
Beginning Reactive
Programming with
Swif t

Using RxSwift, Amazon Web Services,
and JSON with iOS and macOS
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Beginning Reactive
Programming

with Swift
Using RxSwift, Amazon

Web Services, and JSON
with iOS and macOS

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Beginning Reactive Programming with Swift: Using RxSwift, Amazon
Web Services, and JSON with iOS and macOS

ISBN-13 (pbk): 978-1-4842-3620-8		 ISBN-13 (electronic): 978-1-4842-3621-5
https://doi.org/10.1007/978-1-4842-3621-5

Library of Congress Control Number: 2018955902

Copyright © 2018 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-3620-8. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jesse Feiler
Plattsburgh, New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3621-5
http://www.allitebooks.org

iii

Part I: �Building Composite Apps with Swift����������������������������������1

Chapter 1: Building Blocks: Projects, Workspaces, Extensions,
Delegates, and Frameworks��3

Component Architecture Overview��5

Looking at the iOS and macOS Building Blocks���6

Extensions��6

Delegates and Protocols���8

Frameworks���8

Building with the Building Blocks��9

Using a Workspace���9

Building with Combinations of Building Blocks��9

Command-Line Integration��10

Summary���15

Chapter 2: �Using CocoaPods��17

Install CocoaPods���18

Create a Simple App (Single-View App)���18

Summary���27

About the Author��ix

About the Technical Reviewer��xi

Introduction��xiii

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

iv

Part II: �Using Codable Data with Swift and iOS��������������������������29

Chapter 3: �Reading and Writing JSON Data���31

Identifying Data That Needs to Be Shared���31

Considering Security for Sharing Data���33

The Challenges of Sharing Data���33

Identifying Data Elements��34

Managing Inconsistent Data Types���35

Exploring the Document and Structure Issues���35

Looking at JSON���36

Using JSON—The Basics���41

Summary���41

Chapter 4: �Using JSON Data with Swift���43

Getting Started with a JSON Swift Playground��43

Using the JSON Integration Tools in Swift��50

Integrating a Swift Array���50

Integrating a Swift Dictionary���52

Summary���54

Part III: �Integrating Facebook Logins���55

Chapter 5: �Setting Up a Facebook Account with iOS���������������������������57

Beginning to Explore the Facebook iOS SDK���58

Looking at the Components of the Facebook iOS SDK���62

Summary���65

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 6: �Managing Facebook Logins���67

Beginning the Facebook SDK Login Process���67

Providing Basic iOS/Facebook Integration���71

Connecting the iOS app to your Facebook App��73

Summary���76

Chapter 7: �Adding a Facebook Login to an iOS App����������������������������77

Starting to Integrate the Facebook SDK with an iOS app������������������������������������78

Download the Facebook SDK for Swift��82

Adding Frameworks and Functionality to Your Facebook App�����������������������������86

Enhancing Your App���89

Summary���96

Part IV: �Storing Data in Amazon Web Services���������������������������97

Chapter 8: �Working with Amazon Web Services and Cocoa����������������99

Comparing Components���99

Using AWS with Cocoa���100

Sharing Data with Others���101

Using Data Across Platforms��102

Playing to Your Strengths���104

Playing to Your Users’ Expectations���104

Exploring AWS��105

Getting Started with AWS���106

Comparing Cocoa and AWS Products for Data Management�����������������������108

Summary���109

Table of ContentsTable of Contents

vi

Chapter 9: �Managing AWS Logins��111

Looking at AWS Accounts and the Root User���111

Creating Organizations���116

Working with IAM���117

Integrating AWS with Xcode���121

Summary���122

Chapter 10: �Beginning an AWS Project��123

Setting Up the iOS App���123

Setting Up the iOS Project��124

Exploring the Documentation���127

Creating a Project��130

Setting Up the Back End���131

Add the Pods��135

Summary���137

Part V: �Using RxSwift��139

Chapter 11: �Getting Into Code��141

Getting Started���142

Installing RxSwift from GitHub���143

Using the RxSwift Playground��146

Looking at a Formatted Playground���147

Summary���155

Chapter 12: �Thinking Reactively��157

What Are We Developing?��158

Approaches to Programming���159

Programming Paradigms��161

Design Patterns��163

Table of ContentsTable of Contents

vii

Processing Configurations��165

Introducing Reactive Programming���166

Focusing on ReactiveX���166

Summary���167

Chapter 13: �Exploring the Basic RxCode���169

Overview of ReactiveX/RxSwift–Xcode Integration���170

Start from the RxSwift Download��171

Explore the Workspace and Playground���173

Adding a Project to the RxSwift Download��174

Building Your RxSwift-enhanced Project���180

Modify the Project��181

Summary���182

Chapter 14: �Build a ReactiveX/RxSwift App��������������������������������������183

Setting Up the Project��186

Add ReactiveX��192

Build RxCocoa and RxSwift��192

Add RxSwift and RxCocoa to Your Project��193

Verify the Syntax��193

Building the Storyboard���194

Adding the UITableView Code and Delegate��196

Implementing the ReactiveX Search Bar���198

Reviewing the Code���199

Summary���201

Index��203

Table of ContentsTable of Contents

ix

About the Author

Jesse Feiler is a developer, consultant, trainer, and author specializing

in database technologies and location-based apps. He is the creator of

Minutes Machine, the meeting-management app, as well as the Saranac

River Trail app, a guide to the trail that includes location-based updates

as well as social media tools. His apps are available in the App Store and

are published by Champlain Arts Corp. Jesse is heard regularly on WAMC

Public Radio for the Northeast’s The Roundtable. He is founder of Friends

of Saranac River Trail, Inc. A native of Washington, D.C., he has lived in

New York City and currently lives in Plattsburgh, NY.

xi

About the Technical Reviewer

A passionate developer and experience enthusiast, Aaron Crabtree has

been involved in mobile development since the dawn of the mobile device.

He has written and provided technical editing for a variety of books on the

topic, as well as taken the lead on some very cool cutting-edge projects

over the years. His latest endeavor, building apps for augmented reality

devices, has flung him back where he wants to be: an early adopter in an

environment that changes day-by-day as new innovation hits the market.

Hit him up on Twitter, where he tweets about all things mobile and

AR: @aaron_crabtree.

xiii

As technologies change, we see how basic patterns recur over time.

In many ways, there aren’t that many new things to learn — just new

variations and combinations of existing technologies and concepts.

(See my book “Learn Computer Science with Swift” for more on the

patterns that recur).

As always, there are many people to thank for helping on this book.

Most important are the people who have contributed to the technologies.

When it comes to the many open source technologies (including ReactiveX

and its projects), there are more and more people working on the

technologies, and that makes it easier for everyone.

Closer to home, Aaron Crabtree has provided very helpful and

watchful comments on the manuscript. And, as always, Carole Jelen at

Waterside Productions has helped make this book possible.

Introduction

Building Composite
Apps with Swift

PART I

3© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_1

CHAPTER 1

Building Blocks:
Projects, Workspaces,
Extensions, Delegates,
and Frameworks
Building apps today isn’t really about writing code. You may have learned

how to write code in school or at a bootcamp intensive workshop, and

those experiences are valuable ways to learn about the principles of

coding. However, when you start your first coding job, you may find that

you’re asked to correct a typo in the title of a report that an existing app

produces. It’s a simple job that you can divide into two parts.

First, find where the typo is (a basic app can easily have many

thousands of lines of code—Windows is estimated to have 50 million

lines). It might not take long to find a typo in a single line of code, but how

long does it take to find the line of code in the first place?

Second, fix the typo.

A month later, after you have finished the task of changing the title

typo, you may find yourself actually building an app. That job, too, can be

divided into several component parts.

4

First, implement a user authentication process. You can do this using

the Facebook API or using some open source code from a trusted web

source. You just have to find the code or API and then put it into your app.

Second, you need to implement your app’s functionality that comes

into play after the authentication process is complete. Depending on what

the app is, you may have to write it from scratch, but chances are that you’ll

find yourself revising existing code from a similar project.

Third, you may take your new app and port it to a different platform.

Coding today is often about reading and understanding existing code

and then reusing it in new apps and new combinations. Yes, there is a lot

of from-scratch coding going on, but there’s also a lot of reuse of existing

code happening in the development world.

A number of factors have come together to create and support this

world of reusable and repurposed code, which, after all, represents many,

many hours of effort by many, many people. Reusing analysis and code is

just as important as reusing and recycling natural resources. In the case of

code, reuse means not reinventing the wheel. By not starting from scratch

each time an app is created, the entire world of software development can

move forward.

This chapter will provide an overview of how this world of reusable

code functions—particularly from the vantage point of iOS, tvOS, macOS,

and watchOS. You will find an overview of the reusable code building

blocks, along with an overview of how you can put them together using

Xcode and other tools that are part of the Apple developer’s standard

toolkit. There are three parts to the chapter:

•	 Component Architecture Overview gives you an idea

of what it’s like to build apps from components.

•	 Looking at the iOS and macOS Building Blocks

provides an overview of what those blocks are.

•	 Building with the Building Blocks provides an

overview of how to put them together.

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

5

�Component Architecture Overview
Since the beginning of the computer age in the 1940s, there has been

a development backlog of projects waiting to be done. (A companion

backlog accompanied the rise of the web.) The need for software seemed

unstoppable. Various strategies emerged, and components were a key part

of many of them, both for the web and for software in general.

The idea was that building complete websites, programs, and apps

from scratch was an unsustainable model. There had to be some way of

speeding things up by reusing code that had already been written and

debugged. The problem with this simple idea was that it wasn’t possible to

easily reuse code—changes always needed to be made.

One way of reusing code to speed up the development process was

to take existing code and extract its key functions and features. These

elements could be reused more easily than an entire code base. This was

the beginning of component software development.

As time passed, these reusable extracts began to be used in two

different ways:

•	 Use a framework or shell. In this model, there is a

framework into which you can plug components.

The framework model was popular in the 1990s;

IBM’s Software Object Model (SOM) was one

of the first. Microsoft entered the component

software world with Object Linking and Embedding

(OLE) and Component Object Model (COM). A

consortium of Apple, IBM, and WordPerfect worked

on OpenDoc. All of these were frameworks into

which you could plug specialized components (from

the user’s point of view, most were documents into

which you could plug components).

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

6

•	 Build a product from components. In this model,

you combine a number of reusable components

(off-the-shelf or written specifically for the project) to

make a single product. There usually isn’t a framework

or container as a shell; in some projects, there is indeed

such an overarching container or shell, but it may be

created specially for each project.

Regardless of the component model you’re working with, there

is a critical issue that crops up as soon as you start thinking about

components: What language will you use? In today’s world, the languages

for iOS (and macOS) are Swift and Objective-C. However, one of the

features of component architecture is that in some cases you can mix

different languages, as you will see in the “Command-Line Integration”

section later in this chapter.

�Looking at the iOS and macOS Building
Blocks
The building blocks in this section are all built in the Swift and Objective-C

languages for iOS and macOS, and with APIs such as UIKit for iOS and

AppKit for macOS, as well as their companions. This section will provide

a brief overview of the building blocks; for more information, look on

developer.apple.com.

�Extensions
Extensions in Swift let you add functionality to an existing class, structure,

enumeration, or protocol type. You can find an example in the Adopting

Drag and Drop in a Custom View sample code on developer.apple.com.

The drag-and-drop functionality is defined in protocols (see the following

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

7

section for more on protocols and delegates) and implemented in

extensions.

In Figure 1-1, you can see an app that uses the code from the Adopting

Drag and Drop in a Custom View sample. In this case, the basic class is a

custom view controller (PersonnelViewController). There is an extension

defined as follows:

extension PersonnelViewController: UIDragInteractionDelegate {

Each extension is in a file that references the base class (the class that

is to be extended). As you can see in Figure 1-1, the names of those files are

PersonnelViewController+Drag

PersonnelViewController+Drop

Figure 1-1.  Using extensions in a Swift class

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

8

At runtime, you can reference the functions and other members of the

extension just as you would reference elements of the class.

Extensions can be added to base classes and other structures for which

you only have the API and not the source code.

�Delegates and Protocols
Delegates and protocols work together. In the declaration of a class or

other structure, you see the superclass (if any) in the declaration, as in the

following declaration for a subclass of UIDocument in iOS:

class MyDocument: UIDocument {

A protocol can define functions that will be implemented in any class

that conforms to the protocol. Whereas with an extension the extensions

are added to the base class, with a protocol the protocol defines the code

that you will add to the base class.

Delegates often work together with protocols so that the

implementation of the protocol code is not placed into the base class;

rather, it is placed in a separate file called a delegate. The specific file that

implements the protocol is typically assigned to a field called delegate in

the base class.

�Frameworks
If you work with iOS or macOS a lot, you are probably familiar with the

basic frameworks, such as AppKit (macOS) and UIKit (iOS), along with

smaller frameworks such as AddressBook. Frameworks can contain

functions and properties. You add them to a Swift project with an import

statement; with Objective-C, you can use an #import or #include

statement. (In Objective-C, the #import directive imports the framework

once; #include may import it several times.)

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

9

�Building with the Building Blocks
You can use delegates and protocols, extensions, and frameworks within

an Xcode project. You can use a workspace to combine several projects,

and you can use other tools to combine multiple components. Both

workspaces and the combinations of building blocks will be described in

this section.

�Using a Workspace
With a workspace, Xcode takes care of managing the building of whichever

target within the workspace you want to build. Targets may share elements

from the workspace and will use them as needed to build various targets

(such as for iOS and watchOS with the same workspace).

�Building with Combinations of Building Blocks
The building blocks from Apple (frameworks, protocols, and delegates,

as well as extensions) often provide a neat and elegant way to extend and

expand your code. However, there are cases in which a single feature

requires the use of multiple building blocks—for example, a feature

might need one very big framework to be installed, along with a dozen or

more smaller (but related) frameworks. Protocols and delegates are now

commonplace in many structures, and extensions, likewise, may be added

to the mix. Thus, implementing a new feature using shared code may

require many additions to your code base.

Situations in which multiple building blocks need to be added to an

app are common, and they can be difficult to manage. There are several

tools available to help you manage such combinations. These tools use a

structure that organizes the changes to your app so that a script or other

tool can apply the changes in the right places and in the right order.

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

10

One of the most widely used of those tools is CocoaPods, which is the topic

of Chapter 2.

GitHub has become the most widely used code-sharing tool and

site today, and it is integrated with most package managers. Thus, the

download of the latest GitHub version of the complex building blocks is

done for you automatically as you run the package manager.

Package managers like CocoaPods use their own code and scripts

to perform the integration. To do so, they—and you—must use some

command-line code. If you are used to macOS and the Finder, you may not

use the command line very often. Don’t worry—the products hide most

of that syntax from you. However, for the cases in which you do need to

access a file or folder from the command line, the following section will

provide some tips.

�Command-Line Integration
Terminal, which is automatically installed as part of macOS, is the app that

gives you access to the command line. When you launch it, you will see the

basic screen shown in Figure 1-2.

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

11

The first line shows you the date and time of the last login. On the second

line, you can see the name of the computer you are using. You then see the

identifier of the user you are running, and a symbol such as $ marks the end

of the automatically generated text. You type your command after that.

Note  You can customize the formatting of lines in Terminal.

In Figure 1-3, you can see the first command entered into Terminal.

It is the list command (the code is ls).

Figure 1-2.  Use Terminal to access the command line

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

12

In a command-line interface, you deal with only one line at a time. You

cannot copy or paste into previous lines of code, but you can backspace on

the line you’re editing. You end the line with a Return character, and the

command is executed.

Figure 1-3.  Enter the ls command

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

13

The results of the ls command are shown in the Terminal window, as

you can see in Figure 1-4.

If you look at the same directory in the Finder, you’ll see the data as

shown in Figure 1-5. The fact that the files may be in a different order

doesn’t matter. Note, too, that some files that are normally invisible in the

Finder may show up in Terminal.

Figure 1-4.  Results of the ls command in Terminal

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

14

There’s one other command that you may need to use when you’re

working with Terminal: You can change which directory you are in by

typing cd. You can then type in the name of the directory you want to

use, or you can drag and drop a directory from the Finder onto the line in

Terminal that you have started by typing cd. The text representation of that

directory will be placed into the line of Terminal code. As soon as you press

Return, the directory will be changed.

