methods

The third test appears to fail with a similar issue. We can fix it in the same way by

explicitly merging all of the objects within our test client to obtain managed references

after they have been added to the persistence context—whether directly or through

a cascading MERGE operation. However, in this case, we are calling an EJB method to

assemble a CustomerOrder instead of wiring things up within the test client, and we

decide to address this issue in the EJB code itself.

Let’s go into the debugger and see if we can see why our customerOrder reference

has a null id field when the same customerOrder queried from the database has its id

field properly assigned.

Open the WineAppService.java file, and add a breakpoint on the custFacade.

merge(customer); call inside createCustomerOrder(), as shown in Figure 13-6.

Figure 13-6.  Setting a breakpoint inside WineAppService.
createCustomerOrder()

With the breakpoint set, right-click on WineAppServiceTest.java, and this time

select the item “Debug Test File” to launch the JUnit tester in debug mode.

When our breakpoint is hit, open up the Variables panel and navigate to the

customerOrder local variable. Expand customerOrder to view the current values of its

properties, navigate to its inherited properties, and observe that its id property is null.

Chapter 13 Testing in an Embeddable EJB Container

636

This is to be expected. At this stage in the method, customerOrder is a new instance and

has not yet been persisted. Thus, its primary key value hasn’t been generated or assigned

yet to its id field.

Step over the line with the breakpoint to perform the merge() on customer. We

know from the cascade rules on Customer that when a Customer instance (or any of its

subtypes) is merged, all referenced CustomerOrder instances will be merged as well.

When inspecting customerOrder in the Variables window again after executing the

merge, we find that its id field is still null. The @GeneratedValue setting on its id field

ensures that a value is assigned when it is persisted or merged into the persistence

context, so evidently this object is not the managed copy created when merge() was

called on its customer parent. Consequently, the method createCustomerOrder() is

returning the wrong instance of customerOrder. To fix this, edit the return statement to

return a managed instance of customerOrder instead as shown in Figure 13-7.

Figure 13-7.  Updating WineAppService.createCustomerOrder() to return a
managed instance of customerOrder

Figure 13-8.  Updating WineAppServiceTest.testCreateCustomerOrder() to assign
a managed instance to the customer variable

This gets us past the customerOrder.getId() is null assertion failure that

we were hitting. Running the tests again lands us at the final issue we need to

resolve. Our customer instance was in a managed state after it was created through

createCustomerOrder() a few lines previously. However, the assertion failure

customerOrder2.getId() is null indicates that it is somehow holding onto a stale copy

of customerOrder. A closer inspection identifies that our copy of customer became

detached when it was merged inside createCustomerOrder(). Because we do not

pass the merged copy back to the client, the client is responsible for obtaining the new

managed copy. Acquiring this managed copy through another merge() call fixes the

problem, as shown on line 173 in Figure 13-8.

Chapter 13 Testing in an Embeddable EJB Container

637

… and with that, our tests now execute successfully.

Beyond exploring the step-by-step process of executing and debugging JUnit tests

involving session beans and entities, a key takeaway from this exercise is that merge

operations, particularly those involving cascade MERGE, can lead to stale references

and this can be difficult to spot in the code. A safe approach is always to persist new

entities explicitly if you need to continue to reference them, rather than allow them to

be persisted through a cascade merge, which causes the original instances to become

detached. Also, remember to merge objects to obtain their current managed state if you

have any doubt about their state following a method call where they might have been

persisted or merged.

�Summary
The chapter began with an introduction to the following key concepts:

•	 JUnit: A framework for unit testing Java classes;

•	 EJB Lite: A minimal subset of the EJB API, which provides essential

services to EJBs without the overhead of some of the more resource-

intensive features required by a full EJB Container;

•	 Embeddable EJB Container: An implementation of EJB Lite that

runs in a pure Java SE environment instead of a Java EE application

server, and which provides a lightweight environment for testing EJBs

through Junit.

While examining a JUnit test class that was written to test EJB facades over a JPA

persistence unit, we dissected the configuration requirements when running tests in an

Embeddable EJB Container.

Finally, we walked through the steps for building and executing our JUnit tests in

NetBeans against the GlassFish implementation of an Embeddable EJB Server. The

tests were preconfigured to fail, and we walked through the process of examining and

uncovering the causes of the failures, using the debugger to assist us in arriving at their

solutions.

We closed the chapter with an important takeaway about exercising caution when

working with references to entities that can become detached when they become

merged or persisted due to cascade rules when a related entity is merged.

Chapter 13 Testing in an Embeddable EJB Container

639
© Jonathan Wetherbee, Massimo Nardone, Chirag Rathod, and Raghu Kodali 2018
J. Wetherbee et al., Beginning EJB in Java EE 8, https://doi.org/10.1007/978-1-4842-3573-7

Index

A
Abstract entity, 159, 191
Advanced persistence features, 16
Aggregate average response time

(AART), 438–439, 441–442,
461–463, 466–468

Application Assembler
creating EAR file, 514–515
deployment descriptors, 513
external dependencies

conflicts and redundant
references, 534

<ejb-ref> descriptor, 533–534
packaging, 535
partial @EJB annotations, 534
responsibility, 532
web.xml, ejb-jar.xml, and

application-client.xml
descriptor, 532

grouping components, 513
packaging components,

JAR files, 514
specific tasks, 515–516
tasks and deliverables, 512–513

Application servers
deployment plan, 531
deployment tools, 530–531
platform-specific descriptors, 530

AroundInvoke methods, 55

Atomicity, consistency, isolation, durability
(ACID), 369–370, 407–408

Auto-acknowledge, 241
Autogenerated primary key values

(@GeneratedValue), 211–213, 227

B
Bean-managed concurrency, 69, 71
Bean-managed transaction (BMT)

benefits, 425
CMT services, 379
creating CustomerOrder, 424–425
Customer and CartItem entity

instances, 422–423
EJBContext, 380
limitations, 425
onMessage method, 381
OrderProcessorBMTBean.java,

409, 411–415
OrderProcessorBMTBean

TxnInterceptor.java, 416
OrderProcessorBMTClient.java, 416–420
persisting customer, 424
removing test data, 421–422
session bean declaration, 420–421
UserTransaction object, 379, 380

Bidirectional relationship, 161
Business Process Execution Language

(BPEL), 546

https://doi.org/10.1007/978-1-4842-3573-7

640

C
Callback methods

PostActivate, 62
PostConstruct, 53, 61, 67
PreDestroy, 53–54, 61, 67
PrePassivate, 62

Client application, session beans, 17
business methods, 77
local, 76
remote, 76
SearchFacadeTest, 77–79
ShopperCountClient, 81–83
ShoppingCartClient, 79–81
web services, 76

Composite primary key
database columns, 110
@Embeddable, 112
@EmbeddedId, 111, 204–205
foreign keys, 204, 227
@IdClass, 110–111, 206–207
mapping relationships, 208, 210

Concurrency exception, 211
Container-managed concurrency, 68–70
Container-managed persistence

(CMP), 122
Container-managed relationships

(CMRs), 423
Container-managed transaction

(CMT), 373
attributes, 375–377
benefits, 408
client and bean transaction

states, 377–378
default behavior, 375
EJBContext.setRollbackOnly

method, 378

filtering test data
ACID requirements, 407–408
creating CustomerOrder, 404–406
Customer and CartItem entity

instances, 402–403
OrderProcessorCMTBean, 401–402
persisting customer, 403–404
TransactionAttribute override, 402

getRollbackOnly method, 378
Java façade

application-managed
EntityManager, 397–401

JavaServiceFacade class, 397–399
PopulateDemoData class, 393–396

limitations, 408
MessageDrivenContext methods, 379
OrderProcessorCMTBean.java,

386–389
OrderProcessorCMTClient.java,

390–392
transaction characteristics, 374

Contexts and Dependency Injection
(CDI), 2, 15, 17

application scope, 481
architecture, Java EE application, 475
bean constructor, 483
beans and beans.xml, 479–480, 495
CDI 1.1/1.2 (JSR-346), 473
CDI 2.0, 473–474
conversation scope, 481
dependency resolution (see

Dependency resolution, CDI)
dependent pseudo-scope, 482
enterprise services, 471
features, 476
field injection, 485
initializer method, 484

Index

641

@Inject, 482
Java EE 6 platform, 472
managed beans, 478–479
RedWine class, 477
request scope, 481
sample project

alternatives client, 503–505
@Any qualifier client, 501–503
Clean and Build menu option, 499
Open Project menu, 497
packages, 497–498
producers client, 505–507
user-defined qualifier

client, 499–501
session beans

ambiguity, 495
limitations, 495
managed beans, 478
scope, 494

session scope, 481
specification, 478
Web Beans, 471
Web tier, 472
Wine interface, 496
WineClient.java, 477–478
Wine interface, 476–477

D
Data Access Object (DAO), 40
Data transfer objects (DTOs), 423
Dependency resolution, CDI

alternatives, 490–491
producers

RandomSelector class, 492
WineClient class, 493
WineSelector class, 492

qualifiers
@Any, 488
@Default, 488
@Named, 489
@New, 489
Red.java, 486
RedWine.java, 487
WineClient. java, 487–488

WhiteWine class, 485
Distributed transactions, 369
Dups-ok-acknowledge, 241

E
EJB 1.0, 7
EJB 1.1, 8
EJB 2.0, 8
EJB 2.1, 8
EJB 3.0, 8

default behavior, 13
dependency injection, 11
interceptors (callback methods), 12
POJO implementation, 12
XML and annotations, 10–11

EJB 3.1, 9
EJB 3.2, 9
EJB client applications, 541

application architecture
BPEL, 546
professional desktop

client, 544–545
web-based, 542–543
web service client, 546

client container, 607
JSF (see JavaServer Faces (JSF)

application)
EJB Lite, 610–612

Index

642

EJB transaction model
CMT, 373
container-provided services, 372–373
Java EE applications, 372
JTA transaction manager, 372
persistent objects, 373
resource-local transactions, 373

E-mail service, 322, 351–352
Embeddable EJB Container, 18

client, 613
EJB Lite, 610, 612
GlassFish Embeddable Server, 613
jdbc/__default, data-source

resource, 622–625
JUnit tests (see JUnit tests)
static factory method, 613
test frameworks, 609

Enterprise Archive (EAR) files, 594
Enterprise JavaBeans (EJB)

CDI, 17
client applications, 17
component model, 4
configuration by exception, 5
container, 5
declarative metadata, 5
definition, 4
developers, 1
distributed computing model

Application Assembler, 14
Deployer, 14
Enterprise Bean Provider, 14
RMI-based remoting services, 13

EJB 1.0, 7
EJB 1.1, 8
EJB 2.0, 8
EJB 2.1, 8
EJB 3.0 (see EJB 3.0)

EJB 3.1, 9
EJB 3.2, 9
GlassFish (see GlassFish application

server)
Java EE 8 architecture, 2–3
location transparency, 6
multiuser security, 6
packaging and deployment, 17
performance and testing, 17
persistence, 7
portability, 7
real-world applications, 1
reusability, 7
scalability, 6
transactionality, 6
Web Services and Microservices, 16

Entities, 93
callback methods, 214, 216, 227
coding requirements

default constructor, 102
instance variables vs. JavaBean

property accessors, 102
java.io.serializable interface, 102

data access, 103–104
defaults

@Basic annotation, 100–101
@Column annotation, 100
field/property types, 101
LiCustomer, 99
@Table annotation, 100