Figure 1-5.  Files in Finder

CHAPTER 1 � BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

15

�Summary
Xcode has a variety of tools that you can use (along with Objective-C

and Swift) to build complex apps with reusable code, saving you

development and debugging time. This chapter has provided a brief

overview to get you started.

For more information, use your standard online resources as well as

the discussion boards on developer.apple.com. For now, it’s time to move

on to the package managers.

CHAPTER 1  BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

17© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_2

CHAPTER 2

Using CocoaPods
CocoaPods is a tool for managing multiple components in an Xcode

project. The basic overview is that you create your Xcode project as usual.

You then run CocoaPods to place your Xcode project into a new workspace

that it creates. Next to your project in your workspace are various

CocoaPods with the updates you want to install.

CocoaPods can download the updates as needed from a GitHub

repository, so you don’t need to worry about doing that yourself. The

CocoaPods tool keeps the versions of these public updates for you, but you

can also create your own private repository if you don’t need or want to

share it.

You are responsible for managing a podfile, which identifies the

updates to be installed. The podfile is the link between your original

project and the updates that you install (and which CocoaPods can

reinstall as needed).

This chapter will provide a quick overview of the CocoaPods process,

with plenty of step-by-step illustrations. For more information, check out

the CocoaPods site and documentation at cocoapods.org. For even more

specific information, check out the Facebook and RxSwift chapters in this

book; both Facebook and RxSwift are installed with CocoaPods.

http://cocoapods.org

18

�Install CocoaPods
This is a one-time task for you to do on your development computer.

Launch Terminal to get to the command line. Install CocoaPods with this

line:

sudo gem install cocoapods

You’ll need to provide your system password. There are alternative

ways of installing CocoaPods that you can find on the website, but this is

the most straightforward for most people.

Finish setup on the command line by entering

pod setup

You will see some status information that ends with

Setup completed

You’re ready to continue.

�Create a Simple App (Single-View App)
There will be three parts to your CocoaPods project:

•	 You create an initial Xcode project as you usually do.

•	 You create a podfile to manage the updates and link

them to your project.

•	 You update the podfile to install updates and new

features in your project.

Chapter 2 Using CocoaPods

19

Figure 2-1 shows the creation of one of the simplest built-in projects in

Xcode: a single-view app.

When it comes time to generate the project files, you will need to

identify the folder for them. You can create a new folder, as you see in

Figure 2-2.

Figure 2-1.  Create a new project

Figure 2-2.  Place it in a folder

Chapter 2 Using CocoaPods

20

When any new project is created from a template, test that it builds

properly in Xcode with a device or a simulator, as you see in Figure 2-3. You

can use Product ➤ Build or the arrow at the top left of the window. (There

are other techniques described in the Xcode documentation and help.)

Figure 2-3.  Review the project

Chapter 2 Using CocoaPods

21

Using the command line in Terminal, change the directory to the

folder you identified or created in Figure 2-2. (Remember you can type cd

and a trailing space and then drag the folder into the Terminal window

instead of typing the full path name.) Figure 2-5 shows a cd command that

is generated in that way.

Check the result on a device or simulator, as you see in Figure 2-4.

Figure 2-4.  Run the app

Chapter 2 Using CocoaPods

22

Using the list (ls) command, check that the folder you have changed

to does in fact contain the xcodeproj file and the folder of source code

created in the Xcode template, as you see in Figure 2-6.

Figure 2-5.  Change the command line to the project directory

Figure 2-6.  Check the directory

Chapter 2 Using CocoaPods

23

Enter the pod init command on the command line in the directory

you see in Figure 2-6. This will add a podfile to your directory, as you can

see in Figure 2-7.

Figure 2-7.  Add the podfile

You can now look at the podfile, as shown in Figure 2-8. If you

double-click it in the Finder, TextEdit will open automatically. You can also

use a tool such as BBEdit.

Chapter 2 Using CocoaPods

24

Run the podInstall command from the directory shown in Figure 2-5.

You should not need to make changes to the file now, but as your

development continues, you will update the podfile for new components

you may want to add. Whenever you change the podfile, you must then

run the pod install command.

As you can see in the messages in Figure 2-9, there are no

dependencies to install yet. But what is important is that from now on

you should open the workspace that has just been created rather than the

project itself. Close Xcode and look at the folder for your project. The file

structure now shows a workspace and a new project for pods, as you can

see in Figure 2-10.

Figure 2-8.  Review the podfile

Chapter 2 Using CocoaPods

25

Figure 2-9.  Install and init

Figure 2-10.  Your workspace window with pods is created

Chapter 2 Using CocoaPods

26

If you are used to seeing files in the column view, you can change that

in the Finder, in which case you should see files such as those shown in

Figure 2-11.

Figure 2-11.  Review the workspace files in column view

Chapter 2 Using CocoaPods

27

Build your project again, and you’ll see the pod code and your original

code combined, as you can see in Figure 2-12.

Figure 2-12.  Build the project with the podfiles added

�Summary
CocoaPods is a tool that is used for distributing many components and

sets of components that are stored publicly on GitHub. This chapter has

provided an overview of using this tool. Now, it is time to move on to

another component that you will use frequently: JSON formats for files.

Chapter 2 Using CocoaPods

Using Codable Data
with Swift and iOS

PART II

31© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_3

CHAPTER 3

Reading and Writing
JSON Data
The building blocks discussed in this book almost all provide ways of

sharing functionality across apps and often across platforms, as is the

case with Facebook, Amazon Web Services, and reactive programming.

This part of the book is different because it focuses on components and

building blocks that let you share data across apps and often across

platforms.

This chapter will focus on the specifics of JSON, which is one of the

most widely used techniques for sharing data across apps and platforms.

�Identifying Data That Needs to Be Shared
Apps contain data as well as functionality. You may think that a specific

app has no data inside it (perhaps a game that users play by entering

moves or data), but even that simple case is wrong. Every app contains

metadata—its name, category, and description on the App Store as well

as a record of related sales data from the App Store. Although that data is

managed by the App Store and you as developer, it is still part of the app’s

overall data. In addition, there is app-related data that you typically place

on your website.

32

The data that we usually think of as being part of an app is the data

that is built into the app itself: the code, storyboards, and app-based

documentation and instructions. There is also data that may be stored,

such as logs of moves in a game, high and low scores, and other data that

is accumulated as the user uses the app. This is the data we normally

consider when thinking about sharing data.

There are two types of data sharing for you to think about:

•	 Sharing across apps. You may need to share data

across apps. A simple example is a photo that you

capture using the built-in Camera app on an iPhone.

You may then share that with the Photos or Files apps

so that you can organize your apps into albums and

share them with others. You may export the photo from

Photos in another format (perhaps GIF rather than

JPEG) to use it in a document or website. And so the

shared photo may wend its way through several of your

apps (as well as others’ apps, if you send the document

to your friends).

•	 Sharing across time. When you are playing a game,

writing an essay, or creating a movie, you often want to

take a break and save it so you can continue working

on it another time. That requires you to be able to share

the data across time. Remember that when an app is

running, its data is stored in memory rather than in

persistent storage (like a disk). Memory is a scarce

resource, so it needs to be reused when you decide to

do something other than work on your game, essay,

or movie. The data needs to be copied to some kind of

persistent storage so that it can be reloaded when you

pick up your game or project later on.

Chapter 3 Reading and Writing JSON Data

33

Just to keep you on your toes, a lot of data sharing is of both types:

across apps and across time. And as a further consideration, remember

that when you share data across apps, you may also be sharing it across

devices (from your Camera on your iPhone to Keynote on your Mac and on

to your colleague’s Photoshop on a PC).

�Considering Security for Sharing Data
As people become more and more aware of the security aspects of data, it

is important to consider the security side of sharing it. This is a common

trade-off between ease of use for users and protection against allowing bad

actors to exploit that ease of use for nefarious purposes.

One point that has become obvious is that trusting to luck is just not a

reasonable strategy. Further, assuming that no one would be interested in your

data is just as risky. Remember that people tend to reuse identifiers such as

passwords so that even if you are sharing what you think is totally innocuous

data, you may be sharing a user’s banking PIN or password inadvertently.

Also be aware of the European Union General Data Protection

Regulation (GDPR), which took effect on May 25, 2018. It governs data

protection and privacy within the EU, but if your app is (or may in the

future be) covered by the regulation, you must abide by the regulation.

�The Challenges of Sharing Data
The data that your app uses when it is running is stored in memory in

whatever format your operating system uses. From the developer’s point

of view, the data consists of variables, which are identified as types such as

integers or real numbers, as well as the types and classes that you create

in your app. When the data is moved to persistent storage (a disk, for

example), the data is reformatted. All of this can happen multiple times

for any given data within your app as it moves from memory to persistent

storage.

Chapter 3 Reading and Writing JSON Data

34

From a practical point of view, data cannot maintain its formatting

structure as it moves from memory to device and onward. That is why we

wind up with various types of data formats depending on the medium

and device. To make these reformatting processes work as data is moved

back and forth, there are several challenges to be confronted. They are

summarized in this section; in the following section, you’ll see how these

issues are addressed with JSON (JavaScript Object Notation, but it is used

in many languages other than JavaScript) and other modern technologies.

Here are the challenges to be confronted in sharing data:

•	 Identifying data elements

•	 Managing inconsistent data types

•	 Exploring the document and structure issues

�Identifying Data Elements
When you talk about sharing data, you have to make it clear what you’re

talking about. As noted in this chapter, “data” for an app can take many

forms and can reside from time to time in many places, from a computer’s

memory to one or more persistent stores. Each has its own formatting

rules, but before looking at that, you have to be specific about the data.

What is actually shared is often a subset of the app’s data—a log of moves

in a game or the goal for a project in a workpaper.

The sharable data elements are often identifiable in the user interface

using ordinary non-technical terms, such as paragraph, page, or sentence

for words and image for graphics. If you can find a way to translate these UI

elements into data that uses standard elements, such as characters of text

or the binary string that represents an image, then you can share the data.

Chapter 3 Reading and Writing JSON Data

35

In general, the more basic the structure of a sharable format is, the

easier it is to share, but there is a trade-off because the code you write to

use sharable data that relies on basic structures may be more complex.

Fortunately, over time processors become more and more powerful so

there is often computing power available to do necessary pre- and post-

processing of sharable data.

�Managing Inconsistent Data Types
When you get beyond the basics of sharable data, you may encounter

inconsistencies in data types. For instance, there is general agreement as

to what an integer is (the mathematicians sorted this out centuries ago).

However, what an integer is for a specific processor may be different from

another processor’s integer. This can let you specify a value of an integer

that conceptually exists (for mathematicians) but cannot be stored on a

specific operating system or a specific piece of hardware. This is one of the

reasons why basic data types are used.

�Exploring the Document and Structure Issues
If you look at the samples of JSON code, you’ll see that they are very basic

and that they only represent data. They do not provide any formatting,

nor do they provide any logical structure of how a document might be

presented. There are a number of document-based sharable formats, the

most common of which is Extensible Markup Language (XML). It is more

powerful when you are dealing with documents, but, as is always the case

when the sharable data becomes more complex, it may be more difficult to

share it across devices and platforms.

Chapter 3 Reading and Writing JSON Data

36

�Looking at JSON
In today’s world, JSON is a common way to share data. Its elements are

simple and are represented using characters. JSON represents data as

objects. A JSON object is delimited by brackets: { and }. Within an object,

spaces and return characters don’t matter except for the special case in

which they appear within quotes.

Within the { and } delimiters of a JSON object, comma-separated

name–value pairs define the elements of the JSON object. The name and

value are both enclosed in quotes and are separated by a colon. When the

value is a number, it is not quoted.

{

 "name": "Claude Debussy"

}

The value can be an array. In that case, the elements of the array

are enclosed in square brackets and are separated by commas, as in the

following:

{

 "name": "Claude Debussy",

 "works": ["La Mer", "Pélleas et Mélisande", "Images"]

}

Objects can be nested, as in the following:

{

 "French Composers": [

 {

 "name": "Claude Debussy",

 "works": ["La Mer", "Pélleas et Mélisande", "Images"]

 },

Chapter 3 Reading and Writing JSON Data

37

 {

 "name": "Maurice Ravel",

 "works":["Boléro", "La Valse"]

 }

]

}

JSON is readable, particularly in small sections. Because of its

simplicity, it has no document-based structure or syntax checking. It is

easy to generate from data structures, which is the way much (perhaps all)

of the JSON code you will deal with is created. (Chapter 5 will show you

how to use the Swift Codable protocol to read and write JSON code.)

Because JSON is so commonly used, you can read it and write it

with many common tools. Some JSON code used for a navigation app is

shown in Figure 3-1 as it appears when opened in TextEdit. The spacing is

whatever has been typed in.

Figure 3-1.  JSON in TextEdit

Chapter 3 Reading and Writing JSON Data

38

The same JSON file is showed in Figure 3-2 as opened in BBEdit.

The text is automatically colored by BBEdit.

Figure 3-2.  JSON in BBEdit

Chapter 3 Reading and Writing JSON Data

39

In Figure 3-3, you can see the same file opened in Excel. Note

that the content is the same, but the spacing within the spreadsheet is

done by Excel.

Figure 3-3.  JSON in Excel

Chapter 3 Reading and Writing JSON Data

40

Figure 3-4.  JSON in Xcode

Finally, in Figure 3-4 you can see the same JSON file opened in Xcode,

which applies its own spacing and coloring.

Chapter 3 Reading and Writing JSON Data

41

�Using JSON—The Basics
Despite the different appearance of the same JSON code in the different

apps, the structure of the underlying code is the same, and it is easy to

take the raw JSON code, which is based only on characters, and transfer it

across any communications channel.

If you are creating the JSON code yourself, it’s easy to misplace a

quotation mark, comma, bracket, or parenthesis. Because JSON is so

straightforward and is so widely available, you can find a multitude of

JSON checkers and validators on the web—just use your favorite search

engine.

The components of JSON should be familiar to you if you are already

familiar with Cocoa or Swift. The comma-separated lists or key–value pairs

are the heart of the dictionaries that are used so widely in the operating

systems.

Built into Swift you will find code that easily converts dictionaries to

JSON and vice versa. The next chapter will give you examples of that code.

Furthermore, you’ll see how to use the built-in encoders and decoders

(in Swift 4 and later) that perform these operations for you without your

needing to write any additional code.

�Summary
Sharing data from one app to another, one device to another, or across

time barriers is made possible by your using sharable code and standards

such as JSON. The power of JSON is derived from its simplicity: it doesn’t

encode a document as a whole but rather lets you encode and decode basic

structures such as objects (of any kind—not necessarily object-oriented

objects), numbers, strings, and arrays. These processes are very fast and

easy to use.

The next chapter will explore the built-in tools you use with JSON.

Chapter 3 Reading and Writing JSON Data

43© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_4

CHAPTER 4

Using JSON Data
with Swift
In this chapter, you will see the basics of JSON syntax. You can use it

with many modern languages, and Swift is no exception. In fact, Swift’s

integration with JSON is strong, powerful, and easy to use. If you add in

Swift Playgrounds which is available on iPad and in Xcode on your Mac,

you get a powerful cross-platform data exchange format that also is easy

to test with a playground (so that you don’t have to write an app—even a

stripped-down app—to explore the data, syntax, and code).

In this chapter, you will see how to explore JSON with Swift Playgrounds

as well as how to explore the iOS/Swift interfaces that are available.

Note  These features are shown using Xcode 9 and Swift 4. These
include significant changes from previous versions of Xcode and Swift.

�Getting Started with a JSON Swift
Playground
The Swift Playgrounds app is the perfect tool to use to get acclimated

to JSON. In this chapter, you will see how to use a playground for

experimentation. To begin with, you can create a playground and add

44

JSON text, such as the examples shown in Chapter 3, to it. Using Swift

Playgrounds, create a new playground, as you can see in Figure 4-1.

Figure 4-1.  Create a Swift playground

Note  The examples in this chapter are shown using Playgrounds
in Xcode on macOS. Xcode is the tool you use for writing code, and a
project such as this one may be easier to work with on macOS than
on iOS, but you can use either one.