O/R mapping
CMP providers, 122
@Column annotation, 123–124
complex mappings, 124
fields/properties, 122
@Table annotation, 122–123

persistence.xml file, 113–115

Index

643

primary key
composite (see Composite

primary key)
declaration, 108
simple, 108–109

property name
instance variable

annotation, 104–105
property accessor

annotations, 106–107
@Transient annotation, 105

simple entity
configuration by default, 98
EJB 2.x, 98
@Entity annotation, 97
@Id annotation, 98

simple JavaBean, 96
Entity inheritance mapping

hierarchies, 158
JOINED strategy

abstract intermediate entity, 183
abstract root entity, 183
concrete leaf entity, 184
concrete stand-alone entity, 184
design-time considerations, 185
performance, 185
schema, 182

O/R strategies (see Object/relational
(O/R) mappings)

queries
criteria API, 202–203, 226
JPQL, 201
native SQL, 202, 226

sample entity hierarchy, 160–161
SINGLE_TABLE mapping approach

abstract intermediate entity, 166
abstract root entity, 165

concrete leaf entity, 167–168
concrete stand-alone entity, 168, 170
design-time considerations, 172
@DiscriminatorColumn

annotation, 171
@DiscriminatorValue

annotation, 172
JavaServiceFacade.java, 173
@JoinColumn annotation, 170–171
performance, 173
strategy, 164–165

TABLE_PER_CLASS
abstract intermediate entity, 188
abstract root entity, 187
concrete leaf entity, 188–189
design-time considerations, 189
performance, 189
schema, 186

Entity life cycle
detached entity instance, 121
formal states, 119
Home and LocalHome factory

interfaces, 119
managed entity instance, 119–120
new entity instance, 119
removed entity instance, 121

EntityManager
container injection, 116–117
definition, 115
EntityManagerFactory, 117
JNDI, 118
persistence context, 116
transactions, 118

Entity relationships
cascading operations, 130–131
FetchType.EAGER, 130
FetchType.LAZY, 129

Index

644

fields, 125
@ManyToMany, 128–129
@ManyToOne, 127–128
@OneToMany, 127
@OneToOne, 125–126
primary key, 125

Error handling, 71
Exception handling

application exceptions, 63
system exceptions, 63

F
FacesServlet, 553
Foreign key, 204
Fourth-generation languages (4GLs), 551

G
GlassFish application server, 18

administration, 30–32
environment settings, 18
installing JDK 8, 19
NetBeans IDE

downloading, 20
installing, 21–23
starting, 24

sample test project
creating, 25
New Servlet wizard, 27
running servlet, 28–29
test servlet, 26

troubleshooting
compilation errors, 35–36
localhost, 34
“No compatible JDK was found”

warning message, 33

port 8080, 34
GlassFish server’s test

page, 33–34
“wine order” mail, 36–37

The Grinder
agent process, 443, 445
console, 443, 457–460
definition, 443
directory, 454
errors, 445
HTML interface, 445
process, 444
properties, 446, 455
test scripts, 445
worker process, 443

H
HttpUnit framework, 609

I
Interceptors, 214, 216, 227, 247

J, K
Java API for RESTful Web Services

(JAX-RS), 279
Java API for XML Registries (JAXR), 280
Java API for XML Web Services

(JAX-WS), 278
Java Architecture for XML Binding

(JAXB), 279
Java Database Connectivity (JDBC), 230
Java EE application

containers, 519–521
GlassFish server, 621
modules (see Java EE modules

Entity relationships (cont.)

Index

645

Java EE modules
application client module, 526
EJB module, 522–523
Java classes and resources, 522
library components, 509
persistence unit, 524–525
resource adapters, 526
security module, 526
WAR file, EJBs, 524
Web application module, 525

Java EE server, 518, 520–521
Java Message Service (JMS), 607

architecture, 230–231
create topic, 260
JMS 2.0, 234
JMS 2.1, 234–235
message types, 232
TopicConnectionFactory, 258

Java Naming and Directory Interface
(JNDI), 118, 371, 383, 607,
626–629

Java Persistence API (JPA), 15, 541
Clean and Build menu option, 221
CustomerOrderManager

Address.java, 141–142
CRUD (create, retrieve, update,

delete) operations, 137
Customer.java, 137–139
CustomerOrder.java, 139–140
CustomerOrderManager.

java, 142–143
persistence.xml file, 144

database connection, 219–220
description, 95
entity beans, 93
JPQL (see Java Persistence query

language (JPQL))
maintenance release, JPA 2.2, 94

PersistenceSamples project
building application, 149–150
database connection and database

schema, 148–149
deployment, 150–152
opening, sample

application, 145–147
running, client programs, 152–154

persistence vs. adaption, 136
POJOs, 93–94
run client program, 222–224
sample project, 216, 218
testing, 224–225
WineApp database, 219–220

Java Persistence query language (JPQL)
binding query parameters, 133
bulk update and delete

operations, 134–135
complex queries, 136
Criteria API, 131
definition, 132
dynamic queries, 134
@NamedQuery, 132–133
polymorphic, 201, 226
type-casting errors, 131

JavaServer Faces (JSF)
application, 319, 541

architecture, 553–554
building project, 598
compiling, 595–598
deploying and running wine store

application, 599, 601–606
Java EE web technologies

4GLs, 551
Java Servlets, 550
JSTL, 550
MVC pattern, 551–553
println() methods, 550

Index

646

JSF 2.3 features, 547–549
life cycle, 554–555
managed beans, 556
navigation model, 556
NetBeans web page, 447
pages/Facelets, 555
prerequisites, 595
specifications, 446
tools and components, 556
views, 548
web applications

display cart items page, 589–592
display selected wine details

page, 585–589
goal, 557
links page, 570–574
login page, 558–563
new customer registration

page, 563–570
notification page, 593–594
page flow, 558
sample application, 557
search page, 574–580
wine list page, 580–585

wine store application
components and services

interaction, 448
domain model, 449
JOINED entity inheritance

strategy, 449–450
SINGLE_TABLE entity inheritance

strategy, 450–451
wine items, 447

JavaServer Pages (JSP), 541
Java Servlets, 541
Java Swing, 607

Java Transaction API (JTA), 371
Java Virtual Machines (JVMs),

46, 435, 510, 542
JSP Standard Tag Library (JSTL), 550
JSR 224, 280
JUnit tests

building application, 632
class-path, 614
data initialization, 622
Derby database, 620–621
failures, 611
patterns, 613–614
persistence units

PopulateDemoData.resetData()
method, 622

“jdbc/__default” connection,
622–625

sample application
cascading MERGE

operations, 634
compiling sources, 631–632
fixing, test cases, 633–634
managed objects, EJB methods,

635–637
opening, 630–631
prerequisites, 629
WineAppServiceTest

class, 632–633
tearDownClass() method, 621
test initialization, 622
unit test method, 625–629
WineAppServiceTest, 614–619

L
Lifecycle callback methods, 52–54, 61–62,

66–68, 246

JavaServer Faces (JSF) application (cont.)

Index

647

M
Managed beans, 553, 556, 559
Mapped superclass (@Mapped

Superclass), 192–194
Message-driven beans (MDBs), 16, 541

client view, 248–253
compiling session beans, 254–256
concepts, 230
configuration properties

@ActivationConfigProperty, 240, 241
Auto-acknowledge, 241
Dups-ok-acknowledge, 241
JMS version, 240
message destination, 242
message selector, 241
StatusMailer, 242, 244
subscription durability, 242

dependency injection, 244–245
deploying, 262
exceptions, 248
interceptors, 247
JMS and JavaMail resources, 256–261
lifecycle callback methods, 246
@MessageDriven annotation, 237, 239
onMessage() method, 238–239
order-to-shipping JMS messaging

system, 236
QoS, 235
Run menu option, 263–264
StatusMailer, 238
use case, 237

Microservices, 16
advantages, 302
architecture, 305
benefit, 302
concept, 304

disadvantages, 303
and Java EE 8, 305–307
vs. Monolith, 304
Spring Boot

create project, 313
dependencies, 311
NB-SpringBoot installed plug-in, 308
NewRestController.java, 315–316
prerequisites, 307
project info, 310
project name, 312
RestController Class file, 314–315
running, 316
Spring Initializer, 309
testing, 317

technology stack, 303
Model-View-Controller (MVC) pattern

benefits, 551
JSF, 552–553
MVC 1.0, 552

N
Native SQL query, 202, 226
Navigation model, 556
Non-entity class

@ElementCollection, 199
@Embedded and @Embeddable,

195–198

O
Object/relational (O/R) mappings

CMP providers, 122
@Column annotation, 123–124
complex mappings, 124
fields/properties, 122

Index

648

@GeneratedValue annotation, 163
implementation approach, 190
InheritanceType enum, 162
@Table annotation, 122–123

Optimistic locking (@Version), 210–211, 227

P, Q
Packaging and deployment processes

Application Assembler (see Application
Assembler)

assembling EJB JAR file, 537
Deployer

application server, 517
containers, 537
external references, 536
module descriptors, 536
specific tasks, 517
tasks and deliverables, 516–517
unpacking archive, 536

distribution goal, 511
EJB and JPA entity components, 509
JAR, WAR and EAR files, 511
Java EE modules (see Java EE modules)
JVM, 510
library components

bundled libraries, 527–528
installed libraries, 528–529
JAR file, 527
versions, 529–530

persistence unit, 538–539
Provider, 511
software tools, 510

Performance test
analyzing results

AART comparison, 467
multiple-table, 100-users, 465

multiple-table, all-users, 466
single-table, 100-users, 466
single-table, all-users, 467
TTR comparison, 468

application usage, 440
calibration, 462–463
computer systems, 435
data analysis, 436
description, 436
the Grinder (see The Grinder)
JSF application (see JavaServer Faces

(JSF) application)
JVM, 435
methodology and toolkit, 436
performance criteria

AART, 438–439
response time, 437
throughput, 437–439
TTR, 439

preliminary tests, 460–461
real think time, 440
sample size, 462
setup

database connection, 453–454
GlassFish server, 453
test script, 456

software application, 435
test environment, 452
test metrics, 440–442
test runs, 463–464
test script, 452–453
zero think time, 440

Persistence context, 116
Persistence.xml file, 113–115
Pessimistic locking, 210
Plain old Java objects (POJOs),

93–94, 345, 543
Point-to-point (P2P) model, 232

Object/relational (O/R) mappings (cont.)

Index

649

Poison message problem, 248
Polymorphic relationships, 200, 225
PopulateDemoData.resetData()

operation, 624
Publish-subscribe (pub-sub)

model, 232–233

R
REpresentational State Transfer (REST)

cacheable, 275
client–server architecture, 274
HTTP methods, 274
layered system, 275
named resources, 275
RESTful Web services

CreditCheck, 275–276
HTTP method and CRUD

operation, 275
vs. SOAP, 277

stateless interaction, 275
uniform interface, 275

RESOURCE_LOCAL persistence
unit, 623

S
Scriplets, 550
Service endpoint interface

(SEI), 280, 284
Session beans

compilation, 84–86
DAO classes, 40
definition, 39
deployment, 86–88
EJB JAR (.jar) files, 83
prerequisites, 84
running, client programs, 88, 90–91

singleton (see Singleton session beans)
stateful (see Stateful session beans)
stateless (see Stateless session beans)
3-tier architecture

rich client, 41–42
web application, 42–43

timer service, 71–75
transactions

BMT, 379–381
CMT (see Container-managed

transaction (CMT))
implicit commit vs. explicit

commit, 381–382
types, 40
typical examples, 41

Simple Object Access Protocol (SOAP)
elements, 273–274
vs. RESTful Web services, 276–277