Open the project navigator at the left side of the window by clicking

on the icon at the top right or by using the View ➤ Navigators ➤ Show

Project Navigator command from the menu bar. When you open the project

navigator, you’ll see the files inside your project, as you can see in Figure 4-2.

Figure 4-2.  Open the project navigator at the left side of the Xcode
window

Chapter 4 Using JSON Data with Swift

45

Note A Swift Playgrounds project consists of a single file in the
Finder, but that file is a package containing the files you see in the
project navigator. You can open the package using Control-click in the
Finder or by using the right button while you click on the package.
Working within Swift Playgrounds and the Xcode project navigator is
simpler and more direct.

You can use the disclosure triangles to open the sections of the project.

To add a file to contain your JSON code (or any other data you want to use

in the playground), command-click on the Resources section and choose

New File from the contextual menu. You can click the file name to change

it if you want. Figure 4-3 shows a new file named test.json that has been

created. There are two blank lines in it in the figure.

Chapter 4 Using JSON Data with Swift

46

Figure 4-3.  Create a new file

You can type in the file or copy and paste code into it (Figure 4-4). (The

code in this chapter is downloadable as described in the Introduction.)

Chapter 4 Using JSON Data with Swift

47

You now need to connect your playground to the file. Physically, the

file is inside the playground package, as shown in Figure 4-3, but you need

to read the data. There are two lines of code that you’ll use (and reuse and

reuse) to do this. First, specify the name of the file and where it is—inside

the playground bundle. Here is the line of code:

let url = Bundle.main.url(forResource: "test", withExtension: "json")

Figure 4-4.  Type or paste code into your file

Chapter 4 Using JSON Data with Swift

48

Change the file name and extension name for your own file.

Then, read the string of characters from the file using this code:

do {

let jsonCode = try String(contentsOf: url!, encoding: .utf8)

}

catch {

 fatalError ("handle error properly")

}

You can customize the variable name for the content (jsonCode) and the

text for the fatalError string. Otherwise, you can use the code as is. (You can

also change fatalError to another method of catching an error if you want to.)

The code is shown in Figure 4-5.

Figure 4-5.  Enter the code to read the file

Chapter 4 Using JSON Data with Swift

49

When you have entered the code, you can run it, as you see in Figure 4-6.

Figure 4-6.  Run the code

Figure 4-7.  Review the JSON code as it runs

Check to make certain that you see the code properly and don’t

have an error. (This is the step that may catch you up until you’re used to

creating files inside a playground.)

If you want to show the content from the sidebar, a window appears, as

shown in Figure 4-7.

Chapter 4 Using JSON Data with Swift

50

�Using the JSON Integration Tools in Swift
What you have seen so far is how to create a file inside a playground and

how to read its contents. The reading process is the same whether the file

is in a playground or somewhere else—perhaps even being sent over a

network.

What is more common is reading from a file and handling its contents

not as a string but as JSON data. That is what this section will cover.

�Integrating a Swift Array
Begin with some JSON code that you can create in an editor like BBEdit or

in Xcode (or even in TextEdit).

You can start with a JSON array, such as the following:

[3, 69, 8, 66]

Note that the elements of the array are separated by commas and that

the array is enclosed in square brackets. You can create a playground and

then add a new file to it in the Resources section. Figure 4-8 shows how

this will play out in this chapter.

Figure 4-8.  Create a JSON array in a file inside your
playground bundle

Chapter 4 Using JSON Data with Swift

51

You continue by specifying the URL for the file, as you have seen

previously in this chapter.

let url = Bundle.main.url(forResource: "ArrayTest", with

Extension: "json"

Next, instead of extracting the data from the file as a string, use the

JSONSerialization.json file built into FoundationKit to retrieve it as a

JSON object. Note that this should always be done inside a do block that

can catch a failure, as you can see in Figure 4-9.

Figure 4-9.  Catch a failure

Chapter 4 Using JSON Data with Swift

52

Once it has been created as a JSON object, you can print it using

Swift. What is most important in the code in Figure 4-9 is that after the

JSON object has been created, it can be modified, as always, in Swift. For

example, you can convert the array (in a JSON sense) to a Swift array of

integers using

let test = jsonObject as! [Int]

You can see this in line 10 of Figure 4-9. (In practice, you would use as?

to catch an error in the conversion.)

Several other lines of testing and debugging are shown in the figure,

but perhaps the most important is line 13:

print (test[2])

Line 13 creates the test variable with the typed array, as noted

previously in this section. The reason that line 13 is so important is that

the JSON code that was probably specified as a typed-in string now is

converted to a real object, and you can use the subscript [2] to access the

data—just like any other Swift data.

�Integrating a Swift Dictionary
The same basic steps apply if you want to use a JSON array in Swift. As you

can see in Figure 4-10, you create the file in your playground’s bundle.

Chapter 4 Using JSON Data with Swift

53

Note that the brackets are curly brackets, which is the style that

JSON uses for its objects. Square brackets (as shown in Figure 4-8) are for a

JSON array.

Note  This is the area you need to pay attention to. The rules of
JSON and Swift are similar but not identical. For example, a Swift
array has elements of a common type, but that is not necessarily the
case in JSON. That is why you must always catch failures that may
occur when using JSONSerialization.json.

Figure 4-11 shows the same type of testing and experimentation you

saw being used for a JSON/Swift array in Figure 4-9.

Figure 4-10.  Use a dictionary with Swift and JSON

Chapter 4 Using JSON Data with Swift

54

�Summary
The ability to move data back and forth using a common syntax like JSON

is important both within a single app and between multiple apps. This

chapter has showed you the basics.

Note that beginning with Xcode 9, the Codable protocol is provided to

further enhance Swift’s JSON capabilities.

You have not yet seen the basic types of building blocks that let you

share code and data across apps and platforms. In the next chapter,

you will begin to look at very specific uses of these building blocks by

examining Facebook logins that you can use in iOS (and other) apps.

Figure 4-11.  Experiment with a JSON/Swift dictionary

Chapter 4 Using JSON Data with Swift

Integrating
Facebook Logins

PART III

57© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_5

CHAPTER 5

Setting Up a
Facebook Account
with iOS
In this and the following parts of this book, you will be dealing with the

integration of an iOS project with a separate project, such as a project

from Facebook, Amazon Web Services, or RxSwift. The biggest difference

between this type of integration and the integration discussed in the

previous chapters is that now the integration is more complex. It’s no

longer a matter of sharing data, messages, or data structures between

apps; rather, you are getting parts of both components to work together.

This chapter will explore the use of Facebook, which in some ways is the

simplest form of app integration.

Note  It might be useful to look at least briefly at the AWS,
Facebook, and RxSwift integrations in the following chapters. Some
of the techniques are used across other environments. Furthermore,
being able to look at code in different environments that does the
same thing can help you understand the major issues involved.

58

�Beginning to Explore the Facebook
iOS SDK
The APIs discussed in this book change from time to time. In 2018, a

number of them changed in response to the European Union’s adoption

of the General Data Protection Regulation (GDPR) and changes brought

about by several highly visible breaches of privacy at many social media

companies, including Yahoo! (3 billion user accounts compromised),

eBay (145 million users affected), Equifax (143 million users at risk), and

Target stores (110 million people with their credit card data stolen). Be

very careful about relying on old technologies and code, but be particularly

careful about relying on code that dates from mid-2018 and earlier. It may

not reflect the changes that have been put in place in recent years.

As is the case with the other APIs mentioned in this book, a good place

to start is at the developer subsite for Facebook—developers.facebook.com,

as you can see in Figure 5-1. The API itself is always subject to change;

furthermore, news and updates are shown on the welcome screen, as you

can see in the figure. News and updates frequently change.

Chapter 5 Setting Up a Facebook Account with iOS

59

Although the developer site for Facebook changes, its basic structure is

fairly constant. Look at the black navigation bar at the top of Figure 5-2 to

get an idea of how the site is organized.

Figure 5-1.  Start to use the Facebook developer API

Chapter 5 Setting Up a Facebook Account with iOS

60

Figure 5-2.  Navigate through the Facebook developer site

Chapter 5 Setting Up a Facebook Account with iOS

61

If you want to start working with Facebook iOS integration, look for the

Facebook iOS SDK. You’ll find it in the Docs menu of the navigation bar, as

you can see in Figures 5-2 and 5-3.

Figure 5-3.  Drill down to get to the Facebook SDK for iOS

Chapter 5 Setting Up a Facebook Account with iOS

62

What you’re looking for is shown in Figure 5-4.

�Looking at the Components of the
Facebook iOS SDK
In Figure 5-4 you can view the major SDKs for Facebook/iOS. You can see

them in Figure 5-5.

Figure 5-4.  Explore the Facebook SDKs for iOS

Chapter 5 Setting Up a Facebook Account with iOS

63

As is the case with AWS, a lot of the iOS SDKs for Facebook are devoted

to managing advertising and user interaction. The five primary SDKs are as

follows:

•	 Analytics. You can see information about who is using

your Facebook app. This information is anonymized

so that you don’t see individual information unless the

user has specifically allowed that; however, you can

see aggregated or anonymized data about your users.

With Facebook, this is basically the information a Page

owner can see in Insights.

•	 Login. These are the tools that people will use to log in

to your Facebook app.

Figure 5-5.  Review the basic iOS SDK components

Chapter 5 Setting Up a Facebook Account with iOS

64

•	 Share. This SDK manages sharing, liking, and messages.

(This is the SDK that many Facebook app developers

start thinking about even though its implementation

will require dealing with other SDKs as well.)

•	 App Events. This SDK lets you see the events and

actions taken by users in your app.

•	 Ads. For many developers, this is the critical

SDK. Share and App Events are what may be most

important to the users, but Ads are often most

important to the business manager.

As you drill down deeper into the iOS Facebook SDK, you can find

related SDKs, as you can see in Figure 5-6.

Figure 5-6.  See additional resources and get started

The last stop on your overview may be the resources shown in

Figure 5-6.

Chapter 5 Setting Up a Facebook Account with iOS

65

�Summary
Integrating Facebook APIs with iOS requires persistent and complex tools

so that Facebook itself, your Facebook app, and your iOS app function

seamlessly together. In order to move forward, you’ll use the steps outlined

in the following chapter.

Chapter 5 Setting Up a Facebook Account with iOS

67© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_6

CHAPTER 6

Managing Facebook
Logins
The first login procedure you need to worry about is the login for yourself

as a Facebook developer for a specific app. This chapter will help you

navigate that login protocol. Remember that there are many sequences of

steps you can take to achieve your desired result—access to the Facebook

iOS API.

�Beginning the Facebook SDK Login Process
Start by logging in to your Facebook developer account. If you are

proceeding from the previous chapter, you can now use the Quick Start

for iOS button shown in Figure 6-1.

68

You need to provide your app’s name and your contact email address.

(Remember that to get to this dialog you need to have logged in to your

Facebook developer account, so that information is already part of the app

that’s being created.) Figure 6-2 shows the app creation step.

Figure 6-1.  Start by creating a new Facebook App ID

Chapter 6 Managing Facebook Logins

69

Figure 6-2.  Name your new Facebook app and provide a contact
email address

Chapter 6 Managing Facebook Logins

70

The process of creating an app has several layers of security, as you can

see in Figure 6-3. Remember that your iOS app (or any non-native app) will

have access to significant Facebook and personal resources, so security is

tight and has been increased significantly since some issues arose in 2017

and early 2018.

Figure 6-3.  Pass through the Facebook security process

Chapter 6 Managing Facebook Logins

71

�Providing Basic iOS/Facebook Integration
As you can see in Figure 6-4, you continue on with the Facebook for

iOS SDK.

Figure 6-4.  Integrate the Facebook SDK for IOS

The downloaded SDK that you have created, as shown in Figure 6-4,

integrates your new Facebook app ID into the property list for your app.

Note the code toward the end of section 2 of the info.plist, as shown in

Figure 6-5.

Chapter 6 Managing Facebook Logins

72

The code shown in Listing 6-1 is standard code for any iOS app.

Figure 6-5.  Your Facebook ID is integrated into the info.plist file you
download

Chapter 6 Managing Facebook Logins

73

Listing 6-1.  Facebook Integration with Your App’s Property List

<key>CFBundleURLTypes</key>

<array>

 <dict>

 <key>CFBundleURLSchemes></key>

 <array>

 <string>12345</string>

 </array>

 </dict>

</array>

<key>FacebookAppID>

<string>12345</string>

<key>FacebookDisplayName</key>

<string>JFTest</string>

The Facebook ID is used internally; the app display name is visible to

the user. Remember this if you need to change the name at some point:

most likely you need to leave the FacebookAppID. However, if you are

modifying an existing Facebook app to get started quickly, you will need to

change both FacebookAppID and FacebookDisplayName.

Note I t is often easier to use the quickstart Download SDK button
show previously in Figure 6-4 rather than tweaking an existing plist.

�Connecting the iOS app to your Facebook App
The plist you download has the Facebook name inserted into it so that

the iOS app can use it appropriately. You now need to manually provide

the iOS app bundle identifier (which uniquely identifies every iOS app) to

Facebook.

Chapter 6 Managing Facebook Logins

74

Beneath the code shown in Figure 6-5 and Listing 6-1, you’ll see a

form, shown in Figure 6-6, where you can enter your bundle identifier.

Figure 6-6.  Provide your bundle identifier from iOS to Facebook

Chapter 6 Managing Facebook Logins

75

As a reminder, the bundle identifier is shown in your iOS app’s general

settings at the top (in the Identity section; see Figure 6-7).

Note A lways be careful about changing the bundle identifier. It is
used in many places to keep the parts of your iOS app together.

Figure 6-7.  Use the iOS bundle identifier for your Facebook app

Chapter 6 Managing Facebook Logins

76

�Summary
This chapter has provided an overview of the connections from an iOS

app to a Facebook app and vice versa. Be careful about making changes

for their own sake. More than one developer has decided to “clean up” a

bundle identifier at some point so that it adheres to an in-house standard

or for some other reason. Chances are, that “clean-up” will cost you hours

(or days) of work.

At this point, you should be ready to actually try running your iOS app

together with Facebook.

Chapter 6 Managing Facebook Logins

77© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_7

CHAPTER 7

Adding a Facebook
Login to an iOS App
With a Facebook developer account, you can add Facebook features (such

as logins) to your iOS app. This chapter will walk you through that process.

It is useful for many of the Facebook tools that you may want to integrate

with an iOS app. Furthermore, the steps used to integrate Facebook tools

are similar in some ways to the steps you would use to integrate other

tools, such as Amazon Web Services (AWS), which is the topic of the next

part of this book.

Also, it’s important to note that there are a number of ways to handle

this integration. CocoaPods (described in Chapter 2) are a very common

way of handling integration. If you look into CocoaPods, you’ll see that

what you have is an automated tool for managing your Xcode project files

along with having versions automatically downloaded from GitHub by

CocoaPods.

The heart of the integration is Xcode, its files, and its frameworks.

Although a CocoaPods interface is available for the Facebook interface,

this chapter will show you what happens on the source code/Xcode side

of things. Remember that regardless of the integration technique that

you use, the same basic structure (updating and integrating your Xcode

project) is what has to happen.

First, though, it’s the Facebook login.

78

�Starting to Integrate the Facebook SDK
with an iOS app
There are two components you need to get started:

•	 You need a Facebook developer account (see the

previous chapter).

•	 You need Xcode and a basic familiarity with it.

Although you can work offline with Xcode as you develop an app, you

cannot work offline to create apps for Facebook or iOS, because you need

to interact with the Facebook and iOS environments. If you have anything

other than an ordinary Internet connection (for example, if you are behind

a firewall that limits the sites you can visit), check out the basic steps to get

started to make certain that you don’t need permission from another part

of the organization.

Note  Both the Facebook and iOS developer sites change from time
to time, so you may have to search around to find sections that have
moved.

Start by creating an Xcode project to use for testing. In this chapter, the

Single View sample app that is part of Xcode will be used. Figure 7-1 shows

how you can create it.

Chapter 7 Adding a Facebook Login to an iOS App

79

Make a note of the app bundle identifier that is created based on

the data you enter for the app. As you can see in Figure 7-2, the bundle

identifier for this app is com.champlainarts.MySingleViewApp.

Figure 7-1.  Create a single-view app to test with Facebook

Chapter 7 Adding a Facebook Login to an iOS App

80

As always when you create a new app from a template in Xcode,

run the app either on a device or on a simulator to make certain that it

works properly. Figure 7-3 shows what you should see if you run it on the

simulator for iPhone 8.

Figure 7-2.  Make a note of the bundle identifier

Chapter 7 Adding a Facebook Login to an iOS App

81

Yes, a successful implementation of the single-view app shows

nothing. As you will see later in this chapter, you can easily add a label. All

you should be concerned with at this point is that the app doesn’t fail or

crash when you run it on Xcode.

Figure 7-3.  Test the app

Chapter 7 Adding a Facebook Login to an iOS App

82

�Download the Facebook SDK for Swift
Log in to your developer account on developers.facebook.com. You’ll see

choices to download the Facebook SDK for iOS, Android, and PHP, as well

as for other platforms. As of this writing, the basic iOS SDK is still written in

Objective-C, but you can download the Swift version if you want (you’ll see

how to do that in this section).

The Swift version of the iOS SDK is under documentation. Once you’ve

logged in, use the Docs menu item in the top navigation bar to get to the

Documentation page, as shown in Figure 7-4.

Figure 7-4.  Look in Documentation for the Facebook SDK for
iOS/Swift

Chapter 7 Adding a Facebook Login to an iOS App

83

You may have to scroll down, as you can see in Figure 7-5, to find the

Swift SDK.

Figure 7-5.  The Facebook Swift SDK is available with all of the
others

Once you have located the “SDK for Swift” link, open it, as you can see

in Figure 7-6.

Chapter 7 Adding a Facebook Login to an iOS App

84

The frameworks shown in Figure 7-6 are the heart of the Facebook

SDK for Swift. All frameworks for iOS were originally written in

Objective-C. Today, some of the new frameworks are written in Swift, but

when you build a Swift-based app, it is not a problem that some (or all) of

the frameworks are written in Swift. Thus, when you download the SDK for

Swift, you’ll wind up with frameworks that are often written in Objective-C,

and that doesn’t matter. When you download the SDK for Swift, as shown

in Figure 7-6, some of the frameworks have enhancements specifically for

Swift, so keep these files safe and just add them as needed to your app.

Figure 7-6.  Download the Facebook SDK for Swift

Chapter 7 Adding a Facebook Login to an iOS App

85

The download link in Figure 7-6 takes you to GitHub, as you can see in

Figure 7-7. You can download the source code as .zip or tar.gz.

Figure 7-7.  Download the latest Facebook SDK for Swift

Chapter 7 Adding a Facebook Login to an iOS App

86

The files downloaded from GitHub will vary over time both in content

and in name. The downloaded files at the time of this book’s writing look

like Figure 7-8.

Figure 7-8.  Downloaded Facebook files from GitHub

�Adding Frameworks and Functionality
to Your Facebook App
You can work around the issue of what file is where by using CocoaPods,

but if you prefer to work with the actual files themselves, one technique that

works for many people on many projects is to look for a sample file or app.

In this case, there’s a Samples folder containing a SwiftCatalog app. Many

times (but not always!) the sample app will be updated for any given project

before the documentation is updated. If that is the case, build the app. If

you look at the project navigator, as you can see in Figure 7-9, you’ll note

intermediate files such as the frameworks are all built in the sample app.

Chapter 7 Adding a Facebook Login to an iOS App

87

If you drag the needed frameworks into your own app, Xcode will put

them in the right place in your project.

You can add new frameworks and functionality to your Facebook app

either at the beginning or at any time as you work with the app. The My

Apps menu in the navigator at the top of the screen (seen in Figure 7-10)

lets you both add and reconfigure your app’s components.

Figure 7-9.  Build a sample to get frameworks

Chapter 7 Adding a Facebook Login to an iOS App

88

Figure 7-10.  Add and modify your Facebook app frameworks and
features

Chapter 7 Adding a Facebook Login to an iOS App

89

From your app dashboard (Figure 7-10) you can choose new products

(features), as shown in Figure 7-11. This display shows you available

products and links to specific documentation so you can decide what you

want to work on.

Figure 7-11.  Add products to your Facebook app

�Enhancing Your App
If you have followed along with this chapter, you have produced the app

shown previously in Figure 7-3. It runs and displays its storyboard, which

happens to be blank. In order to move forward, it makes sense to add

something to your storyboard.

Chapter 7 Adding a Facebook Login to an iOS App

90

Go to main.storyboard in your app and add a label to it, as you can see

in Figure 7-12.

Figure 7-12.  Add a label to your app

Next, add a Facebook login button to your app. If you have followed

the sequence shown previously in which you built the SwitchUserSample

example, you have the Facebook Login framework in that app and you

can drag it into your new app. Alternatively, add Facebook Login from the

products shown in Figure 7-11 by modifying one of your apps (shown in

My Apps in Figure 7-10).

Once Facebook Login is added to your app, the code to add the button

is simple. Add it to the viewDidLoad method of your app. (If it’s built on the

SingleViewController template as described in this chapter, the app has

one view controller called ViewController.

The code is shown in Figure 7-13 and in Listing 7-1.

Chapter 7 Adding a Facebook Login to an iOS App

91

Note T he basic viewDidLoad method with a stub is already part
of the SingleViewApp template.

Listing 7-1.  Add the Facebook Login Button

import UIKit

import FBSDKLoginKit

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view,

 // typically from a nib.

Figure 7-13.  Add the Facebook login button code to viewDidLoad

Chapter 7 Adding a Facebook Login to an iOS App

92

 let loginButton = FBSDKLoginButton()

 loginButton.center = view.center

 view.addSubview(loginButton)

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Rebuild your app (clean the build files first to make certain that you

don’t have some experiments lying around). Now, when you run it, you

should see your label and the button, as shown in Figure 7-14.

Chapter 7 Adding a Facebook Login to an iOS App

93

Remember that you didn’t just add the image of a button: you added

the functionality of the login button, so when you run your app you’ll be

asked for permission, as you can see in Figure 7-15.

Figure 7-14.  Try your app with the label and login button

Chapter 7 Adding a Facebook Login to an iOS App

94

The login button should work now. Try it, as shown in Figure 7-16.

Figure 7-15.  Test Facebook login integration

Chapter 7 Adding a Facebook Login to an iOS App

95

Figure 7-16.  Test the Facebook login button

You can also test with your own Facebook account. In addition, you

can search developers.facebook.com to get test accounts you can use so

that you don’t create fake accounts or interfere with your own account.

Note  Some developers test logging in with their own account but
use the Facebook test accounts for adding information.

Chapter 7 Adding a Facebook Login to an iOS App

96

�Summary
This has been an overview of integrating Facebook and iOS. The details

may change from time to time, but the overview remains basically the

same. And, in fact, it’s the same for all components of Facebook and other

frameworks that you may want to integrate with your app.

Chapter 7 Adding a Facebook Login to an iOS App

Storing Data in
Amazon Web Services

PART IV

99© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_8

CHAPTER 8

Working with Amazon
Web Services
and Cocoa
In Parts III – V of this book you see how to put third-party components

together with Cocoa and its frameworks. These components can be

concepts, standards, or open source tools such as JSON, or they can be

specific tools, such as the login using Facebook that is described in Part III.

In this part, a more general tool will be introduced: Amazon Web

Services. (Coming up in Part V is RxSwift.) You will see an overview of

how to create an AWS account for your app to use, install the appropriate

downloads from AWS, and provide integration with your app. The focus

of AWS integration is data management, but you can use AWS for other

purposes as well.

�Comparing Components
JSON is a tool for reading and writing structured text in a simple way.

It is so common these days that many languages, frameworks, and

environments (including Cocoa and Cocoa Touch) support the use of

JSON for both reading and writing.

100

The Facebook Login tool (described in Part III) differs from JSON

in that it is designed for a single simple purpose: checking someone’s

credentials. Rather than the tight integration that JSON has with Cocoa

and Cocoa Touch, Facebook Login has no integration from the Cocoa or

Cocoa Touch side: You simply add some methods, classes, or frameworks

from Facebook to your app, and then a Facebook-provided class goes off

to check the credentials and pass back a yes or no for access. (This is a

simplification of the process.)

Amazon Web Services (AWS) is a different type of tool with a different

type of integration. It is not explicitly integrated with Cocoa and Cocoa

Touch. AWS functionalities are critical to most apps, and they are provided

in a number of different ways. They can be provided with code that you

write for your app; code found in one of the many frameworks or libraries

available on GitHub and elsewhere; or code and frameworks that are part

of Cocoa and Cocoa Touch. AWS becomes the data manager for your app,

and you interact with it constantly as your app runs (depending, of course,

on the specific design of your app).

Note  For the remainder of this chapter, unless a distinction needs
to be made, Cocoa is used to refer to both Cocoa and Cocoa Touch.

�Using AWS with Cocoa
As noted, there are many ways in which you can integrate AWS with Cocoa

and Cocoa Touch. In the simplest way, you use AWS (more specifically,

one or more components of AWS) just as you would use the Facebook

Login tool or even as you would use an open source tool, framework, or

standard like JSON. In those cases, think about an iOS or macOS app that

incorporates AWS.

Chapter 8 Working with Amazon Web Services and Cocoa

101

At the other extreme, you can use AWS (more specifically, one, more,

or many components) as the heart of your app.

In both of these scenarios, the user interface is envisioned as being

built with Cocoa or Cocoa Touch. The question is, where does the

implementation of the basic functionality of the app take place—is it in

AWS or is it in Cocoa?

Note I t is possible to place some of your app’s functionality
on the Cocoa side of things and other parts of the functionality
in AWS. Depending on your environment, it may be advisable to
consolidate the functionality on one side or the other, but that is a
personal observation and not a suggestion.

The overview found in this chapter may help you consider the

possibilities for your app. Four points are worth considering:

•	 Sharing data with others

•	 Using data across platforms

•	 Playing to your strengths

•	 Playing to your users’ expectations

Each of these points will be discussed in the following sections.

�Sharing Data with Others
When you talk to people about apps, they commonly think and talk about

entering data on their phone and letting other people (or themselves at

other times) view and modify the data on another device—maybe even on

a PC sitting on a desktop half a world away.

That common scenario that we all recognize is complicated to

implement. Typically, the data is going to be stored somewhere, and that

Chapter 8 Working with Amazon Web Services and Cocoa

102

“somewhere” cannot be solely on the phone from which it originated,

because it needs to be visible to people when the phone is out of range or

even powered off.

One of the most common ways of storing this persistent data is in

one of the cloud-based services, such as AWS, Box, Azure, Dropbox, or

FileMaker (version 17 or greater). You can also use the web (particularly

with HTML5) to store the data, but it must be somewhere that is reachable.

�Using Data Across Platforms
There are many ways to store data that needs to be shared. People who

have worked with data of all kinds and on all types of projects commonly

agree that changing a data-management strategy is not easy, and it gets

more complicated as more and more data becomes involved, as is the

case with an old system. Too often, people skip over the “magic” that they

expect to happen automatically to the data.

With the exception of a project that does not store any data—and never

will—it’s worth thinking about how data will be shared. Here are some of

the basic considerations and suggestions for how you might approach the

data-management issue. Planning for data-management strategies that

will only be implemented in the future is far, far better than leaving it to

chance (or “magic”). In other words, you don’t have to do it at the start, but

you have to have at least one plan for managing data in the future, even if

that plan is to revisit the issue in the future. Just make certain it’s a revisit

and not a first visit to the idea of data management.

Note  This section focuses on data, but it is now possible to move
some or more of an app’s processing to the cloud. In fact, the
distinction between data and processing is hard to define in many
cases because one can frequently be converted to the other.

Chapter 8 Working with Amazon Web Services and Cocoa

103

The basic data scenarios and possible solutions are as follows:

•	 None. No data is stored and never will be.

•	 One user/device. Data is stored only for one user

and one device. This is generally a special case for

temporary data. It would apply to a calculator app that

remembers its last total (just as calculators do). You

can use the Cocoa UserDefaults.standard to store

relatively small amounts of data on the device.

“Relatively small amounts” has grown over time, but

Apple’s documentation indicates that it depends on

the device. This makes sense because devices get

more and more storage over time. Reports of 4 GB

being stored are found in web discussions.

The data may be backed up with normal backups of

the device (if they are turned on by the user).

•	 One user/multiple iOS devices. This scenario is easiest

to implement with the user’s Apple ID and iCloud.

There is a limit to the amount of space available, which

depends on what iCloud data plan the user subscribes

to and how much other data is being stored.

The iCloud data is backed up automatically as

part of the iCloud service. Nevertheless, if one of

the devices is not reachable, its data may not be

uploaded to iCloud in a timely manner, and, unless

the app properly handles iCloud conflicts (as with

user resolution of conflicts), the data may not be

what you and the user think it should be.

Chapter 8 Working with Amazon Web Services and Cocoa

104

•	 Multiple users/multiple iOS devices. CloudKit is a good

tool for handling this situation. Because it relies on

iCloud, backups are done automatically.

•	 Multiple users/multiple devices (or one user with only

a non-iOS device). This case is usually best served

with an on-demand cloud service such as AWS, Box,

Dropbox, Google Drive, OneDrive, or similar. Backups

are part of the service.

Not all apps need on-demand storage, but that

is a feature available from most of the services

mentioned here.

�Playing to Your Strengths
With the availability of cloud-based computing as well as data, you

can choose where to put each one. In the previous section, there were

some suggestions with regard to data, but with any project it makes

sense to make your choices not just on technical grounds, but also with

consideration given to the skills and strengths of your developers, whether

it is a team of 50 or just yourself.

�Playing to Your Users’ Expectations
When it comes to users’ expectations of shared data, the word “overused”

is not far from the mark for unrealistic expectations. But there’s another

expectation that is just as dangerous: an expectation that shared data will

be structured and shared using the latest and greatest technology from the

age of mainframe computers and sometimes even from the age of punched

cards. Data structures have a very long life span. In part, that is the result

Chapter 8 Working with Amazon Web Services and Cocoa

105

of what is sometimes called “the drag of the installed base”—the need to

keep things running even though times and capabilities have changed.

One benefit of using shared-data tools such as AWS is that you and

your users may be confronted with technologies and interfaces that may

be new to you all.

�Exploring AWS
After considering the issues of shared computing and shared data, it

is time for a high-level overview of AWS. This section will provide that

overview. In the next chapter, “Managing AWS in Cocoa,” you’ll drill down

a bit more into AWS and how to integrate it with your apps. Remember

that AWS is a very rich set of tools and that there is much more to find out

than can fit in these chapters. The goal here is to give you an idea of what

is available so you can at least make the decision of whether or not to delve

further into AWS for your project.

Note A WS is a web-based technology, and that applies to its
website as well as its technology. The screenshots you will see
and the steps you will take in this chapter may differ; however, the
general process will probably be the same. It’s fair to assume that
some of the AWS components illustrated in this chapter may be
enhanced, new ones may be added, and some may be deprecated.

Chapter 8 Working with Amazon Web Services and Cocoa

106

As a developer, your interactions with AWS are done through the

console using the button at the top right. You’ll find other links to the

console throughout the AWS site. You are able to browse the site without

logging in to the console, but to actually do anything, you will need an

account. You’ll see how to set up your account in Chapter 10, “Managing

AWS Logins.”

Figure 8-1.  Begin to work with AWS

�Getting Started with AWS
The place to start is aws.amazon.com, as you can see (subject to

modifications over time) in Figure 8-1.

Chapter 8 Working with Amazon Web Services and Cocoa

107

For now, explore the menu at the top left, as shown in Figure 8-2.

Figure 8-2 gives you a high-level overview of resources available for

developers. The Developers menu remains pretty constant even as AWS

changes.

Figure 8-2.  Browse developer resources on AWS

Chapter 8 Working with Amazon Web Services and Cocoa

108

The Products menu, shown in Figure 8-3, changes as AWS adds more

products and features. It’s worth exploring this menu to see the tools and

products that you can integrate into your app.