Singleton session beans
bean class, 63
business interfaces, 65
business methods, 65–66
callback methods, 66, 68
client invocations, 63
concurrency management

bean-managed concurrency, 69, 71
container-managed

concurrency, 68–70
error handling, 71
LogShopperCount, 64–65
ShopperCount, 64

SOAP with Attachments API for Java
(SAAJ), 280

SQL queries, 202, 226
Stateful session beans

bean class, 57
business interfaces,

ShoppingCart, 58–59

Index

650

business methods, 60
callback methods, 61–62
exception handling, 62–63
interceptors, 62

Stateless session beans
bean class, 44
business interface

annotations, 46
client applications, 46
JVMs, 46
rich client application, 47
SearchFacade session bean, 48
web client application, 46

business methods
asynchronous, 50–51
SearchFacade bean, 49

dependency injection, 51–52
interceptors, 54–56
lifecycle callback methods, 52–54
SearchFacadeBean, 45
set up dependencies, 44
Web services

compilation, 286–288
CreditCheckEndpointBean,

282–283
deployment, 288–289
endpoint interface, 284–285
JAR files, 285
JAX-WS and JSR 224, 281
SEI, 280, 284
SOAP request and response

messages, 291
testing CreditService, 289–290, 292
@WebMethod annotation,

parameters, 283
@WebService annotation,

parameters, 282

T
Tag handler, 555
Timer service

application-level processes, 71
calendar-based time expressions

attributes, 73–74
examples, 74–75

LogShopperCount, 72–73
notifications, 71
persistence, 75
programmatic/automatic timers, 72

Tomcat, 543
Total transactional rate (TTR), 439, 461,

463, 466–468
Transaction management, 16

ACID properties, 369–370
container-managed vs. application-

managed persistence context, 383
database, 367
definition, 368
distributed, 369
entities and transaction context, 382
JTA vs. Resource-Local

EntityManagers, 385
session beans (see Session beans)
transaction-scoped vs. extended

persistence context, 384
two-phase commit protocol, 371
Wines Online application, 367

Clean and Build menu
option, 429–430

compilation, 429
database connection, 428–429
deployment, 430–431
opening, sample application,

426–427
OrderProcessorBMTClient

servlet, 432

Stateful session beans (cont.)

Index

651

running, 431–432
structure of, 427–428

Transactions per second (TPS), 437–438

U, V
Unidirectional relationship, 161
Unit test methods

EJBContainer object, JNDI, 626
findCustomerByEmail(), 625
testCreateCustomerOrder(), 627
testCreateIndividual(), 626–627

Universal Description, Discovery, and
Integration (UDDI), 267

W, X, Y, Z
Web Archive (WAR) files, 594
Web Beans, 471
Web service client program

compilation, 298–299
creating, 294
CreditServiceClient, 296, 298
generated stub sources, 295
invoking, 292–293
running, 299–300
scripting languages, 292
session beans, 301
@WebServiceRef annotation, 295–296

Web services, 16
architecture, 266
consumer, 265
definition, 266
E-commerce websites, 277
invocation, 279
and Java EE 8

JAXB, 279
JAXR, 280

JAX-RS, 279
JAX-WS, 278
JSR 224, 280
SAAJ, 280
specifications, 278
technologies, 277

package-tracking services, 277
REST (see REpresentational State

Transfer (REST))
SOAP, 273–274
stateless session beans (see Stateless

session beans)
UDDI, 267

Web Services Description Language
(WSDL)

<binding> element, 270
categories, 267
<definitions> element, 268
<message> element, 269
<portType> element, 269
<service> element, 271–272
service endpoint interfaces, 278
<types> element, 268
Web service client (see Web service

client program)
Wine store application

architecture, 319–320
business process, 322–323
component and service

interactions, 323
credit service, 322, 353
customer façade component,

321, 325–326
database connection, 355–356
database schema, 353–354
EJB JAR files, 354
EJB Web Service, 358–359
e-mail service, 322, 351–352

Index

652

JMS and JavaMail resources, 357
order processing façade

component, 321
credit check, 337
OrderProcessFacade

Bean.java, 342–344
processOrder() method, 337–340
sendPOtoMDB() method, 340–341

order processing service, 322
deductInventory() method, 347
MDBs, 345
onMessage() method, 345–346
OrderProcessingMDB

Bean.java, 348–350
POJO, 345
processOrder() method, 346
sendStatus() method, 347–348

persistence services, 322, 324
sample application

cleaning, 360
e-mail, 365
opening, 357–358
running, 361
ShoppingCartClient servlet, 362–365

search façade component, 321, 327–328
shopping cart component, 321

addWineItem() method, 330–331
findCustomer() method, 330
getCartItems() method, 333
removeWineItem() method, 332
sendOrderToOPC() method, 332
ShoppingCartBean, 333–336
stateful session bean, 329

user.properties file, 359–360
wineapp@yahoo.com, 359

Wine store application (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Preface
	Acknowledgments
	Chapter 1: Introduction to the EJB 3.2 Architecture & CDI Services
	What’s New in Java Enterprise Edition (Java EE) 8 Architecture?
	An Introduction to EJB
	What Is EJB?
	The EJB Component Model
	The EJB Container

	Core Features of the EJB Development Model
	Declarative Metadata
	Configuration by Exception
	Scalability
	Location Transparency
	Transactionality
	Multiuser Security
	Portability
	Reusability
	Persistence

	Progression of the EJB Spec
	EJB 1.0
	EJB 1.1
	EJB 2.0
	EJB 2.1
	EJB 3.0
	EJB 3.1
	EJB 3.2

	EJB 3 Simplified Development Model
	XML and Annotations
	Dependency Injection
	Interceptors: Callback Methods
	POJO Implementation
	Intelligent Use of Defaults

	Distributed Computing Model
	EJB Roles
	The Enterprise Bean Provider
	The Application Assembler
	The Deployer

	How This Book Is Organized
	Chapter 1: Introduction to the EJB 3.2 Architecture & CDI Services
	Chapter 2: EJB Session Beans
	Chapter 3: Entities and the Java Persistence API (JPA)
	Chapter 4: Advanced Persistence Features
	Chapter 5: EJB Message-Driven Beans
	Chapter 6: EJB, Web Services, and Microservices
	Chapter 7: Integrating Session Beans, Entities, Message-­Driven Beans, and Microservices
	Chapter 8: Transaction Management
	Chapter 9: EJB Performance and Testing
	Chapter 10: Contexts and Dependency Injection
	Chapter 11: EJB Packaging and Deployment
	Chapter 12: EJB Client Applications
	Chapter 13: Testing in an Embeddable EJB Container

	Getting Started
	Installing Java SE Development Kit (JDK) 8
	Downloading the NetBeans IDE
	Installing NetBeans IDE and Its Integrated GlassFish Server
	Testing the NetBeans IDE and GlassFish Installation
	Starting NetBeans IDE
	Testing Using Sample Project

	Administrating the GlassFish Application Server
	Troubleshooting
	“No Compatible JDK was found” Warning During Installation
	Diagnosis
	Solution

	Unable to See GlassFish Server’s Test Page
	Diagnosis
	Solution

	Unable to Resolve “localhost” Hostname
	Diagnosis
	Solution

	Browser is Unable to Connect to “8080” Port
	Diagnosis
	Solution

	Errors While Compiling or Executing Sample Application Projects
	Diagnosis
	Solution

	Unable to Send or Receive the “wine order” Mail
	Diagnosis
	Solution

	Summary

	Chapter 2: EJB Session Beans
	Introduction to Session Beans
	Types of Session Beans
	When Do You Use Session Beans?
	3-Tier Architecture with Rich Client
	3-Tier Architecture for a Web Application

	Stateless Session Beans
	Set Up the Dependencies
	The Bean Class
	The Business Interface
	Business Methods
	Asynchronous Business Methods

	Dependency Injection
	Lifecycle Callback Methods
	Interceptors

	Stateful Session Beans
	The Bean Class
	The Business Interface
	Business Methods
	Lifecycle Callback Methods
	Interceptors
	Exception Handling

	Singleton Session Beans
	The Bean Class
	The Business Interface
	Business Methods
	Lifecycle Callback Methods
	Concurrency Management
	Container-Managed Concurrency
	Bean-Managed Concurrency

	Error Handling

	Timer Service
	Calendar-Based Time Expressions
	Examples of Calendar-Based Time Expressions
	Timer Persistence

	Client View for Session Beans
	Compiling, Deploying, and Testing the Session Beans
	Prerequisites
	Compiling the Session Beans and Their Clients
	Deploying the Session Beans and Their Clients
	Running the Client Programs

	Summary

	Chapter 3: Entities and the Java Persistence API (JPA)
	An Entity Example
	A Simple JavaBean: Customer.java
	A Simple Entity: Customer.java
	The @Entity Annotation
	The @Id Annotation
	Comparison with EJB 2.x
	Configuration by Default

	An Entity with Defaults Exposed: Customer.java
	The @Table Annotation
	The @Column Annotation
	The @Basic Annotation
	Additional Field Types

	Coding Requirements
	The java.io.Serializable Interface
	Placing Annotations on Instance Variables vs. JavaBean Property Accessors

	Entity Data Access
	Property Name
	Example: Annotating Instance Variables
	The @Transient Annotation

	Example: Annotating Property Accessors
	Access Type Summary

	Declaring the Primary Key
	Simple Primary Key
	The @GeneratedValue Annotation

	Composite Primary Key
	The @IdClass Annotation
	The @EmbeddedId Annotation
	The @Embeddable Annotation

	Summary of Entity Examples

	The Persistence Archive
	The persistence.xml File

	The EntityManager
	Persistence Context
	Acquiring an EntityManager Instance
	A Session Bean Using Container Injection
	A Java SE Service Client Using an EntityManagerFactory
	Looking Up the EntityManager Through JNDI

	Transaction Support

	The Entity Life Cycle
	The Life Cycle of a New Entity Instance
	New Entity Instance
	Managed Entity Instance
	Detached Entity Instance
	Removed Entity Instance

	O/R Mapping
	The @Table Annotation (Revisited)
	The @Column Annotation (Revisited)
	Complex Mappings

	Entity Relationships
	@OneToOne
	@OneToMany and @ManyToOne
	@OneToMany:
	@ManyToOne:

	@ManyToMany
	Lazy vs. Eager Field Bindings
	Cascading Operations

	Java Persistence Query Language (JPQL)
	@NamedQuery and @NamedQueries
	Binding Query Parameters
	Dynamic Queries
	Bulk Update and Delete Operations
	Complex Queries

	Persistence vs. Adaption
	Forward Generation—Persistence
	Reverse Engineering—Adaption
	Which One Is Right for Your Project?

	Example Application: CustomerOrderManager
	Customer.java

	Compiling, Deploying, and Testing the JPA Entities
	Prerequisites
	Opening the Sample Application
	Creating the Database Connection and Sample Schema
	Compiling the Entities, EJBs, and the Client
	Deploying the JPA Persistence Unit, the EJB Module, and the Servlet
	Running the Client Programs

	Summary

	Chapter 4: Advanced Persistence Features
	Mapping Entity Inheritance Hierarchies
	Getting Started
	Entity Inheritance Mapping Strategies
	Sample Entity Hierarchy
	Object/Relational Inheritance Mapping Strategies
	The @GeneratedValue Annotation

	Single-Table-per-Class Inheritance Hierarchy (InheritanceType.SINGLE_TABLE)
	Example Entity Classes
	The @JoinColumn Annotation
	The @DiscriminatorColumn Annotation
	The @DiscriminatorValue Annotation

	Pros and Cons of the SINGLE_TABLE Strategy
	Design-Time Considerations
	Performance Impact