�Comparing Cocoa and AWS Products
for Data Management
You can build a complete app from these AWS products (that’s the idea

of AWS of course). The only thing that’s missing is the user interface.

You can provide that with web-based tools like HTML5. However, for the

most powerful and flexible interface, Cocoa and Cocoa Touch are the tools

we prefer.

Figure 8-3.  AWS products

Chapter 8 Working with Amazon Web Services and Cocoa

109

If you look at the list of products, you’ll see that they are basic

building blocks for the back end of apps. One of the most common forms

of integration between AWS and Cocoa is data management, which

is the topic explored in this part of the book. The tools available for

data management in Cocoa are focused on individuals, so shared data

management needs to be implemented (at least at this point) with tools

found outside of Cocoa.

SQLite is built into Cocoa, but it is a personal data-management

library; it doesn’t manage sharing. iCloud is the Apple technology that

handles data sharing, but that is primarily focused on sharing within one

AppleID. (CloudKit does provide some broader data sharing.)

Core Data is a powerful data-persistence tool that is part of Cocoa. It

is not a data manager; rather, it was designed as a front end to any data-

management tool that conforms to the Core Data structure. Over the years,

a variety of data-management tools have been integrated with Core Data

in various forms of Apple products.

�Summary
This chapter has introduced a high-level view of Amazon Web Services

(AWS) and how its tools can work with Cocoa. AWS can be used to build an

entire app, but commonly AWS provides a back end and Cocoa provides

the front-end interface and functionality.

In the next chapter, you’ll see how to log in and begin to integrate AWS

with an app.

Chapter 8 Working with Amazon Web Services and Cocoa

111© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_9

CHAPTER 9

Managing AWS Logins
In Chapter 8, you saw the wide variety of services that AWS offers (refer

to Figure 8-3 for a list of products). When you use products that touch so

many aspects of an app and parts of users’ lives, security is critical. (This

applies to your own apps, Apple’s apps and frameworks, and third-party

products such as AWS.)

Logging in to AWS is designed to be a secure process that

compartmentalizes the different parts of AWS as well as the different parts

of your apps. This is done with the login structure outlined in the first part

of this chapter.

Later in the chapter, you’ll find more details on how to integrate AWS

into an app with Xcode. Because everyone works through AWS in their

own way, you’ll encounter many options and features that will matter to

you and others that you can put aside for later (or never). You may want to

refer back to the following items, found in the various menus, that may be

important as you start to integrate AWS into an app:

•	 Login (Figure 9-2)

•	 Mobile Hub (Figure 9-9)

�Looking at AWS Accounts and the Root User
You get to AWS at aws.amazon.com. You can browse some of the features

and documentation as described in Chapter 8, but to do anything more

(such as using AWS in an app), you need to log in.

112

Note  The logins described in this chapter are developer logins
that let you build your AWS assets. Once they are built and deployed
with your app, users log in to your app on their own, or—in many
cases—your app logs in without a user’s intervention.

You can create a new AWS account from many locations on

aws.amazon.com—just look for the “Create a new AWS account” link

(wording, of course, may change over time). The portal shown in

Figure 9-1 appears.

Figure 9-1.  Create a new AWS account

Chapter 9 Managing AWS Logins

113

The process of creating a new account is pretty straightforward. As the

little info button next to the “AWS account name” field will tell you, you

can select an account name now and change it later. The identifier for your

AWS account is not normally visible—your email address is linked to it,

and that is changeable, as is the password.

Once you have an account, you can log in as shown in Figure 9-2.

The root user is just that—the root user for the account. As you will

see, you can have other users associated with your account. You do that

by logging in as root and then setting up additional access accounts. This

allows you to have multiple accounts within your overall account without

jeopardizing security.

Figure 9-2.  Log in as root user

Chapter 9 Managing AWS Logins

114

Note  As is always the case with a root user or superuser, do not
use that login for anything other than true root or superuser actions,
such as adding or deleting other users.

As you can see in Figure 9-3, you can access your account as soon as it

is even partially set up. Use the “My Account” drop-down menu to do so.

If you have not yet completed your signup, selecting any of the items

in My Account will ask you to sign in using the portal shown in Figure 9-3.

Figure 9-3.  Access your account with the root login

Chapter 9 Managing AWS Logins

115

If you select an item that relates to AWS Identity and Access

Management (IAM), you will see the guidance in Figure 9-4 directing you

to IAM.

Figure 9-4.  You are warned about using the AWS account

If you continue to an area such as Security Credentials for the account

(rather than settings for an IAM user), you are allowed to do so, as you can

see in Figure 9-5.

Chapter 9 Managing AWS Logins

116

�Creating Organizations
You can create an AWS account, which has a root login (as do all AWS

accounts). You can then add individuals to it. You can also create an

organization, which consists of several AWS accounts. Do this from the

account menu at the top right. It will have your account name. You have

seen the account name (champlainarts) at the top right of Figure 9-5 and

again in Figure 9-6.

Figure 9-5.  Configure settings for the account with the root login

Chapter 9 Managing AWS Logins

117

�Working with IAM
Because it is a best practice to not use the root user login, you may wonder

how you use AWS. The answer is to use the built-in Identity and Access

Management (IAM) tools. When you are fully logged in, you’ll see a

Services menu at the top left of the view, as shown in Figure 9-7.

Figure 9-6.  Create an organization from your account menu

Chapter 9 Managing AWS Logins

118

Figure 9-7.  Browse Services

Note E xplore the various links in Services to find the options and
your history. The items you will see include recently viewed items,
so you will see different sequences of menus and their items. There
is no single sequence of do-this/do-that that works beyond the single
basic login routine. This chapter provides an overview, but experiment
with the menus as you see fit.

Chapter 9 Managing AWS Logins

119

If you select IAM, you’ll be able to check its settings, as you can see in

Figure 9-8.

Figure 9-8.  Configure IAM

Chapter 9 Managing AWS Logins

120

Figure 9-9.  Choose Mobile Hub

To start working with code, choose the Mobile Hub service from

Services (or History, if you’ve already checked it out, as you can see in

Figure 9-9).

Chapter 9 Managing AWS Logins

121

�Integrating AWS with Xcode
AWS Mobile Hub is where you work with your code. If you have a project,

you can add AWS to it, as you can see in Figure 9-10.

Figure 9-10.  AWS Mobile Hub

Chapter 9 Managing AWS Logins

122

�Summary
This chapter has provided a summary of the parts of AWS that matter to

you as you start to integrate it into your app. It requires setup (such as in

setting up an AWS account), and it requires that you have a project ready

to have AWS added to it. You should now see how you can start to manage

such a project in the Mobile Hub. The next chapter will show you how to

set up a project for AWS. Once you have done that, you’re ready to build

out your app.

Figure 9-11.  AWS Starter Kits and Tutorials

Instead of creating your own Xcode project, you can start from an AWS

Starter Kit, as shown in Figure 9-11.

Chapter 9 Managing AWS Logins

123© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_10

CHAPTER 10

Beginning an
AWS Project
One of the most common (yet simplest) ways of using Amazon Web Services

(AWS) is for data storage. If you have created an AWS account as described

in the previous chapter, you can follow the guidelines and tutorials found in

this chapter to build an iOS app that is integrated with AWS.

To start with, you’ll see how to set up the iOS app and the iOS project that

will be integrated with AWS. After that, you’ll see the details of what to do.

You can jump back and forth between the iOS app and the AWS project.

�Setting Up the iOS App
Because this book builds on your knowledge of iOS and assumes that AWS

is fairly new to you, the focus will be on the iOS project. You can build a

project for iOS that uses AWS to easily get started; that will create a new iOS

app for you.

That step is shown in Figure 10-1, so that’s a good way to get started

quickly. Once you have built your first iOS/AWS projects, you can easily

start from the AWS side and then add the iOS component.

124

�Setting Up the iOS Project
Begin by signing in to the Console with the top right button on

aws.amazon.com or with the “AWS Management Console” choice from

the My Account drop-down (next to the Sign in to the Console button).

Both are shown in Figure 10-1.

Figure 10-1.  Begin to manage your AWS account

Chapter 10 Beginning an AWS Project

125

As always, you’ll need to sign in to your AWS account, as you can see in

Figure 10-2.

Figure 10-2.  Sign in to your AWS account

Remember that although you can sign in to the account as the root

user, you should use one of the other accounts you have created, as

covered in Chapter 9. If you are given the option to sign in to the root

account and you have specific accounts, sign in to a different account, as

shown in Figure 10-2.

Chapter 10 Beginning an AWS Project

126

Once logged in, you can sign in to Mobile Hub, which is where you

want to be. It may be readily available if it is a recent service, as you can see

at the top of Figure 10-3. Otherwise, look for it under Mobile Services at the

top of the third column of services in the main body of the service choices.

Note R emember that the available services will change from time
to time as AWS evolves. You also can use the recents black bar at the
top of the view, as shown in Figure 10-4.

Figure 10-3.  Choose Mobile Hub from Mobile Services or Recently
visited services

Chapter 10 Beginning an AWS Project

127

If you choose Mobile Hub, you’ll see your projects listed (if you have

created any), as shown in Figure 10-4. You can also work with a starter kit

or tutorial.

�Exploring the Documentation
The concept of cloud computing has been around for a long time. It was

first referred to in the heyday of “thin client” computing, which emerged in

1993 and which some people considered to be an evolution of the “dumb”

terminals that had been used in distributed mainframe computer systems

since the 1950s.

Figure 10-4.  See your projects in AWS Mobile Hub

Chapter 10 Beginning an AWS Project

128

Although the basic architecture isn’t new, its integration with web and

other modern technologies has provided a platform that powers much of

the data-sharing that apps do today. AWS fits into this model very nicely,

but there are specifics of the implementation that you need to understand

in order to integrate AWS with your own apps.

The balance of this chapter helps you move forward to implement that

integration. The first step to consider in your implementation is where

you can find help and information. The developer documentation for

AWS is available through aws.amazon.com. You can find a link to the PDF

version of the documentation at the top right of many of the AWS pages.

The documentation and its links may change from time to time, but if you

choose Mobile Hub from the services shown in Figure 10-3, you can see

your projects, as shown in Figure 10-4.

Note that when you see your projects, you will also see links to Support,

as you can see at the top right of Figure 10-4. Selecting “Documentation”

will take you to the documentation, as shown in Figure 10-5.

Chapter 10 Beginning an AWS Project

129

At the top right is a button to let you download the documentation

as a PDF file. As of this writing, the PDF document is over 400 pages

long, so many developers choose to use the various online versions. The

documentation is organized into four basic sections:

•	 Get Started (shown in Figure 10-5) is just that—the

steps you need to take to get started. They are

summarized in this section.

•	 Tutorials let you build apps or parts of apps to explore

AWS. As you can see in Figure 10-5, they are available

for iOS and Android.

Figure 10-5.  You can download the PDF documentation

Chapter 10 Beginning an AWS Project

130

•	 How To documents let you learn how to accomplish

specific tasks.

•	 Reference is the source for information about what’s

behind the tutorials and how-to documents.

All of these may change over time. If you are just getting started with

AWS, you may have the most success if you follow one of the tutorials.

If you jump into the middle of a tutorial in the hope of implementing just

one specific feature, you may be less than successful until you are more

comfortable with AWS.

�Creating a Project
From the Get Started page shown in Figure 10-5, you can start to build a

simple app that integrates AWS and iOS. These are the steps to take.

Note I n the AWS documentation, you will find this startup
information in several places, including How To, Get Started, Tutorials,
and Reference. Until you are comfortable with the entire process as
described in this chapter, you may want to try working with one of
the sequences, as there are subtle differences in the sequences that
can make it confusing to switch from one to the other.

To begin with, choose the iOS platform as shown in Figure 10-5. If you

have not created a project (as shown in Figure 10-4), do so now and choose

its platform.

Chapter 10 Beginning an AWS Project

131

�Setting Up the Back End
The next step is to set up your back end, which manages the integration

between iOS and AWS. If you clicked Add on the screen shown in

Figure 10-5 you should be ready to set up your back end, as seen in

Figure 10-6.

Set up your back end by downloading Cloud Config as shown in

Figure 10-6 to configure the cloud connection. Then, click Next.

Figure 10-7 shows a basic iOS Xcode app after the back end has been

downloaded—either one you have created or a starter kit or tutorial.

(The files should be in your Downloads folder.) The files in the project

should be familiar to you. (By default, starter kits may be named

something like aws-mobile-ios-notes-tutorial-master.)

Figure 10-6.  Set up your back end

Chapter 10 Beginning an AWS Project

132

Figure 10-7.  Download the configuration file

Look in your Downloads location for a downloaded file called

awsconfiguration.json. From the Xcode project navigator, choose your

app and then click Add File, as you can see in Figure 10-8, to add the

downloaded file.

Chapter 10 Beginning an AWS Project

133

Your project should now look like Figure 10-9, with the

awsconfiguration.json file added. (It is easier to use the Xcode Add File

command than the Finder to make sure your project files are in the right

place.)

Figure 10-8.  Add the downloaded back end to your project

Chapter 10 Beginning an AWS Project

134

Figure 10-9.  Use Xcode to add the configuration file to your project

Chapter 10 Beginning an AWS Project

135

�Add the Pods
You now need to install CocoaPods if you haven’t already done so for

this or another project. To do so, use Terminal and input the following

command:

sudo gem install cocoapods

You don’t need to use a specific directory for this command.

Change the directory for Terminal to your app’s folder. The simplest

way to do this is to launch Terminal, type cd, and drag the aws-mobile-

ios-notes-tutorial-master folder to complete the cd (change directory)

command.

With the directory changed, type the following command to Terminal:

pod init

Your podfile will be created with the appropriate pods. Whenever you

modify your podfile, install it with the following Terminal command:

pod install -- repo-update

This will move the project into an Xcode workspace as described in

Chapter 3.

While you are in Xcode, check the General settings for your app, as

shown in Figure 10-10. You will probably see errors related to the signing

and provisioning profile settings. Change the bundle identifier and team to

your own settings.

Chapter 10 Beginning an AWS Project

136

You should be able to build and run your app now. As you can see

in Figure 10-11, the pods will download necessary components. The

download and build may take a few minutes, so be patient.

Figure 10-10.  Change the settings for your app

Chapter 10 Beginning an AWS Project

137

Figure 10-11.  Install CocoaPods for AWS

Note  While the app is building, you may notice some error
messages. Wait until the build is finished because they may
disappear as further components are downloaded.

�Summary
This chapter has showed you how to begin putting your AWS/iOS app

together. In the next chapter, you’ll start to actually use the integrated app.

Chapter 10 Beginning an AWS Project

Using RxSwift

PART V

141© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_11

CHAPTER 11

Getting Into Code
There are two types of developers in the world: those who want to get into

the code first and then learn how it’s working, and those who want to learn

how things will work before they get into the code. Just to make things

interesting, an individual developer may work in one mode or the other,

switching back and forth for a sense of variety or depending on what issues

need attention.

If you feel like starting with the background information, start with

Chapter 12, “Thinking Reactively,” and then come back to this chapter.

Alternatively, keep reading this chapter to get yourself started with some

very basic RxSwift code and then follow on with Chapter 12.

In this chapter, you’ll find the basics of working with RxSwift:

•	 Getting Started will show you what you need on the

hardware and software side of things.

•	 Installing RxSwift from GitHub will walk you through

the download and installation process.

•	 Using the RxSwift Playground will show you how to

write your first RxSwift code in Swift Playgrounds.

142

Tip  If you haven’t used Swift Playgrounds before, you’ll find enough
of the basics to use it in this book. However, you’ll find out much
more in Learn Computer Science with Swift: Computation Concepts,
Programming Paradigms, Data Management, and Modern Component
Architectures with Swift and Playgrounds and in Exploring Swift
Playgrounds: The Fastest and Most Effective Way to Learn to Code
and to Teach Others to Use Your Code. Both are by Jesse Feiler and
are published by Apress.

�Getting Started
The minimal getting-started things to know are:

•	 RxSwift itself is an open source implementation of

the reactive programming library for Swift. You can

download it freely from GitHub (the steps to do so are

described in this chapter).

•	 Reactive programming lets you handle asynchronous

processing easily.

•	 To implement the paradigm, reactive programming

uses basic terms:

•	 Observables are items that can be observed.

When they change, those changes are visible to

components that subscribe to the observable in

question.

•	 Observers observe observables.

These terms and concepts will be explored further in Chapter 12 and

subsequent chapters of this book.

Chapter 11 Getting Into Code

143

One other point to know from the start is that the reactive

programming paradigm is often referred to as Rx.

With those basics, you now know enough to get started with RxSwift.

You will need the following:

•	 A Mac running Xcode 9 or later. Xcode 9 is the

integrated development environment (IDE) for

developing apps on iOS and macOS. It also is the tool

that Apple engineers use to build iOS and macOS

themselves. Xcode is a free download from the Mac App

Store. Check the system requirements for Xcode: those

are the requirements you’ll need to work with RxSwift.

•	 An Internet connection so that you can log on to

GitHub. If you don’t have one, you can do the download

from GitHub onto a portable computer or drive and

then copy the downloaded files onto your Mac.

�Installing RxSwift from GitHub
GitHub is the default repository for most code today, including many

collaborative and open source projects. You can register for a GitHub

account that is private (many companies and individuals do this), but a

private GitHub account has most of the same features as a public one.

Tip  Projects on GitHub are in source code repositories (often
referred to as repos).

With Xcode 9, GitHub and source control in general are integrated

more tightly with Xcode than ever before. As a result, if you have download

instructions for RxSwift that pre-date Xcode 9, you may be directed to use

a more complicated process than is necessary. This book uses the Xcode

9 integration and shows you a very simple way of integrating RxSwift with

your Xcode projects.

Chapter 11 Getting Into Code

144

Log on to github.com and search for RxSwift using the search field at

the top of the window, shown in Figure 11-1. Remember that GitHub is a

dynamically updated archive, so the files you download may differ over

time. Periodically, the entire GitHub site is updated, but the functionality

remains the same.

Figure 11-1.  Download RxSwift from GitHub

If you have Xcode installed, the Clone or download button at the

right will give you the options to download and open it either on your

desktop or as a ZIP file. New in Xcode 9 is the option to open it in Xcode

(but to use this option, you must enter your GitHub account credentials in

Xcode ➤ Preferences ➤ Accounts). Choose the Xcode option. (If you don’t

see it, make sure that Xcode is installed and running and that you have

entered your credentials in Xcode preferences.)

Chapter 11 Getting Into Code

145

When you choose to open the code repository in Xcode, you’ll be asked

for permission, as you can see in Figure 11-2.

Figure 11-2.  Agree to let Xcode open the repository

The RxSwift playground is part of the download. You start with it

because the first time you run it, your downloaded files will be built as you

follow the instructions in the following section of this book. Among the

files that you have downloaded will be Rx.xcworkspace. A workspace can

contain multiple Xcode projects, which is the case with this one. Make sure

you open Rx.xcworkspace (the workspace) and not the project contained

within it (Rx.xcodeproj).

Chapter 11 Getting Into Code

146

RxSwift is covered by the MIT license. The MIT icon just above the

download buttons shows you that license in detail, as you can see in

Figure 11-3. As with all such licenses, review it to see what the terms are,

but know that you have a great deal of freedom to use RxSwift.

�Using the RxSwift Playground
With the download completed, show the project navigator, as you can see

in Figure 11-4. You may have to open the Rx folder and the Rx.playground

folder within it. Select Table_of_Contents, as shown in Figure 11-4.

Figure 11-3.  Review the MIT license

Chapter 11 Getting Into Code

147

Select RxSwift-macOS from the Rx.playground folder and build it as

described in Figure 11-4. You’re ready to go on. (Note that step 2 lets you

build the playground using the RxSwift-macOS scheme. There is more

information on this in the following pages.)

�Looking at a Formatted Playground
Playgrounds support markup code, and now is a good time to quickly

explore that. By default, you will see the markup in the file (as shown in

Figures 11-5 and 11-6).

Figure 11-4.  Use Rx.Playground

Chapter 11 Getting Into Code

148

Figure 11-5.  By default, you see the playground markup

Figure 11-6.  Switch between raw code and markup

Chapter 11 Getting Into Code

149

If you want to look at the raw code, you can use Editor ➤ Show Raw

Markup, as illustrated in Figure 11-5. After you do that, you’ll see the raw

code, which is shown in Figure 11-6. Compare the two images to see the

difference.

Don’t worry about this. When you’re building your own playgrounds

it’s useful to use markup, but you don’t have to do so. If you do want to

explore markup for playgrounds, there is more information in the Markup

Formatting Reference at https://developer.apple.com/library/

content/documentation/Xcode/Reference/xcode_markup_formatting_

ref/index.html#//apple_ref/doc/uid/TP40016497. Note that the

document covers markup for Quick Help as well as for Swift Playgrounds,

so some formatting is only available to one or the other.

Follow the instructions shown in Figure 11-4. Open the Rx project as

shown in Figure 11-7.

Chapter 11 Getting Into Code

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html#//apple_ref/doc/uid/TP40016497
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html#//apple_ref/doc/uid/TP40016497
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html#//apple_ref/doc/uid/TP40016497

150

Figure 11-7.  Open the Rx targets

Chapter 11 Getting Into Code

151

The playground lets you experiment with live code. Don’t worry for

now about what the syntax does; just add a print statement, as shown in

Figure 11-9. As you add new lines (even blank lines) to the playground,

they will be numbered automatically.

Use the scheme menu at the top of the workspace window to select an

RxSwift-mac OS destination, as you can see in Figure 11-8.

Figure 11-8.  Select the scheme

Chapter 11 Getting Into Code

152

Figure 11-9.  Add code to the Introduction playground

Tip  You can add code to a playground whether or not markup is shown.

At the bottom of the playground window you can see the debug area,

which displays output from the playground. (If you don’t see it, choose

View ➤ Debug Area ➤ Show Debug Area.) As you type, the playground

will track your key strokes to identify errors. In Figure 11-10 you can see an

error message that may appear as you are typing. Error messages like this

will appear and disappear as you type and the playground analyzes your

code (and possible errors).

Chapter 11 Getting Into Code

153

Figure 11-10.  The playground watches for errors

You can experiment with additional code, as shown in Figure 11-11.

Figure 11-11.  The playground can catch errors quickly

Chapter 11 Getting Into Code

154

If you remove any code you have added, you should be back to the

original playground, as shown in Figure 11-13.

Figure 11-12.  Explore the playground with your own code

Figure 11-13.  Revert to the original playground

Chapter 11 Getting Into Code

155

�Summary
You should now have RxSwift installed in Xcode. You can reference it from

a playground or from regular Swift code in your app. When you want to

add RxSwift to another playground or Xcode project, just follow the same

steps you have seen here.

You’ll see this in action later in the book, but first it’s time to look at

what’s happening behind the scenes in RxSwift.

Chapter 11 Getting Into Code

157© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_12

CHAPTER 12

Thinking Reactively
This chapter will help you put the concept of reactive programming in

context with other programming styles, patterns, and paradigms. In the

simplest non-jargon description, reactive programming is programming

that makes it possible to easily handle modern software projects and apps

that are likely to involve multiple users working at the same time with the

same data.

Half a century ago it was possible to think of programming in the style

of Hello World (the first program many people learned in classes). In

Hello World, you type in a few lines of code (one to three, depending on

formatting), and the program displays or prints the text, “Hello World.”

More sophisticated programs in this vein allow users to interact with a

Hello World program by typing in a word or phrase that the program will

work with. Thus, the transcript of a sophisticated version of Hello World

might look like this:

Good Morning. What is your name?

Jesse

Good Morning, Jesse

The sophistication of the program lies not only in the fact that the user

can interact with it, but also in the fact that the program can determine

whether to greet the user with Good Morning or Good Afternoon.

158

Today, we are looking at much more complex systems that involve

multiple users who have expectations of real-time updates so that they can

see and participate in the activities of friends and colleagues. The tools we

used in the days when we thought that Good Morning (instead of Good

Afternoon) was great are stressed when we need to deal with these more

complex systems.

This chapter will give you an overview of the tools that we need to use

today (particularly those involved in RxSwift) as well as the terminology

that is used to describe the tools and the products we are creating.

�What Are We Developing?
In the earliest days of computers, the instructions to the computers were

called programs. Groups of programs were often combined into systems in

which the individual programs sometimes interacted and, in other cases,

where they addressed issues related to the data involved in the programs.

The earliest programs were run by computer operators and schedulers.

During the 1970s, when time-sharing and networks became available, a

single large mainframe computer could be used for multiple programs

running more or less simultaneously. In this environment, the running of

programs devolved to users who started to use application programs that

were designed to be run without technical assistance from schedulers and

programmers. (Examples of early application programs were spreadsheets

like VisiCalc and the first word-processing programs.)

Application programs designed for use by users rather than by

computer specialists were gradually referred to as applications to

distinguish them from the programs that run the computers themselves,

which were often called system programs.

With the advent of smartphones, application programs got a further

name simplification: apps. For a brief period of time, some people attempted

to distinguish between application programs (for personal computers) and

apps (for mobile devices), but that distinction never caught on (fortunately!).

Chapter 12 Thinking Reactively

159

Tip T here’s more information on the earliest programs in History
of Programming Languages, edited by Richard L. Wexelblat,
published by Academic Press (ISBN 978-0127450407), which covers
languages up to 1980 (that is, before C). A second volume, History of
Programming Languages II, edited by Thomas J. Bergin and
Richard G. Gibson, is published by Addison-Wesley Professional
(ISBN 978-0201895025). It covers languages post-1980—languages
including C, Smalltalk, ALGOL, and C++.

Today, we are seeing the functionality of apps being packaged in new

ways, such as extensions in Cocoa and Cocoa Touch. The technologies and

user interfaces are evolving rapidly, but in this book, the end product of

development is generally referred to as an app or program even though it

may be an extension.

The process of creating an app or program is referred to as coding (the

original term from the early days of computers that has come back into

fashion) or programming. Developing is the term often used to describe

the production of an app or program together with its documentation,

promotional or marketing materials, and training and sustainability tools.

�Approaches to Programming
There are several overlapping ways of describing and categorizing

development today. This section will provide you with a quick overview

of some of the key concepts and terminology that are relevant to RxSwift.

There are many books and other resources available that you can use for

further investigation. What is important now is for you to know what the

concepts are that you need to use and understand.

Chapter 12 Thinking Reactively

160

Tip  Wikipedia is a great resource for more information on these
topics because its community of updaters has a lot of members of
the technology world who make it their business to keep the articles
current.

The reasons for such a variety of frequently overlapping terminologies

and concepts are beyond the scope of this book. Suffice it to say that a

combination of fast-moving development projects along with the need to

provide detailed technical descriptions and marketing promotions of tools

as well as end products have helped to provide what sometimes seems like

an endless smorgasbord of jargon.

The terms and concepts can be divided into three groups, each of

which is described more fully later in this chapter:

•	 Programming paradigms describe programming

languages. When a user runs a program or app, it is

unlikely that he or she will know what programming

language it is written with, much less which

paradigm(s) in that language are used. A specific

language may use several programming paradigms.

•	 Design patterns are ways in which recurring tasks

needed in object-oriented programming can be

implemented. They may be visible to the user in

the performance of the app, but they also may be

strictly internal. Because they are designed to be

used in object-oriented programming, they can be

implemented in any language that supports the object-

oriented paradigm. A given app or program may use

multiple design patterns (or none at all).

Chapter 12 Thinking Reactively

161

•	 Processing configurations are the ways in which

computers and their major components, such as

processors and memory, are organized and connected.

Although processing configurations are determined by

the hardware on which an app runs, operating systems

often provide features that minimize the differences

so that a single configuration may at different times

behave in different ways. (Look at the Grand Central

Dispatch documentation in Cocoa and Cocoa Touch

for an example of how this can work.)

�Programming Paradigms
The main programming paradigms that matter to you if you are going to

use RxSwift (and many other modern tools) are three that describe the

program’s structure and another three that describe how a program or app

operates. (These are just the most common programming paradigms that

are important for you in the RxSwift context.)

�Structural Paradigms

The issue of programming paradigms began to be discussed in the late

1950s and 1960s when most of today’s most commonly used languages

were developed. It was necessary to describe them, and so these

paradigms were identified and named. The main structural paradigms

were reactions to the spaghetti-code programs that were frequently

written. These programs consisted of line after line of code in one

continuous program. Control could be transferred from one line to another

because most lines were identified with a name or number. The term

spaghetti-code was used to refer to the jumble of lines of code that were

executed in complex and often unpredictable sequences.

Chapter 12 Thinking Reactively

162

To get rid of the spaghetti-code issues, these three concepts evolved:

•	 Structured programming uses subprograms (logical

collections of statements) to provide a structure

for the program. Depending on the language,

these subprograms are called methods, functions,

or procedures. When control is transferred, it is

transferred from one subprogram to another rather

than to a specific line of code.

•	 Procedural programming uses subprograms. They

often take input data in the form of parameters and may

return result values. At run time, the parameters of a

subprogram are replaced by actual values—arguments.

•	 Object-oriented (OOP) programming lets you describe

objects that can encapsulate both data and functionality

(or both or neither). Objects can contain subprograms

such as functions or methods. Often, objects correspond to

real-world concepts such as a customer, a place, or an idea.

�Operational Paradigms

These paradigms describe how the commands are written.

•	 Imperative programs consist of instructions to the

computer to carry out specific tasks in a specific order.

Conditional statements such as if let you modify that

order, but the essence of imperative programs is the

imperative instructions. (This term is used in the same

way that it is used in language.) Tools such as Reactive

Extensions (ReactiveX) help imperative languages work

with sequences of data that may be either synchronous

or asynchronous, thus somewhat bridging the

distinctions between the two techniques.

Chapter 12 Thinking Reactively

163

•	 Declarative programs declare what the results of

operations should be. Whereas imperative programs

specify what is done as well as how it should be done,

declarative program paradigms specify only what is

done: the program or operating system is tasked with

doing it in the most appropriate manner. Declarative

programming languages include instructions designed

to make it clear what these end results should be.

•	 Functional programs are a subset of declarative

programs. They require that the program components

be the sole determinants of the results of an operation

such as a procedure or function. In other words, global

variables and environmental settings are not used

within the functions of a functional programming

paradigm.

You can find a comparison of common programming paradigms

on Wikipedia: https://en.wikipedia.org/wiki/Comparison_of_

programming_paradigms.

�Design Patterns
Design patterns are patterns or routines that can be used in similar

situations. You can find them in many places, including a pattern in a

house for how doors and locks are configured as well as in software. When

used in the context that includes RxSwift, the term refers to a book that was

published in 1994 and refers to design patterns in object-oriented software.

Chapter 12 Thinking Reactively

https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms

164

Tip  Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides with a foreword by Grady Booch is published by Addison-
Wesley Professional (ISBN-13 978-0201633610). The authors are
often referred to as the gang of four.

The design patterns are divided into three categories:

•	 Creational design patterns are used to create objects.

•	 Structural design patterns are used for purposes such

as connecting two objects.

•	 Behavioral design patterns are used to manage

behavior and processing. ReactiveX uses the iterator

and observer design patterns:

•	 Iterator. This pattern lets you traverse some

structure to get the next element (the pattern lets

you specify what the sequence is).

•	 Observer. With this pattern, you define a one-

to-many relationship between an observer (one)

and observed elements (many or none). It is a key

feature that the observed element(s) doesn’t know

anything about the observer. An observed element

publishes a change, and any observers receive a

notification, but the observed element doesn’t need

to directly notify any observers.

Chapter 12 Thinking Reactively

165

�Processing Configurations
The third collection of terms and concepts, processing configurations, is

one that many developers skip over. What happens inside the processors

is something that we take for granted. Simple apps such as Hello World are

no longer good models for the code that we need to write, and the idea of

a computer as a single device is also outdated. Almost every smartphone

today runs with multiple cores—that is, multiple processors. Operating

systems designed to run on such multi-core devices can perform several

tasks at the same time.

What follows is a very high-level conceptual overview of

multiprocessing. The operating systems allow a task to run on whatever

core is available, and it can run as if there’s only one core. To work around

slow devices (printers, networks, and so forth), a task can be quickly

stopped and packaged with its code and resources; that stopped task can

then be put aside while something else executes.