	Sample Client Code

	Common Base Table with Joined Subclass Tables (InheritanceType.JOINED)
	Example Entity Classes
	Pros and Cons of the JOINED Strategy
	Design-Time Considerations
	Performance Impact

	Single-Table-per-Outermost Concrete Entity Class (InheritanceType.TABLE_PER_CLASS)
	Example Entity Classes
	Pros and Cons of the TABLE_PER_CLASS Strategy
	Design-Time Considerations
	Performance Impact

	Comparison of O/R Implementation Approaches

	Using Abstract Entities, Mapped Superclasses, and Non-Entity Classes in an Inheritance Hierarchy
	Abstract Entity Class
	Mapped Superclass (@MappedSuperclass)
	Non-Entity Class
	Non-Entity Single-Value and Collection Fields
	@Embedded and @Embeddable
	@ElementCollection

	Polymorphic Relationships
	Relationship Mapping

	Polymorphic JPQL Queries
	Using Native SQL Queries
	The Query Criteria API
	Composite Primary Keys and Nested Foreign Keys
	Using an Embedded Composite Key (@EmbeddedId)
	Exposing Composite Key Class Fields Directly on the Entity Class (@IdClass)
	Mapping Relationships That Use Composite Keys

	Support for Optimistic Locking (@Version)
	Support for Autogenerated Primary Key Values (@GeneratedValue)
	Interceptors: Entity Callback Methods
	Compiling, Deploying, and Testing the JPA Entities
	Prerequisites
	Opening the Sample Application
	Creating the Database Connection
	Compiling the Sources
	Running the Client Programs
	Testing the Other Persistence Examples

	Summary
	Mapping Entity Inheritance Hierarchies
	Using Abstract Entities, Mapped Superclasses, and Non-­Entity Classes in an Inheritance Hierarchy
	Polymorphic Relationships
	Polymorphic JPQL Queries
	Using Native SQL Queries
	Using the Query Criteria API
	Composite Primary Keys and Nested Foreign Keys
	Support for Optimistic Locking
	Support for Autogenerated Primary Automatic Key Values
	Interceptors: Entity Callback Methods

	Chapter 5: EJB Message-Driven Beans
	Message-Oriented Architecture
	What Is JMS?
	Messaging Application Architecture

	JMS 2.0
	JMS 2.1
	Using MDBs
	When Do You Use MDBs?
	MDB Classes
	Configuration Properties
	Message Acknowledgment
	The Message Selector
	Message Destination
	Subscription Durability

	Dependency Injection in MDBs
	Lifecycle Callback Methods
	Interceptors
	Exception Handling
	Client View

	Compiling, Deploying, and Testing MDBs
	Prerequisites
	Compiling the Session Beans and MDBs
	Creating the JMS and JavaMail Resources
	Deploying the Session Beans, MDBs, and Their Clients
	Running the Client Programs

	Summary

	Chapter 6: EJB, Web Services, and Microservices
	What Are Web Services?
	UDDI
	WSDL
	The <definitions> Element
	The <types> Element
	The <message> Element
	The <portType> Element
	The <binding> Element
	The <service> Element

	SOAP
	REST
	RESTful Web Services
	RESTful vs. SOAP-Based Web Services

	When Do You Use Web Services?

	Java EE 8 and Web Services
	JAX-WS
	JAX-RS
	JAXB
	JAXR
	SAAJ
	JSR 224

	EJB Stateless Session Beans as Web Services
	Developing a New Web Service
	Creating a Bean Class
	Web Service Endpoint Interface

	Packaging, Deploying, and Testing Web Services
	Prerequisites
	Compiling the Session Bean
	Deploying the Session Bean-Based Web Service
	Testing the Credit Service

	Web Service Client View
	Developing a Java Client That Accesses the Web Service
	Generating Web Service Proxy Classes
	Developing a Web Service Client Program
	Compiling the Client Class
	Running the Web Service Client

	Session Beans as Web Service Clients

	What Are Microservices?
	Java EE 8 and Microservices
	Microservices Example Using Spring Boot and NetBeans
	Prerequisites

	Summary

	Chapter 7: Integrating Session Beans, Entities, Message-­Driven Beans, and Web Services
	Introduction
	Application Overview
	Application Components and Services
	The Shopping Cart Component
	The Search Façade Component
	The Customer Façade Component
	The Order Processing Façade Component
	Persistence Services
	The E-Mail Service
	The Credit Service
	The Order Processing Service

	The Wines Online Application Business Process
	In-Depth Component/Service Walkthrough
	Persistence Services
	The Customer Façade Component
	The Search Façade Component
	The Shopping Cart Component
	Finding Customers
	Adding Wine Items
	Removing Wine Items
	Submitting Orders to the Order Processing Façade
	Retrieving the Customer’s Cart Items

	The Order Processing Façade Component
	Credit Check
	Creating a Purchase Order
	Sending a Purchase Order to the Order Processing Service

	The Order Processing Service
	The E-Mail Service
	The Credit Service
	The Database Schema

	Building, Deploying, and Testing the Application
	Prerequisites
	Creating the Database Connection
	Creating the JMS and JavaMail Resources
	Opening the Sample Application
	Configuring the EJB Web Service
	The wineapp@yahoo.com Account and the user.properties File
	Building, Deploying, and Executing the Sample Application
	The Servlet Output
	The Resulting E-Mail

	Summary

	Chapter 8: Transaction Management
	What Is a Transaction?
	Distributed Transactions
	The ACID Properties of a Transaction
	The Java Transaction API (JTA)
	The Two-Phase Commit Protocol

	Transaction Support in EJB
	EJB Transaction Services

	Session Bean Transactional Behavior in the Service Model
	Container-Managed Transaction (CMT) Demarcation
	The EJBContext.setRollbackOnly and getRollbackOnly Methods