The ability to pick up a task and move it aside is generalized beyond

just waiting for a slow device. If a task can run independently of other

tasks, it can run on one core while some other task runs on the first core.

With such use of multiple cores, the operating system and, to a lesser

extent, the task software must be able to be split into independent tasks

that can be run on separate cores. To get the most out of the available

cores, it is important to keep track of what memory is required for each

task as well as to provide a mechanism for synchronizing the tasks at

points where they can (or cannot) share memory.

In thinking about this in terms of ReactiveX, it’s necessary to

distinguish between tasks or parts of tasks that can run independently

(asynchronously) and those that must run in coordination (synchronously).

The goal of system software designers is to make multiprocessing

possible with as little intervention by the app developer as possible.

It should just happen . . . in an ideal world. With the introduction of Grand

Central Dispatch (GCD) in OS X 10.6 (2009) and iOS 4 (2010), existing

Chapter 12 Thinking Reactively

166

concurrency code in the operating systems was rewritten to make the use

of multi-core devices possible with little difficulty to developers. What

is key to the successful use of GCD is the use of queues of tasks. You add

tasks to queues, and GCD takes over.

It is important to remember that the efficient use of multiple cores

relies on developers’ using queues properly. Fortunately, ReactiveX

incorporates most of the core manipulation into its RxSwift objects.

For now, just remember that asynchronous processing is built into

RxSwift.

�Introducing Reactive Programming
There’s a commonly repeated description of reactive programming on

Wikipedia: “reactive programming is an asynchronous programming

paradigm concerned with data streams and the propagation of change.”

That is true, but it requires a substantial understanding of the background

terms, such as asynchronous programming paradigm, data stream,

and propagation of change. You have an overview of asynchronous

programming in the previous section. For now, consider a data stream

to be just that—a flow of data that can be on its way to a printer,

communication device, or other part of the app. Propagation of change

refers to the ability of an app to respond to a change in its environment and

pass that change on appropriately. (That’s exactly the meaning in English

of the words—it’s not specifically a technical concept.)

�Focusing on ReactiveX
The basic description of ReactiveX is concise in its documentation:

“The Observer pattern done right.” That, too, requires some background

knowledge, but the focus is just on one thing rather than the three in

the previous description: the observer pattern. The fuller description is

Chapter 12 Thinking Reactively

167

“ReactiveX is a combination of the best ideas from the Observer pattern,

the Iterator pattern, and functional programming.” The website is at

http://reactivex.io. A further clarification is, “ReactiveX is more than

an API; it’s an idea and a breakthrough in programming.”

Note  Observer and iterator patterns as well as functional
programming are discussed in the previous section.

The heart of RxSwift (and many other reactive programming projects

such as RxJava, RxJS, Rx.Net, RxScala, and RxClojure) is the ReactiveX

library. ReactiveX itself is a collection of open source projects. The

ReactiveX project is also open source, licensed under the Creative

Commons Attribution license. Code samples are licensed under the BSD

license.

�Summary
This chapter has provided an overview of the technologies on which

RxSwift relies. Nothing is new here or specific to RxSwift. In the chapters

that follow, you will see code that implements these design patterns in

RxSwift, and you will find real-life examples of their use.

At this point, you’ve seen how to download RxSwift from GitHub

and how to build it in Xcode. It’s time to look at the basics of the code you

will use.

Chapter 12 Thinking Reactively

http://reactivex.io

169© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_13

CHAPTER 13

Exploring the
Basic RxCode
Having explored the basics of RxSwift in a playground (Chapter 11) and

learned the underpinnings of the technology (Chapter 12), it’s time to look

at RxSwift at work in an app. This chapter will show you how to take code

that you can download from GitHub and turn it into an app.

RxSwift implements reactive programming, and that’s what the app

in this chapter will demonstrate. It starts very basically: The app reacts to

events that the user generates. That type of app can be created easily using

notifications within the app because the app generates both the event/

stimulus and the reaction/response.

This very simple structure is useful for exploring the structure and

syntax of RxSwift. Once you have the basics implemented, you can move

onto the kind of reaction that most people think of when they think of

reactive programming—reaction to external events from outside the app.

This chapter will show you how to put one of the sample apps built in

Xcode into the downloaded RxSwift Xcode files. Having done that, you’ll

have the two components you need: RxSwift and Xcode working together.

Note  You need Xcode installed to continue.

170

�Overview of ReactiveX/RxSwift–Xcode
Integration
There are several ways to integrate Xcode and ReactiveX/RxSwift. Which

method you use depends on your experience and preferences. The type

of app that you’re building is less important than your preferences. The

starting point is the GitHub repository for ReactiveX/RxSwift. Chapter 11

showed you how to download it and use the Swift playground that’s part

of it. You need part of that repo to integrate with your own app. One of

the benefits of using GitHub is that it changes as people use and modify

the archives. As a result, the GitHub version you see may differ from the

version described in this chapter.

There are a number of techniques available in the GitHub repo for

integration with your own app. As of this writing (in 2018), the integration

methods are the following:

•	 CocoaPods is available at http://cocoapods.org/.

It is designed for managing the distribution and

dependencies of source code for Xcode projects.

•	 Carthage, available at https://github.com/Carthage/

Carthage/releases, is more closely integrated with

Xcode and Swift than CocoaPods, and many people

find it somewhat simpler to use.

•	 Swift Package Manager (SPM) is part of the Swift

project and is available at https://swift.org/

package-manager/. Its integration with Swift is more

thorough than that of CocoaPods or Carthage, but it is

not yet as widely used as CocoaPods.

In this chapter, the process of integrating the files from GitHub will

be described based simply on the archive files and without the use of

CocoaPods, Carthage, or SPM. This can be a simpler path for beginners.

Chapter 13 Exploring the Basic RxCode

http://cocoapods.org
https://github.com/Carthage/Carthage/releases
https://github.com/Carthage/Carthage/releases
https://swift.org/package-manager
https://swift.org/package-manager

171

�Start from the RxSwift Download
Begin by downloading the current version of RxSwift from GitHub, as

described in Chapter 1. The critical step is the download from GitHub

into Xcode. Figure 13-1 reminds you of this step. It is easiest to download

it into a new folder. Later on, you can rearrange files, but to make certain

that what you have downloaded will build and run on your Mac and your

version of Xcode, keep the installation simple.

Figure 13-1.  Download the GitHub RxSwift code directly into Xcode

Chapter 13 Exploring the Basic RxCode

172

The files you have downloaded will look somewhat like the files you

see in Figure 13-2. Remember that this archive is growing and changing

all the time, but the basic structure is constant. Make certain that you

have Rs.xcodeproj and Rx.xcworkspace. If you don’t, you have the

wrong archive.

Figure 13-2.  Download the RxSwift repository

Chapter 13 Exploring the Basic RxCode

173

�Explore the Workspace and Playground
Now, open the workspace (Rx.xcworkspace) with Xcode, as shown

in Figure 13-3. You may have to do some rearranging and opening or

closing of groups. What you normally see is shown in Figure 13-3: It’s the

Rx.playground. Look particularly at the project navigator at the left side

of the window.

Figure 13-3.  Open the Rx.workspace and then Rx.playground

Chapter 13 Exploring the Basic RxCode

174

Close the playground groups so that the first item you see in

Package.swift as you see in Figure 13-4.

Figure 13-4.  Close the playground

�Adding a Project to the RxSwift Download
Now, add a project to the workspace. To keep things organized, it’s easiest

at this point to click in the blank area at the bottom of the project navigator

so that your new project will go there. (You can rearrange it later.)

Create the project by choosing New ➤ Project to select your template,

as shown in Figure 13-5. For this basic example, the Single View App in the

iOS tab is perfect.

Chapter 13 Exploring the Basic RxCode

175

Figure 13-5.  Choose a new project template

As is always the case, when you click Next you need to name your

project and locate it on disk. For simplicity, place it in the same folder that

you used to download the RxSwift repository. Name it Basic to match the

screenshots in this book. The project navigator should now look like it does

in Figure 13-6.

Do not use Core Data, Unit Tests, or UI Tests when you create the

project (there are checkboxes for them at the bottom of the options sheet,

as shown in Figure 13-6).

Chapter 13 Exploring the Basic RxCode

176

Figure 13-6.  Set the name and options for your project

When prompted for a location to store the new project, place it in

the Rx workspace and in whatever group you want, as you can see in

Figure 13-7.

Chapter 13 Exploring the Basic RxCode

177

Figure 13-7.  Place the new project into the Rx workspace and
whatever group you want

Drag the new project (Basic, in this example) to the top—or bottom—

of the project navigator so it’s easy to spot.

Tip I f you want to create a new empty group folder for it before you
add it, you’ll save yourself a step, but for many people that seems to
be out of sequence.

Figure 13-8 shows the project now.

Chapter 13 Exploring the Basic RxCode

178

Figure 13-8.  Your new project is now part of the workspace

If you look at the files on disk, you’ll see that your project is in the right

place, as you can see in Figure 13-9.

Chapter 13 Exploring the Basic RxCode

179

Figure 13-9.  Check that your new project files are in the right place

Note  Make certain that the files are in the right place. If they’re not
in the folder for your project, things will work perfectly well as long
as you don’t move the project. When you move the project elsewhere
(such as to a MacBook) the project may break. You can move the new
project files separately as long as you remember to do so, but it’s
easier to keep the whole project together.

Chapter 13 Exploring the Basic RxCode

180

�Building Your RxSwift-enhanced Project
Before moving on, make certain that your project builds and runs. (This is

always a good idea when creating a project from a template.) As you can see

in Figure 13-8, at the top of the window, you can build and run the project for

any installed simulator or for a device. When you run it on a simulator, you

should see the result shown in Figure 13-10. (Yes, Figure 13-10 is what you

should see: no error messages and nothing else. In the next section, you’ll

see how to add a label to confirm that your app is truly running.)

Figure 13-10.  Your project should run now

Chapter 13 Exploring the Basic RxCode

181

�Modify the Project
The purpose of this section is to make certain that you can modify, build,

and run the RxSwift-enhanced project you have created. Locate main.

storyboard in the project (it’s at the top of Figure 13-8). Add a label to the

window just as you would do with any project in Interface Builder. The

storyboard with the label is shown in Figure 13-11.

Figure 13-11.  Add a label to the storyboard

Run the project again, and you should see your label in the interface, as

shown in Figure 13-12.

Chapter 13 Exploring the Basic RxCode

182

Figure 13-12.  The label is shown in the running project

�Summary
At this point, you should be able to download RxSwift from GitHub and

add your own project to it. As with most projects you will create, you will

probably start from one of the built-in Xcode templates, and that is what

has been done.

Now, it’s time to move on to a more complex project—one that you can

use as a starting point for many of your own RxSwift projects.

Chapter 13 Exploring the Basic RxCode

183© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_14

CHAPTER 14

Build a
ReactiveX/RxSwift App
In the last three chapters, you have seen the basics of RxSwift and

reactive programming as well as how to create a very basic app using the

ReactiveX/RxSwift repository from GitHub. This chapter will move further

so that you can build a small app that uses basic reactive features.

You will build a simple app that lets you choose an item from a list, as

you can see in Figure 14-1. This is a typical beginning ReactiveX app that

you will find in many variations across the Internet. What you are looking

at is a UISearchBar and a UITableView. The table view is seeded with six

items in the app. You can type into the search bar to select one or more of

the items. The app is watching you; if you type F, you’ll see the three forts.

If you type O, you’ll see Oval, and if you type G, you won’t see anything,

because none of the names starts with G. The app will be called DemoList.

You can implement this without RxSwift by adding a delegate to the

search bar so that you can keep track of what is being typed, but using

RxSwift can be a more straightforward way of implementing the process.

Furthermore, if you decide to move on to a more complex app in which the

table view is automatically populated with choices that depend on external

conditions, you’ll be ready to implement those features.

184

Note  The items in the list represent places in Plattsburgh, New York.

An important point to note is that Figure 14-1 shows DemoList running

on an actual device (an iPod Touch, as you can see from the status bar).

When you run an app on the iOS simulator, the status bar will show a

generic carrier, as you can see in Figure 14-2.

Figure 14-1.  Build DemoList

Chapter 14 Build a ReactiveX/RxSwift App

185

The simulator is updated to be able to support many versions of

iOS, but there remain certain features of iOS that are not identical when

running on a device or the simulator. For example, on the simulator,

iCloud synchronization is triggered by a menu command (Debug ➤

Trigger iCloud Sync), and various other aspects of the operating system

function differently on the simulator than they do on actual devices. That is

true of features and also of projects that are built from multiple files. When

they are built in one environment such as Xcode, files and frameworks that

are necessary may be available, but then are not available when they app is

Figure 14-2.  Running on the iOS simulator

Chapter 14 Build a ReactiveX/RxSwift App

186

moved to an actual device. The safest way to avoid deployment surprises is

to use a device for testing frequently during development. (Popular devices

for this kind of testing are iPod Touch and iPhone SE.)

�Setting Up the Project
In Chapter 13, you saw the basics of how to add an app to the downloaded

repository. This chapter will present a more complete version that you

can use repeatedly for other apps. Most important, it begins to use RxSwift

features and syntax.

If you follow the steps to download the GitHub repository, you’ll have

the most current version. The files may change, and the structure may

change as well, so if you look at the list of files on disk, it may be slightly

different than the files you see in the figures of this book. Figure 14-3 shows

the GitHub repository downloaded in Xcode.

Figure 14-3.  Downloaded ReactiveXRxSwift repository in Xcode

Chapter 14 Build a ReactiveX/RxSwift App

187

You may have to open or close some of the disclosure triangles to

see the files. What is most important to notice here is the playground

files. They may be in an Rx project at the top of the list (or they may have

moved). Figure 14-3 shows you the four steps to take:

	 1.	 Open Rx.xcworkspace

	 2.	 Build the RxSwift-macOS scheme (Product ➤ Build).

	 3.	 Open Rx playground in the Project navigator

	 4.	 Show the Debug area (View ➤ Debug Area ➤ Show

Debug Area).

If you can’t build it as described in the four steps, there is probably

something wrong with your download.

Note  The build process for the playground can take several minutes
to complete. Watch the status bar at the top of the window to see the
status of indexing, which is what will often take a while. The indexing
status message is shown in Figure 14-3.

Once you have built the playground, you can delete the files, but it’s

a good idea to keep the full downloaded archive in a safe place. After you

have deleted the playground files, your project may look like Figure 14-4,

in which all of the playground files are removed. This may be a version of

RxSwift that you use as a starting place for various projects that don’t need

the playground files.

Chapter 14 Build a ReactiveX/RxSwift App

188

The Rx project toward the bottom of the repo is the main project,

rather than the playground that you have deleted at this point. If you select

the Rx project and look at the targets, as shown in Figure 14-4, you’ll see

the components of ReactiveX.

For basic work with ReactiveX, you need to compile RxCocoa and

RxSwift for the device on which you want to run the project. You can do

that from the schema at the top left of the window, shown in Figure 14-4.

Tip  To save time, you can build RxSwift and RxCocoa for a generic
iOS device, as shown in Figure 14-4. These are needed to support
your app.

Figure 14-4.  GitHub repo without playground project

Chapter 14 Build a ReactiveX/RxSwift App

189

Once you have built RxCocoa and RxSwift, you can create your

new app. This example (shown previously in Figure 14-1) can be called

DemoList. Choose File ➤ New ➤ Project and then select Single View App,

as shown in Figure 14-5.

Figure 14-5.  Create a new Single View App project

Chapter 14 Build a ReactiveX/RxSwift App

190

Set the project options and name, as shown in Figure 14-6.

Figure 14-6.  Name the new project and set its options

When it comes time to save your new project, you have the option of

adding it to your existing project, as you can see in Figure 14-7.

Chapter 14 Build a ReactiveX/RxSwift App

191

Choose the option to add it to your existing project or workspace, as

shown in Figure 14-8.

Figure 14-7.  Save your new project

Figure 14-8.  Add your new project to the existing project or
workspace

Chapter 14 Build a ReactiveX/RxSwift App

192

As always when you create a new project, try to build and run it.

Bearing in mind the issues of devices versus simulator, a good test at this

point is to run it both on a device and in a simulator before you enter any

code. (If you do run it, remember that the storyboard is blank, so seeing

a blank screen is the expected behavior. You can add a label or image as

described previously to verify your app.)

�Add ReactiveX
So far, this is basically the process you’ve seen before for adding onto the

downloaded repository. Now, it’s time to add ReactiveX.

�Build RxCocoa and RxSwift
You will need RxCocoa and RxSwift to be built before you start. If you

haven’t done so already, build them as shown in Figure 14-4. Remember

that you can use a generic iOS device for these builds. After the builds, they

will be listed in the Products group, as you can see in Figure 14-9. All of the

available products will be listed. The ones that have been built will show in

black rather than red.

Chapter 14 Build a ReactiveX/RxSwift App

193

�Add RxSwift and RxCocoa to Your Project
Now, drag RxSwift and RxCocoa into the Embedded Binaries section on

the General tab of DemoList. If you drag them to Embedded Binaries, they

will also automatically be added to Linked Frameworks and Libraries.

�Verify the Syntax
The acid test will be if you can reference the ReactiveX features in your

source code, and then if you can run your app and use them. They will be

needed in ViewController in the app template, so add import statements at

the top of the code, as shown in Figure 14-10.

Figure 14-9.  Verify you have built RxSwift and RxCocoa

Chapter 14 Build a ReactiveX/RxSwift App

194

If something has gone wrong, you’ll not be able to build your app.

You may even get a syntax error as you type the import statements. If you

do get errors, double-check the steps you have taken and keep an eye on

the status bar at the top of the window to make certain that your indexing

has completed. Be aware that as you are moving these files around and

building the ReactiveX components, you may see errors that will go away

as the project is fully indexed and built. Don’t react to syntax errors too

quickly.

�Building the Storyboard
With your template-based project under way, you can start to build the

storyboard. In short, you need to create a view controller with a search bar

and a table (refer back to Figure 10-1 to see the result).

Figure 14-10.  Add import statements

Chapter 14 Build a ReactiveX/RxSwift App

195

The steps for this process are the same basic Xcode and Interface

Builder steps that you use in any project. Begin by opening the storyboard

with your single view controller in it. Select the view controller and choose

a translucent navigation bar for the top, as shown in Figure 14-11.

Figure 14-11.  Use a translucent navigation bar at the top of the view
controller

Add a UITableView to the view. With the table view selected, choose

“Dynamic Prototypes” for the table view and specify one prototype, as you

can see in Figure 14-12.

In ViewController, add references to the search bar and table view so

that they are visible to your code at the top of ViewController:

 @IBOutlet weak var searchBar: UISearchBar!

 @IBOutlet weak var tableView: UITableView!

Chapter 14 Build a ReactiveX/RxSwift App

196

As is always the case with dynamic prototype cells in UITableView, one

will be created for as many prototypes as you set in the table view. For each

one, you need to provide an identifier that will be used to retrieve it. In

Figure 14-12 you see prototypeCell used as the name of the prototype cell

in the structure view at the left of the layout.

�Adding the UITableView Code and Delegate
If you are following along, all you need to do now is to implement

ViewController. No changes in the template are needed for AppDelegate,

Assets.xcassets, Info.plist, or LaunchScreen.storyboard. The

template itself makes some entries, but you don’t change them.

Figure 14-12.  Use dynamic prototype cells

Chapter 14 Build a ReactiveX/RxSwift App

197

You need to implement a DataSource for your table view. (A Delegate

may need to be implemented later on.) The DataSource provides the data

to the view controller. The two key methods for the data source are the

same as you use in any UITableView.

Create two arrays in ViewController. items will be all possible items

to be shown in the list, and itemsToShow will be the items from items that

are shown. The declarations should look like this:

var itemsToShow = [String]()

let items = ["Saranac River", "Fort Moreau", "Oval", "Fort Brown",

 "Water Pollution Control Plant", "Fort Scott"]

(The strings in items are up to you.)

You also will need a declaration of a DisposeBag to manage your

observer. This will automatically collect disposables generated in this

object (ViewController), and when the object is deallocated and its

deinit method is called, the disposables will be released.

let disposeBag = DisposeBag()

You will need to implement viewDidLoad as follows:

override func viewDidLoad() {

 super.viewDidLoad()

}

Two standard UITableView functions let you specify the number of

items to be shown and what they are.

To specify the number of items to be shown, use

numberOfRowsInSection. Return the count of itemsToShow so that the

function looks like this:

func tableView (_ tableView: UITableView, numberOfRowsInSection

section: Int) -> Int {

 return itemsToShow.count

}

Chapter 14 Build a ReactiveX/RxSwift App

198

You format and return the cell to be displayed. You use the identifier

for the prototype cell you want to use, and you set its textLabel to the

relevant string from itemsToShow:

func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath) ->

 UITableViewCell {

 �let cell = tableView.dequeueReusableCell(withIdentifier:

"prototypeCell",

 for: indexPath)

 cell.textLabel?.text = itemsToShow[indexPath.row]

 return cell

}

Finally, specify that ViewController conforms to the

UITableViewDataSource protocol by changing the declaration as follows:

class ViewController: UIViewController, UITableViewDataSource {

In Interface Builder, connect the table view to the data source.

�Implementing the ReactiveX Search Bar
The final section of code implements the search bar in viewDidLoad. What

matters most are the following:

•	 An items array (it doesn’t matter what the array types

are as long as they are strings)

•	 An itemsToShow array (it starts as an empty String

array)

•	 A tableView called tableView

Chapter 14 Build a ReactiveX/RxSwift App

199

This is one of features of functional programming: you don’t need to

worry about the specific data you’re working with in many cases.

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view,

typically from a nib.

 searchBar

 .rx.text

 .orEmpty

 .subscribe(onNext: { [unowned self] query in

 self.itemsToShow = self.items.filter {

 $0.hasPrefix(query)

 }

 self.tableView.reloadData()

 })

 }

Note  You may get a warning that subscribe is not used at this
point: that is a warning, and you can continue for now.

�Reviewing the Code
All told, your code is complete now. It should look like Listing 14-1.

Listing 14-1.  Complete code for the view controller

import UIKit

import RxSwift

import RxCocoa

Chapter 14 Build a ReactiveX/RxSwift App

200

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var searchBar: UISearchBar!

 @IBOutlet weak var tableView: UITableView!

 var itemsToShow = [String]()

 �let items = ["Saranac River", "Fort Moreau", "Oval", "Fort

Brown",

 "Water Pollution Control Plant", "Fort Scott"]

 let disposeBag = DisposeBag()

 override func viewDidLoad() {

 super.viewDidLoad()

 �// Do any additional setup after loading the view,

typically from a nib.

 searchBar

 .rx.text

 .orEmpty

 .subscribe(onNext: { [unowned self] query in

 self.itemsToShow = self.items.filter {

 $0.hasPrefix(query)

 }

 self.tableView.reloadData()

 })

 }

 func tableView (_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int

 {

 return itemsToShow.count

 }

Chapter 14 Build a ReactiveX/RxSwift App

201

 �func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath)

 -> UITableViewCell {

 �let cell = tableView.dequeueReusableCell(withIdentifier:

"prototypeCell",

 for: indexPath)

 cell.textLabel?.text = itemsToShow[indexPath.row]

 return cell

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

�Summary
You should be able to run the app now. Open the project in Xcode and

select DemoList to run.

Chapter 14 Build a ReactiveX/RxSwift App

203© Jesse Feiler 2018
J. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5

Index

A, B
Acid test, 193
Amazon Web Services (AWS)

account
Mobile Hub, 126–127
sign in, 125

add pods, 135–136
back end, 131–134
with Cocoa

cloud-based computing,
102, 104

and Cocoa Touch, 100–101
data management, 108–109
sharing data, 101–104
users’ expectations, 104–105

create project, 130
developer resources on, 107
documentation for, 128–130
login process

accounts, 111–116
creating organizations,

116–117
IAM tools, 117–120
root user, 111–116
Xcode, 121–122

products, 108
web-based technology, 105

Application programs, 158
App Store, 31
Asynchronous

programming, 166
Authentication process, 4

C
Carthage, 170
Cloud computing, 127
Cocoa

AWS (see Amazon Web
Services (AWS))

Core Data tool, 109
SQLite, 109

CocoaPods
GitHub repository, 17
install, 18
integration methods, 77, 170
podfile, 17
single-view app

check directory, 22–23
command line, 21
create new folder, 19–20
create new project, 19
install command, 24
podfile, 23–24
review project, 20–21

https://doi.org/10.1007/978-1-4842-3621-5

204

run app, 21
workspace window, 24–27

Xcode project, 17
Command-line

integration, 10–14
Conditional

statements, 162
Core Data tool, 109

D
Declarative programs, 163

E
European Union General Data

Protection Regulation
(GDPR), 33, 58

Extensible Markup
Language (XML), 35

F
Facebook iOS SDK

account
ads, 64
analytics, 63
APIs, 58–59
app events, 64
components, 62–64
Docs menu, 61
login, 63

navigation bar, 61
sharing, 64

login process
adding frameworks, 86–89
adding label, 90
bundle identifier, 74–75,

79–81
create new, 67–68
create new app ID, 68, 70
info.plist file, 71–72
integration, 71
login button, 91, 94
property list, 73
security process, 70
single-view app, 78–79

navigation bar, 59
for Swift

Documentation page, 82–83
download, 83–84, 86
GitHub, 86

Framework model, 5
Functional programs, 163

G
GitHub, 10, 170
Good Morning program, 157
Grand Central

Dispatch (GCD), 165

H
Hello World program, 157

CocoaPods (cont.)

Index

205

I
iCloud service, 103
Identity and Access Management

(IAM), 117–120
Imperative programs, 162

J, K, L, M, N
JavaScript Object Notation (JSON)

array, 36–37
in BBEdit, 38
components of, 41
in Excel, 39
object, 36
Swift Playgrounds (see Swift

Playgrounds app)
in TextEdit, 37
in Xcode, 40

O
Object-oriented (OOP)

programming, 162
Operating systems, 165

P, Q
Paradigms programming

declarative programs, 163
design patterns, 163–164
functional programs, 163
imperative programs, 162
processing

configurations, 165–166
spaghetti-code, 161–162

Podfile, 17
Programming

application programs, 158
asynchronous, 166
design patterns, 160
paradigms (see Paradigms

programming)
processing configurations, 161
system programs, 158

Propagation of change, 166

R
Reactive programming, 142, 157,

166
ReactiveX/RxSwift app, 165–167

add project, 174–179
coding, 199
DemoList, 183
download, 171–172
GitHub repository

add existing project/
workspace, 191

project name and options, 190
save project, 190–191
single view app, 189
without playground

project, 188
in Xcode, 186–187

iOS simulator, 184
label, 181–182
RxCocoa and RxSwift

storyboard, 194–196
syntax, 193–194

Index

206

RxSwift-enhanced
project, 180

search bar, 198–199
UITableView code, 196–198
workspace and

playground, 173–174
Xcode integration, 170

Reusable code building blocks
command-line

integration, 10–14
component architecture, 5–6
iOS and macOS

delegates, 8
drag-and-drop, 6, 8
frameworks, 8
protocols, 8

multiple building blocks, 9
using workspace, 9

RxSwift
formatted playground

add new lines, 151–152
error messages, 152–153
markup code, 147–149
original playground, 154
raw code, 149
Rx targets, 150
select scheme, 151

GitHub, 143–146
open source, 142
reactive programming, 142, 169
Rx.playground folder, 146–147
Xcode 9, 143

S
Sharing data

across apps and
across time, 32

challenges, 33–34
inconsistent data types, 35
security for, 33
UI elements, 34

Shell model, 5
Single-view app

check directory, 22–23
command line, 21
create new folder, 19–20
create new project, 19
install command, 24
podfile, 23–24
review project, 20–21
run app, 21
workspace window, 24–26

Spaghetti-code programs, 161–162
Swift Package Manager (SPM), 170
Swift Playgrounds app

create new file, 45–46
create playground, 44
fatalError string, 48
JSON integration tools

Swift array, 50–52
Swift dictionary, 52–53

project navigator, 44–45
run code, 49
type/paste code, 46–47

System programs, 158

ReactiveX/RxSwift app (cont.)

Index

207

T
Thin client computing (see Cloud

computing)

U, V
Unsustainable model, 5

W
Wikipedia, 160

X, Y, Z
Xcode 9, 143

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Building Composite Apps with Swift
	Chapter 1: Building Blocks: Projects, Workspaces, Extensions, Delegates, and Frameworks
	Component Architecture Overview
	Looking at the iOS and macOS Building Blocks
	Extensions
	Delegates and Protocols
	Frameworks

	Building with the Building Blocks
	Using a Workspace
	Building with Combinations of Building Blocks

	Command-Line Integration
	Summary

	Chapter 2: Using CocoaPods
	Install CocoaPods
	Create a Simple App (Single-View App)
	Summary

	Part II: Using Codable Data with Swift and iOS
	Chapter 3: Reading and Writing JSON Data
	Identifying Data That Needs to Be Shared
	Considering Security for Sharing Data
	The Challenges of Sharing Data
	Identifying Data Elements
	Managing Inconsistent Data Types
	Exploring the Document and Structure Issues

	Looking at JSON
	Using JSON—The Basics
	Summary

	Chapter 4: Using JSON Data with Swift
	Getting Started with a JSON Swift Playground
	Using the JSON Integration Tools in Swift
	Integrating a Swift Array
	Integrating a Swift Dictionary

	Summary

	Part III: Integrating Facebook Logins
	Chapter 5: Setting Up a Facebook Account with iOS
	Beginning to Explore the Facebook iOS SDK
	Looking at the Components of the Facebook iOS SDK
	Summary

	Chapter 6: Managing Facebook Logins
	Beginning the Facebook SDK Login Process
	Providing Basic iOS/Facebook Integration
	Connecting the iOS app to your Facebook App
	Summary

	Chapter 7: Adding a Facebook Login to an iOS App
	Starting to Integrate the Facebook SDK with an iOS app
	Download the Facebook SDK for Swift
	Adding Frameworks and Functionality to Your Facebook App
	Enhancing Your App
	Summary

	Part IV: Storing Data in Amazon Web Services
	Chapter 8: Working with Amazon Web Services and Cocoa
	Comparing Components
	Using AWS with Cocoa
	Sharing Data with Others
	Using Data Across Platforms
	Playing to Your Strengths
	Playing to Your Users’ Expectations

	Exploring AWS
	Getting Started with AWS
	Comparing Cocoa and AWS Products for Data Management

	Summary

	Chapter 9: Managing AWS Logins
	Looking at AWS Accounts and the Root User
	Creating Organizations
	Working with IAM
	Integrating AWS with Xcode
	Summary

	Chapter 10: Beginning an AWS Project
	Setting Up the iOS App
	Setting Up the iOS Project
	Exploring the Documentation
	Creating a Project
	Setting Up the Back End
	Add the Pods

	Summary

	Part V: Using RxSwift
	Chapter 11: Getting Into Code
	Getting Started
	Installing RxSwift from GitHub
	Using the RxSwift Playground
	Looking at a Formatted Playground

	Summary

	Chapter 12: Thinking Reactively
	What Are We Developing?
	Approaches to Programming
	Programming Paradigms
	Structural Paradigms
	Operational Paradigms

	Design Patterns
	Processing Configurations

	Introducing Reactive Programming
	Focusing on ReactiveX
	Summary

	Chapter 13: Exploring the Basic RxCode
	Overview of ReactiveX/RxSwift–Xcode Integration
	Start from the RxSwift Download
	Explore the Workspace and Playground
	Adding a Project to the RxSwift Download
	Building Your RxSwift-enhanced Project
	Modify the Project
	Summary

	Chapter 14: Build a ReactiveX/RxSwift App
	Setting Up the Project
	Add ReactiveX
	Build RxCocoa and RxSwift
	Add RxSwift and RxCocoa to Your Project
	Verify the Syntax
	Building the Storyboard
	Adding the UITableView Code and Delegate
	Implementing the ReactiveX Search Bar
	Reviewing the Code
	Summary

	Index