	Bean-Managed Transaction (BMT) Demarcation
	Implicit Commit vs. Explicit Commit

	Using Transactions with JPA Entities
	Relationship Between Entities and a Transaction Context
	Container-Managed vs. Application-Managed Persistence Context
	Transaction-Scoped Persistence Context vs. Extended Persistence Context
	JTA vs. Resource-Local EntityManagers

	Two Sample Scenarios
	Stateless Session Beans with CMT Demarcation
	Transaction Analysis
	Populating Test Data Through a Transactional Java Façade

	Java Façade Using Application-Managed EntityManager
	Filtering Test Data Using a CMT Session Bean
	Creating New Customer and CartItem Entity Instances in the Client
	Persisting the Customer
	Creating the CustomerOrder

	Does This Pass the ACID Test?
	Atomicity
	Consistency
	Isolation
	Durability

	Benefits of This Approach
	Limitations of This Approach

	Stateful Session Beans with BMT Demarcation and Extended Persistence Context
	Transaction Analysis
	Session Bean Declaration
	Removing Previous Test Data
	Creating New Customer and CartItem Entity Instances in the Client
	Persisting the Customer
	Creating the CustomerOrder

	Benefits of This Approach
	Limitations of This Approach

	Building, Deploying, and Testing: A Transactional Scenario from the Wines Online Application
	Prerequisites
	Opening the Sample Application
	Creating the Database Connection
	Compiling the Sources
	Deploying and Running the Client Programs

	Summary

	Chapter 9: EJB Performance and Testing
	The Testing Methodology
	Performance Criteria
	Simulating Application Usage
	Defining Test Metrics

	The Grinder
	The Test Application
	The Performance Test
	The Test Environment
	The Test Script
	Setup
	The Database
	Configuring Connections to Your Own Database

	The Grinder
	The Test Script
	Running the Simulated Users
	The Grinder Console

	Preliminary Tests
	Sample Size
	Calibration
	The Actual Test Runs
	Analyzing the Results

	Summary

	Chapter 10: Contexts and Dependency Injection
	What Is CDI?
	Relationship with EJB
	CDI Concepts
	Beans and beans.xml
	Scope
	Application Scope
	Request Scope
	Session Scope
	Conversation Scope
	Dependent Pseudo-Scope

	Dependency Injection with @Inject
	Bean Constructor Parameter Injection
	Initializer Method Parameter Injection
	Field Injection

	Dependency Resolution
	Qualifiers
	@Default
	@Any
	@Named
	@New

	Alternatives
	Producers

	Interaction with Session Beans
	Session Bean Scope
	Resolving Session Bean Ambiguity
	Limitations

	Compiling, Deploying, and Testing the CDI Application
	Prerequisites
	Structure of the Sample Code
	Compiling the CDI Beans and Their Clients
	Deploying and Running the CDI Clients
	Testing the User-Defined Qualifier Client
	Testing the Any Qualifier Client
	Testing the Alternatives Client
	Testing the Producers Client

	Summary

	Chapter 11: EJB Packaging and Deployment
	A Note on Deployment Tools
	Overview of the Packaging and Deployment Processes
	The Provider
	The Assembler
	Grouping Components by Container Type to Produce Java EE Modules
	Defining Module-Level Deployment Descriptors (Optional)
	Packaging Components (with Optional Descriptors) into JAR Files
	Creating an Enterprise Archive (EAR) File (Optional)
	Assembler-Specific Tasks

	The Deployer
	Deployer-Specific Tasks
	Invoking the Application Server-Specific Deployment Tool
	Summary of Overview

	Java EE Deployment Infrastructure
	The Java EE Server
	The Java EE Containers

	Java EE Deployment Components
	The Java EE Application
	Java EE Module Types
	EJB Module
	EJBs in a WAR File
	Persistence Unit
	Web Application Module
	Resource Adapter Module
	Application Client Module
	Security Module

	Library Components
	Bundled Libraries
	Installed Libraries
	Versioning of Libraries

	Application Servers and Platform Independence
	Deployment Tools
	The Deployment Plan

	Deployment Roles
	The Application Assembler
	Defining and Describing External Dependencies
	Ensuring That All References Are Complete
	Resolving Conflicting and Redundant References

	Packaging

	The Application Deployer
	Unpackaging the Archive
	Deriving the Module Descriptors
	Binding External References
	Deploying to the Containers

	Assembling an EJB JAR Module
	Naming Scope

	Assembling a Persistence Unit
	Naming Scope

	Summary

	Chapter 12: EJB Client Applications
	Application Architecture
	JSF
	Evolution of Java EE Web Technologies
	The Model-View-Controller Pattern

	JSF Architecture
	The JSF Life Cycle
	The JSF Application

	JSF Tools and Components

	Developing Web Applications Using JSF and EJB
	The Login Page
	The New Customer Registration Page
	The Links Page
	The Search Page
	The Wine List Page
	The Display Selected Wine Details Page
	The Display Cart Items Page
	The Notification Page

	Compiling, Deploying, and Testing the JSF Application
	Prerequisites
	Compiling the JSF Application
	Deploying and Running the Wine Store Application

	The Application Client Container
	Summary

	Chapter 13: Testing in an Embeddable EJB Container
	Test Clients
	EJB Lite
	Embeddable EJB Container
	How This Chapter Is Organized
	Concepts
	JUnit
	EJB Lite
	Embeddable EJB Container Client

	JUnit Tests
	WineAppServiceTest: A JUnit Test Class for the WineAppService EJB
	Instantiating the Embeddable EJB Container and Starting Derby
	Initializing Data in the Persistence Unit
	Using the “jdbc/__default” Connection

	The Unit Test Methods
	EJB Lookup Through JNDI

	Building and Testing the Sample Code
	Prerequisites
	Opening the Sample Application
	Compiling the Sources
	Running the JUnit Tests
	Fixing the Test Cases
	Cascading MERGE Operations
	Returning Managed Objects from EJB Methods

	Summary

	Index

